Bl S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Qttawa (Ontario)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Regroduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Your tile Volre rélérence

Our il Notre 1élérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualit¢ dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a Paide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA
SPREAD SPECTRUM MULTIPLE ACCESS WITH ORTHOGONAL
CONVOLUTIONAL CODES FOR INDOOR DIGITAL RADIO
by

©

Richard Tsz Shiu Tse

A Thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of Master of Science.
DEPARTMENT OF ELECTRICAL ENGINEERING

Edmonton, Alberta

Fall 1992

National Library Bibliothéque nationale

ﬂ of Canada du Canada
Canadian Theses Service Service des théses canadiennes
Ottawa, :
K1A ON4

Canadi

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in

any form or format, making this thesis avallable
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis for
substantial extracts from it may be printed or

otherwise reproduced without hisfher per-
mission.)

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliethéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelgute manidre et sous quelque forme
que ce soif pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve fa propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-77114-3

Lie]

UNIVERSITY OF ALBERTA

RELEASE FORM
NAME OF AUTHOR: Richard Tsz Shiu Tse
TITLE OF THESIS: Spread Spectrum Muiltiple Access

with Orthogonal Convolutional Codes
for Indoor Digital Radio

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in
any material form whatever without the author's prior written permission.

71 7

10759 University Ave.
Edmonton, Alberta
Canada, T6E 4P8

DATE: _(27. 9, /797

The more abstract the truth you want
to teach the more you must seduce
the senses to it.

Friedrich Nietzsche,
Beyond Good and Evil

Wun, Too, Fweee!!

One of many math
teaching assistants

This time, everything is alright....
This time, everything is easy...

Bryan Adams

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled SPREAD
SPECTRUM MULTIPLE ACCESS WITH ORTHOGONAL CONVOLUTIONAL
CODES FOR INDOOR DIGITAL RADIO submitted by Richard Tsz Shiu Tse in
partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.

W.A. Krzymien
%10—%.0‘/
W.D. Grover
udnicki

oate: 5 O /992

Abstract

The use of very low rate orthogonal convolutional codes in an indoor
digital radio direct sequence spread spectrum multiple access (DS-SSMA)
system is investigated in this thesis. Computer simulations are performed to
determine the average bit error rates obtainable by such a system in a soft
partitioned office environment under different levels of multi-user interterence.
Three different methods are used to evaluate the performance of coded and
uncoded SSMA systems: a complete system simulation for bit error rates
greater than 104, a simulation which counts encoded symbol errors and then
uses an error bound calculation for bit error rates less than 104, and a channel
analysis method which predicts bit error rates for uncoded SSMA systems by
examining the channel profiles. In the system, the spectral spreading of the data
bits is accomplished by both the convolutional encoder and by partial Gold
sequences of length proportional to the code rate. The interference level is
determined by the number of interferers and the mean normalized cross-
correlation between the partial Gold sequences. It is modelled as white
Gaussian noise. The channel profiles used are generated by the SIRCIM
software package, which generates channels with the same statistics as
experimentally measured ones. This thesis shows that the use of some very low
rate orthogonal convolutional codes can substantially increase the system
capacity over an uncoded SSMA system when the bit error rate is set at

acceptable levels for voice transmission.

Acknowledgements

| would like to thank Dr. Witold A. Krzymien for introducing me to this
project and his supervision throughout the course of this work. | would also like
to acknowledge Mike MacGregor, Jeff Kocuipchyk, and Bob Gregorish for
supporting the computing system at Telecommunications Research Laboratories
(TRLabs) while | was doing this work and Rohit Sharma for helping me with
BOSS. A special thanks to all my fellow students at TRLabs, especially Brad
Venables and Yvonne den Otter, for making my two years here so much fun.

The financial support offered by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the University of Alberta, and TRLabs is
much appreciated.

Most of all, | would like to thank my parents, Sandy, and my grandmother

for the incredible support they have given me throughout my life.

TABLE OF CONTENTS

1. INTOAUCHION ...ttt ettt sneesae e st eeneene e st s senat e b e et e e 1
1.1 THESIS OVEIVIEWcccriimiieiicncncnirtnacrteereeeestesoe e sesseseesresesse st eenne 2
2. BaCKGIOUNG......ouovriieiiiniiiitieieectitetscestseesersestesaessesssasssenessersesssnssnsasens 4
2.1 Spread Spectrum Multiple ACCESSccceveeerrererreeeceieeeeeeerer e 4
2.1.1 Principles of Spread Spectrum............cceceereerrevrernvennnnnee. 4
2.1.2 Frequency Hopped SSMA...........cco i 5
2.1.3 Direct Sequence SSMA...........ccccormenmrcrrereneeeeeceeeeeevene 6
2.1.4 Advantages Of SSMAcoovieivreicecececeeeecr s 8
2.1.5 Disadvantages 0f SSMA ... 9
2.1.6 Gold Sequences for SSMAoocoreeennecicreereceen, i0
2.2 Orthogonal Convolutional Codes...........ccocververveeienenrrneeirereneeiesaene 12
2.2.1 Orthogonal Convolutional Encoding.........c.cccccveverrecvennnnee. 13
2.2.2DECOMINGcccoueerieieerrrerrineentaeneesteseeestesserresaessaesnessesses 15
2.2.3 Error Bounds in AWGN and Binary Symmetric
ChanNEIScoiuiiiiieircriiiricstree ettt esssenenes 20
2.3 Fading Multipath Channelsc.ccevreveecernnnencrenenenencennrceseenns 23
2.3.1 Flat Fadingcccooeevveeieriieieeereeecieesierenecereanresnessene e eseesrees 24
2.3.2 Time SPreading.......cccccccererrreereeensenvecsereserseessesensessesresaseos 26
2.3.3 Frequency Spreading...........ccevveeeeeereeuinerncnenreecsenscsscenenes 27
2.4 Previous WOTK.........ccovreeencnenncnnecrsvnnninioesscestoetecensesisessssssessssessenss 28
3. Simulation TOOIS USed..........ccocuvvevrmicninncrneiiniiinnincsensinns 30
3.1 Simulation of Indoor Radio Channel Impulse response Models
(SIRCIM) ...eeercececerceetneeeneeseeneaesnsseseeesssssrssnesestsessessssnsseresestssescsesessns 30
3.2 Block Oriented Systems Simulator (BOSS)ccccevenrecnncene, reneer 3D

3.3 Fortran and C Support Programs.............ccc.cccvveercnrineerenceseeisesnnesns 37

4. Overview of the SSMA System and lts Simulation Strategy...........cceueeucunnes 39

4.1 SSMA SYSIEMcuuiniuintrrenemseisrsetsesetsin sttt sststcnisn 39
4.1.1 System DeSCriPtioncccciecvemuecuiininmietinnssnsssesesnseincaes 39
4.1.2 Full Simulation Strategyc.cceveeeeescrsscriaienne reeeesaenesnasen 47

4.1.3 BER Estimates Using Error Bourids and Channel

ANAIYSIS ...cccevrrrirnrerarnsrarssstusasesserassiasisassstsssssssasasssstsasasusssissases 47

4.2 Interference Modelling SyStemcvvriiecercccsniiinniinnnsissisennes 51

5. Experiments and Results............... essesseusasesssensensensenteisatsasessnsenssnsesusraesnsassen 57
5.1 Interfarence Modellingcccovceeiieerenennnesesssecisincssessessunsnsssnaneansa 57

5.1.1 Statistical Charaiiterization of Interference...........cccccc.c.... 57

5.1.2 Cross-Correlation of Partial and Complete Gold

SOQUENCEScoverrrmrrserssrsasmssssessassasssssrsisssssssnssssasssescssisssssssaseasens 61
5.2 System PafOIMAaNCEccoceereemecssissmsemsenmsssssstssasssessustsssssissasussens 64
5.2.1 SER Estimates Using Full Simulation........ revesneessessseasssaraens 64
5.2.2 BER Estimates Using Error Bounds and Channel
ANGIYSIScuvecereecsirreriisninassrsssssissastsssssasasa s s sasssnsessas e sassaaes 68
5.3 DiScusSION Of RESUILS......cccocvurrenmrinrenarinisesssassssscsassesinsnsansnssscesns 75
6. CONCIUSIONSveeverercerreesserassessssssstssssncsessrsssssenssssssssssssssssssssessssassnassaaostsasss 80
6.1 Multi-user Interference Modelling..........cceoveveeiiencsnrinseisienscnccnenenees 80
6.2 Simulation Methodology..........coeuiererssrsesnnmsesssursesussssansnsnsssssnsasensis 80
6.3 Indoor Radio SSMA System Performance..........c.cccevrenannincnnaacanee 81
6.4 FUture WOrKcccecuvernnncnsnnccnsansnenees caeseemssssssessrtssnsasuassassnrRtssasonsey a2
BIDHOGIADY v.rer e rcesrrssvssrmssssssssss s sns s S 84
Appendix 1 Simulation Systems and ModuIeS.........cccewueceemccescrsimssnsensinreseninns 87

Appendix 2 Fortran and C SUPPOM €0deccevurimssenmmecussasisissenseaseninnsnssneses 201

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

List of Tables

Trellis states and their corresponding codewords ior an

orthogonal convolutional code with constraint length K =3................ 14
Memory requirements of Viterbi decoders for ditferent code

FALES. ..eeeeeeeeeeeeserssrreeesntaeernerasasantassssssmrssssasesssanaasssanesntisessstessessesssarassns 20
Results of Kolmogorov-Smirnov goodness-of-fit test for multiple
access interference and Gaussian distribution.cccceciveniininnnns 59
Mean and maximum cross-correlations between partiai and

complete GOold SEBQUENEES.ccveucureuemerrnieiiiinines sosscisineseasasisnans 62
Comparison of simulation symbol error rate, bit error rate, and

bit error rate bound for SSMA system using 1/32 code with 30

USETS. ovuvvemesssessessessassesesasesessasas sosstssssasssssssssesssarasstassaseasstscsasans sissnns 72
Comparison of simulation bit error rates and bit error rate

bounds for Some SSMA SYSIBMS........covrererenirniineriresienneienneisaees 73
Average BERs for ifferent S8MA systems determiried with the

error bound MEhOQ.coveeeeerennrinrecnrernneeeesstirestenne st 74
Average BER values froni the channel analysis method and full

simulation method for the uncoded SSMA system.c.cceccevnrnieeenee 75

List of Figures

Figure 1. Power spectral densities of a) original signal, b) spread signal,

c) spread interference signal, and d) despread desired signal

AN INTEITEIENCE. ... oo veenrereceeeecsrirtnsressssessnnssssssesasesssessasnssansssassaaines 5
Figure 2. Diagram of operation of direct sequence spreading and

AESPrEAUING.c.cvnvrinerrrrrmisrssessinsasiasaitsmsse s sstas st sasas s nasacnens 6
Figure 3. Diagram of direct sequence despreading of interference signal.7
Figure 4. Outputs of integrate and dump filtering on Despread Output

waveforms from a) Figure 2 and b) Figure 3.cccoeeecinrerencennenee 8
Figure 5. Example of spreading with a) complete PN sequences and b)

partial PN SBQUENCES.cccovcecuiesiiresmuresssasisssssssissassasisssssisinssissiees 12
Figure 6. Diagram of an orthogonal convolutional @NCOAET.ccovreueerersriresannes 13
Figure 7. Trellis diagram for an orthogonal convolutional code with

constraint 1ength K = 3....c.crnieneciiiiieiiiinisesnseensssssncns 14
Figure 8. Diagram of Viberbi algorithm selection of surviving paths................. 16
Figure 9. Block diagram of an orthogonal convolutional decoder for code

of constraint 1ength K = 3.....c.connneniisniiiiiiinnisneesnsceceseens 18
Figure 10. Long-term path loss along three hypothetical paths, their

mean path loss, and free space path 10SS.cocueueneneiseeciiscnenns 25
Figure 11. The short-term fading of r(t) superimposed on its long-term

fAdiNg PABM......ccoceirirerirrnrnrsisasessstetsssnsssasasasrasrssssasasnsssessassases 25

Figure 12. Intersymbol interference caused by time delay spread due to

Figure 13. Diagram of a set of soft partitioned office multipath channels.......... 35

Figure 14. Diagram of @ BOSS SYSteM........c.ceovevmitmmmimminsissrsnsssissnssninsnsensnaees 36

Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

. Block diagram of the analyzed SSMA system.ccuceuunue... 39
. A RAKE demodulator for DPSK signals.cccceeeeueeeeievcincnnenens 43
. BOSS implementation of the SSMA system.............cccoeveeerenennnee. 46
. Frequency spectrum of interference before despreading................ 59
. Frequency spectrum of interference after despreading................... 60
. Graph of normalized mean cross-correlations between partial
and compleie Gold SEQUENCES.ccceveeeeerrenerreeesireeereeeeereeeaees 63
Performance of the SSMA system with no FEC coding. 66
Performance of the SSMA system with code rate 1/8..................... 66
Performance of the SSMA system with code rate 1/32. 67
Performance of the SSMA system with code rate 1/128.................. 67
Performance of the SSMA system with code rate of 1/1024. 68

Graph of data bit error probability bound versus encoded
symbol error probability for orthogonal convolutional codes of

constraint [@Ngth K = 7.ttt 69

Figure 27. Graph of data bit error probability bound versus encoded

symbol error probability for orthogonal convolutional codes of

constraint length K = 3.t 69

Figure 28. Graph of data bit error probability bound versus encoded

symbol error probability for orthogonal convolutional codes of

constraint [ength K = 5......coevvivrcncinnnienecniiiiiececenens e 70

Figure 29. Graph of data bit error probability bound versus encoded

symbol error probability for orthogonal convolutional codes of

constraint Iength K = 10.......ceveiiiinnnnnnnenienieniieniicsnesceieensseenes 70

Figure 30. Summary of performance of the SSMA system using different

COOE TABS....evveeeeeenreeereerereeessssssssssreassesssssssssssassnsensassnssssassssrvsnssssasssss 76

List of Symbols and Abbreviations

Symbols

A - ine average path gain at discrete time Ty
B, - coherence bandwidth

5(t) - impuise function

Ays - time delay spread of channel

Ep, - energy per data bit

E, - energy per symbol

f4 - Doppler shift

K - the constraint length of a convolutional code

A - wavelength of the carrier
N, - the length of the partial PN sequence

N, - one-sided power spectral density

p - probability of an encoded symbol error
Py, - data bit error probability

r - tive code rate

SIR - signal to interference ratio

i, - coherence time

T - symbol time

T¢ - chip time

Timp - time between consecutive channel sample points
Ty - discrete time delay for the kth channel sample point
Tseq - duration of one complete PN sequence

xcotr - the normalized mean of the partial sequence cross-correlation magnitude
Z - generic parameter used in error bounding

Abbreviati

ACS - add-compare-select

AWGN - additive white Gaussian noise

BER - bit error rate

BOSS - Block Oriented Systems Simulator

BPSK - binary phase shift keying

BSC - binary symmetric channel

DPSK - differential phase shift keying

DS-SSMA - direct sequence spread spectrum multiple access
FDMA - frequency division multiple access

FEC - forward error correction

FH-SSMA - frequency hopped spread spectrum multiple access
ISI - intersymbai interference

LOS - line-of-sight

LPI - low probability of interception

OBS - obstructed

PN - pseudo-noise

SSMA - spread spectrum multiple access

SIRCIM - Simulation of Indoor Radio Channel Impulse response Models
TDMA - time division multiple access

T-R - transmitter to receiver

X-OR - the logical operation of exclusive OR

1. Introduction

The concept of radio telephony is appealing because it gives the user the
freedom of mobility while still allowing him to receive important messages and
information. Because this concept is so appealing, the field of mobile
communications has exploded in recent years. This growth has created a
problem with traffic congestion over the allocated spectrum for wireless phones
and other wireless communication devices.

Also, indoor digital radio systems have to operate in a hostile environment
of multipath fading radio channels. Consequently, they must be able to
withstand variations of the channel parameters, occasional very low signal-to-
noise ratios, and substantial intersymbol interference caused by frequency
selective fading. The technique of direct sequence spread spectrum multiple
access (DS-SSMA) has the inherent ability to deal with these problems. DS-
SSMA is believed to be able to provide a higher traffic capacity than the more
conventional techniques of frequency division multiple access (FDMA) and time
division multiple access (TDMA) [1]. At the same time, certain features of DS-
SSMA make it easier to implement; e.g. it may not require precise
synchronization of mobile transmission bursts which is essential in TDMA
systems. The use of forward error correction (FEC) codes in a DS-SSMA
system can further improve its performance [2].

The performance of SSMA systems usirig low rate convolutional codes
and operating in an AWGN channel was considered in [3] and [4]. The
convolutional codes provided both error control and at least partial spectral
spreading, and weie shown to improve performance over the corresponding
uncoded SSMA system for a given complexity, chip rate, and throughput. In

fact, the very low rate orthogonal convolutional codes investigated in [4] allowed

the aggregate data rate of all simultaneous users to approach the Shannon
channel capacity in the presence of background Gaussian noise when
coordinated processing was implemented.

This thesis investigates the use of very low rate orthogonal convolutional
codes in a non-coherent indoor digital radio DS-SSMA system. The system
operates under channel conditions found in soft partitioned offices with no line-
of-sight between the transmitter and receiver. The investigation is done by
performing computer simulations of such a system. The DS-SSMA system is
simulated using the Block Oriented Systems Simulator (BOSS), a commercially
available simulation package [5]. The channel profiles are generated using the
Simulation of Indocr Radio Channel Impulse response Models (SIRCIM) [6,7]
software package. The system is evaluated in terms of the bit error rate (BER)
for different codes and at different levels of multi-user interference.

For typical voice applications, BERs in the range 3x102 [8] to 1x 10-3 are
deemed acceptable. For 32 kbits/s packet speech applications using 1000 bit
packets and speech interpolation for word error rates of 1x10-1, bit error rates
around 1x104 are required [9). The maximum number of simultaneous users
that can be accommodated at BER < 3x102, BER < 1x10'3, and BER < 1x104

are determined for systems using different code rates.

1.1 Thesis Overview

This thesis is divided into 6 chapters and two appendices which discuss
background information and the work performed for and resulting from this
thesis.

Chapter 2 contains the background material which is necessary for the
reader to understand all the concepts discussed in this thesis. This material

includes the concept of spread spectrum multiple access (SSMA), orthogonal

convolutional encoding, and fading multipath channel propagation. An overview
of previous work done in the area of spread spectrum multiple access and
personal radio communications is also included in this chapter.

Chapter 3 contains a discussion on the tools used to simulate the system.
The software packages SIRCIM and BOSS are reviewed.

Chapter 4 describes the system models built and the simulation strategy
used.

Chapter 5 presents and discusses the results of the computer simulations.

Chapter 6 presents the conclusions that can be drawn from the thesis
work.

Details of the simulation modules and other support programs used are

given in Appendix 1 and Appendix 2 respectively.

2. Background

An understanding of three topics is important to understanding the work to
be presented. These topics are: spread spectrum multiple access, orthogonal

convolutional codes, and fading multipath channels.

2.1 Spread Spectrum Multiple Access

Spread spectrum techniques have long been used in military
communications because of their low probability of interception (LPI) due to their
low energy density, and good jamming resistance. Recently, commercial
applications for spread spectrum have exploded because of spread spectrum's
potentially efficient spectrum use. It is especially promising for multiple access
networks in today's congested radio spectrum: capacity of cellular telephone
systems can theoretically be increased by a factor of 40 when compared to
analog Frequency Division Multiple Access (FDMA) and by a factor of 4 when
compared to digital Time Division Multiple Access (TDMA) [10]. Also, spread
spectrum techniques can be helpful in combatting the problem of multipath

signal propagation which occurs in mobile wireless communications [11).

2.1.1 Principles of Spread Spectrum

There are two principle types of spread spectrum systems, direct
sequence (DS-SSMA) and frequency hopping (FH-SSMA). Both techniques
take the original signal and spread its energy over a much wider bandwidth
before transmitting, thus reducing the power per unit bandwidth per transmitter.
The ratio of the spread bandwidth to the original signal bandwidth is known as
the processing gain of the system. To properly receive the signal, its energy
must be despread by a coordinated receiver (one with the identical spreading

code as the transmitter). The need for the receiver to have the same spreading

code is the premise for muitiple access using spread spectrum techniques:
ideally, the interference at the receiver does not get despread, and thus, its
power in the despread signal band remains low when compared to the despread

desired signal as shown in Figure 1.

| Stf) S(f)
<& e —>F 4_;—)'6 F

a) unspread original signal b) original signal after spreading

filterto
eliminate
excess
interference

S(f)

(St

IR S e > F

fc
c) spread interference d) despread desired signai
(other user’s signal) and interference

Figure 1. Power spectral densities of a) original signal, b) spread signal, ¢)
spread interference signal, and d) despread desired signal and interference.
2.1.2 Frequency Hopped SSMA
FH-SSMA spreads its signal by hopping (varying) the carrier frequency of
its transmission. This hopping can occur many times per bit (fast FH-SSMA),
once per bit, or once every several bits (slow FH-SSMA). Interference results
from other users' signals hopping onto the same carrier frequency as the desired
signal. The pattern in which the frequencies are hopped is determined by a
pseudo-noise (PN) sequence. A high capacity FH-SSMA system requires many
fiiters tuned to specific hopping frequencies on the receiving end and a
frequency synthesizer capable of abrupt and perhaps high speed frequency
hops at the transmitting end. This system could be costly and therefore less

suitable for high volume consumer products such as personal wireless

communication equipment. Therefore, only DS-SSMA is considered in this

study.

2.1.3 Direct Sequenece SSMA

DS-SSMA accomplishes spreading by muitiplying the binary input by a
unique binary PN sequence of a much higher rate. If the receiver multiplies its
received signal with an identical binary PN sequence which is synchronized, the
signal will be despread and upon signal detection with an integrate and dump
filter, the original binary input will be recovered. This process is shown in Figure
2: if the Data stream is multiplied with the PN Sequence stream, the result is the
Spread Output stream. Muiltiplying the Spread Output stream with the
synchronized PN Sequence stream again will result in the Despread Output

stream which is identical to the Data stream.

. T . . .

_ .)
Data I | : ‘ |.ﬁ

PN : H I I
Spread ' : ' ' A
Despread :) . Z A
Output | | ; a

Figure 2. Diagram of operation of direct sequence spreading and despreading.

Interfering signals are not despread if the cross-correlation between the
interfering signal's PN sequence and the receiver's PN sequence is very low
when normalized to the sequence's length. The lower this value, the lower the

interference level as the integrate and dump filter at the receiver will return a

near-zero value. In Figure 3, an interiéring signal which uses a PN sequence
with a normalized cross-correlation equal to T/T (ie. the processing gain which,

in this case, is equal to 1/11) is despread. T is the chip time.

T .

Interference a ' A

Sy B ey N
; H . , ,

P sequence] LI UL L UL L UL UL UL,

PN Sequence 1

interference ' : . .
Spread ||||||||||||||||||[“jﬂl“|ﬂr‘:

Output ‘ '

Despread 1 1 (1 [ML UL U UL L UL A
PN Sequence . A
Despread ' : : : A
Despread LT LU L LA

Figure 3. Diagram of direct sequence despreading of interference signal.

Performing the integrate-and-dump operation over periods of T on the
Despread Output waveforms from Figure 2 and Figure 3 would give detected
signal energies of AT for the desired user and A2T/11 for the interfering user as
shown in Figure 4.

The use of sequences with low normalized cross-correlatives (and thus
high processing gains) is the key to building a high capacity SSMA system. Gold
sequences are such a set of codes. They will be discussed in Subsection 2.1.6.
The capacity of an SSMA system is thus limited by the interference produced by

other users allocated to the same bandwidth.

b).

L
.\.Zmple timf / 'AaTm/

Figure 4. Outputs of integrate and dump filtering on Despread Output
waveforms from a) Figure 2 and b) Figure 3.
2.1.4 Advantages of SSMA

The first advantage of SSMA is graceful degradation. As more users
transmit signals, the interference increases, and everyone's signal quality
degrades. Thus, the practical limit on the maximum number of users is soft and
is determined by the degradation of signal quality that each user can tolerate.
The only hard limit on the number of users in the system is determined by the
number of PN sequences available. However, in a practical system, this limit
cannot be reached because the signal quality would be intolerable well before
this point. In FDMA and TDMA, the number of channels available determines
the maximum number of users.

The second advantage is increased capacity via user activation factor. In
FDMA and TDMA, each user occupies one channel for the entire time that he is
on the system, even if he is not transmitting any «fata. In SSMA, if a user is on
the system but not actively transmitting data, his signal can be shut off until he
has information to transmit again. This reduces interference to the other users.
In voice calls, a person usually talks for 44-50% of the time [12]. This would

allow the capacity of a SSMA systent i sgproximately double.

Capacity can be further increased via antenna sectorization. Use of
highly directional transmitting and receiving antennas at the fixed antenna
locations used by the base stations can decrease the level of interference seen
by both the mobile users and the base station.

Another advantage of using SSMA is its ability to resolve and then
suitably combine the signal energy coming through different paths when the
signal propagates through a multipath channel. This can be accomplished using
a RAKE receiver. The operation of this receiver is discussed in Section 4.1 and
[12).

Asynchronous multiple access is another advantage offered by SSMA.
Precise synchronization of mobile transmissions bursts such as that required by

TDMA may not be necessary. This makes SSMA systems easier to implement.

2.1.5 Disadvantages of SSMA

DS-SSMA systems suffer from one major drawback: the need for power
control for the reverse link (mobile to base station) to combat the near/ffar
problem. Without reverse link power control, an interfering user (mobile
transmitter) that is much closer to the receiver (base station) than the desired
user would transmit a signal that would swamp the desired one. Power control
for the forward link (base station to mobile) is not required because all signals
originating at the base station will have the same power at the mobile.

If in the example given in Subsection 2.1.3 the interfering user's signal
was at an amplitude of 11A instead of A, then the energy of the interference after
the integrate and dump filter would be (1 1A)2T/1 1 = 11A%T which is greater than
the energy of the desired signal. Much research is being done on practical
systems to accomplish power control, and commercially effective systems are on

the verge of being released [14].

2.1.6 Gold Sequences for SSMA

Because the cross-correlation between spreading sequences of different
users directly affects the interference levels generated in a multiple access
system, sequences with low normalized cross-correlations values must be used
to maximize system capacity. Gold sequences [15] are such a set of sequences.
In this study, the Gold sequences were modified by adding an additional chip to
the end of the sequence. This was done to make the sequence length a power
of two. Since the codewords of the orthogonal convolutional codes that are used
in this study also have lengths which are a power of two, the modification allows
the starting points of data bits and Gold spreading sequences to remain aligned.
While this adversely affects the normalized cross-correlation properties of the
Gold sequences, it simplifies the hardware required to find the starting point of
each codeword.

Original Gold sequences are generated by combining two maximal length
sequences. 2"+1 codes can be generated with two maximal length sequences
of length 2"-1. The two maximal length sequences must be carefully chosen so
that the resulting Gold sequences exhibit the cross-correlation properties
desired. A method for doing this is described in Appendix 7 of [1 5] using the
irreducible polynomial tables from [16].

The Gold sequences have auto and cross-correlations which are bounded
by [13]:

1A |=2"~1 (2.1.6.1)
n+t
X |$27 +1 for n odd (2.1.6.2)
n+2
<27 41 for n even

Thus, the gain of the desired signal over an interfering signai in a system utilizing

these sequences is:

10

2"-1

| A corr /1 X core |2 =5 for n odd (2.1.6.3)
22 +1
"—
2%5—1— for n even
27 +1

From this, we can see that for large n, the gain approximately doubles whenever
n is increased by 2.

For the modified Gold sequences used in this study, the autocorrelaion
value would be 2" and the maximum and mean cross-correlations would
increase by small factors which can be determined experimentally.

When one Gold sequence is used to spread more than one symbol in a
multiple access system, then the cross-correlation of partial Gold sequences
must be investigated. The mean of these cross-correlations will be higher than
the mean of the cross-correlations between complete Gold sequences of shorter
length equal to the length of the partial sequences. However, since the number
of Gold sequences available is approximately equal to the length of the
sequence, short Gold sequences severely limit the maximum number of users
when very low code rates are used in an SSMA system with a fixed bandwidth
(such as the one being investigated in this thesis). Thus, longer sequences must
be used and the spreading of the encoded symbols is done with partial
sequences.

The procedure of spreading with complete and partial PN sequences is
shown below. In Figures 5a and 5b, the chip rates are identical, but the length of
the PN sequence of Figure 5b is double that of Figure 5a. Results of an
investigation into the mean cross-correlations of complete and partial modified

Gold sequences are given in Subsection 5.1.2.

11

T

 — : :

Data 1 T | : _ jA
Sequence HI ||||||||HH|||||||||H||HHH||||||
Spread ‘ A
s MMM UL MU A AR

» . ; : d -A

rigure 5a
. T . .
K——_——-—* . .

Data I l : l lﬁ

sequence || [N L LU UL

Figure 5b
Tseq is the duration of one PN sequence

Figure 5. Example of spreading with a) complete PN sequences and b) partial
PN sequences.

2.2 Orthogonal Convolutional Codes

Convolutiona! codes are FEC codes which are generaied by passing the
binary data through a finite state shift register and then manipulating the bits in
the shift register (usually by X-ORing some of them) to generate codewords [17].
This encoding structure introduces correlation among transmitted symbols which
can be exploited to improve the receiver's performance. That is, knowing the
encoder structure, previous transmitted codewords, and the current codeword, a
better estimate of the actual transmitted signal can be made than if the
codewords were treated as independent block codes. Orthogonal convolutional

codes are a subset of convolutional codes. They are especially useful if very low

12

code rates are desired because their structure allows very simple encoder and
decoder designs. This allows the use of very powerful codes without requiring

very complex hardware.

2.2.1 Orthogonal Convolutional Encoding

In the orthogonal convolutional codes used in this thesis, the output
codewords have the same structure as the codewords of Hadamard codes.
They are generated by taking a convolutional code register (a shift register of
length K which equals the code's constraint length) and passing the shift
register's output bits through an Hadamard block coder as shown in Figure 6 [4].
The upper register is the convolutional code register and the lower register is the

Hadamard block coder.

| K bit shift register !

switch every
2 K T

oKlr

:output
,2Ksymbols

Figure 6. Diagram of an orthogonal convolutional encoder.

One codeword of length 2K is generated for each input bit. This results in
an FEC code of rate r = 2™ with a free distance of d = oK [18]. Thus, very low
rate codes can be generated with the very simple digital circuit shown above.

As for other convolutional codes, a trellis diagram can be drawn to show
the possible paths that the coder can take. The trellis diagram for an orthogonal
convolutional code with constraint length K = 3 is shown in Figure 7. The

codewords and their corresponding trellis states are listed in Table 1.

13

| _Trellis State Codeword
000 00000000
100 01010101
010 00110011
110 01100110
001 00001111
101 01011010
011 00111100
111 01101001

Table 1. Trellis states and their corresponding codewords for an orthogonal
convolutional code with constraint length K = 3.

to t t2 3 4 t5

\‘ “ \ . \
: ool
h=111 ® o LA A
input bit 0
------ input bit 1

Figure 7. Trellis diagram for an orthogonal convolutional code with constraint
length K = 3.

14

2.2.2 Decoding

The optimal decoder for any convolutional code is the Viterbi decoder.
This decoder uses the trellis structure of the code and traces the maximum-
likelihood path. To do this, the distances between the received codeword and
each valid codeword in the trellis are calculated. The value is called a branch
metric. Hard-decision Viterbi decoding is discussed here.

If on-off signalling is used, the codewords are as given in Table 1 and
each branch metric equals the codeword length minus the Hamming distance
between the received codeword and the valid branch codeword. If polar
signalling is used, then 0 is replaced with +1, and +1 is replaced with -1 in the

codewords from Table 1. Each branch metric is calculated as:

M= iy;‘““""’y){‘““ (2.2.2.1)
n=t

where y*™* is the nth symbol of the received codeword and y, is the nth
symbol of the valid codeword corresponding to the branch. This branch metric is
equivalent to the cross-correlation between the received codeword and the valid
codeword in the trellis. This can also be expressed as the codeword length
minus the Euclidean distance betwsen the feceived codeword and the valid
codeword in the trellis.

For a binary data signal, each trellis state has two possible input
branches. For each trellis state at the latest stage of the trellis, the algorithm
traces back through the branches which are connected and sums the branch
metrics. The path which has the highest metric sum is the more likely path and
is deemed the surviving path. At the completion of this step, each state at the

latest staga of the trellis should hawe one incoming surviving path linked to it.

15

When all surviving paths merge to one past state, this state is the maximum-
likelihood decoded state and the uncoded information can be derived from it.

This process is illustrated below for the same K=3 encoder discussed in
Subsection 2.2.1 when tha input data sequence, the transmitted codewords, and
the received codewords are as given below. For simplicity, the decoder here
operates on on-off signalled inputs. The branch metrics are given on the trellis
decoding diagram. The surviving paths are highlighted in bold, and the final path
metrics for each state in the latest trellis stage are given as M.

input data sequence: 1,0,0,1,0..

The transmitted codewords are: 01010101, 00110011, 00001111, 01010101,

00110011 ...
The received codewords are: 01010101, 01100011, 00011111, 11011111,
00110011 ...
t0 Ry s 2 1, 13 W 15
a=000 &

b=100

c=010

d=110

h=111 © L

Figure 8. Diagram of Viterbi algorithm selection of surviving paths.

16

Only the first transmitted bit can be decoded at the instant t5 because at
the later stages, all the surviving paths have not yet merged into one. In an ideal
Viterbi decoder, the path metrics would be kept in memory until all surviving
paths merged into one.

However, such a system cannot be implemented practically because it
would require an indeterminate memory size to store all past branch mettics of
the surviving paths until they all merged to one. In practical systems, the path
memory is truncated. In other words, the decoder traces the trellis back a set
number of branches and then is forced to make a decision at this point. It has
been shown that if the path memory is set at 5 times the constraint length, and
the best path metric is taken at the truncation point, the loss in coding gain is on
the order of 0.1 dB [13,18]. This method also gives the advantage of a constant
decoding delay.

For the orthogonal convolutional codes used in this thesis, a simple
device to compute the branch metrics can be made which takes advantage of
the special structure of the codewords. This device is known as the Green
Machine [19]. The advantage of using the Green Machine is that the processing
complexity of the decoder grows only linearly with the code consiraint length
(although the decoder memory still grows exponentially) since the branch
metrics are calculated serially. There are exactly 2K additions and subtractions
per symbol time and the speed of these calculations need only be equal to the
encoded symbol rate. Figure 9 is a block diagram of a possible hardware design
of a hard-decision orthogonal convolutional decoder for K = 3.

If the input symbols are, in chronological order: x1, x2, x3, x4, x5, x6, X7,
and x8, where {x1, x2, ... x8} € {+1, -1}, then the output of the Green Machine

serial decoder will, in chronological order, equal:

17

[(x1+x%2)+(x3+x4)]+[(x5+x6)+(x7+x8)]
[(x1+x2)+(x3+x4)]-[(x5+X6)+(x7+x8)]
[(x14x2)-(x3+x4)]+[(x5+x6)-(x7+x8)]
[(x14x2)-{x3+x4)]-[(x5+x6)-(x7+x8)}
[(x1-x2)+(x3-x4)]+[(x5-x6)+(x7-x8)]
[(x1-x2)+(x3-x4)]-[(x5-x6)+(x7-x8)]
[(x1-x2)-(x3-x4)]+[(x5-x6)-(x7-x8)]
[(x1-x2)-(x3-x4)]-[(x5-x6)-(x7-x8)]

Green Machine Serial Decoder

swich swich swich wich
tnput . evoyT overy T overy2T overydl
symeol =177 Word - 2 Word 4 Word N
(rate 1/T) | Memory + Memory Memory +)
Branch Metric
Integer Adder (1 per symbol,
Decoded Data Maximum-likelihood 2% perbu)
D Integer Subtractor Output é_— Decoder

Figure 9. Block diagram of an orthogonal convolutional decoder for code of
constraint length K = 3.

One output is generated every symbol period. If the codewords in Table 1

are converted to polar signals (0 = 1, 1 = -1) and fed through the serial

decoder, then one of the above outputs will equal the maximum branch metric

value of 8 while the rest will equal 0 for each codeword.

After the serial decoder, the branch metrics are fed to the maximum-

likelihood decoder. This module adds the branch metrics to the appropriate

paths and then determines the surviving path reaching each state. These

18

surviving paths must be stored in memory. The best of these surviving paths is
then deemed to be the most likely path and is traced back to the decoder's
truncation point to find the trellis state at that point. The most likely transmitted
data bit can then be determined from this state. This add-compare-select (ACS)
operation is standard to Viterbi decoders. The truncated path memory decoding
operation is only optimal if all the surviving paths have merged prior to the
truncclion point. Otherwise, small losses in the coding gain are introduced.

The memory requirements of a Viterbi decoder increase exponentially
with constraint length. A decoder for a code of constraint length K and with a
path memory truncated to 5K branches would have the following memory
requirements:

a). 2Kx(Ceiling[In(5xKx2K)In(2)] bit memory) to store all
surviving path metric values at the latest stage of the treilis
(maximum path metric value is 5xKx2K, thus requiring
Ceiling[In(5xKx2K)/In(2)] bit memories, and there are 2K
paths). The Ceiling[x] function rounds x to the smallest integer
larger than or equal to x.

b). (5xKx2K)x(K+1 bit memory) to store all the branch metrics
and flags in the surviving paths (each branch has a maximum
metric of 2K, thus requiring K bits, and there are a maximum of
5xKx 2K branches in the surviving paths). The extra bit is for
flagging whether its surviving path resulted from a +1 ora-i
data input).

d). a maximum of (1+2+4+..2%1)x(K-1 bit memories) for the
serial decoder.

For a K=7 decoder, the memory requirements would be a) 128x13 bit
memories, b) 4480x8 bit memories, and ¢} (1 +2+4+8+16+32+64)x6 bit

19

memories. The total number of bits is 38266 which is just under 5 kbytes of
memory. If standard 4-bit word memory is used, then 38904 bits, or around 5
kbytes of memory are required. Memory requirements using the 4-bit word

memory chips for various code rates are shown in Table 2.

K l Memory Required (bytes)
———T————_——
uncoded 0
3 72
5 864
7 4863
10 80383

Table 2. Memory requirements of Viterbi decoders for different code rates.

2.2.3 Error Bounds in AWGN and Binary Symmetric Channels
The transfer function of an orthogonal ¢onvolutional code of rate 1/n is
[18]:

Kn n

IDZ (1-D?

7 (@ (2.2.3.9)
1-DZ[1+1(1-D 2)]

T(D)) =

where in the expanded Tk(D.!), the exponent of | denotes the number of bit

errors resulting from the wrong path selection, the exponent of D denotes the
path weight, and K is the constraint length of the code. The transfer function
describes all possible paths that can be taken when one deviates from and then
returns to the all zeros path in the trellis. The expanded Tk(D,l) is thus a
polynomial with an infinite number of terms, representing the infinite variety of

paths that can be taken through the trellis before returning to the all zeros path.
In the expanded T(D.), the coefficient of D in each term is the number of paths

of distance dpan (Where dpah is the exponent of D) that can be traversed in the
trellis of the code when the paths deviate from ard then return to the all zeros
path. Each term will also contain the variabie . The exponent of | in each term
gives the number of bit errors which will ocoust a¢ & resws of following any of the
paths represented by the term in the expanded Ty(D.!. * herefore, this function
can be used to upper bound the bit error rate of the cisie i» an additive white
Gaussian noise (AWGN) or binary symmetric chan..".

The bit error probability bound can be found &, iaking 4 darivative of the
transfer function given above with raspect to | and evaluating it at f = 1. By doing
this, each term in the expanded version of the function is weighied by the
exponent of I, thus giving the firsi-event error probability i <z path
corresponding to the term is taken. The detailed expression for the bound is
given in [18] as:

Kn a Kn
zz(-z2y __ 2° (2.2.3.2)

o Ke n
(1-222+2%)¢ (1-2Z2)

aT(D.})

p, <IN, -
=1D=.
b al | Z

where, for a rate 1/n code and the binary-input AWGN channel, Z" = gMESNo _

g EoMNo, Es is the energy per coded symbol, nEs = Eb is the energy per input bit,

and N, is the one-sided power spectral density of the AWGN in the channel.

Consequently: e
eW:- E
P,<———— Where ﬁl > 2In(2) (2.2.3.3)
(1-2e" °

Since E/(Ngin(2)) = C1/Ry [18], this bound can be presented as follows:

e
2R
P, <2 Bl (2.2.3.4)
(1-2 T p or 2

21

where FiT is the transmission rate, CT is the capacity, and both are in nats per

second (1 nats/s = in(2) bits/s). As shown in [18], this bit error probability can be

more tightly bound by employing the Gallager bound. The result is:

‘KEe(RT)
2" C,
Pb‘ﬁ':‘g-T(ﬁrT]? 0<R, < e, (2.2.3.5)
where:
5 %3
EC(RT)-—E— 0<R; < 2 (2.2.3.6)
C
=C,-R,/(1-g,) 5 SAr=Cili-g)
and 8(RT) >0 for gp> 0.

This bound on bit error probability can also be presented as follows [4]:

—KE,(r)
2 r
Pb <[—l-:2—_5m—]{ for0<r< c(l-ep) (2.2.3.7)
with:
c c
Ec(r)=§ for0 <r < 3 (2.2.3.8)
r o
=C-1—C for 55r<c(1—e,)

("
where r is the code rate (r=2-K), ¢ = E¢/(NoIn(2)), and 8(r) > 0 for 5> 0.

As shown in [4], this bound also holds for very noisy channels in which
€2/02 << 1; €2 is the mean symbol energy and o2 is the channel noise variance.
In a system with a reasonably efficient bit signal-to-noise ratio, the use of the
very low code rate r yields a very low symbol signal-to-noise ratio €2/02. Hence,
in a very low rate coded system, a very noisy channel operation is typical. For

such a very noisy case [4]:

22

e2

= .2.3.
€=267n(2) (2.2.3.9)
For the kih user of an SSMA system, this value of ¢ becomes [4]:

Si /(NW) (2.2.3.10)

%= @M+ 3.8,/ (NW)]

juk

where Sy is the kth user's power, and W is the system’s bandwidth.

If hard-decision decoding is used, then Z=JZH1—-B_)' as for a binary
symmetric channel (BSC) [18]. The variable p represents the probability of an
error in detecting a coded symbol and can be calculated for operation in AWGN
channels for different detection methods using well known error probability
formulas. Hence, from (2.2.3.2), the following bit error probability bound results

from hard decision decoding:

f
p, < 40PN (2.2.3.11)
(i—2(/4p(1-p)

Consequently, acceptable bit error rates can theoretically be obtained
when operating with very low rate orthogonal convolutional codes over white

Gaussian noise (or interference) channels.

2.3 Fading Multipath Channels

in personal mobile radio communications, a single line-of-sight path
between the transmitting and receiving antennas rarely exists. Instead, the
signal propagates through many different paths which include reflections from
walls, ceilings, and other obstacles to get to the receiver. As a result, the
received signal consists of many components, each with a different phase and of
a different amplitude. As well, since all propagation paths are not of the same

langth, each signal will arrive with a certain time delay (time delay spread) with

23

respect to the shoitest path. Movement of the mobile transceivers also has an
effect on the channel. The three main effects of these channels on the

transmitted signal are: a) flat fading, b) time spreading, and c) frequency

spreading.

2.3.1 Flat Fading

Flat fading results from signal propagation through space. Flat fading can
be divided into two categories: long-term fading, and short-term fading. Long-
term fading, also known as non-selective shadowing [20], is the average loss in
signal strength at any patticular location. It is caused by relatively small-scale
changes in topography as the mobile transceiver moves. Averaging this long-
term fading over different paths determines a patti loss exponent for the
environment. This value represents the average exponent value which the
signal attenuates by as the distance between the transmitter and receiver
changes [20]. 1t is usually greater than that of the typical line-of-sight free space
path which is 2 (free space line-of-sight signals attenuate proportionally to 1/d?
where d is the distance between the transmitter and the receiver). The path loss
exponent of a multipath channel is typically between 3 and 5 for multi-floored
partitioned office buildings [7]. This may be because energy is absorbed by the
obstacles which the signal reflects off or because destructive interference occurs
between signals which propagate through different paths. Complete signal loss
can occur if the receiver travels through an area where the transmitted signal
cannot reach or is severely attenuated (ie. a deep fade region).

Figure 10 shows some hypothetical long-term fading patterns of three

paths, their averaged path loss, and the path loss of an ideal line-oi-sight free
space channel given as a ratio of the received signal power Pg to the transmitted

signal power Pr.

mean multipath
path loss

free space
line-of-sight
/ path loss
=~ S
path loss =< -
log(R, /P,)

1 2 3 4 5
d

Figure 10. Long-term path loss along three hypothetical paths, their mean path
loss, and free space path loss.

Short-term fading consists of the instantaneous, fast, and deep variations
in signal strength at any particular location and time. It is also known as
Rayleigh fading or envelope fading. Short-term fading is caused by multipath
propagation and changes in the environment. Averaging the short-term fading
over time will give the long-term fading value. Figure 11 shows the short-term

fading of a signal r(t) superimposed over its long-term fading pattern.

r(t)

d

Figure 11. The short-term fading of r(t) superimposed on its long-term fading
pattern.

25

2.3.2 Time Spreading

The multipath channel spreads the transmitted signal in time. This time
delay spread Ag4g is dependent on the channel. Typically, for indoor radio

channels, Agg is less than 500 ns [7]. An adverse effect of multipath fading on
transmission integrity is increased intersymbol interference (ISl) due to the time
delay spread. Severe ISI results if the time delay spread is greater than the
symbol interval of the digital signal.

An example of intersymbol interference caused by time delay spread due
to multipath propagation on a signal is shown in Figure 12. From the figure, it is
obvious that the received signal is different from the transmitted binary sequence
and that detection error can occur due to the intersymbol interference.

Coherence bandwidth is related to time dispersion. If we define the
coherence bandwidth as the maximum bandwidth within which the phase

correlation coefficient is to e greater than 0.5, then it can be estimated as [21]:
B = 1/(4nAys) for phase modulated systems (2.3.2.1)

When the transmitted signal has a bandwidth greater than By, then two

frequencies of the same signal . .| undergo uncorrelated att:-wation and phase
shifts. When this occurs, the channel is said to induce frequency selective or
time dispersive fading.

For an indoor radio system with Ags = 500 ns, the coherence bandwidth is
approximately equal to 160 kHz. A SSMA system will typically have a bandwidth
of several MHz, thus time dispersion must be given serious consideration.
Fortunately, spread spectrum has an inherent ability to take advantage of this
time dispersion: a RAKE receiver may be used to resolve the different signal

components. More information on the RAKE receiver is given in Section 4.1,

0.6

+1

b) transmitted binary signal

1.0

0.6

03

T
A\ 4

-0.9

-1.5
c) signal after propagation through channel

Figure 12. Intersymbol interference caused by time delay spread due to
multipath propagation.
2.3.3 Frequency Spreading
A third multipath channel effect known as the Doppler effect results from
the motion of the transmitter or receiver. If one is moving with respect to the
other, an apparent frequency shift appears on the received carrier. This would

make detection of digital signals based on phase or frequency modulation less

27

effective. The maximum frequency shift, or Doppler shift, can be calculated as
[21]:

fg = max(Vcos6/A) = V/A (2.3.3.1)

where VcosH is the velocity of the receiver relative to the transmitter and A is the
wavelength of the transmitted signal.

When propagating through a multipath channel, the signal reaches the
receiver from many different directions. Therefore, a frequency spread, or
Doppler spread, appears on the received signal. The maximum Doppler spread
is equal to twice the maximum frequency shift.

Coherence time is related to the Doppler spread. ldentical signals which
are transmitted with time separations equal to or greater than the coherence
time will undergo uncorrelated attenuation and phase shifts. The coherence

time can be calculated as follows [13]:

te = 1/(2ig) (2.3.3.2)

When t, is smaller than the duration of the transmitted symbol, then the

channe! induces time selective or frequency dispersive fading.

For a typical indoor radio system, Vcos8 can be approximately 1 m/s and
A can be around 0.22 m (for a 1.35 GHz carrier) which yields fg=4.5 Hzand t; =

0.11 s. At reasonable bit rates and realistic transceiver velocities, the Doppler

effect is negligible in indoor systems.

2.4 Previous Work
Previous work related to the area of spread spectrum multiple access in

multipath channel environments is quite extensive. Most of it has shown that

28

SSMA techniques allow for reasonable system capacities when compared to
FDMA or TDMA [1,22,23].

However, most of the papers published utilize spread spectrum in the
conventional sense, where the chip rate is much higher than the data and the
FEC encoded data rates [24,25,26]. However, it was shown in [3] that using
lower rate convolutional codes with shorter PN spreading sequences (and thus
incurring the penalty of greater normalized cross-correlation with interfering
users) provided superior performance in an SSMA system. Very low code rates
have not been widely investigated for SSMA systems except for [4], where the
FEC spreading mechanism used in this thesis was introduced. In [27], the use
of low rate convolutional codes in a spread spectrum communication system
operating in an additive white Gaussian noise channel was analyzed. Both the
analyses in [4] and [27] used coherent systems operating in a non-multipath
channel environment.

Also, most papers utilized a Rayleigh or Rician model for the multipath
channel characterization [24,25,26,28] where the muitipath channel impulse
response components were independent Rayleigh or Rician variables. The
number of components of each multipath channel were aiso dictated by the
particular investigation and not by the environment. The use of the SIRCIM
channels will have an effect on the order of multipath diversity allowed and thus
on the performance of the SSMA system.

To the author's knowledge, no work has been done on the performance of
very low rate FEC codes in a non-coherent system operating over indoor

multipath radio channels.

29

3. Simulation Tools Used

To create a model of the proposed system, two software packages were
used. The first was SIRCIM (Simulation of Indoor Radio Channel Impulse
response Models) and the second was BOSS (Block Oriented Systems
Simulator). SIRCIM is an MS-DOS based software package which was used to
generate statistically accurate models of different indoor radio channel impulse
responses. The data files generated by SIRCIM were then transferred to the
UNIX environment where they could be utilized by BOSS. The system
simulation was built and executed with BOSS.

Programs in Fortran and C were written to support the BOSS simulation

system and for other analyses.

3.1 Simulation of Indoor Radio Channel Impulse response Models
(SIRCIM)

The multipath radio channel response profiles used in the simulations
were obtained from the SIRCIM software package [6]. This MS-DOS based
package generates statistically based impulse responses for different types of
indoor wireless channels. Detailed information on SIRCIM can be found in
[6,7,29]. A brief overview of the impartant aspects and*features of SIRCIM is
given below.

SIRCIM uses stafistically based models to produce generic indoor
channel impulse responses because neither the number, quality, and placement
of potential reflectors or the movement of the transmitter or receiver can be
incorporated into a purely deterministic form. The models are generated from
1.35 GHz modulated signals, but the results can be extended for modulated
signals up to 4.0 GHz with reasonable accuracy [30]. Real measured channel

responses were taken and used to create statistical models which determine the

30

number, the arrival times, and the amplitudes of distinct multipath components in
three different types of indoor environments: open-plan, hard partitioned, and
soft partitioned office buildings. The open-plan building is equivalent to a factory
or warehouse where there are mostly large open areas with a few large
obstacles. The hard partitioned building represents a typical multi-storied office
building with many walls made up of concrete or drywall supported by metal
studs spaced 16 inches apart. Hallways are 6 to 10 feet wide. The soft
partitioned building represents a typical multi-storied office building, but with
short (5 feet high) cloth covered dividers used to form cubicles instead of walls.
SIRCIM takes the measured channel data and creates multipath channel profiles
with the same ensemble and local statistics [7. A muiltipath channel profile
consists of a set of impulses, where each impulse has a certain power, phase,
and relative delay determined by the statistical properties of the channel. The
work in this thesis uses the soft partitioned building channel model.

The channel measurements on which the SIRCIM package was based
were performed by transmitting a square-pulse, pg(t), amplitude modulating a

1.35 GHz carrier. It was assumed that the pulse pg(t) had a short enough

duration that there was at most one multipath component and no pulse overlap
within a time window equal to this duration. The received power response was

thus given by [7]:
I 017 = (o Zpe2(t1,) (3.1.1)

where oy is the real voltage attenuation factor and 1y is the delay of the kth path

in the channel with respect to the line-of-sight path. This signal was then
separated into bins of duration Timg = 7.8125 ns. Within each bin, the ay values
were averaged using a linear interpolation method [7] to obtain A,. A

31

represents the average path gain at a discrete time Tk. where Tk represents a

value equal to KTiyp. The resulting impulse power response is [7]:

I =T, A% 8(tT) 8(t) = impulse function (3.1.2)

The measurements just described were performed successively at
locations separated by 5.5 cm (equal to one quarter of a wavelength of a 1.35
GHz carrier). Thus, there were 19 channel profiles per metre. By doing this, the
small scale variation in the fading, the number, and the arrival times of the
multipath components could be characterized over a small area. The impulse
response profiles at distances between these 5.5 cm spacings could be
accurately interpolated by using a cubic spline method (6].

it was found that the time delay spread was almost always less than 500
ns, so this value was set as the maximum duration of each channel profile.
Thus, with the channel quantized into 7.8125 ns bins, up to 64 muitipath
components could be resolvable in each channel profile.

The SIRCIM gimulation package also allows for channels with line-of-sight
(LOS) or obstructed (OBS) topographies. LOS topographies have a direct path
between transmitter and receiver while OBS topographies do not. Different
distributions of multipath components arise from the two types of topographies.

Distances between the transmitter and receiver can also be specified in
SIRCIM. Obviously, this will affect the received power of the signal. For LOS
and OBS topographies in hard partitioned or soft partitioned office environments,
T-R separations between 10 m and 25 m are allowed. In open plan building
environments, T-R separations between 10 m and 65 m for LOS topographies
and between 10 m and 50 m for OBS topographies are allowed. The reduced

range for the non-open plan buildings and the OBS topographies is the result of

32

reduced signal strengths at large T-R separations.

All the aforementioned parameters are factors in determining the channel
impulse response. Therefore, a general formula for the power impulse response
can be written {7]:

IPaa(t, X, S DRI = T AL (T, X, S DR -T(X,SpDR)) - (3:13)
k

where: t =time
X, = set of locations within local area of 1m (I=1 to 19)

Sy = LOS or OBS for m = 1 or 2 respectively

D = distance between transmitter and receiver (within ranges
stated above)
P,= the set of measurements obtained for the particular building

type (open,hard or soft partitioned; n = 1 to 3 respectively)

The phase of each of the multipath components is computed using
geometrical assumptions about the environment. A random phase is given to
the initial received component. Then, using the user input parameters of
receiver speed and direction of travel, and width of the aisle where the
transmitter and receiver are located, SIRCIM calculates the change in distance
between the transmitter and the receiver (@' - q) and the instantaneous

frequency f; (accounting for the Doppler shift) for each multipath component.

Using these values, the change in phase is calculated using the equation below
for each multipath component at each delay Ty and for each small movement of

the mobile terminal. Further details can be found in [6).
Aphase = (@' - Q)2nf, /v (3.1.4)

where v = signal propagation velocity = 3x 108 m/s for free space

33

The complete multipath channel profiles can be written to a file and
included in a library of impulse responses for indoor multipath channels.

This thesis uses soft partitioned indoor radio channels with no line-of-sight
path between the transmitter and the receiver. For this type of channel model,

the following parameters ara used [6].

Mean number of multipath components:
E[Np(X,S2,P3)] = Uniform [2,10] (3.1.5)

Standard Deviation of Np(X,S2,P3):
Op(SZ,Ps) =0.4 E[Np(X,SZ,Ps)] (3.1 .6)

Probability of component arrival at a particular delay Ty:
Pr(Tk,S2) = 0.7+T/(1000 ns) Ons < T, <100 ns (3.1.7)
= 0.8exp(-(Ti-100 ns)/50 ns)100 ns < Ty < 500 ns

Mean large scale path loss exponent:

n(Ty,So)= 4.8 + T\/(484 ns) Tk <250 ns (3.1.8)
=5.3 250 ns < Ty, < 500 ns
Variance of n(Ty,S»):
Olarge-scale(Tk:S2) = 4 + 4exp(T/39 ns) dB (3.1.9)

Small scale spatial and temporal correlation coefficients = 0.0.

Figure 13 shows an example of a set of channel profiles obtained for a

1 m shift of the mobile terminal.

1.0f

S
5

ot
o

Relative Power

Figure 13. Diagram of a set of soft partitioned office multipath channels.

3.2 Block Oriented Systems Simulator (BOSS)

The simulations were performed using Comdisco’s Block Oriented
Systems Simulator (BOSS) [5] on SUN SPARC 1+ and SPARC 2 workstations.
BOSS performs time domain simulations of systems designed by the user.
These systems are constructed by linking components from a library of pre-
programmed blocks which perform specific functions such as impulse
generation, random data generation, digital modulation and many more. The
blocks are functional representations of Fortran programs whose inputs and
outputs can be interlinked.

BOSS also allows the user to form his own custom function modules.
These can be created by linking other modules together in a hierarchical
structure to perform the desired function or by writing a Fortran subroutine which
performs the desired function and linking it to an empty block which has only
inputs and outputs. For the latter, the user must define the inputs and outputs of
the custom module and then link them to the inputs and outputs of the Fortran

subroutine which performs the desired function. This type of custom module is

35

called a BOSG piimitize.

Complicated initial parameters can be calculated before the simulation
starts by using initialization code. The initialization code is a Fortran subroutine
which has its inputs and outputs linked with parameters from the system or
module used in the simulation. Thus, constants such as filter coefficients can be

calculated prior to the simulation.

An example of a simple BPSK system implemented on BOSS is shown

below.
. [6] puyTTERWORTH .
Egg#gf’” BPSK > BANDPASS > >
MOD
Dure
Ogiven . P
SNR_s_BW
LOGICAL
T0 >
NUMERIC |] psy_pemoD_AND
ERROR_COUNTER
BUTTERMORTH X B raea b
Lganmmss > > =
LX CMPLX MULTI |
e D e P Dg}ﬁ% >

Figure 14. Diagram of a BOSS system.

When running a simulation, BOSS executes each block once every
sampling time. This sampling time, which is specified by the user, represents
the maximum time resolution of the simulation. The sampling time must be

chosen very carefully in BOSS simulations: every periodic waveform must be of

36

a frequency which divides into the sampling frequency evenly. If it does not,
BOSS will change this frequency to the closest value which does.

Different blocks can have different initialization parameters. Changing the
values of these parameters will change the constraints or operating conditions of
the system being simulated. In our simulation structure, custom BOSS modules
were built for encoding, modulation, indoor multipath channel convolution,
demodulation, decoding, and performance analysis. Initialization code was
written for the encoder and for the complete SSMA system.

Custom BOSS primitives and modules along with brief descriptions and

any supporting code are found in Appendix 1.

3.3 Fortran and C Support Programs

Besides the initialization and primitive module codes for BOSS which
were written as Fortran subroutines, a few support programs were required.
These included programs which generated files which contained the valid
orthogonal convolutional codewords and the Gold sequences, a program used to
find the normalized mean magnitude of the cross-correlation between partial and
complete Gold sequences, and one for computing the error bounds for
orthogonal convolutional codes. Other programs were written to find the
variance and mean of the data collected for interference analysis, to perform the
Kolmogorov-Smirnov goodness-of-fit test of interference data to a Gaussian
distribution, and to alter the SIRCIM impulse response data into a more usable
format.

Estimates of bit error rates made from analyses of channel profiles were
also performed using a Fortran program. This estimation method is discussed in
Subsection 4.1.3.

All these programs were written in Fortran except for the one which

37

generated valid orthogonal convolutional codes which was written in C. These

programs can be found in Appendix 2.

38

4. Overview of the SSMA System and Its Simulation Strategy

4.1 SSMA System

The performance of a direct sequence spread spectrum multiple access
system utilizing low rate orthogonal convoluticnal codes is to be evaluated. The
bit error rate and the system capacity are used as performance parameters o

determine the effect of different code rates.

4.1.1 System Description

A block diagram of the investigated system is shown in Figure 15.

Gold Sequence

DPSK
®

Transmit
Filter

Input Orthogonal
Data Convolutional
Encoder J

Multipath Fading\
Channel J
Multi-User
Interference
Receive DPSK RAKE c|terb||0rthoglona| Received
Filter Receiver onvolutiona Data
Decoder

Synchronized
Gold Sequence

Figure 15. Block diagram of the analyzed SSMA system.

39

The data rate used in this system is 31.25 kbits/s. This value is used
because it is close to the standard 32 kbits/s and its period is an integer muitiple
of the simulation sampling period of 7.8125 ns. The final spread spectrum chip
rate of the system remains fixed at 32 Mchips/s which is 1024 times the data
rate. Thus, there are 4 samples per chip time. The FEC code rate is varied
between 1, 1/8, 1/32, 1/128 and 1/1024 tfor different simulation runs, and thus
the subsequent spreading of the encoded data varies between 1024, 128, 32, 8
and 1 times respectively.

Orthogonal convolutional codes are used for FEC coding because they
have excellent error correcting capabilities and because very low rate codes can
be generated vey simply by the encoder shown in Figure 6. Also, a fairly simple
decoding mechanism known as the Green Machine can obtain the branch
metrics serially in the decoding process of these codes (see Subsection 2.2.2 or
[19)).

Gold sequences are used to achieve multiple access. The length of these
'sequences does not change when the code rate changes; it remains a sequence
of length 1024. Note though that the length of true Gold sequences is only 1023
chips while 1024 chips are required per data symbol period. This problem is
solved by adding one extra chip to the end of all Gold sequences used in the
system (see Subsection 2.1.6). It is expected that the mean normalized cross-
correlation between spreading sequences would degrade only slightly as a result
of this extension. From this point on, whenever Gold sequences are referred to,
it will be to these extended sequences rather than to the true ones.

When code rates lower than 1 are used, each ericoded symbol is spread
by only a fraction of the Gold sequence. For example, if the code rate is 1/32,
giving an encoded symbol rate of 1 Mbits/s, the Gold sequence would be

required to increase this symbol rate 32 times. The first 32 chips of the Gold

40

sequence would spread the first encoded symbol, the second 32 chips of the
Gold sequence would spread the second encoded symbol, and so on until the
thirty-second encoded symbol is spread by the last 32 chips of the Gold
sequence, after which this procedure is repeated (see Subsection 2.6.1). Worst-
case and average cross-correlations between partial Gold sequences are
expected to be worse than those obtained with complete Gold sequences of
similar length. However, the number of different Gold sequences is greater for
longer sequences, and since the maximum number of multiple access users
allowed cannot exceed the number of sequences available, the longer Gold
sequences will not impose a hard-limit on the number of users in a realistic
system as a result of their length. For the 1024 chip long modified Gold
sequences used, there are 1025 distinct sequences. In order to achieve a
uniform approach to the simulations while the ultimate capacity of the system
was still unknown, Gold sequences of length 1024 were used for all code rates
investigated.

The data to be transmitted is first encoded with the appropriate orthogonal
convolutional code. It is then DPSK modulated before being spread by a Gold
sequence. The spreading is done by multiplication of the DPSK modulated
signal and the Gold sequence. Then, the baseband resuit is passed through a
transmit filter. The filter to be used is a third-order Butterworth band-pass filter
with a 3 dB bandwidth equal to the chip rate.

The simulation, however, is done at baseband. Thus, a baseband
representation of DPSK modulation is implemented and the band-pass filter is
represented with a low-pass third-order Butterworth filter with a 3 dB frequency
equal to half the chip rate. The signal prior to this low-pass filter consists of
square pulses. These square pulses are represented as complex numbers with

a magnitude of one. This complex representation allows a phase to be

4]

introduced to the DPSK encoded signal. The phase of these pulses is used to
represent a phase offset between the transmitted signal carrier and the
demodulating waveform of the receiver.

The transmitted signal propagates through a multipath channel before
reaching the receiver. The channels are derived from the SIRCIM software
package as described in Section 3.1. Channel models with statistics
corresponding to soft partitioned offices with no line-of-sight paths between
transmitter and receiver are used. The transmitter and receiver are assumed to
be 10 m apart and moving at a velocity of 1 m/s in random directions with
respect to one another. The soft partitioned offices have hailways which are 3 m
wide. The maximum time delay spread of the channels is 500 ns. To simulate
perfect power control, the channel profiles are normalized to contain unit energy
when convolved with a square pulse of duration equal to one chip time.

Multi-user interference is added to the signal at this point. This
interference is assumed to be Gaussian in nature. This assumption is justified
later in this thesis. The variance of the interference is proportional to the number
of interferers in the system and the normalized mean magnitude of the cross-
correlation between partial Gold sequences. The modelling of the interference is
discussed in Section 4.2. Since perfect power control is assumed in this system,
the average power levels of the signals from each interferer are the same.

The thermal noise level is normally negligible in comparison to the
interference levels so it is ignored in this study. With perfect power control, the
signal levels can be kept at a level high enough to make thermal noise effects
negligible at the bit error rates of interest.

At the receiver, in order to eliminate out-of-band noise, the composite
signal is passed through a Butterworth filter which is identical to the transmit

filter. It is then despread with a Gold sequence identical to the one at the

42

transmitter. This sequence is synchronized to the one in the desired received
signal. After despreading, the signal passes through an integrate and dump fiiter
which suppresses the multi-user interference. The result is then DPSK
demodulated.

A RAKE receiver [13,31] is used to take advantage of the multipath
diversity which results from multipath propagation. The structure of the RAKE

receiver for DPSK signals is shown in Figure 16 below.

Correlators
. tapped delay line
received
multipath —-—> Te Te
signal .
PN sequence —19&5
matched matched matched
fitering | filtering filtering
sample k sample L\ sample k
. everyT ¢ every T every T
DPSK j ‘[
Demodulators . | Oefay | Delay Delay
) T T T
Y v
con} conj conj

Demodulated Output

Figure 16. A RAKE demodulator for DPSK signals.

43

The RAKE receiver consists of two main parts: the correlator and the
demodulator. The correlator is made up of a tapped delay line which the
multipath signal propagates through and whose outputs are correlated with a
despreading PN sequence. The premise of this operation is that if the
normalized cross-correlation between the desired signal and the interference
{which includes self interference resulting from the muitipath propagation) is very
low, then the output from each correlator stage will come mainly from only one
path of the desired multipath signal. The tap delays are equal to T¢, which is the
chip duration. This allows the RAKE receiver to distinguish multipath signals
which are separated by a time of T, or greater. Paths which are closer together
are treated as a single path.

The demodulator section consists of standard DPSK demodulation
components. Generally, integrate and dump filters are used as the matched
filters since square pulses cr band-limited square puises are usually transmitted.
The conjugation modules are used to as part of the demodulation process to
transform the complex integrate and dump samples into real value outputs.

There are an equal number of demodulator and correlation stages. The
outputs of the demodulators are combined with equal weighting given to each
stage. Of course, stages operating on lower power signal components will
produce smaller outputs.

The diversity order of the receiver is equal to the number of stages in the
tapped delay line of the correlator. The maximum diversity order that can be

used by a RAKE receiver is given by the equation:

where Agys is the channel delay spread, T is the duration of a chip, and the

floor{x] function produces the largest integer less than or equal to x. In the

44

system being studied, the maximum diversity order would be
floor] 500x 109 / (1/(32% 106))] + 1 = 17. However, only third order diversity is
actually used because it was determined that the channel models generally have
most of their energy concentrated within a 90 ns delay region. Trying to gain
diversity by using multipath components with very low power would not improve
performance and could actually be counter productive [13].

In this system, code synchronization, Gold suquence synchronization, and
optimal signal sampling are assumed. Code synchronization means that the
beginning of each codeword of the received signal has been found and locked
onto. Gold sequence synchronization means that the Gold sequence which
spreads the data in the received signal and the Gold sequence which performs
the despreading at the correlator of the RAKE receiver are matched so that the
received signal will be properly despread. The despread signal is sampled at its
optimum point. This optimal point is the point where the largest average eye
opening is detected at the output of the integrate and dump filters of the RAKE
receiver. This models the behavior of a receiver which actively adapts to
changes in the signal it is trying to acquire. The output of the RAKE receiver is
subjected to hard-decision binary detection and fed to the FEC decoder.

The FEC decoder performs hard-decision Viterbi decoding on this binary
sequence. The decoding path length is truncated to 5 times the code's
constraint length (see Subsection 2.2.2 for details). The decoded output is the
decoder's best estimate of the transmitted sequence from its received sequence.
This output is compared with the actual transmitted data so that a bit error rate
value can be obtained.

The BOSS block diagram of the SSMA system is shown in Figure 17.

45

. N3
“,A pmzou@

3901s
_ <] 7170W
N39
1SND3
¥300230 3T83FON
- [)
<1 971907 < w3y
<] 5SudM01 <]
Hi¥GCMa31Lng

3IN3N03S
Nd
a0

q0EAS K1
<] 'NDILISOd

93A0ANDD (S3YLS
INHYHI 8 A¥YH1IEAY) [-FL114
< aniawd 5S9dM0 X v_mmu 33000N3 WOONYY
HiYSTLINK <] yiyofME3LLINg , 30

Figure 17. BOSS implementation of the SSMA system.
46

4.1.2 Full Simulation Strategy

Bit error rates are collected by simulating the system with different
channel profiles, different code rates, and different interference levels. Ten
different channel profiles are used for the systems using code rates of 1/1024,
1/128, and 1/32. Each simulation is run until 3 erres are detected. This gives a
90% confidence level that the BER found in the sfinulation is within a factor of
approximately 2.5 of the actual BER [32]. Sixteen different channel profiles are
used for the systems using code rates of 1/8 and 1. Each of these simulations
are run until 4 errors are detected. This gives a 90% confidence level that the
BER found is within a factor of approximately 2 of the actual BER. The extra
channel profiles used and the extra bit error detected in the higher code rate
simulations are possible because the systems are simpler and require less

computation time.

4.1.3 BER Estimates Using Error Bounds and Channel Analysis

Because of the very long simulations required using the full simulation
technique described in Subsection 4.1.2, two other methods are used to
estimate the system BER.

The first method finds the encoded symbol error rate p at the output of the
RAKE DPSK receiver and substitutes the value into squation (2.2.3.11) to bound
the decoded BER. We will call it the error bounding method. Since the symbol
rate is much higher than the data bit rate (except for the uncoded system) and
the symbol error rate is expected to be quite high, this estimate can be obtained
much faster than with the full simulation method. Obviously, this method is
useful only for studying SSMA systems which utilize coding. This method is
particularly useful for analyzing systems which use very low rate cgaes and

which have very low BERs.

47

The simulation model is adjusted by removing the OC-DECODER and its
supporting modules. The ERROR COUNTER WITH TERMINATE SIGNAL takes
the output of the RAKE DPSK DEMOD module (after it has been converted to
logical form) as its test signal and the output of the OC ENCODER (ARBITRARY
STAGES) as its referenci signal. This model is shown in Figure A15 in
Appendix 1.

The second method for approximating the BER is used to estimate the bit
error rate of the uncoded SSMA system. It involves analysis of the channel
impulse response profile. We will call it the channel analysis method. The
program which performs this analysis is called PROG_CHANNEL_ANAL and
can be found in A2.vii.

First, a representation of the signal seen by :"e receiver must be made.
To do this, the result of a single square pulse pcjp(t), of duration equal to the
chip time, convolved in time with the channel impulse response profile must be
found. The actual transmitted pulse in the simulated SSMA system is not
perfectly square. ltis in fact a square puise that has been passed through a low-
pass filter. However, for simplicity, the ideal square pulse is used in this

analysis. The received signal can be expressed as:
64
r(t)=Y, AP (t-T) (4.1.3.1)
k=0

where Ay is the gain of the k! path in the channel profile
Ty represents a value of k(7.8125) ns
Pchip(t) is a square pulse of duration equal to a chip time

Because the chip consists of four samples and the channel model consists of 65

samples, when the two are convolved, the result is a signal, r(t), of 68 samples.

48

Since the resolution of the RAKE receiver is equal to one chip time, the
energy from the received signal which can be used by the jth stage of the
receiver can be expressed in terms of the energy of the chip which is

synchronized to the jih stage:

nl‘+3

oo 2,7(Te)
T+, k=nl
oE? |L_' " r(t)u* (t)dt | (4T (4T,
By =~¢ = i = "“’4T (4.1.3.2)
E 1] ultur] i

where E ig the 1 si*:nuated chip energy = Te = 4Timp
a is the attenusi’:n Yactor
T, is a time oftset for receiviry; i signal for the i stage
T is the chip time
u(t) = u*(t) = 1 is the ideal square pulse matched
filter waveform
Timp is the time between impulses in the channel profile

Timp=7.8125ns
n;is the point where the jth stage of the receiver begins its
integrate and dump function

Remembering that Tg = 4Tipp, N3 = N2 + 4 =nq + 8, thus explaining the
limits on the summation. The value of ny is found so that the sum of Egpip 1,

Echip.2 and Echip 3 is maximized for the third order RAKE receiver used in this

study. In other words, the signal is to be sampled where the largest average eye

openings of the three integrate and dump filters of the RAKE receiver are found.
An estimate of the total energy of the received signal Ejg can be made by

summing the power of r(t) and multiplying it by Timp. This estimate makes the

assumption that the power level between two discrete signal points is equal to
that at the first of the two signal points. If perfect power control is present, Egjg is

also equivalent to the energy of each interfering signal seen by the receiver over

one chip time. This is because the sum of each group of impulse powers over

49

one chip time represents the energy from an interfering signal which has been

suitably delayed. This energy is given as:

67
Eug =T 2IM(TF (4.1.3.3)
k=0

The average effective multi-user interference energy can thus be
determined as:
Eint = 0.5n(xcorr)(Egig) (4.1.3.4)

where nis the number of interfering users
xcorr is the normalized mean magnitude of
the cross-correiation between partial or
complete Gold sequences
the factor of 0.5 results from the assumed 50%
voice activation factor

An explanation on the derivation of xcorr is given in Section 4.2 where the
interference power is discussed in detail. The experimentally determined values

of the mean magnitudes of the cross-correlations are given in Subsection 5.1.2.

The average intersymbol self-interference for stage j of the receiver can
also be determined as:

ni+3

Eselt-lm.l = xcorr(Eslg - 2|T(Tk)la) (4135)
k=n,
The signal to interference ratio on the jth stage can be expressed as:

SNR, Y (4.1.3.6)

Elm + Esell-im.j

After finding the signal to interference ratio for all three stages of the third
order RAKE receiver, we can calculate the probability of aii encoded symildl
error at its output. This is done by treating the RAKE receiver as a multi-chlnnel

DPSK receiver. In other words, it is a receiver which receives L =33 DPSK

50

signals over 3 different channels, each with different signal to interference ratios,
and combines them equally. An analysis for this receiver is given in [13]. The bit

error rate can be expressed as:

"’I. L-1
R, = 227 G (4.1.3.7)

i=0

whereL =3
L-1—l

2 (2L-1)

k-O
= ZSNR,
=
4.2 Interference Modelling System

A system implemented on BOSS which generates multi-user interference
is used to generate data samples which can be analyzed in order to make a
statistically accurate baseband modal of the interference. The output of this
system is the sum of many spread spectrum signais after each has propagated
through its own multipath channel. The BOSS block diagrams of this system
and its internal modules are in A1.viii.

For each interfering user, a random binary signal at the chip rate of 32
Mchips/s is generated. The random binary signal represents the direct-
sequence spread signal. It is reasonable to assume that this random signal can
represent a data sequence that is encoded and spread by a Gold sequence
since the latter is quite random also for the short time intervals used in the
simulations. Each signal is offset by a random phase which is equivalent to the
phase of the carrier, and delayed by a random time period of up to 1 chip time.
This simulates the asynchronous nature of the interference. To account for the
user activation factor, each user's signal is squeiched randomly 50% of the time.

The final output signal from each interfering user is convolved with its own

51

multipath channel profile. Perfect power control is implemented by normalizing
the energy contained in each multipath channel profile. The resulting signals
from all the interfering users are then summed and passed through a third-order
Butterworth low-pass transmit filter to form the composite interference signal that
the receiver of interest detects. In a real system, this transmit filter would be
before the multipath channel, but since both are linear filters, the sequence of
the filters is not important.

The interference signal passes through a receive filter which is identical to
the transmit filter and is then multiplied by a Gold despreading sequence. The
complex value of the resulting signal is written to a data file which can then be
analyzed to determine its frequency spectrum and approximation to a Gaussian
distribution. This is used to verify if the interference can be represented as white
Gaussian noise. Results of this analysis are given in Subsection 5.1.1.

To estimate the signal-to-noise ratio that results when there are j-1
interfering users, the effect of the cross-correlations between Gold sequences
must be taken into account. The aperiodic cross-correlation between two

sequences can be defined as [3]:

N.-1-|

Cull)= Yata,, 0<I<N, -1
i=0
N -1+
= Yaia 1-N, <1<0 (4.2.9)
j=0
=0 12N,

where @ is the jih chip of the kih user and N, is the length of the sequence. The

vialue N, can equal the length of the entire sequence (if complete sequences are

used for spreading) or the length of the partial sequence (for partial sequence
spreading).

The continuous-time partial cross-correlation functions are defined as (3]

52

R (%) = CI=No)T, +(5, ~IT)ICy,(1+1-N,) = Cyy (- No)l = [a*(t -7,)a'(t)ekt
(4.2.2)

ﬁu,a(tx)=C,()T: + (T = ITNC,, (1 + 1)-C,,N}= J:r a(t-1,)a(t)dt (4.2.3)

where 7, is the random delay of the kit user's signal arriving at the receiver, T,

is the duration of one chip, T is the duration of the unspread symbol, and ak(t) is
the continuous version of the kit user's PN sequence. The division of the partial
cross-correlation function into two halves is necessary in order to account for
unsynchronized nature of transmissions in the system being studied. Because
user transmissions. are not synchronized, the interfering signal's data symbols
may not be aligned with that at the receiver. Therefore, a change in state of the
data symbol would change the polarity of part of the interferer's spreading
sequence. This requires that the partial cross-correlation functions consist of
two parts: one to account for the first part of the interference sequence, and
another to account for any change in polarity of the interference sequence
resulting from a change in state of its data symbols.

Assuming perfect power control, we can now write the average
interference power, normalized to the ith user's received signal power, resulting

from the kih user's signal on the ith user as:

, = LE(R Ry () + X (2] (4.2.4)

where X" €{-1,+1} and represents the mth symbol from the ki user. The mean is
taken over all m and T, uniformly distributed between 0 and T.
The above equations account for misalignments between the starting

points of ditferent PN sequences, but they assume alignment between chip

53

edges. A more accurate estimate of cross-correlations between unsynchronized
SSMA users should take into account unaligned chip edges. To do this, the

following modifications are performed.

N, =1l
C,,(lA)= l_zoa',‘[(l— A)ay, +Ad,,] 0<I<N, -1
N -1+
= Y aj[(1-AR +Aa,,] 1-N.<1<0 (4.2.5)
=0
=0 l|= N,

Re(t,4) =C,,(I-N, AT, + (%, —IT,)[C,, (1 +1-N,,4)~C,,(-N,,A)l (4.2.6)
= jo a“(t-1,)a(t)dt

ﬁu,i('tn yA) = Cy(L,A)T, + (1, =T)C,; (1 +1,4) - Cy (1, A)] (4.2.7)
=[(a*(t-,)a (t)et

Py = ELIXh Ry (5, 8)+ X5, (5,811 (4.2

where A is a value between 0 and 1 which is a measure of the misalignment of
the chips.

Because average power control is implemented, each interferer's average
power will be identical. However, the exact level of interference that it
contributes depends upon the cross-correlation properties of its specific

spreading sequences. Therefore, an average interference power P contributed
by each user can be found by taking the mean of Py over all %, A, m, k, and i

where k # i, thus averaging over many different sequences. Since Py is already

normalized to the power of the desired received signal, so is the value of P.

Thus, it is equivalent to the factor xcorr of equations (4.1.3.4) and (4.1.3.5).

1 .
P = xcorr =E[P,} = ?E[lx:‘n_,Rk',(tk,AH xR (s AN] (4.2.9)

The source code PROGRAM_CROSS_CORRELATION_FINDER listed in

A2.ii was written to estimate the value of P. A values of 0, 0.2, 0.4, 0.6, and 0.8

and 7, values equal to all multiples of T, from -1023T¢ to 1023T, were used in

the estimate. Numerous values of k and i were tested. The values of X% and

x® . had equal probability of being +1 or -1. The operation of the program is

described below and the results are given in Subsection 5.1.2.

The program finds the mean partial or complete cross-correlations

between Gold sequences of length 1024 as follows:

1.

All the Gold sequences to be used in the analysis are read into
memory.

One sequence is taken as the reference sequence and the rest are
labelled as test sequences.

The reference sequence is divided into 1024/N,, partial sequences.

The reference sequence is aligned with one test sequence.

The magnitudes of the partial cross-correlations between the
partial sequences are found and stored.

Step 5 is repeated, but with the test sequence shifted by intervals
of 0.2 chip times until the test sequence is again aligned with the
reference sequence.

Steps 2 through 6 are repeated until all the Gold sequences have
been paired together once.

Steps 2 through 7 are repeated, but this time, adjacent symbols
which are spread by the test sequence are assumed to have
opposite states. That is, Xy, and Xn_ from (4.2.9) equal +1 and -1

respectively.

55

9. The mean of the partial cross-correlation magnitudes is found.
10. The mean is divided by the gartial sequence length in order to get
the normalized mean partial cross-correlation magnitude xcorr.
The received signal to multiple access interference ratio of a system with
j-1 interfering users can be given as:
1 2

SIR=—1 =
0.5yp U-F
k=l

(4.2.10)

Note that this ratio is not equivalent to Ey/N, because not all of the

desired signal's received power can be used in detecting the signal because of
the multipath propagation and delay spread. In fact, many of the delayed paths
act as additional interference. The factor of 0.5 in (4.2.10) results from the

assumed 50% voice activation factor.

56

5. Experiments and Results

5.1 Interference Modelling

Following the procedures described in Section 4.2, an analysis of the
behavior of power-controlied snuli-user interference was performed. The
cumulative distribution function a#«i the frequency spectrum of this interference
were observed to characterize its behavior. The actual power of this
interference which affects detection of the desired SSMA signal was determined
from the number of interferers present and the mean normalized cross-
correlation of the partial or complete Gold sequences. The results of
experiments which characterize the interference and the mean normalized
cross-correlations are given in the following sections. These results were used

to determine the interference levels in the simulations of the SSMA system.

5.1.1 Statistical Characterization of interference

Samples of multi-user interference were accumulated for several different
numbers of interferers. Approximately 25000 sample points were taken from
each set of samples and used in the Kolmogorov-Smirnov test to establish its
relationship to the Gaussian distribution. The means and variances of these
samples were found using the code PROGRAM_STAT_ANALYSIS in the
Appendix A2.iv. Then, using the code PROGRAM_KS_TEST (A2.v), the
Kolmogorov-Smirnov one-sided goodness-of-fit test [33,34] was performed to
compare the sample data with a Gaussian distribution with the same mean and
variance.

The one-sided Kolmogorov-Smirnov test (KS test) is a nonparametric test
for differences between two continuous cumutative distribution functions (cdf):

one from an observed data set and the other from a hypothesized distribution.

57

The absolute value of the maximum difference between the two cdf's is called
the KS statistic. It can be calculated as:
D, = max |F(x) -Sp(x)| (5.1.1.1)

where Sp(x) is the empirical cdf of a sample of size n of the random variable x

and F(x) is the cdf of the hypothetical distribution.

The distribution of the KS statistic D, is used to establish the significance
level of the test. If the null hypothesis states that the two distributions are of the
same type, then the significance level gives the probability that an error is made
if the null hypothesis is rejected (a type 1 error, see {33]). The significance level

for the KS test is calculated as [35]:

Pl’Ob&bi“tY(Dn > Dn.observed) = QKS (‘/ﬁDn,observed) (5112)

where
Qe (1) =23, (-1)"'e™™
j=t

Intuitively, due to the nature of the physical mechanism through which
interference is generated, the interference samples are expected to be
distributed in a Gaussian fashion. Thus, a fairly low value of the level of
significance obtained from (5.1.1.2) (above a threshold value of say 0.05) would
be considered reasonable to not reject the null hypothesis [36]. The results of
the test are given in Table 3 and show that the interference samples cannot be
rejected as being Gaussian distributed because the values of the level of
significance obtained from (5.1.1.2) considerably exceed the 0.05 threshold.

The frequency spectrum of the interference was also examined to
determine if the interference could be modelled as white noise. Figure 18 shows
the frequency spectrum of the interference seen at the receiver after filtering but

before despreading. The interference is from the transmissions of 9 interfering

58

Interferers Mean of Variance of Level of
Interference Interference Significance of
Samples Samples KS Test
9 -4.63 x 103 2.96 0.89
19 -1.01 X 102 7.12 0.91
29 2.79 X102 11.66 0.91
39 -1.77 X 102 14.85 0.95
49 1.54 x 103 19.20 0.93

Table 3. Results of Kolmogorov-Smirnov goodness-of-fit test for multiple access
interference and Gaussian distribution.

4gers. This spectrum looks very much like that resulting from a 32 Mchips/s
pulse although it is flatter at lower frequencies. This is expected because the

effect of the different multipath channels, which would cause notches in parts of

-20.

e
L £l l | I S| l 1 1 14J

ePover (dB)

1
o
o

1
23
(=)

1 1 1 I 4 1.k f

—100' l T 1 I L L I T ¢ & 1 l LONE LA I r i I L L l i

-30. -20. -10. 0. 10. 20. 30.
Frequency (Hz.) X 10%x6

Figure 18. Frequency spectrum of interference before despreading.

59

the spectrum, has been averaged out. Figure 19 shows the frequency spectrum
of the same signal after it is multiplied by the despreading sequence. The
spectrum is now almost white. That is, the power is distributed quite evenly

throughout the whole 64 MHz spectrum. Some slight power attenuation is

evident at the higher frequencies.

-40.

Poner (dB)

1
a
e
|

-80. —

Illllllillllllllllll"lll‘1|l|llll

-30. -20. -10. 0. 10. 20. 30.
Frequency (Hz.) X 10x#6

Figure 19. Frequency spectrum of interference after despreading.

This shows that it is reasonable to model the despread interference as
white Gaussian noise. Such an assumption simplifies the simulation of the

system immensely.

5.1.2 Cross-Correlation of Partial and Complete Gold Sequences

The total power of the interference that influences the detection capability
of the desired signal depends not only on the number of interferers, but also the
length and cross-correlation of the SSMA spreading sequences. The higher the
normalized cross-correlation, the more interference will result. The analysis of
the signal to multiple access interference ratio is given in Section 4.2.

The number of sequences of length 1024 (which each contain 1024/N
partial sequences) required in the analysis before convergence to a mean partial
sequence cross-correlation magnitude was achieved proved to be quite small.
Preliminary runs showed that experiments using only 3 sequences already
showed convergence. The results shown here for partial sequence lengths of N¢
= 1024, 512, 256, 128, 64, and 32 used only 10 sequences in the analysis. This
means that 10, 20, 40, 80, 160, and 320 partial sequences, respectively, were
used in finding the mean. For the partial sequence lengths of N = 16, 8, 4, and
2, only 3 sequences were used in determining the mean magnitude of the cross-
correlation. This means that 192, 384, 768, and 1536 partial sequences,
respectively, were used in finding the mean. The mean partial cross-correlation
magnitudes for sequence lengths of 1 can be calculated analytically to be 0.75,
which can be used to verify that the program works correctly.

The means of the partial cross-correlation magnitudes are given in
numerical form in Table 4. The resuits, normalized to the partial sequence
length, are given in graphical form in Figure 20. The normalized values can be
interpreted as the percentage of the desired signal's total energy that each
interfering user contributes at the receiver. These vaiues are thus equivalent to

the value xcorr in equation (4.1.3.4) and (4.2.3.5) or the value of P in (4.2.9).

61

Partial Sequence Length | Mean Partial Cross- Maximum Observed
Correlation Magnitude ! Partial Cross-Correlation

1 _ 0.73 B 1

2 0.86 2

4 1.26 4

8 1.80 8

16 2.57 16

32 3.32 26

64 5.05 40

128 7.36 58

256 10.39 74

512 14.41 106
1024 19.78 142

Table 4. Means and maximums of the cross-correlation magnitudes between
partial and complete Gold sequences.

62

08

gy

07

06]

normalized mean absolute cross-correiation values,
xcorr :
o
E-N

03
0.2 :1
0.1 33'\
] "\.\\.l
i —8 s
0
0 200 400 600 800 1000 1200

partial or complete Gold sequence length

Figure 20. Graph of normalized mean cross-correlation magnitudes between
partial and complete Gold sequences.

63

5.2 System Performance

The results of the SSMA simulations are given in the following sections.
Bit error rate results are given for systems with up to 70 users. For voice
communications, BERs < 3x102 are required according to the IS 54-B TDMA
digital cellular standard [8]. It is assumed that the 31.25 kbits/s voice code rate
used in this system is able to provide similar voice quality at the same BER.
Comparisons between the SSMA systems using different code rates are made at
RER wvalues of 3102, 1103, and 1x104.

Most of the BER values were determined from full simulations of the
SSMA systems. However, because the run times of the full simulation method
were extremely long when trying to obtain low BER results, some of the values
for coded SSMA systems were estimated using the error bounding method after
it was verified that it was fairly accurate. The results are presented in the
Subsections 5.2.1 and 5.2.2.

The channel analysis method was tried for the uncoded SSMA system.
Its accuracy when compared to the full simulation method was found to be good.

These results are presented in Subsection 5.2.2.

5.2.1 BER Estimates Using Full Simulation

Figure 21 shows the performance curve for the SSMA system using no
FEC coding. This system can be used as a benchmark to compare the other
systems. The maximum number of users for BER < 3x102 was 26. For BER <
1x10-3, the maximum number of users was reduced to approximately 14. For
BER < 1x104, the number was only 9.

Figure 22 shows the performance curve for the SSMA system using an

orthogonal convolutional code of rate 1/8. The maximum number of users for

BER < 3x10-2 was approximately 32. For BER < 1x103, this number was
approximately 18. The system capacity for BER < 1x104 was not determined
using the full simulation method because of time constraints. It was instead
analyzed using the error bound method (Subsection 5.2.2). This system offeres:
marginal improvement over the benchmark system with code rate 1.

Figure 23 shows the performance curve of the SSMA system using an
orthogonal convolutional code of rate 1/32. Significant improvement over the
two previous systems was found. For a BER < 3% 102, the maximum number of
users was approximately 48. For BER = 1X1 2-3, the maximum number of use’s
was approximately 30. Again, the system caxacity for BER £ 1x104 was not
found using the full simulation method, but w. s analyzed using the error bound
method instead.

Figure 24 shows the performance curve of the SSMA system using an
orthogonal convolutional code of rate 1/128. For BER < 3x102, the maximum
number of users was approximately 50. For BER < 1%10-3, the maximum
number of users was approximately 36, and for BER = 1x104 , the maximum
number of users was approximately 29. This system performed the best out of
all that were simulated.

Figure 25 shows the performance curve of the SSMA system using an
orthogonal convolutional code of rate 1/1024. All the spreading in this system
was done by the FEC coding so the Gold sequences simply performed a
scrambling operation on the encoded symbols. The average performance of this
system was extremely poor at the system capacities tested. The range of
performance over different channels was also very large. At a system capacity
of 30, 60% of the channels simulated provided BERs < 3x102 among which
66% provided BERs < 1x103. However, the other channels simulated

produced BERSs close to 0.5 which resulted in the very high average BER.

65

1.00E+00 4
—/-—.———' L]
1.00E-01 3 //
[0} 3
£ 1
S
@
E 1.00E-02 ; 7
®]
o
S
S
©
1.00E-03 ; /
1.00E-04 '[
0 10 20 30 40 50 60
number of system users

70

Figure 21. Performance of the SSMA system with no FEC coding.

1.00E+00]
/ .
/. /]
1.00E-01 1 .
9_]
o /
g /‘
(]
£ 1.00E-02 3
@ 3
g /
o
«©
1.00E-03 7 /
1.00E-04
0 10 20 30 40 50 60 70
number of system users

Figure 22. Performance of the SSMA system with code rate 1/8.

1.00E+00

2
© 1.00E-01 -
g 5 /
(-] 4 |
=
L0
S
] /
@ 1.00E-02 1
& 3 /
] []
1.00E-03 -
20 30 40 50 60 70
number of system users

Figure 23. Performance of the SSMA system with code rate 1/32.

1.00E+00
)
1.00E-01 5
5] 3
o
g
(]
£ 1.00E-02 3
[+3]]
o
g
©
1.00E-03 /
1.00E-04 1
20 30 40 50 60 70

number of system users

Figure 24. Performance of the SSMA system with code rate 1/128.

67

1.00E+00
Sé, » » !]
2
[}
=2
L0
(]
& /
4
[+]

o
1.00E-01
20 30 40 50 60 70

number of system users

Figure 25. Performance of the SSMA system with code rate of 1/1024.

5.2.2 BER Estimates Using Error Bounds and Channel Analysis

The results of the error bounding method could only be exploited when
the encoded symbol error rate was below a certain limiting value which is
different for each code rate. Figure 26 shows the graph of the data bit error
probabilit: ;. +. s the symbol error probability p derived from the bound given
by equation (22..::) for an orthogonal convolutional code of rate 1/128
(constraint i« ;.- K =7).

From Figure 26, it is evident that the bound on Py, is extremely loose and
therefore useless when symbol error rates approach p = 0.41. Fortunately, this
region is of interest only when investigating systems with BER > 5x103,
Figures 27 through 29 show similar graphs for codes with K = 3, 5, and 10

respectively.

1000.¥
100.¢
10.F

Figure 26. Graph of data bit error probability bound versus encoded symbol
error probability for orthogonal convolutional codes of constraint length K = 7.

Pb

1860.¥
100.}
10.}

0.1}
0.01}
0.001y
0.0001y
0.00001}

Figure 27. Graph of data bit error probahility bound versus encoded symbol
error probability for orthogonal convolutional codes of constraint length K = 3.

69

Pb

1000.
100.

vy

-

Figure 28. Graph of data bit error probability bound versus encoded symbol
error probability for orthogonal convolutional codes of constraint length K = 5.

Pbh

100.y
10.}

045 0.46 0.47 0.48
0.1}

0.01}
0.001}
0.0001}
0.00001}

o
[
o O

Figure 29. Graph of data bit error probability bound versus encoded symbol
error probability for orthogonal convolutional codes of constraint length K = 10.

70

From observation of these curves, an estimate of the useful range of the
bound can be made. If the assumptions are made that Py, should monotonically
approach 0.5 as p approaches 0.5 and that the second derivative of the curve
should always be less than zero as on typical bit error rate curves, then we can
assume that the curve is no longer representative of the actual BER value when
the steepness of the curve increases. Thus, for K =10, K = 7,K=5andK=3,
the maximum values of p for which the bounds are valid are approximately 0.47,
0.41, 0.31, and 0.14 respectively.

Table 5 shows the symbol error rates and bit error rates obtained from
simulations of the SSMA system using a code of constraint length K =5 under a
system load of 30 users for 10 different channel profiles. Also shown are the bit
error rate upper bounds obtained from substituting the symbol error rate value
into equation (2.2.3.11). These results show that when the value of p is below
the validity cut-off value of 0.31, the bound gives reasonable estimates of the
BER when compared to the simulation BER results. For values of p greater than
0.31, the bound becomes meaningless. The bound does not take into account
the truncated path memory of the Viterbi decoder which causes coding gain
losses on the order of a few tenths of a decibel [13]. This results in bound
estimates that are lower than true values, particularly at very low BERs where

the slope of the graph of the bournd is very steep.

7

Channel Simulation Simulation BER BER Bound
Symbol Error Py
Rate, p

1 0.267 1.72x104 1.08x 104

2 0.282 1.22x10-3 5.77x104

3 0.254 1.71%10-5 2.52x10

4 0.275 1.49x10-4 2.55%x 104

5 0.312 8.52x 104 1.31x102

6 0.263 2.60x105 6.75x105

7 0.285 8.22x104 7.59% 104

8 0.336 1.19%x103 2.97x10

9 0.313 4.75x103 1.55x 102

10 0.312 1.55% 103 1.28x102

Average over

valid values of p 0.271 4.01x104 2.99x 104

Table 5. Comparison of simulation symbol error rate, bit error rate, and bit error

rate bound for SSMA system using 1/32 code with 30 users.

Table 6 compares the average values of P, from the error bounding

method and the average bit error probabilities determined from full simulations of
some SSMA systems. Al values are from those simulations with values of p
which are in the valid regions of the bounds. From these results, it seems
reasonable to conclude that the average BER estimations using the encoded

symbol error probabilities and the upper bit error probability bound are fairly

accurate.

72

Code Rate Number of Simulation Average BER
Systemﬂ_lisiti Average BER Bound, Py |
1/128 30 1.54x104 1.74%104
1/32 30 4.01x104 2.99x104
1/8 15 6.00x104 1.03%x10-3

Table 6. Comparison of simulation bit error rates and bit error rate bounds for
some SSMA systems.

Table 7 shows the results from the error bounding method for the SSMA

system using different codes and under different loading conditions. These

results can be used to extend the range of values obtained from the full

simulations to much lower bit error rates.

The results of the channel analysis method for the uncoded SSMA system

are shown in Table 8. Also included, where they are available, are the results

from the full simulation method. The comparisons between the two sets of

results show that fairly accurate estimates can be made in this way.

By extending the BER range, an estimate of the SSMA system capacity

can be determined for an average BER of 1x104. For systems using code rates

of 1, 1/8, 1/32, 1/128, and 1/1024, the capacities are 9, 12, 24, 29, and 18

respectively.

73

Code Rate Number of System Average Py,
| Users

1/1024 T 25 3.31x102
1/1024 20 1.48x102
1/1024 15 1.02x10-7
1/128 30 1.74x104
1/128 25 5.30x106
1128 20 1.34x107
1/32 30 2.99x10-4
1/32 ' 25 2.85x104
1/32 ’ 20 2.47x106
1/8 | 15 1.03x10-3
1/8 12 1.29x104
1/8 9 6.50x1077

Table 7. Average BERs for different SSMA systems determined with the error
bound method.

74

Number of System Average BER Average BER
Users Channel Analysis Full Simulation
Method Method
12 3.00x10*4 6.30x 104
9 4.77x105 1.09x104
6 6.84x10°7 -
3 3.36x 1011 -

Table 8. Average BER values from the channel analysis method and full
simulation method for the uncoded SSMA system.

5.3 Discussion of Results

The results from the full simulation method, the error bounding method,
and the channel analysis method are summarized in Figure 30. The system
using the orthogonal convolutional code of rate 1/128 offers the Dbest
performance, followed by the 1/32, 1/8, 1, and 1/1024 code rates for most
system capacities tested. Normally, we would expect that the systems using the
lower code rates would perform best. However, the very high interference power
levels encountered in low code rate SSMA systems limits the effectiveness of
coding.

This is especially evident in the performance curve of the 1/1024 code
rate SSMA system. At capacities above 20, it has the worst performance out of
all the systems. At iower capacities where the interference power is lower, the
coding gain is able to overcome the interference and system performance
improves dramatically. At a capacity of approximately 18, the 1/1024 coda rate
SSMA system becomes superior to the 1/8 code rate system and the uncoded
system. This result conforms to the behavior expected of the operation of FEC

codes in very noisy channels.

75

1.0054'00 E i I
3 X
] /1(//
1.008-01 E /‘W
@ 1.00E-02] },/)/ /
‘“',] /]//V
& 1.00E-03 ; pd
s 1 S
[4)] 3 p
‘H 1-00E-04 4 ——0— code rate 1 |
8)] / / / / / —— code rate 1/8
@ 1.00E05 § / |
g / / / / / ~—o—— cody rate 1/32
@ 1.00E06 E o ¢ / / ——X— code rate 1/128 ||
1.00E-07 A ——X— code rate 1/1024 | |
1.00E-08
0 10 20 30 40 50 60 70

number of system users

Figure 30. Summary of performance of the SSMA system using different code
rates.

The system capacities determined here are lower than those determined
in [9]. Both studies use similar spread spectrum to data bandwidth expansions.
The study in [9] uses coherent binary phase shift keying (BPSK) instead of
DPSK but does not account for any voice activation. The first factor could
double the capacty of the system, but the second factor will reduce it by half
again, therefore making the two studies comparable. However, the investigation
in [9] used delay spreads of 100 ns and 250 ns on Rayleigh fading channels
instead of 500 ns or experimentally based channels as used in this study. The
comparison is made between the systems used in this study and the systems in
[9] which use one antenna with selection and multipath diversity, spreading
sequences of length 511, and (15,7) BCH codes or (7,4) HHamming codes.

At a BER of 104, the 1/128 code rate SSMA system analyzed in this

thesis was determined to be able to support approximately 29 users. The study

76

from [9] determined system capacities of approximately 60 when using the (15,7)
BCH codes and 40 when using the (7,4) Hamming codes for channels with 100
ns delay spreads. For 250 ns delay spread channels, these systems capacities
fell to approximately 50 and 40 respectively. Note that the multipath diversities
are of orders 3 for the (7,4) code and 4 for the (15,7) code when the delay
spread is set at 100 ns. For the 250 ns delay spread cases, the multipath
diversities are of orders 8 for the (7,4) code and 9 for the {(15,7) code. Third
order muitipath diversity is used in the system studied in this thesis.

The advantage of high multipath diversity orders is limited when using the
SIRCIM channels because of the relatively low signal power available in the tails
of the channel profiles which makes it mostly unusable by the RAKE receiver.
From observation, most of the useful power is concentrated in the under 90 ns
delay region of the profile. Even though the power in the delay region > 90 ns is
low, it contributes non-negligible interference because it is spread over a fairly
long duration of 410 ns.

The interference model used in this thesis is more severe than that used
in [9]. The interference model in [9] was also based on a Gaussian distribution,
but cross-correlation behavior of ranciam spreading sequences instead of Gold
sequences was assumed. |f the same interference model was used in this
thesis, the received signal to interference ratio would have been changed from
(4.2.10) to (5.3.1) [9].

2

(i-1)5)

where N is the length of the partial or complete PN sequence

This would result in a decrease in noise power by factors of approximately

30, 11, 5, 3, and 1 for systems using code rates of 1, 1/8, 1/32, 1/128, and

i

1/1024 respectively. In such a case, superior system capacities would have
resulted. However, the assumption that Gold sequences béhave iike random
sequences is not valid and artificially inflates the capacity, especially for systems
using long PN sequences.

The use of the error bounding method proved tc be extremely helpful in
analyzing the SSMA systems with BER values < 10-4. Using the full simulation
technique on such systems would require a tremendous amount of computation
power and time. The greatest benefits arose when examining the 1/128 and
1/32 code rate systems since these systems usually offered the best
performance at any given system capacity. Also, since the code rates are very
low, these systems usually operate with a very high encoded symbol error rate.
This makes estimating the symbol error rate required to compute the error bound
an extremely quick procedure. The benefits of using the error bounding method
are reduced when analyzing the 1/8 code rate system and are non-existent
when analyzing the uncoded system.

Estimates of the 1/1024 code rate system were performed, but the results
are not as reliable as for the other systems. This is because the error bound
curve has a very steep bit error rate versus symbol error rate (P, vs. p) slope.
This makes any inaccuracies in estimating the symbol error rate very significant.
For instance, if the actual value of p is 0.465 and the estimated value is 0.455 (a
2% error), then the error in Py, is of the order 104. For comparison, a 2% error in
the estimate of p in a 1/128 code rate system results in an error of the order 10
in Pp.

The channel analysis method provided very quick estimates of the bit
error rates for the uncoded SSMA system. It should not be used to estimate the
value of the encoded symbol error rate (from which the bit erior rate can then be

bounded) in coded SSMA systems because any inaccuracies in this estimation

78

can cause significant variations in the bit error rate. For instance, the channel
analysis method provided average bit error rates which were within a factor of
approximately 2 of the full simulation results. This 50% error in the estimate of
the encoded symbol error rate of a 1/128 code rate system would have caused a

huge error in the BER.

79

6. Conclusions

There are three main areas in which results presented in this thesis were

gathered:
a) multi-user interference modelling
b) simulation methodclogy
c) indoor radio SSMA system performance
Some suggestions concerning possible future work on SSMA for indoor

wireless applications are also included at the end of the chapter.

6.1 Multi-user Interference Modelling

The assumption that multi-user interference can be modelled as white
Gaussian noise was verified to be reasonable by viewing the frequency
spectrum of the despread interference and performing the Kolmogorov-Smirnov
test on interference data points. The mean normalized cross-correlations
between partial and complete Gold sequences were also found in order to

estimate the received signal to interference ratio.

6.2 Simulation Methodology

Three methods for estimating the mean bit error rate of the SSMA
systems were used. The first was the full simulation method. This involved
creating a computer model of the entire system and running simulations until
enough bit errors were detected to provide a reasonable estimate of the bit error
rate. The second was the error bounding method. This involved creating a
computer model which would count the number of encoded symbo! errors. Once
an estimate of the symbol error probability was determined, it was inserted into
the hard-decision orthogonal convolutional code error bound equation to get an

approximation on the bit error rate.

80

The third method was the channel! analysis method. The channel profiles
each were examined to estimate the signal to interference ratio for the three
stages of the RAKE receiver. The RAKE receiver was then analyzed as a three-
channel DPSK receiver where each channel had a signal to noise ratio
equivalent to the signal to interference ratio of its corresponding RAKE receiver
stage.

The full simulation method is valid for all system bit error rates, but was
extremely slow and required a tremendous amount of computing power when
analyzing systems with low bit error rates. It was therefore used only for
systems with bit error rates 2 104

The error bounding method is not valid for high bit error rates because the
bound is very loose for high encoded symbol error probabilities. However, it
provided fairly accurate results for bit error rates < 104. 1t proved to be
extremely useful for systems using very low rate codes at very low bit error rates.
These results could not have been gathered using the full simulation method
because of the computing power required.

The channel analysis method is valid for analyzing the uncoded SSMA
systefn. Almost instantaneous BER estimates could be made for any channel
profile and interference level. The accuracy of this method was quite ¢ood also,

providing BERs withi: a tactor of 2 of the full simulation method resuits.

6.3 Indoor Radio SSMA System Performance

This thesis showed that the use of some very low rate orthogone
convolutional codes can significantly improve the parformance of an indoor radio
SSMA system when compared to uncoded systems. In particular, the system
using the 1/128 code rate exhibited the best performance under most system

loads.

81

For a mean bit error rate of 3x 102, the SSMA systems ranked from best
to worst were 1/128, 1/32, 1/8, 1, and 1/1024. For mean bit error rates of 1x10-3
and 1x10%4, the systems were ranked 1/128, 1/32, 1/1024, 1/8, and 1. The
1/1024 code rate system performed poorly at high system loads because of the
extremely high interference power which negated the effect of the coding. At
lower system loads, the power of its very low rate code allowed the system
performance to quickly surpass that of some of the other systems which had
previously exhibited superior performance. This shows that in order to get
optimum performance, there must be a balance between increased coding gain
from using lower rate codes and increased interference levels resulting from
shorter partial PN sequences.

This thesis also showed that inherent multipath diversity in indoor digital
radio systems may be limited because the signal power at long delays is
generally tco low to be useful. For the soft partitioned indoor office channels
used in this thesis, a diversity order of 3 was used as it was observed that most
of the channel profile components of significant power were located in the under
90 ns delay region. |

The spe(;tral efficiency of the system examined in this thesis turned out to
be quite low, even when using the 1/128 code rate. This may be the result of the
asynchronous nature of the system. The fact that it used DPSK reduced its
capacity by less than 2 when compared to BPSK, and the unsynchronized
transmissions from mobile terminals did not allow for optimum interference

suppression.

6.4 Future Work
Since SIRCIM can also produce hard partitioned office environment and

warehouse environment channels, it may also be interesting to examine the

82

effect that different environments have on SSMA system performance. These
different channels may permit higher orders of multipath diversity.

Because of the relatively low spectral efficiencies of all the SSMA systems
analyzed, it would also be interesting to determine the effect of synchronizing the
system. By time synchronizing the transmissions, better PN sequences may be
used. A possible alternative to using Gold sequences is using Walsh functions.
All Walsh functions are orthogonal to one another, thus they could virtually
eliminate the problem of multi-user interference. However, their orthogonality
depends on the codes being time synchronized. A study could be performed to
analyze the effect of the indoor multipath fading channel on a #yiiem employing
Walsh functions. Such a system has been implemented ir & field trial for
outdoor cellular telephone purposes [14].

Of course, the possible improvements just listed would make the system
much more complicated and perhaps, more limited. As well, additional overhead
would be required for synchronization. The cost, complexity, and efficiency of
such systems would have to be compared to other systems to determine which
one best fits the needs of the end user. After all, personal communications

should be designed to suit the person!

83

(1]

(2]

(31,

[4]

[5]
[6]

(7]

[8]

(9

[10]

(1]

[12]

Bibliography

K.S. Gilhousen, et al, "On the Capacity of a Cellular CDMA System," IEEE
Transactions on Vehicular Technology, vol.40, no.1, pp. 303-312, May
1991.

A.J. Viterbi, "Spread Spectrum Communications - Myths and Realities,"
IEEE Communications Magazine, vol.17, pp.11-18, May 1979.

G.D. Boudreau, D.D. Faiconer, and S.A. Mahmoud, "A Comparison of
Trellis Coded Versus Convolutional Coded Spread-Spectrum Multiple
Access Systems," IEEE Journal on Selected Areas in Communications,
vol.8, no.4, pp. 628-639, May 1990.

AJ. Viterbi, "Very Low Rate Convolutional Codes for Maximum
Theoretical Performance of Spread-Spectrum Multiple Access Channels,"
IEEE Journal on Selected Areas in Communications, vol.8, no.4, pp. 641-
649, May 1990.

Block Oriented Systems Simulator (BOSS), Version 2.7, Comdisco
Systems, 1991.

T.S. Rappaport and S.Y. Seidel, "SIRCIM Simulation of Indoor Radio
Channel Impulse response Models." VTIP, 1990.

T.S. Rappaport, S.Y. Seidel and K. Takamizawa, "Statistical Channel
Impulse Response Models for Factory and Open Plan Building Radio
Communication System Design,” IEEE Transactions on Communications,
vo!.39, no.5, pp. 794-807, May 1991.

Al Javed, "Digital Cellular Technology and Performance®, Proceedings of
Wireless 92, Calgary, Alberta, July 1992.

M. Kavehrad and P.J. MclLane, "Spread Spectrum for Indoor Digital
Radio", /[EEE Communications Magazine, vol.25, no.6, pp. 32-40, June
1987.

D.L. Schilling et al, "Spread Spectrum for Commercial Communications,”
IEEE Communications Magazine, vol.29, no.4, pp. 66-79, April 1991.

George L. Turin, "Introduction to Spread-Spectrum Antimultipath
Techniques and Their Application to Urban Digital Radio,” Proceedings of
the IEEE, vol.68, no.3, pp. 328-352, March 1980.

P.T. Brady, "A Statistical Analysis of On-Off Patterns in 16

84

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Conversations,” Bell System Technical Journal, vol.47, pp. 73-91, January
1968.

J.G. Proakis, Digital Communications 2nd Edition, McGraw-Hill, New
York, 1989.

A. Salmasi and K.S. Gilhousen, "On the System Design Aspects of Code
Division Multiple Access (CDMA) Applied to Digital Cellular and Personal

Communicaticns Networks,” 415! IEEE Vehicular Technology Conference,
St. Louis, MO, pp. 57-62, May 1991.

Robert C. Dixon, Spread Spectrum Systems 2nd ed., John Wiley and
Sons, New York, 1984.

Wesley W. Peterson, Error Correcting Codes, MIT Press, Cambridge
Massachusetts, 1961.

Bernard Sklar, Digital Communications Fundamentals and Applications,
Prentice Hall, New Jersey, 1988.

A.J. Viterbi and J.K. Omura, Principles of Digital Communication and
Coding, McGraw-Hill, New York, 1979.

R.R. Green, "A Serial Orthogonal Decoder,” JPL Space Programs
Summary, vol.37-39-IV, pp. 247-253, Jet Prop. Lab., Pasadena, CA,
1966.

Kamilo Feher, Advanced Digital Communications, Prentice-Hall, Inc., New
Jersey, 1987.

William C.Y. Lee, Mobile Communications Engineering, McGraw-Hill, New
York, 1982.

K.S. Gilhousen and R. Padovani, "Increased Capacity Using CDOMA for
Mobile Satellite Communication,” IEEE Journal on Selected Areas in
Communications, vol.8, no.4, pp. 503-514, May 1990.

William C.Y. Lee, "Overview of Cellular CDMA," IEEE Transactions on
Vehicular Technology, vol.40, no.2, pp. 291-302, May 1991.

M. Kavehrad and Bhaskar Ramamurthi, "Direct-Sequence Spread
Spectrum with DPSK Modulation and Diversity for indoor Wireless
Communications,” IEEE Transactions on Cessmunications, vol.COM-35,
no.2, pp. 224-236, February 1987.

85

[25]

[26]

[27]

[28]

(29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

K. Pahlavan and M. Chase, "Performance of Code-Division Multiple-
Access Orthogonal Codes for Indoor Radio Communications,” IEEE
Transactions on Communications, vol.38, no.5, pp. 574-577, May 1990.

E. Geraniotis, "Direct-Sequence Spread-Spectrum Multiple-Access
Communications Over Nonselective and Frequency-Selective Rician
Fading Channels," IEEE Transactions on Communications, vol.COM-34,
no.8, pp. 756-764, August 1986.

Paul D. Shaft, "Low-Rate Convolutional Code Applications in Spread-
Spectrum Communications," IEEE Transactions on Communications,
vol.COM-25, no.8, pp. 815-821, August 1977.

M. Kavehrad and P.J. McLane, "Performance of Direct Sequence Spread
Spectrum for Indoor Wireless Digital Communication," Proceedings of
GLOBECOM ‘85, New Orleans, LA, Nov. 1985.

T.S. Rappaport and S.Y. Seidel, "Multipath Propagation Models for In-
Building Communications," Fifth International Conference on Mobile
Radio and Personal Communications, Coventry, England, Dec. 1989.

D.A. Hawbaker and T.S. Rappaport, "Indoor Wideband Radiowave
Propagation Measurements at 1.3 GHz and 4.0 GHz," Electronics Letters,
vol.26, no.21, pp. 1800-1802, 1990.

R. Price and P.E. Green, Jr., "A Communication Technique for Muitipath
Channels," Proceedings of the IRE, vol.46, pp. 555-570, March 1958.

Michel C. Jeruchim, "Techniques for Estimating the Bit Error Rate in the
Simulation of Digital Communication Systems," IEEE Journal on Selected
Areas in Communications, vol.SAC-2, no.1, pp. 1563-170, Jan. 1984.

R.L. Winkler and W.L. Hays, Statistics, Probability, Inference, and
Dacision, 2nd Edition, Holt, Rinehart, and Winston, Inc., 1975.

LN. Gibra, Probability and Statistical Inference for Scientists and
Engineers, Prentice-Hall, Inc., New Jersey, 1973.

William H. Press, et al, Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, Cambridge, Massachusetts,
1986.

Michel K. Ochi, Applied Probability & Stochastic Processes, John Wiley
and Sons, Inc., New York, 1990.

86

Appendix 1

Simulation Systems and Modules

87

A1l.i Encoder

Figure A1 shows OC_ENCODER (PART1) which is the component
building block for an orthogonal convolutional encoder. The top sample-and-
hold module represents one stage of the linear convolutional shift register. The
variable delay, the select switch, and the X-OR gate are components of one
stage of an Hadamard encoder. A K" order orthogonal convolutional encoder
that performs identically to the one shown in Figure 6 can be formed by making
the modules OC_ENCODER (PART2) and OC_ENCODER (ARBITRARY
STAGES) shown in Figures A2 and A3. Three parameters must be specified for
OC_ENCODER (ARBITRARY STAGES): the original uncoded input data rate,
the constraint length K, and the position of each particular block in the linking
sequence (ie. the Nt component of the K component encoder). This last
parameter is written for each OC_ENCODER (PART2) module by initialization
code. The initialization code for this module is given as
ROUTINE_ENCODER_INIT.

88

NIGYL

<j 357nd

[

<

3
< < Jo3s Aﬁ._

Jox <]
<

_uA

Vo @
[< m._m%mwmmA

<

<] aioH 3 <]

0EWAS NI
<] 'NorLisodlEl

37dWYS

<

Av13alz

1INN J—-<

{11dvd) H3AOON3 D0

Figure A1. One stage of an orthogonal convolutional encoder.

89

OC_ENCODER (PART1) Page 1 6-0ct-1992 15:31:51

MODULE NAME: OC_ENCODER (PART1)
GROUP: SOURCE ENCODERS/DECODERS
DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 5-Feb-1992 14:09:26

DESCR1PTION:

Module for Nth stage of orthogonal convolutional encoder.

REVISIONS:
Author : rtse
Date : 5-Feb-1992 14:09:26
Description:

5-Feb-1992 14:09:49
Module CREATION.

INPUT SIGNALS:

DELAY NUM Type: INTEGER
Lower Limit: 1
Upper Limit: 2500

The number of sample delays required for this stage of
the orthogonal convolutional encoder. This delay is
calculated via:

delay = (2.0~(N-1))/(2%K * bit rate * dt)

Q-ENCODER INPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

Input from the (N-1)th stage of the orthogonal encoder.

SR-INPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

Input from the (N-1)th stage of the shift register of the
convolutional encoder.

OC_ENCODER (PART1) Page 2 6-0cuL-1992 15:31:

OUTPUT SIGNALS:

O-ENCODER OUTPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

The output to the (N+1l)th orthogonal encoder stage.

SR OUTPUT Type: LOGICAL
Lower Limit: NIL

Upper Limit: MIL

The output to the next shift register stage of the
convolutional encoder.

PARAMETERS:

BIT RATE Type: REAL
Lower Limit: 3.0E-39

Upper Limit: 1.7E38

The input data bit rate.

N Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

This value should equal the stage within the orthogonal
convolutional coder that this module is in (ie.it can
equal from 1 to K for a K-stage coder).

K Type: INTEGER
Lower Limit: 1

Upper Limit: 2147483647
fdbhfdg

MODULES USED IN BLOCK DIAGRAM:
XOR
PULSE TRAIN
SELECT

91

O EHCODER (PAITT) Page 3 6-0ct-1992 15:31:51

CAMPLE & HOLD
POSGITION IN_SYMBOL

UNIT DELAY
VARIABLE DELAY

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

VARIABLE DELAY (key 1)
MAX DELAY == 2500

UNIT DELAY (key 2)
INITIAL VALUE == .FALSE.

POSITION IN_SYMBOL (key 3)
TIME DELAY TO INPUT (SEC) == 0
SYMBOL FRAC FOR SAMPLE TIME == 1
SYMBOL RATE (HZ) == $BIT RATE

PULSE TRAIN (key 4)
PULSE WIDTH (SEC.) == 1.0 / ('BIT RATE* * 2.0~('K' - ‘N' + 1.0))
PULSE RATE (HZ.) == (2.0"(‘K* - ‘N‘) * 'BIT RATE"‘)

INITIALIZATION CODE:
(none)

92

L
>

>

> oc_ENCODER &

J7E>{PQRT1)
CONST
mgen B

>
2]

OC ENCODER (PART?2)
>
>

Figure A2. Intermediate stage for constructing a K-stage
orthogonal convolutional encoder.

93

00 RERCGDER (PARFTZ) Page 1 f~-0Oct-1992 15:32:03

MODULE NAME : OC~BNCODER (PART2)
GROUP: SOURCE FENCODERS/DECODERS
DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 5-Feb-1992 14:20:58

DESCRIPTION:
This module is one stage of a K stage orthogonal convolu-

tional encoder. This particular design is for use with
the REPLICATION function of BOSS.

REVISIONS:

Author : rtse
Date . 5-Feb-1992 14:58:57
Description:

Fdited 5-Feb-1992 14:58:57, No Edit Description Entered.
Author T Irtse
Late : 5-Feb-1992 14:23:57

Description:

Edited S5-Feb-1992 14:23:57, No Edit Description Entered.

Author : rtse
Date . 5-Feb-1992 14:20:58
Description:

5-Feb-1992 14:21:18
Module CREATION.

INPUT SIGNALS:

CONNECT TO SHIFT REGISTER OF N-1 STAGE Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This input should be connected to the coded output of the
previous stage. If this module is the first stage, then a
.false. input should be connect here.

CONNECT TO OUTPUT OF STAGE N-1 Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This input should be connected to the shift register output
of the previous stage. If this module is the first stage,

OC_ENCODER (PART2) Page 2 6-0ct -1992 15:32:03

then the data to be encoded should be input here.

OUTPUT SIGNALS:

SHIFT REGISTER OUTPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This is the coded output of the Nth stage coder.

CODED OUTPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This is the output of the Nth shift register stage.

PARAMETERS:

DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This value is equal to the rate (in bits/sec) of the
data to be encoded by the K stage orthogonal convolutional
encoder.

K Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The value K is the constraint length c¢f the orthogonal
convolutional encoder.

— o ———

N Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The value N corresponds to the stage of this module in
a K stage orthogonal convolutional encoder.

MODULES USED IN BLOCK DIAGRAM:
OC_ENCODER (PART1)
CONST GEN

95

O BEHCODER (PARTZ) Page 3 6-0Oct-1992 15:32:03

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

CONST GEN (key 1)
CONSTANT VALUE == Round (2.07('N‘ - 1.0) / ((2.0~*K* * ‘DATR RATE') *

W)
0C_ENCODER (PART1) (key 2)
B1T RATE == $DATA PATE

N == SN
K == $K

INITIALIZATION CODE:
(none)

96

<]~ (UT39YLS)
< " (zlaYa)
SINIS <] <] ¥4300JN3 30

<
<]

(gldyd)

{< 43003INT T30

(1T739415)
< 3 1l

<]
<

<] 35794

[SIOVIS AHvHLIgHY) H3a0ON3 00 |

Figure A3. A K-stage orthogonal convolutional encoder.

97

OC ENCODER (ARBITRARY STAGES)Page 1 6-0ct-1992 15:32:11

MODULE NAME: OC ENCODER (ARBITRARY STAGES)
GROUP: SOURCE ENCODERS/DECODERS

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 5-Feb-1992 14:32:38

DESCRIPTION:

This module is an orthogonal convolutional encoder with
a maximium constraint length of 10.

REVISIONS:
Author : rtse
Date : 13-Feb-1992 11:47:32
Description:

Edited 13-Feb-1992 11:47:32, No Edit Description Entered.

Author : rtse
Date : 5-Feb-1992 15:00:07
Description:

Edited 5-Feb-1992 15:00:07, No Edit Description Entered.

Author : rtse
Date : 5-Feb-1992 14:32:38
Description: :

5-Feb-1992 14:32:59
Module CREATION.

INPUT SIGNALS:

INPUT DATA Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

The logical signal to be encoded with an orthogonal
convolutional code.

OUTPUT SIGNALS:

ENCODED OUTPUT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL
'The coded output.

98

OC ENCODER (ARBITRARY STAGES)Page 2 6-0ct-1992 15:32:11

PARAMETERS:

DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This value is equal to the rate (in bits/sec) of the
data to be encoded by the K stage orthogonal convolutional
encoder.

CODE CONSTRAINT LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 10

The constraint length of the orthogonal convolutional code.
This value is limited to a maximum of 10.

COMPUTED PARAMETERS:

N Type: INTEGER
Lower Limit: 1

Upper Limit: 2147483647
Vector Length: (CODE CONSTRAINT LENGTH)

The value N corresponds to the stage of this module in
a K stage orthogonal convolutional encoder.

MODULES USED IN BLOCK DIAGRAM:
FALSE
SINK
OC_ENCODER (PART2)

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

OC_ENCODER (PART2) (key 1)
DATA RATE == $DATA RATE
K == $CODE CONSTRAINT LENGTH
N == $N

INITIALIZATION CODE:

Subroutine: zizOCENCODERARBITMPFNKDNK
Arguments:
CODE CONSTRAINT LENGTH

9

OC ENCODER (ARBITRARY STAGES)Page 3 6-0ct-1992 15:32:11

N

Description:

The initialization code writes the stage number to each
module which makes up a stage within the encoder.

100

a0

ROUTINE_ENCODER_INIT

This initialization code is for the OC ENCODER (ARBITRARY STAGES)
module. It writes the stage number to the OC_ENCODER (PART2)
submodules.

subroutine code_init (k,n)
integer k,n(12),1i

do i=1,k,1

n{(i) = 1
enddo

return
end

101

A1.ii DPSK Modulator
Figure A4 shows the block diagram of the DPSK modulator. Note that this

gives a base-band representation of DPSK modulation. The operation of binary
DPSK can be described by:

output(t) = -output(t-T) if input(t) = 1
= +output(t-T) if input(t) = -1

where T is the period of one digital bit and output(t<0) = 1

Because DPSK is to be non-coherently demodulated, the model allows for
the user to specify an arbitrary phase offset which represents the difference
between the carrier phase and the demodulating waveform phase (the
demodulator described in Al.v. is assumed to operate at the reference phase
offset of zero). This phase offset is executed by the final multiplication block

within the module.

102

N39
< 1snpald

i

e
- Au13alal
< g9 RS

_..||A

Vv V_ v
—F WT a3 < g e
(88) GOW 1Sdd

Figure A4. Baseband representation of a DPSK modulator.

103

DPSK MOD (BB) Page 1 6-0ct-1992 15:37:33

MODULE NAME: DPSK MOD (BB)

GROUP: DIGITAL MODULATORS

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 23-Sep-1991 14:22:25

DESCRIPTION:

This modulate simulates DPSK modulation at the base-
band level. The output phase is shifted by

PI radians if a +1 binary signal is transmitted. The
phase is not shifted if a -1 binary signal is
transmitted.

The parameter PHASE OFFSET represents an absolute
phase offset in the carrier signal. However, since
this is only a baseband representation, the phase
offset of the carrier is shifted to the baseband
signal instead.

REVISIONS:
Author : rtse
Date : 23-Sep-1991 22:19:37
Description:

Edited 23-Sep-1991 22:16:42, No Edit Description Entered.
Edited 23-Sep-1991 22:19:37, No Edit Description Entered.

Author : rtse
Date : 23-Sep-1991 14:22:25
Description:

23-Sep-1991 14:22:47
Module CREATION.

INPUT SIGNALS:

BINARY DATA INPUT Type: LOGICAL
Lower Limit: NIL

Upper Limit: NIL

The binary signal which is to be DPSK modulated.

—— e o o= -

OUTPUT SIGNALS:

DPSK MODULATED OUTPUT Type: COMPLEX
104

DPSK MOD (BB) Page 2 6-0ct=1992 15:37:33

Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

The DSPK modulated signal corresponding to the input
binary data. The signal is modulated at the frequency

PARAMETERS:

BAUD_RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate (in bits/sec) of the input to this module.

PHASE OFFSET Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The absolute phase offset of the equivalent DPSK
carrier waveform (in radians).

MODULES USED IN BLOCK DIAGRAM:
CONST SELECT
POSITION IN_SYMBOL
UNIT DELAY
SAMPLE & HOLD
MULTIPLIER
CONST GEN

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

CONST GEN (key 1)
CONSTANT VALUE == 3§* (sin (‘PHASE OFFSET‘*j + cos (‘'PHASE OFFSET")

UNIT DELAY (key 2)
INITIAL VALUE == (1.0 , 0.0)

POSITION IN_SYMBOL (key 3)
TIME DELAY TO INPUT (SEC) == 0
SYMBOL FRAC FOR SAMPLE TIME == 0
SYMBOL RATE (HZ) == $BAUD_RATE

CONST SELECT (key 4)
TRUE VALUE == (-1.0 , 0.0)
FALSE VALUE == (1.0 , 0.0)

INITIALIZATION CODE:
(none)

105

A1liii Gold Sequences

The BOSS primitive and its code which produces the Gold sequence
output used for spectral spreading and despreading of the FEC encoded
symbols are given here. The block diagram of this module is shown in Figure A5
and consists only of one input and one output. The code is given as
ROUTINE_GOLD_PN_PRIM. The input to the module should be connected to
an irmpulse train of rate equal to the:chip rate of the SSMA system. The output is
the Gold sequence. The parameters required for the primitive are the Gold
sequence length and the user number. The Gold sequence length value is used
to allocate memory to storing the code. The user number parameter tells the
primitive which Gold sequence to use out of the 2".1 available in the file
‘gold_codes.dat’. The primitive will read the state of all 2"-1 chips of the
sequence upon initialization and, add one extra chip of random state at the end
to create the modified Gold sequence, and store store the sequence in memory.
It will output the chips at the appropriate rate during the simulation. The rate of
the output is controlled by an external clock which sends an impulse train at the
chip rate. The primitive will output one chip of the sequence every impulse and

the sequence is repeated once it reaches the end.

106

GOLD PN SEQUENCE

Figure AS. Primitive block diagram for the Gold sequence generator.

107

GOLD PN SEQUENCE Page 1 6-0ct-1992 16:12:21

MODULE NAME: GOLD PN SEQUENCE .
GROUP: DIGITAL SOURCES

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 26-Aug-1992 17:16:55

DESCRIPTION:

A pseudo-noise code generator. These particular codes
are Gold codes. Gold codes are used because they have

an upper bound to their cross-correlation values.

The input parameters are the the size and the user number.
This module modifies the Gold code by adding one random
bit to the end of the sequence. This is to make its
length a power of 2.

The size parameter limits the array size for storing

the gold sequence. This must be equal to the length

of the modified sequence.

A timing signal which gives an impulse every chip period
is required as an input to this module.

The module output is in complex form. (1,0) represents

a positive bit and (-1,0) represents a negative bit. This
facilitates the multiplication process between the PN
code and the modulated waveform.

REVISIONS:
Author : rtse :
Date : 27-Rug-1992 21:25:58
Description:

Edited 27-Aug-1992 21:25:58, No Edit Description Entered.

Author : rtse
Date : 26-Aug-1992 17:21:14
Description:

Edited 26-Aug-1992 17:21:14, No Edit Description Entered.

Author : rtse
Date : 26-Aug-1992 17:16:55
Description:

26~-Aug-1992 17:17:00
Module CREATION.

INPUT SIGNALS:

CHIP TIMING SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

108

GOLD PN SEQUENCE Page 2 6-0ct-1992 16:12:21

When true, this signal indicates that the next chip in the
sequence should be output.

QUTPUT SIGNALS:

GOLD OUT Type: COMPLEX
Lower Limit: (-1.0 ~1.0)
Upper Limit: (1.0 1.0)

This output is a complex signal. A (1,0) represents a
positive bit, and a (-1,0) represents a negative bit.
This complex format was chosen over a logical format
because the pn sequence is usually used to multiply a
complex modulated signal. The given format will negate
the need for a logical to numeric conversion module.

PARAMETERS:

USER NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The user number corresponds to the nth user in
the multiple access system.

SIZE Type: INTEGER
Lower Limit: 1
Upper Limit: 5000

This parameter determines the memory allocated to store
the gold sequence. Each gold sequence is of size

(2°K) where K is an integer. For maximum memory

usage efficiency, the parameter SIZE should be equal

to or slightly greater than the value on the first line
of the file ’gold codes’ which this module reads its
gold sequences from.

MODULES USED IN BLOCK DIAGRAM:

(none - This module is a BOSS Primitive)

INITIALIZATION CODE:
(none)

109

1000

1002

ROUTINE_GOLD_PN_PRIM

subroutine goldpn(out_pn,size,chip_sig,user_no,chip_no,seq_len,
& code)

implicit none

integer user_no, seq_len, C, garbage, chip_no, code (*), lun
integer size, i,seed,uni

complex out_pn

logical*1 chip_sig

include ’/bossdir/system/BOSSFORTRAN.INC’

Read the correct pn_code into memory locations code(x) and add one
extra chip to modify the Gold sequence length to a power of 2.
if (curtime.lt.dt) then
chip no = 0
call libSget_lun(lun}
open(unit=lun,file='gold_codes.dat’,status=’old’)
read(lun,1000) seq_len
read (lun,1000) garbage
format (i5)
do ¢ = 1, ((user_no-1)*(seq_len+l)),1
read(lun,1002) garbage
format {(12)
enddo
do ¢ = 1l,seq len,l1
read (lun,1002) code({(c)
enddo
close (lun,status='keep’)
call lib$free_lun(lun)
call lib$get_lun(lun)
open(unit=lun,file='seed.dat',status=’old')
read(lun, *) seed
close (lun)
call lib$free_lun(lun)
i = seq_len+l
code (i)} = uni(seed)
call lib$get_lun(lun)
open (unit=lun, file='seed.dat’, status='o0ld’)
write(lun,*) seed
close(lun)
endif

Whenever a chip period is up, the output will change accordingly.
if (chip_siqg) then
chip no = chip_no + 1
if (chip_no.gt.seq_len+l) then
chip no =1
encdif
endif

if (code{chip_no).eq.l) then
out_pn = (1.0,0.0)

else
out_pn = (-1.0,0.0)

endif

110

return
end

integer function uni (seed)
integer seed
real ran,x
x = ran(seed)
if (x.gt.0.5) then
uni=1
else
uni=-1
endif
return
end

11

At.iv Muiltipath Channel

Multipath channel profiles generated by SIRCIM (as described in Section
3.1) are read in by the BOSS primitive given here. The module reads in a profile
from the data file 'fcxxa’ where xx corresponds to a 1 or 2 digit number from 1 to
50 inclusive which is set by the user. Another parameter allows the user to
specify which channel profile within the designated file he wishes to begin at
(each file contains 19 channel profiles).

Figure A6 shows the module constructed to perform the time domain
convolution between the complex input signal and the channel impulse
response. The convolution between the channel impulse response and the input
signal is accomplished transforming both the input and the channel impulse
response into vectors and using a dot product between the two. The result is the
representation of one users' transmitted signal after multipath channel
propagation.

The module IMPULSE RESPONSES FROM FILE is a primitive which
reads the channel profile and then transforms it into a vector which is used in the
dot product. lts block diagram is given in Figure A7 and its code is given as
ROUTINE_IMPULSE_RESPONSE_FROM_FILE_P@IM.

112

—<

13naoad

._.OD_M_

=
<] 5
S3SNOdS3d
A 31U9NLNO3 . 25INdNI
JOLI3IA

737108Ed <| <
LIBT3 g

Y3IATOANOD T3NNVHO ONIGVd HLVJILTINW

Figure A6. Multipath fading channel convolver.

13

MULTIPATH FADING CHANNEL CONVOLVER Page 1 6-0ct-1992 15:39:54

MODULE NAME: MULTIPATH FADING CHANNEL CONVOLVER
GROUP: CHANNELS

DATABASE: /home/suns/rtse/model_db/

AUTHOR: rtse

CREATION DATE: 21-Jul-1991 22:17:38

DESCRIPTION:

This module convolves a complex input signal with the
impulse response of a fading multipath channel (which
is read from the file ’fc#s’ where # corresponds to the
one or two digit parameter CHANNEL NUMBER) .

The sampling period must correspond to the sampling
period of the multipath channel’s impulse response.

_Wheneuex;the_channel_impulse_;esponse_is_updatedr_the-

.outputvLDELAYLmis.zecalculated_to_giue_the_numbe;—oﬁ.
-sample~delays—a;e—between—the_sta:t_of_the_channel_hqnﬂguL

-responsemand—%he—impa%se—oé—maximum—magﬂi%ade—wi%hin
--that--channel-impul&se—response-

The parameter ’CHANNEL START NUMBER’ determines which
set of impulse responses from the channel impulse response
file is the initial one.

The parameter ‘CHANNEL START NUMBER’ determines which
set of impulse responses from the channel impulse response
file to start at.

REVISIONS:
Author : rtse
Date : 17-Jan-1992 11:28:54
Description:

Edited 17-Jan-1992 11:28:54, No Edit Description Entered.

Author : rtse
Date + 14-Jan-1992 12:24:01
Description:

Edited 14-Jan-1992 12:24:01, No Edit Description Entered.

Author : rtse
Date : 16-0Oct-1991 14:05:33
Description:

Edited 16-0ct-1991 14:05:33, No Edit Description Entered.

Author : rtse
Date : 21-Jul-1991 22:17:38
Description:

21-Jul-1991 22:18:17
114

MULTIPATH FADING CHANNEL CONVOLVER Page 2 6-0cic~-1992 15:39:54

Module CREATION.

INPUT SIGNALS:

INPUT SIGNAL Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

The complex input signal which is to be convolved with
the impulse response of the fading multipath fading
channel.

OUTPUT SIGNALS:

SIGNAL AFTER MULTIPATH CHANNEL FADING Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

The resulting signal from the time domain convolution
between the input signal and the multipath fading
channel impulse response (65 samples long, with a
sample every 7.8i25wseconds). Note that the software
packaged used to create the channel impulse responses
used sampling periods of 7.8125E-9 seconds.

PARAMETERS:

CHANNEL NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 50

The channel file to read from to get the impulse response.

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse response within a
channel impulse response file to start at.

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

115

MULTIPATH FADING CHANNEL CONVOLVER Page 3 6-0ct-1992 15:39:54

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ’dt’.

VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

This value indicates the number of samples in each
impulse response. The maximum length is 65.

MODULES USED IN BLOCK DIAGRAM:
POT PRODUCT
SERIAL_TO PARALLEL
VECTOR CONJUGATE
IMPULSE RESPONSES FROM FILE

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

IMPULSE RESPONSES FROM FILE (key 1)
USER == SCHANNEL NUMBER
CHANNEL START NUMBER == $CHANNEL START NUMBER
UPDATE PERIOD == SUPDATE PERIOD
VECTOR LENGTH == $VECTOR LENGTH

VECTOR CONJUGATE (key 2)
VECTOR LENGTH == $VECTOR LENGTH

SERIAL TO PARALLEL (key 3)
OUTPUT VECTOR LENGTH == $VECTOR LENGTH

DOT PRODUCT (key 4)
VECTOR LENGTH == $VECTOR LENGTH

INITIALIZATION CODE:
{(none)

116

IMPULSE RESPONSES FROM FILE

Figure A7. Primitive block diagram for ci.'nnel impulse generator.

117

IMPULSE RESPONSES FROM FILE Page 1 6~0ct-1992 15:40:43

MODULE NAME: IMPULSE RESPONSES FRCH FILE
GROUP: VECTORS // *COMPOSE/DECOMPOSE*
DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 17-Jul~1991 14:29:48

DESCRIPTION:

This module reads the impulse responses from « f£ile -~ foda’
where # corresponds to a one or two digit nurser which
should in turn correspond t¢ the USER parametex. A max-
imum of 50 users is allowed.

The input file should consist of 4 columns of format
£10.6 £12.6 el4.6 and el4.6. Where the columns
correspond to distance,time,real response, and ima-
ginary response.

The length of the impulse respeiige can vary between
1 and 65 samples.

The parameter ’‘CHANNEL START NUMBER’ determines which
set of impulse responses within a channel impulse
response file to begin at.

REVISIONS:
Author : rtse
Date : 17-Jan-1992 11:02:01
Description:

Edited 17-Jan-1992 11:02:01, No Edit Description Entered.

Author : rtse
Date : 9-Dec-1991 10:41:47
Description:

Edit~d 9-Dec-1991 10:41:47, No Edit Description Entered.

Author : rtse
Date : 16-0ct-1991 14:04:58
Description:

Edited 16-0ct-1991 14:04:58, No Edit Description Entered.

Author : rtse
Date : 17-Jul-1991 14:29:48
Description:

17-Jul-1991 14:30:48
Module CREATION.

INPUT SIGNALS:
118

IMPULSE RESPONSES FROM FILE Page 2 6-0ct-1992 15:40:43

(none)

OUTPUT SIGNALS:

OUTPUT Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)

Upper Limit: (1.7E38 1.7E38)
Vector Length: (VECTOR LENGTH)

This output is the vector containing the impulse response.
This vector may be of length 1 to 65.

PARAMETERS:

USER Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The user number in a multiple access network.

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse response within a
channel impulse response file to start at.

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ’dt’.

VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

This value indicates the number of samples in each
impulse response. The maximum length is 65.

119

IMPULSE RESPONSES FROM FILE Page 3 6-0ct-1992 15:40:43

MODULES USED IN BLOCK DIAGRAM:

(none - This module is a BOSS Primitive)

INITIALIZATION CODE:
(none)

120

(@]

OO0

OO0OO00O0O00000

10
11

12

ROUTINE_IMPULSE RESPONSE_FROM FILE_PRIM

This routine reads one of the 50 files containing numerical data

of channel impulse responses. The form of the input should be
‘time, distance, real response, imaginary response’. This roucine
changes the numerical data into complex vectors of length ’len’ and
outputs the vectors.

‘out’ is the output vector

'user’ is a parameter which is used to decide which file to read

'h’ is a vector to be stored in memory

‘ch_per’ is a parameter which is used to determine when to update
the memory elements 'h’ by rereading the file

‘count’ is a counter which keeps track of where we are in the file

"chnl_start’ is a parameter which determines which impulse response
of a channel impulse response file to start at

‘len’ is the length of the impulse response (max = 65)

subroutine imp(out,user,h,ch_per,count,chnl_start,len)
implicit none

real dist,time,ch_per,mxm

complex out (*),h(*)

integer user,i,lun,nol,count,ii,delay,delaymem,chnl_start,len

include ’/bossdir/system/BOSSFORTRAN. INC’

if (curtime.lt.dt) then
count=chnl start-1
endif

if (curtime/ch_per - int(curtime/ch_per).1t.0.9*dt/ch_per) then

call libget_lun(lun)

nol = lun

go to(},2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
& 21,22,23,24,25,26,27,28,29,30, 31, 32, 33, 34, 35, 36,
& 37,38,39,40,41,42,43,44,45,46,47,48,49,50) ,user

open (unit=nol, file='fcla’,status='old’)

go to 99

open {(unit=nol, file=‘fc2a’,status='0ld’)

go to 99

open (unit=nol, file='fc3a’,status=’'o0ld’)

go to 99

open(unit=nol, file='fc4a’,status='o0ld’)

go to 99

open{unit=nol, file='f¢5a’,status=’'old’)

go to 99

open{unit=nol, file=’fcé6a’,status='o0ld’)

go to 99

open(unit=nol, file='fc7a’,status='o0ld’)

go to 99

open(unit=nol, file=’fc8a’,status='0ld’)

go to 99

open(unit=nol, file=’£fc%a’,status='o0ld’)

go to 99

open (unit=nol, file='fcl0a’, status='0ld’)

go to 99

open(unit=nol, file='fclla’, status=’o0ld’)

go to 99

open (unit=nol, file='fcl2a’,status='o0ld’)

121

13
14
15
16
17
18
19
20
21
22
23
24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

go to 99
open (unit=nol, file=’fcl3a’,status="0ld’)
go to 99
open (unit=nol,file=’fclda’,status='o0ld’)
go to 99
open{unit=nal, file=’fcl5a’,status=’'o0ld’)
go to 99
open {(unit=nol, file=’'fcléa’,status="0ld’)
go to 99
open (unit=nol, file=’ fcl7a’, status='0ld’)
go to 99
open{unit=nol,file=’fcl8a’,status="0ld’")
go to 99
open (unit=nol,file=’fcl9%’,status="0ld’")
go to 99
open (unit=nol, file=' fc20a’, status='0ld’)
go to 99
open (unit=nol, file=’fc2la’,status=’'0ld")
go to 99
open (unit=nol, file='fc22a’, status='o0ld’)
go to 99
open(unit=nol, file='fc23a’,status='0ld’)
go to 99
open(unit=nol, file=’fc24a’,status="0ld’)
go to 99
open(unit=nol, file='fc25a’,status="0ld")
go to 99
open(unit=nol, file=’fc26a’,status='o0ld’)
go to 99
open (unit=nol,file='fc27a’,status="o0ld’)
go to 99
open (unit=nol, file=’fc28a’,status="old’)
go to 99
open (unit=nol, file=’fc29%a’,status="0ld’)
go to 99
open (unit.=nol, file=’£c30a’,status="0ld’)
go to 99
open(unit=nol, file=’fc31la’,status="0ld’)
go to 99
open (unit=nol, file=’ fc32a’,status='0ld’)
go to 99
open (unit=nol, file='£c33a’,status='0ld’)
go to 99
open{unit=nol,file='fc34a’,status="0ld’)
go to 99
open funit=nol, file='fc35a’,status="0ld’)
go to 99
openiinit=nol, file='fc36a’,status='0ld’)
go to 99
open(unit=nol, file=’fc37a’,status='0ld’)
go to 99
open(unit=nol, file=’fc38a’,status=’'o0ld’)
go to 99
open{unit=nol,file='fc39%a’,status='o0ld’)
go to 99
open (unit=nol, file=’' fc40a’,status='0ld’)
go to 99
open (unit=nol, file=’fc4la’, status=‘'0ld’)
go to 99
open (unit=nol, file=' fc42a’, status='0ld’)

122

go to 99
43 open (unit=nol, file=’'fc43a’,status='o0ld’)

go to 99

44 open(unit=nol, file=’ fc44a’, status=’0ld’)
go to 99

45 open (unit=nol, file='fc45a’,status=’'0ld’)
go to 99

46 open{(unit=nol,file=’fc46a’,status=’old’)
go to 99

47 open{unit=nol,file=’fc47a’, status="old’)
go to 99

48 open{unit=nol, file=’fc48a’,status='0ld’)
go to 99

49 open (unit=nol,file='£fc49a’,status='o0ld’)
go to 99

50 open (unit=nol, file=’£fc50a’, status='0ld’)
99 continue

count = count+l

do i = 1,count,l
mxm = 0.0
do ii = len,l1,-1
read(nol, 100) dist,time,h(1s1)
100 format (£10.6,£12.6,¢14.6, 214.6)
enddo
enddo

close(nol,status=’keep’)
call libfree_lun(nol)
endif

do i=1,1len,1

out (i) = h(i)
enddo

return
end

123

Al.v RAKE DPSK Demodulator

Figute A8 shows the RAKE DPSK Demodulator. The correlator section
takes advantage of third-order multipath diversity by using three delayed
versions of the Gold sequence, each synchronized to consecutive versions of
the received signal resulting from multipath propagation, to correlate with
different portions of the received signal. Each will despread one portion of the
signal which has propagated through a multipath channel. The Gold sequence
is input from an external source and should be already synchronized to the
received signal. The equivalent of the despread interference is input to the
module from an external source and is added to the despread signals before
they each pass through an integrate and dump filter. The outputs of each filter
are sampled and DPSK demodulated before being summed. For DPSK
demodulation, the change in phase between the current bit and the last bit must
be found to determine if a positive or a negative bit was transmitted. This is
accomplished by multiplying the current sample by the complex conjugate of the
previous sample. The final summed result is the demodulated signal. The
BOSS module allows the diversity order to be varied between 1 and 3 by a user
controlled parameter.

The DPSK demodulation is performed by the module DPSK DEMOD
(BB,NMF) shown in Figure A9.

124

39915
? < :u::A —<
| n39
i L_A Ezmu@
% !
< e3unl <N
=<
N39
r <1 1sn03 0
\Y
H< 33N <]H
=< ‘ N30
<1 15ND3
A -4
JWNT~aNY <
316393IN1 ._- x1dig
[xam < guidl Aj wuuwm_“m
<G gl < 3N6H — —<
e < O X143
JHNOTONY Qw3
31U¥93LNT
<
< ooy u
3364931N] ._.A] =
]
gun1 3941S
<] e <H < xwmumA — < 11
05638 < O | g 49918
dWNQ_ONY
dWNaONY x._&ﬁ Avlaalch 0
(i ad < <] 31u¥93INI b . q 3981 H
Xk ST <]
aowad
< 9933 <1 TR G
4 JHnd_ONY X1dK
31Y4931NT < 40
W3 a

“AOWZa XSdd IHvye

Figure A8. A RAKE receiver for DPSK signals.
125

RAKE DPSK DEMOD Page 1 6-0ct-1992 15:42:18

MODULE NAME: RAKE DPSK DEMOD

GROUP: DEMODULATORS

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 13-Mar-1992 10:13:33

DESCRIPTION:

This module is a RAKE-based diversity receiver. The
diversity inherent in spread spectrum systems is used and
each delayed element is fed into a DPSK demodulator.

The maximum diversity order for this particular receiver

is 3.

A pn code for despreading or descrambling of the signal
is available. If one is not used, then a constant of
(1.0,0.0) should be input in its place.

The output should be sampled midway into the recovered

data signal to ensure that transient responses in the
decoders have passed. The output need only be compared to
see if it is greater than or less than zero to determine the
final logical output (>0 --> true, <0 -->false).

REVISIONS:
Author : rtse
Date ¢+ 13-Mar-1992 10:13:33
Description:

13-Mar-1992 10:14:13
Module CREATION.

INPUT SIGNALS:

NOISE AND INTERFERENCE Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

The noise and interference is to be added here. The power
126

RAKE DPSK DEMOD Page 2 6-0ct-1992 15:42:18

of this input should be equal to thé power of the noise
and interference after despreading of the spread spectrum
signal.

SAMPLING POINT Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This is a logical signal that tells the module when to
sample for demodulation.

—— — — — —— —

PN SEQUENCE Type: COMPLEX
Lower Limit: (-1.0 -1.0)
Upper Limit: (1.0 1.0}

The pn sequence used for depsreading the spread spectrum
signal.

INPUT SIGNAL Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

This is the received signal after the matched filter.

OUTPUT SIGNALS:

DEMODULATED OUTPUT Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The signal after RAKE DPSK demodulation.

PARAMETERS:

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The chip rate in bits/sec.

DIVERSITY ORDER Type: INTEGER
Lower Limit: 1
Upper Limit: 3

127

RAKE DPSK DEMOD

Page 3 6-0ct-1992 15:42:18

This integer determines the number of demodulators/decoders
to use to recover the transmitted data. The minimum
diversity order is 1 and the maximum is 3.

MODULES USED IN BLOCK DIAGRAM:

>= INTGR

CONST GEN
MULTIPLIER

3 INPUT ADDER
IMAG OF CMPLX
REAL OF CMPLX
INTEGRATE AND_DUMP
MAKE CMPLX

DPSK DEMOD (BB, NMF)
MULTI STAGE DELAY
ADDER

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

MULTI STAGE DELAY (key
DELAY NUM == Round

MULTI STAGE DELAY (key
DELAY NUM == Round

MULTI STAGE DELAY (key
DELAY NUM == Round

MULTI STAGE DELAY (key
DELAY NUM == Round

MULTI STAGE DELAY (key
DELAY NUM == Round

CONST GEN (key 6)
CONSTANT VALUE

CONST GEN (key 7)
CONSTANT VALUE

i
!
N

CONST GEN (key 8)
CONSTANT VALUE

INITIALIZATION CODE:
(none)

1)
(2

2)
(1

3)
(2

4)
(1

)
(1

.0 / (‘CHIP RATE*' * ‘DT}))

.0 / (‘CHIP RATE' * ‘DT}))

.0 / (‘CHIP RATE* * ‘DTY))

.0 / (‘CHIP RATE' * ‘DT}))

.0 / (‘CHIP RATE' * ‘DT'))

$DIVERSITY ORDER

128

N39
< 1sn03 03

I
\v
_ Ay13a [z
9rNOD QIo0H™®
< a3 <H < u._%&mA < “imen <H
<
X1dH3
X aioH""
w3 << x< <} u.Ef&mA <]

(JWN'88] AOW3A MSda _

Figure A9. A demodulator for DPSK signals at baseband.

129

DPSK DEMOD (BB, NMF) Page 1 6~0ct-1992 15:43:10

MODULE NAME: DPSK DEMOD (BB,NMF)
GROUP: DEMODULATORS

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 7-Oct-1991 11:22:39

DESCRIPTION:

This modulate recovers a real value which corresponds to
the DPSK modulated digital signal which has already been
passed through a matched filter.

The modul€ output will be positive if a positive bit
was received, and will be negative if a negative bit

was received. It is of type real.

A logical impulse signal is required for bit synchroni-

zation.
REVISIONS:
Author : rtse
Date : 9-Jan-1992 11:23:31
Description:

Edited 9-Jan-1992 11:23:31, No Edit Description Entered.

Author : rtse
Date : 10-Dec-1991 13:27:57
Description:

Edited 10-Dec-1991 13:27:57, No Edit Description Entered.

Author : rtse
Date : 7-0ct-1991 11:22:39
Description:

7-0ct-1991 11:22:53
Module CREATION.

INPUT SIGNALS:

BIT SYNCHRONIZATION SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should consist of an impulse signal at the
beginning of each received data bit. This allows the
demodulator to determine when to sample its outputs.

RECEIVED SIGNAL INPUT Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)

130

DPSK DEMOD (BB, NMF) Page 2 6-0ct-1992 15:43:10

Upper Limit: (1.7E38 1.7E38)

This should be the baseband DPSK modulated signal which
has already passed through a matched filter.

OUTPUT SIGNALS:

DEMODULATED OUTPUT Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

This signal represents the demodulated output. If this
real number is greater than zero, then the input signal
was a positive bit. If it is less than zero, then the
input signal was a negative bit.

PARAMETERS:
(none)

MODULES USED IN BLOCK DIAGRAM:
CMPLX CONJG
REAL OF CMPLX
SAMPLE &_ HOLD
UNIT DELAY
CONST GEN
MULTIPLIER

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

CONST GEN (key 1)
CONSTANT VALUE == -1.0

UNIT DELAY (key 2)
INITIAL VALUE == (0.0 , 0.0)

INITIALIZATION CODE:
(none)

131

A1.vi Viterbi Decoder (or Orthogonal Convolutional Decoder)

Figure A10 shows the block diagram of the orthogonal convolutional
decoder (OC_DECODER). One input is for the hard-decision outputs of the
RAKE DPSK demodulator and the other is for the timing signal which tells the
decoder when to sample those outputs. The code
ROUTINE_VITERBI_DECODER_PRIM performs maximum-likelihood decoding
using hard-decision inputs based on Euclidean distances for orthogonal
convolutional codes. Parameters allow the user to set the code constraint
length K, the maximum path memory, and the incoming bit rate.

The program reads in all 2K trellis states of the convolutional code and
stores them in memory when initialized. Once enabled, the decoder reads the
input bits. Every oK bits, it will determine branch metrics and path metrics and
then flag the surviving path for each state. The best path among these is
chosen as the correct one (at this point) and the trellis state which is connected
to the oldest branch is chosen as the decoded state. Because orthogonal
convolutional codes are used, the first bit of this final state determines the
decoded input. If the first bit is a +1, then a +1 is the decoded output. Ifitis a-
1, then a -1 is the decoded output.

The decoder features a truncated path memory. A parameter is available
to the user to specify this memory size. This parameter should equal 5 times the

constraint length of the code (see Subsection 2.2.2. for details).

132

OC-DECODER

Figure A10. Primitive block diagram for the orthogonal
convolutional decoder.

133

OC-DECODER Page 1 6-0ct-1992 15:43:33

MODULE NAME: OC-DECODER

GROUP: SOURCE ENCODERS/DECODERS
DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 12-Aug-1991 13:18:48

DESCRIPTION:

The orthogonal convolutional decoder will recover the
original data bits from the coded signal using
maximum likelihood sequence estimation. The input
and output are INTEGER values of (+1 or -1).

AhkhARkRKIA KRR KKK ARAAA ARk kA khkhkkhkhkdhkhkhkkhkhkkhkhkkhhkhkhhkk

If taking the output straight out of the OC ENCODER,

the polarity of the bits should be reversed first!!
khkhkkkkkhhkhhkhkhkhkhkhkhkkhkhkhdkkdkkdhkdhkkhhkkdhkkihkdkihihihhkkikhkk

A logical signal SAMPLE SIGNAL is used to tell the
module when to sample the input bits. The first

.true. SAMPLE SIGNAL should correspond to the first
code symbol of the all zero encoding state.

Note that for the input bits, a +1 actually corresponds
to a coded 0 bit and a -1 corresponds to a coded 1 bit!!

REVISIONS:
Author : rtse
Date : 17-Mar-1992 11:33:11
Description:

Edited 17-Mar-1992 11:33:11, No Edit Description Entered.

Author : rtse
Date : 12-Feb-1992 10:53:21
Description:

Edited 12-Feb-1992 10:53:21, No Edit Description Entered.

Author : rtse
Date : 21-Aug-1991 19:45:27
Description:

Edited 21-Aug-1991 19:45:27, No Edit Description Entered.

Author : rtse
Date : 12-Aug-1991 13:18:48
Description:

12-Aug-1991 13:19:01
Module CREATION.

134

OC-DECODER Page 2 6-0Oct-1992 15:43:33

INPUT SIGNALS:

SAMPLE SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should be true only when the input bit is to be
sampled.

INPUT Type: INTEGER
Lower Limit: -1
Upper Limit: 1

This is the orthogonal convolutionally encoded data
that is to be decoded to recover the original

data. The input should be in the form of binsry
integers of values (+1/-1).

OUTPUT SIGNALS:

OUTPUT Type: INTEGER
Lower Limit: -1
Upper Limit: 1

The output is in the form of binary integers (+1,-1).
The output corresponds to the maximum likelihood
sequence estimation of the original input data.

PARAMETERS:

PATH MEMORY Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The truncation length of the decoder. This value should
equal 5 times the code constraint length for minimal
loss of decoding gain.

K Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The constraint length of the orthogonal convolutional
encoder.

135

OC~DECODER Page 3 6-0ct-1992 15:43:33

VALUE OF 2% (2*K) Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The value of 2~(2*K). This value is used to allocate
memory to store all the valid orthogonal convolutional
code words.

VALUE OF 2°K Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The value of 2”K. This value is used to allocate memory
for the array which stores the input symbols.

MODULES USED IN BLOCK DIAGRAM:

(none - This module is a BOSS Primitive)

INITIALIZATION CODE:
{none)

136

OO0 O0000 O

QOO0 00OO00O0000000

ROUTINE VITERBI_DECODER PRIM

This program rakes the orthogonal convolutional coded input and
restores the original uncoded data using the typical ACS operaton
of conventional Viterbi decoders. The output is weighted by
multiplying the binary output walue by its best path metric.

The path memory length is limited to the user specified parameter
value. This value should be appioximately 5 times the constraint
length to assure a high probability of path mergence at the
truncation point.

The available codes are read from the file 'all_codes.dat’, and
these are used in the ACS operations. The file ’all codes.dat’ is
generated by the 'C’ code ‘gen_all.c’.

This decoder assumes that the input bits are coded in polar
form (+1/-1) where -1 corresponds to a data ‘1’ and +1 corresponds
to a data ‘0’. The encoded symbols must be inverted (+1 -> -1 and
-1 -> +1) before entering the decoder for it to work properly.

IT IS IMPORTANT TO REMEMBER THE INVERSION OF THE POLARITY OF THESE
INPUT BITS!!!! Als,, the starting state is assumed to be the all

all zero state; that is, the encoding shift register contains all
all zeros.

’in’ is the input signal to be decoded (input signal)

’sample’ is the signal which indicates that another symbol should
be read (input signal)

‘pathmem’ is the length of the path memory (parameter)

K’ is the code constraint length (parameter)

‘twotwok’ should equal 27(2*K):used to allocate array code() (parameter)

'twok’ should equal 2"K:used to allocate array chip() (parameter)
‘num’ keeps track of which coded symbol (chip) the decoder
is processing (memory)
'chip’ is one coded symbol (memory array of size 2°K)
‘start’ is a flag which indicates if the decoder is just
starting its decoding (memory)
‘pthend’ is the memory variable which keeps track of where
in the path the decoder is at (memory)
‘thrshflg’ is a flag used to see if the decoder has read
enough bits to satisfy the path memory (memory)
‘total’ is equal to 2°K (memcry)
'metmem’ is the memory array which saves each branch metric (memory)
‘pthsum’ is the memory array which stores the surviving path
metric for the current stage and the previous stage
‘metpth’ is the memory array which stores the state from which
the current state branched from
‘out’ is the weighted decoded output

iubroutine vitdec(in, sample,pathmem, K, twotwok, twok, num, code,
b chip,start,pthend, thrshflg, total, metmem,
5 pthsum,metpth, out)

implicit none

integer i, j,prev0,prevl,prev,fstate,start,point,lun,l
integer K, total,pathmem, num,met,twok,met0t, metlt
integer pthend, lastend, num,thrshflqg,bit,max

integer chip(*),pthsum(1025,2), twotwok

integer code(*),metpth(1025,51),metmem(1025,51)
integer in,out

logical*l sample

include ’/bossd?. /system/BOSSFORTRAN.INC’

137

[eNoNe

10
11

Initialization: all valid codewords are read and counter and flags
are reset.
if (curtime.lt.dt) then
call libget_lun{lun)
go to (1,2,3,4,5,6,7,8,9,10),k
open (unit=lun, file='non_exist.dat’,status="o0ld’)
goto 11
open (unit=lun,file='non_exist.dat’,status='0ld’)
goto 11
open (unit=lun, file='all_codes8.dat’,status='0ld’)
goto 11
open (unit=lun,file="all codesl6.dat’,status='0ld’)
goto 11
open (unit=1lun, file='all codes32.dat’,status='o0ld’)
goto 11
open (unit=lun,file=’'all_codes64.dat’,status='0ld’)
goto 11
open (unit=1lun, file="all codesl28.dat’,status="0ld’)
goto 11
open(unit=lun, file="all_codes256.dat’,status='0ld’)
goto 11
open{(unit=lun,file="all codes512.dat’,status='o0ld’)
goto 11
open(unit=lun,file='all_codesl024.dat’,status='0ld’)
continue
read(lun,*) 1
read(lun, *) total
do i = 1,total,l
read(lun, *) num
do j = 1,total,l
1 = (i-1)*total+j
read(lun, *) code(l)
enddo
enddo
close (lun, status='keep’)
call libfree_lun(lun)
start = 0
pthend =1
thrshflg =
num = 1
endif

0

Read input data whenever the external ‘sample’ signal is high.
If the number of code symbols has not yet formed a complete
codeword, then return from this subroutine.
if (sample) then
chip(num) = in
if (num.ne.total) then
num = numtl

goto 9999
else
num = 1
endif
else
goto 9999
endif

138

[eNeNeNe NS

Set the counter which keeps track of which branch stage the
decoder is at.
if (pehend.eq.pathmem) then
pthend = 1
lastend = pathmen
else
lastend = pthend
pthend = pthend+l
endif

Check to see if the number of input bits read at the start
are equal to the pathmem delay. If not, then set the flag
so that the decoder does not trace the paths back to decode

yet as more bits must be read before the ACS decoding operations
can proceed.
if (thrshflg.eq.0) then
if (pthend.eq.l) then
thrshflg = 1
endif
endif

Remove the value of the earliest metric from the path metric sums.
if (thrshflg.eq.l) then
do i = 1,total,l
prev = i
do j = 1,pathmem-1,1
point = lastend-j
if (point.1lt.1l) then
point = point+pathmem
endif
if (point.ne.pthend) then
prev = metpth (prev,point)
endif
enddo
pthsum(i, 1) = pthsum(i,2)-metmem(prev,point)
enddo
endif

Calculate branch and path metric sums.
do i = 1,total,l
if (mod(i,2).eq.0) then
prevl = (i+total)/2
prev0 = i/2
else
prevl = (i+l+total)/2
prev0 = (i+1)/2
endif
met = 0
do j = 1,total,l
met = met + code((i~1)*total+j)*chip(j)
enddo
met0t = met + pthsum{prev0,1)

metlt met + pthsum(prevl,l)

if (thrshflg.ne.l.and.pthend.eq.2) then
metlt = 0

endif

if (metlOt.gt.metlt) then
metpth(i,pthend) = prev0
pthsum(i, 2) = metOt

139

metmem (i, pthend) = met
else
metpth(i,pthend) = prevl

pthsum(i,2) = metlt
metmem(i, pthend) = met
endif
enddo
do i = 1,total,tl
pthsum{i, 1) = pthsum(i,2)
enddo

Find the path that has the largest metric and then trace this
path back to find the decoded data bit.
if (thrshflg.eq.l) then
maz = 0
do i = 1,total,l
if (pthsum(i,2).gt.max) then
max = pthsum(i,2)
bit = 1
endif
enddo

prev = bit

do i = 1,pathmem, 1
point = pthend-i+l
if {point.1lt.1l) then

point = point + pathmem
endif
prev = metpth{prev,point)
enddo

fstate = prev

if (mod{fstate,2).eq.0) then
out = l*max

else
out = =-l*max

endif

endif

9999 return
end

140

A1l.vii Error Counter

The Error Counter is shown in Figure A11. |t compares two different inpi
binary signals and records the number of differences between them. Time
delays between the two signals can be accounted for as there are two other
input signals (one for the reference signal and one for the test signal) which tell
the module when to begin sampling. Parameters are available to allow the user
to specify how often (in number of bits compared) he would like the resuits to be
written out. The module BER_DETECTOR WITH TERMINATE SIGNAL shown
in Figure A12 ig a BOSS primitve whose code is given as
ROUTINE_BER_WITH_TERM_PRIM. This module compares the two input
binary signals and counts the total number of bits and the total number of errors
observed. The results are written to the file 'berxx.file' where xx is a number
from 1 to 20 inclusive which i5 specified by the user. Results are written
whenever an error is encountered. Also, the user can have the results written
wheiicvei a certain number of bits have been €ounted. The resuits given by the
module are: the simulation time that the result was written, the number of bits

compared, the number of errors detected, and the bit error rate.

141

= A
|_ < J0GWAS NI F
~onois < NOILISOd 4
3LUN Hu%w_ g

4 <] ¥0493130 338 07 L 4

< <L oauAsTNI G |

< NOILISOd

<

TVNDIS ILVNIWEIL HLIM H31LNNOD HOYY3

Figure A11. The error counter.

142

ERROR COUNTER WITH TERMINATE SIGNAL Page 1 6-0Oct-1992 15:43:59

MODULE NAME: ERROR COUNTER WITH TERMINATE SIGNAL
GROUP: MISCELLANEOUS

DATABASE: /home/suns/rtse/model_db/

AUTHOR: rtse

CREATION DATE: 13-~-Apr-1992 17:59:35

DESCHIPTION:

‘This module counts the number of differences between
two streams of data; a reference stream and a test
stream. Running results are written whenever the
number of i:its tested is equal to the value in the
parameter #BITS FOR A FILE UPDATE. The simulation is
terminated when the number of errors detected equals
the parameter #ERRORS TO TERMINATE SIMULATION.

The time, total number of bits tested, total number
of errors, and the bit error rate are given.

The results are written to the file ‘ber##.file‘ where
represents a number between 1 and 20 inclusive which
is entered as a parameter.

REVISIONS:
Author : rtse
Date : 13-Apr-1992 20:30:39
Description:

Edited 13-Apr-1992 20:30:39, No Edit Description Entered.

Author : rtse
Date : 13-Apr-1992 20:22:07
Description:

Edited 13-Apr-1992 20:22:07, No Edit Description Entered.

Author : rtse
Date : 13-Apr-1992 17:59:35
Desgéription:

13-Apr-1992 18:00:06
Module CREATION.

INPUT SIGNALS:

TEST START SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should go from .false. to .true. when the
test data starts.

143

ERROR COUNTER WITH TERMINATE CIGNAL Page 2 6-0Oct-1992 15:43:59

REFERENCE START SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should go from .false. to .true. when the
reference data begins.

TEST DATA Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

The data to be tested for bit errors.

REFERENCE DATA Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

The data to be used as the reference when testing for
bit errors.

OUTPUT SIGNALS:

TERMINATE SIMULATION SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal will turn .true. when the simulation is to be
terminated.

PARAMETERS:

FILE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 20

The value entered here determines which file the ouigut
will be written to. Valid entries are integers from

1 to 20 inclusive. The output file is ‘ber##.file’ where
represents the parameter value.

#ERRORS TO TERMINATE SIMULATION Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

144

ERROR CS5UNTER WITH TERMINATE SIGNAL Page 3 6-0ct-1992 15:43:59

When this number of errors is detected, the terminate
simulation signal output will) go .true..

#BITS FOR A FILE UPDATE Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The number of bits that are compared before the file
inclusive).

DATA RATE Type: REAL
Lower Limit: 2.999998E-39
Upper Limit: 1,7E38

The rate of the binary data to be compared (in bits/sec).

MAX DELAY (#BITS) Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

This parameter is used to allocate storage memory for

the reference signal as tl¢7e is usually a time delay
between the reference andg st signals (due to mod/demod,
processing, etc.). The value entered should be an

integer EQUAL TO or GREATER than the number of bit periods
that the two binary signals are separated by.

MODULES USED IN BLOCK DIAGRAM:
POSITION IN SYMBOL
BER DETECTOR WITH TERMINATE SIGNAL

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

BER_DETECTOR WITH TERMINATE SIGNAL (key 1)
#ERRORS TO TERMINATE SIMULATION == $#ERRORS TO TERMINATE SIMULATION
FILE NUMBER == $FILE NUMBER
#BITS FOR A FILE UPDATE == $#BITS FOR A FILE UPDATE
MAX DELAY (#BITS) == $MAX DELAY (#BITS)

POSITION IN_SYMBOL (key 2)
TIME DELAY TO INPUT (SEC) == 0
SYMBOL FRAC FOR SAMPLE TIME == 0
SYMBOL RATE (HZ) == $DATA RATE

POSITION IN_SYMBOL (key 3)
TIME DELAY TO INPUT (SEC) == 0
SYMBOL FRAC FOR SAMPLE TIME == 0
SYMBOL RATE (HZ) == SDATA RATE

145

ERROR COUNTER WITH TERMINATE SIGNAL Page 4 6-0ct-1992 15:43:59

INITIALIZATION CODE:
(none)

146

AAANL

BER DETECTOR WITH TERMINATE SIGMAL

Figure A12. Primitive block diagram for the bit error detector.

147

BER DETECTOR WITH TERMINATE SIGNAL Page 1 6-0ct-1992 15:44:07

MODULE NAME: BER DETECTOR WITH TERMINATE SIGNAL
GROUP: MISCELLANEOUS

DATABASE: /home/suns/rtse/model_db/

AUTHOR: rtse

CREATION DATE: 13-Apr-1992 17:34:31

DESCRIPTION:

This module takes two imput binary signals, one reference
and one test, and determines the number of different bits
there are between them, and thus, obtain the bit error
rate. The BER is calculated and written to a file when-
ever a certain number of bits are compared (a user
parameter). A ‘terminate simulation’ signal will go .true.
when a certain number of errors are detected (another user
paramter). This output is stored in the file ’'ber#.file’
where # is an integer between 1 and 20 (inclusive).

In most systems, there is a time delay between the
reference and the test signals. Thus, two logical
signals are needed to signal the start of each data
stream. When REFERENCE SAMPLE SIGNAL and TEST SAMPLE
SIGNAL are high, the module will read the reference
data and test data streams respectively.

REVISIONS:
Author : rtse
Date ¢ 13-Apr-1992 20:29:52
Description:

Edited 13-Apr-1992 20:29:52, No Edit Description Entered.

Author : rtse
Date ¢ 13-Apr-1992 20:18:32
Description:

Edited 13-Apr-1992 20:18:32, No Edit Description Entered.

Author : rtse
Date ¢ 13-Apr-1992 17:34:31
Description:

13-Apr-1992 17:34:35
Module CREATION.

INPUT SIGNALS:
148

BER_DETECTOR WITH TERMINATE SIGNAL Page 2 6-0ct-1992 15:44:07

TEST SAMPLE SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should be true only when a sample of the
test signal is to be taken.

REFERENCE SAMPLE S$IGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal should be true only when a sample of the
reference bit stream is to be taken.

TEST DATA Type: LOGICAL
Lower Limit: NIL

Upper Limit: NIL

The recovered binary data to be compared to the original
so that the number of errors and the error rate can
be determined.

REFERENCE DATA Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

The original information bits that would ideally be
recovered at the receiver.

OUTPUT SIGNALS:

TERMINATE SIMULATION SIGNAL Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

This signal will geo .true. to terminate the simulation
when the number of errors detected equals the number
entered to the parameter ’#ERROR TO TERMINATE SIMULATION’.

PARAMETERS:

#ERRORS TO TERMINATE SIMULATION Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

149

BER_DETECTOR WITH TERMINATE SIGNAL Page 3 6-0ct-1992 15:44:07

When this number of errors is detected, the terminate
simulation signal output will go .true..

FILE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 20

The value entered here determines which file the output
will be written to. Valid entries are integers from

1 to 20 inclusive. The output file is ‘ber##.file‘ where
represents the parameter value,.

—— - o —

#BITS FOR A FILE UPDATE Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The number of bits that are compared before the file
inclusive).

MAX DELAY (#BITS) Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

This parameter is used to allocate storage memory for

the reference signal as there is usually a time delay
between the reference and test signals (due to mod/demod,
processing, etc.). The value entered should be an

integer EQUAL TO or GREATER than the number of bit periods
that the two binary signals are separated by.

MODULES USED IN BLOCK DIAGRAM:

{none -~ This module is a BOSS Primitive)

INITIALIZATION CODE:
{none)

150

eNeNeNeNe s Ee Ee Ne N EY!

ROUTINE_BER WITH_TERM_ PRIM

This module reads in two separate streams of logical data. Each data
stream has its own sampling signal which tells it when to sample.

The module accumulates the number of total bits and the number of
different k.ts (samples) between the two streams. From this, the bit
error rate over the time period can be found.

It is expected that in any system, there will be a time delay between the
original reference bits and the received and decoded bits. The maximum
delay (in number of bits) must be specified in the parameter 'maxdelay’ .
This module writes its most up to date results every time the 'wrt’signal
is high. The results are written to a file ‘ber##.file’ where ’##’ is

a number in the range 1 through 20 inclusive.

subroutine biterr(refsig,testsig, rsampsig,tsampsig, delay,
refno, testno,exror, filenum, maxdelay, refm,
numerrterm, numbitwrt, termsim, totbits)

implicit none
integer delay, refno, testno,numerrterm, numbitwrt
integer error,totbits, filenum,maxdelay, no

logical*l rsampsig,tsampsig,testsiqg, refsiqg, refm(*),wrt,termsim
logical*1l tstart

include ’/bossdir/system/BOSSFORTRAN. INC’

if (curtime.lt.dt) then
delay = maxdelay
refno = 0
testno = 0
error = (
totbits = 0
termsim = .false.
wrt = .true.
call fileinit (filenum, no)
close (no)
call lik$free_lun(no)
endif

if (rsampsig.eq..trve.) then
refno = refno+l
if (refno.gt.delay) then
refno=1
endif
refm(refno) = refsig
endif

if (tsampsig.eq..true.) then

if (tstart.eq.0) then
delay = refno
tstart = 1

endif

testno = testno + 1

if (testno.gt.delay) then
testno =1

endif

if (refm(testno).ne.testsig) then
error = error + 1
wrt = .true.

151

endif
totbits = totbits + 1
if (mod(float (totbits),float (numbitwrt)).1lt.0.1) then

wrt = .true.

endif

if (error.eqg.numerrterm) then
termsim = .true.
wrt = .true.

endif

endif

if (wrt.eq..true.) then
call file(filenum,no)
write(no,200) curtime
write (no,210) totbits
write(no,220) error
write (no,230) float{error)/float (totbits+1l.0E-9)
if (abs(curtime-stop_time).lt.dt) then
write(no,*) ‘END OF SIMULATION’
endif
close (no)
call lib$free_lun(no)
wrt = _false.
endif
200 format ('Curtime: ’,el5.8)
210 format (’Total number of bits tested: ’,1i7)
220 format (' Total number of errors detected: ’,i7)
230 format ('Bit error rate: ’,£9.7)

return
end

subroutine file(filenum,no)
integer filenum,no, lun
call lib$get_lun(lun)

no = lun
go to (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
& 18,19,20),filenum
1 open{unit=1lun, file='berl.file’,access='append’)
goto 21
2 open{unit=lun, file='ber2.file’,access='append’)
goto 21
3 open{unit=1lun,file='ber3.file’,access="append’)
goto 21
4 open(unit=1lun,file='berd.file’,access='append’)
goto 21
5 open{unit=lun,file='ber5.file’,access='append’)
goto 21
6 open(unit=lun, file='ber6.file’,access="append’)
goto 21
7 open{unit=lun, file='ber7.file’, access='append’)
goto 21
8 open{unit=lun, file='ber8.file’,access='append’)
goto 21
9 open{unit=lun, file="ber9.file’,access='append’)
goto 21
10 open{unit=lun,file="berl0.file’, access='append’)
goto 21
11 open(unit=lun, file='berll.file’, access='append’)

12

13

14

15

i6

17

18

18

20
21

10

11

12

13

14

15

16

goto 21

open(unit=1lun, file='berl2.
goto 21
open(unit=1lun,file='berl3.
goto 21
open(unit=lun,file='berl4.
goto 21

open (unit=lun, file='berl5.
goto 21

open (unit=1lun,file='berl6.
goto 21

open (unit=1lun,file='berl7.
goto 21
open(unit=lun,file="berl8.
goto 21

open (unit=lun,file='ber19.
goto 21

open (unit=lun,file='ber20.
continue

return

end

integer filenum,no,lun
call libsget_lun{lun)
no = lun

go to (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,

19,20),filenum

file’ ,access='append’)
file’ ,access='append-)
file’,access='append’)
file’,access='agpend’)
file’,access=’append’)
file’,access="append’)
file’,access='append’)
file’ ,access='append’)

file’,access='append’)

subroutine fileinit (filenum, no)

open{unit=lun,file='berl.file’)

goto 21

open (unit=lun,file='ber2.file’)

goto 21

open{(unit=1un, file='ber3.file’)

goto 21

open{unit=1lun, file='ber4.file’)

goto 21

open (unit=1lun, file='ber5.{file’)

goto 21

open{unit=lun, file='ber6.file’)

goto 21

open{unit=lun, file='ber7.£file’)

goto 21

open{unit=1lun, file='berB8.file’)

goto 21

open (unit=1lun, file='ber9.£file’)

goto 21

open (unit=1lun, file='berl0.file’)
goto 21

openfunit=1lun, file='berll.file’)
goto 21

open (unit=3un, file='berl2.file’)
goto 21

open (unit=lun, file='berl3.file’)
goto 21

open (unit=1lun, file="berl4.file’)
goto 21

open (unit=lun, file="berlS.file’)
goto 21

open{unit=lun, file='berl6.file’)

goto 21

153

18

19

20
21

open (unit=1lun, file='berl7.file’)
goto 21

open (unit=1lun, file=‘berl8.file’)
goto 21
open(unit=lun,file='ber19.file’)
goto 21
open{unit=1lun,file='ber20.file’)
continue

return

end

154

A1l.viii SSMA Iindoor Wireless System

The SSMA indoor wireless system shown in Figure A13 is rnade up of all
the aforementioned BOSS modules, some standard BOSS modules, and some
linking modules. It is used to simulate the coded SSMA system. The system
used to simulate the uncoded SSMA system is shown in Figure A14. The
systems are described in Chapter 4. The same initialization code is used for
both the coded and uncoded systems and is given as ROUTINE_SYSTEM_INIT
at the end of this section. This code finds the optimal sampling point for the
receiver. This optimal sampling point is the point where the maximum eye
opening can be found at the demodulator. The code also determines what the
signal to interference level is from the number of interferers and the code rate

used.

155

swyHa S
. (3
ED] S
<1 1SNOD
NO-L
<l =L A¥130
. a
qGERAS N1
- n0111504 8
, s <
WNIIS
RN <] ¥9INI <] 4300330 FYCEL)
3311103 < ¢ w0 4 o3 < w3
_ H0¥83 31907 =<
_ 4 5564M01 <]
— <] HizoM¥3LLNE
=L
NC1LYINAIS ﬁ_
t 3IUNIWY3L < CE AW_H_
Yol m aM
bl b 103 NIALD
35108
31160
3

0BWAS N1
<] no111s0¢ 0l

SIAT0ANGD I (539415 .
430693 88 | iy Anud1YE8E) MR] giva
LA ER L EL p 35¢ara q x g gcu AII_A 33003 41 mu.» i

HivaT LW <] 1Pwn3&uk._r:m% %840
& = rli

Figure A13. The coded SSMA system.
156

—NS16AS VWSS

SSMA SYSTEM Page 1 6-0ct-1992 16:08:29

MODULE NAME: SSMA SYSTEM
GROUP: SYSTEM

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 27-Aug-1992 21:42:03
DESCRIPTION:

A noncoherent test system for simulating SSMA on indoor
multipath channels with orthogonal convolutional coding.
The simulation processes baseband signals.

REVISIONS:
Author : rtse
Date : 27-Aug-1992 21:45:08
Description:

Edited 27-Aug-1992 21:45:08, No Edit Description Entered.

Authorx : rtse
Date : 27-Aug-1992 21:42:03
Description:

27-Aug-1992 21:42:10
Module CREATION.

INPUT SIGNALS:
(none)

OUTPUT SIGNALS:
(none)

PARAMETERS :

STOP~-TIME Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

Specifes the maximum value of time for the simulation (in seconds).
The simulation clock runs from time=0.0 to time=STOP-TIME
in steps of DT, all in seconds,

DT Type: REAL
Lower Limit: 3.0E-39

Upper Limit: 1.7E38

Time between discrete simulation signal samples (in seconds).
DT must be small enough to satisfy the Nyquist Sampling

157

SSMA SYSTEM Page 2 6-0ct-1992 16:08:29

Theorem for all signals at all points in the simulation.

NOTE:

If the specified period or rate of a periodic function results
in a period that is not a multiple of DT, then BOSS will round
the period to the nearest value that IS a multiple of DT.

For example, if DT=0.125(sec) and a rate was
specified as rate=1.4(hz) which corresponds to a
period of T=0.714(sec) which is 5.7*DT , then BOSS
will round this period to be 6.0*DT and thus the
effective rate will be 1.333(hz).

Because of this, the choice for DT can affect the periods
of the periodic signals in the simulation.

FILE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 20

The value entered here determines which file the output
will be written to. Valid entries are integers from

1 to 20 inclusive. The output file is ‘ber##.file‘' where
represents the parameter value.

CHANNEL NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 50

The channel file to read from to get the impulse response.

—— o> = - —

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse response within a
channel impulse response file to start at.

CODE CONSTRAINT LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 10

The constraint length of the orthogonal convolutional code.
This value is limited to a maximum of 10.

PATH MEMORY Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

158

SSMA SYSTEM Page 3 6-0ct-1992 16:08:29

The truncation length of the decoder. This value should
equal 5 times the code constraint length for mimimal
loss of decoding gain.

DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate (in bits/sec) of the original uncoded data to
be transmitted.

CODED DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The racte of the orthogonal convolutionally encoded data.

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate of the pn sequence, in bits/sec.

#ERRORS TO TERMINATE SIMULATION Type: INTEGER
Lower Limit: 0
Upper Limit: 2147483647

When this number of errors is detected, the terminate
simulation signal output will go .true..

- - — - -

#BITS FOR A FILE UPDATE Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The number of bits that are compared before the file
inclusive).

DATA ISEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed for the random data generator.

159

55MA SYSTEM Page 4 6-0Oct-1992 16:08:29

INT/NOISE ISEED1 Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed used to generate the real part of thee
naise/interference.

0 s o > —

INT/NOISE ISEED2 Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed used to generate the imaginary part of the
noise/interference.

PN SEQUENCE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 1024

This number determines which pn code to use.

- - - o= an

PHASE OFFSET Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The absolute phase offset of the equivalent DPSK
carrier waveform (in radians).

INTERFERERS Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

This number determines the variance due to the number of
interferers.

DIVERSITY ORDER Type: INTEGER
Lower Limit: 1
Upper Limit: 3

This integer determines the number of demodulators/decoders

to use to recover the transmitted data. The minimum
diversity order is 1 and the maximum is 3.

160

SSMA SYSTEM Page 5 6-0ct-1992 16:08:29

- oo - — ——

DECODER ENABLE Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

If this value is .true., then the decoder will be enabled.
If it is .false., then the decoder will be disabled.

—— e — ———

PN SEQUY'ICE LENGTH T'ype: INTEGER
Lower Limit: 1
Upper Limit: 5000

The number of symbols in the pn sequence.

CHANNEL VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

The number of samples in the multipath channel impulse
response.

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1,.7E38

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ‘dt’.

COMPUTED PARAMETERS:

SNR Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The signal to noise ratio after despreading. This is
calculated by:

SNR = 10*log(2/ (avg_xcorr*#interferers))

where avg_xcorr = mean cross correlation between
partial or whole Gold sequences

161

SSMA SYSTEM Page 6 6-0ct-1992 16:08:29

RX DELAY Type: INTEGER
Lower Limit: 1
Upper Limit: 10000

Number of samples (units) to delay the input signal. NOTE, minimum value

MODULES USED IN BLOCK DIAGRAM:
>= REAL
LOGICAL TO NUMERIC
T >= T_ON
RANDOM DATA
DPSK MOD (BB)
MULTIPATH FADING CHANNEL CONVOLVER
MULTIPLIER
BUTTERWORTH LOWPASS
MULTI STAGE DELAY
OC ENCODER (ARBITRARY STAGES)
OC-DECODER
WHITE NOISE GIVEN SNR_&_BW
CONST GEN
> INTGR
RAKE DPSK DEMOD
ELLIPTIC LOWPASS
TERMINATE SIMULATION
ERROR COUNTER WITH TERMINATE SIGNAL
GOLD PN SEQUENCE
POSITION IN_SYMBOL

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

POSITION IN_SYMBOL (key 1)
TIME DELAY TO INPUT (SEC) == 0.0
SYMBOL FRAC FOR SAMPLE TIME == 0.0
SYMBOL RATE (HZ) == $CHIP RATE

GOLD PN SEQUENCE (key 2)
USER NUMBER == $PN SEQUENCE NUMBER
SIZE == SPN SEQUENCE LENGTH

ERROR COUNTER WITH TERMINATE SIGNAL (key 3)
FILE NUMBER == $FILE NUMBER
#ERRORS TO TERMINATE SIMULATION == S$#ERRORS TO TERMINATE SIMULATION
#BITS FOR A FILE UPDATE == $#BITS FOR A FILE UPDATE
DATA RATE == $DATA RATE
MAX DELAY (#BITS) == 100

ELLIPTIC LOWPASS {(key 4)
FILTER ORDER == 5
PASSBAND EDGE (HZ) == $CODED DATA RATE
PASSBAND RIPPLE (DB) == 0.5
STOPBAND EDGE (HZ) == 1.1 * ‘CODED DATA RATE®

RAKE DPSK DEMOD (key 95)
CHIP RATE == $CHIP RATE

162

SSMA SYSTEM Page 7 6-0ct-1992 16:08:29

DIVERSITY ORDER == $DIVERSITY ORDER

CONST GEN (key 6)
CONSTANT VALUE == $§ INTERFERERS

WHITE NOISE GIVEN SNR_& BW (key 7)
SIGNAL AVG PWR START TIME == (
SNR (DB) == $SNR
NOISE BW == SCODED DATA RATE
NOISE ON-TIME ==
REAL SEED == $INT/NOISE ISEED1
IMAGINARY SEED == $INT/NOISE ISEED2

OC-DECODER (key 8)
PATH MEMORY == $PATH MEMORY
== $CODE CONSTRAINT LENGTH
VALUE OF 2~(2*K) == Round (2.0~(2.0 * ‘CODE CONSTRAINT LENGTH'‘))
VALUE OF 2°K == Round (2.0”‘CODE CONSTRAINT LENGTH‘)

OC ENCODER (ARBITRARY STAGES) (key 9)
DATA RATE == $DATA RATE
CODE CONSTRAINT LENGTH == $CODE CONSTRAINT LENGTH

MULTI STAGE DELAY (key A)
DELAY NUM == Round (2.0 / (‘CHIP RATE' * ‘DT}))

BUTTERWORTH LOWPASS (key B)
FILTER ORDER == 3
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE‘
PASSBAND EDGE ATTENUATION (DB) == 3

BUTTERWORTH LOWPASS (key C)
FILTER ORDER == 3
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE‘
PASSBAND EDGE ATTENUATION (DB) == 3

MULTI STAGE DELAY (key D)
DELAY NUM == $RX DELAY

MULTIPATH FADING CHANNEL CONVOLVER (key E})
CHANNEL NUMBER == $SCHANNEL NUMBER .
CHANNEL START NUMBER == $CHANNEL START NUMBER
UPDATE PERIOD == $UPDATE PERIOD
VECTOR LENGTH == $CHANNEL VECTOR LENGTH

MULTI STAGE DELAY (key F)
DELAY NUM == $RX DELAY

CONST GEN (key G)
CONSTANT VALUE == (

POSITION IN SYMBOL (key H)
TIME DELAY TO INPUT (SEC) == 0.0
SYMBOL FRAC FOR SAMPLE TIME == 1.0
SYMBOL RATE (HZ) == $CODED DATA RATE

DPSK MOD (BB) (key I)
163

SSMA SYSTEM Page 8

BAUD_RATE == $SCODED DATA RATE
PHASE OFFSET == $PHASE OFFSET

RANDOM DATA (key J)
ISEED == $DATA ISEED
PROBABILITY OF FALSE == 0.5
BIT RATE == $DATA RATE

CONST GEN (key K)
CONSTANT VALUE == $DECODER ENABLE

T >= T ON (key L)
T-ON == (‘PATH MEMORY' + 2.5) / ‘DATA RATE‘

T >= T ON (key M)
T-ON == 0.5 / ‘DATA RATE®

LOGICAL TO NUMERIC (key N)
TRUE VALUE == -1
FALSE VALUE == 1

CONST GEN (key O)
CONSTANT VALUE == 0.0

INITIALIZATION CODE:

Subroutine: zizSSMASYSTEMFFPBIEOK
Arguments:
FILE NUMBER
INTERFERERS
CHANNEL NUMBER
CHANNEL START NUMBER
DIVERSITY ORDER
CODED DATA RATE
CHIP RATE
CHANNEL VECTOR LENGTH
SNR
RX DELAY

Description:

6~0ct—-1992 16:08:29

The initialization code finds the optimum delay between
the transmitter section and the receiver section for

sampling.
Also, the noise level due to the multi-user
is calculated by the initialization code.

164

interference

N30
<J iskdaE

Wa3L A
¥31nn03 <

<

Twna1s ()

08WAS NI
NO1L11S3d

v
< Wi < S554M07 <
=< <] HiyoM¥3LING
muzu:amwm__
_ <l
_n q ,5uema] < mayaNs] 4109

31113 NIALD

31IMm

P

0EWAS-NT
<J ‘norltsod (I

A

SSUAMG
<] nidom¥3LING

< zomnmmg_

165

Figure A14. The uncoded SSMA system.

(O34 ON) W3LSAS Olavd VWSS

5SMA RADIO SYSTEM (NO FEC) Page 1 6-0ct-1992 15:45:12

MODULLC NAME: SSMA RADIO SYSTEM (NO FEC)
GROUP: SYSTEM

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 25-Mar-1992 10:50:23

DESCRIPTION:
A noncoherent test system for simulating SSMA on indoor

multipath channels. No FEC coding is used.
The simulation processes baseband signals.

REVISIONS:
Author : rtse
Date : 13-Apr-1992 21:41:31
Description:

Edited 13-Apr-1992 21:41:31, No Edit Description Entered.

Author : rtse
Date : 13-Apr-1992 20:48:37
Description:

Edited 13-Apr-1992 20:48:37, No Edit Description Entered.

Author : rtse
Date : 25-Mar-1992 10:50:23
Description:

25-Mar-1992 10:50:24
Module CRZATION,

INPUT SIGNALS:
(none)

QUTPUT SIGNALS:
(none)

PARAMETERS :

STOP-TIME Type: REAL
lower Limit: 3.0E-39
Upper Limit: 1.7E38

Specifes the maximum value of time for the simulation {in seconds).
The simulation clock runs from time=0.0 to time=STOP-TIME
in steps of DT, all in seconds.

DT Type: REAL

166

SSMA RADIO SYSTEM (NO FEC) Page 2 6-0ct-1992 15:45:12

Lower Limit: 3.0E-39
Upper Limit: 1.7E38

Time between discrete simulation signal samples (in seconds).
DT must be small enough to satisfy the Nyquist Sampling
Theorem for all signals at all points in the simulation.

NOTE:

If the specified period or rate of a periodic function results
in a period that is not a multiple of DT, then BOSS will round
the period to the nearest value that IS a multiple of DT.

For example, if DT=0.125(sec) and a rate was
specified as rate=1.4(hz) which corresponds to a
period of T=0.714(sec) which is 5.7*DT , then BOSS
will round this period to be 6.0*DT and thus the
effective rate will be 1.333(hz).

Because of this, the choice for DT can affect the periods
of the periodic signals in the simulation.

FILE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 20

The value entered here determines which file the output
will be written to. Valid entries are integers from

1 to 20 inclusive. The output file is ‘ber##.file' where
represents the parameter value.

CHANNEL NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 50

The channel file to read from to get the impulse response.

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse respconse within a
channel impulse response file to start at.

DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate (in bits/sec) of the original uncoded data to
be transmitted.

167

SSMA RADIO SYSTEM (NO FEC) Page 3 6-0ct-1992 15:45:12

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate of the pn sequence, in bits/sec.

#ERRORS TO TERMINATE SIMULATION Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

when this number of errors is detected, the terminate
simulation signal output will go .true.

¥BITS FOR A FILE UPDATE Type: INTEGER

Lower Limit:
Upper Limit: 2147483647

The number of bits that are compared before the file
inclusive).

DATA ISEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed for the random data generator.

INT/NOISE ISEED1 Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed used to generate the real part of thee
noise/interference.

—— - —

INT/NOISE ISEED2 Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed used to generate the imaginary part of the
noise/interference.

PN SEQUFNCE NUMBER Type: INTEGER

168

SSMA RADIO SYSTEM (NO FEC) Page 4 6-0ct-1992 15:45:12

Lower Limit: 1
Upper Limit: 1024

This number determines which pn code to use.

PHASE OFFSET Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The absolute phase offset of the equivalent DPSK
carrier waveform (in radians).

INTERFERERS Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

This number determines the variance due to the number ot
interferers.

7, "RSITY ORDER Type: INTEGER
soewer Limit: 1
tpr.r Limit: 3

This integer determines the number of demodulators/decoders
to use to recover the transmitted data. The minimum
diversity order is 1 and the maximum is 3.

UPDATE PERIOD Type: REAL
Lower Liwit: 3.0E-39
Upper Limit: 1.7E38

This is the time period bstween changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ‘dt’.

DECCDER ENABLE Type: LOGICAL
Lower Limit: NIL
Upper Limit: NIL

If this value is .true., then the decoder will be enabled.
If it is .false., then the decoder will be disabled.

169

SSMA RADIO SYSTEM (NO FEC) Page 5 6-0ct~1992 15:45:12

PN SEQUENCE LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 5000

The number of symbols in the pn sequence.

CHANNEL VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

The number of samples in the multipath channel impulse
response.

COMPUTED PARAMETERS:

SNR Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The signal to noise ratio after despreading. This value
is calculated by:

snr = 10*1ogl0(2.0/ (avg_xcorr*#inter))

where avg x-orr is the mean cross-correlation
of partial or whole Gold sequences

RX DELAY Type: INTEGER
Lower Limit: 1
Upper Limit: 10000

Number of samples (units) to delay the input signal. NOTE, minimum value

MODULES USED IN BLOCK DIAGRAM:
>= REAL
T >= T_ON
RANDOM DATA
DPSK MOD (BB)
MULTIPATH FADING CHANNEL CONVOLVER
MULTIPLIER
MCLTI STAGE DELAY
BUTTERWORTH LOWPASS
WHITE NOISE GIVEN SNR_& BW
> INTGR
CONST GEN
RAKE DPSK DEMOD

170

SSMA RADIO SYSTEM (NO FEC) Page 6 6-0ct-1992 15:45:12

ELLIPTIC LOWPASS

TERMINATE SIMULATION

ERROR COUNTER WITH TERMINATE SIGNAL
GOLD PN SEQUENCE

POSITION IN_SYMBOL

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

POSITION IN SYMBOL (key 1)
TIME DELAY TO INPUT (SEC) == 0.0
SYMBOL FRAC FOR SAMPLE TIME ==
SYMBOL RATE (HZ) == $SCHIP RATE

GOLD PN SEQUENCE (key 2)
USER NUMBER == $PN SEQUENCE NUMBER
SIZE == $PN SEQUENCE LENGTH

ERROR COUNTER WITH TERMINATE SIGNAL (key 3)
FILE NUMBER == SFILE NUMBER
#ERRORS TO TERMINATE SIMULATION == S$S#ERRORS TO TERMINATE SIMULATION
#BITS FOR A FILE UPLATE == $#BITS FOR A FILE UPDATE
DATA RATE == $DATA RATE
MAX DELAY (#BITS) == 100

ELLIPTIC LOWPASS (:ey 4)
FILTER CRDER ==
PASSBANU EDGE (HT) == SLaA 2
PASSBAND RIPPLE (DB) == (.5
STOPBAND EDGE (HZ) == 1 * ‘DATA RATE®

RAKE DPSK DEMOD (key 5)

CHIP RATE == $CHIP RATE
DIVERSITY QfDER == $SDIVERSITY ORDER

CONST GEN (key 6)
CONSTANT VALUE

il
1l

$# INTERFERERS

CONST GEN (key 7)
CONSTANT VALUE

=0

WHITE NOISE GIVEN SNR_& BW (key 8)
SIGNAL AVG PWR START TIME ==
SNR (DB) 5SNR
NOISE BW S$DATA RATE
NOISE ON-TIME ==
REAL SEED == $INT/NOISE ISEED1
IMAGINARY SEED == $INT/NOISE ISEED2

BUTTERWORTH LOWPASS (key 9)
FILTER ORDER ==
FASSBAND EDGE (HZ) == (.5 * ‘CHIP RATE"
PASSBAND EDGE ATTENUATION (DB) == 3

BUTTERWORTH LOWPASS (key A)
FILTER ORDER ==
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE‘
PASSBAND EDGE ATTENUATION (DB) == 3

171

SSMA RADIO SYSTEM (NO FEC) Page 7 6-0ct-1992 15:45:12

MULTI STAGE DELAY (key B)
DELAY NUM == $RX DELAY

MULTIPATH FADING CHANNEL CONVOLVER (key C)
CHANNEL NUMBER == $CHANNEL NUMBER
CHANNEL START NUMBER == SCHANNEL START NUMBER
UPDATE .PERIOD SUPDATE PERIOD
VECTOR LENGTH SCHANNEL VECTOR LENGTH

[}

tou

MULTI STAGE DELAY (key D)
DELAY NUM == $RX DELAY

POSITION IN_SYMBOL (key E)
TIME DELAY TO INPUT (SEC) == 0.0
SYMBOL FRAC FOR SAMPLE TIME == 1
SYMBOL RATE (H2Z) == $DATA RATE

DPSK MOD (BB) (key F)
BAUD RATE == $DATA RATE
PHASE OFFSET == $PHASE OFFSET

RANDOM DATA (key G)
ISEED == $DATA ISEED
PROBABILITY OF FALSE == 0.5
BIT RATE == SDATA RATE

CONST GEN (key H)
CONSTANT VALUE == $DECODER ENABLE

T >= T_ON (key I)
T-ON == 2.5 / ‘DATA RATE®

T >= T ON (key J)
T-ON == 1.5 / ‘DATA RATE®

CONST GEN (key K)
CONSTANT VALUE == 0.0

INITIALIZATION CODE:

Subroutine: 2zizSSMARADIOSYSTEELLDLHRK
Arguments:
FILE NUMBER
INTERFERERS
CHANNEL NUMBER
CHANNEL START NUMBER
DIVERSITY ORDER
DATA RATE
CHIP RATE
CHANNEL VECTOR LENGTH
SNR
RX DELAY

Description:

172

SSMA RADIO SYSTEM (NO FEC) Page 8 6-0ct-1992 15:45:12

The initialization code finds the number of samples of
delay between the signal just before the transmit low-pass
filter and the optimum sampling pecint at the receiver.
Also, the code finds the SNR after despreading which
results from the multi-user interference.

173

eEeReEeEeRe R ED o

coOn

naooa

~
[P

o

aocnoooo
¢ v ld ta Ve

C

SNR

ROUTINE_SYSTEM_INIT

This initialization code finds the appropriate delay required
in order to sample the signal at the optimum time and calcu-
lates the SNR after despreading of whole or partial Gold se-
quences. The delay accounts for the multipath channel and

the low-pass filters **. The number of samples per symbol
time, the diversity order of the RAKE (equal gain) receiver,
the channel length (in & of samples), the channel set to use,
and the impulse response within the set to be used need to be
specified. The units of the output ‘delay’ is in # of samples.

*k*ﬁ****i**t*i****t*****t**************************************

The SNR of the system after despreading is calculated by the
following algorithm.

10410g10{2.0/ (avg_xcorr*#interferers))dB if #interferers >

0
30dB if #interfersrs 0

where avg_xcorr = the mean cross correlation between partial
or whole Gold sequences

kﬂitkhlA*tkﬁ*i**i**t*******i*********k**************************

An extra 6 samples of delay is added to the output delay value
to account for the transmit and receive 3rd order Butterworth
low pass filter delay with a cut-off frequency equal to 16 MHz.
One sample is then subtracted to account for the fact that this
program calculates assuming a minimum delay of 1 where BOSS
assumes a minimum delay of 0.

subroutine sample(file_num,inter,chnlnumuehlstrt,diver,
& coded_rate,chip_rate, 2. len,snr,rx_delay)

implicit none

integer lun,nel,chlstrt,chnlnum, i, j, rx . iay, k, inter
integer vec_len,diver,samp_sym,count,nex:¢Lile*num,spread
complex ch(80),sum(80),cmplx,out (80)

real dist,time,mag,max,chip_rate,avg_xcorr

real coded_rate, snr

include ‘' /bossdir/system/BOSSFORTRAN.INC’
samp_sym = int(1.0/(chip_rate*dt)~0.5)

Read the channel impulse response
call libget_lun{lun)
nol = lun
go to(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,
& 21,22,23,24,25,26,27,28,29,30,31, 32, 33, 34,35, 36,
& 37,38,39,40,41,42,43,44,45,46,47,48,49,50),chnlnum
open(unit=nol, file=’fcla’, status="o0ld’)
go to 99
open (unit=nol, file=’fc2a’, status='0ld’)
go to 99
open(unit=nol, file=’fc3a’,status='old’)
go to 99
open (unit=nol, file='fcda’, status='o0ld’)
go to 99
open (unit=nol, file=’fc5a’, status='o0ld’)

174

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

go to 99

open(unit=nol, file='fc6a’,status=’old’)
go to 99

open{unit=nol, file='fc7a’, status='o0ld’)
go to 99

open(unit=nol, file='fc8a’,status=’'0ld’)
go to 99
open(unit=nol,file=’'fc9%a’,status='o0ld’)
go to 99

open(unit=nol, file='fc10a’,status=‘'o0ld’)
go to 99

open(unit=nol, file=’fclla’, status='0ld’)
go to 99

open(unit=nol, file='fcl2a’,status='0ld’)
go to 99

open(unit=nol, file='fcl3a’,status=’'o0ld’)
go to 99
open(unit=nol,file='fcl4a’,status='old’)
go to 99

open{unit=nol, file='£fcl5a’,status=’'o0ld’)
go to 99

open(unit=nol, file=’'fcl6a’,status=’'o0ld’)
go to 99
open{unit=nol,file='fcl7a’,status='o0ld’)
go to 99
open(unit=nol,file=’fcl8a’,status='o0ld’)
go to 99

open (unit=nol, file='fcl9%’,status="'o0ld’)
go to 99

open{unit=nol, file='fc20a’,status=‘0ld’)
go to 99
open(unit=nol,file='£fc2la’,status='0ld’)
go to 99
open(unit=nol,file=’fc22a’,status=‘'old’)
go to 99
open(unit=nol,file=’'fc23a’,status='0ld’)
go to 99

open{unit=nol, file='fc24a’,status="0ld’)
go to 99

open{unit=nol, file=’fc25a’,status="o0ld’)
go to 99

open(unit=nol, file='fc26a’,status="o0ld’)
go to 99

openi{unit=nol, file='fc27a’,status='o0ld’)
go to 99

open(unit=nol, file='fc28a’,status='0ld’)
go to 99
open(unit=nol, file= fc29a’,status=’o0ld’)
go to 99

open(unit=nol, file=’fc30a’,status='o0ld’)
go to 99

open{unit=nol, file='fc3la’,status='old’)
go to 99
open{unit=nol,file='fc32a’,status='0ld’)
go to 99
open{unit=nol,file="fc33a’,status='0ld’)
go to 99

open{unit=nol, file='fc34a’,status=’old’)
go to 99

open(unit=nol, file='fc35a’,status="0ld’)

175

@]

go to 99
36 open{unit=nol, file='fc36a’,status="0ld’)

go to 99

37 open(unit=nol, file=’fc37a’,status="o0ld’)
go to 99

38 open (unit=nol,file="fc38a’,status='0ld’)
go to 99

39 open{unit=nol, file='fc39%a’,status='0ld’")
go to 99

40 open{unit=nol, file='fc40a’,status="old’)
go to 99

11 open(unit=nol, file='fc4la’,status=‘o0ld’)
go to 99

42 open(unit=nol,file='fc42a’,status="0ld’)
go to 99

43 open(unit=nol, file=’fc43a’,status='0ld’)
go to 99

44 open(unit=nol, file='fc44a’,status='old’)
go to 99

15 open (unit=nol, file=’fc45a’,status='0ld")
go to 99

16 open(unit=nol, file=’fc46a’,status="0ld’")
go to 99

47 open(unit=nol, file='fc47a’,status="0ld’)
go to 99

48 open{unit=nol, file='fc48a’,status="0old")
go to 99

49 open{unit=nol, file=’fc49%a’,status="o0ld’)
go to 99

50 open(unit=nol, file='fc50a’,status='0ld’)
99 continue
do i = 1,chlstrt,l
do k = 1,vec_len,1
read(nol,100) dist,time,ch(k)
100 format (f10.6,f12.6,el14.6,el14.6)
enddo
enddo
close(nol, status='keep’)
call libfree_lun(nol)

Find the number of sample delays required so that sampling will
be done at the optimum point. If diversity is used, then this
is also taken into account (assuming equal gaiua combining).

Find output of square pulse convolved with channel profile.
do 1 = 1,vec_len+samp_sym-1,1
do j = 1,samp_sym,1
if (i-j+l.ge.l) then
if (i-j+l.le.vec_len) then
out (i} = out (i) + ch(i-j+1)
endif
endif
enddo
enddo

do count = 1,vec_lent+samp_sym-l-samp_sym*diver, 1
do 3 = 1,diver,1
next = (j-1) *samp_symt+count
do i = next,next+samp_sym-1,1
sum(count) = sum(count)+out (1)

176

1000

1001

1002

2003

1904

1605

1006

1007

1008

1009

1010
1011

&

&

enddo
mag = cabs (sum{count))**2.0+mag
sum(count) = cmplx(0.0,0.0)
enddo
if (mag.gt.max) then
max = mag
rx_delay = count-1+6
if (chip rate.lt.30.0E6) then
rx_delay = rx_delay+?
endif
endif
mag = 0.0
enddo

Get the correct value for avg_xcorr.

spread = int(log(l0.0)*loglO(chip_rate/coded_rate)/
log(2.0)+0.5)+1

goto (1000,1001,1002,1003,1004,1005,1006,1007,1008,

1009,1010) spread
avg_xcorr = 0.75/1.0
goto 1011
avg_xcorr = 0.86321/2.0
goto 1011
avg_xcorr = 1.26267/4.0
goto 1011
avg_xcorr = 1.80442/8.0
goto 1011
avg_xcorr = 2.57023/16.0
goto 1011
avg_xcorr = 3.32039/32.0
goto 1011
avg_xcorr = 5.05359/64.0
goto 1011
avg_xcorr = 7.35673/128.0
goto 1011
avg_xcorr = 10.39165/256.0
goto 1011
avg_xcorr = 14.4094/512.0
goto 1011
avg_xcorr = 19.7768/1024.0
continue

snr = 10.0*10gl10(2.0/(avg_xcorr*inter))
if (inter.eq.0) then

snr = 30.0
endif

This last part writes the delay and the resultant magnitude

to the file ’‘simdat.file’.

call libget_lun(lun)

open (unit=lun,file='siminfo.file’,access='append’)

write(lun, *) ‘file# =’,file num,’ channel =’,chnlnum,
1~ ,chlstrt

write(lun,*) ’ delay =',rx _delay,’ mag =',max

write(lun,*) ' #interferers =',inter

write{lun,*) ' despread snr =’,snr,’dB’

write(lun,*) *

close(lun,status='keep’)

call libfree_lun(lun)

177

re:turn

end

178

A1l.ix SSMA System for Use with Error Bound

This system is identical to the one in A1.viii except that the decoder has
been removed and the error counter has been moved to count the number of
symbol errors rather than the bit errors. The initialization code used for this
system is ROUTINE_SYSTEM_INIT. This is the same code as used for the

system described in A1.viii.

179

HOILYINWIS
JoNIHaaL <

N9 1S <
JIUNIWNIL

Vv
NJELLH <tHa 1SND3

Ay130
g 39Wis
110K W FORERIE
N32
<3 15803

0885 N1
NO11150d)

A
)
3
o<
]
xwm

A

d

aow3g <

—]

H1IM
<] #0173130 336 (E)

<

IIAQ AMIII

3oR3N03S <
< a109 !

Q08RAS NI
<l 'noIlrisoq(H

| —

<

43AT0ANCT
TIINNUHI
INIOQYS
HIYdILIINW

TR o o]
d3a0aN3Iy < woahud
304

WILSAS HOHg3 JOGWAS

180

stem for use with the error bounding
method.

Figure A15. The SSMA sy

SYMBOL ERROR SYSTEM Page 1 6-0ct~1992 16:08:46

MODULE NAME: SYMBOL ERROR SYSTEM
GROUP: SYSTEM

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 23-Jul-1992 15:34:34

DESCRIPTION:

A noncoherent test system for simulating SSMA on indoor
multipath channels with orthogonal convolutional coding.
The simulation processes baseband signals and counts the
encoded symbol error rate.

The results of the encoded symbol error rate are written
to the file ’'berxx.file’, where xx is a number from 1 to
20 inclusive.

REVISIONS:
Author : rtse
Date : 30-Jul-1992 11:13:27
Description:

Edited 30-Jul-1992 11:13:27, No Edit Description Entered.

Author : rtse
Date : 23-Jul-1992 15:34:34
Description:

23-Jul-1992 15:34:36
Module CREATION.

INPUT SIGNALS:
(none)

OUTPUT SIGNALS:
{none)

PARAMETERS:

STOP-TIME Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

Specifes the maximum value of time for the simulation (in seconds).
The simulation clock runs from time=0.0 to time=STOP-TIME
in steps of DT, all in seconds.

- - —

DT Type: REAL
Lower Limit: 3.0E-39

181

SYMBOL ERROR SYSTEM Page 2 6-0ct-1992 16:08:46
Upper Limit: 1.7E38

Time between discrete simulation signal samples (in seconds).
DT must be small enough to satisfy the Nyquist Sampling
Theorem for all signals at all points in the simulation.

NOTE: :
If the specified period or rate of a periodic function results
in a period that is not a multiple of DT, then BOSS will round
the period to the nearest value that IS a multiple of DT.
For example, if DT=0.125(sec) and a rate was
specified as rate=1.4(hz) which corresponds to a
period of T=0.714(sec) which is 5.7*%DT , then BOSS
will round this period to be 6.0*DT and thus the
effective rate will be 1.333(hz).

Because of this, the choice for DT can affect the periods
of the periodic signals in the simulation.

FILE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 20

The value entered here determines which file the output
will be written to. Valid entries are integers from

1l to 20 inclusive. The output file is ‘ber##.file" where
represents the parameter value.

CHANNEL NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 50

The channel file to read from to get the impulse response.

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse response within a
channel impulse response file to start at.

CODE CONSTRAINT LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 10

The constraint length of the orthogonal convolutional code.
This value is limited to a maximum of 10.

182

SYMBOL ERROR SYSTEM Page 3 6-0ct-1992 16:08:46

DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate (in bits/sec) of the original uncoded data to
be transmitted.

CODED DATA RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate of the orthogonal convolutionally encoded data.

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The rate of the pn sequence, in bits/sec.

#ERRORS TO TERMINATE SIMULATION Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

When this number of errors is detected, the terminate
simulation signal output will go .true..

#BITS FOR A FILE UPDATE Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The number of bits that are compared before the file
inclusive).

DATA ISEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed for the random data generator.

INT/NOISE ISEED1l Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

183

SYMBOL ERROR SYSTEM Page 4 6-0ct-1992 16:08:46

The initial seed used to generate the real part of thee
noise/interference.

INT/NOISE ISEED2 Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The initial seed used to generate the imaginary part of the
noise/interference.

PN SEQUENCE NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 1024

This number determines which pn code to use.

PHASE OFFSET Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The absolute phase offset of the equivalent DPSK
carrier waveform (in radians).

INTERFERERS Type: INTEGER
Lower Limit: O
Upper Limit: 2147483647

This number determines the variance due to the number of
interferers.

DIVERSITY ORDER Type: INTEGER
Lower Limit: 1
Upper Limit: 3

This integer determines the number of demodulators/decoders
to use to recover the transmitted data. The minimum
diversity order is 1 and the maximum is 3.

— —— — — o - -

PN SEQUENCE LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 5000

184

SYMBOL ERROR SYSTEM Page 5 6-0Oct-1992 16:08:46

The number of symbols in the pn sequence.

CHANNEL VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

The number of samples in the multipath channel impulse
response.

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ‘dt’.

COMPUTED PARAMETERS:

SNR Type: REAL
Lower Limit: -1.7E38
Upper Limit: 1.7E38

The signal to noise ratio after despreading. This is
calculated by:

SNR = 10*log(2/(avg_xcorr*#interferers))

where avg_xcorr = mean cross correlation between
partial or whole Gold sequences

RX DELAY Type: INTEGER
Lower Limit: 1
Upper Limit: 10000

Number of samples (units) to delay the input signal. NOTE, minimum value

MODULES USED IN BLOCK DIAGRAM:
>= REAL
RANDOM DATA
DPSK MOD (BB)

185

SYMBOL ERROR S5YSTEM Page 6 6-0ct-1992 16:08:46

MULTIPATH FADING CHANNEL CONVOLVER
MULTIPLIER

BUTTERWORTH LOWPASS

OC ENCODER (ARBITRARY STAGES)
WHITH{ NOISE GIVEN SNR_ & BW

> INTGR

RAKE DPSK DEMOD

ELLIPTIC LOWPASS

TERMINATE SIMULATION

GOLD PN SEQUENCE

POSITION IN_SYMBOL

BER_DETECTOR WITH TERMINATE SIGNAL
CONST GEN

MULTI STAGE DELAY

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

MULTI STAGE DELAY (key 1)
DELAY NUM == Round (1.0 / (‘CODED DATA RATE' * ‘DT'))

CONST GEN (key 2)
CONSTANT VALUE == 0

BER DETECTOR WITH TERMINATE SIGNAL (key 3)
#ERRORS TO TERMINATE SIMULATION == $#ERRORS TO TERMINATE SIMULATION
FILE NUMBER == $FILE NUMBER
#BITS FOR A FILE UPDATE == $#BITS FOR A FILE UPDATE
MAX DELAY (#BITS) == 100

POSITION IN_SYMBOL (key 4)
TIME DELAY TO INPUT (SEC) == 0.
SYMBOL FRAC FOR SAMPLE TIME ==
SYMBOL RATE (HZ) == $CHIP RATE

0
0.0

GOLD PN SEQUENCE (key 5)
USER NUMBER == $PN SEQUENCE NUMBER
SIZE == $PN SEQUENCE LENGTH

ELLIPTIC LOWPASS (key 6)
FILTER ORDER ==
PASSBAND EDGE (HZ) =
PASSBAND RIPPLE (DB)
STOPBAND EDGE (HZ) =

$CODED DATA RATE
== 0.5
1.1 * ‘CODED DATA RATE‘

RAKE DPSK DEMOD (key 7)
CHIP RATE == $CHIP RATE
DIVERSITY ORDER == $DIVERSITY ORDER

CONST GEN (key 8)
CONSTANT VALUE == $# INTERFERERS

WHITE NOISE GIVEN SNR_& BW (key 9)
SIGNAL AVG PWR START TIME == 0
SNR (DB) == $SNR
NOISE BW == $CODEL UATA RATE
NOISE ON-TIME == 0
REAL SEED == $INT/NOISE ISEED1

186

SYMBOL ERROR SYSTEM Page 7 6-0ct-1992 16:08:46

IMAGINARY SEED == $INT/NOISE ISEED2

OC ENCODER (ARBITRARY STAGES) (key A)
DATA RATE == $DATA RATE
CODE CONSTRAINT LENGTH == $CODE CONSTRAINT LENGTH

MULTI STAGE DELAY (key B)
DELAY NUM == Round (2.0 / (‘CHIP RATE' * ‘DT‘))

BUTTERWORTH LOWPASS (key C)
FILTER ORDER ==
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE®
PASSBAND EDGE ATTENUATION (DB) == 3

BUTTERWORTH LOWPASS (key D)

FILTER ORDER == 3
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE®
PASSBAND EDGE ATTENUATION (DB) == 3

MULTI STAGE DELAY (key E)
DELAY NUM == $RX DELAY

MULTIPATH FADING CHANNEL CONVOLVER (key F)
CHANNEL NUMBER == $CHANNEL NUMBER
CHANNEL START NUMBER == $SCHANNEL START NUMBER
UPDATE PERIOD == SUPDATE PERIOD
VECTOR LENGTB == $CHANNEL VECTOR LENGTH

MULTI STAGE DELAY (key G)
DELAY NUM == $RX DELAY

POSITION IN_SYMBOL (key H)
TIME DELAY TO INPUT (SEC) == 0.0
SYMBOL FRAC FOR SAMPLE TIME == 1.0
SYMBOL RATE (HZ) == $CODED DATA RATE

DPSK MOD (BB) (key I)
BAUD_RATE == $CODED DATA RATE
PHASE OFFSET == SPHASE OFFSET

RANDOM DATA (key J)
ISEED == $DATA ISEED
PROBABILITY OF FALSE == 0.5
BIT RATE == $DATA RATE

CONST GEN (key K)
CONSTANT VALUE == 0.0

INITIALIZATION CODE:

Subroutine: zizSYMBOLERIORSYSPEBKCCOK
Arguments:

FILE NUMBER

INTERFERERS

CHANNEL NUMBER

CHANNEL START NUMBER

187

SYMBOL ERROR SYSTEM Page 8 6-0ct-1992 16:08:46

DIVERSITY ORDER
CODED DATA RATE

CHIP RATE

CHANNEL VECTOR LENGTH
SNR

RX DELAY

Description:

The initialization code finds the optimum delay between
the transmitter section and the receiver section for
sampling.

Also, the noise level due to the multi-user interference
is calculated by the initialization code.

188

A1.x Interference Generating System

Figure A16 shows the module which produces one interference signal for
the interference generating system. The system is used to write samples of
interference for statistical analysis. Each interference module generates random
data at the chip rate to represent the spread signal at baseband. Each signal is
subjected to a random phase offset, a random time delay (up to 1 chip time), and
an activation factor of 0.5. The result is convolved through a multipath channel
unique to each interferer.

Any number of interferers can be simulaied by summing the outputs of an
equivalent number of these modules. The summed signals are then low-pass
filtered by two third-order Butterworth transmit and receive filters with 3 dB
frequencies equal to half the chip rate. The resulting signal is then multiplied
with a despreading sequence. The product can be analyzed for its
approximation to white Gaussian noise.

An interference generating system for 9 interfering users is shown in

Figure A17.

189

53NdwiS
30 &)
L] r—
08RAS NI
< 40aul < N0I1IS0d
hY
. >
—1< .Ewm&lA zuouzam@ q ¥-im
wa04INN ="1
W3S o~
<3 ysui3(El 3
hEH] N39 ™ h
< 1snd3 (6N N39
30INT
A HD 35 %

, N3 E
<] 1sNO3

\/
9
, < N39
Q" d a < 1sND3

43AT0ANOD
< ._wu_mmuw < $31dWuS > =
HLEdIL1INW g 193138 g 10 [V uHmuzmua oI0a
- 1< J < qy37907 I woanuy (E

[G200ONN) 3SION DNIHIIHILINI

190

Figure A16. Interference generator.

INTERFERING NOISE (UNCODED) Page 1 6-0ct-1992 15:46:18

MODULE NAME: INTERFERING NOISE (UNCODED)
GROUP: NOISE AND INTERFERENCE

DATABASE: /home/suns/rtse/model_db/
AUTHOR: rtse

CREATION DATE: 24-0ct-1991 20:42:55

DESCRIPTION:

This module generates the result of a random chip stream,
REPRESENTING a FEC coded data stream with a 1/n rate
orthogonal convolutional code which is then spread with
a gold sequence, which is randomly delayed, transformed
into an impulse, and then convolved with an indoor
multipath fading channel.

REVISIONS:
Author : rtse
pate : 31-Jan-1992 13:29:05
Description:

Edited 31-Jan-1992 13:29:05, No Edit Description Entered.

Author : rtse
Date : 19-Dec~1991 14:11:18
Description:

Edited 19-Dec-1991 14:11:18, No Edit Description Entered.

Author : rtse
Date : 12-Dec-1991 16:50:50
Description:

Edited 12-Dec-1991 16:50:50, No Edit Description Entered.

Author : rtse
Date : 6-Dec-1991 15:04:12
Description:

Edited 3-Dec-1991 16:26:33, No Edit Description Entered.
Edited 6-Dec-1991 10:12:29, No Edit Description Entered.
Edited 6-Dec-1991 15:04:12, No Edit Description Entered.

Author : rtse
Date : 4-Nov-1991 14:40:46
Description:

Edited 4-Nov-1991 14:40:46, No Edit Description Entered.

Author : rtse
Date : 24-0ct-1991 20:42:55
Description:

191

INTERFERING NOISE (UNCODED) Page 2 5-0ct-1992 15:46:18

24-0ct-1991 20:43:29
Module CREATION.

INPUT SIGNAYS:
{(none)

OUTPUT SIGNALS:

QUTPUT Type: COMPLEX
Lower Limit: (-1.7E38 -1.7E38)
Upper Limit: (1.7E38 1.7E38)

The output of the interfering user. The result is a
coded data signal impulse, randomly delayed, and passed
through an indoor multipath channel.

PARAMETERS:

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The chip rate of a DS-SSMA interfering user.

CHANNEL NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 50

The channel file to read from to get the impulse response.

CHANNEL START NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 19

This value determines which impulse response within a
channel impulse response file to start at.

CHANNEL VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

The number of samples in the multipath fading channel
impulse response.

192

INTERFERING NOISE (UNCODED) Page 3 6-0ct-1992 15:46:18

DATA SEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The input seed for the random data generator.

- —— -

DELAY SEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The seed to generate the random number which determines
the number of samples to delay the signal.

ACTIVATION SEED Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The seed to generate a uniform random number for the
activation.

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ‘dt’.

MODULES USED IN BLOCK DIAGRAM:
RANDOM DATA
REAL TO INTGR
SELECT
POSITION IN_SYMBOL
UNIFORM RAN_GEN
>= REAL
LOGICAL TO NUMERIC
DELAY INPUT # OF SAMPLES
T <= T_OFF
ADDER
CONST GEN
CMPLX EXPONENTIAL
MULTIPLIER
MULTIPATH FADING CHANNEL CONVOLVER

193

INTERFERING NOISE (UNCODED) Page 4 6-0ct-1992 15:46:18

PARAMETER VALUES FOR INSTANCES IN- BLOCK DIAGRAM:

MULTIPATH FADING CHANNEL CONVOLVER (key 1)
CHANNEL NUMBER == $CHANNEL NUMBER
CHANNEL START NUMBER == $CHANNEL START NUMBER
UPDATE PERIOD == S$UPDATE PERIOD
VECTOR LENGTH == $CHANNEL VECTOR LENGTH

CONST GEN (key 2)

CONSTANT VALUE 6.283185307179586

CONST GEN (key 3)
CONSTANT VALUE

I
]
fuy

T <= T_OFF (key 4)
T-OFF == 0.5 * ‘DT*

DELAY INPUT # OF SAMPLES (key 5)
MAX DELAY == 5000

LOGICAL TO NUMERIC (key 6)
TRUE VALUE == (1.0 , 0.0)
FALSE VALUE == (-1.0 , 0.0)

CONST GEN (key 7)
CONSTANT VALUE == 0.5

UNIFORM RAN GEN (key 8)
ISEED == $ACTIVATION SEED

CONST GEN (key 9)
CONSTANT VALUE == (0.0 , 0.0)

POSITION IN SYMBOL (key A)
TIME DELAY TO INPUT (SEC) ==
SYMBOL FRAC FOR SAMPLE TIME == 0
SYMBOL RATE (HZ) == $CHIP RATE

UNIFORM RAN GEN (key B)
ISEED == $DELAY SEED

CONST GEN (key C)
CONSTANT VALUE == Round (1.0 / (‘CHIP RATE' * ‘DT‘))

DELAY INPUT # OF SAMPLES (key D)
MAX DELAY == 5000

RANDOM DATA (key E)
ISEED == $DATA SKED
PROBABILITY OF FALSE == 0.5
BIT RATE == $CHIP RATE

INITIALIZATION CODE:¢
(none)

194

S0aWAS NI
<] 'noiLitsod(1l

H_zm:ammA_
a5 [
SSYdMo1<h| SSYdMo
<] H1¥0MIILLNG

< H140MI3LINE)

(Q300JNN)
‘aaage 4 ag§@
< on1x3483INT INIYIJNILINT
(03003NN)
et T
9]
< gN1a3HIINT NI¥3J
o <
< gNIN3INIINT 9
(Q3a02NNM
3I5I0N
< quu&u.EHB

o
J + << gn1uasa3iNg

£

{a3ac

< gy1y3453

73]
=t Z
-~

n
0
N

(S90O-1340S 3HLIN0L ' HISNO0 L) TIdOW JSION

Figure A17. System for writing interference samples of 9 interferers.

195

NOISE MODEL (10USER, 10METRE, SOFT-OBS) Page 1 6-0ct-1992 15:46:55

MODULE NAME: NOISE MODEL (10USER,10METRE, SOFT-OBS)
GROUP: SYSTEM

DATABASE: /home/suns/rtse/model_db/

AUTHOR: rtse

CREATION DATE: 20-Jan-1992 14:22:48

DESCRIPTION:

This module generates the result of 9 random chip streams,
representing signals coded with 1/n rate orthogonal
convolutional codes and spread with gold sequences,

which are randomly delayed, convolved with an indoor
multipath channel, and then passed through a 3rd order
butterworth low pass filter with passband equal to 0.5*
the chip rate. The ‘activation factor’ is 0.5.

REVISIONS:
Author : rtse
Date : 4-May-1992 13:12:02
Description:

Edited 4-May-1992 13:12:02, No Edit Description Entered.

Author : rtse
Date : 4-May-1992 11:09:24
Description:

Edited 4-May-1992 11:09:24, No Edit Description Entered.

Author : rtse ‘
Date : 4-Feb-1992 13:07:19
Description:

This module was MOVED into this data base.

Author : rtse
Date ¢ 20-Jan-1992 14:22:48
Description:

20-Jan-1992 14:22:50
Module CREATION.

INPUT SIGNALS:
(none)

OUTPUT SIGNALS:
(none)

PARAMETERS :

196

NOISE MODEL (10USER, 10METRE, SOFT-OBS) Page 2 6~-0ct-1992 15:46:55

STOP-TIME Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

Specifes the maximum value of time for the simulation (in seconds).
The simulation clock runs from time=0.0 to time=STOP-TIME
in steps of DT, all in seconds.

DT Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

Time between discrete simulation signal samples (in seconds).
DT must be small enough to satisfy the Nyquist Sampling
Theorem for all signals at all points in the simulation.

NOTE:

If the specified period or rate of a periodic function results
in a period that is not a multiple of DT, then BOSS will round
the period to the nearest value that IS a multiple of DT.

For example, if DT=0.125(sec) and a rate was
specified as rate=1.4(hz) which corresponds to a
period of T=(0.714(sec) which is 5.7*DT , then BOSS
will round this period to be 6.0*DT and thus the
effective rate will be 1.333(hz).

Because of this, the choice for DT can affect the periods
of the periodic signals in the simulation.

USER NUMBER Type: INTEGER
Lower Limit: 1
Upper Limit: 2147483647

The user number corresponds to the nth user in
the multiple access system.

CHANNEL VECTOR LENGTH Type: INTEGER
Lower Limit: 1
Upper Limit: 65

The number of samples in the multipath fading channel
impulse response.

CHIP RATE Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

The chip rate of a DS-SSMA interfering user.

197

NOISE MODEL (10USER, 10METRE, SOFT-OBS) Page 3 6-0ct-1992 15:46:55

UPDATE PERIOD Type: REAL
Lower Limit: 3.0E-39
Upper Limit: 1.7E38

This is the time period between changes in the impulse
response. That is, after each period equal to the
entered value, a new impulse response will be read from
the file.

The entered value should be an integer multiple of ‘dt’.

T-ON Type: REAL
Lower Limit: 0.0
Upper Limit: 1.7E38

Time (seconds) in which enable becomes true.

MODULES USED IN BLOCK DIAGRAM:
PRINT SIGNAL
T >= T_ON
3TINPUT ADDER
INTERFERING NGISE (UNCODED)
BUTTERWORTH LOWPASS
GOLD PN SEQUENCE
POSITION IN_SYMBOL
MULTIPLIER

PARAMETER VALUES FOR INSTANCES IN BLOCK DIAGRAM:

POSITION IN_SYMBOL (key 1)
TIME DELAY TO INPUT (SEC) ==
SYMBOL: FRAC FOR SAMPLE TIME == 0
SYMBOL RATE (HZ) == $CHIP RATE

GOLD PN SEQUENCE (key 2)
USER NUMBER == $USER NUMBER
SIZE == 1024

BUTTERWORTH LOWPASS (key 3)
FILTER ORDER == 3
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE®
PASSBAND EDGE ATTENUATION (DB) == 3

BUTTERWORTH LOWPASS (key 4)
FILTER ORDER == 3
PASSBAND EDGE (HZ) == 0.5 * ‘CHIP RATE®
PASSBAND EDGE ATTENUATION (DB) == 3

INTERFERING NOISE (UNCODED) (key 5)

CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 25

198

NOISE MODEL (10USER, 10METRE, SOFT-OBS) Page 4

CHANNEL START NUMBER == 1

CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 183909825

DELAY SEED == 699140313

ACTIVATION SEED == 981312769

UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key 6)
CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 8
CHANNEL START NUMBER == 1
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 1124259969
DELAY SEED == 882912129
ACTIVATION SEED == 742083457
UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key 7)
CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 12
CHANNEL START NUMBER ==
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 160204001
DELAY SEED == 222021027
ACTIVATION SEED == 310014729
UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key 8)
CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 26
CHANNEL START NUMBER == 1
CHANNEL VECTOR LENGTH == $CHANNLL VECTOR LENGTH
DATA SEED == 206419483
DELAY SEED == 949161473
ACTIVATION SEED == 1588745985
UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key 9)
CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 45
CHANNEL START NUMBER == 1
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 1763284865
DELAY SEED == 1404081793
ACTIVATION SEED == 223961473
UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key A)
CHIP RATE == SCHIP RATE
CHANNEL NUMBER == 16
CHANNEL START NUMBER == 1
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 99142629
DELAY SEED == 819856769
ACTIVATION SEED == 1714069761
UPDATE PERIOD == $UPDATE PERIOD

199

6-0ct-1992 15:46:55

NOISE MODEL (1JUSER, 10METRE, SOFT-0OBS) Page 5 6-0ct-1992 15:46:55

INTERFERING NOISE (UNCODED) (key B)
CHIP RATE == SCHIP RATE
CHANNEL NUMBER == 43
CHANNEL START NUMBER ==
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 2027428865
DELAY SEED == 1946191745
ACTIVATION SEED == 1875028353
UPDATE PERIOD == $UPDATE PERIOD

INTERFERING NOISE (UNCODED) (key C)
CHIP RATE == $CHIP RATE
CBANNEL NUMBER == 29
CHANNEL START NUMBER ==
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 339568129
DELAY SEED == 251663105
ACTIVATION SEED == 387172481
UPDATE PERIOD == $SUPDATE PERIOD

INTERFERING NOISE (UNCODED) (key D)
CHIP RATE == $CHIP RATE
CHANNEL NUMBER == 32
CHANNEL START NUMBER ==
CHANNEL VECTOR LENGTH == $CHANNEL VECTOR LENGTH
DATA SEED == 2072676737
DELAY SEED == 635605761
ACTIVATION SEED == 1991407201
UPDATE PERIOD == $UPDATE PERIOD

T >= T_ON (key E)
T-ON == $T-ON

PRINT SIGNAL (key F)
LEADING STRING ==
TRAILING STRING ==

INITIALIZATION CODE:
(none)

Appendix 2
Fortran and C Support Code

201

A2.i Gold Sequence Generation

The Fortran code for generating all the true Gold sequences of iength ok
1 from preferred pairs of maximal length sequences (m-sequences) of order k is
given as PROGRAM_GOLD_GENERATOR. The method outlined in Chapter 3
and Appendix 7 of [15] and the tables of irreducible polynomials from [16] are
used to generate the true Gold sequences. Since true Gold sequences of order
10 are desired, we find that the preferred pairs of m-sequences have
characteristic polynomials of 1+X3+X10 and 1+X2+X3+X8+X10,

The program uses these characteristic polynomials to generate the two
m-sequences and then combines them to generate the 2k-1 true Gold
sequences. These Gold sequences are then written to the file 'gold_codes.dat'
which is to be read during the simulations. During the simulations, these true
Gold sequences are modified by adding 1 chip of random state in order to make

their lengths equal to 1024 (see Subsection 2.1.6).

202

(@]

acacoan

e e NeEs Nz NS

10

30

PROGRAM_GOLD_GENERATOR

FORTRAN code for generating GOLD codes from two m-sequences

The length (n for code lengths of 2”n - 1), the number of

taps for each of the two m-sequences, and the tap numbers

of the two m—-sequences must be altered within the program

to get different GOLD codes. NOTE: a maximum of 128 different
GOLD codes are generated.

integer ¢, cc, ccc, a(5000), b(5000), out, n, golda(5000), max
integer goldb(5000), backa, backb, fba(20), fbb(20), an, bn
integer cona, conb

Make the two m-sequences first

n = the order of the m-sequences

an = the number of taps for the first m-sequence

bn = the number of taps for the second m-sequence

fba(x) and fbb(x) contain the values of the taps for the
first and second m-sequences respectively.

n=4

an = 2

bn = 2
fba(l) = 1
fba(2) = 4
fba(3) = 3
fba(4) = 4
fba(5) = 999
fba(6) = 999
fbb(l) = 1
fbb(2) = 2
fbb(3) = 999
fbb(4) = 999
fbb(5) = 999
fbb(6) = 999

Initialize the shift registers to all 1’s.
do 10 ¢ = 1,n,1

a(c) = 1
b(c) =1
continue

Generate the two m-sequence codes.
do 20 ¢ =1, 2**n-1, 1

golda{c) = a(n)

goldb(c) = b(n)

backa = a(}l)
backb = b(1l)

cona = 0
conb = 0

do 30 cc = 1,an,1

j = fba(cc)

cona = cona + a(j)
continue

do 40 cc = 1,bn,1

203

j = fbb(cc)
conb = conb + b(j)
40 continue

if (cona/2 - cona/2.0.gt.-0.4) then

a(l) =0
else
a(l) =1
endif
if (conb/2 - conb/2.0.ge.-0.4) then
b(l) = 0
else
b(l) =1
endif

do 50 ¢c¢c = n,3,-1
a(cec) = a(cc-1)
b{cc) = b{cc-1)

50 continue

a(2)
b(2)

backa
backb

20 continue

Generate the 2**n~1 different GOLD codes by phase shifted
addition of the two m-sequence codes.

open (unit=1,file='gold_codes.dat’,status='unknown’)
write(1,1002) 2**n-1

1002 format(’’,i5)
write(1,1003)

1003 format(’’)

if (2**n-1.gt.128) then

max = 128
else

max = 2**n-1
endif

do 100 ¢ = 1,max,1
do 110 cc = 1,2**pn-1,1
ccc = cc+c-1
if (ccc.gt.2**n-1) then
ccc = cctc=-2**n
endif
out = golda(cc) + goldb(ccc)
if (out.ne.l) then
out = -1
endif
write(l,1000) out
1000 format(i2)
110 continue
write(1,1001)
1001 format(’ ‘)
100 continue
end

204

A2.ii Mean Cross-Correlation Between Partial and Complete Gold

Sequence Determination

The code PROGRAM_CROSS_CORRELATION_FINDER is used to find
the mean, maximum, and minimum cross-correlations of the partial and
complete modified Gold sequences. The program accounts for even and odd
cross-correlation values, all 1023 possible time shifts of one chip time between
each pair of sequences, and smaller time shifts between sequences of 0.2 chip
time.

The length of the partial sequences to compare and the number of
complete sequences to use in the test can be specified by the user. The cross-
correlations are given as magnitudes since the mean cross-correlation is used to

determine the variance of the interference and cannot be negative.

205

oo 0

OOGOOOOOOQOOOOGOOOOOOOOOOOOOOOOOOOOO

(e N ¢

PROGRAM_CROSS_CORRELATION FINDER

FORTRAN sequence for getting mean partial and whole cross correlationg
between Gold sequences generated by the gold gen program.
This program includes possible

The maximum and minimum values are given as the output along
with the mean partial cross correlation.

implicit none

integer c,cc,ccc,co,cco,code(130,1026), rounds, max, max2
integer pleng:h, segqlen,numcode, s, cccce,ph, seed, uni, brkl
integer refstrt, jump,b,brk2, maxrounds

real maxxcor,maxautocor, sum, tot,minxcor,mean,tk,otk, num
real ran

logical*1l swt;all

maxxcor is the maximum cross-correlation

maxautocor is the maximum auto-correlation

minxcor is the minimum cross-correlation

sum is used to find the correlation between current samples

code(x,y) is used to store the input gold codes: up to ’x’

different codes of length ‘y’

¢, ¢c, ccec, cceee, co, CCo, S are counter variables

ph is a counter variable which determines the misalignment of
the gold sequence chips

tk and otk are the misalignments of the gold sequence chips.

max contains the value of the gold sequence’s length

max2 contains the length of the extended gold sequences (= max+l)

rounds contains the value of the number of gold sequences to test

maxrounds contains the total number of gold sequences available
with a maximum value of 128

seqglen is the length of the sequences to partial correlate

plength is the number of partial sequence there are in the
whole gold sequence

tot sums all obtained values of the variable ’sum’

num keeps track of the number of values of ‘sum’ obtained

mean = tot/num which gives the mean xcorrelation of the partial sequences

numcode is the number of whole gold sequences to include in this tesc

seed holds the seed for the random number generator which determines
which codes are used in the cross-correlation test

refstrt is the randomly chosen first code used in the test

jump is a randomly determined variable which determines which
codes are used in the test

uni is a function which produces randomly generated +1s and -1s

brkl, brk2 are the states of the data bit which are being spread
by the Gold sequences

b is a counter variable which is used to run the program once for
similar adjacent data bits and once for dissimilar adjacent data bits

ran is the random number generator function

swt is a logical variable which signals when the data bit has changed
state

all is .true. if all sequences are to be tested

seqlen = 128

numcode = 3
all = _false.

Read the Gold sequence length and the determine the number
of codes to test.

206

[eEP]

o000 an

open (unit=1,file="gold codes.dat’,status='0ld’)
read(l, *) max -
if (max.gt.numcode) then
rounds = numcode
else
rounds
endif
maxrounds = max
if (maxrounds.gt.128) then
maxrounds = 128
endif

max-1

Read seed for random number generator which is to be used
for extending Gold sequences and selecting which codes
to test.

open(unit=2,file='seed.dat’,status='old’)

read (2, *) seed

close (2)

Initialize parameters.
maxxcor = -seqlen
maxautocor = seqlen
minxcor = seqlen
sum = 0.0
num = 0.0
plength = (max+l)/seqlen
swt = ,false.
refstrt = int { (maxrounds-rounds) *ran (seed))
jump = int((maxrounds—refstrt)*ran(seed)/rounds)
if (jump.lt.l) then
jump = 1
endif
if {(all) then
refstrt = 1
jump = 1
rounds = max-1
endif
write (*,*) ‘refstart =',refstrt,’ jump =', jump

Write new seed to file.
open(unit=3,file=’seed.dat’,status=’old’)
write(3,*) seed

close (3)

Read the gold sequences from the file.
max2 = max+l
do ¢ = 1,maxrounds,l

do cc = 1,max,1

read (1, *) code{c,cc)

enddo

code (c,max2) = uni(seed)
enddo

Test cross correlations between all combinations
of codes and all phase shifted combinations of codes.
b is the counter for a change in state of the data being
spread by the test gold sequence.
ph determines the amount of misalignment between chips
co is the counter for the reference gold sequence.

207

noaoaaan

cco is the counter for the test gold sequence.
c is the counter for the phase shift.
cc is the counter for the chips of the reference gold sequence.
ccc is the counter for the chips of the test gold sequence.
ccece is the counter for the chips of the reference gold sequence.
s counts the number of partial sequences
dob=1,2,1
do ph=1,10,2
tk = (ph-1)*0.1
otk = 1.0-tk
do co = refstrt,refstrt+rounds*jump-1, jump
do cco = co+jump, refstrt+rounds*jump, jump
do ¢ = 1,max2,1

brkl = 1
brk2 =1
do s = 1,plength,1

do cc = (s-1)*seqglen+l,s*seqlen,l

ccc = cctc-1

ccececec = ccctl

if (cccec.gt.max2) then
ccecce = ceccc-maxe

endif

if (ccc.gt.max2) then
ccec = ccc-max2

endif

if (b.eq.2) then
if (swt) then

brkl = brk2
swt = .false.
else

if (mod(ccccc,seqlen)~-1.eq.0) then
brk2 = brk2-2*brk2
swt = .true.
endif
endif
endif
sum=sum+code(co,cc)*(otk*code(cco,ccc)*brkl +
tk*code {cco, cccec) *brk2)

enddo
sum = abs (sum)
tot = tot + sum

num = num + 1.0
if (sum.gt.maxxcor) then
maxxcor = sum
endif
if {sum.lt.minxcor) then
minxcor = sum
endif
sum = 0.0
enddo
enddo
enddo
write(*,*) ’finished sequence’,b,ph,co
enddo
enddo
enddo
mean = tot/num

Display maximum and minimum values of auto and cross correlations.
write(*,*) ’’,’'maxautocorr = ! ,maxautocor

208

1005

1010

write(*,1005) maxxcor
*,'maxxcorr = ’,£8.3)
write(*,1010) minxcor
!, 'minxcorx = *,£8.3)

format ('

format ('

write(*, *)

write(*,*) ’'tot =',tot,’

end

integer function uni (seed)

integer seed

real ran,x

x = ran{(seed)

if (x.gt.0.5) then

uni
else
uni
endif
return
end

1

-1

num =’ ,num

*Mean Xcorrelation = ’',mean

209

A2iiii Valid Orthogonal Convolutional Codeword Generation

The C code used to generate all the valid orthogonal convolutional
codewords for a code of constraint length K (for K > 2) is given as
PROGRAM_OC _GEN. The codeword generation is modelled after the

generator given in Figure 6.

210

/* PROGRAM OC_GEN

»

b

* Generator for all Orthogonal Convolutional Codes for
* a Given value of K

k

*

*/

$include <stdio.h>
#include <math.h>

/* Global Variables */

int a[500000), out[20](500000], %, run, cl, c2, c3, c4, t, flag[20];
int ¢6, c7;

double ¢S, 1;

/t**t***t*i*t*****t*t**t*******t*************************************/

stagel ()
{
if (fabs((double) (£/2.0 - t/2)) < 0.0001)
{
out[1)(t] = afll;
]

alse

{
out[1](t] = O;
}
}

/t*tt**********t**********t******************t************************/

stage2 ()
{
if (fabs((double) ((t-c2)/2.0 - {t-c2)/2)) < 0.0001)
{
flag(2] = abs(flag{2]}-1);
}
if (flag{2] == 1)
{
out[2]){t] = out(1)(t-2] + al[2]);
if (out(2]{t) == 2)
{
out [2] (t] = O;
}
}
else
{
out{2j([t) = out(l](t):
}

/*itt***t**tt********i**i*tﬁ**/

stagebeyond ()

{
for (c3=3; c3 <=k; c3++)

{
c4 = (int) (pow (2.0, (double) (c3~1)));

c9 = (double) {c4):
if (fabs((double) (({t-c2)/c5 - (t-c2)/c4)) < 0.0001)

21

élag[c3] = abs(flag(c3]-1);
if)(flag[c3]
éut[c3][t] = out {c3-1] [t-c4]) + alc3);
if (outle3)(t] == 2)
%ut[c3][t] = 0;

Il

= 1)

}
else
{
out [c3]1[t] = out[c3-1](t];

}
}
}

/**************************************t*********t***************tttt*/
main (argc,argl)

int argc;

char *argll(]:

{
FILE *outfile;

int atoi();
if (arge i= 2)

printf ("\n\nERROR: format must be ‘gen_all_conv_codes.exe k’\n\n");
exit(l);
}
else
{
k = atoi(argl{l)):
run = (int) (pow(2.0, (double) (k))});
]

oytfile = fopen("all_codes.dat","w");
fprintf (outfile, "$d\n%d\n", k, run);

for (cl=1; cl<=k; cl+=1)
{
afcl] = 0;
flaglcl] = 1;
}
c6 = -1;

for (e2=1; c2<=(run* (int) (pow(2., (double) (k)))): c2+=(int) (pow(2., (double) (k))))
{
c6++;
for (c7=0; c7<=(k=1); c7++)
{
if (((1l<<c?) & c6) !'= 0)
{
afcT+l] = 1;
}
else
{

212

alc7+41] = 0;
}
fprintf (outfile, "%d", al[c7+1]);

}
fprintf (outfile,"\n");

for (t=c2; t<=(c2+{int) (pow(2., (double) (k))}=-1); t++)
{
stagel():
stage2();
stagebeyond() ;
if (out(k]([t] == 1)
out {k}l(t] = -1;
if (out(k](t] == 0)
out [k} [t] = 1;
fprintf (outfile, "%d\n",out (k] [t]);

/* fprintf (outfile,"\n")*/;
]
fclose(outfile);
)

213

A2.iv Statistical Analyses (Mean and Variance Measurement)

The program PROGRAM_STAT_ANALYSIS finds the mean and variance
of a set of complex data points in the file 'statl.in". The output, containing the
mean and the variance of the data set, the minimum value, the maximum value,
the number of (0.0,0.0) points, and the total number of data points in the data set
is written to the file 'stat.dat’. The cumulative distribution is written to the file
‘cdf.dat'.

214

o

cooOOoOO00000000a0000

eReNeNeRe e ReNeEeEeEe R N N N D)

QOO

PROGRAM STAT_ANALYSIS

This program performs statistical analysis on a szt of
complex data points in the file ‘statl.in’. The data must
be in the form ’ (##, ##)’ representing a compiex rumbe’.

The means and variances of the real and imaginacy pocts 2f
the data are determined first. A pdf is generat&.. This

pdf is different in that the data is binned and the prob-
ability of data in each bin is equal. The bin size is varied
to make this so. The file ’stat.out’ contains this data.

Some possibly useful amalysis information is written to :che
file ‘stat.dat’.

This program also generates the file ‘c¢df.dat’ which holds
the cdf of the input data.

implicit none

complex in,csum,cmean,cmplx

real total, rsumsq, rsum, rmean, rnum(1000000)
real rvar,rmin,rmax,rspc,numbin,pi
integer i,k,step,numvar,totzero,totali
integer spc

logical*l elim_zero,detect_zero,cCmpx

open (unit=1,file=’statl.in’)
open(unit=3,file='stat.dat’)
open (unit=4, file='cdf.dat’)

The value ’'numbin’ determines how many bins to divide
the input data into when determining probabilities.

The value 'numvar’ determines how many different
variances for the gaussian distribution are tested.

These variances are set at multiples of the ’'measured
test variance/numvar’ and end when the variance reaches
the ’'measured test variance’.

1f gauss_go is .false., then no comparison will be made
between the input data and a gaussian distribution.

If elim zero is .true., then any data points which equal
(0.,0.) are omitted from the statistical analysis. The total
number of zeros is summed.

If cmpx is .true., then the data is treated as complex numbers.
If it is .false., then the data is treated as two sets of
real numbers.

numbin = 120.0

step = 4
detect_zero = .true.
cmpx = .false.

elim zero = .true.

numvar = 1

Find the maximum and minimum components of the real part
of the input complex numbers. Collect sums for the real
components of the input complex numbers in order to de-
termine the real mean.

total = 0.0

215

O

k =-1
pi = 4.0*atan(1.0)
totali = 0
1 read(l, *,end=100) in
if (detect_zero.and. (in.eq.{(0.0,0.0))) then
totzero = totzero + 2
if (elim_zero) then

goto 1
endif
endif
totali = totali + 2
k = k+1

if (mod(k,step) .eq.0) then
if (.not.cmpx) then
rsum = rsum + real (in)+imag(in)
else
csum = csum + in
endif
- rnum(totali) = real(in)
rnum(totali+l) = imag(in)
if (real(in) .gt.rmax.or.imag(in).gt.rmax) then
rmax = max(real(in),imag(in))
else
if (real(in).lt.rmin.or.imag(in).lt.rmin) then
rmin = min(real(in), imag(in))
endif
endif
total = total+2.0
endif
goto 1
100 continue
close (1)

Calculate the average mean of the real and imaginary parts of
the input complex number.
if (cmpx) then
cmean = 2.0*csum/total
else
rmean = rsum/total
endif

Get sums in order to compute the AVERAGE variance of the rea!l
AND imaginary parts or the variance of the complex numbers.
if (.not.cmpx) then
rsumsq = 0.0
do i = 2,totali,l
rsumsq = rsumsq + {(rnum(i)-rmean)**2.0
enddo
rvar = rsumsq/(total-1.0)
else
rsumsg = 0.0
do i = 2,totali,2
rsumsq = rsumsq + cabs(cmplx (rnum(i), rnum(i+1)))**2
enddo
rvar = rsumsq/(total/2.0-1.0)-cabs(cmean)**2.0
endif

call sort(totali, rnum)

216

Write the cdf file into ‘cdf.dat’. This part works when the data
is treated as two sets of real numbers only!!!
spc = totali/numbin
rspc = 1.0/numbin
write(4,*) rnum(1),0.0
do i = spc,totali,spc
write(4,*) rnum(i),i/total
enddo
if (mod(totali,spc).ne.0) then
write(4,*) rnum(totali),1.0
endif

Write some useful data information.
if (cmpx) then
write(3,*) 'mean
else
write (3, *) 'mean
endif
write(3,*) ‘min = ’,rmin,’ max = ’,rmax
write(3,*) ’resolution = 1l/numbins = ’,1.0/numbin
if (cmpx) then
write(3,*) ’‘total number of non-zero points = ‘,int(total/2)
write(3,*) ’total number of zero points = ‘,totzero/2
else
write(3,*) ‘total number of non-zero points = ’,int (total)
write(3,*) ’‘total number of zero points = ’,totzero
endif

*,cmean, ’ variance = ’,rvar

‘', rmean, ’ variance !, rvar

close(3)

close(2)

1000 format (‘mean = ’,el6.8,’ var ’,el6.8)

end

subroutine sort (n, ra)
real ra{n),rra
integer 1,ir,i,j
1 =n/2+1
ir = n
10 continue
if (l.gt.1l) then
l=1-1
rra = ra(l)
else
rra = ra(ir)
ra(ir) = ra(l)
ir = ir-1
if (ir.eq.l) then
ra(l) = rra
return
endif
endif
i=1
j = 1+1
20 if (j.le.ir) then
if (j.1lt.ir) then

217

if (ra(j}.lt.ra(j+1l)) then
j = jH1
endif
endif
if (rra.lt.ra(j)) then
ra(i) = ra(j)

i=3
j =3+
else
j = ir+l
endif
goto 20
endif
ra{i) = rra
goto 10
end

218

A2.v Kolmogorov-Smirnov Test

The code PROGRAM_KS_TEST performs the one-sided Kolmogorov-
Smirnov test for the data set in 'stat1.in’' and a Gaussian distribution. The mean
and variance of the Gaussian distribution specified in the program should be the
same as that of the ftest data. They can be found by using
PROGRAM_STAT_ANALYSIS. The result of this test is given in units of level of
significance. The closer this value is to one, the more alike the data set is like

the Gaussian distribution.

219

¢]

PROGRAM_KS_TEST

This program performs the Kolmogorov-Smirnov Test on one binned or
continuous data set and a theoretical gaussian distribution variable
variance and mean. The result is computed is the level of significance

eNeNeNs N2 N¢!

QOO0 0O000

100
101

200

and is closer to 1 if the data sets are closely related. A value
greater than 0.05 is usually acceptable to not reject the null
hypothesis that the two are similar.

real datlr(500000)

complex in

integer i, k,numsetl, reads, jumpl, 1, numbin
real var,mean,prob,d

logical*1l elim zero,bin

The value of ‘reads’ determines the maximum number of data
points to be used in the test. The numbers contained in
the ’jumpl’ variables represent the ‘mod’ number to use
when determining which input variables to actually use.
The logical variable ’elim_zero’ determines whether or not
to pass over any inputs which equal (0.0,0.0). A .true. value
will cause the program to skip all (0.0,0.0) inputs, a .false.
value will not.
The logical variable ‘bin’ deternines whethecs to treat the data
set as continuous or binned dat::.
The variable ‘numbin’ indicates FLow many bins to divide the data
into (used only if ’bin’ = .true.).
reads = 1000000
jumpl = 4
var = 1.47038
mean = 0.0
elim_zero = .true,.
bin = .false.
numbin = 100
open(unit=1, file='statl.in’)

Read and store the input data.
i=0
k=0
read(1l, *,end=100) in
if (elim_zero.and. (in.eq.(0.0,0.0))) then
goto 1
endif
if (mod(1, jumpl) .eq.0) then
datlr(i+l) = real(in)
datlr(i+2) = imag(in)
i = i+2
if (i/2.eq.reads) then
goto 100
endif
endif
l=1+1
goto 1
1=0
continue

numsetl = i
close (1)

220

~

acocoan

e e NS R

@]

Call the ksone routine to perform the ks test.
call ksone(datlr,numsetl,d,prob,numbin,bin,var,mean)

Write the value of ’d’ which is the maximum difference
between the cumulative distributions, and the value of
prob, which is the significance of the test.

A small value of ‘d’ and a 'prob’ value close to 1.0
indicate that the two data sets are likely from the
same distribution.

write (*,*) ‘number of data points = ’,numsetl
write(*,*) ‘d = ',d,’ prob = ’,prob

end

«»+x* The following routines were modified from: **x**

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vettering, W.T.,
/Numerical Recipes: the art of scientific computing’,
Cambridge University Press, 1986.

The following subroutine performs the Kolmogorov-Smirnov test.
subroutine ksone(datl,nl,d,prob,numbin,bin,var,mean)

implicit none

real datl(*),fo,d,prob,dt,fn,fnc,en,ff,var,mean,probks

integer nl, j, spc, numbin

logical*l bin

call sort(nl,datl)

en = nl
fo = 0.0
d= 0.0
if (.not.bin) then
do j = 1,nl
fn = j/en
£f = fnc(datl(j),var,mean)
at = max(abs(fo-ff),abs(fn—ff))
if (dt.gt.d) then
d = dt
endif
fo = fn
enddo
prob = probks (sqrt (en) *d)
return

else

spc = nl/numbin
do j = 1,nl,spc
ff fnc(datl(j),var,mean)
fn j/en
dt = abs(ff-fn)
if (dt.gt.d) then

L}

d = dt
endif
enddo
prob = probks(sqrt(float(numbin))*d)
return
endif

221

end

This function calculates the significance of the test.
function probks (alam)
implicit none
real alam, a2, fac,probks,termbf,term
integer j
a2 = -2,0*alam**2
fac=2.0
probks 0.0
termbf 0.0
do j = 1,100,1
term = fac*exp(a2*j**2)
probks = probks+term
if (abs(term).1lt.0.001*termbf) then
return
endif
fac = -fac
termbf = abs (term)
enddo
if (probks.lt.1E-3) then
probks = 0.0
else
probks = 1.0
endif
return
end

This routine sorts the arrays into increasing order.
subroutine sort(n,ra)
implicit none
real ra(*),rra
integer 1,ir,i,j,n
1l = n/2+1
ir = n
10 continue
if (l.gt.l) then

l = 1-1
rra = ra(l)
else

rra = ra(ir)
ra(ir) = ra(l)

ir = ir-1

if (ir.eq.l) then

ra(l) = rra
return
endif
endif
i=1
j = 141

20 if (j.le.ir) then
if (j.lt.ir) then
if (ra(3j).lt.ra(j+1)) then
j = j+l1
endif
endif
if (rra.lt.ra(j)) then

222

ra{i) = ra(j)

i=3
3= 3+;
else
j = ir+l
endif
goto 20
endif
ra{i) = rra
goto 10

end

This function calculates the cdf of a gaussian distribution at value x.
function fnc(x,var,mean)
real x,var,mean

fnc=1.0-0.5*erfc { (x-mean) /sqrt (2.0*var))
fnc = .5+.5%erf ((x-mean)/sqrt(2.0*var))
return
end

223

A2.vi Channel Formatter

The program PROG_CHAN_FORM alters the data format of the channel
profiles generated by SIRCIM. The magnitude and phase components of the
SIRCIM channel impulse responses are converted into the real and imaginary
components. Also, the energy seen by the receiver when a square pulse of

duration equal to one chip time propagates through the channel is normalized to

unity.

(@]

aaaaaoaaaaonoan

oNe)

PROG_CHAN_FORM

This program is used to equalize the energy of the impulse power
profile contained in the file ‘chnl.dat’. The energy contaimed in
the time domain impulse response when it is time convolved with a
square pulse of duration = 4*7.8125 ns is normalized to 1.0.

This program will then convert the power profiles into normalized
real and imaginary components of the impulse response.

Note that this output is in the form of absolute signal strength,
not power with respect to the value 10**(-3.8) as generated by
SIRCIM.

The converted data will be written to the file ‘chnl.norm’.

implicit none

integer i, j,num,len,k,samp_sym

real h(65),ph(65),dist(65),time(65),sum,pi
complex h1(65).cmplx, out (80)

num = 19 for channels uninterpolated by cspline.exe
num = 181 for channels intezpolated by cspline.exe
num = 19

open(unit=1,file='chnl.dat',status='unknown')
open(unit=2,file='chnl.norm',status='unknown')
pi = 4.0*atan(1.0)

samp_sym = 4

len = 65

sum = 0.0

Read the channel profiles.

do j = 1,num,1

sum = 0.0

doi=1,1len,1

read (1, *) dist(i),time (i), h{i),ph(i)
enddo

Change into rectangular coordinates.

do i = 1,1len,l

h(i) = sqrt(h(i))

hl(i) = h(i)*cmplx(cos(ph(i)*pi/180.0),sin(ph(i)*pi/180.0))
enddo

Find output when channel is time convolved with a square pulse
of duration equal to the time between *samp_sym’ impulses in the
channel profile.
do i = 1,len+samp_sym-1,1
do k = 1,samp_sym,1
if (i~k+l.ge.l) then
if (i-k+l.le.len) then
out (i) = out (i) + hl(i-k+1)
endif
endif
enddo
enddo

Find factor used to normalize the channel.

do i = 1,len+samp_sym-1,1
sum = sum + cabs(out{i))**2.0

225

100

enddo
write(*,*) sum

Normalize the channel.
do i = 1,1en,1

hl{i) = hl(i)/sqrt (sum)
endde

Write the normalized channel file.
doi=1,1len,1

write({2,100) dist (i), time(i),hl (i)
enddo

format (£10.6,£12.6,e14.6,e14.6)

do i = 1,lefti+samp_sym-1,1
out (i) = cmplx¢0.0,0.0)
enddo

enddo
close(l,status='keep’)
close (2,status=’keep’)
end

226

A2.vii Error Bound Calculation Program

The program PROG_OC_BER calculates the value of the error bound
given by equation (2.2.3.11). The user must enter the value of 'pe’, which
corresponds to the value of p in the equation, and the code's constraint length
into the program. The program will then calculate the value of error bound value
Pp-

27

eNeKe!

PROG_OC_BER
Orthogonal Convolutional BER from Symbol Error Calculator

This program finds the bit error rate from the symbol error rate
for an orthogonal convolutional code of user defined constraint
length in a binary symmetric channel.

implicit none
integer n,constraint
real*8 Z,pe,pdata

User Defined Parameters
constraint = 3

pe = 250./25755
write(*,*) 7’
write(*,*) ‘pe =’,pe

Variable Initialization
n = 2**constraint

BER Calculation
Z = (4.0*pe*(1-pe))**0.5
pdata = Z**(constraint*n/2.0)/(1-2.0*2**(n/2.0))**2.C

write(*,*) ’'Pb =’,pdata

write(*,*) '’
end

228

A2.viii Channel Analysis Program

The program PROG_CHANNEL_ANAL performs the channel analysis
method on any given channel profile. The channel file ‘foxxa’ (where xx is a user
specified number from 1 to 50 inclusive) is read and the appropriate profile within
the file is found. The normalized mean cross-correlation between the SSMA
spreading codes must be specified in order to determine the proper signal to
interference ratio.

The program finds the optimum sampling points within the channel and
determines the signal to noise ratios for all L channels of the multichannel DPSK
receiver (which is used to represent a L-stage RAKE receiver). The resulting
symbol is calculated.

This program aliows the user to specify whether or not orthogonal
convolutional codes of any constraint length are to be used. If they are, then the
resulting symbol error rate is substituted into the error bound for the code. If

they are not, then the resulting symbol error rate is also the bit error rate.

229

OO0 00 o0noonNnO0n0 0O

e NeE¢e!

PROG_Cithisminis RANE L

This program finds the appropriate delay required in order

to sample the signal at the optimum time. This delay accounts
for the multipath channel only. The number of samples per
symbol time, the diversity oxder of the RAKE (equal gain)
receiver, the channel length (in # of samples), the chanrel
set to use, and the impulse response within the set to be used
need to be specified. The units of the output ‘delay’ is in
number of samples.

The program then finds the percentage of energy that the RAKE
receiver will use out of all the energy of the channel.

Using this value, the symbol error probability is calculated.

In this calculation, the multipath diversity order, the cross-
correlation between pn sequences, and the number of interfer-

ing SSMA users is taken into account. From this symbol error

probability, the bit error probability is calculated from

the code rate parameter.

If the variable ’‘coded’ is .false., then the symbol error
probability is equal to the average bit error rate of an
uncoded system.

implicit none

integer lun,nol,chlstrt,chnlnum,i, j, k,delay

integer len,diver, samp_sym,count,next,users,L,n,constraint
complex ch(80),sum(80),cmplx,out (80)

real dist,time,mag,max,pmag(10),ppmag(10),sig3(10)

real pb, xcorr, 2,pdata, chpwr,pemin,sig(80),sig2(10)
logical*1l coded

User Defined Parameters
chnlnum = 39
chlstrt = 12

coded = .false.
constraint = 5

users = 9

xcorr = 19.7768/1024.0
L =3

Variable Initialization
nol =1
lun = 2
samp_sym = 4
diver = 3
len = 65
if (coded) then
n = 2%**constraint
endif
pemin = 1.0

Read the appropriate channel impulse response
go to(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,
21,22,23,24,25,26,27,28,29,30,31,32,33, 34, 35, 36,

230

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

37,38,39,40,41, 42,43, 44,45,46,47,48,49,50) ,chnlnum

open{unit=nol, file='fcla’, status=’0l4d’)
go to 99

open(unit=nol, file='fc2a’,status='0ld’")
ge to 99

open (unit=nol, file='fc3a’,status='0ld’)
go to 99

open (unit=nol, file='fc4a’, status='old’)
go to 99

open{unit=nol, file='fc5a’, status='0ld’)
go to 99

open{unit=nol, file='fcé6a’, status='old’)
go to 99

open(unit=nol, file=’fc7a’, status='o0ld’)
go to 99

open(unit=nol, file='fc8a’, status='o0ld’)
go to 99

open(unit=nol, file=’fc9%a’, status='0ld’)
go to 99

open (unit=nol, file=’£fcl0a’,status='0ld’)
go to 99

open{unit=nol, file='fclla’,status='0ld’)
go to 99

open (unit=nol, file='fcl2a’,status=‘0ld’)
go to 99

open(unit=nol, file='fcl3a’,status='0ld’)
go to 99

open(unit=nol, file='fcl4a’,status="o0ld’)
go to 99

open (unit=nol, file=’'fcl5a’,status='0ld’)
go to 99

open (unit=nol, file='fcléa’,status="cld’)
go to 99

open(unit=nol, file='fcl7a’, status='0ld’)
go to 9Y

open (unit=nol, file='fcl8a’, status='0ld’)
go to 99

open (unit=nol, file='fcl9%a’,status='0ld’)
go to 99

open {unit=nol, file=’fc20a’, status='0ld’)
go to 99

open(unit=nol, file='fc2la’,status=‘0ld’)
go to 99

open(unit=nol, file=’fc22a’,status='0ld’)
go to 99

open (unit=nol, file='fc23a’, status='0ld’)
go to 99

open{unit=nol, file='fc24a’,status='0ld’)
go to 99

open (unit=nol, file=’fc25a’,status="0ld’)
go to 99

open (unit=nol, file=’fc26a’,status='old’)
go to 99

open (unit=nol, file=’fc27a’,status='o0ld’)
go to 99

open (unit=nol, file=’fc28a’,status='0ld’)
go to 99

open(unit=nol, file='fc29%a’,status='0ld’)
go to 99

open(unit=nol, file='fc30a’, status=‘o0ld’)

231

NnnNaOaGao

(g)

go to 99
31 open(unit=nol, file='fc3la’, status=’0ld’)

go to 99
32 open(unit=nol, file='fc32a’,status=’o0ld’)
33 g;egﬁugit=nol,file='fc33a',status='old')
34 g;ez?uigt=nol,file='fc34a',status='old')
35 g;e:?u;zt=nol,file='fc35a’,status=’old')
36 g;eﬁzuizt=nol,file='fc36a',status='old')
37 gge;?uizt=nol,file='fc37a',status='old’)
38 g;e§?u32t=nol,file='fc38a',status='old')
39 g;eE?uigt=nol,file=’fc39a',status='old')
40 gge§?u22t=nol,file='fc40a’,status='old')
41 ggeﬁ?uzgt=nol,file='fc41a',status='old')
42 g;eﬁﬁuzgt=nol,file='fc42a',status=’old')
43 ggeﬁiuigt=nol,file='fc43a',status='old')
44 g;eﬁ?uizt=nol,file=’fc44a',status=’old')
45 g;e;?uiit=nol,file='fc45a',status='old')
46 g;e;?u:2t=nol,file='fc46a',status=’old')
47 g;eg?ugit=nol,fi1e='£c47a',status=’old')
48 gge§3u32t=nol,file=’fc488',status='old’)
49 gge§?u§§t=nol,fiie='fc49a',status='old’)
go to

50 open (unit=nol, file=’fc50a’,status='o0ld’)
99 continue
do i = 1,chlstrt,1
do k = 1,1en,1
read(nol, 100) dist,time,ch(k)
100 format (£10.6,£12.6,e14.6,e14.6)
enddo
enddo
close(nol, status='keep’)

Find the number of sample delays required so that sampling will
be done at the optimum point (maximum eye opening). If diver-

sity is used, then this is also taken into account. The total

energy used by the Lth order RAKE receiver and the total energy
of the channel is also calculated.

Find output of square pulse convolved with channel profile.
do i = 1,len+samp_sym-1,1
do j = 1,samp_sym,1

if (i-j+l.ge.l) then

232

if (i-j+l.le.len) then
out (i) = out(i) + ch(i-j+1)
endif
endif
enddo
enddo

Find total power of one square pulse after channel propagation.
do i = 1,len+samp_sym-1,1

chpwr = chpwr + cabs(out (i))**2
enddo

do count = 1,len+samp_sym-l-samp sym*diver, 1l
do j = 1,diver,1
pmag(j) = 0.0
next = (j-1) *samp_symtcount
do i = next,next+samp sym-1,1
sum{count) = sum(count)+out (i)
sig(count) = sig(count)+cabs(out (i))**2.0
enddo
pmag(j) = cabs(sum(count))**2.0
sig2(j) = sig(count)
mag = cabs(sum(count)) **2.0+mag
sum(count) = cmplx(0.0,0.0)
sig(count) = cmplx(0.0,0.0)
enddo

if (mag.gt.max) then
delay = count
max = mag
do j = 1,diver,1
ppmag(j) = pmag(j)
sig3(j) = sig2(j)
enddo
endif
mag = 0.0
enddo

pemin = pb(users,xcorr, ppmag,diver,chpwr,L,sig3)

write(*,*) ‘Channel ’,chnlnum,’-’,chlstrt
write(*,*) ’ delay =’,delay
write(*,*) ’ channel power = ’,chpwr
write(*,*) ¢ symbol error rate =’,pemin
if (coded) then

Z = (4.0*pemin*(l-pemin))**0.5

pdata = 2**(constraint*n/2.0)/(1-2.0*2**(n/2.0))**2.0
else

pdata = pemin
endif
write(*,*) ’ bit error rate =’ ,pdata
end

This function calculates the bit error probability of
a L-path DPSK receiver.
real function pb(users,xcorr,pstage,diver,total,L,sig3)

233

s NeNe NN

real xcorr,snr,c,suml,total,Eint,Esint,pstage(*),sig3 (")
integer L,users,n,nl,diver,i
snr = 0.0
do i = 1,diver,1
Eint = (users*xcorr*total/2.0)
Esint = (total - sig3(i))*xcorrx
snr = snr+.25*pstage(:)/{(Eint+Esint)
write(*,*) ’'SNR(’,i,’) =',.25*pstage(i)/(Eint+Esint)
write(*,*) ' pstage(’,i,’) =',pstage(i)
write(*,*) ’ Esint(’,i,’) =’,Esint
write(*,*) ’ Eint(’,i,’) =',Eint

enddo
suml = 0.0
donl =1,L,1
n=nl -1
suml = snr**n * c(n,L) + suml
enddo
pb = exp(-snr)*suml/2** (2*L-1)
return
end

This function calculates the value of:
(1/n') * SUM[(2*L-1)!'/(k!'*(2*L-1-k)!)]

where the summation is from k = 0 to L-1-n
real function c(n,l)

real b,sum2
integer n,k,L,k1, fc
c=20.0
sum2 = 0.0
do k1 = 1,L-n,1

k =kl -1

sum2 = sum2+b (2*L-1,k)
enddo
c = (1/fc(n)) *sum2
return
end

This function calculates the value of x!/(y!*(x-y)!)
real function b(x,y)

integer x,y,fc

b = real(fc(x))/real (fc(y) *fc(x-y))
return

end

This funciiilon calculates x!
irtayger Y¥unction fc(x)

integer ¥, a

fe =1

do a = x%x,1,~1
fc = fc*a

enddo

return

end

234

