
Data Driven Countermeasures in Computer Networks

by

Ahmed Maher Mostafa

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

c© Ahmed Maher Mostafa, 2017

Abstract

Network connectivity is an indispensable component of any computer related

activities. Any computer-like machine is connected to some kind of a network,

which is further connected to another computer network. Technological

advances allow users to connect any devices and use multiple applications. As

the result, the complexity of network systems is constantly growing.

The fact that almost all devices are connected means that any attempt to

break into a device or a system is occurring via a computer network. In

other words, networks and their connected devices are targets of intrusions.

The increased dependency on computer systems and the growing number of

malicious activities increase a pressure on governmental, industrial and private

institutions to utilize security systems capable of monitoring and analyzing

network traffic, and detecting malicious or suspicious activities.

The research topic of Intrusion Detection becomes of special importance.

Intrusion Detection involves two processes: detecting cyber attacks using

well-know attack patterns – Signature Detection (Signature ID), or identifying

anomalous behaviour of network traffic – Anomaly Detection (Anomaly ID).

Recently, a hybrid approach has emerged that tries to harvest advantages of both

signature and anomaly detection methods.

Despite the promising prospects, hybrid Intrusion Detection System (IDS)s

still need to demonstrate their usefulness and good performance. Some

ii

of problems and unsolved issues are related to the lack of: 1) a detailed

representation of network traffic that allows to recognize small differences in a

traffic or detect non-standard cyber attacks; and 2) an accurately labeled data

that contain different cases of anomalies and attacks.

In this thesis, we propose a Two-stage Hybrid Intrusion Detection System

able to detect anomalies and attacks, and reporting its findings to a security

administrator. The system includes three sub-systems: 1) Network Data

Collecting and Processing (NetDataCoP) Module; 2) Anomaly Detection Module;

and 3) Signature Detection Module.

In order to design this system, a novel, comprehensive and multi-perspective

description of network traffic has been proposed. It includes more than hundred

features representing a traffic at different levels of granularity, at different layers,

involving different protocols, all determined over different temporal intervals.

One of essential aspects of the system is its ability to identify and categorize

application connections that utilize UDP – a connection-less protocol. The

processes of detecting anomalies and attacks are built using algorithms of

Machine Learning. The system utilize elements of Evidence Theory not only to

detect anomaly/attack but also to identify a degree of confidence in its detection

outcomes.

The results are highly promising. The implemented and tested system

provides a very good performance, i.e., a number of false negatives (assuming

anomaly/attack as a positive event) is zero, with a minimal number of false

positives at the same time.

iii

I would like to dedicate this work to my family.

iv

Acknowledgments

Thanks GOD.

I want to take this opportunity to thank all people that had an influence in

the work presented in this thesis. First and foremost, I would like to thank my

supervisor, Dr.Marek Reformat for his time, inspiration, insightful comments

and suggestions about my work. Also, I would like to extend my thanks to the

University of Alberta and all its staff and colleagues who guided me in achieving

this thesis.

I am also grateful to Electrical and Computer Engineering Department’s Staff

for generously sharing their intelligent ideas and comments that were valuable

sources of encouragement.

v

Table of Contents

Abstract ii

Acknowledgments v

Table of Contents vi

List of Figures xiii

List of Tables xvi

Abbreviations xxi

1 Introduction 1

1.1 Motivations . 3

1.2 Objective . 4

1.3 Contributions . 5

1.4 Thesis Outline . 8

2 Background and Related Work 11

2.1 Background . 11

2.1.1 Intrusion Detection . 12

2.1.2 Machine Learning Techniques 20

2.1.3 Evidence Theory . 24

vi

2.1.4 Transferable Belief Model . 26

2.2 Related Work . 27

3 Network Traffic Analysis 32

3.1 Classification of Network Traffic . 33

3.2 Analysis of Attacks . 34

3.2.1 ICMP Flood (ICMP Flood) Attack 35

3.2.2 IGMP Flood (IGMP Flood) Attack 38

3.2.3 Smurf (Smurf) Attack . 38

3.2.4 Local Area Network Denial (LAND) Attack 40

3.2.5 IPSweep (IPSweep) Attack . 41

3.2.6 InsideSniffer (InsideSniffer) Attack 44

3.2.7 PortScan (PortScan) Attack 45

3.2.8 Summary and Recommendations 45

3.3 Analysis of Available Datasets . 48

3.3.1 KDD CUP ’99 . 49

3.3.2 NSL-KDD . 50

3.3.3 TUIDS . 51

3.3.4 Summary and Recommendations 52

3.4 Multi-Perspective Description of Network Traffic 52

3.4.1 Packet Perspective . 54

3.4.2 Address Perspective . 55

3.4.3 Scope Perspective . 55

3.4.4 Temporal Perspective . 56

3.4.5 Connection Perspective . 56

3.4.6 Protocol Perspective . 57

3.4.7 Layer Perspective . 58

vii

3.5 Network Anomaly Profile . 59

3.6 Updated Network-Tailored Attack Signatures 63

3.6.1 Updated Network-Tailored ICMP Flood Signature 63

3.6.2 Updated Network-Tailored IGMP Flood Signature 63

3.6.3 Updated Network-Tailored Smurf Signature 64

3.6.4 Updated Network-Tailored LAND Signature 64

3.6.5 Updated Network-Tailored IPSweep Signature 65

3.6.6 Updated Network-Tailored InsideSniffer Attack 66

3.6.7 Updated Network-Tailored PortScan Attack 66

4 Proposed System 67

4.1 System Overview . 67

4.1.1 Network Traffic Collecting and Processing Module

(NetDataCoP) . 68

4.1.2 Anomaly Intrusion Detection Module 70

4.1.3 Signature Intrusion Detection Module 71

4.2 Architectural Aspects . 72

4.2.1 Anomaly ID . 72

4.2.2 Signature ID . 73

5 Network Data Collecting and Processing (NetDataCoP) 75

5.1 Traffic Capture Module . 76

5.2 Packet Decipher Module . 77

5.2.1 Ethernet II Frame (Ethernet Version 2) 77

5.2.2 Address Resolution Protocol (ARP) 77

5.2.3 Internet Protocol version 4 (IPv4) 78

5.2.4 Internet Control Message Protocol (ICMP) 79

5.2.5 Internet Group Management Protocol (IGMP) 80

viii

5.2.6 Transmission Control Protocol (TCP) 82

5.2.7 User Datagram Protocol (UDP) 84

5.2.8 Bootstrap Protocol (BOOTP) 85

5.2.9 Domain Name System (DNS) 86

5.2.10 Link-Local Multicast Name Resolution (LLMNR) 88

5.2.11 NetBIOS Name Service (NBNS) 90

5.2.12 Simple Network Management Protocol (SNMP) 92

5.2.13 Simple Service Discovery Protocol (SSDP) 93

5.3 Connection Identification and Reconstruction Module 95

5.3.1 ICMP Connections . 95

5.3.2 TCP Connections . 97

5.3.3 UDP Connections . 102

5.4 Network Traffic Temporal Processing Module 110

5.4.1 Global Network-level Machine Learning-based Anomaly

Detection Features . 111

5.4.2 Local Host-level Features . 114

6 Network Traffic Generation 116

6.1 Network Environment . 116

6.2 Network Traffic Generation . 117

6.2.1 Packet Capture Sessions . 118

6.2.2 Network Traffic Data Sets . 119

6.2.3 Data Generation . 119

6.3 Proposed Intrusion Detection Benchmark Dataset 121

7 Anomaly Intrusion Detection 125

7.1 Global network-level Machine Learning-based Anomaly Detection 125

7.1.1 Implementation . 126

ix

7.1.2 Evaluation . 130

7.1.3 Illustrative Example . 134

7.2 Local Host-level Threshold-based Anomaly Detection 136

8 Signature Intrusion Detection 140

8.1 Global Network-level Machine Learning-based Signature Detection 141

8.1.1 Implementation . 142

8.1.2 Evaluation . 145

8.1.3 Illustrative Example . 150

8.2 Attack Detection Modules . 151

8.2.1 ICMP Flood Attack Detection Module 152

8.2.2 IGMP Flood Attack Detection Module 155

8.2.3 Smurf . 157

8.2.4 LAND . 159

8.2.5 IPSweep . 162

8.2.6 InsideSniffer . 164

8.2.7 Portscan . 165

9 Hybrid Intrusion Detection: Case Studies 167

9.1 Intrusion Detection Scenario 1: Normal Minute 167

9.2 Intrusion Detection Scenario 2: Attack Minute 1 169

9.3 Intrusion Detection Scenario 3: Attack Minute 2 172

9.4 Comparative Analysis . 175

9.4.1 Anomaly Detection Performance 176

9.4.2 Signature Detection Performance 177

10 Conclusion and Future Work 179

10.1 Conclusion . 181

x

10.2 Future Work . 184

List of References 188

Appendix A Network Anomaly Profile 197

A.1 Profile Features . 197

A.1.1 ARP Features . 198

A.1.2 ICMP Features . 200

A.1.3 IGMP Features . 204

A.1.4 Network Interface Layer Features 205

A.1.5 TCP Features . 205

A.1.6 UDP Features . 207

A.1.7 Transport Layer Features . 208

A.1.8 DNS Features . 209

A.1.9 NBNS Features . 210

A.1.10 LLMNR Features . 211

A.2 Utilization in Intrusion Detection . 211

Appendix B Verification of logical connections for UDP-based application

protocols 215

B.1 Unicast Communication . 216

B.1.1 Scenario 1 . 216

B.1.2 Scenario 2 . 219

B.1.3 Scenario 3 . 222

B.2 Multicast Communication . 225

B.2.1 Scenario 4 . 225

B.3 Intrusion Detection . 227

B.3.1 Scenario 5 . 227

xi

Appendix C Features of Multi-Perspective Network Traffic Description 230

C.1 Network Interface Layer Features . 230

C.2 Internet Layer Features . 231

C.3 Transport Layer Features . 232

C.4 Application Layer Features . 233

Appendix D Transmission Control Protocol/Internet Protocol (TCP/IP)

Protocols 234

D.1 Ethernet II Frame (Ethernet Version 2) 234

D.2 Address Resolution Protocol (ARP) 235

D.3 Internet Protocol version 4 (IPv4) . 238

D.4 Internet Control Message Protocol (ICMP) 241

D.5 Internet Group Management Protocol (IGMP) 244

D.6 Transport Layer Ports . 245

D.7 Transmission Control Protocol (TCP) 245

D.8 User Datagram Protocol (UDP) . 247

D.9 Bootstrap Protocol (BOOTP) . 248

D.10 Domain Name System (DNS) . 250

D.11 Link-Local Multicast Name Resolution (LLMNR) 256

D.12 NetBIOS Name Service (NBNS) . 257

D.13 Simple Network Management Protocol (SNMP) 261

D.14 Simple Service Discovery Protocol (SSDP) 264

D.14.1 SSDP Advertisement: Device Available 265

D.14.2 SSDP Advertisement: Device Unavailable 267

D.14.3 SSDP Advertisement: Device Update 267

D.14.4 SSDP Search request with M-SEARCH and Search Response 268

xii

List of Figures

2.1 Anomalies. 19

3.1 Network Traffic Classes. 33

3.2 ICMP Flood Attack. 35

3.3 IPSweep Attack. 42

3.4 Illustration of Multi-Perspective Description of Network Traffic. . . 54

4.1 Overall System Overview. 68

4.2 Architectural Aspects: Anomaly Detection. 72

4.3 Architectural Aspects: Signature Detection. 74

5.1 TCP Connection Establishment Pattern. [1] 98

5.2 TCP Connection Termination Pattern. [1] 99

5.3 TCP Connection Example (Network Data Collecting and

Processing (NetDataCoP)). 101

5.4 DNS Logical Connection 1 (NetDataCoP). 107

5.5 DNS Logical Connection 2 (NetDataCoP). 108

5.6 DNS Logical Connection 3 (NetDataCoP). 109

7.1 Architecture of Proposed Global Network-level Machine

Learning-based Anomaly Detection Approach 127

8.1 Architecture of Global Network-level Machine Learning-based

Signature Detection Approach for Single Attack 141

xiii

8.2 ICMP Flood Attack Detection Module Summary Detection

Information . 153

8.3 ICMP Flood Attack Instances 1 and 2 154

8.4 IGMP Flood Attack Detection Module Summary Detection

Information . 155

8.5 IGMP Flood Attack Instances 1 and 2 156

8.6 Smurf Attack Detection Module Summary Detection Information . 157

8.7 IGMP Flood Attack Instances 1 and 2 158

8.8 LAND Attack Detection Module Summary Detection Information . 160

8.9 LAND Attack Instances 1 and 2 . 161

8.10 IPSweep Attack Detection Module Summary Detection Information 162

8.11 Sample IPSweep Attack Instances . 163

8.12 InsideSniffer Attack Detection Module Summary Detection

Information . 165

8.13 PortScan Attack Detection Module Summary Detection Information 166

9.1 Attack Detection Modules: Attack Minute 1 (NetDataCoP). 171

9.2 Attack Detection Modules: Attack Minute 2 (NetDataCoP). 174

9.3 Intrusion Detection Framework proposed in [2]. 176

B.1 Google DNS Query Connection . 218

B.2 Facebook DNS Query Connection . 219

D.1 Ethernet II Frame [3] . 234

D.2 ARP operation: Logical to Physical Address Mapping Example. [1] . 236

D.3 ARP Packet. [1] . 237

D.4 IPv4 Datagram Format. [1] . 239

D.5 ICMP Packet Format. [1] . 243

D.6 IGMPv2 Packet Format. [1] . 244

D.7 TCP datagram Format. [1] . 246

xiv

D.8 UDP datagram Format. [1] . 247

D.9 BOOTP Packet Format. [4] . 248

D.10 DNS packet Types. [1] . 250

D.11 DNS Header Format. [5] . 251

D.12 DNS Question Section Format. [5] 253

D.13 DNS Resource Record Format. [5] . 255

D.14 LLMNR Header Format. [6] . 256

D.15 NBNS header Format. [7] . 258

D.16 BER Encoded Fields. [8] . 262

D.17 SNMP Packet Format. [8] . 263

D.18 SSDP Device Available Packet Format. [9] 265

D.19 SSDP Device Unavailable Packet Format. [9] 267

D.20 SSDP Device Update Packet Format. [9] 268

D.21 SSDP M-Search Request Packet Format. [9] 268

D.22 SSDP M-Search Response Packet Format. [9] 269

xv

List of Tables

3.1 Canonical ICMP Flood Signature. 36

3.2 Updated ICMP Flood Signature. 37

3.3 Update IGMP Flood Signature. 38

3.4 Canonical Smurf Signature . 39

3.5 Updated Smurf Signature. 40

3.6 Canonical LAND Signature . 40

3.7 Update LAND attack signature. 41

3.8 Canonical IPSweep Signature. 42

3.9 Updated IPSweep Signature. 44

3.10 Canonical InsideSniffer Signature. 45

3.11 Updated InsideSniffer Signature. 45

3.12 Updated PortScan Signature. 45

3.13 Attack Target Layers and Protocols. 46

3.14 Network Anomaly Profile: ARP Protocol Sample Features 61

3.15 Network Anomaly Profile: ICMP Protocol Sample Features 62

3.16 Updated Network-Tailored ICMP Flood Signature. 63

3.17 Updated Network-Tailored IGMP Flood Signature. 64

3.18 Updated Network-Tailored Smurf Signature. 64

3.19 Updated Network-Tailored LAND Signature. 65

3.20 Updated Network-Tailored IPSweep Signature. 65

xvi

3.21 Updated Network-Tailored PortScan Signature. 66

5.1 Ethernet II Header Sample Data (NetDataCoP). 77

5.2 ARP Packet Sample Data (NetDataCoP). 78

5.3 IPv4 Packet Sample Data (NetDataCoP). 79

5.4 ICMP Sample Data (NetDataCoP). 80

5.5 IGMP Sample Data (NetDataCoP). 81

5.6 TCP Sample Data (NetDataCoP). 83

5.7 UDP Sample Data (NetDataCoP). 84

5.8 BOOTP Sample Data (NetDataCoP). 86

5.9 DNS Sample: Internet and Transport Data (NetDataCoP). 86

5.10 DNS Sample: DNS Protocol Data (NetDataCoP). 87

5.11 DNS Sample: DNS RR Data (NetDataCoP). 88

5.12 LLMNR Sample: Internet and Transport Data (NetDataCoP). 89

5.13 LLMNR Sample: LLMNR Protocol Data (NetDataCoP). 89

5.14 LLMNR Sample: LLMNR RR Data (NetDataCoP). 89

5.15 NBNS Sample Packets (NetDataCoP). 91

5.16 SNMP Sample Packets (NetDataCoP). 93

5.17 Object Identifier Interpretation . 93

5.18 SSDP Sample Packets (NetDataCoP). 94

5.19 ICMP Connection Example (NetDataCoP). 96

5.20 ICMP Connection Status . 97

5.21 TCP Connection Status . 101

5.22 Logical DNS Connection Packets (NetDataCoP). 105

5.23 UDP Connection Status . 110

5.24 Global Network-level Anomaly Features 112

5.25 Local Host-level Anomaly Features 115

6.1 Statistics of Network Traffic Sessions 119

xvii

6.2 Statistics of Collected Network Traffic 119

6.3 The Distribution of Attacks within Benchmark Dataset 123

6.4 Features of Benchmark Dataset . 124

7.1 Specificity Values – bbm’s – for Training and Testing Data 129

7.2 Performance of Classifiers for Evaluation Data 130

7.3 bbmUPd – Updated Belief Masses . 131

7.4 Classification Results – the Approach with: 132

7.5 Sample of Misclassified Data Points: System with bbmUPd=Bern . . . 132

7.6 Misclassified Data Points: System with bbmUPd=Train 133

7.7 Misclassified Data Points: System with bbmUPd=Avg 134

7.8 Minute Network Traffic Data . 135

7.9 Results of Classifiers . 136

7.10 Local Host-level Anomaly Features and Values 137

7.11 Host Traffic Example . 138

7.12 Local Host-level Detection Result . 139

8.1 Attack Label Example . 142

8.2 Performance Measures of Signature Classifiers 144

8.3 Decision Tree Detailed Performance 145

8.4 Simple Logistic Detailed Performance 146

8.5 Support Vector Machine (SVM) Detailed Performance 147

8.6 Transferable Belief Model (TBM) Detailed Performance 148

8.7 Misclassified Data Points with TBM Signature ID 150

8.8 SVM Classification for give Example 151

9.1 Normal Minute Traffic (NetDataCoP). 168

9.2 Global Anomaly Detection: Normal Minute (NetDataCoP). 168

9.3 Attack Minute 1 Traffic (NetDataCoP). 169

9.4 Global Anomaly Detection: Attack Minute 1 (NetDataCoP). 169

xviii

9.5 Local Anomaly Detection: Attack Minute 1 (NetDataCoP). 170

9.6 Global Signature Detection: Attack Minute 1 (NetDataCoP). 170

9.7 Attack Minute 2 Traffic . 172

9.8 Global Anomaly Detection: Attack Minute 2 (NetDataCoP). 172

9.9 Local Anomaly Detection: Attack Minute 2 (NetDataCoP). 173

9.10 Global Signature Detection: Attack Minute 2 (NetDataCoP). 173

9.11 Anomaly Performance Comparison 177

9.12 Signature Performance Comparison 178

A.1 ARP Protocol Features . 198

A.2 ICMP Protocol Features . 200

A.3 IGMP Protocol Features . 204

A.4 Network Interface Layer Features . 205

A.5 TCP Protocol Features . 205

A.6 UDP Protocol Features . 207

A.7 Transport Layer Features . 208

A.8 DNS Protocol Features . 209

A.9 NBNS Protocol Features . 210

A.10 LLMNR Protocol Features . 211

A.11 ARP and ICMP Global Network-level features 213

A.12 Network Profile Results . 214

B.1 Scenario 1: Packet Capture Information 217

B.2 Scenario 1: Summary Connections 217

B.3 Scenario 2: Packet Capture Information 220

B.4 Scenario 2: UDP Connections . 220

B.5 Scenario 2: Re-occurring Transport Address Packets (Internet and

Transport Layer Data) . 221

xix

B.6 Scenario 2: Re-occurring Transport Address Packets (Application

Layer Data) . 221

B.7 Scenario 2: Re-occurring Transport Address Packets

(Reconstructed Connections) . 221

B.8 Scenario 3: Packet Capture Information 222

B.9 Scenario 3: UDP Connections . 223

B.10 Scenario 3: Re-occurring Transport Address Packets (Internet and

Transport Layer Data) . 223

B.11 Scenario 3: Re-occurring Transport Address Packets (Internet and

Transport Layer Data + DNS Name) 224

B.12 Scenario 3: Re-occurring Transport Address Packets (Internet and

Transport Layer Data + DNS Name + ID) 224

B.13 Scenario 4: Packet Capture Information 226

B.14 Scenario 4: Identification and Reconstruction of Stream Connections227

B.15 Scenario 5: Packet Capture Information 228

B.16 Scenario 5 Attack Packets: Internet and Transport Layer Data 228

B.17 Scenario 5 Attack Packets: Application Layer Data 229

C.1 Network Interface Layer Features . 230

C.2 Internet Layer Features . 231

C.3 Transport Layer Features . 232

C.4 Application Layer Features . 233

D.1 ICMP Messages . 241

D.2 DNS Types . 254

D.3 DNS Classes . 254

D.4 NBNS QTYPE and QCLASS values . 259

D.5 NBNS RRs TYPE and CLASS values 260

D.6 ASN.1 sample Data Types [8]. 262

xx

Abbreviations

DARPA Defense Advanced Research Projects Agency

DOS Denial of Service

EM Expectation Maximization clustering

HIDS Host IDS

ID Intrusion Detection

IDS Intrusion Detection System

IPS Intrusion Prevention System

LR Logistic Regression

NB Naı̈ve Bayes

NIDS Network IDS

PROBE Probe

R2L Remote to Local

SVM Support Vector Machine

TBM Transferable Belief Model

TCP/IP Transmission Control Protocol/Internet Protocol

U2R User to Root

xxi

Chapter 1

Introduction

The increased dependency of multiple organizations – from governmental to

business and private – on computer systems and networks has made cyber

security an important issue. Governments, organizations, companies, and

military rely on computer systems and computer networks to fulfill their daily

operations. Presently, almost every computer-like device is connected to some

kind of a computer network that is further connected to another computer

network. Thus, connectivity is an indispensable part of any computer related

activities. At the same time, complexity of network systems is growing – more

devices are connected, more applications are used. The fact that almost all

devices are connected means that any attempt to break into a device or a

system is occurring via a computer network. Whether computer networks are

private or public, they are always subject to espionage and infiltration on the

pretence of theft, denial of availability, tampering, or destruction. Therefore,

defensive procedures and security mechanisms should be implemented to

preserve the integrity and to ensure uninterrupted use of these networks. In

the last decade, technological advancements have grown exponentially. Security

violations take place more often and cyber defence and security become of

increased importance. Intrusion Detection is one of the most important topics of

1

2

cyber security. Intrusion Detection Systems (IDSs) monitor computer networks

and/or software systems in order to detect malicious\suspicious activities

i.e., intrusions. Intrusions can be either attacks or anomalies. Therefore, IDSs use

two fundamental methodologies, signature intrusion detection to detect attacks

and anomaly intrusion detection to detect anomalies.

Signature Intrusion Detection, also known as misuse detection, searches for

traces of attacks within network traffic. Signature Intrusion Detection System

utilizes attack signatures as a source of knowledge to detect attacks. Attack

signatures consist of a set of features and their respective values. Signatures

are designed by security experts based on knowledge about past intrusions and

vulnerabilities.

Signature Intrusion Detection (ID) has the advantage of detecting attacks with

high accuracy (high true negative rate), also, they have the ability to provide

detailed information about detected attacks. This information include the

attack source(s), attack targets, used protocol, exchanged packets, elapsed attack

duration, attack instances, and established connections. On the contrary,

signature ID has the drawback of unable to detect new or unknown attacks (high

false positive rate), besides, it has the limitation of continuously keeping the

signatures up-to-date.

On the other hand, anomaly ID detects violations or deviations from a

pre-defined normal threshold(s). Anomaly IDS utilizes anomaly profiles that

models normal behavior in the form of thresholds. Anomaly profiles also consist

of a set of features and their respective values; profiles are designed based

on knowledge about past patterns of normal behavior. Anomaly ID has the

advantage of detecting new ’zero day’ attacks as anomalies (high true positive

rate). Though, anomalies can indicate attack attempt or new attack pattern, but

the detected anomalies might also be new legitimate normal behavior (high false

1.1. MOTIVATIONS 3

negative rate), in other words, abnormal behavior is not always an indication of

intrusion.

Anomaly ID has the advantage of providing detailed information about the

detected anomaly, information that include the source of anomaly, the violated

protocol, and the violated TCP/IP layer. The advantage gives rise to the

disadvantage, anomaly ID lacks to provide detailed information about the type

and nature of detected attacks.

In order to pursue the already stated research aspects we must have network

traffic data. Intrusion Detection can be implemented to detect online intrusions

within real-time captured network data, or it can be implemented to detect

intrusions within off-line pre-stored data. Nonetheless, the application of

machine learning and computational intelligence techniques on real-time

network traffic requires the use of pre-stored data, to train classifiers and build

models during the training phase. This task is a rather difficult, if not impossible.

1.1 Motivations

Our work targets research areas related to application of computational

intelligence and machine learning techniques to enhance intrusion detection

technologies. We focus on designing and developing intrusion detection

algorithms using data-centric methods and techniques suitable for detecting

and identifying malicious activities targeting whole sub-networks or individual

resources.

The main motivation is to enhance capabilities of IDSs so they are able not only to

detect an intrusion, but also to estimate indicators of potential intrusive activities

in a qualitative and quantitative way. Those capabilities can be achieved by

applying a combination of computational intelligence algorithms and machine

1.2. OBJECTIVE 4

learning techniques to online and/or offline processing and analyzing of network

traffic data.

1.2 Objective

The increased number of cyber attacks and intrusions requires more

comprehensive methods and approaches used to develop effective IDSs.

Machine learning and computational intelligence have been applied to enhance

effectiveness and efficiency of these systems.

Researchers investigate different methods to construct attack models leading

to signature ID; or normal network traffic models leading to anomaly ID.

These models predict the status of network traffic, thus the intrusion detection

problem is transformed into a classification problem. In addition, researchers

also try to combine both methodologies, i.e., signature and anomaly ID, to

construct hybrid data-driven intelligent intrusion detection systems. These

hybrid detection systems aim to combine advantages of both methodologies,

and at the same time decrease their limitations. A research proposed in this

thesis aims at developing a methodology for building hybrid network Intrusion

Detection System for monitoring activities of a computer system, analyzing data

collected during that monitoring, and identifying potential cyber intrusions, i.e.,

attacks and anomalies. The system is steadfast in its implementation:

• It performs detailed byte-wise interpretation of raw network traffic to infer

the fields of protocols, and conversely interpret them.

• It identifies and reconstructs Internet (ICMP) and Transport (TCP and UDP)

connections.

• It investigates traffic using a temporal view of it, i.e., it continuously

1.3. CONTRIBUTIONS 5

analyzes a network traffic data collected over define time intervals, unlike

other systems that utilize packets or connections.

• It performs a continuous anomaly intrusion detection via observing

network traffic at two different levels of granularity: network-level and

host-level; such an approach reinforces the detection capabilities.

• It carries out a continuous signature intrusion detection to ascertain attacks

based on detecting attack signatures together with analysis of traffic on a

network-level as well as a host-level.

1.3 Contributions

The performed literature review indicates that research in Intrusion Detection

involves multiple topics that are investigated individually or together. It seems

that the most significant topics are:

Intrusion Detection Datasets: development of Intrusion Detection Systems is

very dependent on availability of traffic data; good quality datasets

which describe network traffic and contain information about normal and

anomalous behavior of a network, as well as different types of attack are

essential; a lot of activities is dedicated to generation of data and building

suitable datasets.

Anomaly Intrusion Detection: anomaly means any kind of behavior in a

network which is not normal; a process of Anomaly Intrusion Detection

allows to detect anomalous (not normal) behavior; multiple Machine

Learning (ML) and Artificial Intelligence techniques are used to classify

anomalous network traffic.

1.3. CONTRIBUTIONS 6

Signature Intrusion Detection: it is a process of detecting specific attacks; and

there are two approaches used to detect attacks: 1) an academic approach

focusing on development of classifiers able to distinguish a given type of

attack; and 2) a commercial approach targeting development of hardware

and/or software solutions that compare network traffic against the stored

attack signatures.

Versatility of research topics in the area of intrusion deception combined with

multiple goals and objectives have lead to a number of contributions. They

‘touch’ all three areas of intrusion detection research presented above. In a

nutshell, the contributions are following.

1. Multi-perspective Description of Network Traffic: We performed a

through analysis of different network traffic and attacks. As the result, we

identified a comprehensive set of features that thoroughly describes any

type of network traffic.

2. Improved Attack Signatures: The analysis of attacks and the proposed

network traffic description allowed us to update attack signatures. The

updates include: 1) new/improved values of features of attack signatures

tailored, on some occasions, using specific network topology; and 2)

addition of new features for signatures of different attacks.

3. Network Data Collecting and Processing System (NetDataCoP): We

designed and implemented a system called NetDataCoP. It has the

capability to collect and interpret network traffic data using three different

points of view: data packet-wise, connection-wise, and temporal-wise. The

system is able to: 1) capture a byte-wise network traffic, process it, and

change it into data packets; 2) identify and reconstruct logical connections

1.3. CONTRIBUTIONS 7

at different layers of a network stack; and 3) process network traffic, i.e.,

data packets and connections, and construct time interval datasets.

4. Identification and Reconstruction of Logical Connections for UDP-based

Applications: We designed and implemented a novel methodology for

identification and reconstruction of logical connections of UDP-based

applications. We use Deep Packet Inspection (DPI) to understand the

behavior of UDP-based applications. We propose an algorithm for

detecting ICMP and TCP connections. Its implementation constitutes

Connection Identification and Reconstruction Module that is a part of

NetDataCoP.

5. Network Anomaly Profile: The multi-perspective description of network

traffic together with an algorithm for reconstruction of connections have

led us to proposing a threshold-based network anomaly profile. The novelty

of our network anomaly profile comes from application of a comprehensive

set of features, which enable capturing multiple aspects of a network traffic

simultaneously.

6. Evidence-based Anomaly Intrusion Detection System: We propose a

methodology for building a system able to detect anomalies using as its

base analysis of network traffic represented as a continuous stream of

data. A temporal-wise processing of network traffic is performed using a

specified time interval (one minute in our case). The analyzed data is an

input to several classifiers built using network-level and host-level data to

distinguish between normal and anomalous traffic. Elements of Evidence

Theory are used to enhance the detection capabilities by combining the

results of classifiers and provide a probabilistic outcome about the state of

a network traffic.

1.4. THESIS OUTLINE 8

7. Evidence-based Signature Intrusion Detection System: We construct a

number of classifiers representing different attacks on network as well

as host levels, and utilize them to distinguish between several attacks.

Additionally, we develop and implement procedures for further analysis

of network traffic data that leads to obtaining a ’full’ information about

detected type of attack. These procedures are built based on our updated

attack signatures.

8. Two-stage Hybrid Intrusion Detection System: The proposed anomaly

and signature intrusion detection systems are integrated into one system

named two-stage hybrid intrusion detection system. First, the anomaly

detection process is applied to the time-wise processed network traffic to

assess a degree of network anomalousness. Once it is identified to be

anomalous, the signature detection system is activated to investigate the

traffic data for possible attacks.

9. Intrusion Detection Benchmark Datasets: We have created an Intrusion

Detection benchmark dataset. It consists of data points representing

network traffic aggregated over time intervals of one minute. The dataset

is fully formatted and all data points are labeled, and available for public

use by researchers.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides a comprehensive

background about Intrusion Detection, Machine Learning classifiers, and

Evidence Theory, along with some of the latest related research studies.

Chapter 3 introduces the core of our work, it starts with network traffic

1.4. THESIS OUTLINE 9

classification (Section 3.1), followed by the analysis of canonical and updated

attack signatures for our selected set of attacks (Section 3.2). It continues to

analyze well known intrusion detection datasets (Section 3.3), and explains

our proposed multi-perspective feature-based network traffic description

(Section 3.4), our proposed network anomaly profile (Section 3.5), and

concludes with a detailed analysis of our proposed network-tailored attack

signatures (Section 3.6).

Chapter 4 demonstrates the overall proposal of our system. Chapter 5 presents

a thorough explanation of NetDataCoP module and its included modules.

Afterwards, Chapter 6 handles the process of generating network traffic,

concerning the structure of our testbed network (Section 6.1), the generated

network traffic data (Section 6.2), and our proposed ID benchmark dataset

(Section 6.3).

Chapter 7 manifests our proposed Anomaly ID stage, with detailed justification

and description of its included sub-modules; Global Network-level Machine

Learning-based Anomaly Detection (Section 7.1), and Local Host-level

Threshold-based Anomaly Detection (Section 7.2). Likewise, Chapter 8

illustrates our proposed Signature ID stage, with thorough explanation of

its included sub-modules; Global Network-level Machine Learning-based

Signature Detection (Section 8.1), and Attack Detection Modules (Section 8.2).

Chapter 9 shows detailed hybrid intrusion detection case studies. The utilization

is demonstrated by using 3 network traffic minutes; one normal, and 2 attack

minutes.

Chapter 10 concludes the thesis with a summary of contributions and results of

work, along with promising future research points.

Appendix A to Appendix D provide extra details about; our proposed network

anomaly profile, the identification and reconstruction process of logical

1.4. THESIS OUTLINE 10

connections for UDP-based applications, the features of our proposed

multi-perspective network traffic description, and finally the deciphered

TCP/IP protocols.

Chapter 2

Background and Related Work

In this section, we briefly present some aspects of background relevant

to distributed environment, cyber security, as well as data mining and

computational intelligence (Section 2.1). We focus on intrusion detection,

especially attack types and their severity levels, and main methodologies used

for intrusion detection. We also provide some examples of research work in our

scope of study (Section 2.2).

2.1 Background

An IDS has to monitor not only local internal network traffic but also incoming

traffic from external networks. An individual – internal or external – activity can

be legitimate or intrusive. Given the intelligence of attackers, they rarely execute

explicit intrusive activities, but they try to make their intrusions seem legitimate

by hiding them within normal activities. Also, an activity can be individually

legitimate, but when it is seen within a certain context then it is deemed intrusive

(i.e., Denial of Service attacks). Having explained all this, then the task of an

IDS monitoring internal and external network traffic, examining the legitimacy

of events and activities, becomes a hard task which needs intense and accurate

11

2.1. BACKGROUND 12

research. The use of Machine Learning and Computational Intelligence (CI)

techniques helps in elevating the capabilities of IDS to perform its task in a

data-driven intelligent manner.

The next 4 sections are used to explain multiple aspects: Intrusion Detection

(next section), Machine Learning classifiers (Section 2.1.2), and elements of

evidence theory (Sections 2.1.3 and 2.1.4).

2.1.1 Intrusion Detection

Intrusion Detection is the process of monitoring a network or a set of computers

for signs of incidents, whether these incidents are violations that constitute an

attack or indications of an imminent attack [10][11][12]

2.1.1.1 Intrusion Detection System (IDS) and Intrusion Prevention System

(IPS)

An IDS is a device or software that automates the process of detecting intrusions.

The main task of IDS is to detect attack patterns (signatures) within network

traffic, and it can also identify reconnaissance or probe activity that precedes an

attack. Additionally, IDS detects violations of security policies or deviations from

acceptable security practices (anomalies). Finally, IDS contains a notification

module that notifies security administrators of the detected attacks or identified

violations. The notification contains information that IDS has logged about the

detected incident(s), which can be displayed in the form of a message sent to a

monitoring terminal or in the form of a report sent to the security administrator

[10][11][12].

An Intrusion Prevention System (IPS) is an IDS with additional prevention

capabilities. These capabilities are used to prevent, slow, or cripple ongoing

2.1. BACKGROUND 13

detected incidents. Security administrators can use IPS as IDS by switching off

the prevention features [11].

2.1.1.2 Intrusion Detection Methodologies

IDS can work using several detection methodologies, whether they are separated

or integrated. Based on the detection methodology, IDS can be classified into

signature and anomaly IDS [10][11][12]. In this situation, integrating the two

methodologies in one detection engine produces a hybrid IDS.

Signature is a known pattern that identifies an attack. Signature (or misuse)

detection is the process in which detected incidents are compared against attack

signatures to determine if the current incident represents an attack [10][11][12].

A Signature IDS works like anti-virus servers. An anti-virus server can only

detect viruses whose definitions exist in the server’s virus database. Likewise,

the signature IDS can only detect those attacks whose signatures exist in the IDS

database.

Anomaly detection is the process of comparing the detected incidents against a

pre-constructed anomaly profile that represents normal behavior. Profiles can

be created for several entities; users, computers, connections, protocols, layers

or even an entire network. Anomaly detection is very useful in detecting new or

unknown (zero-day) attacks [10][11][12]. Also, anomaly profiles are created from

data captured over a time interval that could range from a day to an entire year.

This duration can be considered as the training period of the anomaly-based

IDS [10][11]. Furthermore, an anomaly profile can be static or dynamic. When

static anomaly profiles are created they do not change unless the security

administrator instructs the IDS to do so. Dynamic anomaly profiles have the

ability to periodically change to adapt to the new normal behavioral aspects

of the entity. Unfortunately, this type of profiles is susceptible to intrusions.

2.1. BACKGROUND 14

An attacker who knows that the anomaly profile is dynamic can perform small

incremental anomalous incidents in order to shape and push the thresholds of

the profile to a limit that allows him to perform attacks without being detected

[11].

2.1.1.3 Intrusion Detection Technologies

Alternatively, based on IDS deployment (i.e., location) it can be classified into

Network IDS (NIDS) and Host IDS (HIDS) [10][11][12]. A NIDS monitors and

analyzes network traffic for malicious activities. Therefore, IDS should be placed

at vital strategic point that allows it to have access to all incoming and outgoing

traffic of all connected machines within the network. The literature in [12]

suggests classification for NIDS into two types; online and offline NIDS. Online

NIDS handles real time network traffic, while offline NIDS processes previously

stored data. Also, the literature in [5] argues two classifications for NIDS. The

first classification is format-based; hardware and software NIDS. The second

classification is mode-based; inline and passive NIDS.

A HIDS monitors and analyzes internal host activities, whether they relate to its

network traffic (inbound and outbound), system logs, processes, activity, and

configuration [10][11][12]. This is usually done by embedding agents either on

individual hosts or on nearby appliance. The main task of these agents is to

monitor one or more hosts [11].

2.1.1.4 Intrusion Detection Datasets

Many intrusion detection researchers have introduced multiple intrusion

detection datasets, which constitute a valid foundation for the implementation

2.1. BACKGROUND 15

and evaluation of intrusion detection approaches. The main purpose of these

datasets is to provide network traffic data to researchers such they represent

either known (attacks) and/or unknown (anomalies) intrusions.

In this section, we will highlight some of these intrusion detection datasets.

There are two commonly used intrusion detection datasets: KDD CUP ’99 and

NSL-KDD; like any other intrusion detection research we were inspired by these

datasets and their structure in our work.

KDD CUP ’99 [10][13][14] is an intrusion detection dataset generated from

the results of practical experiments conducted in Massachusetts Institute

of Technology (MIT), and analyzed as intrusion detection project under the

supervision of Defense Advanced Research Projects Agency (DARPA).

NSL-KDD [15][16] is an improved version of the KDD CUP ’99 dataset; in

which the deficiencies found in KDD CUP ’99 were treated. The dataset was

constructed in Network Security Lab at University of New Brunswick.

TUIDS [10][17] is a network intrusion detection dataset generated and produced

at Tezpur University in India. The experiments were conducted on a smaller

scale network environment than that of KDD CUP ’99. Also, it simulates a

different group of attacks than that within KDD CUP ’99. The dataset includes

two versions; packet-based and flow-based version with additional features.

2.1.1.5 Cyber Attacks and Taxonomy

The main focus of cyber security experts is on cyber attacks. Cyber attacks

intend to cause devastating impacts; e.g., theft, denial of availability, tampering,

destruction, damage, or unauthorized access, according to the attacker’s

intension (infiltration or espionage). Cyber attacks are classified into categories

based on some form of coherent relationship among groups of attacks. This

2.1. BACKGROUND 16

relationship is usually related to the execution pattern of the attack. Attacks

leave multiple traces at network or host levels. Moreover, they can target many

components of a system, from certain services on a target machine to variety of

network resources.

2.1.1.5.1 The Taxonomy of Attacks The hierarchy of attack categories

suggested by DARPA in its intrusion detection evaluation project (KDD CUP

’99) [13][14][18] is used here due to its clarity and direct relation to attack

execution pattern. According to [10][13][14][18], attacks are divided into four

main categories; Denial of Service (DOS), Probe (Probe), Remote to Local (R2L),

and User to Root (U2R). The name of each category signifies the behavior of

its included attacks. DOS attacks are characterized by their ability to deny the

legitimate use of one or more assets of the target machine. Denial of asset usage

can be achieved by abusing protocol features, confusing TCP/IP stack of target

machine, or by manipulating pre-existing unhandled bugs [10][13][14][18].

Probe attacks can be regarded as a staging phase before an actual damaging

attack, in which scan and reconnaissance activity take place. Any attacker needs

to have some information about the network or machine he intends to attack.

Probe attacks provide the attacker with such information [10][13][14][18].

R2L attacks are used to gain local access to a remote target machine. The

attacker does not have an account on the remote machine, so he tries to create

or gain unauthorized access to a local account by exploiting vulnerabilities

[10][13][14][18].

U2R attacks are similar to R2L attacks in the manner of exploiting vulnerabilities,

but in this case the attacker exploits other types of vulnerabilities on the target

machine to elevate his standard local account -which he might have got using

R2L attacks- to a privileged (or administrator) root account [10][13][14][18]. In

2.1. BACKGROUND 17

our research, we have selected DOS and Probe attack categories.

DOS and Probe attack categories adopt a flow-based behavior while R2L and

U2R attack categories appropriate a a packet-based behavior. The concept of

packet-based behavior is derived from packet fields that hold specific values.

These values can be used – as is – to identify attack features. Also, this behavior is

based on a very few number of packets that hold these specific values. Therefore,

attacks that follow a packet-based behavior are easy to detect and trivial to

investigate. On the other hand, flow-based behavior depends not only on packet

values, but also on the contextual pattern formed by multiple groups of packets.

Their corresponding attack signatures are formed by extracting and processing

several protocol fields to produce flow-based features. The investigation of

flow-based feature values identifies a flow-based behavior attacks. As a result,

contextually, flow-based behavior attacks can be mistaken as normal, thus they

are hard to detect and valuable to study.

2.1.1.5.2 Cyber Attacks We chose seven attacks as selected set of attacks

to investigate in our research; four DOS attacks and three Probe attacks. In

this section we are going to present their basic definition and we present their

detailed analysis later (Next Chapter). For DOS attack category we concentrate

on; Local Area Network Denial, ICMP Flood, Smurf, and IGMP Flood. For Probe

attack category, we selected; IPSweep, InsideSniffer, and PortScan.

LAND attack is characterized by sending a malformed packet having the

same source and destination addresses to target machine. This is considered

vulnerability in TCP/IP implementation. According to [13][14][18], the target

machine become confused and locks up until manual reboot is performed.

ICMP Flood [10] is identified by sending a burst of ICMP request packets in order

to flood the target machine, to either consume his connection queue or consume

2.1. BACKGROUND 18

his CPU cycles.

Smurf attack [10][13][14][18] is similar to ICMP Flood, but instead of flooding

the target machine with a burst of ICMP request packets, it is flooded with a

burst of ICMP response packets. A malformed ICMP request packet is sent to

the broadcast address xxx.xxx.xxx.255 by the attacker whose source address is

the target’s address. Consequently, all network devices respond back with ICMP

response packets, thus flooding the target machine. Some variations of this

attack are performed without the initial malformed packet. Again, Smurf starves

the target machine’s connection queue or CPU cycles. Though IGMP Flood might

seem trivial, because the legitimate use of IGMP protocol is multicast, but it can

be used by an attacker in a unicast manner to flood the target machine and try to

exhaust its CPU cycles. In IGMP Flood, the attacker floods the target with bursts

of IGMP packets.

IPSweep [10][13][14][18] sends many ICMP ping request packets to every

possible IP address in the subnet to see which devices respond. In other words,

it aims to scan the IP address range. InsideSniffer [10][13][14][18] attack tries to

scan the names of the devices connected to a network. The attacker sniffs the

network and finds which IP addresses send packets. Once a packet is found, its

IP address is resolved to its respective name. Some new versions of the attack

resolve an IP address range to their corresponding names without the initial

sniffing. Finally, PortScan [10][13][14][18] attack tries to scan the ports of the

target machine in an effort to find which ports are open or closed.

2.1.1.6 Anomalies and Anomaly Profiles

In this section we highlight anomalies from several aspects. First we explain the

types of anomalies then we illustrate their application domains. There are mainly

two types of anomalies; simple and complex, Figure 2.1 below. Simple anomaly

2.1. BACKGROUND 19

includes data whose value individually forms an outlier with respect to the rest of

data. Complex anomaly does not entirely depend on the values, but depends on

the context in which the data exits. i.e., the data can be anomalous in one context

and normal in another context [19].

Figure 2.1: Anomalies.

The detection of anomalies has many application domains, among which

intrusion detection, fraud detection, medical and healthcare anomaly detection,

industrial damage detection, image processing, text anomaly detection, and

sensor networks [19]. According to the application domain and the included

entities within that domain, anomaly profiles for entities can be constructed.

Profiles are utilized to represent normal behavior of entities in normal working

conditions. In our case, we implement a network anomaly profile.

2.1. BACKGROUND 20

2.1.2 Machine Learning Techniques

Machine learning techniques can be categorized into either supervised or

unsupervised techniques. The application of any machine learning technique

implies a two-step procedure; inference of classification model, and application

of inferred model upon new data (i.e., classification). In the framework of our

thesis we use four machine learning techniques; K-Means Clustering (K-Means),

Decision Tree (DT), Logistic Regression (LR), and SVM; we are going to explain

them in this section.

2.1.2.1 Decision Tree

Decision Tree is a supervised machine learning technique that has the ability

to infer knowledge from data and represent it in the form of a model. Basically,

the model is a decision tree consisting of several decision rules. Decision Trees

consist of a group of nodes; they start with one node at the top called root

node, and end with several nodes called leaf nodes. Each tree node contains a

threshold value and a comparison sign, aside from the root node, each node is

labeled with the learned class. Each path from root node to particular leaf node

is considered a decision rule; decision rules can be regarded as a set of nested

if-then statements [20].

Decision Tree learning algorithm has an important character; exclusivity.

Consequently, exclusivity presents one advantage and two disadvantages:

distinctive rules, replicated subtree, and model complexity. Decision

Tree classifier advantage is the production of distinct non-conflicting

non-overlapping rules, but sometimes this situation can generate complex

models containing many rules. Also, the disadvantage of replicated subtrees

problem, this happens when identical subtrees are learned from different parts

2.1. BACKGROUND 21

of the data which have similar knowledge [20].

Inference of classification model DT learning algorithm iteratively searches

through the data to find an attribute whose value uniquely splits the data

according to the given class labels. Once such attribute and value are

found, they are treated as a root node. The algorithm recursively applies

the same approach to each data split until no further splitting can be made.

The difference between root node induction and other nodes is that each

induced node is labeled with the respective class label [20].

Data classification Once a decision tree model is inferred, the algorithm uses

that model to classify incoming new data. The attribute values of the new

data are compared against the nodes of the decision tree by traversing

through each decision rule, starting with the root node and ending with a

leaf node. The result from traversing the decision tree is a class label that

ties the given data to the predicted class [21].

2.1.2.2 Logistic Regression

Logistic Regression is a supervised machine learning technique that discovers

knowledge from give data in the form of a logistic function. Logistic Regression

applies linear regression techniques upon the data under the assumption that

the given data points are linearly-separable. It tries to find the logistic function

(or linear boundary) that distinctively separates the given data based on the

provided class. Unlike ordinary regression, Logistic Regression outputs the

probability that a given belongs to a certain class.

Inference of classification model Logistic Regression model is based on

[22][23]:

z = β0 + β1x1 + β2x2 + · · ·+ βnxn (2.1)

2.1. BACKGROUND 22

The variable z is called log odd which is equivalent to exponential function

of linear regression, The variable β0 is called the intercept which provides

the value when the predictors are equal zero. β1 · · · βn are called the

regression coefficients, x1 · · · xn are called the predictors. The log odd is the

log likelihood and it is mapped to the interval [0,1] using (Equation 2.2) to

get the probability

P (c0|x1 · · · xn) =
1

1 + e−z
(2.2)

Logistic Regression performs an iterative process through the given data to

find the maximum log likelihood. When successive iterations have small

difference the model converges and we have the logistic function.

Data classification The classification is the simple process of plugging in the

values of the predictors in the logistic function and compute the probability

that the data point belongs to said class. Once the probability of one class

is computed, the probability of the other class can be computed by ’1-P’.

2.1.2.3 Support Vector Machine

Support Vector Machine is a supervised machine learning technique that strives

to find the hyperplane that separates the data into 2 groups with the widest

possible margin. The maximization of the gap allows for better classification

performance. SVM spans the margin until points from the groups are reached.

Assuming a dataset of n points in the form (�x1, y1), (�x2, y2), · · · , (�xn, yn), where

�xi ε R is the input vector for i-th example. yi is either +1 or -1 indicating the class

to which i-th example belongs to, the example is said to be positive if yi = +1

and negative when yi = −1. Assuming that the points are linearly separable SVM

finds the optimal hyperplane that satisfies the equation f(x) = �w.�x+b = 0, where

�w ε R is the weight vector and b ε R is the bias.

2.1. BACKGROUND 23

In essence, multiple hyperplanes can satisfy the said equation. SVM

chooses those hyperplanes as decision hyperplanes, and using these decision

hyperplanes SVM tries to find the hyperplane that achieves the maximum margin

as follows

�w.�xi + b > 0 for yi = + 1

�w.�xi + b < 0 for yi = − 1
(2.3)

Assuming that i-th lies at the edge of the margin, therefore, the distance from the

point to the hyperplane �w.�xi + b = 0 is equal to ‖ w ‖−1 | �w.�xi + b |. SVM tries to

find the optimal values for w, b that maximizes:

| �w.�xi + b |
‖ w ‖ (2.4)

Since we have to maximize for two hyperplanes in positive and negative

examples, the distance equation is simplified to

2

‖ w ‖ (2.5)

2.1.2.4 K-Means Clustering

K-Means Clustering is considered one of the most popular and commonly used

clustering techniques. Given a set of points, K-Means tries to group them into

clusters based on some similarity measure. The most commonly used similarity

measure is the distance measure, among them the Euclidean distance is the

commonly used distance formula [24].

Based on the number of classes, K-Means elects initial cluster centers, one point

corresponding to each class. For the remaining available points, K-Means takes

a point and calculates its distance measure with respect to all available cluster

centers, and finds its nearest cluster center. K-Means assigns that point to that

2.1. BACKGROUND 24

cluster and updates the center center, producing a new center, by calculating the

mean of the cluster member points [24].

This process is repeated for all the given points, and the final output from

K-Means is the cluster centers. This way, any new incoming point can be tested

against the cluster centers to find out its belongingness to what class.

2.1.3 Evidence Theory

Given a set of worlds Ω called the frame of discernment. One of the worlds,

denoted w0, corresponds to the actual world. An agent does not know which

world in Ω corresponds to the actual world w0. Nevertheless, the agent has some

idea(opinion) about which world might be the actual one. So for every subset A

of Ω, called the focal element, the agent can express the strength of its opinion

that w0 belongs to A. This strength is denoted bel(A) and called a belief function

(formal definition below). Extreme values for bel denote full belief (1) or no belief

at all (0). The larger bel(A), the stronger the agent’s belief that w0 belongs to A

[25][26][27][28].

2.1.3.1 Basic Belief Assignments

One of the concepts of the theory is a basic belief assignment (bba). Related to

belief function bel, one can define its so-called Moebius transform, denoted m

and called a basic belief assignment. Let

m : 2Ω → [0, 1] (2.6)

where m(A) is called the basic belief mass (bbm) given to A ⊆ Ω. The value of

m(A) represents belief that supports A - i.e., the fact that the actual world w0

belongs to A without supporting any more specific subset. In the case, when w0

2.1. BACKGROUND 25

belongs to A, and nothing more is known about the value of w0, then some part

of belief will be given to A, but no subset of A will get any positive support. In that

case, m(A) > 0 and m(B) = 0 for all B ⊆ A and B �= A.

2.1.3.2 Belief Functions

The bbm m(A) does not quantify belief that w0 belongs to A (bel(A)), . The bbm

m(B) given to any subset B of A also supports that w0 belongs to A. Hence, the

belief bel(A) is obtained by summing all the bbm m(B) for B ⊆ A. At the end:

bel(A) =
∑

φ �=B⊆A
m(B), ∀A ⊆ Ω, A �= φ (2.7)

bel(φ) = 0 (2.8)

The belief function bel satisfies the following inequality:

∀n > 1, ∀A1, A2, . . . , An ⊆ Ω (2.9)

bel(A1 ∪A2 ∪ . . . An) ≥
∑

i

bel(Ai)−
∑

i>j

bel(Ai ∩Aj) · · · − (−1)nbel(A1 ∩A2 ∩ . . . An)

(2.10)

As such, the meaning of these inequalities is not obvious except when n = 2.

These inequalities generalize the idea that agent’s belief that the actual world

belongs to A ⊆ Ω can be larger than the sum of the beliefs the agent gives to

the elements of a partition of A.

2.1.3.3 Combination of Two Belief Functions

Suppose there are two distinct pieces of evidence Ev1 and Ev2 produced by two

sources of information. Let bel1 and bel2 be the belief functions induced by each

2.1. BACKGROUND 26

piece of evidence. These two belief functions, with the focal elements Ai and Bj

respectively, may be combined into a new belief function using Dempsters rule

of combination. The rule specifies the combined belief mass, m, assigned to each

focal element Ck, where C is the set of all subsets produced by A and B, The rule

is:

m(Ck) =

∑
Ai∩Bj=Ck;Ck �=φ m(Ai)m(Bj)

1−∑
Ai∩Bj=φm(Ai)m(Bj)

(2.11)

where the focal elements of bel1 = A = A1, ..., Ai and bel2 = B = B1, ..., Bj . The

combination of two belief functions is also know as taking the orthogonal sum,
⊕

, and is written as

bel3 = bel1 ⊕ bel2 = (m(C1), . . . ,m(Ck)) (2.12)

The meaning of distinct for two pieces of evidence has been left undefined. It

lacks rigorous definition. Intuitively it means the absence of any relation. In this

case the belief function bel2 induced by the second source is not influenced by

the knowledge of the belief function bel1 induced by the first source and vice

versa

2.1.4 Transferable Belief Model

Dempster-Shafer theory has been used to develop the TBM. The model

represents quantified beliefs and is based on belief functions bel. Given a belief

function bel, a probability function is generated that is used to make decision by

maximizing expected utilities. It requires the construction of the betting frame,

i.e., a list of alternatives on which the bet must be made.

Let BetFrame denotes the betting frame. The granularity of BetFrame is

such that if by necessity two alternatives are not distinguishable from a

2.2. RELATED WORK 27

consequence-utility point of view, than they are pooled into the same granule.

Once the betting frame is determined, the bbms are transformed by the so-called

pignistic transformation into the pignistic probabilities BetP : 2Ω → [0, 1] with:

BetP (A) =
∑

X⊆BetFrame,X �=φ

m(X)

1−m(φ)

#(A ∩X)

#(X)
, A ⊆ BetFrame,A �= φ (2.13)

#(X) is the number of granules of the betting frame BetFrame in X, and m()

is called the basic belief mass. The pignistic probability function BetP is a

probability function which represents the additive measure needed to compute

expected utilities when decision must be made, given someone’s beliefs as bel

2.2 Related Work

There are many academic articles and research work that relate to one or more

topics of our proposed work. Our work focuses on intrusion detection, and how

Machine Learning techniques can be used to detect intrusions. Within Intrusion

Detection there are multiple research topics; anomaly intrusion detection,

signature intrusion detection, and hybrid intrusion detection. Some researchers

use the term hybrid anomaly detection when several techniques are used in

anomaly intrusion detection. Others use a similar term – hybrid signature

detection – when multiple techniques are used in signature intrusion detection.

Basically, hybrid intrusion detection means the integration of both anomaly and

signature intrusion detection within a single detection engine, whether multiple

techniques are used in both or not.

In this section we are going to mention several research works that relate to

this topic. First and foremost, we need to have network data and it has to be

described by several features (or attributes). Whether the research involves

2.2. RELATED WORK 28

signature, anomaly, or hybrid intrusion detection, multiple techniques can

be applied to this data. The application of techniques solves the problem of

intrusion detection in the form of a classification problem. In anomaly intrusion

detection we classify normal and anomaly network traffic. In signature intrusion

detection we distinguish between multiple attack classes. In hybrid intrusion

detection, we are doing both tasks, i.e., differentiating between normal and

anomaly, and once an anomaly is detected we try to determine if this anomaly is

in fact an attack. Most Intrusion Detection researchers use ready-to-use datasets

and apply multiple combinations and permutations of Machine Learning and CI

techniques to classify network traffic

The authors in [29] proposed a new signature-based multi-layer distributed

intrusion detection system using mobile agents. Their main idea is to distribute

multiple agents across several layers, each holding a small database of frequent

attacks. The implementation of this model detect attacks faster than having a

central database of signatures. They used Snort IDS and used several attack

tools to simulate attacks. Their proposed experiment included training and

operation phases. R. Chetan et al. [30] used KDD dataset and association

rule mining to implement aq Data Mining Based Intrusion detection system

application prototype using .NET. Their system consists of 5 main modules;

Sensor, Extraction, transformation and load (ETL) Centralized data warehousing,

Automated rule generation, Real-time and offline detection, and Report and

Analysis. The sensor captures stream network traffic and passes it to the ETL

for features extraction. Of course, they did not actually use such modules in

their research because they used the ready-to-use KDD dataset which contains

the formatted data and its features. The Automated rule generation performs

association rule mining technique to infer attack rules. They conclude that

their proposed system offers multiple advantages of integrating individual

2.2. RELATED WORK 29

components, security, scalability, and high availability.

[31] proposes a hybrid intrusion detection methodology using Hidden Markov

Model (HMM) and Sequence TimeDelay Embedding(STIDE). They used KDD 98

dataset and excluded 3 attacks out of 55 attacks. They compared their proposal

against K-NN and proved that their proposed hybrid-HMM is better using

ROC curve – False Positive Rate (FPR) and Detection Rate (DR). [32] has also

found that applying a hybrid approach of combining Hidden Markov Model

(HMM) with C5.0 to enhance intrusion detection. The main idea was to check

whether the combination of C5.0 with HMM will produce better detection than

HMM’s. The hybrid combination provides a 90% improvement for all classes

(attacks+normal) compared to the individual use of HMM. They used KDD data

and partitioned it into 20 smaller datasets whose sizes range from 5-100% of the

original KDD dataset. Each small dataset is divided further into 75% and 25 %

training and test data which were used to train C5.0 and HMM and produce their

respective models and then test the generated model.

The study in [33] proposes a multilayered database intrusion detection system in

big data transactions. It constructs profiles of normal user queries issued against

the database during the training phase, the profiles holds user-query rules that

span transaction, inter-transaction, log files, and database applications source

code. Then during the detection phase, the constructed profiles and their

associated rules are used to differentiate between normal and abnormal user

queries. Mingjun Wei et al. [34] proposed an improvement to K-means clustering

algorithm via spanning tree to detect anomalies. They used KDD dataset and

focused their anomaly research on the 98.3% normal data. They applied both

K-Means and their proposed improved K-Means in anomaly detection. With

a lower number of clusters (44 clusters), improved K-Means provided better

detection rate.

2.2. RELATED WORK 30

The research in [35] explained in a literature manner their idea to implement

Granular Intrusion Detection systems (GIDS), one GIDS to learn normal and

abnormal behavior of each protocol via data mining and machine learning

techniques. They state that they have implemented anomaly behavioral

modules for TCP, UDP, IP, and DNS.

The research in [36] suggests a two-stage database intrusion detection system

using Dempster-Shafer’s theory to detect intrusive and suspicious transactions.

They used lower and upper thresholds to investigate the deviations of incoming

transactions as a first stage. If a transaction is found to be intrusive or

suspicious, misuse detection is applied along with inter-transactional and

intra-transactional features in the second stage. The authors analyzed their

systems’s performance by comparing it to other previously published systems.

G. Folino et al. [37] argue a distributed intrusion detection framework that

uses specialized ensembles and non-trainable, genetic programming-based

combination function to combine ensembles. They use KDD dataset and

compared their work to Greedy-Boost algorithm. They proved the validity of

their work by using precision and recall metrics. The results obtained by M.

Nour et al. in [38] suggest that LR produces better classification results than

Naı̈ve Bayes (NB) and Expectation Maximization clustering (EM), the results

were confirmed by calculating precision and recall against UNSW-NB15 and the

NSLKDD datasets. They applied a hybrid methodology that combines 1)Central

Points of attribute values method (CP) and 2)Association Rule Mining (ARM) to

select the highest ranked attributes before applying the techniques.

J. Kevric et al. [39] has also found that the combination of random tree and

NBTree algorithms using the sum rule scheme produces better classification

accuracy (89.24%) than individual algorithms, by using NSL-KDD dataset in

their work. N. Haq et al. [40] studied an anomaly detection framework against

2.2. RELATED WORK 31

NSL-KDD dataset and showed that hybrid feature selection and ensemble base

classifiers; Bayesian Network, Naı̈ve Bayes, and J48 Decision Tree produce lower

false positive rate of 0.021 than individual classifiers. They used Best First,

Genetic Search, and Rank Search to select 12 important attributes. Eventually,

models from base classifiers were combined using majority vote.

The reduction of false positives in intrusion detection systems was

experimentally proved by [41] via cascading several data mining techniques.

The author used SVM, DT, and Naı̈ve Bayes against KDD dataset. She added an

extra binary attribute to KDD dataset to label the data records as either normal

or anomaly. KDD dataset is split to 66% training data and 34% test data. After

training the classifiers and building models, the data is subjected to SVM then

DT, and finally NB. The model performed with an overall accuracy of 99.62%

and false positive rate of 1.57%. The authors in [42] proposed an event stream

database based architecture to detect both signatures and anomalies. The traffic

is saved to a database an the processing of intrusion detection is done in the

form SQL queries. The system consists of four modules; Data splitter, Event

Labeler, Detection Module, and Rules Modules. The Data Splitter splits streams

according to; Physical attributes, Communication attributes, Packet content,

and Network and Flow characteristics. The Event Labeler tags events based

on; Thresholds, Stochastic, and Pattern triggers. The Detection Module detects

Signatures by using SQL queries and Anomalies via Clustering techniques to

find similar events. Based on the alerts provided by the other modules, the Rules

Module a high level filtering layer for experts to add If-then rules to tag streams.

Chapter 3

Network Traffic Analysis

In this chapter we explain and clarify some networking aspects related to

Intrusion Detection, which eventually led to our cornerstone contribution,

i.e., multi-perspective description of network traffic. Within the framework of

the thesis, we detect intrusions; both attacks and anomalies. Therefore, we need

to investigate their effects and traces within a network traffic. We start with

researching attacks, Section 3.2, their definitions and execution patterns of which

have already been identified by security experts. Our work on interpretation

and understanding of attacks have allowed us to fully analyze canonical attack

signatures, and propose multiple updates of these signatures.

Also, we want to know how an attack pattern influences and represents itself

in terms of a network traffic. Therefore, we analyze several intrusion detection

datasets, Section 3.3. This allows us to better understand attack execution

patterns and known how to describe these patterns in terms of network traffic

features. All this has led to design a multi-perspective feature-based description

of network traffic, Section 3.4. The description is the basis for our proposed

network anomaly profile that has the capability to represent different normal

network behaviors, Section 3.5.

32

3.1. CLASSIFICATION OF NETWORK TRAFFIC 33

3.1 Classification of Network Traffic

In terms of Intrusion Detection, network traffic patterns can be classified into

three classes; normal, anomaly, and attack. Figure 3.1 represents the distinction

between the classes. Circle A represents the domain of normal traffic patterns,

while Ā, i.e., Anomaly = 1 - A, represents anomalous traffic patterns. Within Ā,

Circle B represents the class of attack traffic patterns.

Figure 3.1: Network Traffic Classes.

However, in the case of real network traffic, the distinction between the three

classes is not that crisp. If our focus is to identify normal traffic only then we need

to identify thresholds of normal network behaviors (i.e., Circle A). We construct

anomaly profile using the identified thresholds (the boundary of Circle A) and

use Anomaly ID to distinguish between normal and anomalous (not-normal)

network behaviors. In other words, Anomaly ID identifies any network traffic

that lies outside the boundaries of Circle A as an anomaly. Meanwhile, Circle B

represents attack behaviors. Signature ID identifies any network traffic that lies

outside the boundaries of Circle B as a normal traffic.

As the result, any network traffic that ‘belongs’ to the area outside the circles

A and B is suspicious. It is like that, because Anomaly ID treats this as an

3.2. ANALYSIS OF ATTACKS 34

anomalous behavior while Signature ID regards it as a normal one, at the same

time. Consequently, this particular network traffic represents either a case of a

new normal behavior or a new attack behavior. Such a situation is an example of

a sophisticated attack we call hereafter an ‘elusive’ attack. These types of attack

are executed in a such way that their traffic does not conform to any attack traffic,

and at the same time seems to be a normal, or slightly different from normal

traffic. A security administrator or an implemented IDS mistakenly considers

these intrusions as normal behaviors.

3.2 Analysis of Attacks

The research focuses on seven attacks that form our set of selected attacks

(Section 2.1.1.5.2). We have analyzed them from different perspectives and

identified that any attack involves one of the following:

1. An individual protocol;

2. Multiple protocols of the same TCP/IP layer;

3. Multiple protocols that belong to several TCP/IP layers.

This implies that features of a attack signature have to represent information

about specifics of network traffic observed from several perspectives/points

of view. In this section, we discuss the canonical attack signatures and their

respective shortcomings. Identification of these shortcomings results in updated

signatures. An update of a given attack signature proposed by us may include:

1. Different/More specific values of features of the canonical attack

signatures;

2. Additional features added to the canonical attack signature.

3.2. ANALYSIS OF ATTACKS 35

The justification of the proposed updates mainly relates to:

1. Issues related to a current topology of network and/or

2. Experience of security administrators.

Each analyzed attack is presented in the following way: firstly, we describe the

canonical signature of a given attack; secondly, we identify its limitations and

present a new, updated version of the signature.

3.2.1 ICMP Flood Attack

ICMP Flood is a DOS attack, Section 2.1.1.5.2, in which a target machine is

overwhelmed with ICMP ping request packets, Figure 3.2.

Figure 3.2: ICMP Flood Attack.

3.2. ANALYSIS OF ATTACKS 36

3.2.1.1 Canonical ICMP Flood Signature

The attack targets CPU cycles of a target machine by sending bursts of ICMP

ping request packets over a small amount of time [10]. After a while, the target

machine ’starves’ and starts dropping packets, in other words, it can not accept

any more packets. According to [10], the only identifiable attack signature feature

is Number of transmitted ICMP request packets between two distinct hosts. Also,

it states that the attack can be identified by observing 1000 packets per second

transmitted per two distinct hosts. Table 3.1 illustrates ICMP Flood canonical

signature.

Signature Feature Feature Value

Attacker 1 Machine
Targets 1 Machine
No. of ICMP request packets per two distinct hosts 1000 packets/sec

Table 3.1: Canonical ICMP Flood Signature.

3.2.1.2 Updated ICMP Flood Signature

An important question that should be asked here is related to a number of sent

packets: what if we found 750 ICMP ping request packets transmitted between

two hosts in one second? would that constitute an ICMP Flood attack? A human

administrator would be inclined to regard this traffic as an attack. However, if the

canonical signature is implemented as a part of signature IDS, such an example

of a traffic would be regarded as normal. Therefore, we propose two updates:

a. More Specific Feature Values: A security administrator can adjust the

signature to detect 250 ICMP packets as ICMP Flood attack instead of 1000

packets. This enables the administrator to have some form of early warning

indicator of attack.

b. Additional Features: The canonical definition of the attack does not

3.2. ANALYSIS OF ATTACKS 37

mention anything related to connections established between two hosts.

The question here is: does all packets in a burst belong to the same

connection, or do they belong to several connections? In order to

determine suitable values regarding a number of established connections,

we consider two issues:

• According to the specifications of Microsoft Windows operating

system, we propose to follow the traffic pattern of the Windows ping

utility to assign valid feature values; the Windows’ ping utility issues

a ping request, from one host to another, that consists of 8 ICMP

ping request packets that belong to 4 ICMP connections; thus, we

can assume that 8 ICMP ping packets issued to a certain host and 4

established ICMP connections with that host are ‘normal’ values for

ICMP-related packets and connections; important note: these packets

and connections are issued/established sequentially not concurrently.

• Also, specifications of Microsoft Windows operating system state that

older versions of Windows allow 10 concurrent connections as the

connection queue size, while newer versions allow 20 concurrent

connections.

Therefore, if the observed burst of ICMP ping request packets belong to

several connections, then the attack is consuming the connection queue

of the target machine.

Finally, we propose the new, updated ICMP Flood attack signature, Table 3.2.

Signature Features Feature Values

Attackers 1 machine
Target Machines 1 machine
No. of transmitted ICMP request packets per two distinct hosts 8 � packets � 250
No. of established ICMP connections per two distinct hosts 4 � connections � 20

Table 3.2: Updated ICMP Flood Signature.

3.2. ANALYSIS OF ATTACKS 38

3.2.2 IGMP Flood Attack

Likewise, IGMP Flood attack is a DOS attack that floods a target machine with

IGMP unicast packets [10]. The attack aims to consume the CPU cycles of

the target machine. After reviewing multiple publications, we did not find any

explicit definition of signature for this attack. Therefore, we propose this attack

signature that is similar to the one of ICMP Flood. We propose 250 IGMP unicast

packets as the value of the feature: No. of transmitted IGMP unicast packets per

two distinct hosts, Table 3.3.

Signature Features Feature Values

Attackers 1 machine
Target Machines 1 machine
No. of transmitted IGMP unicast packets per two distinct hosts � 250packets

Table 3.3: Update IGMP Flood Signature.

3.2.3 Smurf Attack

Smurf attack, Section 2.1.1.5.2, is a DOS attack in which a target machine is

flooded with burst of ICMP ping reply packets transmitted from multiple hosts

[10][13][14][18].

3.2.3.1 Canonical Smurf Signature

The canonical signature of the attack implies that an attacker sends a malformed

ICMP ping request packet to the network broadcast address; the malformed

packet is designed such that the source IP Address is the address of the target

machine. Unlike ICMP Flood, the target machine is flooded by several sources

not just one source, and the used packets are ICMP ping reply, not ping request

packets. To Summarize, the canonical attack signature can be identified as in

Table 3.4.

3.2. ANALYSIS OF ATTACKS 39

Signature Features Feature Value

Attacker m machines
Targets 1 Machine
Overall Number of transmitted ICMP reply packets undefined

Table 3.4: Canonical Smurf Signature

Where m represents the number of machines in the network.

3.2.3.2 Updated Smurf Signature

The canonical Smurf attack signature does not mention anything about the

overall number of ICMP reply packets directed towards a target machine.

Additionally, it even does not provide an average number of reply packets

exchanged between distinct hosts, from which we can deduce the overall number

of flood packets. Besides, like ICMP Flood, the Smurf canonical signature fails to

mention anything about ICMP connections and consumption of a connection

queue of the target machine (as explained in Section 3.2.1: ICMP Flood attack).

Thus, we propose the following signature updates:

a. More Specific Feature Values: It is normal to observe ICMP ping request

packets with or without corresponding reply packets; thus, it is logical and

protocol-wise legitimate to assign a value of 250 packets to ICMP Flood

updated signature. But, it is highly illogical and unorthodox to assign such

a value for an attack whose signature depends entirely on ICMP ping reply

packets. i.e., we will not legitimately observe ICMP ping reply packets

without their respective requests. To solve this situation, we abide by the

value,8 packets, given by the traffic of Windows ping utility.

b. Additional Features: Based on the provided above explanations regarding

the nature of Smurf attack, we propose to add packet-oriented and

connection-oriented features.

3.2. ANALYSIS OF ATTACKS 40

To summarize, we propose the following updated Smurf attack signature,

Table 3.5:

Signature Features Feature Values

Attackers m machines
Target Machines 1 machine
No. of transmitted ICMP reply packets per distinct hosts � 8
No. of established ICMP connections per distinct hosts � 4
Overall Number of attack packets 1 ∗m � packets � 8 ∗m
Overall Number of attack connections 1 ∗m � connections � 4 ∗m

Table 3.5: Updated Smurf Signature.

Where m is # of machines in network

3.2.4 LAND Attack

LAND attack, Section 2.1.1.5.2, is another DOS attack in which a target machine

floods itself. An attacker sends a malformed TCP SYN packet to the target

machine whose source and destination IP addresses are the target machine, and

with the same source and destination ports. The target machine responds to

the packet and does not realize that it recursively calls itself, thus flooding itself

[10][13][14][18].

3.2.4.1 Canonical LAND Signature

From the attack definition, the canonical LAND attack signature is:

Signature Features Feature Values

Attacker 1 Machine
Targets 1 Machine
Protocol TCP
Overall Number of observed attack packets undefined

Table 3.6: Canonical LAND Signature

3.2.4.2 Updated LAND Signature

Regardless of the used Transport protocol, it is IPv4-wise illegitimate to observe

packets with the same source and destination addresses within the network.

3.2. ANALYSIS OF ATTACKS 41

Therefore, it is logical to assume that any number of packets – even one packet –

that match this pattern, is LAND attack.

Like ICMP Flood and Smurf, the canonical LAND signature failed to mention any

details regarding established connections, since TCP SYN packets are used to

execute LAND attack and in the same time used to initiate connections. Thus, the

attack would exhaust the capacity of a connection queue of the target machine.

a. More Specific Feature Values: Any number of packets more than 1.

b. Additional Features: 20 or more connections.

The updated LAND attack signature is presented in Table 3.7:

Signature Features Feature Values

Attacker 1 Machine
Targets 1 Machine
Protocol TCP
Overall Number of attack packets � 1
Overall Number of attack connections � 20

Table 3.7: Update LAND attack signature.

3.2.5 IPSweep Attack

IPSweep attack, also known as Ping sweep or ICMP ECHO, is a Probe attack

that sweeps IP addresses within a certain range with ICMP ping request packets

[10][13][14][18][21], Figure 3.3. The main goal of this attack is to identify on-line

machines in a network via observing replies to ICMP ping requests.

This attack is used to gain information about a number of devices existing in

the network. Though the basic definition of the signature does not provide a

value for the number of destination addresses to be swept, it does say that the

attack targets the whole subnet to which an attacker is connected. To put this

into a context, we refer to Networking and Subnetting. There are three classes of

the IP addresses: Class A that supports up to 16 million addresses per network;

3.2. ANALYSIS OF ATTACKS 42

Class B provides 65 thousand addresses per network; and Class C has 254 unique

addresses per network.

Figure 3.3: IPSweep Attack.

3.2.5.1 Canonical IPSweep Signature

This exploration activity results in the following attack signature:

Signature Features Feature Values

Attackers 1 Machine
Target Machines (sweep range) m machines, i.e., ICMP destinations
Overall Number of transmitted ICMP packets by the attacker undefined
Number of transmitted ICMP packets per distinct hosts undefined

Table 3.8: Canonical IPSweep Signature.

Where m is dependent on the subnet class

3.2. ANALYSIS OF ATTACKS 43

3.2.5.2 Updated IPSweep Signature

The references we have investigated do not provide any quantitative information

about the attack signature. We propose two updates due to some deficiencies in

the definition of the attack signature.

a. More Specific Feature Values: The values we propose are related to two

new features added to the signature, please see below. We follow the traffic

pattern of Windows ping utility to assign valid values of the new features.

In addition, from a normal usage of ARP protocol we know that a machine

communicates with another machine using 1 to 3 packets.

b. Additional Features: We propose adding new features that provide

additional information about ICMP connections and ARP protocol.

• ICMP Connections: In the same manner as ICMP Flood, Smurf, and

LAND, the IPSweep signature fails to provide any information about

ICMP connections. Therefore, we propose features that represent

information about established connections by an attacker, and their

number per a single host.

• ARP Protocol: The canonical definition of the attack does not even

mention anything about ARP packets. In essence, an entire class of

packets is removed from the attack signature [43]. This allows us to

propose additional new signature features.

There is a relationship between ICMP and ARP protocols. For a

machine to communicate with another machine, it needs to know two

addresses: physical and logical. ARP protocol is used to map a logical

address to its corresponding physical address. The attacker’s machine,

before issuing an ICMP request, sends an ARP request to match the

3.2. ANALYSIS OF ATTACKS 44

logical address to its physical one.

In a nutshell, it seems that detecting IPSweep attack could be even

more efficient monitoring ARP protocol than just monitoring ICMP

one.

As the result, we propose updated IPSweep attack signature, Table 3.9

Signature Features Feature Values

number of attackers 1 machine
number of target machines (sweep range) m machines, i.e., ARP and ICMP destinations
overall number of transmitted ICMP packets by an attacker 1 ∗ n � packets � 8 ∗ n
number of transmitted ICMP packets per distinct host 1 � packets � 8
overall number of established ICMP connections by an attacker 1 ∗ n � packets � 4 ∗ n
number of established ICMP connections per distinct hosts 1 � packets � 4
overall number of transmitted ARP packets by an attacker 1 ∗m � packets � 3 ∗m
number of transmitted ARP packets per distinct host 1 � packets � 3

Table 3.9: Updated IPSweep Signature.

3.2.6 InsideSniffer Attack

InsideSniffer attack is a Probe attack used to provide an attacker with the

machine’s name based on its IP address. Basically, the attacker captures the

packets within the network, extracts their source and destination IP addresses,

and matches these addresses to their respective names.

To do that, the attacker has to use a name resolution protocol, e.g., DNS. The

legitimate usage of name resolution protocols is to resolve a name associated

with a given IP address. Thus, the attack execution pattern uses name resolution

protocols illegitimately.

3.2.6.1 Canonical InsideSniffer Signature

The canonical signature states that the attacker uses DNS protocol to carry out

an attack. Nothing has been mentioned about a number of resolved IP addresses.

Thus the canonical signature is to search for any DNS query that tries to match

an IP address to its name, Table 3.10.

3.2. ANALYSIS OF ATTACKS 45

Signature Features Feature Values

number of attackers 1 machine
DNS Resolution IP Address to Name

Table 3.10: Canonical InsideSniffer Signature.

3.2.6.2 Updated InsideSniffer Signature

While DNS is considered the primary name resolution protocol, there are other

secondary name resolution protocols that offer the same functionality, i.e., NBNS

and LLMNR. Thus, we propose to update attack signature by monitoring

name resolutions activities carried out by NBNS and LLMNR besides DNS. The

proposed InsideSniffer attack signature is presented in Table 3.11.

Signature Features Feature Values

number of attackers 1 machine
DNS Resolution IP Address to Name
NBNS IP Address to Name
LLMNR IP Address to Name

Table 3.11: Updated InsideSniffer Signature.

3.2.7 PortScan Attack

PortScan attack, also known as Nmap, is a Probe attack used to scan ports of

the target machine, and to see which ports are opened and closed. The literature

review related to this attack [13][14][18] states that simulations of this attack were

performed on 3 to 100 ports per machine. It seems the signature of this attack

does not need any update. The original signature is as follows:

Signature Features Feature Values

number of attackers 1 machine
number of target machines 1 machine
number of scanned ports 3 - 100

Table 3.12: Updated PortScan Signature.

3.2.8 Summary and Recommendations

3.2. ANALYSIS OF ATTACKS 46

The performed analysis of attacks has provided us with a better understanding of

their specifics. We have gained knowledge what aspects of network traffic have to

monitored and what values of these aspects are indictors of execution of a given

attack. These aspects include: source addresses, destination addresses, packets,

connections, ports, and protocols’ details, frequency of their occurrences, and

temporal analysis of this information. In addition, we have been able to identify

layers and protocols that are targeted by the attacks:

Attack Target Layer Target Protocol

ICMP Flood Internet ICMP
IGMP Flood Internet IGMP
Smurf Internet ICMP
LAND Transport TCP

IPSweep
Network Interface

Internet
ARP

ICMP

InsideSniffer Application
DNS

NBNS
LLMNR

PortScan Transport TCP

Table 3.13: Attack Target Layers and Protocols.

3.2.8.1 Attack Severity

Most of the literature discussing Intrusion Detection handles it from an atomic

perspective. The atomicity lies in the explanation of one attack instance

belonging to one cyber attack, executed by one attack source (aside from Smurf).

In real life scenarios, we can find many attacks happening concurrently in any

given time. A single attack source can execute multiple attacks either sequentially

or concurrently. Multiple attack sources can participate in an individual attack

scenario. Also, these attack sources can execute several cyber attacks (more than

1 cyber attack). Moreover, these attacks can - at the same time - target multiple

machines, or they can target the same machine(s) consecutive number of times.

To elaborate, each attack scenario can be described as a general equation.

Attack Source(s)1−m + Attack Type(s)1−n =⇒ Attack Target(s)1−o (3.1)

3.2. ANALYSIS OF ATTACKS 47

Where m is the number of attackers, n is the number of executed cyber attacks,

and o is the number of targets.

The attack equation, (Equation 3.1), involves three variables; the Attack Source,

the Cyber Attack itself, and the Attack Target(s), the equation can indicate an

atomic (one) attack instance if m, n, and o are all equal to one.

The Attack Source does not necessarily has to be one attacker, in real life

scenarios there can be multiple attackers executing attacks. In some cases, one

attacker can control multiple machines and use them to launch a coordinated

attack. Thus, multiplicity of attack sources guarantees the success of attacks.

The Cyber Attack itself does not have to be one attack instance belonging to

a specific cyber attack. Again, the concurrent execution of multiple attack

instances belonging to several cyber attacks guarantees success.

There are many things that an attacker can target, the target can be a single

machine or a set of machines in a network or even the entire network.

Therefore, all attack targets can be attacked by one or more attackers

concurrently. Cyber attacks can also be launched in the form of stages, to

coordinate planned attacks for several durations, at specific times.

To wrap up, we consider the existence of one attacker, executing one cyber attack,

against one target as one attack instance with basic severity. Severity increases

when more than one attack instance is found, i.e., when one of the variables in

the attack equation is not one (not atomic). In these situations, when the attack

severity is not basic, then we consider the executed attacks as ’elusive or evasive’

attacks.

In order to handle these complex attack situations, as we will see later in

Chapter 8, we strive to simplify the detection process of an elusive (or evasive)

attack by detecting its basic severity level and expand from there. First we start

by dissecting network traffic based on attack type. Once we extract the network

3.3. ANALYSIS OF AVAILABLE DATASETS 48

traffic of a specific cyber attack, we go deeper and investigate the attack sources,

attack targets, packets, connections and duration. This technique of tracking

attacks is logical, since intelligent attackers aim to avoid detection by launching

evasive (or elusive) cyber attacks as follows:

1. using multiple attackers.

2. target several attack targets.

Theses 2 points will result in an increasing number of packets and

connections

3. Executing sequential and/or concurrent cyber attacks.

4. Elongating or shortening the expected duration of attacks.

3.3 Analysis of Available Datasets

In this section we describe the available datasets used for development of

instruction detection system found in the literature. We analyze them in order to

better understand intrusion detection data. In general, we can identify a number

of difficulties in constructing good quality intrusion detection datasets:

1. ensuring balanced data, i.e., starve to achieve a comparable percentage of

normal and anomalous traffic data;

2. avoiding time-related errors that occur during traffic generation processes

and result in missing data;

3. labeling data records accurately;

4. preserving confidentiality of network within which the experiments are

conducted.

3.3. ANALYSIS OF AVAILABLE DATASETS 49

We provide description of three datasets: KDD, NSL-KDD, and TUIDS.

3.3.1 KDD CUP ’99

The data of KDD CUP ’99 was captured within the network of an Air Force Base.

The data records are formatted in a connection-wise format that represents the

connections initiated between two distinct network hosts. Each data record is

described by 41 attributes (i.e., features). These attributes are either continuous

or categorical in nature. Also, the attributes are categorized into 4 different

categories: basic, content, traffic, and host [10][13][14][18]:

Basic Features this category includes attributes that can be extracted directly

from TCP/IP connections, i.e., protocol header fields.

Traffic Features this category mainly includes time-wise attributes based on a 2

seconds window; its features are viewed from two perspectives: same host

and same service. Same Host Features calculate connections established

with the same host in the last 2 seconds; likewise, Same Service Features

imply the number of connections established using the same service within

the last 2 seconds. Primarily, these features are implemented to ease the

detection of Probe and DOS attacks.

Logically, it is a correct assumption; in DOS attacks, an attacker floods

the target machine with many connections that use the same service in

a small amount of time. Similarly in Probe attacks, an attacker scans the

target for information, this reconnaissance activity implies the use of many

connections belonging to different services.

Content Features this category includes attributes suggested by the domain

knowledge; knowledge like number of failed logins, administrator issued

3.3. ANALYSIS OF AVAILABLE DATASETS 50

connections, and attempt to elevate user privileges to root, etc. Thus, it

seems that attributes of this category are implemented to ease the detection

of R2L and U2R attacks.

Host Features this category includes attributes that describe the behavior of

individual source hosts, from a time-independent perspective. More Likely,

the attributes constructed in this category act as plan B for Traffic and

Content features. In other words, if an attack is not detected by its intended

constructed category (included features), this category detects anomalous

behavior of individual hosts in an attempt to match this anomaly to an

attack.

KDD CUP ’99 dataset was constructed to contain both normal and attack

network traffic. The traffic of 54 attacks was simulated with multiple tools during

the capture process; the attacks belong to 4 categories according to the taxonomy

presented in Section 2.1.1.5. Thus, the data records are labeled as normal or

attack type.

Finally, limitations and criticisms on this dataset have been presented in [43], the

criticisms include the attack taxonomy, synthesized data, evaluation, and results.

3.3.2 NSL-KDD

The Network Security Lab in University of New Brunswick produced NSL-KDD

dataset; it is a refined version of KDD CUP ’99. The authors in [15] demonstrated

the deficiencies in KDD CUP ’99 regarding; redundant records and difficulty

levels of the dataset. Also, they provided highlights about the generated data,

whether normal or attack data, and percentages of executed attacks.

Their work was based on the criticisms mentioned in [43], they claim that the

presence of redundant data is a strong reason for biasing the capabilities of

3.3. ANALYSIS OF AVAILABLE DATASETS 51

machine learning techniques. In order to produce NSL-KDD they performed

2 operations; removing redundant records, and labeling the obtained refined

dataset.

They reduced KDD train set from 4,898,431 records to 1,074,992 (78.05%

reduction) and KDD test set from 311,027 records to 77,289 (75.15% reduction),

thus selecting distinct records only. To label the obtained refined data correctly,

they randomly selected 3 subset, each containing 50,000 records; afterwards,

they used 7 machine learning techniques (J48 decision tree, Naı̈ve Bayes, NBTree,

Random Forest, Multi-layer perceptron, Support Vector Machine, and Random

Tree) upon these datasets. As a result, they obtained 21 learned machines with

21 predictions for each data record.

3.3.3 TUIDS

One of the first research studies that aimed to propose new features other than

using the internationally accepted features of KDD benchmark is TUIDS dataset

[10][17]. The research conducted at Tezpur University in India produced 2

versions of TUIDS dataset; Packet Level and Flow Level TUIDS.

An isolated testbed network was set up, 16 attacks were launched using 1

commercial tool (Nmap) and a lot of user-developed tools (c-programmed). Also,

normal traffic was generated. The resultant network traffic was captured and

preprocessed to produce:

1. 50 feature-based packet level TUIDS dataset

2. 24 feature-based flow level TUIDS dataset, it was collected by extracting

unidirectional sequence of packets that pass through a selected observation

network node during a given time duration.

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 52

Also, we can conclude from TUIDS that its features belong to 4 categories; 1)

Basic 2) content-based 3) Time-based, and 4) Connection-based.

3.3.4 Summary and Recommendations

From the discussion of datasets we understood how network traffic can be

represented in the form of features. Also, we learned how normal and attack

traffic can be represented using the same features. We determined that the same

feature can be used to represent normal or attack traffic via different values. Aside

from feature values, some features uniquely identify normal traffic, and others

distinctively describe attack traffic.

Moreover, we grasped that features represent multiple traffic granularities like

traffic protocol, packets, connections, etc. Furthermore, we gained knowledge

about the data type of features; continuous and categorical. Besides, we learned

that researchers classify features into categories based on their calculation

process; basic, content-wise, time-wise, and connection-wise.

3.4 Multi-Perspective Description of Network Traffic

The thorough analysis of attacks (Section 3.2) as well as the available

datasets (Section 3.3) has led us to re-visiting a way how network traffic is

represented. This resulted in a new multi-perspective description of network

traffic. Complexity of traffic, involvement of multiple protocols, hosts and

temporal aspects of all these activities should be considered in order to properly

grasp and understand behavioural patterns of normal activities of users, and

activities of attackers who try to penetrate a network and stay undetected.

Data packets can be considered the basic unit of network traffic: ”All packets

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 53

that flow in the network are sent from several sources and are received by multiple

destinations”. This statement alone is an indication that a network traffic should

be ‘seen’ as least from three network traffic perspectives: the packet perspective,

the scope perspective, and the address perspective.

We learned from the analysis of attacks and intrusion detection datasets that

time is an important factor influencing a network analysis process. Thus, our

fourth perspective is the temporal perspective.

If we move our point of interest upwards from packets, we look at groups of

packets sent from sources to destinations that constitute connections between

hosts. So, the fifth perspective is the connection perspective. On the other hand,

shifting our attention towards the content of packets, each packet encapsulates

several protocol headers, consequently, each protocol belongs to a certain

TCP/IP layer. Therefore, the sixth perspective is the protocol perspective, and

the seventh perspective is the layer perspective.

This perspective-related view allows us to represent normal and anomalous

network traffic patterns in a more comprehensive way. The proposed description

has two novel points:

• all perspectives are tightly interrelated;

• features we use for description of network traffic belong to multiple

perspectives simultaneously.

In general, the perspectives can be categorized into three main perspectives:

layer, protocol, and scope; and four auxiliary perspectives: packet, address,

connection, and temporal. It is difficult to demonstrate the relationships

between perspectives because of their multi-level and multi-directional

interrelations. Thus, we use Figure 3.4 to demonstrate the relations between

main and auxiliary perspectives.

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 54

Figure 3.4: Illustration of Multi-Perspective Description of Network Traffic.

3.4.1 Packet Perspective

Packet perspective includes features that represent counts of different types of

packets. In the context of the main perspectives we can distinguish the following

categories of packet feature:

Protocol Perspective: features representing packet counts of a specific protocol,

e.g., TCP packets;

Scope Perspective: features representing packet counts at network-level and

host-level; network-level packet counts relate to overall number of packets

transmitted through the whole network, e.g., network IGMP packets; while

host-level packet counts include a number of packets sent or received by a

specific host, e.g., UDP packets of address 192.168.20.221.

In addition, more specific number-related features focus on packet counts of a

specific type (i.e., requests or replies); of a specific protocol, or scope, e.g., ICMP

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 55

query request packets of address 192.168.10.1.

Finally, all of these features can be determined over a certain time unit,

i.e., seconds, minutes, hours, days, or a user-defined duration, and produce

packet rates per time unit, e.g., ARP packets per seconds.

3.4.2 Address Perspective

The address perspective includes features that stand for numbers of source or

destination addresses. Address counts are useful to investigate a number of

sources or destinations within a specific network traffic pattern. The relation to

the main perspectives results in:

Protocol Perspective: features with distinct source and destination address

counts for a specific protocol, e.g., TCP source addresses;

Scope Perspective features with network-level distinct source and destination

address counts, e.g., UDP destination addresses; and features with host-level

address counts that signify:

• a number of destinations contacted by a specific source address,

e.g., ARP destination addresses that 192.168.1.22 contacted;

• a number of sources communicating with a certain destination

address, e.g., ICMP source addresses communicated with 192.168.1.10.

Like in the case of packet perspective, any of these features can be calculated over

certain time units.

3.4.3 Scope Perspective

Network traffic can be observed at a network level that includes traffic among all

machines/hosts connected to a given network, or at a host level that includes

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 56

traffic directed to and from an individual host. We grasp this concept in our

proposed network traffic representation as the scope perspective. We propose

network-level features, e.g., network IGMP packets, and host-level features,

e.g., UDP packets of address 192.168.20.22. The importance of this perspective

comes from the fact that anomalies existing within the network on a global view

are caused by traffic related to one or more hosts (local view).

3.4.4 Temporal Perspective

Analysis of network traffic takes into account a temporal aspect of occurring

events. Therefore, the proposed description includes temporal versions of

features. Temporal perspective features can be classified into:

• time-dependent features;

• time-independent features.

Time-dependent features are designed and implemented based on a selected

time unit, e.g., they represent values of features per second, minute, hour, day,

or user-specified duration. Thus, it is possible to associate any feature with time

to obtain rates per time unit, or to obtain valuess within a certain time interval,

e.g., ICMP packets per minute = 3.6.

Time-independent features are those features that do not relate to a specific

time unit.

3.4.5 Connection Perspective

Network hosts exchange several packets that are related to different protocols. In

this context, groups of packets are associated with connections: a connection is a

set of packets exchanged in a specific order to fulfill a specific task. The order and

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 57

content of the packets are fully governed by a given communicating protocol.

The concept of connection is found in three specific places within the

TCP/IP suite. We recognize ICMP connections, TCP connections, and

applications-oriented UPD connections – the type we proposed and explained

in Section 5.3. Processes of monitoring and analysis of a network traffic from

the point of view of connections lead to determining a very important aspect of

connection status.

The features that belong to the connection perspective are:

Protocol Perspective numbers of ICMP, TCP, and UDP connections;

Scope Perspective number of connections over the entire network, also number

of connections associated with a local host:

• connections established by a certain source host, e.g., TCP connections

of 192.168.10.10

• connections established to a certain destination host, e.g., ICMP

connection to 192.168.10.10

In addition, several features representing connection counts with respect to

specific connection statuses can be calculated. Similar to the packet and address

perspectives, any of these features can be also calculated for specific time units.

3.4.6 Protocol Perspective

Different layers of specific protocol stacks contain variety of protocols. Therefore,

we propose a number of features describing network traffic from the protocol

perspective. For the TCP/IP suit of protocols, we represent a network traffic in

for form of:

1. ARP features, e.g., ARP request packets per second

3.4. MULTI-PERSPECTIVE DESCRIPTION OF NETWORK TRAFFIC 58

2. ICMP features, e.g., ICMP Error packets

3. IGMP features, e.g., IGMP Multicast packets

4. TCP features, e.g., TCP connections

5. UDP features, e.g., UDP Packets

6. DNS features, e.g., DNS Unicast destination addresses

7. NBNS features, e.g., NBNS Multicast Packets

8. LLMNR features, e.g., LLMNR request packets of 192.168.10.10

This classification contains just a few most popular protocols. By all means, it is

not a full list of protocols that a system administrator/security specialist could be

interested in. This list is a set of protocols used for our case study presented in

this thesis.

3.4.7 Layer Perspective

Data packets hold in their payload protocol headers. Each header

represents a specific protocol that is specific to a certain TCP/IP layer.

Layer-related features can represent information about layer’s characteristics

that is protocol-dependent, or represent the protocol-independent layer’s

characteristics. From the layer perspective, features representing a network

traffic can be as follow:

1. Network Interface layer features:

a. Protocol-specific features, e.g., ARP response packets per minute

b. Layer-specific features

3.5. NETWORK ANOMALY PROFILE 59

2. Internet layer features:

a. Protocol-specific features, e.g., ICMP query packets

b. Layer-specific features, e.g., LAND Indicator

3. Transport layer features:

a. Protocol-specific features, e.g., TCP Services

b. Layer-specific features, e.g., Transport Connections Count

4. Application layer features:

a. Protocol-specific features, e.g., DNS request packets

Each group of features contains protocol-specific features and layer-specific

features. Protocol-specific features are associated with protocols of TCP/IP

architecture. Layer-specific features can be joint or disjoint. Joint layer-specific

features describe aspects of a layer derived based on several protocols of the

layer, while disjoint layer-specific features describe the layer’s aspects that are

protocol independent. A list of proposed features can be found Appendix C.

3.5 Network Anomaly Profile

The proposed multi-perspective description of network traffic can be treated as

a comprehensive representation of traffic. It could be used to represent normal

as well as anomalous network status, network conditions under attacks, or be

applied for constructing detailed descriptions of attacks – attack signatures. In

this subsection, we illustrate application of the proposed description to express

a network anomaly profile.

3.5. NETWORK ANOMALY PROFILE 60

The proposed network anomaly profile contains 189 features. Those features

represent four layers of TCP/IP architecture and eight different protocols. As

explained in the previous section, features represent layer-based characteristics,

protocol-based traits, and views for a specific scope. Additionally, there are

features from the four auxiliary perspectives: connection, packet, temporal, and

address.

For example, a feature called ’ARP Packets Per Second’ is a number of transmitted

ARP packets through the network per second. This feature is considered a

layer-based feature that describes the network access layer. At the same time,

it is a protocol-based feature that outlines a trait of ARP protocol. Scope-wise,

it defines network behavior related to ARP packets. Finally, it is considered

time-based feature whose value is measured with respect to specific time unit

– seconds.

A profile is created by processing the data collected during a number of

normal sessions (our implemented tool allows a user to select number of sessions

from 2 to 10). In the example shown below, we created a network anomaly

profile using ten normal sessions. Table 3.14 and Table 3.15 represent profile

features related to ARP and ICMP protocols respectively. The feature values

are determined based on simple processing of network traffic observed during

the specified (ten in our case) sessions. The calculated values are treated as

thresholds, i.e., if a value of a given feature is below a threshold - it is recognized

as normal traffic, otherwise it is considered an anomaly.

As we can see in Table 3.14, there are many types of threshold values, integers,

floats, and ranges. Feature ID 1 is ’ARP packet count ’ and it represents the range

of number of ARP packets. To calculate this range, we determine the number of

ARP packets for each session, and then take the maximum and minimum values.

The four perspectives of this particular feature are: layer, protocol, scope, and

3.5. NETWORK ANOMALY PROFILE 61

packet.

ID
Layer: Network Interface
Protocol: ARP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [350,2406]
2 Packets Per Second 0.4
3 Packets Per Minute 24.2
4 Packets Per Hour 1451.3
5 Request Packets [235,1328]
6 Requests Per Second 0.2
7 Requests Per Minute 12.1
8 Requests Per Hour 723.9
9 Response Packets [115,1135]

10 Responses Per Second 0.2
11 Responses Per Minute 12.1
12 Responses Per Hour 726.8
13

Address

Source Addresses 7
14 Destination Addresses 8
15 Request Source Addresses 5
16 Request Destination Addresses 8
17 Response Source Addresses 6
18 Response Destination Addresses 4
19

Host

Address Destinations Per Source [1,6]
20 Packet Requests Per Destinations [1,365]
21 Packet Overall Requests Per Source [1,892]
22 Packet Responses Per Sources [1,353]
23 Packet Overall Responses Per Destination [4,582]

Table 3.14: Network Anomaly Profile: ARP Protocol Sample Features

Feature ID 3 is ’ARP packets per minute’, we calculate ARP packets per minute

rate for each session. Then we average the obtained rates over the number of

sessions. This feature relates to five perspectives; layer, protocol, scope, packet

and temporal. Feature ID 13 is ’Source Addresses’, it represents a distinct number

of source addresses within ARP packets of the chosen sessions. This feature

also represents four perspectives; layer, protocol, scope, and address, it does

not represent temporal perspective because it is a time-independent feature.

Similarly, feature ID 19 is ’Destinations per Source’, we calculate a number of

destinations contacted by a source IP address using ARP packets across all

sessions. Afterwards, we inferred the minimum and maximum values. The

feature is associated with four perspectives; layer, protocol, scope, and address.

Likewise, Table 3.15 below represents network anomaly profile features for ICMP

protocol, and we will notice that the table includes some features that relate to

3.5. NETWORK ANOMALY PROFILE 62

the connection perspective.

For some of the protocols mentioned in Section 3.4.6 (most commonly used

protocols), we designed and implemented their corresponding features within

our network profile. All of the points represented in this chapter represent our

initial research steps, later in our work we used these vital points and expanded

them to complete out thesis context.

ID
Layer: Internet
Protocol: ICMP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [0,425]
2 Packets Per Second 0
3 Packets Per Minute 3.2
4 Packets Per Hour 189.6
5 Error Packets [0,417]
6 Error Per Second 0
7 Error Per Minute 3.1
8 Error Per Hour 188
9 Query Packets [0,8]

10 Query Packets Per Second 0
11 Query Packets Per Minute 0
12 Query Packets Per Hour 1.6
13 Query Request Packets [0,4]
14 Query Request Packets Per Second 0
15 Query Request Packets Per Minute 0
16 Query Request Packets Per Hour 0.8
17 Query Response Packets [0,4]
18 Query Response Packets Per Second 0
19 Query Response Packets Per Minute 0
20 Query Response Packets Per Hour 0.8
21

Address

Source Addresses 2
22 Destination Addresses 2
23 Request Source Addresses 1
24 Request Destination Addresses 1
25 Response Source Addresses 1
26 Response Destination Addresses 1
27 Packet Maximum Packet Size 84
28 Connection Connection Count [0,2]
29 Connection

Temporal

Connections Per Second 0
30 Connections Per Minute 0
31 Connections Per Hour 0.2
32

Host

Address Destinations Per Source [0,1]
33

Packet

Requests Per Destinations [0,4]
34 Overall Requests Per Source [0,4]
35 Responses Per Sources [0,4]
36 Overall Responses Per Destination [0,4]
37

Connection
Connections Per Destination [0,2]

38 Overall Connections Per Source [0,2]

Table 3.15: Network Anomaly Profile: ICMP Protocol Sample Features

3.6. UPDATED NETWORK-TAILORED ATTACK SIGNATURES 63

3.6 Updated Network-Tailored Attack Signatures

Now that we understand how to update attack signatures, Section 3.2, and now

we have the maximum boundary of normal network behavior, Section 3.5, we

thought to integrate both of these findings to produce Updated Network-Tailored

Attack Signatures. Updated network-tailored attack signatures are those that

fit a specific network, in which features are guided by the maximum normal

thresholds. In this section, we are going to match attack signature features to

their corresponding network anomaly profile features. The matching provides us

with more secure signatures.

3.6.1 Updated Network-Tailored ICMP Flood Signature

A quick matching between ICMP Flood signature features (Section 3.2.1 and

network anomaly profile: ICMP protocol features (Section A.1.2) indicate that

feature number 3 in the signature corresponds to feature number 33 in ICMP

protocol features, also feature 4 in the signature corresponds to feature 37 in the

profile. Since these features have the same meaning we assigned their related

values to produce the signature in Table 3.16

ID Signature Features Feature Values

1 Attackers 1 machine
2 Target Machines 1 machine
3 No. of transmitted ICMP request packets per distinct hosts 4
4 No. of established ICMP connections per distinct hosts 2

Table 3.16: Updated Network-Tailored ICMP Flood Signature.

3.6.2 Updated Network-Tailored IGMP Flood Signature

In the same manner, from our network anomaly profile: IGMP protocol features

(Section A.1.3), we find that the normal behavior of the network does not contain

any unicast communication with IGMP protocol, Table 3.17.

3.6. UPDATED NETWORK-TAILORED ATTACK SIGNATURES 64

ID Signature Features Feature Values

1 Attackers 1 machine
2 Target Machines 1 machine
3 Number of transmitted IGMP unicast packets per distinct host 0

Table 3.17: Updated Network-Tailored IGMP Flood Signature.

3.6.3 Updated Network-Tailored Smurf Signature

Again, we can match Smurf attack features to our network anomaly profile: ICMP

protocol features (Section A.1.2), to produce updated network-tailored Smurf

attack signature, Table 3.18. Also, if we incorporate the network topology within

the signature, we have 8 machines in our network, thus the variable m renders

tobe 8 machines.

ID Signature Features Feature Values

1 Attackers m machines
2 Target Machines 1 machine
3 No. of transmitted ICMP reply packets per distinct hosts 1 � 4
4 No. of established ICMP connections per distinct hosts 1 � 2
5 Overall Number of attack packets 8 (1 ∗ 8) � packets � 32 (4 ∗ 8)
6 Overall Number of attack connections 8 (1 ∗ 8) � connections � 16 (2 ∗ 8)

Table 3.18: Updated Network-Tailored Smurf Signature.

Where ’8’ is the number of machines in the network.

From the table, it is obvious that signature features are now more concrete and

secure.

3.6.4 Updated Network-Tailored LAND Signature

We can match LAND attack signature feature to features 1 our network anomaly

profile: Network Interface Layer features (Section A.1.4), to produce updated

network-tailored LAND attack signature, Table 3.19.

Another addition to the signature is to free the signature from using ONLY TCP

protocol. Since we updated the signature with connection features beside packet

3.6. UPDATED NETWORK-TAILORED ATTACK SIGNATURES 65

features, then the attack can be executed by the attacker and detected by the

implemented IDS using any type of connection.

ID Signature Features Feature Values

1 Target Machines 1 machine
2 Overall Number of attack packets Any
3 Protocol TCP, UDP, or ICMP
4 Overall Number of attack connections � 0

Table 3.19: Updated Network-Tailored LAND Signature.

3.6.5 Updated Network-Tailored IPSweep Signature

We can match IPSweep attack signature feature to features from our network

anomaly profile: ARP and ICMP Protocol features (sections A.1.1 and A.1.2

respectively), to produce updated network-tailored IPSweep attack signature,

Table 3.20. The table illustrates the updated network-tailored IPSweep signature,

taking into consideration the network topology of 8 machines.

ID Signature Features Feature Values

1 Attackers 1 machine
2 Target Machines (sweep range) 7 (6+1) machines
3 Overall Number of transmitted ICMP packets by the attacker > 4
4 Number of transmitted ICMP packets per distinct hosts > 4
5 Overall Number of transmitted ARP packets by the attacker 1 � packets � 18 (3 ∗ 6)
6 Number of transmitted ARP packets per distinct hosts 1 � packets � 3
7 Overall Number of established ICMP connections by the attacker 2 (2 ∗ 1) � packets � 14 (2 ∗ 7)
8 Number of established ICMP connections per distinct hosts 2 (2 ∗ 1) � packets � 14 (2 ∗ 7)

Table 3.20: Updated Network-Tailored IPSweep Signature.

The main thing to notice here is the number of destination that constitute the

sweep range. According to our network anomaly profile, the maximum number

of ARP destinations is 6 and the maximum number of ICMP destinations is 1,

and this is the main feature that should be tracked and detected. Because an

attacker can use several (ARP and/or ICMP) packets to scan machines but still,

the governing feature is the number of scanned destinations, not the number of

packets and connections as in DOS attacks.

3.6. UPDATED NETWORK-TAILORED ATTACK SIGNATURES 66

3.6.6 Updated Network-Tailored InsideSniffer Attack

Concerning network topology, no further updates can be provided for this attack

other than what is explained in Section 3.2.6

3.6.7 Updated Network-Tailored PortScan Attack

PortScan attacks deals with one machine communicating with another machine

using multiple ports. As explained in sections 3.2.7 and 2.1.1.5.2 the attacker

tries to scan open and closed ports of target machine via communication. The

optimum number of port which can be considered normal can be seen in our

network anomaly profile: TCP and UDP protocol features. Any communication

between 2 hosts that encounters more services than 7 (5 for TCP and 2 for

UDP) is considered suspicious. Thus, we proposed to use this number in

network-tailored PortScan signature.

ID Signature Features Feature Values

1 Attackers 1 machine
2 Target Machines 1 machine
3 Scanned Ports 7

Table 3.21: Updated Network-Tailored PortScan Signature.

Chapter 4

Proposed System

In this chapter, we introduce and briefly describe the proposed Two-stage

Hybrid Intrusion Detection System. The main goal of the system is to detect

intrusions whether they are anomalies or attacks. We use both intrusion

detection methodologies and implement them as two modules: Anomaly ID, and

Signature ID.

In a nutshell, our system detects anomalies within a network traffic at first.

Then, it performs further analysis of the traffic to check if the detected anomaly

conforms to a known attack.

Here, we provide an overview of the system and its components, Section 4.1, and

clarify some architectural aspects of its features, Section 4.2.

4.1 System Overview

The description of the proposed system starts with a clarification and

demonstration of the system’s control sequence and data flow. Figure 4.1

illustrates the overall view of our system. As it can be seen, the system consists of

three modules:

1. Network Traffic Collecting and Processing Module, Section 4.1.2;

67

4.1. SYSTEM OVERVIEW 68

2. Anomaly Intrusion Detection Module, Section 4.1.2;

3. Signature Intrusion Detection Module, Section 4.1.3.

Figure 4.1: Overall System Overview.

Let us describe functionality and present some details of each of the modules.

4.1.1 Network Traffic Collecting and Processing Module

(NetDataCoP)

This module captures and processes a network traffic. It uses multiple

procedures and algorithms to extract and generate features from the collected

data. The resulting features describe a current state of network. They are

features of our proposed multi-perspective network traffic description. They are

calculated on a temporal basis and illustrate a traffic over a specified period of

4.1. SYSTEM OVERVIEW 69

time, could it be a minute, two minutes or ten minutes whatever the system is

configured to do. In our work, the feateures are calculated over a period of one

minute. Therefore, we often refer to this features as minute-wise features.

A description of full functionality of this module is provided in Chapter 5. Here,

we include a very brief overview of the module’s functionality and demonstrate

an interaction between its parts.

NetDataCoP consists of four sub-modules:

1. Traffic Capture sub-module (explained in Section 5.1) captures network

traffic from the IDS network card in the form of stream of raw data; the data

is passed to the Packet Decipher sub-module for processing;

2. Packet Decipher sub-module (explained in Section 5.2) accepts the

incoming byte streams and interprets them; ‘builds’ packets out of them, as

well as extracts related protocol headers and fields; the interpreted packets

are passed to the Connection Reconstruction sub-module;

3. Connection Identification and Reconstruction sub-module (explained in

Section 5.3) identifies and reconstructs ICMP and TCP connections; it

also investigates UPD connections, i.e., finds and analyzes UDP logical

connections based on the captured packets; the interpreted packets and

reconstructed connections are forwarded to the Time-wise Processing

sub-module;

4. Network Traffic Time-wise Processing sub-module (explained in

Section 5.4) generates temporal-based features representing a condition

of captured traffic over a specified period of time; once these features

are calculated, they are passed to the next stage of our system: Anomaly

Intrusion Detection Module.

4.1. SYSTEM OVERVIEW 70

4.1.2 Anomaly Intrusion Detection Module

The calculated features describing the network traffic are received by the

Anomaly ID engine to ascertain whether the current state of network is normal

or anomalous. As we have mentioned earlier, the features are calculated over a

period of one minute, and they are called minute-wise features. If the traffic is

classified as normal, no further processing occurs – the NetDataCoP continues

collecting network data. If the traffic is classified as anomalous, the Signature

Intrusion Detection Module is activated. Anomaly Intrusion Detection Module

contains two main sub-modules:

1. Global Network-level ML-based Anomaly Detection, Section 7.1.

2. Local Host-level Threshold-based Anomaly Detection, Section 7.2.

The current state of network is investigated globally at a network level, i.e., a full

network traffic data is used. The generated traffic features constitutes an input

to multiple classifiers. Each classifier predicts a current state of the network,

and all predictions are aggregated using elements of Evidence Theory. If the

predicted state of the network is anomalous (not normal) the Local Host-level

Threshold-based Anomaly Detection sub-module is initiated.

Local Host-level Threshold-based Anomaly Detection infers host-centric traffic

features from the anomalous traffic data. The traffic associated with each host in

the network is compared against the previously determined host-based feature

thresholds. These thresholds represent maximum values of features representing

a normal traffic/behaviour of individual hosts. This step is intended to gather

information about the detected anomaly including:

1. hosts related with the detected anomaly;

2. a TCP/IP layer where the anomaly occurred;

4.1. SYSTEM OVERVIEW 71

3. a protocol associated the anomaly.

The collected information about the anomaly helps in its further analysis

whether it is an actual attack or just an anomaly. If the detected anomaly is

classified by the Signature ID engine as an attack, the collected information helps

identifying details of the attack and the attacker. If the detected anomaly is not

an attack, then the collected information helps security administrators in better

understanding details of the anomaly.

4.1.3 Signature Intrusion Detection Module

The minute-wise features representing the current traffic are passed to this

module when Anomaly ID classifies the current state of the network as

anomalous. Signature ID investigates whether the anomalous data contains

information about one or more attacks. If attacks exist then the detected attacks

are reported to security administrators. If no attack exists then the current traffic

is deemed as anomaly. After reporting, the Signature ID awaits for the next

anomalous data to investigate. This module includes two main sub-modules:

1. Global Network-level ML-based Signature Detection, Section 8.1.

2. Signature Detection/Recognition Modules, Section 8.2.

The detection of attacks within the anomalous data takes place as a two step

process. Firstly, global evidences are investigated to signify the existence of one

or more attacks. This step is performed by subjecting the traffic to classifiers

representing pre-defined attack models.

Once global traces of attacks are detected, the data is passed to Signature

Detection/Recognition Module for recognizing signatures of attacks. This module

processes the traffic collected over a period of time, i.e., minute-wise features in

4.2. ARCHITECTURAL ASPECTS 72

our case. It analyzes the data from the packet and connection perspectives. It

searches for the attack signature within the traffic and gathers an attack-related

information.

4.2 Architectural Aspects

It is clear by now that the basic idea behind distinguishing a normal traffic

from an anomalous traffic, and an anomalous traffic from an attack traffic is

related to the generated network traffic features. Within our proposed system,

network traffic features constitute basic units of knowledge. We can expand

and generalize these units into normal or anomalous views, or attack signatures.

This knowledge is organized in a hierarchical way. Let us have a closer look

at this hierarchy from top to bottom. We describe knowledge of anomalies in

Section 4.2.1, while of signatures in Section 4.2.2.

4.2.1 Anomaly ID

We distinguish between normal and anomalous traffic using features from a

scope-centric perspective, i.e.: Global Network-level and Local Host-level. These

scopes are represented as two large containers in Figure 4.2.

Figure 4.2: Architectural Aspects: Anomaly Detection.

4.2. ARCHITECTURAL ASPECTS 73

Global Network-level knowledge contains features that belong to multiple

perspectives from our proposed multi-perspective network traffic description.

Each perspective is represented as a ‘vertical’ rectangular container that contains

a number of individual features seen in the figure as small boxes. In the presented

work, the temporal perspective of network traffic is a single minute-wise

representation. For that reason, there is only one feature box in the temporal

perspective container with the label minute. Also, the scope perspective contains

only one feature, i.e., Network-level.

Local Host-level knowledge is similar to the Network-level in having features

and perspectives. Also, the scope perspective contains only one feature, i.e.,

Host-level.

The collection of features that belong to several perspectives represent our overall

knowledge about anomalies.

4.2.2 Signature ID

For signature detection, the system is able to identify several attacks. As in

the case of anomaly detection, it is done using two groups of features from

a scope-centric perspective, i.e.: Global Network-level and Local Host-level.

However this time, we substitute the perspective contexts in each group with

attack contexts that include distinctive features related to each individual attack,

Figure 4.3. Each attack context is represented in the figure as a large container,

while individual features are shown as small boxes within the containers. The

labels of the those boxes are different for each attack context, since each attack

is represented/described by its own features.

4.2. ARCHITECTURAL ASPECTS 74

Figure 4.3: Architectural Aspects: Signature Detection.

In Global Network-level, like in Anomaly ID, attacks are detected using in

a minute-wise representation of network traffic data. This means, the Global

Network-level performs its task of distinguishing attacks using attack signatures

represented from a single temporal and a single scope perspectives. In Attack

Detection/Recognition Modules, the traffic data associated with a host that

has been identified as anomalous in Anomaly Intrusion Detection module is

extracted from a network traffic data. An attack signature is detected in the

data from the perspective of packets and connections. In other words, the

system analyzes the packets and connections of the anomalous host and tries

to match its traffic patterns to attack signatures. Therefore, we can say that this

investigation scheme implicitly includes three perspectives: scope, packet, and

connection, alongside the attack contexts.

Chapter 5

Network Data Collecting and Processing

(NetDataCoP)

A good understanding of attacks (sections 3.2 and 3.6) and network traffic

description (Section 3.4) allows us to focus on design and development a system

for capturing traffic data and generating features that constitute the proposed

multi-perspective description of network traffic.

Our intention was to use ready-to-use, free, commercial network capture tools

such as Wireshark [44] and Snort [45]. We used them and tried to capture and

process network data. However, the performance and obtained datasets were not

suitable for our research. Both Wireshark and Snort were able to capture network

packets and decapsulate protocol headers, but the tools DID NOT:

• analyze protocols that we require for our intrusion detection methods;

• provide all protocol fields within headers of protocols they analyzed;

• identify and reconstruct connections from decapsulated packets;

• perform any temporal processing of captured data.

As the result, we have designed and implemented our own packet capture

75

5.1. TRAFFIC CAPTURE MODULE 76

and processing software called the Network Data Collecting and Processing

NetDataCoP system. It consists of four main modules:

• Traffic Capture Module, next section.

• Packet Decipher Module, Section 5.2

• Connection Identification and Reconstruction Module, Section 5.3

• Network Traffic Temporal Processing Module, Section 5.4

5.1 Traffic Capture Module

The capture module consists of a driver and the related C# wrapper. The

WinPcap driver [46] is used in the implemented IDS to expand the capabilities of

operating system, i.e., to access TCP/IP network layer data within the captured

raw byte stream traffic. The driver allowed the implemented IDS to access

byte stream traffic of Internet, Transport, and Application layers. We linked the

driver to our software for processing raw byte stream traffic. Each captured

byte stream is received by IDS as a communication socket. Having many

streams captured asynchronously by IDS, we process communication sockets

using multi-threading technology. Each asynchronous communication socket

is passed to a separate thread for processing. The processing is done via

byte-wise comparison of captured byte stream against the specifications of

protocol headers (details in the next section).

We also needed an access to Network Interface layer. For this purpose, we

installed and utilized the Pcap.Net [47] wrapper. It is a .Net C++ and C# wrapper

that allowed us to access Network Interface layer byte stream, i.e., Ethernet

Frame header. This enabled us to interpret all fields of all protocol headers

5.2. PACKET DECIPHER MODULE 77

within TCP/IP protocol suite. In our work we are focus on the protocols

mentioned earlier, Section 3.4. This set of protocols include the ones that are

involved in execution of the selected set of attacks (Section 3.2). We study these

protocols to design and implement our proposed hybrid intrusion detection

system (Chapter 4).

5.2 Packet Decipher Module

Our research targets ARP and IPv4 packets only, thus we study Ethernet II frame

(also known as Ethernet Version 2). It is the most commonly used type of

Ethernet frames in today’s networks, and it is utilized by TCP/IP suite [3][1].

5.2.1 Ethernet II Frame (Ethernet Version 2)

An Ethernet II frame is used to transport data packets across Ethernet networks

within its payload, refer to Section D.1 for more information regarding its

structure. Table 5.1 illustrates sample Ethernet II data that we captured during

our experiments and interpreted with the developed software NetDataCoP.

EthernetID Timestamp Source MAC Address Destination MAC Address EtherType

2118640 22:27:23.380 84:7B:EB:17:CC:05 10:5F:06:F1:22:48 IpV4
2118641 22:27:23.443 84:7B:EB:17:CC:05 10:5F:06:F1:22:48 IpV4
2118642 22:27:23.487 B8:70:F4:AD:C9:3F 10:5F:06:F1:22:48 IpV4
2118643 22:27:23.613 B8:70:F4:AD:C9:3F 10:5F:06:F1:22:48 IpV4
2118644 22:27:23.773 10:5F:06:F1:22:48 84:7B:EB:17:CC:05 IpV4
2118645 22:27:23.830 10:5F:06:F1:22:48 84:7B:EB:17:CC:05 IpV4

Table 5.1: Ethernet II Header Sample Data (NetDataCoP).

5.2.2 Address Resolution Protocol (ARP)

Whenever a machine needs to send an Ethernet frame to a certain destination, it

needs to know its physical address. If it is known, then the sender encapsulates

5.2. PACKET DECIPHER MODULE 78

an IP datagram within the Ethernet payload along with the physical addresses of

the source and destination. Conversely, if the physical address of the destination

is not known, the sender machine uses ARP to map the logical address of the

destination to its respective physical address [1][48][49][50][51]. For more details

about ARP, refer to Section D.2. Table 5.2 illustrates sample ARP data that we

captured and interpreted.

PacketID Operation
Sender

Hardware
Address

Sender
Protocol
Address

Target
Hardware
Address

Target
Protocol
Address

2118382 Request B8:70:F4:AD:C9:3F 192.168.1.68 10:5F:6:F1:22:48 192.168.1.254
2118383 Request B8:70:F4:AD:C9:3F 192.168.1.68 10:5F:6:F1:22:48 192.168.1.254
2118384 Reply 10:5F:6:F1:22:48 192.168.1.254 B8:70:F4:AD:C9:3F 192.168.1.68
2118385 Reply 10:5F:6:F1:22:48 192.168.1.254 B8:70:F4:AD:C9:3F 192.168.1.68

Table 5.2: ARP Packet Sample Data (NetDataCoP).

It is evidential from Table 5.2, concerning the MAC and protocol addresses,

that these packets form an ARP request-reply pattern.

Using these ARP fields as basis for feature design, now we can design and

implement ARP-related features. For example, feature 13 ”Source Addresses” from

the proposed multi-perspective network traffic description (Table C.1) and the

proposed network anomaly profile (Table A.1), is the number of distinct ARP

source addresses. So, we calculate a value for this feature by tracking the ’Sender

Protocol Address’ field within a group of ARP packets.

5.2.3 Internet Protocol version 4 (IPv4)

The Internet Protocol version 4 (IPv4) (Figure D.4) [1][52][53][54] is an unreliable

connectionless datagram protocol utilized by TCP/IP to deliver packets to their

intended destinations. IPv4 does not support any flow control or error control.

Thus, datagrams exchanged between two distinct hosts can reach their intended

destinations out of order, or they might contain some errors, or they might

5.2. PACKET DECIPHER MODULE 79

even be lost along the way. For more details about IPv4, refer to Section D.3.

Table 5.3 illustrates sample IPv4 data that we captured and interpreted during

our experiments.

PacketID Ver HLEN Service
Total

length Identification Flags
Fragmentation

Offset TTL Protocol
Source IP
Address

Destination IP
address

1501669 4 20 0 137 9883 N 0 119 17 65.55.158.118 192.168.1.68
1501670 4 20 0 137 9883 N 0 119 17 65.55.158.118 192.168.1.68
1501671 4 20 0 129 16640 N 0 4 17 192.168.1.65 239.255.255.250
1501672 4 20 0 129 16640 N 0 4 17 192.168.1.65 239.255.255.250
1501673 4 20 0 259 24352 N 0 128 17 192.168.1.71 192.168.1.65

Table 5.3: IPv4 Packet Sample Data (NetDataCoP).

Again like ARP, IPv4 fields can be used as basis for feature design and

implementation. Referring back to Section 3.2.4, LAND attack is characterized by

packets whose source and destination addresses are the same. So, we designed

feature 53 from the proposed multi-perspective network traffic description

(Table C.1) and its corresponding implemented feature 1 within the proposed

network anomaly profile (Table A.4); ’LAND Indicator’. It is a binary feature which

is set to 1 in case the source and destination addresses of given packet are the

same, and set to 0 otherwise.

5.2.4 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) compensates for the deficiencies

of IPv4 by providing error control and management mechanisms [53][54][55].

There are two categories of ICMP packets: error-reporting packets and query

packets. Attacks utilize ICMP query packets, 3 attacks in our selected set of

attacks use ICMP Echo packets, i.e., Ping Packets. Section D.4 includes more

details about ICMP. Table 5.4 illustrates sample ICMP data that we captured and

interpreted.

5.2. PACKET DECIPHER MODULE 80

ID
Implemented IPv4 ICMP

PacketID Timestamp Source IP Destination IP Protocol Type Code Identifier Sequence Number

1 1259667 15:13:00.133 192.168.10.5 192.168.10.3 1 8 0 3 125
2 1259668 15:13:00.143 192.168.10.5 192.168.10.3 1 8 0 3 125
3 1259669 15:13:00.150 192.168.10.3 192.168.10.6 1 0 0 5 62
4 1259670 15:13:00.160 192.168.10.3 192.168.10.6 1 0 0 5 62
5 1259671 15:13:00.170 192.168.10.5 192.168.10.3 1 8 0 46 103
6 1259672 15:13:00.177 192.168.10.5 192.168.10.3 1 8 0 46 103
7 1259673 15:13:00.187 192.168.10.3 192.168.10.5 1 0 0 3 125
8 1259674 15:13:00.197 192.168.10.3 192.168.10.5 1 0 0 3 125

Table 5.4: ICMP Sample Data (NetDataCoP).

To increase understanding to the captured ICMP data, we illustrate it with

some associated fields from IPv4 header. The protocol field of value 1 indicates

that the payload of IPv4 packet contains an ICMP header.

ICMP query Echo request packets have Type field of value 8, while echo response

packets have Type field of value 0. From the figure, it is clear that multiple ICMP

query Echo (i.e., ping) request and response packets are sent to and from several

hosts within the network.

ICMP Flood, Smurf, and IPSweep are executed using ICMP Echo request and

reply packets. Nonetheless, other ICMP packet types can indicate errors

resulting from the execution of other attacks.

Once again like ARP and IPv4, ICMP fields can be used as basis for feature

design and implementation. So, the designed feature 13 from the proposed

multi-perspective network traffic description (Table C.2) and its corresponding

implementation within the proposed network anomaly profile (Table A.2); ’Query

Request Packets’, indicates the number of observed query request packets. Its

value is calculated by tracking all ICMP packets whose Type field is equal to 8.

5.2.5 Internet Group Management Protocol (IGMP)

IP communication can be either unicast communication or multicast

communication. Unicast communication involves one sender and one

5.2. PACKET DECIPHER MODULE 81

receiver, i.e., one-to-one communication, while multicast communication

is a one-to-many communication involving one sender and multiple receivers.

Internet Group Management Protocol (IGMP) [1][53][54][56][57] is a protocol

that manages multicast groups memberships. More details about IGMP can be

found in Section D.5. Table 5.5 illustrates sample IGMP data that we captured

and interpreted during our experiments. In order to provide a more illustrative

meaning for the captured data. Table 5.5 shows sample IGMP data for a group of

IGMP packets, which were captured and interpreted within our experiments.

We implemented the first two columns; PacketID and Timestamp, the PacketID

is a unique number attached to each new incoming packet, the Timestamp is

the time within which the packet was transmitted upon the network. The next

three columns are interpreted from IPv4 header of the packets, and the rest of

the fields are their respective IGMP header fields.

ID
Implemented IPv4 IGMP

PacketID Timestamp Source IP Destination IP Protocol Type MRT Group Address

1 289878 13:13:50.577 192.168.1.254 224.0.0.1 2 17 100 0.0.0.0
2 289882 13:13:52.320 192.168.1.68 224.0.0.251 2 22 0 224.0.0.251
3 289885 13:13:54.260 192.168.1.67 224.0.0.252 2 22 0 224.0.0.252
4 289889 13:13:56.990 192.168.1.67 239.255.255.250 2 22 0 239.255.255.250
5 289891 13:13:57.527 192.168.1.68 224.0.0.253 2 22 0 224.0.0.253
6 290231 13:14:54.760 192.168.1.254 224.0.0.1 2 17 100 0.0.0.0
7 290232 13:14:54.790 192.168.1.67 239.255.255.250 2 22 0 239.255.255.250
8 290629 13:15:35.633 192.168.1.68 224.0.0.252 2 22 0 224.0.0.252
9 290732 13:15:51.417 192.168.1.68 224.0.0.253 2 22 0 224.0.0.253

Table 5.5: IGMP Sample Data (NetDataCoP).

Looking at the data provides a better understanding of what the packet is

intended for. Table 5.5 illustrates multiple types of IGMP packets, it includes

General Query (17) and Group Membership Report (22). The protocol field

from IPv4 header indicates the protocol within IPv4 payload, protocol value of 2

instructs us to look for IGMP header.

In our experiments, the address ’192.168.1.254’ represents our router and

gateway, thus in rows 1 and 6 it sends General Query to group 244.0.0.1 asking

5.2. PACKET DECIPHER MODULE 82

if it has contributing members. Likewise, rows 2, 5 and 8 indicate that the

host ’192.168.1.68’ joined three multicast groups; 224.0.0.251, 224.0.0.253,

and 224.0.0.252, respectively. We can notice that the sample data contains

redundancy i.e., rows 4 and 7 which indicate that the host ’192.168.1.67 ’ wishes

to join multicast group 239.255.255.250. This pattern is not trivial. It is our

intention to illustrate such a pattern, because according to IGMP specifications

the Group Membership Report has to be sent from the host two successive times.

Under normal conditions, the destination addresses of IGMP packets are

multicast destinations. However, in the case of IGMP Flood attack IGMP is

used illegitimately to flood the target machine. Thus, the detailed examination

of IGMP, one more time, contributes within the design and implementation

of proposed features in our multi-perspective description of network traffic

(Section 3.4), network anomaly profile (Section 3.5).

For example, feature 39 – IGMP Packet Count – in the proposed multi-perspective

network traffic description (Table C.2) and its corresponding implementation

within the proposed network anomaly profile, feature 1 (Table A.3); means the

number of observed IGMP packets. Its values can be calculated by tracking

IPv4 packets whose Protocol field is equal to 2. Out of these packets, further

processing can be made to distinguish between multicast and unicast IGMP

packets by investigating the Destination IP field of IPv4 header.

5.2.6 Transmission Control Protocol (TCP)

While Internet layer protocols are responsible for host-to-host communication

and packet delivery, transport layer handles process-to-process packet delivery.

Transmission Control Protocol (TCP) is a connection-based, reliable transport

5.2. PACKET DECIPHER MODULE 83

protocol [1][58][59]. TCP connections involve the following phases that ensure

their reliability:

1. establishing a connection requires interaction of both hosts;

2. exchanging data over an established connection;

3. terminating a connection with a confirmation.

More details describing TCP protocol can be found in Section D.7. A sample of

TCP data is shown in Table 5.6, this data has bee captured and interpreted using

NetDataCoP.

ID
Implemented IPv4 TCP

PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

1 289977 13:14:27.550 192.168.1.68 191.236.106.123 6 1684 80
2 289978 13:14:27.617 192.168.1.68 191.236.106.123 6 1685 80
3 289979 13:14:27.663 191.236.106.123 192.168.1.68 6 80 1684
4 289980 13:14:27.723 192.168.1.68 191.236.106.123 6 1684 80
5 289981 13:14:27.780 191.236.106.123 192.168.1.68 6 80 1685
6 289982 13:14:27.833 192.168.1.68 191.236.106.123 6 1685 80
7 289983 13:14:27.887 192.168.1.68 191.236.106.123 6 1684 80

Table 5.6: TCP Sample Data (NetDataCoP).

The displayed data illustrates an interesting scenario: a host in our network

’192.168.1.68’ is communicating with an external host using TCP, a port 80

is associated with HTTP application protocol. Thus, our host is invoking an

HTTP protocol at the host ’191.236.106.123’. We notice two different port

numbers: 1684 and 1685 on our host. This means that two applications, or

maybe one application with two different connections are communicating with

’191.236.106.123’ using HTTP.

The detailed interpretation of TCP header fields, again contributes within

the design and implementation of proposed features. Feature 9 ”Invoked

Services” in our multi-perspective description of network traffic (Table C.3), and

its corresponding implementation in the proposed network anomaly profile

(Table A.5), relates to the number of invoked applications on top of TCP. Referring

5.2. PACKET DECIPHER MODULE 84

to Section D.6, we differentiate between System, User, and Ephemeral ports

within the source and destination port fields of TCP header. TCP Invoked services

is the number of distinct System and User ports – as source port or destination

port – within a group of given TCP packets.

5.2.7 User Datagram Protocol (UDP)

Unlike TCP, User Datagram Protocol (UDP) is a connectionless, unreliable

protocol [1][60]. Applications use UDP when simplicity and speed are favoured

over reliability. It is suited for sending small messages with less (lesser than

TCP) interaction between the source and destination, more details in Section D.8.

Table 5.7 illustrates sample UDP data that was captured and interpreted using

our software NetDataCoP.

ID
Implemented IPv4 TCP

PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

1 289959 13:14:25.057 192.168.1.68 224.0.0.251 17 59631 5355
2 289973 13:14:27.360 192.168.1.66 239.255.255.250 17 1049 8082
3 290040 13:14:31.620 192.168.1.68 192.168.1.254 17 52753 53
4 290041 13:14:31.693 192.168.1.68 192.168.1.254 17 60553 53
5 290042 13:14:31.743 192.168.1.68 192.168.1.255 17 137 137
6 290043 13:14:31.803 192.168.1.68 224.0.0.252 17 54045 5355
7 290044 13:14:31.860 192.168.1.68 224.0.0.252 17 56874 5355
8 290045 13:14:31.923 192.168.1.68 192.168.1.254 17 60028 53
9 290046 13:14:31.977 192.168.1.68 192.168.1.255 17 137 137

10 290047 13:14:32.027 192.168.1.68 192.168.1.255 17 137 137

Table 5.7: UDP Sample Data (NetDataCoP).

We can observe that the host ’192.168.1.68’ uses unicast and multicast

communication with UDP as transport protocol and multiple application

protocols. UDP port 53 (rows 3, 4, and 8) is DNS protocol, port 5355 (rows 1,

6, and 7) is LLMNR protocol, and port 137 (rows 5, 9, and 10) is NBNS protocol.

All these application protocols are name resolution protocols, which means that

the host ’192.168.1.68’ is trying to resolve something using these name resolution

protocols.

The details of UDP header fields allow us to design and implement the proposed

5.2. PACKET DECIPHER MODULE 85

features for our multi-perspective description of network traffic, and network

anomaly profile. An example here, like TCP, would be feature 22 ”Invoked

Services” in our multi-perspective description of network traffic (Table C.3), and

its corresponding implementation in the proposed network anomaly profile

(Table A.6, feature 9), is the number of invoked applications on top of UDP.

Like TCP, referring to Section D.6, we differentiate between System, User, and

Ephemeral, given a group of UDP packets, we calculate the ”Invoked Services”

by counting the distinct exitance of System and User port numbers within source

and destination ports of UDP.

5.2.8 Bootstrap Protocol (BOOTP)

The Bootstrap Protocol (BOOTP) is mainly used to provide a diskless machine

with its IP address and boot file. Upon boot up, since the machines do not have

a hard disk to boot from, Therefore they need load their operating system from

somewhere into memory. When the machine boots up it requests to know its

boot file and its respective IP address. BOOTP server holds multiple boot files

for several operating systems, so it sends a BOOTP reply to the diskless machine

informing it of its BOOTP file and IP address.

Later and before the design of Dynamic Host Configuration Protocol (DHCP),

machines that have hard disks and installed operating systems would use

BOOTP to know their IP address. After DHCP, BOOTP is still used to provide

functionalities for DHCP.

BOOTP utilizes two ports 68 and 67. Port 68 is used as ’BOOTP client ’ while

port 67 represents ’BOOTP server’. When a client needs to use BOOTP it issues

a request using ’BOOTP client ’ port and sets the destination port as ’BOOTP

server’ [1][61][62][63][64][65]. Table 5.8 illustrates such request-reply pattern

5.2. PACKET DECIPHER MODULE 86

with sample BOOTP data. More details are in Section D.9.

ID
Implemented IPv4 UDP BOOTP

PacketID Timestamp Source IP Destination IP Protocol
Source

Port
Destination

Port Identifier OPCode HwTYPE HwLEN Hops Seconds

1 2110084 22:12:24.267 192.168.1.69 255.255.255.255 17 68 67 4211123293 1 1 6 0 0
2 2110085 22:12:24.337 192.168.1.69 255.255.255.255 17 68 67 4211123293 1 1 6 0 0
3 2110086 22:12:24.417 192.168.1.69 255.255.255.255 17 68 67 4211123293 1 1 6 0 0
4 2110087 22:12:24.497 192.168.1.254 192.168.1.69 17 67 68 4211123293 2 1 6 0 0
5 2110088 22:12:24.683 192.168.1.254 192.168.1.69 17 67 68 4211123293 2 1 6 0 0

Table 5.8: BOOTP Sample Data (NetDataCoP).

The data in the table indicates that 192.168.1.69 issued three broadcast bootp

requests and our network’s gateway ’192.168.1.254’ responded with two unicast

bootp replies. The protocol field in IPv4 header denotes that the transport

protocol is UDP. The ports 68 and 67 mean that the application protocol is

BOOTP. The distinction between BOOTP requests and replies is obvious due to

the OPCode field, HwType of value 1 means 10mb Ethernet, and HwLEN shows a

6-byte length of hardware address, i.e., MAC Address.

5.2.9 Domain Name System (DNS)

The Domain Name System (DNS) protocol is used to map host names to their

respective addresses [1][5][66][67][68][69]. Tables 5.9, 5.10, and 5.11 illustrate

sample DNS packets that we captured during one of our experiments and

analyzed with NetDataCoP. DNS uses port number 53, more detailed description

of the protocol is provided in Section D.10.

Serial
Implemented IPv4 Transport

PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

1 290040 13:14:31.620 192.168.1.68 192.168.1.254 17 52753 53
2 290041 13:14:31.693 192.168.1.68 192.168.1.254 17 60553 53
3 290045 13:14:31.923 192.168.1.68 192.168.1.254 17 60028 53
4 290054 13:14:32.473 192.168.1.254 192.168.1.68 17 53 52753
5 290055 13:14:32.567 192.168.1.254 192.168.1.68 17 53 60553

Table 5.9: DNS Sample: Internet and Transport Data (NetDataCoP).

Let us analyze the content of the tables. Table 5.9 contains the Internet and

Transport data of five DNS packets. The client that issues DNS requests has the

5.2. PACKET DECIPHER MODULE 87

address ’192.168.1.68’ and the DNS server’s address is ’192.168.1.254’.

The firs 3 packets are obviously DNS requests since the destination port of UDP

is 53, conversely packets 4 and 5 are DNS responses as UDP source port is equal

to 53. Matching the Ephemeral ports of the packets, we can observe that the

last 2 packets (rows 4 and 5) are responses for the first 2 packets (rows 1 and 2),

and within the displayed sample packets we do not see a corresponding response

packet for packet 3. Now remember this observation and look at DNS data of

these packets below to confirm our conclusion, Table 5.10.

Serial
DNS

ID QR OpCode AA TC RD RA RCode QDCOUNT ANCOUNT NSCOUNT ARCOUNT

1 62360 0 0 0 0 1 0 0 1 0 0 0
2 10129 0 0 0 0 1 0 0 1 0 0 0
3 11206 0 0 0 0 1 0 0 1 0 0 0
4 62360 1 0 0 0 1 1 0 1 5 0 0
5 10129 1 0 0 0 1 1 0 1 5 0 0

Table 5.10: DNS Sample: DNS Protocol Data (NetDataCoP).

Table 5.10 illustrates the DNS data for the sample packets in Table 5.9.

Previously we mentioned that the first 3 packets are requests and the last 2 are

responses. This information can be confirmed here by looking at the values

of column ’QR’ ; value of 0 indicates a request packet and value 1 indicates a

response packet.

Also we were able to deduce that packets 4 and 5 are responses to packets 1 and 2

respectively. This deduction is confirmed in Table 5.10 by matching packets that

have the same ’ID’ value, we see that packets 1 and 4 share the same ’ID’ of 62360,

therefore packet 4 is a response for packet 1. Likewise packets 2 and 5 have the

same ’ID’ of 10129, thus packet 5 is a response for request packet 1.

Now let us explain the rest of the DNS data. All packets have only 1 RR entry in

the question section as depicted by column ’QDCOUNT’, the response packets

(4 and 5) have additional RR entries, each have 5 RRs in their Answer section as

indicated by ’ANCOUNT’ column. Table 5.11 illustrates the corresponding RR

5.2. PACKET DECIPHER MODULE 88

details of these packets.

Serial
RRs

Question Answer
QNAME QTYPE QCLASS Name Type Class TTL RDLENGTH RDATA

1 aspnet.uservoice.com 1 1 – – – – – –
2 aspnet.uservoice.com 28 1 – – – – – –
3 .azure.microsoft.com 1 1 – – – – – –

4 aspnet.uservoice.com 1 1

aspnet.uservoice.com 1 1 738263040 4 104.16.96.65
aspnet.uservoice.com 1 1 738263040 4 104.16.95.65
aspnet.uservoice.com 1 1 738263040 4 104.16.92.65
aspnet.uservoice.com 1 1 738263040 4 104.16.93.65
aspnet.uservoice.com 1 1 738263040 4 104.16.94.65

5 aspnet.uservoice.com 28 1

aspnet.uservoice.com 28 1 738263040 16 2400:CB00:2048:1:0:0:6810:6041
aspnet.uservoice.com 28 1 738263040 16 2400:CB00:2048:1:0:0:6810:5E41
aspnet.uservoice.com 28 1 738263040 16 2400:CB00:2048:1:0:0:6810:5D41
aspnet.uservoice.com 28 1 738263040 16 2400:CB00:2048:1:0:0:6810:5C41
aspnet.uservoice.com 28 1 738263040 16 2400:CB00:2048:1:0:0:6810:5F41

Table 5.11: DNS Sample: DNS RR Data (NetDataCoP).

Table 5.11 illustrates RR details of the DNS sample packets. We know that

packet 4 is a response for packet 1, and packet 5 is a response to packet 2. DNS

request packet 1 is querying host name ’aspnet.uservoice.com’ and it needs to

know its respective IPv4 Address (indicated by the QTYPE field of value 1). The

response to that query in packet 4 provided 5 IPv4 addresses for that host.

Likewise, DNS request packet 2 is querying the same host name but now it needs

to know its MAC address (indicated by the QTYPE field of value 28). Of course,

you can expect 5 different MAC addresses corresponding to the 5 IPv4 addresses.

5.2.10 Link-Local Multicast Name Resolution (LLMNR)

While DNS is considered the primary name resolution protocol, LLMNR is

regarded as secondary name resolution protocol. It is quite similar to DNS and

it is used whenever there is no DNS server present in a network [6]. LLMNR uses

port 5355 over UDP, more details in Section D.11.

Table 5.12 shows Internet and Transport layer sample LLMNR data, which was

captured and interpreted during our experiments. While Table 5.13 shows its

respective LLMNR detailed data.

5.2. PACKET DECIPHER MODULE 89

Serial
Implemented IPv4 Transport

PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

1 232935 19:04:19.3330000 192.168.1.70 224.0.0.252 17 59816 5355
2 232936 19:04:19.5030000 192.168.1.70 224.0.0.252 17 59816 5355
3 232978 19:04:27.0130000 192.168.1.70 224.0.0.252 17 51528 5355
4 232979 19:04:27.1830000 192.168.1.70 224.0.0.252 17 51528 5355
5 247255 20:01:00.4430000 192.168.1.68 224.0.0.252 17 56976 5355
6 247256 20:01:00.6270000 192.168.1.68 224.0.0.252 17 50256 5355

Table 5.12: LLMNR Sample: Internet and Transport Data (NetDataCoP).

Serial
LLMNR

ID QR OpCode C TC T RCode QDCOUNT ANCOUNT NSCOUNT ARCOUNT

1 49492 0 0 0 0 0 0 1 0 0 0
2 49492 0 0 0 0 0 0 1 0 0 0
3 28519 0 0 0 0 0 0 1 0 0 0
4 28519 0 0 0 0 0 0 1 0 0 0
5 60148 0 0 0 0 0 0 1 0 0 0
6 41651 0 0 0 0 0 0 1 0 0 0

Table 5.13: LLMNR Sample: LLMNR Protocol Data (NetDataCoP).

It is clear from the QR column that the packets are LLMNR requests (value

0). Also, we can notice that all packets contain 1 entry within Question section

illustrated by QDCOUNT column. Table 5.14 illustrates the corresponding RR

data of these packets.

Serial

RRs
(Question)

QNAME QTYPE QCLASS

1 sysp-PC 255 1
2 sysp-PC 255 1
3 isatap 1 1
4 isatap 1 1
5 wpad 1 1
6 wpad 28 1

Table 5.14: LLMNR Sample: LLMNR RR Data (NetDataCoP).

In order to understand what was happening, we need to match the data in all

three tables: 5.12, 5.13, and 5.14. From Table 5.12, the first 2 packets are requests

issued by ’192.168.1.70’ to multicast address ’224.0.0.252’. Table 5.13 indicates

that they are related (’ID’ field), also it indicates that they have only 1 question

RR (’QDCOUNT’ field). Table 5.14 shows that the 2 request packets are resolving

any available information (QTYPE value of 255, Table D.2) about host ’sysp-PC’

5.2. PACKET DECIPHER MODULE 90

(’QNAME’).

The same investigative logic can be said for the rest of the displayed packets,

except that the query names are different. From tbLLMNRSample3, Packets 3

and 4 are resolving ’isatap’ (Intra-Site Automatic Tunnel Addressing Protocol),

while packets 5 and 6 are resolving ’wpad’ (Web Proxy Address).

As explained before, the interpretation of LLMNR header fields contribute to

the design and implementation of features for the proposed multi-perspective

network traffic description and network anomaly profile (features 17 – 24

Table C.4 and all the features in Table A.10.)

5.2.11 NetBIOS Name Service (NBNS)

NetBIOS Name Service protocol (NBNS), like LLMNR, is considered a secondary

name resolution protocol. It is part of the NetBIOS service that can be invoked

using both TCP or UDP. Like LLMNR, it can be used when DNS server is not

present. Also, NBNS packets have the same structure as DNS and LLMNR

concerning sections and RRs [70][7]. More details in Section D.12, Table 5.15

displays sample NBNS captured and interpreted using NetDataCoP.

5.2. PACKET DECIPHER MODULE 91

Implemented IPv4 UDP
PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

1739940 23:11:55.020 192.168.1.71 192.168.1.255 17 137 137
1739941 23:11:55.070 192.168.1.71 192.168.1.255 17 137 137
1739942 23:11:55.157 192.168.1.71 192.168.1.255 17 137 137
1739943 23:11:55.240 192.168.1.72 192.168.1.71 17 137 137
1739944 23:11:55.363 192.168.1.72 192.168.1.71 17 137 137

(a) NBNS Sample Packets: Internet and Transport Data

PacketID
NBNS

Name TRN ID R Opcode AA TC RD RA B RCode QCount ANCount NSCount ARCount
1739940 51236 0 0 0 0 1 0 1 0 1 0 0 0
1739941 51236 0 0 0 0 1 0 1 0 1 0 0 0
1739942 51236 0 0 0 0 1 0 1 0 1 0 0 0
1739943 51236 1 0 1 0 1 0 0 0 0 1 0 0
1739944 51236 1 0 1 0 1 0 0 0 0 1 0 0

(b) NBNS Sample Packets: NBNS Data

PacketID
Question RRs Answer RRs

Name Type Class Name Type Class TTL RDLength RData

1739940 ECE220-PC 32 1 – – – – – –
1739941 ECE220-PC 32 1 – – – – – –
1739942 ECE220-PC 32 1 – – – – – –
1739943 – – – ECE220-PC 32 1 3767731200 6 192.168.1.72
1739944 – – – ECE220-PC 32 1 3767731200 6 192.168.1.72

(c) NBNS Sample Packets: RR Data

Table 5.15: NBNS Sample Packets (NetDataCoP).

Table 5.15a displays the Internet and Transport data of 5 packets, Table 5.15b

shows their corresponding NBNS data, and Table 5.15c illustrates the associated

RRs. It is clear from the tables that the first 3 packets are NBNS requests – the

value of 0 in the ’R’ field in Table 5.15b. We can also notice that they are sent to

the broadcast address of the network. These 3 packets also contain 1 question

RR as indicated by ’QCOUNT’ column, Table 5.15c shows the values of such

RRs. By examining these 3 packets we can realize that ’192.168.1.71’ is resolving

’ECE220-PC’ to its respective name.

The last 2 packets are the response to the first 3 packets. Host ’192.168.1.72’

realized that the broadcast query involves his name, so he responded to the

requests using unicast mode. We notice that these packets contain 1 Answer

5.2. PACKET DECIPHER MODULE 92

RR and their relevant information is displayed in Table 5.15c. We can easily

determine that these packets are responses to the first 3 packets by looking at

the ’Name TRN ID’. Again, the understanding of NBNS header fields helps in

the design of NBNS-related features in the proposed multi-perspective network

traffic description (features 9 – 16, Table C.4) and the features in the proposed

network anomaly profile (Table A.9)

5.2.12 Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) is a protocol used to manage

network resources. It remotely inspects or alters resource information

[1][8][71][72]. SNMP utilizes port 161 and is used for communication

between management station and corresponding managed agents. It works

on top of 2 other protocols; Structure of Management Information (SMI) and

Management Information Base (MIB). SMI defines management rules and MIB

defines the entities to be managed for individual hosts. SNMP packets allow

management information to be exchanged by reading objects statuses and

modifying their values. More details on SNMP, SMI, and MIB can be found in

Section D.13 regarding packet format, encoding rules, and encoding entities.

Table 5.16 illustrates sample SNMP packets captured and interpreted within our

experiments.

5.2. PACKET DECIPHER MODULE 93

Implemented IPv4 UDP
PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

164436 13:13:46.093 192.168.10.150 192.168.10.1 17 63868 161
164592 13:14:12.803 192.168.10.150 192.168.10.1 17 63868 161
165363 13:54:44.337 192.168.10.150 192.168.10.1 17 54897 161
165470 13:54:53.163 192.168.10.150 192.168.10.1 17 54897 161

(a) SNMP Sample Packets: Internet and Transport Data

PacketID Version Community String PDU Request ID Error Error Index Varbind List Varbind Object Identifier
164436 0 public 160 1 0 0 48 48 1.3.6.1.2.1.1.5.0
164592 0 public 160 1 0 0 48 48 1.3.6.1.2.1.1.5.0
165363 0 public 160 1 0 0 48 48 1.3.6.1.2.1.1.5.0
165470 0 public 160 1 0 0 48 48 1.3.6.1.2.1.1.5.0

(b) SNMP Sample Packets: SNMP Data

Table 5.16: SNMP Sample Packets (NetDataCoP).

From Table 5.16a the usage of SNMP as destination port indicates that the

packets are request packets. A Community String of value public means that the

SNMP request packet aims for a ’read-only’ access to the object. From Table D.6 a

PDU (Protocol Data Unit) of value 160 indicates that the packets are ’GetRequest

PDU’ packets. Varbind List (Table D.6) of value 48 indicates that the packets

contain a sequence of Varbinds. A value 48 of Varbind signifies a sequence of

two fields; an Object ID and its corresponding value.

An object identifier (OID) of ’1.3.6.1.2.1.1.5.0’ indicates that the request concerns

the ’sysName’ of the target machine as follows

Numeric 1 3 6 1 2 1 1 5 0
Interpretation iso org dod internet mgmt mib-2 system sysName

Nominal iso.org.dod.internet.mgmt.mib-2.system.sysName

Table 5.17: Object Identifier Interpretation

5.2.13 Simple Service Discovery Protocol (SSDP)

The Simple Service Discovery Protocol (SSDP) also known as Universal Plug

and Play Protocol (UPNP) is a network discovery protocol [9][73][74]. SSDP

is multicast that uses the address ’239.255.255.250’ and port 1900. Additional

5.2. PACKET DECIPHER MODULE 94

details can be found in Section D.14.

Table 5.18 illustrates sample SSDP packets, which were captured and interpreted

in our experiments.

Implemented IPv4 UDP
PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

2118631 22:27:22.560 192.168.1.64 239.255.255.250 17 53582 1900
2118632 22:27:22.600 192.168.1.64 239.255.255.250 17 53582 1900
2118633 22:27:22.640 192.168.1.254 192.168.1.64 17 1900 53582
2118635 22:27:22.717 192.168.1.254 192.168.1.64 17 1900 53582

(a) SSDP Sample Packets: Internet and Transport Data

PacketID Packet Information

2118631

M-SEARCH * HTTP/1.1
Host: 239.255.255.250:1900
MAN:”ssdp:discover”
MX:3
ST: upnp:rootdevice

2118632

M-SEARCH * HTTP/1.1
Host: 239.255.255.250:1900
MAN:”ssdp:discover”
MX:3
ST: upnp:rootdevice

2118633

HTTP/1.1 200 OK
CACHE-CONTROL: 1800
EXT: –
LOCATION: http://192.168.1.254:5431/dyndev/uuid:105f06f1-2248-4822-f106-5f105ff1480000
SERVER: Custom/1.0 UPnP/1.0 Proc/Ver
ST: upnp:rootdevice
USN: uid:105f06f1-2248-4822-f106-5f105ff1480000::upnp:rootdevice

2118635

HTTP/1.1 200 OK
CACHE-CONTROL: 600
EXT: –
LOCATION: http://192.168.1.254:1990/WFADevice.xml
SERVER: POSIX UPnP/1.0 UPnP Stack/5.110.27.2001
ST: upnp:rootdevice
USN: uuid:53ea59b8-5234-0a10-ad8d-02d244fb8f10::upnp:rootdevice

(b) SSDP Sample Packets: SSDP Data

Table 5.18: SSDP Sample Packets (NetDataCoP).

The first 2 packets (PacketID 2118631 and 2118632) in Table 5.18a are SSDP

request packets from ’192.168.1.64’ to ’192.168.1.254’, this is clear from the

destination port of these packets (SSDP port 1900). Likewise, packets 3 and 4

(PacketID 2118633 and 2118635) are response packets since they have SSDP port

as source port.

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 95

This information can be confirmed by examining the request lines of these

packets in Table 5.18b, where request line ”M-SEARCH * HTTP/1.1” means

request packet, and request line ”HTTP/1.1 200 OK” means response packet

(Section D.14).

Also, the ’ST’ (Search Target) field in the packets indicates that the discovery

process between ’192.168.1.64’ and ’192.168.1.254’ concerns ’rootdevice’.

5.3 Connection Identification and Reconstruction

Module

In this section, we explain how we identify and reconstruct connections. The

module is able to analyze Internet Layer ICMP connections, Section 5.3.1, as

well as TCP Transport Layer connections, Section 5.3.2. Additionally, and this

is one of the contributions of this work, we propose a new methodology for

identifying and reconstructing logical connections for UDP-based applications,

Section 5.3.3.

5.3.1 ICMP Connections

As mentioned in Section 5.2.4, we focus on ICMP echo request and reply packets.

Our analysis has led us to identification and reconstruction of ICMP connections

based on the deciphered ICMP fields. We have illustrated the main fields

of ICMP packets and clarified that ICMP echo packets (requests and replies)

contain: Identifier and Sequence Number fields. We have concluded that they

are responsible for matching echo requests to their respective echo replies.

We concentrated on those fields and conducted several experiments from which

we were able to match ICMP echo request packets to their respective replies,

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 96

Table 5.19.

TimeStamp SourceIP DestinationIP Type Code Identifier
Sequence
Number Data

15:24:56.603 192.168.1.71 192.168.1.66 8 0 1 112 151
15:24:56.647 192.168.1.71 192.168.1.66 8 0 1 112 151
15:24:56.893 192.168.1.66 192.168.1.71 0 0 1 112 151
15:24:57.423 192.168.1.66 192.168.1.71 0 0 1 112 151

(a) ICMP Connection Packets

Connection Information

ConnectionID 5333
StartTime 15:24:56.603
EndTime 15:24:57.423
Duration 00:00:00.820
Protocol 1 (ICMP)
SourceIP 192.168.1.71
DestinationIP 192.168.1.66
Status Complete
Packets 4
Data 604

(b) ICMP Identified and Reconstructed Connection

Table 5.19: ICMP Connection Example (NetDataCoP).

Table 5.19 illustrates sample ICMP connection from our captured network

traffic. As we can see in Table 5.19a, the four illustrated packets share the

same Identifier and the same Sequence Number. We identify these packets as

one connection and reconstruct it out of the packets. Table 5.19b shows the

reconstructed connection and its designed and developed features: duration,

start time, end time, sent packets and overall exchanged data (in bytes).

A very important aspect here is the connection status. We assume that the

existence of ICMP echo request packets postulates a beginning of connection,

likewise, the occurrence of ICMP echo reply packets is treated as an ending

of connection. As the result, we conclude the following statuses for ICMP

connections, Table 5.20:

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 97

Echo Request Echo Reply Connection Status

� � Complete
� × Incomplete E
× � Incomplete B

Table 5.20: ICMP Connection Status

When both ICMP echo request and reply packets exist in a connection

then it is a complete connection. When ICMP echo request packets exist

only we regard the connection as an incomplete connection that has no

ending, i.e., ’Incomplete E’. Similarly, when echo reply packets occur only in a

connection, then we deem it as an incomplete connection with no beginning,

i.e., ’Incomplete B’.

The interpretation of ICMP connections helps us to investigate the effects of

ICMP Flood, Smurf, LAND, and IPSweep attack, and eventually detect their

presence.

5.3.2 TCP Connections

Transport connections between hosts are usually tracked using a Transport

Address. It consists of five fields: Source Address, Source Port, Destination

Address, Destination Port, and Protocol. The protocol refers to transport

protocol, in our case here it is TCP. For one direction of flow a connection is

tracked by < IPsrc, Portsrc, IPdst, Portdst, P rotocol >, and in the other direction it

is tracked by < IPdst, Portdst, IPsrc, Portsrc, P rotocol >.

We find those packets that share the same transport address (with specific

Addresses and Port numbers) and group them. Within groups of packets, we

track the connection establishment and termination patterns. The TCP header

fields explained in Section D.7 allow unique establishment and termination

patterns for TCP connections. In order to explain the patterns, we are going to

use some TCP protocol fields: Sequence Number, Acknowledgment Number,

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 98

and the flag controls (only the ones which needs to be set for specific steps).

5.3.2.1 Connection Establishment

TCP Connection establishment pattern follows a three-way handshaking

mechanism to initiate connections between two hosts, Figure 5.1.

Figure 5.1: TCP Connection Establishment Pattern. [1]

When the client wishes to initiate a connection with a server, it sends a TCP

packet with the SYN flag set, and from our experience in capturing traffic the

Acknowledgement Number set to zero. This first packet does not carry any data

and is only intended to synchronize two hosts, i.e., the client is telling the server

that it wants to connect to it.

If the server is not busy, it sends back a reply to the client acknowledging the

request and telling it that it is ready to accept the connection. This reply packet

has its SYN and ACK flags set and consumes one sequence number.

Finally, the client replies with a packet whose ACK flag is set and its sequence

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 99

number is the same as the original SYN packet sent by the client.

These three steps mark the connection establishment pattern of TCP

connections. After that, a data transfer between the two hosts commences until

the connection is terminated.

5.3.2.2 Connection Termination

In a three-way handshaking manner similar to Establishment pattern, the

connection termination pattern starts when a host sends a FIN packet with its

FIN flag set, Figure 5.2. Basically, any of the connection’s hosts can terminate

the connection, but usually the client that initiated the connection is one that

terminates it. The FIN packet can contain the remaining connection’s data or

not. If the packet is empty (does not hold any data) it consumes one sequence

number.

Figure 5.2: TCP Connection Termination Pattern. [1]

The server responds with packet whose ACK and FIN flags are set

acknowledging the received FIN packet. This packet might contain the last piece

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 100

of connection data from the server, if it does not then it consumes one sequence

number. Finally, the client replies with an ACK packet to confirm his receiving of

the server’s FIN packet. This packet is the last packet of the termination pattern

and consequently the last packet of the connection.

There are some cases in which the connection is not terminated in this way.

When the server receiving the connection initiation request is busy, or some error

happened that prevents it from accepting the connection, the server replies to

the connection request with a RST packet (reset), i.e., a packet whose RST flag

is set. In essence, the server is refusing the connection and informing the client

that it is not ready to accept it. Thus, this can also be regarded as a connection

termination pattern.

In the same manner as ICMP connections, Figure 5.3 illustrates identified and

reconstructed TCP connection sample from our captured network traffic.

Based on the presented steps of establishing and terminating TCP connections,

we proposed the following features describing TCP connections:

• connection duration;

• connection sent number of packets;

• connection exchanged data, in bytes;

• Internet Layer features: source and destination addresses;

• Transport Layer features: source port, destination port, and connection

status.

The developed NetDataCoP is able to determine all these features.

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 101

Figure 5.3: TCP Connection Example (NetDataCoP).

For TCP connections, we are able to identify more possibilities statuses than

that for ICMP connections. We have 4 main flags that govern and control the

connection establishment and termination patterns, namely: SYN, ACK, FIN,

and RST flag. Therefore, we have multiple combinations of values of these flags,

and this means multiple connection statues, Table 5.21.

ID
Establishment Pattern Data

Exchange
Termination Pattern Connection

StatusSYN SY N +ACK ACK FIN RST

1 � � � � � × Complete
2 � � � � × � Complete
3 � � � � × × IncompleteE
4 × × × � × � IncompleteB
5 × × × � � × IncompleteB
6 × × × � × × Incomplete
7 � × × × × × Attempted
8 � � × × × × Attempted

9 � × × × � × Attempted
and Aborted

10 � × × × × � Attempted
and Aborted

11 � � × × � × Attempted
and Aborted

12 � � × × × � Attempted
and Aborted

Table 5.21: TCP Connection Status

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 102

The presence of valid connection establishment pattern indicates the

beginning of a new connection, while the existence of valid termination pattern

marks the end of a connection. The word ’valid’ indicates the completion of the

pattern.

From Table 5.21, we regard the first 2 connection patterns as complete

connections. The connection establishment pattern exists and the connection is

properly terminated with a termination pattern (FIN or RST) after data exchange.

We assume, the connection pattern in row 3 is ’Incomplete E’, where a valid

establishment pattern exist, and data has been exchanged with no termination

patterns found.

Rows 4 and 5 are considered ’Incomplete B’, where we find data exchange

for connection with proper connection termination (using FIN or RST), but

with no connection establishment pattern. Connection pattern in row 6 is

considered ’Incomplete’, where data exchange exists with neither establishment

nor termination patterns. Connection patterns in rows 7 and 8 are regarded as

’Attempted’ connections, in which an attempt was made to initiate a connection.

Rows 9 – 12 are regarded as ’Attempted and Aborted’, in which a connection

initiation attempt was made but was faced with termination before it begins.

5.3.3 UDP Connections

Like for the case of TCP connections, we wanted to know if there are some kind

of behavioural patterns that occur between UDP-based applications. We have

investigated the concept of Deep Packet Inspection (DPI) also known as protocol

analysis, in which we interpret packets of UDP-based application protocols

to understand their behaviour. We have been successful in understanding

this behaviour. Therefore, we propose a process of identification of logical

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 103

connections for UDP-based applications.

As explained for transport connections, we started tracking UDP packets and

grouping them by their 5-tuple transport address. However, this approach

of tracking and grouping UDP packets was insufficient due to the following

shortcomings:

• In case of TCP connections, the transport address coupled with TCP

header fields (Sequence Number, Acknowledgment Number, and the flag

controls) provided unique distinction between groups of TCP packets to

form connections. There are no similar fields in UDP headers that can do

this job.

• Re-occurring groups of UDP packets sharing the same transport address

within data results in non-unique distinction between groups of UDP

packets.

To deal with these shortcomings we need additional information to use besides a

transport address. This information is available within the headers of UDP-based

applications. As a case study for this research, we selected the following

UDP-based applications:

• Domain Name System protocol (DNS)

• NetBIOS Name Service (NBNS)

• NetBIOS Datagram Service (NBDS)

• Bootstrap Protocol (BOOTP)

• Link-Local Multicast Name Resolution (LLMNR)

• Simple Network Management Protocol (SNMP)

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 104

• Simple Service Discovery Protocol (SSDP)

• Real-Time Transport Protocol (RTP) and Real-Time Transport Control

Protocol (RTCP)

Application Protocol designers realize the connectionless unreliable nature

of UDP as well as the connection-oriented reliable nature of TCP. To

enable computers to distinguish between multiple application protocols

communicating on top of UDP, protocol designers tend to compensate for the

connectionless nature of UDP by providing a sense of flow control in the form of

a unique identification field (ID) in the header of the application protocol.

After detailed and thorough investigation of the previously mentioned

UDP-based applications, we discovered a unique number inside the application

header. This number can be used alongside the UDP transport address to provide

uniqueness for each logical UDP-based connection. The ID fields for each

protocol are as follows:

• ID field in DNS header, Section 5.2.9.

• NAME TRN ID field in NBNS header, Section 5.2.11.

• DGM ID field in NetBIOS Datagram Service (NBDS) header [7].

• Transaction Identifier (xid) field in BOOTP header, Section 5.2.8.

• ID field in LLMNR header, Section 5.2.10.

• RequestID field in SNMP header, Section 5.2.12.

• Search Target (ST) field in SSDP header, Section 5.2.13

• 32 bit synchronization source identifier (SSRC) field in RTP header and

32 bit synchronization source identifier (SSRC) field in RTCP header

[75][76][77].

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 105

We are going to show our methodology using an example of the most commonly

used UDP-based application protocol: DNS. We are going to use sample data

from our experiments that supports the mentioned shortcomings, Table 5.22

below.

Implemented IPv4 UDP
PacketID Timestamp Source IP Destination IP Protocol Source Port Destination Port

3066 12:17:20.2630000 129.128.212.139 129.128.208.6 17 50061 53
3067 12:17:20.3900000 129.128.208.6 129.128.212.139 17 53 50061
3903 12:19:20.7500000 129.128.212.139 129.128.208.6 17 50061 53
3909 12:19:21.7400000 129.128.208.6 129.128.212.139 17 53 50061
4107 12:19:51.5100000 129.128.212.139 129.128.208.6 17 50061 53
4108 12:19:51.6370000 129.128.208.6 129.128.212.139 17 53 50061

(a) DNS Sample Packets: Internet and Transport Data

PacketID
DNS

ID QR QCount ARCount NSCount ARRCount

3066 10425 0 1 0 0 0
3067 10425 1 1 1 0 0
3903 21310 0 1 0 0 0
3909 21310 1 1 9 4 4
4107 46336 0 1 0 0 0
4108 46336 1 1 1 0 0

(b) DNS Sample Packets: DNS Data
PacketID

RR
QName QType QClass RR Name RR Type RR Class TTL RDLength RData

3066 plus.google.com 28 1 – – – – – –
3067 plus.google.com 28 1 plus.google.com 28 1 3120562176 16 2607:F8B0:4009:809:0:0:0:200E
3903 tiles.services.mozilla.com 1 1 – – – – – –

3909 tiles.services.mozilla.com 1 1

tiles.r53-2.services.mozilla.com 1 1 1006632960 4 52.32.9.85
.r53-2.services.mozilla.com 2 1 2426339840 25 ns-1537.awsdns-00.co.uk
.ns-1537.awsdns-00.co.uk 1 1 3885892096 4 205.251.198.1

.r53-2.services.mozilla.com 2 1 2426339840 19 ns-206.awsdns-25.com

.r53-2.services.mozilla.com 2 1 2426339840 22 ns-772.awsdns-32.net
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 52.32.238.102
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 52.34.245.108

.tiles.services.mozilla.com 5 1 738263040 14 tiles.r53-2.services.mozilla.com
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 54.191.113.255
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 52.34.249.78
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 54.148.98.19
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 54.148.230.222
.tiles.r53-2.services.mozilla.com 1 1 1006632960 4 54.149.224.177

.r53-2.services.mozilla.com 2 1 2426339840 23 ns-1507.awsdns-60.org
.ns-206.awsdns-25.com 1 1 3885892096 4 205.251.192.206
.ns-772.awsdns-32.net 1 1 3885892096 4 205.251.195.4

.ns-1507.awsdns-60.org 1 1 3885892096 4 205.251.197.227
4107 www.beartracks.ualberta.ca 1 1 – – – – – –
4108 www.beartracks.ualberta.ca 1 1 www.beartracks.ualberta.ca 1 1 856293376 4 142.244.120.201

(c) DNS Sample Packets: RR Data

Table 5.22: Logical DNS Connection Packets (NetDataCoP).

Table 5.22 illustrates our analysis of the hypothesis of logical UDP-based

connections. It displays selected data of 6 DNS packets. Table 5.22a

displays their respective Internet and Transport layer data while Table 5.22b

and Table 5.22c display their respective Application layer data. From

Table 5.22a we can conclude that the transport address for those packets is

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 106

< 129.128.212.139, 50061, 129.128.208.6, 53, 17 >. According to the claim of other

researchers stating that transport address is enough for grouping packets, then

we should regard these 6 packets as one group. But actually they are not.

Table 5.22b illustrates DNS header data for these packets. It is clear that packets

3066 and 3067 share the same ID: 10425. Also, packets 3903 and 3909 share the

ID of 21310, while packets 4107 and 4108 have the same ID of 46336. Associating

the ID field to the transport address of such packets we get 3 distinguishable

groups, i.e., 3 different DNS logical connections.

Furthermore, looking at the QR field, we can distinguish between DNS request

and response packets within identified logical connections. We conclude that

packet 3067 (row 2) is a response for packet 3066 (row 1), packet 3909 (row 4) is

a response for packet 3903 (row 3), and finally packet 4108 (row 6) is a response

for packet 4107 (row 5).

Table 5.22c supports our claim of logical connections. When we look at the

queried names and their respective responses, and compare this finding to

ID-based grouping of packets, then the picture of name resolution becomes

clearer. Figures 5.4 to 5.6 illustrate our identification result of logical

connections and their related constructed fields.

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 107

Figure 5.4: DNS Logical Connection 1 (NetDataCoP).

Figure 5.4 illustrates the DNS logical connection of packets 3066 and 3067.

The duration of the connection is 127 millisecond, the connection was initiated

by 129.128.212.139 using source port 50061 to 129.128.208.6 via destination

port 53 (DNS). The connection consists of 2 packets and overall exchanged

data of 150 bytes. Its status is ’complete’ because it contains both DNS

request and response packets. The requestor wanted to know the physical

address of plus.google.com and it received a reply from the DNS server

2607:F8B0:4009:809:0:0:0:200E.

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 108

Figure 5.5: DNS Logical Connection 2 (NetDataCoP).

Likewise, DNS logical connection 2, Figure 5.5, the connection duration

is 990 milliseconds, between the same hosts using the same ports and same

number of packets. The exchanged data is 499 bytes because the response packet

5.3. CONNECTION IDENTIFICATION AND RECONSTRUCTION MODULE 109

in this connection contains more RRs, 17 RRs to be exact: 9 RRs in the Answer

section, 4 RRs in the Authority section, and 4 RRs in the Additional section. The

requestor queried tiles.services.mozilla.com and received several information

within the reply.

Figure 5.6: DNS Logical Connection 3 (NetDataCoP).

The third DNS logical connection, Figure 5.6, has the same fields but with

different values. The connection duration spanned for 127 millisecond between

the same hosts using the same ports and the same number of packets. Its

exchanged data is 160 bytes. The requestor wanted to know the IPv4 address

of www.beartracks.ualberta.ca and got the response of 142.244.120.201.

The status of logical connections of UDP-based applications is the same as

that of ICMP connections explained in Section 5.3.1. The different statuses are

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 110

demonstrated in Table 5.23

Request Response Connection Status

� � Complete
� × Incomplete E
× � Incomplete B

Table 5.23: UDP Connection Status

When both request and response packets exist in a connection then it

is a Complete connection. Likewise, when request packets exist only then

we regard the connection as an incomplete connection that has no ending,

i.e., ’Incomplete E’. When response packets occur only in a connection, which

is highly unlikely, then we perceive it as an incomplete connection with

no beginning, i.e., ’Incomplete B’. More experiments that provide additional

validation to this methodology in Appendix B.

5.4 Network Traffic Temporal Processing Module

Mainly, our temporal processing of network traffic is no different than the

commonly known approach. For each minute, we calculate the values of its

associated network traffic. The novelty of our approach lies within the proposed

traffic features, inspired by our multi-perspective network traffic description. In

this section we explain the features that we processed in a minute-wise manner

for the proposed Two-stage Hybrid Intrusion Detection System.

The features that we use for Global Network-level minute-wise Machine

Learning-based Anomaly Detection are the same as those we use in Global

Network-level minute-wise Machine Learning-based Signature Detection. The

difference is that in Signature ID we use multiple subsets of the minute-wise

features of Anomaly ID. The features of Local Host-level session-wise

Threshold-based Anomaly Detection are somehow different because they are

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 111

related to specific hosts. Attack Detection Modules use the network-tailored

attack signature features indicated in Section 3.6.

The features of Global Network-level minute-wise Machine Learning-based

Anomaly Detection are explained in Section 5.4.1, while those of Local Host-level

session-wise Threshold-based Anomaly Detection are explained in Section 5.4.2.

5.4.1 Global Network-level Machine Learning-based Anomaly

Detection Features

Anomaly ID deals with the detection of abnormal network traffic, i.e., it

distinguishes between normal and anomalous network traffic patterns. We

realize the normality of network traffic from a scope-centric perspective via:

• Global Network-level minute-wise Machine Learning-based context; we

discuss its features here.

• Local Host-level session-wise Threshold-based context, Section 5.4.2

Since we are dealing with the detection of anomalies using machine learning

classifiers, we had to have training data. This data is used in the training phase

of classifiers to build models that represent normal network behaviors. In the

test phase (actual phase of detecting anomalies), network traffic is processed in

the form of minute-wise data records and passed to machine learning classifiers.

The classifiers classify the given data point and detects whether it is normal or

anomalous, based on the pre-constructed models.

The features used in the training phase and in the actual detection phase are

depicted in Table 5.24.

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 112

TCP/IP Layer Protocol Feature

Network
Interface ARP

ARPRequests
ARPResponses
ARPSourceIP
ARPDestinationIP

Internet

ICMP

ICMPQueryReq
ICMPQueryRes
ICMPSourceIP
ICMPDestinationIP
ICMPConnections

IGMP
IGMPPackets
IGMPMulticastP
IGMPUnicastP

– LAND

Transport

TCP
TCPPackets
TCPConnections
TCPServices

UDP
UDPPackets
UDPConnections
UDPServices

Application

DNS

DNSRequests
DNSResponses
DNSConnections
DNSMulticastD
DNSUnicastD
DNSNR

NBNS

NBNSRequests
NBNSResponses
NBNSConnections
NBNSMulticastD
NBNSUnicastD
NBNSNR

LLMNR

LLMNRRequests
LLMNRResponses
LLMNRConnections
LLMNRMulticastD
LLMNRUnicastD
LLMNRNR

Table 5.24: Global Network-level Anomaly Features

The features were calculated by processing Network-level traffic on a minute

basis as follows:

ARPRequests Number of ARP request packets.

ARPResponses Number of ARP response packets.

ARPSourceIP Number of distinct ARP source addresses.

ARPDestinationIP Number of distinct ARP destination addresses.

ICMPQuery Number of ICMP query packets.

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 113

ICMPQueryReq Number of ICMP query request packets.

ICMPQueryRes Number of ICMP query response packets.

ICMPSourceIP Number of distinct ICMP source addresses.

ICMPDestinationIP Number of distinct ICMP destination addresses.

ICMPConnections Number of ICMP connections.

IGMPPackets Number of IGMP packets.

IGMPMulticastP Number of multicast IGMP packets.

IGMPUnicastP Number of unicast IGMP packets.

LAND A categorical field indicating a LAND attack.

TCPPackets Number of TCP packets.

TCPConnections Number of TCP connections.

TCPServices Number of TCP services.

UDPPackets Number of UDP packets.

UDPConnections Number of UDP connections.

UDPServices Number of UDP services .

DNSRequests Number of DNS request packets.

DNSResponses Number of DNS response packets.

DNSConnections Number of DNS connections.

DNSMulticastD Number of distinct DNS multicast destination addresses.

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 114

DNSUnicastD Number of distinct DNS unicast destination addresses.

DNSNR InsideSniffer Attack categorical indicator, if a DNS address to name

resolution is made.

NBNSRequests Number of NBNS request packets.

NBNSResponses Number of NBNS response packets.

NBNSConnections Number of NBNS connections.

NBNSMulticastD Number of distinct NBNS multicast destination addresses.

NBNSUnicastD Number of distinct NBNS unicast destination addresses.

NBNSNR InsideSniffer Attack categorical indicator, if a NBNS address to name

resolution is made.

LLMNRRequests Number of LLMNR request packets.

LLMNRResponses Number of LLMNR response packets.

LLMNRConnections Number of LLMNR connections.

LLMNRMulticastD Number of distinct LLMNR multicast destination addresses.

LLMNRUnicastD Number of distinct LLMNR unicast destination addresses.

LLMNRNR InsideSniffer Attack categorical indicator, if a LLMNR address to

name resolution is made.

5.4.2 Local Host-level Features

In this context, we designed and calculated session-wise features. Unlike Global

Anomaly detection, we create session-based thresholds of 27 features; Table 5.25.

5.4. NETWORK TRAFFIC TEMPORAL PROCESSING MODULE 115

During the training phase, we use the same data as in Global Anomaly ID, but

here we produce session-wise host-related data records, where each data record

represents the traffic of individual hosts. We thoroughly explain the concept of

Packet Capture Sessions in the next chapter.

Out of these records we extract and use only the normal ones. For each designed

feature, we search through the feature values within the extracted normal

data records and we choose the maximum value. Thus, we end up having 27

thresholds that represent the maximum normal behavior of individual host,

Table 5.25.

TCP/IP Layer Protocol Feature

Network
Interface ARP

Destinations Per Source
Requests Per Destinations
Requests Per Source
Responses Per Sources
Responses Per Destination

Internet

ICMP

Destinations Per Source
Requests Per Destinations
Requests Per Source
Responses Per Sources
Responses Per Destination

IGMP
Multicast Packets Per Second
Unicast Packets Per Second

– LAND Indicator

Transport

TCP
TCP Packets
TCP Connections
TCP Services

UDP
UDP Packets
UDP Connections
UDP Services

Application
DNS DNS NR

NBNS NBNS NR
LLMNR LLMNR NR

Table 5.25: Local Host-level Anomaly Features

During the detection phase, once a minute is classified as anomalous, we

extract the traffic of each of its sources and perform a simple comparison

between the minute calculated host features and the pre-constructed normal

thresholds.

Chapter 6

Network Traffic Generation

The performed analysis of attacks and existing intrusion detection datasets has

led us to the conclusion that we need to generate new datasets that represent

network traffic using an extended set of features. In particular, a network traffic

data should be described using our proposed multi-perspective set of features.

Thus, we have decided to build our own environment for data generation

purposes. This has allowed us to design such an environment ‘from scratch’

and equip it with methods for generating network traffic representing different

normal, anomalous, and attack scenarios.

In this chapter, we explain the main aspects of this environment: network

traffic generation, and data capturing, Section 6.2; as well as the generated data,

Section 6.3.

6.1 Network Environment

We have designed and implemented a network of eight devices to perform

intrusion detection experiments. The devices are connected to a main switch

with port-mirroring capabilities, which is consequently connected to a router

that connects the network to the Internet. A mirroring option of the switch is

116

6.2. NETWORK TRAFFIC GENERATION 117

used for monitoring purposes; it copies all network traffic passing through the

switch to a mirror port. Our implemented IDS is connected to this port. In other

words, the switch delivers a copy of the whole network traffic to a network card

of IDS.

In the normal capture mode, network cards monitor network traffic data and pick

up data packets by investigating the source and destination addresses of each

packet. If one of these addresses is the address of a given network card, the card

‘takes’ this packet from the traffic.

In order to allow the IDS to capture all traffic, also the one not directed

towards its network card, the IDS’s network card capture mode has to be set to

the’promiscuous’ mode. Thus, all the traffic in a network can be captured by the

IDS’s network card. A software system able to capture and process the captured

network traffic data has been presented in Chapter 5.

We use this built test-bed network environment to perform various experiments,

some of which include capturing a normal network traffic data, while others

include capturing intrusive network traffic data. Additionally, some experiments

contain intrusive data embedded within normal traffic.

6.2 Network Traffic Generation

In this section we explain how we generate network traffic data representing

normal and attack network conditions. Also, we provide an explanation of a

concept of packet capture sessions.

6.2. NETWORK TRAFFIC GENERATION 118

6.2.1 Packet Capture Sessions

In our context of capturing network traffic, we use a concept of ’Packet Capture

Session’. A capture session is a name given to a single session of our capturing

software (Chapter 5) performed over a user-defined duration. We categorize

packet capture sessions into the following classes:

• Normal Packet Capture Sessions that contain a normal, i.e., attack free,

network traffic;

• Attack Packet Capture Sessions that contain an attack traffic only;

• Overlay Packet Capture Sessions that contain both attack and normal

traffic; this type of sessions are the most realistic intrusion scenarios due to

the fact that attackers try to hide or conceal their intrusive activities within

a normal network traffic making attacks difficult to detect.

Our intention of adopting the concept of Session is to have time-independent

packet capture intervals. Sessions allow us to focus on a specific type of network

traffic pattern. This provides us with the ability to investigate different network

traffic patterns within several networking scenarios without binding ourselves

to a specific time duration. Thus, most of our Normal Packet Capture Sessions

would last for hours at a time, contrarily, some Attack Packet Capture Sessions

last for several minutes or seconds, while Overlay Packet Capture Sessions are

relatively long sessions that include both normal and attack traffic. As the result,

we have sessions that contain up to 73,257 packets, and others containing as low

as 31 packets. Table 6.1 demonstrates session-based network traffic statistics.

6.2. NETWORK TRAFFIC GENERATION 119

Overall
Sessions Criteria

Session Types
Normal (52) Attack (77) Overlay (62)

191
Packets: 2,090,820 1,219,604 138,658 732,558
Bytes: 623.2 Mbyte 427.6 Mbyte 10.6 Mbyte 185 Mbyte

Durations
88:02 Hr
5282 min

63:13Hr
3793 min

4:09 Hr
249 min

20:40 Hr
1240 min

Table 6.1: Statistics of Network Traffic Sessions

6.2.2 Network Traffic Data Sets

In the presented work, any network traffic data collected with different ’Packet

Capture Sessions’ is divided into three different datasets: Training, Testing, and

Evaluation, Table 6.2.

Dataset Sessions Packets
Duration

Hr Min

Training Dataset
52 Normal 1,219,604 63:13 3793
77 Attack 138658 4:09 249

50 Overlay 505377 12:43 763
Sub Total: 179 1,863,639 80:05 4805

Testing Dataset 5 Overlay 69,761 3:37 217
Evaluation Dataset 7 Overlay 157,420 4:20 260

Overall: 191 2,090,820 88:02 5282

Table 6.2: Statistics of Collected Network Traffic

Each dataset can be perceived as a table. The table’s rows (data records)

represent data objects, while the columns represent attributes (or features) that

describe a given data object.

For example, in Table 6.2, the Training dataset includes data objects that have

been generated during normal, attack, and overlay sessions, while the Testing

and Evaluation datasets include only data objects from overlay sessions.

6.2.3 Data Generation

A process of generation of network traffic data focuses on normal and attack

traffic. For the case of all intrusion detection research we investigated, normal

traffic is generated using one of two approaches:

6.2. NETWORK TRAFFIC GENERATION 120

• application of traffic generation tools producing traffic inside a network;

• collection of real life traffic generated by hosts of a network.

The first approach based on generation tools has the following deficiencies:

1. The tools suppose to mimic a traffic of the entire network, including unicast

and multicast modes; however, they are not able to fully simulate a normal

traffic, they can only imitate limited network traffic patterns that could be

quite different when compared to real traffic patterns; there is not much

information about distribution of different type of packets in a traffic data;

2. Traffic patterns generated by these tools is well known, thus it is easy to

distinguish the patterns and separate them from an attack traffic;

3. Traffic generated using these tools does not contain a full information about

a real network traffic; for example, there is no information related to lower

and upper layers of a protocol stack;

4. The tools generate error-free traffic that is not a true representation of a

real-life network traffic.

The second approach of generating network traffic uses actual hosts and has only

’one’ disadvantage: a problem of confidentiality. After capturing the traffic, there

is an ethical obligation to protect privacy of the captured data. This situation

is clearly observed when the captured data is formatted as Intrusion Detection

dataset and publicly provided to researchers in the field.

As the result, we have selected the second approach for generation of datasets.

In our case, we have performed multiple browsing activities on hosts of our

implemented network. In such a way, we have captured a normal traffic. For

an attack traffic representing a selected set of seven attacks, the following tools

have been used to simulate them:

6.3. PROPOSED INTRUSION DETECTION BENCHMARK DATASET 121

• Hyenae [78] is a platform independent tool used to generate DOS attacks;

we have used it to simulate:

1. ICMP Flood attack;

2. IGMP Flood attack;

3. LAND attack;

• Ostinato [79] is a traffic generator tool we have used to simulate Smurf

attack;

• Solarwinds Ping Sweep [80], Angry IP Scanner [81], and Advanced IP

Scanner [82] are tools for scanning for connected hosts, we use them to

execute IPSweep attack;

• Solarwinds DNS Audit [83], Solarwinds DNS Who Is Resolver [84], and

NetBScanner [85] are tools for scanning for computer names of a given IP

Address range, we use them to execute InsideSniffer attack;

• Finally, Nmap (”Network Mapper”) [86] is a scanning tool used to scan all

ports of a computer system, we use it to execute PortScan attack.

These tools have been used not only with default settings, but also with various

settings allowing us to generate multiple patterns for each attack.

6.3 Proposed Intrusion Detection Benchmark

Dataset

As it has been explained, the anomalous and attack network traffic data we

process includes feature values calculated over a one-minute interval. Also,

we have mentioned earlier (Section 6.2.2) that three datasets are used in our

6.3. PROPOSED INTRUSION DETECTION BENCHMARK DATASET 122

research. We make this data available to public to enable other researchers of

Intrusion Detection system to use them as a benchmark dataset.

The proposed benchmark dataset has three aspects that do not exist in any other

Intrusion Detection dataset.

The first aspect is related to data records. They represent a network traffic

aggregated over a period of one minute. No other Intrusion Detection dataset

provides such a traffic representation. Even if there are some Intrusion Detection

research projects that process a network traffic represented temporally, the

researchers neither provide a corresponding dataset nor they use new features,

they abided by the features proposed in KDD. Most of the similar Intrusion

Detection datasets represent data records as in a form of information about

connections or packets, not time-wise. The second novel aspect is a set of

features describing data traffic. They are network independent as they do not

relate to a specific network topology. Any researcher can generate his own

traffic, captures it, processes it, and constructs the features we proposed. The

features are designed based on a comprehensive multi-perspective description of

network traffic. Though the proposed benchmark contains some features which

are similar to KDD and NSL-KDD, it also contains new features, namely: Network

Interface features, and application layer features. No other Intrusion Detection

dataset contains these features, even KDD and NSL-KDD datasets.

One might argue that the ’content’ features of KDD and NSL-KDD are application

layer features. But, they are based on the network used to generate KDD.

KDD contains ’temporal’ features, while our benchmark includes temporal

information about traffic. Compared to KDD, the only thing that is missing

in our benchmark dataset is ’host’ features. As we previously mentioned, our

benchmark represents overall traffic of a network, not a traffic of individual

hosts. The third and final aspect is realism concerning attacks. We process

6.3. PROPOSED INTRUSION DETECTION BENCHMARK DATASET 123

network traffic in a temporal manner. In real life networking scenarios, multiple

attacks can occur simultaneously, thus multiple attacks can be present within

one minute, i.e., within one data record. Unlike any other Intrusion Detection

dataset that provides one label for each data record, our dataset provides multiple

attack labels for each individual data record.

Our proposed benchmark dataset can support both: Anomaly Detection and

Signature Detection. It is an aggregation of all three datasets (Training, Testing,

and Evaluation). It collectively contains 5282 data records: 4818 normal data

records, and 464 anomalous data records. A single label designates normal

and anomalous records, there are also seven labels – one corresponding to

each attack – that signifies attack classes. All of these labels can be used

in classification. Table 6.3 represents the distribution of attacks within 464

anomalous data records.

Attack Instances

ICMP Flood 121
IGMP Flood 49

LAND 56
Smurf 22

IPSweep 150
InsideSniffer 124

PortScan 11

Table 6.3: The Distribution of Attacks within Benchmark Dataset

The proposed benchmark dataset is composed of 37 features that describe

each one-minute data record. The features span over four TCP/IP layers, and are

related to eight protocols, Table 6.4.

6.3. PROPOSED INTRUSION DETECTION BENCHMARK DATASET 124

TCP/IP Layer Protocol Feature

Network
Interface ARP

ARPRequests
ARPResponses
ARPSourceIP
ARPDestinationIP

Internet

ICMP

ICMPQueryReq
ICMPQueryRes
ICMPSourceIP
ICMPDestinationIP
ICMPConnections

IGMP
IGMPPackets
IGMPMulticastP
IGMPUnicastP

– LAND

Transport

TCP
TCPPackets
TCPConnections
TCPServices

UDP
UDPPackets
UDPConnections
UDPServices

Application

DNS

DNSRequests
DNSResponses
DNSConnections
DNSMulticastD
DNSUnicastD
DNSNR

NBNS

NBNSRequests
NBNSResponses
NBNSConnections
NBNSMulticastD
NBNSUnicastD
NBNSNR

LLMNR

LLMNRRequests
LLMNRResponses
LLMNRConnections
LLMNRMulticastD
LLMNRUnicastD
LLMNRNR

Table 6.4: Features of Benchmark Dataset

Chapter 7

Anomaly Intrusion Detection

Identification of anomalous network traffic can be done using different

classifiers. They are built with Machine Learning (ML) techniques and available

network traffic data. Besides, we used, designed, implemented, and utilized

threshold-based techniques. Multiple traffic models can be used to classify a

network traffic. In general, models are of different quality. Their prediction

capabilities differ depending on the applied construction method. Additionally,

in most cases a binary YES/NO classification is obtained, but we tried to depart

from that crisp classification to probabilistic one. Our proposed Anomaly

Detection context investigates minute-wise network traffic from a scope-centric

perspective; global network-level scope (next section) and local host-level scope

(Section 7.2).

7.1 Global network-level Machine Learning-based

Anomaly Detection

Our proposed Global network-level Machine Learning-based minute-wise

Anomaly Detection approach is composed of five classifiers. Each classifier

125

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 126

provides a classification which is associated with a belief mass that is perceived as

a level of confidence in the obtained classification. Belief masses are determined

based on prediction quality of classifiers. The classification results and belief

masses of individual classifiers are used to obtain a final classification result. A

degree of confidence in this result is determined.

7.1.1 Implementation

We propose a solution that uses elements of evidence theory, the TBM in

particular, to integrate classification results from multiple classifiers and to

determine a level of confidence in the aggregated result. We postulate, that

application of multiple classifiers increases prediction accuracy. Each classifier

is constructed using a different ML method which means that each classifier

‘focuses’ on different aspects of data. Therefore, aggregation of results, or aspects,

obtained from multiple classifiers should lead to better classification results.

An aggregation process is realized via the usage of evidence theory. We treat

each classification result as an evidence supporting prediction of a normal or

anomalous state of a network. A level of trust in that evidence is directly

associated with the quality of prediction of a given classifier. Our proposed

approach is illustrated in Figure 7.1. As it can be seen, each classifier is associated

with a belief mass (bbm) that represents a level of confidence in its prediction

ability. In general, different classification performance measures can be used

as a confidence level: accuracy of prediction, precision, recall, sensitivity, or

specificity.

When a given classifier makes a prediction, this predication is ‘weighted’ with

the classifier’s bbm. Each single prediction of each classifier provides a bbm.

The obtained belief masses are used to determine a final confidence level in

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 127

Figure 7.1: Architecture of Proposed Global Network-level Machine
Learning-based Anomaly Detection Approach

the classification outcome. In the approach presented here, we use the TBM

to calculate probability of each outcome. However, other methods of evidence

theory or belief revision can also be used.

7.1.1.1 Determining bbm Values

The key component of the proposed approach is a process of determining values

of bbm’s that are associated with each classification result. Our idea is to ‘link’

belief masses – treated as degrees of trust in predictions – with levels of quality

of classifiers. We use specificity as a measure of prediction quality. Specificity

represents a percentage of anomalous network traffic that has been recognized

as such, i.e., how good a classifier is in recognizing anomalous conditions.

We propose a three-stage process for estimating prediction abilities of classifiers

and representing them as belief masses. At the first stage, belief masses

are determined based on the classification results obtained during a training

process, we named them bbmTR; at the second stage, testing data set is used

and new values of masses, bbmTS, are obtained; at the third stage, both training

bbmTR’s and testing bbmTS’s are combined to determine belief masses, bbmUPd’s,

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 128

that are more realistic estimations of the classifiers’ performance. For the third

stage, we investigate different options of calculating bbmUPd’s. The three options

are:

Option A: using Bernoulli’s Combination Rule;

Option B: taking only bbmTR;

Option C: averaging bbmTR’s and bbmTS’s.

7.1.1.2 Integration of Classification Results

The architecture of the system, Figure 7.1, shows that its output is the result

of the TBM. The module works in the following way. When a new data point

representing network traffic enters the system, it is sent to all classifiers. The

output of each classifier is weighted with its bbmupdate
C value (later, C is replaced

with an abbreviation of a specific classifier).

As we have mentioned earlier, each mass represents a degree of confidence

in the classifier’s classification outcome, this point resembles the credal level

of TBM. The classifiers’ bbmupdate
C values are input to the TBM. There are two

alternatives of TBM’s BetFrame: Normal Network Status, Anomalous Network

Status (Equation 2.13). Once the TBM processes bbmupdate
C ’s, each alternative is

associated with a pignistic probability BetP (Section 2.1.3). The one with the

highest value, out of BetP(N) and BetP(A), is treated as the output of the system.

7.1.1.3 Construction of Classifiers

Classifiers used in this work are built using four Machine Learning (ML) methods,

while the fifth classifier is constructed using a simple statistical analysis of the

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 129

data. The ML based classifiers are: K-means, J48 Decision Tree, Support Vector

Machine, and Logistic Regression. All of them have been built using WEKA. The

training data contains 4407 normal and 398 anomalous data records (points);

while the testing data contains 153 normal and 64 anomalous data records

(Section 6.2.2).

Machine Learning based Classifiers The performance of the classifiers for both

training and testing data are presented in Table 7.1. The table shows

specificity values obtained for the training data – bbmTR in the first row, and

specificity values for the testing data – bbmTS in the second row. A quick look

at the content indicates that K-means classifier has the worst performance,

while DT has the highest values of performance measures.

Threshold-based Classifier In addition to ML classifiers, we have developed

a statistical based model. Among a number of options and tries the

best classification has been obtained for a ’maximum-based model’. The

classifier, hereafter called MAX-based classifier, is a feature-based model

that is a collection of threshold values that are maximum values of features

over a period of one minute.

As in the case of ML-based classifiers, we have evaluated the performance of

MAX-based classifier using the same training and testing data sets, Table 7.1. As

it can be seen, the performance of this classifier is very good, if not the best. Only

the values obtained for DT classifier are comparable.

specificity for: K-Means DT SVM LR MAX
training data – bbmTR 0.588 0.834 0.874 0.731 0.839
testing data – bbmTS 0.406 0.906 0.625 0.891 1.000

Table 7.1: Specificity Values – bbm’s – for Training and Testing Data

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 130

7.1.2 Evaluation

The evaluation of the proposed approach is presented using two aspects of

the approach’s performance: overall classification, and analysis of misclassified

cases. The misclassified cases are defined as the ones for which the TBM’s BetP

values for each alternative, i.e., BetP(N) and BetP(A) exceed a threshold. Here, the

value of threshold is set to 0.1.

The evaluation dataset contains 182 normal and 78 anomalous data records

(Section 6.2.2). The classification results of each individual classifier for this

data are presented in Table 7.2 (subscript T represents the TRUE – original

– network status, while P means the PREDICTED status). The values of

performance measures, such as accuracy (AC), specificity (SP), and sensitivity

(SN) are included. As we can see, DT seems to provide the best performance,

while K-Means the worst, meanwhile, it is a bit surprising to see an average

performance of SVM. Let us take a look at the performance of the proposed

approach.

K-Means DT SVM LR MAX

NP AP NP AP NP AP NP AP NP AP

NT 53 129 182 0 181 1 166 16 179 3
AT 12 66 3 75 37 41 8 70 2 76

AC: 45.8 AC: 98.8 AC: 85.4 AC: 90.8 AC: 98.1
SP: 84.6 SP: 96.2 SP: 52.6 SP: 89.7 SP: 97.4
SN: 29.1 SN: 100.0 SN: 99.45 SN: 91.2 SN: 98.4

Table 7.2: Performance of Classifiers for Evaluation Data

7.1.2.1 System Performance

As it has been explained in Section 7.1.1.1, we use three options for determining

values of bbmUPd. We show the performance of the system for each of them.

Option A bbmUPd=Bern: This approach uses the Bernoulli’s Rule of Combination

that is a special case of Dempster-Shafer Rule of Combination. Table 7.3

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 131

illustrates belief masses calculated based on bbmTR and bbmTS. The

performance of the proposed approach with bbmUPd=Bern for the evaluation

dataset is illustrated in Table 7.4. The values of performance measures are:

accuracy – 96.92%, specificity – 94.87%, sensitivity – 97.80%.

Option B bbmUP=Train: Table 7.3 contains belief masses associated with each

classifier. These masses are the ones obtained for the training dataset –

bbmTR. The proposed system with masses bbmUPd=Train provides the results

shown in Table 7.4. The classification results are: accuracy of 98.46%, while

specificity and sensitivity are 96.15% and 99.45%, respectively.

Option C bbmUPd=Avg: Another approach for determining the bbmUPd’s used here

is a simple average of bbmTR and bbmTS, Table 7.3. The results of

classification are illustrated in Table 7.4. The values of performance

measures are: accuracy of 99.23%, additionally specificity equals 97.43%,

and sensitivity is 100.00%.

The presented results provide a very interesting interpretation of investigated

options used to combine individual bbm’s. It seems that the simple averaging

leads to the best prediction results, while the Bernoulli’s rule of combination to

the worst. A quick look at the values of bbmUPd=...s, Table 7.3, shows that lower

values of bbm’s give better results. It seems the Bernoulli’s rule substantially

increases values of bbm’s and such situation leads to a number of situations where

TBM struggles to provide any (meaningful) values of pigmistic probabilities (see

next section).

K-Means DT SVM LR MAX
Option A: bbmUPd=Bern 0.76 0.98 0.95 0.97 1.00
Option B: bbmUPd=Train 0.59 0.83 0.87 0.72 0.84
Option C: bbmUPd=Avg 0.50 0.87 0.75 0.80 0.92

Table 7.3: bbmUPd – Updated Belief Masses

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 132

bbmUPd=Bern bbmUPd=Train bbmUPd=Avg

NP AP NP AP NP AP

NT 178 4 181 1 182 0
AT 4 74 3 75 1 77

AC: 96.92 AC: 98.46 AC: 99.6
SN: 97.80 SN: 99.45 SN: 100
SP: 94.87 SP: 96.15 SP: 98.7

Table 7.4: Classification Results – the Approach with:

A quick look at the results indicates that Option C, bbmUPd=Avg, produces the

best classification results.

7.1.2.2 Analysis of Misclassified Cases

The proposed approach has resulted in some misclassifications, Table 7.5,

Table 7.6, and Table 7.7. For the case with bbmUPd=Bern, the approach has four

false positives (FP’s) and four false negatives (FN’s), with bbmUPd=Train it has three

FP’s and and one FN, while the approach with bbmUPd=Avg only one FP’s and no

FN.

Let us take a closer look at the presented cases. For bbmUPd=Bern, Table 7.5, we

include two examples that are representative of a total of eight misclassifications.

Firstly, let us look at the data point org-N: the classifiers K-Means, DT, and SVM

classify the point properly. However, both LR and MAX have misclassified it. Both

of them have large values of bbmUPd’s that are ’balanced’ by other classifiers – this

results in both BetP(N) and BetP(A) equal to 0.

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-N pred-N 0.76 0.98 0.95
0 0pred-A 0.97 1

org-A pred-N 0.98 1
0 0pred-A 0.76 0.95 0.97

Table 7.5: Sample of Misclassified Data Points: System with bbmUPd=Bern

Secondly, the data point org-A. As in the previous case, two classifiers – DT

and MAX – have classified this point as Normal, and again their large values

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 133

of bbmUPd’s are balanced by bbmUPd’s of other classifiers and both BetP(N) and

BetP(A) are again equal to 0. In those cases, we can interpret such a behaviour of

the network as suspicious, and that would mean a need for further investigation.

When the approach is implemented using bbmUPd=Train, we have a total of

four misclassifications. All cases are shown in Table 7.6.

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-A pred-N 0.59 0.87 0.72
0.642 0.358pred-A 0.83 0.84

org-A pred-N 0.59 0.83 0.87
0.830 0.170pred-A 0.72 0.84

org-N pred-N 0.83 0.72 0.84
0.357 0.643pred-A 0.59 0.87

org-A pred-N 0.87 0.84
0.500 0.500pred-A 0.59 0.83 0.72

Table 7.6: Misclassified Data Points: System with bbmUPd=Train

The first two cases are for the point org-A. Here, we have a set of scenarios

with three classifiers predicting data points as Normal, while two as Anomalous.

The strong confidence of the two classifiers has created a situation where TBM

provides non-zero values for both BetP(N) and BetP(A).

For the third case – point org-N, the strongest classifier SVM, with a help of

K-Means, is able to ‘force’ the TBM to assign a higher value to BetP(A). The last

case – point org-A, shows a ’draw’ between BetP(N) and BetP(A) – a combination

of strength, i.e., bbmUPd values, and a number of classifiers identifying each

alternative creates a balance between BetP() values.

The best performance has been obtained for the approach with bbmUPd=Avg. It

has only misclassified one org-A data point, Table 7.7. The two classifiers, LR

and MAX have been ’against ’ the other three. The highest value of bbmUPd for

MAX has counterweighted the bbmUPd’s of other classifiers, and this has resulted

in nearly equal probability values: BetP(N) = 0.5031 and BetP(A) = 0.4969.

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 134

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-A pred-N 0.80 0.92
0.5031 0.4969pred-A 0.50 0.87 0.75

Table 7.7: Misclassified Data Points: System with bbmUPd=Avg

To Summarize, our proposed Global network-level Machine Learning-based

minute-wise anomaly Intrusion Detection approach presents description and

performance results for detecting anomalous network traffic. The approach

aggregates classification results of multiple classifiers using elements of evidence

theory and provides better results than that of a single classifier. Different

methods of combining belief masses, representing confidence levels in classifiers

obtained with different datasets, are investigated.

Based on the obtained classification results, we can state that a simple averaging

of belief masses obtained using different datasets provides the best results. It

seems that performance of the approach is at its best when confidence levels –

i.e., belief masses – associated with individual classifiers are moderate, Table 7.3

– row three.

The application of evidence theory gives an opportunity to identify network

traffic that shows symptoms of suspicious network behaviour. Even in all the

cases of misclassification, our proposed evidence theory based approach has

provided, up to some degree, indications that the network traffic is suspicious.

7.1.3 Illustrative Example

Having explained our proposed approach and its related evaluation, we

implemented it using bbmUPd=Avg and in this section we want to demonstrate an

example of how we detect anomalies within network traffic. Table 7.8 illustrates

a minute network traffic data record.

7.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED ANOMALY DETECTION 135

TCP/IP Layer Protocol Feature Minute

Network
Interface ARP

ARPRequests 442
ARPResponses 3
ARPSourceIP 4
ARPDestinationIP 150

Internet

ICMP

ICMPQueryReq 52
ICMPQueryRes 0
ICMPSourceIP 1
ICMPDestinationIP 2
ICMPConnections 47

IGMP
IGMPPackets 10
IGMPMulticastP 10
IGMPUnicastP 0

– LAND 0

Transport

TCP
TCPPackets 140
TCPConnections 12
TCPServices 3

UDP
UDPPackets 97
UDPConnections 19
UDPServices 2

Application

DNS

DNSRequests 0
DNSResponses 0
DNSConnections 0
DNSMulticastD 0
DNSUnicastD 0
DNSNR 0

NBNS

NBNSRequests 0
NBNSResponses 0
NBNSConnections 0
NBNSMulticastD 0
NBNSUnicastD 0
NBNSNR 0

LLMNR

LLMNRRequests 0
LLMNRResponses 0
LLMNRConnections 0
LLMNRMulticastD 0
LLMNRUnicastD 0
LLMNRNR 0

Table 7.8: Minute Network Traffic Data

This minute network traffic data is passed to every classifier, which in turn

processes the data and gives a prediction whether it is normal or anomaly. The

predictions of classifiers are weighted using bbmUPd=Avg and passed to TBM as

inputs. TBM takes these weighted predictions and computes a probabilistic

outcome.

Table 7.9 illustrates the classification result of data given in Table 7.8. The

first column indicates the original class of the minute data record. The second

column indicates the prediction of classifiers; pred-N indicates that the classifier

classifies the data as normal, and pred-A signifies that the classifiers classifies the

data as anomaly.

7.2. LOCAL HOST-LEVEL THRESHOLD-BASED ANOMALY DETECTION 136

Class Prediction K-Means DT SVM LR MAX BetP(A) BetP(N)

Anomaly pred-N – – 0.75 – –
0.9962 0.0038pred-A 0.5 0.87 – 0.8 0.92

Table 7.9: Results of Classifiers

The next 5 columns illustrate the weighted predictions of the classifiers,

whether they predict the data as normal (row 1) or anomaly (row 2). The last two

columns represent the classification probabilistic outcome of TBM; BetP(A) and

BetP(N) respectively. The result of the TBM indicate the data has been correctly

identified as anomaly with 99.62% probability.

7.2 Local Host-level Threshold-based Anomaly

Detection

The second part of our Anomaly ID context involves the detection of anomalies

in the traffic of individual hosts, as explained in our proposed system (Chapter 4).

This Local Host-level detection approach is not applied (invoked) unless the

Global Network-level approach detects an anomaly. Local Host-level detection

has 2 main advantages:

Gather Information about detected Anomaly: At this point, an anomaly is

detected – surely – but we do not know anything about it. We do not know,

for example, which protocol was used to create this anomaly? does this

anomaly relate to packets or connections? So, we need this step to gather

quantifiable information about the detected anomaly.

Find the sources of Anomaly: We postulate, that the global indication of

anomaly is the result of one or more local anomalies that are executed

by one or more hosts simultaneously. The existence of an anomaly is the

7.2. LOCAL HOST-LEVEL THRESHOLD-BASED ANOMALY DETECTION 137

collective aggregation of one or more host anomalies. Thus, we need to

know the anomalous hosts.

In Section 3.5 and Appendix A we represent the proposed network anomaly

profile. We explained how we designed its features and how their values are

calculated. We demonstrated our proposed Host-level features in Section 5.4.2,

we notice that these features are the host-scope features of our proposed network

profile. We use these features to detect Local Host-level anomalies. Table 7.10

represents these features and their respective threshold values.

TCP/IP Layer Protocol Feature Value

Network
Interface ARP

Destinations Per Source [1,6]
Requests Per Destinations [1,365]
Requests Per Source [1,892]
Responses Per Sources [1,353]
Responses Per Destination [4,582]

Internet
ICMP

Destinations Per Source [0,1]
Requests Per Destinations [0,4]
Requests Per Source [0,4]
Responses Per Sources [0,4]
Responses Per Destination [0,4]

IGMP
Multicast Packets Per Second [0,0.1]
Unicast Packets Per Second [0,0]

– LAND Indicator 0

Transport

TCP
TCP Packets [284,18874]
TCP Connections [8,56]
TCP Services [1,5]

UDP
UDP Packets [132,534]
UDP Connections [31,144]
UDP Services [1,2]

Application
DNS DNS NR 0

NBNS NBNS NR 0
LLMNR LLMNR NR 0

Table 7.10: Local Host-level Anomaly Features and Values

Table 7.10 is the same as Table 5.25 that we presented in Section 5.4.2, we

just added the calculated feature values. These feature values represent the

maximum boundaries of normal traffic for a given host, i.e., thresholds. Thus,

the traffic of anomalous hosts will violate one or more of these features.

These values are based on session-wise calculated numbers, as explained in

Section 3.5. Thus, an important question arises here that might destroy the

foundation of the proposed Local Host-level detection approach. How do we use

7.2. LOCAL HOST-LEVEL THRESHOLD-BASED ANOMALY DETECTION 138

session-inferred values and compare them to minute-inferred ones? The answer

to this question is simple, the concept of Packet Capture Sessions, explained in

Section 6.2.1, is adopted to provide time-independent packet capture intervals.

Therefore, the traffic of a session can be compared to the traffic of one minute,

since they are both intervals, and both are not bound by a specific time unit. In

addition, within our collected data we have sessions whose duration ranges from

15 seconds to 4 hours. To summarize, the process of comparing session-inferred

thresholds to minute-calculated numbers is valid.

Once minute network traffic data record is detected as anomaly (by Global

Network-level), we perform host-level investigation of minute traffic, Table 7.11.

Feature Value 192.168.1.254 192.168.1.65 192.168.1.66 192.168.1.67 192.168.1.68 192.168.1.69
ARP Destinations Per Source [1,6] - 1 - 1 1 149

ARP Requests Per Destinations [1,365] - - - 1 1 3
ARP Requests Per Source [1,892] - 1 - 1 1 439

ARP Responses Per Sources [1,353] - - - 1 1 -
ARP Responses Per Destination [4,582] - - - 1 1 1
ICMP Destinations Per Source [0,1] - - - - - 2

ICMP Requests Per Destinations [0,4] - - - - - 51
ICMP Requests Per Source [0,4] - - - - - 52

ICMP Responses Per Sources [0,4] - - - - - -
ICMP Responses Per Destination [0,4] - - - - - -

IGMP Multicast Packets Per Second [0,0.1] 0.03 0.03 - 0.05 0.016 0.03
IGMP Unicast Packets Per Second [0,0] - - - - - -

LAND Indicator 0 - - - - - -
TCP Packets [284,18874] 30 36 - 34 - -

TCP Connections [8,56] - - - 6 - -
TCP Services [1,5] - - - 1 - -
UDP Packets [132,534] - 1 - 18 - -

UDP Connections [31,144] - 1 - 18 - -
UDP Services [1,2] - 1 - 1 - -

DNS NR 0 - - - - - -
NBNS NR 0 - - - - - -

LLMNR NR 0 - - - - - -

Table 7.11: Host Traffic Example

Table 7.11 illustrates host-level investigation for the traffic of the minute

example in Section 7.1.3. The table demonstrates Host-level features, their

thresholds, the sources of traffic within the minute, and their related traffic. We

can notice that the the aggregation of host traffic sums up to the minute traffic in

Table 7.8.

Furthermore, it is clear that the traffic of host ’192.168.1.69’ is anomalous and

violates normal thresholds of 1 ARP feature and 3 ICMP features. We end up

7.2. LOCAL HOST-LEVEL THRESHOLD-BASED ANOMALY DETECTION 139

having Table 7.12 as result of Local Host-level Anomaly Detection.

IP Address Violated Protocols Violated Layers

192.168.1.69
ARP

ICMP
Network Interface

Internet

Table 7.12: Local Host-level Detection Result

One final note before we conclude this chapter, we can compare Table 7.12

to Table 3.13 and try to map this detected anomaly to an attack. We will find

that the anomaly perfectly matches IPSweep attack, but this anomaly can also

indicate ICMP Flood attack, since ICMP is violated (specifically, ICMP request

packets). To conclude our Anomaly Detection context, we have detected an

anomaly – Globally – and then we performed local Anomaly ID to gather more

information. We now know which host is the source of the anomaly, what

protocols were violated and which layers. We also know that the anomaly relates

to ARP destinations, ICMP destinations, and ICMP request packets.

Chapter 8

Signature Intrusion Detection

There are multiple approaches used to identify network attacks. The most

popular ones are matching traffic to attack signatures or constructing classifiers

able to detect a single or a number of attacks. In the work presented here, the

proposed Signature Detection system contains two steps:

Global Network-level Machine Learning-based Signature Detection Like in

the case of Anomaly ID, the data representing a network traffic captured

over a specified period of time – one minute in the presented work – is

used as the input to a collection of classifiers to determine if an attack has

taken place. If an attack is detected, the system goes to the next step, it

analyzes attack signatures and provides detailed information about the

attack. If an attack is not detected, the system indicates an anomalous

state of the network. We utilize a number of Machine Learning techniques

to construct classifiers: Decision Tree (DT), Logistic Regression (LR), and

Support Vector Machine (SVM). We used a modified version of Logistic

Regression called Simple Logistic (SL). Simple Logistic differs from Logistic

Regression in having a built-in attribute selection technique, which enables

it to produce better classification results than LR. Elements of Evidence

Theory as applied to aggregate the obtained classifications.

140

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 141

Attack Detection Modules Unlike global network-level scope detection of

attacks, attack detection modules utilize attack signatures to confirm and

further analyze attacks, Section 8.2. We utilize updated network-tailored

attack signatures to examine network traffic data from the points of view of

packets and connection perspectives, and to match traffic patterns to attack

signatures.

8.1 Global Network-level Machine Learning-based

Signature Detection

The proposed Global Network-level Machine Learning-based Signature

Detection approach is composed of three classifiers; DT, SL, and SVM, Figure 8.1.

We select specific features from the anomalous network traffic data that relate

to each attack according to the explanation presented in Sections 3.2 and

3.6. These features are passed to classifiers to process them and produce a

classification result.

Figure 8.1: Architecture of Global Network-level Machine Learning-based
Signature Detection Approach for Single Attack

Based on the prediction quality of each classifier, we assign belief masses

to the classification result of each individual classifier. The weighted results of

classifiers are passed to TBM as inputs, TBM in turn processes these inputs and

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 142

provides a probabilistic output that tells whether an attack exists or not. Such a

process is performed for each attack from the selected set of attacks. As the result,

we have seven TBMs, each corresponding to a single attack.

8.1.1 Implementation

Here we deal only with attacks, therefore we have extracted 322 attack data

records from the training dataset. This data is used to construct classifiers.

In essence, we do not create one classifier, for example DT, that distinguishes

between all attack classes, but seven independent DT classifiers. Each such

classifier assigns a data point to one of two classes: AttackName or NoAttack.

As the result, seven labels are assigned simultaneously for each minute data

record. Each label corresponds to one of the attacks. Each classifier is trained

for a specific attack based on 322 labeled data points. Collectively to train seven

classifiers – one for each attack – we label each data point with seven labels.

Table 8.1 depicts a few data points.

Minute
Data Record Anomaly ID

ICMP Flood
Attack

IGMP Flood
Attack

LAND
Attack

Smurf
Attack

IPSweep
Attack

InsideSniffer
Attack

PortScan
Attack

1 Anomaly NoAttack IGMP Flood LAND NoAttack NoAttack NoAttack NoAttack
2 Anomaly NoAttack NoAttack NoAttack NoAttack IPSweep NoAttack NoAttack
3 Anomaly NoAttack NoAttack NoAttack NoAttack IPSweep InsideSniffer NoAttack
4 Anomaly ICMP Flood NoAttack NoAttack NoAttack IPSweep NoAttack NoAttack
5 Anomaly ICMP Flood NoAttack NoAttack Smurf IPSweep NoAttack NoAttack

Table 8.1: Attack Label Example

The decision to have separate classifiers for each attack instead of one

classifier for all attacks has been dictated by the ability to identify multiple

attacks that can occur in the same time interval. Each data record, representing

a network traffic over one minute (in our case) can represent several attacks,

as illustrated in Table 8.1. In other words, each network traffic data record of

one minute can hold multiple attack patterns simultaneously. For an individual

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 143

attack, we need to have a high quality classifer with the capability to distinguish

a specific attack in the presence of other simultaneous attacks.

8.1.1.1 Implementation Details of Classifiers

In order to implement the Global Network-level Machine Learning-based

Signature Detection as a module to our Intrusion Detection System, we have

to embed different classifiers into our C#-based system. For the SVM, we have

installed and utilized C# libsvm library. To create a model, libsvm requires

two pieces of information: support vectors representing input data, and their

corresponding labels. Once the library libsvm is available, it is easy to obtain

needed information directly from the database and pass it to the library for

processing.

For DT and SL, we export the attack training data from the database into CSV

files. To construct these classifiers we use WEKA. Seven DTs have been produced,

one for each attack. Similarly, seven logistic functions have been generated. We

have integrated these DTs and functions with our system.

8.1.1.2 Construction of Classifiers

Once all classifiers are constructed, we determine their performance using both

Training and Testing datasets. Based on the obtained classification results, we

have calculated the performance measures to be used as belief masses associated

with each classifier, Table 8.2. The subscript T represents the TRUE – original –

type of Attack, while P means the PREDICTED type of Attack. Additionally, the

symbol A represents Attack, while NA represents NOT-Attack.

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 144

DT SL SVM

AP NAP AP NAP AP NAP

AT (368) 367 1 367 1 368 0
NAT (1886) 1 1885 1 1885 0 1886

AC: 99.9 AC: 99.9 AC: 100
SP: 99.9 SP: 99.9 SP: 100
SN: 99.7 SN: 99.7 SN: 100

(a) Performance of Classifiers with Training Dataset

DT SL SVM

AP NAP AP NAP AP NAP

AT (84) 84 0 80 4 78 6
NAT (364) 0 364 3 361 2 362

AC: 100 AC: 98.4 AC: 98.2
SP: 100 SP: 99.2 SP: 99.5
SN: 100 SN: 95.2 SN: 92.9

(b) Performance of Classifiers with Testing Dataset

Table 8.2: Performance Measures of Signature Classifiers

It is clear from the above tables that the best performance for both datasets,

is provided by DT, while SL comes next, and SVM provides a slightly lower

performance than SL.

We have tested the following options for determining belief masses using the

Evaluation Dataset:

Option A: using Bernoulli’s Combination Rule;

Option B: taking only bbmTR;

Option C: taking only bbmTS;

Option D: averaging bbmTR’s and bbmTS’s.

We have found out that the TBM integration process gives the same results with

all these options. Therefore, we adopt the Evidence Theory process and we use

Bernoulli’s Combination Rule to update belief masses.

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 145

8.1.2 Evaluation

We evaluate the performance of our proposed approach by analyzing the overall

classification of the TBM (Section 8.1.2.1) and analysis of misclassified results

(Section 8.1.2.2). The evaluation dataset contains 78 anomalous data records

(Section 6.2.2). Each record is labeled with seven labels indicating occurrence

or not of an individual attack. In total, we have 546 labels: 85 among them are

attacks, and 461 are not attacks.

The detailed performance of DT, SL, and SVM against the Evaluation dataset

and its included attacks is depicted in Tables 8.3, 8.4, and 8.5 respectively. As

before, the subscript T represents the TRUE – original – type of Attack, while P

means the PREDICTED type of Attack; the symbol A represents Attack class and

NA represents NOT-Attack. We calculated the following performance measures:

Accuracy (AC), Sensitivity (SN), Specificity, (SP), Precision (PR), and Recall (RC).

DT

AP NAP

AT (85) 84 1
NAT (461) 1 460

SN: 98.8
SP: 99.8
AC: 99.6
PR: 98.8
RC: 98.8

(a) DT Overall Performance

ICMP Flood IGMP Flood Smurf LAND

AP NAP AP NAP AP NAP AP NAP

AT (20) 19 1 AT (12) 12 0 AT (8) 8 0 AT (7) 7 0
NAT (85) 0 85 NAT (66) 0 66 NAT (70) 0 70 NAT (71) 0 71

(b) DT Performance Against Denial of Service Attacks

IPSweep InsideSniffer PortScan

AP NAP AP NAP AP NAP

AT (26) 26 0 AT (11) 11 0 AT (1) 1 0
NAT (52) 1 51 NAT (67) 0 67 NAT (77) 0 77

(c) DT Performance Against Probe Attacks

Table 8.3: Decision Tree Detailed Performance

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 146

Table 8.3a shows that DT misclassified two instances: one ’Attack’ instance

was misclassified as ’Not-Attack’, and one ’Not-Attack’ instance was misclassified

as ’Attack’. Based on Tables 8.3b and 8.3c we determine that the

misclassified ’Attack’ instance is ICMP Flood attack, and the misclassified

’Not-Attack’ instance has been classified as IPSweep attack. As we can see, the

misclassifications are related to ICMP Flood and IPSweep attacks.

SL

AP NAP

AT (85) 75 10
NAT (461) 0 461

SN: 88.2
SP: 100
AC: 98.2
PR: 100
RC: 88.2

(a) SL Overall Performance

ICMP Flood IGMP Flood Smurf LAND

AP NAP AP NAP AP NAP AP NAP

AT (20) 19 1 AT (12) 12 0 AT (8) 0 8 AT (7) 7 0
NAT (85) 0 85 NAT (66) 0 66 NAT (70) 0 70 NAT (71) 0 71

(b) SL Performance Against Denial of Service Attacks

IPSweep InsideSniffer PortScan

AP NAP AP NAP AP NAP

AT (26) 26 0 AT (11) 11 0 AT (1) 0 1
NAT (52) 0 52 NAT (67) 0 67 NAT (77) 0 77

(c) SL Performance Against Probe Attacks

Table 8.4: Simple Logistic Detailed Performance

Likewise, Table 8.4 illustrates the detailed performance of SL when tested

against the Evaluation dataset. Table 8.4a includes ten misclassified ’Attack’

instances, which are classified as ’Not-Attack’. We can identify these misclassified

attack instances by examining Table 8.4b and and Table 8.4c. As before,

the misclassifications involve ICMP Flood, Smurf, and PortScan attacks. It is

important to emphasize that SL could not properly identify any of the existing

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 147

Smurf attack instances.

SVM

AP NAP

AT (85) 77 8
NAT (461) 2 459

SN: 90.6
SP: 99.6
AC: 98.2
PR: 97.5
RC: 90.6

(a) SVM Overall Performance

ICMP Flood IGMP Flood Smurf LAND

AP NAP AP NAP AP NAP AP NAP

AT (20) 20 0 AT (12) 12 0 AT (8) 0 8 AT (7) 7 0
NAT (85) 1 84 NAT (66) 0 66 NAT (70) 0 70 NAT (71) 0 71

(b) SVM Performance Against Denial of Service Attacks

IPSweep InsideSniffer PortScan

AP NAP AP NAP AP NAP

AT (26) 26 0 AT (11) 11 0 AT (1) 1 0
NAT (52) 1 51 NAT (67) 0 67 NAT (77) 0 77

(c) SVM Performance Against Probe Attacks

Table 8.5: SVM Detailed Performance

Table 8.5 illustrates the detailed performance of SVM when tested against the

Evaluation dataset. In Table 8.5a we can see ten misclassified instances: eight

’Attack’ instances, and two ’Not-Attack’ instances. From Tables 8.5b and 8.5c we

can identify these misclassified instances; they involve ICMP Flood, Smurf, and

IPSweep attacks.

The evaluation of classifiers brings the following conclusions:

• integration of multiple classifiers could provide better classification results,

it is obvious from tables 8.3, 8.4, and 8.5;

• misclassified attacks are ICMP Flood, Smurf, and IPSweep that seems quite

justified – the traffic patterns of all these attacks are based on ICMP

(Section 3.2, Section 3.6).

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 148

It should be emphasized that we should achieve 100% attack detection

accuracy.From the proposed system point of view, misclassified NOT-Attack

instances do not constitute a significant problem. The next stage of the system

– Attack Detection Modules – is a safe guard against such a situation. The Attack

Detection Modules are able to detect existing attacks.

8.1.2.1 System Performance

Table 8.6 illustrates the performance of TBM against the Evaluation dataset.

TBM

AP NAP

AT (85) 85 0
NAT (461) 2 459

SN: 100
SP: 99.6
AC: 99.6
PR: 97.7
RC: 100

(a) TBM Overall Performance

ICMP Flood IGMP Flood Smurf LAND

AP NAP AP NAP AP NAP AP NAP

AT (20) 20 0 AT (12) 12 0 AT (8) 8 0 AT (7) 7 0
NAT (85) 1 84 NAT (66) 0 66 NAT (70) 0 70 NAT (71) 0 71

(b) TBM Performance Against Denial of Service Attacks

IPSweep InsideSniffer PortScan

AP NAP AP NAP AP NAP

AT (26) 26 0 AT (11) 11 0 AT (1) 1 0
NAT (52) 1 51 NAT (67) 0 67 NAT (77) 0 77

(c) TBM Performance Against Probe Attacks

Table 8.6: TBM Detailed Performance

The performance of TBM proves that we have reached our goal of achieving

100% detection accuracy for existing attacks, illustrated by Sensitivity. Various

interesting observations can be done here. Looking just at the ’Attack’ instances

and comparing them to the results of individual classifiers, we can notice that

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 149

the TBM integration outperforms individual classifiers in the detection and

classification of existing attacks.

On the other hand, when we investigate ’Not-Attack’ instances, it seems that the

misclassifications of TBM are similar to those of SVM, but this is not entirely true

and will become obvious in the next section when we analyze the misclassified

instances.

A final note here, the prevailing concept is that the final result of TBM is

determined by comparing BetP(A) and BetP(NA) to the threshold of 0.5. If

BetP(A) exceeds 0.5 then the data record is ’Attack’, likewise, if BetP(NA) exceeds

0.5 then the given data record is ’Not-Attack’. Now in order to obtain such

performance, we change the threshold of 0.5 to the value of 0.65. This claim is

justifiable for the following reasons:

1. All instances to be classified are anomalous in nature, thus we are trying to

distinguish between even further anomalous patterns;

2. Multiple Attack instances are associated with the same data, it is different

when compared to the conventional concept of having one class per data

record;

3. Traffic of several attacks involves the same protocol(s);

4. An elusive execution pattern of one attack might resemble attack behaviors

of other attacks.

8.1.2.2 Analysis of Misclassified Cases

The proposed approach has resulted in 2 misclassifications, Table 8.7.

8.1. GLOBAL NETWORK-LEVEL MACHINE LEARNING-BASED SIGNATURE DETECTION 150

Original
Attack

Classes

Attack
Classes DT SL SVM BetP(A) BetP(NA)

Smurf

ICMP Flood 0 0.063 1 1 0
IGMP Flood 0 0 0 0.5 0.5
Smurf 1 0.151 0 1 0
LAND 0 0.02 0 0.51 0.49
IPSweep 0 0.067 0 0.53 0.47
InsideSniffer 0 0.223 0 0.61 0.39
PortScan 0 0.061 0 0.53 0.47

ICMP Flood

ICMP Flood 1 1 1 1 0
IGMP Flood 0 0 0 0.5 0.5
Smurf 0 0 0 0.5 0.5
LAND 0 0.02 0 0.51 0.49
IPSweep 1 0.404 1 1 0
InsideSniffer 0 0.223 0 0.61 0.39
PortScan 0 0.061 0 0.53 0.47

Table 8.7: Misclassified Data Points with TBM Signature ID

The first data record originally contained Smurf attack, TBM classified it

correctly and it also concluded that it contains ICMP Flood. We can notice

that the governing classifiers for these results are DT and SVM respectively. DT

classified it as Smurf and SVM did not, taking into account the non-zero (0.151)

output of SL, shifts the belief of TBM to the correct classification Smurf. In the

same manner, the non-zero (0.063) result of SL, besides the misclassification of

SVM, biased TBM to misclassify the point as ICMP Flood.

For the second misclassified data record, all three classifiers correctly and

strongly concluded that it contains ICMP Flood. However, DT and SVM backed

up by the 0.404 probability of SL rendered the final misclassification, i.e., the data

record has been also classified as having the IPSweep attack.

8.1.3 Illustrative Example

Referring to the example provided in Table 7.8, the minute values are passed to

the classifiers and TBM for classification. We have obtained the result depicted

in Table 8.8

8.2. ATTACK DETECTION MODULES 151

Original
Attack

Classes

Attack
Classes DT SL SVM BetP(A) BetP(NA)

ICMP Flood
IPSweep

ICMP Flood 1 0.838 1 1 0
IGMP Flood 0 0 0 0.5 0.5
Smurf 1 0.068 0 0.53 0.47
LAND 0 0.02 0 0.51 0.49
IPSweep 1 1 1 1 0
InsideSniffer 0 0.223 0 0.61 0.39
PortScan 0 0.045 0 0.52 0.48

Table 8.8: SVM Classification for give Example

According to our proposed approach, the minute traffic contains ICMP Flood

attack and IPSweep attack, and yes, in this minute we simulated these attacks.

The proposed approach was able to correctly classify the existing attacks. Now,

these results confirm the initial findings that we concluded earlier in Local

Host-level Anomaly ID, Section 7.2, regarding the anomalously violated layers

and protocols.

8.2 Attack Detection Modules

In this section, we explain how the updated network-tailored attack signatures

(explained in Section 3.6) are used to detect attacks. The matching process

of network traffic to attack signatures is done by examining packets and

connections.

For all attacks to be explained, after extracting attack traffic of a certain cyber

attack, we start to follow the attack equation explained in Section 3.2.8.1 to

determine the severity of the detected attacks. If one attack instance is detected,

it is considered as basic attack severity. Otherwise, if more than one attack

instance are detected, then the attack is sever and and we consider it as elusive

attack.

Before we continue with our explanation of attacks, we need to mention

something important. In our selected set of attacks we have ICMP Flood, Smurf,

8.2. ATTACK DETECTION MODULES 152

and IPSweep attack. ICMP Flood attack and Smurf attack are Denial of Service

attacks that are executed to starve the target machine. So, to successfully execute

these attacks we need to have high volumes of packets and connections, which

has to be issued in a small duration of time. On the Other hand, IPSweep attack is

a Probe attack that performs scanning and reconnaissance activity. The success

of this attack does not depend on high volumes of packets and connections, and

in the same time can take longer durations.

We mention these attacks specifically because their execution pattern might

cause confusion to implemented IDSs, since all of them rely on the same

protocol: ICMP. So a distinction has to be made between the traffic patterns of

these attacks. Mainly with DOS attacks, we are looking for high volume traffic

(packets and/or connections) with ICMP. ICMP Flood is characterized by ICMP

ping request packets, while Smurf is identified by ICMP ping reply packets.

Contrarily, IPSweep indicates low or medium volumes of ICMP, using ICMP ping

requests or both requests and responses.

8.2.1 ICMP Flood Attack Detection Module

Referring back to Sections 3.2.1 and 3.6.1, it is clear that the flooding effect of

the attack can be executed using a high number of ICMP ping request packets.

These packets might or might not result in a correspondingly high number of

ICMP connections. These connections ’must’ have a status (Section 5.3.1) of

either ’Complete’ or ’Incomplete E’. All of this has to be present within the traffic in

relatively short time interval. Thus, The first step of ICMP Flood attack detection

module is to search within network traffic and find those patterns which fit these

constraints.

Following the attack equation, we start by investigating the sources, destinations,

8.2. ATTACK DETECTION MODULES 153

packets and connections within the extracted attack traffic. One attack source

and one attack target signifies an attack instance, which is in turn called basic

attack. Otherwise, ICMP Flood is called elusive attack and more processing is

made to detect the number of attack instances between attack sources and their

respective targets.

To illustrate the idea for the reader, we give a simple example. Within

our captured data we have an overlay session (session 1850) which contains

ICMP Flood attack traffic that is superimposed on normal traffic. Our

ICMP Flood attack detection module was able to detect ICMP Flood attack within

that session, Figure 8.2

Figure 8.2: ICMP Flood Attack Detection Module Summary Detection
Information

As illustrated, we use updated network-tailored ICMP Flood signature

(Section 3.6.1). The module was able to detect 627 attack packets belonging to

12 attack instances. Also, it was able to detect that the attack was executed by a

total of 10 attackers against 2 targets. The figure also represents a simple attack

map that designates which attacker attacked which target. Let’s examine the first

8.2. ATTACK DETECTION MODULES 154

2 attack instances for example, they have the same attacker and the same target,

Figure 8.3.

Figure 8.3: ICMP Flood Attack Instances 1 and 2

How did our detection module detect that the traffic from ’192.168.1.69’ to

’192.168.1.65’ constitutes 2 attack instances not 1 instance? The answer is simple,

we examine the packet Timestamps. If we look closely at Figure 8.3, namely the

duration criteria of each instance, we will find that there is a time gap of nearly

7.6 minutes (exactly 460 seconds) between the 2 instances, where instance 1 took

1.58 seconds from 00:43:22 to 00:43:24 and instance 2 took 2.8 seconds from

00:51:04 to 00:51:07.

Also, comparing these value to the updated network-tailored ICMP Flood

signature (Section 3.6.1), we can easily see, by a simple comparison, that

for signature feature ’3.Transmitted ICMP request packets per distinct hosts’, a

number of transmitted 51 packets in attack instances fulfills the signature feature

8.2. ATTACK DETECTION MODULES 155

compared to 4 packets. Also, signature feature ’4.Established ICMP connections

per distinct hosts’ the number 46 connections for attack instances satisfies the

feature compared to two connections.

8.2.2 IGMP Flood Attack Detection Module

Referring back to sections 3.2.2 and 3.6.2, the flooding effect of the attack can

be executed using a high number of IGMP unicast packets. These packets has to

be executed within a relatively short time interval. IGMP Flood attack detection

module searches within network traffic to find IGMP unicast traffic patterns.

Once IGMP Flood attack traffic is extracted we follow the attack equation

and start investigating the sources, destinations, and packets to find attack

instances. Within the same session, session 1850, our proposed IGMP Flood

attack detection module was able to detect IGMP Flood attack, Figure 8.4.

Figure 8.4: IGMP Flood Attack Detection Module Summary Detection
Information

Again as presented, we use updated network-tailored IGMP Flood signature

(Section 3.6.2). The module was able to detect a total of 400 attack packets

8.2. ATTACK DETECTION MODULES 156

belonging to 4 attack instances, executed by a total of 3 attackers against 1 target,

the attack map designates such attackers and target. Surprisingly, the first 2

attack instances are similar to those of ICMP Flood having the same attacker

(192.168.1.69) and the same target (192.168.1.65), Figure 8.5.

Figure 8.5: IGMP Flood Attack Instances 1 and 2

Instance 1 was executed using 100 packets and elapsed a duration of 13.3

seconds while instance 2 was executed using 100 packets over a time duration

of 12.93 seconds. Though, instances 1 and 2 have the same attacker and the

same target, one can easily conclude that they are 2 instances not 1 instance by

examining the duration criteria of each (start and end timestamps).

Comparing attack instances and their values to those of updated

network-tailored IGMP Flood signature (Section 3.6.2), we can easily recognize

IGMP Flood attack, where signature feature ’Transmitted IGMP unicast packets

per distinct host’ is satisfied by the instances having 100 IGMP unicast packets

instead of zero.

8.2. ATTACK DETECTION MODULES 157

8.2.3 Smurf

Sections 3.2.3 and 3.6.3 state that the flooding effect of Smurf attack is

recognized by having 32 ICMP ping response packets or 16 ICMP connections

whose status is Incomplete B (connectionIPv4), present within network traffic in

a small time duration. Smurf attack detection module searches for such patterns

and extracts them.

Once Smurf attack traffic is extracted we apply the attack equation and start

investigating the sources, destinations, packets, and connections to find attack

instances. Within session 1860, our proposed Smurf attack detection module was

able to detect Smurf attack, Figure 8.6.

Figure 8.6: Smurf Attack Detection Module Summary Detection Information

Using updated network-tailored Smurf signature (Section 3.6.3), the module

was able to detect a total of 135 attack packets belonging to 3 attack instances,

executed by 10 attackers against 1 target, the attack map designates that the range

of Addresses 192.168.1.100 - 192.168.1.109 are the 10 attackers and the target is

8.2. ATTACK DETECTION MODULES 158

192.168.1.65. It is somehow clear according to Smurf attack definition that these

addresses flooded the same target 3 consecutive times. Question, how do we see

10 attackers and 1 target when our network includes only 8 machines? Easy, the

attacker used botnets to attack the target. Figure 8.7 illustrates the details of the

first 2 attack instances.

Figure 8.7: IGMP Flood Attack Instances 1 and 2

Instance 1 was executed using 45 packets and 31 connections in a duration of

2.86 seconds, and instance 2 using the exact number of packets and connections

elapsed for a duration of 3.1 seconds. Examining packet timestamps, we

calculate the duration of each instance and we distinguish the instances by

detecting a time gap of 10.8 minutes (647 seconds).

Comparing attack instances and their values to those of updated

network-tailored Smurf signature (Section 3.6.3), we can easily notice Smurf

attack, where signature feature ’5.Overall Number of attack packets’ has been

met for both instances, 45 packets for attack instances compared to 32 packets.

8.2. ATTACK DETECTION MODULES 159

Also, signature feature ’6.Overall Number of attack connections’ has been

accomplished for both instances; 30 connections for attack instances compared

to 16 connections.

One important note to be mentioned here, from the attack instances we can

concur that each attacker transmitted 15 packets, constituting 10 connections.

These attack execution settings are low for Smurf attack, and we intentionally

executed them in this manner to try to mimic an elusive attack which slightly

deviates from normal. We wanted to prove that the proposed system has the

ability to detect the most elusive attacks.

8.2.4 LAND

According to the LAND attack analysis provided in sections 3.2.4 and 3.6.4, any

recognized LAND attack traffic is extracted and the attack equation applied to

find attack instances. Within session 1850, our proposed LAND attack detection

module was able to detect LAND attack, Figure 8.8.

8.2. ATTACK DETECTION MODULES 160

Figure 8.8: LAND Attack Detection Module Summary Detection Information

Using updated network-tailored LAND signature, the module was able to

detect a total of 97 attack packets belonging to 2 attack instances, executed

against 2 targets, the attack map shows that the targets are 192.168.1.68 and

192.168.1.65. Figure 8.9 illustrates the details of attack instances.

8.2. ATTACK DETECTION MODULES 161

Figure 8.9: LAND Attack Instances 1 and 2

Instance 1 was executed using 48 packets and 1 connection in a duration

of 1.67 seconds, and instance was executed using 49 packets and 1 connection

and connections elapsed for a duration of 16.12 seconds. We can also notice

that the protocol in the 2 instances is different, instance 1 used TCP protocol

and instance 2 used ICMP protocol. It is also noticeable from the duration that

instance 1 was targeting CPU cycles of the target and instance 2 was targeting

the connection queue.

Comparing attack instances and their values to those of updated

network-tailored LAND signature, we can easily conclude that LAND attack

instances satisfy the signature.

One important note to be mentioned here, observing the details of attack

instances we will find that the MAC address is Botnet. In the module we

implemented a nice functionality that can match logical address to its physical,

if a match is not found then this indicates a botnet.

8.2. ATTACK DETECTION MODULES 162

8.2.5 IPSweep

Sections 3.2.5 and 3.6.5 state that the scan effect of IPSweep attack is recognized

by an attacker scanning up to 7 addresses. IPSweep attack detection module

searches for such patterns and extracts them.

Once IPSweep attack traffic is extracted we apply the attack equation and start

investigating the sources, destinations, packets, and connections to find attack

instances. Within session 1880, our proposed IPSweep attack detection module

was able to detect IPSweep attack, Figure 8.10.

Figure 8.10: IPSweep Attack Detection Module Summary Detection Information

Using updated network-tailored IPSweep signature, the module was able to

detect a total of 744 attack packets (743 ARP and 1 ICMP) belonging to 6 attack

instances, executed by 1 attacker to scan 249 targets. Figure 8.11 shows sample

IPSweep attack instances.

8.2. ATTACK DETECTION MODULES 163

(a) IPSweep Attack Instance 3.

(b) IPSweep Attack Instance 4.

Figure 8.11: Sample IPSweep Attack Instances

Instance 3 (Figure 8.11a) was executed using 90 ARP packets in a duration

of 4.55 seconds to scan 30 addresses (192.168.1.31 - 192.168.1.60), and instance

4 (Figure 8.11b) was executed using 108 packets; 107 ARP packets and 1 ICMP

8.2. ATTACK DETECTION MODULES 164

packet, which elapsed for a duration of 6.36 seconds to scan 39 addresses

(192.168.1.61 - 192.168.1.100). Examining packet timestamps, we calculate the

duration of each instance and we distinguish between instances by detecting a

time gap of nearly 2 minutes (119 seconds).

Comparing attack instances and their values to those of updated

network-tailored IPSweep signature, we conclude that IPSweep attack instances

satisfy the signature.

8.2.6 InsideSniffer

According to the InsideSniffer attack analysis provided in sections 3.2.6 and

3.6.6, InsideSniffer attack traffic includes DNS, NBNS, LLMNR protocols where

a resolution from address to name occurs. The attack traffic is extracted and

the attack equation is applied to find attack instances. Within session 1880,

our proposed InsideSniffer attack detection module was able to detect 1 attack

instance, Figure 8.12.

8.2. ATTACK DETECTION MODULES 165

Figure 8.12: InsideSniffer Attack Detection Module Summary Detection
Information

Using updated network-tailored InsideSniffer signature, the module was able

to detect 2 attack packets from 192.168.1.65 using LLMNR protocol to scan

192.168.1.64 to its respective name. The detected attack instance conforms with

updated network-tailored InsideSniffer signature.

8.2.7 Portscan

According to the PortScan attack analysis provided in sections 3.2.7 and 3.6.7,

PortScan attack traffic is distinguished by the number of invoked services

between 2 host over TCP. The attack traffic is identified and extracted and the

attack equation is applied to find attack instances. Within session 120, our

proposed InsideSniffer attack detection module was able to detect 1 attack

instance, Figure 8.13.

8.2. ATTACK DETECTION MODULES 166

Figure 8.13: PortScan Attack Detection Module Summary Detection Information

Using updated network-tailored PortScan signature, the module was able to

detect 1 attack instance from ’192.168.10.150’ against ’192.168.10.200’ to scan

its ports. The attacker scanned 394 ports with 867 packets in a duration of 3.8

minutes (228.39 seconds).

Chapter 9

Hybrid Intrusion Detection: Case Studies

In this chapter, we provide a detailed examination of several Intrusion Detection

scenarios. We choose a certain minute in our traffic then expose it to our system,

module by module, and demonstrate the detection results. We demonstrate the

performance of the system for three different minutes: the first minute is normal

(Section 9.1); the second minute is an anomalous minute that contains LAND

and IPSweep attack (Section 9.2); the third minute (Section 9.3) is anomalous

and it is the most complex minute that we have within our traffic, it contains 4

simultaneous attacks.

Additionally, we provide an evaluation of our methodology – two stage detection

of intrusion – using widely available NSL-KDD data, (Section 9.4).

9.1 Intrusion Detection Scenario 1: Normal Minute

Table 9.1 illustrates the traffic features of the normal minute.

167

9.1. INTRUSION DETECTION SCENARIO 1: NORMAL MINUTE 168

TCP/IP Layer Protocol Feature Minute

Network
Interface ARP

ARPRequests 3
ARPResponses 0
ARPSourceIP 2
ARPDestinationIP 3

Internet

ICMP

ICMPQueryReq 0
ICMPQueryRes 0
ICMPSourceIP 0
ICMPDestinationIP 0
ICMPConnections 0

IGMP
IGMPPackets 5
IGMPMulticastP 5
IGMPUnicastP 0

– LAND 0

Transport

TCP
TCPPackets 112
TCPConnections 9
TCPServices 4

UDP
UDPPackets 84
UDPConnections 18
UDPServices 3

Application

DNS

DNSRequests 0
DNSResponses 0
DNSConnections 0
DNSMulticastD 0
DNSUnicastD 0
DNSNR 0

NBNS

NBNSRequests 1
NBNSResponses 0
NBNSConnections 1
NBNSMulticastD 1
NBNSUnicastD 0
NBNSNR 0

LLMNR

LLMNRRequests 4
LLMNRResponses 0
LLMNRConnections 4
LLMNRMulticastD 4
LLMNRUnicastD 0
LLMNRNR 0

Table 9.1: Normal Minute Traffic (NetDataCoP).

We pass the minute to our system’s first stage, i.e., Global Network-level

Machine Learning-based Anomaly Detection.

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-N pred-N 0.5 0.87 0.75 0.8 0.92
0.9998 0.0001pred-A – – – – –

Table 9.2: Global Anomaly Detection: Normal Minute (NetDataCoP).

According to the results in Table 9.2, the minute was classified as normal.

All the classifiers predicted the minute as normal and also TBM’s final result of

0.9998 predicts it as normal.

9.2. INTRUSION DETECTION SCENARIO 2: ATTACK MINUTE 1 169

9.2 Intrusion Detection Scenario 2: Attack Minute 1

Table 9.3 illustrates the traffic features of Attack Minute 1.

TCP/IP Layer Protocol Feature Minute

Network
Interface ARP

ARPRequests 461
ARPResponses 2
ARPSourceIP 3
ARPDestinationIP 53

Internet

ICMP

ICMPQueryReq 0
ICMPQueryRes 0
ICMPSourceIP 0
ICMPDestinationIP 0
ICMPConnections 0

IGMP
IGMPPackets 10
IGMPMulticastP 10
IGMPUnicastP 0

– LAND 1

Transport

TCP
TCPPackets 212
TCPConnections 15
TCPServices 5

UDP
UDPPackets 100
UDPConnections 20
UDPServices 2

Application

DNS

DNSRequests 2
DNSResponses 2
DNSConnections 2
DNSMulticastD 0
DNSUnicastD 4
DNSNR 0

NBNS

NBNSRequests 0
NBNSResponses 0
NBNSConnections 0
NBNSMulticastD 0
NBNSUnicastD 0
NBNSNR 0

LLMNR

LLMNRRequests 0
LLMNRResponses 0
LLMNRConnections 0
LLMNRMulticastD 0
LLMNRUnicastD 0
LLMNRNR 0

Table 9.3: Attack Minute 1 Traffic (NetDataCoP).

Again, we pass the minute to Anomaly Detection to find out if the minute is

normal or anomalous.

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-N pred-N – – – – –
0.0001 0.9998pred-A 0.5 0.87 0.75 0.8 0.92

Table 9.4: Global Anomaly Detection: Attack Minute 1 (NetDataCoP).

Within Global Network-level Machine Learning-based Anomaly Detection, the

classifiers and TBM (Table 9.4) classified the minute as anomalous, so we infer

9.2. INTRUSION DETECTION SCENARIO 2: ATTACK MINUTE 1 170

additional information about the detected anomaly by investigating the minute

traffic from Local Host-level scope.

IP Address Protocol Layer

192.168.1.69 ARP Network Interface
192.168.1.65 IPv4 Internet

Table 9.5: Local Anomaly Detection: Attack Minute 1 (NetDataCoP).

Our Local Host-level Threshold-based Anomaly Detection, Table 9.5, detected

that the traffic of the anomalous minute contains anomalies that relate to

Network Interface Layer and Internet Layer. The anomaly within the Network

Interface layer involved ARP, and that of Internet Layer did not involve a specific

protocol.

Afterwards, the anomalous minute is passed to the second stage of the proposed

system; Signature Detection.

Original
Attack

Classes

Attack
Classes DT SL SVM BetP(A) BetP(NA)

ICMP Flood
IPSweep

ICMP Flood 0 0.072 0 0.54 0.46
IGMP Flood 0 0 0 0.5 0.5
Smurf 0 0.053 0 0.53 0.47
LAND 1 1 1 1 0
IPSweep 1 1 1 1 0
InsideSniffer 0 0.223 0 0.61 0.39
PortScan 0 0.061 0 0.53 0.47

Table 9.6: Global Signature Detection: Attack Minute 1 (NetDataCoP).

When we subjected the anomalous minute to our Global Network-level

Machine Learning-based Signature Detection, it was able to detect LAND and

IPSweep attacks, as indicated in Table 9.6 by the BetP(A) values of these attacks.

We signal the Detection Modules of the detected attacks so that they detect their

attack signatures within the minute traffic, Figure 9.1.

9.2. INTRUSION DETECTION SCENARIO 2: ATTACK MINUTE 1 171

Figure 9.1: Attack Detection Modules: Attack Minute 1 (NetDataCoP).

The Attack Detection Modules processed the minute traffic and got the results

depicted in Figure 9.1. From the figure, the LAND Detection Module was able

to detect 1 attack instance, involving 49 packets, in a duration of 2.66 seconds

within the minute, and its target is ’192.168.1.65’. Also, the IPSweep Detection

Module was able to detect 1 attack instance, executed using 459 ARP packets,

in a duration of 9.62 seconds, by the attacker ’192.168.1.69’ to scan a range of

51 IP addresses. These results accurately conform with those obtained in Local

Host-level Anomaly Detection, Table 9.5.

9.3. INTRUSION DETECTION SCENARIO 3: ATTACK MINUTE 2 172

9.3 Intrusion Detection Scenario 3: Attack Minute 2

The traffic of this minute is shown in Table 9.7.

TCP/IP Layer Protocol Feature Minute

Network
Interface ARP

ARPRequests 0
ARPResponses 0
ARPSourceIP 0
ARPDestinationIP 0

Internet

ICMP

ICMPQueryReq 50
ICMPQueryRes 45
ICMPSourceIP 11
ICMPDestinationIP 2
ICMPConnections 75

IGMP
IGMPPackets 305
IGMPMulticastP 5
IGMPUnicastP 300

– LAND 1

Transport

TCP
TCPPackets 165
TCPConnections 9
TCPServices 6

UDP
UDPPackets 78
UDPConnections 13
UDPServices 1

Application

DNS

DNSRequests 0
DNSResponses 0
DNSConnections 0
DNSMulticastD 0
DNSUnicastD 0
DNSNR 0

NBNS

NBNSRequests 0
NBNSResponses 0
NBNSConnections 0
NBNSMulticastD 0
NBNSUnicastD 0
NBNSNR 0

LLMNR

LLMNRRequests 0
LLMNRResponses 0
LLMNRConnections 0
LLMNRMulticastD 0
LLMNRUnicastD 0
LLMNRNR 0

Table 9.7: Attack Minute 2 Traffic

The minute features are passed to our first detection stage; Anomaly

Detection, to decide whether the minute is normal or not.

K-Means DT SVM LR MAX BetP(N) BetP(A)

org-N pred-N – – – – –
0.0001 0.9998pred-A 0.5 0.87 0.75 0.8 0.92

Table 9.8: Global Anomaly Detection: Attack Minute 2 (NetDataCoP).

Our implemented Global Network-level Machine Learning-based Anomaly

Detection, (Table 9.8), was able to classify the minute as anomalous, our next

9.3. INTRUSION DETECTION SCENARIO 3: ATTACK MINUTE 2 173

step is to infer more information about this anomalous minute.

Anomalous Hosts Violated Protocols Violated Layers

192.168.1.65
ICMP
IPv4

Internet192.168.1.69
ICMP
IGMP

192.168.1.100 IGMP
192.168.1.200 IGMP

Table 9.9: Local Anomaly Detection: Attack Minute 2 (NetDataCoP).

The Local Host-level Threshold-based Anomaly Detection, Table 9.9, detected

that the traffic of the anomalous minute contains anomalies that relate to

Internet Layer. The detected anomaly involves ICMP, IGMP, and IPv4. Also, it

detected that there are 4 anomalous sources responsible for the anomaly. After

that, we pass the anomalous minute to the second stage of the proposed system;

Signature Detection.

Original
Attack

Classes

Attack
Classes DT SL SVM BetP(A) BetP(NA)

ICMP Flood
IGMP Flood

Smurf
LAND

ICMP Flood 1 0.853 1 1 0
IGMP Flood 1 1 1 1 0
Smurf 1 0.48 0 1 0
LAND 1 1 1 1 0
IPSweep 0 0.067 0 0.53 0.47
InsideSniffer 0 0.223 0 0.61 0.39
PortScan 0 0.071 0 0.54 0.46

Table 9.10: Global Signature Detection: Attack Minute 2 (NetDataCoP).

The Global Network-level Machine Learning-based Signature Detection,

Table 9.10, was able to detect 4 concurrent attacks; ICMP Flood, Smurf, LAND

and IGMP Flood attack, as indicated by their respective BetP(A) values. The next

step is to signal the Detection Modules of these attacks to detect their attack

signatures within the minute traffic, Figure 9.2.

9.3. INTRUSION DETECTION SCENARIO 3: ATTACK MINUTE 2 174

(a) ICMP Flood (b) LAND

(c) Smurf (d) IGMP Flood

Figure 9.2: Attack Detection Modules: Attack Minute 2 (NetDataCoP).

The Attack Detection Modules investigated the minute traffic and got the

results depicted in Figure 9.2. ICMP Flood Detection Module, Figure 9.2a,

was able to detect 1 ICMP Flood instance, executed using 50 packets and 45

connections, in a duration of 1.83 seconds, from attacker ’192.168.1.69’ to target

’192.168.1.68’.

The LAND Detection Module, Figure 9.2b, detected 1 LAND instance, executed

9.4. COMPARATIVE ANALYSIS 175

using 49 packets, in a duration that elapsed for 3.02 seconds, towards target

address ’192.168.1.65’.

Also, the Smurf Detection Module, Figure 9.2c, detected 1 Smurf instance,

executed using 45 packets and 30 connections, within a duration of 2.52 seconds,

by 10 machines (192.168.1.100 – 192.168.1.109) to flood target ’192.168.1.65’.

Finally, IGMP Flood Detection Module, Figure 9.2d, detected 3 IGMP Flood

instances with 10 seconds time gap between the instances. IGMP Flood instances

were executed by 3 different addresses to flood target ’192.168.1.65’. Each

instance included 100 packets and each instance lasted roughly for 10 seconds.

These results obtained by the attack modules conform with those inferred in

Local Host-level Anomaly Detection, Table 9.9.

We wanted to demonstrate this minute specifically to introduce the concept of

Distributed Denial of Service (or DDOS). Where multiple attackers coordinate

there attacks to simultaneously execute several Denial of Service attacks against

the same target. In our demonstration here, the intended DOS attacks were

LAND, Smurf, and IGMP Flood attacks, all were executed concurrently to flood

target ’192.168.1.65’.

9.4 Comparative Analysis

In this section, we compare our work to the other work on Intrusion Detection

systems. Most of Intrusion Detection research is either based on KDD or

NSL-KDD dataset. Here, we use NSL-KDD because it is an improved version of

KDD that addressed KDD’s deficiencies. We compare the performance of our

system’s two stages to the results reported in two papers. Firstly, we compare our

system’s first stage – Anomaly Detection – to the results published in [2] (next

section). Secondly, we compare the second stage – Signature Detection – to the

9.4. COMPARATIVE ANALYSIS 176

results from the paper [87], Section 9.4.2.

9.4.1 Anomaly Detection Performance

In [2], the authors used a hybrid intelligent approach for Intrusion Detection.

Based on the authors’ description, the word ’hybrid’ does not refer to application

of different Intrusion Detection approaches, but to the usage of several different

techniques. The framework of their proposed approach is depicted in Figure 9.3

Figure 9.3: Intrusion Detection Framework proposed in [2].

The authors tried multiple combinations of the following approaches for

intrusion detection:

1. Decision Trees (DT)

2. Principal Component Analysis(PCA)

3. Random Forest (RF)

4. Radial Basis Function Neural Network (RBF)

5. Stochastic variant of Piramol estimated sub-gradient solver in SVM

(SPegasos)

6. Ensembles of Balanced Nested Dichotomies for Multi-class Problems

(END)

7. Grading

9.4. COMPARATIVE ANALYSIS 177

They achieved the following best performance: 99.5% detection rate, and 0.1%

false positive rate, using Random Forest with nested dichotomies and END. The

comparison of our proposed Anomaly Detection approach to theirs is illustrated

in Table 9.11 below.

Performance Matrices ‘Published’ Approach [2] Our Approach

Detection Rate (%)
Normal 99.9 100.0
Attack 99.5 99.4

False Positive Rate (%)
Normal 0.5 0.6
Attack 0.1 0.0

F-Value (%)
Normal 99.8 100.0
Attack 99.7 100.0

Precision (%)
Normal 99.6 99.5
Attack 99.9 100.0

Recall (%)
Normal 99.9 100.0
Attack 99.9 99.4

Table 9.11: Anomaly Performance Comparison

As it can be seen in the table, the application of our approach to

NSL-KDD data shows a good performance. Except a few cases of lower values

of performance matrices, the proposed ML-based system outperforms the

approach presented in [2]. We obtained a perfect score for F-Value for both

‘Normal’ and ‘Attack’ classes.

9.4.2 Signature Detection Performance

Next, we compare our Signature Detection approach to that proposed in [87].

The main contribution of [87] is utilization of a dataset with the reduced number

of features as an input to Naı̈ve Bayes. The authors used three different features

selection methods: Correlation-based Feature Selection (CFS), Information Gain

(IG), and Gain Ratio (GR). It should be stated, that they did not classify individual

attacks but categories of attacks: DOS, Probe, R2L and U2R. They proposed a

new feature selection technique called Feature-Vitality Based Reduction Method

(FVBRM). They used all four feature selection techniques to select features from

the 41 features of NSL-KDD. They ended up having a dataset of 10 features using

9.4. COMPARATIVE ANALYSIS 178

CFS, a dataset with 14 features using GR, a dataset of 20 features using IG, and

a last dataset of 24 features using FVBRM. They applied Naı̈ve Bayes to all four

reduced datasets and to the original NSL-KDD dataset. They showed that their

proposed feature selection technique provides the best performance.

In our work, we select protocol-related features and build attack classsifiers

based on the attack target matrix in Table 3.13. However, we have not

perform any feature selection. We are comparing our approach to the one

proposed in [87] based on classification of attack categories not individual

attacks. Our methods take all features of NSL-KDD. The performance of our

proposed Signature Detection approach compared to the results from [87] are

demonstrated in Table 9.12 below.

Criteria
Paper Techniques

Our Approach
CFS GR IG FVBRM NoReduction

Attributes 10 14 20 24 41 41
Overall Accuracy (%) 97.55 95.30 95.21 97.78 95.11 99.94

DOS TPR (%) 96.0 90.6 93.0 98.7 93.5 100.0
Probe TPR (%) 97.0 96.0 98.6 98.8 97.8 99.8

R2L TPR (%) 94.0 94.2 95.9 96.1 96.8 95.9
U2R TPR (%) 4.0 4.0 20.0 64.0 56.0 61.5

Table 9.12: Signature Performance Comparison

For the case of Signature Detection, the proposed system behaves very well

when compared with a number of approaches presented in [87]. The overall

accuracy of the proposed approach is 99.94%, that is the highest value among

all approaches presented in the table. If we look at individual types of attacks,

only for two attacks, i.e., R2L and U2R, our system performs a bit worse. This

happens for the approaches FVBRM and NoReduction in the case of R2L, and for

FVBRM only in the case of U2R. The differences in the accuracy values are small.

Chapter 10

Conclusion and Future Work

In this thesis, we proposed, designed, and implemented an intelligent

data-driven Two-stage Hybrid Intrusion Detection System. The hybrid nature

of the system allows it to detect both anomalies and cyber attacks with high

accuracy. Anomaly Detection, the first stage, allows the system to detect

anomalous (not normal) network behaviors with high accuracy. Also, the system

performs the high accuracy detection of signatures using the second stage:

Signature Detection. To fulfil this task, the system consists of two modules:

Anomaly ID, and Signature ID, together with a special module NetDataCoP.

NetDataCoP captures and processes network traffic using four sub-modules:

Traffic Capture, Packet Decipher, Connection Identification and Reconstruction,

and Network Traffic Temporal Processing sub-module. Traffic Capture

sub-module captures network traffic in the form of stream of raw bytes. The

captured stream of network traffic is processed by Packet Decipher sub-module,

which uses socket technology and multi-threading technology to interpret

the bytes of captured traffic streams and re-create corresponding protocol

packets, along with their headers and fields. Connection Identification and

Reconstruction sub-module identifies and reconstructs ICMP, TCP, and logical

UDP connections via detailed examination of the reassembled packets. Finally,

179

180

the packets and connections are processed in a time-related manner to generate

features over a specified time unit that describe the current state of network.

The first stage of the system, i.e., Anomaly ID, contains two sub-modules:

Network-level Machine Learning-based Anomaly Detection and Host-level

Threshold-based Anomaly Detection. The first of these sub-modules contains a

number of classifiers constructed using different Machine Learning techniques.

The sub-module takes the features describing the network traffic from the

NetDataCoP as its input and passes them to the classifiers. The elements of

Evidence Theory are used to aggregate the classifiers’ outputs and determine a

degree of confidence in the predicted state of the network. Once an anomaly

is detected, the Host-level Threshold-based Anomaly ID processes the network

traffic from a Local Host-level (local host-level) scope-centric perspective to

extract detailed information about the detected anomaly.

The second stage in our system: Signature ID, also contains multiple

sub-modules. One of them is Network-level Machine Learning-based Signature

Detection while the other ones are Attack Detection Modules, each of them

associated with a different attack. This time we focus on identification of a

specific attack. The Network-level Machine Learning-based Signature Detection

takes the features describing a network traffic over a time unit, one minute in

our case, and using a number of classifiers constructed with Machine Learning

methods and elements of Evidence Theory calculates the probabilistic outputs

indicating degrees of confidence that specific attacks occurred. When one or

more attacks are detected their corresponding Attack Detection Modules are

invoked to search within the minute traffic for their respective network-tailored

signatures. The findings, whether related to the detection of anomalies or cyber

attacks, are reported to security administrators.

10.1. CONCLUSION 181

10.1 Conclusion

Over the course of the research, we worked on several supplementary but

important research points. The ultimate accomplishment of our research is the

multi-perspective feature-based network traffic description. It is a fundamental

element that is used by other research tasks addressed in the thesis. The

introduction of multiple perspectives, i.e., different points of view of ‘looking at’

a network traffic, and their inter-related features, makes our proposed network

traffic description a very comprehensive one. The advantages of the description

lie within its interoperability, where a value change of an individual feature leads

to multiple perspective-specific effects.

The multi-perspective network description we proposed has led us to design

and development of a thorough step-by-step analysis of attacks: starting

with the detailed discussion of canonical attack signatures, and ending with

attack signatures updated with the administrator knowledge. Further, the

study of network anomaly profiles related to network topology has led us to

network-tailored attack signatures, which proved to be more adequate for a

given network. The network anomaly profile we used consists of 189 features.

We created such a profile based on the proposed multi-perspective description

of network traffic. The profile allows us and the developed system to draw

a distinction between normal and anomalous behaviors of both network and

individual hosts.

We are quite certain that the NetDataCoP is the first of its kind network

analyzing system. It combines several functionalities. Besides capturing a

network traffic, it is superior to other tools in performing a number of distinctive

and important, from the point of view of intrusion detection, tasks: 1) it

interprets all fields of protocol headers; 2) it performs a comprehensive analysis

10.1. CONCLUSION 182

of protocols of an application layer; 3) it identifies and reconstructs Internet

(ICMP) and Transport (TCP and UDP) connections; and 4) finally, based on

the deciphered packets and reconstructed connections, it is able to perform

time-oriented processing of network traffic to generate features describing a

current state of network over specified time intervals.

In our work, we propose the identification and reconstruction of logical

connections of UDP-based applications. We found no other research work that

tackles this in such details as we do. The identification and reconstruction of

logical connections on top of UDP is a critical point to understand the behavior of

UDP-based applications. For some application domains, like Media Streaming,

this ability forms an important element in understanding how UDP applications

communicate and behave.

We designed and built comprehensive data sets that include normal and

attack network traffic. The data contains several cyber attacks executed in an

elusive manner. We used this term to describe attacks that are performed in an

non-standard way, i.e., attacks that differ from the canonical ones in several ways.

For example, such attacks are executed over different, usually longer, periods of

time, or involve different, usually, larger number of hosts. Such attacks represent

a ‘close to normal’ network traffic, so it is difficult to identify them as attacks, or

at the very least, as anomalies. We used these datasets in process of building and

validating Anomaly ID and Signature ID.

In the domain of Anomaly Detection, we proposed Global Network-level

Machine Learning-based minute-wise Anomaly ID approach. It aggregates

classification results of multiple classifiers using elements of Evidence Theory

(TBM) and provides better anomaly prediction results than that of a single

classifier. As explained, different methods of combining belief masses,

representing confidence levels in classifiers obtained with different datasets, has

10.1. CONCLUSION 183

been investigated. The simple averaging of obtained belief masses provided

the best results. We have achieved high classification rate of 99.6 % accuracy

against the evaluation dataset with only one anomalous point misclassified as

normal. Even when we examine the probability values of predicting normal

BetP(N) and anomalous BetP(A) conditions associated with the misclassified

point: 0.5031 and 0.4969 respectively, we can notice that the values are nearly

the same. This indicates that the predictions obtained from different classifiers

are conflicting. Also, it indicates that the attack is elusive in nature, i.e., it has

created a network traffic very close to a normal one. This scenario can be an

example of a real life intrusion situation. Also, within Anomaly Detection, we

used the proposed network anomaly profile, in particular Local Host-level scope

features, to pinpoint the origins of the detected anomalies via threshold-based

comparison of calculated features describing individual host traffic against

predefined threshold values representing normal traffic.

For Signature Detection, we proposed Global Network-level Machine

Learning-based minute-wise Signature Detection approach. It also aggregates

classification results of classifiers using elements of Evidence Theory (TBM)

and provides better attack prediction results than that of a single classifier.

Investigating different methods of combining belief masses did not present much

difference in the classification performance as in the case of Anomaly ID. Using

Bernoulli’s Combination Rule, we achieved a high classification rate of 100%

detection for existing attacks, with an accuracy of 99.6%. Only two data points

representing ‘Not-Attack’ cases have been misclassified as ‘Attack’, and 544 data

points have been classified correctly among 546 points of the evaluation dataset.

The misclassification can be rationalized via similarity of attack behaviors, and

existence of several attacks within the same data point.

Additionally, the developed Attack Detection Modules act as a safe guard against

10.2. FUTURE WORK 184

misclassified attack instances. It means that an additional process of matching

traffic patterns to the proposed network-tailored attack signatures can be treated

as supplementary layer of verifying if an attack occured.

The final research outcome of this thesis is the Intrusion Detection benchmark

dataset. The benchmark encloses our all datasets – Training, Test, and Evaluation.

The benchmark can be considered the first of its kind intrusion detection dataset

that represent cyber attacks in a temporal manner using multiple features. The

dataset includes a number of realistic attack scenarios, i.e., data points with

multiple simultaneous attacks.

10.2 Future Work

In general, we would like to indicate that the contributions presented in this

thesis can be treated as a initial work on new generation of intrusion detection

systems able to continuously monitor network traffic and to deal on-line with

more sophisticated types of attacks. The shown results are encouraging to

perform more research in the area. Here, we highlight just a few future research

tasks that relate to the presented work.

For the purpose of this thesis, we selected seven attacks belonging to DOS and

Probe attack categories, further research can include more attacks from other

categories.

The developed network anomaly profile is an implementation of features

taken from the proposed multi-perspective network traffic description. We

anticipate more work on new features of the multi-perspective description of

network traffic, as well as on modifications of the existing ones. Therefore,

a network anomaly profile will undergo modifications. We will investigate

suitability of these changes to better define normal and anomalous states of

10.2. FUTURE WORK 185

network traffic as well as a boundary between them.

For the developed NetDataCoP system, we envision multiple undertakings

related to improvements of its modules:

Traffic Capture Module: currently, it captures only Ethernet II Frames with the

emphasis on ARP and IPv4 packets, we will target other types of packets,

e.g., IPv6. and other Ethernet frames;

Packet Decipher Module: it analyzes the packet types explained in Section 5.2

and Appendix D, additional packet types will be interpreted;

Connection Identification and Reconstruction Module: the module identifies

and reconstructs ICMP, TCP, and Logical UDP connections, extra research

will focus on deduction of more connection features;

Network Traffic Temporal Processing Module: it performs a time-centric

processing to generate 37 features describing the state of network over one

minute interval, future research will include:

A. different sizes of Time Window: we will investigate the system’s

performance with a time window from one second to one hour, as well

as with a sliding time window;

B. additional features: more features representing network traffic will be

explore from the point of view of performance of the system.

Additional research can be performed on our approach used for identifying and

reconstructing logical connections for UDP-based applications. It will occur

in the form of investigating more UDP-based applications and identification of

related connections.

In Anomaly ID, although the evidence theory has been proved to be an

effective and interesting process of assigning and updating belief masses, more

10.2. FUTURE WORK 186

future research can be done on the performance of the system. Here, we list a few

most important possibilities:

Applying More Features: we will work on selection of more suitable features

leading to the enhancement of predicability of TBM;

Utilizing Other Machine Learning Techniques: in our work, we used four

Machine Learning and a Threshold-based Classifier, namely; J48 Decision

Tree, Support Vector Machine, Logistic Regression, K-Means Clustering,

and MAX-based classifier; we envision more work on combining variety of

classifiers built with different Machine Learning techniques.

Furthermore, we will look at additional host-centric features for the Local

Host-level Threshold-based Anomaly ID. Our goal will be to design, implement,

and apply new features to ensure a more detailed analysis of the behavior of

individual hosts.

In the case of Signature ID, we proposed Global Network-level Machine

Learning-based Signature ID approach that is based on seven attacks and three

Machine Learning classifiers: J48 Decision Tree, Support Vector Machine, and

Simple Logistic. In our work, we tried several combinations of features to be used

with the classifiers, and the best results were reported in this thesis. We anticipate

that for other attacks, other Machine Learning classifiers could provide good

results. The investigations of multiple combinations of features and classifiers is

a very interesting future undertaking. The Attack Detection Modules that analyze

a network traffic data to extract specific information regarding a given attack can

be further enhanced. The activities leading to such enhancements would include

more work on original as well as on already updated by our work multiple attack

signatures.

Intrusion Detection benchmark datasets can be also further improved and

10.2. FUTURE WORK 187

extended. We plan to design and build at least two more benchmark datasets:

one pertaining a connection-based format; and the other one representing data

records in a packet-based format.

List of References

[1] B.A. Forouzan and S.C. Fegan. Data Communications and Networking.
McGraw-Hill Forouzan networking series. McGraw-Hill Higher Education,
2007. ISBN 9780072967753. URL https://books.google.ca/books?id=

bwUNZvJbEeQC.

[2] Mrutyunjaya Panda, Ajith Abraham, and Manas Ranjan Patra. A hybrid
intelligent approach for network intrusion detection. Procedia Engineering,
30:1 – 9, 2012. ISSN 1877-7058. URL http://www.sciencedirect.com/

science/article/pii/S1877705812008375. International Conference on
Communication Technology and System Design 2011.

[3] Wikipedia. Ethernet frame, 2017. https://en.wikipedia.org/wiki/

Ethernet_frame.

[4] Cisco. One Byte at a Time: Bootstrapping with BOOTP and DHCP
- The Internet Protocol Journal - Volume 5, Number 2, 2002. http:

//www.cisco.com/c/en/us/about/press/internet-protocol-journal/

back-issues/table-contents-22/dhcp.html.

[5] P. Mockapetris. Domain names: Implementation specification. RFC 883,
November 1983. URL https://rfc-editor.org/rfc/rfc883.txt.

[6] Dr. Levon Esibov, Dave Thaler, and Dr. Bernard D. Aboba Ph.D. Link-local
Multicast Name Resolution (LLMNR). RFC 4795, January 2007. URL https:

//rfc-editor.org/rfc/rfc4795.txt.

[7] Protocol standard for a NetBIOS service on a TCP/UDP transport: Detailed
specifications. RFC 1002, March 1987. URL https://rfc-editor.org/rfc/

rfc1002.txt.

[8] Douglas Bruey. SNMP: Simple Network Management Protocol, 2005. http:
//www.rane.com/note161.html.

188

189

[9] Alan Presser et al. UPnPTM Device Architecture 1.1, 2008. www.upnp.org/

specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf.

[10] Dhruba Kumar Bhattacharyya and Jugal Kumar Kalita. Network Anomaly
Detection: A Machine Learning Perspective. Chapman & Hall/CRC, 2013.
ISBN 1466582081, 9781466582088.

[11] Karen A. Scarfone and Peter M. Mell. Sp 800-94. guide to intrusion detection
and prevention systems (IDPS). Technical report, National Institute of
Standards & Technology, Gaithersburg, MD, United States, 2007.

[12] Wikipedia. Intrusion Detection System, 2017. https://en.wikipedia.org/

wiki/Intrusion_detection_system.

[13] Kristopher Kendall. A database of computer attacks for the evaluation of
intrusion detection systems. Masters thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1999.

[14] Kristopher Kendall. 1999 DARPA Intrusion Detection Evaluation Data
Set. https://www.ll.mit.edu/ideval/data/1999data.html, 1999. [Online;
accessed 06-April-2017].

[15] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In IEEE Symposium on Computational
Intelligence for Security and Defense Applications, 2009. CISDA 2009., pages
1–6. IEEE, 2009.

[16] Preeti Aggarwal and Sudhir Kumar Sharma. Analysis of kdd dataset
attributes-class wise for intrusion detection. Procedia Computer Science, 57:
842–851, 2015.

[17] Prasanta Gogoi, Monowar H Bhuyan, DK Bhattacharyya, and Jugal K
Kalita. Packet and flow based network intrusion dataset. In International
Conference on Contemporary Computing, pages 322–334. Springer, 2012.

[18] Massachusetts Institute of Technology Lincolin Laboratory. Kdd cup 1999,
2014. http://kdd.ics.uci.edu/databases/kddcup99/.

[19] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[20] Johannes Fürnkranz. Decision Lists and Decision Trees, pages 261–262.
Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8.

190

[21] Sumeet Dua and Xian Du. Data mining and machine learning in
cybersecurity. CRC press, 2016.

[22] Claude Sammut and Geoffrey I. Webb, editors. Logistic Regression, pages
631–631. Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8.
doi: 10.1007/978-0-387-30164-8 493. URL http://dx.doi.org/10.1007/

978-0-387-30164-8_493.

[23] Scott Menard. Logistic Regression: From Introductory to Advanced Concepts
and Applications. SAGE Publications, Inc., Thousand Oaks, California, 2010.
doi: 10.4135/9781483348964.

[24] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564.
Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8. doi:
10.1007/978-0-387-30164-8 425. URL http://dx.doi.org/10.1007/

978-0-387-30164-8_425.

[25] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, 1976.

[26] Lotfi A. Zadeh. A simple view of the dempster-shafer theory of evidence and
its implication for the rule of combination. Artificial Intelligence Magazine,
7(2):85–90, 1986.

[27] Philippe Smets. The concept of distinct evidence. In IPMU 92 Proceedings.
pg, pages 789–794, 1992.

[28] Marek Reformat, Petr Musilek, and Efe Igbide. Intelligent analysis of
software maintenance data. In Advances in Machine Learning Applications
in Software Engineering, pages 14–51. IGI Global, 2007.

[29] Mueen Uddin, Azizah Abdul Rehman, Naeem Uddin, Jamshed Memon,
Raed Alsaqour, and Suhail Kazi. Signature-based multi-layer distributed
intrusion detection system using mobile agents. International Journal of
Network Security, 15(2):97–105, 3 2013. ISSN 1816-353X.

[30] R. Chetan and D. V. Ashoka. Data mining based network intrusion detection
system: A database centric approach. In 2012 International Conference on
Computer Communication and Informatics, pages 1–6, Jan 2012. doi: 10.
1109/ICCCI.2012.6158816.

191

[31] C. V. Raman and Atul Negi. A hybrid method to intrusion detection
systems using hmm. In Proceedings of the Second International Conference
on Distributed Computing and Internet Technology, ICDCIT’05, pages
389–396, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-30999-3,
978-3-540-30999-4. doi: 10.1007/11604655 44. URL http://dx.doi.org/

10.1007/11604655_44.

[32] Mahsa Khosronejad, Elham Sharififar, Hasan Ahmadi Torshizi, and
Mehrdad Jalali. Developing a hybrid method of hidden markov models
and c5.0 as a intrusion detection system. International Journal of Database
Theory and Application, 6(5):165–174, 2013. ISSN 1816-353X.

[33] M. Doroudian, N. Arastouie, M. Talebi, and A. R. Ghanbarian. Multilayered
database intrusion detection system for detecting malicious behaviors
in big data transaction. In 2015 Second International Conference on
Information Security and Cyber Forensics (InfoSec), pages 105–110, Nov 2015.

[34] Mingjun Wei, Lichun Xia, and Jingjing Su. Research on the Application
of Improved K-Means in Intrusion Detection, pages 673–678. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-27503-6.
doi: 10.1007/978-3-642-27503-6 92. URL http://dx.doi.org/10.1007/

978-3-642-27503-6_92.

[35] P. Satam. Cross layer anomaly based intrusion detection system. In 2015
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, pages 157–161, Sept 2015. doi: 10.1109/SASOW.2015.31.

[36] Suvasini Panigrahi, Shamik Sural, and Arun K. Majumdar. Two-stage
database intrusion detection by combining multiple evidence and belief
update. Information Systems Frontiers, 15(1):35–53, 2013. ISSN 1572-9419.

[37] Gianluigi Folino, Francesco Sergio Pisani, and Pietro Sabatino. A distributed
intrusion detection framework based on evolved specialized ensembles of
classifiers. In European Conference on the Applications of Evolutionary
Computation, pages 315–331. Springer, 2016.

[38] Nour Moustafa and Jill Slay. A hybrid feature selection for network intrusion
detection systems: Central points. In the 16th Australian Information
Warfare Conference, pages 5–13. Security Research Institute, Edith Cowan
University, 2015.

192

[39] Jasmin Kevric, Samed Jukic, and Abdulhamit Subasi. An effective combining
classifier approach using tree algorithms for network intrusion detection.
Neural Computing and Applications, pages 1–8, 2016.

[40] Nutan Farah Haq, Abdur Rahman Onik, and Faisal Muhammad Shah.
An ensemble framework of anomaly detection using hybridized feature
selection approach (hfsa). In SAI Intelligent Systems Conference (IntelliSys),
2015, pages 989–995. IEEE, 2015.

[41] Kathleen Goeschel. Reducing false positives in intrusion detection systems
using data-mining techniques utilizing support vector machines, decision
trees, and naive bayes for off-line analysis. In SoutheastCon, 2016, pages
1–6. IEEE, 2016.

[42] Vikram Kumaran. Event stream database based architecture to detect
network intrusion: (industry article). In Proceedings of the 7th ACM
International Conference on Distributed Event-based Systems, DEBS ’13,
pages 241–248, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1758-0.
doi: 10.1145/2488222.2488276. URL http://doi.acm.org/10.1145/

2488222.2488276.

[43] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by
lincoln laboratory. ACM Transactions on Information and System Security
(TISSEC), 3(4):262–294, 2000.

[44] Gerald Combs. Wireshark, 2017. https://www.wireshark.org/.

[45] Cisco. Snort, 2017. https://www.snort.org/.

[46] Riverbed. Winpcap, 2013. https://www.winpcap.org/.

[47] GitHub. Pcap.net, 2017. https://github.com/PcapDotNet/Pcap.Net.

[48] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet
Hardware. RFC 826 (Standard), November 1982. URL http://www.ietf.

org/rfc/rfc826.txt. Updated by RFCs 5227, 5494.

[49] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4
Link-Local Addresses. RFC 3927 (Proposed Standard), May 2005. URL
http://www.ietf.org/rfc/rfc3927.txt.

193

[50] S. Cheshire. IPv4 Address Conflict Detection. RFC 5227 (Proposed
Standard), July 2008. URL http://www.ietf.org/rfc/rfc5227.txt.

[51] J. Doyle and J.D.H. Carroll. Routing TCP/IP. Number v. 1 in CCIE Professional
Development Routing TCP/IP. Cisco Press, 2005. ISBN 9781587052026. URL
https://books.google.ca/books?id=JjdF2yWqJAwC.

[52] RFC 791 Internet Protocol - DARPA Inernet Programm, Protocol Specification.
Internet Engineering Task Force, September 1981.

[53] S. E. Deering. Host extensions for IP multicasting. RFC 988, jul 1986. URL
https://rfc-editor.org/rfc/rfc988.txt.

[54] S. E. Deering. Host extensions for IP multicasting. RFC 1112, aug 1989. URL
https://rfc-editor.org/rfc/rfc1112.txt.

[55] J. Postel. Internet Control Message Protocol. RFC 792, sep 1981.

[56] Bill Fenner. Internet Group Management Protocol, Version 2. RFC 2236, nov
1997.

[57] Haixiang He, Brian Haberman, and Hal Sandick. Internet Group
Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-Based
Multicast Forwarding (”IGMP/MLD Proxying”). RFC 4605, aug 2006.

[58] J. Postel. Transmission Control Protocol. RFC 793, sep 1981.

[59] Robert T. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122, October 1989. URL https://rfc-editor.org/rfc/rfc1122.txt.

[60] J. Postel. User Datagram Protocol. RFC 768, aug 1980. URL https://

rfc-editor.org/rfc/rfc768.txt.

[61] John Gilmore Bill Croft. Bootstrap Protocol. RFC 951, September 1985. URL
https://rfc-editor.org/rfc/rfc951.txt.

[62] Walter Wimer. Clarifications and Extensions for the Bootstrap Protocol. RFC
1532, October 1993. URL https://rfc-editor.org/rfc/rfc1532.txt.

[63] Ralph Droms. Interoperation Between DHCP and BOOTP. RFC 1534,
October 1993. URL https://rfc-editor.org/rfc/rfc1534.txt.

[64] Walter Wimer. Clarifications and Extensions for the Bootstrap Protocol. RFC
1542, October 1993. URL https://rfc-editor.org/rfc/rfc1542.txt.

194

[65] Joyce K. Reynolds. BOOTP Vendor Information Extensions. RFC 1497,
August 1993. URL https://rfc-editor.org/rfc/rfc1497.txt.

[66] P. Mockapetris. Domain names - implementation and specification. RFC
1035, November 1987. URL https://rfc-editor.org/rfc/rfc1035.txt.

[67] Vladimir Ksinant, Christian Huitema, Dr. Susan Thomson, and Mohsen
Souissi. DNS Extensions to Support IP Version 6. RFC 3596, October 2003.
URL https://rfc-editor.org/rfc/rfc3596.txt.

[68] Ray Bellis. DNS Transport over TCP - Implementation Requirements. RFC
5966, August 2010. URL https://rfc-editor.org/rfc/rfc5966.txt.

[69] Remco Mook and Bert Hubert. Measures for Making DNS More Resilient
against Forged Answers. RFC 5452, January 2009. URL https://rfc-editor.

org/rfc/rfc5452.txt.

[70] Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts
and methods. RFC 1001, March 1987. URL https://rfc-editor.org/rfc/

rfc1001.txt.

[71] Dr. Jeff D. Case, Mark Fedor, James R. Davin, and Martin Lee Schoffstall.
Simple Network Management Protocol (SNMP). RFC 1098, April 1989. URL
https://rfc-editor.org/rfc/rfc1098.txt.

[72] Mark Fedor, James R. Davin, Martin Lee Schoffstall, and Dr. Jeff D. Case.
Simple Network Management Protocol (SNMP). RFC 1157, May 1990. URL
https://rfc-editor.org/rfc/rfc1157.txt.

[73] Simple Service Discovery Protocol/1.0, 1999. https://tools.ietf.org/

html/draft-cai-ssdp-v1-03.

[74] SSDP: Networked Home Entertainment Devices (NHED) Extensions,
2015. https://winprotocoldoc.blob.core.windows.net/.../MS-SSDP/

[MS-SSDP].pdf.

[75] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003. URL
http://www.ietf.org/rfc/rfc3550.txt. Updated by RFC 5506.

[76] H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences
with Minimal Control. RFC 3551 (Standard), July 2003. URL http://www.

ietf.org/rfc/rfc3551.txt.

195

[77] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP Payload Format for
MPEG1/MPEG2 Video. RFC 2250 (Proposed Standard), January 1998. URL
http://www.ietf.org/rfc/rfc2250.txt.

[78] SourceForge.net. Hyenae download, 2017. https://sourceforge.net/

projects/hyenae/.

[79] ostinato.org. Ostinato network traffic generator, 2017. http://ostinato.

org/.

[80] solarwinds.com. Solarwinds engineer’s toolset: Ping sweep, 2017. http:

//www.solarwinds.com/engineers-toolset/ping-sweep.

[81] angryip.org. Angry ip scanner, 2017. http://angryip.org/download/

#windows.

[82] advanced-ip scanner.com. Advanced ip scanner, 2017. https://www.

advanced-ip-scanner.com/.

[83] solarwinds.com. Solarwinds engineer’s toolset: Dns audit, 2017. http://

www.solarwinds.com/engineers-toolset/dns-audit.

[84] solarwinds.com. Solarwinds engineer’s toolset: Dns who is resolver, 2017.
http://www.solarwinds.com/engineers-toolset/dns-whois-resolver.

[85] Nir Sofer. Netbscanner v1.11, 2016. https://www.nirsoft.net/utils/

netbios_scanner.html.

[86] nmap.org. Nmap (network mapper), 2016. https://nmap.org/.

[87] Saurabh Mukherjee and Neelam Sharma. Intrusion detection using
naive bayes classifier with feature reduction. Procedia Technology, 4:
119 – 128, 2012. ISSN 2212-0173. URL http://www.sciencedirect.com/

science/article/pii/S2212017312002964. 2nd International Conference
on Computer, Communication, Control and Information Technology(
C3IT-2012) on February 25 - 26, 2012.

[88] Michelle S. Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund,
and Stuart Cheshire. Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport Protocol
Port Number Registry. RFC 6335, aug 2011. URL https://rfc-editor.org/

rfc/rfc6335.txt.

196

[89] Dr. Marshall T. Rose and Keith McCloghrie. Management Information Base
for Network Management of TCP/IP-based internets: MIB-II. RFC 1213, mar
1991. URL https://rfc-editor.org/rfc/rfc1213.txt.

Appendix A

Network Anomaly Profile

In this appendix, we explain how we designed and implemented our network

anomaly profile. All the provided explanation is based on the sessions that

are chosen to create the profile. We calculate features whether they are

time-dependent or time-independent features, all of them are designed based

on the proposed multi-perspective feature-based description of network traffic.

A.1 Profile Features

In this section we are going to provide the features of our proposed network

anomaly profile, grouped by protocol.

197

A.1. PROFILE FEATURES 198

A.1.1 ARP Features

ID
Layer: Network Interface
Protocol: ARP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [350,2406]
2 Packets Per Second 0.4
3 Packets Per Minute 24.2
4 Packets Per Hour 1451.3
5 Request Packets [235,1328]
6 Requests Per Second 0.2
7 Requests Per Minute 12.1
8 Requests Per Hour 723.9
9 Response Packets [115,1135]

10 Responses Per Second 0.2
11 Responses Per Minute 12.1
12 Responses Per Hour 726.8
13

Address

Source Addresses 7
14 Destination Addresses 8
15 Request Source Addresses 5
16 Request Destination Addresses 8
17 Response Source Addresses 6
18 Response Destination Addresses 4
19

Host

Address Destinations Per Source [1,6]
20 Packet Requests Per Destinations [1,365]
21 Packet Overall Requests Per Source [1,892]
22 Packet Responses Per Sources [1,353]
23 Packet Overall Responses Per Destination [4,582]

Table A.1: ARP Protocol Features

Packet Count Range of collected ARP packets issued within sessions.

Packets Per Second The maximum average rate of ARP packets per second.

Packets Per Minute The maximum average rate of ARP packets per minute.

Packets Per Hour The maximum average rate of ARP packets per hour.

Request Packets Range of collected ARP request packets issued within sessions.

Requests Per Second The maximum average ARP request rate per second.

Requests Per Minute The maximum average ARP request rate per minute.

Requests Per Hour The maximum average ARP request rate per hour.

Response Packets Range of collected ARP response packets issued within

sessions.

A.1. PROFILE FEATURES 199

Responses Per Second The maximum average ARP response rate per second.

Responses Per Minute The maximum average ARP response rate per minute.

Responses Per Hour The maximum average ARP response rate per hour.

Source Addresses The maximum distinct ARP source address count.

Destination Addresses The maximum distinct ARP destination address count.

Request Source Addresses The maximum distinct ARP request source address

count.

Request Destination Addresses The maximum distinct ARP request destination

address count

Response Source Addresses The maximum distinct ARP response source

address count

Response Destination Addresses The maximum distinct ARP response

destination address count.

Destinations Per Source The maximum distinct ARP destinations contacted by

a certain source.

Requests Per Destinations The maximum number of ARP requests issued by a

source to a destination.

Overall Requests Per Source The maximum number of overall ARP requests

issued by a certain source.

Responses Per Sources The maximum number of ARP response packets

received by a destination from a source.

A.1. PROFILE FEATURES 200

Overall Responses Per Destination The maximum number of ARP response

packets received by a destination.

A.1.2 ICMP Features

In this section we illustrate and explain ICMP protocol features, Table A.2.

ID
Layer: Internet
Protocol: ICMP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [0,425]
2 Packets Per Second 0
3 Packets Per Minute 3.2
4 Packets Per Hour 189.6
5 Error Packets [0,417]
6 Error Per Second 0
7 Error Per Minute 3.1
8 Error Per Hour 188
9 Query Packets [0,8]

10 Query Packets Per Second 0
11 Query Packets Per Minute 0
12 Query Packets Per Hour 1.6
13 Query Request Packets [0,4]
14 Query Request Packets Per Second 0
15 Query Request Packets Per Minute 0
16 Query Request Packets Per Hour 0.8
17 Query Response Packets [0,4]
18 Query Response Packets Per Second 0
19 Query Response Packets Per Minute 0
20 Query Response Packets Per Hour 0.8
21

Address

Source Addresses 2
22 Destination Addresses 2
23 Request Source Addresses 1
24 Request Destination Addresses 1
25 Response Source Addresses 1
26 Response Destination Addresses 1
27 Packet Maximum Packet Size 84
28 Connection Connection Count [0,2]
29 Connection

Temporal

Connections Per Second 0
30 Connections Per Minute 0
31 Connections Per Hour 0.2
32

Host

Address Destinations Per Source [0,1]
33

Packet

Requests Per Destinations [0,4]
34 Overall Requests Per Source [0,4]
35 Responses Per Sources [0,4]
36 Overall Responses Per Destination [0,4]
37

Connection
Connections Per Destination [0,2]

38 Overall Connections Per Source [0,2]

Table A.2: ICMP Protocol Features

Packet Count Range of collected ICMP packets.

Packets Per Second The maximum average ICMP packet rate per second.

A.1. PROFILE FEATURES 201

Packets Per Minute The maximum average ICMP packets rate per minute.

Packets Per Hour The maximum average ICMP packets rate per hour.

Error Packets Range of collected ICMP error packets.

Error Packets Per Second The maximum average ICMP error packets rate per

second.

Error Packets Per Minute The maximum average ICMP error packets rate per

minute.

Error Packets Per Hour The maximum average ICMP error packets rate per

hour.

Query Packets Range of collected ICMP query packets.

Query Packets Per Second The maximum average ICMP query packets rate per

second.

Query Packets Per Minute The maximum average ICMP query packets rate per

minute.

Query Packets Per Hour The maximum average ICMP query packets rate per

hour.

Query Request Packets Range of collected ICMP query request packets.

Query Request Packets Per Second The maximum average ICMP query request

packets rate per second.

Query Request Packets Per Minute The maximum average ICMP query request

packets rate per minute.

A.1. PROFILE FEATURES 202

Query Request Packets Per Hour The maximum average ICMP query request

packets rate per hour.

Query Response Packets Range of collected ICMP query response packets.

Query Response Packets Per Second The maximum average ICMP query

response packets rate per second.

Query Response Packets Per Minute The maximum average ICMP query

response packets rate per minute.

Query Response Packets Per Hour The maximum average ICMP query

response packets rate per hour.

Source Addresses The maximum overall number of distinct ICMP source

addresses.

Destination Addresses The maximum overall number of distinct ICMP

destination addresses.

Request Source Addresses The maximum overall number of distinct ICMP

request source addresses.

Request Destination Addresses The maximum overall number of distinct ICMP

request destination addresses.

Response Source Addresses The maximum overall number of distinct ICMP

response source addresses.

Response Destination Addresses The maximum overall number of distinct

ICMP response destination addresses.

Maximum Packet Size The Maximum ICMP packet size.

A.1. PROFILE FEATURES 203

Connection Count Range of collected ICMP connections.

Connections Per Second The maximum average rate of ICMP connections per

second.

Connections Per Minute The maximum average rate of ICMP connections per

minute.

Connections Per Hour The maximum average rate of ICMP connections per

hour.

Destinations Per Source The maximum number of distinct ICMP destinations

contacted by a source.

Requests Per Destinations The maximum number of ICMP requests issued by a

certain source.

Overall Requests Per Source The maximum number of overall ICMP requests

issued by a source.

Responses Per Sources The maximum number of ICMP responses received by a

destination from a source.

Overall Responses Per Destination The maximum overall number of ICMP

response packets received by a destination.

Connections Per Destination The maximum number of ICMP connections

issued by a source to a destination.

Overall Connections Per Source The maximum number of overall ICMP

connections issued by a certain source.

A.1. PROFILE FEATURES 204

A.1.3 IGMP Features

ID
Layer: Internet
Protocol: IGMP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network
Packet

Temporal

Packet Count [443,1189]
2 Packets Per Second 0.3
3 Packets Per Minute 16.9
4 Packets Per Hour 1011.6
5 Multicast Packets [443,1189]
6 Multicast Packets Per Second 0.3
7 Multicast Packets Per Minute 16.9
8 Multicast Packets Per Hour 1011.6
9 Unicast Packets [0,0]

10 Unicast Packets Per Second 0
11 Unicast Packets Per Minute 0
12 Unicast Packets Per Hour 0
13

Host
Multicast Packets Per Second [0,0.1]

14 Unicast Packets Per Second 0

Table A.3: IGMP Protocol Features

Packet Count Range of collected IGMP packets.

Packets Per Second The maximum average IGMP packet rate per second.

Packets Per Minute The maximum average IGMP packets rate per minute.

Packets Per Hour The maximum average IGMP packets rate per hour.

Packet Count Range of collected Multicast IGMP packets.

Packets Per Second The maximum average Multicast IGMP packet rate per

second.

Packets Per Minute The maximum average Multicast IGMP packets rate per

minute.

Packets Per Hour The maximum average Multicast IGMP packets rate per hour.

Packet Count Range of collected Unicast IGMP packets.

Packets Per Second The maximum average Unicast IGMP packet rate per

second.

A.1. PROFILE FEATURES 205

Packets Per Minute The maximum average Unicast IGMP packets rate per

minute.

Packets Per Hour The maximum average Unicast IGMP packets rate per hour.

Multicast Packets Per Second The maximum average Multicast IGMP packets

issued by a source per second.

Unicast Packets Per Second The maximum average Unicast IGMP packets

issued by a source per second.

A.1.4 Network Interface Layer Features

ID
Layer: Internet
Protocol: General

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)

1 Network
Packet

Address LAND Indicator 0

Table A.4: Network Interface Layer Features

LAND Indicator An indicator that signifies the existence of LAND attack.

A.1.5 TCP Features

ID
Layer: Transport
Protocol: TCP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [4084,35105]
2 Packets Per Second 3.7
3 Packets Per Minute 222.8
4 Packets Per Hour 13371.6
5

Connection
Temporal

Connection Count [79,1809]
6 Connections Per Second 0.2
7 Connections Per Minute 9
8 Connections Per Hour 538.8
9 Protocol Invoked Services [3,7]

10 Protocol,Packet Service Packets [1,28189]
11

Host
Protocol Invoked Services [1,5]

12 Packet Exchanged Packets [284,18874]
13 Connection Established Connections [8,56]

Table A.5: TCP Protocol Features

A.1. PROFILE FEATURES 206

Packet Count Range of collected TCP packets.

Packets Per Second The maximum average TCP packet rate per second.

Packets Per Minute The maximum average TCP packets rate per minute.

Packets Per Hour The maximum average TCP packets rate per hour.

Packet Count Range of collected TCP Connections.

Packets Per Second The maximum average TCP Connections rate per second.

Packets Per Minute The maximum average TCP Connections rate per minute.

Packets Per Hour The maximum average TCP Connections rate per hour.

Invoked Services Range of overall invoked TCP services.

Service Packets Range of packets for invoked TCP services.

Host Invoked Services Range of invoked TCP services between 2 hosts.

Host Exchanged Packets Range of packets for invoked TCP services between 2

hosts.

Host Established Connections Range of TCP connections established between

2 hosts.

A.1. PROFILE FEATURES 207

A.1.6 UDP Features

ID
Layer: Transport
Protocol: UDP

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet
Temporal

Packet Count [6987,10640]
2 Packets Per Second 2.2
3 Packets Per Minute 130.1
4 Packets Per Hour 7806.2
5

Connection
Temporal

Connection Count [104,433]
6 Connections Per Second 0.1
7 Connections Per Minute 3.6
8 Connections Per Hour 213.9
9 Protocol Invoked Services [1,7]

10 Protocol,Packet Service Packets [1,4066]
11

Host
Protocol Invoked Services [1,2]

12 Packet Exchanged Packets [132,534]
13 Connection Established Connections [31,144]

Table A.6: UDP Protocol Features

Packet Count Range of collected UDP packets.

Packets Per Second The maximum average UDP packet rate per second.

Packets Per Minute The maximum average UDP packets rate per minute.

Packets Per Hour The maximum average UDP packets rate per hour.

Packet Count Range of collected UDP Connections.

Packets Per Second The maximum average UDP Connections rate per second.

Packets Per Minute The maximum average UDP Connections rate per minute.

Packets Per Hour The maximum average UDP Connections rate per hour.

Invoked Services Range of overall invoked UDP services.

Service Packets Range of packets for invoked UDP services.

Host Invoked Services Range of invoked UDP services between 2 hosts.

A.1. PROFILE FEATURES 208

Host Exchanged Packets Range of packets for invoked UDP services between 2

hosts.

Host Established Connections Range of UDP connections established between

2 hosts.

A.1.7 Transport Layer Features

ID
Layer: Transport
Protocol: General

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Host

Protocol Invoked Transport Services [2,7]

2
Packet

Protocol Exchanged Transport Packets [416,19356]

3
Packet

Connection Established Transport Connections [87,185]

4 Protocol Attempted Transport Services [0,2]

5
Packet

Protocol Exchanged Attempted Transport Packets [0,94]

6
Packet

Connection Established Attempted Transport Connections [0,16]

Table A.7: Transport Layer Features

Invoked Transport Services Range of overall invoked Transport services.

Exchanged Transport Packets Range of overall exchanged Transport packets for

invoked services.

Established Transport Connections Range of overall established Transport

connections.

Attempted Transport Services Range of overall attempted Transport services.

Exchanged Attempted Transport Packets Range of overall exchanged Transport

packets for attempted services.

Established Attempted Transport Connections Range of overall attempted

Transport connections.

A.1. PROFILE FEATURES 209

A.1.8 DNS Features

ID
Layer: Application
Protocol: DNS

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet Packet Count [0,417]
2 Packet

Temporal

Packets Per Second 0
3 Packets Per Minute 1.6
4 Packets Per Hour 98.1
5

Address
Multicast Destinations [0,0]

6 Unicast Destinations [0,4]
7

Host
Protocol Name Resolution Indicator 0

8 Address Destinations Per Source [0,2]

Table A.8: DNS Protocol Features

Packet Count Range of collected DNS packets.

Packets Per Second The maximum average DNS packet rate per second.

Packets Per Minute The maximum average DNS packets rate per minute.

Packets Per Hour The maximum average DNS packets rate per hour.

Multicast Destinations Range of Multicast DNS destinations.

Unicast Destinations Range of Unicast DNS destinations.

Name Resolution Indicator An indicator that signifies the existence of DNS

address to name resolution.

Destinations Per Source Range of DNS destinations contacted by a source.

A.1. PROFILE FEATURES 210

A.1.9 NBNS Features

ID
Layer: Application
Protocol: DNS

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet Packet Count [0,125]
2 Packet

Temporal

Packets Per Second 0
3 Packets Per Minute 0.8
4 Packets Per Hour 48.7
5

Address
Multicast Destinations [0,1]

6 Unicast Destinations [0,1]
7

Host
Protocol Name Resolution Indicator 0

8 Address Destinations Per Source [0,2]

Table A.9: NBNS Protocol Features

Packet Count Range of collected NBNS packets.

Packets Per Second The maximum average NBNS packet rate per second.

Packets Per Minute The maximum average NBNS packets rate per minute.

Packets Per Hour The maximum average NBNS packets rate per hour.

Multicast Destinations Range of Multicast NBNS destinations.

Unicast Destinations Range of Unicast NBNS destinations.

Name Resolution Indicator An indicator that signifies the existence of NBNS

address to name resolution.

Destinations Per Source Range of NBNS destinations contacted by a source.

A.2. UTILIZATION IN INTRUSION DETECTION 211

A.1.10 LLMNR Features

ID
Layer: Application
Protocol: DNS

Scope
Auxiliary

Perspectives Feature Name
Feature Value

(threshold)
1

Network

Packet Packet Count [0,74]
2 Packet

Temporal

Packets Per Second 0
3 Packets Per Minute 0.6
4 Packets Per Hour 34.6
5

Address
Multicast Destinations [0,1]

6 Unicast Destinations [0,0]
7

Host
Protocol Name Resolution Indicator 0

8 Address Destinations Per Source [0,1]

Table A.10: LLMNR Protocol Features

Packet Count Range of collected LLMNR packets.

Packets Per Second The maximum average LLMNR packet rate per second.

Packets Per Minute The maximum average LLMNR packets rate per minute.

Packets Per Hour The maximum average LLMNR packets rate per hour.

Multicast Destinations Range of Multicast LLMNR destinations.

Unicast Destinations Range of Unicast LLMNR destinations.

Name Resolution Indicator An indicator that signifies the existence of LLMNR

address to name resolution.

Destinations Per Source Range of LLMNR destinations contacted by a source.

A.2 Utilization in Intrusion Detection

We are going demonstrate how to utilize our implemented network profile within

Anomaly Detection. We perform Anomaly ID by examining Global Network-level

scope-centric features, in order to detect global evidences of anomalies. In

the demonstration here we use 2 example packet capture sessions; Session ’A’

A.2. UTILIZATION IN INTRUSION DETECTION 212

and Session ’B’. Session ’A’ contains IPSweep attack while Session ’B’ includes

ICMP Flood Attack, so it is suffice to use only ARP and ICMP features for this

demonstration. Table A.11 demonstrates ARP and ICMP Global Network-level

features and the corresponding feature values from Sessions ’A’ and ’B’.

A.2. UTILIZATION IN INTRUSION DETECTION 213

ID

Layer: Network Interface
Protocol: ARP
Scope: Global Network-level

Example
Sessions

Feature Name Feature Value Session ’A’ Session ’B’

1 Packet Count [350,2406] 1810 5
2 Packets Per Second 0.4 3.7 0
3 Packets Per Minute 24.2 223.4 2.7
4 Packets Per Hour 1451.3 13404 162
5 Request Packets [235,1328] 1791 3
6 Requests Per Second 0.2 3.7 0
7 Requests Per Minute 12.1 221 1.6
8 Requests Per Hour 723.9 13260 96
9 Response Packets [115,1135] 19 2

10 Responses Per Second 0.2 0 0
11 Responses Per Minute 12.1 2.3 1.1
12 Responses Per Hour 726.8 138 66
13 Source Addresses 7 6 2
14 Destination Addresses 8 204 2
15 Request Source Addresses 5 6 1
16 Request Destination Addresses 8 204 1
17 Response Source Addresses 6 5 1
18 Response Destination Addresses 4 6 1

ID

Layer: Inernet
Protocol: ICMP
Scope: Global Network-level

Example
Sessions

Feature Name Feature Value Session ’A’ Session ’B’

1 Packet Count [0,425] 19 1500
2 Packets Per Second 0 0 13.6
3 Packets Per Minute 3.2 2.3 815.1
4 Packets Per Hour 189.6 138 48906
5 Error Packets [0,417] 0 198
6 Error Per Second 0 0 1.8
7 Error Per Minute 3.1 0 107.6
8 Error Per Hour 188 0 6456
9 Query Packets [0,8] 19 1302

10 Query Packets Per Second 0 0 11.8
11 Query Packets Per Minute 0 2.3 707.5
12 Query Packets Per Hour 1.6 138 42450
13 Query Request Packets [0,4] 9 786
14 Query Request Packets Per Second 0 0 7.1
15 Query Request Packets Per Minute 0 1.1 427.1
16 Query Request Packets Per Hour 0.8 66 25626
17 Query Response Packets [0,4] 10 516
18 Query Response Packets Per Second 0 0 4.7
19 Query Response Packets Per Minute 0 1.2 280.4
20 Query Response Packets Per Hour 0.8 72 16824
21 Source Addresses 2 5 2
22 Destination Addresses 2 6 2
23 Request Source Addresses 1 1 1
24 Request Destination Addresses 1 5 1
25 Response Source Addresses 1 4 1
26 Response Destination Addresses 1 1 1
27 Maximum Packet Size 84 60 56
28 Connection Count [0,2] 5 187
29 Connections Per Second 0 0 1.7
30 Connections Per Minute 0 0.6 101.6
31 Connections Per Hour 0.2 36 6096

Table A.11: ARP and ICMP Global Network-level features

It is clear from the table and the highlighted cells, that we perform

comparison of session features values against their corresponding thresholds of

A.2. UTILIZATION IN INTRUSION DETECTION 214

normal behavior within the network anomaly profile.

The Greyed cells indicate the violated thresholds for respective features. The

comparison process indicates the findings in Table A.12 below.

Packet Capture Session Protocol Layer

Session ’A’
ARP

ICMP
Network Interface

Internet
Session ’B’ ICMP Internet

Table A.12: Network Profile Results

The Results from utilizing the Network Anomaly Profile, compared to

originally existing attacks within the sessions, proves the efficiency of utilizing

the profile in Anomaly ID.

Appendix B

Verification of logical connections for

UDP-based application protocols

In this appendix we will demonstrate the validity of our proposed methodology

of identifying and reconstructing logical UDP-based connections. The

demonstration will include the experimental process and the associated data

analysis of a series of experiments. UDP and its associated application protocols

are used in real life in one of two main communication situations: unicast and

multicast communication. We will represent UDP-based applications within

these networking scenarios:

1. Unicast communication

2. Multicast communication

3. Intrusion Detection

In unicast communication, there is only one source and one destination. The

source and destination addresses in the IP packet are the unicast addresses. In

multicast communication, there is only one source and a group of destinations

identified by a multicast address. The source and destination addresses in the IP

packet are the source address and the group address respectively [1].

215

B.1. UNICAST COMMUNICATION 216

As real life examples, UDP-based unicast communication can be examined

using any UDP-based application protocol whose behavior and specifications

require unicast communication. Also, UDP-based multicast communication can

be investigated using any UDP-based media streaming protocol.

To demonstrate the validity of our proposed methodology in unicast

communication we are going to experimentally examine and analyze DNS

protocol, in multicast communication we are going to experimentally investigate

and analyze RTP [75][76][77], and finally for Intrusion detection we utilize NBNS

and LLMNR protocol.

B.1 Unicast Communication

In order to investigate unicast communication scenarios we captured real world

traffic of a computer connected to the Internet from campus network of Electrical

and Computer Engineering Department, University of Alberta in Edmonton.

This situation guarantees the preciseness of our proposed methodology via

examining a variety of protocols in normal uncontrolled environment. We

performed three browsing scenarios to test our methodology, we will begin our

explanation of such scenarios from the easiest to the hardest.

B.1.1 Scenario 1

In this scenario we initiated a simple browsing session to browse two websites

simultaneously; ”Google” and ”Facebook”. We used Mozilla Firefox web browser

to browse the websites in two separate tabs. We started capturing network

traffic, then browsed both websites, closed the tabs, closed the browser, then we

terminated the packet capture session. The IP address of the browsing computer

B.1. UNICAST COMMUNICATION 217

is ”129.128.212.139”.

Quantitative information Temporal information
Protocol Packets Bytes (K) Traffic % Start time End time Duration

TCP 874 248,707 92.69 13:22:32 13:24:45 00:02:12
UDP 153 19,604 7.31

1027 268,311 100

(a) Scenario 1 Summary information

Protocol Packets Bytes (K) UDP % Selected?

DNS 118 13,111 66.88 Yes
Multicast DNS 2 0,210 1.07 No

Dropbox LanSync Discovery 33 6,283 32.05 No
3 applications 153 19,604 100 1 selected

(b) Scenario 1 UDP Detailed Information

Table B.1: Scenario 1: Packet Capture Information

Table B.1a indicates that we have 874 TCP packets and 153 UDP packets.

Table B.1b illustrates the captured UDP-based application protocols, we only

process DNS protocol. We identified and reconstructed 36 TCP connections and

59 UDP-based logical connections from DNS packets.

According to the activities that we did in this scenario we browsed ”Google” and

”Facebook” websites. Thus, connection-wise investigation should reflect these

activities. Within our identified connections we should see TCP-based HTTPS

connections to browse these websites. In addition, these browsing connections

should be preceded by DNS connections that query the names ”Google” and

”Facebook” respectively.

We found these traffic patterns within our reconstructed connections, Table B.2.

ConnectionID
Start
Time Duration Service Protocol

Source
Port Source IP

Destination
Port Destination IP Status Packets Data

48 13:22:45.990 00:00:00.160 DNS UDP 52842 129.128.212.139 53 129.128.208.6 Complete 2 134
8 13:22:46.303 00:01:42.837 HTTPS TCP 51857 129.128.212.139 443 216.58.193.67 Complete 146 99597

75 13:23:23.027 00:00:00.096 DNS UDP 61912 129.128.212.139 53 129.128.208.6 Complete 2 169
15 13:23:23.213 00:01:05.770 HTTPS TCP 51866 129.128.212.139 443 66.220.146.36 Complete 51 27317

Table B.2: Scenario 1: Summary Connections

DNS connection 46 in Table B.2 is a connection issued to the DNS server to

B.1. UNICAST COMMUNICATION 218

know the IP address of ”Google” website. Figure B.1 illustrates such connection.

Figure B.1: Google DNS Query Connection

It is clear from Figure B.1 that the DNS connection asks for the IPv4 address

of ”Google” website, and the DNS server responded that it is 216.58.193.67. Then

from Table B.2, connection 8, the server started browsing Google using HTTPS

protocol over TCP.

Likewise, DNS connection 75 in Table B.2 is a connection to DNS server to find

out the IP address of ”Facebook” website. Figure B.2 shows the details of such

DNS connection.

B.1. UNICAST COMMUNICATION 219

Figure B.2: Facebook DNS Query Connection

Again, it is obvious that the IPv4 address of ”Facebook” is 66.220.146.36. The

computer uses that address in the next connection to connect to Facebook.

B.1.2 Scenario 2

In this experiment we needed to make it a little bit harder for our algorithm

to identify and reconstruct logical connections by trying to invoke the first

shortcoming that the transport address alone is not sufficient. In other words,

we needed the computer to initiate multiple DNS connections using the same

source port.

So, instead of having a simple browsing session containing just two different

websites, we opened and closed multiple websites (around 50 websites) in

the same packet capture session using the same browser (Mozilla Firefox).

Additionally, we decreased Windows available UDP dynamic port range to its

minimum (255 ports), to force the computer to use the same source port

number. The IP address of the browsing computer is ”129.128.212.139”. Table B.3

B.1. UNICAST COMMUNICATION 220

illustrates information about the captured traffic within this scenario.

Quantitative information Temporal information
Protocol Packets Bytes (K) Traffic % Start time End time Duration

TCP 3129 940,208 94.5 12:13:05 12:21:12 00:08:06
UDP 461 54,392 5.5

3590 994,600 100

(a) Scenario 2 Summary information

Protocol Port Packets Bytes (K) UDP % Selected?

DNS 53 205 23,353 42.94 Yes
NBNS 137 60 5,040 9.27 Yes
NBDS 138 27 5,848 10.75 Yes

LLMNR 5355 74 3,784 6.95 Yes
SSDP 1900 29 4,466 8.21 Yes

BOOTP 67,68 2 0,663 1.22 Yes
Dropbox 17500 62 10,774 19.8 No
McAfee 6646 2 0,464 0.86 No

8 applications 461 54,392 100 6 selected

(b) Scenario 2 UDP Detailed Information

Table B.3: Scenario 2: Packet Capture Information

By applying our algorithm to this capture traffic, our algorithm was able to

identify and reconstruct 345 connections. We processed all TCP packets (3129

packets) and identified 117 TCP connections. Also, we processed 397 UDP

packets and skipped 64 packets (2 packets for McAfee, 62 packets for Dropbox

LanSync Discovery) and identified 228 UDP logical connections. Table B.4

illustrates the identified and reconstructed 228 UDP logical connections with

their respective statuses.

Application Connections
Status

Complete Incomplete

DNS 106 99 7
NBNS 19 0 19
NBDS 27 0 27

LLMNR 45 0 45
SSDP 29 0 29

BOOTP 2 0 2
Total 228 99 129

Table B.4: Scenario 2: UDP Connections

We achieved the goal from our experiment, the target computer re-used the

same dynamic port number to initiate several UDP logical connections. The

B.1. UNICAST COMMUNICATION 221

packets in Table B.5 shows such situation.

PacketID Timestamp Source Port Source IP Destination Port Destination IP Data

3066 12:17:20.263 50061 129.128.212.139 53 129.128.208.6 61
3067 12:17:20.390 53 129.128.208.6 50061 129.128.212.139 89
3903 12:19:20.750 50061 129.128.212.139 53 129.128.208.6 72
3909 12:19:21.740 53 129.128.208.6 50061 129.128.212.139 427
4107 12:19:51.510 50061 129.128.212.139 53 129.128.208.6 72
4108 12:19:51.637 53 129.128.208.6 50061 129.128.212.139 88

Table B.5: Scenario 2: Re-occurring Transport Address Packets (Internet and
Transport Layer Data)

All these packets, Table B.5, share the same transport address. They have

the same port numbers and they are exchanged between the same hosts using

UDP. Researchers might try to group these packets using their timestamps but

with no justifiable evidence. According to our proposed algorithm, when we add

the DNS ID field to the transport address of these we achieve unique distinction

between these packets into logical connections. Additionally, the DNS Name of

these packets supports our claim, Table B.6.

PacketID Timestamp Source Port Source IP Destination Port Destination IP Data ID DNS Name
3066 12:17:20.263 50061 129.128.212.139 53 129.128.208.6 61 10425 plus.google.com
3067 12:17:20.390 53 129.128.208.6 50061 129.128.212.139 89 10425 plus.google.com
3903 12:19:20.750 50061 129.128.212.139 53 129.128.208.6 72 21310 tiles.services.mozilla.com
3909 12:19:21.740 53 129.128.208.6 50061 129.128.212.139 427 21310 tiles.services.mozilla.com
4107 12:19:51.510 50061 129.128.212.139 53 129.128.208.6 72 46336 www.beartracks.ualberta.ca
4108 12:19:51.637 53 129.128.208.6 50061 129.128.212.139 88 46336 www.beartracks.ualberta.ca

Table B.6: Scenario 2: Re-occurring Transport Address Packets (Application Layer
Data)

Now that we achieved DNS logical connections we can reconstruct their

related fields. Table B.7 illustrates our identified and reconstructed DNS logical

connections.

ConnectionID
Start
Time Duration Service Protocol

Source
Port Source IP

Destination
Port Destination IP Status Packets Data

170 12:17:20.263 00:00:00.127 DNS UDP 50061 129.128.212.139 53 129.128.208.6 Complete 2 150
185 12:19:20.750 00:00:00.990 DNS UDP 50061 129.128.212.139 53 129.128.208.6 Complete 2 499
202 12:19:51.510 00:00:00.127 DNS UDP 50061 129.128.212.139 53 129.128.208.6 Complete 2 160

Table B.7: Scenario 2: Re-occurring Transport Address Packets (Reconstructed
Connections)

B.1. UNICAST COMMUNICATION 222

B.1.3 Scenario 3

This experiment is similar to scenario 2, the difference is that browsing was

done using 3 browsers simultaneously to intensify the produced network traffic.

Again, We set Microsoft Windows available UDP dynamic port range to its

minimum (255 ports), to force the computer to use the same source port number

with multiple UDP connections. The IP address of the browsing computer is

”129.128.212.139”.

Quantitative information Temporal information
Protocol Packets Bytes (K) Traffic % Start time End time Duration

TCP 3532 1,026,657 90.21 16:31:39 16:42:25 00:10:45
UDP 383 45,895 9.79

3915 1,072,552 100

(a) Scenario 3 Summary information

Protocol Port Packets Bytes (K) UDP % Selected?

Dropbox 17500 53 10,441 13.83 No
DNS 53 291 30,227 76 Yes

BOOTP 67,68 4 1,312 1.05 Yes
LLMNR 5355 10 500 2.61 Yes

Multicast DNS 5353 5 626 1.31 No
SSDP 1900 12 1,845 3.13 Yes
NBNS 137 6 468 1.57 Yes
NBDS 138 2 476 0.5 Yes
8 applications 383 45,895 100 6 selected

(b) Scenario 3 UDP Detailed Information

Table B.8: Scenario 3: Packet Capture Information

By applying our algorithm to this captured traffic, our algorithm was able

to identify 324 overall connections; 147 TCP connections and 177 UDP logical

connections. The 147 TCP were identified and reconstructed out of 3532 TCP

packets. The 177 UDP logical connections were identified and reconstructed

by processing 325 uDP packets and skipping 58 packets (5 packets for Multicast

DNS, 53 packets for Dropbox LanSync Discovery), tbs3Info.

B.1. UNICAST COMMUNICATION 223

Application Connections
Status

Complete Incomplete

DNS 155 136 19
NBNS 2 0 2
NBDS 1 0 1

LLMNR 3 0 3
SSDP 12 0 12

BOOTP 4 0 4
Total 177 136 41

Table B.9: Scenario 3: UDP Connections

Table B.9 illustrates the reconstructed 177 UDP logical connections detailed

by application and connection status. Our activities within this capture

session to achieve the shortcoming of re-occuring transport address were

successful,Table B.10.

PacketID Timestamp Source Port Source IP Destination Port Destination IP Data

4869 16:32:23.157 50246 129.128.212.139 53 129.128.208.6 69
4870 16:32:23.247 53 129.128.208.6 50246 129.128.212.139 101
5292 16:33:13.640 50246 129.128.212.139 53 129.128.208.6 64
5296 16:33:14.093 53 129.128.208.6 50246 129.128.212.139 242
7503 16:38:51.467 50246 129.128.212.139 53 129.128.208.6 69
7504 16:38:51.650 53 129.128.208.6 50246 129.128.212.139 101
6054 16:35:07.737 50249 129.128.212.139 53 129.128.208.6 58
6057 16:35:08.113 53 129.128.208.6 50249 129.128.212.139 97
8140 16:40:44.670 50249 129.128.212.139 53 129.128.208.6 69
8141 16:40:44.827 53 129.128.208.6 50249 129.128.212.139 101
7108 16:37:44.897 50187 129.128.212.139 53 129.128.208.6 69
7109 16:37:45.027 53 129.128.208.6 50187 129.128.212.139 101
7589 16:39:06.847 50187 129.128.212.139 53 129.128.208.6 69
7590 16:39:06.980 53 129.128.208.6 50187 129.128.212.139 141
8138 16:40:44.317 50187 129.128.212.139 53 129.128.208.6 69
8139 16:40:44.503 53 129.128.208.6 50187 129.128.212.139 101

Table B.10: Scenario 3: Re-occurring Transport Address Packets (Internet and
Transport Layer Data)

We ordered the packets in Table B.10 based on their hosts and port numbers.

It is clear that there 3 groups of packets that share the same transport address.

Again, there is no definite evidence that says they are 3 distinct groups.

Researchers may try to associate the DNS name with these packets to form

unique groups, Table B.11.

B.1. UNICAST COMMUNICATION 224

Grouping PacketID Timestamp Source Port Source IP Destination Port Destination IP Data DNS Name

Group 1

4869 16:32:23.157 50246 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
4870 16:32:23.247 53 129.128.208.6 50246 129.128.212.139 101 syndication.twitter.com
5292 16:33:13.640 50246 129.128.212.139 53 129.128.208.6 64 checkip.dyndns.org
5296 16:33:14.093 53 129.128.208.6 50246 129.128.212.139 242 checkip.dyndns.org
7503 16:38:51.467 50246 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
7504 16:38:51.650 53 129.128.208.6 50246 129.128.212.139 101 syndication.twitter.com

Group 2

6054 16:35:07.737 50249 129.128.212.139 53 129.128.208.6 58 www.bing.com
6057 16:35:08.113 53 129.128.208.6 50249 129.128.212.139 97 www.bing.com
8140 16:40:44.670 50249 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
8141 16:40:44.827 53 129.128.208.6 50249 129.128.212.139 101 syndication.twitter.com

Group 3

7108 16:37:44.897 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
7109 16:37:45.027 53 129.128.208.6 50187 129.128.212.139 101 syndication.twitter.com
7589 16:39:06.847 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
7590 16:39:06.980 53 129.128.208.6 50187 129.128.212.139 141 syndication.twitter.com
8138 16:40:44.317 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com
8139 16:40:44.503 53 129.128.208.6 50187 129.128.212.139 101 syndication.twitter.com

Table B.11: Scenario 3: Re-occurring Transport Address Packets (Internet and
Transport Layer Data + DNS Name)

Table B.11 illustrates the packet grouped by their transport address.

Researchers might try to provide distinctive groups by attaching the DNS Name

to the transport address. In this case, they might choose to regroup the packets of

’Group 1’ into 2 or 3 groups, and re-group the packets of ’Group 2’ into 2 groups,

and no extra re-grouping can be made to packets of ’Group 3’ since they all

share the same DNS name and transport address. Our algorithm analyzes these

packets based on DNS ID field to produce Table B.12.

Grouping PacketID Timestamp Source Port Source IP Destination Port Destination IP Data DNS Name ID

Group 1

4869 16:32:23.157 50246 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 13812
4870 16:32:23.247 53 129.128.208.6 50246 129.128.212.139 101 syndication.twitter.com 13812
5292 16:33:13.640 50246 129.128.212.139 53 129.128.208.6 64 checkip.dyndns.org 1195
5296 16:33:14.093 53 129.128.208.6 50246 129.128.212.139 242 checkip.dyndns.org 1195
7503 16:38:51.467 50246 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 30224
7504 16:38:51.650 53 129.128.208.6 50246 129.128.212.139 101 syndication.twitter.com 30224

Group 2

6054 16:35:07.737 50249 129.128.212.139 53 129.128.208.6 58 www.bing.com 60318
6057 16:35:08.113 53 129.128.208.6 50249 129.128.212.139 97 www.bing.com 60318
8140 16:40:44.670 50249 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 36484
8141 16:40:44.827 53 129.128.208.6 50249 129.128.212.139 101 syndication.twitter.com 36484

Group 3

7108 16:37:44.897 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 57841
7109 16:37:45.027 53 129.128.208.6 50187 129.128.212.139 101 syndication.twitter.com 57841
7589 16:39:06.847 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 11900
7590 16:39:06.980 53 129.128.208.6 50187 129.128.212.139 141 syndication.twitter.com 11900
8138 16:40:44.317 50187 129.128.212.139 53 129.128.208.6 69 syndication.twitter.com 14996
8139 16:40:44.503 53 129.128.208.6 50187 129.128.212.139 101 syndication.twitter.com 14996

Table B.12: Scenario 3: Re-occurring Transport Address Packets (Internet and
Transport Layer Data + DNS Name + ID)

Table B.12 shows the same packets as in Table B.11 but we added DNS ID field

to them. Our algorithm groups packets into logical connections by adding the ID

field to the transport address. Therefore, the packets of ’Group 1’ are actually 3

B.2. MULTICAST COMMUNICATION 225

distinct logical connections. The packets of ’Group 2’ are 2 logical connections,

and the packets in ’Group 3’ are 3 logical connections, not one connection.

The interesting idea about this scenario is that despite the packets share the same

transport address and the same DNS name, this does not necessarily indicate

that they are one group. Thus, this proves the inefficiency of the DNS name field

and contrarily proves the validity of our claim.

Furthermore, even if this analysis of these packets is somehow indicative

based on DNS name, this might be only valid for DNS protocol, not for all

UDP-based application protocols. Next, we verify our hypothesis for multicast

UDP application protocols.

B.2 Multicast Communication

In this section we captured network traffic of an isolated small computer network

containing 3 computers. We performed a streaming scenarios to test our

algorithm, we will begin our explanation from the easiest to the hardest.

B.2.1 Scenario 4

In this experiment, we used the streaming feature of VLC media player to stream

a short video in the isolated network and then we analyzed the traffic. We

customized VLC to send the video using RTP. The IP address of the streaming

computer is ”192.168.10.200”. Table B.13 shows detailed information about the

traffic captured during this scenario.

B.2. MULTICAST COMMUNICATION 226

Quantitative information Temporal information
Protocol Packets Bytes (K) Traffic % Start time End time Duration

IGMP 3 120 0.26 14:21:17 14:23:44 00:02:26
UDP 1146 1,440,117 99.74

1149 1,440,237 100

(a) Scenario 4 Summary information

Protocol Port Packets Bytes (K) UDP % Selected?

LLMNR 5355 8 400 0.7 Yes
NBNS 137 20 1560 1.74 Yes
SSDP 1900 39 5695 3.4 Yes
NBDS 138 5 1145 0.43 Yes

RTP 5004 1054 1429224 92 Yes
RTCP 5005 19 1748 1.65 Yes

Unofficial 62976 1 345 0.08 No
7 applications 1146 1,440,237 100 6 selected

(b) Scenario 4 UDP Detailed Information

Table B.13: Scenario 4: Packet Capture Information

By applying our algorithm to this capture session, the algorithm skipped 1

packet (unofficial packet) and processed the rest. The algorithm was able to

identify and reconstruct 26 UDP connections out of 1145 packets. Our algorithm

was able to reconstruct 3 LLMNR, 3 NBDS, 3 NBNS, 15 SSDP, and 1 RTP/RTCP

logical connections. Table B.13 represent summary and detailed information for

scenario 4.

According to the specifications in [75][76] RTP works in tandem with RTCP,

RTP uses a transmission channel over port 5004 to send the actual file to

be transmitted. RTCP aids RTP during the transmission of the file, it uses

control channel over port 5005. The control channel is used to monitor the

quality of transmission by sending information to participating hosts within the

transmission.

Looking at these 2 protocols from the perspective of logical connections, since

it is one transmitted file and its companion control information, the packets

transmitted by these protocols can be regarded as one logical connection. We

process their respective logical connection by grouping their packets with the

B.3. INTRUSION DETECTION 227

32 bit synchronization source identifier (SSRC) field, and we reconstructed the

following connection, Table B.14.

Start Time End Time Duration Protocol Source Port Source IP Destination Port Destination IP Status Packets Data
14:21:39.477 14:21:39.367 00:00:00.110 RTP(5004) 1038 192.168.10.200 5004 239.0.0.1 Incomplete 1,054 1,429,224
14:21:40.837 14:21:30.633 00:00:10.204 RTCP(5005) 1039 192.168.10.200 5005 239.0.0.1 Incomplete 19 1,748

Table B.14: Scenario 4: Identification and Reconstruction of Stream Connections

Table B.14 depicts the success of our algorithm in identifying and

reconstructing the stream logical connection, though it takes place using two

different transport addresses via ports 5004 and 5005.

B.3 Intrusion Detection

In this section we want to show how our proposed algorithm can be useful

in Intrusion Detection. We generate a networking scenario to show that our

algorithm is useful in easing the process of Intrusion Detection. The scenario

includes the traffic of InsideSniffer attack. We execute the attack in its elusive

pattern using LLMNR protocols.

B.3.1 Scenario 5

In this scenario we executed InsideSniffer attack using LLMNR protocol. The

attacker computer is ’192.168.10.5’ and the attack targets the range of 10 IP

addresses from ’192.168.10.1’ to ’192.168.10.10’. Table B.15 illustrates summary

and detailed information about the captured packets within the scenario.

B.3. INTRUSION DETECTION 228

Quantitative information Temporal information
Protocol Packets Bytes (K) Traffic % Start time End time Duration

UDP 86 8,979 94 17:29:43 17:30:16 00:00:33
ICMP 4 582 6

90 9,561 100

(a) Scenario 5 Summary information

Protocol Port Packets Bytes (K) UDP % Selected?

LLMNR 5355 46 3,362 9.27 Yes
NBNS 137 7 832 53.29 Yes
SSDP 1900 33 4,785 37.44 Yes
3 applications 86 8,979 100 3 selected

(b) Scenario 5 UDP Detailed Information

Table B.15: Scenario 5: Packet Capture Information

This packet capture session is small and is intended to capture the attack

pattern only. Table B.16 and Table B.17 show the packets that form the attack

pattern. Table B.16 illustrates their Internet and Transport Layer information.

PacketID Timestamp Source Port Source IP Destination Port Destination IP Data

16937 17:29:49.123 53252 192.168.10.5 5355 224.0.0.252 71
16938 17:29:49.317 53252 192.168.10.5 5355 224.0.0.252 71
16939 17:29:49.483 53252 192.168.10.5 5355 224.0.0.252 71
16940 17:29:49.637 59008 192.168.10.5 5355 224.0.0.252 71
16941 17:29:49.777 59008 192.168.10.5 5355 224.0.0.252 71
16942 17:29:49.930 59008 192.168.10.5 5355 224.0.0.252 71
16943 17:29:50.083 5355 192.168.10.2 59008 192.168.10.5 116
16944 17:29:50.250 5355 192.168.10.2 59008 192.168.10.5 116
16945 17:29:50.410 5355 192.168.10.2 59008 192.168.10.5 116
16954 17:29:53.237 55223 192.168.10.5 5355 224.0.0.252 71
16955 17:29:53.413 55223 192.168.10.5 5355 224.0.0.252 71
16956 17:29:53.580 55223 192.168.10.5 5355 224.0.0.252 71
16957 17:29:53.743 5355 192.168.10.3 55223 192.168.10.5 119
16958 17:29:53.910 5355 192.168.10.3 55223 192.168.10.5 119
16966 17:29:55.290 50250 192.168.10.5 5355 224.0.0.252 71
16967 17:29:55.480 50250 192.168.10.5 5355 224.0.0.252 71
16968 17:29:55.663 50250 192.168.10.5 5355 224.0.0.252 71
16969 17:29:55.850 63428 192.168.10.5 5355 224.0.0.252 71
16970 17:29:56.040 63428 192.168.10.5 5355 224.0.0.252 71
16971 17:29:56.240 63428 192.168.10.5 5355 224.0.0.252 71
16972 17:29:56.427 50437 192.168.10.5 5355 224.0.0.252 71
16973 17:29:56.627 50437 192.168.10.5 5355 224.0.0.252 71
16974 17:29:56.837 50437 192.168.10.5 5355 224.0.0.252 71
16975 17:29:57.667 58874 192.168.10.5 5355 224.0.0.252 71
16976 17:29:57.880 58874 192.168.10.5 5355 224.0.0.252 71
16977 17:29:58.083 58874 192.168.10.5 5355 224.0.0.252 71
16978 17:29:58.293 56012 192.168.10.5 5355 224.0.0.252 71
16979 17:29:58.493 56012 192.168.10.5 5355 224.0.0.252 71
16980 17:29:58.803 56012 192.168.10.5 5355 224.0.0.252 71
16981 17:29:59.117 63897 192.168.10.5 5355 224.0.0.252 72
16982 17:29:59.363 63897 192.168.10.5 5355 224.0.0.252 72
16983 17:29:59.593 63897 192.168.10.5 5355 224.0.0.252 72

Table B.16: Scenario 5 Attack Packets: Internet and Transport Layer Data

B.3. INTRUSION DETECTION 229

Table B.17 shows the Application Header data of the packets in Table B.16.

PacketID QR ID QName QType QClass RData

16937 0 45981 1.10.168.192.in-addr.arpa 12 1 –
16938 0 45981 1.10.168.192.in-addr.arpa 12 1 –
16939 0 45981 1.10.168.192.in-addr.arpa 12 1 –
16940 0 5344 2.10.168.192.in-addr.arpa 12 1 –
16941 0 5344 2.10.168.192.in-addr.arpa 12 1 –
16942 0 5344 2.10.168.192.in-addr.arpa 12 1 –
16943 1 5344 2.10.168.192.in-addr.arpa 12 1 syspam
16944 1 5344 2.10.168.192.in-addr.arpa 12 1 syspam
16945 1 5344 2.10.168.192.in-addr.arpa 12 1 syspam
16954 0 39884 3.10.168.192.in-addr.arpa 12 1 –
16955 0 39884 3.10.168.192.in-addr.arpa 12 1 –
16956 0 39884 3.10.168.192.in-addr.arpa 12 1 –
16957 1 39884 3.10.168.192.in-addr.arpa 12 1 syspah-pc
16958 1 39884 3.10.168.192.in-addr.arpa 12 1 syspah-pc
16966 0 42674 4.10.168.192.in-addr.arpa 12 1 –
16967 0 42674 4.10.168.192.in-addr.arpa 12 1 –
16968 0 42674 4.10.168.192.in-addr.arpa 12 1 –
16969 0 22650 6.10.168.192.in-addr.arpa 12 1 –
16970 0 22650 6.10.168.192.in-addr.arpa 12 1 –
16971 0 22650 6.10.168.192.in-addr.arpa 12 1 –
16972 0 59798 7.10.168.192.in-addr.arpa 12 1 –
16973 0 59798 7.10.168.192.in-addr.arpa 12 1 –
16974 0 59798 7.10.168.192.in-addr.arpa 12 1 –
16975 0 12182 8.10.168.192.in-addr.arpa 12 1 –
16976 0 12182 8.10.168.192.in-addr.arpa 12 1 –
16977 0 12182 8.10.168.192.in-addr.arpa 12 1 –
16978 0 42816 9.10.168.192.in-addr.arpa 12 1 –
16979 0 42816 9.10.168.192.in-addr.arpa 12 1 –
16980 0 42816 9.10.168.192.in-addr.arpa 12 1 –
16981 0 37091 10.10.168.192.in-addr.arpa 12 1 –
16982 0 37091 10.10.168.192.in-addr.arpa 12 1 –
16983 0 37091 10.10.168.192.in-addr.arpa 12 1 –

Table B.17: Scenario 5 Attack Packets: Application Layer Data

Tables B.16 and B.17 show the InsideSniffer attack packets. By examining

’PacketID’, ’Source IP’, ’Source Port’, ’Destination IP’, and ’Destination Port’ fields

in Table B.16, and ’PacketID’, ’QR’, ’ID’, ’QName’, and ’RData’ fields in Table B.17,

it becomes clear that the attacker 192.168.10.5 scanned the IP address range from

192.168.10.1 to 192.168.10.10.

It is obvious from Table B.17, LLMNR QR field, the LLMNR request (0) and

response (1) packets, the packets signify that the attacker was successfully able

to resolve IP addresses 2.10.168.192.in-addr.arpa and 3.10.168.192.in-addr.arpa

to their respective names, since we have response packets in the traffic.

Appendix C

Features of Multi-Perspective Network

Traffic Description

C.1 Network Interface Layer Features

ID
Layer: Network Interface

Protocol Scope
Auxiliary

Perspectives Feature Name

1

ARP

Network

Packet
Temporal

Packet Count
2 Packets Per Second
3 Packets Per Minute
4 Packets Per Hour
5 Request Packets
6 Requests Per Second
7 Requests Per Minute
8 Requests Per Hour
9 Response Packets

10 Responses Per Second
11 Responses Per Minute
12 Responses Per Hour
13

Address

Source Addresses
14 Destination Addresses
15 Request Source Addresses
16 Request Destination Addresses
17 Response Source Addresses
18 Response Destination Addresses
19

Host

Address Destinations Per Source
20

Packet

Requests Per Destinations
21 Overall Requests Per Source
22 Responses Per Sources
23 Overall Responses Per Destination

Table C.1: Network Interface Layer Features

230

C.2. INTERNET LAYER FEATURES 231

C.2 Internet Layer Features

ID
Layer: Internet

Protocol Scope
Auxiliary

Perspectives Feature Name

1

ICMP

Network

Packet
Temporal

Packet Count
2 Packets Per Second
3 Packets Per Minute
4 Packets Per Hour
5 Error Packets
6 Error Per Second
7 Error Per Minute
8 Error Per Hour
9 Query Packets

10 Query Packets Per Second
11 Query Packets Per Minute
12 Query Packets Per Hour
13 Query Request Packets
14 Query Request Packets Per Second
15 Query Request Packets Per Minute
16 Query Request Packets Per Hour
17 Query Response Packets
18 Query Response Packets Per Second
19 Query Response Packets Per Minute
20 Query Response Packets Per Hour
21

Address

Source Addresses
22 Destination Addresses
23 Request Source Addresses
24 Request Destination Addresses
25 Response Source Addresses
26 Response Destination Addresses
27 Packet Maximum Packet Size
28 Connection Connection Count
29 Connection

Temporal

Connections Per Second
30 Connections Per Minute
31 Connections Per Hour
32

Host

Address Destinations Per Source
33

Packet

Requests Per Destinations
34 Overall Requests Per Source
35 Responses Per Sources
36 Overall Responses Per Destination
37

Connection
Connections Per Destination

38 Overall Connections Per Source
39

IGMP

Network
Packet

Temporal

Packet Count
40 Packets Per Second
41 Packets Per Minute
42 Packets Per Hour
43 Multicast Packets
44 Multicast Packets Per Second
45 Multicast Packets Per Minute
46 Multicast Packets Per Hour
47 Unicast Packets
48 Unicast Packets Per Second
49 Unicast Packets Per Minute
50 Unicast Packets Per Hour
51

Host
Multicast Packets Per Second

52 Unicast Packets Per Second

53 General Network
Packet

Address LAND Indicator

Table C.2: Internet Layer Features

C.3. TRANSPORT LAYER FEATURES 232

C.3 Transport Layer Features

ID
Layer: Transport

Protocol Scope
Auxiliary

Perspectives Feature Name

1

TCP

Network

Packet
Temporal

Packet Count
2 Packets Per Second
3 Packets Per Minute
4 Packets Per Hour
5 Connection Connection Count
6 Connection

Temporal

Connections Per Second
7 Connections Per Minute
8 Connections Per Hour
9 Protocol Invoked Services

10 Protocol,Packet Service Packets
11

Host
Protocol Invoked Services

12 Packet Exchanged Packets
13 Connection Established Connections
14

UDP

Network

Packet
Temporal

Packet Count
15 Packets Per Second
16 Packets Per Minute
17 Packets Per Hour
18 Connection Connection Count
19 Connection

Temporal

Connections Per Second
20 Connections Per Minute
21 Connections Per Hour
22 Protocol Invoked Services
23 Protocol,Packet Service Packets
24

Host
Protocol Invoked Services

25 Packet Exchanged Packets
26 Connection Established Connections
27

General Host

Protocol Invoked Transport Services
28 Packet,Protocol Exchanged Transport Packets
29 Packet,Connection Established Transport Connections
30 Protocol Attempted Transport Services
31 Packet,Protocol Exchanged Attempted Transport Packets
32 Packet,Connection Established Attempted Transport Connections

Table C.3: Transport Layer Features

C.4. APPLICATION LAYER FEATURES 233

C.4 Application Layer Features

ID
Layer: Application

Protocol Scope
Auxiliary

Perspectives Feature Name

1

DNS
Network

Packet
Temporal

Packet Count
2 Packets Per Second
3 Packets Per Minute
4 Packets Per Hour
5

Address
MultiCast Destinations

6 Unicast Destinations
7

Host
Protocol Name Resolution Indicator

8 Address Destinations Per Source
9

NBNS
Network

Packet
Temporal

Packet Count
10 Packets Per Second
11 Packets Per Minute
12 Packets Per Hour
13

Address
MultiCast Destinations

14 Unicast Destinations
15

Host
Protocol Name Resolution Indicator

16 Address Destinations Per Source
17

LLMNR
Network

Packet
Temporal

Packet Count
18 Packets Per Second
19 Packets Per Minute
20 Packets Per Hour
21

Address
MultiCast Destinations

22 Unicast Destinations
23

Host
Protocol Name Resolution Indicator

24 Address Destinations Per Source

Table C.4: Application Layer Features

Appendix D

TCP/IP Protocols

In this Appendix we provide theoretical details about the protocols that we

decipher in NetDataCoP.

D.1 Ethernet II Frame (Ethernet Version 2)

Mainly, An Ethernet Frame consists of three main parts; Ethernet header, data,

and CRC Checksum. Figure D.1 illustrates the default Ethernet II frame format.

Figure D.1: Ethernet II Frame [3]

The Ethernet frame length ranges from a minimum of 64 bytes to a maximum

of 1518 bytes and its fields are:

Destination MAC Address is a 6 byte field that contains the physical address of

the destination machine (unicast) or destination machines (multicast or

broadcast).

234

D.2. ADDRESS RESOLUTION PROTOCOL (ARP) 235

Source MAC Address Likewise, is a 6 byte field that holds the physical address of

the source machine that sent the packet.

EtherType is a 2 byte field that determines the type of protocol encapsulated

within frame data, e.g., ARP, IP, etc. An EtherType of value 0x0800 indicates

an IPv4 datagram within frame data (Section 5.2.3), and a value of 0x0806

signifies an ARP frame (next section).

Data is the frame data that ranges from 46 to 1500 bytes, which carries the

payload of encapsulated data from upper layer protocols.

CRC Checksum is a 4 byte field used for error detection purposes.

D.2 Address Resolution Protocol (ARP)

As mentioned, ARP is used for logical to physical address mapping. During the

address mapping process (Figure D.2), the sender machine sends a broadcast

ARP request that holds 4 pieces of information:

D.2. ADDRESS RESOLUTION PROTOCOL (ARP) 236

Figure D.2: ARP operation: Logical to Physical Address Mapping Example. [1]

1. Operation, Indicates the type of the packet, i.e., Request

2. Sender Hardware Address, The physical address of the sender issuing the

ARP request

3. Sender Protocol Address, The logical address of the sender issuing the ARP

request

4. Target Protocol Address, The Logical address of the destination

Every host connected to the network receives the broadcast ARP request, but only

the intended host recognizes its logical IP address and responds to the request

with an ARP Reply that holds the following information:

1. Operation, Indicates the type of the packet, i.e., Reply

2. Sender Hardware Address, The physical address of the sender responding

with the ARP reply

D.2. ADDRESS RESOLUTION PROTOCOL (ARP) 237

3. Sender Protocol Address, The logical address of the sender responding with

the ARP reply

4. Target Hardware Address, The physical address of the destination that

originally issued the ARP request

5. Target Protocol Address, The Logical address of the destination that

originally issued the ARP request

Having mentioned the mapping process, we explain ARP packet format,

Figure D.3.

Figure D.3: ARP Packet. [1]

The fields are [1][51]:

D.3. INTERNET PROTOCOL VERSION 4 (IPV4) 238

Hardware Type is a 16 bit field that defines the type of hardware of the network,

a value of 0x0001 indicates Ethernet

Protocol Type is a 16 bit field indicating the protocol, a value of 0x0800 indicates

IPv4

Hardware Length is an 8 bit field that defines the length of included physical

addresses, a value 6 signifies Ethernet.

Protocol Length is an 8 bit field that defined the length of included logical

addresses, a value 4 means IPv4.

Operation is a 16 bit field that indicates the packet type; value 1 for request and

2 for reply.

Sender Hardware Address The physical address of the sender machine whose

length is indicated by Hardware Length field.

Sender Protocol Address The logical address of the sender machine whose

length is indicated by the Protocol Length field.

Target Hardware Address The physical address of the destination machine

whose length is indicated by Hardware Length field.

Target Protocol Address The logical address of the destination machine whose

length is indicated by the Protocol Length field.

D.3 Internet Protocol version 4 (IPv4)

The Internet Protocol version 4 (IPv4) (Figure D.4) is a best-effort unreliable

connectionless datagram protocol utilized by TCP/IP to deliver packets to

their intended destinations. We have to distinguish between three different

D.3. INTERNET PROTOCOL VERSION 4 (IPV4) 239

functionalities needed to deliver packets; naming, addressing, and routing.

Naming indicates what we are exploring within a certain host, addressing

signifies the location of a host, and routing reveals how to reach that host.

This distinction will eventually lead us to understand the intended functionality

of IPv4, among these functionalities IPv4 handles addressing and their related

mappings. Lower level protocols deal with routing, and higher level protocols

take care of naming. Additionally, IPv4 uses fragmentation to deliver large size

packets to their destinations.

Figure D.4: IPv4 Datagram Format. [1]

Figure D.4 illustrates IPv4 header, its size ranges from 20 to 60 bytes, it

contains the necessary information required for packet delivery.

Version It is a 4 bit field that defines the version of the IP datagram. Version 4

indicates an IPv4 datagram, while version 6 signifies an IPv6 datagram.

Header Length (HLEN) A 4 bit field that indicates the length of the header in 32

bit (4 byte) words. A minimum value is 20 bytes (5 fields of 4 bytes = 20

bytes) when no options are specified, otherwise the maximum value is 60

D.3. INTERNET PROTOCOL VERSION 4 (IPV4) 240

bytes.

Service An 8 bit field, also known as differentiated services or type of service.

This field is used to select the optimum service parameters within a

particular network.

Total Length It is a 16 bit field that indicates the overall length of the datagram

(header + data), i.e., Data Length = Total Length - Header Length.

Identification It is a 16 bit field whose value is assigned by the sender to help the

receiver in assembling the datagram fragments.

Flags It is a 3 bit field that indicates if the received datagram is fragmented or

not.

Fragmentation Offset If the received datagram is a fragment, this is a 13 bit field

that designates the location of this fragment within the datagram.

Time to Live (TTL) It is an 8 bit that defines in seconds the maximum allowed

datagram lifetime for it to remain within the network.

Protocol The IPv4 datagram can encapsulate one of many higher level protocols,

this is an 8 bit field that indicates the target higher level protocol.

Checksum It is a 16 bit field whose function is to provide error detection for the

datagram header.

Source Address It is a 32 bit field that provides the logical address IPv4 address

of the source.

Destination Address It is a 32 bit field that holds the logical address IPv4 address

of the destination.

D.4. INTERNET CONTROL MESSAGE PROTOCOL (ICMP) 241

D.4 Internet Control Message Protocol (ICMP)

ICMP provides error control and management mechanisms [53][54][55], so ICMP

packets has two categories; error-reporting packets and query packets. Table D.1

illustrates the most common ICMP packet types.

ICMP Packet Sub-Category Settings
Type Code

Error Reporting

Destination Unreachable

3

0 - Net unreachable
1 - Host unreachable
2 - Protocol unreachable
3 - Port unreachable
4 - Fragmentation needed
5 - Source route failed
6 - Destination network unknown
7 - Destination host unknown
8 - Source host isolated
9 - Communication with destination
network is administratively prohibited
10 - Communication with destination
host is administratively prohibited
11 - Destination network
unreachable for TOS
12 - Destination host
unreachable for TOS

Source Quench 4 0 - none

Redirection

5

0 - Redirect datagram
for the network
1 - Redirect datagram
for the host
2 - Redirect datagram
for the TOS and network
3 - Redirect datagram
for the TOS and host

Time Exceeded 11
0 - Time to live
exceeded in transit
1 - Fragment reassembly
time exceeded

Parameter Problem 12

0 - Pointer indicates
the error
1 - Missing a required option
2 - Bad length

Query

Echo Request 8 0
Echo Reply 0 0

Router Solicitation 10 0
Router Advertisement 9 0
Timestamp Request 13 0

Timestamp Reply 14 0
Address Mask Request 17 0

Address Mask Reply 18 0

Table D.1: ICMP Messages

The explanation of these fields is as follows:

• Destination Unreachable, It means that the sent packet can not be

D.4. INTERNET CONTROL MESSAGE PROTOCOL (ICMP) 242

delivered to its intended recipient for one of the reasons indicated by the

code field.

• Source Quench, It means that the packet has been discarded due to

network congestion at some point along the route to the destination.

• Redirection This type of packets is intended to update the routing table of

network hosts with the IP address of the default router for specific external

networks.

• Time Exceeded It means that the packet has been discarded because the

packet stayed within the network more than allowed, i.e., IPv4 TTL has been

exceeded.

• Parameter Problem It means that the packet has been discarded due to the

presence of ambiguity in one or packet fields.

• Echo request and reply This is ping request and reply messages, it is used to

check and test if a valid IP level connectivity exists between two particular

hosts. The sender host sends a ping request to the receiver host, if a

ping reply is sent back to the sender by the receiver this indicates that

connectivity between sender and receiver exists.

• Timestamp request and reply This type of ICMP packet is used to

determine the round-trip time that a datagram takes to move between the

sender and receiver.

• Address mask request and reply This type of messages is issued between

hosts and routers to provide address mask to network hosts.

• Router Solicitation and Advertisement Router solicitation message is a

broadcast or multicast message sent from hosts onto their networks to

D.4. INTERNET CONTROL MESSAGE PROTOCOL (ICMP) 243

discover which routers are alive and functioning. The routers respond

with an advertisement broadcast or multicast message containing their

information. Router advertisement messages can also be sent periodically

by routers as some way of making network hosts aware of their presence.

It is clear from Table D.1 that the governing fields of ICMP packet types are; ICMP

Type and ICMP Code, Figure D.5 illustrates ICMP Packet Format.

Figure D.5: ICMP Packet Format. [1]

From Table D.1 and Figure D.5, it is evidential that

Type ICMP Type is an 8 bit field that indicates the type of ICMP packet.

Code ICMP Code is an 8 bit field that expresses the reason for issuing that type

of packet.

Checksum It is a 16 bit field that handles error detection of ICMP header.

Data In error packets, the data part carries the information of the original IPv4

packet within which the error occurs, in query packets it is empty.

Rest of the Header It contain fields that depend on the type of ICMP packet,

in our case we focus only on Echo request and reply packets, in this

case, the rest of the header consists of two 16 bit fields; Identifier and

Sequence Number. They are responsible for matching echo requests to

their respective echo replies.

D.5. INTERNET GROUP MANAGEMENT PROTOCOL (IGMP) 244

D.5 Internet Group Management Protocol (IGMP)

IGMP helps multicast routers to create and keep track of updates for multicast

groups which contain one or more members. Figure D.6 depicts the fields of

IGMPv2 packet.

Figure D.6: IGMPv2 Packet Format. [1]

Type This is an 8 bit field that indicates the type of IGMP message; General

or Special query (0x11 = 17), membership report (0x16 = 22), or leave

report (0x17 = 23). Query messages can be either general or special query

messages.

Maximum Response Time (MRT) It is an 8 bit field holding tenth of seconds

values, it indicates the time within which a query should be answered.

Checksum It is a 16 bit that handles error detection of IGMP header.

Group Address A field that contains the multicast group ID (or multicast

address) for special query, membership report, and leave report messages.

A value zero indicates a general query message.

The names of IGMP messages indicate their respective function. A general query

message is sent by multicast routers to know which groups have contributing

members. A special query message works the same way but it asks about a

specific group. Meanwhile, a group membership report message indicates that

the sender wants to join the specified group, contrarily a leave report message

D.6. TRANSPORT LAYER PORTS 245

means that the sender wants to leave the specified group.

D.6 Transport Layer Ports

A specific process running on a host can use one or more service, Transport layer

protocols handle packet delivery between multiple host processes. Since the port

fields in both TCP and UDP are 16 bit long, they offer the capability to have any

port number ranging from 0 to 65,535. The Internet Assigned Numbers Authority

(IANA) [88] identify and reserve ranges of port numbers as;

• System Ports Range (0-1023): Basic system applications

• User Ports Range (1024-49151): Specific User-designed applications,

including officially registered applications and unofficial applications

• Dynamic Port Range (49152-65535): Transient port numbers, also known

as Ephemeral ports, they are not assigned to any application and can be

used freely by the host to initiate connections when needed.

D.7 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is a connection-based, reliable transport

protocol [1][58][59], Figure D.7 demonstrates the fields of TCP packet.

D.7. TRANSMISSION CONTROL PROTOCOL (TCP) 246

Figure D.7: TCP datagram Format. [1]

The description of TCP fields is:

Source Port It is a 16 bit field that indicates the port number of the service

running on the host that is responsible for sending the packet.

Destination Port It is a 16 bit field that expresses the port number of the invoked

service running on the destination host.

Sequence Number A 32 bit field that holds a number, assigned to the first byte

within the packet.

Acknowledgment Number A 32 bit field that maintains a number indicating the

byte number that source host expects to receive from the destination.

Header Length A 4 bit field that indicates the number of 4-byte (32 bit) words in

the TCP header.

Reserved 6 bit field reserved for future use.

Control It is a field that includes 6 bit flags, one or more can be set for a given

packet, that govern TCP connections between hosts.

D.8. USER DATAGRAM PROTOCOL (UDP) 247

Window Size A 16 bit field that designates the window size, number of bytes

starting with the byte indicated by the Acknowledgment Number, that the

source host can receive.

Checksum A 16 bit field used for error detection of the TCP packet.

Urgent Pointer A 16 bit offset from the sequence number that marks the

existence of urgent data.

Options A variable length field that holds optional TCP header information.

D.8 User Datagram Protocol (UDP)

User Datagram Protocol (UDP) is a connectionless, unreliable protocol [1][60]

that offers applications speed on the expense of reliability, Figure D.8 illustrates

the fixed 8 byte header of UDP packets, also known as UDP datagrams.

Figure D.8: UDP datagram Format. [1]

UDP packet fields are mainly:

Source Port A 16 bit field, like TCP, indicating the service running on the source

host that is responsible for sending the packet.

D.9. BOOTSTRAP PROTOCOL (BOOTP) 248

Destination Port A 16 bit field, like TCP, that implies the intended service to be

invoked on the destination host.

Length It is a 16 bit field that signifies the total length of the UDP packet (header

+ Data).

Checksum A 16 bit field used for error detection of the UDP packet.

D.9 Bootstrap Protocol (BOOTP)

BootP is used to supply a disk-less machine with the identity of the boot

server and the boot file. Figure D.9 displays the fields of BOOTP header

[1][61][62][63][64][65].

Figure D.9: BOOTP Packet Format. [4]

The interpretation of BOOTP fields is:

D.9. BOOTSTRAP PROTOCOL (BOOTP) 249

OP A 1 byte field that indicates the type of the packet; 1 is bootrequest and 2 is

bootreply

HTYPE A is 1 byte field that expresses the hardware address type; e.g., a value of

1 indicates 10mb Ethernet

HLEN A 1 byte field that demonstrates the length of the hardware address;

e.g., value 6 for 10mb Ethernet

HOPS A 1 byte field that indicates the number of packets hops. This field is

not used by the client, but routers can optionally use it for cross-gateway

routing.

Transaction Identifier (xid) A 4 byte random value used to match boot requests

to their respective replies

Seconds Elapsed A 2 byte field that indicates the seconds that passed since the

client started to request to boot.

Unused 2 byte Reserved and not used

Client IP Address A 4 byte field that indicates the client’s address, this field is

assigned by the client during a request if the client knows its IP address.

Your IP Address A 4 byte field that is assigned by the server to indicate the client’s

IP address, if the client’s initial request did not contain its IP address.

Server IP Address A 4 byte field filled by the server during a reply which signifies

the server’s IP address.

Router IP Address A 4 byte field, also known as gateway IP Address, it is

optionally used to indicate the IP address of the gateway router.

D.10. DOMAIN NAME SYSTEM (DNS) 250

Client Hardware Address A 4 byte field assigned by the client to indicate its

hardware address

Server Host Name A 64 byte field that can optionally be used to indicate the

server name from which the client will select a boot file.

Boot File Name A 128 byte field that indicates the full path and name of the boot

file on the server, that the client uses to boot.

Vendor-specific Area Optional 64 byte field that indicates information about

vendor, it contains free format tagged sub-fields that provide guidance

settings to the client.

D.10 Domain Name System (DNS)

DNS protocol provides name to address mappings. A client that needs to

communicate with a host sends a DNS query to the DNS server in order to resolve

the host name to its respective address. The DNS server replies with a DNS

response that contains the IP Address of the queried host name. Figure D.10

illustrates the types of DNS packets.

Figure D.10: DNS packet Types. [1]

D.10. DOMAIN NAME SYSTEM (DNS) 251

As we can see in Figure D.10, DNS packets mainly contain a DNS header,

DNS utilizes sections of information alongside the header which forms the

structural body of DNS packets. Both packet types must contain DNS header

and question section. DNS response packets contain 3 extra sections; Answer,

Authority (or Authoritative), and/or Additional section. These sections are

similar and can optionally be used according to the available information about

the queried host. Each section consists of multiple information lists called

Resource Records, i.e., RRs, that hold information regarding the current query.

Figure D.11 demonstrates the format of DNS Header.

Figure D.11: DNS Header Format. [5]

The explanation of header fields indicated in the figure are:

ID A 16 bit identifier used to match DNS requests to their respective replies.

QR A 1 bit field that indicates the type of DNS packet; 0 query and 1 response.

OPCODE A 4 bit field whose value demonstrates the type of query according to

the following values:

• Standard Query (QUERY): 0.

D.10. DOMAIN NAME SYSTEM (DNS) 252

• Inverse Query (IQUERY): 1.

• Completion Query that include single (CQUERYU) or multiple

(CQUERYM) answers: 2.

• Reserved: 4 – 15

AA 1 bit Authoritative Answer field, when it is set it implies that the responding

DNS server is authoritative for the queried domain name.

TC 1 bit TrunCation field, when set it means that the packet is truncated because

it contains more than 512 characters.

RD 1 bit Recursion Desired field, when set it instructs the DNS server to resolve

the query in a recursive manner.

RA 1 bit Recursion Available field, it denotes whether recursive query support is

available on the DNS server.

RCODE 4 bit Response Code field whose value indicates:

• 0: No Error Condition

• 1: Format Error

• 2: Server Failure

• 3: Name Error

• 4: Not Implemented

• 5: Refused

• 6 – 15: Reserved

QDCOUNT Unsigned 16 bit field that reveals the number of questions in the

Question section.

D.10. DOMAIN NAME SYSTEM (DNS) 253

ANCOUNT Unsigned 16 bit field that shows the number of RRs in Answer

section.

NSCOUNT Unsigned 16 bit field that signals the number of Name Server RRs

within the Authority section.

ARCOUNT Unsigned 16 bit field that specifies the number of RRs included in the

Additional section.

Figure D.12 illustrates Question section format.

Figure D.12: DNS Question Section Format. [5]

The Question section mainly consists of QNAME, QTYPE, and QCLASS.

QNAME is a variable length field which contains the name to be resolved. QTYPE

is a 16 bit field that indicates the query type, e.g., a decimal value of 1 means ’A’

i.e., host address. In other words, we want to know the IPv4 address of the queried

name. QCLASS is a 16 bit field that designates the query class, e.g., a decimal

value of 1 implies ’IN’ abbreviation for ARPA Internet. Table D.2 and Table D.3

illustrate QTYPE and QCLASS values respectively.

D.10. DOMAIN NAME SYSTEM (DNS) 254

Type Value Meaning

1 A A IPv4 Host Address
2 NS An Authoritative Name Server
3 MD A Mail Destination
4 MF A Mail Forwarder
5 CNAME The Canonical Name for an alias
6 SOA The Start of a Zone of Authority
7 MB A Mailbox domain name
8 MG A Mail Group member
9 MR A Mail Rename domain name

10 NULL A null RR
11 WKS A Well Known Service description
12 PTR A Domain Name Pointer
13 HINFO Host Information
14 MINFO Mailbox or Mail List Information
15 MX A Mail Exchanger record
16 TXT Text record
28 AAAA IPv6 Host Address

252 AXFR Request for a Transfer of an Entire Zone of Authority
253 MAILB Request for Mailbox-related records (MB, MG or MR)
254 MAILA Request for Mail Agent RRs (MD and MF)
255 * A request for all records

Table D.2: DNS Types

Class Value Meaning

1 IN ARPA Internet
2 CS Computer Science network (CSNET)

Table D.3: DNS Classes

Figure D.13 demonstrates the Resource Record (RR) format. A Resource

Record consists of 6 fields: Name, Type, Class, TTL, RDLENGTH, and RDATA.

D.10. DOMAIN NAME SYSTEM (DNS) 255

Figure D.13: DNS Resource Record Format. [5]

The Name field is a variable length compressed domain name associated with

the current RR. Type and Class are 16 bit fields specifying the Type and Class of

RDATA, their values are assigned according to tables D.2 and D.3. TTL is a 16 bit

field that indicates the maximum valid time for RR. RDLENGTH is a 16 bit field

that indicates the length in bytes of RDATA, while RDATA is a variable length field

that holds the description of RR.

For example, if the Type is A (IPv4 host address) and the class is IN (ARPA

Internet) then the RDATA will be an Internet address ’XXX.XXX.XXX.XXX ’ of 4

bytes length. More details about Name Interpretation and RR types can be found

in [5][66].

D.11. LINK-LOCAL MULTICAST NAME RESOLUTION (LLMNR) 256

D.11 Link-Local Multicast Name Resolution

(LLMNR)

LLMNR is considered a secondary name resolution protocol. The structure of

LLMNR packets is the same as DNS packets regarding the sections and their

related structures. Figure D.14 illustrates the format of LLMNR header.

Figure D.14: LLMNR Header Format. [6]

The explanation of LLMNR header fields:

ID A 16 bit identifier that is used to match queries to their responses.

QR A 1 bit field that indicates the type of LLMNR packet; 0 LLMNR query, 1

LLMNR response

OPCode A 4 bit field that signifies the behaviour of queries and responses,

further specifications may be defined for LLMNR OPCode.

C A 1 bit Conflict field, when set it implies that the sender of the query is

confused about this specific query and that has not received a unique

answer.

D.12. NETBIOS NAME SERVICE (NBNS) 257

TC A 1 bit Truncation field indicating that the message is truncated due to its

large size.

T A 1 bit Tentative field announcing that the server replying to the query is

authoritative for the name but he has not assured its uniqueness yet.

Z 4 bits reserved for future use.

RCode 4 bit field Response Code

QDCOUNT unsigned 16 bit integer that signifies the number of entries in the

Question section.

ANCOUNT unsigned 16 bit integer indicating the number of RRs in the Answer

section.

NSCOUNT unsigned 16 bit integer implying the number of RRs in the Authority

section.

ARCOUNT unsigned 16 bit integer showing the number of RRs in Additional

section.

An LLMNR query can be multicast or unicast to resolve names. The

main difference between DNS and LLMNR is the naming scheme. LLMNR

resolves name to their respective addresses within the IN-ADDR.ARPA domain,

e.g., ’52.0.2.10.IN-ADDR.ARPA’.

D.12 NetBIOS Name Service (NBNS)

NBNS is another secondary name resolution protocol that can be used to handle

multiple operations [70][7]. Figure D.15 illustrates the format of NBNS header.

D.12. NETBIOS NAME SERVICE (NBNS) 258

Figure D.15: NBNS header Format. [7]

NAME TRN ID 16 bit unique field used to match requests to their respective

responses.

OPCODE A 5 bit field that indicates the type of packet, it consists of 2 fields:

1 bit RESPONSE Flag (R) field and 4 bits Opcode field. There values are

interpreted according to:

• R: when set means that the packet is a response packet, else it is

considered as query packet.

• Opcode: Operation Specifier: 0 = query, 5 = registration, 6 = release, 7

= WACK, and 8 = refresh.

NM FLAGS A 7 bit field that consists of 5 flags and 2 reserved bits as followed

(mentioned in order):

• AA: Authoritative Answer flag, it must be zero in queries. It means that

the responding host is authoritative of the queried domain name.

• TC: Truncation flag, set to indicate that the size of the packet is large

(greater than 576 bytes)

• RD: Recursion Desired flag, set only in queries which illustrates that

the client requires a recursive name resolution within the domain.

• RA: Recursion Available flag, set in responses sent from NBNS servers

only, which indicates that the server supports recursive resolution.

D.12. NETBIOS NAME SERVICE (NBNS) 259

• Reserved: 2 bits reserved for future use

• B: Broadcast flag, 0 = unicast and 1 = multicast.

RCODE Result codes of request.

• FMT ERR: 0x1 - Format Error

• SRV ERR: 0x2 - Server failure

• IMP ERR: 0x4 - Unsupported request error

• RFS ERR: 0x5 - Refused error

• ACT ERR: 0x6 - Active error

• CFT ERR: 0x7 - Name in conflict error

QDCOUNT unsigned 16 bit integer that designates the number of entries in the

Question section

ANCOUNT unsigned 16 bit integer that signifies the number of RRs in the

Answer section

NSCOUNT unsigned 16 bit integer that implies the number of RRs in the

Authority section

ARCOUNT unsigned 16 bit integer that specifies the number of RRs in the

Additional section

NBNS does not use the same TYPE and CLASS values in Question section as DNS

and LLMNR it uses the values in Table D.4

Symbol Value Description

QTYPE
NB 0x0020 NetBIOS general Name Service Resource Record
NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record

QCLASS IN 0x0001 Internet class

Table D.4: NBNS QTYPE and QCLASS values

D.12. NETBIOS NAME SERVICE (NBNS) 260

Also, NBNS uses TYPE and CLASS values for RRs listed in Table D.5

Symbol Value Description

RR TYPE

A 0x0001 IP address Resource Record
NS 0x0002 Name Server Resource Record
NULL 0x000A NULL Resource Record
NB 0x0020 NetBIOS general Name Service Resource Record
NBSTAT 0x0021 NetBIOS NODE STATUS Resource Record

RR CLASS IN 0x0001 Internet class

Table D.5: NBNS RRs TYPE and CLASS values

NBNS packets have multiple types according to the values of their header

fields, which enables them to fulfill multiple functionalities:

1. Name Registration Request

2. Name Overwrite Request And Demand

3. Name Refresh Request

4. Positive Name Registration Response

5. Negative Name Registration Response

6. End-Node Challenge Registration Response

7. Name Conflict Demand

8. Name Release Request And Demand

9. Positive Name Release Response

10. Negative Name Release Response

11. Name Query Request

12. Positive Name Query Response

13. Negative Name Query Response

D.13. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 261

14. Redirect Name Query Response

15. Wait For Acknowledgement (Wack) Response

16. Node Status Request

17. Node Status Response

D.13 Simple Network Management Protocol (SNMP)

SNMP utilizes the concept of manager and agents, in which manager (or

management station) communicates with agents. It manages network elements

by; minimizing the complexity of management functions, upgrading flexibility of

monitor and control paradigm, and independency of management architecture

[1][8][71][72].

SNMP uses two other implicit protocols to achieve management tasks; Structure

of Management Information (SMI) and Management Information Base (MIB).

Since the management body is independent of the network and host structure,

a unified set of rules has to be identified to facilitate the management process,

SMI protocol defines these rules. SMI defines rules for naming objects, object

types, and encoding. MIB, on the other hand, defines management entities of

hosts regarding their objects, object types, and object relationships. On top of

these protocols, according to SMI rules and MIB definitions, SNMP defines the

appropriate packet formats and structures. SNMP packets allow management

information to be exchanged by reading objects statuses and modifying their

values .

Abstract Syntax Notation One (ASN.1) defines a unique set of data types that

is independent, some of them are simple data types and others are complex,

Table D.6 illustrates a sample of those data types and their respective values.

D.13. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 262

Primitive Data Types Value Complex Data Types Value

Integer 0x02 Sequence 0x30
Octet String 0x04 GetRequest PDU 0xA0

Null 0x05 GetResponse PDU 0xA2
Object Identifier 0x06 SetRequest PDU 0xA3

Table D.6: ASN.1 sample Data Types [8].

Where PDU is an abbreviation for Protocol Data Unit, units of data that SNMP

uses for communication between managers and agents.

Basic Encoding Rules (BER) states that information has to be structured within

packets in the form of triplets containing: Name, Length, and Value, Figure D.16.

(a) BER Encoded Primitive Data Type.

(b) BER Encoded Complex Data Type.

Figure D.16: BER Encoded Fields. [8]

Figure D.16 illustrates the BER encoding of both primitive (Figure D.16a) and

complex (Figure D.16b) SNMP data types. Now that we have explained all this

about SNMP let’s take a look at SNMP packet format, Figure D.17. Figure D.17a

illustrates SNMP packet format and Figure D.17b shows an example with values.

D.13. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 263

(a) SNMP Packet.

(b) SNMP Example.

Figure D.17: SNMP Packet Format. [8]

SNMP Packet fields are mainly:

SNMP message: A sequence that represents the whole SNMP packet.

SNMP Version: An Integer that identifies the version of SNMP

SNMP Community String: A variable length byte String that adds security to

SNMP devices, ’public’ community string means read-only community,

while ’private’ means read-write community.

SNMP PDU: An SNMP PDU that represent the body of SNMP packet

Request ID: An Integer that matches SNMP requests to their responses

Error: An integer that represents the type of error. Its value includes:

• 0x00 – No error occurred

• 0x01 – Response message too large

• 0x02 – Name of the requested object was not found

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 264

• 0x03 – Data type in the request did not match the data type in the

SNMP agent

• 0x04 – SNMP manager attempted to set a read-only parameter

• 0x05 – General Error, some error that is not listed in the above values.

Error Index: An Index that points to the Object that caused the error.

Varbind List: A Sequence of Varbinds.

Varbind: A Sequence of two fields, an Object ID and the value for/from that

Object ID.

Object Identifier: An Object Identifier that points to a specific parameter in the

SNMP agent, for more details about how to understand this field, please

refer to [89].

Value • SetRequest PDU: Value is assigned to the specified OID of the SNMP

agent.

• GetRequest PDU: Value is a Null that acts as a placeholder for the

return data.

• GetResponse PDU: The returned Value from the specified OID of the

SNMP agent.

D.14 Simple Service Discovery Protocol (SSDP)

SSDP header format include 3 main containers of information:

1. SSDP Start-line

2. SSDP Message Header fields

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 265

3. SSDP Header field extensions

According to the type of SSDP packet the format will remain the same but with

different fields in each container. SSDP packet types include:

1. Advertisement

a. Device available – NOTIFY with ssdp:alive

b. Device unavailable – NOTIFY with ssdp:byebye

c. Device Update - NOTIFY with ssdp:update

2. Search

a. Search request with M-SEARCH

b. Search response

D.14.1 SSDP Advertisement: Device Available

SSDP Advertisement packets are used to advertise the state of a device

concerning its services and root devices. In such case, SSDP packets must be

multicast using standard address and port combination ’239.255.255.250:1900’,

the source and destination ports of such packets will be equal to 1900.

Figure D.18 illustrates the SSDP Device Available packet format.

Figure D.18: SSDP Device Available Packet Format. [9]

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 266

We explain the meaning of packet fields and use example values from our

captured traffic (if exists):

Request Line (Must): It must be ”NOTIFY ∗HTTP/1.1”. ’NOTIFY ’ is a general

method for sending notifications and events, and ’∗’ generally emphasize

any resource upon the device. ’HTTP/1.1’ indicates the version of HTTP

used within the packet.

HOST (Required): It is the standard multicast address and port number

’239.255.255.250:1900’.

CACHE-CONTROL (Required): This is an integer field that designates the

duration (in seconds) within which this availability packet is valid before

it expires.

LOCATION (Required): It holds a URL for the description of the advertised

resource on the device, e.g., http://192.168.10.50:50002/

NT (Required): Notification Type of the packet,

e.g., urn:schemas-upnp-org:service:RenderingControl:1

NTS (Required): Notification Sub Type of the packet, e.g., ssdp:alive

SERVER (Required): Specifies the type of server that provides the resource,

e.g., WINDOWS, UPnP/1.0, Intel MicroStack/1.0.1497

USN (Required): Unique Server Name,

e.g., uuid:3855B43B-A276-0C30-B22C-7FA461B2FC9D::urn:schemas-upnp-org:service:Ren

BOOTID.UPNP.ORG (Required): This field represents the boot instance of the

advertised resource

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 267

CONFIGID.UPNP.ORG (Required): This field indicates the configuration

number of the advertised resource.

SEARCHPORT.UPNP.ORG (Optional): Mainly, this field is used to designate a

different port number other than 1900, to help in unicast communication

of Search packets.

When the duration of the availability packet expires the device has to renew

availability of its resource with another Device Available packet.

D.14.2 SSDP Advertisement: Device Unavailable

If the status of the resource or the device changes and results in their removal

from the network, the device has to send an unavailable notification packet that

tells the network of such change. Figure D.19 demonstrates the format of such

packet.

Figure D.19: SSDP Device Unavailable Packet Format. [9]

The fields of SSDP Device Unavailable packet are the same as those of Device

Available packet. The only difference is that NTS field contains ssdp:byebye.

D.14.3 SSDP Advertisement: Device Update

When the change in resource does not result in removal from the network, i.e., the

resource is still available but in this case it takes a new boot instance, therefore,

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 268

its new boot instance number has to be announced. This announcement is made

by sending a Device Update Packet, Figure D.20.

Figure D.20: SSDP Device Update Packet Format. [9]

Once more the meaning of these fields are the same as Device Available SSDP

packet, with the difference that the NTS field contains ssdp:update.

D.14.4 SSDP Search request with M-SEARCH and Search

Response

SSDP search messages include requests and responses. SSDP allows devices to

search for specific resource on the network. The search procedure is done by

sending a request packet about the required resource, then the device that owns

this resource and it is available, responds in a unicast manner. The source port

of the requestor is a dynamically assigned port not 1900 like in advertisement

packets, but the destination port is 1900. Figure D.21 represents the format of

SSDP search request.

Figure D.21: SSDP M-Search Request Packet Format. [9]

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 269

The meaning of these fields is:

Request Line (Must): It must be ”M − SEARCH ∗HTTP/1.1”. ’M-SEARCH ’ is a

method for search requests, and ’∗’ generally emphasize any resource upon

the device. ’HTTP/1.1’ indicates the version of HTTP used within the packet.

HOST (Required): Its meaning is the same as before. The difference

is, with multicast requests the standard address and port is used

’239.255.255.250:1900’. On the other hand, when the request is unicast the

used address format is hostname:portNumber.

MAN (Required): It defines the scope of HTTP extension framework, it must be

set to ”ssdp:discover”

MX (Required): It specifies a duration in seconds in a range from 1 to 5 that the

responder has to wait before processing the request.

ST (Required): Search Target URI, e.g., upnp:rootdevice

USER-AGENT (Optional): string field that is specified by the server in the format

”OS name/OS version/product name/product version”. e.g., ”USER-AGENT:

unix/5.1 UPnP/1.1 MyProduct/1.0”

SSDP response packets incorporates fields from both; SSDP requests and SSDP

Device Available packets, Figure D.22.

Figure D.22: SSDP M-Search Response Packet Format. [9]

D.14. SIMPLE SERVICE DISCOVERY PROTOCOL (SSDP) 270

The additional fields that were not explained before are:

DATE (Recommended): A field that specifies the date of generating the

response.

EXT (Required): A field used for backward compatibility with UPnP 1.0.

All the remaining fields are the same as explained before.

