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Abstract 

Decision-making in construction planning and scheduling is complex because of budget and 

resource constraints, uncertainty, and the dynamic nature of construction environments. A 

knowledge gap in the construction literature exists regarding decision-making frameworks with 

the ability to learn and propose an optimal set of solutions for construction scheduling problems, 

such as activity sequencing and work breakdown structure formulations under uncertainty. The 

objective of this paper is to propose a hybrid reinforcement learning–graph embedding network 

model that 1) simulates complex construction planning environments using agent-based modeling 

and 2) minimizes computational burdens in establishing activity sequences and work breakdown 

formations. Three case studies with practical construction scheduling problems were used to 

demonstrate applicability of the developed model. This paper contributes to the body of knowledge 

by proposing the hybridization of reinforcement learning and simulation approaches to optimize 

project durations with resource constraints and support construction practitioners in making project 

planning decision-making. 

Keywords: reinforcement learning, agent-based modeling, graph embedding, optimization, 

planning, decision making 
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1. Introduction 

Construction planning and scheduling is the process of determining what activities are performed 

and establishing how and when these activities are conducted within the limits of the available 

time, budget, and resources [1]. According to the Project Management Institute (PMI), planning 

activities consists of transforming the scope of work to establish a hierarchy of manageable work 

packages, also called a work breakdown structure (WBS) [2,3], and then determining the sequence 

of activities’ execution according to project constraints including work environment layout, 

available resources, and scope. In the same manner, construction planning enables a project to 

accomplish a set of required objectives that can be considered as a two-part problem. First, the 

solution needs to capture the dynamic construction environment with activities representing 

project scopes that can be defined as a hierarchy of executable work packages. Second, the solution 

is a result of estimating duration requirements for activities and optimizing activity sequencing 

based on multiple and pre-determined constraints that also incorporate decision makers’ 

knowledge and experience. Construction planning includes scheduling and other forms of 

planning, such as material handling, site layout planning, equipment path planning, and site 

logistics planning [4]. Scheduling problems are an important part of construction planning 

activities in terms of planning physical construction project components that have a specified set 

of start and finish timelines and an estimated duration. 

Researchers have proposed multiple decision-aid methods, such as simulation, optimization, 

multi-criteria decision-making, and automation, to tackle activity sequencing and WBS formations 

in construction scheduling problems [4]. Some methods include linear programming, heuristic or 

meta-heuristic approaches, and hybrid simulation approaches such as discrete event simulation-

genetic algorithm (DES-GA). These methods have proposed solutions by solving mathematical 

objective functions that optimize a given metric, such as time, cost, resource, or quality. These 

approaches have some shortcomings in capturing uncertainty in the construction environment, 

raising computational burdens, and not being easily generalizable to multiple construction projects. 

In a scheduling problem, the optimization process needs to consider multiple constraints tied to 

each activity, such as time, budget, and resources. These constraints can include 1) precedence 

relationships, 2) project manager preferences, such as activity associated with a rented crane may 

need to take precedence to minimize equipment rental costs, and 3) interruptions, such as 
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equipment breakdowns. To tackle these constraints, methods are needed that can capitalize on the 

simulated environment to understand complex behaviors and derive more sufficient decisions. 

Reinforcement learning (RL) is very effective for decision-making processes in construction 

problems. RL algorithms are able to solve optimization problems with higher constraints [5] and 

perform efficiently with increasing complexity and number of activities [6]. The RL agent learns 

to implement better actions, including optimal sequencing of activities, through training achieved 

from exploiting local rewards and exploring random actions despite lower rewards. Hence, RL can 

help fill the aforementioned shortcomings of current decision-aid methods in construction planning 

by developing a local decision-making policy for each agent, based on communication channels, 

and by breaking down the problem into sub-problems, all of which contributes to computational 

efficiency. Using RL assists construction practitioners in facilitating generalizations through the 

learning process, because different problems can be broken down into similar sub-problems. 

Moreover, RL facilitates agent communications and enables agents to arrive at a set of decisions 

involving a set of joint actions. This results in a faster convergence to the optimum global policy. 

However, an RL process does not capture the dynamic nature of modeling in the construction 

environment, because of the complexity caused by various interactions between system 

components [7]. In a construction setting, however, having a model of the construction 

environment is crucial. 

Simulation techniques have been used to capture the dynamic nature of the construction 

environment as well as uncertainties in the modeling process [8]. Compared to other simulation 

techniques, such as DES and system dynamics (SD), agent-based modeling (ABM) is able to 

handle these complexities and capture emerging behaviors. ABM is capable of handling very 

complex real-world systems often containing large amounts of autonomous, goal-driven, and 

adapting agents [9]. ABM uses a bottom-up approach where the system is described as interacting 

objects with their behaviors, which allow complex emergent behaviors to be captured. ABM 

enables tracking of agent interactions in their artificial environments to understand overall 

processes that lead to global patterns [10]. By incorporating ABM in an RL process, necessary 

features that support environment modelling, such as system parameters, system behaviors, and 

rules, are provided in order to enable an efficient representation of the dynamic construction 

environment and provide the RL platform with the necessary features to support environment 

modelling. 
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The objective of this paper is to propose an RL-ABM method with graph networks that can be 

used to support decision-making in construction planning by providing optimum work package 

sequencing to schedule activities based on project constraints. The application of the proposed 

model can be extended to establishing a WBS for a construction project. Three case studies were 

used to demonstrate the proposed model and discuss the applicability of RL-ABM to addressing 

similar problems related to activity sequencing. The developed RL-ABM method enables 

construction decision-makers to evaluate project objectives, facilitates the optimization of multiple 

types of resources during planning through the RL agent’s learning ability, is able to incorporate 

resource planning during schedule development, and can be generalized to other construction 

planning problems. Moreover, the applications of the method can be extended to scope definition 

(WBS formulation) at the project level in future work that will extend this study. 

The rest of this paper is structured as follows. First, as background, a literature review section is 

presented, which discusses decision-making in construction planning and shortcomings of current 

decision-aid approaches to scheduling problems, followed by an introduction of simulation 

approaches and RL to address the gap in the literature. Next, the theoretical development of RL-

ABM is presented as part of the proposed methodology, which also includes the steps of problem 

definition, ABM simulation, and development of the RL model. Three case studies are then 

presented to demonstrate application of the proposed RL-ABM method. Finally, conclusions are 

presented and recommendations for future work are discussed. 

2. Background 

This section provides an overview of decision making in construction planning. Simulation 

approaches and RL are then discussed along with the knowledge gap existing in the construction 

planning literature. 

2.1. Decision-making in construction planning 

Decision-making is a critical aspect of construction processes such as policymaking, budgeting, 

risk and safety, planning and scheduling, bidding and tendering, productivity, and performance 

[11–13]. In construction planning and scheduling, decision-making–related problems consist of 

determining the optimum sequence of activities according to project objectives and constraints, 

and then defining the WBS [14]. For various optimization problems, current construction planning 

approaches mostly comprise one of or a combination of the following: expert opinion and 



5 | P a g e  

 

experience, mathematical and heuristic formulations, intelligent methods, evolutionary methods, 

and simulation techniques. Methods involving expert opinion and experience can exhibit potential 

uncertainty and might not significantly benefit objective problems that involve rigorous 

computation [15]. Mathematical methods, such as integer, linear, or dynamic programming, are 

computationally cumbersome, complex, and easily trapped in a local optimum [16]. Heuristic 

methods are a collection of proposed rules that do not use rigorous mathematical formulations 

[17]. and offer a much simpler approach using rules-of-thumb and experience [16]. Some examples 

of heuristic and meta-heuristic approaches can be found in the work of Sonmez et al. [18], Yahya 

and Saka [19], Liu et al. [20], and Chen and Shahandashti [21]. Heuristic methods perform 

differently in different problem contexts and do not always guarantee optimum solutions, as no 

direct approach exists for selecting the best heuristic approach [22]. In situations where insufficient 

data is available for modeling and computing processes, intelligent methods [23–25] could be used 

to establish WBS and identify the proper sequence of activities. Evolutionary methods can become 

difficult to implement and make the computation process extremely intensive and expensive to 

perform [26]. Some studies [27–29] have also proposed hybrid simulation approaches that simulate 

construction problems using a simulation approach (such as DES) and an optimization method. 

This paper presents an alternative to other methods currently found in construction planning 

literature: a simulation engine that provides a scientific method for finding an optimal set of 

solutions for particular scheduling problems by simulating the environment, which consists of 

activity durations, resource availabilities, and precedence relationships, in an optimization 

platform, which takes into account the objective function and pre-defined constraints. 

2.2. Simulation approaches in construction 

Simulation as a scientific tool for analyzing complex behaviors and processes in construction 

projects was first introduced in the 1960s by Teicholz [30] via a “link-node” model to investigate 

simple networking concepts and explain construction operations. The first software 

implementation of DES is believed to have been introduced by Gordon [31]. Some examples of 

DES application in the construction industry include construction planning and project scheduling 

[32,33], estimation in construction processes [34–36], productivity and performance [37–39], and 

construction simulation [32,40,41]. Despite the capability of DES to simulate process-type 

systems, DES elements behave in a predetermined manner ignoring unique operational real-life 

scenarios that occur as a result of resource constraints. For many construction systems with 
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complex project scenarios, such as earthwork operations including a large number of equipment 

types, varying arrival, service, breakdown processes, and weakly defined haul-road networks and 

volumes, more entities are required to account for the increasing complexity, making DES 

approaches computationally demanding. Zankoul et al. [42] compared DES with ABM for the 

same earthmoving project and showed that DES had increased computational burden due to 

additional entities needed to represent the system. 

Agent-based modeling (ABM) surpasses earlier methods such as DES, as it can be used to capture 

emerging behaviors that result from complex interactions of interrelating model components [7]. 

ABM is a computer simulation technique that enables prediction of overall system behavior and 

emerging patterns by modeling the behaviors of system components as well as individual agents 

[43]. Agents are discrete entities whose descriptors can be a type, such as “construction worker” 

that have their own attributes, such as “age,” “workstation,” “assigned task,” and “behavior.” ABM 

can be used to model interactions of individual agents with each other and with their environment 

[44]. Examples of ABM applications include scheduling and planning [45–47] and decision 

making [11, 48]. ABM is an appropriate tool for describing complex systems with dynamic 

processes of agent interactions that are repeatedly simulated over time [49], because competitive 

and repetitive interactions between agents can result in extremely complex behaviors [50]. In this 

regard, ABM can easily handle a large number of activities with differing attributes and allow for 

a better representation of complex relationships between those activities, such as precedence 

relationships, competitions for resources, and changing construction conditions, which makes this 

method ideal to simulate construction environments for planning and scheduling purposes. 

2.3. Reinforcement learning (RL) 

RL settings can be classified as single-agent RL or multi-agent RL (MARL) depending on the 

number of autonomous agents that influence the system’s state and reward [51]. RL can also be 

classified as model-based or model-free RL [52]. In terms of its applications, RL has been used in 

various applications in the field of civil engineering owing to its capabilities that make it 

particularly successful in solving complex problems [53]. Some of these applications include 

works in the area of design and operations for water structures [54, 55], transportation engineering 

[56–58], and maintenance [59]. RL has been effectively applied to develop strategic conventional 

tunneling in construction, which provided optimal economic and safe policies with potential to 
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discover new tunneling strategies [60]. RL is also emerging as a control technique [61], and it is 

of growing interest in research, with demonstrated potential particularly in enhancing building 

performance [62–65]. Because RL uses an intelligent agent to learn to make a series of optimal 

decisions [52], it is a suitable approach for performing construction planning where a series of 

decisions (e.g., activity sequencing, resource allocation) are performed at different times 

throughout a project’s lifecycle. In the area of scheduling, the majority of RL-based research has 

focused on production scheduling. Creighton and Nahavandi [66] proposed an intelligent agent-

based scheduling system that uses DES as a simulation engine with the goal of minimizing total 

production costs depending on job sequence and batch size. Cao et al. [67] proposed an RL model 

using Monte Carlo simulation to solve a production planning problem that minimizes inventory 

and penalty costs. Wei and Zhao [68] used Q-learning algorithm to schedule a dynamic job-shop 

problem that considers machine selection. Zhang et al. [69] used an RL method coupled with 

heuristic method and simulation to perform parallel machine scheduling that minimizes mean flow 

time of jobs. Fonseca-Reyna et al. [70] used RL to solve a scheduling problem that finds a 

permutation of operations that is processed sequentially on a set of machines with the objective of 

minimizing the completion time of all jobs. Bouazza et al. [71] used an RL approach with Q-

learning to solve a job-shop scheduling problem. 

Unlike supervised and unsupervised learning approaches, RL is a machine learning technique that 

uses the environment for learning and is not dependent on a predefined dataset [72]. Moreover, 

RL is particularly advantageous in the area of sequential decision making, which is a key challenge 

in artificial intelligence research [73]. When sequential decision making is formalized as Markov 

decision process (MDP) framework optimization problem, selecting the sequence of actions that 

produce optimal results (e.g., path planning) becomes complicated because of inherent key 

elements of the world (i.e., information about the environment and states; influence of actions on 

the environment; the notion of preferred actions now and in the future) [73]. In this regard, RL can 

offer an efficient solution for construction operation problems that may be viewed as a collection 

of recurring activities [53] where the objective is to produce an optimal solution (i.e., optimal 

project performance measure such as minimum project duration or minimum cost) in a dynamic 

environment (i.e., changing project conditions) subject to constraints (i.e., limited resources). RL's 

capability also extends to solving large-scale dynamic optimization problems and complex multi-

objective sequential decision-making problems [73]. 
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Even though there is growing research into RL-based optimization approaches that demonstrate 

the benefits of RL method in other fields within construction, most applications of RL for 

scheduling problems with respect to improving production have been limited to the manufacturing 

sector. In construction planning, decision makers analyze various activities to ensure optimal use 

of available resources and achieve required performance to meet project objectives with respect to 

cost, time, and quality. Establishing WBS and activity sequencing requires consideration of 

numerous interacting factors between the activities themselves, such as technology constraints, 

precedence relationships, available resources, conflicting objectives, and incomplete information. 

In this regard, RL enables a model to process optimization approaches that provide human-like 

intuitions and learning capabilities, which can enable decision makers to obtain better solutions 

that can adapt to changing environments. 

2.3.1. Markov decision process (MDP) 

Markov decision process (MDP) is a framework that describes the process of learning from 

interaction with the environment in order to achieve a goal. MDP has five components [74]: 1) the 

set of possible actions (𝐴𝑡 ∈ A) that can be taken by the agent or the decision-maker; 2) the set of 

all possible states (𝑆𝑡 ∈ S) that can be experienced by the agent; 3) the immediate reward 𝑟 that is 

received by the agent corresponding to the given state and action pair, defined in Eq. (1); 4) the 

discount factor 𝛾 that signifies the relative importance future rewards have compared to the current 

immediate reward, defined in Eq. (2), which denotes the discounted cumulative reward 𝐺𝑡 

following time t; and 5) the transition probability 𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) of a state corresponding to past 

state and action, defined in Eq. (3). The agent-environment interaction in MDP is summarized in 

Fig. 1. 

𝑅(𝑠, 𝑎) = 𝐸[𝑟𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (1) 

𝐺𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0     (2) 

𝑝(𝑠′,   𝑟 | 𝑠,   𝑎) =̇ p(𝑆𝑡 = 𝑠′,  𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎)     (3) 

 



9 | P a g e  

 

 

Fig. 1. Agent-environment interaction in MDP (adapted from [52]). 

 

In MDP, the optimal policy 𝜋∗(𝑎|𝑠) can be the function that maps the current state s to the best 

action 𝑎∗ while maximizing the expected future reward, as shown in Eq. (4). 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]     (4) 

2.3.2. RL algorithms 

RL algorithms for solving an MDP problem can be implemented in two ways: through 1) action-

value approximation or 2) policy approximation. Action-value methods directly learn the expected 

return of taking each action 𝑎 in a specific state s [52]. The action-value function 𝑞𝜋(𝑠, 𝑎) is 

defined in Eq. (5), and the optimal action-value function for the optimal policy (𝜋∗) is defined in 

Eq. (6) by considering the Bellman optimality equation, Eq. (5), and Eq. (3): 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (5) 

𝑞𝜋∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 +  𝛾 max
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)]    (6) 

On the other hand, in some MDPs, directly learning action-value functions is challenging in a big 

action space, and as a result, the policy function is used to calculate the preferences for each action 

in each state. The parameterized policy formula is defined in Eq. (7). 

𝜋(𝑎|𝑠, 𝜃) = 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃]    (7) 

Eq. (7) presents the probability of selecting an action as action preference. For example, this 

probability could be a linear function of any complex structure of deep learning, where 𝜃 is the 

weights or parameters of the function. Eq. (8) and Eq. (9) express the discrete action space for a 

linear parameterized policy with soft-max distribution [75]. The objective in RL processes is to 

learn 𝑞∗ or 𝜃∗ by interacting with the environment and receiving rewards. This learning is 
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accomplished by updating a policy or set of action-value function parameters, which means 

learning the best values for each state or sub-problem, which leads to solving the MDP. 

𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

     (8) 

where 

ℎ(𝑠, 𝑎, 𝜃) =  𝜃𝑇𝑥(𝑠, 𝑎)    (9) 

3. Methodology 

The research methodology of this study consists of four steps: 1) development of the RL model, 

2) problem definition, 3) ABM simulation process, and 4) development of the RL process for 

construction planning. 

3.1 Development of RL model 

3.1.1. MDP states and actions 

In the construction environment, formalizing resource-constraint scheduling as an MDP is 

described as follows. Possible actions (𝐴𝑡 ∈ A) are activities that can be scheduled according to 

project state (𝑆𝑡 ∈ S). Project state in this study is characterized by project time, available 

resources, and the state of each activity in the network. Each activity has four states, namely 

“NotReady,” “Ready,” “InProgress,” and “Complete,” and each state is represented in a binary 

format. Hence, the MDP environment for the scheduling problem starts by defining which 

activities can be used to prioritize schedules and thus minimize project total finish time T. At each 

step, the environment advances to the nearest finish time of activities in order to update the 

background, and then, based on project state, possible activities are scheduled from the pool of 

possible actions. In the scheduling problem, the reward is considered as a negative value of time, 

and the objective is to maximize the long-term reward. In this sense, maximizing over negative 

value results in minimizing the total project time. The “state” and “action” pairs, which are the two 

major components in the MDP, are described below. 

State: The construction scheduling problem is formulated as an MDP problem with RL algorithms 

that use an MDP framework to derive optimal strategies. Each state in the RL algorithms is 

represented in a structure format as an input to calculate future values according to possible actions 

in the current state. For the scheduling problem regarding resource constraints, each state 
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corresponds to the activity on node (AON) network at a given timestep. Therefore, each state S 

represents the outcome of a previous action and comprises the following information: 

i. Activities states in simulation: These can be obtained from the simulation model at each 

timestep per a corresponding numeric value, as shown in Table 1. 

Table 1: Description of activities. 

State State description 

0 NotReady 

1 Ready 

2 InProgress 

3 Complete 

 

ii. Available resources: The current availability of resources should be present in the state 

information, because they are required to assess which actions can be performed next. 

iii. Activities duration: The state gives information on the activities’ duration. 

Action: For each state, the agent selects an action from the available activities, which affects the 

resource pool of activities. Hence, selecting an action results in changing the project state, and the 

agents use updated information to select the next action. In other words, agents select one action 

per state. 

3.1.2. In construction planning environments, the agents select an environment action (𝐴𝑡 ∈ A) 

that affects project total duration. These agents learn to make the optimal sequence of decisions 

that can meet the predefined objective by maximizing the received reward for a given action while 

also exploring the decision space to avoid local solutions, as shown in Eq. (10). 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]𝑞𝜋∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 +

 𝛾 𝑚𝑎𝑥
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)𝜋(𝑎|𝑠, 𝜃) = 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃]𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

 ℎ(𝑠, 𝑎, 𝜃) =

 𝜃𝑇𝑥(𝑠, 𝑎)  (10) 

The value function therefore learns to calculate the value of each possible activity based on 

receiving rewards and tries to estimate the priority of the activities according to the project state. 

Fig. 2 provides an example of how the RL agent performs the optimization process to produce an 
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improved network diagram. In Step 1, the RL agent observes the current state of the AON to 

recognize the resource requirements, initial project network with technology constraints, and the 

duration of each activity. In Step 2, the agent prioritizes what action to take based on the current 

state and reward system of the RL algorithm. In Step 3, it takes the action to start activity A, based 

on priority rules and agent preferences from the previous step. In Step 4, the RL agent observes 

the next state and updates the AON network based on the previous action taken. As a result, the 

path from A to B is resource constrained in order to minimize total project duration from 3 days 

to 2 days. 

 

Fig. 2. RL process for optimizing AON. 

3.2. Problem definition 

Construction practitioners can be faced with several combinations of planning issues related to 

factors such as time, cost, and quality. Additionally, construction projects are usually executed 

under resource constraints related to labor, material, and equipment. Therefore, the planning 
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process aims to optimize the use of resources and to sequence activities in order to meet project 

objectives. The problem in this study is defined as scheduling the network of construction activities 

that are subject to resource constraints with the objective of minimizing the total project duration. 

Each construction activity in a given project has its own normal activity duration, signified by the 

amount of time required to complete such an activity under normal circumstances. The duration 

for the assigned activities is measured in increments of time called planning units. In this study, 

these activities are sequenced to comply with project schedule requirements in order to complete 

the overall project with the shortest possible duration. 

Eqs. (10–12) show the logic for resource allocation optimization: 

minimize 𝑇 = max{𝑡𝑖 + 𝑑𝑖 | 𝑖 = 1, 2, … , 𝑛} (10) 

subject to 𝑡𝑗  −  𝑡𝑖  −  𝑑𝑖  ≥  0      𝑗 ∈  𝑆𝑖   (11) 

 ∑ 𝑟𝑑𝑖𝑘
 ≤  𝑏𝑘      (𝑘 = 1,2, … , 𝑚)

𝑡𝑗 𝜖 𝐴𝑡𝑖 

            (12) 

where T = project duration; 𝑡𝑖,𝑗 = starting date of activity i, j; 𝑑𝑖 = duration of activity i; 𝐴𝑡𝑖  = set 

of ongoing activities at date 𝑡𝑖 ; and 𝑏𝑘 = resource limit of kth resource. 

Eq. (10) indicates the computation for project duration. Eq. (11) indicates that the difference 

between the occurrence times of two connected nodes should be greater than or equal to the 

duration of the connecting activity. Eq. (12) imposes the restriction on utilization of resources, 

which can not exceed available resources. The proposed model for solving this scheduling problem 

is shown in Fig. 3 and elaborated in the subsequent sections. The proposed model starts with the 

ABM component, where the construction activities are analyzed using critical path method (CPM) 

and then used to create the model environment. The RL component consists of establishing the 

graph embedding network in an ABM environment to optimize the duration of the scheduling 

problem. 
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Fig. 3. Flow diagram of the proposed RL-ABM method. 

3.3. ABM simulation 

The optimization problem introduced in Eq. (10) is solved using the RL approach. In this section, 

ABM simulation is discussed in order to define the environment for the RL optimization platform. 

The ABM is used to define the environment, which consists of the intelligent RL agent and the 

activity agents representing activities of the project. 

3.3.1. Input to ABM simulation 

The input to ABM simulation was the characteristics of the AON network, which holds the project 

information related to the sequence of activities that comply with technological constraints. These 

activities are connected in a finish-to-start manner, where the end of the preceding activity marks 

the possible beginning of subsequent activities. This information was used to define the project 
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environment in the ABM platform. The main advantage of using ABM is to enable the creation of 

the RL environment, which can be used by the RL agent to obtain the current state of the system 

and facilitate the optimization process. 

3.3.2. ABM simulation process 

Using the given AON network, the early start (ES), early finish (EF), late start (LS), late finish 

(LF), and total float (TF) of each activity agent is calculated using CPM [76]. These values are 

used as RL agent parameters and processed by the intelligent RL agent. The activity agent is the 

main agent in the proposed ABM and the main driver of the simulation. Activity agents could be 

considered as goal-oriented reactive agents whose sole purpose is to be completed. An activity 

agent transitions into different state-charts by starting, performing certain tasks for a given 

duration, then concluding. In addition to the information on states, the activity agent includes the 

list of resources and predecessors for each activity and the normal duration associated with it.  

Fig. 4 shows the states of an activity agent considered in the ABM simulation. All activities start 

in a “NotReady” state, which signifies the initial state of all activities and the states of all other 

activities whose predecessor activities have not been completed. Next, each activity checks if its 

corresponding predecessors are completed. This check is completed by making sure the 

conditional statements are returned as 'TRUE' for initial technological constraints within in each 

activity agent. After confirming this check, the activity transforms to a "Ready" state. An activity 

in "Ready" state then checks if its corresponding resources are available to start the activity and 

move to the "InProgress" state. Multiple activities in the "Ready" state will compete for similar 

resources based on present priority rules. The RL agent checks whether enough resources are 

available for an activity in the "Ready" state. In this stage, if a predefined priority rule exists (e.g., 

activities with longer duration get preference; activities with lesser number of resources get 

preference), the activity agents utilize that priority rule to capture the required resources and 

transition to the next state. Otherwise, the agent assigns priorities for potential activities based on 

its deep neural network and selects the highest-priority one to proceed. An activity remains in a 

“Ready” state if there are not enough resources available. 
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Fig. 4. States of an activity agent considered in the ABM simulation (where ES is early start, EF 

is early finish, LS is late start, LF is late finish, and TF is total float). 

3.4. Implementation of RL model in construction planning problems 

3.4.1. Input to RL modelling 

As noted in section 3.3.2, ES, EF, LS, LF, and TF are the parameters calculated using CPM. As 

part of the defining features of each activity, these parameters are used as inputs for the RL agent's 

deep neural network. Agent-based modelling output is used as input to define states and actions 

for each step of optimization. 

3.4.2. Graph embedding network 

As noted in section 2.3.1, agents select one action per state in the MDP. To model an action, a 

graph neural network structure is used to address the challenges of project size and modeling 

relationships between activities. One of the biggest challenges for this type of optimization is the 

running time corresponding to the number of activities or actions, which depends on project size. 

Graph neural network applications in similar problems show great performance because instead of 

a complex network, the whole graph consists of a simple neural network mostly with one hidden 

layer, which decreases the required computational resources needed for calculation. Regarding 

modeling relationships between activities, it is very important to understand precedent 

relationships between activities, which can significantly impact scheduling. In the graph neural 
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network architecture, this important feature can be easily modeled and used to help RL agents to 

make optimal actions. 

With the objective to optimize duration over a project network, graph G is defined according to 

the project network, in which nodes represent activities and edges are used to represent pre-defined 

technological constraints. After defining graph G, the graph structure is converted to vectors to 

represent such complex phenomena. In this study, a deep learning architecture is leveraged over 

the graph, in particular structure2vec [75]. In this study, the value function was the result of 

structure2vec of environment according to project state. 

3.4.3 Parameterizing Q-function 

Parameterization of Q-function is performed using the embeddings from structure2vec. Eq. (13) 

[75] shows the design of F to update a p-dimensional embedding 𝜇𝑣
𝑡  as:  

𝜇𝑣
𝑡+1 ← 𝑟𝑒𝑙𝑢 (𝜃1𝑥𝑣 +  𝜃2 ∑ 𝜇𝑢

(𝑡)
𝑢∈𝑁(𝑣) +   𝜃3 ∑ 𝑟𝑒𝑙𝑢𝑢∈𝑁(𝑣) (𝜃4(𝑣, 𝑢)))   (13) 

where 𝑥𝑣 is a binary scalar of activity state; relu is the rectified linear unit (𝑟𝑒𝑙𝑢(𝑧)  =  𝑚𝑎𝑥(0, 𝑧)) 

applied elementwise to its input; and 𝜃1, 𝜃4 ∈ ℝ𝑝and 𝜃2, 𝜃3 ∈ ℝ𝑝×𝑝 are the model parameters. 

Next, Q-function is defined as shown in Eq. (14): 

𝑄 = 𝜃5
𝑇 𝑟𝑒𝑙𝑢 ([ 𝜃6 ∑ 𝜇𝑢

(𝑇)
𝑢∈𝑉 , 𝜃7𝜇𝑣

(𝑇)
])    (14) 

where 𝜃5 ∈ ℝ2𝑝and 𝜃6, 𝜃7 ∈ ℝ𝑝×𝑝. 

Q-function depends on a collection of seven parameters. For the graph embedding computation, 

the number of iterations T for the graph embedding computation is typically small (i.e., T=4) [75]. 

3.4.4. Training: Q-learning 

Two distinctions are made, where the term “episode” refers to the complete sequence of activities 

from simulation start to termination. A single step within an episode is one action, such as an 

“InProgress” activity. In this regard, the Q-learning performs a gradient step to minimize the 

squared loss, as shown in Eq. (15), by updating the function approximator's parameters: 

(𝑦 −  𝑄(𝑣))2    (15) 

where 𝑦 =  𝛾 max
𝑣′

𝑄(𝑣′)  + 𝑟(𝑆𝑡 , 𝑣𝑡 , ) for a non-terminal state 𝑆𝑡. 
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3.4.5. RL-ABM simulation 

To optimize project duration while allocating labor resource appropriately, the proposed RL-ABM 

method consists of three phases. First, the ABM platform performs forward and backward passes 

to the AON network to obtain the initializing parameters described in the ABM model. The AON 

diagram then serves as the environment of the RL model, where initial sequencing requirements 

are fulfilled according to technology constraints. Each activity is given an initial “Not-Ready” 

state. Second, the AON is transformed into a graph network so the RL agent understands the 

position of each activity in the overall AON network. In this step, additional identifiers of each 

activity (i.e., duration of task, required resources, dependency relationships) are used as inputs to 

form the graph network using the Networkx library. The architecture of the graph neural network 

for an example AON of five activities (i.e., A, B, C, D, E) is shown in Fig. 5. In this regard, each 

activity is defined by eight attributes to be used in the RL platform. The first four attributes 

represent the quaternary value of an activity's state as defined in Table 1. The remaining four 

attributes capture the resources available (r), duration of the activity (d), and two attributes for the 

position of the activity in the AON (edges). Third, the RL platform executes the RL optimization 

algorithm, which uses Q-learning to select an action, calculate action values, and learn to perform 

activity sequencing that satisfies resource requirements and minimizes project durations. In this 

regard, the graph neural network class is defined with the PyTorch library. The graph neural 

network has eight layers to compute the value function. The first layer computes the nodes’ values 

based on defining attributes, while the second layer computes the values of neighbor nodes. The 

third and fourth layers compute edged values. The last four layers convert the value of each node 

to a vector value. In the graph neural network, to reduce loss in calculating neighbor values, the 

values are calculated in three iterations. In the RL section, the code utilizes Q-learning with ε-

greedy policy. The reply buffer class saves experience for re-calculating values in order to train 

the network weights for improving the learning value network. 
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Fig. 5. Graph neural network for an example AON of five activities. 

3.4.6. Output from RL-ABM simulation 

The simulation outputs integrate processes executed in the RL and ABM. The ABM simulates the 

resource-constrained activity scheduling to produce the outputs resulting from the optimization 

performed by the RL platform. The resulting output consists of a modified project AON network 

that sequences 1) the set of activities to satisfy resource constraint requirements and 2) the 

activities to optimize with pre-determined objectives, such as duration and cost. This guides 

construction practitioners in performing the set of activities in an optimal and informed manner, 

executing the planning process efficiently, and meeting project objectives. The proposed RL model 

addresses the uncertainties that arise from assigning durations for activities. In the overall process 

of construction scheduling, a probabilistic approach is used that assigns a triangular distribution of 

duration for each activity. The consequent uncertainty in the overall scheduling problem, resulting 

from the dependencies and relationships between individual activities, is solved in the RL platform 

via coding that accounts for such types of uncertainty. Compared to other scheduling optimization 

methods, the RL agent can be modeled to arrive to a policy that finds the shortest possible project 

duration. However, for this study, the uncertainties stemming from activity duration assignments 

are assigned in a deterministic manner to provide straightforward comparisons to the case studies 

referred from Lu and Li [77]. 

4. Case studies 

To demonstrate the proposed RL-ABM methodology, this study utilized construction planning 

case studies elaborated from three scheduling problems. The first two are described in Lu and Li 

[77]. Case study 1 illustrates how to utilize the proposed RL-ABM method to address a simple 
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scheduling problem. Case study 2 demonstrates the applicability of the proposed model in 

construction planning to address a more complicated scheduling problem from a bridge 

construction project. Case study 3 is a more complicated scheduling problem adapted from Zhang 

et al. [78], selected in order to further demonstrate the methodology. 

4.1. Case study 1 

The first case study included a simple network with nine activities with the one resource type of 

labor, for a simple scheduling problem [77]. The resource in this case study was limited to four 

units of labor per day. The AON network is illustrated in Fig. 6, and the structure of the activity 

table is shown in Table 2. 

 

Fig. 6. AON network of case-study 1, a simple scheduling problem (adapted from [77]). 

 

Table 2. Structure of activity table for case study 1, a simple scheduling problem  

(adapted from [77]). 

Node 

number 
Activity Duration Resource Predecessor(s) 

1 A 2 4L - 

2 B 3 4L - 

3 C 5 4L - 

4 D 4 3L A 

5 E 4 1L A 

6 F 3 2L B 
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7 G 6 2L B, C 

8 H 2 2L D 

9 I 3 2L F, G 

 

In case study 1, the learning rate and ε value were scheduled to decrease during learning. As a 

result, in the first episodes of learning, the code attempted to use more random actions. However, 

in the middle of training, since the ε value was less than 0.5, the network dominated the RL 

decision-making process. In this problem, since this case study project had only one type of 

resource, the RL agent found the best policy by prioritizing the sequence of activities based on 

their TF. For training the model, some hyperparameters need to be set in order to achieve optimum 

performance of training. Hence, for the learning process, four important hyperparameters directly 

affect the speed of convergence to the optimum policy: number of episodes, memory capacity, 

number of steps to update GNN, and batch size. In this case study, these values were set to 4000, 

10,000, 2, and 16, respectively. 

The result of the AON network using the proposed RL-ABM method for case study 1 is shown in 

Fig. 7, and the corresponding Gantt chart is shown in Fig. 8. In this regard, the result of the RL-

ABM algorithm improved the result of the total duration of this network by a total of 3 days 

compared to the previous research of Lu and Li [77]. 

 

Fig. 7. Resulting AON network for case study 1 based on the proposed RL-ABM method. 
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Fig. 8. Corresponding Gantt chart for the RL-ABM solution for case study 1. 

4.2. Case study 2 

The second case study is a scheduling problem in a bridge construction project [77]. A sample 

application of the proposed RL-ABM method was based on a local project of constructing a small 

footbridge, consisting of three stages of construction and requiring multiple types of resources. 

Two abutments, including footers and supports, were constructed in Stages 1 and 2, respectively, 

which were reinforced cast-in-place concrete structures. Stage 3 was erection of the superstructure, 

which was prefabricated in a remote steel plant and moved to the site for installation. The project 

network is shown in Fig. 9, and Table 3 lists the duration and resource requirements for each 

activity. Available resources were six skilled laborers (LB), one set of rented formwork for 

concreting footer and abutment (FM), one excavator (EX), two mobile cranes (MC), and one set 

of prefabricated steel superstructure (ST) scheduled to be moved to site on day 17. The work 

contents of identical activities on two stages were slightly different because of particular site 

conditions and slight design variations on each abutment. In this bridge project, the labor work 

content of multitasking skilled laborers was the primary criteria in deciding the priority for 

assigning resources to competing activities. 
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Fig. 9. AON network for case study 2, the bridge construction problem (adapted from [77]). 

 

Table 3. Structure of activity table for case study 2, the bridge construction problem  

(adapted from [77]). 

Node 

Number 
Activity Description Duration Resource(s) Predecessor(s) 

1 A Excavation stage 1 2 2LB, 1EX - 

2 B Formwork stage 1 3 4LB, 1FM, 1MC A 

3 C Concrete stage 1 5 4LB B 

4 D Backfill stage 1 4 2LB, 1EX D 

5 E Excavation stage 2 3 2LB, 1EX - 

6 F Formwork stage 2 3 4LB, 1FM, 1MC E 

7 G Concrete stage 2 6 4LB G 

8 H Backfill stage 2 2 2LB, 1EX H 

9 I Erect steel work 3 3LB, 2MC, 1ST D, H 

 

Similar to case study 1, the four hyperparameters, namely the number of episodes, memory 

capacity, number of steps to update GNN, and batch size, were set to 4000, 10,000, 2, and 16, 

respectively. 

The result of the AON network using the proposed RL-ABM method for case study 2 is shown in 

Fig. 10, and the corresponding Gantt chart is shown in Fig. 11. Given the resources assigned, the 

footbridge construction took 24 days to complete and the prefabricated superstructure was ready 
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for erection by day 21. Compared with previous research referenced for this case study [77], RL-

ABM reduces total project finish time by 3 days. 

 

 

Fig. 10. Resulting AON network for case study 2 based on the proposed RL-ABM method. 

 

 

Fig. 11. Corresponding Gantt chart for the RL-ABM solution for case study 2. 

4.3. Case study 3 

The third case study is a scheduling problem adapted from Zhang et al. [78]. The case study was 

specifically selected in order to compare RL-ABM output with the results presented in the 

aforementioned research [78]. In effect, results of RL-ABM output are compared with from other 

heuristic methods, namely: minimum total float (MITF), shortest activity duration (SAD), 

minimum late finish time (MILFT), genetic algorithm (GA), and particle swarm optimization 

(PSO). In this case study [78], the scheduling problem consists of 25 activities and 2 dummy 

activities, with three different types of resources (R1, R2, and R3). The AON network is illustrated 

in Fig. 12., and the structure of the activity table is shown in Table 4. 
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Fig. 12. AON network of case-study 3, a more complicated scheduling problem  

(adapted from [78]). 

Table 4. Structure of activity table for case study 3, a more complicated scheduling problem 

(adapted from [78]). 

Node 

Number 
Activity Duration Resources Predecessor(s) 

1 1 5 {'r1': '5', 'r2': '3', 'r3': '2'} - 

2 2 5 {'r1': '4', 'r2': '5', 'r3': '3'} - 

3 3 3 {'r1': '2', 'r2': '5', 'r3': '2'} - 

4 4 4 {'r1': '1', 'r2': '4', 'r3': '4'} 1, 2 

5 5 2 {'r1': '4', 'r2': '2', 'r3': '4'} 1, 2 

6 6 1 {'r1': '5', 'r2': '5', 'r3': '4'} 3 

7 7 6 {'r1': '5', 'r2': '3', 'r3': '2'} 3 

8 8 6 {'r1': '2', 'r2': '3', 'r3': '2'} 4, 5, 7 

9 9 1 {'r1': '1', 'r2': '4', 'r3': '4'} 4 

10 10 3 {'r1': '2', 'r2': '3', 'r3': '4'} 5, 6, 7 

11 11 3 {'r1': '3', 'r2': '3', 'r3': '2'} 6 

12 12 3 {'r1': '4', 'r2': '1', 'r3': '4'} 8, 10 

13 13 3 {'r1': '5', 'r2': '5', 'r3': '4'} 8 

14 14 6 {'r1': '2', 'r2': '2', 'r3': '2'} 9 

15 15 4 {'r1': '5', 'r2': '1', 'r3': '4'} 11 

16 16 3 {'r1': '3', 'r2': '5', 'r3': '3'} 12 

17 17 3 {'r1': '2', 'r2': '3', 'r3': '3'} 14 

18 18 4 {'r1': '5', 'r2': '4', 'r3': '4'} 13, 15 

19 19 1 {'r1': '4', 'r2': '2', 'r3': '6'} 15 

20 20 4 {'r1': '0', 'r3': '4', 'r2': '1'} 16 
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21 21 4 {'r1': '6', 'r2': '1', 'r3': '2'} 16, 17 

22 22 1 {'r1': '2', 'r2': '2', 'r3': '1'} 18 

23 23 6 {'r1': '2', 'r2': '3', 'r3': '1'} 18, 19 

24 24 3 {'r1': '2', 'r2': '2', 'r3': '2'} 20 

25 25 3 {'r1': '1', 'r2': '0', 'r3': '3'} 20, 21, 22, 23 

 

The four hyperparameters utilized for modeling this problem, namely, the number of episodes, 

memory capacity, number of steps to update GNN, and batch size, were set to 4000, 10,000, 2, 

and 16, respectively. These model parameters are similar to those for case studies 1 and 2. 

The result of the RL-ABM output is shown in the Gantt chart in Fig. 13. The total duration for the 

project is computed to be 64 days, where different allocation is assigned for the three resources 

shown in Figs. 14–16. 

 

Fig. 13. Corresponding Gantt chart for the RL-ABM solution for case study 3. 
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Fig. 14. Model output: resource profile for R1. 

 

 

Fig. 15. Model output: resource profile for R2. 

 

 

Fig. 16. Model output: resource profile for R3. 
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4.4. Discussion 

This section discusses the validation of the proposed RL-ABM method in each case study and 

insights into how construction practitioners can utilize results of the proposed model to optimize 

their scheduling problems. 

In case study 1, the ABM process included 4000 iterations of forward and backward passes from 

“NotReady to “Complete,” as shown in Fig. 4, to obtain the RL agent parameters. Accordingly, 

the RL agent checked whether enough labor resource was available for an activity in the "Ready" 

state. After the RL agent identified the sufficient labor resource required for the activity, the ABM 

simulation environment started the “InProgress” and then “Completed” states. As a result, the 

model shows a minor training loss with low computational average time. Specifically, Fig. 17 

shows the training loss for 4000 iterations. In effect, after reducing ε to less than 0.5, the policy 

converges to optimum value. The processing efficiency is described in terms of the time taken to 

execute the model. The model was run using a desktop computer, Intel(R) Core(TM) i7-6700 CPU 

@ 3.40GHz, and took less than 2 minutes to complete. Fig. 18 shows the learning loss and average 

time for each episode. 

 

Fig. 17. Training loss for 4000 iterations in case study 1. 
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Fig. 18. Average time for 4000 episodes in case study 1. 

In case study 2, similarly using 4000 iterations in the ABM simulation process with a more 

complex set of resources, the RL-ABM method also shows an efficient optimization outcome. 

Accordingly, there is low training loss in the ABM simulation after the RL agent identifies the 

resources to change from “NotReady to “Complete.” Fig. 19 shows the learning loss for each 

episode. Convergence of policy to optimum value is obtained after reducing ε to less than 0.5, as 

Fig. 17, Fig. 19, and Fig. 21. The processing efficiency is described in terms of time taken to 

execute the model. Fig. 20 gives the average time per episode, which shows a decreasing trend at 

the end of episode 4000. 

 

Fig. 19. Training loss for 4000 iterations in case study 2. 
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Fig. 20. Average time for 4000 episodes in case study 2. 

In case study 3, the model shows a similar minor training loss with low computational average 

time as the previous two case studies do under the same 4000 iterations in the ABM simulation 

environment. Fig. 21 shows the training loss for 4000 iterations. The processing efficiency is 

described in terms of the time taken to execute the model. Fig. 22 shows the learning loss and 

average time for each episode. 

 

Fig. 21. Training loss for 4000 iterations in case study 3. 
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Fig. 22. Average time for 4000 episodes in case study 3. 

The hybridization of RL-ABM and graph embedding methods proposed in this study elucidates 

advanced machine learning techniques that can be used in construction scheduling optimization. 

The case study results indicate that compared to the solution proposed using the resource-

constrained CPM scheduling, outcomes from the proposed RL-ABM method provide greater 

improvements in optimizing project durations. In case study 1, RL-ABM improved the total project 

duration by 15 percent. Similarly, results from case study 2 show an improvement of 15 percent 

in project duration. Moreover, the results from case study 3, which show a more complicated set 

of activities with a greater resource profile, demonstrate the capability of RL-ABM to address 

more complicated problems and produce comparable results with better efficiency and that RL-

ABM performed better compared with the results from other heuristic approaches in Zhang et al. 

[78]. The results from MITF, SAD, and MILFT produced 74 days, 71 days, and 67 days, 

respectively. Compared with the results from GA and PSO, RL-ABM had a similar result of 64 

days. However, the proposed RL-ABM method offers a significantly greater advantage, not only 

because of its computational efficiency, but also because it is able to provide several scheduling 

scenarios where the minimum possible duration can be reached. In this regard, RL-ABM offers 

multiple scenarios of scheduling to achieve the minimum duration, where planners can make 

activity sequencing decisions based on other additional criteria, such as resource leveling. 

The case study results also indicate that the proposed RL-ABM method provides a more 

comprehensive approach to planning, because it provides a dynamic solution to the optimization 

problem by effectively changing the AON network even as project situations change on the 

construction site. This feature makes the model capable of proposing flexible planning solutions 

in changing construction environments, such as adapting initial WBS and AON when project 
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conditions change. This paper also extends the application of RL-ABM for proposing construction 

planning solutions by incorporating the graph-embedding method to enable handling of more 

activities and activity network relationships for use in the RL optimization platform. 

Furthermore, the RL-ABM method proposed in this study has an accompanying user-friendly 

application that allows practitioners to utilize this model using easy-to-understand features 

embedded in a graphical user interface (GUI). The different sections of the application are shown 

in Fig. 23, Fig. 24, Fig. 25, and Fig. 26, which detail the simple steps a user has to perform to 

utilize RL-ABM. 

 

Fig. 23. Prompt to enter scheduling data (precedence relationships) from a file. 

 

Fig. 24. Prompt to add node for new activities. 
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Fig. 25. Prompt to log resource requirements. 

 

 

Fig. 26. Interface to execute the RL-ABM method and view iterations. 

As Fig. 23 illustrates, the user needs to first input the precedence relationships for each activity, 

which includes the duration of each activity in relation to the associated technological constraints. 

This is performed by reading a dataset created as an Excel or .csv file format. The user is also able 

to add nodes using the GUI feature, as shown in Fig. 24. Next, the user is prompted to input 

resource requirements corresponding to each activity and assign nodes, as shown in Fig. 25. 

Finally, as shown in Fig. 26, the 'Run' button enables the user to execute the model and get the 

results based on predefined RL-ABM parameters. 



34 | P a g e  

 

5. Conclusions and Future Work 

In construction planning, the optimal solution for sequencing activities is often selected from a set 

of finite solutions. However, the optimization problem is everchanging, because the environment, 

which includes the number of activities, type, and number of allocated resources, changes during 

execution of the project. Agents in RL algorithms learn better solutions even as the environment 

changes. A review of the literature emphasizes the need for an effective decision-making tool that 

can be easily used by stakeholders in accordance with their preferences for improving project 

performance with respect to constraints such as time, cost, and quality. 

This study developed a hybrid RL-ABM method to support decision-making in construction 

planning that includes three major steps: converting a construction schedule to a graph network, 

performing ABM, and implementing RL to perform schedule optimization. The proposed model 

was demonstrated using three case studies in construction scheduling problems obtained from the 

work of Lu and Li [77] and Zhang et al. [78]. As a result, using ABM was shown to better enable 

representation of the construction environment through the use of state charts. This is because 

complex relationships, which are the function of an activity's parameters, including an activity's 

lifespan from “Started” to “Finished,” as well as agent interactions, including activities 

competition to obtain resources could be effectively captured with the principle of ABM. 

This study has some limitations. First, the underlying uncertainties related to activity duration were 

not demonstrated in this manuscript despite the proposed model having such features, as more 

focus was given to presenting how the model works compared with other previous similar studies. 

The study is also limited to addressing single-objective optimization (minimize project duration) 

subject to single or multiple constraints. Optimization of multiple objectives using multiple RL-

agents was not performed in this study. In future work, the proposed RL-ABM method will be 

extended to represent a more comprehensive project by incorporating varying distributions of 

project duration, multiple sub-contractors, and varying descriptions of resources including 

equipment specification, labor profile, and experience during the simulation process. Moreover, 

the proposed model will also be extended to perform multi-objective optimizations with more 

constraints, such as time, cost, and quality, by incorporating multiple RL agents. Using multi-agent 

reinforcement learning approach, conflicting objectives such as increasing direct cost versus 

minimizing duration will be addressed by using mixed cooperative–competitive RL-agents in the 

RL platform. The RL-ABM GUI will also be improved to include an interface that enables 
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changing RL-ABM hyperparameters, which can allow the user to become more seamlessly 

involved in the training process. 
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