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ABSTRACT
y |
:‘{” . ‘

The problem of a laminar water jet inpfnging on ans

ice surface is studied analytically. The jet flow is.

boundar 1ayer sol tion 5 The. potent1a1 f]ow prob]em is
formulate _as a 'variational statement and 1s so]ved by the
finite‘elem nt method. From'the potentia] flow solution,
'vthe veloc1ty d1str1but1on on. the 1mp1ngement surface is
 used as the free stream ve1oc1ty in the boundary 1ayer
-analysis. The boundary’ 1ayer_1s so]ved by a Karman-Pohl-
hausen.1ntegra1htechnique. L . |  “
~,T0'verifxtthe;solut?onénethod the results for a two-

dimensdonal jet'impinging on a flat surface‘without me]tjng
‘are compared.with'exact solutions forjthe'potentfa1 flow
and a-numerical ca]culation of the boundary 1ayer‘ .

\ Solut1on of the prob]em of an axisymmetr1c jet 1mp1ng-
A"ing on a surface is d1scussed w1th respect to the distance

. from the nozz]e‘to~the 1mp1nbement surface, 1mp1ngement @

. 'surface shape, shear stress on .the surface and melting:

*5_'effects ) Simula ion?of a‘hlock of ice being melted by a

.hwatef jet s cons‘dered The jet 1mp1nges on the 1ce sur--

face, the heat transfer ca]cu]ated ‘the change in ice sur-
face shape due to. me1t1ng is. found and a new ice surface

~/shape-1s generated_ The procedure is then repeated To

v



. obtain a qua11tat1ve view of the me1t1ng process, photo-
graphs of a block of ice were takep at var1ous 1ntervals
dur1ng the me1t1ng process Finally the comb1ned effect
of melting heat transfer and erosion caused by.shear stress}f

\-

“are discussed with respect to ax1symmetr1c Jet 1mp1ngement  "

Iy
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" CHAPTER T

"
INTRODUCTION
. : o ._t;‘u
Impinging jets used as heat transfer dev1ces, in
general, have a great practica] 1mportance for many indus-
triai appiications. A few 1ndustr1a1vuses are thevanneal-;
| ing of non-ferrous‘sheet:metals, the tempering of giass. |
drying of textiles and paber,‘and'turbine blade‘cooling
In‘fact in: any 51tuat10n requ1r1ng 1oca1 heating or cool-
ing of industrial equipment, _impinging jets,may have
‘ app]ications, . ‘ R | -
| (fAnother.pOSSible use of impinging jetsimight be in
the melting of. ice | Mellor [42] givés some potent1a1
applications of ice cutting by water Jets ~ Some of these
are the aiding of. rlver and lake 1cebreakers, deic1ng of
road and runway pavements, as*a"cutter for the 1ay1ng Qf
an arctic pipeline, and as a protective outter to prevent -
thg}ic1ng of piers and pi]]ings in harbours during w1nter .
.The cutting of frozen ground may be another potentia] 4
application of 1mp1ngement jet cutting Here, both the
: mechanica1 action of the jet and\the Jet heat transfer pro-'
'.pérties wili 1nf1uence the cutting process
There are. two general cases of Jet 1mp1ngement fn
“the first case,.a fluid Jet 1ssues ihto an ambient medium

of a.51mi1ar‘f1uid,41iquid into 11qu1d.or gas 1nto gas._]



5

_and a boundary layer is appropriate

C

The entrainment of the ambiént fluid by the Jet determines

the flow field and consequently the heat transfer char-
acteristics on the impingement surface _ Many authors [24,

29 38] have studied the 1mp1ngement heat transfer char- f .

cacteristics of. these jets. Some of the important effects

y are the distance from the nozzle exit to the impingement

\

4surface, jet Reynolds number, Prandtl number, turbulence

“1n+en51ty and scale, and the impingement surface geometry

&use of the complex nature of the 1nteractions between

the Jet, ambient fluid and impingement surface, especially

~in the region of the stagnation p01nt these 1nvestigatjpns

have been experimental in nature
The sec0nd case of jet impingement occurs when a 5‘

liquid Jet issues into a gaseous medium ~The Jet forms a

free surface between it and the ambient medium | A diffi-

CUlty in ‘this problem lS that the- position of the free sur-

- face is unknown and it's. location must be found as part of
-,the solution 4t 1s easier to analyze this case of Jet :
"flow analytically . As stagnation p01nt fluid flow and

'heat transfer can be analyzed by boundary layer methods,_;

the lelSlon of the problem 1nto a pd{ential flow region B

| The potential flow problem can be formulated as an

[elliptic boundary value problem or as - a variational state-f

7;ment minimizing a functional Nhen the: potential flow 1s‘

"stated as a boundary value problem Uhe usual methods of o

*solution are separation of variables and finite differencee



\ \
. . ) . . \

S \
_ numerlcal solutions .The methods of complex va jables - |
e ' |
:‘and conformal mappihg may be used as’ a solutlon

. for two d1mensional potent1al flows only. = As a

statement the solution may. be obtained by using
fin1te element method Solutions for the potent1a\ flow
| f1eld may also be found exper1mentally The electrlcal
analogy, and the measurement oiﬁthe pressure d1str17ut1on
in the flow field are two experimental methods ’
| An e;gct solution f0r the potential flow of a two- _
tdlmens1onal Jet issu1ng from a nozzle of a f1n1te height'_
-and 1nd”nging on a flat surface 1s presented by M1yazaki=
and Silberman [23] | The solut1on method TS a conformal
":jmapp1ng of the flow field The veloc1ty distributlon on;‘ivx.'
flthe lmpingement surface, 1mportant for boundary layer e

.;:analysis. 1s found d1rectly from the complex variable -

"fanalys1s.v Separat1on of var1ables has been used by Scholtz

P and Trass [28] to solve the potent1al flow of a non-f';.' e

"1.un1form ax1symmetr1c Jet 1mp1ng1ng on a flat surface and

('-;[by Sparrow and Lee [47] for a non- un1form two-drmens1onal

| fgl a fully developed Jet veloc1ty prof1le in the nozzle

' -The location of the free surface 1s found by a’ method of

‘fjjet. an un1form1ty ex1sts because of the assumpt1on of

"fsucce551ve approx1mat1ons Sarpkaya and H1r1art [16]

wsfhave used the f1n1te element formulat1on of Chan and

'\'TLarock [l5] to f1nd the potent1al flow f1eld of ax15ymme-

ftric Jets 1mping1ng on curved target type thrust reversers

.‘Pot!nt1al flow of - Jets lmp1nging on curved deflectors was .

LN



| solved by a f1n1te difference relaxation techniquefby
d;Schnurr, w1111amson and Tatom [49] Curved def]ecton’M
. ﬂand thrust reverserslare 1mportant in conna/tdon w1th STOL
- and convent1ona] a1rcraft Exper1mentally. Leclerc [26]
has used the e]ectrica] ana]ogy and Brady and Ludwig [27]
H‘have measured the pressure distribution in the flow f1e1d
‘of an axisymmetr1c jet impinging on a flat surfate Once
*'the pressure distribut1on 1s known, the velocity dﬁstr1bu-
'-tion is calcu]ated by Bernoulli's equation. o
Of the methods ment1oned above, the f1n1te e]ement

‘method seems to offer the most flexibility in solving

| fthese Jjet 1mp1ngement prob]ems F1n1te etements are well

'rmsuited to both ax1symmetr1c and two- d1men51ona1 flows as

‘ﬂ well as arb1trar11y shaped boundar1es The method of

comp1ex var1ab1es s only useful for two- d1mens1ona1
v potent1a1 f]ow and not app11cab1e to axisymmetr1c flow.
.,$eparatjonmof:variables requires simpie boundary conditions
'and.simp{e houndary geometry for calcu]ations'to be ;
”possib1é " The . f1n1te d1fference method requ1res many more’
h nodes than the f1n1te element method to adequate]y descr1be
. a«a_curvedxboundary shape such as the shape_of the free,sur-
'fhdfaée;f Therefore{hbeCause‘offthe f1e§Ti?1ity of the finitefﬁw
meiementzmethod' the potential flow jet :mpingement con- |
B s1dered in. this thes1s was solved by the finite e]ement
‘4method L | o
Boundary layer ana]ys1s is used to calculate the skin

'.hfrictlon and heat transfer coeff1c1ents assoc1ated with a

AN



particular flow. Miyazaki and S11berman [23] used the
exact so]ution for the potential flow of a two dimens1ona1
jet and then . emp]oyed a f1n1te difference boundary Tayer -
numer1ca1 techn1que to f1nd the heat transfer and skin
‘frict1on coeff1c1ents on’ thi 1mp1ngement surface | Another

'analyt1ca] method 1s to caTcuTate the boundary Tayer para-'

meters assoc1ated w1th H1emenz stagnat1on point f]ow as

"_descr1bed in Schlicht1ng [17] Th1s method requires know- ‘

‘Tedge of the potent1a1 f]ow ln the region of the stagnat1on

\
the stagnat1on po1nt

po1nt and is onTy va11d in the 1mmed1ate ne1ghbourhood of

| Exper1menta11y, the heat transfer coeff1c1ents may
‘f:be found bas1ca11y by two methods The f1rst 1s by using

-a napthalene sub11mat1on mass transfer techn1que Scho]tz

’and Trass [28] used thws techn1que for the non- un1form .

' ax1symmetr1c Jet 1mp1ng1ng on. a flat surface The heat-

\mass transfer analogy 1s then used to determ1ne the heat

‘transfer coeff1c1ents from ‘the measurements of mass trans-
‘-‘fer;_ The ‘second method 1s to use a hot wire or hot film
heat sens1ng dev1ce Ba1nes~and Keffer [48] have used this
'method to determ1ne the ‘heat transfer and shear stress at
a stagmat1on po1nt arls1ng from the 1mp1ngement of a ful]y
developed turbu]ent Jet _ | |

Because of the extreme]y complex nature of a water

jet imp1ng1ng on an ice surface there has not been much
'anaTyt1ca1 treatment of this subJect. - Yen [41] has exper1-
menta]]y.studied a bubbleéinducedﬁwater jet impinging‘on

9 .
v



an ice §urface The effects of entrainment are important
in this case. Yen and Zehnder [43] ‘and Gilp1n [44]) have,
:‘studied the melting of a block of ice by an- impinging
,water Jet In [43] the melting effect was determined by
the mass of ice removed by the 1mp1nging Jet In [44] two
dlStlnCt modes of melting were ‘noted, differentiated by
the shape of the jce cavity the: water Jet produced 'The«e
f1rst was a smooth cav1ty shape occurring at small Jet '
;Reynolds numbers and the second was a rough cav1ty shape'
'occurring at larger Jet Reynolds number and is characterise
tic of fully . turbulent flow, |

_ Melting ice under conditions of forced convection
has been analyzed for. the case’ of laminar flow on a flat
ice surface by Pozvonkov, Shurgalskii and Akselrod [l9]
Their'splutionuwas attained by util121ng the 1ntegral
_boundary‘layer.equations}ﬁ As no‘pressure'gradient term
_1appears.in the fldw:over a flatiplate, their solution is
not appficable to the present case of Jet 1mp1ngement flow
“Other analytical treatments of forced convection melting
of ice [50 53] also 1nvolve the case where the pressure
grad1ent term. has been neglected |

In this thesis the analytical treatment of a laminar

water jet 1mp1nging on an ice surface is discussed
Chapter II deals with the potential flow problem formula-
tion, as a boundary value problem and as a variational
'statement The equivalence between the boundary value

_problem and the variational statement is shown by the

z



"methods of the caIcu]us of var1at1uns 'Chapter 11 pre-.‘
sents the f1n1te eIement method ‘as a squtlon to the |
potent1a] row probIem ‘Chapter IV der1ves the boundary

* layer solution. The Karman PohIhausen 1ntegra1 meth%d is

' used with a fourth~order ponnom1a1 to approx1mate the
dveloc1ty and temperature d1str1but1ons in the boundary
.Iayer Both the momentum’ 1ntegra1 equat1on and energy
’integral equat1on are formu]ated and it s seen that they .
are coup]ed through the boundary cond1t1on)at the meIt1ng
.1nterface Chapter V. presents caIcuIat1ons based on two?‘
d1mens1ona1 Jet 1mp1ngement 1n the absence of me1t1ng |
'Compar1sons w1th exact squt1ons and other numer1ca1 cal- .
culations 1s g1ven to show conf1dence in the present method
'Chapter VI ‘deals w1th ax1symmetr1c Jet 1mp1ngement ,The

effects of nozzIe pIate spac1ng and 1mp1ngement surface

shape on the surface ve10c1ty d1str1but1onw%fe d1scussed{
In addit1on,_the shear stress on the surface resu1t1ng

. from the 1mping1ng jet is noted Chapter VII deals with
'.the me1t1ng and eros1on of a frozen mater1aI ' If the
‘.mater1a1 is 1ce then heat transfer between the water Jet
and the ice surface 1s the pr1mary 1ce remova] mechan1sm.
.I Hhen the mater1a1 1s frozen graveI or sand _for example,.'
| both remova] mechan1sms, heat transfer and eros1on w111 be
.1mportant . ‘The’ effect of meIt1ng on heat transfer is dis-

cussed and an attempt is made to mode] ‘the melting of a .

block of jce.’ F1naIIy the comb1ned removal ‘mechanisms,

< heat transfer and eros1on are d1scussed w1th respect to an

~axisymmetric Jet 1mpjng1ng on a¢f1at surface.



© CHARTER II:
- POTENTIAL FLDW ANALYSIS
The class1cal approach for the solut1on of many . .

'forced convect1on momentum and heat transfer problems

3l'begins with the computat1on of the 1nv1sc1d flow, 1gnor1ng o

‘ 5ﬁany boundary layers wh1ch may be present The bounqary

layer 1s then computed assumlng the flow cond1t1ons at
;the outer edge of the boundary layer are. equal to. the’]il'
cond1t1ons pred1cted at the surface of the body by the

'1nv1sc1d flow analysis The parameters of 1nterest the T

.'f sk1n fr1ct1on and heat transfer coeffic1ents can then be

' lfound from boundary layer cons1derations ‘

| - In th1s chapter, ‘the steady, 1rrotat1onal flow of an
: 1nv1sc1d 1ncompress1ble fluid 1s cons1dered The flow |
\'f1eld problem 1s formulated as a- boundary value problem

‘>~and as a var1at1onal statement both 1nvolv1ng the scalar B
:'veloc1ty potent1al and the stream funct1on Both two- -

“}_dimens1onal uslng plane cartes1an coord1nates and ax1-v"

':f‘,symmetr1cal flow us1ng cyl1ndr1cal polar coord1nates';

"independent of the angular coord1nate are cons1dered ,The'
‘”cartes1an coord1nates used are X, y and the cyl1ndr1cal
'polar coord1nates used are r z. 4 -

The sc1ence and mathemat1cs of 1nv1sc1d flow analys1s

-‘1s'very well.establ1shed,and the deta1js may be.found in



_many standard'textbeoks.f for example, Milne-ThompSonn[Jj; e
‘Batchelor [2], Lamb [3]'and Robeftson [4]. Thelbedndary‘ |
tva]ue problem formu]at1on is given here for comp]eteness

and future reference The variat1ona1 formu1at1on fo]]ows‘
that of Kant%rov1ch and Krylov [5] and is 1nc1uded to show

the equ1va1ence between the boundary value prob]em and ‘the

varlat1ena1 statement, espec1a11y w1th respect to the bound-
ary cond1t10ns. ) N ]‘-,‘ﬁ:»a'
fZLIY‘Governing Eduations} E e o f .jf -‘,~\N '

' Cons1der the steady,A1rrotationa1 f]ow of an inviscid
1ncompress1b1e f1u1d Let prime ( ) denote a d1mensxona1
variab]e and unpr1med var1ab1es as non d1men51ona1 The

equat1on oftgonttnu1ty is

o ﬁnere]V’zis5the veTQcity'vector. ;Thts‘?eduees'tblu:

P AL S . y .2
i

'\fdr:tWOAdimensiona1vf]ow and to

,a(nfyéﬁba.a(rtv;).

T AN T 2,13

3
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- for cylindrica] axisymmetrica] flow The condition of

'1rrotationality is mathematica]]y expressed by

o  . 'V"ka"%ﬁbf“ . S . -f2f1;4 
 'wh1cH,becowes
av! . av; _
-3—x'¥ - -a—y—r =0 ) 2‘.].5 :
av. av! ' o
_.__I_az _—-..—rar = 0 2.1-6
 'for two d1mens1ona1 and ax1symmetr1ca1 f]ow respect1ve1y
‘lTo satlsfy the cont1nu1ty equat1ons, 2.1.2 and 2.1.3, a
‘ Q‘stream_functJQn w'-1s 1ntroduced and is defined by :
&7f'. S ‘ . o ,:‘.'ﬂ ~  
SR | A _ 3y’ S o
vy = 5%7 ,. vy_.§%T'_‘A R 271.?

e g
vZ "’-.?, ar' . V;, = ",TT' az. o '- e 2.].8
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. From the condition of 1rrotatigna]1ty, 2.1.4,vthe,
cur] of the velocity vector is zero ;&d-from vector ana]ys1s
the cur] of the grad1ent of a scalar funct1on is also zero.
-Thﬁgefore, for‘1rrbtat1onal f]ow the velocity vactor_is the"
gfédient of a sca]ar“function.;gDefine a sdelafive1¢Citx

potential function ¢' as
Vio= - vlet R 2.1.9

The ve10cfty'cdmponent$,in terms of the potential function

are
; |
-~ ~ , - L a‘l.. . - -‘a [} " ‘-
) Vo 3%7 H vy; _ 5%7, 2.1.10
and.

B A | L T LU S L

for two4dimensi0na1:and‘exisymmet?ical-fTOWS fespettiVely
Lett1ng v be a reference ve]oc1ty and D a reference length

- a.set of non d1mens1ona1 varwab]es may be def1ned

-

X, - S . rt
=Py YOI 2 i TTD
v! f v v! ‘v}

= . x = —l = _Z_ = _r.

Yy TR Yy TN sV Ty e Yy T



. —::V——.—- =y_|—' '=Q.l."".v=" ' ‘ |
Ve sveggs ¢cgps VD 2.1.12

. N . .
" ' o o ) ’ ’ .
K ’ -

-Using non}diﬁénsiona]iiations 2.1.12 the continuity equas"

. tions 2.1.1, 2.1.2, and 2.1.3 become
v V=0 20113
in general and

v, ' - s
X X9 | - 2.1.14
, ‘fof.twdFdfmensioﬁa1 flow and - B S e

S(hvz)' Bfrvr)ﬂ a | .
3z .0 ez _'='O L .nzf]fjs.

for axis, ~~trical flow. "Using 2.1.72 the'éqhditibﬁs of .
irrotationality, equations 2.1.4, 2.1.5 and 2.1.6 become

vx¥s0. e 206

+in general and -

Sy, '1_ x»a':','F'f_:-_  .,':‘ SR
RS T T



for two;dimensional'?Iow_and 

for ax15ymmetr1ca1

of the non- d1mens1ona1 stream funct1on w and the non-

13

T2.1.8

f]ow._ The ve1oc1ty components 1n terms

-

dimensional potential function ¢ are found by substitut1ng

2.1.12 into equat1ons 2.1. 7 through 2. 1 1.

X ax'? .v 3y
for two-dimensional flow and e
v = - l_a_‘k. v= l&
b4 r or’ T r-a3z
V. = - 22. 3 'v..‘= - ﬁ
z ¥4 T ar

‘for axisymmetrical

flow and

Therefore
219

-3;12;];203:“

. 2.1.21
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‘in general for irrotational flows. Substitution of equa-

f;tibﬂ,2,1,21 into the continuity'equatioh 2.1.13 yields

2.1.22

Vi = 0 |
_fhis‘iS;LapIaqe‘s.eqdatioh which reduces to
2 .2 .
34 ¥ 2 2.1.23
3X 3y
for fwo—dﬂménsidna1 flow and to
| 2. 2 S
g 12,24, 2.1.24
ar 3z '

"for_axfsymmetrical flows. Substifution-of”the vé]ocity
“ichppngnts_in terms of the Stfeam function; 2.1.19 and

- 2.1:20 -into eqUaiions 2.1.]7:and 2.1.18 results in

2, .2 _ o
. a +,’a . = 0‘_ ' ! . 2.].25
~9X Yy "

"_fdr.ﬁwd;dimensiohaT f1bw and for axisymmetric flow .

 .:2 . - . SR : ) a
§__‘P_ - li‘k 3 = 0 .
B ar'.f,g—z%“;o_ R 2.1.26
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' The three equations, 2.1.23, 2. 1. 24‘and 2. 1.25 are

) N
Laplace s.equation but the equat1on for the ax1symmetr1c
stream function 2.1.26 is not. .Consideration of equation

'2.1.19 yields

‘which are recogn1zed as the Cauchy -Rieman cond1t1ons The

o

funct1ons ¢ and Y are. conJugate harmon1c funct1ons and’ two-
d1mens1ona1 problems can be solved by the methods of com-

plex var1ab]es
<

For the ax1symmetr1c case, cons1derat10n of equat1ons

: > Y
.

-2.1.20 resu]t'1n

ae L law, 20 13y
az_w r or ’._ar S 3z

z

v

The Cauchy-Rieman conditions are not_satisfied androiand wh'
are not conjugate harmonic’ funct1ons Although ¢ sat1sf1es-/
Lap1ace s equat1on 2.1. 24 w does not, equat1on 2 1 24.

The problem may be formu1ated either in terms of the
vé]ocity potential by equations 2.1. 23 or 2.1.24 or in terms
of the stream function by equat1ons 2.1.25 or 2.1.26
depend1ng if the flow is two- d1mens1ona] or ax1symmetr1c
-The.ve1oc1ty components are g1ven by equat1onsa2.1.19.and

2.1.20.



2.2 .Boundary'CondjtionE'

- For the, derived governing eqyationﬁ 2,1.23 through
| 2.1.26 either ﬁirich]et or Neumann type Boundary!gond1—
tions.apbly. At a <olid boundary the velocity component
normﬁ]vto the boundary‘must be the same as the veloc{ty
of thé bounddry in.the nonma] dirqgtion. ‘Therefore if'ﬁ

_§s thé normal unit vector

2.2

V.ns= Vg = 1
"In the two-dimensional case this results in
Vilx ¥ VyNy T VBxx * Vgyhy 2.2,

When a solid bdundary is stationary, VB = 0 and using equa?

tion 2.1.19

or | ', S 2.2.

Q
-6
QL
-0
n
o

Referring to Figure 2.1, the di?ection_cosines of T are

n = 3X . 3y
X an 2s

haa

1

2

3_



&
s
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>
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and

Substituting equations 2.2.4 into 2.2.3 results in

\ 1

2
:
2

.”‘ X
9s. 3s 9X 39S .
or sl 2.2.5
. o ’ h
AQ:'.B—Q-Q}‘-}- ?.iu: 0
- 3X an 3y an

N

Equat1ons 2 2 5 state that the tangentia] der1vat1ve of the
i stream funct1on a]ong a stat1onary sol1d wa]] is zero, wh1\e

the norma] der1vative of the potent1a1 funct1on is, ‘zero.

. That 1s, the ve10c1ty norma] to the solid. wa11 is zero.

[N
[

- The boundary cond1t1on of a constant’ spec1f1ed velo-

c1ty v . norma] to a boundary segment is given by e1ther

A
-

Ven=y

or . o . S2.2.6
¢ _ o — %
-é-h--v n =1y

‘If one of the boundaries is a streamline, the same argunents

as for the solid wall bdundary_apply; ,The~stream1ine is-a

y
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'11ne through whlch there is no normal flow. Equations

o 2. 2 5 and 2.2,6 are Neumann type boundary conditions.

Dirichlet conditions imply the stream function y or
the potential function ¢ being constant along a boundary '
segment;j If the boundary'is a streamline the stream func-

) ph o

.tion is constant a]odggthé boundary. ' If the potential

“‘ffunction is constant alohg a boundary then the stream11nes

at the boundary are at r1ght ang]es everywhere on the

) i

- boundary.

The boundary va]ue'prob1em for the steady irrotational’
flow of an inviscid 1ncompress1b1e f1u1d may be formu1ated
-by a number of boundary va]ue prob]ems

G1ven a flow region_R bounded by a curve T the bound-

ary value problem for two-dimensional f]ow is either

2. . .2

24 4+2%-0inR
X y '
subject to - o 2.2.7
-'.7,, T ‘ . .
3¢ _ ¥
5p = vV oonT,
or ) |
2 2 B :
24 +23%-0inR
X oy -
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subject to ‘ | : . 2.2.8
v = ¢* on r"] '

35S v on F-z

where T = F]'+ rz. For axisymmetric flow the boundary value

ing curved T is either

problem for flow region R and bound

2 2 | .
9 1 3¢ , 9 :
' ——% + = + ——% = 0 in R :
art T 9T 5z |
subject to | L ' S 2.2.9
¢ = ¢ on I
3¢ _ * on
sp =V on T,
or
32 - lg.y}_ + az =0
are T AT 5z
subject to : : o 2.2.10
v = ¢* on P].
I ‘ 3s vV .on Pz



2]

and again T = F1 + Pz

The above, formulat1ons can. usual]y be solved directly
by an analytical or numerical method if the bound1ng curve
I' is known a pr1or1 In free surface flow problems the
- position of “the free surface is not known before hand and
must be found as part of the‘sqﬂut1on A.free'surface‘1s

a streamline on which the pressure is constant for example,

a Jet of water 1ssu1ng from a nozzle 1nto air forms a

“-free surface :

As the free surface is’ a streamline the veloc1ty
normal to the freeusurface is zero. In add1t1on the condi-
tion of constant pressure a]ong the free streamline must

"hold. That is

p=p" C 221

on.the free streamline..
Integration of the equations of motion along a streah-

line results in the well known Bernoulli equation

1o oo B
v . L'.. 3 o 'S . :
Tt B 4Tght =BT - C2.2.12

4

where B* is the Bernoulli constant'for the streamtine .and

Al ‘2 1;Jthe 'square of the speed of fluid particles on the

stream11ne, vz =y v If the grav1ty forces can be

neg]ected, assumed valid for jet flows to be c ‘SldETEd,
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\

then the condition of constant pressure a]ong’the'stream-
line implies a constant speed by Bernou1l1 3 equation
2.2.12. So at the free surface two conditions must be

satisfied -

! S 2.2.13

p = p* on the streamline

"

_ . ‘ &
~and if gravity forces can be neglected the second conditi

=49

reduces to ' o ' ' .

V = v*‘on the streamline o 2.2.14

2.3 Variational Formqletion e
Thene ere'nan} methods evdﬁlab}e for the direct solu-
“tion of the boundary value problems given by equat1ons H
2 2.7 through 2.2.10. Of these are the exact so]ut1ons of
complex variab]es for two- d1mens1ona1 flows and separat1on
‘of variables methods for either two- d1mens1ona1 or ax1-
symmetr1c flows Some approximate methods are the finite
| d1fference re]axat1on techn1ques and the e]ectr1ca1 ana]ogy
*graph1ca1 method. ' ) | |
Another methdd of so]ut1on would be to try and find

an equ1va1ent form of the boundary value problem. As is

well known from structural and continuum mechanics, varia-



tional methods usdng the'caltu1us of variations offer ana
alternative formulation forgboundary value problems [6]
One method of solé€tion of the variat1ona1 method is the
Fin1te E]ement Method [7,8 9] Z1enk1ew1cz and Cheung “
[10] first app11ed the F1n1te Element Method to the solut1on
of f1e1d prob]ems as an extension of it's use in so]ving
- problems of struttural,and‘contTnuum mechanqu., Stnce then
: the.Finite Element Method has'been used-to so]ve many |
) d1fferent prob]ems of fluid mechan1cs 1nc1ud1ng the f]ow
of an ideal fluid, for example [11, 12 13,147, Reference
[8] contains an extens1ve recent Tist of finite e]ement
so1ut1§ps to f1u1d methan1cs problems. It w111_be instruc-
fdve to show the eguivalence between one of the bdnndary d
vakﬁi;itgblems.stated and its asSociated varfatfdna1.state-
ment €specially with respect to the boundary‘éonditions‘
The der1vat1on fol]ows that of Kantorov1ch and Kry]ov [5]
Consider the two- d1mens1ona] boundary va]ue prob]em "

formulated in terms of thé potent1a1 functwon,-equation}

2.2.7. The variational fbrmd]ation considers4the-integra1

. 73¢ 2 . (36,21 ;i e
I 2.]IR{ (éx)ﬁ-f‘(ay) } dxdy p.fré ¢v ds e.371

" The boundary cond1t1ons are exactly the same as those used
in.the boundary value, prob]em, d.e., ¢ = af on. T, and —i =
‘_v* on Tr,. The object is ‘to find the funct1on ¢ in competi-

tlon with all the other adm1ss1b1e funct1ons sat1sfy1ng the
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boundéry_cbnditiong wﬁich‘makg thenjntegral.l a mihimum._'

.Therefdre I is a funcfion of ¢ 6r 1 = I(¢): Let‘¢(kfy)‘

be the fUnqtibn'whiEh minimizes the integral L. Now, Tet

the set of'§11 other admissible functions satisfying the o

boundary conditioné, $(x,y), be defined by

Ay

$(x.x)f=’¢(x,y) +en(xy) - 2.3.2

where € is"a_paraméier and' n(x,y) is arbitrary. Consider
the Dirichlet bduhdéry pohdjtion,f¢-=g¢*’on Ty- Since both

¢ and $ must satisfyfthié'bouhdéky cpnditionvequafﬁon‘2‘3;2

results in |
: .
nluy) =oon Ty 233
Evaluating 1(3) = I(¢ + en)
Ct(e v em = 87 {32 any2 , (29 e 2m2}
RUREERE YAT SEE SRR ARSI R
o f (6 +emvids . . o 2.3.8

‘ For]@vto,apprqach the_miniyizing function ¢, the para-

metef‘e;mdét,goAtBQZEro;.‘The'minimum of the integral is



/\.(/. ‘ Lo . , g ' ‘v B

ﬁhen obtained by evaluating

-~ 31(¢ +’en 2.3.5

= 1
o

- Differentiating 2:3.4 and setting ei=‘0;7
':.&v.

gﬂ)dxdy - f v ds = 0 'L2(3;6 .

=

(]

N—

—
&
- Q
=

+
&’Lé’

‘ ‘<

Noting that =~~~ ..

B ]

RETSFION aean L B T2e .jL~ 30y L2 . 229y
X ax P iy ay - ax (Ve * 3y, (W‘ay? _”(éxz.fsyz)

. ,1,
-

and us1ng Green $ Theorem -to change an area 1ntegra1 to a

line, 1ntegra1, equat1on 261 6 becomes'

'\ ,' RN

N
@ RS
Nl . ‘ -

RN R f-a,fr"%indx 11, n(" ) arey
~," .. ’ " ' ) . x ‘. v .

™
T
o
QJ
S
&

-%f  nvids = 0”_7. AR ‘ ,'2‘.3"'._7' -
The f1rst two 11ne 1ntegra1s van1sh on the part r] df P*asf

n(x y) = 0 us1ng equat1on 2 3 3. Therefore, the 11ne

' 1ntegrals need only be eva]uated over the part rzrand they



.26

mmaygbe‘cbmbined. So
A 2 2 |
Ll e o g (24 T hdxdy
e=0 "R X oy
L b (R 2y . 30 3x . -
'+.[ n(ax 3s " 3y 3s Y *)ds = 0 E 2.35

Kl

. As the area 1ntegra] and 11ne 1ntegra] are 1ndependent and

‘,;jthat n(x,y) 15 arbltrary, the result is

2 2 ‘
AR X -
——? 0 in R
Y ..

‘and

The condltwon ¢ = ¢ Qu. F] has a1ready been used

reference to F1gure 2 1 and equat1ons 2.2.4 the boundary

Y OP
P N —
" . u

-

'vcond1t1ons becdme.

. -
<

W
(o)
=
—
N

£
]
©
)
o}
—
5



and the boundary va]ue prob]em is recovered A similar
procedure: can be used for the other cases The‘integréls

are 1jstedvbe10w.

Two Dimensional-Stream Function

1(y) = 5 ffR'{ (%%)zw‘(%—“g)z}dxdy -p jrz ¢Y*~g; 2,39 -

where

Axisjhmetrjc-PptentiaT‘Fﬁnetion'

S o) = o [f { B2+ (3)2) ravdz = 2or [ evies 2.3.100
SRS S LU Crp S
wWith thevséme~boUhdafyetqnditi6ﬁs~a$ﬂiﬁ'thee£WO¢djmehsienaiefe
case. T N L o
Axisymhe;rfc StneamlFunctﬁJﬁf-“'

, .Ii(-w) = pvr ;I-I’Rv;.{; (3_ ‘.+ ( ) }.;.u.dr:‘dz - 2.p..‘rr [rz dwds ,,2‘3,'T], 3
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with_boundary-conditjons

- an'%-v ‘on P?

¢

' Equations 2 3.1 and 2. 3 9 are equa]]y useful for two-
d1mens1ona1 f]ow and the cho1ce of wh1ch one ¥s most suited
to a particu]ar problem depends on the type of boundary
=cond1t1ons that are present However, equat1on 2.3. 11
1s not as usefu] as- ‘2. 3 10 due to the presence of the
_'radlal coordinate “r in the denomlnator of the first integral
_of the equation. To eva]uate this 1ntegra1 it would be

necessary to use numer1ca1 1ntegrat10n wh1ch s time consum-

'_'1ng and suscept1b1e to errors _ Equat1on 2.3.10 will be

1 used.for,a]l ax1symmetrrc.f10w problems.



CHAPTER I11

THE FINITE ELEMENT METHOD

3.1 Backgronnd _ ,
| i" The development of;finite element techniqueshorigin-
Kated from elass%ca1~apprdaches to structura] analysis.
The sciences of structura1 and cont1nuum mechanzcs have
fusednf1n1te e]ement techn1ques to so]ve many comp]ex pro-
blems. Recent]y, the f1n1te e]ement method has been used
- to solve many f1e1d probTems 1nc1ud1ng ‘those of potent1a]
flow in f1u1d mechan1cs [7 14] |
The f1n1te element- method has been used extens1ve1y
1n recent years because it has, in general,‘several out-
stand1ng features,d L1sted by Chan [11] they are
- Nen{homdéeneous and anisotropic prob]ems are
easily treated.
. Jt-‘E]ements can be graded in size and shape to follow
boundar1es of arb1trary conf1gurat1on | | | |
- 0nce a computer program has been deve]oped pro-
- blems of a sim11arrnature can eas11y‘be solved by supply-
. 1ng the appropr1ate new input’ data | - |

The general method of . so]ut1on of f1u1d flow problems

:.f us1ng the finite element method is as fo]]ows

- The entire flow region is. d1v1ded 1nto a set of

elements, 1nterconnected at various noda] points. A number-

29
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@

ing system is chasehito assign Value§ to the ﬁodes*and.
‘elements. ‘ ‘ S

| -'An element interpo1ation.fun¢tioh is chosen spgcifys
ing the variation.of the'field variable within each elemént.
In the cases considered the field variable is either the
}stream function or the potential function. ' |

- The contribﬁtions of each e]emgntvto the total flow
paftefh are assembled by a Ritz technique resulting in a
system 6f symmetric, béndéd, linear Simu1taﬁeous equatipns.
The ndmber of equations in the Systém equais the number of
nodd].pbints in the‘element ﬁesh and fhe solution of the
,usystém.gives the value of the field Variab]é at each noda]_
poiﬁt. ‘, l_ |

- A1l related physiéa] p;operties‘are'evaluated from

the nodal values. g

.The Ritz technique is a procedure for Changing a-
_coniihuous medidm problem into an approximate lumped para-

meter system. Consider the integral

1) = [ Floya 35 gee 3
A'. 7" ,

‘over the domain R. The object is to minimize I(u);‘thgt‘.

is find the function u from a set of admissible functions

f thch makes the infegral a minfmum.- This'is aCEOﬁp1ished

by. se]ééting én appkopriéte tria] family of solutfons U

where u . is given by | ' .



N “ S
u, = igi uiyi(x,y) -_;u : 3.1._

The u; are the Uhdetermined parameters and the yﬁ are the
coordinate functions or trial functions. The coordinate
- functions are‘kﬁown before hand but the ui'are.to‘be deter-
mined so to make‘u' the function which minimizes I(u)..l

) n
The minimization is achieved by finding the quantity

al(u) . o R

}ayi

The result is a set of linear equations which enables the

best appfoximation:to the true solution from the family of

trial solutions to be found.

3.2 The Finite E]ement Method Applied to Jet'Imp%ngément g

(a) , Finite Eiemént-Formu1;tion )

The following is a descript1on of the f1n1te element
| ‘method as app]ied to a Jet impingement. prob]em ‘The formu-
1at1on‘fo]10ws that of,Chan.[]]] and Chan and Larock [15].
'Sarpkayéxahd Hiriartl[lﬁ] have used this formulatibn to
solvb the jet f]ow”associated with aerodynamic thrust.
reversers, a very s1m11ar prob]em o

Consider the f]ow of an ax1symmetr1c jet imp1ng1ng

r.

on a flat plate. The flow field is shown schematically in

Figure 3.1. As the flow is éxiSymmetrica] the potential
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function formulation must be used and the»appropriate
]integraI is equétionj2.3.IOt The procedure followed here
is identical with velocity potential and stream function
formu]étiods in two-dimensional‘flow. Since the flow is
symmetrical about the stagnation étreamline AB, on]y one-
half of the flow region need be considered;

First thehfloW'region is divided into a triangular
e]ement mesh,”and a numbering system assigned to the nodes
and eTements. The patterg chosen 'is shown fn Figure 3.2.
There are a number Of"reasons for a pattern of this type.
A sequence is established for the numbering of both.the
elements and the nodes. The elements shoWn in the figure
are in h]ocks‘ofesfx. A1l of the b]oeke of six e1ementsi
are identical .in the flow field. This enables the flow
m_field to be modeled by as many elements as desired just by
’ add1ng more blocks of six e]ements The node numbering
';ystem also follows a d1st1nct pattern.. It is poss1b1e to
generate the numbering system for the-whble nodal fielo by
starting w1th the node numbers of the Wirst six elements
Therefore, a computer program may be Wr1tten to ‘generate
the- number1ng system for the flow- f1e1d just by inputting
»the number1ng pattern for the f1rst six e]ements and the
number of blocks of six elements desired.

A six node triengular element is'used_as the basic
element ofnthe flow field. ' This enables a,ouadratic,Varia-
ttion of the field variable, the potential function ¢, within
the e]ement.t IntroauctiOn of.triengular'area‘or natural
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coordinates leads to simplification of the algebra

involved. The area coordinates-i% are defined by

A. .
o i .
Ei - rm . 1 ],2.,3 | 3

where A s the area of the triangu1ar e1ement and the A,
are the areas of the subtr1angles as- shown §in. Flgure 3 3.

Each element has three corner nodes (numbers 1, 2 and 3)

35

.2,

*l'.

and three m1d side nodes (numbers 4, 5 and 6). For example,

the side connect1ng node 1 to node 2 1s descr1bed by &3 f 0

with & vary1ng from 1_t0:0 and,g2 varying from O toul,
Obviously, a constraint on the area coordinates defined-b

equation 3.2,1;15

3.

]
ad

SIS

y

2.

2

..The quadratic variation of the potential, ¢m, in ele-:

ment m‘is_giVen’in terms of the potentials.o? at the node

points. d
§m1= ¢ij i=1to6 3.
where
x; = (61(28-1), &5(285-1), 53(253-1),

‘4€]€29 452&3: 4&35]} s 3.

2.

2.

3

4
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Figure 3.3 Area coordinatee and element. niuhbering., system
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The derivation of theLeiement<interp01a£ibn~fqnct19n Xi. :
is given by,Huebner [8]. The Originai‘polar coorindates
(r,z) of a point in the trianglg aré 11near]y relatedlto :

" the area cporﬂinateé (51. 52,.53) by the sjstem of.eqya-'
tions Fepreﬁented'in matrix form‘by |

I
|

z] 22 23 B E] 1 z "=

| 3.2.5 .

N

ra T

R A T O 8 1

_ / - - _J -._" .J

- where (ri; zi) are the coordinates of node i and i=(1,2,3).

Solving equations 3.2.5 for (&, £,,"E5) results in

g | b, “ a; . g] ' Fﬂz,‘_'
o €s —‘?K;‘ b, - a, -.ga | r » o 3'?f6 .
&3 by a3 ¢4 ! :
- - e v I P

bk; twice the_area of the triangle and

where 2Am = akbj = aj
b = it TyE AT gt 2y O = zgry - zgry with 4= (1,2,3)5

i =1(2,3,1); k = (3,1,2). In indical ndtatioﬁ equation 3.2:6
may be represented as ' | |
1

g, = —— (b;z +a,r+c,} 327
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As the var1at1on of ¢ is quadratic ih the element,
the variat1on of the velocity will be linear w1thin the
element. The ve]oc1ty components are given by equat1on

- 2.1.20.

»
‘ o ae" L e 2%
R r - ar aaivar
| i=(1,2,3)
. N > :
vm=‘_L3m=_MwaE-i Q
zr 3z~ 3&4 92
{
Differentiatfon,ofvequations 3.2.3 and 3.2.7 yields
4 o .
m_ . om2 S o e
Ve =0 65 Ty C e |
; o 3.2.8-
o m _ m
. V2 5 ° ¢j T
, G A
v 4(Espz+§2b3); 4(6Tbé+£3b])}o ' JM3.2fQ

' . ' e .
-, Py ‘
%

“and. T the same as-3.2.9 with a rbplacihg b.. Now the

th

integra] equat1on 2.3. 10 ‘can be evaluated for the m ele-

" ment. - Substituting 3.2.8 and 3. 2 3 1&0 2 3.10 y1e1ds |

oA



21M(6™) = pm ff { mT ) .
R _ J} -

.; fe(¢jTj).}rdrdz 'TZQH.IPéY¢1xiV rds  3.2.10

! ‘ J‘, . "‘ ! - ' ,",."._

The boundary cond1t1ons w111”be cons1dered 1ater To mini- -
mize 3.2. ]0, dafferent1at1on w1th respect to .the nodal

vaTues ¢ as d1scussed 1n equat1on 3 1 3 is requlred

L,

A IR

A fl_ii_l = 2pm fff ¢?(T§TjA+ ?i?j)rdrdz
RO T o

a¢ "
f 2 2pm [ x.virds ¢ . S 3.2.11
. T, 1 : - , .
Thls express1on g1Ves the contr1but1on of the mth~e1ement
to the overa11 f]ow f1e1d ca]cu]at1on The 1ntegrals are
eva]uated in terms of area coord1nates and transformat1ons
g1ven by equat1on 3.2. 5 are used ~In Bhprt hand form
. . - "m ‘ﬁ o - -4 ,:I"_, - " - :
‘14531—1%e1~= SA™. o™ - SLA™ o 3.2.12
: : 1J J i - .
ST PR : - -
- SRR
co. S . I
-where - .
m ~ ~ " CE
| ,SAij 2pﬂ [f (T T + T1TJ)fdrdz- TR
Lo _ - S . T S 3.2.13

. : @ v
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o oand i =1 to 6 j =1 tos.

As the integration is carried out . in area coordinates,

- which are the same for each e]ément, the 1ntegrations need -

o on]y ‘be done once. The eiement matr1ces SA i and SLA for

»axisymmetrical eﬁements and S]j and SL for two dimensional'
| e]ements are listed in Appendix I. A]so given is a sampie
v‘integration ‘ _ - ‘. s | ‘

;= Now, essentia]]y a bookkeeping operation is required
| to add up the contributions of each e]ement to form a g]obal

' et of 51mu1taneou§ equations For the minimum by equation

3. 1 3 —[ S '.' 71: :, . 4}>""'__ --_:“_ah o
T ) Ly AU(e) o - L 3.2.18

Note that the factor an is common to a]] the terms and may

- be drvidediout The resu]ting matrix equation is of thetform

e ..p

£3

B R S

i In terms of structura] anaiysis the matrix [SA] is the stiff—_
r‘nness matrix and [SLA] the load matrix This set of equa-’
tions is symmetric,banded and 11near and ‘can be - solved ri
-f’eff1c1ent1y by a direct Gaussian elimination techniquee f
A sav1ng is realized 1f the bandwidth is minimized.w
'_The half bandwidth 1s determined by “the node numbers of a.“

7rgiven'e1ement_ It is equal to one, p]us the difference



between the 1arge§$2a?d sma]lest node numbers 1n the e]e-,
h ment As shown 1n F1gure 3.2 the numberlng of the nodes
ts‘such that the min1mum bandw1dth is rea11zed - The ha]f—
bandw1dth for those e]ements 1s seventeen h Because the'
matr1x [SA] 1s ‘banded and symmetr1c 1ts 51ze is [NN x NBw]
where NN is the. number of nodes and NBN is seventeen, the g

,ha]fobandw1dth.t

(b) Boundary Cond1t1ons o
The boundary,cond1t1ons appe:;)1n the matr1x [SLA]
Referr1ng to F1gure 3 1 they are a fo]]oWS :
(T) Symmetry Line AB ‘This is the stagnat10n stream-;

11ne%and there 1s ‘no.- flow normal to th1s 11ne
AR TN -BE R LR EERE Y 0 (5

'(2)' Impingement Surface BC There is_no-fiou'norma1'ﬂ'

“to the so11d wa]]

'(’3)' outlet Section ¢D: Assume t'hat* there is uniforn
. flow at the out]et sect1on The ve{pc1ty in the 2 dtrect1on
is zero and the veToc1ty 1n the r d1rection is assumed - '

constant, -



42

el Ve 3.2.18

(4) Free_Stneamline DE: As this is a streamline

there is no flow‘normel to it.
3¢ Yfi=‘°'f f L e 3.2.19

‘The other cond1t1on of constant ve10c1ty on the free stream-
line 1s arr1ved at through an 1terat1ve procedure An
initial guess as to the - pos1t1on ~of the free stream]ine is
. made and the potent1a1 flow equat1ons are solved The ‘
| veloc1ties on the free stream11ne are then ca]culated and.
:the p051t1on of the free stream]1ne is - adJusted to give a
,better approx1mat1on of the free surface wh1ch sat1sfiesp
the constant velocity boundary cond1tion A more deta11ed
1discu5510n on the adJustment of the free surface 1s g1ven'i
n'in‘the next-sect1ont ' o ‘
(5) Noziie<$treamline EF: .Again'thenecis no flow

oylnormal to a so]1d wall and
av s o =20 Va0 S0 32,20
316). Inlet Section FA 'ASsume unifonm f]ow atithe

'_1n1et sect1on : The ve]oc1ty 1n the r d1rect1on 1s zero ‘and

:fthe velocity in the z directlon is constant
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. : 5 =_§_¢£ .= .»'l .* ) -.,' . o
A o Vim-cp 3.2.21

The prob]em as formu1ated for Jet 1mp1ngement on a flat

2

o plate is

3.2.22

Equat1ons 3.2.22 const1tute a Neumann boundary value problem
wh1ch has a unique solut1on to within an arb1trary constant
To give a fnta]ly unique so ution a value of the ve1ocity
potent1a1,mﬁ$ be- spec1f1ed at a point. Consider the bound-
far}ooondition at the inlet/section FA. | \

4

¢ "=-a = . B
: o Yz» k»E% FCZ. o 3.2.23
Ve = = 5y =0 | : 3.2.24

"’fntegraté 3.2.23 to.get -~ . . - N

€,z + F(r)”

..).9.
Cn
1

where F(r) 1s some funct1on of r.. From 3.2. 24 F(r) can

only be a constant at most on the - 1n1et sect1on "Atﬂthe
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inlet section z is also a constant. Therefore an alterna-

tive boundary condition for uniform flow at the inlet. is

y

¢ = cq on FA 3.2.25

Asfthis is a Dirichlet boundary_conditicn the inlet section
of the bodndaryer becomes P1. The on]y'nbn-zero part of -

Ty

is the outlet section CD. The constant Cy is arbitrary
and may be set equal to zero.

,\_'(c) Finding -the Free Surface |
\ The position of the free surface is not known adpriori

and must be.fOund as part.of the solution.. If gravity
: effects are neglected the condit1on of constant velocity
is satisfied when the position of the free surface is found
An 1terat1ve techqbque. fol]ow1ng that in [16] is. used
“An 1n1t1a1 guess is made for the pos1tion of the free sur-
face. TheApotentia1 flow finite element equatiqns are
solved and the velocity at the nodes on the free surface
determined, The ve10c1ty is compared with the ve1oc1ty
--calculated for the node at the 11p of the nozzle vE " The
'lip cf'the nozzle is point E in F1gure 3.1. The ve]ocity
‘on‘the\stream11ne 'should be constant and equa] to Vg If
the velocity ca1cu1atedjat a node on the free surface is
iiarger than JE, the node is noved'fn a direction normal to
the stream11ne so as to decrease the velocity on.the next

1terat1on. If the calcu]ated ve]oc1ty is sma]ler than vE
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then the'node is moved in a direction‘so‘as to increase the
veiocity on the next 1teration Four-cases Of node move- |
ment are shown in Figure 3 4 ' In each case the node N is
moved'to the po51tion N' . The movement is based on genera],
'c0ntinuity requirements. The distance moved norma] ‘to the

Streamfines;is.given by

An. = :x((v—:)z - 3226

where A is a parameter sim11ar to'a relaxation parameter '
" The'square of the ratio of the calculated nodal- ve]ocity
D to the velocity at the 1ip of the nozzle’ vE is used to
';faccentuate the ve]oc1ty difference ' | |
This veioc1ty comparison and subsequent movement “of
the free surface node 1s done for all nodes on the free sur-
,face Once a new p051tﬁon of free surface is found the:
- finite e1em‘nt solution procedure is repeated the ve]ocit)
- on the free surface again found and the ve10c1t1es compared,
to Vg The iteration is stopped when the calcu]ated velo-
city agrees with the actua1 ve]oc1ty to w1th1n a certain
percentage. Usuaily the agreement limit was set between
.oneuandstwo‘percent.. ' o _
As-pointed out byASarpkaya and-Hiriart,[]Gj.converg-
ence to'the'proper solution can be~ensured with an»appropri-,
-ate choice of the parameter'x,_ They‘suggest a value of

0.015}>vThis value was used and convergehce always occurred.

1l



'-VN>VE~ . ; 4 . .'2 ‘{VN>VE

vy <V _ i ' ’  VN< Ve

- Figure 3.4 Movement of a node on the free. surface

46
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. The most importahf information oerived froh.the‘
'_potential flow anaIysis is the distribution of ve]ocity
”along the solid wa11,_segment BC. in Figure 3.1, This
.d1str1bution 15 directly related to the pressure gradient
'1n the boundary 1ayer which grows from the stagnat1on point.
: The ve]ocity distribut1on is requ1red before the solution .

of the boundary 1ayer may be cons1dered



CHAPTER IV
'BOUNDARY LAYER SOLUTION

R

Govern1ng Equations ‘ .

Cons1der the 1am1nar boundary layer growing from a
sta nat1on point of an incompressible warm water Jet
1mp1nging on an ice surface "A schematic of the flow is
'-stqyn in F1gure 4.1, Because the pos1tion of the 1ce- |
'water interface is not f1xed but dependent on t1me ‘and the
brate of heat transfer, the prob]em is ‘an unsteady one.
~This comp11cat10n is ‘removed by cons1der1ng a coord1nate
“-system which moves w1th the melting ice front. The prob]em
is now assumed to be a quasi-steady state problem.
Neglecting V1scous d1ss1pat1on and assuming that the

radius of curvature R' of the ice sunface is sufficiently
]

large such that the condition R' L1 s sat1sf1ed (18]}
“.the boundary layer equat1ons for two dimensional f]ow
(n = 0) and ax1symmetr1ca1 flow (n = 1) of a constant pro-

:berty fluid are

CONTINUITY:

Nt n o !
a(r’ u) 30 v) .y 8.
ax oy .

r
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 Figure 4,1 Boundary layer on a:_il'ice .s\vu_-f.ac"o
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..

1.

n

2

.

u(x')

Another boundary condition is rea1ized at the melting sur-"

~face. ‘Assuming that the ice is at a constant temperature,

' the me1t1ng temperature 0° C, an energy ba]ance at the me]t-

ing 1nterﬁace_resu1ts_1n-.

Lv. = k ;__
p_ 0 ay'

¥3=0.z

4.

5



where va 1s_thevinjéct10n velocity due to4the melting ice,_

The following non-dimensional variables are introduced:

1
] ' ) Y
= U - V. = U —)
u=Ss o vEgs UE§i VT
- N ;', o . -
x=F s rTp y = dpyReps 6, -
& , |
B | CT-Ty
Sy mp¥Rep s O = yoTr s Rep t

51

where V 1s the ve1oc1ty of the 1mping1ng jet and D is either

the jet d1ameter or slot w1dth depend1ng if the® f]ow is axi-

symmetr1ca1 or two d1mensiona1 W1th these substitut1ons

- the boundary 1ayer equations become

" CONTINUITY

a(r u) Alrv) o 0
ax ]
< .
MOMENTUM
U4y 3u U-du ¥ 33%
Yok y ' H;' ay
> : ‘_ B
ENERGY. -
) b 204, 30 1%
. 3 y Pr E;Z

ﬁﬁ o

4.

4.

4.

1

1

1

.7

.8

9
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4
‘

" and the boundary conditionS'beeome

at y =.0; u J’O; V= Vg o
9= 0
aty =6.;" 39‘= 0 2%y . 0 wu = U(x} 4.1.10
at y u’ ay ‘ n,( *a’—‘z‘ [
aty =68,; 2-o0; % . 0. 0 =1 ‘
. y .‘ »
4-The_energy balance at the interface, 4.1.5, becomes -
_ _ ;
V0 F-F-—ay y=0 | s | ,4.]']]
o b : @
L
where Ste is the Stefan number defined by
N - o 0 v :-, . - '
Ste = cp(—a—-~t7-,e-~_~~-)i \ u 4.1.12

i

The Stefan number gives the ratio of spec1f1c heat of the
: water to the 1atent heat for the melting phenomena It is
| always p051tive (T ‘> TO) for me]ting. As the temperature
'range for the water jet is 0 c to 100 C the Stefan number

- ;z.qy.,

>)is limited to the range 0 < Ste < 1 25
yf - The method of so]ution of equa ons 4. 1 7. 4., 1 8 and
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419 w1th boundary cond1t1ons 4.1.10 and. 4 T 1 is the
“Karman- Poh]hausen integral method [17, 18] A fourth order
'po1ynom1a1 1s assumed for both the ve]oc1ty and temperature

jproti]es 1n.the boundary ]ayer. .

4.2 Integrat1on of the Boundary Layer Equat1ons

The boundary 1ayer equations are going to be 1nte-

" grated with respect.to y_from y = 0toy=3§.

\

 CONTINUITY
b 6 j) | ’ ";_C,_.
) n 9- n i
[ = (rMu)dy + [ % (riv)dy =0
o % o %Y \Q\
" 4.2.1
usi%g_

'tégwéte-é1g§tﬁoh'4.l.8 fromy = 0 to y =6,
g Y A IR

— NN

dU 8, 52, L
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‘First integral. Note that S | -
r

. 2 n .
du . 3u _ 3fu ) aiuv) u dr” 1 3 (r"u?) + aluv)

Y oax dy T ox dy :Flax QxS Ty
. ' % u2 dE" R
using the cont1pu1ty equation 4.1, 7 The term I

o -

vanishes for the two- d1mens1ona1 ca§e (mb 0). The first

lntegral then becomes

Ny _r 2
u_l 3 n 2 u-3fuv I | n
/ m X (ru)dy +'f() ay VT PN dx (ray)

'where boundary cond1t1ons 4.1, 10 weré uSed and 8, is the
'kmomentum th1ckness defined by AR
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using boundary cond1tions 4'1 10 Combine the Sécond '

1ntegra] of 4 2 2 w1th the 1eft hand s1de and mu]tip}y by

2 and-, the momentum equat10n becomes

o
”

o

U 4 ,'n 7 du Ou RPN TR AT 1) R .
U oepng g v QU [0 (1 4 4oy = 3y gy
Vo e A - : . T

N ‘J‘ . . :-_ .f"» L &”@" T '

note that -, U T g e

N \ ’ - o o

mv . oo B L L A o .

B A ~ S LT PN : B
. 3 . . . Yo

R

so .

7, RN 7>dy : :f.:’g-” O -ghy+ 2] g0 gy

P

‘where 8§y is the displacement thickness defined by 4., -
- L S . - , \ | . . s I-_'—\m"i‘.

wolo
S

The fina] form of the 1ntegrated momentum equat1on 1s~-i7

arrived at by d1v1ding by u and us1ng equat1on 4 1. 11 for

|-

‘0 to. obtain ALY 'ﬁ';?  ‘ m@;"’p e, .

r - g



. . : . t " . 6 . . oL
AL (e, du- 1 1 EE Ste 30|
ph dx (risp) + 8p ax (2 + x;? Uy -0 * Pr By |y=0 4.2.5

ENERGY-

Ko,

: The.ehefgy.eqUation ijs integrated from y =“0 towy_é;6£.

_ Using the continu1ty equation 4.1, 7 and boundary cond1t1aps
~4.%1.10 the left hand side 1ntegrates to

L CUd ngy Lo dU,
,!‘ : | - S rn a‘x‘ (Y‘ 53‘_) - 533-)(—"’ V0

whereé 63’fs an{enérgy'thicknéés defined by

' ii?k

IR AR ,
© Ot U gy =
63 = ;0 U,él o)y 4.2.6g

‘,Théirigﬁt'hand.siﬁé.becches

$ ' ~ '
: 9l
- - 2 d.Y = - ~ v vz

@
el :‘ i
o

‘“Hultib]yT"Q'byA*1 andVSUBéitybtfﬁg fbr_vo frqm'@quatipn

”4.1.11&'thé‘integratéd energy éqdﬁtfgn'is

f-Y
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(ra)+c3a!-(l—;—it-£>

v'r. .

|c

3y |y=0 4.2.7

The effect of melting 1s seen to appear in both equations
4.2.5 and 4 2.7 with the presence of the Stefan number If
the Stefan number is zero these equat1ons reduce to those
given in [17 ]8] as the integrated boundary 1ayer equa¢1ons‘
“kof ;n 1ncompressib1e f1u1d 1n the presence of a pressure‘
@’gradhent for eather axisymmetrlc or tyo d1mens1ona1 flow
v o1 T .
’ 4.3, Veiocityiend_Temperature'Distrfbutions
A fourth order'polynomial'is chosenhto'represenththe

veTocity'andftemperature distributions in the boundary layer.

(a) Ve]ocxty Prof11e

Assume the form of the velocity profi]e as

-

R B 3' 4
where." ‘
. nl Gu- - 4.3.2

The conslants ay to a, are evaluated using boundary condi-
“tions 4.1.10 and-evaluating the momentum equation 4.1.8 at
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at y = 0;

3
—
n
o
[ =
L]
o

s0-ag =0 | | 4'.,3'.3('a)

Q
=

@
<

aty."=_6- ny =1 =0 \

S0 ay + 2a, + 3a5 + 4a, = 0 Ry v%14,3,3(b)
"’ S0 a, + 3ag + 6a, =0 | - 4.:3._3(c)' |

5o 'gl ta, +agt §~4 = . - 4-.3.3‘(d)

S
, R _
so 6A a3, &"2a, = A . 4.3.3(e)
0T 2 s :
- .yfx;v
f’. o 7» %

' ) T oo 4 S
where - ;dj“t R § | B

. : “ J,- )v T . '... .
e Tag = 0w a3



and

' , 2 d
A= §y dx

o’

~ The five conditions 4.3.3(a) to (e) are sufficient to
evaluate the five unkhown'cqnsténts ay to a,- The system

of equations may be'represented in matrix form as

o

- ' o —
1 0 ‘0 0 O .ao—} O-W,
0 1 2 3 4 a, 0
. 0 0 1 3 6 a, = 0
0 1 1 1 1 ag 1
0 6%0' -2 -0 0 P ‘i_A
’ The solution of 4.3.6 kesuTts 1n_ {
oo A oA
a = 0; ay = E;i;gr a, = 232_:+Z
0 T T+ 72 1+
o aat A o A
3 1 ! i 4 '
- 1+ X S 1'+ Ao

B
. 1 4

and the vélocity profile is.given by

T e Fy) + g ety

+ AéH(”1)l

4.

4.

3.

3
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1’\'l."':.‘e‘,re /

| . o
F(ny) = 2n, - Zn?’+ n?
G(nl) =ny - 3n% +.3n? -'n? - 4.3.8
H(n;) = 6n% - 8n] + 3n]

s
T

"6, and K. are shown in Figure #:2.

'VéTocity profi1es for a range'ofVA, the preSSure gradient'

R are shown in F1gure,5 '3 and the

*& (N

parameter, with AO

‘,prof11es for a range of AO ‘when A = 6 are shown in F1gwne
\L (

4.4,

sma]l as 1nd1cated by F1gure 4.4,

The effect of me1t1ng on the ve]ocity prof11e is: very

The parameter AO’ is a

-7

me]tmg parameter and is re]ate,to the Stefan number

For the case of no me1t1ng,- = 0 these profiles are

l

0 .

only valid in the range, =12 < A < +12 [17,18]. The lower
limit,isbthe point of separation'in'this:theoryaand'the |

upper limit correspoﬂds“te the eaSe when the VeIOCTty pre-

U
The condition, U > 1 1s phys1ca11y unrea]ist1c for

files pdp [IB];'that is'
and 1.

> 1 for a va]ue of ny between O

steady isotherma] f]ow Nhen me1t1ng is present th1s cond1-

- tion 1is mod1f1ed slight]y to. -12 < A < ]2(1 +. 2A ) A]so,

: ..
- for the case of no me]t1ng the ve10c1ty prof1]e reduces to
the one presented .in [17] in. h1s d1scuss1on of the Karman-_f

' Pohlhausen integral method. The case: of me1ting on a flat



6L

. Figure 4,2 anocity and temperature profile functfopa.
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'Ii:—!—
é
u

P ‘ ‘Figure 4.3  Ve1ocity profiles , Ste. = O , effect

- "ofi -pressure gradient
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| Ae =00, Ste=0.0
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Figure 4.4 Veiocity profiles , A= 6 , effect of melting
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.pTate W stud1ed by Pozvonkdv. Shurgalski1 and Akselrod

[19]. . The above prof11e reduces to the1r profi]e when |

A =0, that is for the case pf zero pressure gradient

, | coe
.(b) Temperature Prof11e
A fourth order po1ynom1a1 1s also chosen to represent .

the temperature prof11e, ~Assume

S 2 3 0 4 4 gg

e = b, ;gf]n + bz”. + bsn o+ b4n _ : ",4'3°9

where . S -
n= L e 4.3.10

i K T '

» To eva]uate the conStantg boundary cond1t1ons 4 1. 10
and the energy equat1on 4 1 9 eva]uated at y 0 are used

’ 'at"yf=u0;u nf% 0; 0:5.0

so by =00 o asala)

so b, f_2b2.+-3a3 + 4_b4 o.: o 4,3;11(b}_

.



at y = 6t§ =
S0 bz + 3b3 +
at y = Gt;

SO’ ?1 + b2 + b‘

.at .y =0; n’
$o GAOPrb
where

This systéonf.eduations,may be répresénfed i

-form as’ 

- 4)
0
0 o

o 1

P(

T oy’

4 b,
6 b,
1 b
O] P

65

4.3.11(¢)

4.3.11(d)

4.3.11(e)

-4,3.12

n matrix’
|

4.3.13



Comparlson of the . system 4.3. 13 w1th the system 4, 3 6

revea]s that replacing n] by n, Aa by AOPr and sett1ng A =0
makes the two systems identical. Therefore the temperatune

profile is given by

e ey e apeH(n)T q 3
= -1——_-+-—)\—-0-p—r- {F(n)+ )\OP‘”H(T\)} " 4.3.]4

..,.'po :
-where the functions F and H are those given by equat1on«
4,3, 8~ Figure 4.5 shows the temperature prof11es for
varlous Stefan. numbers The parameters Ao and xo,are me]t-

}t1ng veloc1ty, evaluat1ng the der1vat1ve

ing parameten re1gted to the Stefan number ‘From equat1on
4.1.11 for th&

C'

- L S g
g ste 2 . - : Q\u

= , | |
8¢ Pro 8 0T +7PrXg) | ’

from equat1on 4 3. 14 and us1ng equét1on 4.3, 12 one obtains’

or

Ste = IPr(1 + APF) 4,305

and'soluﬁng‘fof‘AoPr :

<« R

Cnoor L SEENT/2 o e
AoPr = (025 % 35 77 - 0.8 438
s

Thefreiationshipabetween\Aogand kéuis found from equations
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~ result fn

iy, W ‘

. Tl ) ,/
4.3.4 and 4.3,10 o o
’ “ty . s
[ . = : I A
Yo% F, Ao = Mo TS
where © - \'
0t ) .‘I ‘:2 : ‘
e - m o= ?s‘t' » » 4,3.18
¢ A u | | ~

?] S | "-‘J'u.

tggihe rat1o of boundary layer thicknesses

~ With the ve]oc1ty and temperature profi]es 4. 3.7 and
4. 3 14 the th1ckness parameters’ defined by equttions 4 2 4

4.2.3 and 4. 2@5 may be evaluated ‘As & and 6 are ﬁot kuown o

u-
. on]y the ré%io s E—’ g—fﬁand g— may be found Defidejg' e
U - | v . 'Q\‘!“‘:.b? . . ‘ J
I
=5 - - gldny BT
1 Gu 0 - U 1T . s
o ?7 . ,,' 5
L. . .&' b
S 1 v
2 uyu
by = T+ = (1 - g)i dn . 4.3.19
2 Sy IOL.* v’ "M
“« . A ‘

. ~

i it 5

j”DstT'-the,Vereity and.temperature‘profi1estthese13ntegra15'

BN



! g ’1. o
. Pd

For the case of Q? me1t1ng, %O f 0 these express1ons reégge“.u
to those reported in: Sch11cht1ng [17] ﬁo eValuate Ag-a, o é'

relationship between n and n] must bg e%tab11shed mg}he

2o o T g

{i relationsbip 1@ ,t | 'j’;ﬁl;_'f-_---; : j' “'3 : R

0. - . ﬁ % oy L ’
from equations 4.3, 2 and 4 3.10 where m is the boundary
layer th1ckness ﬁ@fio in equat1on 4 3 18 , The integral A3‘/
can now be evaluated as ' N '} ‘ -

Ay = {l/;/x )(] T A or ) {C (m) + AC (m) +4A ﬂ}(m}

T+ agPrCy(m) + xoPrAcs(m)."fi? APTAGCe(mMY 43,23

" Y

> ) ~
“where .
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] i 3" :4 ?" -
T 2m Im oA
‘ C"“”ﬁ_‘i‘d‘ﬁ*mo ‘_ ,
oo me . 9 " 65 .4
C,(m) = 55~ g * Tes0™ ~ 216 "

v3(m) =
. - i . ‘
S
Cglin) 2 e T e .
> This vavlue of 84 de ‘to tlre one reporte o L

. T
.,SchTichting [17] for.a case: of no meiting,mxo = xo = 0, -

on a. fiat plate. A= 0, for 2 Prandti number greater than
-

o . When the Prahdt1 number is-greater than one ‘the ratio-
.;_of the boundary layer thicknesses is 1éss than one ;';/’
. O g" IR \*' A ; . .
4. 4 SolutiOn of the Integra1 Equations ' ‘.il”

' The soluttoh~procedure described be]OW’1$ that out-
,,b lined in Schlichting [17] extended to soive onh the.momen- .
;'tum and energy equations First, the soiution procedure .

for the momentum equation wi]l be described

-



L YO . » N . ~ o

a e N h . . - ..
' ‘A .t ) . - . ’ : .7] 2
U : ' . B

.« V’ o N [N .

. . i

: ‘% " .From the ve]oc1ty profﬂe 4.3. 7 and &he t,gmperature .
‘ *m
profﬂe 4.37 14, the ve]oc1ty grad1ent and temperature

grad1en't‘at the ‘wall can b eva]uet_e_d i

. W A : . R
-2+ . : :
duli . LU .6 . .
il & U { — . 4 4 '|
) =0 13 ( T _I) - SR -
;‘v.yy ,,_“”'].+>‘0‘

T T T A
ay y=0'" FIT PrRgl oo a2

N o

o R . W’.

- .
ot

'\"j! . o M J . O 4‘.‘ B
eSubst1tut1ng those expres.}wns 'into the. monfentum ant%gr&
eguahon 4, 2 5 and not1ng that = i resu]ts 1n E
2 . .

T R N ey
. . L E © . Q o o
‘ ng oy B Ay - ”
_ll_-“__.a.___d(r °2) + o5, QU e .Al) = 1 (v2- * ¢ + Ste 2 e
Tphodx T2 E;*",,jﬁz Su (1 +2) P*Gt T+ PrA I
) . o w L - PN I - !,'. L . .

Ttiolvin e poL L5 W
Multiplying by,su ani-*ng-# ng Ly = 3; )

N -

PR

2+

S e 2 . - AT -
U _d ,Inc2 AU L, @) 6 Ste 2
max (r3g) *,Zéiiigﬁa‘bzg) Tt P T I, )
R o o

r L
2:‘ ) o ‘,.’["_'.!",. [l ff'!,’:/v

a
/

-/_-\\‘.. : . ‘ oL P | """ ) . . ? o »v :“ .

A"intrddulce' the substdtutions S e o /
S . i - LN . e .- - ; ‘~'- - . .-‘.

z=6l 0 s



simp?e transformation 1s used.. Let

72 .
- <2 dU _ du '
k 52 Ix z a-)-(' 47»4.4
»
' The function k is a known fumction as
62f ' T o
2 dau’ _ ,2 " -
1k=—§ 2 gl = A | s
. . % . ) 7 '
o ., B T . . . “&‘;’"‘.
fr m.equatﬁggg 4,2.3 and 4.3.5. Multiply the momentum
equafﬁon by AZ énd ekpand the derivativeltd get.
. _,.’% - , .
v “."
- &
3 4.4.6
A - (\‘) .
The 1ast term‘1nuff}7disappears fbr’the'tWOQdﬁmensiona1
‘case - An a1ternat1ve form for this last term is - -
- . $ .
) - ' R o TR T
o ) X ! , ‘ . '
. o -y— ex’ k- = Uz dr_ . 4.4.7
B . : du r.n r X '
- 1- - ~€‘~ ' . a‘i“ - ’ - ‘\’ .
S AN i e ey T, o -
‘.9" -> . R A \',',U~ Tt . i ,.I' e ‘,} e w wa ]
b equat 4 4. T el L&A
| y qua ion 4 ] iminate,;hg’dgrwyative_zaye,jg?L



AN

2* = z2(rM2 B 4.4.8

<4 ’ - ’ i ’ . -
o v . o J

A_and the momentum eqdation 4.4,6 becomes;%~

s
ar dz* _ 2(r")? 2+ 4
2 - 2(r) Bl + 83g) - k(2 + ) 4.4.9

using equation 4, 3 15 for the Stefan number and<¢nuat1on

4,317, Note that for fﬁe two- dimens1ond1 case n,= 05, s
z =""""‘-and equat1ons 4.4, 6 and 4 49" are 1dent1ca1

As the 1ntggra1 energy ;quatquuv,Z Z 1s very sim11ar

LU

in form to bhe 1ntegra1 momentum Eﬁu97
"proeedure fs used to obt§1n an’ equatjon simi]ar tétggué%ion'

4.4.6. The transformed energy equat1on is .

“}n 4.2.5 the ;ame L

CodW 2 (1 + Ste) 2 “ Udet M,
W@ T {A (—p7 T+ prx*T) ST il SRR R CLLE
. . k. : Ix "
:ﬂ.‘ --" ) .- '. .v : ’ .' .. ‘: / * ‘
where ",/
1L : W = Gg' P . v4.]]
B e ':':_‘ . .
" t =§} gz:iq{-: w dU '
! “3dx. ¢ dx
'_"w‘

Again to.ﬁemoVe:fhe‘defiyafiveﬁsfifrgﬁguthe transf rmétidnf

v os



74

\ : .
“similar to the one used for the momentum eouation is 1ntro- ~

ﬁﬂ duced ,Let_

¢ e : ' - ' 3: ] ) _ _
. oW = WM SEE TR P 98
“ o e "‘“.,“" 3
. o %‘ o, )/ \“‘J‘
[ and us1ng equat1on &EB 15 for the Stefam number the 1ntegrav
energy equiﬁion becomes L 5 '"a~, o '”* ‘a
: 4 R . . : . : ‘ . @ . o
: ;".‘- 4 “ K . o . NN Y oo A
‘\ W ' - v o » o * .“ ' L s - ) ) J,- . I'.qv
';;.f‘ ‘ I_ . ., ) ' 2 79 Vg i - ‘ :,“ . | ;‘;“
2 = -4 3(Pr(1 o Pr) GA ) L} , 4.4.14%
b - ; \f %‘Qxy.ﬁ‘ N
,,1“ v "& # S 11?3‘ _‘; ~;‘5'[q) o
. . LU o
o kgRun , tta techn1que [20] 1s uSed to’ so]ve equa- Ce

tions 4.4.9 and 4.4. 14 The rnght hand side of both equa-"
R g
tions are functlons of the. pressure grad1ent,parameter A,

and the boundary Tayer th1ckness ratio m. for a given Stefan

number, ve]oc1ty d1stmwbut1on and surface shape.' In ogder P

“ Io startcthe 1ntegrat1on procedure the initial va]ues of A
and m- must’be known at the stagnation pqint ﬁquat1onsv
4 4, 6 and.4.4.10- exh1b1t a s1ngu1ar behavior at the stagna-
tion point where the veloc1ty U is zero. As.the derivatives, .
d_ and d_ are fin1te at the stagnat1on po1nt”§ahe terms 1n

“the brackets { } on’ the right hiéd s1de of each equation‘: N

. must be zero at the- sé;gnation po1nt : Therefore two stagng-.

tion conditions exist and are given by ‘3_ -_{f
. 'V'. . . . ) i .
R } 6 . 'y by JL dr. _ . o
,Az {'——-—] '+'. )\l_ﬁfuslo} k(2 + 2) k au E = 0 4;.4-.715'..- .
TR T s 37 P : : o
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SRR |
L
.. :

X ; ' ' g—rf. ' . \e v
s I ~ ~ y dx _ .

Pr(] F gy 5*0} "ttt 2416

ax N 3

For the two—dtmensiona1;case, n =0, the terms involving r"
- . .
: n. : ‘ o - .
and g—— van1sh. For the ax1symmetr1c case n =1, and this
term must b@ eva]uated at the stagnatwp po1nt, x = 0.

Assume that

"“ drn
Tim- U .dx _
x>0 30 n 47
dx \
} - » v e RS

/’1m\¢he\£eglgn of the stpgnat1on po1nt the ve10c1ty may be

represented by U = Bx where B is a constant _Also r « X
near the stagnat1on po1nt With these,approximat1ons the

assumpt1on of equation 4, 4 17 is true. The stagnation con-

d1t1ons now become L f‘ v, .fz;fﬂtgggg‘;
s = ,;' ‘b
| 2*‘5“ Ay -
B, {—E- + 6xFTk(2 + ) -k = 0 R
2y e a0y
0’ ' - ' e D
‘and . R - 4.4.18
-8 3Pr(1 T Pr) * 6Ao - L-nb=0-



These two equations are solved simultaneously to
find the starting values of the parameters A and m. The
:values determined depend on the Stefan number and whether
the flow is axisymmetrical or two- dimensional. F1gure 4.6
shows the variation of A and m with Stefan number»g!b two-
d1mens1onat flow. F1gure 4 7 shows the same var1atﬁon for
‘thé axisymmetrica1 case. Schlichting [17] reports the values
of A at the stagnat1on point for the case of no me1t1ng and
they coincide wwth the values found from ‘the so]ut1on of
“iequat1°" 4.4.18. <

N
t

4

vfﬁﬁ” Once the ya]ues of A and m are known )t the stagna-.

" tion pd1nt. call® them AO and Mgs @ Runge Kutta 1ntegrat1on
technique m:;\be used as fellows. The f1rst assumption is 4
that the !bundary 1ayer th1ckness rat1o mg is g%nstant [19];3
~ This assumpt1on was found to be acceptable as the functions
involved in the boundary 1ayer equations are only weak |
,functtonsnof m. The integration of "the momentum equation
4.4.9 1s,carried out'step by step in the form “;\3‘ T

. : *
ol Tt Cral

* (’X' - X_) ) ‘ |
%f(—l_p”) el P 4.4.19

Thts is a Rgnge Kutta method of order two [20] To Start
*‘.‘

the 1terat1on va]ues of z0 3—— :j must be known:

As Ag and m0 are known ‘the va]ue of k at the stagnat1on ?.

po1nt kO’ may be found from equat1on 4 4 5 Then Z, fe-

P
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_Figure 4,7 Axisymmetric starting values.
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~given by equation'4.4,4 and zs by 4.4,8. For ‘the axi-
symmetrical éése'za is zero as r" is zero at the stagnation -

point. In the two-dimensiona] case 26 = 20. To eva]uate

Ce *
di equation 4 4.8 is d1fferent1ated and eva]uated at the
. . > A Y :
. stj?nat1on point ' : o , T
FE ' o
b _ .
& dz* = ( 2 dZ + 2 ‘n 'd-f‘(\ . - .
_ 37—‘0,— r") Ix (r") 3x— 2 0 e
3 . , . o

h

vt : . P T

5E ‘ ‘ T [ °
. . . )

.‘..'. . . . . . B
z : /f—Tf’(/

ipFor the ax1symmetr1ca1 case, n \ 1, and vé]uevof“ e
\r? at the stagnation point is zero so S 4 : '
. . . . . ;..,’ ,,ﬂb.\ ] s -
. N . v f}} R iy
S ’ o . o ¥ . C o
PN 3 RS ) . ~
: ," - m ' - ‘ ‘ . ,a

* . RN ) . .‘.’ : \ )
g%. 0 ° 0 .axisymmetric case * A 4,4;2&4

'R

For the tnp?dihéhsionél caée n =0 hnd"_;<, c )  @
T P e L
. o dx|o a*ilo-_ q o
¢ v R R . e
s ., "X;

The genera] form of the d1fferent1a1 éhuation for the Qwogf

.'dimens1onal case 1s‘

C .‘ ’ . . . :' - 5 «l!'v . , v . ] " . o
: ral (R - o o : ] . S ’ RN -
L - . e ) L S 3 [ . . &

i . w‘“} .'.l*. ‘I_ H"' . ‘ . '-‘ 4‘ 4..4 2]

in aﬁcordancg Q&th‘equation 4.4.9. The function F(k) i
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not known exp1ic1t1y but is known 1mp11c1%}y through the‘

"pressure gradient’ parameter A. “To find %Z 0 L Hop1ta1 sv'

rule is used because of the singu1ar1ty at the stagnat1on

" rpoint. S . S
-:/-p R ° -

Y ‘-? . .:-"_,_ R q . . -
e vaa L s .
. . IR ; . _ A

Us1mg equatlon Anﬁ 4 to eva]uate %%a,-E'., S

R /%
| »3@»

! . N 4‘ L 4 N . . . .
' - . . . ! o . s
L ' dz] e R ;J%‘, " < s . : !4 ; . , .
o ... . ey A
s . . " .1"“ -

“Solving for gy

B | ' .
- For the stagnation po1nts con51dered 1n th1s study e
the veqoé1ty d1str1but1ons 1n the vic1nity of the stag'a-","
t1on point are represented by U Bx Therefnre.;—fv

. L . oo . . " i T /(’\

i



8]

~The linear velocity distribution near the stagnation point"

is ualdd for'biunt bodies only.
. * . : .
Using Ao'and mg gi—' is calculated with rn,] and U,]
" by equation 4.4.9.. Now. z] can be ca]cu]ated from equation
d.4.1§. Usihgfequat1on 4.4.8, z, can be found and from
equatioh‘4.4.4 h] is found. As k is a universal function

of A by equation 4.4.5 the equation

K(A). - k=0 4,423
can be solved to give the pressure gradient parameter at
the'.new position 1. Once. z, has been: found a]] of the
relevant parameters, “the boundary layer th1cknesses can
be found us1ng equat1ons 4.4.3 and 4.3.179. w1th a new
va]ue for the pressure grad1ent parameter the procedure is
repeated unt1] the whole boundary ‘layer has been ca]cu1ated
| "A similar techn1que is used to so]ve the energy equa-
‘t10n and the result is the therma] boundary thickness dt
The assumption of oonstant boundary 1ayer thickness ratio
iS'checked as follows. 1In- the Runge-Kutta so]ut1ons the
primary output var1ab1es are z and W. These were deterf
mined 1ndependent]y ofneach_other.‘ They are're1ated'as_

‘follous.




~

and solving for m

m = %)”? : 4.4.24

[>g >
W NN N

“This value is then combéred with the Qa]ﬁe found at. the
sﬂdgnyiion.point'to check whether the boundary thftkness
rat1o was constant | | |

~Append1x 2 gives a descr1pt1on of a comp]etebsolut1on
procédure, potential f]ow p]us boundary layer ca]cu]at1on,

3
“and 'also the computer program used for the ca]cu]at1on



_ CHAPTER V

" TWO-DIMENSIONAL JET IMPINGEMENT ON ’
. . . ¥
A FLAT SURFACE

For the case- of two- d1mens1ona1 f]ow when a free
surface forms, an-exact so]ut1on for the 1nv1sc1d incom-
press1b1e Jet 1mp1ng1ng on a flat surface is ava11ab1e by
using the complex- var1ab1e and conformal mapp1ng techn1ques
g1ven by M1che11 [21] and Ehr1ch [22] Miyazaki and
S11berman [23] used the resu]ts of [22] for the: potent1a]
flow. f1e1d analysis of the 1mp1ngwng two- d1mens1ona1 jet
and then used a f1n1te d1fference technique to solve for -

1 the skin fr1ct1on and heat transfer in the laminar boundary
1ayer reg1on near the stagnatnon po1nt. The ‘results of
[23] will be used. to verlfy the va11d1ty of'the finite'ele-.
ment potent1a1 f1ow so1ut1on of Chapter III and the 1ntegra1
'boundary 1ayer so1ut1on of Chapter IV. A d1scuss1on of the
| methods of so]ut1on of-[23] and compar1son w1th the f1n1te
~element method and integra]»boundary_]ayer solution fo}]ows;
5.1 Exact So]ut1on of the- Potent1a1 Flow Field-

A The methods of comp]ex variables and conformal mapp-
ings. may be used to determine the exact flow f1e]d solution
of an 1ncompre551b1e, jnviscid two- d1men51ona1 Jet 1mp1ng—

'1ng on a flat surface [21,22]. ,A_schemat1c of . the flow
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. _fie]d usjné the non;dimensienalization oﬁ‘equetfqhs Z.J.Ié -
. is shewn.jn Figure 5.1, JThe7re1eva°t results fph‘use in |
a bouhdahy’]ayer dnalysis:are reported in [23] and aﬁe g
repeated here for fU{Lre,referehce, They-ahe:

ki

e

H ='% 3 ﬁi In (_1_:_l)$/;/7f:"r +'/7§ s,
o : /_ + . : . C

g VI . .
f 1+ (+3) 1 - Uf
S g
R tan : (5.1
_U;A

b

e

where His the d1mens1on1ess nozz]e p]ate spac1ng, U; is
the veloc1ty on the 1mp1ngement surface or ma1nstream ve1e4 f:
- c1ty for' the boundary layer, Uf is the velocwty on the free-
surface and y is a parameter’ def1ned by equat1on 5. 1 2.

For a given nozz]e plate spac1ng equat1on 5.1.1 1s solved

. for y and the ve]oc1ty on the free stream11ne evaluated by
Vequat1on 5. 1.2. Equat1on 5.1, 3 then y1e1ds the distr1bu-

-t1on of veloc1ty on the 1mp1ngement surface The distr1bu-:

tions .of the‘ma1nstream velocity for W = w,,3.0.!1.0, 0.5
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Figuré 5.1 Two-dimensional jet impingigg on a flat surface



86

and 0.25 are shown in Figure 5.2. The curves for H = = and
H = 3.0 are essentially the same, |

The sdlufion for H = ® cén also be found by consider-
ing the normal impact of fwo equal upiform jets, one origin-
ating at +~ and the-other at -=. Theganélysis‘is déscribed
in [1] in some detail. MWhen H=o the solution of equa-
. tion 5. ] 1 y1e1ds vy = 1 and the velocity on the free sur-
face is Ug = 1 by gquation 5.1.2. When y,= 1, equation
5.%.3 reduces to the velocity distribdtjon described in [1]. -
Also given in [1] is an equation spetifying the position ofb
the free streamline for H = =. The freehsurféce is described

by the equation
- 7 . . .
,;z-7+;1nAcoth Z‘(ZX_- 1) , - 5.1.4

'and 1sbshown in Figure 5.3.

As shown in F1gure 5 2 the rate of change of main-
stream ve]oc1ty deﬁreases cont1nua11y with 1ncreas1ng d1st-'
ance froem the- stagnat1on po1nt for an 1nf1n1te nozz]e p]ate
' spac1ng. -However, as the nozzle-plate_;pac1ng is reduced
thé}vélocity rises more rapfaly_than lidear at a'pdfnt;ﬁeaf
the lip of the nozzle. This effect may be better seen by |
’d1fferent1at1ng the velocity d1str1but1dk‘to 65ta1n the

velocity gradient. Explicit d1fferent1at1on of equation

5.1.3 yields
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EQUATION 5-1-4

* FINITE ELEMENT
;+  STREAMFUNCTION

e FINITE ELEMENT.

Figure 5.3 Position of 't_he: free surface , two-dimensional jet
impinging on a flat surface , H—00 ‘

>

'POTENTIAL FUNCTION
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F1gure 5.4 shows the mainstream veloc1ty grad1ent dlstribu-
tion for. nozzle p]ate spac1ngs of H -‘b 3.0, 1.0, 0 5 and
» 0 25. : As H decreases from 1nf1n1ty a peak 1n the ve]oc1ty
gradlent d1str1but10n curve occurs at a d1stance from the
stagnat1on p01nt equa] to the. s]ot half width or at-a po1nt/'
..near the lip of the nozzle , |

_ The exp]anat1on of th1s phenomena follows the dis-
cussion in [23]. When the nozzle ‘is placed farvaway from

_ che impingemeht surface the jet is deflected gradually far
in advance of the}ihpingemeht-sUrff%e. As'the‘hozzle-plate
spacing is reduced the velocity at the lie ef the nozzle -
»increases,.that‘is_Uf > 1, and by,continufty the Ve]ocity.
cioser to the stagnatioﬁ stream]ine mUsf decrease. Also,
the flow must turn more sharp]y in a reg1on which is con-
t1nua11y decreas1ng 1n area, as the nozzle-plate spac1ng is
reduced. With decreasing nozzle- plate spac1ng the stream-

lines are packed cloSer together. Because the velocity is

defined as the derivative of the stream'quctiOn;!the Velo-_
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' city wi]l be greater if the stream11nes are c]oser together

'Consequently, the ma1nstream ve10c1ty r1ses faster than the

'case when H' - | ", Ul A o s
. L ] o ' : i : Y g
‘The fjnyte e]ement program Was run'for the nozzle- J{-‘<G
plate spacing of H = 3'0 1.0, 0.5 and 0. 25 The caﬁe,%~z : ]%%j

H.= 3.0 was run w1th both the potent1a1 funct1on formu]a%%on'

“-and the stream funct1on formu]at1on A]] the other %ases

" ‘were run w1th the potent1a1 funct1on formulat1on only As

| 'shown in F1gure 5 2 the finite e]ement program approximates
the distr1but1on of ma1nstream ve]oc1ty correct]y for the h
var1ous nozz]e plate. spac1ngs.- The posrt1on of ‘the free
surface, whlch is part of the solut1on, is a]so found accu-
rately by the f1n1te e]ement method as shown in F1gure 5. 3
: Limits of accuracy depend on the number of nodes chosen for N
the approx1mat1on and. the spac1ngs of these nodes »Ing
E genera], more. nodes are required when the veloc1ty is chang-
_iling rap1d1y or when the shapes of the boundar1es are chang-
. ing rapidly For ‘the . grad1ent of velocity, a cubic sp11ne
.rpinterpolat1on as, described in Append1x 2 1s used to numer1c~‘
";ally d1fferent1ate the computed veloc1ty d1str1but1on As
~With any numer1ca1 d1fferent1at;oa, errors become magni- .-
| fied, For'the casesﬁ = 3.0 the finite element method -
"accurately approx1mates the gradient of ma1nstream veloc1ty
- as shown in F1gure 5 4, The veloc1ty varies’ smooth]y and
'numer1ca1 d1fferentiat10n 1ntroduces very 1itt1e error

. fBut for the case of H = 0.25 the veToc1ty gnad1ent has a

_’sharp peak and to be able to pred1ct accurate]y the eXact
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shape of th1s curve many more nodes than were used for the

.case of H = 3.0 would be requ1red

| 5.2 ‘Heat: Transfer | '
M1yazak1 and. S11berman computed the heat transfer .
tvnear the stagnat1on point by a finite d1fference techn1que
v_The resu1t1ng heat transfer curves showing the parameter
_,NuD//ﬁea versus d1stance from the stagnatlon point for a
PPrandt1 number of ten and nozz1e p]ate spaC1ngs of H = =,
1 5 1. 0 and 0. 5 are shqmn in Figure 5 5, The parameter
- Nu //EE_ is re]ated to*the temperature grad1ent at the wall
V‘Formtng an energy ba]ance at the 1nterface

-

g) =k A . 5.2

n(T, =T
and_introduging'the nongdimeneional variab1estof equatfon”.f

4.1.6 one obtains

50 |

yly=0

~ Rearranging ‘and forming a Nusselt number o

(=)
Y

Res | Wpy=0 o sk
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Figure 5. 5 Heat transfer near thevstagnation point of a twof
dimensional Jet impinging on a flat surface:
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As the noz;le-piate spacing is reduced a peak in the

heat transfer curve appears near the 1ip,of the nozzle.

®

From the discussion of the gJadient of velocity in the. last

section it would seem that the heat transfer near the stag-
- - » ' -;_, 3 .
-nation point is directly related to the gradient of the

mainStreqm ve]ocity.‘.To show this re]atfonship the simple

case ofinemenz»stagnation point flow discussed in White

[18] will be used

The stagnatlon point flow of an 1nf1n1te f1u1d or

" Hiemenz flow is -one of the few flows having an exact solu-

tion of the.compietq.NQVief-Stokes equations.~ The so1utjpn
isjde§cffbed in [18] and involves a similarity parameter

A S ‘
ny-defined as-

5.2.

n =
and avmon:ﬁimgnsional fdrmfbf the stream function F(n)
defined by %?’-. : | 4
. du’! 172 s | v
oY = %(-TJ v X F(n) ' 5.2.
du;

where (Eii)afis the mainstiream velocity gradieht at the

'T}, .
stagnation point and v/isuthe kinematic viscosity. The

mainstream velocity for this stagnation point flow rises

3
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linearly with the distance from the stagnation point or
A
u' = gx 5.2.

where the parameter B may be thought of as the velocity

gradient at the stagnation point.

du,
>y = ‘ 5.2.
»dx')o g
Substitution of equations 5.2.3 and 5.2.4 into the Navier-
Stokes momentum equation yields an ordinary differential
equation for F.
3 2
T AL B 5.2,
dn dn n X
with boUndary conditions
F(0) = F'(0) = 05 F'(=) =1 - 5.2.

The solution of 5.2.7 Mftﬁ boundary cbnditions 5.2.8;15.
available in either [17j or [18] 3n_tabu1ar or graphiéa]
form. |

Now consider the energy equation and a dimensionless

temperature defined by

5

6

8
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o(n) = T ' 5.2.9
where T_ is the ambient fluid temperature and T, the surface

temperature. The energy equation, neglecting viscous dis-

sipation becomes

d“oe do _ o 3 ' '
d—n-z"* PrFEYT-O._ . - 5.2.].0.

using equations 5.2.3,.5.2.4 and 5.2.9. The bouhdaryﬂcondij:

tions are

© . e(0) = 0; ,e_(oo),;] | B ’5.2.’11“

>

‘Equation 5.2.10 with boundafy conditions 5.2.11 can be

directly integrated to give

fn exp ;- Prrf Fds sdn
o(n) = — —-
[ exp ;- Pr [ Fdss dn

O .

J0 3

5.2.12

o

The heat trénsferred at the wall is then given by

Qw = h(TO ; T ) = -k QITI 1
. r ™ Yy

|
]
LR
~~
—
8
1
—
o
N
=
(e
(1]
x
©
—~
]
o
S
——
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Forming a Nusselt number results in

9x_ 0 G(Pr) ' | 5.2.14

where G(Pr) is given by

A

' © o -1 C .
G(Pr) =.{f exp(- Pr fz Fds)dn} 5.2.15
TV . , | o

-

For Prandt] number equal to ten G(Pr) is 1.3388 from [18].
Using the non-dimensionalizations of equation 2.1.12, equa-
tion 5.2.6 becomes

g SR
B = (=8 = (2, | 5.2.16

and evaluating equation 5.1.5 at the’stagnétioh point,

US = 0, gives

dUS nUf- _
‘Substituting equations 5.2.16 and 5.2.17 into equétion}' 
5.2.14 and using~the.v31ue of G(Pr)'for a Prandtl number

of ten yields



~

o

- and rearranging giVes ‘
;o D _ | A :
- = 1.3388.Uf‘/4Y o 5.2.18

w

‘The solutions of equations 5.1.1, 5.1.2 and 5.2.18 for

E

variousAnozi1e-p1ate‘spacings and a Prandt] nnmber_of ten

are given in Table 1.

Table 1. Exact solutions of a two-dimensional
_ Jet impinging on a flat surface.

H" ' v o ‘Ava x:..Nob//ﬁgahl_'
g 3 N
s — -
e o T B D 1. 186
3.0 . 1.00000594 ,1,oooj7r AU 187{#5
2.0 1}000263”-  1.016355  1.206
;1}5 1.004080 j:,  1.65591l C L 1.262
'1-01 1.044880 o ©1.234042 "‘1;432
0.5 1.474190 ‘.'»] 1.902776 - 1.859
0.2 o 3.451339  3.423336 : 2,186

The va]ues of NuD//R for H = », 1.0 and 0.5
g1ven in Table 1 are shown at %he stagnat1on point on

Figure 5.5._ They. correspond to the heat transfer ca]cu]ated

™
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by the finite d1fference and 1ntegra1 boundary layer methods
‘at the stagnat1on po1nt Therefore, He1menz flow is valid
at the stagnation po1nt for a f1n1te jet. Because the velo-
city 1n Heimenz flow is linear by equat1on 5.2. 5 ‘the
gradient of velocity will be.constant. By equat1on S.étld"
this implies a constant Nusse1t’number'and'constant heat
transfer in the reg1on of the stagnat1on point. As the
Nusse1t number varies: as the square Toot of the ve]oc1ty
wrient, by equat1on 5 2. 14, the Nusselt number and heat
tuansfer are not constant for the case of the f1n1te JEt
| ‘As. seen- by this ana]ys1s the peaks 1n the grad1ent of velo--
"c1ty dlstr1but1on are d1rect1y re]ated to the peaks/observed_
.1n the heat transfer\curves. ‘,Z_ - '.k‘ S Wl
To compare the 1ntegra] boundary 1ayer techn1que of:u
'Chapter v w1th the ﬁ1n1te d1fference method of [23], f
;.integra] boundary 1ayer so]ut1on “was computed for nozz]e-{
*'plate spac1ngs of H 1~5 1 0 0. 5 and 0. 25 for the casek"
?of no me1t1ng and a Prandtl number of ten The_non-y |
dimensional. heat transfer Nu?//ﬁE" 1s mode]ed correctfy

‘by the 1ntegra1 boundary 1ayér solut1on for nozz]e p]ate

‘spac1ngs of 1.0 and 0.5 as shown in irgure 5.5. The seem-

',”ylngly osc111atory nature of the 1nteg al boundary 1ayer ;'f'

_ solut1on is due to the inaccuracies 1n ca]cu]at1ng the velo-
! . \r .
city grad1ent by cub1c sp11ne 1nterpolat1on ’

o : The dlscrepancy for the case pf H- 1 5 1s exp]a1ned -
as fo]1ows. M1yazaka and S11berman [23] conc]udedtthat the
~velocity djstr1but1on curves for H = and H = 1 5 were

T -
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| 1dent1ca1 - As shown by equation 5.2, 14 the\Nusse]t number.

varies as the square root of the streamw1se e]oc1ty
grad1ent at the stagnat1on po1nt Eva]uat1ng equation
5.2.17 for H = and . H = 1.5 resu]t 1n o \

172 |
(H;fTo | f,°‘886, xfor H

u
8

5.2.19

o

1.5

‘ ]/2 = 0. 914 for H
(zr—)o |

The curve presented by M1yazak1 and Silberman [23]
for H=w, 1 5. probabTy used the ve10c1ty d1str1but10n of
equat1on 5,1 3 for H = o, The finite eTement solution used

a. nozzTe plate spac1ng of H = 1.5. Therefore the finite

'element soTut1on should be 0. 914/0 886 t1mes greater than

~the soTut1on presented in [23] This is actually the‘case
- as shown in F1gure 5.5. ' : SR ,

The soTut1on for a nozzle- pTate spac1ng of H=0.25

- was attempted‘but because "of the Targe velocity gradients

P

present, as shown in F1gure 5.4, the boundary Tayer so]ut1on‘
fa11ed As was po1nted out 1n Chapter IV the range of
pressure grad1ent parameter for which the soTution is valid
TS -12 < A < 12 (1 + 21 ) The lower 11m1t corresponds to
separat1on and the upper T1m1t to ‘the case where the velo-.
city profiTes p0p [181]. Nhen the nozzle- pTates spacing is
0.25 the Targe ve]oc1ty grad1ents vmp]y that a large pres-‘

- sure grad1ent is present._



_ In both cases, for too sma11 a pressure gradlent
'A < -12, and for too 1arge a pressure grad1ent A > +12‘
(1 + ZAO) the 1ntegra1 boundary 1ayer ?/lut1on is not valid.
The boundary. layer, equat1ons 4 1.2 and 4.1.3 no 1onger apply
: and to solve the. prob]em in the regions A < “12 or A > 12 )
“(1 + ot ) another method of solution must be considered.

The errors introduced by the f1n1te e]ement method
and 1ntegra1 boundary 1ayer so]ution are caused by many
factors. The number of nodes chosen affects the accuracy
of'the ca]cuTated-ve]oc1t1es'. In genera] the more nodes
used to approx1mate the flow f1e1d the greater the accur-
acy. will be but more computer time is- requ1red Therefore !
N there is a trade of f between accuracy and computer time used
| From compar1son of the f1n1teve1ement generated velocity
d1str1but1on and the exact solution equation 5.1.3- the
approximate accuracy for all cases of nozzle- plate spac1ngs
is less than +5 percent. The ‘same number of nodes were
used in each case. The greatest errors occur when th% ve]o-‘
'-city is changing very rapidly, that is when H = 0.25. The ‘
accuracy of the veIocity’gradient calculation depends prim-
" arily on the accuracyyof‘the cubic cpline numerical differ-
entiation procedure.a Again comparing Ca finite element
“solution to the exact solution of equat »» 5.1.5 in Figure
5.4 the approximate accuracy is +20 percent. Again, greater
~accuracy islachjeued when the velocity gracient uoes not
-change very rapidly, that is for H ='3.0.

'In the:calculation of the‘heat.transfer there are

N
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two main sources of error. One‘is the error introduced,by'
the'approximatianOf integratinglthé»bbUndarx layer:équae,
tions and using'a'f0urth order poTyndhia] for the Velocity
~and temperature profiles. Thé.othef errbr'is\intrbduted‘
by the approxjmatidn.qf the velocity gradient in the cubic

, splineﬁépproximafion. With the Nusselt number beihg.proQ
~portional to the square root of the Vé]ocity'gradient”and 3
an e?rb}’in_the vé]ocity gradient. of +20 pefcent the,mgximum
error.in the Nusseit'number is<approx§maié1y +10.6 percent,.
Becduse of:the averaging qQa]ity'of thé integral solution
én approXiﬁate guess to'the error in the calculation of the

Nusselt number is between 10 and 15 percent.



CHAPTER VI.

‘AXISYMMETRlchET IMPINGEMENT

As mentioned prev1ous]y there are two distinct cases.
of jet f]ows. Both cases app]y to ax1symmetr1c and two-
dimensiona1 jets . The f1rst occurs when a gaSeous Jet
issues 1nto a gaseous med1um or a 11qu1d Jet 1ssues into
a liquid medium. Here, 'entra1nment of the amb1ent fluid
' by the jet greatly affects the veloc1ty prof11e of the Jet
The second case occurs when a 11qu1d Jet jssues into a.
gaseous . medium Th1s jet is v1rtua1]y unaffected by the
amb1ent fluid and a free surface forms between the  liquid
’Jet and the surround1ngs |

" The 1mp1ngement character1st1cs of ‘these two JEt flows
are slightly d1fferent The flow reg1ons for the case of.
the entrained Jet are well known Near the nozz]e ex1t a
: potent1a1 core region ex1sts, surrounded by a m1x1ng reg1on
.between_the jet and the amb1ent f1u1d. A few Jet widths
or dfameters downStream“the miXing region‘has spread.1nwards
'to engu]f the potent1a1 core.' Beyond th1s po1nt the m1x1ng.
cont1nues and the ve]oc1ty dlstr1but1on adJusts 1tse]f S0
as to conserve 11near momentum In th1s reg1on ‘the velo—
‘c1ty prof1]es are. self s1m11ar “When the~aet 1mp1nges on
a surface, in the stagnat1on reg1on,'a strong essent1a11y

.‘1nv1sc1d Jet- surface 1nteract1on produces a change 1n flow

103
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direction}[24] - Far from the stagnat1on point a wall Jet
forms and the .velocity proflles are again se]f swm11ar.
A trans1t1on zone exists. between each of the above reg1ons.
The flow reg1ons for the case of the’ free surface Jet.
are slwght]y different. The ve]oc1ty profile present at- the
exit of the nozz]e pers1sts unti]bthe'stagnation region
hbeg1ns to\change the k1net1c energy of the jet into pres-
sure~energy In the impwngement region and resu1t1ng flow
over the surface Watson [25] recognizes four d1st1nct flow
regions. These are. shown in F1gure 6.1 and are descrlbed
'below. . |
1;' A stagnat1on region, where the ve]oc1ty on thev
surface r1ses rap1d1y from zero at ‘the stagnat1on’
point to the free stream11ne ve10c1ty at a dist-

ance: from the stagnat1on p01 t.equa] to approxi-a

\

”.vmately the nozz]e d1ameter '-hen'x' << D thei'
flow can be descr1bed by the stagnatizn £low of
an 1nf1n1te f1u1d where the mainstream ve]oc1ty
rises 11near1y with x f' This is. the H1emenz

._stagnat1on po1nt f1ow descr1bed in [17] or. []8]
2.‘CA flat p]ate region at a greater d1stance x' where
"there 1s no’ pressure grad1ent and the f]ow is ‘
sim11ar to B]as1us flow over a f]at p]ate

d3. A trans1t1on reg1on where the. boundary 1ayer

1nc1udes the who]e f1ow f1e1d and the veloc1ty_

prof11e changes from the flat plate prof11e to -

theffu]]y-deve1oped s1m11arity prof11e,
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1 | VELOCITY PROFILE
| AT NOZZLE EXIT
~ UNCHANGED

- N \~

| IMPINGEMENT SURFACE
_ALTERS VELOCITY
. PROFILE

 TRANSITION

1 __ REGION- =
T
R e ! S

 'STAGNATION FLAT PLATE =~ SIMILARITY
' REGION  REGION =~ ~ REGION

Figureb6.*1 Flow regions of an Ii_mpin_gilng jet:
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»4.7 A similar1ty region where the fully deve]oped
| _"similar profi]e pers1sts A hydrau]ic Jump w111
-eventually occur and the thickness of the 11qu1d
- n the p]ate sudden]y 1ncreases
The above regions apply only to 1am1nar f1ow. As
region/l has a strong favorable pressure grad1ent transi-_'“f
t1on to. turbulence 1s not likely to occur there A more h%;
IJ}ely place for tran51t10n 1s in region 2 where the pressure
gradlent is essent1a1]y zero Of course tran ition to )
urbulence W111 depend on a number of factors, Jet Renolds
riumber, free stream turbulence, and length sca]es and syr-
face roughness._ 0n1y 1am1nar boundary layers are cons1dered
_in this study. I |
6.1 Prev1ous Work . :
"The main pgobiem in determ1n1ng the flow fleld char-
acter1st1cs of ax1symmetr1c jets is that the stream funct1on
~and the’ potent1a1 funct1on both do not sat1sfy Lap]ace s |
",equat1on and thus the methods of comp1ex var1ab1es are not a}
_‘useful Therefore,vnumer1ca1 and exper1menta1 methods must ;
" be attempted Lec]erc [26] used an’ electr1ca1 ana]ogy to -lh
;solve for the p tent1a1 f1ow of an ax1symmetr1c Jet 1mp1ng-,*
ing on. a f]at pjate | Brady and Ludw1g [27] computed the ’
veloc1ty on-a f]at p]ate due to an- ax1symmetr1c Jet by
fexperimenta11y measur1ng the pressure d1str1but1on on the
:'surface | Thelr interest was in the ground f]ow‘character1s-‘
”‘,'tics of VTOL and sTOL a1rcraft Jets., Scheltz and Trass

.’/’ v
VA .
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V; [28] useﬂ a separation of yariables technlque ‘and a trun-‘

- cated series solutlon to solve for the flow f1eld in a non-
‘-untform 1mp1ng1ng jet. Sarpkaya-and Hiriart [16] used the
finlte element method of [ll] and also Belotserkovsky s
1ntegral method to solve for the potent1al flow assoc1ated
lwith aerodynam1c Jet thrust reversers

. Other 1nvestigators [29] [39] have made exper1mental
and theoret1cal investigations 1nto the flow field and heat
_transfer of 1mp1ng1ng axisymmetrwc Jets The effects of
_entrainment dre’ 1mportant and some of the parameters and
neffects dealt w1th are nozzle plate spac1ng, turbulence
'levels and length scales, s1ze of Jet and s1ze of target
surface, Jet Reynolds number ‘and. Prandtl number -The pres-
'»_sure d1stribut1on measured on the surface is 1mportant for
5determ1n1ng the velocity on the 1mp1ngement surface o
| “In thls chapter the flow:and heat transfer characteris-‘
tics of an ax1symmetr1c lam1nar Jet 1mp1ng1ng on a surface N
will be 1nvest1gated *ﬂTwo effects were modelled by the
finite. element mvthod and 1ntegral boundary layer analy51s
These are the effect of nozzle plate spacdng and . the effect
of surface curvature.‘ Also the shear stress on the: 1mp1ng-
Thment surface 1s determined ~The’ effects of melttng on the

E heat transfer w1ll be cons1dered in the next chapter

6f2 Flow Field of Axlsymmetr1c Jet Imp1ngement
The f1n1te element program was - run for an ax1symmetr1c"'

Jet 1mp1ng1ng on a flat surface for nozzle plate spac1ngs'
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" the velocities for all three
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of H = 0.25, 0.5, 1.0 énd 3.0. The radial surface velocity
distributions are shown in Figpre,G.%f’ ]h¢.velocity distri-
butions for the‘cases of 1.0 and 3.0 aré essentially the
same and thefefore,the ase of H = 1.0 corresponds to the

his is contrasted

case of infinite nozzle-plate spacing.

Wwith the two-dimensional case where the ynfinite nozzle-

In the region x < 0.25

e

e plate épacihgs‘are

plate spacing is modelled by H = 3.0

approximately equal, although the’velocity gradients are
very different. This is shown in Figure 6.3 where the .velo-
cify grédients for H = 3.0, 1.0, 0.5 and 0.25 were calcu- |
]ated by the finite element méthod and cubic spline inter-

polation technique. As was present.in the two-dimensional

case verrors occur due to numerical differentiation of the

computed velocities. Peaks occur in the gradient of velo-

city curves at a radial distance near the lip of the nozzle.

: Simi]ar’to the‘twoédiménSional case, these peaks are related

to peaks which occur in the heat transfer curves. A differ-
ence from the two-dimensional case is that a peak occurs

in the case H = 1.0, » for the axisymmetric jet. There is

‘no peak in the gradient of velocity curve for H = 3.0, =«

in the two-dimensional case. Theipéak in the axisymmetric

case is due to the rapidly decreéasing flow area near the

1ip of the nozzle so that by continuity requirements, the

velocity must increase more rapidly than in the two-dimen-

sional case. ,

The velocity distributidn prédicted by Leclerc's
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electrical ana]ogy‘[26] for H = » and by the experimental
method of Brady and Ludwig [27] for H = o, 0.5 and 0.25
are also shown in Figure 6.2. Agreement between the finite
element method and¢the experimenta1 methods is quite good
for the case of H = 1.0 and H = 0.5, put the accuracy C
suffers wﬁen H = 0.25. A1l three casps had the same number
of nodes in the finite element mesh angd the qecrease in
accuracy is.due to the increase in ve]ocity gradient. A
large change in velocity requires more nodes for accurate
representatioh. |

The same argument for the increase in've1ocity grad-
jent with a decrease in nozz]e—plate'spécing,as éiren for
the two-dimehsione] case_also_appiies for,axisymmetric‘jet
impingement. | | '

To consider the effect of a curved impingemeht sur-‘
face the finite element‘progrem was run with a nozzie-p]ate
‘spacing qf-H~v 3 0 for an ax1symmetr1c jet 1mp1ng1ng on

curved paraboloid surfaces. The parabo]o1d cross- sect1ons

were of the fcrm

N
T~

w = arl o | 6.2.1

for var1ous values of the parameter a; (a = O O 05, 0.1,
0. 2 0 5 and 1.0). The coord1nate d1rect1ons w and r a]ong
with the resu]t1ng ve10c1ty prof11es are shown in F1gure
6.4. The rad1us of curvature R and curvature K are found

by the formula
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R B e = 6.2.2‘
KA - dzw . ®
dr2

" and fof the fami]y given by equation 6.2.1, one obtains”

‘A

' ' a2 2‘3/2' . .
1 _ (0 +43"°r)
R = = 53 | 6.2.3

The sma11es;,radius of curvature and largest cUEVature_dccur '
at r = 0, the stagnation point. _Table'é shows the radii
. of curvature and curvatufe for the family of paraboloids

considered.

TableaZ. ~Radii of.CUrVéfure‘and»curvaF
' . ture for a‘family of Barabo-,
Toids given by w = arc at.r = 0.

0.0s . 01 10
0.1 o 0.2 | 5
0.2 . 0.4 2.5
0.5 1.0 1.0
- 1.0 2.0 0.5
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vFor-the'Boundary 1ayer equations-to be valid the
relationship E! <<'1 mus t ho]d-[iB]. Using the:non-dimen-

sional variables of equation 4.1.6 and the reiationship

15
R = &='the curvature criteria becomes (Re ) ]/2,<< 1.

_If this criteria is not fu]fi]]ed then the complete Navier-

Stokes equations including curvature effects must be con-_

6

sidered7[45]. 1f o (Rep)” 12

<< 1T is va]id, then the effects
| T
of a change in surface shape are felt. through the externa]

jpressure gradient the surface 1mposes on the flow. For flow
on the concave side of the parabo]oid the pressure gradient -
is favourab]e and tends to deiay separation For flow on

the convex 51de, the pressure gradient is unfavorable and
tends to increase the chances of separation occurring Only
o the fiow .on the concave 51de of the. paraboloid was” con51dered

assuming that the curvature criteria, (Re )"”‘2

| << 1, was .
" satisfied. | '
. y-
6.3 Heat Transfer of Axisymmetric Jet Impingement
Nith the velocity distributions of the previous sec-
_htion the boundary layer so]ution described in Chapter IV
may be used to find the heat transfer characteristics of
the 1mpinging axisymmetric Jet. As outiined in the previous
chapter concerning_the’tWO-dimensionai jet the Nusselt
number was found to be proportiona1 to the square ;oot'of
' the ve]oc1ty gradient at the wall. ihe analysis for the

axisymmetric jet 1s the same as both  the two dimen51ona1 and

2
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axisymmetric stagnatipn ﬁoint f]owé are of the same type. 4
If boundary Iayer.eQUAtionS'are conSideFed, they both belong
'.tb thé c]éss df.Fau]kner-Skan wédge'flows,[JBJ; The diffi— |
cu]ty.for axisymﬁetric.jet impingementylies‘in finding the

pafameter 8 in the expression

.'-.A;@- .
g=zx 6.3

v 4 '
As the exact solution is available for the two-dimen-

§1dna1 jet, the parameter\B was found'as shown by equations
5.2.16 and 5.2.17..
. The governing equation for axisymmetric Heimenz stagna-v

tion point flow is [18]

d3F 2F 1, dF 2y - R
. -+ F + % (1 - ( 1) =0 : 6.3.2"
with_ e
o px' dF o - o
. u | = ) -a-a- | : » | .6'3"3
' '2

<
"

L~ VBV F(n) 6.3.4

and

. ) '\
L . . . . n:y"'.%.ﬁ.
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51m11ar to that for the two-dimensional case. The onlj

‘ difference is~the presence of the factor 1/2 in the above
equat1ons. The boundary cond1t1ons are the same as for the
two-dimensional case, that is F(0) = F '(0) = 0 and F "(o) =

1. The energy equation and thermal boundary conditions are
ident1ca1 with those of the two- dimensional case, that is
equations 5.2.10 and 5.2. 11. The so]ut1on is again equat1on
5.2.12 but the non- d1mens1ona1 stream funct1on F is obtained
'ufrom the solution of equat1on 6.3.2.: The express1on for

the Nusselt number is given by equation 5.2.14 and is

repeated here for reference.
Nu ='D,,—B— G(Pr) o 6.3.5
D v ST

B The value of G(Pr) for axisymmetric stagnat1on po1nt flow
mand a Prandtl number of 13. 7 is 1. 3296 as g1ven by Nh1te
‘[18] This compares w1th the two- d1mens1ona1 value of
1.4557 for a Prandt] number of 13 7. The phys1ca1 proper;_-f
ties,: assumed constant for this problem, must be ca]cu]ated
at some reference temperature. Three poss1b1e cho1ces are
.the wal] temperature, the Film temperature and the Jet bulk
temperature " The wall temperature, 0° C, was chosen as the
reference temperature for calculating the physical proper-

- ties. A discussion on the app11cab111ty of this. assumpt1on
is given in the next chapter. Using the non-dimensionaliza-

n of equation‘2;]:12, eqUation’6.3l] becomes
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du; du . |
2V S g .
= 2(—2) =5 (— 6.3.6
8= 2G5y T & o -

~similar to eqUation'S.Z.lG. Substituting equation 6.3.6

into equation‘x.3.5 and_rearranging results in

D _ 1, % PR -
D - "J2(+=2), G(Pr) | 6.3.7 .
LQEE | dx ‘0 | ‘

As' no exact sn]ution for axisymmétric th impingement
exists the values of B,_the velocity gradient at the wa]],d
§ may be obtained'frdm the finite e]émeht And cubic spline
interpolation. The va]ues‘of the velocity gradient at fhe
' stagnation point from Figure 6.3 énd the heat transfer para-.
vmetér from équation 6.3.7 are shown in Table 3 for various

nozzle-plate spacings.

"Table 3. Axisymmetric.jet impingement heat
~ transfer on f flat surface. '

_ du » - NuD

' o ' . YRe|
1.0, = , 0.91 1.8
0.5 o 1.28 - 2.13

0.25 ' - 2.52 . 3.57
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The Va1ues of NuD//R from Table 3 at the stagnations

point for H = «», 1.0, and 0.5 are shpwn in Figure 6.5.'
Also shown are the heat transfer curves generated by the

O.Zs‘was attempted

boundary layer analysis.' The case of H
‘but the velocity gradientsfwefe toollarge. Large velocity
gradtentS.imb]y a 1arge‘pressure gradient par;neter A; and
-the so]utidn is not vaTid for_iarge A as previously des-
cribed. The scatter in the data is due to the-numerical
l differentiation procedure‘of_the cubic sp]ine interpdlation‘
'approx1mat1on coupled w1th the 1ntegrat1on procedure. Peaks
in. these heat transfer curves correspond to the peaks in
the veloc1ty grad1ent d1str1but10n curves of F1gure 6 3.

| ‘The trends 1n heat transfer on curved surfaces can
be inferred from the ve10c1ty distribution curves in F1gure
6.4. The heat transfer for the curve w = 0;1s same as
“shown in Figure 6.5 for H = 3.0, 1.0. As the parameter
a increases, the've]ocity'gradient at the stagnation point
decreases as shown in Figure 6.4. “Therefore, the.stabnatibn'
,point heat transfer will also decrease withaincreasing
écurvatdre. This'trend is the same as concluded by Cheng
and wil1iams [54] For the cases a = 0,05, 0.1 and 0.2 the
heat transfer curves W111 on]y slightly differ from the
- flat surface case a = 0. Th1s is eévident because the velo-
city‘distributfons.for these four cases are similar. !For
the cases a = 0.5, 1.0 the- ve]oc1ty grad1ent in the reg1on

near the stagnation po1nt is very small. Heat transfer by

'conduct1on w111 predom1nate over convect1ve heat transfer
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“in. the reg1on of the stagnat1on po1nt for these two -cases.

| o A]so of 1nterest 15 the shear stress generated on
AJtthe surface due. to the 1mp1ng1ng jet. The shear. stress
w111 be 1mportant if eros1on effects are present 1n the

‘ transfer mechanlsms. A possible s1tuation where this would
'_happen is the 1mp1ngement cutt1ng of a frozen sand or grave].

\'.'

Def1ne a shear stress coeff1c1ent as

,Introducing the nonedimensionaluvariables of equation 4.1.6.hf

results in

1, - au| - SR
7 G Rep = Syly=0 - 63,90

;Equat1on 4,4.1 is used to eva]uate the ve]ocity gradient

in the d1rect1on norma] to the wall, Figure 6.6. shows the
shear stress d1str1but1on on the 1mp1ngement surface as

ycalcu]ated by the 1n¢egra1 boundary 1ayer ana1ys1s " From
quat1on 4.4.1 and equatgpn 6 3 9 the shear stress parameter
1s proportion to the ratio U/6 The shear stress para-
meter is zero at the stagnat1on po1nt as the free stream

B velocity is zero there also. For the reg1on near t e

stagnat1on,po1nt, Sy the boundary 1ayer th1ckness, j
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stant and U rises from zero as shbwn ‘ 'igure 6.2. There-
fore, the.shear stress parameter rises from zero in a
manner similar to the'rise in the velocity. The smaller
nozzlé-plate spacing produces a larger shear stress paha-
meter because a greater rise in free stream velocity is
exper1enced for sma]]er nozzle- plate Spac1ngs as shown in
Figure 6.2. As the radial distance 1ncreases the main-
stream ve]oc1ty becomes constant and the boundary 1ayer
th1ckness 1ncreases These two effects combine ‘together to
produce the peaks in the shear stress parameter curves near.
the 11p of the nozzle. The subsequent decrease in shear
stress is due to the continual increase in boundary 1ayer
th1ckness while the ma1nstream‘veloc1ty remains. constant.
The comb1ned effect of shear stress and me]t1ng will

be d1scussed in the next chapter



CHAPTER VII

MELTING AND EROSION CAUSED BY AXISYMMETRIC
JET IMPINGEMENT

The melting and erosion of a froéen material by the
action of "a water jet presents a very complex problem.
Because of this comp]ex{ty, 1nve$tigations on melting by

impinging jéts have been experimental in nafuré., In this
chapter the melting and erosion of frozen material is
analyzed by the methods of the previous chapters. The
effect of melting on the heat transfer of an axisymmetric
Jet 1mp1ng1ng on an ice sﬁrface is shown. An attempf to
model the me1t1ng of a block of ice results in the steady
state heat transfer rate as a function of Stefan number.
To obtain a ph&sica] pérSpectivebbf‘the me]ting'process,
photograpgs were taken at yar1ous time 1nterva]s dur1ng the
me1t1ng of a b]ock of.ice. F1na11y the effect of shear
stress and erosion on the cutt1ng ‘action of the. jet is

o

d1scussed.

e

7.1 Prev1ous Nork

Recent]y exper1menta] investigations on the melting
of 1ce wwth a - water jet have been made. Savino, Zumdieck
and S1ega1 [40] have stud1ed the effect of freez1ng and |

=me1ting onrthe.heat transfer coeff1c1ent at a stagnat1on

123
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point and found that the phase change ' 1 Tittle effect
on ‘the heat transfer coefficient. However, they only con-
sidereﬁ small temperatufe differences between the jef and‘
the ice and the Stefan number was small in their study,
Ste'§§0;14. Yen [41] experimentally studied the heat trans-
fer characteristics of a bubble-induced water jet impinging
on an ice surface: In this caSe thé water jet is Submerged
and entrainment is an impo}tant factor. -As'hreviousjy
mentioned Me]1or {42] has presented a number of potential
abp]ications for the cutting of ice with cdntinuous high
" pressure jets. de recent experimenta]}studies»bx Yen and
Zehnder [43] and Gilpin [44] have shown the‘effecfs of JZT?-
ing'é block of ice with a water jet.‘:In [43] the mass of
ice rémoved by the ablation process was the primary mea-
sured_quahtity; They found that the weight—TOSs versus
time curves were e§sentia11y linear ﬁmplyihg‘auconstant melt-
fng rate. Gilpin‘[§4]»recognized'two distinct‘regﬁmes.of
melting heat trahsfer, characterized by‘the shape of thg
éavity in the ice produced by the impinging water jet. The
‘first’was'a smpoth cavi%y_shapg o;curringAat.Reynolds |
numbers in the range,'z x 10° < RéDvi &”x”104,' Heat trans-
’fgrred during steady étate cUtting,of the1fce wa; found to
be correlated by -~ T ) o g |

\

- Nup =0.4 Re

0.65 S
0 - 711
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4

The exponent 0.65-indicates a heat transfer rate slightly
greater than that for purely 1aminar flow. Smoothness in
cavjty shape implies that a laminar boundaryylayer is pre-
sent and the jncreased rate of heat transfer is due to the
turbulent free stream of the jet. The second case was‘a.
rough cavity shape indieating highly turbulent flow. The
, Reynolds number range for'this'case was 5 x 103 i Reb'g

7 x 104 Obuiously either mode of heat'transfer can exist
for a range of Reynolds numbers and the mode wh1ch does
‘exist depends on the exper1menta1 cond1t1ons at the t1me

-the exper1ment takes place. For the rough case the heat’

transfer was correlated by

Nu. = 0.17 Re2:8 | 7.2

The exponent 0.8 is characteristic of turbulent torced'con_

“vection heat transfer.

7.2 Me1t1ng Ice w1th a Nater Jet
The boundary 1ayer so]ut1on was run for an axisymmetrwc'.
Jet 1mp1ng1ng on a flat ice surface " The heat transfer |
distribution near the stagnat1on po1nt for a range of Stefan
numbers 1s shown in Fvgure 7. 1. S1nce the water temperature

is 11m1ted to the range 0° C “to 100 C the. Stefan number,
ColT = Tg) ' |

, 1s_Tim1ted to the range 0 to 1.25; The.nozi]er;
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'platevspacing u;ed'was H =l3.0.‘ For‘fncreasing Stefan
‘number the heat transfer parameter-NuD//ﬁea, decreases.
The shape of the heat transfer'curve is independent of the
Stefan number but shifts downwards with increaSingvStefan
number' The decrease in heat transfer with 1ncrea51ng
Stefan number may be explained as fo]]ows\ From equation
5.2.2, the heat transfer parameter is equalito the non-
dimensfona1‘temperature gradient at ‘the na1] ‘Obviously,
. as the bulk temperature of the Jet is 1ncreased more ice
| wi1l be. me]ted and a th1cker 1ayer of near freezing water
will be formed. H1th the. th1cker layer of co]der water,
the temperature gradlent at the wa11 decreases A sh1e1ding
of the ice surface by the new]y melted water. Iayer takes
.place ' |

e

| The f1n1te e]ement method and integra] boundary .layer
solution were used to model the continuous me]ting of a )
\block of ice by_a water jet. The solution procedure pro-
ceeded as follbws F1rst, the axisymmetr1c jet flow f1e1d
on a flat surface was solved by the finite e]ement method.
The 1ntegra1 boundary layer solutlon was then so]ved to
obtain’ the d1strfbut1on of me1t1ng ve]ocity. 0, a]ong the
ice surface. If the pos1t1on of the ice surface before the F
me1t1ng started was z, then the new posit1on of the ice

Nsurface after a non d1mens1ona1 t1me At is

>

2y = ;t:;f,yolA;'_ R 7.2
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ustng the coordinate system described in Figure 7.2. An
adjustment of the new ice surface positioninow takes place
to ensure that the finite element mesh does not become‘too
“distorted from it's original shape. If Zi0 is the original
position of the stagnation point and Z(ttAt)O‘the new posi-
tion of the stagnation point after melting has taken place,

then the melted ice surface.is adjusted according to the

transformation

Zp T Zteat C (2(¢4at)0 ~ Zto) 1.2,

Where zp oives'the adjusted ice surface shapef This trans-
formation ensures that the stagnation-point remains-at the:
same vert1ca1 distance from the Tip of the nozz]e. The‘
transformat1on for the first time step 1s shown schemat1c-
- al]y in Flgure 7.2. with th15‘transformation the origin"" _
:; of the coord1nate system rema1ns at the stagnation point
| Physicallyfthe adJustment of‘the jce surface‘may'
’correSpond to‘two entire1y~different situations d‘As the
f distance between the nozzle and the stagnation point rema1ns {
constant the Y1rst s1tuat1on occurs when the nozz]e moves
_w1th the same ve]oc1ty as @he me1t1ng surface The relat1ve
ve]oc1ty between the water Jet and the ice surface 1s v,

'the d1mensiona1 water jet veloc1ty. The second case occurs;

-if the nozz]e remains’ stationar) ice surface melts

Although the distance between the
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nozzle and the stagnati&h point is physically increasiig,
a npzz]e-p1afe spacing of H =.1.0 models all cases in the"
range 1.0 < H < » as previously discussed. The initial
nozzle-plate §pacfng for this case waé-H\: 3.0 and the -
"adjustment of the ice sQrfacé does not alter the potential
flow analysis. However. the relative velocity between tﬁe

water jét and the ice surface is now V - Yo The program.
was run assuming the relative velocjty was V, that is, the
first case was considered. As will be.shown~1aterﬂ§he‘
magnitude of‘fhe"melting‘veiocity is so small that the
distinction betwéen thése two cases is negligible.

‘ The complete cbmputer progfam was run for Stefan“
numbers ~f Ste = 0.2, 0.33, 0.72, and 1.17. A typi;a] time
history proff1e‘oflthe ice interface is shown jn,Fiéuret‘
7.3 for a Stefan number of 0.33. A time step of 4t = 1
was used for this fun. The non-dimensional fimes for the
ice'interface;profilés‘Shown are t =0, 5, 10, 20 and 30.
The ice pfofiae is almost flét for the region 0 < X < 0.75.
As time increases the ice profi]&-becomes.steeper in the
région 1;0 i<X_i’1l75. The pfogéam was stopped aftgr 30
ftgfétiohs becauéé»separation was predicted. Separation
occurs'hhen the pressure ggadient barameter A becomes Tess
than -12 as previously discussed.

The assumption of quasi-steédy state flow made in

Chapteh Iv.may now be verified. Consider a typical flow

V = 3 m/sec "D = 0.5 cm v=1.74 x 10°
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Ihe Reynolds number for this flow is approximately 8.6 x 103.
For a Stefan number of 0.33, the non-dimensional melting
ve]ocity'is approximately Vg = 0.04. Therefore the}actual
melting velocity for this problem is

v _ YoV _ 0.04 x 3 m/sec . 1.3 x 10°3 M

= r———

v .
0 sec
Ry a6 x 103 -

or only about 0.Q4_percent_of the incoming jet velocity.
Because the me]tin§ ve]ocity is suchAa small oercentage of
‘ the incoming.jet melocity the flow may be assomed to‘be at
steady state. | , i - N

Also because of this smai] percentage the difference
between the two cases of re]ative ve]oc1ty wi11 be very
small. Therefore, the jet impingement problem may be
model]ed by the case where the nozzle moves with the Qame
'veloc;ty as the me]ting ice surface |
As shown in. Figure 7. 3 the shape of the ice profile
_ in the flat region is constant for the last ten iterations
}The constant shape 1mp1ies a constant melting velocity aiong
‘the‘whoie‘flat region. of the ice profile. Steady state
melting was~assomed mhen the ice profile in the flat'regiOn
~ had reached a constant shape. The me]ting ve]oc1ty VO’ is':
then used to calculate the steady state heat transfer rate.

From equations 4.1.11>and 5.2.2 the heat transfer

parameter is given by



"f.‘initiai sta: atios

Nup _ Yobr | ' | ? 2.2

/ﬁe— Ste
For the Case'of:no melting'both the melting\veiocity‘
Ifrand the Stefan number are zero and equation 7 2.2 is-indeter-
- minate Figure 7. 4 shows the steady state heat transfer |
’fparameter versus Stefan number. Thewregion near Stefan
‘number equai to zero 1s shown by a dotted 11ne to indicatev
p“ithat the steady state resu]ts for this region are not known:_
_nbecause of the indeterminateness of equation 7. 2 2 Also =
v";shown are the stagnation point values from Figure 7.1. As

:;fthe Stefan number increases. the difference between_ the

eiting:Velocity and the steady
This trend 1eads to the o

":ﬂstate meTting velocity inorease,.f
assumption that the steady state heat transfer rate is thle,
};hstagnation p01nt heat transfer rate for as efan number
'equai to zero. Therefore, for small Stefan numbers the

initia] staonation point me]ting veloc1ty may be used to
_ calculate steady state heat transfer rates but at 1arger ,
.Stefan numbers differences of up to about ten percent WOuld R
| result if stagnation point vaiues were used fnstead of the
steady state value. |

‘k The néxt problem was that of deciding on a reference -
temperature.h As pointed out in the derivation of the"
_boundary layer equation the physicai properties were
,assumed to be constant "The water temperature varies from .

‘the me]ting temperature at the wall to the bu]k temperature‘»
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of the jet in the free stream across a thin

"_and the prob]em of which temperature in th1s range is to
be used for ca1cu1at1ng the phys1ca1 properti ar1ses
This. 1s a prob]em as the viscos1ty of wa‘pr varies great]y
over the range of Stefan numbers cons1dered [46] The heat
transfer curves for references temperatures based on the
wall temperature. the f11m temperature and the bulk tempera-
‘ture are shown 1n F1gure 7. 5 A s1gnificant variation in
'Vithe heat transfer parameter is not1ced depend1ﬁg on which
'rreference temperature 1s used To determine ‘which reference
’.temperature is. best\su1ted to . descr1be this heat transferv
fprocess some exper1ments should be made and the heat. trans--z
"fer ca]cu]ated based on each of the three reference tempera-:
| tures.. A compar1son cou]d then be made ‘with Flgure 7. 5
Another pos51b1e solut1on would be to attempt a var1ab1e
,prOperty numer1ca1 solut1on for this Jet imp1ngement heat
transfer pr@blem v g f_ff' ‘ ﬁp. ',jf’d rfﬁ" |
To ga1n some physical insdght 1nto th1s forced convec- |

ftion melting heat transfer probTem a series of simple exper1-f"

' ,ments were conducted The experimental apparatus is shown .

vschematica11y 1n FigUre 7. 6 SR jet of water was vertical]y
directed at. a b1ock of 1ce for vary1ng ameunts of t1me .
,The water was pumped from a constant temperature tank and
the temperature of water and f1dw rate were recorded After
comp]etxon of run, the block of ice was removed from the |
papparatus and the b]ock was cut 1€9ha1f to reveal the pro;
:f11e of the hole produced by the 1mp1nging water Jet.~vA
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photograph of fhégﬁiﬁkltiqg ice profile was then taken.

" The time history 6¥ffhe 1ce'interface was obtained by allow-
ing the jét to impinge on the ice surface for variousvtimes.
A 1.27 cm diameter jet of‘wqte} at a temperature of 25°C,
‘Stefan number of 0.31, was directed at an fnifia]]y flat
block. of fce for times of 6, 10, 20, 40 and 80 seconds.

The resulting photographs are shown in P]ate'l. The jet

" velocity was approximate]y.ol76 metérs/second. Using the
wall temperature as reference teﬁperature this corresponds
to a jet -Reynolds number of Rep = 5.4 x 103, To compare
‘the photographs.with the curves in Figure 7.3 a reference

time must be established. Knowing

-
u

v, S ‘
=0 . = L. = Z_
Vo f v /ReD t = H z i) and

A

r’
H
<|o

/Re. ‘ - 7.2.3

For the present case the reference time is 1.22 seconds.

The times considered in the experiment then correspond-to

non-dimensional times of 4.9, 8.2, 16.4, 32.8 and 65.6. A
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le) t'=80 seconds, t = 65.6

-Plate 1. Time history of a block of ice melted
- By a water jet. D = 1.27cm, V = 0.76m/sec
Rep =5.4X103, Ste= 0.31.
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discuss1on of the photographs follows.

_ . Plate la. A very shallow hole is present The shape

of the'ice_interface looks -l1ike that in Figure 7.3 for nop-
: dimehsiona]rtime‘of 5 in the region X < 1.5. Beyond this

point, transjtion to turbulent flow is present, increasing
_the heat"transfer and changing the shape_of the ice inter-

face.
Plate 1b. A deeper hole is shown. Note the flatness
Qf the regidn,near the}stagnation point and the sudden rise
in profile shape;' The region of_turbu1ent flow can be seen
‘very c]earlya | : -

_PTaté 14, An evenvmore sharp]y,defined 1aminar_type .
region.'fA ”‘L:'regiohdstiil exists near the stagnatipn‘
'point. . | | ’ ‘

Plate 1d. A very sharp distinction at the end of the
_'laminar flow region. The flow is. separated and continual k
'application of the jet just'deepens»the cavity and increases\
the steepness of the cavity Wail.d The stagnatibn regfqn is'ii
still very flat. } | - - |
"VF;ate le. The flow has meited)auay the sharp lip
'shown in'?late'1d and has reattached tO'the‘block of ice.
)hr The format1on.of another lip, and then separat1on is pre-
B dlcted to occur. This pattern of separat1on and reattach-
ment is pred1cted until the hole has formed nearly vert1cai
' walls and ‘the f]ow is cont1nua11y separated
From comparison between the photographs and the pre-iﬁ;

d1cted resu]ts of F1gure 7 3 the conc]usions are:
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jt That a flat region'exists\near'the stagnation
potnt.e _ »
2. That the computer program is valid only in the
:regipn 0 <X < 1.5 because transition<to turbu-
1ence‘1s,1ike1y to occur-beyond-this point.
3. That the computer program predicts £eparation
" accurately. ‘Also the cemputer ana]ysistisbnot
~.ua11d'after separation has-been predicted to'0ccur.,
The effect of shear stress as we11 as heat transfer |
may. be 1mportant in some app]1cat1ons where a Jet is used
to cut a frozen medium such as’ frozen gravel or sand
Assume now that in add1t1on to. the heat transfer the remova]

‘rate of the mater1a1 is d1rect]y proport1ona1 to the shear

stress so

Vo -B-L-W y'=0 + C 3yT|y'=0 7.2.4

,where c 1s a proport1ona11ty factor Introducing‘the non-
d1mens1ona11zat1ons of equat1ons 4 1.6 and equat1on 6 3.8

“results in
_ Ste + T c . '/——- , o :
F—"'i_ _ 75 ¢ ,ReD, ‘ __7.2.5

A prob]em arises because the value of the factor c is unknown

To determ1ne the effect of shear stress. the program was. run
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\ _
for the case ﬁ /ﬁeh'—l and the. resu1t1ng shape of the inter-
face after one me1t1ng t1me step is shown in Figure 7.7. |
The contr1but1on of the shape-due to melting is shown for
comparison. .Ihe shape of the imterface in Figure 7.7
resembles the inverse of the shear stress eoefficient curVe'
of Figure‘G 6 WHach was eXpeoted eonsidering the form of . |
: eq'atlon 7.2.5. o | |

. The exact value of the parameter c'is unknown but the
| effects of vary1ng the parameter U /ﬁe_ are poss1b1e to
-pred1ct w1th the present program It is recommended that
an exper1menta1 program be set up to determ1ne what factors
affect the parameter c and what it's value m1ght be for

icgrtainvmaterials. A : ' " o )
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CHAPTER VIII

CONCLUSIONS AND RECOMMENdATIONS

This ﬁhesié was motivated by a desire to be able to ,
predict the melting charaotefistics of a water jet imping-
ing on an ice surface. With this in m1nd an ana]ytica]
solution for laminar jet impingement has been derived.

‘Both two- d1mens1ona1 and ax1symmetr1c f]ows are dealt with.
The so]ut1on is d1vrdedu1nto two parts, a potential flow
problem,whioh is solved by the finite e]ement method andja
boundary 1ayeh prob]em,-solued by the Karman-Pohlhausen
integral nethod. .

. The potential flow solution is valid for all jet
impingem;nt free surface type flows where gravity effects
can be neg]ecfed; The physical'effects dealt with are the
distance from the.noizle-eXitvto the impinéement surface
-and fhe imoingement surface shape From the potentia1 flow
solution the pos1t1on of the free surface and the velocity
distribution’ on- the impingement surface ‘used for the
boundary 1ayer ana]ys1F, are found ) | |

~ The boundary layer solution is valid for laminar
boundary'Tayers on'arbdtrarily shaped surfacesf However,

.' if fhe'curvature of the surface becomes too iange the bound-
ary 1ayervequations are no longer applioable and the com-

plete Navier Stokes equations, inc]uding curvature effects,

144
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‘must be considered. Another restriction on the applicabi-
1ity of the solution is imposed py the ihtegral so]ution
technique. The Karmao;Pohlhaueen integra)l technique‘is“
limited by extreme va]ﬁes in pressure gradient which may be
present in the flow. The .lower limit corresponds to the
case of separation where the boundary layer equatiohs are
no longer va]id. For the‘upper limit, the integral techni-
que predicts ve]ocityoprofiles which are unreasonable from.
a physical point of view Therefore the so]ution is not
valid in regions of-: h1gh1y adverse and -highly favorab]e
pressure gradients. The boundary 1ayer solut1on is vaJid
for lamipar boundary layers in the presence of a laminar
free %tﬁeam; Although a laminar boundary layer can arise
from thexjﬁb?ﬁdément of a turbulent jet, the free stream
is turbu]eht'uhich increases the heat tranefer on the
‘1mp1ngement surface o ' ' o - |

The finite. e]ement method proved very versat11e in
hand11ng all the d1fferent types of jet f1ows con51dered
Although an iterative procedure was required in. 1ocat1ng
the free surface, the f1n1te e]ement method was efficient
for solving these potential flow problems. Because of the
compiex nature of the jet impingement meItihg prob]em thed
integral so1ution~provides the'easiest method of calculat{ng
the 'boundary 1ayer Although the'accuracy is affectedfby
the approximate natuggfbf the integra] technique, the

-averaging effect of 1ntegrat1ng the boundary Iayer equat1ons

produces reasonab]e results.



146

The conclusions from this work will be.summarized
~in point form. | |

- 1. The finite e]ement method is genera]]y known to

be an effect1ve means of solving f1e1d problems w1th complex
boundar1es In this thesis, it was shown that the finite
element technique is also a conven1ent method to use when//.
lthe boundar1es.are not-f1xed a pr1dr1 but are determined by
the flow field itself. Thfs was the situation for the free
surface and the melting surface. Care must be taken, how-
ever, to ensure that there are a suff.cient number of nodes
to accurate]y represent the flow f1e1d In general more
nodes are required when there are 1arge changes in. the velo-
.c1ty or when the shape of the boundary changes rapid]y

2. For a stagnation point-flow the heat transfer

rate is.directly re]ated;to,the square root of the main-'

stream veiocity gradiEnt aiong the impingement surface.
Th1s corre]at1on prov1des a means of qua]itat1ve1v measur-.
ing thé heat‘tﬂansfer rates on the 1mp1ngement surface.

For é&amp]e, in the case of a jet 1mpinging into a cavity

it was observed that the velocity grad1ent at the stagnat1on
point was 51gn1f1cant1y reduced when the radius of curvature
‘of the cavity tip was of the order of the radius of the Jet
vdA correspond1ng reduct1on in the rate of heat transfer
occurs. Also in the case of a Jet 1mp1nging on a flat sur-
face for nozz]eaplate spacings of one Jet‘diameter or ]ess_
.significant 1ncreases in the velocity. gradients occurred |

near the lip of the‘nozzle. Aga1n a reglon of high heat
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transfer exists near the 1ip of the nozzle.

3. There are - three effects that make the heat trans-_»
fer rate at the stagnation point of a water jet me]ting a |
cav1ty in ice different from that wh1ch would norma]]y be
associated with stagnation point flow. First there 1s the

effect of inJect1on of co]d water 1&-@ﬂuw

3 boundary Tayer
| abaa—this effect

is produced by the highly temperaturevdkpendent pr0pert1es
" of water near the freezing po1nt A1though this effect was
“ not analysed in detail it appears that the choice of - the
| lnference temperature at which f]ufd“propert1es are calcu-w
'lated will ‘result in a fifty percent uncertainty in the |
dimensionless heat transfer rates ..'he fina1°effect is'»‘
produced by the fact that the shape of the cavity melted
in the ice affects the flow field at the stagnat1on pointi
and thus the heat transfer rate. On the basis of the calcu-‘.
’1ated heat transfer to a parabolic shaped cav1ty a sign1f1-'*'
cant effect of the cav1ty‘shape may have been expected
' However, the cavity formed by meitfnglwas found to have a..
" very flat bottom and the resulting change in heat‘transfer
irate was on]y about ten percent at most ; ' N
4, Hhen cutt1ng frozen ‘sand’ or grave] the effects of
shear stress are probab]y important The present work
rassumed direct proportiona]ity between cutting rate and o

" shear stress. a]though the constant of proggétiona]ity was

- -
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unknown .

This work is a. start to pred1ct1ng the melting rates
of Water Jets 1mp1ng1ng on 1ce surfaces This know]edge'
could have practica1 app11cation wherever ice’ formation was‘

ca broblem and its removal necessary for the continued opera-
-tfon of'}g industrial machine or component Further to
h1s work, the effecti’of turbulence on the me1t1ng processtlﬁ

-/
';//should be 1nvest1gated Also exper1menta1 work shou]d be

carried out to determ1ne

a?' which reference temperature should be used for
calculat1ng the physuca] propert1es,, - fl‘

b. the value of the constant of proport1ona11ty c

| when concerned w1th shear stress as a remova] _f

‘mechan1sm,
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APPENDIX 1

FINITE ELEMENT MATRIX FORMULATION

.In the finite element method describéd in’Chapter~IIf
the so]ﬁt%on:of,the pqientia1'f1ow field depended on'ﬁhe
“formulation of e]emenf matrices. By thé-use of_areafﬁd;--'
"‘Qsdinates, these.métfﬁces may be found once and fof'al1
&ém thgs append1x the e]ement matrices for a general triangle
l"’as shown below for both two- d1mens1ona; and ax13ymmetr1c
flbws is brief1yvdiscus§ed; The'notatipn*of Ch§pter 1

is used. .This discuésionlfol1ows'that'ofﬁChan;[]1].‘

OO ' - a,. 4 a, - .
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A.] Matrices for Two Dimens1ona1 FIow

From Chapter III the element matr1ces are

ST = [ (14T + T. TR (i,§=1-6) AT

sLY = }ﬁm xi(%ﬁ)a ds AR S AL

/

" with -

WTe = <lagy - 1) = (45 - 1)

<T 6

]'-';

' A , . . |
. ey D3 2(Eby * E4by)

-
. 2(E4by + Eoba) 2(Eyba * Eaby)
: 372 234 SY=173 371

<XyaeeiaXxg> T <E((2Ey - 1)e (28, - 1), Egl265 - 1),

« =
”"

N o

o B T AP ST
AT S b i S A4
Y AR

S

By § » R
. - L F -
. ﬂ' . S
X s . [
“_"' X]) A-5

0 -

"<a];a2éa5> = <(x3 j‘kzb (x - X3T.

o 0y
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<b]vb2:b3> = <(y2 - y3): (y3 = y])"(y] - y2)> A-6
Ay A, A :
1. 72 3. .
<§ og IE > = < Tmr Ty T > - A.7
1°°2*%3 AT M AM
-and '
/
m _ L :
A" = (ajbg - agb)/2 o ~ A.8

-

The-array T is found by replac1ng the b's with a's in the
expression for T
Now substitut1on of the appropr1ate qyant1t1es into

the matr1x equations A.1 and A.2 " enab]es their evaluation.

,For examp]e to evaluate S]] both i and j are set equ;j'to
'one and ' - | e
Mmoo Y R
-511 —’ffAm (T]T].+ T]T])PA o !
N T 22 gl
_'72;57? ffAm [}461 - 1) b1'+ (4¢, - 1),va£]dA_
. a% +_b$ fj“ﬁ é
= — 16 £y - 8 £, + 1|dA
(ZAm) . Am B } ",’. , ] » - o

A convenient formula exists for find integrals in area co-
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oMiinates [8]. For integrating area coordinates over the

area of a triasmgular element

8 '_ al B! y! m
/1 E? ©2 Eg L B+ YY* 27T 2A j A.3

Using A.9

T 2 .. 21 01 01 8 ,m
1, 16€; df - 16 e 2A™ = S A"
" A e g 1101l w8 gm
[I 85 dA= 8 rvgvp+ 2)T‘HA =3 A
- 61 01 0 Cam o am L
Combining.
o 2, 2
SRR R TS L
11 . 4Am

- The rema1n1ng components are found in.a s1m11ar manner.

ij i + b b. )/]ZAm the element matr1x for

the g1ven tr1ang1e is g1ven below
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w wn
3 3
I {

N7,
3
]

3 3 - 3
n ] |

v .
3 .
1

= 4Py,

= 4Py

f‘" 4’P

"o

4P

Py2

P

13

13

23

23 -

A.
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23 -

36 - 563 13
mo_oar
Sgq = 8(P33 - Pyp)
m _ M _
S45 = Ssq = 8Py3

64 23

. |
Sgg = 8(Pyy - Py3)

n
[%)
3
!
o]
©

m
Sg6 12

m - ‘
Se6 = 8(P22 - Pi3)

T
r", ~ R
AR

Néwfthe boundary condftfons,are considered in order toJeva]u-
ate the Toad matrix equation A.2. The symbols (%%)1. (%%)2;
‘and (%%)3 repreésent the specified normal velocity componenf
on sides 2y, 2, and 2,. Note that if side &, 1is not on the
boundary then (g—%)1 must. be ierp. In the prob}em.under con-
sideration these speé%f;;jé‘d normal velocity components are

constant over each individua] bouhdary_segment.

-
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The integral over the triangular area is given by

fém¢(‘g—3)ads=‘/z ¢x1(—9i)] ds+/ ¢x( )zds'

1

-+f2 m (3¢)3

3
Consider the first integrad

R ‘ ]

1 to 6

s
sy
-

Oq side 1 £, = 0 so &, *+ g3 = lor g, =.] - £5and since the
integrations are carried out in.a counter c]ockwise manner
ds = @ dE3 = - 2 dE2 and the 1ntegra] becomes notlng the ]

summation convent1on g | : P»

/ 95 x,( ) ds = -‘(,4,’;-)‘£;]/;], %252_(2;2 - 1)

,): S . _
R _ ‘
(—i) “ [ 6,01 - £3)(1 - 283)

ok agEg(26g 1)+ 401 - Eg)Egeg)dEy F

&

LY



\ (_'r"_'{/‘ v ]6]

By king the partial derivatives of the above integral

 with respect to ¢,, ¢5 and ¢g resultsﬁin

N

: 2y
______3 ¢ .?.Q_— ds = an

8¢2 2] an 6

, R

1 L Ry

--9-——. %1_ ds an 1

n

33 |V,

S1milar resu]ts can be obta1ned by consider1ng the other ‘

" two integrals. 1In th1s way the 10@1\:atr1x is obtaiged as’

IR Y

sty = (292, 4+ (28)3)76
\ )

(( 30)3y, +(—‘E)z)/s

SL, =

- (28 4 (38)2 - A

ﬁ SLy '((an)'z] + (55) 22)/6 AT
s, = 2(22)3 L
SL4 ( ) 23/3 T - 'A‘L‘n.;”:y ?‘b"‘).:".c
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Sk - 2(-1) 273

SL5 B ( ) 2 /3

o o

’A;phjSicaIIinterpretafion of the Ioad'matrix'mgxfbe 6btéjhed

.'by considering the flux of velocity across a-bqundafy\#urfdde.

o

A. 2 Matrices for Ax1symmetr1c Flow

‘and -

From Chapter III the eIement ‘matrices are g1ven by

S - e .
oo m - ) Yo N . N ‘_ X .
‘,.SAin vfjAm (Tile+ TiTj)rdA (1,3 : 1 t9;6) -A.IZ

SLA?=-jEm X; ( )ards ‘
! ,\ v ‘

with arrays T ) TT, xi’ a1 and Am def1ned as before in two-

| dimensIPns,'_HQwever the array bi is def1ned as'

R

=g

Ta
-

bbby« sl g (ry e (gl A

‘Also tﬁé-variaBTefrfié défihed_as_a radgfal coordiyate_as

v

e
)



163

‘.The proéedure iékexact]y-the Same-as'for the‘two—dimensionaln
.case and the element matrix and load matrix for: ax1symmetr1c

flows are listed below. Here P J is used to represent the

' m
+ b.b. .
sum- (a. aJ b1bJ)/§q A

mi— - . i .o“
SAyp = 3Ppq(3ry +rp *rg)

“‘ m i . i ) _' A
SRy = SApy = ¢ Pypl2ryt 2rp *rg)

- Pyglary +orp + 2rg)

mo e S
SA]Q f SA4] = P]1(3r1.~ 2ry f r3),+‘?12(14rqu 3r, f.3“3)

;rfSAIS = Shgy = P12(3r17f,f2 f;2ﬁ3) + P13(3r1 - 2r, - rs)

P T m  ‘l o _ N
,§A]5' SAgq - Py ](3r] r, 2r3) + P13(14r] + 3r2 f‘3r3)

Shap = 3Ppplry + 3rp +ry)

AT a’SAm o

32 © 23(r * 2rz f'zré),f~"

: 40 m"= e B T
| SR7y = SAQy = Pyp(3ry + Mry + 3rg) + Ppple2ry ¥ 3rp - )
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m - b N - ' v
SA25 = SA52 2 ?22(-r] + 3r, 2r3) + P23(3r] +'14r, + 3r3)
M _ eaM _ p |
SA56 SAg o P]Z( ry to3r, - 2r3) + P23(—2r] + 3r2 - r3)
mo ‘
SA3z = Hg3(ry +ry + 3ry)
| v L
m  _ osm : SRt
SA34 = SAy, P]3(-r] - 2r, f 3f3) + P]3(-2r] - r, # 3r3).&b

mo
SA44_— 8(P11(r] + 3r2 + r3)‘+¢P]2(2PT~+ 2r2 + r3)
i
* Poo(3ry vyt rs))
M _ opM =‘ ' L ) K S
SAgs = SR5q = 8Pyg(ry + 3ry * 3] - A(Pypry + Paply * Pagy)
| _— . x
mo mo_ _ : . oy . e
SAs6 - SAgs 8P23(3r] +or, ot rs) - 4'(Pnr;I + P12r2 + Pygry
- ) m ) " ol . “ ‘ .' . -” ‘
- Shgg = 8(P *rp t3rg) #Pyglry +2ry 4 2rg)

22' "1

7

r + Poglry +3my tora))
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| " o
m m _ RN ! N
SARs = SAfs = 8Py, (ry + vy ¥ 3rg) - 4(Pygry * Pygry + Pagry).

<A™ - a(i ' -
SAge = 8(Pyy(ry * ry + 3rg) + Pyg(2ry + vy + 2ry)

* Pyg(3ry + rp +ry))

N 3
‘V'SA.[_m = r:‘(?ﬂ.z_ L.+ 39;3_ 2.)/6
1 1'3n 2 an _ 73 .
G |
‘ ¢
' 3 1 .
m _ 3¢ 3¢ '
- SALp = r2(an 3% o 11{/6
»
SALT = o2 R U5 YT X
L0k L T3Yen T T an e 2 o
W - - & .
£ 3 : - R o3
_ 3 ‘ -
. m - 3 . "s\,'“._.~ ,
SALy = (ry + ry) 22 ¢./3 =
. CBT
e
saL™ = (r +r)§—9il-9,/3 ’ *
5 2 3" an 7177
, o e : e
CSALT = (r, +ry) 20? 2,/3 A T -
3 17 8n 2 A : o _ “: 



/ APPENDIX 2

" o : “a'i‘
COMPUTER\BROGRAM AND CUBIC SPLINE
o3 ‘
- Fon .

: LW ’
\ In this appendlx the fuII J%mputer program used to
calculate the potent1a1»f’ f an 1mp1ng1ng jet and the

.&
resulting boundary ]ayer is resented A flow chawt and

a descr1pt1on of some- of the 1mpor5anbvsubrout*nes 1s£%§ven
to aide in the undersgtanding of this program AIso g1yen
5

¥
is a description df the cubic sp11ne 1nt§rpo]at1on technLque

used to“ca]cu]ate veloc1t1es and grad1ents of ve]ocr§1es on

k]

“the 1mp1ngement turface Jhe row chart for the cqmputer =
P .
gram is gﬁea in F1gure A.1-and a descr1pt10n of tbe

R o 0y
flow ‘chart fo]lows . R A
‘€ . - {:IQ .
The- f1rstﬁstep 1s to read the 1hput data requ@%&d for

the f\nite eFEment Snd boundary ]ayeg analysis zgr ;‘
cussed in Chapter III on]y the nodal’po1nt data of the first

51x e]ements is requvred Subroutlne NGEN- calcu]ates the

element node matrix:for the rema1ning eIements ‘ AIso formed

{

’are the matr1ces which cons1st of the nodes on var1ous

| parts of’ tqifpoundary. The X and Y or R and Z coord1nates

-

of 'the . nodes on the boundary are read in and the coord1nates

b d

of aII other nodes are calculated in subrout1ne COORD

°

‘ Every t1me a bpundary node is moyed. as 1n the adgustment

-~ of the free surface subroutine COORD must be caIIed to reca]-

¥ -' . - ’

’, .
[



sy,

L 167

N A v,

T ) ‘ Read ‘Input : T S,
, data « o - _
’ ' o ’ . NGEN N -1.2 . ’ .
: . T !
v _ «. | Calculate coordinates : .
' ~1 of all nodal pointa I -
COORD ' '

N

. Generate element matrice"
MATGEN+LOAD
Boundary conditi.anu BC}

G

K - Solve system of linear »
banded symmetric equatiomn
) BSSOLV

T : i
T : [calculate velocitiesy:
S , on thp free surfac&) . .

- , ¥ J‘ %%"

=

\ . Iﬂ#ee surface ' ! Adjfxst pygtion Qf | -

% v | votundary condition ——-@-\i .free sur

satisfied? - ) ADJUST &"y

& | Calculate veloci y onp N
inpingement surflace -

' ox, ¢ .
— ‘ ,

, ‘ - ] ‘ v k ] R " .
1 RS XU Calcu]-é.t—he o

. bpundary . lwer
/f ' i MELT -- ! . M

v -

- #4nd new boundary [ () Is iteration 1 S
shape MOVE °°DC1Ude7;:, : P B

Figure A.1 Computer propén‘]ﬂ,.;)wchart»
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. “cuYate. the, COord1nates of all the other nodes.

i . u m

Next the e]ement matri-es are caTcuTated in subroutines

MATGEN and LOAD wh11e spe 1. . '
rated in BC3. The YESU]L g set of linear, symmeAricgbanded
equations are solved by subrout1ne BSSOLV Depending on'fhe
’form chosen the output from BSSOLV is e1ther the nodal point
; veTocity poteht1a1 or the noda] po1nt stream funct1on value.
The veToc1ties at each of the. hodes are now. ca]cu]ated in
subroutine VELG Subrout1ne ADJUST checks" the,veloc1t1es
on the free*surface with the ve10c1ty at the T1p of the
| nozzTe and adjusts the coord1nates "of the free sunface ﬁhde,
- 1n&the manner descr1bed-1n,Chapter_TII. If the free surface
1Iioundary~.on%ifionhis.satisfied)the program capries on,}rf :
.1 not then dﬁth?the adjustedofreegpurfaCe the p:ogram.recaT;

cu]ates the potent1gﬁﬂf10w This iterationvpnocedure’for

finding the free surface is cont1nued unt}T the free s'.u!f;:ﬁac'e“_"ﬁy

boundary cond1t1on is sat1sf1ed .. ", o
¢ .
Subroutwne UX then obta1.s the tangent1a1 and normal

veToc1ty components at p01nts Onhth&-1mp1ngement surface

from the X-and Y or R and Z components of ve]oc1ty caTcu-7

lated by subrout1ne‘VELG This - 1n preparat1on for thg bound-:'
—""ary Tayer caTcuTation contalned 1n subrout?ne MELT. In thiy o

subroutine the positaon of the meTted surface 1s caTcu ated ’
| : and subroutine MOVE transforms the meTted surface as ‘des- -

~cribed in Chapter VII Now one 1terat1on of the program.:.'

has been comp]eted The opt1on for continu1ng the me1t1ng

oFOCess is availab]e, and the coMputer program proceeds to

e

]

B
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gscalculating the matrices for the potential flow on the _
| adjuSted melted surface and the process.is repeated.

In order to understand'the boundary 1ayerAca1cu1ation

bW
H

' a br1ef descr1pt1on of subroutine MELT is given. The input
to this subroutine are the. coord1nates of the po1nts on the
boundary and ‘their tangem;1a1 and norma] ve]wc1t1es F1rst
the coeff1c1ents requ1raq§pn the cubic sp11ne 1nterpolat1on

of the velocities are calculated in subroutin® BCS. The
4cub1c sp11ne$$hterpolat1on routine is describedﬁah some

-deta11 by Ahlberg, Nielson and Walsh: [55]. The parameters
at the staqnatiﬂzfnp1nt are then eva]uated , ¢§ |

| ‘f;pa1r of nodal po1nts the bouﬂdary 1a§%r

. A
parameters are- calguiated at ten equa]ﬂw spaqﬁd 1ptervals.

Betweena

The vetocity’and gradient of Ve1ocity at these 1ntgrtor a

W ),

tpo1nts are’ ca1cu}ated by subrout1ne SPFUN us1ng the cub1c
sp1ine coeff1c1ents from subrout1ne BCS. Subrout1ne ROOT

calculates, ‘the va1ue of the new pressure gradient parameter
PR 6
A at each succe551ve po1nt on. the bOUndary layer The posi-»
‘i

‘t1on of the me]teﬁ?surface 1s ca1cu1ated at the nodes at

the boundary as the solutxon procedure marches aﬁong the B
. ; . 5 \ '. v% . ‘ Sy ) \.‘4":

' .1mp1ngement surface oM . S o _ o
. P , o _ .

The computer program fol1ows e Cy :' B



170

%

-

.

. o o T
Cﬁ#‘t##‘*“‘*‘“*t*‘##‘###*‘##*##*****‘t****‘####‘**##I*f’# :

 JET IMPINGEMENT HEAT TRANGFER PROGRAN _
POQTENTIAL FLOW .ANALYSIS C@MPUTED BY -
T#® PINITE ELEMENT NETHOD
BOUNDARY LAYER ANALYSIS COMPUTED BY
THE KARMAR POHLHAUSEN INTEGRAL METHOD

#*i#*‘t##‘t##“t#t#t*#*#*#**#i*##****###**##*t*#“##t##*#*

REAL S (3,3), sn(s 6), SL(6),T(6 6) , TB(6 6) , sur(s),sunwa),
*YBLX (6) , VEL!(6),VEL(6) THETA (6) , sxnz(a),cux(s 3),DX(3),
#1(303),!(3u3) GS(3u3,17) GL(3u3),vr(27),vn(27),sX(27)
*,DY(3),S52(27),SB(27), a(e1;. G(27) ,DG(27) ,2COR(27) .

INTEGER LEL (144,6),NAB(23) %ﬁC(zv),unz(GO)yuzr(uO). .
~ *N84 (25,4) ,NCD {7), NFA{F) , HBE(3) ,NBN (7)¢. .

. conmoM /BLE/ L,DX,DY,YI,YJ,YK,XI,XJ, xx,iann
COMMON /SPERED/ CHI,VELX,VELY, vnn,rasra,r rn,na
COMMOR /BOU!D/ KS KE,XST - .

, »~.vﬁ' s SR

N : : . ~;.'

nAaNnNnAanNnannO
~

*

. [
e

o -_pxnn IHPUT DATA = ns SEE 5 o
-~ « . NB=THE NUMBER OF. ELEMENTS . K sﬁgrg{:-
L . NMsTHE NUMBER OF BODES " A A
: "~ NA=0 TWO DINENSIONAL. FLOW
NA=1 AXISYMMETBIC FLOW
NB=0 STREANFUNCTION PORMULATION
¥B=1  POTENTIAL FUNCTION 'FORMULATION '
NI=THE NUNBER OF ITERATIONS FOR FREE suarxcn
KS=THE STAGNATIQN "NODE- NUMBER
+ ~ KB=THE LIP.OF THE NOZZLE.NODE NUMBER
~ XKBW=THE BXPECTEL BAMDWIDTH . S
¥T=THE NUMBER OF HELTING ITERATIONS
WDIV=THE NUMBER OF POINTS BETWEEN HODES
NSS=0. NO SHEAR STRES e
HSS=1 SHEAR srazsijacrxnc e

fANNNNNNAanNNNaNAOAAQ

- READ(5, 900) ¥BD, ul.xu NI,KS,KE . . ., o
-~ READ(5,900) KBW,NT,NDIV,NSS. - '_J
1900 | POBMAT(6I10) - S e S

- IER=0 ®
- 2 NE=6%NB.i .
7 NE=T7+18%MBD - 5 .o
HN4=148BD o - = =’
BABN=1+ (KS-1)/7 -
" MBCM= (NN- s-xc)/7o1'*"
.NB3=3*%NBCN .
. MCDN=T7 . - e g

RN

T

N
P



901-

Non0aan

spsu=(uu KE) /7
HPS=NDEN/2’ N

NEFN= (KE-T7)/7+1 ~

¥ ran=7

902

10

1

12

14

NBEE=3

NBEN=7

READ (7,902) 'ANDA,E
READ(7,902) PR,STE,
READ (7,902) LT 1§
PORMAT (4P20.6) **
READ (7,401) ((CHI(
FORMAT (3F¥20.-6)
‘READ (7,900) , ( (LEL.(]

- CALL NGBH(HE LEL, N

REBAD(7,901) X (NO)
-CONTINUB. -
po 12 I=2,NDEN,2.

- NO=NDE (I) :

READ (5,901) x(uO)
CONTINUE
po 14 I=1, uBru 2-
NO=NEP (I) -

READ (5,901) x(uby‘”

CONTINUE ~
cALE: COORD (N Y, uua

- CALL BAND(KBW, NN, N

non

‘a0 -

“'po 1 LL=1, N
ciEr=LL . f

Ir(las.ct KBY) GO

171

PS, xsr,vo S
R1,GANMA’ T ey

1, J) J= 1 3) 1= 1 6)

%, J3) 0% 1 6), S1= 1,6)

N& NG ,NN,X,Y, NABN NAB, NECN NBC NC&N,—
*NDB,HDE&,NDB NEPN,ﬁBF, NPAN, NPerBE,lBH) . .

Y (NO)

NN, NE,LEL, ¥, x) ‘
E' Ln) - - N :
TO 300" . . %

14

sxnnr !ELTING Ixxaarxous L o

DO 500 IJK—1 IT

SI!RT IT

A

zxnr:ous ‘10 PIND rnzz‘g%arncxa,'

Lt

e

1

CALCULAT
INSERT B

»

DO 17 B=1,NN -

-

'

E ELENENT MATRICES
OUNDJPY CONDITIONS

T

JYRop- - Loes T



COATIFRS T LIy , - o
%9&,- ‘ R kR AUEI : : &3 N i £
AV,‘ ‘ W ] v . "s o . S N R
S G X oNr R L. . .
7. PR W . i ' .

‘ ﬁ

<
’ \\\ , "‘,}
. DO 17-'N=1,HBW¥
-\qgﬁj GS(N,¥)=0.0" ‘
. DO 15 M=1,HN - B
jg\\GL(ﬂ)=0 0o _ N ‘ v
-~ LE®=0 o

DO 20 L=1,NE ,
CALL NODE(NN,NE,LEL,Y,X,IER)
IF(IER.EQ.1) 60 TO 301

. CALL MATGEN (GS,NN,NE, LEL, NA, NBW)
‘ DO 20 I=1,NBEER : L
“IF (L. EQ.HBE(I)) GO TO 22 L ', ®
GO TO g0 ~ —

22 CXLL LOAD(GL,NN,NE,LEL,NA,NBN, NBHN“O

20 CONTINUE
CALL BC3 (GS, GL NCD, NCDN, NN, ¥BW)

o
c ’\' ﬁ
' cC ; ' SOLVE LINEAR BANDBD SYNMETRIC SYSTE
C ‘ “'&. . : § . ‘ . i y.\f‘
} CALL BSSOLV(NN,NBW,GS,GL) g P .
¢ RS ? .
e o . 2 RN
g C - CALCULATE NODAL POINT VELGCITIES -
C S T C
C - % e
DO 29 I=1,RBN :
DO 29 J=1,4
GS (£,J)=0.0 : -
IF (3. BQ. 4) 6s (I, J)-1 0 , o
- 29 CONTINUE. =~ , . o
. DO 30 L=1,NE : ‘ o R :
CALL lonn(lu,lz LEL, t X,IER) B
. IP(IER.BQ.1) GO TO 301 : R 4
A ALL szs(ul,an IB,LBL,GL Gs;; R |
‘30 CRNTINUE oA o B
- KB6EKE-6 e
.0 T -
VIA=GS(KE,3) M
: UP=V1 /GS(K86,3)
» " DO 60 E=1,N¥ - v
Do 60 I=1,3
60 ’GS(!,I)cGS(H I)/'Il
" VIA=1.0
©c
C . ¢
c ADJUST PREE sunr&cn . =
p .

Lo cALL Anansr(lns,unnu VIA,x,x 6S, nn NB#, Luu,AuDA EPS).
IP (LEN. BQ.NFS) GO T0 10Q ] i .

s



P

aaanon

0o ak

Y

100

800
904
801

70
802

»
.

198

199

300

CALL coonn(uu,unu NN, NE, LEL, T, X)

CONTINUE . e

GO TO 302

WRITE (6,800) LNI

FORMAT (107, ' FREE SURFACE LOCATED # OF Irsaamiﬂus ',Iu)
WRITE (6,904) UF ' ,
FORMAT (*0*,*EREE SURFACE VELOCITY',F10.6)

WRITE (6,801)

ponnar('o' "NODE', 11X, 'VELOCITY',20X,"'X',22X, 'Y")
‘DO 70 J=2,NDEN,2

LJI=NDE (J) :

WRITE (6,802) LJ,GS(LJ,3),X(LJ),Y(LJ)

PORMAT (' *,I3, 5Y,F15.6 9x,r1s 6,91, P15.6)

PREPARE VELOCITIBS FOR BOUNDARY LAYER «
5 . '

*CALL Ux(nec)uaCu;x,x sx,sz,sn,cs,us,%pn,vr,vu,va)

¥ ow .CAICULATE BOUNDIR! LAYER
‘CALL ﬁnﬁm(uscu VT,SX,SZ,SB, PB, STE,R1, GAHHA,NA,HDIV,
tzcon 1ER,UF, DT,HSS) i .

.ﬁxn.sr 0) GO TO 999 . ' ©om
'unxrs(s 199) ' - '
FORMAT (*0*, “PQSITION OF MELTED sunrncz')~
WRITE (6,199)  (NBC(X),ZCOR(I),Y (NBC(I)),I=1, NBCHN)
FORMAT (0,3 (15,2F15.6))

CALL MOVE (£CO®,NBC,NBCHN,X,Y, NN, NDE, NDEN)

CALL' COORD(NG,NN4, HNN,NE,LEL, T} X)

WRITE (6,200)

FORMAT (*0¢, ' RELOCATED cooanrunrss ON THE, SURFACE')

ﬁ UBITB(6,201) (NBC(I),X(NBC(I)) !tlBC(I)) I¢1 lBCN)]

400.

361

302
402

' 999 .

801

FORMAT (0%, 3 (I5,2F15.6)) oy
CONTINUE , o

GO TO 999
WRITE (6, u00) NBW - a
FoRMAT (7 1¢, ;¢ EANDWIDTH roo LABGE',IQ)
GO TO 999

WRITEY6,401) IER : o . )
PORMAT (*1°," NEGATIVE AREA Ixn=!,13) R 5
GO TO 999 o

WRITE (6,402) LI ‘

- PORMAT (*1%,' FREE SURFACE NOT FOUND WITHIN',I3, 2x,
**ITERATICNS ?) -
CONTINUE : L

DO 39 I=1,lncn,2 , S



39

40

N0=IBC(I)

WRITE (10,901) X (NO),Y (NO)
DO 40 I=2,NDEN,2

BI=NDE (I)

WRITE (10,901) x(ux) Y(8I)
STOP

END
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C
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-

SUEROUTINES FOR FINITE ELB!ERT PROGRIH

-

C**##‘#‘t‘###“tt###*‘##*#‘ttt##*t*‘*#“*#‘**#**#t#***t##t*

"301

o

c

r

SUBROUTINE CGORD (N4, NK4, NN, NE,LEL,Y,X)

REAL Y (NREXX (HK) .

INTEGER N4 (NN4,d), LEL(NE,6) :

90 300 B=1,NN4

X (N4 (N, 3))=(X(NG(N,1))+3. 0*X (N4 (N,8))) *0.25

Y (N4 (N, 3))= (Y (W6 (N, 1)) +3.0%Y (NU (B, 4))) *0. 25
‘d}(uﬂ(l,Z))*(3 SO®Y-(NG (N,1))+Y (N4 (N,u4)))*D.25

X (N4 (N,2))=(3. Otx(nn(u,1))+x(nu(n 4))) *0.25

300 CONTINUE . \

c..

'V

i»susaourxln ucnn(nl,nn,nsh\t X+ IEB)

"'po 301 L=1,NE
po 301 I=1,3
J=I+l

IP(J BQ. 4) J=1
. K=I+3

LI=LEL (L,I)

. LJI=LBL (L,J) . _ e g
LR=1EL(L,K) ® ~ R -
- Y(LK) =0, 5*(!(LI)+!(LJ)) . e
X (LK) =0, 5*(!(LI)+X(LJ)) e

STINUE o

BETURN .

ﬁhn ‘ et

| T

 SUBROUTI AR Bnun(uau.un NE, LBL)-v
. INTEGER LEL (VE,6)

“NBE=1 .

DO 1 L=1,BE . | o
Do 1 I¥1,6 . Lo
DO x1 J=1,6 R >

-

t .

LI=LEL {L,I) o \ o .

L3=LEL(L,J) = »

IP(LI.1T.1J) 60 ro 1

COL;LI-13+1

P (NBW-NCOL. 1T.0) nau—ncom

courruuz , S
'RETUORN-: - L e P -
_nan C \ < U e

‘: REAL Y.(N¥),X (HN),DY(3),DX(3) -

,.IITBGBR LBL(IB,G) .

=
>
S

CONNO¥ :/ELE/ L,DX,DY,YI,YJ, YK, 1I,XJ, xx,xaxa e

. !I=!(LBL(L.1)) ” . N



- -DX{2) =XI-XK - -
- DX (3) =XJ-XI

176

B

. Y3=Y(LEL(L,2)) = :
. YK=Y (LEL {L,3)) .

XI=X (LEL(L, 1))

XJ=X (LBL(L,2))

XK=X (LEL (L, 3)) . L
DX (1) =XK-XJ e ' e .

DY (1) =YJ-YK

DY (2) =YK~-YI o .
DY (3) =YI-YJ ' ' N
45331—(nx¢3)*n!(2) b!(s)*nx(z))/z 0o

| IF(AREA.LE. 0.0) Go 10 7 R
 RETORN R C ;

‘WRITE (6, 100) L,AREA I T °

Y AREA=-AREA } S S .
- IBR=1 : ' - P /f——*’ffff-

.45100 FORNAT (*0°', 'ELB!EHT' 110,\ " NEG_ AREBA',P16.3) g
. .= - RETORN ' , A R
..: . END | - | L
v, 'BROUTINE nnrsxxecs.un,ux LEL,HA, uau) A
AL S(3,3),SA(6,6), DX(3),D!(3),GS(II uan) o
. 'INTBGER LEL(ME,6)’ ‘ .
- CORNON /BLE/ L Dx,D! YL, YJ, rx,xr xJ, xx,ARnA ‘
- RI=YEI" . o -
RI=YJ . o P
¥ RK=YK C - I (LRI
IPF (NMA.BQ.0)’ GO TO 16 R R~ L
Do 13 .1I=1,3 e i , o
' DO-13 J=1,3 ' a
13 S (L,J)= (nx(z)tnx(a)+nz(r *D!(J))/(GO o*anxx) )

. SA(1e1)=3%S(1,1) *(3*RI+RJ+BK) .. 6
SA(1,2)=-S(1, 2)t(2*3102*aatnx) P
SA(1,3)=-S(1,3) * (2*RI+RJ+2*RK) =~ .

- SA (1,8)=5(1, 1)*(3*3:—2*xa-nx)+5(1 2)*(1u*31+3:aa+3tax)
© SA(1,5)=5(1,2)*(3*RI-RJI-2#*RK) +S(1,3) * (3*RI-2%*RJ-RK)
- 'Sk (1,6)=s (1, 1)*(3tﬁ1caa-2*nx)+s(1,3)*(14*31*3*83+3ta&)
3 53(2 2)= 3*5(2,2)*(31*3*8J¢gx) s -

} SW(2,3) =-S(2,3)% (RI+2*RJ+2*RK) -

v ' SA(2,8)=s(1, 2)*(3*31‘10*8003*3!)+S(2,2)*( 2*31+3¢%a-ax)
" SA(2,5) =S (2, 2)*(-3103*RJ 2%RK)} 45 (2,3) * (3*RI+ 14 #RJ+3*EK)
. -SM (2, 6)=S(f 2)» (-RI+3#RJ-2*R&)+S(2 3)*(-2*RI+3*RJ-RK)

. SAs(3,3)=3%5 (3,3)* (RI+RJ+34RK)

. "'SA(3,8)=s5(1, 3)#(-31—2*20*3*3&)+5(2 3)*( 2*31-3003*3&) :

v, SKB,5)=512, 3) % (3¥RI+3*RI+TURK) +5 (3, 3)*(-31-2*3&3*31()_'

' SA{(3,6)=S (1, 3) # (3*RI+3*RI+ 14*RK) +5 (3, 3) * (~2*RI-RJ+ 3*BK). ”
SA (&) 8) =8%(S (1, 1)*(81¢sqiu+nx) -SA {1, 2)+5(2 2)*~ IR
t(3*n§:na+nx)) S : :

. “\



T

.’.":

‘ SA(u 5) 8*8(1 3)*(RI*3*RJORK) us(s (1, 2}*RI+
%5 (2,2) *BI+S (2,3) *RK) '
SA,(4,6) =8%S (2, 3)*(3vnx+aa+ax) ~4# (S (1,1) *RI+
*5 (1,2) *RJ+S (1,3) *RK) -
SA(5,5) 8% (S (2, 2)*(BIOBJ03*RK) SA(2,3)+5(3,3) *
* (RI+3*RJI*EBK) )
#  SA(5,6)=8%S (1, 2)t(h1#ah+3tnx)~u*(5(1 3)tax+
*5 (2, 3)*na+5(3 3) *BK)

SA (6,6) =8% (S (1, 1;*(31;aaiﬁtax) sn(1 3)+5(3 3)*

. :(3:31+naoax)) . SR »
GO TO 17 . o B s
16 CONTINUE® . ..-. .t N
- DO, 2d{ca1 3@ 'ﬁ{"éﬁ‘_ e )
. po 20 3=1,3F % : ' ' -~
20 s(I, J)—(nx(é)*nx(a)+ut(1)*n!ca))/(12 O*ARBA)
SK (1,1) =3,0%5 1, N )
SA(1,2)=-941,2) o o B
SA (1,3)48(1, )

SA(1,8)=8,065(1,2) ~ L 7".g S ;g.i°“

SN (1,5)=0.0
"SA(1,6)=U4,0%S (
Sl(2 '2) *3.0%S (2
. SA(2,3) =~5(2,3)
Y SN (2,4) =4.0%S -
. SA(2,5) =4, 0*5(2 3
‘SA(2,6)=0.0
. SA (3,3) =3 0~5(3,3) R ,
‘sx(a,u)so 0~ - SR yrﬁ*
SAN3,5)=8.0*5(2, 3) ‘~3%,-m‘5‘f.'“:,i '

=8 0% (S (3, 3)‘5(1:2))

40*5 (2'3) ~

" i .}i § .o‘s (1'2) oy ‘ _’t . .’
*“'*sa1r,6)sahp*(5(2 2)- sg1 3)) Lo
17 S CQWTINUE - . Sl
§ DO 14 n=1, 6 ’;,.~. { TN

e 1]5] 1 181' S

C o postt d=l, 5 T o ; SAVH.‘
© LI=LEL({L,I) - N Yt

’ ,LJzLBL(L{h) S - R I AR
“IP(LI<LT.LI)I GO, fo 11 N PRI 1,;*"//3'
CK=LJ~LI+1 : R
,,‘.j_GS(LI}K)*GS(LI,K)#SA(I J) R
11 conrxuux : o R
. RBTORN o Doele
- 'END .. L

A-)sn.o*5(1 »3) SRR ffT :4F

) DO 1“ n=1 6 B .1‘”“’/ ,.‘ } - - .
T su;.u) =sam by ,

177



38

.“0

41

42,

43

100

150

200

SUBROUTINE LCAD(GL,NN,NE,LEL,NA, NBN,NBNN,VO)

REAL GL (NN),DX(3),DY(3),SIDE(3),SL(6)
INTEGER LEL (MNE,6),NBN(NBNN)

COMMON. /ELE/ 1,DX,DY,YI,YJ,YK,XI,XJ, XK, AREA

po 38 1=1,3 , )

SIDE (I) =SQRT (DX (I) **2+4DY (1) **2)
SIDE (1)=0.0 g

IF (NA.BQ.0) GC TO 40 ° ' .
SL (1) =YI#VO* (SIDE (2) +SIDE(3)) /6.0
SL (2) =YJ*V0* (SIDE (3) +SIDE(1)) /6.0
SL (3) =YK#VO* (SIDE (1) +SIDE(2)) /6.0
SL (4) = (YI+YJ) *V0O*SIDE(3) /3.0 \
SL (5) = (YJ+YK) *VO*SIDE (1) /3,0

SL(6) = (YI+YK) *VO*SIDE (2) /3.0

GO TO 41

SL (1) =V0* (SIDE (2) +SIDE(3)) /6.0

SL (2) =VO* (SIDE (3) +SIDE (1)) /6.0"

SL (3) =V0* (SIDE (1) +SIDE (2)) /6.0
SL(4) =2.0*V0*SIDE (3)/3.0

SL (5) =2. 0*V0*SIDE (1) /3.0 . .
SL (6) =2.0*VO*SIDE (2) /3.0 . ,

CONTINUE o

DO 42 K¥=1,6

IP(L.LT.20) SL(M)=-SL(M)
CONTINUE . :

DO 43 I=1,6 -

DO 43 N=1,NBNN

LI=LEL(L,I)

NBB=NBN () .
IP (LI.EQ.NBB) GL (NBB)=GL (NBB) +SL (I)
CONTINUE

RETURN

END

SUBROUTINE BSSOLV (¥§,NBW,GS,GL)

" REAL ST (18) ,6S.(HN,NBW) ,GL (§N)

N=0 .
N=N+1

REDUCE PIVOT EQUATION
GL (N) =GL (N) /GS (N,1)

" IF(N-NN) 150,300,150

DO 200 K=2,HER B
ST (K) =GS (H,K) ‘
GS (N, K) =GS (N ,K)/GS (§,1)

REDUCE REMAINING EQUATIONS WITHIN SPAN .

DO 260 L=2,NEW

178



240

250 -

260

300

350

" 370

400
500
900

901
600

I= N*L 1
IF (NN-I) 260, 200 2“0

- J=0"

DO 250 K=L, NBW

J=J+1

GS (I,J)=GS (I,J)-ST (L) *GS (N, x)

GL (I) =GL (I)-ST (L) *GL (N)

CONTINUE

GO TOo 100 :
BACK SUBSTITOUTION

N=N-1

IF (N) 350,500,350

DO 400 K=2,NBW . .
=N+K-1 :

IP(NN L) 400, 370 370

GL.(N) =GL (K) -GS (N, K)*GL(L)

CONTINUE N

GO TO 300 ' ~

CONTINUE

WRITE (1€,900)

PORMAT (*-*,*CALCULATED NODAL VALUES')

DO 600 N=1,NN

WRITE(10, 901) N,GL (N)

FORMAT (*0*,110,P20.6)

CONTINUE

RETURN

END

14

\
SUBROUTINE VELG (NN,NBW,NE,LEL,GL,GS)
REAL VELX(6) ,VELY(6),VEL (6),THETA(6) ,DX(3),DY (3),

*T (6,6) ,TH(6,6) ,GS (N¥, NB¥) ,GL (NN) ,CHI (6, 3)
"INTEGER LEL (ME,6)

COMMON /SPFPEL/ CHI,VELX,VELY,VEL,THETA,T,TH,NB
COMMON /ELE/ L, nx,nr YI,YJ,YK,XI,XJ, XK, AREA
PI=ARCOS (~1. EQ)

po 2 I1=1,6

po 2 J=1,3

T(I,J)=(4.0%*CHI(I,J)-1. o;*ny(a)/(z 0+ AREA)
TH(I,J)=(4.0*CEI(I,J)-1. 0)*nx(a)/(2 O0*AREA)
CONTINUE

DO 3 I=1,6

DO 3 J=1,3

Ja=J+3

K=J+1

IP(K.BQ.4) K=1

T(I,JJ)=2.0% (DY (J) *CHI (I,K) +DY (K) *CHI (I,J))/AREA
TH (I,JJ) =2.0% (DX (J) *CHI (I, K) +DX (K)*CHI (1,J)) /AREA
CONTIRUE

/DO 4 I=1,6 . e

)

179»



11

180

SUMX=0.0

SUNY=0.0

DO 5 J=1,6

LJ=LEL(L,J) ,
SUHX=SUHX+GL(LJ)*T(I J) o .
SUMY=SUMY+GL (LJ) *TH (I, J) -

CONTINUE ‘ J
VELX (I) =SUNX ’ :
VELY (I) =SUMY

IF (NB.EQ.0) VELX (I)=SUMY

IF(NB.EQ.0) VELY(I)=-SUMX

VEL (I)= SQBT(VELX(I)**2+VBL!(I)**Z)

THETA (I)=180.0*PI °

LI=LEL(L,I)

IP(GS(LI,3).NE.0.0) GO TO 11 o .
GS (LI, 1) =VELX(I) . . L = :
GS(LI,2)=VELY«(I) ‘ '

GS(pI,3)=VEL (I)

GO TO 4 '

GS (LI,4)=GS(LI,4)+1.C

VX=VELX (I) . .::]

VY=VELY (I) o _

VF=VEL (I)

GS (LI, 1) =(VX+GS(LI,1)*(GS(LI,4)-1. 0))/GS(LI u4)
6S(LI,2)=(VY+GS(LI,2)*(6S (LI, 4)=1.0))/6S(LI,H4)

GS (LI,3)=(VP+GS (LI, 3)*(6S (LI, a) 1. 0))/GS(LI 4)
CONTINUE

RETURN

END

SUBROUTINE nczu(lz,LEL,nuu,nu HN,X,Y,KABN,NAB,NBCN ,NBC,
+HCDN, NCD, NDEN, NDE, NEFN, NE?, BPAN, SPA, NBE, nai)

REAL X (NN).,Y (NN)

INTEGER LEL (NE,6),N4 (NN4,4) ,NBE(3), BN (7) , HAB (NABN) ,
*IBC(nacu),ncn(ncnn),lnz(snzu),nsr(uxrn) urA(nrau) '

COMMON ,BOUND/ KS,KE,XST *

NBEN=3

NBNN=7

DO 2 L=7,NE

. J=L-6

po 2 I=1,6 ‘
LJ=LEL (J,I)

LEL (L,I) =LJ+14
po 3 .I=1,NH&4

J= (I-1) *14-1

DO 3 K=1,4
J=J+2
N4 (I,K)=J

K=NE-6 .



4

5

6
7

8

&
9
800

" pbo 4 I=1,3

II=1%2

NBE (I)=II
K=NN-7 #’.
po 5 I=1,
NFA(I)=1I

NBR (I) =1
K=K+1

NCD (I) =K

DO 6 I=1,NABH

K= (I- 1)t7+1

Y (K) =0.0
NAB(I})=K

DO .7 I=1,NBCN
K= (I-1) *7+KS
NBC (X)'=K

po 8 I=1,NDEN
K=KE+7*1I
NDE(I)=K -
DO 9 I=1,NEFN
K=7+7* (I-1)

Y (K)=0.5

NEF (I) =K )

WRITE (10,800)"

FPORBAT (6115)
WRITE (10,800)

- WRITE (10,800)
. WRITE (1C,800)

" WRITE (10,800)

\,

c
C

.WRITE(10,800)
WRITE (10,800)
wa;wz(1o,800)
WRITE (10,800)

NRITE(10,800)

RETURN
BID“”

((LEL(I,J) ,J=1,6) ,I=1,8E)

((M4(I,d),d=1,4) ,I=1,HK4)
(MBE(I) , 1=1,8BEN)
(IBN(I),I 1,ualu)

(MAB (I) ,I=1,HABR) ~
_(BBC (I) ,I=1,HBCH)
"(¥cDd (1) ,I=1,NCDH)
“(unB(I),I=1,unBu);

(NEF (I) ,I1=1,NEEN)
(SPA(I) ,I=1 urau)

RBAL Y (NN),X (NE) ,GS (NN, IBH)

INTEGER MDE(NDEN)

po 1 J=2, BDEI,Z

II=J-1 = °
K-JQ“ )

IF (J. EQ. NDEN)
LI=NDE (1I)
LJ=NDE (J)

" LK=NEDE (K)

K=J

HRITE(B 101) LJ, GS(LJ 3) ,VIA

P

. SUBROUTINE Anausr(unz,lnzu, VIA,Y, X,GS, NN, NBd,LBn, AMDNX
*,EPS)

181



101

102

2
3

9

10.
100

1

nno

182

\_//

“

FORMAT (*0*,* NODE',I5, *VELOCITY',F12.5, " ACTUAL VELOCITY®
*,F12.5) ' L v

YII=Y{(LI)

1JJ=Y (LJ)

YKE=Y (LK)

XII=X (LI)

XJJ=Xg{LJ)

XKK=X (LK)

" WRITE (8,102) LJ, XJJ YJJ

FORMAT (110,2F20. 8)

IP (YII-YKK.BC.0.0) GO TO 2

SLOPE= (XII-XKK)/ (YII-YKK)

GO TO 3

_SLOPE=1.0E10_ e .
“CONTINUE . .
IF (SLOPE.EQ. 0.0) SLOPZ=1.0E 10 )

. SLN=-1,0/SLOEE -

IF (ABS (GS (LJ,3)-VIA). LT. EPS) Go To 90
DIST=AMDA® ¢(GS (LJ,3) /VIA) **2-1,0)
D=DIST/SQRT{ 1. OOSLI**Z) .
IF(SLH.GE.0.0) GO TO §
-Y(LJ)=Y (LJ)+D
X (LJ) =X (LJ) +D*SLN
* WRITE (8,102) 1LJ,X(LJ),Y(LJ) .
Go TO 1 o . .
CONTINUE ' : :
Y (LJ)=Y(LJ)-D
X (LJ) =X (LJ) ~D*SLN
- WRITE(8, 102) LJ,X(LJ) !(LJ)
Go TO 1 - ,

[

. WRITE(8,100) LJ,GS(LJ,3)
FORMAT (*-*,*NO ADJUSTMERT uonz- .15, -vxLocxrz ',F12, 5)
LUN=LNN+1 ‘ ,

COBTINUE . _ u ' @
RETURN " \ ' .

END o : R .
'SUBROUTINE BC3(GS,GL,NCD,BCDN, NN, NBW)
POTENTIAL PLOW BOUNDARY .CONDITIONS
UNIPORM PLOW AT THE OUTLET . ~
SPECIFIED VELOCITY AT THE INPOT raou SUBROUTINE LOAD
REAL GS(NN,NBW),GL (NN) .
INTEGER NCD (NCDN)

DO 1 I=1,NCDN

I

. K=NCD (I)

K1=K ‘ . |
GL(K) =0.0 - . SR
GS (K, 9 =1.0 -
‘DO 1 J=2,NBVW

\
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K1=K1-1

GS (K1,J) =0.0
1 GS(K,J)=0.0

‘RETURN .

END ’ Y

4

SUBROUTINE UX(BBC BBCH X, !,SX,SZ SR, GS,HH IBH,VT VN,VIA)
REAL: X(NN),Y (NN), GS(NN NBW) ,VT (NBCN) VH(NBCI) SUT(B),
*SUN (3) , SX(HBCB),SZ(IBCN),SR(NBC!) \
INTEGER NBC (EBCHN) . ‘ ,
"pO 1 N=1,HBCH
¥ vT(N)=o;0 : e
1 VN(N)=0.0 o o
po 2 J=2,NBCH,2
I=3-1 :
K=J+1
II=NBC(I)
KK=NBC (K)
XI=X(II)
. YI=Y(II) ' : .
~ XK=X (KK). .
YK=Y (KK) ‘ s
_THE*ABS(ITAI((IK XI)/(!K 11)))
., DO 2-K=1,3 _ R
JI=J+H-2 : -
~ NJJ=ABC (JJ) '
" sUT (M)=GS (NI J, 2)*COS(THE)~GS(NJJ 1) *SIN (THE) |
SOUN(M)=-(GS(¥JJ, 2)*SIH(TBE)*GS(!JJ,1)*COS(THB))
IF (VT (33) .BQ.0.0) GO TO 4 s
VT(JJ)-(VT(JJ)OSUT(!))/Z 0 )
Vl(JJ)-(Vl(JJ)+SUl(u))/2 0 .-
. GO TO 2 : '
4 © VE(JJ)=SUT (H)
" YH{JJ)=SUN(N)
2 CONTINUE
pO-5 K=2,HBCH
KI=NBC (K)
XK=X (KI)
YK=Y (KI) | ‘
JI=NBC (J) ‘
YJ=Y (J1)
XJ=x(JI)
SZ (K) =X {KI)
SR (K) =Y (KI) ’ '
5 SX(K) SX(J)+SQRT((XK XJ)**2+(!K-!J)**2)

1
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WRITE(6,100) , | S
100 FORMAT('-',®NODE®,21X,'S*,11X,' TANGANTIAL VELOCITY',7X,
*"§ORNAL VELOCITY') ' \ |
po 3 I=A,NBCH
NI=NBC (1)
VEITE (6,101) RI, SX(I) ,VT(I), (D)
101 FPORNAT (' *,I4,10X,F15.6,2.(8X,F15.6))
3 CONTINUE .
RETURY - | -
© END

IS

c
Ct#t*#*tt*#*ttt*#**#t#####t t*#**#**t#t*tt#tt*tttt## #ttttt#*
C .
c : BOUNDARY LAYER susnourlnz MELT
c - ANL ASSOCIATED SUBROUTINES
C
ctt#ttt tt**ttt##*t t#t*##*#**t*###t#t#t# Y TTTIS TSI IR 2 2 0
c .
C ‘ ' ' .
suanour:nz uznr(lacn,u S,7A,B,PR,ST, n1 GAH!A un,u ZCOR,
*IER,0F,DT,NSS)
REAL S(IBCI) U (§BCH) ,H(123), R (NBCN) ,GG (41), HG(41),
#ZA (§BCH) ,2COR (NBCH) - / ,
po 10 I=1,§BCN -
6G (I) =S (I)
© - B(X)=0(I)%0P
10 ZCOR(I)=ZA(X)
: G=GAHHNA
IER=0
PRP=SQRT (0. 25051/3 0)-0 5
¥=NBCH '
NOP=R .
P=PRP/PR o ; ' L -
PP=P/R1 IR S
. WRITE(6,200) ST,PR, p n1
200 PORMAT ('0°,'STEFAN nuuazn' F6. 2,/,'PRAHDTL NUMBER! ,P6.2,
*/, AELTING pannuzrxn',r1o ,/,'Bouunln! raxcxusss nnmxo- )
*,P10.6) . ’
-H(1£=0 0

DZ1=0.0 "
.. WS=0.0 , :
- DW1=0. [ g
© CALL BCS (0,5, l llOP GG, DG H IBR)
33=2 . o :
C X=0. 3 ‘ -
’ CALL SPPUl(B U,S,I,X Jd, V DV) S
CALL PUN:(PR,ST, R1 G6,F6G, GGG GK, GL D1 D2 D3)
. Z0=6K/DYV '
1 BO—-D3*D3"‘R1‘B1*ZO/(D2*D2)



3

212

800
801

207

205

202

208

DZZ-RR*BB*FG/V :

IP.(FA.BQ.0) - 25=20

IPY(NA.EQ.0) WS=WO "

IF (20.LT.0.0.CR.¥0.LT.0. 0) GO TO 300
THK2=SQRT (20)

THK3=SQRT (§0)

BL=THK2/D2

BLE=THK3/D3

VH=6.0*P/BLE

V¥1=6.0*P/ (R1*BL)

DUUDY=(2.046/6.0) / (BL+BL*PP)
DTDY=2. o/(aLzoathpap)

CTSR=V*DUUDY .

WRITE (8,212) VH&,VW1
 PORMAT (10°," VW, V¥1¢,2F20.6)
DHZ=VW*DT+CTSR*DT*NSS - .
ZA (1) =ZA (1) +DNZ : :
ZCOR (1) =ZA (1)

WRITE (6,207) ZCOR (1)

WRITE (8,800)

PORMAT (*0', 'STAGIATIOH runcrlous-)
WRITE (8,801)

FOBRAT('0%,'V,DV, G//D1 D2, DB//BL BLE !(1)//90001 DTDY
*,CTSR')

-HHITB(B 207). v,DV,6

WRITE (8,207) D1,D2,D3 .
WRITE(8,207). BL, BLE,ZA(1) °
WRITE (8,207) DUUDY, nrnr,crsa
FORNAT (6220, 6) :
‘DO 1 J=2,8

DEL=H (J) /¥’ '
THETA= ABS(ATAI((ZA(J) ZA(J-1))/(B(J)-B(J 1)))
SIT=SIN (THETA) -

CT=COS (THETA)

- 3d=J

 WRITE (8, 205)
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PORH‘T (' t##*##”#*#‘t**#“#* #“#* ***‘*# #t*#**#####t* ‘) .

#RITE (8,202) JJ,X,S (3J)

FORMAT (*0*,* NEW BLB!B!T',IS 2F20.6)

po 1 I=1,8 -

X=X+DEL. R

CONTINUE

CALL PUN (PB,ST,R1, G,rs GGG, 6K,GL,D1,D2, D3)
WRITE(8,208) X ‘

"FORMAT ('0°,00X, ' 240 asasss . ,P20‘6)
CALL SPPUX(H,U0,S,¥,X,J33, V,DV)

BR=R (JJ- 1)ODEL'I*(R(JJ)-R(JJ 1))/(S(JJ) S (JJ-1))
SRR=RR _

IF (§A.EQ.0) BR=1.0

22=2A (JJ-1)+1% (ZA (3J) - ZA(JJ 1))/u

>
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DW2=RR*RR*GGG/V .
25=2S+ (DZ14D22)*DEL/2.0 ’

WS=WS+ (DW14DW2) *DEL/2.0 _ : \\\‘\&

2=2S/ (RR*RBR) L »

W=HS/ (RR*RR) . . .
GK1=2#DV’ ' :

GL 1=W*DV

IF (L. NE.¥) GC TO 50

WRITE (8, 204)

204 FORMAT('0°,'GK1, z,zS//GL1 v, uS//Rn1 )

: "WBRITE (8,207) GK1 Z,71S ‘ .
vRITE(a,207);GL1,w,us : .
IP(Z.LT.0.0. OB.U.LT.O-O) ‘G0 TO 301
RM1=SQRT (D2%D2%§/(D3%D3*2)) ,

WRITE (8,207) au1 <
50 CONTINUE ' f :
IF (JJ.EQ.2) GG TO 3
CALL ROOT (PR,ST,R1,G,GK1,IFLAG JJ)
. IF(IFLAG.EQ.2) GO TO 500
3 CONTINUE-
CALL PUN(PR,ST, 31 6,F6,GG66,GK,GL,D1, 02 03)
DZ1=RR*RR*FG/V
DW1=RR*RR*GGG/V

. EVALUATE PARAMETERS

THK2=SQRT (2) ' '
© THK3=SQRT (W) .

BL=THK2/D2 _ o

BLE=THK3/D3

VW=6,0%P/BLE -

VW 1=6.0%P/ (R 1#BL)

DUUDY= (2.0+G/6. 0)/(B£+BL*PP)

DTDY=2,0/ (BLE+BLE*PRP)

CTSR=DUUDY*V

IFP (I.NE.N) GC TO 51

WRITE(8,802) ‘

802 FORNAT('0*,*'V,DV,6//D1,D2, p3//BL, BLB//DUUD! DTDY,CISR')
WRITE (8,207) Vv,DV,6
WRITE (8,207) D1,D2,D3 - S )
inlrz(8,207) BL,BLB' o ~ ‘
®¥RITE (8,207) DOUDY,DTDY,CISR
WRITE(8,212) vHE,v&1 o

51 COMTINUE '
DNZ=V¥*CT*DT +NSS*CTSR*CT*DT
DUR=VE*SIT*DT+NSS*CTSR*S IT*DT
nizn—vntnr/cz+lss*crsntnr/cr
ZN=ZZ+DWZ .

RE=SRR+DWR

ZNN=22+DRZN

IP(I.NE.H) GC TO 52

VRITE (8,209) V¥,RBN,2N, ZNN



20

9

52

50

0

300

206

30

1

)

"5 COMNTINUE

CcCC

Poauar('o' *YN,RN, 2N, zun' 4P20.6)
CONTINUE

IF (I.EQ.N) ZCOR(J)=ZNN *

CONTINUE °

CONTINUE

RETURN

IER=1

WRITE (6,206) IER

FORMAT (*0*, " ERROR',I4)

WRITE (6,207) X,G,R1,V,DV

. WRITE (6,207) GK,GL,D1,D2,D3

WRITE (6,207) 20,¥0
RETURN ,
IER=2

WRITE (6, 206) 1ER :
WRITE (6,207) X,G,R1,V,DV

- WRITE (6,207)" 6K,GL, D1 p2,03

HRITE(G,ZO?).Z}H,GK1,GL1
RETURN ' S
END .. - ' I

SUBROUTINE BCS (FP,X,N,M,GG,DG,H,IER)
INPLICIT REAL*4 (A-H,0-2)
.DIMENSION F (1) ,X (1), 8(1),66(1) DG (1)
WRITE (6, 100)
IER=0"
DO 1 J=2,8 .

B (J3)=X(J) !(J 1)
CONTINUE
po 3 J=1,%
IP(J.EQ.1) GC TO 4

- IFP(J.BQ.¥) GO TO &

C=H (J+1)/ (B (J) +8 (J+1))
A=1.0-C

D=6, 0*((F(J*1)‘P(J))/H(J*1)‘(PVJ)‘P(J 1))/H(J))

*/(HB(J) +H (J+1))
GO TO 5 -
A=0.0
c=0.0
D=0.0

. o(d)=ﬂtu+a)
=A*H (N+J-1) +B

sIg(ABS(p) LT.1.E-40) GO TO 10

H (N+J) =-C/P
H(2#B+J) = (D-A*H (2% K+J~1) ) /P
GO TO 3

10 IER=130 ' .

6

U(J) =H (2*¥+J)

187
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WRITE (6,301) IER ) ; Sy
_ GO TO 18 ° ' B : e 7,
3 "CONTINUE
DO 11 K=2,N

J=“*1"K » : X o PR ARN)
11 H (2%R+J) =H (N+J) #H (2*N+J+1) #H (2¥N+J) AT N
. DO 12 I=1,8 : L Tl K
IF (GG (I) .LT.X (1)) G0 TO 13 B Y e
1P (GG (I) .GT.X(N)) GO TO 14 . T - %
‘DO 15 J=2,N - . N T
Ji=J .

" IP (G6 (I) +LE. X (J)) 60 TO 17
15 .CONTINUE
13 JJ=2 }
© IBR=131 R
WRITE (6,302) IER,I . . . .
. 60 TO 17 : : : . .
14 3J=N - . , B :
. IBR=132 , - X
-~ WRITE (6,302) IER,I
17 CONTINOE"
A=X (JJ) -56G (I )
"B=GG (I) =X (JJ-1)
© C=H(JJ) . .
GG(I)=(H(2?!+JJ#1)*A*A*A&H(2‘B+JJ)*B*B*B
-*+(§ao*r(JJ-1)—H(2*ﬂ«JJ-1)*c*C)tA -
20(6;0*P(JJ)—H(Z*IOJJ)#C*C)*B)/(S.O‘C)
DG (I) =— 1. 0%H (2#N+JJ-1) *A*Rr/ (2.0%C)
*48(2*noaa)*8*5/12.0*C)O(r(JJ)Ar(JJ—1))/c
%= (H(2*H+JJ) - B (2*¥+J3J-1)) *C/6.0 .
12 CONTINUE ’ ' s
WRITE(6,101) (G6(I) ,I=1,H)
 WRITE (6,101) (DG (I) ,I=1,H)
18 CONTINUE - ;
100 .zoxunr('o';-ourpur=rhou CUBIC SPLINE INTERPOLATION')
101 POBMAT (10P89.5) . . ' S
301 POBBAT('O',//,I10,!BBBOR',13,//,T10,'i0 SOLUTION')
302 FORMAT('0',//,T10,'ERROR',I3,'AT 1=',13,//.,T10,
**SOLUTION TRIED') , - : ‘
RETORN ’
END

@

SUBROUTIMNE SEFUN(H,F,S,%,X,JJ,SPF,DSF)
DIMENSION H(1),S(1).F(1) ’ :
A=S {J3J)-X :
B=X-S (JJ-1) ‘
C=H(JJ) ‘

C HJJ=E*2+43J
NJJ1=N3J-1
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. SPP=(H (NJJ1) #A*A*A+H (NJJ) #B*B*B+ (6,0%F (JJ-1) -

#H (NJJ 1) #C#C) * A+ (6. 0*F (JJ) —H (8JJ) ¥C*C) *B) / (6. 0*C)
DSP=~-1,0#H (NJJ1) *A*A/ (2.0%C) +H (§JJ) *B*B/ (2.0*C)
*+ (F (JJ) -F (JJ-1)) /C- (H (¥JJ) -H (§JJ 1)) *C/6.0
RETURN :
‘END :

A}

SUBROUTINE PU.(PR,ST,R1,anyiGGG,GK,GL,D1,DZ{b3)
P=PRP/PR ' o

PP=P/R1 o o

" R2=B1*R1

R3=R2*R1

RG=R3*R1 n Co o
D1=(0.3-6/120,040.4*PP) /(1.0+PP) C '
D2=(7.4-G/15. ?G*G/T“Q.O*G*PP/10;O+15.6*PP*7;2*PP*PP)

%/ (63.0% (1.04PP)»%2)

GK=D2#D2%G ' W S » : Co .
PG=2.0%D2% ((2.04G/6.0)/(1.04PP) +6.0%PP) - 2.0%GK*
*(2.0+D1/D2) - ~
B1=R1‘R3/2.003“/5.0 ’
B2=R1/12.0-R%/6.0+R3/8.0-R4/30.0
B3=R2%*2.,0-2, 0‘33“300*81‘/500 ’ ’
A1=J3.0*31/15.0-67.0*R3/190.007;0#Ru/36.0
A2=0.8*R1-13.0*R3/28.0+4,0%R4/21.0 - ' ]
,A3=13.0#31/30¢0-13,0482/14.O+201.0*33/280.0-7.0*3“/36.0~
A4=0,4*R1-31.0%B2/35.0+39.0%R3/56 .0-4.0*R4/21.0 o
45=13.0%B2/7.0-67.0%*R3/35.0+7.0*%R4/12.0 :
A6=62.0%R2/35.0-13.0*E3/7.0+4,0%*R4/7.0
UI=(B1+G*B2+EE*B3) 7 (1.0+PP) . ' ‘
UTI=(A10PBP*AZ*G¥A3/6.0#G*PRP*A“/6.00PP*AS+PP#PRP*36)/
* ((4.0+PP) *(1.0+PRP)) : _ : ,
D3=0I-0TI :
GL=D3*D3#R2*G o
GGG=2.0*D3* (2.0/ (PR+PR*PRP) +6.0*P) -2.0*GL
RETURN -, - :

I

- .E¥D -

SUBROUTINE ROOT(PB,ST,B1,G,GKT,IFLAG;JJ)
1=12.0 = = ‘ : . R

X2=8.0 o : S \
. 6=X1. .

“ cALL PUN (PB,ST,R1,G,FG,GGG,GK,GL,D1,D2,D3)

PUNC1=GK-GK1
G=X2

FUNC2=GK-GK1

- CALL ?Ul(PB,S!,R1,G,PG,GGG,GK,GL,D1,DZ,D3)



1
101

6

102
108

13

11.

103

12

40

100

105

" IP(PUNC1%FUNC2) 1,2,3 I .

PUNC1=FUNC2 .

X1=Xx2 .

X2=X2-4.0 .

IF (X2.LT.-12.0) GO TD uo

. GO TO 5

VRITE(8,101) X1,12 PUNC1,FUNCZ,

FORMAT (°0°,*ECQT IS BETIBEU',P1O 6,'AND' P10 6,

**PONCTION FALUES?,2P10.6)
XX=(PONC2*X1- runc1tx2)/(ruuc2~ruuc1)
G=XI . ¢ ,
J=J+1 ‘
12(185(!1-:17 1T.1. O0E-4) GO TO 7

o

‘ II(ABS(XI X2) JLT.1.0E- 8) 60 TO 7
IF (ABS (FPUNC1-FUNC2) .GT.1.0EB-20) GO TO 8 . .

WRITE (8, 19;) X1,X2,FPUNC1,PUNC2

FORMAT ("0

WRITE(S, 1ou) J

FORMAT ('0',* NUNBER OF ITEBATIO!S=' .16)
RETOURN

CALL PUN (PR, sr R1, '6,FG,GGG,GK,GL, D1 D2,D3)
PUNCI=GK-GK1 ~

IF(J.GT.30). 60 TO. 50

IF (PFUNCI*FURC1) 11, 12, 13

PUNC1=FUNCI s

X1=XI. ’ S

"GO TO 6 S o .
PONC2=PFPONCI : S
X2=X1 . , a -
GO TO 6 ‘

G=Xx1

- IF (PUNC2.EQ.0. 0) G=X2

IFLAG=0
WRITE (8, 103) G,x1,xz IrLAs,ruuc1 PUNC2
FORMAT (*0','ROOT IS',3P10.6,*'  IFLAG=',Id,
*'  PUNCTION 9,2F10.6) ,
WRITE (8,104) J
BETURN -
=XI

Pl

IF(FUBC1.EQ.0.0) 6=X1 - D

- IPLAG=1 .
YRITE (8,103} 6,X1,X2,IFLAG,FUNC1,PUNC2 o
WRITE (8,104) J ‘ :
RETURN , 1,
WRIT (6 100). 33

\

PORHEAT (°0°,°* B0 ROOTY BET'BBHv°12 0 AID 12, 0',1“)‘

IP (GK1.6T.0.0) 6=12.0

IP (6K1.1L7.0.0) 6=-7.0
. URITE(6,105) 6 - .
' FORMAT (*0'," ASSUME_ Roor-',r1o 2)

*FQOT IS',2P10 6,'FUHCTIOH VALUE' 2P10 6)

190



50
106

RETURN
IPLAG=2
WRITE (6, 106)

STOP

- END .
SUBROUTINBwHOVE(ZCOR,NBC,NBCN,X,Y,NN,NDE,HDEN)

.. REAL ZCOE(NBCN),X (NN),Y (NN)
.7 INTEGER NBC (NBCN), NDE (NDER)

DIST=ZCOB (1) 4.0
po 1 I=1,NBCN,2

 ZCOR'(I)=2COR (I)-DIST

NI=NBC (I)
X (NI) =2COR(I)
Do 2 J=2,NDEN,2

'NJ=NDE (J)

IF (Y (BJ) .LT.1:15) GO TO 2
X (NJ) =X (NJ) -BIST
CONTINUE <

" RETURN 7 j 9

END

\
|
|

|

FORMAT ('0',*HUMBER OF ITEEATIONS >30°*

191

q}



