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Abstract

Recent developments in fiber-based mode-locked lasers have made them increasingly ro-

bust and flexible. This development trend makes theses lasers more accessible for indus-

trial and scientific applications. In this thesis, we describe the construction and charac-

terization of a robust and flexible all-polarization-maintaining ytterbium-doped fiber laser,

mode-locked with a nonlinear amplifying loop mirror. The design of the laser provides ro-

bust and easily achievable mode-locking. Moreover, our laser includes “tuning knobs” inside

the cavity that provide a great degree of dynamic flexibility in its operation. We utilized

this flexibility to implement a novel mechanism for intensity noise suppression and achieve

extremely low-noise operation. The pump-to-output transfer bandwidth of the laser was

also investigated theoretically and experimentally in order to understand a trade-off be-

tween the bandwidth available for active laser stabilization and intensity noise suppression.
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Chapter 1

Introduction

In recent years mode-locked laser sources emitting ultrashort pulses have improved signif-

icantly in terms of robustness and flexibility. In particular, mode-locked fiber lasers serve

as a compact source for many applications such as terahertz radiation generation [1], pre-

cision spectroscopy [2], two-photon microscopy [3], study of attosecond dynamics [4], pure

microwave generation [5], and material processing [6, 7]. Because of the high number of

implemented and potential applications, the development of robust, flexible, and easy-to-use

mode-locked lasers is necessary. Comparing to free space lasers, fiber lasers have several

advantages. The most crucial advantage of a fiber laser is its robustness against pump-

misalignment. We can deliver pump light from low-cost 976/980 nm semiconductor diode

lasers to the gain fiber through all-fiber components. Moreover, gain media such as yt-

terbium (Yb)- and erbium (Er)-doped glass fibers are very common and easily accessible

[8]. Also, fiber lasers have a better thermal management capability because of the higher

surface-to-volume ratio.

Fiber-laser mode-locking mechanisms can be divided into two categories: real and ar-

tificial saturable absorbers. Examples of real saturable absorbers include semiconductor

saturable absorber mirrors (SESAM) [11], graphene [12] and carbon nanotubes(CNT) [13].

Due to design and fabrication complexity, low damage threshold, and their nature of degrad-
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ing performance over time, real saturable absorbers have become much less widely used to

facilitate mode locking in fiber lasers. Moreover, SESAM mode-locked fiber lasers have slow

relaxation. Because of this behavior, this kind of laser has a higher noise floor which domi-

nates all other noise sources such as pump noise [11]. Therefore, here we focus on artificial

saturable absorbers.

The robustness and reliability of mode-locked fiber lasers depend on the artificial sat-

urable absorber used for each particular laser. To be specific, lasers that utilize non-

polarization-maintaining (PM) fiber are easily impacted by environmental effects such as

vibration, thermal fluctuation, etc. The advantages of using non-PM fibers are that this

kind of lasers are easy to implement with off-the-shelf optical components with significant

flexibility in cavity design. In such lasers, mode-locking can be straightforwardly facilitated

via nonlinear polarization evolution (NPE) in standard fiber and an intracavity polarizer [9].

Mode-locking via NPE is only compatible with non-PM fiber because in this technique the

polarization needs to have the independence to be freely rotating within the fiber. On the

other hand, PM fiber mode-locked lasers are highly robust against environmental influence

[9, 10], but require a more involved method of mode-locking.

Nowadays, the most popular group of methods for mode-locking a PM fiber laser using

an artificial saturable absorber is additive pulse mode-locking (APM) [14]. These methods

were introduced in the early ’90s and quickly became very popular due to their fast response

and low intrinsic noise. The most widely used APM artificial saturable absorbers, that

are compatible with PM fiber, are the nonlinear optical loop mirror (NOLM) [15] and the

nonlinear amplifying loop mirror (NALM) [16]. Both of these mechanisms work based on

the superposition of two counter-propagating pulses in a fiber loop that can be created

by connecting the output ports of an off-the-shelf fiber coupler. The counter-propagating

pulses acquire different intensity-dependent phases. When the counter-propagating pulses

are combined, they interfere. As always in such interference, intensity is distributed in a

manner that depends on relative phase. Since, in this case, the relative phase depends
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on initial intensity, the outcome of the interference will depend on the initial intensity of

the pulse entering the loop. This means that the intensity of light emitted from the loop

is distributed between modes (e.g., with different polarization or direction of propagation)

depending on input intensity. In NOLM and NALM, this is used to facilitate artificial

saturable absorption by adding an optical element that is more lossy for the mode that

corresponds to lower input intensity (e.g., a polarizer or isolator). As noted above, NOLM

and NALM-based lasers can be implemented with PM fibers, therefore these lasers can

provide very robust and reliable operation.

Figure 1.1: Schematic diagram of a NOLM. The figure is reprinted with permission from
[15].

Fig. 1.1 shows a schematic diagram of a NOLM laser. To create a mode-locked laser

with a NOLM, the loop operates in transmission. The transmission of the loop depends on

the nonlinear phase shift difference ϕnl between two waves counter-propagating through the

fiber loop. This nonlinear phase shift difference is intensity dependent. For a single wave,

the non linear phase shift ϕ′nl is given by [17]

ϕ′nl =
2π

λ
n2I, (1.1)

where λ is the wavelength, n2 is the nonlinear refractive index and I is the optical intensity.

The intensity dependence of the NOLM transmission comes from the asymmetry in the
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loop. In the original NOLM configuration, the required asymmetry is generated by an

uneven power splitting ratio at the NOLM entrance. This uneven power splitting makes

the two counter-propagating waves acquire different nonlinear phase shifts, and therefore

their interference depends on intensity, resulting in intensity-dependent NOLM transmission.

The main drawback of this particular approach is that, although mode-locking is possible,

self-starting mode-lock operation is very difficult to achieve [18]. The reason is that a small

deviation of the nonlinear phase shift difference from zero (corresponding to a small variation

in intensity) only creates a very small reduction in cavity loss, making it difficult to transition

form initial non-pulsed (low-intensity) operation to steady-state pulsed operation.

Figure 1.2: Schematic diagram for a NALM laser. The figure is reprinted with permission
from [9]. cw: clockwise, ccw: counter clockwise.

Fig. 1.2 shows a schematic diagram of a NALM laser. In a NALM, an amplifying fiber

is placed in the loop such that it breaks the symmetry between counter-propagating waves

(i.e. clockwise (cw) and counter clockwise (ccw)). This modification improves the situation

but still self-starting mode-lock operation is challenging. Recently this issue was addressed

through implementation of a non-reciprocal phase bias [16] .The non-reciprocal phase bias

facilitates greater variation in loss around ϕnl = 0, thereby facilitating self-starting mode-

locking. Such phase bias can be generated by using a combination of a Faraday rotator and
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wave plates. This technique is explained in detail in section 2.5.

Furthermore, to avoid excessive fiber length, which leads to low pulse repetition rate,

the NALM is used in reflection and in combination with a free-space section that contains a

mirror at its end. In this reflective design, the power splitting ratio at the NALM input can

be fixed or variable according to the configuration of the laser. Due to their robustness, flex-

ibility, and easily achievable self-starting mode-locking behavior, these lasers are becoming

more and more popular [9].

The work presented here explores a novel all-PM NALM laser design that was recently

developed [8] . This design introduces multiple degrees of freedom that can be dynamically

tuned. Our goal is to study how some of these “tuning knobs” could be used to achieve

low-noise phase-stabilized operation of our mode-locked laser so that it will generate an

optical frequency comb [19, 20]. Towards this goal we characterized the laser’s intensity

noise and also its pump-to-output transfer function, since feedback onto the pump power is

an established mechanism of frequency comb stabilization. By analyzing the intensity noise

and the transfer function’s bandwidth in our laser, we discovered a novel noise-suppression

mechanism and studied the trade-off between noise suppression and bandwidth available for

stabilization via pump power.

In this thesis, Chapter 2 provides theoretical background on NALM-based mode locking,

relative intensity noise and timing jitter. It also includes the master equation for the mode-

locked laser, which is used in Chapter 4 to connect laser parameters to the trade-off between

noise suppression and stabilization bandwidth. Chapter 3 details the design, characterization

and noise performance of our mode-locked laser. In this chapter I explain the impact of each

“tuning knob” in our laser. Moreover, the laser is characterized in terms of its optical and

radio frequency (RF) spectra, as well as intra-cavity dispersion. In the last part of the

chapter, I focus on the noise performance of the laser, including measurements of relative

intensity noise (RIN) and qualitative analysis of timing jitter. In Chapter 4, I discuss how

different parameters of the master equation such as loss and the saturation of self amplitude
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modulation (SAT) can be expressed by using our laser’s parameters (i.e waveplate angle

and nonlinear phase shift). I also present and analyze experimental measurements of the

pump-to-output transfer function of the laser. In the last part of Chapter 4, I present

currently-unexplained anomalous experimental results, which are left as subjects for future

studies.
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Chapter 2

Theoretical background

This chapter presents the theoretical background on mode-locking, noise characteristics and

pump-to-output transfer function bandwidth of mode-locked fiber lasers. We include the

development and important features of the Haus master equation and its perturbation [14] .

The theory developed by Haus can be used to analyze various mechanisms of intensity noise,

jitter (i.e., pulse timing noise) and phase noise.This thesis mainly focuses on intensity noise,

and includes qualitative analysis of jitter.

The robustness of all-PM NALM lasers has motivated their use as frequency combs, which

are phase-stabilized mode-locked lasers [19, 20]. Frequency combs have been shown to bring

great benefits to many applications, including optical atomic clocks, timing distribution and

synchronization, laser ranging and precision spectroscopy [8, 9], to name a few. In the time

domain, the output of a stabilized mode-locked laser is a periodic train of pulses, where

the time interval between consecutive pulses, Tr, is fixed. The pulse-to-pulse phase slip

of the carrier wave is also fixed. In the frequency domain, this corresponds to a set of

narrow spectral features, collectively called a frequency comb. The spacing between each

adjacent pair of features (called comb teeth) is the same and equal to the pulse repetition

rate, fr = 1/Tr. The entire comb structure is offset from the origin by a quantity called the

carrier-envelope offset (CEO) frequency, fCEO, which is related to the pulse-to-pulse phase
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slip in the time domain. A stable RF or optical frequency reference can be used to phase-lock

the repetition rate and offset frequency and achieve stabilization of the full comb.

A feedback system is required in order to lock a laser to a reference. This system monitors

the difference between the laser output and the reference, and correspondingly adjusts some

laser parameters to minimize this difference. A very convenient adjustment parameter is the

power of the pump laser [28]. Therefore, it is very important to characterize the transfer

function between pump power and output. In particular, the bandwidth of this transfer

function limits the attainable bandwidth of the stabilizing feedback system.

2.1 Nonlinearity, dispersion and soliton formation in mode-

locked lasers

This section presents two very important phenomena that play a significant role in describing

our laser characteristics. The first one is the nonlinear refractive index and the second is

group velocity dispersion (GVD). I will also give a brief overview about how these parameters

bring about the formation of solitons.

If the optical intensity is sufficiently high, it can perturb the properties of the medium in

which it propagates. This phnomenon results in an intensity dependent contribution to the

medium’s refractive index [17]:

n (I) = n0 + n2I(t). (2.1)

Here, n0 is the unperturbed refractive index, n2 is the nonlinear refractive index coefficient

and I is the intensity. The phase of light that propagated a distance l is 2π ·n (I) · l/λ. As a

result, the intensity dependence of the refractive index modulates this phase. This effect is

called self-phase modulation (SPM) [31]. In a pulse, intensity varies with time, and therefore

SPM causes phase to vary with time. Since instantaneous frequency is the time derivative

of phase, SPM causes it to vary in time as well.
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Group velocity dispersion (GVD) is the dependence of group velocity (vg) on optical

frequency (ω) [31] and can be expressed as

GVD =
d

dω
(

1

vg
). (2.2)

For normal dispersion, the higher frequencies travel slower than the lower ones. The opposite

case is called anomalous dispersion. These effects can lead to pulse stretching or compression.

Similarly, group delay dispersion (GDD) is the dependence of the group delay on optical

frequency, so GDD and GVD essentially describe the same phenomenon. Quantitatively,

for a propagation distance L, the group delay is τg = L/vg. Therefore, we have simply

GDD = dτg/dω = L ·GVD.

Solitons are the result of a balance between SPM and GVD. Both of these processes

affect pulse duration by making high frequencies lead or lag behind low frequencies. In the

anomalous dispersion regime, GVD and SPM act in opposition to each other. Balancing

their actions forms a pulse whose shape remains fixed as it propagates [31]. This kind of

pulse is called a soliton. When GVD and SPM are balanced in a mode-locked laser, the laser

pulses are solitons [31].

To complete picture of soliton propagation we need to describe the phenomenon of disper-

sive wave generation [31, 32] . If a soliton is perturbed, by either the generation of additional

frequency components or by variation in intensity, the additional light that does not fit into

the GVD and SPM balanced soliton will continue to propagate alongside the pulse. This

additional light does not form a separate pulse but rather gets very strongly spread tempo-

rally due to dispersion and therefore will have very low intensity. For this reason, it is called

a dispersive wave.

The above description of soliton formation in mode-locked lasers implicitly assumes that

dispersion has a fixed anomalous value throughout the laser cavity. However, there is a class

of mode-locked lasers that have large variation in the local value of dispersion in their cavity.
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These are called dispersion-managed mode-locked lasers. Their cavity contains elements that

impart both normal and anomalous dispersion, such that the net cavity dispersion is close to

zero (more precisely, in one cavity round trip, the net GDD has a much smaller magnitude

than the positive and negative GDD). Theory, supported by experimental evidence, shows

that the pulses that form in such lasers correspond to so-called average solitons [33, 34, 35].

The pulse experiences periodic stretching and compression due to GVD and SPM as it travels

through the cavity. Additional filtering effects (e.g., finite gain bandwidth) can also impact

pulse duration. Overall, all of these pulse shaping effects need to strike a balance on average

in order to sustain a stable pulse train. Therefore, these lasers do have some similarities to

soliton lasers, such as dispersive wave generation, in particular when they are operated with

net anomalous dispersion.

2.2 Derivation of the master equation for passively mode-

locked lasers

In a passively mode-locked laser, a nonlinear optical element produces intensity-dependent

loss. When mode-locked, the laser produces short pulses, which have much higher peak

intensity compared to continuous-wave (CW) or noisy operation. Therefore, mode-locking

requires the intracavity loss to decrease with increasing intensity. Passive mode-locking is a

dynamic process, in which an ultrashort pulse that is circulating in the laser cavity modulates

the intracavity loss, and the intracavity loss modulates the circulating pulse. Through this

process, the loss modulation and laser pulse get synchronized and reach a steady state. If

the nonlinearity response time is very short, the laser can produce very short pulses.

The nonlinear loss element is called a saturable absorber. A natural saturable absorber

is a medium with absorption that decreases as intensity increases. In fiber lasers, artificial

saturable absorbers utilize nonlinear phase modulation and interference to create intensity-

dependent loss. Intensity depends on both pulse energy and pulse duration, therefore it is
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very important to consider nonlinear amplitude modulation, phase modulation and disper-

sion effects to understand the mode-locking mechanism.

Figure 2.1: Block diagram model of a passively mode-locked laser.

For describing the passive mode-locking process, we consider the changes encountered

by a pulse traveling through the cavity during a single round trip [31]. Figure 2.1 shows a

block diagram model of a passively mode-locked laser. For simplification of the analysis we

assume that the original pulse will be reproduced after a single round trip.

If the initial pulse envelope in the time domain is considered to be a (t) and the Fourier

transform of this envelop is A(ω), the effect of the cavity can be taken into consideration by

writing

A′(ω̃) = e−ω̃
2/ω2

ce−l0A(ω̃). (2.3)

Here , ω̃ is defined as ω̃ = ω − ω0, where ω0 is the center frequency, e−ω̃2/ω2
c is the filtering

term related to the finite bandwidth of the optical cavity, ωc, and e−l0 is the linear time-

independent cavity loss. For developing a simplified analytical theory, we assume that the

change due to each element per round trip are small, and the mode-locked pulse bandwidth

is narrow compared to the filter bandwidth, ωc. If there are no other bandwidth limiting ele-

ments, the bandwidth may be determined by the gain bandwidth. Using a Taylor expansion

for the above equation we get,

A′(ω̃) ≈ (1− ω̃2

ω2
c

− l0)A(ω̃). (2.4)
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Applying the inverse Fourier transform gives the corresponding time domain relation,

a′(t) ≈ (1− l0 +
1

ω2
c

d2

dt2
)a(t). (2.5)

In the same manner we now take into account the nonlinear (and therefore time-dependent)

loss l(t) and gain g(t). We assume that the nonlinear loss and gain per pass are small and

obtain

a′′(t) = e−l(t)eg(t)a′(t) ≈ (1− l0 − l(t) + g(t) +
1

ω2
c

d2

dt2
)a(t). (2.6)

A mode-locked pulse equation can be derived by taking a′′(t) to be equal to a delayed version

of the initial pulse, a (t+ δT ). The time shift δT arises from nonlinear pulse shaping by the

nonlinear loss l(t) and gain g(t). This shift is usually small compared to the steady state

pulse width, and therefore we can approximate the mode-locked state as satisfying

a′′(t) = a(t+ δT ) ≈ a(t) +
da

dt
δT. (2.7)

By combining all the above equations we obtain

1

ω2
c

d2a(t)

dt2
+ [g(t)− l(t)− l0]a(t)− δT da

dt
= 0 (2.8)

Eq. (2.8) is an example of Haus’s Master equation [27]. While deriving the master equation,

we considered that per-pass change provided by each element to be a small perturbation.

This assumption, which is very realistic for many lasers, allows us to keep only the leading

terms in Taylor series expansions. Also, since we’re keeping only the constant and linear

term, this assumption allows us to arrange the terms in the equation in any order without

any effect. The master equation provides analytical insight for a wide range of mode-locking

systems.

The master equation can specialized to the case of APM mode-locking as follows [27].
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The nonlinear loss is modeled as a combination of amplitude and phase modulation that re-

sult from the SPM-based mode-locking mechanism. This is represented as g (t)− l (t)− l0 =

g− l+ (γSAM + iδ)|a|2, where g is the saturated (time-independent) gain, l is the linear loss,

γSAM is the self-amplitude modulation (SAM) coefficient and δ is the self-phase modulation

coefficient (recall that |a|2 is proportional to intensity). Since nonlinear pulse-shaping effects

are now including these terms, we replace δT with Tr, the pulse repetition period. In fiber

APM lasers with no intracavity filter, the finite gain bandwidth acts as an effective filter,

which is expressed using the gain dispersion parameter Dg. Additionally, GVD creates a

quadratic dependence of spectral phase on frequency, which Fourier transforms into the op-

erator −iD d2

at2
in the first-order Taylor approximation, where D is the dispersion parameter.

Gain dispersion and GVD are introduced by setting 1
ω2
c

= Dg−iD. Finally, perturbations are

introduced through an additional term, V (a). These substitutions, together with separation

of time scales, result in the Haus’s master equation for a mode-locked fiber laser,

Tr
da

dT
= (g − l)a (T ) + (Dg − iD)

d2a

dt2
+ (γSAM + iδ)|a|2a(T ) + V (a). (2.9)

Here the envelope a(t, T ) is a function of the time t on the timescale of a pulse and the much

slower time T on the timescale of a round-trip time. In section 4.1, we discuss a modification

of the master equation parameters to match our laser parameters, which we use to derive an

expression for the pump-to-output transfer function bandwidth for our laser.

2.3 Noise in mode-locked fiber lasers

Noise is an important factor for the commercialization of mode-locked fiber lasers. When

mode-locked lasers are used in high precision applications, low-intensity noise is an important

requirement. Some relevant examples where intensity noise management for mode-locked

lasers are important are optical communication systems, spectroscopy, photonic digital to

analog converters, optical sampling, precision magnetometry and being used as a seed for
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optical amplifiers. Moreover, the intensity noise of mode locked lasers can impact laser

performance indirectly by coupling intensity noise to fCEO noise (comb lines fluctuation)

conversion in frequency combs or even by amplitude to phase conversion of photo-detectors

in microwave generation [29].

The electric field of an optical pulse train is given by [43]

A(t) = [A0 + ∆A0(t)]
∞∑

n=−∞

a(t− nTr + ∆Tr(t)) exp [j {2πυct+ nΦCE + ∆θ(t)}] . (2.10)

Here, A0 is the amplitude and ∆A0(t) is amplitude noise. The pulse envelope function is a(t),

the pulse repetition period is Tr, ∆Tr(t) is the pulse timing jitter, νc is the carrier frequency,

ΦCE is the pulse-to-pulse carrier-envelope phase slip, and ∆θ(t) is the phase fluctuation of

the field. The latter was included here for completeness so that the equation represents all

the noise feature of a mode-lock fiber laser. For the remainder of this thesis, we ignore carrier

phase noise, as it is beyond the scope of this work.

As mentioned above, in this work we are concerned with two noise factors of mode-lock

fiber lasers: the amplitude noise, ∆A0(t), which will be recast as the intensity noise, and the

timing jitter ∆Tr(t), which will be treated as the repetition-rate phase noise in the frequency

domain.

2.3.1 Theoretical description of intensity noise

Intensity noise can be defined as the fluctuation of the optical pulse train’s average power over

a specific measurement time span, that defines the average power stability of that particular

optical pulse train. We write the optical power of the pulse train as

P (t) = Pavg + ∆P (t). (2.11)
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Here, Pavg is the average power of the pulse train and ∆P (t) is the optical power fluctuation.

The intensity noise is quantified using relative intensity noise (RIN) [46] , given by

RIN =
〈∆P (t)2〉T
〈P (t)〉2T

, (2.12)

where 〈P (t)〉2T is the square of the pulse train average optical power, and 〈∆P (t)2〉T is the

mean squared optical power, for a specific measurement time T . Equivalently, RIN can be

described using its power spectral density (PSD) in the frequency domain:

SRIN(f) =
1

P 2
avg

∫ ∞
−∞
〈∆P (t)∆P (t+ τ)〉e−j2πfτdτ. (2.13)

Here, the PSD depends on the noise at frequency f . This expression, as given by Wiener

[31], was obtained by taking the Fourier transform of the optical power’s autocorrelation

function. Conveniently, the PSD can be measured with an RF spectrum analyzer and a

photodiode. The unit of RIN PSD is Hz−1, and it is commonly specified on a logarithmic

scale as dBc/Hz. Furthermore, the PSD can be integrated over a specific frequency range to

yield the mean square value of relative intensity noise over that range of frequencies.

Quantum and semi-classical intensity noise theory and experimental analysis for single-

frequency lasers was carried out by Harb. et. al. [44, 45]. This experimental and theoretical

analysis for single-frequency lasers can be used to explain the intensity noise of femtosecond

mode-locked laser [6], since we are dealing with time-averaged power. Intensity noise in

mode-lock fiber lasers is mainly caused by two factors. The first is external technical noise

sources and the second one is quantum noise sources. The pump laser’s intensity noise is an

example of an external noise source. Amplified spontaneous emission (ASE) is an example

of a quantum source of intensity noise.

As described in Section 2.4, a small perturbation of the laser’s gain will trigger a transient

oscillation relaxation that will fade away exponentially. Overshoot may be observed at the

relaxation oscillation frequency in the frequency domain. The output response behaves like
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a low pass filter output and it rolls off quickly after the relaxation oscillation frequency. In

the case of Yb-doped mode-locked fiber lasers, the gain medium relaxation time is in the

ms range, or equivalently in the frequency domain, it is on the order of a kilohertz. Both

ASE and pump noise usually contribute the output RIN at frequencies below and up to the

relaxation oscillation frequency. Usually, the pump noise level is much higher than the ASE

noise level. As a result, the RIN of mode-locked fiber lasers is usually dominated by the

pump noise for frequencies lower than the relaxation oscillation frequency.

Far above the relaxation oscillation frequency, RIN approaches the quantum noise limit.

Then the noise floor is set by the shot noise [6] that enters the cavity through the output

coupler. The corresponding PSD is given by

Sshot−noiseRIN (f) =
2hυc
Pavg

, (2.14)

where h is the Planck constant. This description of RIN is used in Section 3.5.2

2.3.2 Theoretical description of timing jitter

Timing jitter is the deviation of an optical pulse train from perfect periodicity. Timing jitter

is a bit different than the intensity noise because intensity fluctuation can be defined as a

stationary process, so we could use the Fourier transform of an autocorrelation function to

derive a PSD. Also, as explained in Section 2.4, gain saturation works towards quenching

intensity noise in a free-running mode-locked fiber laser. There is no such restoring force

that acts to suppress timing jitter.

Consider a simplified case, where dispersion is zero (so the pulse shape doesn’t change)

and the observation time is much longer than the pulse repetition period. Then the timing

jitter will be proportional to the observation time [43] and can be treated as a stationary
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process. The corresponding timing jitter power spectral density can be written as

S∆T (f) =

∫ ∞
−∞
〈∆TR(t)∆TR(t+ τ)〉e−j2πfτdτ. (2.15)

This expression shows that greater timing jitter, meaning a narrower autocorrelation func-

tion, will appear as a broadening of the PSD.

When the pulse train is detected by a photodiode, it beats against itself, effectively

producing the pulse train’s autocorrelation function. Due to the pulse train’s periodicity,

this beating produces a series of spectral features at harmonics of the repetition rate. Since

these are RF frequencies, these spectral features can be measured easily. The shape of each

of these features is determined by the PSD of the various noise contributions. Let us assume

for a moment that intensity noise and jitter are entirely independent of each other. In the

time domain, all pulses in the train share the same effective amplitude modulation due to

intensity noise. Correspondingly, in the frequency domain, all harmonics of the repetition

rate get the same contribution from intensity noise. This is not the case for jitter; each pulse

gets shifted by a different random time interval. Over a long period of time, corresponding to

low frequencies, the jitter autocorrelation gets reduced. As frequency increases, so does the

impact of jitter on the observed spectrum. Therefore, the timing jitter PSD can be obtained

by measuring the spectrum of one of the higher harmonics in repetition rate using high-speed

photodetection. If the intensity noise and timing jitter are correlated (as may result from

self-phase modulation), such measurements can be used to obtain an upper bound on the

jitter’s contribution to noise.
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2.4 Theory of pump-to-output transfer function band-

width in mode-locked fiber lasers

In general, in any kind of feedback system, a higher feedback bandwidth is preferred. How-

ever, it was experimentally observed that, when feeding back on the pump power, the feed-

back bandwidth is limited to the KHz range [28]. An important question is which parameter

limits the feedback bandwidth. While usually the laser dynamics (timescale of a round-

trip, about 10 ns) is much faster than the dynamics of the popularly used gain media (e.g.

Yb:fiber, where relaxation time is about 1 ms), they are still coupled to each other. Because

of this interplay, the time-dependent response of laser dynamics due to a change in pump

power is complicated.

SAM, gain, and loss determine the pulse energy-dependent gain for mode-locking. How-

ever, as previously mentioned, the gain medium usually has a slow response compared to the

fast laser dynamics. Therefore, gain saturation alone cannot stabilize the laser. To stabilize

the system against perturbations a fourth component needs to be included in the cavity

[29], which is called saturation of the self-amplitude modulation (SAT). This saturation is a

form of energy-dependent loss. It can be manifested physically by the generation of Kelly

sidebands (sidebands in the optical spectrum of some mode-locked lasers, which are created

by a periodic disturbance of soliton pulses that lead to excessive dispersive wave generation)

or rollover of the SAM (i.e., above some value of pulse energy, loss increases with energy)

[30]. The SAT parameter provides stability to the laser by causing the net gain to decrease

with an increase in the pulse energy, which can result from a change in pump power or

perturbations. This behavior corresponds to a negative slope of the net gain when plotted

against pulse energy, above some level of energy (see Figure.2.2 ). The negative slope can

be characterized by a nonlinear loss parameter η. The value of η depends on the technical

details of the laser system. A higher the value of η represents higher stability for that par-

ticular laser system, since a higher value of η means stronger damping of fluctuations. By
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using the theory given by Newbury et. al. [29, 30] η can be expressed as

η = α3(g − l) + α4γsatw
4, (2.16)

where α3 and α4 are constants and w is pulse energy.

Figure 2.2: Net gain vs. pulse energy. This plot shows unstable behavior with no SAT
mechanism (black curve) and stable operation when SAT is present (red curve). The graph
is reprinted with permission from [29].

Over a time scale much longer than the cavity round-trip, an increase in pulse energy

(w) reduces the gain (g) due to gain saturation caused by the circulating optical power. We

denote the gain medium’s relaxation time as Tg and the cavity round trip time Tr. Then

the coupled evolution, over a long time scale T, of perturbations in the gain, ∆g, and pulse

energy, ∆w, due to a perturbation in the pump power, ∆P , is described by [30]

∂T∆w = − 1

Tr
[η∆w − 2∆g∆w] (2.17)

∂T∆g = − 1

Tg

[
∆g + gw

∆w

w
− gp

∆P

P

]
, (2.18)

here the pump power, P , is measured relative to threshold. The first equation is a direct

mathematical description of Figure 2.2. The second equation describes the exponential decay

of the gain to the steady state value. Here, gw = −wdg/dw and gP = Pdg/dP . Using a
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saturable Lorentzian to model the gain transition, Newbury et al. [30] have shown that when

the pump power greatly exceeds the gain medium’s saturation power, which is the regime

considered here, we have gp = gw = 1/2.

The solution of these equations is a decaying exponential, corresponding to the laser

gradually approaching a new steady-state operation following a small change in pump power.

From this solution we obtain the relation between the 3 dB bandwidth of the laser’s response,

ν3dB, and the nonlinear loss, ν3dB = (1 + η−1)νg3dB, where ν
g
3dB = 1

2πTg
. Here νg3dB is the

response bandwidth of the gain medium only. From Eq. (2.17), the steady-state solution for

changes in gain and pulse energy caused by a change in pump power is

dw/dP = 2wη−1(dg/dP ) (2.19)

dg/dP =
νg3dB
ν3dB

(2P )−1. (2.20)

ere we took gp = gw = 1/2 and ∆w/∆P = dw/dP .

This theory provides important insights into mode-locked fiber laser dynamics. First,

the bandwidth of the laser’s response to perturbation will exceed the bandwidth of the gain

medium’s response, ν3dB > νg3dB. This is a result of the laser dynamics being much faster

than the gain dynamics, as explained above. Second, a higher value of the nonlinear loss η

(corresponding to the laser response bandwidth becoming smaller and closer to gain response

bandwidth) leads to higher stability (i.e., stronger attenuation of perturbations outside the

laser response bandwidth). This understanding will play a role in section 4.5 to explain the

pump-to-output transfer function bandwidth of our laser.

A final note is due in order to place this analysis in the context of our work. Our goal

is to stabilize the laser frequency by modulating the pump power. The analysis presented

here concerns the response of the output power - and not frequency - to variation in pump

current. However, they are directly related. The reason is that if we modulate the pump

power, it will modulate the laser intensity. From section 2.1, we see that modulating the in-
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tensity modulates the nonlinear refractive index which in turn modulates the laser frequency.

In summary, when we modulate the pump power and measure the output power response

dynamics, we are effectively measuring the response dynamics of the laser frequency. Mea-

suring the output power response is practically easier than measuring the response of the

laser frequency. In such experiments [29], including the one presented here, it is common to

measure the output power response for determining the pump to frequency transfer function

bandwidth.

2.5 Phase-biased NALM-based mode-locked fiber laser

In a NALM-based mode-locked laser the NALM can be used in various ways to facilitate

mode-locking [16]. In the configuration that is used in this thesis the NALM is made entirely

of PM fiber and it is used in reflection as shown schematically in Fig. 2.3 (a). With this

particular configuration, it is possible to have a fast-increasing round trip transmission with

increasing intensity (i.e., effective saturable absorption), for very low intensity [9]. This

means that self-starting mode-locking is easy to achieve.

The nonlinear phase shift difference between the two waves counter-propagating through

the loop, ∆ϕnl, is proportional to intensity, with a proportionality factor that depends on

technical details of the laser (e.g., fiber length). Below we use the phase shift difference

instead of intensity as a more universal parameter for describing laser dynamics.

Before explaining the concept of the non-reciprocal phase bias and how it is achieved, we

discuss its effect on the laser to explain its significance. Figure 2.3(b) shows the round trip

transmission function without any non-reciprocal phase bias (dashed curve) and with a non-

reciprocal phase bias of −π/2 (solid curve). With no phase bias, the round-trip transmission

peaks at ϕnl = 0 and drops away for higher nonlinear phase shifts, therefore mode-locking

cannot be started. The phase-bias shifts the entire curve such that it has a positive slope

around ∆ϕnl = 0, which facilitates self-starting mode locking.
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(a) (b)

Figure 2.3: (a) Schematic diagram of a “figure-9” NALM-based configuration. (b) Round
trip transmission as a function of the nonlinear phase shift difference between waves counter-
propagating through the NALM, with no phase-bias (dashed curve) and with a phase bias
of 4ϕ0 = −π/2 (solid curve). The blue part of the solid curve corresponds to the evolution
of the laser from noise or continuous-wave operation (at low intensity) to mode-locked oper-
ation. The plot and diagrams are reprinted with permission from [9]. FR: Faraday rotator,
WP: waveplate, PBS: polarization beam splitter.

Fig. 2.3 (a) shows a schematic NALM-based mode-locked laser diagram. In this config-

uration, a waveplate and a 45° Faraday rotator are placed between two polarization beam

splitters. The PM fiber that connects the ports of PBS1 on the NALM side is twisted by

90° so that the polarization component transmitted at the entrance of the NALM will be

reflected at its exit, and vice versa. The gain fiber is placed asymmetrically in the loop, i.e.

not at the center of the loop. Below we explain how this configuration achieves self-starting

mode-locking by examining the dependence of the round-trip transmission (TRTT ) on inten-

sity. This transmission can be obtained quantitatively, to produce Fig. 2.3 (b), by analyzing

the polarization evolution of the intracavity electric field using Jones calculus [41].

As a first step, consider the case where the WP in Fig. 2.3 (a) is absent and the gain

medium provides a gain of 1. Then, going upwards from PBS2, we have horizontal polariza-

tion. After the FR we get polarization at 45 degrees clockwise from horizontal. In the loop,
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half of the power goes to the clockwise (cw) direction and half will go to counterclockwise

(ccw) propagation direction. Since the gain is set to 1, both counter-propagating components

have the same intensity throughout the loop, and therefore they obtain identical nonlinear

phase shifts, i.e. ∆ϕnl = 0. After the loop, the vertical and horizontal polarization com-

ponents swap places (because the fiber is twisted), resulting in polarization at 45 degrees

counter-clockwise from horizontal. The FR then rotates the polarization to horizontal and

the light is fully transmitted through PBS2. Therefore, the round-trip transmission is at its

maximum, TRTT = 1. This situation corresponds to ∆ϕnl = 0 on the dashed curve in Fig.

2.3 (b).

As a second step, consider the case where the WP in Fig. 2.3 (a) is absent and the

gain medium provides a gain greater than 1. Since the gain fiber is placed off-center in

the loop, the ccw component will get amplified before propagating in the long passive fiber,

while the cw component will only get amplified after passing through the long section of the

loop. Therefore, the ccw component will pick up a greater nonlinear phase shift than the cw

component, i.e. ∆ϕnl > 0. Since the round-trip transmission is at its maximum for ∆ϕnl = 0,

it can only decrease as ∆ϕnl increases from 0, as shown by the dashed curve in Fig.2.3(b).

We can understand this physical mechanism by considering the NALM to be an intensity-

dependent waveplate: the nonlinear phase-shift difference between the counter-propagating

orthogonally-polarized components determines the polarization at the loop’s output. After

the FR and waveplate, both of the loop’s polarization components have contributions along

the axes of PBS2, where they interfere. The resulting transmission depends on their relative

phase, which in turn depends on their relative nonlinear phase shift. Achieving mode-locking

is very difficult (to the point of impracticality) in this situation. The reason being, before

mode-locking, the laser goes into CW (continuous-wave) or noisy operation, which has much

lower intensity than pulsed operation. This lower intensity results in almost zero nonlinear

phase shift in the NALM, even if the pump power is very high. Therefore, the laser is

initially around ∆ϕnl = 0 where TRTT = 1, and any perturbation that increases intensity is

23



immediately quenched by the increased loss (i.e., reduction in TRTT ).

As a final step, consider the case where the WP in Fig. 2.3 (a) is present and it is a

λ/8 plate oriented at 45 degrees. Then, in one round-trip, the waveplate adds a π/2 phase

shift between its slow and fast axes, which we call the phase bias. These fixed phase bias

and intensity-dependent phase difference provided by the NALM result in the solid curve

in Fig.2.3(b), which is shifted from the dashed curve by π/2. In this case, at low intensity

(near ∆ϕnl = 0), the round-trip transmission strongly increases with increasing intensity

(i.e., increasing ∆ϕnl). As a result, the laser will favor pulsed operation and mode-locking

can be achieved easily. It is important to note that the biasing action of the waveplate

is made possible by the non-reciprocity of the FR, and that is why its effect is called a

non-reciprocal phase-bias.

Our laser system uses the same configuration as described above, except that we have

additional components (wave plates and diffraction gratings) that provide additional degrees

of freedom. These additional components which allow us to tune the laser parameters and

manipulate its operation. This is detailed in section 3.1.
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Chapter 3

All-PM NALM mode-locked laser

construction, analysis and

characterization

This chapter details the design, operation and characterization of an all-PM NALM mode-

locked Yb:fiber laser, including experimentally measured intensity noise and jitter. We

demonstrate a novel mechanism of intensity noise suppression and achieve operation with

very low RIN of −156 dBc/Hz at frequencies above 100 Hz.

3.1 Laser setup

The mode-locked all-PM NALM Yb: fiber laser that we constructed and used for our ex-

periments is schematically depicted in Fig. 3.1. This design was first introduced in [36].

The laser is constructed with the collaboration of the same group in Vienna. Essentially this

laser is a practical and modified implementation of the concept described in section 2.5. Here

the λ/8 waveplate from the schema of Fig. 2.3 is replaced with a combination of quarter

waveplate (QWP) oriented at an angle θq and a half waveplate (HWP1) oriented at an angle

θh. PBS1 from Fig. 2.3 is replaced by a polarization beam combiner and collimator (PBCC).
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The PBCC provides polarization beam splitting/combining and also works as a free space

to fiber coupler. To control the output coupling rate an additional half waveplate (HWP2)

oriented at an angle θo is introduced to the left of the PBS. Lastly, a grating pair is also in-

cluded in the cavity to control the overall cavity dispersion, i.e., this is a dispersion-managed

laser. Each grating diffraction efficiency is about 94%. By controlling the separation between

the gratings we can control the net dispersion of the laser. Our main goal was to keep the

net dispersion close to zero and slightly negative to achieve low noise operation [37, 38]. The

dispersion measurement of our laser is given in section 3.3. Finally, a silver mirror is placed

after the grating pair to complete the free space section. The free space section length is

about 30 cm.

We placed an isolator between the pump diode and the fiber loop to prevent any light

from reaching the pump diode. A wavelength division multiplexer (WDM) is used so that it

passes the pump light at 976 nm and reflects light with wavelength in the range 1020-1100

nm. One arm of the WDM is spliced to one of two ports of the PBCC and the other arm is

spliced to a 49 cm long Yb-doped PM fiber, with about 32 cm of passive fiber between the

active fiber and WDM splicing. The loop is then completed by splicing the active fiber with

the other port of the PBCC, where 47 cm of passive fiber remains between the active fiber

and the PBCC.
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Figure 3.1: All-PM NALM mode-locked fiber laser consisting of free space and fiber sections.
YDF: Yb-doped fiber, WDM: wavelength-division multiplexer, PBS: polarizing beamsplitter,
PD: photodiode, HWP: Half-wave plate, QWP: Quarter waveplate.
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Table 3.1 details the components used to construct this laser. The WDM has an insertion

loss of 1 dB for the pump. A passive single-mode PM fiber (SM98-PS-USD-H) is used as

the pigtailed fiber for the common port of the WDM. If the cavity has a design of near-zero

net anomalous dispersion then it facilitates low-noise soliton mode-locking [47]. Therefore,

we tried to keep the group delay dispersion of the laser to be close to zero. To increase

the cw/ccw asymmetry in the fiber loop for facilitating self-starting mode-locking, we used

different lengths of passive PM fibers on either side of the gain fiber.

Component Name Description
Laser diode Thorlabs BL976-PAG900 is a 976 nm,

900 mW FBG-stabilized laser
with a PM fiber output and FC/APC connector.

Gain fiber Coractive Yb 401-PM, 49 cm length, 0.02ps2/m,
250 dB/m absorption at 975 nm,
Panada type Yb-doped PM optical fiber.

Single mode PM fiber Thorlabs PM-980 nm PM fiber.
Pump isolator AFR HPMI-SS-01-N-B-Q-F-1-C,

Rev11C, wavelength range 976±10 nm,
1 W maximum average optical power,
fast axis blocked, Corning PM 980 fiber.

Wavelength division AFR PMFWDM-9806-N-B-Q-P, SR8432,
multiplexer PM WDM, pass band 960-990 nm,

reflection band 1020-1080nm,
maximum avg power 3W,
maximum peak power 1 kW.

Polarization beam combiner AFR Semi-PBCC-03-09-N-B-Q, SR17551,
and collimator birefringent polarizing beam combiner

with collimated beam output,
operation wavelength 1030 nm,
beam diameter 0.9 mm,
PM 980 Panda fiber.

Faraday rotator EOT HP-05-R-1030,
rotation @ 1030 nm: 45° ± 0.5°.

Gratings LightSmyth T-1000-1040-3212-94,
1000 lines/mm, angle of incidence (Littrow) 31.3°,
diffraction efficiency for s and p polarizations >94%.

End mirror Thorlabs PF03-03-P01,
protected silver mirror with 7.0 mm diameter.

Table 3.1: List of components used for the all-PM NALM Yb:fiber laser.
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The total length of fiber in our laser is about 218 cm. The refractive index of the fiber is

n ≈ 1.5. The resulting repetition rate of the laser is frep = c
2L+nLf

≈ 77.519MHz. Here L is

the free space cavity length, Lf is the fiber length and c is the speed of light in vacuum. This

result is very close to the experimentally measured repetition rate of 75.515 MHz, verifying

the lengths and distances we measured.

3.2 Round-trip transmission analysis

In this section we use Jones calculus to derive a general expression for the laser cavity round-

trip transmission and demonstrate the impact of the various waveplates orientation on this

transmission. Table. 3.2 contains the Jones matrices for the optical elements in the cavity.

All angles are measured with respect to the horizontal in the lab frame, and they indicate the

orientation of the fast axis of a birefringent optic. The nonlinear phase shift is introduced

as an independent parameter via its own Jones matrix.The polarization variation due to a

single pass through the grating pair has been experimentally found to be equivalent to a

QWP with its fast axis along the horizontal [8].
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Component Name Jones Matrix

Faraday rotator MFR(θFR) =

[
cosθFR sinθFR
−sinθFR cosθFR

]
Half waveplate Mλ/2(θh) = e(−iπ/2)

[
cos2θh − sin2θh 2cosθhsinθh

2cosθhsinθh sin2θh − cos2θh

]
Quarter waveplate Mλ/4(θq) = e(−iπ/4)

[
cos2θq + isin2θq (1− i)cosθqsinθq
(1− i)cosθqsinθq sin2θq + icos2θq

]
Grating pair Mgratings = e(−iπ/4)

[
1 0
0 i

]
Output coupling HWP Mλ/2(θo) = e(−iπ/2)

[
cos2θo − sin2θo 2cosθosinθo

2cosθosinθo sin2θo − cos2θo

]
End mirror MSilver =

[
−1 0
0 −1

]
PBS MPBS,transmission =

[
1 0
0 0

]
,MPBS,reflection =

[
0 0
0 1

]
Twisted PM fiber loop Mloop =

[
0 1
1 0

]
Nonlinear phase shift Mnl(∆Φnl) =

[
e(i∆Φnl) 0

0 1

]
Table 3.2: List of Jones matrices for the components used in the laser.

In our laser, the geometric asymmetry around the gain fiber in the loop increases the

nonlinear phase shift difference ∆ϕnl as compared to a symmetric geometry with the same

input power splitting ratio. The second contributing factor to ∆ϕnl is the (adjustable)

asymmetric splitting ratio at the input to the NALM. The nonlinear phase shift difference

can be expressed as the nonlinear phase difference between port a and port b (see Fig. 3.1),

where ∆ϕnl = ϕanl−ϕbnl , ϕanl is the nonlinear phase of the ccw wave that travels in ccw from

port a to port b, and ϕbnl is the nonlinear phase obtained by the cw wave 2 that travels from

port b to port a. The gain medium is much closer to port a than to port b Therefore, over

almost the entire range of splitting ratios, the nonlinear phase accumulated by the ccw wave

will be greater than the nonlinear phase accumulated by the cw wave, i.e. ∆ϕnl > 0.

We will now derive an analytical expression for the cavity’s round-trip transmission. The
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field immediately to the right of the PBS is horizontally polarized,

Ein =

 1

0

 , (3.1)

where we normalized this field’s intensity to 1.The intracavity electric field after one round-

trip is given byErt
intra(θq, θh, θo,∆Φnl) =

MPBS2TXMλ/2(θo)MgratingsMSilverMgratings(0
◦)×

Mλ/2(θo)MPBS2TXMλ/2(θh)Mλ/4(θq)MFR(45◦)×

MloopMnl(∆Φnl)MFR(45◦)Mλ/4(θq)Mλ/2(θh)Ein.

(3.2)

Since the intensity has been normalized to 1, the round-trip transmission is given by the

squared modulus of the field after one round-trip:TRTT = |Ert
intra(θq, θh, θo,∆Φnl)|2 =

1
4
cos2(4θo)[cos

2( (∆Φnl)
2

)
{

4sin2(2θq) + {sin(4θh)− sin(4θq − 4θh)}2}+

4sin2( (∆Φnl)
2

)cos2(4θh − 2θq) + 2sin((∆Φnl)cos(4θh − 2θq) {sin(4θh)− sin(4θq − 4θh)}].

(3.3)

The round-trip transmission depends on four parameters: the orientation angles of

HWP1, QWP, HWP2 and the nonlinear phase shift (controlled via the pump current).

These serve us as tuning knobs for controlling the laser operation. The Jones vectors of light

at the rejection port, Ert
rej, and output port, Ert

Out, can be calculated in a similar manner.

We can use Eq. (3.3) to demonstrate the effect of waveplate orientation on the round-trip

transmission. For example, Fig. 3.2 shows the round-trip transmission vs. nonlinear phase

shift difference for various values of θh, while θq and θo are kept fixed at 0°. In this case,

rotating HWP1 directly varies the phase bias without affecting the modulation depth. Fig.

3.3 shows a similar plot, where this time θq = 45°. In this case, rotating HWP1 various the
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modulation depth without any impact on the phase bias. In the general case, where θq has

an arbitrary value, rotating HWP1 will affect both phase bias and modulation depth.

Figure 3.2: Round-trip transmission vs. nonlinear phase shift difference for various orienta-
tions of HWP1, with θq = θo = 0°.Calculated with Eq. (3.3).

Figure 3.3: Round-trip transmission vs. nonlinear phase shift difference for various orienta-
tions of HWP1, with θq = 45° and θo = 0°. Calculated with Eq. (3.3).

32



HWP2 is placed to the left of the PBS, i.e., after the phase-shifted polarization compo-

nents emerging from the loop have already interfered in the PBS. Therefore, it has no impact

on this interference. Rather, this waveplate simply determines what fraction of the light that

moves to the left of the PBS gets reflected by the PBS, i.e. the output coupling rate, which

is part of the linear loss in the cavity. The impact of rotating HWP2 on the round-trip

transmission is shown in Fig. 3.4, where θh and θq are kept fixed at 0°. At different HWP2

orientations the transmission is simply scaled by a constant factor between 0 and 1. This

output coupling wave plate gives us the ability to adjust the output coupling ratio without

affecting the phase bias. Note that, in mode-locked laser operation at a particular nonlinear

phase shift difference, the total loss consists of the linear loss (including output coupling

loss) and the saturable loss (due to light that left the cavity through the rejection port).

Figure 3.4: Round-trip transmission vs. nonlinear phase shift difference for various orienta-
tions of HWP2, with θh = θq = 0°. Calculated with Eq. (3.3).
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3.3 Dispersion measurements

This section briefly describes experimental measurements of our laser cavity dispersion. This

work was led by my lab mate Saeid Ebrahimzadeh with help from our collaborating group

from Vienna.

It has been experimentally established that cavity dispersion has a significant impact

on mode-locked laser performance, including noise levels [31]. As mentioned in Section 3.1,

having near zero and slightly negative dispersion has been experimentally demonstrated to

facilitate low noise operation. Our laser cavity includes a grating pair, where the distance

separating the gratings can be used to control dispersion. An initial estimate of the required

grating separation can be calculated by adding up the dispersion contribution of each cavity

element using vendor data. However, this data is often incomplete (e.g., covers only part

of the spectrum) and needs to be extrapolated, leading to increased error. Therefore, we

carried out experimental measurements of our laser cavity dispersion.

We characterized our laser cavity dispersion using the method by Knox [42]. In this

method, a slit is inserted in a particular portion of the cavity where the optical frequencies

are spread out in space. In our laser cavity this specific section is the space in between the

end mirror and the grating compressor. To measure the dispersion, at first mode-locked

operation is achieved with the slit outside the cavity. Next, the slit is moved laterally across

the beam in small steps. Essentially the slit works as a tunable band pass filter. At each

step, the laser output optical spectrum and repetition rate, frep, are measured. From each

measured spectrum we extract the center frequency, ωc, and dispersion values are calculated

by post-processing of this data as explained below.

The delay a pulse experiences in one cavity round-trip is, by definition, the group delay

of a single round-trip. A time delay Fourier transforms into a spectral phase that depends

linearly on frequency, with the delay setting its slope. Therefore, for the frequency dependent
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group delay, T (ωc), we have

T (ωc) =
∂φ

∂ω
=

1

frep(ωc)
. (3.4)

ere, φ is the spectral phase accumulated in one round-trip phase. GDD is the dependence of

group delay on frequency, i.e.,

GDD =
∂2φ

∂2ω
=
∂T

∂ω
. (3.5)

Therefore, in order to obtain the GDD, we fitted T (ωc) to a second order polynomial, and

extracted the GDD from its second derivative.

In our experiment, the repetition rate was measured by using an amplified photodiode

(New Focus 1601, 1 GHz bandwidth) connected to a frequency counter (Agilent 53230A),

and the optical spectrum was recorded with a spectrometer (Aurora 4000). The wave plates

orientation angles were θq = 70°, θh = 35° and θo = 2°. The grating separation was 10.6

mm. The curve shown in Fig. 3.5 (a) was calculated from the fit of delay to frequency. The

horizontal axis in this plot is the central wavelength of the recorded spectrum, λc = 2πc
ωc

.

Fig. 3.5 (b) shows the GDD values extracted from the fitted experimental data. The

red marker indicates the center wavelength of 1039 nm, which corresponds to operation with

the slit out of the cavity, where the net GDD is −0.0043 ps2. This is indeed a very small

and slightly anomalous value. By “small” we mean that this net GDD is much smaller in

magnitude than the magnitudes of positive and negative GDD the pulse experiences in the

cavity. For example, the only cavity element contributing negative GDD is the grating pair,

and its calculated round-trip contribution to GDD is -0.015 ps2.

Fig. 3.5 (c) shows the experimentally recorded spectra for the various slit positions.

The blue curve that peaks at 1039 nm corresponds to having the slit out o the cavity. The

vertical line indicates the extracted wavelength at which dispersion is zero, 1030.31 nm. At

wavelengths shorter (longer) than this value, dispersion is normal (anomalous). This plot

further illustrates how close to zero dispersion our laser operates. While the spectral peak

and most of the spectral energy are in the anomalous dispersion regime, a small portion of
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the spectrum is in the normal dispersion regime. This is a common situation in dispersion

managed mode-locked lasers.

(a)

(b)
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(c)

Figure 3.5: (a) Change in pulse repetition rate vs. central wavelength. (b) GDD values
extracted from the measurement (see text for details) (c) Optical spectra recorded for various
slit positions. The vertical line indicates the extracted zero dispersion wavelength.

To be clear, in all of the experiments reported in the remainder of this thesis, the grating

separation was kept at 10.6 mm.

3.4 Mode-locked states characterization

This section shows experimentally measured optical and RF spectra, taken under the same

experimental conditions that are used in following sections. These spectra show that under

all experimental conditions the laser remained in a stable mode-locked state with near zero

and slightly anomalous dispersion.

The orientations of the wave plates in the laser cavity were set to θq = 70°, θh = 35°

and θo = 2°. The grating separation was kept at 10.6 mm, as in Section 3.3. The laser

was mode-locked with a pump current of 300 mA. Next, the wave plates were rotated to

θq = 790, θh = 400 and θo = 30. The reason for this rotation is explained in the following

section). Followingly, the pump diode laser’s current was varied from 274 mA to 475 mA

and the optical and RF spectra were recorded for each current. In this range of currents the
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laser remained stably mode-locked. Lower currents resulted in CW breakthrough (where the

laser simultanously supports both a mode-locked pulse train and a CW lasing component)

and higher currents caused double-pulsing (manifested as fringes in the optical and/or RF

spectrum). The optical and RF spectra were recorded with an Aurora 4000 GE 200-1100

spectrometer (1 nm resolution) and a Newport 1601 photodetector connected to an Agilent

E4401 RF spectrum analyzer (10 kHz RBW), respectively. We note that, throughout the

measurement, the laser was boxed to shield against air currents, and care was taken to avoid

introducing external vibration to the optical table.
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Figure 3.6: (a-e) Optical spectra at different pump currents. The dashed line indicates the
wavelength at which the intracavity GDD is zero. (f-j) Corresponding RF spectra. In (a-j),
the pump current is indicated in the legend. In (a-e), the legend shows the spectral FWHM.

Fig. 3.6 shows the optical and RF spectra obtained at different pump currents. The

optical spectra are all centered at 1039 nm and have very similar shape. In all cases the

laser operates in the same near zero and slightly anomalous dispersion regime (see the zero

GDD indicator in Figs. 3.6(a-e)). The smooth spectral shape, with no peaks or fringes,

corresponds to a stable mode-locked state and contains no evidence of CW breakthrough

or multi-pulsing phenomena. The RF spectra in Figs. 3.6 (f-j) consists of peaks at the

75.515 MHz repetition rate and its harmonics, resulting from the pulse train beating against
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itself in the photodetector (as explained in Section 2.3.2). In all cases, the peaks at the

10 measured harmonics have nearly identical magnitude, and their width is limited by the

instrument’s RBW of 10 kHz. Furthermore, they reach at least 45 dB above the noise floor.

These features shows that, in all cases, the laser is in a stable mode-locked state with low

jitter (see Section 3.5.5 for more details on jitter).

We note that additional measurements, not presented here, were taken with a pump

current of 284 mA. At this current the laser exhibited anomalous behavior. These results

are presented and discussed in Section 4.6. These measurements are also excluded from the

remainder of this chapter.

3.5 Intensity noise characterization and suppression

3.5.1 Literature review of intensity noise performance and suppres-

sion in mode-locked fiber lasers

It is very difficult to carry out an all-encompassing study of intensity noise in mode-locked

fiber lasers. The reason is that this noise depends on both external sources, mainly the pump

noise, as well as the specifics of each and every laser. These include not only the mode-

locking mechanism, gain medium and cavity dispersion, but also specific technical details

such as alignment and splice loss, which are difficult to measure and control. Finally, RIN

at different frequencies results from different sources (e.g., acoustic noise can cause increased

intensity noise at acoustic frequencies). At this point, to the best of our knowledge, there is

no comprehensive theory that explains how intensity noise depends on all laser properties.

Therefore, here we provide an overview of the theory and systematic experimental studies

that are currently available.

In Section 2.4 we explained how gain saturation and SAT combine to stabilize the mode-

locked pulse train. This mechanism damps out intensity fluctuations, i.e., it suppresses

intensity noise. This has been established both theoretically and experimentally [29, 30, 33,
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34, 35]. However, the description of the SAT parameter is heuristic and not directly connected

to physical parameters. Moreover, SAT could result from a combination of physical processes,

e.g., dispersive wave generation and roll-over of the APM mechanism. This suggests that,

through SAT, intensity noise depends on the pulse forming mechanism and the dispersion

regime, though there is no quantitative model for this dependence. In dispersion managed

lasers, experimental studies have found that the lowest RIN is obtained when the net GDD

is close to zero and slightly anomalous [37, 38].

A recently published review put together RIN data from 32 studies of low-RIN mode-

locked lasers based a wide range of technologies, including solid state and fiber lasers with

various real and artificial saturable absorbers [37]. More recently, our collaborators [8], who

are using the same laser design as we are (though with different fiber lengths), were able

to achieve RIN of -125, -132 and -151 dBc/Hz at 100 Hz, 1 kHz and 100 kHz, respectively.

We choose these three frequencies as points of comparison with other lasers, since they are

usually much below, near and much above the relaxation oscillation frequency. We note

that they were using their laser in a self-starting mode-locked state - the significance of

this fact is discussed in Section 3.5.3. Fig. 3.7 presents a few representative sets of RIN

data collected from various low-RIN mode-locked lasers spanning a good fraction of the

technological landscape. The data in Fig. 3.7(a) is from our collaborators’ laser [8]. Fig.

3.7(b) shows RIN for different dispersion regimes from a dispersion-managed NPE Yb:fiber

laser [51]. Fig. 3.7(c) presents RIN measured from two co-doped Er:Yb:glass solid-state

lasers mode-locked using a SESAM [52]. These lasers are nominally identical, yet still have

slightly different RIN performance, due to the difficulty in controlling laser parameters with

high precision. The three lasers of Figs 3.7(a-c) have similar RIN performance: about -120

to -130 dBc/Hz at 100 Hz and 1 kHz, and about -150 to -155 dBc/Hz at 100 kHz and higher.

Finally, Fig. 3.7(d) shows RIN achieved by active noise suppression in a Yb:fiber laser [32].

This is a so-called similariton laser: it contains a SESAM for initializing mode-locking and

operates with net normal dispersion, resulting in significant intracavity chirping and spectral
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broadening due to SPM. The latter is limited by an intracavity element (fiber Bragg grating)

that provides both negative dispersion and spectral filtering, and thereby facilitates SAT.

An electronic system monitors the RIN at the laser output and feeds-back onto the pump

current in order to suppress the output RIN. In this case, RIN is kept at about -145 dBc/Hz

over 100 Hz to 100 kHz, but increases sharply for higher frequencies due to the limited

bandwidth of the electronic feedback system.

a c

b d

Figure 3.7: Examples of low RIN obtained from mode-locked lasers. (a) All-PM phase-biased
NALM Yb:fiber laser, reprinted with permission from [8] . (b) NPE Yb:fiber laser, reprinted
with permission from [51], (c) SESAM Er:Yb:glass laser, reprinted with permission from [52],
(d) Active intensity noise suppression of a SESAM Yb:fiber similariton laser, reprinted with
permission from [32].

In order to provide a broad overview, Table 3.3 shows the range of RIN values obtained

at the three representative frequencies. The middle column corresponds to the data from

the publications referenced above in this section. For comparison, the right column contains

RIN values we achieved with a novel RIN suppression mechanism, as detailed in Sections

3.5.2 and 3.5.3. As the table shows, at 100 Hz and 1 kHz, we have achieved RIN values

that are 11 dB lower than any previously published value, to the best of our knowledge.
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Additionally, at 100 kHz, our laser is on par with the best published result. Finally, we note

that our RIN measurements were limited by background noise in our detector, therefore it

is possible that our laser produces even lower RIN than we could measure.

Frequency RIN (dBc/Hz) (from literature) RIN (dBc/Hz) (our result)
100 Hz -110 to -145 -156
1 KHz -110 to -145 -156
100 KHz -120 to -155 -156

Table 3.3: Summary of experimentally measured RIN at frequencies that are usually much
below, near or much above the relaxation oscillation frequency. The middle column shows
the range of values we collected in our literature review. For comparison, the right column
shows the RIN values obtained from our laser (see Sections 3.5.2 and 3.5.3 for details).

3.5.2 Relative intensity noise measurements

The RIN PSD measurement setup is depicted schematically in Fig. 3.8. The laser’s output

port or rejection port beams were detected using an amplified photodetector (New Focus

1801, 125 MHz bandwidth). The photodetector’s output was connected to a home made DC

block consisting of a 10 mF capacitor. The DC block’s output was connected to a software

defined receiver operating as a real-time RF spectrum analyzer (Signal Hound SA44B).

With the analyzer’s input impedance of 50 Ohm, the cut-off frequency of the DC block was

0.32 Hz. The purpose of including the DC block was to prevent damage to the analyzer as per

the vendor’s warning. For measuring the photodetector’s average output voltage (i.e., DC

voltage), which is proportional to the laser average power, we connected the photodetector

directly to a multimeter. The wave plates orientation and grating separation were the same

as in Section 3.4. At all times, the laser was boxed up.

Figure 3.8: Schematic diagram for RIN measurement. Reprinted with permission from [6]

RIN PSD were obtained from the ratio between the photodetector voltage noise PSD

44



(proportional to the PSD of the square of the laser power), Sv (f), and the square of the

photodetector DC voltage (proportional to the sqaure of the average laser power), V 2
0 , i.e.,

SRIN = Sv (f) /V 2
0 (see Section 2.3.1). Fig. 3.9 shows the obtained RIN PSD at different

pump currents, together with the detector’s background noise level. These results clearly

show that the output port RIN decreased as pump current increased. When going from

274 mA to 475 mA, RIN decreased by at least 20 dB for frequencies below 100 kHz. This

reduction is at least 25 dB over the 10 Hz - 10 kHz frequency range. Note that the mea-

surement at 475 mA is limited by the detector background, so the reduction in RIN may be

even greater. Furthermore, for frequencies in the range 100 Hz - 100 kHz, the RIN reached

an extremely low level of -156 dBc/Hz, limited by the detector background. A comparison

of this RIN performance with other published works is given in Section 3.5.1. Overall, these

results constitute a demonstration of passive RIN suppression, which is further analyzed

below.

The rejection port RIN exhibited a different behavior than the output power RIN. The

rejection port RIN significantly exceeds the output port RIN at all pump currents except 318

mA. As the pump current increases, the rejection port RIN experiences a small reduction:

from the lowest to the highest current, it decreases by no more than 10 dB at any given

frequency. Even at the highest current, where the rejection port RIN is lowest, it remains

at least 25 dB higher than the output port RIN for frequencies 10 Hz - 10 kHz.
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Figure 3.9: RIN PSD measured at different pump currents (indicated in the legends in
parentheses) for the laser output port and rejection port. The detector background noise
level is also shown.

3.5.3 RIN suppression analysis for the mode-locked fiber laser

In Section 3.3 we have shown that our laser operates in the regime of near zero and slightly

anomalous dispersion. As explained in Section 2.1, such lasers do not form exact soliton
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pulses, but rather pulses that stretch and compress periodically over a cavity round trip.

However, by averaging over a cavity round trip, dynamics that are similar to soliton formation

emerge. Therefore, in the analysis of our experimental results, we will use the average soliton

picture as a way to obtain insight more easily than with a full description of pulse dynamics.

In a soliton mode-locked laser, any optical energy that doesn’t fit into the GVD-SPM

balance gets transferred from the soliton to the dispersive wave (explained in Section 2.1). For

example, if the soliton’s amplitude is perturbed, then the perturbation will get transferred to

the dispersive wave. In this manner, dispersive wave generation acts to stabilize the soliton.

In fact, it is a mechanism of SAT [35] . Since intensity noise constitutes such perturbation,

dispersive wave generation acts to suppress intensity noise in the soliton. This mechanism of

noise transfer from the soliton to the dispersive wave has been demonstrated experimentally

[48].

In the previous section we presented experimental measurements showing output RIN

reduction with increasing pump power. We explain these observations partly based on the

soliton-to-dispersive wave noise transfer, as well as other possible SAT processes, in addi-

tion to a novel mechanism implemented in our laser. The rate of energy transfer from the

perturbed soliton to the dispersive wave increases with pulse energy [33]. As pump power

increases, so does pulse energy, resulting in a higher rate of noise transfer to the dispersive

wave and a reduction in the pulse train’s RIN. Other SAT processes (e.g., the roll-over of the

transfer function at sufficiently high intensity) also work to stabilize the pulse and thereby

reduce RIN in a manner that scales with pulse energy (see Section 2.4).

The additional and novel RIN suppression mechanism in our laser is based on preventing

the noisy intracavity dispersive wave from reaching the output port. Fig. 3.10 shows the

calculated round trip transmission, transmission to the output port and transmission to

the rejection port, as a function of the nonlinear phase shift difference, for the wave plates

orientations we used. For a nonlinear phase shift difference near zero, corresponding to low

intensity, the transmission to the rejection port is very high while the transmission to the
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output is very low. Since the noisy dispersive wave has very low intensity (as explained

in Section 2.1), it is transmitted to the rejection port while its transmission to the output

port is strongly suppressed. This mechanism enhances RIN suppression in the output port.

Overall, as pump power increases, so does the pulse energy, leading to greater transfer of

noise from the pulse to the dispersive wave. The latter is prevented from reaching the output

port, resulting in the strong reduction in output port RIN presented in the previous section.

At the same time, the RIN in the rejection port remains high, since that is where the noisy

dispersive wave ends up. Finally, we note that the transmission to the output port of any

other low-intensity noisy light, such as amplified spontaneous emission coming from the gain

fiber, is also suppressed, further contributing to reduction in output RIN.

Figure 3.10: Calculated round trip transmission, transmission to the output port and trans-
mission to the rejection port, as a function of the nonlinear phase shift difference. The wave
plates orientations are θq = 790, θh = 400 and θo = 30.

As explained in Section 3.4, the laser was first mode-locked with the wave plates orien-

tations at θq = 70°, θh = 35° and θo = 2°, and only after it was mode-locked the wave plates

were rotated to the orientations that produce the transmission curves shown in Fig. 3.10,

where RIN suppression is observed. It was not practical to initiate mode-locking directly

in the RIN-suppressed configuration. The reason is that, in this case, the round trip trans-
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mission has a weak dependence on the nonlinear phase shift difference where this difference

is close to zero. In other words, the round trip transmission had a weak dependence on

intensity for low intensity. This is not a coincidence. The transmission to the output port

is proportional to the round trip transmission by a factor determined with the outcoupling

wave plate orientation, θ0. By design, in the RIN-suppressed state, the transmission to the

output port has has a minimum near zero nonlinear phase shift difference. Therefore, the

round trip transmission also has a minimum there, resulting in a weak dependence on in-

tensity for low intensity. The robustness and flexibility of our laser’s design make it possible

to mode-lock it in a self-starting state and keep it mode-locked as the cavity parameters

are varied significantly, thereby getting the advantage of the low RIN state even when this

state cannot be reached by self-starting mode-locking. This is a novelty, as past fiber laser

designs lack the degrees of freedom necessary to make such controllable variation in cavity

parameters, the robustness required to maintain mode-locking under such variation, or both.

In order to further support our claim regarding the significance of the non-self-starting

state for achieving low RIN, we measured the RIN in the self-starting state for various

pump currents (this set of data was taken by Saeid Ebrahimzadeh). Fig. 3.11(a) shows the

calculated transmission curves for this state. Near zero nonlinear phase shift difference, the

round trip transmission has a strong positive slope, as required to self-starting mode-locking,

and the transmission to the output port is significantly higher than its minimum value. Both

of these features are in contrast to the behavior exhibited by the RIN-suppressed state in

Fig. 3.10.

Fig. 3.11(b) shows the output port RIN of the self-starting state for various pump

currents. The lowest RIN was obtained with a pump current of 350 mA, and it was sig-

nificantly higher (at least 20 dB for all frequencies) than the lowest RIN obtained for the

RIN-suppressed state. Additionally, a further increase of the pump current to 380 mA re-

sulted in higher RIN, whereas the RIN-suppressed state had the opposite trend. These results

indicate that the mechanism that prevents low intensity noise from getting transferred to
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the output port plays an important role, as RIN reduction cannot be achieved by increasing

pump power alone.

(a)

(b)

Figure 3.11: (a) Calculated round trip transmission, transmission to the output port and
transmission to the rejection port, as a function of the nonlinear phase shift difference.
The wave plates orientations are θq = 70°, θh = 35° and θo = 2°. (b) Output port RIN
measured at different pump currents with the same wave plates orientations (taken by Saeid
Ebrahimzadeh).

Finally, since mode-locked fiber laser RIN is commonly dominated by pump noise, we

need to eliminate the possibility that the reduction in RIN comes from a reduction in pump

noise as the pump power increases. We measured the noise of a pump diode of the same

make and model that we used for our laser. These measurements are detailed in Appendix

A and they show that the pump noise is non-decreasing as the pump current increases from
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200 mA to 600 mA, which covers our entire range of pump currents. Therefore, variation in

pump RIN cannot be responsible for the observed suppression of RIN at the laser output.

3.5.4 Supporting evidence of RIN suppression mechanism theory:

output port and rejection port power

The output port and rejection port power were recorded at different pump currents using a

free-space power meter. The results are shown in Fig. 3.12. As the pump current increases

from 274 mV to 500 mA the output port power generally increases as well. Starting from

10 mW, the output port power reaches 17 mW at the highest pump current. This generally

increasing trend is overlaid with a small dip of about 15% at a pump current of 340 mA.

At the same time, the rejection port power shows a much stronger dependence on pump

current, increasing from 15 mW to 52 mW over the entire range of currents. Again, this

generally increasing trend contains one drop of about 15% at a pump current of 372 mA.

Here we remind the reader that additional results showing anomalous behavior are excluded

and presented in Section 4.6.
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Figure 3.12: Output and rejection port power data for different pump current of laser. The
plot shows the power measurement where the pump current is varied from (274~512 mA)
and all other setting (i.e. waveplate, grating separation) of the oscillator was similar.

These results fit within the framework of our theoretical explanation of our RIN measure-

ments as follows. As explained in the previous section, low intensity light is emitted through

the rejection port while a fraction of the high intensity light (i.e. pulsed light) is coupled

out of the cavity through the output port. Fig. 3.12 shows that, as pump power increase,

intracavity pulse power experiences a moderate increase while low intensity light increases

significantly. The moderate increase in pulse energy leads to stronger SAT and therefore

lower pulse RIN, regardless of the physical mechanism that facilitates SAT (dispersive wave

generation and/or roll-over of the intracavity transmission). As pulse energy increases, en-

ergy transfer from the pulse to the dispersive wave increases, resulting in higher power in

the dispersive wave. This noisy low-intensity light is emitted through the rejection port,
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contributing to the significantly increased power there. Another possible noisy low-intensity

contributor to the rejection port power is ASE. Overall, the combination of moderate in-

crease in pulse power, strong increase in rejected light power and reduction in RIN, as pump

power increases, corresponds perfectly to expectations from our theory.

3.5.5 Qualitative estimation of timing jitter trend

This section presents experimental evidence qualitatively showing that jitter in our laser

improves together with RIN, i.e., as pump power increases. In order to characterize jitter in

accordance with the theory presented in Section 2.3.2, we measured the RF spectrum of hte

11th harmonic of the laser’s repetition rate, where jitter is expected to dominate the PSD.

This measurement was carried out with an amplified photodiode (New Focus 1601, 1 GHz

bandwidth) and a software defined receiver operating as a real-time RF spectrum analyzer

(Signal Hound SA44B). The center frequency in the RF spectrum measurement was set at

830.228478 MHz, the span was 5 KHz and the RBW was 5 Hz. The measurement was done

for different pump currents (274 mA to 475 mA) to observe how the change in pump current

affects jitter.

a b

Figure 3.13: (a) Represents the one of the reading (pump current 372 mA) where the SNR
was measured for 11th harmonics of the mode-locked laser,(b)Trend of the SNR with the
change in pump current, here it can be visible for higher pump current the SNR is increasing
and the laser is moving towards a more stable state.
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Fig. 3.13 (a) shows an example of one measurement, where the pump current was 372

mA, and a signal to noise ratio (SNR) of 86 dB was obtained. Recall that a higher SNR

corresponds to lower jittter. Fig. 3.13 (b) shows SNR measured for the various pump

currents, showing a general trend of increasing SNR with increasing pump currents. As the

current increases from 274 mA to 475 mA, SNR increases from 73 dB to 103 dB. In addition

to the generally increasing trend, there are two dips, at 295 mA and 400 mA, where the SNR

drops by 5 and 8 dB, respectively.

The apparent reduction in jitter as pump power increases is correlated with the corre-

sponding reduction in RIN. This correlation may result from intensity noise contribution to

the SNR observed here, since in our laser most likely RIN and jitter are coupled through

nonlinear effects (and not independent as assumed in the theory in section 2.3.2).

Overall, our laser shows high SNR, corresponding to stable low-noise operation. For

comparison, our collaborators have achieved around 95 dB as the best SNR for the same

kind of laser but operated in a self-starting state [8], while our laser reaches 103 dB.
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Chapter 4

Pump-to-output transfer function and

anomalous dynamics

Mode-locked fiber lasers can be stabilized through feedback to the pump power. The laser

itself is then part of the feedback system, and the bandwidth of its response to variation in

pump power limits the feedback bandwidth. An in-depth understanding of the laser mecha-

nisms and their role in determining the feedback bandwidth is important for frequency comb

stabilization. It also provides insight into the rich nonlinear dynamics of the mode-locked

laser. In this chapter, a perturbation theory approach [30] is summarized and applied to

our laser. We establish a relation between SAT and adjustable laser parameters such as

waveplates orientations and pump current. We achieve this by assuming that the APM

mechanism dominates SAM and SAT. Then, we use our analytical expression for the round

trip transmission, Eq. (3.3), to express different parameters of Haus’s master equation (in-

cluding SAM and SAT) with the cavity “tuning knobs”, i.e, the waveplates orientations.

This analysis helps us understand how the “tuning knobs” of the laser can affect different

parameters of mode-locking. We also derive a qualitative relationship between the pump-to-

output transfer function bandwidth, pump power and waveplates orientations. Afterwards,

we present experimental measurements of our laser’s transfer function bandwidth and com-
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pare them with our theoretical analysis. Finally, we report on experimental results showing

anomalous dynamics in our laser, and we leave the explanation of this phenomenon as a

matter for future work.

4.1 Modified master equation

In order to simplify the analysis, we assume that dispersion and SPM perfectly compensate

for each other (i.e., ideal soliton conditions), so they drop out of the master equation, Eq.

(2.9). The remaining terms make up the modified master equation:

Tr
da

dT
= (g − l)a (T ) + γSAMa

2a(T ) + V (a). (4.1)

In this section we provide models for gain saturation and SAT and introduce them into the

master equation. This is the first step towards making a connection between the parameters

of the master equation and the waveplate orientations in our laser.

As explained in Section 2.4, gain dynamics play an important role in mode-locked laser

dynamics. Therefore, we begin by describing a simple model for gain saturation in Yb:fiber

[29, 30]. This model assumes a 3 level system lasing near resonance. We define the normalized

signal power, P ′
s, and normalized pump power, P ′

P , as

P
′

s =
Ps

PS,SAT
(4.2)

P
′

P =
PP

PP,SAT
. (4.3)

Here, Ps is the signal power and PP is the pump power. PS,SAT is the signal saturation power

and PP,SAT is the pump saturation power. The gain is then given by

g = g0

(
P

′
P − 1

1 + P
′
P + 2P ′

s

)
, (4.4)
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where g0 is a constant. The perturbation term, denoted V (a) in Eq. (4.1), will give rise

to shifts in the pulse energy, the phase shift per pulse, the carrier frequency, the round-trip

time, and the pulse chirp. Generally, there are many different perturbation sources, such

as length fluctuations, gain fluctuations, loss fluctuations, the Raman effect, self-steepening,

third-order dispersion, and SAT:

V (a) = Vlength + Vgain + .....+ VSAT . (4.5)

In our analysis, we are only taking into consideration the perturbation due to SAT. In other

words, we are modeling SAT as a perturbation of a stable mode-locked state. We follow [29]

to model the SAT perturbation using a power law:

V (a) = VSAT = −γsata4a(T ). (4.6)

Here, γsat is the coefficient for saturation of self amplitude modulation. Substituting this

into Eq. (4.1) we have

Tr
da

dT
= (g − l)a (T ) + γSAMa

2a(T )− γsata4a(T ). (4.7)

Finally, we introduce the gain saturation model of Eq. 4.4 and obtain

Tr
da

dT
=

{
g0

(
P

′
P − 1

1 + P
′
P + 2P ′

s

)
− l
}
a (T ) + γSAMa

2a(T )− γsata4a(T ). (4.8)

Since the wave plates orientations control only loss and not gain, in the next section we use

Eq. (4.7) to derive analytical expressions that relate γSAM ,γsat and l to these orientations.

Gain saturation is reintroduced later, in Section 4.3.
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4.2 Derivation of analytical expressions for loss, self-amplitude

modulation and its saturation

The pulse envelope, a (t), is normalized such that the pulse energy, w, is given by

w =

∫
|a (t)|2 dt. (4.9)

Substituting this relation into Eq. 4.7 produces an equation for the pulse energy dynamics,

TrdTw = 2w[(g − l) + α1γSAMA
2 − α2γsatA

4]. (4.10)

Here, α1 = 2
3
and α2 = 8

15
are constants and A is the pulse’s peak amplitude [30]. Next, we

assume the laser operates under ideal soliton conditions. This is not true for our laser, which

is a dispersion managed laser. However, dispersion managed lasers do have many similarities

with soliton lasers, such as a closed relationship between pulse amplitude, pulse duration,

and laser cavity parameters [33, 34, 35]. Therefore, we make this assumption to simplify our

analysis and progress towards understanding the connection between the Haus model and

physical parameters, albeit qualitatively. For a soliton of pulse duration τ , in a medium with

dispersion parameter D and SPM coefficient δ, we have [30]

Aτ =

√
2|D|
δ

. (4.11)

Since τ−1 ∼ ωrms, where ωrms is the pulse’s root mean square bandwidth, we can write the

approximate relation

A ∼ τ−1 ∼ ωrms ∼ w, (4.12)

where we used Eq. (4.11) and the last step stems immediately from Parseval’s theorem for

a soliton pulse (which has an envelope a (t) ∝ sech (t/τ)).

The evolution of the pulse energy can be expressed using the round trip transmission
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(RTT), TRTT :

w (T + Tr) = w (T )TRTT (w) . (4.13)

For convenience, we recast our analytical expression for the RTT, Eq. (3.3), in the form

TRTT (w) = β1wp(cos(ϕnl − b)) + β2wp (4.14)

where ϕnl is the nonlinear phase shift difference and the parameters β1wp and β2wp depend

on the waveplates orientations. We can now rewrite Eq. (4.13) as

w (T + Tr) = w(T ) {β1wp(cos(ϕnl − b)) + β2wp} . (4.15)

In our laser, the nonlinear phase shift difference is the difference between the nonlinear phase

shifts of the waves counter propagating in the fiber loop,

ϕnl = ϕanl − ϕbnl. (4.16)

Since ϕnl ∝ I (see Eq. (1.1)) and I ∝ A2, and according to Eq. (4.12) A ∝ w, we have

ϕnl ∝ A2 ∝ w2. We then define a parameter, κ, such that

ϕnl = κw2. (4.17)

We substitute this into Eq. (4.15) and get

w (T + Tr) = w(T )
{
β1wp(cos(κw

2 − b)) + β2wp

}
. (4.18)

Using trigonometric identities, we bring Eq. (3.3) to the form of Eq. (4.14). By comparing
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them we get expressions for the waveplate-dependent parameters of Eq. (4.14):

β1wp =
cos2(4θo)

8

{[
(4sin2(2θq) + {sin(4θh)− sin(4θq − 4θh)}2 − 4cos2(4θh − 2θq))

]2
+ [4 (sin(4θh)− sin(4θq − 4θh)) cos(4θh − 2θq)]

2}1/2

(4.19)

β2wp =
1

4
cos2(4θo)

{{
4sin2(2θq) + {sin(4θh)− sin(4θq − 4θh)}2}

2
+ 2cos2(4θh − 2θq)

}
(4.20)

b = tan−1

(
4 {sin(4θh)− sin(4θq − 4θh)} cos(4θh − 2θq)

4sin2(2θq) + {sin(4θh)− sin(4θq − 4θh)}2 − 4cos2(4θh − 2θq)

)
. (4.21)

We now have an expression for the dependence of the pulse energy evolution over one period

on the waveplates orientations. Recall that, in the previous section, we modeled SAT as a

power law perturbation. In order to express this perturbation using the waveplate orienta-

tions, we now use a Taylor expansion to approximate the cosine energy dependence of Eq.

(4.18) as a power series and simplify the expression:

w (T + Tr) ≈ w (T )TRTT (w) ≈ w(T )

[
(β1wp + β2wp)−

1

2
β1wp

(
κw2 − b

)2
]

(4.22)

= w(T )

[
(β1wp + β2wp)−

1

2
β1wp

(
κ2w4 − 2κw2b+ b2

)]
(4.23)

= w(T )

[
(β1wp + β2wp)−

1

2
β1wpκ

2w4 + β1wpκw
2b− 1

2
β1wpb

2

]
. (4.24)
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After some regrouping we have

w (T + Tr) ≈ w (T )TRTT (w) = w(T )

[
(β1wp + β2wp −

1

2
β1wpb

2) + β1wpκw
2b− 1

2
β1wpκ

2w4

]
.

(4.25)

Note that the above approximation means that we assume that the laser operates near the

peak of the transmission function (where the cosine term equals 1). This is a reasonable

assumption, since that region corresponds to stable operation.

In the derivation of the master equation, Haus assumed that the cavity components

apply only small perturbations in a single round trip (see Section 2.2). We apply the same

assumption to the round trip variation in energy:

w (T + Tr) ≈ w (T ) + TrdTw. (4.26)

By comparing eq. (4.25) and eq. (4.26) we get

w (T ) + TrdTw = w(T )

[
(β1wp + β2wp −

1

2
β1wpb

2) + β1wpκw
2b− 1

2
β1wpκ

2w4

]
. (4.27)

We use this expression for the term TrdTw in Eq. (4.10) and obtain

w (T )+2w[(g−l)+α1γSAMA
2−α2γsatA

4] = w(T )

[
(β1wp + β2wp −

1

2
β1wpb

2) + β1wpκw
2b− 1

2
β1wpκ

2w4

]
.

(4.28)

Next, we use the approximation relation of Eq. (4.12) between the peak amplitude and pulse

energy,

2w[(g−l)+α1γSAMw
2−α2γsatw

4] = w(T )

[
(β1wp + β2wp − 1− 1

2
β1wpb

2) + β1wpκw
2b− 1

2
β1wpκ

2w4

]
,

(4.29)
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and rearrange to get

2[(g−l)+α1γSAMw
2−α2γsatw

4] =

[
(β1wp + β2wp − (1 +

1

2
β1wpb

2)) + β1wpκw
2b− 1

2
β1wpκ

2w4

]
.

(4.30)

Finally, we equate the coefficients of powers of energy on both sides of the equation. This

gives us expressions for the SAM and SAT parameters in terms of the waveplates orientations

(contained in β1wp):

γSAM =
1

2

β1wp

α1

κb (4.31)

γsat =
1

4

β1wp

α2

κ2. (4.32)

The energy-independent part of the right hand side of Eq. (4.30) expresses the non-saturable

loss, l:

l =
1

2

[
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

]
. (4.33)

Now that we have analytical expressions for the SAM, SAT and loss parameters from

the master equation, we can investigate how they depend on the intracavity waveplates

orientations. This is done in the next section.

4.3 nonlinear loss and pump-to-output transfer function

bandwidth

At this point, we have four gain and loss parameters: g, γSAM , γsat and l. Before we proceed,

we will incorporate three of these parameters, namely g, γSAT and l, into a single parameter

called the nonlinear loss, thus simplifying the remainder of the analysis. This is the same

nonlinear loss parameter that was introduced in Section 2.4. Additionally, we can eliminate

γSAM from our expressions. We do this by noting that in steady state the overall gain

must equal the overall loss (linear and nonlinear), i.e. the net gain is zero. Introducing this

condition into Eq. (4.10) yields a closed relation between γSAM , gain, loss and the pulse
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peak amplitude A ∼ w:

g + α1γSAMA
2 = l + α2γsatA

4. (4.34)

Next, we represent a perturbation of the pulse envelope by writing a = a0 + ∆a, where a0 =

Asech (t/τ) is the steady state soliton solution that satisfies Eq. 4.34. The corresponding

perturbed energy is w = w0 + ∆w. Using Eq. (4.9) we write the energy perturbation as

∆w = Re

[
2

∫
a0∆adt

]
(4.35)

where we kept terms only up to first order in ∆a. Finally, we introduce this expression into

Eq. (4.7) and obtain the dynamic equation for energy perturbation,

TrdT∆w = −η∆w, (4.36)

where η is the nonlinear loss,

η = α3(g − l) + α4γsatw
4, (4.37)

and α3 = 4 and α4 = 32
15

are constants [30]. At this point, we have derived the expression for

η that was introduced in Section 2.4. [30].

We now use Eqs. 4.31, 4.32 and 4.33 to write the nonlinear loss as a function of our

laser’s waveplates orientations,

η = α3

[
g − 1

2

{
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

}]
+
α4

4

β1wp

α2

κ2w4. (4.38)

We use Eq. (4.17) to explicitly show the dependence of η the nonlinear phase shift difference,

ϕnl:

η = α3

[
g − 1

2

{
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

}]
+
α4

4

β1wp

α2

ϕ2
nl. (4.39)

Finally, we introduce gain saturation by expressing g using Eq. (4.4), and also substitute
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α2 = 8
15
, α3 = 4 and α4 = 32

15
:

η = 4

[
g0

(
P

′
P − 1

1 + P
′
P + 2P ′

s

)
− 1

2

{
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

}]
+ β1wp (ϕnl)

2 . (4.40)

Saturation power is given by PSAT = πr2ISAT , where

ISAT =
h c
λ

(σabs + σem)τ
(4.41)

and ISAT is the saturation intensity [54]. Here, h is Planck’s constant, σabs is the absorption

cross section, σem is the emission cross section and τ is the upper state lifetime.For wavelength

of 1030 nm, which is close to our laser’s central wavelength of 1039 nm, the emission cross

section is 0.8 × 10−24m2 [54], the upper state lifetime 800 µs, and the mode field diameter

is 3 micron. The saturation power is then PS,SAT = 2.13 mW.For wavelength of 975 nm,

which is very close to our pump’s wavelength of 976 nm, the absorption cross section is

2.7 × 10−24m2 [54] and all other parameter are the same as for the laser at 1030 nm.. The

saturation power is then PP,SAT = 0.67 mW.We pump our laser with about 100-200 mW of

power. Our laser’s output power is on the order of 10 mW, and the intracavity power is even

higher. Therefore, our laser operates in the strongly saturated regime, i.e., P ′P = PP

PP,SAT
� 1

and P ′S = PS

PS,SAT
� 1. Therefore, Eq. (4.40) can be written as

η ≈ 4

[
g0

(
P

′
P

P
′
P + 2P ′

s

)
− 1

2

{
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

}]
+ β1wp (ϕnl)

2 . (4.42)

For fixed pump power P ′
P will remain constant. However, P ′

s will change according to the

waveplates orientations. Therefore we write

η ≈ 4

g0

 P
′
P

P
′
P + 2

PS,WP

PS,SAT

− 1

2

{
(1 +

1

2
β1wpb

2)− (β1wp + β2wp)

}+ β1wp (ϕnl)
2 . (4.43)

Here, g0 can be used as a fitting constant.
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According to the theory presented in Section 2.4, the bandwidth of the pump-to-output

transfer function, ν3dB, is determined by

ν3dB = (1 + η−1)νgain−medium3dB , (4.44)

where

νgain−medium3dB =
1

2πTg
(4.45)

is the bandwidth of the gain’s response to perturbation, and Tg is the gain relaxation time.

While in practice Tg depends on pump power, we assume that its variation is small enough

to neglect, and then we have simply

ν3dB ∝ (1 +
1

η
), (4.46)

which we write as

ν3dB = k(1 +
1

η
), (4.47)

where k is a constant.

Eqs. (4.43) and (4.47) establish a relationship between the bandwidth of the pump-

to-output transfer function, the pump power and the waveplates orientations. Therefore,

they can guide the choice of these parameters such that a desired trade-off may be struck

between the bandwidth available for stabilization and other considerations such as low output

RIN. The next two sections present experimental measurements of ν3dB and discuss their

agreement with the analysis presented here.
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4.4 Pump-to-output transfer function bandwidth mea-

surements

In this experiment we record the transfer function between the pump diode laser current

to the laser output power. A diagram of the experimental setup is shown in Fig.4.1. This

measurement was carried out using a standard swept-sine technique. A signal analyzer

(Agilent 89441A) provided a small swept-sine signal for modulating the pump current. The

laser output power is detected using a photodiode. The photodiode’s output voltage is used

as an input to the signal analyzer, which produces the transfer function.

Figure 4.1: Experimental setup for measuring the pump-to-output transfer function of the
mode-locked fiber laser. fm is the frequency of the pump current modulation signal provided
by the signal analyzer. PD: photodiode.

The modulation frequency range was 0 Hz to 1 MHz. In order to maintain good spectral

resolution and low noise throughout this range, the measurements were taken with variable

spans, RBWs and averaging, as detailed in Table 4.1. In all cases the modulation signal RMS

voltage was 5 mV , which the pump laser controller translates into a modulation current of
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6.25 mA RMS.

Start Frequency(Hz) Stop Frequency(Hz) RBW(Hz) Average
1e0 1e2 2.0e-1 20
8e1 1e3 2.0e+0 30
8e2 1e4 2.0e+1 100
8e3 1e5 2.0e+2 100
8e4 1e6 2.0e+3 100

Table 4.1: Settings used in experimental measurements of the transfer function.

The transfer functions measured for different pump currents are shown in Fig.4.2. These

results were normalized such that they all have a value of 0 dB at a frequency of 10 Hz.

Although I have taken transfer function measurements at 11 different pump currents, for the

sake of clarity, Fig.4.2 shows only the transfer function measurements that have the same

pump currents as our RIN measurement data from section 3.5.2. In Fig. 4.3(a) the complete

trend of transfer function bandwidth for 11 pump currents is shown.

Figure 4.2: Normalized pump-to-output transfer function at different pump currents.
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4.5 Transfer bandwidth performance analysis

In this section we discuss how the measurement results presented in the previous section

compare with the theory developed in the first three sections of this chapter. We also

explain how these results are consistent with the experimental dependence of our laser’s

RIN on pump current, which was presented and analyzed in Section 3.5. Finally, we explain

how all of this pertains to a trade-off between stabilization bandwidth and RIN suppression.

Fig. 4.3 shows the 3 dB bandwidth of the pump-to-output transfer function vs. pump

current. As pump current increases, the bandwidth has a generally decreasing trend, with

some oscillations along the way. Overall, the bandwidth decreases from 41 kHz at 274 mA

to 7 kHz at 500 mA. According to Eq. (4.47), this means that the nonlinear loss, η, increases

with pump current. This is exactly the behavior we expect from our analytical expression

for η, Eq. (4.43). There, not only P ′
P , but also ϕnl increases with pump current, since ϕnl

increases with pulse energy and we’ve shown experimentally that pulse energy increases with

pump current (see Section 3.5.4).

The transfer bandwidth measurement reassembles the stability condition of the laser

and also the laser behavior towards the damping of intrinsic fluctuation, a correlation can

be found between the transfer bandwidth and RIN behavior. From Fig. 4.2(a) it can be

observed that at lower pump current (274 mA) the highest 3dB transfer bandwidth can

be correlated to the RIN behavior at 274 mA pump current. Also around 372 mA pump

current the 3dB transfer bandwidth gets reduced which means in this particular state by a

qualitative manner the nonlinear loss η has higher value than comparing to the laser state at

274 mA pump current. This means by increasing the pump current the laser moves towards

a higher stability condition.
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a b

Figure 4.3: (a) 3 dB bandwidth of the pump-to-output transfer function vs. pump current,
(b) Theoretically calculated normalized bandwidth of the pump-to-output transfer function
as a function of nonlinear phase shift difference.

The increase in η represents an increase in the SAT action, which leads to better sta-

bility against perturbation, as explained in Section 2.4. Indeed, in the experimental results

presented in Section 3.5, the laser output RIN and jitter decrease with increasing pump

current - in correlation with the decreasing bandwidth and increasing η. Fig. 4.3(b) shows

the theoretical prediction of the dependence of the bandwidth on the nonlinear phase shift,

ϕnl, which increases with pump current due to the growing pulse energy. Note that this

plot neglects the dependence of P ′
P on pump current, i.e., it implicitly assumes a very strong

saturation of the pump transitions, such that P
′
P

P
′
P +2P ′

s

≈ 1 for all pump currents that facilitate

mode-locked operation. We see that our theory qualitatively captures the bandwidth’s trend

of decreasing with increasing pump current.

Overall, we see that increasing the pump current reduces RIN and jitter, while at the

same time reducing the bandwidth available for frequency stabilization via pump current.

Therefore, a trade-off between these laser properties must be struck according to the require-

ments of each application. The analytical expressions derived in the first three sections of

this chapter provide a guide as to how this trade-off will be affected by pump current and

waveplates orientations.
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4.6 Anomalous dynamics and double pulsing behavior

discussion

As mentioned throughout the preceding text, in the process of carrying out experimental

measurements we collected data that does not confrom to the theory we presented, or any

other theoretical model of mode-locked lasers that we are aware of. This section presents

these experimental results, which we term anomalous dynamics.

Fig. 4.4 shows data that was collected with the pump current set to 284 mA, which we

call the anomalous point. This figure also shows the data obtained with pump current of 512

mA, which shows clear indications of double-pulsing. We include the double-pulsing data in

order to contrast it with the anomalous point and show that double-pulsing cannot explain

our observations at 284 mA.

Fig. 4.4(a) presents the optical spectra at the anomalous point and the double-pulsing

case. The anomalous point spectrum is very similar to the spectra obtained with pump

currents that displayed stable low-noise mode-locked operation (see Fig. 3.6). There is no

indication of CW breakthrough or any fringes that might result from multi-pulsing. The

spectrum for the double-pulsing state is generally similar, except that it is slightly broader

and includes a small bump on its short wavelength side, around 1023 nm.

Fig. 4.4(b) shows the RF spectrum of the lowest 10 harmonics of the repetition rate,

for both the anomalous point and the double-pulsing state. Again, the anomalous point

spectrum looks very similar to that of stable low-noise mode-locked operation at other pump

currents (shown in Fig. 3.6). The spectrum of the double-pulsing state shows a clear signa-

ture of double-pulsing: a (partial) fringe pattern, with a minimum at the fourth harmonic

(near 300 MHz). This pattern results from the interference of two temporally-shifted pulse

train reaching the photodetector.

In Fig. 4.4(c) we present the pump-to-output transfer functions for the anomalous point

and double-pulsing state. Both cases are different from the results for stable low-noise mode-
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locked state, which had a simple roll-off behavior, much like a simple low-pass filter, of about

10 dB/decade (see Fig. 4.2). For both anomalous and double-pulsing state we see a bump in

the transfer function, rising 3-5 dB above the low frequency response. For the double-pulsing

state, this bump peaks at about 6 kHz and then rolls off at about 10 dB/decade, similarly to

the stable mode-locked states of Fig. 4.2. We interpret this bump as a resonance where the

responses of the two pulse trains interfere constructively. Outside the resonance each pulse

train’s response rolls off just like in the stable mode-locked cases. Notably, the double-pulsing

data is much noisy. This results from fluctuations in the relative delay between the pulse

trains due to their independent jitter noise. The anomalous point shows different behavior.

Its bump peaks at a much higher frequency of about 30 kHz and them rolls off much faster,

at about 40 dB/decade. It also lacks the noise characteristic of multi-pulsed operation. We

note that, while the data presented here was collected from the laser’s output port, the

anomalous point’s pump-to-rejection port transfer function shows the same behavior as its

pump-to-output port transfer function.

Fig. 4.4(d) shows output port power and rejection port power as a function of pump

current. The output port power does not show any variation around the anomalous point

of or the double-pulsing state. However, the rejection port power has a sharp minimum at

the anomalous point. At slightly lower and slightly higher pump currents, the output power

is 2-3 times higher, i.e., the drop is by about 50-60%. Notably, at slightly lower or slightly

higher pump current the laser recovers its usual stable low-noise mode-locking behavior,

with not CW breakthrough or multi-pulsing. We could easily reproduce this phenomenon

multiple times and at different days, where the the pump current that corresponds to the

minimum in rejection power changed very little from day to day. The output power also

drops for the double-pulsing case, where the pump current is increased from 500 mA to 512

mA, but the drop is only about 10%.
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Figure 4.4: Experimental measurements for the the anomalous point (pump current of 284
mA) and double-pulsing state (pump current of 512 mA). (a) Optical spectra. (b) RF
spectra. (c) Pump-to-output transfer functions. (d) Output port and rejection port power.

At this point we do not have a solid explanation for this behavior of the laser. A pos-

sible explanation is dual relaxation [49]: the relaxation oscillations of the two polarization

component in the PM fiber can be delayed with respect to each other. When they inter-

fere constructively the oscillation gets enhanced, and destructive interference leads to much

a weaker response to an oscillatory perturbation. This could explain the peak and strong

roll-off we observe in the transfer function. Also, this is still single-pulse operation, which

corresponds to the observed spectra and the absence of additional noise in the transfer func-

tion measurement. However, it is not clear why the rejection port power would show a sharp

drop as a result of dual relaxation. Further investigation is required to understand this

anomaly, including experiments that could confirm or rule out dual relaxation.
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Chapter 5

Conclusion

In this thesis, the development and characterization of a flexible, self-starting, and easy to

operate all-PM NALM mode-locked fiber laser were demonstrated. A detailed experimental

investigation of the laser’s performance was presented, including optical and RF spectra,

dispersion, intensity noise and timing jitter. The laser has a repetition rate of 75.5MHz,

a center wavelength of 1039 nm and a spectral bandwidth of about 15 nm. Among many

great qualities of this laser, its self-starting mode-locking behavior is particularly valuable

from a practical point of view.With the proper orientation of the intracavity waveplates and

appropriate pump current, the laser will mode-lock by itself without any external influence.

The flexibility of the laser comes from a combination of its robustness (due to its all-PM

fiber construction) and its different “tuning knobs”, i.e., the three intracavity waveplates

orientations, intracavity grating pair, and pump laser power (controlled through the current

delivered to it). Two of the waveplates control the phase bias and modulation depth, while

the third control the output coupling rate. The grating pair controls the net intracavity

dispersion. Pump power controls the mode-locked operating point as determined by the

nonlinear phase shift difference between the two wave counter-propagating in the fiber loop.

In-operando dispersion measurement revealed that this dispersion-managed laser works

in the near zero and slightly anomalous dispersion regime, known to facilitate low-noise op-
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eration. Here, experimental measurements of relative intensity noise showed that, with a

certain set of waveplates orientations, noise strongly decreased as pump current increased.

An explanation for this passive noise suppression was provided and supported with exper-

imental evidence. Briefly, increasing the pump current transfers more noise from the pulse

to a low intensity dispersive wave. The waveplates orientations were chosen such that low

intensity light is separated from the laser’s output port, and directed towards a different

power (called the rejection port). It is possible that other related processes also contribute

to our observations, such as the additive pulse mode-locking mechanism itself, as well as

the separation of low intensity amplified spontaneous emission from the pulse through the

same mechanism that sent the dispersive wave to the rejection port. Overall, we achieved

values that, to the best of our knowledge, constitute record low relative intensity noise for

a mode-locked fiber laser. This achievement was made possible thanks to the robustness

and flexibility of our laser, that made it possible to tweak its tuning knobs while it remains

mode-locked. Indeed, the low noise state we achieved is not a self-starting mode-locking

state. Rather, the laser needs to be started in a self-starting state and then brought to

the low noise state by adjusting the waveplates orientations. A qualitative measurement

for timing jitter was also carried out.This investigation showed that the repetition rate beat

note SNR at the laser output improved as pump current increased.

This thesis also details the derivation of approximate analytical expressions for param-

eters from Haus’s master equation for mode-locked lasers, as well as the bandwidth of the

laser’s pump-to-output transfer function. In particular, expressions were derived for the lin-

ear loss, self amplitude modulation and saturation of self amplitude modulation parameters,

as functions of physical parameters such as pump power and orientation of the intracavity

waveplates. This qualitative analysis provides guidance as to the dependence of the laser’s

mode-locked state on its tuning knobs. Additionally, it helps us understand the trade-off

between intensity noise and jitter suppression on the one hand, and the bandwidth of the

pump-to-output transfer function on the other hand. This bandwidth is a limiting factor
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for active stabilization of the laser frequency (i.e., frequency comb stabilization). Therefore,

understanding this trade-off is important in order to choose the best operating conditions

for each application. We presented experimental measurements of the bandwidth of the

pump-to-output transfer function, which qualitatively agree with our theoretical analysis.

The final section of this thesis discussed experimental observations that do not fit within

the theoretical framework we presented, or any other that we know of. These observations

were made when the pump current had a certain value. While we do not have a complete

understanding of these observations, we proposed a possible explanation: a known phe-

nomenon called double relaxation, where the relaxation oscillations of different polarization

components in a PM fiber laser are delayed with respect to each other. Further investigation

is necessary in order to confirm or disprove our hypothesis.

In summary, we have demonstrated the development, analysis, and characterization of an

all-PM NALM mode-locked laser. With the self-starting and noise suppression capability of

this laser, our group is moving towards building a high power frequency comb laser system.

This will require active frequency stabilization and chirped-pulse amplification. Indeed, a

frequency comb is a stabilized pulsed laser, characterized by very low phase noise. Therefore,

any future work on our laser system must include phase noise measurements. Phase noise

is known to be strongly correlated with intensity noise in mode-locked fiber lasers, evidently

due to nonlinear conversion of intensity noise to phase noise. Therefore, we expect the

low intensity noise of our laser to contribute to phase noise reduction. We also note that,

while we presented experimental evidence to support our theoretical explanation of our

laser’s intensity noise suppression mechanism, additional data could strengthen our claim.

These include optical spectra of the rejection port light, pump-to-rejection port transfer

function, and dependence on waveplates orientations over a wider range of values. The

same is true for our analytically derived expressions for the master equation parameters and

pump-to-output transfer function bandwidth. Furthermore, these expressions can be made

more quantitatively accurate by eliminating some simplifying assumptions we made in their
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derivation, e.g., perfect soliton operation. Such investigations will facilitate optimization of

laser operation for frequency comb applications with strict noise requirements.
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Appendix A

Pump noise

Alex Murray measured the RIN of a laser diode of identical make and model as the one used

to pump the laser discussed in this thesis. Fig. A.1 shows this laser diode’s RIN, measured at

different currents. The peak around 50 Hz was verified to result from a mechanical vibration

in the measurement equipment, and not from the laser.

Figure A.1: RIN PSD of a laser diode identical to our laser’s pump diode, measured at
different currents (indicated in the legend). The peak around 50 Hz results from a mechanical
vibration in the measurement equipment, and not from the laser.

85


