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Abstract

It is believed that dense water formation in coastal seas makes a significant
contribution to the creation of bottom water in the oceans. Therefore, in order to gain a
better understanding of bottom water movement in the world's oceans, it is beneficial to
study the dynamics of isolated cold-pools on sloping continental shelves. An analytical
model was derived in Swaters & Flierl (1991) and Swaters ( 1991) that described such a
situation. It modelled the low frequency dynamics of mesoscale gravity currents beneath a
homogeneous fluid and underlain by a gently sloping bottom that destabilized and then
formed isolated cold-pools due to baroclinic instability. The Swaters’ model possesses
solutions corresponding to pools of dense water which propagate along the shelf. As each
cold-pool is transported along the shelf, baroclinic processes generate a cyclonic eddy in
the ambient water directly above it. This eddy is depth invariant because of the
homogeneity of the slope-water. This differs from numerical simulations of three-
dimensional primitive equations in Gawarkiewicz et al. (1995) and Jiang et al. (1995) that
modeled the same phenomena, but found that the eddy was of a truncated cone shape.
Here we derive a new model similar to the Swaters’ model, where the ambient fluid is
three-dimensional, which then allows similar results to be obtained as those found
numerically. We will consider the linear stability of gravity currents and what is necessary
for destabilization. Then, after establishing a non-canonical Hamiltonian structure, we will
find criteria for linear and nonlinear stability. An exact eddy solution will be found that has
a zero-wave drag condition imposed. As well, a weakly radiating solution is obtained
where there are drag forces present, hence a Rossby wave-wake is radiated from the cold-

pool.
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Chapter 1

Introduction

Geophysical Fluid Dynamics (GFD) is the study of fluids where rotation or stratification,
or both, are essential factors in determining the evolution of the system. The two
mediums which are most studied are the atmosphere and oceans, either individually
or coupled together. When considering these fluids on large-scales, the rotation of the
earth becomes important and introduces the Coriolis force. Solar heating warms the
earths surface and creates the ubiquitous stratification of these fluids, and is the source
of most of the energy that is present within.

Within GFD, the two largest terms that appear in the momentum equations are
the Coriolis and pressure terms. When these two quantities are in balance, the state
is called geostrophy. It is known that large-scale motions are nearly geostrophic, but
not exactly. Moreover, it is the slight variations from geostrophy that lead to many
interesting phenomena such as weather. Hence to model the atmosphere and oceans
it is essential to have these slight variations present. One such model was developed
by Charney (1947) and is entitled Quasi-Geostrophy (QG). It is a theoretical model
that has had much success in synoptic meteorology and mesoscale oceanography in
explaining the onset of baroclinic instability (Charney, 1948, Eady, 1949 and Swaters,
1991). Because of its numerous achievements, QG theory forms a large basis of GFD.

"The motivation for the work to follow lies within experimental observations. LeBlond
et al. (1991) determined that during the summer months, when there is fresh water run-

off from the Fraser River due to melted snow, there is an influx into the Strait of Georgia



from the Juan de Fuca Strait of cold, well oxygenated water. When the tides are strong,
this water is well mixed with the stratified fluid already in the Strait. However, during
neap tides, this water enters without much disruption and remains relatively coherent.
This forms a current overlying the bottom topography and is slightly denser than the
ambient water around it. This density-driven flow is referred to as a gruvity current since
gravity acts on the system due to the density contrast with the ambient fluid, which
is what induces motion into the system. This current is described as being mesoscale
because rotational effects cannot be neglected even at leading order.

In the absence of the Coriolis force, gravity would act to pull the current down
the shelf. However, in the northern hemisphere, when the Coriolis force is in effect, it
deflects the dense water to the right of the down slope direction. It is for this reason
that the gravity current can move with the locally deeper water on its left. The upper
fluid reacts to the moving lower layer through baroclinic interactions. The velocity at
which the cold water travels and the effect it has on the upper fluid are the dynamical
properties to be studied in this thesis.

Gravity currents are of interest because they create heat fluxes in the world’s oceans
and hence contribute to global heat circulation. Since they may also contain pollution
emitted from near by regions, they are of interest for environmental reasons. As well,
if they are well oxygenated, they can help to support marine life in benthic waters.
Knowing the paths that these currents follow could then help in predicting where the
marine life will travel to, which would in turn be advantageous to the fishery industry.

These types of currents have also been observed along the Middle Atlantic Bight
(Houghton et al., 1982 and Ou & Houghton, 1982). The lower layer which when first
observed, appears to be an elongated water mass, i.e. sausage-like, travels along the
shelf. Later, it is seen that a small dome-like blob, which we call a cold-pool, breaks off
from the main structure. This separation, is the result of a destabilizing process and
is believed to be due to baroclinic instability. It is for this reason that it is desirable
to develop an analytical model which describes both mesoscale gravity currents and
cold-pools and focuses on baroclinic processes. The model derived by G.E. Swaters in
Swaters & Flierl (1991) and Swaters (1991), known as the Swaters’ model, is such a



model.

An alternative is a barotropic model, as was derived in Griffiths et al. (1982).
This reduced-gravity model studied a mesoscale gravity current beneath an infinitely
deep fluid that possessed a horizontal shear-flow, overlying a sloping bottom. When
the analytical results were compared to those obtained from experimental observations
of a buoyancy current, three significant discrepancies arose. The first being that the
unstable modes of the gravity current had infinitesimally small wavenumbers in contrast
to those from experimental observations which were finite. As well, the length scale of
the instability had no direct relation to that of the originating gravity current. Finally,
there was a second branch of instabilities which were dipole-like, which suggested that
perhaps baroclinic forces played a significant factor. Since the barotropic mode did
not appear by itself, this meant that maybe it was the baroclinic processes that were
essential and not the barotropic, as was originally thought. This reasoning was another
inspiration for the Swaters’ model.

The Swaters’ model is a stably stratified two-layer model as depicted in Figure 2.1,
except that both fluids are of constant density. To depict a gravity current, the lower
layer is chosen to be a coupled front, i.e. there are two incroppings along the bottom
topography. The fact that for this profile, the changes in the current height are on the
same order as the height itself, is what prevents the lower layer from being QG. The
relative height of the lower layer and bottom topography to the height of the upper
layer are small quantities. The length scale is the internal deformation radius of the
upper layer which is larger than that of the lower layer and hence is an ‘intermediate
length scale’ in the sense of Charney & Flierl (1981). This allows the upper lower to
he QG and lower layer to possess a Planetarily Geostrophic balance (Pedlosky, 1984).
Both the fluids are geostrophic to leading order, but not necessarily so to second order,
which is what allows for ageostrophic effects to occur. Any motion that occurs in the
upper layer arises through vortex tube stretching. This model is a baroclinic model
in that fast gravity modes are filtered out through the presence of a rigid-lid and the
subinertial velocity scaling of the lower layer.

Swaters & Flierl (1991) studied the dynamic and thermodynamic interactions of



coherent mesoscale cold-pools with the ambient fluid around it, over a sloping bottom.
An exact eddy solution was found to the governing equations, as well as a weakly
radiating solution containing a Rossby wave-wake. In both of these solutions, the cold-
pool generates an induced cyclone in the upper fluid which is depth invariant due to
the homogeneity of the upper fluid.

Swaters (1991) found conditions for linear instability of general gravity current pro-
files. It is believed that if this type of instability arises, the current will destabilize into
isolated cold-pools, as has been observed along the Middle Atlantic Bight. Two neces-
sary conditions for instability were found. These being the presence of a down-sloping
side in the current, and sufficiently strong interaction between the two layers. If instabil-
ity does arise, it will be prominent on the down-sloping side since this is where available
potential energy is most easily extracted. Therefore, this instability is asymmetrical
with respect to the current. This analysis also found the wavelength and growth rate
of the most unstable mode. This mode is of interest since it grows faster than all the
others. Hence, the length of the wave behavior observed experimentally, presumably,
correspond to the wavelength of the most unstable mode.

When linear instability arises, small perturbations grow. When this growth becomes
significantly large, the nonlinear terms become important. They can hinder growth and
cause a stabilizing effect which then brings the perturbations back into the linear regime
where growth then reoccurs. This is how small, but finite amplitude oscillations can
arise. Mooney & Swaters (1996) found an amplitude equation for perturbations of the
slightly linearly unstable modes through a weakly nonlinear analysis. This analysis also
found approximate soliton solutions, which is suggesting that coherent structures can
develop.

Swaters (1993b) showed that this model possessed a non-canonical Hamiltonian
structure. This is important since it adds more credibility to the model because the
model equations in their primitive form possess this structure. Through finding bounds
of particular functions with respect to certain norms, various sets of conditions can be
obtained for both linear and nonlinear stability for the case of a linearly sloping bottom.
Karsten & Swaters (1996) determined that the Hamiltonian structure carried through



for arbitrarily shaped bottom topography and hence more general stability criteria were
established.

Karsten ef al. (1995) applied the Swaters’ model directly to the Strait of Georgia.
This gave theoretical predictions of the wavelength of the most unstable mode. This
length was larger than the wave behavior observed experimentally, but was much closer
than previous theoretical predictions.

The Swaters’ model involved scaling the dimensional equations and using asymptotic
expansions in order to obtain the governing equations. Recently, numerical simulations
of three dimensional primitive equations have been performed to describe gravity cur-
rents and cold-pools over a sloping bottom (Gawarkiewicz et al., 1995 and Jiang et
al., 1996). Jiang et al. (1996) attributes the destabilizing processes to the baroclinic
mechanisms put forth in the Swaters’ model. These numerical simulations also deter-
mined that the propagating cold-pools generate an eddy in the overlying fluid directly
above them, but that the eddy is of a truncated cone shape. This is different than the
prediction of the Swaters’ model, in which the eddy is depth invariant.

In this thesis, a new model will be derived similar to the Swaters’ model, but with
the added complexity of the upper layer being continuously stratified. This model will
support the numerical predictions that the induced eddy above the cold-pool is tapered.
As well, within the context of this model, we will study what effect that stratification

has upon the instability characteristics of a mesoscale gravity current.



Figure 2.1: Model Geometry
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Chapter 2

Derivation of the Model

In GFD, much of the interesting dynamics observed in the atmosphere and oceans,
are due to the nonlinear terms present in the primitive momentum equations. These
advective terms are very complicated and are what we strive to better understand. They
pecessarily arise in both conservative and nonconservative models of geophysical flows.
We have chosen to neglect dissipative forces in our model since the underlying fluid
dynamics seems to be governed by nonlinear processes.

This thesis will study two distinct fluids overlying variable bottom topography and
beneath a rigid-lid at mid-latitudes in the northern hemisphere. The presence of a
rigid-lid coupled with the velocity scaling, filters out barotropic gravity modes (Kundu,
1990). The upper fluid is QG, with continuous and stable stratification and covers
the lower one which is a Planetary Geostrophic fluid (PG) in the form of a mesoscale
gravity current, or cold-pool, of homogeneous density and variable height. The lower
layer density is slightly larger than then greatest density that occurs in the upper fluid
which guarantees that the two fluids together are stably stratified.

In Section 2.1 to 2.3, using appropriate physical principles, we derive equations and
boundary conditions that govern both the upper and lower layers. In Section 2.4 we
deviate from the model mentioned above and consider a one and a half layer reduced
gravity model of a cold-pool over a sloping bottom and beneath a fluid that is assumed
to be homogeneous and infinitely deep thereby eliminating any interaction between the

two fluids. In this idealized model an along-shelf propagation speed will be determined



for the cold-pool, which is called the Nof speed (Nof, 1983). We cannot expect that if the
upper layer were changed to be a stratified fluid of finite depth the same velocity would
arise, but it is expected be of the same order, and hence the Nof speed is the scaling used
for the lower layer horizontal velocity field. In Section 2.5 the dimensional equations will
be simplified by introducing nondimensional quantities which make the problem more
manageable. Then in Section 2.6, asymptotic expansions will be implemented to yield
the nondimensional equations that will be studied in the chapters to follow. The final
section will show how two of the governing equations can be derived as a consequence

of Ertel’s theorem using the same scales as previously discussed.

2.1 The Lower Layer Equations

The fluid will be governed by shallow water theory, but rather than simply state the
equations, it is informative to derive them from the Euler and continuity equations. To
do so it must first be understood that for our regimes of interest, the aspect ratio is
much less than one, as is required for the shallow water equations to hold true.

Ultimately, we will study the formation and propagation of cold-pools on continental
shelves. We should then consider experimental data found on these pools to give an
idea as to what scales they possess. Nof (1985) stated that the length scales of these
pools range from 10 to 100 km, whereas their height varies from 20 to 200 m. These
two length scales differ by about three orders of magnitude. If we write the horizontal
and vertical length scales as L and D respectfully, it follows that for cold-pools

D
ba = I <1, (2.1)

where 64 is the aspect ratio.

Secondly, it must be assumed that the cold-pool can be idealized as homogeneous
and inviscid. It might be thought that these assumptions are too stringent to describe
any real fluid. Yet it has been found that this is not the case since much can be learned
about oceanic and atmospheric phenomena by assuming that shallow water theory is

applicable (Pedlosky, 1987).



Having gone through the formalities, we can proceed to develop the dimensional
shallow water equations. The derivation will follow closely that presented in Chapter
3 of Pedlosky (1987), but first, the environment for our model must be specified. The
orientation is such that the z, y and z axes point along the shelf with the deep water on
the left, across the shelf towards deeper water and vertically upwards, respectively. The
model is situated on an f-plane, and the Coriolis parameter f is equal to 2§ sin fy where
(2 is the angular velocity of the earth and g is the reference latitude in which the model
is located. Notations that will be used are that subscripts 1 and 2 denote the upper and
lower layers respectively. The alphabetical subscripts denote partial derivatives with
respect to the variable shown. Bold face will be used to denote a vector, whereas all
other quantities are scalars unless otherwise stated.

We begin by applying the conservation of momentum and mass equations. Since
the fluid is homogeneous and adiabatic, the internal thermodynamics is decoupled and
hence is not a relevant consideration. The lower layer momentum equations, or Euler
equations, contain the velocity vector for the lower layer ug(z,y, z,t) = (u, v, w), where
u,v and w are the velocities in the z, y and 2 directions respectively. The total pressure
and density for this fluid are denoted by p2(z,y,2,t) and p;. The equation of mass
conservation, or continuity equation, reduces to, by homogeneity, the statement that

the velocity field is non-divergent. Hence the four equations written in vector form are,
- 1 "
up, + (uz-Vi)uz + f (&3 xup) = —-p;vsm —~ gé3, (2.2)

V3-up =0, (2.3)

where V3 = (&, 8y,8,), g is the magnitude of gravity and & the unit vector pointing
in the z direction. For future reference, define ﬁ(a:,y, t) and hg(z,y) to be the height
of the lower layer and bottom topography with respect to some reference height. This
implies that h— hp is the total thickness of the lower layer fluid.

At this stage, a scaling argument needs to be implemented. This procedure deter-
mines which terms are relevant by considering relative magnitudes. The terms that

are drastically smaller than others in the same equation will then be discarded. This



requires that the aspect ratio is small for this fluid, which has already been justified.
The continuity equation (2.3), with the characteristic scales written directly beneath

each term, is
Uz +vy +w, =0, (2.4)
vuvw
L L D

where U and W are the scales for the horizontal and vertical velocities. W/D cannot be
greater than U/L, for then we would need to conclude that it is zero to leading order on
account of the fact that there are not any other terms to balance it. Hence the following

upper bound is obtained on the vertical velocity scale,
W =0 <-UL£) , (2.5)

where O denotes the order of or smaller than.
Before dealing with the Euler equation, we decompose the total pressure as a sum

of hydrostatic and reduced pressures,
P2(z,y,2,t) = —gp2z + B(z,y, 2, t). (2.6)

Rewriting the momentum equations in terms of p eliminates the gravity term so that

(2.2) and becomes, when written in scaler form

1.
up + Ul + vuy + wu, — fu= i (2.7)
2 2
v wy P
T T T D oL
1.
vy + uvz + vuy + wu; + fu= —Ep,,, (2.8)
2 2
v wu o P
T L L D poL
1
wy + uwy + vwy + ww, = —Eﬁz’ (2.9)

10
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T L L D ~ pD
where P and T are scalings for pressure and time. The pressure terms have been written
on the right-hand sides of each equation to signify the fact that it is a forcing term
whereas all of the terms on the left-hand side, are acceleration terms.
Assuming that pressure has a leading order contribution, requires it be balanced
with on of the acceleration terms. Exploiting this balance produces a relationship for

P in terms of the other quantities. Multiplying (2.5) by U/D implies
2
W _o (g—) . (2.10)

Therefore, the three advective terms in the horizontal momentum equations are O(U2/L).
This implies that the three different scales present on the left-hand side are U/T, U?/L
and fU, which are due to the temporal derivative, advective derivatives and Coriolis
term respectively. At this stage it is not known which of these three is largest, but it
is known that the pressure gradient must balance the sum. Therefore it is necessary to

equate P/(p2L) with the order of the largest of the three scalings mentioned above,

P U U?
5eo(8%n)

P=0(pU[L/T\U, fL],,..), (2.11)

baving multiplied the equation by ps L.
The left-hand side of the vertical momentum equation is the total derivative of the

vertical velocity. Using the fact that

w? wuU
o =90 (2.12)

by (2.5), the relative importance of the left to right-hand sides of (2.9) is

dw/dt p2 [W/T,WU/L|_..
Pz-ﬁT—0< F/D ) (2.13)

11



Substituting (2.11), (2.1) and (2.5) into (2.13) implies,

-~

mdu;/dt _ O(D[W/T, WU/L]mx)

U[L/T,U, fL] .

8 [1/T, U/ L],
o ([I/T, UL, flm) ' 214)

If f is larger than 1/T and U/L then the right-hand side is less than &%, hence
O (8%). Alternatively, if f is smaller than either of the two terms mentioned above, the
right-hand side still reduces to O (6). This shows that §, is larger than prdw/dt by
two orders of magnitude, with respect to §4. Therefore, we deduce that 5, = O (6%),
which if substituted into the z derivative of (2.6), yields

P2. = —gp2 +0 (83). (2.15)

The smallness of the aspect ratio means that 6% is extremely small which suggests
that the acceleration terms in the vertical momentum equation are not influential on the
dynamics, thus are ignored. This is equivalent to assuming the lower layer is hydrostatic,
which implicitly requires that the slopes associated with the bottom topography are
sufficiently small so that the upper bound in (2.5) is not violated.

There are three vertical boundary conditions that must be introduced, two kinematic
at the interface and bottom and the one dynamic condition at the interface. Integrating
(2.15) with respect to z from z to h, ignoring small terms, and applying the pressure
condition at the interface that the pressure at the interface is some function po(z,y, t),

yields

p2=gp2 (h —2) + po. (2.16)

Physically this states that at any particular height, the pressure differs from pg by an

amount equal to the weight of the unit column directly above it, and which is given by

gp2(h - 2).
Since the horizontal gradient of the total pressure does not depend on depth, the
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forcing on the system is depth invariant. This coupled with the assumption that the
system initially begins with no z variation, allows us to conclude that the variables in

the horizontal momentum equations, u and v do not develop any z dependency, thus
u, =0=uv,. (2.17)

Substituting (2.17) into equations (2.7) and (2.8) gives

1
U + Uy +vuy — f= —;;pg,, (2.18)

1
vt +uvr +vvy + fu= —Epgv. (2.19)

Integrating the continuity equation from the bottom hp to an arbitrary height z,

with respect to z, and applying (2.17) yields

'z

Z
w,dz = —/ Uy + vydz,
hg hp

w(z,y,2,t) = (hg — 2) (ux + vy) + w(z,y, kg, t). (2.20)

To rewrite w (z, y, hg,t) requires the implementation of the kinematic boundary condi-
tion at the bottom of the fluid. This requires that there cannot be any flow through the
topography. Mathematically, this is expressed by saying that the velocity vector and

the normal vector to the surface must be perpendicular,
(w,v,w(z,y,z=hpg,t)) - V(z - hg) =0, (2.21)

which simplifies to
w(z,y,z=hp,t) =uhp_ + vhpg,. (2.22)

Substituting this into (2.20)

w(z,y,2,t) = (hg - 2) (uz +vy) +uhp, + vhpg,, (2.23)
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illustrates how the vertical velocity is completely determined as a function of the hori-
zontal divergence, bottom topography and height level. The dependency on z is strictly
linear. However, if the fluid lacked any horizontal divergence, as is true in geostrophy,
this dependency would be eliminated and the vertical velocity would be constant. Since
our fluids are nearly geostrophic and the bottom topography is gently sloping, only
small vertical velocities occur.

The kinematic boundary condition at the interface of the lower layer dictates that the
vertical velocity of the fluid at the interface and the interface velocity must be equal since
fluid parcels that originate on the interface must remain there always. Mathematically,
this is written as

w (xv v, z= ’.7'1 t) = (at +uz- V) ’.l, (2.24)

where V = (9;,8,) and the velocity has been redefined to be us = (u,v). Evaluat-

ing (2.23) at z = h and substituting in (2.24) enables the continuity equation to be

transformed into
71:-{-11.(77., —hB,) +v (ﬁy —th) + (E—ha) (ug +vy) =0,

or
= hB)‘ +V- [u2 (h-ts)] =0, (2.25)

upon recalling that hp is time invariant. Introducing the height variable h = k — hp,

gives the final equation
he + 'V - [ugh] = 0. (2.26)

The shallow water equations (2.18), (2.19) and (2.26) rewritten in vector form, with

asterisks to denote that these are dimensional equations, are,
- - L L -~ . 1 -
uy. +(uz-V9uz + f & xuj = —;;sz, (2.27)
hi. +V* - [u3h®] =0, (2.28)
where p, is defined in terms of h through (2.16) and p, has no asterisks but is a di-
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mensional quantity. Note that in the derivation of these equations, surface tension has
been ignored since this is a small scale phenomena and we are concerned strictly with
large-scale motion.

We began with four equations and four variables and reduced the system down
to three equations and three variables. The quantity that no longer appears is the
vertical velocity since (2.23) expresses this explicitly as a function of the other variables.
Therefore, given that a solution could be obtained for the above three equations, the
vertical velocity is recovered by substituting the solution into (2.23). The shallow water
model is two dimensional since the variables that appear in the governing equations are

all depth invariant. It should be noted that the vertical velocity does have z dependency.

2.2 The Continuously Stratified Equations

In order to derive the governing equations for the upper layer the conservation of mo-
mentum and mass are applied as before. However, another equation is necessary to
close the system, for otherwise we would have four equations with five unknowns, which
is an insufficient number of equations.

This fifth equation is the statement that the upper layer is also incompressible,

E = 0. (2.29)

The other four equations are the Euler and continuity equations. As with the lower
layer, this fluid will be inviscid which removes any frictional forcing from the momentum

equations, so that they become

du - ~

—dtl + of (& x u;) = —V3p; — gpés, (2.30)
ldp
;;i? +V3-u; =0. (2.31)

where d/dt = (8; + u; - V3) and u; is the three dimensional velocity of layer one.
It has already been said that the fluid is incompressible, but we will strengthen this
statement by modelling it as a Boussinesq fluid. This assumption is justified by the fact
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that we are dealing with very small velocities (say 20 cm/s), in relation to the speed
of sound (about 1470 m/s), which is what is necessary for an compressible fluid to be
Boussinesq (Kundu, 1990). This implies that in the momentum equations, all density
terms can be approximated by some constant reference density, which we chose to be
the density of the lower layer, except in the buoyancy term. This takes advantage of
the fact that the density variation in the upper layer is slight, as is that with respect to
the lower layer.

In the conservation of mass equation, the Boussinesq approximation implies that
the change in density is small in relation to the density itself, therefore we assume the
first term in (2.31) is much smaller than the divergence term. This second condition
need not even be assumed, since by (2.29), we know that the total derivative of density
is not only small but is precisely zero.

Therefore our governing equations are, rewritten with asterisks to denote the fact

that we currently have dimensional quantities,

1

(8 +uj - V" + w8, uf + f & x uj = ~—Vp], (2.32)
. 1 . :

(O +uj - V' + w8 w' = ~—8eep} gp’; , (2.33)

V*.uj +w;. =0, (2.34)

(B +ul - V* +w'8,.) p" = 0. (2.35)

A notational change is that uj = (u*®,v*) which separates the horizontal components
from the vertical. This is done because the motion in these two directions are qualita-
tively different. The third equation above, which also applied to the lower layer, is the

statement of mass conservation, and in effect, filters out sound waves.

2.3 Boundary Conditions

In addition to deriving the governing equations it is necessary to determine the ap-

propriate kinematic and dynamic boundary conditions. These conditions for the lower
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layer have already been exploited and hence no longer need be considered. However
those for the upper layer have not yet been stated. Before we proceed to establish these
conditions it is necessary to choose at what height levels the top and bottom of the
upper layer are situated. This is done by having the rigid-lid above the upper layer,
coincident with z* = 0, and the bottom situated at 2* = —H + h* + hy where H is
the reference height for the upper layer and the bottom topography is measured with
respect to 2* = —H. Note that asterisks have been used to denote the dimensional
quantities which is the convention that will be maintained throughout the remainder of
this thesis unless specified otherwise.

The kinematic condition at the top requires that the fluid does not flow through the
rigid-lid and hence that the vertical velocity is zero at that particular height,

w*'=0 at z*=0. (2.36)

The bottom of the upper layer is situated at 2* = —H +h+hg. The kinematic boundary

condition at the interface is then
w* =8 +u]-V)h"+hp) at z*=-H+h"+ ks, (2.37)

having eliminated H because it is constant.

Recall from Section 2.1 that for the lower layer to be hydrostatic, which is essential
for the shallow water equations to be applicable, we must necessarily have small bottom
topography. Moreover, it is assumed that the height of the lower layer is small with
respect to that of the upper layer in order that QG theory can be applied.

The smallness in the variations of the upper layer from H justifies Taylor expanding
(2.37) about z* = —H. Since the right-hand side has no depth variation we need only
expand the left-hand side, where (2.37) then becomes

ow* (Z = _H) (h.

3 +hg)+ .= (8 +ul-V)(h"+hy). (2.38)

w'(z*=—-H)+

The three dots denote terms that are all of higher order. If we select the order of the
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second term by picking representative values for each variable present within it, the

approximation to the above reduces to

w i
H' H

w* = (8 +u} - V*)(h* + h}) + O (w‘ [ ]) at z*=—H. (2.39)

In the absence of motion, there is a background density field with varies with depth
and is denoted by po(2*). This density profile is assumed to be in hydrostatic balance
with the background pressure field. Note that pg is a dimensional quantity even though
no asterisk is written.

This density field is the source by which the fluid possesses stratification. Any
variations in density from this background state are assumed to be small, and are
due to the dynamics of the fluid. The total pressure for the upper layer pj, can be
decomposed into the hydrostatic pressure due to the background state, and a reduced

pressure, caused by the presence of motion,
pi=g [ @+ e @02 0. (2.40)
e

As previously stated, the lower layer is in hydrostatic balance, which allows us to

rewrite the total pressure in the lower layer pj (see (2.6)), as
Pi=0 [ m@d—goa(e+ H) 477 @y, (241)

where p* is the reduced pressure of the lower layer.
The dynamic boundary condition requires that the total pressures of the upper and
lower layers be equal at their interface. This forces the following relation between the

reduced pressures * and p* upon using (2.40) and (2.41),
.<;v/0 po (§)dé+ " (z*,y", —H + h* + hj,t°)
—H+h*+h}

=g [ 0@~ apa (4 + 1) +7 (&7, (242)

To simplify this equation, the two terms on the left-hand side need to be Taylor
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expanded about 2* = —H. The expansion for ¢* is,

. . 3p*
3 Iz‘:—H+h‘+h‘B =¥ Iz':—H + 92*

(h* +hg) + ...
H

=g +0 (v [ 2]) (2.43)

upon using the scales that appear in the second term to estimate its magnitude.
Expanding the integral in (2.42) in a similar manner, yields

g[H+h'+h3m(§)d§ = gfapo(f)df—gﬂo(*f{)(h"*”hb)

_990 () (ht 4 hy) 4 .

2dz*
= g/lﬂo(&)df—ypo(—H)(h‘ + hp)
sofe [ 4)
having used the fact that
o7 (-H) (v +hp) =0 (v [ 3. 5E]). (2.45)

The justification of this is reserved until after the scalings are presented. Substituting
(2.43) and (2.44) into (2.42) and cancelling the integral that appears on both sides of
the equality produces,

- = L L ] L d * L h. h.
@*|ze=pr — gp0 (—H) (h* + hg) = —gpa (h* + hp) +p* + O (sa [E’ H?D . (2.46)
The reduced gravity is defined to be,

r_ (p2—po(—=H))
d=g - >0, (2.47)

which is a relatively small quantity compared to g since the density difference of the

two layers is assumed to be slight. This definition allows us to rewrite (2.46) in the
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following form
P’=¢"+gpa(h* +hE)+0 (go' [%—, %-]) at 2" =-H. (2.48)

The dynamic boundary condition above, relates the dynamic pressure in the lower
layer, p*, to that of the upper layer ¢* evaluated at z* = —H, the density difference
between the bottom of the upper layer and the lower layer, gravity, the height of the
lower layer and bottom topography, within a certain order of magnitude. Therefore, it
is this equation that determines the coupling between the two fluids. The terms that
explicitly appear, will be shown to be leading order contributions in the nondimensional
equations. This is different from what occurs for buoyancy-driven surface currents where
the coupling is in the next order (Flierl, 1984, Swaters & Flierl, 1991).

This section has dealt completely with kinematic and dynamic boundary conditions,
which are vertical conditions. There has been no mention as to what horizontal condi-
tions are to be applied; this is because two different scenarios will be considered. The
first is where the fluid lies in a periodic channel which is used for the study of mesoscale
gravity currents. The other, is where there are no boundary walls are present, which
assumes an infinite horizontal domain, which is applied to cold-pools. The reason for
this change is that in the study of cold-pools, far field conditions are necessary, which
are difficult to apply when channel walls are present.

2.4 The Nof speed

This section will consider a simplified model than that derived previously. We consider
the situation where the lower layer has formed a cold-pool of density p + Ap overlying
a sloping bottom of slope S and underlying an infinitely deep homogeneous upper layer
of density p, which is lighter than the lower layer. The upper layer is assumed to be
infinitely deep since the baroclinic interactions felt within it are proportional to the
ratio between the height of the lower layer to that of the upper layer (Ingersol, 1969).
If the limit is taken as the upper layer height goes to infinity it is readily seen that the

interaction ratio goes to zero. This situation is called a one and a half layer model since

20



the only effect of the upper layer is to reduce gravity. Note that in this section, since
every term is dimensional, for notational convenience, the asterisks will be dropped.
Following Nof (1985), solutions will be found to describe isolated cold-pools moving
along at possibly time dependent velocities while maintaining their shape.

From (2.27) and (2.28), the governing equations are,

1
U2y, + (u2s - V)ugs + f €3 X ugy = —;Vpg, (2.49)

he + V - [ug,h] =0, (2.50)

where subscript s denotes the horizontal velocity field in the reference frame that is
stationary with respect to the upper fluid. We denote the time dependent cold-pool
velocities by Cz(t) and C,(t) directed in the z and y directions respectively.

The following transformation will change our coordinate system to the center of the

moving eddy, t
T=2z4— ) C; (1) dr, (2.51)
0

ts
y=v- | Cy (1) dr. (2.52)
Differentiating these equations with respect to time, yields the following velocity trans-

formation,
Up = ugs — C; (ta) ’ (2.53)

vy = v2g = Gy (ts) - (2.54)

The height of the cold-pool, pressure within the cold-pool and time all remain
invariant. To transform our equations from the old to the new coordinate system requires

that we rewrite the derivatives as follows,

a oz Sy at
ét—, = -a?;az + gaay + 37;3;

= “Cza:: - Cyay + at, (2'55)
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similarly
a 17}

o o
Substituting (2.53) to (2.56) into the z direction momentum equation of (2.49), gives

=3,. (2.56)

the following in terms of the new variables,
(=C28; — Cy8y + 8,) [up + Cy] + [up + Cy] [ug + C:l,

+r+ Gl [uz +Caly — f [n + Gyl + %pz, =0. (2.57)

Exploiting the fact that velocity of the cold-pool with respect to the slope-water is

assumed to be spatially invariant simplifies the above expression to

aC;
at

u2‘ + + (—Czaz i Cyay) us + [u2 + Cx] u2¢ + [v2 + Cy] UQV

_f [‘02 + Cy] + ipzz =0. (2.58)

Now cancelling terms from the round bracket with similar terms from the advective
derivatives and doing a completely analogous procedure for the other two shallow water

equations, translates the old equations into the following new system,

ocC, 1 =
ug, + —ét—’i +uguy, +voup, — f(v2+Cy) = — 5P (2.59)
aC, 1
vg, + —éTy + ugvy, +vovy, + flug +C;) = ‘;P?z, (2.60)
he + (th)z + (h‘vg)u =0. (2.61)

'The cold-pool being hydrostatic together with the fact that, without loss of gener-
ality, the pressure at the interface between the two fluids in this reduced gravity model,

can be set to zero, allows us to write the pressure as

p2 =gAp(h(z,y) — Sy —z). (2.62)
Rewriting the momentum equations (2.59) and (2.60) in terms of the reduced pres-
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sure and using the fact that since the eddy’s shape does not change, us and v» are time

independent, we obtain

acC.

—# + ugua, +vouy, — f (v2 + Cy) = —g'ha, (2.63)
aC,
-bt—” + ugve, +vovy, + f (uz +C; ~ 'Sj—,g’-) = —g'hy, (2.64)

where it has been used that the reduce gravity for this particular system is g = glp/p.

Observe that uz, v2 and h are spatially dependent and C, and Cy are temporally
dependent. This allows each of the two equations above to be separated into time and
space equations. The temporal equations are

ac.
atz - ny = 07 (2'65)

ac, ,

—; +fC: =57, (2.66)

which is a system of coupled first order ordinary differential equations that can be solved
given particular initial conditions.

The steady state solution obtained in Nof (1983), is that which stems from consider-
ing the initial conditions C; (0) = S¢’/f and Cy, (0) = 0. The solution from Nof (1985),
arises from considering the eddy beginning at rest, C; (0) = 0 = C,, (0) . This produced
a cycloid solution which oscillates up and down the slope as it moves in the negative
z direction at varying speeds. Nof (1985) considered the energetics and stability in an
attempt to find which was more physically relevant but concluded that both had equal
merit.

There is a problem with Nof’s oscillatory solution since it is an inertial oscillation.

If we introduce a scaling for the frequency T = 1/w, (2.65) and (2.66) become,

aC;

w5~ — fCy =0, (2.67)
w-a—gl +fC. =Sy (2.68)
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Recall that mesoscale cold-pools are within a subinertial regime, which requires that
the Coriolis frequency is much larger than the frequency of oscillation, w < f. Ergo, to
leading order, the time derivative terms are not present, which produces essentially the

same solutions found in Nof (1983),

C, =0, (2.69)
Co = -Sfi (2.70)

where the cold-pool travels strictly along the shelf at the Nof speed.

It is remarkable to note that this velocity depends only on the slope, Coriolis term
and reduced gravity and is independent of intensity, depth and shape. Nof (1983)
also showed that this is the same result that is true for rigid bodies within the same
environment. It is true that this situation is very much an idealization, however this
gives an indiction as to what the order of magnitude of their speeds are. Hence, in the
scalings to follow in the next section, the velocity of the lower layer will be scaled with
the Nof speed.

2.5 Nondimensionalization

The governing equations and boundary conditions obtained for our model consist of
equations (2.27), (2.28), (2.32) to (2.35), (2.36), (2.39) and (2.48). These equations as
they stand are presumably intractable and hence need to be simplified in order that
we can analyzed. One classical approach that has been used with much success is scale
analysis (Pedlosky, 1987). For each variable that appears in the equations, we assume
it is possible to pick a representative scale such that if we divide the variable by that
scale, we will be left with an order one quantity. We then rewrite all the equations in
terms of the scaled variables and divide through by the largest coefficient that appears
in each equation which will eliminate the dimensions and introduce small parameters
such as the Rossby number. The appearance of small parameters then allows asymptotic

expansions to be used in order to approximate our system with one that is simpler.
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The actual scales that one picks in nondimensionalizing a model are quite important.
It was shown in Section 2.4 with the one and a half layer model that using different time
scales gave qualitatively different motions. This is why it is extremely important to know
the context in which our model is situated, for otherwise irrelevant conclusions could
be made. Since this model is a modification of that found in Swaters & Flierl (1991),
the same scales will be used with minor modifications to account for the stratification
in the upper layer.
The horizontal length scale which is representative of both layers is denoted with
L, whereas the vertical length scale, which is only representative of the upper layer is
scaled by H,
(z*,¥°)=L(z,y) and z°=H-z. (2.71)

The height scale for the lower layer, which is much smaller than H, is represented by

ha,
h® = hoh, (2.72)

and its ratio to the vertical length scale of the model is defined to be

(2.73)

O
]
&

As is typical with large-scale motions, it is assumed that H/L < 1. This added to the
fact that the parameter § is small, allows us to conclude that the aspect ratio for the
lower layer is small, which correlates with the observations stated in Section 2.1.

The horizontal length scale is chosen to be the internal radius of deformation of the

upper layer, since this is necessary for the upper layer to be QG

L=*7= = Bu=gpg=l (2.74)

The second equation above is the definition of the Burger number, which measures the
relative importance of stratification versus rotation.

This length scale can be seen as the internal gravity wave speed divided by the in-
ertial frequency. Traditionally, this speed is taken to be the product of the dimensional
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buoyancy frequency with the height scale. Here, we have chosen to replace the dimen-
sional buoyancy frequency by its dimension, that being \/m , which when multiplied
by H, gives the speed that we have used.

This length scale is much larger then the internal radius of deformation of the lower
layer, yet drastically smaller than the circumference of the earth, and hence entitled
an ’intermediate length scale’ by Charney & Flierl (1981). It is most useful when
the essential nonlinearity lies in the continuity equation rather than the momentum
equatjons. This is true since the leading order effect of the momentum equations is
geostrophy, a linear relation, whereas the continuity equation of the lower layer (2.28),
has a divergence of mass flux present to leading order which is a nonlinear term.

If the Burger number is very small then rotation dominates which yields a two-
dimensional system. If the Burger number is very large, that implies once again, that
vertical motion is impeded but this time due to strong stratification. Both extremes yield
essentially two-dimensional situations which cannot describe certain phenomena due to
the lack of physical richness that is only present in a three dimensional system. The
only way to capture this richness is to find a balance where rotation and stratification
are both important. This occurs when By = 1, or the length scale is chosen to be the
internal radius of deformation (Cushman-Roisin, 1994).

The representative slope parameter s* for the bottom topography is scaled by the
aspect ratio. This ensures that the topographic extent is small so that the shallow water

equations are still applicable

L 3

_sL_sd fL s¢g 1 (2.75)

=— Oor sS=

L H  fgH [ JeH

having used (2.74). This form is insightful for it shows that the nondimensional slope
parameter 3, is a ratio of the Nof speed to the speed of long internal baroclinic gravity
waves. Choosing this parameter to be small, which will be justified later, is equivalent
to saying that we will consider only slow, subinertial motions in the model, that are
generated by vorticity wave processes (Swaters & Flierl, 1991). This filters out the

surface and internal gravity waves inherent with a continuously stratified fluid.
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The bottom topography is chosen to be
hy = 8*Lhg = sHhg, (2.76)

since s* multiplied by the length scale L is the maximum height the bottom topography
can achieve.

For the upper layer to be governed by QG dynamics, it is necessary that the ampli-
tude of the isopycnal deflections are small in comparison to the actual height of the fluid,
which requires that both 2* and hj be small quantities compared to H. By considering
(2.72) and (2.76), we find that the relations of these two quantities with the vertical
height are

h*

= =6h and ?I‘i = shp, 2.77)
since h and hp are order one quantities by assumption. This then implies that § and
s need both be small for QG theory to hold. After the nondimensional equations
are derived, experimental data will be considered which shows that in some physical
situations, these are indeed small quantities.

The horizontal velocity field in the lower layer will be scaled with the Nof speed

u; = g’;‘ u; = g’ffzs uz = fLsus, (2.78)
where (2.75) and (2.73) have been used. This method of simplifying the scaling param-
eters will be used frequently and the reader will not be continuously reminded of this
due to the monotony that would arise from doing so. The Nof speed is chosen because,
in the absence of any baroclinic interactions between the two layers, Nof predicted that
this is the speed at which an isolated cold-pool would propagate. The reduced pressure

field in the lower layer is scaled so that geostrophic balance can be maintained, that is,

p* = (fLpa) %f—'p= (o2d Hs) p. (2.79)

We assume that the motions which arise in the upper layer are produced through

interactions with the lower layer. For this reason, an advective time scaling will be

27



implemented using the velocity of the lower layer,

. (Lf\, (L), 1
t _(g,s_)t_ (g,Hs)t—:f:t. (2.80)

The velocity scale for the upper layer is determined such that the baroclinic effects

generated by vortex tube stretching are as important as relative vorticity. The appro-
priate relation to accomplish this will be derived in Section 2.6, but for now it is simply

stated to be

(V* x ul) =0 (f f’;) , (2.81)

where the left and right-hand sides are the relative vorticity and baroclinic stretch-
ing scales, respectively. Therefore, the horizontal velocity scaling for layer one can be

written, using (2.73), as
llI = &h—oul = fL5ll1. (282)

To determine the scaling for the vertical velocity, the kinematic condition at z* =

—H is considered. It requires that
w* = O0((8 +uj - V)(h* +hpg)). (2.83)

For there to be strong coupling, the vertical velocity must be of the same order as the

time rate of change of the lower layer w* = O (h{.), which reduces the above to
w* = fshow = fséHw, (2.84)

using (2.73).
Next we chose the dynamic pressure field so that to leading order it can be in

geostrophic balance with the velocity field in that layer,

P = g/:po(f)d€+p26(Lf)2<p(x,y,z,t),

= /° 00 (€) dE + pabg' Hop (2,3, 2, ). (2.85)
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Also, the perturbation density field in the upper layer is chosen in order that it can
be in hydrostatic balance with the dynamic pressure field,

p*=po(z") + (pgTé'g') p- (2.86)

Given that the scalings have all been chosen, we proceed to obtain the nondimen-
sional equations. Substituting the necessary scalings into (2.27), the momentumn equa-
tion, in vector form governing the lower layer, becomes,

gHs
L

[f83¢+f—zl—lv'u2] (fLs)uy + f2Ls &3 x ug = —

Vpo. (2.87)

Dividing this equation by f?Ls and recognizing that Vp = Vp, because of (2.41), gives
rise to
s[6: +V -ugjug +8& x up = —Vp, (2.88)
where (2.74) was used to simplify the right-hand side. This demonstrates that to leading
order geostrophic balance holds, and the total derivative term, since it is preceded by
the small parameter s, is not influential in the leading order dynamics.
The nondimensional continuity equation for the lower layer, after substituting in the
scales becomes
fshohe + fshoV - [ugh] =0, (2.89)

and dividing by fshq,
he + V - [ugh] =0, (2.90)

remains virtually unchanged since there are no parameters present. This reflects the

fact that variations of h are on the same order as h itself and hence the reason why this

fluid cannot be QG.
The upper layer horizontal momentum equations (2.32), after having substituted

(2.85) and the appropriate scales, become

(fs8: + féuy - V + fsbwd,) (fLE) u; + f 2LE&3 x uy,
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= —EIEV [g/:po(ﬁ)d£+p269’H<p] : (2.91)

where the first term in the square bracket vanishes due to the horizontal gradient acting
upon it and it being only a function of z*. Then dividing by f2Lé, the equation simplifies
to

6
S (at + ;ul -V + 61.032) u) +é3 Xu = —V‘P) (292)

after using (2.74).
Scaling the vertical momentum equation (2.33) yields

(fsBy + féuy - V + fséwd,) (fs6H) w

__ 17 p2hog ]__y_[ pz¢59’} .93
m[gpo+ AR p2m+—gp, (2.93)

having applied the z* derivatives. Cancelling the two like terms on the right-hand side,
using (2.73) and dividing by ¢’§ produces

2
_—_‘(fsg)/ H (3t + g“l -V + éwaz) w= —@; — p. (2.94)

Bringing everything to one side and substituting in (2.74)

2 5
(%) (3: + ;ul -V + 6w62) w4+, +p=0, (2.95)

shows that the total derivative of the vertical velocity is negligible because the aspect
ratio is no larger than one and s is much less than one. This is a result similar to that
which was found in deriving the shallow water equations, which states that the scaled
dynamic pressure and perturbation density are in hydrostatic balance.

The continuity equation for the upper layer (2.34) upon scaling becomes

foV -wuy + fséw, = 0. (2.96)
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Multiplying by the reciprocal of f§ establishes
V. u; +sw, =0, (2.97)

this being the nondimensional version of the conservation of mass equation. It states
that to leading order the horizontal velocity field is non-divergent, which we already
know from geostrophy. However, the next order horizontal divergence can be non-zero
given that it is balanced with a vertical velocity gradient which gives rise to vortex tube
stretching or contraction. It is for this reason that the model is only nearly geostrophic.
The fact that to leading order the continuity and geostrophic equations are not inde-
pendent, is the source of what is known as geostrophic degeneracy and is what requires
us to obtain a vorticity equation by considering the next order problem.

The last equation to be considered is the incompressibility equation (2.35) which,
after having being scaled, takes the form

(F30s + fouy -V + fs6wd,) [po + (Pz;fi’) p] ~0. (2.98)

Using the fact that the background density field is a function of z only produces, upon

division by fs,

6 p28g’\ dpo
(3c + Sur Vv + éwaz) (T) p=—bw o (2.99)

Dividing by p264g’/g and separating terms gives

é
(a, + S -v) p+6wdyp= TGP0 _ _ (2.100)
Also, we have recalled the definition of ¢’ from (2.47), and multiplied the right-hand
side by one, cleverly disguised as H/H.
Using the following definjtion for the nondimensional Brunt-Viissild frequency, or

buoyancy frequency,
H dpo

=P d -

N2(2) = -
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(2.100) then takes the form,
(a, + gul : v) p+6wd,p= N2(z) w. (2.102)
Recalling the kinematic condition (2.36), and substituting the scales produces,
(fé6sH)w=0 at Hz=0. (2.103)
Dividing each equation above by the constants that precede each variable gives,
w=0 at z=0. (2.104)
The other kinematic condition (2.39) becomes after substituting in the proper scales,
(fs6H)w = (fs8, + féuy - VY(6Hh + sHhpg)

+O (fs6H [6,s]) at Hz=—H, (2.103)

where (2.76) has been used. Dividing this equation by fséH and the boundary term
by H yields
w= (8:-{-%111 -V)(h+-§-h3) +0(s,s) at z=-1, (2.106)

where expanding the differential operator and noting that hg is time invariant produces
é
w=hs+u -V(;h+h3)+0(6,s) at z=-—1. (2.107)
Scaling the dynamic condition (2.48) gives
(p2d Hs)p = (p2g'6H) ¢ + ¢ p2 (6Hh + sHhpg)

+0 (p2g'6H [6,5]) at Hz= —H, (2.108)
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which upon dividing the equation by pag’ Hs and the boundary term by H, we get
)
p=<(p+h)+hp+0(5s) at z=-1, (2.109)

which completes the nondimensionalization of the model equations. As has been previ-
ously stated, for QG theory to govern the upper layer it is necessary that § and s be
small quantities. The question as to whether this has physical significance needs to be
directed, for if it does not we cannot expect our model to have applicability.

In Houghton et al. (1982), experimental observations for cold-pools overlying gently
sloping continental shelves are described where the physical scales are s* =~ 1.2 m/km,
L = 15 km, H = 200—300 m and kg = 30—40 m. In addition, this suggests an advective
time scale, as in Swaters (1991), of ' = fL/(¢'s*) = 7 days. Substituting these numbers
into (2.75) and (2.73) yield the physical values of s = 4 x 1072 and § =~ 2 x 10~2 which

are relatively small compared to one, and therefore
s<€1 and 6K 1. (2.110)

In an attempt to simplify the eight equations and three boundary conditions, the
presence of small parameters suggests that asymptotic expansions should be considered.
However doing expansions about two variables is rather cumbersome and hence it is
desirable to first find a relationship between these two small quantities. By considering
the experimental values for s and §, we observe that they only differ by a factor of two.
This means that they have the same order of magnitude which allows us to express one
as an order one scalar multiple of the other. This is done through use of the parameter

b
d=upus where p=0(1). (2.111)

To justify (2.45), we substitute the scaling for the reduced pressure, (2.77) and
(2.111) into the right-hand side to get

O(p2g' Hé [, 8]) = O(pag' HS?). (2.112)
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The left-hand side of (2.45) is rewritten using (2.101), (2.47) and the assumption that
N2 = O(1), to yield precisely what is on the right-hand side of the above equation.
Therefore, (2.45) is verified.

Substituting (2.111) into the nondimensional equations derived in this section (2.92),
(2.95), (2.97), (2-102), (2.88), (2.90), (2.104), (2.107) and (2.109) gives

8(3 + puy - V + pswéd;) u; + & x u; = -V, (2.113)
sH\?

(T) (8 + puy -V + pswé)w+ p, +p =0, (2.114)

V-u; +sw, =0, (2.115)

(@ + puy - V) p + pswp: = N? (2) w, (2.116)

$(6+V -uz)ug +é&; xuy; = ~Vp, (2.117)

he + V - (uzh) = 0, (2.118)

and the vertical boundary conditions

w=0 at z=0, (2.119)
w=hy+u;-V(uh+ hg)+O0(s) at z=-1, (2.120)
p=u(p+h)+hg+0(s) at z=-l. (2.121)

Equation (2.81) stated that the vortex tube stretching term was proportional to
fho/H which modulo f, is §. This stretching is an essential component of baroclinicity
and will act to destabilize the lower layer flow, whereas it has been shown (Pedlosky,
1987), that the addition of a sloping bottom into a model can act as a stabilizing effect.
This gives a physical interpretation for u, hence forth called the interaction parameter
(Swaters, 1991), as being the ratio between the destabilizing effect of baroclinicity and
the stabilizing effect of topography. This intuitively tells us that for small values of
this parameter we should not expect any baroclinic instability, but for large values we
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should certainly expect instability. This idea will be expanded upon in Chapter 4.

2.6 Derivation of the governing equations

In previous sections, the big ‘O’ notation has been used to denote ‘the order of or smaller
than’ in the context of scalings. It can also be used to denote two functions having the
same order of magnitude. As well, a small ‘0’ is used to denote that one function has a
smaller order of magnitude than another. More explicitly, considering the limit of the
quotient of two functions f (s) and g(s) as s approaches zero,

im 1.8
lim (2.122)

we see that there are three possible results. The first is that this limit is equal to zero,
which signifies that g is of a larger magnitude than f, near zero; we denote this by
f(s) =o0(g(s)) as s — 0. Conversely, if the limit yields an infinite magnitude, be it
positive or negative, it is clear that the magnitude of f is larger than that of g, therefore
g(s) = o(f (s)) as s — 0. The third possibility is that a finite number is achieved, which
suggests that the magnitudes of f and g are similar, which is written as f (s) = O (g (s))
or g(s) = O(f(s)) as s — 0. This does not imply that the functions are equal but it
yields an equivalence in an asymptotic sense.

Given an analytic function that depends on a small parameter s, it is possible to
write it as a sum of terms each of which has a smaller order of magnitude than all of
the terms preceding it. For such a function f (z;s), the expansion about s = 0 can be
written as

f(2;8) = fo(z) + 3f1 (2) + 82 (2) + ... (2.123)

which is an exact equation and the following relationship holds,

. $"fa (-'L') _ .
}1—1}(1)8—"‘)’,"_(12)_0 if n<m. (2.124)

When finding solutions to our nondimensional equations it is convenient to assume

the form as in (2.123), since we hope that solutions to our problems will be analytic.
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Hence for each variable, we will assume it can be expressed in this manner. Substi-
tuting these expressions into the nondimensional equations, leads to equations that are
polynomials in s of infinite order where the coefficients depend on space and time. It
is then necessary to equate the coefficients of each s™ for all n, and solve the system
of equations that arise. In theory this method is valid. However, finding the exact
expansion for all of our variables would be impossible or cumbersome to say the least.
Hence we use the fact that s is a small parameter and instead of looking for an exact
solution we search for an approximate solution.

If s = 0 the first order solution is an exact one, whereas if s is non-zero but small, this
solution is accurate within order s. The first order problem by itself is then seen to be
a good approximate solution which is what will be sought after. For more information
on asymptotic expansions the reader is referred to Zauderer (1989).

This is sufficient motivation to assume solutions of the following form,
(uh w,uz,¥, p, h) = (uh w,us, ¢, p, h)(O) + 3(111, w, u2, ¢, p, h)(l) + 0(3)1 (2'125)

where we have not used an equal sign but instead ~~, to denote asymptotically equal to.
The zero superscript denotes the first term in the expansion whereas the one denotes

the second, that being a small correction term.

Substituting (2.125) into (2.113) through to (2.121) yields the following O (1) prob-

lem
& x ul® =~V (2.126)
PO = -0, (2.127)
v -ul® =0, (2.128)
(8 +pul? - 9) p@ = N2 O, (2.129)
& x ul) = —vp®, (2.130)
Y+ - [u?hO)] <o, (2.131)
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and the vertical boundary conditions

w® =0 at z=0, (2.132)
w(o) - hgo) + ugo) . V(#h(o) + hB) at z=-1, (2133)
p(o) =p (‘P(o) + h(o)) + hB at z=-—-1. (2.134)

The lower layer equations shall be dealt with first since they are more straightfor-
ward. Acting with the vector operation (&;x) on (2.130), gives

& x (& x uf”) = ~& x Vp©,
ul? = &; x vp©@, (2.135)

having used the vector identity &; x (& x a) = —a. Substituting this into (2.131), the

continuity equation for the lower layer becomes
Y+ v [h<°)é3 x vp(O)] =0. (2.136)

Introducing the Jacobian function,

8 (a,b)
= = - 2.137
9(a,b) 3z 9) , azby — ayby, ( )
results in the following identity,
9(a,b) =V - [b&3 x Va] =&; x Va- Vb. (2.138)

The first identity above enables (2.136) to be rewritten as,
K9+ o (p, hO) =o0. (2.139)

Introducing the dynamic condition (2.134), results in the abave equation being written
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in terms of the reduced pressure field in the upper layer,
r® 4 uo (cp(o) +hrO@ 4 ’L—B h<°>) =0 at z=-1, (2.140)
which simplifies to
[@ + pd (cp(o) + hTB *)] RO =0 at z=-1, (2.141)

because the Jacobian is antisymmetric.
Applying the same operator to (2.126), as in (2.135), gives the analogous result

ul® =& x VO, (2.142)

To get an equation for the vertical velocity in terms of the dynamic pressure in the upper
layer requires multiplying (2.129) by N~2, then substituting the hydrostatic relation

(2.127), to obtain
w® = _N-2 (a, +pul®. v) ), (2.143)

Implementing the geostrophic relationship (2.142) and distributing the differential op-

erator gives
w©® = _N-2 (<p§3) +u (é3 x ch(o)) .v‘pgo)) : (2.144)

which upon using the second identity in (2.138) brings about
w® = —N2 (o + 43 (@, o). (2.145)

In the above work, the following identity has been proven,
(ugo) . V) a=0 (cp(o), a) . (2.146)

This identity will be used frequently when such a geostrophic velocity field is given.
It is now possible to translate the boundary conditions in terms of the two variables

v and h. We substitute (2.145) into (2.132) and multiply by the buoyancy frequency,
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to obtain

[3: +ud (‘p(o), *)] =0 at z=0, (2.147)

which gives the condition in conservation form. Substituting (2.145) evaluated at z =
—1, into the kinematic condition (2.133), gives

h§°) + u§°) -V (uh® + hg) + N2 (cpg:) + pd (<,o(°), <p£°))) =0 at 2z2=-1. (2.148)

Rewriting the second term using (2.146), reduces the above equation, upon multiplica-
tion by N2 and joining terms, to

[8, + pd (cp(o), *)] (¢§°7 + N2 (h(o) + ’;—B)) =0 at z=-1, (2.149)

where the fact that the bottom topography term is time invariant has been used.

The equation that determines the evolution of the dynamic pressure of the upper
layer was saved for last due to an added complication. This being that the continuity
equation and geostrophic equations are not independent at leading order. Geostrophy
implies that the horizontal divergence of velocity is zero and hence geostrophic degen-
eracy arises, as mentioned in Section 2.5. This is dealt with by considering the next
order problem, which upon taking the curl, allows us to find the Potential Vorticity
(PV) equation.

The horizontal momentum and continuity equations in the upper layer for the O (s)

problem are,

(at + uuso) . V) u§°’ +é3 x ugl) = -V, (2.150)
V-ul) + 0@ =o. (2.151)

Taking the horizontal curl of the horizontal momentum equation, gives a vector in the

z direction. The equation takes the following form
(v xuf?) +uvx (- Vul”) + Vx (& xul’) = -V x V). (2152)
The curl of the gradient of any function is zero, which then eliminates the pressure
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term from the above equation. Substituting (2.142) into the first term above and using
the identity
Vx(axb)=(V xb)a—(V x a)b, (2.153)

yields

(vxul?), = (vx (& x ),
= (A¢(°)) (2.154)

Applying the curl operator to the advective term in (2.152) and simplifying using
(2.153), results in

Tuloxaf) = (7-4)a - and
= (v-uf)s, (2.155)

since €3 is constant.
The second order divergence term can be rewritten using the O (s) continuity equa-

tion (2.151),

(V-u(ll)) = —w§°)
- (D a0 (s0,))),
(N26D), +u(0(@, N o))
= (N7D), 8 (47, (V%) )

= [3t+y3 (‘p(“),*)]( (pzt)) (2.156)

by substituting in (2.145), expanding terms and using the antisymmetric property of

the Jacobian. Using a vector identity translates the second term in (2.152) to

V x (u&o) . Vugo)) = u§°) -V (V X u§°’) +V- u§°’ (V X u(10))
= uﬁ") -V (V X ugo))

= u0.v (Vx (é3 x v¢(°)))
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= u§0) -V (A(p(o)) &
= & (‘p(o)’ A(p(o)) &, (2.157)

having used (2.128) in the second line, (2.142) in the third, the definition A = (8 + Syy)»
(2.153) and (2.146).

Substituting (2.154), (2.155), (2.156) and (2.157) into (2.152) produces, upon taking
the projection in the z direction, yields

970+ (Y0) ], 40 (5[5 + 489 ) =,

[0+ 18 (¢ %)] (86 + (7/87) ) = 0. (2.158)

The first term in the conserved quantity is the relative vorticity and the second is
a baroclinic stretching term since it stems from the divergence of the second order
horizontal velocity field. The latter is ageostrophic because it does not satisfy the
geostrophic equations. These two terms are of the same order due to how we have
scaled the horizontal velocity field in the upper layer.

In order to determine why this scaling was chosen the way it was, observe that
the baroclinic stretching term came from the curl of the Coriolis term and the relative
vorticity originated from the curl of the material derivative. Taking the dimensional curl
of the dimensional horizontal momentum equation (2.32) and using vector identities,
shows that for the relative vorticity and baroclinic stretching terms to be of the same

order, the following relation must hold
V* x (@ +ui-V)ui] =0 (f(V*-uj)). (2.159)

We choose the time derivative to be representative of the first square bracket and
replace the horizontal divergence with the vertical gradient of the vertical velocity, by
use of the continuity equation. The scaling for the vertical velocity, as suggested by the

dynamic condition,

w=0(h:) => wl.=O(h./H), (2.160)
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gives

(V* xuj)=0 (f_th) , (2.161)

after having eliminated the time scalings from both sides. This justifies that (2.81) is
the right choice to make for the relative vorticity and baroclinic stretching terms of the
same order as is required in QG dynamics.

The four governing equations for the leading order problem, are (2.141) and (2.158)
with boundary conditions (2.147) and (2.149). Observe that they are written completely
in terms of the dynamic pressure in the upper layer and the height of the lower layer.
This leading order problem is more manageable since before, there were eight equations
and three boundary conditions, whereas now we have only four equations in total. Given
that a solution could be found for this system the other variables could be recovered
through (2.127), (2.134), (2.135), (2.142) and (2.145).

The governing equation that determines the evolution of the dynamic pressure and
the rigid-lid boundary condition are exactly the same as in QG theory (Pedlosky, 1987),
hence this is a QG fluid. However, the boundary condition for the bottom of a QG fluid
is replaced by a pair of partial differential equations that couple the evolution of ¢£°) at
z = —1, with the height of the lower layer.

Since this system of partial differential equations are the equations to be dealt with,
there will be a change of notation made, ¢(®) — ¢ and h(®) — h,

(B + 10 (p,%)] (B¢ + (2/N7) ) =0, (2.162)

O+ ud(p, %)l p-=0 at z=0, (2.163)

[8: + 13 (p, ¥)] (<p, +N? (h + ’L—B)) =0 at z=-1, (2.164)
[6¢+,u6 (¢+%€,*)} h=0 at z=-—1. (2.165)
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2.7 Potential Vorticity derivation

Having obtained equations (2.162) through to (2.165), the reader could now proceed
directly to Chapter 3 without any loss of information. However, it is insightful to derive
these equations from a different approach, one not involving asymptotic expansions, but
instead that focuses on the conservation of PV.

The Potential Vorticity of an arbitrary fluid is given by,

I = (‘"+f‘331 V3, (2.166)
which is conserved for each fluid parcel following the motion,

dI'I‘

= (O + 8 0o + 08y + w8y ) I = 0. (2.167)

The notation that has been used is that the velocity field is u* = (u*, v*, w*), V3= (0z-, -, 8;-),
w*® = V3 xu* is the relative vorticity vector and f is the ambient vorticity of the system
directed along the z axis and d/dt* denotes the dimensional material derivative. It is
necessary that the fluid is frictionless and that A satisfies certain properties, the first
being that it is a conserved quantity following the motion, i.e. d\/dt = 0. If the fluid is
barotropic Vp x Vp = 0, this one condition is sufficient. However if the fluid is baro-
clinic, then it is necessary that A be strictly a function of pressure and density. This
result, known as Ertel’s theorem, can be applied to both homogeneous and continuously
stratified fluids, however A must be chosen differently for each (Pedlosky, 1987).

For a frictionless, homogeneous fluid, hence barotropic, A is picked to be the relative

height of the fluid parcel with respect to the total height of the column in which it lies,

. 2" — h.B (ZB, y)
=S, (2.168)

where the notation is conventional to what has already been defined. To prove this is a
conserved quantity, consider (2.23). Realizing that w is nothing more than dz/dt, and
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substituting in for the horizontal divergence using (2.26), then grouping terms yields,

d(z-h 1dh
2ete) (g iBoy,

Rt
d fz—hpg
E( - )_o, (2.169)

where upon introducing dimensional quantities, the above claim is proven.

Since the only component of PV that is non-zero is the z component, (2.166) takes

the form

H‘

([ .]z +f) 2l * — hg
e ()
_ (v;. ;‘u’f‘ +f) az‘ ()

Vi —up. + f
e (2.170)

where the [w*], denotes the z component of vorticity which is Uz. — ug.. Substituting

this into (2.167) yields

- (2.171)

‘. - ‘U.‘. +
(B +uBze +v°8,") [E’E_v_f] =0,
after multiplying by the density and observing that (2.170) is depth independent.
For a three-dimensional fluid, A is chosen to be the density. This can be done since
incompressibility dictates that density is a conserved quantity following the motion, and

trivially X is only a function of density. Hence, substituting (2.166) into (2.167), yields,

2‘:_. [(“"+fé3_) : v;p] =0. (2.172)

Applying the quotient rule reduces this equation to

1ld

(w +fea)-V3pd_p_=O, (2.173)
p. dtt

CO

[(w* + f&3) - V3p] -
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which then becomes, by using the conservation of density following the motion (2.35),

d
dt*

(W + f) - V3g] =0. (2.174)

This section will first derive (2.171) and (2.174) that resulted from Ertel’s theorem
by taking the curl of the momentum equations and then introduce the scalings stated
in Section 2.5. The appearance of small parameters allows us to Taylor expand to
obtain the leading order behavior. The lower layer will be dealt with first since its
representative equations are easier to handle.

For future reference, we rewrite the continuity equation (2.28), by solving for the

divergence,
hie« + (V* - u3) h* +u3 - V*h* =0,

Vo= _% (B +u} - V) A, (2.175)

which when divided by h* gives,
1 ® - 1 2 - L] -
Fv -u2 = -—(F (8¢-+u2-V)h
= (8- +uj- V) (hi) . (2.176)

Applying the horizontal curl operator to the horizontal momentum equation (2.27),
gives rise to

1
V* x [“5.- +(u3 -V )uz+ f é&3 xu; = —EV‘pQ} , (2.177)

which can be simplified term by term. Firstly, the curl of the gradient of any function

is zero which implies that the pressure term vanishes. The Coriolis term becomes after

using (2.153),
V" x (& x u3) = f& (V" -u3). (2.178)

The first term on the left-hand side of (2.177), can be written as
V*xu;, = (V*xuy),.
= (V* xu3 + f&),., (2.179)
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since the curl and time derivative operators commute and f is a constant. It is under-
stood that since V* and uj are two dimensional vectors their curl is in the z direction.

Applying the identity proven in (2.157), allows the curl of the advective term to be
expressed as

V*x ((u3- V) u3) = (03 - V) (V* x uj + f&) +(V*-u3) (V* xu3), (2.180)
since f is constant. Substituting (2.178), (2.179) and (2.180) into (2.177) gives,
(B +u3 - V*)(V* xuj + f&) + (V" - u3) (V* x uj + fé&3) =0. (2.181)
Multiplying this equation by 1/h* and substituting (2.176) results in

e (O 03 V) (" w3+ f&0) 4 (7 x u + fn) (3 + 03 97) (1) =0,

(B +uj - V) [v a “2+fe3] =0, (2.182)

through the usage of the product rule. This proves that the PV equation for homoge-
neous fluids derived from Ertel’s theorem is valid.

Substituting in the scalings from Section 2.5 in (2.182), gives

o )
3(8 + puz - V) [(fs) :022+f83] = 0,
@+ e V) [TLER] 2, (2.183)

upon dividing through by fs/hg. Since s is a small parameter, the relative vorticity will
not be a leading order effect. It is this property, coupled with the fact that the lower
layer momentum equation is geostrophic to leading order, that makes this fluid PG.
The leading order equation then takes the form

(G + puy - V) [%] =0. (2.184)
Applying the quotient rule, then multiplying this equation by —h2, and rewriting the
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advective derivative in terms of the Jacobian, as in (2.146), produces
(8; + pug - V) [h] = 0,

[3, +udle+ IL—B, *)] h =0, (2.185)

having taken the leading order contribution in the dynamic condition (2.121), which
yields precisely the same equation as (2.141).

The calculations for the upper layer are more complicated because they involve
taking the three-dimensional curl, (V3 x) of the three-dimensional momentum equation.

The momentum equations (2.32) and (2.33) can be compactly written as
- * * - L 1 € _ & gp‘ -~
(G +u* - V3)u' + f & x u* = ——V3p] - =&, (2.186)
P2 )
where u® = (uj, w*) and the conservation of mass and energy equations are,
Vi-u* =0, (2.187)
(8- +u* - V3)p* =0. (2.188)

By considering the expression

(V5 x u*) x u* + %v; (u® - u’)

w* (u;. —wi.)—v* (v; —u. ) uul. +vtvi. + wiwg.
=1 u" ( Uz. — Uy ) w* ( ) + | wup. +vtvp. + wtwg.
w* (u3. —wi.) —v* (v7. —u. ) uuj. + vl +wtw

s,.8 L PN &,
Uuz. + VY + Wiy,
=1 u'vz. + vty +wtus.
LJ * *« - L e
U Wre +V Wy + WU,

=(u’ - Vi)u', (2.189)
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we obtain a vector identity that allows (2.186) to become

- - L J -~ . - .. * I g.‘-
ul H(Vixu 4+ &) xu=-vi( — 4 2) _92 5 2.190
( 3 f ) 3 2 ) ( 1 )

Upon taking the three-dimensional curl of (2.190), the buoyancy term becomes

V3 x (—gp’:és) = % (—p;-,p;-,ﬂ)

g -~ . 8
= &3 x V3p°, (2.191)

and the other term on the right-hand side vanishes

Vi x V3 (“ = +;—1) =0, (2.192)

since the curl of the gradient of any function is equal to zero. The first term in (2.190)

can be written as

Vixu. = (V3xu®),.

= (V3 xu® + fé&),., (2.193)

since f is constant.

Upon using the following vector identity (Pedlosky, 1987)
V3ix(axb)=a(V3-b)+(b-V3)a—-b(V3-a)—-(a-V3)b, (2.194)
the final term then takes the form,
Vix[(Vixu' + f&) xu’| =

(V3 x u* + f&3) (V3 -u®) + (u*-V3) (V3 x u* + f&)
~u" (V3 (V3 x u* + f&)) — [(V} x u* + f&s) V3] u* (2.195)

The third term on the right-hand side vanishes since f&; is a constant and the divergence
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of the curl of any vector is equal to zero. The conservation of mass (2.187), causes the

first term on the right-hand side to disappear. Equation (2.195) reduces to
V3 x[(V3 xu® + f&) xu’] =
(u"-V3) (V3 x u* + f&g) —[(V3 x u* + f&s) V3] u’. (2.196)
The curl of (2.190) then becomes upon using (2.191), (2.192), (2.193) and (2.196),
(8 +u®-V3] (V3 x u® + f&) ~ [(V3 x u” + fé&) - V3] u®

g -~ - &
= = & x V3p° . 2.197
P2 3P ( )
Taking the dot product of (2.197) with V3p* contains there terms, one of which is

g L IR -~ = ] g - ® L3 .
;Vsp (&3 x V3p°*) = . (—py-px- +py.pz~) =0. (2.198)

Another term is
Vi[O + 0tV (V5 x u” + f&). (2.199)

In order to rewrite the third term it is necessary to act the gradient operator on

(2.188), utilize the product rule, then rearrange terms to obtain the following identity,
(B +u* - V3)V3p* = —=V3iu* - V3p". (2.200)

The right-hand side of the equation above should be interpreted as the gradient acting
on the velocity vector and this result, then dotted with the gradient of the density field.

This identity then implies that the last term can be written as
~V30' - [((V3 x u* + f&) V3) u'] = — (V5 x u' + f&s) - [Viu® - V3p']

= (V3 xu*+ f&3) - [(8- +u” - V3) V3. (2.201)

Combining (2.198), (2.199) and (2.201), then using the product rule gives the fol-

49



lowing equation
[Be +u* - V3] [(V] xu® + f&3) - V3 30°1=0 (2.202)

which is identical to (2.174), therefore the equation obtained for the upper layer from
Ertel’s theorem is proven.

The vorticity in the vertical direction will be much larger then any vorticity in the
horizontal plane and for this reason that we reduce (2.202) to

(8 +uj - V* +w"3,.) [(V‘ X uj + f) %] =0. (2.203)
Substituting in the scalings from Section 2.5 produces
8 p26gd
(8f +6fuy -V + s fwd;) [(fJV x uy + f) Fn (po + (—g—-) p)] =0, (2.204)

dividing through by sf? and expanding yields,

(Be + puy - V + 6wd,) [d”° ”2;-‘/ :", +6V x ulg—- +0 (52)J =0.  (2.205)

The O (6%) terms will be ignored since we only want a leading order equation. The

above equation can then be separated as follows,

d
(8: + pu; - V) [5”2-"' gz"_ +6V xu IZZ@]”‘S’”@) B =0, (2.206)

where each term that appears is of order &, hence this parameter can be cancelled. Also,
multiplying by gH/ (p»¢’) and recalling the definition for the buoyancy frequency gives,

@ + puy - V) [g—z’f - N2V x ul] ~w(N?) =0, (2:207)

By manipulating the incompressibility equation (2.188), the vertical velocity is seen
to satisfy to leading order,

w=N"2(8 + pu; - V) p, (2.208)



which when substituted into (2.207) produces,

(8 + puy - V) [-Z—Z - %);—p ~ N2V x ul} =0. (2.209)

Now dividing the equation by —N?2, rewriting the buoyancy term and using the product
rule produces
7}
(B, + puy - V) [v xu — = (%)] =0. (2.210)

Substituting in the hydrostatic relation, which comes from the leading order expression
of (2.114) and (2.146), allows us to rewrite the equation in terms of the dynamic pressure

in the upper layer,

8, + puy - V) [Aga + 5‘9; (%)] =0, (2.211)
(8, + 13 (¢, *)] (A(p + 5‘9; (%)) =0, (2.212)

which is the same equation as in (2.158), and hence concludes the chapter.
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Chapter 3

Linear stability analysis

This chapter will study density-driven currents that do not vary in the along-shelf
direction, within a periodic channel domain of width L and length 2zp,

Q= {(z,y,2), —zr<z<zR, O<y<lL, -1<z<0}, (3.1)

where Qg denotes the horizontal extent of the channel, 8Qy its boundary and Qy a
vertical cross-section running along the y axis.

The channel walls are assumed to be rigid, which implies that v; = 0 = v, on y=0
and L since we do not allow for any normal flow through these boundaries. Translating

this using the geostrophic relations (2.126) and (2.130) yield
¢z=0 on y=0,1L, (3.2)

h:=0 on y=0,L. (3.3)

Another set of boundary conditions needs to be established along the channel walls.
This is done by integrating the z directional momentum equation (2.113) over the
z direction, applying the periodic boundary conditions and evaluating the resulting
expression at y = 0 or L, to give

R
s (u1, + pswu,), o dz =0. (3.4)

-ZR
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The leading order expression of this equation then states,

d [e= dz=2 " dz 3.5

after having substituted in the geostrophic relation (2.126). These equations above are
the statements that the circulation is conserved along each channel wall, and are referred
to as Kelvin’s circulation theorem.

Defining the following averaging operator along the z direction

1 R
%) = ——— dz, 3.6
(%) prl B (3.6)
allows us to deduce, that
(2t 5 GEp50)) =0 (3.7)
Y, z, 5z g\r,\y, 2, =y, -

upon integrating and using the periodicity condition.

Throughout this chapter it will be assumed that the bottom topography depends
only on y. Since the equations that arise cannot be solved in all generality, this depen-
dency will occasionally be chosen to be linear in order that solutions can be obtained.
Due to the scaling already implemented, the canonical choice is hg = —y. For similar
reasons, the buoyancy frequency will at some stage be chosen to be a constant rather

than a general function of z.

3.1 Linearization of the governing equations

Consider an ordinary frictionless pendulum with the string replaced with a stiff metal
rod. Assuming the rod can swing completely around, there are two stationary positions,
they correspond to the bobs lowest and highest points. Perturbing the former creates
oscillations about that equilibrium position with an amplitude no larger than that of
the initial perturbation. However, no matter how small of an initial force perturbs the
later situation, it will always cause oscillations of much larger amplitude. Hence, upon

considering how they react to perturbations, it is natural to call the lowest and highest
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positions stable and unstable equilibria, respectively. An important consequence is that
since nature intrinsically possesses disturbances, no matter how small, the pendulum
can never be naturally observed to be resting at its highest point.

Since it is desirable to determine which steady solutions to our model could occur
in nature, it is necessary to do a linear stability analysis. This introduces infinitesi-
mal perturbations to particular basic states. When these perturbed quantities occur
quadratically, they can be ignored due to their relative smallness. This has the net
effect of ignoring nonlinear terms, which then allows a stability analysis to be applied
to the remaining linear equations.

Two different types of results can be obtained from this analysis. The first is where
the perturbations either persist or die away, but do not grow. These are formally
referred to as neutrally and asymptotically stable, respectively. The second is that
the steady state solution is unstable, which means that the perturbations necessarily
grow in amplitude. Simply because the linear theory predicts growth, it should not be
concluded that the system will continually grow indefinitely. The growth will always
reach a stage where their magnitudes can no longer be classified as being infinitesimal,
and hence the linear theory is no longer applicable. In this region, the nonlinear terms
may cause dampening so that the amplitude then decays, which is how finite amplitude
oscillations can arise. To study the nature of these oscillations it would be necessary
to do a weakly nonlinear analysis where the perturbations reach a point of being small,
but finite. This will not be tackled within this thesis but suggests future work that can
be done.

The basic steady states to be studied are

h=ho(y), (3.8)

¢ =0 (y,2), (3.9)

which satisfy the governing nonlinear equations and boundary conditions because of
their lack of z and ¢ dependency.

Upon considering the geostrophic relations, it is seen that no cross channel velocities
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can occur for these states. Hence, these basic states are parallel shear flows that can
be sheared in the cross channel and vertical directions. The former requires that the
flow has kinetic energy, whereas the latter means the flow possesses both kinetic and
potential energies.

The question of stability reduces to asking whether the perturbations are able to
extract energy from the mean flow and hence grow in amplitude. When the perturba-
tions only extract kinetic energy, this type of instability is called barotropic. However,
when potential energy is necessarily released along with kinetic energy, this is baroclinic
instability (Griffiths et al., 1982).

The perturbed system, is given by

h = ho (y) + k' (z,y,1), (3.10)
¢ =vo(y,2) +¥ (z,y,2,1), (3.11)

where
|F| <1 and || <1, (3.12)

the bars denoting the absolute value.

The nonlinear governing equations are, after replacing (2.164) with (2.164)~N?(2.165),

[6c + 18 (0, #)] (A + (:/N?) ) =0, (3.13)

O +pd(p,¥)lp: =0 at z=0, (3.14)

(6 + 18 (p,¥) ¢: + Nhp, (p+h), =0 at z=-1, (3.15)
[0t + 48 (p,¥)| R ~hp,he =0 at z=-1. (3.16)

Substituting (3.10) and (3.11) into (3.13) to (3.16) gives, after dropping the primes,
[8: — neo,02] (Ap + (N "2%)2) +ppz (Ao + (N ‘2990,)2)”

+ud (¢, Ap + (N-%p,)z) =0, (3.17)
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[8: — ppo,8z] ¢z + ppz (0,), + 10 (p,p:) =0 at 2=0, (3.18)
[6: — npo,8z] 02 + oz (po,), + NPhp, (9 + h), +ud (p,pz) =0 at z=-—1, (3.19)
[at - ﬂ‘POvaz] h+ pox (hO),, - hB,,h:: +ud(p,h)=0 at z=-1. (3.20)

Equation (3.12) then allows us to conclude that the nonlinear terms will be much
smaller than the remaining terms, at least initially, and are hence ignored. As well,
defining Up(y, z) = —yg, to be the along channel velocity of the mean flow in the upper
fluid allows the linear stability equations to be written as

(8. + pUods] (A + (N~%0;) ) — oz (AU + (N?00,) ) =0, (3.21)
[ + uUoBz] p: — ppzllo, =0 at z =0, (3.22)

[ + nUol:] ¢: + ¢z (N?hp, — uU,) + N%hp,he =0 at z=-1, (3.23)
[0c + pUoOc] h + ppzho, — hphe =0 at z=—1. (3.24)

3.2 Perturbation energetics

The linear equations (3.21) to (3.24), describe the evolution of perturbations in space
and time. These equations allow for the construction of an energy equation that de-
scribes the time evolution of the perturbation energy. From this, necessary conditions
can be obtained where the perturbation energy increases, ergo instability. This onset
of instability is possible through either barotropic or baroclinic processes. Since the
purpose of this model is to describe baroclinic instability arising from the interaction of
the two fluids, Up will be chosen so that this goal can be achieved.

We begin by multiplying (3.22) by N~2 ¢|,_, and integrating over the horizontal
extent of the model,

L L 1
-2 _ -2 1
/(; <N ‘P‘P”>z=o dy = /0- <pN (Uocpcpzz 3 (), Uo‘) >z dy

L
_ -2
= /o (#N Uowzz)z N2 (3.25)
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having used (3.7) and (3.9). Similarly, multiplying (3.23) by N=2 ¢|,__, yields

/0 ‘ (N ""sz)z:_l dy = — /0 ‘ (uN"Uoppzz + ha,,sph:)z=_1 dy
1

L
-5 0 <(‘P)z (hB" - #N—zUo‘)>z=—l dy
L
= "/(; </‘N—2U0‘P‘Pz:z - th‘P::h>z=_1 dy. (3.26)
Combining (3.25) and (3.26) produces

/0 (N2 (ppae + N Woppia) ) dy= /0 (ho,peh),__ dy.  (3.27)

Multiplying (3.21) by ¢ and integrating over the volume 2 gives

18 -2 2 I Ly z=0
55{}// (Vsa'Vsa+N [ > dde—/o (N (ppze +#Uo<p<pzz)> W
v

z=

~p / / (V%-V(Uw) + N7 %¢z; (Uop), ) dydz
Qy

+ / / (V-(¢Vpe) + u V- (UopVe:)) dydz, (3.28)
Qy
after integrating by parts and applying the following identity twice,
V-(ab) =aV -b + Va-b. (3.29)

The divergence theorem allows us to prove that two of the terms on the right-hand
side of (3.28) vanish. Applying this theorem, expanding the contour integral and then
applying the boundary conditions (3.1) and (3.5), results in,

1
/ / (V-(pVer)) dydz = 5— /o / ¢V, -1 ds dz
R J-1
Qv Ny

1 L
= —21:—1;./;01 {-/0 [W:l!t]z—__—za - [WP::];;:-;R dy
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TR

R
+ (\oly=L /3R [‘piﬂly:L dr — ¢|y=0 /Z [‘Pvt]y=0 dz} dz
- —ZR

=0. (3.30)

The other term in (3.28) that can be written using the divergence theorem is,

1
/ / (V- (UopVyz)) dydz =5— /01 / UopVpz -n ds dz
Qv RJ- Ky

1
= 2-'3—3// [UO‘P‘P:I:::]_-,zca - [Uowzz]n—zn dydz
2y

+ [ o)y ~ o)y (3.31)

where again, the first two terms vanish by periodicity, which leaves upon using integra-
tion by parts and (3.2)

/ /n ) V- (UopVe;)dydz = /: ([sazsay],,=o—[cp=<ﬂyl,,=L>dz
= 0. (3.32)

Substituting (3.27), (3.30) and (3.32) into (3.28) and expanding the remaining terms
by use of the product rule, yields,

19 )
555_// <V‘P -V + N2 > dydz = —p / / (UoVgz - V) dydz
Qv oy

—u // <<,oV<,a,, - VU + N_zUocpzzqaz) dydz
Qv

L
—u / / (N“2pps:Un, ) dydz + /o (hs,hoe), __, dy. (3.33)
Qv

The first and third terms in the right-hand side are each equal to zero by (3.7), which

reduces the equation to
198 2 2
55//<V8"'V<P+N <p,> dydz =u//(soz<pro,,) dydz
Qv v
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L
tu [[ (N 2eeputi,) dydz = [ (ha,he), , an, (3.34)
Qv

after integrating by parts repeatedly.

The left-hand side of this equation is the time rate of change of the total energy
of layer one, which is a sum of the kinetic and potential energies. Instability requires
that the perturbation energy increases with time and hence that the right-hand side is
positive.

There are seen to be three potential sources for instability. The first and second
terms are barotropic and baroclinic since they depend on the horizontal and vertical
shear of the mean flow, respectively. The former extracts kinetic energy whereas the
latter extracts available potential energy which exists due to the presence of a horizontal
density gradient which is governed by the thermal wind relation. Both these instabilities
are intrinsic to the continuously stratified QG fluid as explained in Pedlosky (1987).The
third term in (3.34) is due to the existence of a lower layer. In this particular case the
total perturbation energy is able to grow through the baroclinic interactions of the two
layers.

Studying the model with all of the three terms being non-zero is difficult. Hence,
in order to simplify this situation and focus on the instability due to the interaction of
the two layers, the internal sources of instability for the slope-water are eliminated by
choosing Up = 0 everywhere, i.e. the upper layer is at rest.

Substituting this into (3.34) along with the geostrophic relation yields,
o] 2 L
5 [[ (Vo Vet (@/N?) dydz =2 [ (uitha,),_ dy.  (335)
Qv

If a positive (negative) h anomaly is associated with a cold (warm) anomaly in the upper
layer, (3.35) states that for instability to arise, (v hhg,),__, must be negative at some
y values. This translates to saying that there is a net heat flow in the same direction
as the topographic gradient. Conversely, a sufficient condition for stability is that heat
never flows in the same direction as the topographic gradient, since this guarantees that

(nihhp,),__, is positive for all y.
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Substituting Up = 0 into the linear equations (3.21) to (3.24), gives,

(ap+ (N-%o,)z)t =0, (3.36)

=0 at z=0, (3.37)

@zt + N2 (pz +hs)hp, =0 at z=—1, (3.38)
he + ppzho, —hp he =0 at z=-1. (3.39)

Substituting (3.39) into the right-hand side of (3.35) produces,

2 tad e [ (), ) ) o

0

Property (3.7) used along with the fact that hg and hg are both invariant with
respect to the along channel direction, shows that the last term in the equation above

vanishes. Therefore substituting (3.40) into the energy equation (3.35) yields,

gt[//nv <ch-Vso+(‘Pz/N)2> dydz_/oL ::;; <h2> dy] -0 (3.41)

Since 1 > 0 by construction, the condition that hg,ho, < 0 for all y, is sufficient to
ensure the basic state is stable to all disturbances. For instability to arise, it is necessary
that there is some y for which hg, ho, > 0.

Therefore, it is the region where both the bottom topography and gravity current
profile slope downwards, that the available potentially energy can most easily be ex-
tracted by the perturbation. This results in an asymmetrical instability with respect to
the current. It should not be thought that this condition guarantees instability, since
that is clearly not the case.

These conditions are exactly the same as those presented for the two-dimensional
analogue of this model in Swaters (1991). Hence, the stratification of the upper layer
does not alter the criteria for linear stability when the upper layer is motionless.

Quasi-Geostrophic instability criteria often requires that there is a local extrema in

the PV in the along channel direction (Pedlosky, 1987). This is not the case in our
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situation, since the PV for the lower layer is 1/h and clearly the gradient of this with
respect to y being equal to zero, does not correspond to instability.

3.3 Normal Mode Solutions

When considering the stability of a steady state solution, some perturbations could
yield instability while others might not. If even Jjust one unstable perturbation arose, it
would suffice sufficient to make the whole system unstable. This is why when finding
sufficient conditions for stability, it is necessary to guarantee stability for all types of
perturbations.

This section uses the method of normal modes to obtain the same results as those
in the previous section. The essence of normal mode analysis is to assume that the
disturbances are wavelike in nature, and hence can be written as a sum of modes using
a complete orthonormal basis for the function space (Drazin & Reid, 1981). Using the
superposition principle for linear differential equations (Zauderer, 1989), every distur-
bance can be decomposed into modes, each of which satisfies the linear equation. To
guarantee stability, it is necessary to find sufficient conditions under which all the modes
are stable. Whereas, finding even just one unstable mode is sufficient to conclude that
the system is unstable.

Since we want to consider waves travelling down the channel, the solution of (3.21)

to (3.24) is assumed to be of the following form
¢ =9 (v, 2)exp[ik (z — )] + c.c, (3.42)

h =1 (y) exp ik (z - ct)] +c.c., (3.43)

k and c are the along channel wavenumber and complex phase speeds and c.c. denotes
the complex conjugate. Formally, we require k = nw/zg with n = 0, 1,2, ... However,
in practice, we assume zp — 00 so that any k can be realized. Since we want (3.42)
and (3.43) to be bounded for large magnitudes of z, it is necessary to assume that k is

strictly real; without less of generality we assume it to be positive.
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However the phase speed is complex since we have to allow for the possibility that

the system can become unstable in time. Hence, we decompose the phase speed as
¢ =cgr+icy, (3.44)

where cg and c; are real parameters. Therefore, the exponents that appear in (3.42)
and (3.43), take the form

exp [ik (z — cgt)] exp [kert] . (3.45)

It is for this reason that it is said that the method of normal modes takes a Fourier
Transform in space and a Laplace transform in time (Drazin and Reid, 1981).

Equation (3.45) shows that if ¢/ is positive, the solution is unstable as time increases.
It can be shown that if (¢, 4,¢) is a solution to (3.21) through to (3.24), then so is
(¢, h*,c*). Therefore, if ¢ is negative for some mode, there is an associated mode, that
being its complex conjugate, where c; is positive. Hence cr # 0 is a sufficient condition
for linear instability. If c; = 0, this situation is said to be neutrally stable. The quantity
kcy determines how fast the instability grows and is called the growth rate.

We initially assume Ug(y, z) is not necessarily zero in order to obtain general stability
criteria. Then when it is appropriate, this function will be set to zero as was done in
Section 3.2. Substituting (3.42) and (3.43) into the no normal flow condition (3.2) and
linear equations (3.21) through to (3.24), yields

$=0 on y=0and L. (3.46)
n=0 on y=0andL. (3.47)
and
[wUo — d ( (N'zwz)z + by — k%) — [Uow + (N-ﬁuo,)z] ¥ =0, (3.48)
(wUo — ¢}y, —ulUp,p =0 at z=0, (3.49)
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[wlo — o] ¥, + [N?hs, — nUo,| ¥+ N?hpn=0 at z=-1, (3.50)
[Uo ~ c — hg,] n + pho, ¥l,__, = 0. (3.51)

having divided each equation by ik.
Assuming that plUy — ¢ — hg, # 0, allows (3.51) to be manipulated in order to gain

an expression for 7,

#hoy 1IJIZ-_----],
= —— 3.52
"= " ilo—c- hg, (3.52)

which when substituted into (3.50) yields

uN2hg, ho,

— 2 — e e ——————————
Wl =l ¥. + [N he, = ulh, alU —c- hg,

]¢=0 at z=-1. (3.53)

The function ¥ is obtained by solving the system, (3.48), (3.49) and (3.53), where
then 7 is recovered by substituting this solution into (3.52). Unfortunately, this system
of equations to be solved is not separable. Moreover, its not Sturm-Liouville since
N%hg, < 0, which means that we cannot expect all the eigenvalues to be positive.

To obtain an energy equation, we multiply (3.49) by N ~2(0)y*(0)/(ulUo(0) —c) and

integrate over the y domain, where the * superscript denotes complex conjugate,

/0 [Vrwm],_, dy= / [#U o,lez} W (3.54)

and 9|2 = "¢ is the square of the modulus of 1. Multiplying (3.53) by the same term

as before, but evaluated at z = —1, and integrating over y gives,

/0 - (N2 ay = /0 ’ [,qul-c(/‘LN—zUo‘ - hg,) |¢|2} dy

z=-1

+ /L[ L __#hpyho, W} dy. (3.55)
0 z=-1

,qu—C/LUo—C—th

Now, multiplying (3.48) by —*/ (1Ug(0) — c) and integrating over y and z produces

/ / N2, 2 4 |2 + (k2

— [V, + (N‘ZUO,)Z]) [f? dydz
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z=0
=[] e [ it (3.56)

upon using integration by parts with respect to y and z. Since v satisfies (3.46), then
so must %°*, which implies that the second set of terms on the right-hand side of the
line directly above vanishes.

Substituting (3.54) and (3.55) into (3.56) then gives

SV s+ 2 dyas
Qv

z=0

L -2
_ uN 2 _ // B -2 2
= /0 ,:yUo—cUo‘wjl} dy J on—c[U°w+(N Uo‘)z] [¥|° dydz
v

z=-1

L hg 1 php ho, 2
4 / y y dy. 3.57
0 [(#Uo —c plUo—cplp—c— hs, i =1 Y (337)

This equation is the analogous to that of (3.34), but in the context of normal mode

solutions. The first row of terms on the right-hand side possesses terms that are propor-
tional to gradients in Uy and hence are the barotropic and baroclinic source terms for
the QG fluid (Pedlosky, 1987). As was done in the previous section, these instabilities
are filtered out by choosing Up = 0, which reduces (3.57) to

L
c /0 / N72 9. + [y * + k2 [|? dydz
-1Jo

+ / - [hB, (N-2 ”h“" )WJ dy = 0. (3.58)
0

z=-~1
In order to simply the expressions to follow it is advantageous to make the following
definition
L
Q= [ [N 4 2 dyas, (3.59)

which is strictly positive for nontrivial perturbations.

Multiplying the numerator and denominator of the second term in the round bracket,
in (3.58) by (c* + hg,), allows (3.58) to be decomposed into real and imaginary parts,
which are, respectively,
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L cr+hg,)h
crQ + / he, (14 LR BIRY ) e g (3.60)
0 le+ ka,|
L
#ho,,ha,, 2
cr [Q@- [ —u jy?__, dy| =o. 3.61
I[Q 0 |c+h13,,|2 = y] (361)

Neutral stability must occur if the bracket in (3.61) is non-zero, which certainly
holds true if ho, hp, < 0. Conversely for instability, it is necessary that there is some y
for which hg, hp, > 0. These results coincide to those obtained in the previous section,
by considering the energetics of the perturbations. This is significant since before, the
perturbations were assumed to be arbitrary, whereas in this section it has been assumed
that the disturbances are wave-like. Either case yields essentially the same conclusions.
Hence assuming wave-like perturbations does not affect the linear stability criteria of
the model.

Assuming instability and choosing the bottom topography to be hg = —y, allows
(3.61) to be rearranged to

2 g [r 2
o117 =% /0 ho, [I2__, dy. (3.62)
Which if substituted into (3.60), brings about,

=1 Lo ulcp—1) (L 9
CR= Q./O lez:—l dy+ Qlc—1|2~/(; h0v|¢|z=_1 dy,

cn=g+ap [ W du (3.63)
2 2QJo =-1

Since we are assuming instability, the necessary condition that he, < 0 for some y,

allows us to define some real parameter v that satisfies
. 2
= — < O’ 3.64
,oin ho, = —7 (3.64)
From this, the following relation is readily seen

—ho, < ¥*. (3.65)
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Substituting (3.65) into (3.62) yields
2 L
R ™

le= 1% < (2cr — 1) 22, (3.66)

having used (3.63). Expanding (3.66) gives
(crR—1)*~ (2cr =) py? +c2 <0

(cr-1- #’72) +ct < uy? (py + 1). (3.67)

This establishes a semicircle theorem for our problem (Drazin and Reid, 1981), which
is important since it presents an upper bound on ¢r and hence the growth rate, in terms
of v and pu

& <pv (kP +1). (3.68)

Observe that taking the limit as p goes to zero yields that ¢; also approaches zero, which
implies stability and supports the idea that # is a measure of the instability present in
the system. Taking the limit as v — 0 also implies a stable situation, which should
be expected since this implies ho, = 0, which is known to be a sufficient condition for
stability.

3.4 Topographic Rossby wave solutions

The basic state under consideration is Uy = 0 and ho(y), which corresponds to the upper
layer being motionless. This means that any motion that develops in the upper layer is
due to its interaction with the lower layer. The interaction causes vortex tube stretching
or contraction to occur, which generates relative vorticity, as can be seen through PV
conservation.

A question that arises is, what type of waves will the perturbations that occur in the
slope-water develop into? The modes are described by assuming the simplest situation,

that being » = 0, hg = —y and N? = constant. For this situation, (3.36) through to
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(3.39) reduce to the linearized QG equations (LeBlond & Mysak, 1978),

Ay + N—zSazz =0, (3.69)
p:=0 at z=0, (3.70)
e~ N?pr =0 at z=-1, (3.71)

upon integrating the first two equations with respect to time and eliminating the spatial
function of integration since we will be implementing the method of normal modes. The
lower layer equation vanishes.

The normal mode solution for any positive integer n
¢ = & (2)sin (ﬁz—y) exp [ik (z — ct)] + c.c., (3.72)
simplifies the boundary conditions on the channel walls to
¢=0 on y=0,L, (3.73)

which are satisfied by (3.72). Substituting (3.72) into (3.69) to (3.71) implies

P, — A2 =0, (3.74)
¢, =0 at z=0, (3.75)
2
o, + ivc—fb =0 at z=-1, (3.76)

where the new parameter satisfies A2 = N2 (k2 + %’53)
This eigenvalue problem can be solved to give

1
d=A oosth(k2+ﬁ)2z:l (3.77)
- n L2 1 M
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where A, is the amplitude of the n-th mode and the dispersion relation is

Nooth JN (%2 +235%) %]

: (3.78)
(4 52)!

cC=

The details of how this solution is obtained will be shown in the next section for a more
complicated problem.

Observe that cosh is an even function that is increasing for positive values and hence
decreasing for the negative ones. Since & takes on its greatest value at z = —1, this
solution is bottom intensified as remarked in LeBlond & Mysak (1978).

This solution is the same as that in Section 20 of LeBlond & Mysak (1978) and
represents topographic Rossby waves on an f-plane. Observe that every term in (3.78)
is positive and hence ¢ > 0. This signifies that these Rossby waves are retrograde,
meaning that they travel with the shallow water on its right.

With the presence of a lower layer the situation is more complicated. However,
we expect the upper layer to respond to disturbances in the same qualitative behav-
jor. Hence, disturbances that arise in the upper layer, due to the lower layer, are still

described as topographic Rossby waves.

3.5 The linear stability problem for a simple wedge front

The equations that stemmed from assuming a normal mode solution for (3.48) to (3.51),
we have not been able to solve in all generality. In order to obtain an analytical solution
to these linear equations, we make certain assumptions. The first is that the basic state

of the upper fluid, is a state of rest,
Up = 0. (3.79)

In addition, we assume that N and the gradients of the lower layer and bottom

68



topography heights are constant,
ro=1-5y, (3.80)

hB =Y. (3.81)

This lower layer profile is called a wedge front. The new parameter 3, determines the
slope of the wedge, that being 3/u.

A simple wedge front profile is chosen since this makes the problem analytically
tractable. Certainly, this profile is too stringent for most physical applications, yet it
does give insight into the qualitative behavior of the system.

Using the method of separation of variables (Zauderer, 1989), the solution is as-
sumed to be (3.72), where again, the horizontal boundary conditions (3.73) are trivially
satisfied. Substituting this, as well as (3.79), (3.80) and (3.81) into (3.48), (3.49) and
(3.53) yields,

®,, — A2p =0, (3.82)
®, =0 at z2=0, (3.83)

2
<I>z+i 1+i)(1>=0 at z=-1, (3.84)

c l1-¢
where
2

A2 = N2 (k2 + (ﬁ;—) ) : (3.85)

The quantity A2 is proportional to the sum of the squares of the along channel and cross
channel wavenumbers. Notice that the latter is discrete due to the fact that the channel
has a finite width. Observe that (3.74) to (3.76) is the limiting case where B=0.

The general solution to (3.82) is

® = Acosh (Az) + Bsinh (\z), (3.86)
where B must be zero for (3.83) to be satisfied, hence

& = Acosh (\z), (3.87)
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for A being a free amplitude constant. Substituting this into (3.84) yields the following

dispersion relation,

Atanh(A):ﬁcz-(H 4 ) (3.88)

l—c¢c
Defining
Ty = Atanh (), (3.89)

enables (3.88) to be written as
Ty - (Ty + Nﬁ) c+N2(1+8)=0. (3.90)

Applying the quadratic formula enables us to solve for the phase speed,

o Ty + N2 £ \/(Ty + N2)2 4Ty N2 (1 + )

2T
Ty + N2 £ /(T}y ~ N?)? — 48N?Ty
2T, '

(3.91)

The expression above is known as a ‘dispersion relation’ since the dependency of ¢
on A signifies that waves of different wavelengths travel at different speeds, and hence
disperse. The only way that this would not occur is if the phase speed was constant for
all wavenumbers. The real part of c is always non-negative, which guarantees that the
only waves that can exist are those that travel in the positive z direction.

To determine conditions for instability, it is necessary to consider the sign of the
discriminant. If it is negative, the phase speed has an imaginary component, and there
is at least one unstable mode which implies instability. If the discriminant is non-
negative, then stability is assured.

In order to compare this dispersion relation, to that of the original Swaters’ model,
it is necessary to consider the limit as A — 0, since this corresponds to N2 — 0, i.e. the

homogeneous case. Upon recognizing that



we conclude that the two functions, in the numerator and denominator, are asymptot-
ically equal. Therefore, for small values of A, we can replace tanh(A) by A itself, in
(3.89). Substituting this into (3.91) yields, where K2 = k2 + (nm/L)2,

C_K2+1:!:\/(K2+1)2—4(1+B)K2

572 , (3.93)

which no longer depends on the buoyancy frequency and is exactly the same result
obtained in Mooney & Swaters (1996). The only difference is that our cross-channel
wavenumber is discretized due to the different channel geometry. Thus, the homoge-
neous limit is contained within (3.93).

Setting the discriminant equal to zero yields the marginal stability curve since in ev-
ery neighborhood about this curve, there is some wavenumber that results in instability.

The marginal stability curve is represented by Bo ()), and is

_ (M- nN%?

fo = AN (3.94)

as illustrated in Figure 3.1. The region where 8 > B and 8 < Bo, are unstable and

stable, respectively.
The point of marginal stability is the critical value of A that yields the maximum

of (o that is stable. This point corresponds to a local extrema of the marginal stability
curve. However, since this curve is positive definite with a minimum of zero, the point

of marginal stability must be where Gy = 0, that being

tanh (Ag) = ,\fo (3.95)

Because the left and right-hand sides are strictly increasing and decreasing respec-
tively, there can be only one solution to this equation. As A — 0%, the left and right-
hand sides respectively approach zero and positive infinity. These limits are reversed as

A — 00, which implies that there must exist a point of intersection, and by the previous

argument, it is unique.
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The unstable modes in (3.91) must satisfy the relationship

2
(%) —2(1+28) %— +1<0, (3.96)

having set the discriminate to be negative, divided by N4 and rearranged terms. Com-

pleting the square and taking the square root then gives

(1+28) —2,/8(1 +5) <% < (1+28) +2/8(1 +9). (3.97)

Multiplying the numerator and denominator of the left-hand side by the multiplicative

conjugate of the numerator gives

(1+2ﬁ)—2\'5(1+m=1+2ﬁ+21\/ﬁ(1+ﬂ)’ (3.98)

which when substituted into (3.97) yields

1 T
Tr2p+2/B0ch N < UFHF2VBALA). (3.99)

This gives an upper and lower bound on A, and hence a high and low wavenumber
cutoff, which prevents extremely short waves from becoming unstable; a phenomena
entitled ‘ultraviolet catastrophe’ (de Verdiere, 1986). It signifies a shortcoming of a
model since short waves, which are not within the regime of consideration, are unstable.

It was demonstrated in (3.45) that the growth rate is given by kc;. Given the dis-
persion relation (3.91) for the simple wedge front, it is possible to plot the growth rate
for various stratification frequencies in order to determine the effect that stratification
has on the growing modes. Finding the imaginary part of the dispersion relation yields
the growth rate to be,

. V4BN2T, — (T, — N2)?

T , (3.100)

o=kcy =

when the quantity within the square root is positive.
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Figure 3.1, Marginal Stability Curve
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In Figure 3.2, for the case where 8 =0.11, u = 1.0, L = 8.0 and n = 1, the growth
rate is plotted for N = 0.0, 1.0 and 2.0. The first of these growth rate curves is the same
as that in Mooney & Swaters (1996). The maximum growth rates are ker = 0.307,
0.385 and 0.694, for the N = 0.0, 1.0 and 2.0 curves, respectively. The most unstable
modes correspond to the along-shelf wavenumbers of k = 0.93, 1.25 and 2.43. These
modes, since they have the highest growth rates, will eclipse all others, at least initially,
and hence are taken to be representative of the growth of the instability. With respect
to the length and time scales presented in Chapter 2, the dimensional growth rates and
wavelengths, derived as (0* = T'kcyr, A} = 2wL/k), will be (2.1 days, 101 km), (2.7 days,
75 km) and (4.9 days, 38 km) for the N = 0.0, 1.0 and 2.0 curves.

It is clear that with increasing stratification, the maximum growth rate increases
and the most unstable mode moves toward higher wavenumbers. This demonstrates
that the presence of stratification in the upper fluid enhances the instability and shifts
the most unstable mode to smaller wavelengths. A similar result was found in Morgan
(1997) where numerical simulations were performed on the primitive equations of a
continuously stratified fluid within the context of surface fronts.

This is a significant finding since, when the original Swaters’ model was applied to
the Strait of Georgia (Karsten & Swaters, 1995), the most unstable mode has a length
scale larger than the length scale of the observed eddy features. We speculate that this
discrepancy can be accounted for as being due to the lack of stratification in the upper
layer of the Swaters’ model, which is present in the Strait of Georgia. Applying our
continuously stratified model would yield a more accurate prediction, since the most
unstable mode would have shorter wavelengths.

For the case when N = 1.0, we wish to find the solution for the most unstable mode,

that being &, = 1.25. The pressure is obtained by substituting (3.87) into (3.72),

¢ = 2Asin (7y/8) cosh (\/k& + (7r/8)22) exp(kucyt) cos [ky (z — crt)] - (3.101)

To obtain the perturbation height field of the lower layer, it is first necessary to find
7. This is done by substituting (3.80), (3.81) into (3.52), which then gives an expression
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for n in terms of 3, where v is then obtained by comparing (3.42) with (3.72) and using
(3.87). After rewriting the term (1 — c) from (3.52), in exponential form, we obtain the

following solution

24
h= in (7y/8) cosh  \/k2 + (7/8)2
T e e (Ve +r8y?)

x exp(kycrt) cos [Ic,, (z — cgrt) — arctan (1 fIcR)] . (3.102)

This is plotted at t =0 with N=1.0, 8=0.11, p = 1.0, L = 8.0,n=1, A=0.005
and zg = 5.0, with a contour separation of 0.01, in F igure 3.3. Adding this perturbation
to the steady state (3.80), yields the total height which is illustrated in Figure 3.4 with
a contour separation of 0.05. This figure demonstrates how the wedge front initially
becomes unstable, with plumes forming on the down sloping side.

Plotting the pressure field (3.101) at ¢ = 0 for the same parameters as before, at
the bottom, middle and top of the upper layer, gives rise to Figures 3.5, 3.6 and 3.7,
respectively. These three plots are qualitatively similar, with the only difference being
that the range of contours decreases with height. The contour intervals are, 0.004, 0.002
and 0.001 respectively.

Comparing Figure 3.3 with Figures 3.5, 3.6 and 3.7 demonstrates that the perturba-
tion height is shifted in the positive z direction, the shift angle being 1.38 radians. This
is important since one of the necessary conditions for baroclinic instability to occur is
that there is a phase shift between wave fields of the two layers in the direction of its
motion (Cushman-Roisin, 1994), which is indeed satisfied.
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Figure 3.2, Growth Rates
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Perturbation Height Field
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Figure 3.3, Linear stability results for the simple wedge front.
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Total Height Field
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Figure 3.4, Linear stability results for the simple wedge front.






Pressure field at z=-0.5
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Figure 3.6, Linear stability results for the simple wedge front.
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Pressure field at z=0.0
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Chapter 4

Hamiltonian Formalism

The origin of Hamiltonian Formalism lies within classical particle mechanics. To see
how this structure can be exploited in order to better understand the system, the reader
is referred to Goldstein (1980). The extension from discrete systems to continuous ones,
as arise in GFD, is a relatively recent event.

The three-dimensional Euler equations for compressible stratified fluids in their con-
servative forms have been shown to be Hamiltonian (Morrison & Greene, 1980). This is
significant since this is the basis system through which virtually all GFD models are de-
rived from. When approximating the Euler equations it would be desirable to maintain
this Hamiltonian structure, due to the wealth of information that is derivable from it.
However, when doing asymptotic expansions, there is no guarantee that this will occur.
Lorenz (1967) found that making the hydrostatic approximation of the Euler equations
on a sphere, meant the loss of the conservation of angular momentum, which implies
that the Hamiltonian structure itself is violated. In order to salvage the approximation,
it was necessary to introduce new terms into the equations so that the conservation law
could be maintained.

It will be shown that the model being discussed in this thesis is indeed Hamiltonian.
This structure will then be exploited to obtain conserved quantities due to symmetries
present in the system. Then stability criteria for steady solutions with respect to in-
finitesimal perturbations, which upon simplification reduce to the conditions obtained
in the linear stability analysis. As well, stability conditions will be found for finite
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amplitude perturbations that guarantee nonlinear stability.

4.1 Definition of the Hamiltonian structure

For a discrete system the equations of motion are ordinary differential equations, whereas
for continuous systems, such as with fluids, partial differential equations are what gov-
ern the motion. A system of n partial differential equations can be written abstractly

as
¥(q, 9,,8) =0, (4.1)

where q = (q1(x, ), ..., ¢a(x,))7, is & column vector that depends on time ¢ and m
independent spatial variables x = (z;, ..., ), all contained within a region 2 C IR™
that could have a boundary denoted by 8Q (Swaters, 1993b).

For a system to be Hamiltonian, there are three criteria that must be met (Shepherd,
1994 & Swaters, 1993b). The first is that there must be a functional H. (q) that is
conserved with respect to time, that is called the Hamiltonian. The second requires
there to be a matrix J of differential operators such that the equations of motion (4.1),

can be written as

oH
Qt = J'El‘. (4.2)

The term § H/6q denotes the vector variational, or Euler-Lagrange, derivative of H with
respect to q, as defined in Gelfand (1963).
The third and final criteria is that the bracket, defined with respect to the appro-

priate inner product (*;, *2), is given by

§F JG>’ (43)

[F,G]= <E,J§a

for arbitrary smooth functionals F and G of q. This bracket satisfies the four properties

of being skew-symmetric or (anticommutative)

[F,Gl=~[G, F], (4.4)
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bilinear
[0F + 8G, H] = a[F, H| + B[G, H], (4.5)

a derivation
[FG, H]=F[G, H} +[F, H)G, (4.6)

and finally, satisfies the Jacobi identity
[F, (G, H]| +[G, [H, F]) + [H, [F,G]] = 0, (4.7)

where Q is another arbitrary smooth functional of q and a and 8 are constants.

It should be noted that a fifth condition is usually listed as well, that being self-
commutation. However, since this follows directly from skew-symmetry, it is not neces-
sary to prove it separately. If a bracket satisfies these four properties, it has the effect of
making the space of functionals into a Lie Algebra and (4.3) is called a Poisson bracket
(Arnol’d, 1978). The classical example of an operator that satisfies these properties is
the Jacobian, as has been proven in Goldstein (1980). Knowing this, these properties
of the Jacobian will be applied without proof, as has already been done.

If the matrix J is nonsingular then the system is called invertible, but if J is singular,
as happens when dealing with continuous systems, it is called noninvertible. If the
system is noninvertible, this implies that there can exist nontrivial functionals C, that
satisfy the equation

6C

I5a =0, (4.8)

which are called Casimirs. They form the kernel of the J matrix and are important in
establishing a variational principle which is essential in obtaining stability theorems.
For any Hamiltonian system, it is known (e.g., Shepherd, 1994) that (4.2) is equiv-

alent to the equation

q = [qv H] . (4.9)

Hence, instead of proving that the equations of motion follow from (4.2), it could be
proven that (4.9) results from the equations of motion. Within the Hamiltonian frame-
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work, (4.2) can also be used to prove the following equation that yields an expression
of the total derivative of a functional (Shepherd, 1994),

& = (ra), (4.10)

for any admissible functional F.

4.2 Discrete Hamiltonian Systems

It is insightful to consider the Hamiltonian for a discrete system since it gives a physi-
cal interpretation of this quantity. As well, it is useful in understanding how ideas are
extended from an invertible to a noninvertible system. The definition of the Hamilto-
nian for a discrete system is the same as that for the continuous system, except that
the functionals must all be replaced by functions, and the variational derivatives are
exchanged with partial derivatives.

For a system of N particles, each of mass m; and position q;, in three-dimensional
space for ¢ = 1,..., N, the Hamiltonian function is defined to be the sum of the kinetic
and potential energies of the system. Assuming that the potential energy V, is only a

function of the position, the Hamiltonian is

N
sz'z_ﬂll;'{'-v(ql)"'a%)’ (4'11)

=1

where the generalized coordinates q; are the positions of the particles in three-dimensional
space and the generalized momenta are defined to be

P; = m;X;. (4.12)

The equations of motion can then be written in symplectic form (Goldstein, 1980),

du oH
-a? = ME;, (4.13)
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where u = (q, ...,qu, P}, ---Pn) and

0 I
M= , (4.14)
~-I 0
where [ is the IV x N identity matrix. This Hamiltonian system is invertible with phase

space of dimension 2N, which is finite for any number of particles. Writing out (4.13)

in component form gives

. OH p; i 8H 8V
§=ot =B = e = ot (4.15)

op: m;' P 8q;  9q;’

having computed the partial derivatives of H.
To verify that the Hamiltonian is a conserved quantity it is necessary to find the

total derivative of H with respect to time and then substitute in (4.15), as is done below

dH (. V.,
= Z(Pipi+b;jqz)

= 0. (4.16)

This proves the first requirement, where the second is shown by considering (4.15). The
first equation is simply a restatement of (4.12), which when substituted into the second

yields the equations of motion, which are

v
mG; = —_ 4.17
T dq; ( )

as can be confirmed in Arnol'd (1978). The bracket for this problem is

af\T_ 8
.o = (52) M52
-1 99 _ 5] 25 (4.18)

< 08q; 9p; Ip; dq;’
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The proof that this satisfies the required algebraic properties is presented in Goldstein
(1980), and hence will be omitted.

Therefore, any system of particles in such a potential field is proven to be Hamilto-
nian. Now that we have seen the outlines of a proof of the Hamiltonian structure for

the discrete case, it is possible to extend the same ideas for a continuous system.

4.3 Hamiltonian structure for our Model

The geometry to be considered within this chapter is that of a periodic channel as in
Chapter 3, see (3.1). Because of this geometry certain horizontal boundary conditions
arise. The first is that there cannot be any normal flow through the channel walls.
The second states that all the variables and their derivatives take on equal values at

Z = —ZIpg, TR, due to the fact that these positions are coincident. These conditions can

be written as
pz=h;=0 on y=0,L, (4.19)

{orhtomzy ={Prh}oe sy (4.20)

where the curly bracket denotes that not only ¢ and h are periodic, but all of their

derivatives as well. The third condition is that circulation is conserved along each

channel wall, as in (3.5),

d [ dr =2 [*° dz =0 42
d—t/_zR‘Pyly:L —a't‘/_zR‘Pylyﬂ =0. (4.21)

In order to derive an expression of the horizontal integral of the Jacobian of two

functions, we rewrite the expression as

/./n,, o(f,9) dzdy = //nn V-(g9es x V) dzdy
= fmn (9e3 x Vf) -nds, (4.22)

using the identity
9(f,9) =V-(ge3 x V), (4.23)
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and the divergence theorem. The domain in consideration demands that the boundary

integral in (4.22) takes the form

J[20.9) doty= [ filesn ~ 0fiheer

Qn
ZR
+ /_ o 9fzly—r ~ [9fz),—0 dz. (4.24)
The first two boundary terms cancel by periodicity in the channel, where it then follows
that
[[ot9 say=0 ¥ fo=0emy=o,r (4.25)
Qn

since this forces the remaining terms in (4.24) to vanish individually. Since in our system
both the state variables ¢ and A satisfy the boundary conditions mentioned above, this
condition will be used repeatedly in the calculations to follow.

Any mean state that is a solution to the system of equations, must satisfy (4.19),
(4.20) and (4.21). If we consider perturbations being superimposed on the mean flow,
the sum of the two, must also satisfy these boundary conditions. Since each of the
conditions are linear, this implies that the perturbations themselves satisfy the same

equations
Spr =6hz =0 on y=0,L, (4.26)

{6‘19! 6h}z=zR = {5‘pv 6”'}::—_——::3 ' (4'27)

in addition to the conservation of circulation along each channel wall.

In the discrete case the Hamiltonian function was nothing more than the total energy
of the system. It has been found in Holm et al. (1985) that the Hamiltonian functional
for the continuously stratified QG equations, is the integral of the total energy. This
quantity must be contained in our Hamiltonian since the upper fluid in our model is
QG. However, another term needs to be introduced because of the lower layer and the
potential energy associated with it. This is done by introducing the square of the sum of
the bottom topography and the lower layer height. Since we require that this potential

energy term be zero if the height of the lower layer is zero, it is necessary to subtract
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the square of the bottom topography term (Swaters, 1993b). As well, we must include
circulation terms for each channel wall, since this enables us to establish a variational
principle.

The Hamiltonian is then chosen to be

H= g/ﬂ//mp -V + (. /N)? dzdydz

+5 [[ 0+ ho/)? ~ (hp/)? dzdy
Qp

R R
+ f {Fo f Pylyn dz— Ty f Pulyt dx}dz, (4.28)
-1 -ZR —-ZR

with
=8¢+ (¢:/N?) , @ =il,g,
B =zl +N*(h+hp/p), q@=h, (4.29)
and
Fe=9¢l=r, To=¢l,, (4.30)

where I'; and g are the functions of z that v takes on y = L and 0, respectively on
account of (4.19). The Poisson bracket is defined to be

1= ] £0(22.0) st [ 0522 (2 0)|
()], e [ ()

where F' and G are arbitrary smooth functionals. This bracket requires that the co-
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symplectic form is

[ 8(%, q) 0 0 0
Je 0 —NZ2(0) 3 (*,q) 0 0 ’ (4.32)
0 0 N2(-1)3(+,43) 0
] 0 0 0 -d (*1 94) |

where the inner product is the integral over the volume Q for the first component and
the other three integrals are over the horizontal region Q. Equation (4.29) allows the
governing equations to be written compactly as

91 + 0 (up,q1) =0, (4.33)

@2, + 9 (ppl,0,92) =0, (4.34)

g3, +9 (”ﬁalz:—l ,Qs) =0, (4.35)
9, + 8 (pel,_y + h5rga) =0, (4.36)

having used the self~commutation property of the Jacobian.
Using variational calculus, as explained in (Gelfand, 1963), we find the variation of

the Hamiltonian to be

SH = p / / L Vo - Vég + N2, 60, dzdydz + / /Q (h + ha/p) 6h dzdy
H

R IR
+I»l/01f [popy],—o dz ‘/ (o], dzdz
—1J=Tr —~ZR

= p / / V-(pVép) — pAbp — (&PZ/N 2 )z dzdydz

+u // N7%8p,]"""  +(h+hp/u)6h dzdy

TR
+u /0 To f 6yl g dz Ty, / Spyl,_p, dzdz (4.37)
-1 -ZR -ZR

where integration by parts and the identity (3.29) have been used. Rewriting the first

term on the right-hand side by applying the divergence theorem and then cancelling
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terms due to periodicity gives,

/ / / V- (pVp) drdydz = /0 }( V60 - n dsdz
A ~1J00x

R R
=/0 FL/1 &pyly:L d’t—l—‘o/'t 6‘Pllly=0 dzdz, (438)
-1 -ZTR -TR

by use of (4.30). Note that the no normal flow boundary condition prevents ¢ from
depending on z on the channel walls which allows for I'; and Cg to be brought in front
of the z integral.

Substituting (4.38) into (4.37) and rewriting terms using (4.33) to (4.36) yields

6H = /// (—up) 8qidzdydz + // [/LN'ché'qQ]z:O dzdy
Q Qy

~ [[ [N 2050 __ ~(up + uh + hp) bqsdady, (4.39)
Qy

after cleverly adding zero in order that we can write 8g3. Hence, we conclude that the

variational derivatives are

6H SH N
e I ol L N
%qlis =[N, ;-Z = (1laey + b+ hp). (4.40)

It is then possible to begin proving that this is indeed an appropriate Hamiltonian

Structure.

4.3.1 H is a conserved quantity

To show that H is a conserved quantity, we take the time derivative of the Hamiltonian

then follow the same steps that were taken when calculating the variational derivative,

dH

i #///ﬂvso-vcpz+N‘2¢zson alzalydz+u//n (h+ hp/u)he dzdy
H
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R R
t [ 7 oty da - [ o, dods
-1J-zp —ZR
- 2 )
= —pu / / /ﬂ <PA<pt+so(<pzz/N )zdxdydz +u /: }{m” ¢Vgr - n dsdz

z=0
+ / [N 200"+ (h+ha/u) b, dody
Qu z=-1

R R
+ﬂ/0 Fof ‘Pytl,,:o dx—FLf ‘thly=1, dzdz. (4.41)
-1 —-zp —-zR

Equation (4.21) enables us to eliminate the last two terms since each is a conserved
quantity. The contour integral directly above is identically zero since it can be decom-
posed into four parts. The first two cancel each other out by periodicity, whereas the
remaining two are each zero, as has just been stated,

, L
v N de = /o / - . d
-1 fao" Y$Vye-n Z 1 { o [‘P‘Pzt]nzg [(P(pz—g]:_ R {7}

‘/:‘: [‘P‘Pyt]y=[, - [‘P‘th]ya) d:z}
= (. (4.42)

Substituting (2.163) through to (2.165) and then rewriting terms using (4.29) pro-

/ / / poqr,dzdydz + / / N‘2#<pqm _odzdy

_/ [N—2;I,¢Q2(]z=_l - (lu' “’Iz—_—.—l + ph + hB) Q‘hdzdy- (4-43)

duces

Applying the governing equations (4.33) to (4.36), and grouping terms implies

dt 2///3 (“‘P "11 dzdyd "//3 (up/N)? qz) dzdy

+3 / o (/NP @) __ /f o((wp+ho) q0) __ dody,  (4.44)

having used the fact that the Jacobian self-commutes. Clearly, each of these terms is

92



equal to zero by (4.25) and (4.19), and therefore,

dH
— =0, (4.45)

which ensures that H is an invariant of the dynamics with respect to time.

4.3.2 Governing equation derivation

An essential component of the Hamiltonian structure is that the equations of motion are
contained within the framework. This is demonstrated by showing that (4.33) through
to (4.36) is equivalent to (4.2). Substituting (4.40) and (4.32) into (4.2) yields this
result easily. As has already been stated, this is equivalent to saying that the governing
equations imply that (4.9) is true, which is what will be proven component wise. The

first component upon expanding takes the form

. B = [[[ 32 (30a) dodyas (4.46)
4 éqy \éq1

Care must be taken in the interpretation of 8¢,/5¢;.

If we write ¢; as the functional
a0 = [[[6x-nam@a (447)
0
where §(x — X) is the Kronecker delta function centered at x = %. It follows that

8gi (x) = / / 8 (x — %) 6q; (%) d, (4.48)
5

and by the definition of the variational derivative, we conclude that

ogi _ -
5y = §(x-x). (4.49)

For ¢ = 1, the right-hand side of the above equation is the product of the delta functions

of z, y and z, whereas for i = 2,3,4, it is only a product of delta functions of £ and y.
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Substituting (4.49) into (4.46), and denoting the variables of integration with over-
bars yields,

B = — [[[ 5 ~2)64~9)6(~2)0(up,a1) dzagaz
= —a(tu")o)ql)
= 4qi,, (4.50)

where (4.33) has been used. When the Jacobian appears under the integral sign it is
a function of the overbared variables whereas when it does not, it is a function of the
regular variables.

Proceeding analogously for the other three equations gives,

(22, H] = -/Qﬁé(r—i)ﬂy—ﬂ) [N23 (#N‘Z%czz)]z:o dZdy
= —-0(upl,—0,92)
= @ (4.51)
as well
@t = -~ [[ 6@-26w-9) [N (uNp0)] __ asag
= -0 (pploer m)
= @, (4.52)
and finally
ol = - [ 8(z=2)6(y~) [0 (ke + b, )], dzdg
= -0 (#¢Iz=_1 + hpg, q4)
= Q4. (4.53)

Where again, the self-commutation of the Jacobian has been implemented along with

(4.34) to (4.36). The second requirement of the Hamiltonian is then fulfilled.
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Incidently, this also establishes (4.10), which then gives us another way of proving
the conservation property of the Hamiltonian. Since it must be an admissible functional

it must satisfy the equation

dH =
I=[H’H]=O’ (4.54)

by the self-commutation law of the Poisson bracket.

4.3.3 Proof of the Algebraic properties

To prove the algebraic properties of the Poisson bracket requires making certain restric-
tions on the admissible functionals (McIntyre & Shepherd, 1987). The first is that they
are smooth. The second is that each functional must be expressible in the following

form

F=[[] 1) ddyaz + [f s@.a5.00) dzay, (4.55)
N Qn

for some functions f and g. The third is that the functionals are either Casimirs or

satisfy the conditions that

8 (6F
. (6—%) =0 on y=0,L, (4.56)
6F } { 6F }
—_— ={— R 4.57
{6qi z=zpg g r=—zpg ( )

as z ranges from 1 to 4. Both of these conditions are inspired by the fact that the
functionals are really ‘functionals of state’ (McIntyre & Shepherd, 1987) in that they
are completely determined by the state of the system. It has been shown that the
entire system reduces to solving for two variables v and h, each of which satisfy these
two conditions listed because of the channel domain. Therefore, since the functionals
depend only on variables that satisfy these conditions, they themselves, should satisfy
the same conditions.

Before the algebraic properties are proven, an identity needs to be established,

/A A8(B,C) dzdy = //Q 8(B, AC) — 8(B, A) C dzdy
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= //Q ~8(B, A) C dzdy

= / [ 8(4,B)C dady, (4.58)

where A, B and C are functions that satisfy (4.56) and (4.57). The first step used the
property of the Jacobian being a derivation, the second (4.23) and (4.56) and the third
the anti-symmetric property of the Jacobian. As well, certain weight functions will be

defined in order that summation notation can be introduced,
wy =1 wy= ~N? (0) y Wy = N2 (-1), wg=-1. (4.59)

To prove that our bracket is indeed a Poisson bracket relies on the fact that the
Jacobian itself is a Poisson bracket, and the properties of the variational derivative.
We begin by proving anticommutation. Applying the anti-symmetry property of the
Jacobian, followed by (4.58), yields

o G]“'/// O d”dyd"z""// 52 (157 ) dod
o) - [ ()

=—[G,F]. (4.60)

'To prove bilinearity, it is sufficient to prove linearity in one component because of
the skew-symmetry property that has already been proven. Expanding the left-hand
side of (4.5),

[oF + G, H] = ///n %{Zﬁ@a(g—g,m) dzdydz

4
: §(aF+fG), (6H
¥ :2=; e /-/QH Ta (6%_ 1‘]:) dzdy, (4.61)
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then using the fact that the variational derivative is linear

é(eF + BG) 6F
= 56—% (4.62)

allows each integral can be separated into two different terms. Finally, factoring the
constants a and 3 in front of the integral, enables the above two equations to be written

as
[eF + G, H]| = a[F, H] + 8[G, H]. (4.63)

The derivation property is what is more commonly referred to as the product rule.
It insures that the differential operators have a nice enough structure to do algebraic

manipulations. Writing out the left-hand side of (4.6)

[FG,H] = / / / 6(61; 1G) ,ql) dzdydz

+§ / / 6(F G)a( ,-> dzdy, (4.64)

and expanding the variational derivative term, since it is a derivation, yields

5(FG) _ _§G 6F _
Pl a’ (465)

Since every functional is in the form (4.55), they have no dependency on z, y or z, and

hence can be factored our of the integral signs. Doing this enables us to conclude that
[FG,H] = F[G,H| + [F, H|G. (4.66)

The final property is the Jacobi identity, which is the only one that is nontrivial to

prove, as is usually the case. It can be written in the following form,
([F,G], H] + cyc =0, (4.67)

where cyc represents the cyclic terms, as in Scinocca & Shepherd (1992). The bracket
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(4.31), can be rewritten using (4.58) and (4.59) as

1= fff 00 (5 ) s (8
Q

The first step is to find the variation of [F,G],

5[F,G] = ///51J(§‘? gg)dzdydw}://wﬁ J(ZP: gg)dzdy

i 8F 5G
+ // T[5> 25, 28 dzdyd
/ / o (;2:2 Sgiba1 " gy 6q Z&z,ﬁq ves

5G 5F 52G

=2

which can be rewritten through (4.58) and the skew-symmetry of the Jacobian, as
6F 6G 8%F _(6G 82G _ (6F
o [ o0 (1 (2242) + (2 0) - 595 (8.0 e
£ 6] / a ( bq."6q1) T 8t " \bqr’ ") T 52 \5g ' ves
+Z// 6] ‘SF 6G)da:d
=2

4 4 9 0
6°F 6G 6°G 6F
+§J_22.//'w15q: (6 6Q:J (6_%'_191') - 6Qj6qu (%, q;)) dzdy, (4.70)

where ¢ and j have been interchanged in the line directly above. From this equation we

can see what the variational derivatives of the bracket are, for i = 2,3,4,

UG _ (80 56), £E, (56 ) #O,(5F )
sq 8q1’ 6qy 6¢2 " \6q,' 52 " \5q,' )"

§[F,G) —wis (F 50)
6q,- - 6 5 !

82G _(6F
+J§_:2[ (5%6(1: (6% '>_mJ(5E’qf')>}° (4.71)
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Now that we have the variational derivatives of the bracket, we can begin to write out
the left-hand side of the Jacobi identity using (4.31), then substituting in the variational
derivatives,

[[F,G], H] + cye

SIFG], (5H 5[F G] SH
/// 5q ( "h) dzdydz+2// (5% )drdy+cyc
§F 6G) SH ) §F 6G
= a1 ) dzdydz + / / wzJ( ) ‘-) dzd
/// (541 gy sq1 « yaz Z bq;’ bq; g 5q:'? Y
8eF §2G _ (6F SH
+/Jf o)~ 577 (30)| 7 (o) dadye
[&n o’ ®) g \5q 5q V)

52F 6H
+ZZW:WJ .//6q]6q; (5q1 ) J 6 1‘11) d:z:dy

=2 j=2

82G 6H
- i i J dzdy + . 4.72
ZZ“’“”// say” (50%) (541 ) vty (4.72)

=2 j=2
The ¢ and j in the second last term in (4.72) have been interchanged. To see that

the right-hand side of the equation above does vanish it is necessary to bring forth two

identities. The first is that the Jacobian itself satisfies the Jacobi identity
J(A,J(B,C))+cyc=0. (4.73)

This implies that the first four terms on the right-hand side of (4.72) vanish, since they
are each being added to their cyclic terms, which together vanish. Secondly, because

of the fact that variational derivatives commute, due to the functionals being smooth,
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another identity can be obtained,

T (Eoa) s (2 g) - 2S5 (25, ) s (22 )+ e
6q¢6qj 5(]," * 6qj' 7 6q_,-6q,- aqqu_-, 5(]."qt &y

_62FJ§§_)J6_H_ 62GJ5_F_.J5H.)
—6qi6q’- 6q‘_)q1 6qj1q] aqiaqi 5qj1q.1 6qi,Qg
682G oH oF 82H 6G SF

§82H _ (6F 6G 8F _(6H 6G
557 (00%) (5005 ) = et (2205 ) T (22, 4), .
+5q:'6q,'J 5qi’q) (&y q’) 69;64: (6‘]]‘ q’) (64.- q) (4.74)

where each term on the right-hand sides cancels with another to give that

82F G 6H 8%G 6F 6H
J (" ) i) J W45 ) J 145 J( ' i) +cyc=0. 4.75
5qidq;” \og:' 7 (6«1,- "’) 8q;54: (6«1,- ‘1’) g ) T (4.75)

Therefore, the second line on the right-hand side in (4.72) vanishes by itself, and the
third and fourth together vanish. Hence we can conclude that the Jacobi identity is
satisfied, and moreover that the proposed Hamiltonian and Poisson bracket do indeed

form a Hamiltonian system.

4.4 Invariances

There are two types of invariances that may arise in Hamiltonian systems, the first

are Casimirs. To prove these are invariant, we calculate the time derivative of these

functionals,

dC
= -[ch]
- (3 5y
0q " 4q
= 0, (4.76)
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by using (4.10), the skew-symmetry property of the bracket, (4.3), and finally the defi-
nition of a Casimir (4.8). Therefore, Casimirs are invariants with respect to time.

Substituting (4.32) into the definition of a Casimir (4.8) implies
6C .
a (BZ, q,-) =0 for i=1,..,4. (4.77)
To solve this, we write the Jacobian as
6C
ex- (Va_q x Vq.-) =0. (4.78)

If 2 = 2,3,4, it is known that each of the occurring functions, 6C/éq; and g; are only
functions of z and y. Hence, the gradient of each function yields a vector that lies in
the (z,y) plane, where taking the cross product of these two then results in a vector
pointing in the z direction. Therefore, the only way that the quantity in (4.78) can
be zero is if the bracket itself is zero. Assuming both vectors are non-zero requires
that the normal vectors of the level curves of 6C/6q; and ¢; are everywhere parallel
and therefore coincident, which allows us to deduce that the two variables have a direct
functional relationship. The situation where i =1, is slightly more complicated in that
each function now has z dependency. For notational simplicity, this z dependency of
Fiwill be suppressed. Hence, the Casimirs must all be of the form

= [[[ (@) dzdyaz + J[#:@) +85(@) + (@) azay, (@79
Q Qy

where the ®; are the Casimir densities. Note that since there are nontrivial functions
of this form, this proves that the symplectic matrix is noninvertible.

The second type of conserved quantity is obtainable from Noether’s theorem. This
theorem connects conserved quantities with a symmetry properties in the Hamiltonian

structure. Taken directly form Shepherd (1990), it states the following.

Theorem 1 (Noether): If H is invariant under translations in (some variable) £,
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and if the functional I satisfies

then I is an invariant in time.

For example, if £ is chosen to be time, then it can be shown that the associated

conserved functional is the Hamiltonian itself, since

§(=I)
éq

J6H

q = E =J (4.81)

1

having combined (4.2) with (4.80), which lets us conclude that H = —J. Therefore, the
invariance of H with time is connected to the conservation of H itself.

Invariances with respect to Cartesian coordinates gives rise to conservation of linear
momentum, whereas those with respect to polar coordinates correspond to conservation
of angular momentum. For our purposes it is only necessary to find the conserved
quantity associated with the symmetry with respect to z, which is clearly present. The

equations that need to be solved, written component wise, are
61 .
8 Wisq %) = %= O(y,q) for i=1,..,4. (4.82)

Choosing the variational derivatives as follows guarantees that the above equation is

satisfied,

61 Y .
5—41' = E for i=1,..,4. (4.83)

Therefore, the impulse functional is written as

4
1
I= ///yqld.zdydz+zaj//yqidzdy. (4.84)
Q =2 t QH

Re-writing this expression in terms of the dynamic pressure in the upper layer and the

height of the lower layer and grouping terms results in

2=0
I= ///yAcp +y (N_2<Pz)z dzdydz + //yhg/u -y [N'2gaz]z__1 dzdy. (4.85)
Q g
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Using the Fundamental Theorem of calculus to rewrite the terms evaluated at z — 0 and
z = —1, then cancelling these with terms that arise from the volume integral through

integration by parts, yields

I= / / / yAp dzdydz + / / yhg/p dzdy, (4.86)
Q Qy

where the second integral is a constant that does not depend on the dynamic variables.

4.5 Variational principle

Recall that in the discrete system, the Hamiltonian was invertible. To find the steady
state equations, the left-hand side of (4.2) is set equal to zero. Then using the fact that

the symplectic matrix is nonsingular, i.e. J~! exists, the equation reduces to solving

22 =, (4.87)

where it is understood that q is the vector that contains the g; 's as components. The
significance of this is that the steady state solutions satisfy the first-order conditions
for an extrema of the Hamiltonian. It is for this reason that stability theorems can be
established for this type of system, given that conditions can be found where the second
variation of the Hamiltonian is sign definite.

However, in the noninvertible case the same conclusions cannot be made since the
kernel space is no longer trivial. This is why it is necessary to consider, not the Hamil-
tonian, but a constrained Hamiltonian. This functional is defined to be the sum of the
Hamiltonian and a Casimir, where the Casimirs are chosen to ensure that the steady
state solutions satisfy the first-order conditions for an extrema of the Constrained Hamil-
tonian.

This can be interpreted in another way. It means that the steady state solutions are
possible conditional extrema of H with the constraint that C = constant (Shepherd,
1994). This is analogous to what is done in the method of Lagrange Multipliers, where
a function needs to be optimized, with the added difficulty that it must lie within some
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constraining surface.

The method stated above can also be applied to steadily travelling solutions in
exactly the same manner, where the steady state situation is a special case. Hence,
instead of dealing with these two cases separately, it will only be done for the more

general steadily travelling solutions.
To obtain equations of motion for the steadily travelling solutions along the channel

at speed ¢, we assume solutions of the form
P =¢@s (I ~-d,y, Z) ) (4'88)

h=h,(z—ct,y), (4.89)

where the s subscript denotes that this is a steadily travelling solution. Setting ¢ =0

recovers the steady state situation.

Given this transformation, the time derivatives acting on ¢ and h take the form
o =~ r =08 (Cy, *) ) (4’90)

which when substituted into (4.33) through to (4.36) yields

8 (pps +cy,q1s) =0, (4.91)

3 (1pal,—0 + ¢y, 925) = 0, (4.92)

a (#Soslz:—l + Cy7 QSa) = 01 (4.93)

9 (u¢alz=_1 +cy +hp, q«) =0, (4.94)

where the s subscript denotes that the functions are being evaluated at ¢, and h,.
Solving this system as was done in (4.77), introduces four steadily travelling functions

Fi,fori=1,..,4,
wps +cy = F (q1s) = Fia, (4.95)

BPsl,—0 + cy = Fa (q25) = Fs, (4.96)
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Bpal,—_y + cy = F3 (qas) = F3s, (4.97)
HPal=—y +cy + hp = F3 (q2s) = Fyo. (4.98)

Because the F; functions specify the relation of the variables s and h, with the gener-
alized coordinates, they completely describe the state of the system. This signifies that
any steadily travelling solution is determined by these state functions.

As has been previously stated, for steady state solutions it is necessary to con-
sider the constrained Hamiltonian which is the sum of the Hamiltonian and a Casimir.
However, for steadily travelling solutions this is not sufficient (Shepherd, 1994). It is
necessary to introduce the conservation of mass through using the Impulse functional

as follows
H=H —-cl+C. (4.99)

Computing the variational derivative of this functional using (4.39), (4.79) and (4.84)
produces

5H = /,,/ [ (@~ (o + ) b0y dadyaz + Q/H [ (2 + N? (up +cw) __ 622 dzdy

+ / / (‘Pé - N7 (pp + cy))z:_l 8g34 dzdy
Qy

+ / / (&, + (e + ph + cy + hi)),__, 6q¢ drdy. (4.100)
Qy

'To make the steadily travelling solutions an extrema of H (i.e. 6H =0 for all pertur-

bations), it is necessary to choose the Casimir densities such that

P} (q15) = pps + cy = Fi (qua), (4.101)

2(q2s) =~ [N"2 (s + cy)]z o= ~N72(0) F5(qas) (4.102)

3 (@) = [N 2 (s + Cy)]z=_1 =N"2(<1) F5(gss), (4.103)

@ (qus) = — (s + phy + cy + hgl,_q = ~F4 (qas) — Hus, (4.104)
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having substituted in (4.95) through to (4.98).

To find explicit solutions we integrate each equation from 0 to g; for i = 1,2,4. The
i = 3 case needs to be integrated from N2hg/u to g3. This is because when p and h
both approach 0, g3 — N2?hpg/u, and hence for the integral to vanish as this limit is
taken, we must have this quantity as being the lower bound of integration. The explicit

expressions for the Casimir densities are then

& = /v 'R () dr, (4.105)
(1]
2
By = -N"2(0) / Fy (7) dr, (4.106)
(1]
q3
O3 = N2 (1) / Fs (r)dr, (4.107)
N2hg/u
q4 7 2
By = — / Fu(r)dr -5, (4.108)
0

which then makes the steadily travelling solutions an extrema of the functional H.
Therefore, we have established a variational principle for the steadily travelling solutions

travelling in the z direction.

4.6 Formal stability

Formal stability is in reference to infinitesimal perturbations. It requires that the second
variation of the constrained Hamiltonian, evaluated at the steadily travelling solution,
is either positive or negative definite (Holm ef al., 1985). In the finite dimensional
case with a system of particles, this also implies nonlinear stability in the sense of Lia-
punov (Drazin & Reid, 1981) However, this statement does not hold true for continuous
systems.

When dealing with finite dimensional systems, it is well known that stability with
respect to one norm implies stability with respect to all other norms. In the infinite
dimensional case this equivalence is not present due to the loss of compactness (Gelfand,
1963). This is why when proving stability it is important what norm is chosen. We

choose our norms so that they are connected with energy, since we associate instability
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with energy growth.

Andrews’ Theorem (Andrews, 1984) implies that there are no steadily-travelling
isolated solutions which are formally stable. Hence, in order to focus our attention on
steady state solutions, in this section we set ¢ = 0 and assume that the 0 subscript
denotes the functions evaluated at that steady states.

To begin proving formal stability, it is necessary to find the second variation of the
constrained Hamiltonian. Taking the variational derivative of (4.100) produces

on= [f [ @ - o) 21 + 9% (601)* - ubipsay dzdyaz
QN

¥ [f (20 + N-2up) _ 6%+ (60)* + (N~2usp) __ban dzdy
+ / / ('I"s -N '2u<p)z= % + D7 (6g3)% - (N 2#5<p) | 693 dzdy
Qpy
+// (P4 + (pp + ph + hi)),__, 6%, dzdy
Q

+ / / ] (604)? + (ubip + pubh),__, 64y dedy. (4.109)
Qu

Evaluating this equation at the steady state implies that four of the terms vanish
by (4.101) to (4.104). Integrating the resultant by parts with respect to z, applying
Green’s theorem, (4.25) along with the usual boundary conditions, yields

&M (qo) = / / / 7 (V6¢-V5¢+(5¢Z/N)2) + @Yy (6q1)? dzdydz
Q

+ [ @0 (6)? + ¥t (603)" + (8l + 1) (800)? dizdy. (4.110)

The quantity above is a sum of numerous terms, each of which have an interpretation.
The first two terms form the total energy of the upper fluid, and is a sum of the distur-
bance kinetic energy and the baroclinic stretching term, which is due to the available

potential energy contained in the slope-water. The next term is the disturbance enstro-
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phy save for the presence of a Casimir density function. The final three terms are all
disturbance available potential energies, each with a Casimir density present as well.
The first two are due to the horizontal boundaries at the top and bottom respectively,
whereas the final one is due to the existence of the lower layer and bottom topography.

The second variation of the Hamiltonian is an invariant of the linear dynamics. It
is a good choice for a norm since firstly, each of its terms appears quadratically, and

secondly, it is inherently associated with the energy of the system.

4.6.1 Invariance of the Second Variation

The equations of motion for the steady state are (4.91) through to (4.94) with ¢ = 0.
To find the equations that govern the perturbed state, it is necessary to substitute the

following perturbed state,
# = o+ bp, (4.111)

h = ho + 6k, (4.112)

into the nonlinear equations (4.33) to (4.36). Doing so, while ignoring the nonlinear
terms due to their small magnitudes, and utilizing the steady equations, yields

g1, + 8 (pbp, qi0) + 8 (upo, 6q1) = 0, (4.113)

Oqo, + O (1, q20) + 9 (upo,6¢2) =0 on 2=0, (4.114)
g3, + 3 (ubp, qag) + 8 (w0, 6¢3) =0 on z= —1, (4.115)
0q4, + 3 (1, qa0) + 8 (o + hp,8gs) =0 on z=—1. (4.116)

The last term in the first equation is rewritten as

0 (wpo,6q1) = 8 (Fio,bq1)
= 9 (Fioq10,6q1)
9 (—Flo%491, q10) , (4.117)
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by using (4.101) and skew-symmetry. The same simplification can be made on the other
three equations, which enables us to rewrite the linearized equations as

6q1, + 8 (1byp — Figbq1, q10) = 0, (4.118)

6q2, + 8 (udp — F30692,920) =0 on 2z=0, (4.119)
6qs, + 0 (ubp — F336q3,qa0) =0 on z=-—1, (4.120)
6qa, + 0 (udp — Fyobqe,q40) =0 on z=-—1. (4.121)

It can now be shown that the second variation of the constrained Hamiltonian is
an invariant with respect to the linear dynamics. We rewrite (4.110) in terms of the
steady state functions rather than the Casimirs, then differentiate with respect to time

to produce

4
dt

82 (qo) = 2u / / V6p - Vb + N™260:50,0 + 2F}oba16q1, + (Flo), (6q1)? dzdydz
Q
- [[2872(0) Frobambon, + (Fio), (22/ NV _g ity
Qy

+ / / 2N7%(~1) Fig8q38gs, + (F3p), (qa/N)?__, dzdy
Qu

- / / 2F 0694848, + (Flo), (8q4)? dzdy. (4.122)
Qu

Applying integration by parts with respect to z, Green’s theorem, (4.21) and recall-
ing (4.90), changes the above equation to

d
3527‘( (q0) = — / / / 2 (ubp — Figbq1) 6q1, dzdydz
[¢]

+ / / [2(N 2o + Fiaban) b2, /N?]_ day
Qy
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v TT -y

- [[ (2 (N2usp — Finsas) sa0/N7]__ atnay
Qy
+ / 2(ubp + Figbqs),__, 6qs, dzdy. (4.123)
Qy

Integrating by parts with respect to z and then using the periodicity of the functionals
yields
d
d—t‘527'f (qo) = -2 / / / (ubp — Flo6q1) 6q1, dzdydz
0

+2 / / [N 2 (ubp — F'zoéqz)L o ba2. dzdy
Qy

-2 / / [N =2 (ubp — Féo&ls)]z:_1 6q3, drdy
Qu

+2 / / (wép — Figb4s),__, 6qs,dzdy. (4.124)
Qy

Finally, substituting in the linearized equations (4.118) through to (4.121) produces

%627{ (90) = /r;//a ((”69" - F{o5‘11)2 ' 1110) dzdydz

—//3 (N'2 (nép — F’zo5Q2)2v920)z=0 dzdy
Qy

+ a(N-'-’ N6 — Flgbgs)’ . ) dzd
r-z/”] ( HOY 3OQ3) 30 Y

z=-1
- / / 8 ((ue — Figba0)? qu),___ dzdy =0. (4.125)
Qu

Each integral above vanishes because of the fact that each gio is independent of z

on the channel walls because of the no normal flow boundary conditions and hg(y)
combined with (4.25).
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4.6.2 Arnol'd’s First theorem

Arnol’d’s first theorem finds sufficient criteria for linear stability by finding conditions
that guarantee the second variation of the constrained Hamiltonian is positive definite.
Notice that the kinetic energy and baroclinic stretching terms are each positive definite
since they appear as squares with positive coefficients. The other four terms appear in
quadrature as well, but their coefficients are variable depending on the type of steady
state solution is under consideration. If the solution is such that the (—=1)*1Fh >0
for all 7, this guarantees that §2H is positive definite. This result is summarized in the

following theorem.

Theorem 2 The steady solutions po (z,y, z) and hg (z,y) as defined by (4.91) through
to (4.94) with ¢ = 0, are linearly stable in the sense of Liapunov with respect to the
perturbation norm ||6q|| = [6*H (qo)]% if the Casimir functions are chosen to be (4.105)
to (4.108) where the steady state functions, defined by (4.95) to (4.98) with c = 0, must
satisfy the conditions

(1) Fy>0 for i=1,...4, (4.126)

in the domain (z,y,z) € Q.

It is desirable to translate these conditions, for the steady state case, in terms of the

mean flow. Equation (4.126) becomes

uUo = Fio (AU + (N‘zUo‘)z) , (4.127)
pUo = F3o (Us,), (4.128)

uUo = Fio (Un, — N? (ha, + hs, /1)), (4.129)
nUp — hgv = on (-—hov) . (4.130)

Therefore, we can use to rewrite (4.126) as follows

Us
(AU + (N-2Uy,),)

20, (4.131)
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Up

_—_—— >
Uo
>0, 4.133
Vo, = N2 (ho, ¥ /i) > (4.133)
Uo— h
Fo= 28 5. (4.134)

ha,

For the special case where Uy = 0, where the internal barotropic and baroclinic

instabilities are filtered out, the conditions reduce to

ke, ho, <0, (4.135)

which is the same condition that was found in Chapter 3 for both the energetics and

normal mode analysis.

4.6.3 Poincaré inequality

Arnol’d’s second theorem establishes a different set of criteria for linear stability by
finding conditions that imply §2H (q,) is negative definite. This is more difficult because
the total energy of the upper fluid in (4.110) is positive definite. Therefore, what is
required, is to show that somehow the other terms are always more negative than this
term is positive. This can be done by obtaining a Poincaré inequality. The one used here
is the same as that for continuously stratified QG theory in Yongming et al. (1995).
They obtained the inequality by considering two separate eigenvalue problems. This
can more easily be done by considering one eigenvalue problem, which is what results
from multiplying their two systems together.
The eigenvalue problem to be considered is

(A6p + (N‘z&,oz)z) + Kbp =0, (4.136)
with boundary conditions

a26p, -~ Kép=0 on z=0, (4.137)
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azdbp, + Kép =0 on z= -1, (4.138)
é6p=0 on y=0, L. (4-139)

The positive constants a3, a3 and K are to be determined, and conditions (4.139) are
special cases by which the no normal flow conditions are satisfied along the channel
walls. Swaters (1993b) calls these ‘natural’ boundary conditions, since it is in the spirit
of variational calculus where the only variations (or perturbations) considered are those
that leave the boundary conditions unchanged. These specialized conditions are only
used in derived the eigenvalue problem hence only apply to Arnol'd’s second theorems.

Multiplying (4.136) by the term in brackets, integrating over the volume § then
applying integration by parts with respect to z and the divergence theorem along with
the appropriate boundary conditions yields the following equation

/ / / (a8 + (N260.) )’ dzdydz = « / / Vb - V6 + (62 /N)? dzdydz
(1] [t}

—x // (802/N2) _ + 53 (892/N?) __ drdy. (4.140)

Since the minimum eigenvalue is non-zero, we can divide through by « to obtain the
inequality
/ / / V6p - Vép + (6, /N)? drdydz < 2L / / / Pdzdydz

+// (b¢:/ N0+ 32 5 (602/N):__, dzdy, (4.141)

where a; is a constant to be determined and K must satisfy the equation

(23] _ 1
K~ mnr(K) (4.142)

The minimum eigenvalue is positive as will be shown in Appendix A. Moreover, it will

be proven that, for the above equation to be true, K must be strictly positive.
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4.6.4 Arnol’d’s second theorem

In deriving Arnol’d’s second theorem, it will be necessary to use the following algebraic

identity as was done in Swaters (1993b),

az? +b(z +9)* + e’ = (a +b) (z + By)? + (2B + ) 1%, (4.143)
where
b
A= a+b (4.144)

This is proven by expanding the left-hand side then completing the square

az? +b(z+y)’+c? = (a+b)z?+2bxy +(b+c)y?
= (a+)(2? +202zy) + (0 + )4
= (a+b) (z2+2ﬂzy)+(ﬁ2(a+b)+(aﬂ+c))y2
= (a+b)(z+By)’ + (aB +¢)y*. (4.145)

Applying the Poincaré inequality to (4.110) then using (4.143), gives an upper bound

on the second variation of the constrained Hamiltonian to be

#) < ] (% + Fo) (6)? daayas + ,,// (% - o) /)2 p oy
+ // H Goa/NYee + Fi S/ N)2__, ~ Fig (520 dzdy,
w0 < [[f (5 + Fo) Ga dadya + / [ (% - i) /g dmdy
+ / [ (3 + Bo) (60 +18%6m) /)" __ dzay,

+ Q/ / (Nq(’—;()a"“l - on> (604)? dzdy, (4.146)
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where
F3g
Y= . (4.147)
T+
Conditions on the steady state functions can now be found to ensure that 5§24 (qo) is
less than or equal to an expression that is negative definite, therefore it must be negative

definite as well.

Theorem 3 The steady solutions po (z,y,2) and hg (z, y) as defined by (4.91) through
to (4.94) with c = 0, are linearly stable in the sense of Liapunov with respect to the per-
turbation norm ||6q|| = [-6*H (qo)]% if the Casimir functions are chosen to be (4.105)
to (4.108) where the steady state functions, defined by (4.95) to (4.98) with ¢ = 0, must
satisfy the conditions

(-1)*1 R < -"“7"‘ for i=1,2,3,

~Fjg < ~N?(-1) _ac}é"’, (4.148)

where 7 is given by (4.147), in the domain (z,y,2) € Q.

Translating these conditions in terms of the mean flow using (4.127) and (4.130)

gives

(Alo +;(z}l\fro_2on S o (4.149)
“%% < "oi;’ (4.150)

Uo, — N? thj +hg,/p) < ‘a;'{#’ (4.151)
ﬂh;_,& <-N (D) (4.152)

Therefore Arnol'd’s two sets of stability criteria for Formal stability are established.
The usefulness in these theorems lies in the fact that given any steady solution that
satisfies either set of criteria, since it is linearly stable, it would be conceivable that

such a flow would persist in nature.



4.6.5 Andrews’ theorem

Andrews (1984) showed, within the context of homogeneous QG fluids, that the class
of flows which can be formally stable are restricted by the underlying symmetries of
the Hamiltonian structure. For example, if the domains and boundary conditions are
translationally invariant with respect to z, then only parallel shear flows, i.e. only
depend on y, are formally stable. This is a general result that can be applied to many
systems, ours of which is no exception. In our model parallel shear flows refer to
solutions dependent on y and z, which is a motivation for why we considered steady
state solutions in Chapter 3 that were translationally invariant.

To begin, it is necessary to differentiate (4.95) with respect to z, multiply by ¢g_

and integrate over the volume, to give
7 / / ¥o. 910, drdydz = / / Flop}, dzdydz. (4.153)
Q Q
Integrating by parts with respect to z and using the divergence theorem produces
J[[ 1 (0. - 90, + (g0, /NY?) + Flogh, ddydz
Q

z=0

_— /0 }{ o1 - Vi d0dz + / / [N-%60.00..] dzdy. (4.154)
~lJQy an z=-1

Expanding the circulation term

L
j{ ¢o,n- Vg, d0 = / [P0 Pocelrazg — [PorP0) ez, Ay
My 0
R
+ /: [po. 0.y, — [0 00s, ], g dz
—ZTR

= 0, (4.155)

because the steady solution must satisfy the boundary conditions (4.19) and (4.20). To
rewrite the term evaluated at z = 0 in (4.154) it is necessary to differentiate (4.96) with
respect to z, multiply this by N~2pq_ | 2=0» 8nd integrate over the horizontal domain to
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give,

# // (M *e0cpo..),_gdody = / / F3 (P0/N):_g dzdy. (4.156)
Qn Q4

Following the same procedure for (4.97) yields
POl em 1 = Foo (0. + N?ha,) = Fio, (4.157)

Z=-—

which when multiplied by N~2pg, | .—=_1» integrated over the horizontal region and then
completing the square yields

#// (wo,¢ou/N2)z=_1dzdy=//F§o (¢5u/N2+sao,,ho,)z=_ldzdy
Qu Qu

= [ Fio (@ NP, ~ Fio (0. + N?ho,) __ ho, dzdy
Qu

= / / Fio(g0./N)3-_; — (1o, b, ),—_, dzdy, (4.158)
Qy

after substituting back in (4.157).

Finally, differentiating (4.98) with respect to z implies the following equation

o, = Fioho,, (4.159)

which when substituted into (4.158) results in
b [ (N engn.),_ dody = [[ Fioarou/NYim oy — Fiahd, dady.  (4.160)
Qy Qg
Substituting (4.155), (4.156) and (4.160) into (4.154) yields

/// 1 (V0. - Vo, + (sao,,/N)"’) + Fiow}, dzdydz
Q

+// (—F30) (po../N)? o +//F'30 (g20./N)?__| — Fighd_ dzdy
Qu a
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=0. (4.161)

In the context of Arnol'd’s first theorem, the steady state functions are chosen such
that the left-hand side of the above equation is positive definite. Since this quantity is
also equal to zero, this means that each quadratic term is equal to zero, including the
kinetic and potential energy-like terms. This implies that ®o, is a constant. Since it is
equal to zero on the boundary by the no normal flow assumption, this constant must

be identically zero, and hence
¥o = yo (v, 2) . (4.162)

Therefore, the only steady solutions that satisfy the conditions of Arnol'd’s first theorem,
are parallel shear flows.
For Arnol’d’s second theorem, we apply the Poincaré inequality and identity (4.143)

to (4.161) as done before, to produce the equation

0= /Q [ (%2 + Fio) (@ue.)? dmayaz + n/,,/ (% - Fio) (amo /Y2y dacy

+ ,3/ / (‘c% + F'so) (po../N +yNhq,)?__, dzdy

Now, since the left-hand side is negative definite and equal to zero, this implies that

qloz = 0! ¥0., Iz=0 = 01

Coulye_y =0, ho, =0. (4.164)

Since the Poincaré inequality applies to %0., the above equations force the kinetic and
potential energy-like terms to each vanish as before. Therefore, (4.162) also holds true

for the second set of stability criteria.
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4.7 Nonlinear stability

To find criteria for nonlinear stability it is insufficient to consider the constrained Hamil-
tonian as was done in the linear analysis, for two reasons. Firstly, the second variation
is not an invariant of motion with respect to the nonlinear equations. Secondly, in finite
dimensions §2H(qo) being strictly positive implies that H is convex. However, this does
not carry over to infinite dimensions because of the loss of compactness.
It is necessary to construct a new functional called the disturbance pseudo-energy
functional,
A=[H+C](qo+8q) — [H + C](qo) - (4.165)

Recalling that the Hamiltonian, the Casimirs are each conserved quantities, we deduce
that any sum of these will certainly be conserved, hence A is conserved.

Substituting (4.28), (4.79), (4.84) and the expressions for the Casimir densities
(4.105) through to (4.108) gives rise to

A= /// 5 (Vo0 Vo + (6. /N?) + 1 (Vio - Vb + N~2p0,80:) dadydz
1]

q10+6q1
+//// F, (r) dr dzdydz
q10

- / / N-2(0) /,,, ":°+5q’ Fy (7) drdzdy
Qy

+ 4 [ 5720 [T B (r) arasy

g40+6q4
- / / / Fy (v)dr — hpbgs dzdy. (4.166)

q40

Using integration by parts and the divergence theorem, along with the boundary
conditions as has been frequently done, and applying (4.95) to (4.98) reduces this ex-
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pression to

A= /ﬂ/ / L (V8o Voo + (Bp:/N)?) + / B B () = Fro) dr dedyds

q10

- [~ [:’ o (B (r) — Fan) dr dody
Qs

+(£/ NTH(-1) /:Haqa (F3 (1) — Fa0) dr dzdy

_ / / f""m‘ (Fa (r) dr — Fyo) dzdy. (4.167)
Qp

q40

In order to find upper and lower bounds on the pseudo-energy, it is necessary to

assume the convexity conditions
0<a; < (-1 E < fB; < o0, (4.168)

where a; and f; are constants for i = 1,2, 3, 4, that appear in the Poincaré inequality.

Integrating this equation with respect to ¢; from gig to gio + 8gi shows that
@:6¢; < (—1)"! (F; (qio + 6¢:) — Fio) < Bibqs. (4.169)
Then integrating with respect to ég; from 0 to 8g; yields
2 < [ R ) - Fayar < B8 (4170)
0

after having introduced a change of variable in the integration, T = g0 + 6¢io-
Substituting (4.170) into (4.167) gives upper and lower bounds on A,

1
5 / / / 1 (V60 Vo + (6p:/N)) + a1 (6a1)? dodyds
Q
1
+5 [[ 2 6aa/NY2g + s (Gas/ NV, + e (50 dzdy
Qy
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<A<

%/,// Vép - Vép + (6p:/N) + By (6q1)* dzdydz
Q

‘% // P2 (502/N);—0 + B3 (6q3/N);_, + Pa (6aa)* dzdy, (4.171)
Qn

with which, it is possible to prove Arnol’d’s first theorem for nonlinear stability. This
is the analogous theorem of that found for a continuously stratified QG fluid in Swaters

(1985).

Theorem 4 If the steady state functions F;(t) fori=1,...,4, determined from (4.95)
to (4.98) satisfy (4.168) for some constants a; and B3;, then the steady solutions g and

ho are nonlinearly stable in the sense of Liapunov with respect to the disturbance norm

l6al| given by

I6all? = / / V6 - Vg + (6. /N)? + (6q1)? dzdydz
Q

+ / / (6q2/N)2_g + (8q3/N)2__, + (6q1)? dzdy. (4.172)
Qu

Proof. First notice that this norm is essentially the same as that used in establishing
linear stability criteria, except that there are not any functions in front of the quadra-
tures. Observe that if (4.168) holds, the pseudo-energy functional is positive definite by
(4.171). What is then required to show is that it is possible to bound the disturbance
norm by a scalar multiple of the initial value. The argument proceeds as follows

164l 2T A

IA

2f‘.AL=O
< IT|léqlit,. (4.173)

having used the invariance of A and the definitions

! = min4{;z, i},

=1,...,
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= max {5} (4.174)

Therefore, for all € > 0 there exists a § = (f‘f‘)_% € > 0 such that if ||6q|l,_o < &, then
lI6q]l < € for all time. |

Armol'd’s second theorem for 2 QG fluid was proven in Yongming et al. (1996)
without assuming that the perturbations were zero along the channel walls. Since
we are assuming a stronger condition, that they are zero, this allows the work to be
reduced a great deal. The method presented here uses the Poincaré inequality presented
in this paper, but more closely resembles the work done in Swaters (1993b) in the two
dimensional analogue.

To prove the theorem it is first necessary to assume the opposite convexity conditions
0<a; < (~1) F! < fB; < oo, (4.175)

which by following the same procedure as above produces the following inequalities

.82 . Gio+8qi .52
28 < [ ) - R <20 (g
gio

Substituting (4.176) into (4.167) yields these bounds on the pseudo-energy,

%///# (V&p -Vép + (5¢2/N)2) —~ B (6q1)? dxdydz
Q

_% /ﬂg (642)% + B3 (5g3)” + Ba (6q4)? dzdy
Qi
AL

%/// Vép - Vbp + (60:/N)* — a1 (6q1)? dzdydz
[9]

-’;‘ // a2 (62)% + 3 (6¢3)? + a4 (6g4)? dzdy. (4.177)
Qy

The Arnol’d’s second theorem for nonlinear stability for our model, is as follows.

Theorem 5 If the steady state functions F; (1) fori =1,...,4 determined from (4.95)
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to (4.98) satisfy (4.176) for the positive constants a; and B; and

K>y, (4.178)
aq > N2(-1) a‘}é"’, (4.179)
with
B
Y=g (4.180)
B+b5

then the steady solutions po and hg are nonlinearly stable in the sense of Liapunov with
respect to the disturbance norm ||8q|| given by

l6al’ = [[[ Ga? dzdyas + [ (aa/)2g sy
Q Qn

+ / / (5p2/N)2__, + (6q4)® dzdy. (4.181)

The condition K > p will be translated in terms of the state in the system in Appendiz
A.

Proof. As with the linear case, to show that the pseudo-energy is negative definite
will require the usage of the Poincaré inequality. Applying this inequality to the upper
bound of A, then identity (4.143) gives

A<t ( )(/// o (6q1)° dxdydz+// a2 (6¢2/N) _od:z:dy)

+ f [ S Gou/ N2, = as (Bas/ N2, — aa (504)" dady,

=.;. (% _ 1) ( / / /0 a1 (6q1)? dzdydz + / /n a2 (5aa/N)2eg dzdy)
1
+3

(% - 1) / / a3 (6g:/N +yN6h)?__, dzdy
Qg

+%Q// (N’ (-1)

Q
L+ 54 (600 dady,
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< %T‘l {///Q (6q1)? dzdydz +/./n” (cng/N)f=o dzdy
+ / /ﬂ (6p2/N +YNSR)2__| + (6q4)% dz dy} ’ (4.182)

where the two new constants are -, defined in (4.180), which is positive by assumption,

and

T = max {a,- (% - 1) , (N2 (~1) ai.é” +,34)} <0, (4.183)

which is negative because of (4.178) and (4.179).

Since T is negative, the last expression in (4.182) can be rewritten as
JIf @20 dzayaz+ [[ /N2 dzay + [ (e 4 4NEW?__, + (800 ddy
Q Qp Qp

<2TA=2T Ay, (4.184)

having used the invariance of the pseudo-energy functional.

As well, an upper bound on the norm can be established

I6al” = [f] (a0? dsdyaz + [[ (6ar/N2egutzdy
H
+ [ @eu/ N+ vNSgu ~ yN6a)2__, + (8g0)? dnd,
H

1] st ] i
+/./s’; 2(6pz/N + ‘7N6q4)§=_1 + (1 +242N? (_1)) (644)? dzdy,

T{///Q (691)? dzdydz +//nn (8q2/N)?_, dzxdy
+//n,, (8ipa/N +Nbga);_, + (644)2dzdy}, (4.185)

IA

IN

having added zero, applying the simple algebraic identity

(z+9)? <2(2 +47), (4.186)
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and finally introducing the constant
T = max {2. 1+ 2y2N? (—1)} > 0. (4.187)
Now substituting (4.184) into (4.185) yields, upon noting that TT < 0,

l6q]? < 2T T A

< T [[[ 4 (V0 Vo0 + (50:/N)) - b1 (50)? ddyas

= [, PGl N oo+ 1 s /N Y2y + (a0 g}

t=0

< -1t { JI[ 81 6ar)? azayas + JiA B0/ N2y drdy

+ [, 20 G/ Ny + (26 (<1 s + ) () oy}

t=0

< Tlsalli,, (4.188)

having again used (4.186), and the fact that

Tt /ﬂ/ / u (V8¢ - Vb + (:/N)?) dadydz < 0, (4.189)

since TT < 0 and finally the definition
T =TT max {8,265, 2N (-1) s + B} > 0. (4.190)

Therefore, for all € > 0 there exists a § = T~ %e > 0 such that if [I6qll,—¢ < &, then
léql|l < e for all time. |

It might seem at first glance that the conditions for linear and nonlinear stability are
identical because of the fact that the upper and lower bounds are the same. However,
the bounds in the linear stability case are on the steady state functions evaluated at

the steady solutions. The bounds for nonlinear stability, are on the same functions, but
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must hold true on their entire domain not just at the single state under consideration.
This is due to the fact that when doing 2 linear stability analysis we assume that the
perturbations are infinitesimal, hence the F; functions will not vary very much from the

steady solution, if it is stable that is.
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Chapter 5

Density driven eddy solutions

Chapters 3 and 4 studied the stability characteristics of a mesoscale gravity current
within a continuously stratified fluid. When instability does occur, it has been demon-
strated numerically (Swaters, 1997), that the current may break up into isolated cold-
pools. This chapter will study the propagation of these cold-pools along the shelf, as
well as the effect they have on the upper fluid. Two solutions are to be obtained. The
first is an exact solution to the nonlinear equations which assumes that both fluids are
radially symmetric and that wave drag forces are negligible. The second, is an a weakly
radiating solution that assumes there is only weak interaction between the two fluids,

which allows for the existence of an upper layer topographic Rossby wave field.

5.1 Isolated steadily travelling eddies

Before we begin, it is necessary to explain exactly what is meant by isolated. In our
context, it means that the volume/area integrated energy, enstrophy and cold-pool mass
are all finite quantities.

The geometry is such that the horizontal region is unbounded,

QH = {(Ir y) I -0 <z,y< OO} . (5’1)

The bottom topography is chosen to idealize a gently sloping continental shelf where

the slope-water gets deeper in the positive y direction, i.e. hg = ~y.
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We assume that the cold dome is travelling at constant speeds c and &, in the z and
y directions, respectively. To change into a coordinate system that has the cold-pool as

being stationary, requires the following transformation
§=z~ct, (=y—2t. (5.2)

It follows that £ and ¢ both range from —oco to +co. The symbol Q is used to denote
both the (z,y) and (&, {) coordinate systems depending on the context.

In the new coordinate system, the time derivative takes the form

oz Sy
8 = -a—t-az + aay
= —Cy — &9y, (5.3)

which when substituted into the nonlinear governing equations yields the following

system
3 (pp+et —2,Ap+ (N7%,) ) =0, (5.4)
(up+cC—2,p;)=0 at z=0, (5.5)
” — &€ 2 - .g — ﬂé. = —
3(#9» +e{—-ep:+N (h ”) L A z=-1 (5.6)
O(pp+(c—1)(—¢eh) =0 at z=—1. (5.7)

Note that the bottom topography has been written as hp = —( since the Jacobian is

now in terms of (£,¢). The Jacobian in (5.7), simplifies to,

((F‘PEI;:-] - E) h)C - ((/-“PCIZ=_1 +c— 1) h’)£ =0, (5.8)

after having regrouped and cancelled terms.
To find the first moment of the cold-pool it is necessary to multiply (5.8) by £ then

integrate over the horizontal region

/ / (mpdz:_l +c— 1) h dgd¢ =0, (5.9)
Qy
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upon integrating by parts twice and using the fact that A vanishes at the boundary.
Solving this expression for c gives

_ ffnnf;:jl’iziicdedc’ (5.10)

c=1

The second moment is found through multiplying (5.8) by ¢ and then following the
same steps as above, which results in

foH h‘pflzz—l @dc
fla, hdsd¢

E=up (5.11)

If 4 = 0, the moment equations simplify to (c,é&) = (1,0). Upon considering the
scalings, this is seen to be the same result found in Nof (1983) where the motion is
strictly along the shelf. The means by which this occurs is that gravity acts on the
cold-pool, trying to pull it down the slope since this is a state of less potential energy.
However, the Coriolis force in the northern hemisphere, deflects it to the right. If these
two forces are evenly balanced there will be no down-slope component of the velocity.
This is what should be expected since the interaction parameter being zero reduces
our model to the reduced gravity case, which is what was studied in Nof (1983). If
# # 0, then the along-shelf speed will generally not be the Nof speed, and a cross-shelf
component can develop.

It is known that a flat steadily travelling object moving inviscidly through an homo-
geneous fluid within a strongly rotating system with a flat bottom, will create a Taylor
column directly above it (Pedlosky, 1987). This is a means by which the fluid above
the object can be transported along with the moving object. Because our slope-water
is continuously stratified and the cold dome is not generally flat, we cannot expect the
same result to be applied, but it is of interest to determine whether the fluid above the
cold-pool can be transported.

To find conditions under which this can occur, it is necessary to understand streak-
lines. In the reference frame of the moving eddy, the streaklines are the paths the fluid
parcels follow. Because the channel walls are impermeable, the streaklines cannot orig-

inate on, or end at, these walls. Therefore, the only remaining possibilities are for the
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paths to begin upstream and end down stream, or for them to have closed orbits. If
closed streaklines exist, then the interior fluid is transported along with the cold-pool.
Upon considering (5.4) to (5.6), it is seen that the streaklines are denoted by the level

curves of the following function
Ystreakiine = pp + c{ — €. (5.12)

When the interaction parameter is small, closed orbits do not occur. However, for
large u, we can expect closed streaklines since the streakfunction is dominated by the
streamfunction which does contain closed orbits. Therefore, there must be a critical
value of 4, call it . where for u > p,. closed streaklines will certainly occur. Conversely,
if p < pc, no streaklines will arise. When we establish a weakly radiating solution, we
will consider different values of the interaction parameter to demonstrate this graphi-
cally.

Assuming that a closed streakline does exist, we denote the area within it and the

curve itself by A and 9A, respectively. Integrating (5.6) over A gives that
N N%
L, (482 (=%)) € x V(g +ec~26)) mds= Sl )

using [|A]| to denote the area contained in A, as well as (4.23) and the divergence

theorem. An identity that can easily be proven is

(e3xVB)-n =VB xn, (5.14)

which when applied to (5.13) yields

-~

e+ N2 (h=S))V (ot ec—2) xnas = LS a1, (51)
8A H H

Taking the gradient of Y¥usreqkiine in the (&, ¢) coordinate system results in a vector
that is normal to the boundary of a streakline, since it is a level curve of the function.
Hence, the cross product of this gradient term with the normal vector of the boundary

is zero because these vectors are parallel. This allows us to conclude that for general

130



stratification,
=0, (5.16)

if a closed streakline exists. This is equivalent to saying that there cannot be any cross-
slope component of the velocity of the steadily travelling cold-pool when fluid transport
occurs.

Substituting (5.16) into (5.4) through to (5.7), yields the same set of steadily travel-
ling equations that were considered in Chapter 4, (4.91) to (4.94), with the sole difference
of the (’s replacing the y’s. To this system, we can introduce steadily travelling func-
tions as in (4.95) to (4.98). It is possible to determine the form of F; by evaluating the
analogue of (4.97) in the far field. This involves taking the limit as £2 + ¢2 — oo, and
using the fact that ¢, h and all of their derivatives must vanish in this region, since the
disturbance is assumed to be isolated.

Evaluating this equation in the far field gives

= F3 (_.N%) , (5.17)
which implies that
B = ~x7cp (5.18)

for all closed streaklines that extend to infinity. Therefore (4.97) can be replaced by

N2
vz + - = ~N?h at z=-1, (5.19)

upon doing some algebraic manipulations. Therefore, the governing equations for
steadily travelling isolated cold-pools within a continuously stratified fluid are (4.91),
(4.92), (5.19) and (4.94).

In the derivation of this equation we have assumed that the streaklines extend to
infinity. However, this clearly does not hold true for those streaklines that are closed
and is a difficulty since these are precisely the streaklines of most interest.

Indeed, there is no known method of determining F3(*) for a region of closed streak-
lines. Here, we simply adopt the ansatz, following the arguments of Hogg (1980) and
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Swaters & Mysak (1985), that (5.18) is assumed to hold everywhere. This choice will
ensure that ¢ and its derivatives will be continuous across the boundary separating the

regions of open and closed streaklines.

5.2 Radially symmetric Solutions

In general, three-dimensional cold-pools are difficult to solve for analytically. It is for
this reason that we make the radially symmetric assumption which reduces the problem
to that of a two-dimensional one, through the implementation of cylindrical coordinates.

Solutions are sought of the following form,
h=h(r), ¢=¢(rz2)), (5.20)

where
r=1/&+¢2, 6=arctan((/€),

§E=rcosf, (=rsind. (5.21)

Note that because the bottom topography is gently sloping, to leading order, it is
perpendicular to the z axis, which is why there need not be 8 dependency in our solution.
Changing the Jacobian to polar variables, by use of the definition form Chapter 2,

results in

8(A, B)
d(z,y)

d(r,0) (A, B)
o(z,y) o(r,0)
13(4,B)

— —

r 9(r,8)
= Z(ABs— AeB,), (5.22)

8 (A, B)

since the determinate of the Jacobian from polar to Cartesian coordinates is r. Therefore,
since ¢ and & are both assumed to be independent of 6, the Jacobian terms of ¢ and &,

or any of their derivatives, vanish since each term involves a derivative with respect to
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the variable 6. This implies that solutions of the form (5.20) are fully nonlinear solutions
of the model equations.

‘The implications of (5.20) on the velocity of the cold-pool can be found by evaluating
the integrals that appear in the numerators of the non-Nof speed components of (5.10)
and (5.11). The first becomes, by converting to polar coordinates

//n,, hpcl,—y ddl = /0.,, heprl, oy /(;hsinadedr
0,

(5.23)

having used (5.21) to transform the partial derivative, calculating the azimuthal integral

and using the periodicity of sine. Similarly,

//n” hepel, ., d€d( /0°° hor,—_y /:ﬂcosgdgdr
=0 (5.24)

which signifies that all steadily travelling, radially symmetric solutions propagate at the
Nof speed along the continental shelf, with no cross-slope component.
Substituting the above two equations into the steadily travelling equations reduces
(5.4) and (5.5) to
-2 _ =
(Aga + (N <pz)z)f =0, (5.25)

(P2)e=0 at z=0, (5.26)

since the nonlinear terms vanish due to radial symmetry. Notice that (5.7) reduces to
the statement that 0 = 0, which contains no information and hence is ignored. It is the
degeneracy of this equation that changes the state of h from a variable to be solved for,
to that which must be predetermined. This is a problem in the theory in that we are
unable to determine criteria for which cold-pool profiles are allowable, as in Swaters &
Flierl (1991).

In looking for wave-like solutions travelling in the along-shelf direction we can in-
tegrate (5.25) and (5.26) while setting the functions of integration to zero since the

solutions are isolated. These two equations, combined with (5.19), yield the following
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linear system

Ap + (N‘chz) =0, (5.27)

z
pz=0 at z=0, (5.28)
w:+N2p=—_N?h at z=-1. (5.29)

After choosing a lower layer profile, we then solve for the dynamic pressure of the
upper layer to see how the upper fluid reacts to this given profile. This system of
equations above is the same as that in Johnson (1978). This paper considered the
situation of continuously stratified QG fluid moving over topographic disturbances. If
we take the perspective of the cold-pool then the situation is similar to that in the
aforementioned paper, due to the fact that the lower layer is coherent and travelling
along the shelf at a constant speed. By coherent, we mean that the lower layer height
field does not deform to leading order in time. Deformations will take place, but on a
much slower scale than what we are considering.

Since we are in cylindrical coordinates the Laplacian must also be written in this
coordinate system,

B¢ == (rpr), - (5.30)

No @ derivatives occur because of the radial symmetry of .

System (5.27) through to (5.29) is difficult to solve for several reasons. F irstly, there
is not a unique solution and hence some other condition need be imposed. Secondly,
since in (5.29) N2 > 0, boundary condition (5.29) makes the system not Sturm-Liouville.
Thirdly, this boundary condition contains r dependency, since h is present, which means
that the system is not separable.

The system not being Sturm-Liouville suggests that we cannot expect all the eigen-
values associated with the horizontal problem to be positive, which indeed is true for
the special case where the buoyancy frequency is constant. Positive eigenvalues yield
ordinary Bessel functions which decay like O (r‘%) as r — o0. These modes can have
an upstream wave-field which is problematic since it is known that this does not occur

in nature. To rectify this difficulty it is necessary to impose a radiation condition. This
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added constraint solves the problem of the lack of uniqueness in the solution. The ra-
diation condition that will be applied is the zero-wave drag condition, as was done in
Swaters & Flier] (1991). This condition is very strong and has the net effect of eliminat-
ing any upstream as well as downstream waves. Hence no wave field is generated outside
the support of the lower layer. The negative eigenvalues that arise, result in modified
Bessel functions that are known to decay exponentially as r — oo, and therefore do not
give rise to any wave-field.

Integrating (5.27) over the entire volume, using the divergence theorem along with
the fact that the gradient of ¢ vanishes in the far field, and then integrating by parts
with respect to z along with boundary conditions (5.28) and (5.29), yields

/ / Ap + (N-2<pz)z drdydz = 0,
Q

-2 2=0
/ / [N2.] " dzdy =0, (5.31)
Qi -
which implies
J[ s+ dzay =0, (5.32)
Qy

This is the Stern Isolation Constraint and is a statement of conservation of angular
momentum (Mory, 1985). Because we are considering cold-pool anomalies h > 0, if
©|,~—, is only of one sign, as turns out to be true, it must then be negative. Therefore,
above the cold-pool there exists a negative pressure anomaly which corresponds to a
low pressure system. Since low pressure systems correspond to cyclonic motion, the
induced eddy in the upper fiuid will be a cyclone.

This same conclusion can be obtained through a more heuristic argument. It is
known with surface waves that concave and convex deformations correspond to low and
high pressures, respectively. Since the lower layer height is positive, this implies that
there must be a low pressure system directly above it. Because low pressure systems
are associated with cyclonic motion, the induced eddy above the cold-pool must be a

cyclone.
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Converting (5.32) in terms of polar coordinates, integrating by parts with respect to
r and using the far field condition results in the following, after having multiplied by 2,

/ / 2 (pley + h)_drdf =0. (5.33)
Qu

By a similar argument as above, we conclude that for the integral to be zero, there must
be regions where (¢|,__, + ), is positive and others where it is negative.

In Chapter 2 it was determined that the horizontal velocity fields in the upper and
lower layers were determined geostrophically. The upper layer depends on ¢, whereas
the lower layer on ¢, h and hg. The geostrophic relation (2.130) can be separated into
two components, the first being

€3 X VhB = ey, (5'34)

for the topography under consideration, where e; is the unit vector in the positive z
direction. This shows that it is the bottom topography that causes the cold-pool to
move along the shelf because of the balance of the buoyancy and Coriolis forces. The
other component is what causes the rotation of the eddy, and is called the swirl velocity.

This velocity is denoted with u.,;; and is represented by

Uswirt = €3 X Vu(p+h),

= p(p+h)er, (5.35)

where e, denotes the unit vector directed along the polar axis. Similarly, the swirl
velocity for the upper layer u,, is

u; = @gre,. (5.36)

Equations (5.33) and (5.35) imply that there are regions of cyclonic and anticyclonic
vorticity. This is counter-intuitive in that we expect the eddy to spin in only one
direction, but clearly this is not the case as was also found in Swaters & Flierl (1991).
Assuming the height of the lower layer has its peak at r = 0 and gradually decreases to
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zero means that h, < 0 on the support of &. If o, is of only one sign, (5.33) implies that
it must be positive. Because h, (0) = 0 for smooth profiles, the core of the cold-pooal is
cyclonic, which means that it is the peripheral region that must be anticyclonic, if there
is only one point where the vorticity changes sign. Also, upon considering the equation
directly above, we see through a different means, that the vorticity in the upper layer
eddy must be cyclonic.

Going back to the system (5.27) to (5.29), exact solutions can be found if we as-
sume that the buoyancy frequency is constant, or equivalently, that the stratification
of the background state is linear. To solve the system we use the method of Finite
Fourier Transforms (Zauderer, 1989). This requires that we first consider the following

eigenvalue problem with the associated homogeneous boundary conditions from above,

N72p,, = AP, (5.37)
®,=0 on z=0, (5.38)
$®,+N®=0 on z=-I, (5.39)

where & = ® (z) . There will be two sets of solutions, those that correspond to positive

and negative eigenvalues respectively.

First assuming the eigenvalues are positive, which we denote by Ag, allows the solu-

tions to be written as
® = Agocosh (N+/Aez) + Bosinh (NV3ez) (5.40)
where (5.38) requires that Bg = 0, therefore
® = Ag cosh (N\/:\—oz) . (5.41)

Substituting the new solution into the other boundary condition (5.39), yields the dis-

persion relation

tanh (N\/:\_J) = %. (5.42)
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Observe that the right-hand side of the above equation is a function of A9, that
originates at +0o0 and decreases to 0. The left-hand side, on the other hand, is increasing
from O to 1. These two properties when combined, is enough for us to conclude that
there is exactly on point of intersection, ergo one solution. The graph for the special
case where IV =1 is shown in Figure 5.1

If A <0, we denote the eigenvalues with A,. The general solution to (5.37) is
& = A, cos (N\/—/\,.z) + By sin (N\/-,\,,z) , (5.43)

where a subscript n has been used in anticipation of the fact that there will be many

solutions. Equation (5.38) implies that B, =0,
® = A, cos (N\/—,\ﬂz) ) (5.44)

Similarly, substituting this into (5.39) gives the dispersion relation for the negative

eigenvalues

tan (Nv/X,) = - ¢-£,\‘ (5.45)

Unlike the previous case, this equation has an infinite number of solutions because
tangent is an oscillatory function. We denote the solutions with n = 1,2,... The graph
for the special case where N = 1 is shown in Figure 5.2, where it is seen that the
solutions are not periodically spaced.

Equations (5.41) and (5.44) give the set of vertical eigenfunctions for the solution
space. The system can be orthonormalized by calculating the constants Ap for n =
0,1,2,..., such that the integral of each of the functions multiplied by itself is one.
Squaring (5.41) and integrating the result from ~1 to 0, which then set equal to one,
results in

Ag/: cosh? (N ,\oz) dz=1,

%Ag/:uoosh(zzv Aoz)dz=1,
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s ™

2NV |,__,
_ 4NV3o 3
Ao = [2N¢A‘o + sinh (2N¢A‘5)] ’ (5.46)

upon using a trigonometric identity and computing the integration. Doing a similar

calculation for the other eigenfunctions requires that

1
Ao = ANV ’ (5.47)
" [2NV=A +sin(2NV=Az) | )
Therefore, the orthonormal set eigenfunctions that solve the system are {)\,, ®,, (2) o
with, .
ANV 2
&g = AoNz), .
0 [2N e + sink ON V5 ] cosh(\/ 0 z) (5.48)
1
4N/=An 2
= V=AaNz), 5.
) [ SNVor F (2N \/"’\n)} cos ( An z) (5.49)

for n = 1,2,..., where the eigenvalues are determined from (5.42) and (5.45) and the

following relation is true
/01 Bpm (2) ®n (2) dz = . (5.50)

The gravest mode Ao, is the only positive eigenvalue, and is the source of the eddy
generated above the cold dome. The remaining modes A, for n = 1,2,.... that corre-
spond to negative eigenvalues, are the internal baroclinic modes for the continuously
stratified fluid (Cushman-Roisin, 1994).

Since @ satisfies (5.37) and (5.38), any linear superposition will also satisfy the same
equations. Therefore, the solution of (5.27) through to (5.29) is constructed by assuming

the following series solution

P(r,2) = 3 An () &n (), (5.51)
n=0
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Figure 5.1
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Figure 5.2
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since (5.27) and (5.29) are the same as (5.37) and (5.38). We assume that this solution
satisfies (5.29) and then obtain a differential equation in A,, which must then be solved.

To obtain this differential equation, we multiply (5.28) by ®n,(z), and integrate
with respect to z from —1 to 0, then substitute (5.51) to yield

[ o]
3" A4, / Embndz+ [ Om (N_chz) dz = 0. (5.52)
n=0 -1 -1 z

The first term can be rewritten because of (5.50). Integrating by parts twice, applying
(5.51) and the orthonormal relation produces
]z=0

AA, + /\n/o Prp dz = — [lv-zq)n‘Pz - N-chnz‘P 1’
-1 z=-

(5.53)

=0
z=-1"

Ad+Anhn == [N72 (@0, — Sn.p)]._

Substituting in the boundary conditions (5.28), (5.29), (5.38) and (5.39) reduces the

above expression to
AA, + MAp = -P, (—1) A (5.54)

This differential equation needs to be solved for n = 0,1,2,... The gravest mode
equation is the same equation that which arose in Flierl (1984) and Swaters & Flierl
(1991), this being the inhomogeneous Helmholtz equation. Note that a solution to
(5.54) for a n, would yield an exact solution to the nonlinear governing equations since
no appraximations have been made, only simplifications based on the given assumptions.

Assuming the cold-pool profile is

h(r) for 0<r<a
h= , (5.55)

0 for r>a

with k(a) = 0, so that k is continuous, allows us to solve (5.54). We begin by solving

for the gravest mode.
If the eigenvalue is positive, the left-hand side of (5.54) is the zeroth order Bessel
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equation. For r > a, the equation is homogeneous because h = 0 by assumption, and

the solution is

Ao = codo (Vor) +da¥o (Var), (5.56)

for some constants cg and dg, where Jg and Yp are the zeroth order Bessel functions of
the first and second kind respectively (see Watson (1962)). Certain properties that can
be derived, but instead of doing so, they will simply be stated in Appendix B and cited
when need be.

For r < a, the equation is inhomogeneous and hence the solution is a sum of the
solution to the associated homogeneous equation and a particular solution. To obtain
a particular solution we use the method of variation of parameters. This replaces the
constants in (5.56) with functions of r, say ap(r) and Bo(r), which must be solved
for. It can be found in Zauderer (1989), that these functions must satisfy the following

system of equations

Jo(Vaor) Yo(Viar) | | @p | _ 0 . (5.57)
Jo. (Ver) Yo, (Vo) Bo ~Po(—1)h

The solution is obtained by multiplying this equation by the inverse of the matrix
that appears on the left-hand side. Doing this, and noting that its determinate is the

Wronskian which is W (Jg, Yo) = £, brings about

ag _nr Yo (Vor) @0 (-1)h (5.58)
By | 2| —Jo(VAar) o (—1)h

Integrating this system yields, while ignoring the constants of integration since we are

looking for a particular solution, gives

ag = __7292(_—_1_)/’-“ ™Yo ( AOT) h(r) dr, (5.59)
Bo = —1@—"2(‘—1) /(: rJo (Jx—or) h(r) dr. (5.60)
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Therefore, a particular solution is
Aop = —ﬂé——l) {Jo (\/1\—07') /ra‘f’Yo (\//\_or) h(r) dr

+Y (\//\—0_1‘) [TJO (\/A—or) h(7) d‘r} , (5.61)

for the region 0 < r < a. Evaluating this expression at r = a, shows that the solution
of the particular solution for that outer region that matches to this particular solution
must be

Agp = —@OT(—I)YO ( Aor) /: TJo (\/;\_o-r) h(r) dr, (5.62)

for r > a.
In order to eliminate the wave-field ahead of the eddy, and therefore everywhere, we

must impose an added constraint of
a
/ rJo (Var) k() dr =0. (5.63)
(]

This is a zero-wave drag condition and is the same as what was used in Swaters & Flierl
(1991). It implies that the outer solution reduces to Agp = 0. The derivative of (5.61)

with respect to r is,

dAop - wdo (-1) {Jo,_ (\/-,\;r) /ra‘rYo (\/,\_;'r) h(r) dr — Jo (\/,\_or) Yo (\/Xar) h

di 2

+Yo, (\/A—or) /(: TJo (\//\_o‘r) h(t) dr + Yo (\/A—Er) rJo (\//\—(;r) h} , (5.64)

where, evaluating at » = a gives,

%”i () = —@Ym (Vioa) /o “rJo (Var) h(r) dr =0, (5.65)

after applying (5.63). Therefore, (5.63) is enough to make the particular solution con-
tinuously differentiable over the entire domain for the case of no wave-field in the outer
region.

When the eigenvalues are negative, the left-hand side of (5.54) is the homogeneous
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zeroth order modified Bessel equation. In the region r > a, the solution is
An = calo (V=2ar) + dnKo (V=Aar), (5.66)

where ¢, and dy, are constants and Iy and K are the zeroth order Bessel functions of the
third and fourth kind, respectively. To find a particular solution for 7 < a we replace

these constants with functions of r, an(r) and Bn(r) and solve the following system

Io (\/ —/\,,r) Ko (\/ —/\"T) Q; _ 0 (5 67)
I, (V=Xar) Ko (V=3ar) | | B ~®a (~1) b '
Multiply by the inverse of the matrix results in
al, - Ko (\/ —/\nr) &, (-1)h ’ (5.68)
B, —Iy (\/ -—/\,,r) ®, (-1 R

after having used the fact W (Ip, Kg) = —%. Integrating, and ignoring the constants of
integration, then yields

an = $, (-1) /;a Ko (\/_—j;r) h(T) dr, (5.69)
B = B (~1) /; vl (V=har) h(r) dr. (5.70)

Hence a particular solution on the interval r < a is

Anp =00 (-1 {Io (VThor) [ Ko (VIRar) h( 7) ar

r

+Kp (\/:/Er) /(:TIQ (\/—_z\:'r) h (1) d‘r} . (5.71)

Evaluating this at = a shows that this solution is matched smoothly to the following

particular outer solution,

Anp = ®a (=1) Ko (V=307 /0 A (V=) h(r) dr. (5.72)
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A radiation condition need not be imposed on the eigenfunctions that correspond to
the negative eigenvalues because these modes decay much quicker then do waves. Waves
in the far field are larger than o(r‘%) as r — 00, and since Kg decays exponentially,

none of these eigenfunctions contribute to the wave field.

5.3 Parabolic eddy solution

The previous section found exact solutions for an isolated radially symmetric lower
layer of arbitrary profile. This section reduces the solution to the special case where the

cold-pool is parabolic,

1-(£)® for 0<r<a

0 for r>a

(5.73)

For the gravest mode, there are three integrals that must be evaluated. The first two
appear in Agp, for r < a. The first set of calculations shall be done explicitly, whereas
since the second is simply stated because it is done through an analogous process. Using
the Bessel identity (B.1), in Appendix B, and integration by parts twice, along with the
fact that J5(0) =0, allows the following to be deduced

[TJO (Ver) (1 - (E)z) dr = —\/% A (1 - G)j ‘-i‘-i— (v (Vor)) dr,

- [, (\/—T)J b [ (Vi) a

= '(u'\/-:{i?)ﬁ (\/:\;7') + :\—02;2'/; d—d; (7‘2J2 (\/f\;‘f)) dr,

= (’"\/_#Jl (Ver) + %;Jz (JAT,r) : (5.74)

The second integral, using identity (B.5), becomes
)2 r—~13/a
[TYB(\/ET) (1—(;)) dr = - ( \/,\_0/ )Y (\/_r)

146



o (Vaor) + 2 (ea). (5.75)

which enables us to write Agp for r < a as

oy = =T [ =V (34 () (V) o (3r) ¥ (vr))

2

o (6 (VAar) & (VRar) = o (ver) ¥a (v3ar))
2%, (Voa) Jo (vAar)}. (5.76)

Identities (B.15) and (B.16), transform this equation to

Agp = _$ ((1 _ (2)2) N A_o% + Y5 (VAoa) Jo (\/,\T,r)) . (5.77)

The solution (5.62), for r > a, simplifies to
7P (~1) - -
Agp = —'_,\O_YO (\/ /\07') J2 (v /\oa) ' (5.78)

upon rewriting the integral using (5.74) evaluated at r = a, and the zero-wave drag

condition reduces to

J2 (\//\_Ea.) =0. (5.79)

This restricts what is allowable for the radius of the eddy, this being a discrete set of
values. The first zero of J; (z) is z = 0, which is the trivial case and hence ignored. Any
other root of this equation can be considered. When plotting graphs the first non-zero
root will be utilized.

The remaining modes also have integrals that must be evaluated. Again, going
through the same calculations as above, using Bessel identities (B.5) and (B.7), allows
the following equations to be derived,

[ 1o (v=5r) (1_(5)2) g = ﬁl_(r-g) b (V3r)

I (V). (5.80)
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[t (@) )= e (-3 m (07

(V=Rr) - :\-2"—1(2 (V=2na), (5.81)

where substituting r = a into (5.80) gives

a 2
/ o (\/—Anr) (1 - (1) ) dr=-21p (\/—,\,,a) , (5.82)
(1] a An
and enables (5.71) to be written as

r—nr3/a
o= 00 (-0 { 2T (1, (V) 1 (Vo) + 1o (V3er) ks (V)

sz (Ko (V7)1 (V3er) = o (5r) Ko ()
—%Kz (\/—_/\:a)} : (5.83)
Substituting identities (B.17) and (B.18), then yields

Anp = _%1_) [(1 - (ai) 2) + ﬁ +2K; (V3na) I (\/—an)] . (584)

For the region r > a, substituting in (5.82) into (5.72) results in
29, (-1) = ox
Anp = —— ( I2 (\/ ) Ko (\/ -z\nT) . (5.85)

The complete solutions are chosen to be the particular solutions.

Asymptotic expansion for Kp in (B.24), shows that the solution above decays ex-
ponentially. Since waves that occur in the far field must be larger than o(r"%), which
is larger than any exponential, we have that the non-grave modes do not contribute
to the wave-field, but modify it. It should be noted that the functions {An(r)}52, do
satisfy the property of having finite volume/area integrated energy and enstrophy as
demanded and are continuously differentiable everywhere.

The exact solution is then given to be the infinite sum of all the modes. The gravest
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mode is what gives the eddy its truncated cone shape, whereas the subsequent modes
modify the form only slightly. Therefore, to get the qualitatively behavior of the eddy, it
is enough to plot the gravest mode along with several subsequent modes. In Figure 5.3
we plot the first four modes, with the radius of the cold-pool chosen to be the smallest
positive value that solves (5.79), the result being @ = 4.28. The buoyancy frequency set
equal to one, and the spacing between each contour is 0.2.

The center of the induced eddy shows that the solution is tapered, as was hypoth-
esized. The contour lines are negative, a low pressure system, with greater strength
towards the center and bottom. The contour lines being closer together at the bottom
shows that this eddy is bottom intensified. This is due to the stratification present in
the upper layer, which acts to cushion disturbances. Observe that @ increases with r as

was predicted, hence the induced eddy is proven to be cyclonic.
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Figure 5.3 The vertical cross-section of the pressure field in
the Radially Symmetric Solution with N=1 and a=4.28.
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5.4 Radiating eddies

This section obtains a weakly radiating solution to the nonlinear equations where there
is a Rossby wave-wake but no upstream waves. The cold-pool profile is still assumed
to be radially symmetric but the reduced pressure is not. Therefore it is necessary to
introduce 8 dependency.

The mathematical difficulties in this are that the nonlinear Jacobian terms no longer
vanish, as in the radially symmetric case. We are unaware of how to solve these equations
exactly, and hence have found it necessary to make an added simplification. Taking
advantage of the fact that all nonlinear terms are preceded with a u, we assume this
parameter to be small,

u<l, (5.86)

perform an asymptotic expansion and then solve the leading order system. Physically,
this assumption translates to saying that the two fluids are experiencing only weak
interactions. We hope that the solution we obtain to this simplified system, yields the
same qualitative behavior as for cases where y is larger.

Since the cross-slope velocity is zero to leading order, we rescale it in the following

manner

¢ — ué. (5.87)
Now, an asymptotic solution can be found to the nonlinear system, in the form
(P, h) = (2, 1) + 1 (o, B)D + ., (5.88)

(¢,&) = (¢,&)D + p(c,d)D + ... (5.89)

The substitution of these two expressions, along with (5.87), into (5.10) and (5.11)

yields,
@ =1, (5.90)
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oy ROP)__ dedC [fp, hOp® L, dedc

[fan PO dgdC ' [f,. hO dedC (5.91)

(c,8) =

Substituting (5.87) through to (5.91) into (5.4), (5.5) and (5.7), implies that (¢x@©, h©))
are governed by, after having dropped the superscripts,

(ap+ (N-%,)z)e =0, (5.92)

(p2)e=0 at z=0. (5.93)

Equation (5.7), reduces to the statement, to leading order 0 = 0. This signifies a type
of degeneracy, as occurred in the radially symmetric case, since h is no longer a variable
to be solved for, but is to be chosen a priori.

Before substituting into (5.6), it is advantageous to simplify this expression. This
is done by substituting in (5.87), expanding, using the antisymmetry property of the

Jacobian and then cancelling terms, to give
8 (mp + o€ — pit, sz + N2h) ~N%=0 at z=-1 (5.94)

Now, substituting in (5.88) to (5.91), yields the leading order equation, again after
dropping the superscripts,

(2 + N? (o + h))E =0 at z=-1. (5.95)

Integrating (5.92), (5.93) and (5.95) and setting the functions of integration to zero,
results in the same equations that arose in Section 5.2, (5.27) to (5.29), with several
differences. Since the dynamic pressure field now has 6 dependency, the Laplacian is no

longer given by (5.30), but is

1 1 -
Ap =~ (rgr), + 500 (5.96)

As well, solving this system does not yield an exact solution as before, but a leading

order solution in terms of the interaction parameter.
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It is worth pointing out that for our derivation of (5.29) for the radially symmetric
solution, we needed to implement a far field condition and hence, assume that the
streaklines extended to infinity. The fact that here, for a weakly radiating solution, we
found the same equation without making such an assumption suggests there was merit
in doing so even though it seemed problematic at the time.

As before, we use Finite Fourier Transforms which assumes a particular solution is of
the form (5.51), where the eigenfunctions &, are given by (5.48) and (5.49). This reduces
the problem to solving the ordinary differential equation (5.54), where the Laplacian is
given by (5.96). Even though our new equations have an additional term, the particular
solutions from before, (5.61), (5.62), (5.71) and (5.72), still form a solution to this new
system. The weakly radiating solution is then a sum of this particular solution with a
homogeneous one which must be chosen to eliminate any upstream waves. This is done
by imposing the Sommerfield radiation condition, which requires that the waves satisfy

the far field condition
r%ga—-»O as r—o00 for —g-<6<g. (5.97)

Because the n = 1,2, ... modes all satisfy this property, this condition need only be
imposed on the gravest mode. Therefore, the particular solution for the non-grave
modes are chosen to be (5.71) and (5.72).

Note that the zero-wave drag condition has not been applied because it is too strong,

in that it kills the wave-field everywhere outside the radius of the eddy. The constant
a
y= / TJg (\//\_;T) h(7)dr, (5.98)
0

must be non-zero, which is the constraint on the radius of the cold-pool. In the limit as
this parameter goes to zero, the nonradiating limit must be obtained.

The method to be used will follow closely that of Flierl (1984). Observe that the
left-hand side of (5.54), for the radiating situation, is the Helmholtz equation, which in
polar coordinates is the n th order Bessel equation. The solution of which is obtained
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using separation of variables. The azimuthal part of the solution is
By cos(nfd) + Cpsin(nf) for n=0,1,2,... (5.99)

where it is the periodic boundary conditions that imply = is an integer. The solution

to the radial part that is regular at the origin, and hence everywhere, is
Jn (\/,\or) for n=0,1,2,... (5.100)
Therefore, the regular solution to the homogeneous n-th order Bessel equation is
[+ ]
Aon =Y (Bncos (n8) + Cpsin (n)) J,, (\/_,\or) . (5.101)
n=0

In anticipation of the fact that the particular and homogeneous solutions will be
evaluated in the far field, it is necessary to find asymptotic expansions for the Bessel
functions as 7 — oco. Simplifying the asymptotic expression for J, using (B.21), brings
about two different relations for the even and odd integers respectively, after having

applied a trigonometric identity

o () ~ (é) ? s (z: - g) (=1)" as r— oo, (5.102)
Tons1 () ~ (:_3:)% sin (1: - %) (1) as r— oo. (5.103)

Also, the asymptotic expansion for Y is similarly simplified by considering (B.22),

1

2\2 T
Yo (z) ~ (;;) sm( - Z) as T — 00. (5.104)
The general solution for Ag is therefore
Ag = Aop + Aoh.- (5.105)

Substituting (5.62) and (5.101) into this relation, taking the limit as r — oo by substi-
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tuting in (5.102) to (5.104) and imposing the radiation condition (5.97) produces, after
ignoring the term [2/(7v/Agr)]!/2 since it appears in all the terms,

ﬂ"po (2—1)"7 sin (\/A_o _ _:lil'.)
= f: (B2n+1cos ((2n+1)8) + Cany1sin ((2n + 1) 6)) sin (\/A_or - g) (="
n=0

+ i (B2n cos (2n8) + Cyy, sin (2n8)) cos (\//\_or - g) (-1)". (5.106)
"=0

First observe that the left-hand side has a sin(v/Agr — %), whereas the right-hand
side has both sines and cosines of the same argument. We can conclude that the Fourier

coefficients corresponding to the cosines must all be zero,
By =C;m=0 for n=0,1,2,... (5.107)

Also the left-hand side of (5.106) has no § dependency, which means that it is even with

respect to that variable. Since even functions are written in terms of cosines,
Cus1=0 for n=0,1,2,.. (5.108)

Equations (5.106) and (5.107) state that the wave-field must be representable in
terms of the product of odd cosines with odd Bessel functions of the first kind, which
is exactly what was done in Flierl (1984). This method stems from work done in Miles
(1968), which, using sines instead of cosines, exploited the completeness of this basis in
order to obtain a wave-field expression.

Substituting (5.107) and (5.108) into (5.106) and considering only the coefficients of

the radial sine term, gives

ﬂ(-zi" = ; (=1)™ B 1 008 ((2m +1) 6). (5.109)

It is necessary to compute the Fourier series of the left-hand side in terms of the odd

cosine functions. To do so, note the following orthogonality relation from elementary

155



calculus .
/ "% cos (21 + 1) 6) cos (2m + 1) 8) df = e, (5.110)

wi4

Multiplying (5.109) by cos ((2r2 + 1) 8) and integrating from —3 to +7% with respect to
0 yields
299 (1)

1" (5.111)

B2m+1 =

having used the orthogonality relation above. Therefore, the solution is

p= nf;o [Anp (r) @ (2) + 2®0 (2) Bo (1) = (éin++11) 9) Jont1 (\//\_or)] . (5.112)

with Anp and @, are given by (5.48), (5.49), (5.61), (5.62), (5.71) and (5.72), and the
radius of the eddy is chosen so that v is non-zero.

In the limit as ¥ — 0, we recover the non-radiating solution as in the previous
section. This is significant since at no point in obtaining this solution, have we assumed
that the streaklines extend to infinity. This shows that using this particular far field
condition, which at the time seemed dubious, is justifiable since it yields the same result
as obtained by not applying this condition.

The solution in (5.112) is for general cold dome profiles. For the special case where
the lower layer is parabolic, as was considered in Section 5.3, the solution is still rep-
resented by (5.112), but now the radial functions are defined by (5.77), (5.78), (5.84)
and (5.85). Figures 5.4, 5.5 and 5.6 plot this solution with the first four modes of the
radially symmetric part, as before, and the first eleven terms in the radiating sum. We
choose a = 3.85, this number being 0.9 times the radius of the cold-pool in the previous
case, and N = 1. The plots are of the pressure field at the bottom, middle and top of
the upper layer respectively. The contour separation in the first case is 0.2 and in the
second and third cases it is 0.125.

The first structure to observe is that there is still an induced eddy as before, where
the cold-pool lies directly beneath. This eddy possess the same properties as before, i.e.
cyclonic vorticity, tapering and bottom intensification, but the eddy itself is no longer

radially symmetric due to the effect of the wave-drag forces.
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In these plots the bottom axis corresponds to the z axis, and since we know that the
cold-pool moves in the positive z direction, in the wake of the induced eddy we see a
wave field. This field is entitled a Rossby wave-wake (Johnson, 1978) since it emphasizes
the point that we are considering a subinertial regime. The first wave behind the eddy
is a high, the next a low, and the subsequent waves alternate in the same order. The
amplitude of these highs and lows get progressively smaller radially away from the eddy
core, since the effect of the cold-pool is weaker further away. Also, towards the rigid-lid,
the amplitude of the waves are seen to decrease as well. This is due to the cushioning
of the ever present stratification.

Given the weakly radiating solution (5.112) for general lower layer profiles, it is
possible to go back and calculate the correction terms to the steadily travelling velocity.

The second integral in (5.91) that need be evaluated is,

I, #oelanny desc = - S, ey deac
= //‘;H cos Oh,p|,__, rdrdd, (5.113)

having used integration by parts, along with the fact that the variables vanish in the
far field and introduced polar coordinates. The integral is over 0 < 8 < 27 and 0 <
r < oo. However, since h = h, = 0 outside of the radius eddy, we can restrict this
to 0 < 7 < a. Observing, as has been previously proven, that the radially symmetric
part of ¢ integrates to zero, signifies that we only need consider the radiating part of
the solution. Substituting this into (5.113), using the orthogonal relationship of cosine

terms, integration by parts and applying identity (B.1),
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Figure 5.4 The horizontal cross-section of the Radiating
Eddy Solution at z=-1.0, with N=1 and a=3.85.

158



10.0

5.0

0.0

-5.0

Figure 5.5 The horizontal cross-section of the Radiating
Eddy Solution at z=-0.5, with N=1 and a=3.85.
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Figure 5.6 The horizontal cross-section of the Radiating
Eddy Solution at z=0.0, with N=1 and a=3.85.
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J[ ey dsac

Qu

=203 (-1)7 i /oonmJ.-l (\/I\_or) her |
m=0

2% cosf cos ((2m + 1) )
2m + 1

dédr,

=200} (-1)7 [ 51 (Vior) herar,
= 2 P32 (-—1)‘7/: &d; (rJ1 (\/A_or)) hdr,

= 2703 (-1) 7\/1\_0/: Jo (\/-/\;T) h(r)dr, (5.114)

after changing the dummy variable of integration.

A similar calculation, as what has been done above, can be done for (5.10). However,
because the associated version of (5.113) contains a sine which is orthogonal to all the
cosines from the radiation term, the corresponding integral vanishes. Therefore, the
along-shelf speed for the first two orders, is precisely the Nof speed.

Substituting these results into (5.91), yield

M =9, (5.115)
2

(5.116)

& = /re (2_‘7?(;(_—1))

This result is for general cold-pool profiles.

Since the right-hand side of (5.116) is positive, we see that the next order approxi-
mation to the cross-channel velocity is positive, and ergo the cold-pool has a down-slope
drift. This is because the cold-pool generates the Rossby wave-wake behind it, which
radiates energy away from the cold-pool. This radiation of energy must come from the
release of available potential energy. Since we are assuming that the cold-pool main-
tains it shape, potential energy is released in the only other possible way. This being by
the cold-pool moving down the slope since this corresponds to a state of less available
potential energy for the cold-pool.

In a different light, this down-slope drift can be interpreted as being due to the
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presence of drag forces. Drag acts against the Coriolis force and hence disrupts the
balance that it strives to achieve with buoyancy forces, which is what allows for the
cold-pool to slide down the slope. A similar result was found in Flierl (1984) and
Swaters & Flierl (1991).

The Sommerfield condition is not the only radiation condition that can be used.
Another possibility is that explained in Lighthill (1965). This method demands that
the solution which is physically relevant is obtainable from the limiting case of an initial
value problem. Johnson (1978) used this radiation condition to determine the behavior
of QG flow over an isolated topographic disturbance. Our situation can be viewed as
being the same except that in our model the QG fluid is at rest, and the disturbance
beneath it is in motion. This paper yielded essentially the same result as what we have
Jjust obtained.

To plot the streakfunction (5.12), we substitute (5.112) in the parabolic case, and
the leading order expressions for the cold-pool speed (c,&) = (1,0). We include the same
modes as in the streamfunction plot of the weakly radiating solution, as well as a = 3.85
and N = 1. The contour spacings for all the plots is 1.1.

Figures 5.7 to 5.9, 5.10 to 5.12 and 5.13 to 5.15 are for u = 0.5, 1.5 and 2.5 re-
spectively. The first, second and third in each set are at the bottom, middle and top
respectively. It is true that our solution is only valid for small u, so we cannot expect
our plots for u = 1.5 and 2.5 to be accurate. These are extrapolations and are believed
to yield the same qualitative behavior.

In all of these plots, the cold dome is positioned in the center. For p = 0.5, the effect
of the lower layer is to deflect the fluid parcels passing directly above it slightly towards
deeper water, where then it returns to its original path after h begins to decrease. For
# = 1.5 and 2.5, this path deflection is stronger in that it extends further outwards and
enables some fluids directly over it, to travel in closed orbits. As well, to the left of the
cold-pool, the Rossby wave-wake gets more apparent with increasing values of p.

It is seen that with increasing values of #, closed streaklines begin to form and
then in greater numbers. The fact that more closed paths occur, hence more fluid is

transported with increasing u signifies that the transport of fluid in the upper layer is
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due to baroclinic processes.

In addition, closed contours form more frequently near the bottom. The greater
number of closed streaklines at the bottom signifies that baroclinicity is stronger at the
bottom due to the existence of stratification in the upper layer which cushions the effect
of the lower layer throughout the upper layer depth.

In Section 5.1 it was determined that for steadily travelling solutions, if there exists
a closed streakline, the cross-slope velocity must be zero. The conclusion for weakly
radiating solutions, that there is a down-slope drift, may seem to conflict with this, but
indeed it does not. This is because the radiating solution is only an approximate one, in
that we have only obtained the leading order behavior. Substituting the radiation term
into the full nonlinear equations, yields a term which is not necessarily zero and must
be compensated for by time evolution (as in Flierl, 1984 and Swaters & Flierl, 1991).
Therefore, this system is no longer steadily travelling and the zero cross-slope velocity

conclusion is not applicable.
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Figure 5.7 The streaklines of the Radiating Eddy Solution
at z=-1.0, with mu=0.5, N=1 and a=3.85.
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Figure 5.9 The streaklines of the Radiating Eddy Solution
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Figure 5.10 The streaklines of the Radiating Eddy Solution
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Figure 5.13 The streaklines of the Radiating Eddy Solution
at z=-1.0, with mu=2.5, N=1 and a=3.85.
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Figure 5.14 The streaklines of the Radiating Eddy Solution
at z=-0.5, with mu=2.5, N=1 and a=3.85.
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Figure 5.15 The streaklines of the Radiating Eddy Solution

at z=0.0, with mu=2.5, N=1 and a=3.85.
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Chapter 6

Summary and Conclusions

The occurrence of mesoscale gravity currents over gently sloping continental shelves
and their destabilization into cold-pools inspires the need for an analytical model in
order to better understand these phenomena. The Swaters (1991) model did this, and
demonstrated the importance of baroclinicity along with other achievements. However,
experimental observations and numerical simulations suggested the need for modifying
this model so that the overlying fluid is continuously stratified. The model described
in this thesis, has done exactly this, where the upper layer is QG and the lower layer
is an ‘intermediate length scale’ model that is in the form of either a gravity current or
cold-pool.

The model considered simultaneously the destabilizing effects of vortex tube stretch-
ing versus the stabilizing effects of topography. The ratio of these two quantities is the
interaction parameter u, which determines the stability characteristics of the system. It
is the down-sloping side of the gravity current where the instability most easily develops,
as in the original Swaters’ model. A semicircle theorem was established which gives a
bound on the growth rate of the unstable modes.

By considering a simple wedge, we have established a high-wavenumber cutoff which
eliminates the possibility of ultra-violet catastrophe. As well, it has been determined
that the presence of stratification tends to increase the growth rate of the most unsta-
ble mode, in addition to decreasing its wavelength. This lower layer profile is highly
idealized, yet this qualitative behavior is believed to carry through to more complicated
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situations.

The governing equations for each layer in their primitive form, are known to have
a noncanonical Hamiltonian structure. This is advantageous since symmetries in the
Hamiltonian each imply the existence of a conserved quantity. As well, criteria can be
obtained to guarantee linear or nonlinear stability. Putting these two fluids together in
one model and doing an asymptotic expansion, reveals that a noncanonical Hamiltonian
structure is still present, which we have exploited to obtain stability conditions on the
steady state solutions that are invariant with respect to the along-shelf coordinate.
Such conditions could not be found for steadily travelling solutions because of Andrews’
theorem.

By considering steadily travelling, isolated and coherent cold-core eddy solutions a
degeneracy arose. This being that conditions could not be found to determine what
cold-pool shapes are allowable. For general lower layer profiles, two different types
of solutions were obtained. The first is an exact solution where the entire system is
radially symmetric and has a zero-wave drag condition imposed, which eliminated any
waves outside the support of the cold-pool. The induced cyclone directly above the
cold-pool is tapered in shape, which correlates with numerical predictions.

The second solution is weakly radiating in that it assumes the interaction parameter
is small which allows for wave drag forces to be present. Solving for the leading order
behavior results in an induced eddy as before, but the drag on the cold-pool creates a
Rossby wave-wake behind it. This wake interacts with the cold-pool to create a down-
slope drift. The stratification present in the upper layer cushions the interaction with
the Jower layer which is what causes the induced eddy to be tapered and the wake to
decrease in amplitude radially away from the cold-pool and with height.

By plotting the streaklines of the weakly radiating solution where the lower layer is
parabolic, it was found that for small values of 4, no closed streaklines occurred and
hence no fluid was transported along in the upper layer. Extrapolating this solution to
larger values of 4, it was found that closed streaklines did occur. Moreover, the larger
the interaction parameter the more closed streaklines, therefore the greater the fluid

transport.
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This thesis has derived a new model and has analyzed certain aspects of it, but there
are still more analysis that could be done. For instance, it is possible to do a weakly
nonlinear analysis in order to obtain amplitude equations for the slightly linearly unsta-
ble modes. Numerical simulations could be performed that would explicitly show the
destabilization of gravity currents into cold-pools and also how the cold-pools propagate
with either zero or non-zero wave drags. Ventilation processes could be introduced, as
was done in Swaters & Flierl (1991), to study the thermodynamic interaction of the two
layers. Given that the conservative form of this model has shown merit, it is justifiable
in proceeding with the introduction of friction, to study the effects that it has on the
system.

Since the inspiration for this work was the Strait of Georgia, it would be desirable
to apply this model directly to this body of water. It is believed that this model should
be more accurate then the original Swaters’ model, since it is known that for gravity
currents to form it is necessary that the upper fluid is stratified (LeBlond et al, 1991).

A further extension that could be made is introducing a third layer above the strat-
ified one that is homogeneous and less dense then both the other layers. This is because
during gravity current formation in the Strait of Georgia, a freshwater layer is present
at the surface due to runoff from melted snow. This third layer would have an impact
on the dynamics of the system and hence should be considered. Benlov (1996) did this
adjustment for the original Swaters’ model, but we believe that adjusting our model in
this manner would be an even better approximation since it would be closer to physical

observations.
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Appendix A

Technical Proofs

A.1 The Eigenvalues are Positive

In deriving the Poincaré inequality the fact that the eigenvalues are positive has been
used, and is essential. Therefore, it is necessary to prove this fact or else the foun-
dation of our analysis collapses. This is done in the same manner as what was done
in Yongming ef al. (1996). We begin by separating the eigenvalue problem into two
separate eigenvalue problems. The method of separation of variables, suggests assuming
¢(z,y,2) =u(z,y)v(z), which when substituted into (4.136) through to (4.139) yields

the following equations with their respective boundary conditions

(N‘%z)z +71v=0, (A.1)
o ~Kv=0 on z=0, (A.2)
azv; +Kv=0 on z= -1, (A.3)
and
Au+ou =0, (A.4)
u=0 on y=0,L. (A.5)
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The parameter T and o are the eigenvalues for the vertical and horizontal problems
respectively, which sum to the total eigenvalue. These are the two eigenvalue problems
considered in Yongming et al. (1996). As shown in the aforementioned paper, the
eigenvalues of (A.4) and (A.5) are non-negative, hence we need only concern ourselves
with the vertical problem.

Equations (A.1) to (A.3) are Sturm-Liouville because all the constants that appear
in the boundary conditions are positive. To gain an expression for the eigenvalue we
multiply (A.1) by v and integrate over z from —1 to 0, which becomes after substituting

in the boundary conditions

r/ivzdv = —/:v(N’zvz)zdz

/O N2z — [N'zvvz]z=o
-1

z=-~1

/_01 N-22dz — -al—z [N-2u2]z=o - gs- [N‘2v2]2=_1 . (A6)

which enables us to solve for T,

_ J2, N2z — £ [N-2?]_ — K [N-22]

T 2=-1 AT
12, v2dv (A1)
The minimum of all these eigenvalues is defined to be g,
-2,2 K [n—2,2 K [N—-2,2
7o = min fle ”zdz"a—,[N ”];:o‘E[N v?], o, 7 (A.8)
12, v2dv

where the minimum operator is over all non-zero smooth functions of z.

Without loss of generality, we can normalize v such that

/: vidz =1. (A.9)

The function v depends on the variable z but also varies with K since it is present in
the boundary conditions. Therefore, it makes sense to differentiate v with respect to

K if we assume there is a smooth dependency. Differentiating (A.9) with respect to X
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gives the following orthogonality relation,
/: vvgdz = 0. (A.10)
Recall that K was chosen to be that parameter that solved the expression
10 (K) + 09 = Q—Ii, (A.11)

where 79 (K) = min 7 (K) and 0¢ = min o. The right-hand side of this expression begins
at zero and is monotonically increasing. To first show that there is a unique solution it
is necessary to show that the left-hand side is monotonically decreasing. We begin by
differentiating (A.7) with respect to K, after substituting in (A.9)

%;— = 2/: N~ 2y,0,dz % [N‘zvv;(]"':o ~ ii: [N“zv'vx]z=_1
e v (A12)

The first three terms can be rewritten using conditions (A.2) and (A.3)

2 (/: N~ %v,u,dz — % [N—ZU‘UKL=0 - C—II% [N‘2va]z=_l)

=0
= 2 ( / N~ 2,v,5dz — [N'2vzv;(]z )
-1 z=-1

= -2 -1UK (N‘zvz)z

= 21'/0 vugdz
-1
0,

(A.13)

implementing the product rule to eliminate terms, substituting in (A.1) and finally
applying (A.10). Substituting this result into (A.12) yields

;—Ir{ = —aiz [N‘2v2]2=0 - 5}3' [N-%P]z:_1 : (A.14)
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The functions and constants that appear in the right-hand side are all positive, and
each occurs with a negative sign in front, to make this expression negative definite. This
proves that the left-hand side of (A.11) is decreasing, and hence g is also decreasing.
The right-band side of (A.11) increases from zero to infinity with K, whereas the left-
hand side decreases starting from 7(0) + o, which is strictly positive. Therefore, the
intersection must occur at a positive value, which need be for a positive K. This then

proves the positivity of the eigenvalues.

A.2 Translation of K > u

Arnol’d’s second theorem for nonlinear stability required that K > u. This condition
as it stands is not very insightful, and should be translated in terms of the boundary
conditions. This is done by first deducing that since (A.1) is a linear second order
differential equation, there must exist two linearly independent solutions, each of which
depend on the eigenvalue 7. We call these two solutions U (z; 7) and V' (z; 7), and choose

them such that they satisfy

U(-L;r) = 1, V(-1,7)=0,
U, (-57) = 0, Vy(~1,7)=1. (A.15)

The general solution is
v=clU(z7)+cV(z;71), (A.16)
which when substituted into (A.3) yields the requirement

=Ky (A.17)

(2%

Hence, if we choose A = a3, (A.16) reduces to

v=a3U(z;7) — KV (z;7). (A.18)
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Since this solution satisfies (A.1) and (A.3), we need only impose the final boundary
condition. Substituting (A.18) into (A.2) yields, after simplifying,

ag (e2U; (0;7) — KU (0;7)) = K (a2V; (0;7) — V (0;7)), (A.19)

which then represents the eigenvalue problem under consideration. For each K. , there
are an infinite number of T solutions, where 7y is the minimum of those values. For any
T < 19(0), there must exist at least one solution with X > 0, which we call Ky, that
satisfies the equation 79 (Kg) = 7, since 79 decreases from 79(0) to —co as K increases
from 0 to oco. This Kjp is the minimum value that satisfies this equation.

Define a new function 7; to be,

2, N2z
—mina=1l_~ _“z7< 3 -1Y=0 =
T1 = min fgl s with v (-1)=0=v(0), (A.20)

where the minimum operator is taken over the smooth functions on the interval —1 to
0. To show that V' (0;7) > 0 for 7 < 71, we begin by proving that it is non-zero, which
is done by contradiction. Substituting V into (A.7) along with the boundary condition
(A.15), and the assumption that V (0;7) = 0, yields

YNz

==l 2 7 A.21
T 12, vidy (4.21)

which contradicts the assumption that 7 < 7, upon realizing that this is one of the
functions being summed over in (A.20) and therefore cannot be strictly less than 7.
Therefore, we conclude that V (0;7) # 0 for T < 7.

Before we can determine the sign of V, it is necessary to determine the sign of V'V,
on —1 <z <0 and for 7 > 7. This is done by evaluating (A.1) at V, then multiplying
this expression by V' and integrating over the z interval. Using integration by parts and

(A.15) then simplifies the expression to,

4
NV, = / N-2V2? — 7V, (A.22)
-1
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Substituting in for T using (A.7) evaluated at V, with the associated boundary condi-

tions, brings the above equation into the following form,

z Vs
N-VV, = / N2, — (1214 /0 N-V2d,
-1 jfl Vidv ) J-1

T2 Vidz: K ~2¢,2
+m0_2 [N v L:o' (A.23)

Since the quantity in brackets is at most one, this means that the first row on the
right-hand side is bigger than equal to zero. Wheress, the second row, using the fact
that V (0;7) # 0 for 7 < 7, is strictly positive. Therefore, we deduce that V'V, # 0,
where by continuity and the fact that V;(—1;7) > 0, that V; > 0 for this entire regime,
which then allows us to conclude that V > 0 for z > —1 and T < 7, since these two

quantities must be positively correlated.

Equation (A.19) is a quadratic equation in K, which can be rewritten as
VK? — (asU + a2V;) K + apa3U, =0 on z=0, (A.24)

which allows us to solve for K using the quadratic equation

(S

on z=0,

o (@U+asVs) [(@a + 2V,)? ~ darasvts)]
- 2V 2V

[ L
_ (U + ;) | (a3U + a3V;)? — dagas (VU, + UV, - UV, )] 2

1% oV on z=0,

- 1
_ (@sU +ag¥) | [(asU — Vi)’ ~ dage (VU + UV

2V 57 on z=0, (A.25)

upon adding zero then re-completing the square.
To get an expression for VU, + UV;, consider the differential equation (A.1) which
governs both U and V. Taking the U equation multiplying it by V' then subtracting this
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from the V' equation multiplied by U, results in after integrating, cancelling

/: U (1\/—21/2)z -V (N-?Uz)z dz =0,

UV -VU;), o= M1’ (A-26)

and using (A.15). Substituting this result into (A.25) produces the following expression
determining K for v < 7,

2 1

K = (a3U + aaV;) + [(asU - anz)2 + 4a203_!_(A1,V(_012)J 2
2V oV

= - (A.27)

on z=0

Note that 70(0) and 7, are the same in appearance, but they differ in that the
functions that are being summed over in the first quantity contain those of the second

and more, which implies that
10(0) < 11 (A.28)

Therefore, 79 (K) for K > 0, must be the inverse of one of the two solutions of (A.27).
By definition, 79(K) matches to the smallest value of K for a particular 7, and hence
corresponds with M_ () . This means that these two functions must satisfy the following

relation, 7o (M- (7)) =7 for all 7 < 19 (K), or
M_ (70(K)) = K, (A.29)
for K > 0. Substituting (A.11) into (A.29) yields
K
M. (a— - 0'0) =K and 7 <79(0). (A.30)
1

Clearly the right-hand side of (A.29) is an increasing function of K. The left-hand
side is a decreasing function of K because 9 (K) is decreasing and these functions are

inverses of each other. Hence we see that a solution having K > 14, as what arose in the
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second nonlinear stability theorem, corresponds to requiring

M_ (_If_ —0'0) >pu and -Ii — 00 < 19(0). (A.31)
Q) (231
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Appendix B

Bessel identities

The Bessel identities listed here can all be found in standard texts on Bessel functions,

such as Watson (1962). The first set of identities are differentiation formulas,

a“; (2°Ja (2)) = 2200 (), (B.1)
% (£7%Ja (z)) = ~2~%J g1 (), (B.2)
2 (2°Ya (2) = Y1 (2), (B.3)
% (27°Ya (z)) = ~2~*Yas1 (), (B.4)
% (2% (z) = 2°1a_y (z), (B.5)
% (%Ia(2) = 20y (), (B-6)
% (@°Ka (z)) = —2°Ko1 (), (B.7)
Zi_ (z7Ka (2)) = =27 %Kor1 (z), (B.8)

where « is an integer. The second set are recurrence relations,

Jat1 (@) = 20 (2) = Jaus (2), (B.9)
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2
Yai1(z) = ?QYQ (z) = Ya-1(z), (B.10)
2a
Iat1(z) = =—la(7) + Ia-1 (z) (B.11)
2a
KQ+1 (.’l:) = -;Ka (.'B) + K -1 (a:) . (B.12)
The Wronskian for each set of Bessel functions are

W (23 Ja, Ya) = Ja () % (Ya () ~ Ya (z) % (Ja (z)) = % (B.13)

d d 1
W (z; I, Ko) = I, (z) o (Ka(z)) — Ka (z) o (Ia(z)) = -7 (B.14)
Four other formulas, that are not so standard, that can be derived from the above are

2

Yo(z) i (2) — o (@) Yi (o) = =, (B.15)
= (Y (@) %2 (2) ~ Jo () Y3 (=) = 2, (B.16)
Ko(2) I (z) + Io (z) K (z) = i (B.17)
22 (Ko (z) Lo (z) — Io (z) K (z)) = —2. (B.18)

The first identity above is established by substituting (B.2) and (B4) for a =1 into
(B.13) evaluated at a = 0. Equation (B.16) is proven by substituting (B.9) and (B.10)

for @ = 2 into the left-hand side of (B.16), then cancelling off terms and using (B.13),

2* (Yo (z) J2 (2) - Jo (2) Ya(z)) = 2% (a) (SJI (z) - Jo <z>)

—22y (z) (fn (z) - Yo (z)) ,
= 2z (Yo(z)J1(z) — Jo (z) Y1 (z)),
4

= = (B.19)

Substituting (B.6) and (B.8) into (B.14) for @ = 0 yields (B.17). The final equality is
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proven through a similar procedure as above,

= (Ko@) h(@) ~h@ K@) = Ko(o) (~2h(x) +la(o))

-—IZIO (.'1:) (%Kl (:'B) + Ko (z)) '
= -2z (Ko (.’L‘) Il (2) + IO (2:) Kl (z)) ’
= -2 (B.20)

Finally, the asymptotic expansions for the regular and modified Bessel functions are

23 ar T«

JQ(:z:)~(E) cos( -—2-—1) 8s T — o0, (B.21)
Ya (z) l)%sin( am _* - B.22
@ (m: 2 4) as = ’ (B-22)

1 \?

— T —

I, (z) (2‘”3) e as — o0, (B.23)

1
K (:::)N(l)ze" as T — 00 (B.24)

@ 2z ) )
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