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Abstract 

 

In the first part of this thesis, a straightforward intuitive method for descriptive 

survival analysis, termed “cumulative total incidence”, is proposed to measure 

the total burden of recurrent events in a population by a given time. Using data 

from the Childhood Cancer Survivor Study, demonstrate the utility of this 

method contrasting this method to cumulative incidence. In the second part of 

this thesis, the concepts of risk and rate, and their relationship are discussed in 

the framework of survival analysis. Regression approaches for estimating the 

association between factors on event risk and event rate are discussed. Using 

data from the Childhood Cancer Survivor Study on two competing outcomes, we 

further demonstrate how competing-risk event affects the estimated association 

of covariates of interest with event risk and rate.  
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Chapter 1: Introduction 

 

1.1 Outline 

In survival analysis, more than one type of event can be of interest or concern. 

For example, if cancer recurrence after therapy for childhood cancer is the event 

of interest, death from any cause may preclude the onset of cancer recurrence 

(i.e., individuals who experience death are no longer at risk for cancer 

recurrence) and therefore an event that needs to be taken into account in the 

analysis. In this situation, death is regarded as competing risk event for the event 

of interest, because it precludes or fundamentally alters the probability of the 

occurrence of the event of interest [1]. Occurrences of competing risk events are 

different from and cannot be treated as censoring.  

To estimate the risk or probability of developing an event of interest by a 

given time, the complement of a Kaplan-Meier product limit estimate (1-KM) 

has been used [2]. The 1-KM method is not appropriate with competing risk 

setting because it does not distinguish competing risk from censoring. The 

cumulative incidence (CI) is the alternative method, which accounts for 

competing risks by properly removing individuals who had a competing-risk 

event from the risk set[1,3].  

In many studies, however, the event of interest is a recurrent event: each 

individual may experience the event of interest multiple times over the study 

period [4] . To measure the total burden of such events in a population, the CI 

method is not appropriate because it only considers the first occurrence of the 
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event of interest for each individual in the analysis, and subsequent occurrences 

are not included. Therefore, an approach that can reflect a summarization of all 

events in the population by a given time is needed.  

Chapter 2 of this thesis will propose a straightforward, intuitive method 

for this purpose, termed “cumulative total incidence” (CTI), which summarizes 

all events that occur in the population by a given time, not just the first event of 

each subject. The mathematical relationship between CTI with CI will be given. 

Detailed calculation of CTI is described using a simple hypothetical example 

initially, followed by a real example from the Childhood Cancer Survivor Study 

(CCSS). In the CCSS example, we will contrast CTI and CI for the outcome of 

subsequent neoplasms to demonstrate differences in these two approaches and 

the utility of CTI. 

One may be interested in factors related to the risk of experiencing an 

event in a given follow-up period, or those related to the rate of experiencing that 

event. To introduce covariates in competing-risk settings for the need of 

assessing the association of factors with event occurrences, considering event 

risk or event rate, many multivariable statistical regression models have been 

developed [5-7]. Amongst the different regression approaches, two most widely 

used approaches are Cox proportional hazards model, and Fine and Gray 

regression on “subdistribution” hazards. In Chapter 3, we will review these two 

common approaches, and explain how their result interpretations are connected 

to the key concepts of risk and rate in epidemiology. Using data from CCSS, we 

illustrate the differences between these two regression approaches in an analysis 
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of several hypothesized risk factors with time to two competing outcomes: 

second malignant neoplasm and death from any cause. The purpose of this 

chapter is to clarify the differences of the two time-to-event regression methods 

in conjunction with the corresponding epidemiological concepts of risk and rate 

in the presence of competing risk. With the illustration using the CCSS data, we 

hope that this will be helpful in choosing the most appropriate method based on 

research questions.  

In Chapter 4, conclusions will be summarized and areas of interest for 

future research will be discussed.  

 

1.2 Data 

Chapter 2 and Chapter 3 use data from CCSS, a 26-institution retrospective 

cohort study investigating long-term effects of cancer and its therapy, among 5-

year survivors of childhood cancer. The CCSS is funded by the US National 

Cancer Institute. The CCSS cohort is composed of individuals with a confirmed 

diagnosis of leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma, 

neuroblastoma, soft tissue sarcoma, bone cancer, central nervous system 

malignancy, or kidney cancer before the age of 21 years between January 1, 

1970 and December 31, 1986, who survived at least 5 years after diagnosis. A 

detailed description of the CCSS study design has been published previously [8].  

Numerous reports show that childhood cancer survivors are at increased 

risk for developing neoplasm following the primary childhood cancer. These 

subsequent neoplasms include subsequent malignant neoplasms, non-malignant 
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meningioma, and non-melanoma skin cancers [8, 9] . Subsequent neoplasm is a 

recurrent event (i.e., a survivor could experience it more than once) and its 

occurrence affects the quality of life in cancer survivors greatly, and also their 

healthcare service utilization. Chapter 2 uses subsequent neoplasms as outcome 

and estimates the total burden for this recurrent event using the novel statistical 

method proposed in the chapter. Chapter 3 uses second malignant neoplasms as 

the outcome and death from any cause as a competing-risk event, to fit both Cox 

cause-specific proportional hazards model and Fine and Gray subdistribution 

proportional hazards model, in order to assess associations of various factors if 

interest with the occurrence of the first second malignant neoplasm, and 

illustrate the differences between these two regression approaches.  

 

1.3 Software 

All the analyses were conducted using R, which is open source software 

for statistical computing and graphics, and can be downloaded freely from the 

Comprehensive R Archive Network (CRAN) site (http://cran.r-project.org/). We 

developed R code for the CTI method proposed in Chapter 2. In Chapter 3, Cox 

cause-specific proportional hazards model was fit using the R package survival, 

and Fine and Gray subdistribution proportional hazards model was fit using the 

R package cmprsk. All the R codes used for data manipulation, CTI 

fitting/drawing and model fitting can be found in Appendices of the thesis.  
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Chapter 2: Estimating the burden of recurrent events in the 

presence of competing risks: The method of cumulative total 

incidence 

 

2.1 Introduction 

In many clinical studies, it is of interest to estimate the cumulative probability of 

developing an event by a given time. The complement of a Kaplan-Meier (KM) 

product limit estimate (1-KM) has been widely used to estimate this cumulative 

probability. However, when there are competing-risk events, which are events 

whose occurrence either precludes the occurrence of the event of interest or 

fundamentally alters its probability of occurrence [1], the method of cumulative 

incidence (CI) should be used. The KM method is not appropriate when 

competing-risk events are present because it does not distinguish competing-risk 

events from censoring, which can result in inflated cumulative probability 

estimates.  The CI method properly removes individuals who had a competing-

risk event from the risk set. 

The CI approach estimates the cumulative probability of the first event of 

interest over time: subsequent occurrences of the event of interest are not 

included. When examining the probability of event occurrence within 

subpopulations of subjects defined by different treatment or other risk factors 

(i.e., etiological inference), it may be sensible for the analysis to only consider 

the first occurrence of the event in each subject, particularly if the occurrence of 
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first event changes the underlying risk and/or biology of the subsequent event 

(e.g., by treatment).  

In many studies, however, the outcome variable of interest is a recurrent 

event: each individual in the study may experience the event of interest multiple 

times over the study period [2]. Examples of such outcomes include 

hospitalization, injuries, repeated heart attacks, and fractures in osteoporosis 

studies.  When it is of interest to measure the total burden of such recurrent 

events in a population, we would like a methodology that allows a meaningful 

summarization of all events that occur in the population, not just the first event 

of each subject [3-5].  

To fully describe the disease burden for recurrent events in the presence 

of competing risks, we propose a straightforward and intuitive method, hereafter 

referred to as the “cumulative total incidence” (CTI), for estimating the total 

number of events of interest that would be the average number of events to occur 

in a population member by a given time. The organization of this paper is as 

follows: we will propose the CTI; explore the relationship between the CTI 

estimate and the CI estimate for first event; describe the calculation method of 

CTI with a hypothetical study; illustrate the use of CTI with data from 

Childhood Cancer Survivor Study; and close with a discussion regarding some 

important points that need to be considered when using CTI.  
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2.2 Estimation of CTI 

Our notation is consistent with that of Gooley et al. [1] who provided an 

intuitive form and a clear demonstration of the mechanics of the CI.  

In contrast to CI, which is defined as the proportion of a closed 

population at risk that develops the first occurrence of an event of interest within 

a given period of time [6], the CTI proposed in this paper refers to the average 

number of events of interest (first-ever or recurrent) per individual in a 

population within a given period of time. CI includes only the first occurrence of 

the event of interest for each individual and describes the average risk of 

experiencing at least one event in a population, whereas, CTI is a summarization 

of all the events that occur in the population at risk and reflects the burden of the 

event of interest in a population. 

To estimate CTI, we assume there are 0n  individuals initially at risk in 

the study. Each individual could experience three distinct kinds of events at time 

jt during follow up: (1) occurrence of the event of interest; (2) occurrence of a 

competing-risk event; and (3) censoring. 

The times at which any of the three events occurs can be ordered as

1 2 ... nt t t≤ ≤ ≤ . We further define the following: 

je : The number of events of interest occurring at time jt (including first-

ever or recurrent); 

jr : The number of individuals who experience a competing-risk event at 

time jt ; 
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jc : The number of individuals who are censored at time jt ; 

jn : The number of individuals who are at risk and under observation of 

the study beyond time jt . 

In contrast to the usual CI setting, when measuring the total number of 

events is of interest, regardless of whether first or later occurrences, individuals 

can experience the event of interest several times and still remain “at risk” in the 

study. Thus, individuals can only experience a competing-risk event or censoring 

outcome once and are removed from the risk set, while those experiencing an 

event remain in the risk set, which means: 

0
1
( )

j

j k k
k

n n r c
=

= − +∑                                                 (Eq. 1) 

and the overall KM estimator of survival probability is expressed as 

1 1

( ) (1 )
s

j

j j

r
KM t

n= −

= −∏                                                (Eq. 2) 

where s  is the largest j  such that jt t< . This survival probability at a given 

time is the conditional probability that an individual remains at risk for the event 

of interest at that time. Since individuals who experienced the event of interest 

are still at risk of experiencing the event of interest again, they will not affect 

this survival probability. Given the Equation (1) of ( )KM t , the CTI by time t  is 

estimated by: 

1 1

( ) ( )
s

j
j

j j

e
CTI t KM t

n= −

=∑  .                                        (Eq. 3) 
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The ( )CTI t  can be interpreted as the estimate of expected number of 

events per person by a given time who have not experienced a competing-risk 

event by time t. Therefore, the product 0( )CTI t n×  is the estimate of total 

expected number of events of interest by time t , which can be a more relevant 

and clearly interpretable measure of overall disease burden in a population than 

considering only the first event that occurs for each subject. 

For calculating the the cumulative probability of the first event of interest 

at time t, ( )CI t , Gooley et al. [1] gave the following formula:  

1 1

* * *
1 1 11 1 1

( ) (1 ) (1 )
j js

j k k

j k kj k k

e e rCI t
n n n

− −

= = =− − −

= − −∑ ∏ ∏                              (Eq. 4) 

where  

0
1
( )

j

j k k k
k

n n e r c∗

=

= − + +∑                                         (Eq. 5) 

Note that the notation defined for Equations (1)-(3) also apply to 

Equation (4) and (5), but the follow-up time stops after the individual 

experiences the first occurrence of the event of interest. Thus, 
1

k

k

e
n −

and 
1

k

k

r
n −

are 

the estimate of the hazard of failure from the event of interest and the 

competing-risk event, respectively, at time kt . Individuals are removed from the 

risk set after the first occurrence of the event of interest, occurrence of a 

competing-risk event, or censoring. 

Comparison of Equations (3) and (4) illustrates a critical difference 

between CTI and CI. For CI, the cumulative probability of the first event of 
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interest depends on survival free of both the event of interest and the competing-

risk event. After experiencing the first occurrence of the event of interest, the 

individual should not remain in the risk set, because that person cannot provide 

any additional information about the first occurrence of the event from continued 

observation. For CTI, however, the survival probability only depends on survival 

free of a competing-risk event. Because the individual can remain in the risk set 

after experiencing the event of interest, the number of event occurrences is no 

longer the same as the number of individuals who experience the event. 

Therefore, CTI estimates the “average number of events” per person in the 

population rather than the proportion of individuals who experience the event of 

interest. 

 

2.3 Relationship between CTI and CI  

If we assume individuals can experience at most m  recurrences of the event of 

interest during the study, it is possible to calculate the CI for the first event 

occurrence ( 1( )CI t ) and also for the second event occurrence ( 2 ( )CI t ), and so 

on, until the m th event occurrence ( ( )mCI t ). Thus, the total expected number of 

event occurrences by time t  can be estimated as 

1 0 2 0 0( ) ( ) ( )mCI t n CI t n CI t n× + × + + ×K                             (Eq. 6) 

Therefore, the cumulative total event estimate is equivalent to the sum of 

CIs for each incremental number of events, i.e. 

0 0
1

( ) ( )
m

p
p

CTI t n CI t n
=

× = ×∑                                         (Eq. 7) 
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Here ( )pCI t  represents the CI for the ( 1,2, , )thp p m= K occurrence of the 

event of interest by time t . We could simplify the Equation (7) as 

1
( ) ( )

m

p
p

CTI t CI t
=

=∑                                              (Eq. 8) 

For calculating ( )pCI t , we only treat the thp occurrence of event as the 

event of interest. The population at risk for the thp  occurrence of event would 

consist of those individuals who have had the ( 1)thp −  or less occurrence of the 

event of interest, and who are not censored or experience competing-risk event 

before thp  occurrence of the event of interest. After having the thp  event, 

individuals would leave the population at risk for the thp  occurrence of event.  

For calculating marginal ( )pCI t , we further define the following for thp

occurrence of event of interest: 

 pje : The number of individuals who experience the event of interest at 

time jt ; 

pjr : The number of individuals who experience a competing-risk event at 

time jt ; 

pjc : The number of individuals who are censored at time jt ; 

pjn : The number of individuals who are under study beyond time jt . 

Since there are 0n  individuals initially at risk, we have 0 0pn n=  and 

0
1
( )

j

pj pk pk pk
k

n n e r c
=

= − + +∑                                         (Eq. 9) 
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Note that je is the number of events of interest by time jt , regardless of 

whether it was the first occurrence or not; therefore, we have 
1

m

j pj
p

e e
=

=∑ . The 

mathematical proof of Equation (8) can be found in the appendix. 

 

2.4 Illustrative example 

In the following example of a recurrent event outcome, we show step-by-step 

calculations of the CTI and further illustrate the relationship between CTI and 

CI. We assume five participants were enrolled at the beginning of a study 

(Figure 2-1). Subject 1 was alive at the end of study and was considered 

censored at 8t . Subject 2 was lost to follow-up at 1t  and treated as censored. 

Subject 3 died from a competing-risk event at 5t . Subject 4 experienced the 

event of interest three times (at 2t , 6t , and 7t ), and was alive at the end of study. 

Subject 5 experienced the event of interest once at 3t and died at 4 3 4( )t t t= . 

First, we calculate the overall KM survival probability, taking 

competing-risk events into account (Table 2-1). 

Note that when the event of interest occurs, it does not change the 

number of individuals at risk for the next time interval because these individuals 

are still at risk for another occurrence of the event of interest. 

Next, we calculate the cumulative average number of events per person 

by time jt based on Equation (3) (Table 2-2).      
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From Table 2-2, we see that 8( ) 1CTI t = , which means that, by time 8t , 

the cumulative average number of the event of interest per person is estimated to 

be 1. In other words, since we have 5 individuals initially at risk, if we have no 

censoring, we could expect to see the event of interest occurring 5 times during 

follow-up, regardless of whether it is the first occurrence or not.  

Since the maximum number of the event of interest experienced was 

three in this example, we need to calculate only 1( )jCI t , 2 ( )jCI t  , and 3( )jCI t

and we illustrate that 1 2 3( ) ( ) ( )j j jCI t CI t CI t+ + is equivalent to ( )jCTI t  (Table 

2-3).  

 

2.5 An example of use in practice 

To illustrate the use of CTI and contrast it with the use of CI, we use the 

Childhood Cancer Survivor Study (CCSS), a large cohort study designed to 

investigate long-term effects of cancer and therapy, among 5-year survivors of 

childhood cancer. The CCSS cohort consists of 5-year survivors of childhood 

cancer diagnosed before the age of 21 years between 1970 and 1986 in one of 26 

collaborating pediatric oncology centers. A detailed description of the CCSS 

study design has been published previously [7, 8].  

Numerous reports show that childhood cancer survivors are at increased 

risk for developing neoplasm following the childhood cancer. These subsequent 

neoplasms (SNs) include subsequent malignant neoplasms, non-malignant 

meningioma, and non-melanoma skin cancers [7, 9]. The occurrence of an SN 

affects the quality of life in cancer survivors greatly [9], and also their healthcare 
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service utilization/needs. Radiation therapy (RT) has been consistently reported 

to increase the risk of SN [9-11]. To understand the total burden of SNs among 

childhood cancer survivors by RT exposure, CTI proposed in this paper is 

useful.  

Specifically, we report CTI and CI estimates of SNs for a cohort of 

12,588 survivors, starting from the CCSS cohort entry (5 years after the original 

childhood cancer diagnosis). The survivors are stratified by whether they 

received RT treatment (RT group) or not (No RT group) in the 5-year period 

following the childhood cancer diagnosis prior to the CCSS cohort entry. Death 

from any cause was treated as a competing-risk event for occurrences of SN, and 

survivors were censored at the date of last contact. 

Among 8,469 survivors who received RT treatment, 1,229 had at least 

one SN and a total of 2,112 occurrences of SN were reported after the CCSS 

cohort entry: of the 1,229 survivors with SN, 840 (68.3%) had only one 

occurrence of SN and 389 (31.7%) had multiple SNs. Among 4,119 survivors 

who did not receive RT treatment, a total of 221 occurrences of SN were 

reported among 178 individuals.  Of the 178 survivors with an SN, 147 (82.6%) 

had only one occurrence and 31 (17.4%) had multiple SNs. 

Figure 2-2a shows the estimated CTI curves and 95% confidence 

intervals calculated by bootstrapping individual survivors [12]. The CTI analysis 

with all SN occurrences reveals that at 39 years since diagnosis, there would be 

56.0 SNs occurring per 100 survivors (CTI=0.56) in the RT group, compared to 

16.1 SNs per 100 survivors in the No RT group. In other words, we could expect 
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to observe more than one SN per every two survivors in the RT group, whereas, 

less than one SN per every six survivors in the No RT group. This result 

suggests an approximately 3.5 times higher number of SNs for the survivors who 

received RT treatment compared with those who did not receive RT treatment at 

39 years since diagnosis. Figure 2-2b shows the estimated CI curves and 95% 

confidence intervals that include only the first SN occurrence for each survivor. 

It reveals that the probabilities of developing at least one SN at 39 years since 

diagnosis are 0.26 and 0.10 in the RT and No RT groups, respectively.   

 

2.6 Discussion 

To capture the burden of recurrent events in a population by a given time in the 

presence of competing risk, we proposed in this paper the CTI approach. We 

mathematically proved and empirically showed the equivalence between the CTI 

and the sum of CIs for incremental numbers of events in the population.  

When analyzing data with recurrent events, based on the scientific 

questions of the study, one should first clearly establish whether the percentage 

of people who experience occurrence of at least one event is of main interest, or 

if a summary of the total number of events occurring in a population is of 

primary interest.  For the former, CI can be estimated. For the latter, the 

proposed CTI would be useful. 

An important characteristic of the CTI is that it is not a probability. Its 

possible range is not from 0 to 1 (this is the range of CI which is a probability); it 

can be any positive number. This is because we are measuring the average 
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number of events per member of a certain population, rather than the proportion 

of the population that develops the event of interest. Also, it is not interpretable 

without specification of the time period to which it applies: this is also true for 

CI. Even when applied to the same population size, an average of two events per 

person can reflect a dramatically different burden of disease for a 50-year time 

period compared to a 1-year time period. From the illustrative example, we can 

see that a meaningful interpretation can be given as an average of one event per 

every X individuals initially at risk, or an average of Y events per 100 

individuals initially at risk. For statistical inference with CTI including 

significance test and confidence intervals, analytic methods need to be 

developed; as a valid alternative inference method, however, we applied 

bootstrapping individuals [12].  

Differences between CTI and CI become larger when the repeated 

occurrence of events is frequent. As shown in Figure 2-2 of the CCSS example, 

CTI in the No RT group led to a similar estimate as CI, while they differed 

appreciably in the RT group. This reflects the more frequent repeated 

occurrences of SNs in the RT group relative to the No RT group. In addition, the 

discrepancy of CTI from CI becomes greater over time. Thus, the CI analysis 

that incorporates only the first occurrence of SN would underestimate the total 

burden of SNs more severely with longer follow-up time.  

For quantifying incidence of recurrence events, a traditional measure in 

epidemiology is “rate” which is defined as the total number of events devided by 

the total person-time at risk for the event [2]. The denominator takes into 
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account the number of individuals in a cohort, as well as the length of time 

contributed by each individual. Because the selection of the time unit can be 

arbitrary, rate does not necessarily have implication for the period of time over 

which it is actually measured [2]. Rate reflects the fundemental force of all 

events of interest occurring in a population and it can rise or fall with time. This 

is different with the CTI we proposed in this paper, as the denominator of CTI 

only depends on the number of individuals at risk. It has a direct implication for 

the length of time over which the CTI applies. CTI reflects the burden of the 

event of interest in a population, and it is a cumulative measure that cannot 

decrease with the length of risk period. 

Finally, the CTI provides an additional approach for describing the 

occurrence of an outcome that can occur more than once during the period of 

observation. We do not propose that the CTI should replace other metrics such 

as CI, standardized incidence ratio, or absolute excess risk in describing the 

occurrence of an outcome. Rather the CTI provides a new dimension, which 

reflects a total burden of the event of interest within a population. 
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Table 2-1 Calculation of overall survival probability, taking competing-risk events into account 

Time 

interval 

# at 

risk 

1jn −  

# 

censored 

jc  

# of event 

of interest 

je  

# of 

competing- 

risk events 

jr  

Survival 

probability 

11 /j jr n −−  

Overall 

survival 

probability 

( )jKM t  

[Time 1, 

Time 2) 
5 1 0 0 1 1 

[Time 2, 

Time 3) 
4 0 1 0 1 1 

[Time 3, 

Time 4) 
4 0 1 0 1 1 

[Time 4, 

Time 5) 
4 0 0 1 3/4 3/4 

[Time 5, 

Time 6) 
3 0 0 1 2/3 1/2 

[Time 6, 

Time 7) 
2 0 1 0 1 1/2 

[Time 7, 

Time 8) 
2 0 1 0 1 1/2 

[Time 8 2 2 0 0 1 1/2 
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Table 2-2 Calculation of CTI 

Time 

interval 

# at 

risk 

# of event 

of interest 

Probability 

of event 

Survival 

up to jt  

Average # of 

event 

Cumulative 

total 

incidence 

[Time 1, 

Time 2) 
5 0 0 1 0 0 

[Time 2, 

Time 3) 
4 1 1/4 1 1/4 1/4 

[Time 3, 

Time 4) 
4 1 1/4 1 1/4 1/2 

[Time 4, 

Time 5) 
4 0 0 1 0 1/2 

[Time 5, 

Time 6) 
3 0 0 3/4 0 1/2 

[Time 6, 

Time 7) 
2 1 1/2 1/2 1/4 3/4 

[Time 7, 

Time 8) 
2 1 1/2 1/2 1/4 1 

[Time 8 2 0 0 1/2 0 1 
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Table 2-3 Equivalence of the sum of CIs and CTI 

Time 

interval 
1( )jCI t  2 ( )jCI t  3( )jCI t  1 2 3( ) ( ) ( )j j jCI t CI t CI t+ +  ( )jCTI t  

[Time 1, 

Time 2) 
0 0 0 0 0 

[Time 2, 

Time 3) 
1/4 0 0 1/4 1/4 

[Time 3, 

Time 4) 
1/2 0 0 1/2 1/2 

[Time 4, 

Time 5) 
1/2 0 0 1/2 1/2 

[Time 5, 

Time 6) 
1/2 0 0 1/2 1/2 

[Time 6, 

Time 7) 
1/2 1/4 0 3/4 3/4 

[Time 7, 

Time 8) 
1/2 1/4 1/4 1 1 

[Time 8 1/2 1/4 1/4 1 1 
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Figure 2-1 A visual representation of a hypothetical study which has a recurrent event outcome. 

A dashed line represents the follow-up period of each individual. A solid dot represents the 

occurrence of the event of interest, an open dot represents censoring, and a cross represents the 

occurrence of the competing-risk event. 
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Figure 2-2 CTI curves and 95% confidence intervals calculated by Bootstrapping method (panel 

a). CI curves and 95% confidence intervals (panel b). 
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Chapter 3: Risk and rate regression models for survival analysis 

in the presence of competing risks   

 

3.1 Introduction 

Risk and rate are two important concepts that have been frequently used in 

epidemiologic studies. William Farr [1] first gave a clear, accurate description of 

two different ways for measuring mortality, named the “probability of dying” 

and the “rate of mortality”, in his paper “On prognosis” published in 1838. 

These two terms refer to the concept of “risk” and “rate”, respectively. 

Morgenstern et al. [2] described in detail how these two different measures of 

event occurrences are used in epidemiology, and discussed issues that need to be 

considered in deciding which quantity to be estimated in a particular study.   

Descriptive methods have been developed and commonly used for 

measuring risk and rate in epidemiologic studies. For example, the complement 

of a Kaplan-Meier (1-KM) product limit estimate has been used to describe 

probability of an event occurrence by a given time. This is not appropriate, 

however, in the presence of competing-risk events because the 1-KM method 

does not distinguish competing-risk events from censoring [3, 4]. A competing-

risk event differs from censoring because it will either preclude or fundamentally 

alter the probability of the event occurrence [3]: censoring is an event with 

which the study becomes unable to observe the subject’s event occurrences but 

the nature of the event occurrence process in the subject is unchanged. In the 

presence of competing risk, cumulative incidence is the alternative method, 
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which accounts for competing risk events by properly removing individuals who 

had a competing-risk event from the risk set.  

Multiple covariates can be considered in making association inference in 

regression analysis. Varadhan et al. [5] gave a review of statistical methods that 

can be used to evaluate the effect of a healthcare intervention in the presence of 

competing risks. Gerds et al. [6] compared the statistical properties, such as size 

of prediction error and fit of the model, across different link functions for 

regression of the cumulative incidence of an event. Klein and Andersen [7] 

proposed an approach to regression modeling based on “pseudovalues” (known 

from jackknife techniques and used in a generalized estimating equation to 

obtain estimates of model parameters) of the cumulative incidence function. 

Amongst many different regression approaches, the two widely used are Cox 

proportional hazards model, and Fine and Gray regression on subdistribution 

hazards [8-11]. In this paper, we will focus on these two common approaches, 

and explain how they are connected to the epidemiologic concepts of risk and 

rate. We feel this is needed because the method of Fine and Gray is often 

depicted as the method to be used for time-to-event regression in the presence of 

competing risk which is not accurate: the key difference between these methods 

corresponds to the difference between risk and rate in epidemiological concepts. 

This clarification can be helpful for researchers in clinical and public health 

sciences in choosing the appropriate methods for answering their scientific 

questions.  



 

28 
 

The organization of the paper is as follows: (1) review of the concept of 

risk and rate with a simple hypothetical example; (2) explanation of the 

relationship between risk and rate in survival analysis with the use of simple 

statistical concepts; (3) description of two standard regression approaches for the 

analysis of epidemiologic data with respect to risk and rate; (4) illustration of the 

use of these methods in an analysis that estimates the association of several 

factors with the occurrence of second malignant neoplasm (SMN) with data from 

Childhood Cancer Survivor Study (CCSS); (5) a discussion regarding important 

points to be considered when using a risk-related approach and a rate-related 

approach.  

 

3.2 Concept of risk and rate 

Consider the following example of epidemiological studies. A cohort of patients 

diagnosed with a particular cancer is followed up for the primary objective of 

evaluating recurrence of the cancer, comparing Group A and Group B of the 

patients (e.g., treatment A vs. treatment B of the cancer). Some patients may be 

censored at the end of follow up without having developed a recurrence, the 

event of interest, or died without a recurrence, a competing-risk event. The 

following two objectives must be distinguished: (1) comparing the chance (risk) 

of developing a recurrence within, say, 5 years, between Group A and Group B; 

and (2) comparing the rate of developing a recurrence per 1,000 person-years of 

at-risk, between Group A and Group B.  Hospitals and healthcare providers may 

wish to know (1), the risk, in order to prepare for proper resource allocation for 
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recurrence treatment, while researchers may be interested in (2), a more 

mechanistic question on Treatment A vs. Treatment B as to which is better for 

preventing recurrence of this cancer. 

The risk is defined as the probability of a patient developing a recurrence 

over a specified period of time [2]. This quantity can be estimated in a sample by 

the proportion of the patients who have developed a recurrence over the 

specified period of time. If a patient dies before developing a recurrence, the 

patient cannot develop a recurrence subsequently. Therefore, death is a 

competing risk against the event of interest (cancer recurrence) and affects the 

risk. For rate, death (before recurrence) would terminate the person-time at risk 

for recurrence (i.e., the denominator of the rate), but otherwise the rate is not 

directly influenced by mortality. The rate quantifies the recurrence number we 

expect per unit of person-time at risk for recurrence [12]. This quantity can be 

estimated simply by the ratio of the number of patients who have developed a 

recurrence over the specified period of time, to the total person-time at risk for 

recurrence observed in the sample.  

Risk and rate highlight different aspects of disease occurrence. Risk is 

the probability of an event of interest, whereas rate reflects the force, or rapidity 

of an event of interest. Risk and rate are two fundamentally distinct concepts, 

and the choice of their use should be driven by the scientific questions. 
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3.3 The relationship between risk and rate in survival analysis 

In survival analysis, hazard rate is often used as the quantity to characterize the 

event process. Hazard rate is a mathematical concept referring to the 

“instantaneous rate” of an event at a certain time point among those who 

survived to that time. Mathematically, it refers to the theoretical limit 

approached by an incidence rate as its time interval is narrowed toward zero 

[12].  

The concept that corresponds to risk is cumulative incidence, which is a 

measure of the average risk of developing an event of interest in a population in 

a specified time interval [12]. Cumulative incidence depends on both the hazard 

rate of dying (mortality rate) and the hazard rate of the event of interest.  

When there is no competing risk, “surviving” to and being at risk for the 

event of interest at a certain time is defined by not experiencing the event of 

interest before that time. Therefore, the hazard rate is the only determinant of the 

cumulative incidence of the event of interest. This means if a factor is associated 

with a higher hazard rate, then it is also associated with higher cumulative 

incidence.  

When competing risks exist, each individual has the possibility of 

experiencing an event of interest, a competing-risk event or censoring. Survival 

to a given time not only depends on the hazard of the event of interest, but also 

on the hazard of competing risk events. These hazard rates in the context of 

competing risks are referred to as cause-specific hazard rates. The cause-specific 

hazard rate represents the hazard rate of occurrence of a specific type of event 
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indexed by its type (“cause”), i.e., event of interest, or competing-risk event, at a 

given time among “survivors” to that time, i.e., subjects who have not 

experienced the event of interest and have not experienced competing-risk 

events. Those who have experienced either event can no longer develop the 

event of interest; therefore they will be removed from the risk sets for the event 

of interest following their experience of either event. 

In competing risk settings, since cumulative incidence depends on the 

cause-specific hazard rate of competing-risk events as well as the cause-specific 

hazard rate of the event of interest, it is no longer defined sorely by the (cause-

specific) hazard for the event of interest.  

Many researchers have suggested that in competing-risk settings, the 

cause-specific hazard rate of the event of interest is the fundamental mechanistic 

measure of association which provides a better understanding of the underlying 

event process of interest, whereas cumulative incidence is more descriptive [5] 

and focuses on what actually happens in the presence of competing risks. 

Using the example in the previous section as illustration, suppose 

treatment A and treatment B both have no effect on the hazard of breast cancer 

recurrence, which means the cause-specific hazard rates of breast cancer 

recurrence are similar in both groups. However, if treatment A can increase the 

cause-specific hazard rate of death (competing-risk event), relative to treatment 

B, then we will have a lower chance to observe breast cancer recurrence in 

Group A. This is because that more Group-A subjects are expected to die due to 
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the higher cause-specific hazard rate of death in Group A, which reduces  their 

chance of developing breast cancer recurrence, relatively to Group-B subjects.  

 

3.4 Risk and Rate regression models 

This section will discuss two commonly-used regression approaches that can be 

used to evaluate the impact of factors on risk and rate of event of interest. 

 

3.4.1 Cox proportional hazards model  

The Cox proportional hazard model has become a widely used procedure 

for modeling the relationship of covariates to event occurrence in terms of the 

event’s hazard rate. In the presence of competing risks, Cox proportional hazard 

model can be constructed for the cause-specific hazard rate of event of interest. 

The standard form of Cox proportional hazards model to cause-specific hazards 

is 

                                          ℎ! 𝑡,𝑋 = ℎ!! 𝑡 exp  {𝑋!𝛽!}                               (Eq. 1) 

𝑋 is a vector of covariates, ℎ!!(𝑡) is the baseline cause-specific hazard 

rate for event type 𝑗, and exp  {𝑋!𝛽!} is the relative change in the cause-specific 

hazard rate corresponding to a one-unit change in a corresponding covariate. 

Note that the baseline cause-specific hazard may vary with time, but the 

regression coefficient of a covariate is the log hazard ratio for event type 𝑗 

associated with a unit change of the covariate, adjusting for the other covariates, 

regardless of the time at which it is computed.  
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Since the cause-specific hazard is measured, individuals at risk for event 

j are those who have not experienced event j and have not experienced 

competing-risk events. With respect to the cause-specific hazard rate modeling, 

competing risk events as well as censoring end the at-risk status for observing an 

event of interest: thus, competing-risk events are treated the same as censoring 

[13]. Note that this handling of competing-risk events is proper in making 

statistical inference on the cause-specific hazard rate of the event of interest. It 

should not be regarded as the inability of Cox proportional hazards models to 

incorporate competing risks: this is a common misconception.   

 

3.4.2 Fine and Gray subdistribution proportional hazards model 

When competing risks exist, the cause-specific hazard rate of the event of 

interest is not the only determinant of the cumulative incidence of that event. 

Fine and Gray [8] introduced a regression approach that models the hazard-rate-

like quantity for the cumulative incidence of the event of interest.  That is, Fine 

and Gray modeled risk (cumulative incidence), not rate (cause-specific rate), 

with explanatory variables. They defined “subdistribution hazard” by: 

           

ℎ!∗ 𝑡 = lim∆!→! Pr 𝑇 ∈ [𝑡, 𝑡 + ∆𝑡]  𝑎𝑛𝑑  𝐽 = 𝑗 𝑇 ≥ 𝑡  𝑜𝑟  (𝑇 < 𝑡  𝑎𝑛𝑑  𝐽 ≠ 𝑗) /∆𝑡    

(Eq. 2) 

where T is time to the first failure which measured from time zero, J is the 

indicator for event type. Mathematically, however, this is not a proper hazard 

function because its corresponding cumulative distribution function can never 
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reach 1 even when t increases.  Thus, interpreting this “subdistribution hazard” 

as rate is not appropriate: it is a mathematical quantity useful for modeling 

cumulative incidence of the event of interest in competing-risk settings.  

The standard form for Fine and Gray subdistribution proportional 

hazards model is  

                                          ℎ!∗ 𝑡,𝑋 = ℎ!!∗ 𝑡 exp  {𝑋!𝛽!}                               (Eq. 3) 

It is in the same proportional hazards form as Cox’s model but it is for the 

subdistribution hazard associated with an event of interest. ℎ!!∗ (𝑡) is the baseline 

subdistribution hazard for event 𝑗 and exp  {𝑋!𝛽!} is the relative subdistribution 

hazard associated with covariates.  

Note that the risk set for the subdistribution hazard contains both the 

individuals who have survived without any type of event to time 𝑡 and those who 

have had a competing risk event. For cause-specific hazard, the risk set 

decreases at each time point at which there is a competing-risk event, whereas, 

the risk set for subdistribution hazard maintains the individuals who fail from 

competing risk events, even though they will never develop the event of interest. 

Fine and Gray noted that the risk set associated with the subdistribution hazard is 

“unnatural” [8], however, one can think of these individuals as an observed 

“placeholder” for the proportion of the population that cannot have the event of 

interest [14].  

3.5 An example in practice 

We use CCSS, a large retrospective cohort study designed to investigate long-

term effects of cancer and therapy, among 5-year survivors of childhood cancer. 
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The CCSS cohort consists of 5-year survivors of childhood cancer diagnosed 

before the age of 21 years during the period from January 1, 1970 through 

December 31, 1986 in one of 26 collaborating pediatric oncology centers. A 

detailed description of the CCSS study design and cohort characteristics has 

been published previously [15]. 

Many reports show that childhood cancer survivors are at increased risk 

for developing second and subsequent malignant neoplasms [16, 17]. Radiation 

therapy has been shown to increase the risk of SMNs [18-20]. Other factors, 

such as type of childhood cancer diagnosis and age at diagnosis, have been 

reported to be associated with the occurrence of SMNs [16]. In the following 

analysis, we focus on SMN: the third and subsequent malignant neoplasms are 

not included in our analysis. Death from any cause was treated as a competing-

risk event and survivors were censored at the date of last contact.  

Of the total 13,225 childhood cancer survivors in the study cohort, 807 

experienced an SMN event, 1,005 died (had a competing-risk event), and 11,413 

were censored at the end of follow-up. The characteristics of the cohort are 

shown in Table 3-1.  

We analyzed this cohort by fitting both the Cox cause-specific 

proportional hazards model and the Fine and Gray subdistribution proportional 

hazards model. The explanatory variables were selected based on prior 

knowledge: we did not use any statistical variable selection approach. Table 3-2 

displays the estimated regression parameter and its confidence interval 
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associated with each explanatory variable on the cause-specific and 

subdistribution hazards of SMN.  

By comparing the estimated association between each covariate and 

SMN incidence, the cause-specific hazard ratio and the subdistribution hazard 

ratio differ depending on how the covariate is associated with the competing risk 

(mortality). Our result in Table 3-2 presented three different kinds of scenarios 

(Table 3-3): 

Scenario 1: the cause-specific hazard ratio and the subdistribution hazard 

ratio are nearly identical. These covariates are not associated with mortality, as 

the cause-specific hazard ratios for death are close to 1.0 and not statistically 

significant different from 1.0.  

Scenario 2: the cause-specific hazard ratio is larger than the 

subdistribution hazard ratio. In this setting, the association between the covariate 

and the cause-specific hazard is stronger than the association between the 

covariate and the subdistribution hazard. These covariates are associated with an 

increase of the cause-specific hazard for SMN, and at the same time, are 

associated with an increase of the cause-specific hazard rate for death. The 

increased incidence of competing-risk event prevents the subjects from 

developing the event of interest. Therefore, we would observe a smaller 

subdistribution hazard ratio compared to the scenario where the covariates are 

not associated with competing risk.  

Scenario 3: the cause-specific hazard ratio is smaller than the 

subdistribution hazard ratio. In this setting, the association between the covariate 
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and the cause-specific hazard is weaker than the association between the 

covariate and the subdistribution hazard. These covariates are associated with an 

increase of cause-specific hazard for SMN, and at the same time, are associated 

with a decrease of cause-specific hazard rate for death. Therefore, we would 

observe a greater subdistribution hazard ratio compared to the scenario where the 

covariates are not associated with competing risk. With the same baseline hazard 

rate of death, we would expect to observe a larger difference between the 

estimated cause-specific hazard ratio and subdistribution hazard ratio, if the 

covariate is associated with a larger decrease of cause-specific hazard rate for 

death.  

 

3.6 Discussion 

Risk and rate are two important concepts that have been frequently used in many 

epidemiologic studies. In this paper, we reviewed and compared the concepts of 

risk and rate under a hypothetical cohort study. We further explained the 

relationship between risk and rate in survival analysis framework. Two 

commonly-used modeling approaches for estimating the association between 

factors on risk and rate were discussed. A real data example from CCSS was 

used to illustrate the utility of the two regression models and the differences in 

terms of results interpretation.  

Both Cox proportional hazards models on cause-specific hazards and 

Fine and Gray’s subdistirbution proportional hazards models can be extended to 

introduce time-dependent covariates. Software to fit these models has been 
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written in R. Scrucca et al. [21] provided an easy guide for analysts on how to 

perform a competing risk analysis in R, including cumulative incidence function 

estimation, testing for equality across subgroups, and computing point-wise 

confidence intervals.  

Cox proportional hazards models give an estimate for hazard ratio, 

whereas Fine and Gray’s proportional subdistribution proportional hazards 

models give an estimate for subdistribution hazard ratio. As what we showed in 

the CCSS data analysis, covariates could have different ways of being associated 

with the event rate and event cumulative incidence. The choice of the model 

involves a number of theoretical and practical considerations. It has been 

suggested that the knowledge related to cumulative incidence is central to cost-

effectiveness analyses, and it may be useful for policy decisions making [8]. 

However, it may be more appropriate to use cause-specific hazard to evaluate 

treatment effect. 

Additional attention should be paid when one generalizes the results of 

the Fine and Gray’s subdistribution proportional hazard model. Structures of 

competing risks influence the cumulative incidence of the event of interest. 

Therefore, subdistribution hazard ratio estimates cannot be generalized to 

populations with different competing risks [8]. In contrast, cause-specific hazard 

ratio estimates can be generalized to populations with similar characteristics 

regardless of competing risks. 
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Table 3-1 Characteristics of the Childhood Cancer Survivor Study cohort by second malignant 

neoplasm (SMN) 

Characteristic 
Overall cohort 

(n=13225) 

Cases without 
SMN 

(n=12418) 

Cases with 
SMN 

(n=807) 
Mean age at diagnosis of childhood 
cancer (median) 

8.3 (6.8) 8.1 (6.5) 11.2 (12.2) 

Female N (%) 6226 (47.1) 5733 (46.2) 493 (61.1) 
Race N (%)    

Black 517 (3.9) 497 (4.0) 20 (2.5) 
White 11620 (87.9) 10883 (87.6) 737 (91.3) 
Hispanic/Latin 634 (4.8) 600 (4.8) 34 (4.2) 
Other 454 (3.4) 438 (3.5) 16 (2.0) 

Childhood cancer disgnosis N (%)    
Acute lymphoblastic leukemia 4036 (30.5) 3890 (31.3) 146 (18.1) 
Astrocytomas 1096 (8.3) 1057 (8.5) 39 (4.8) 
Hodgkins disease 1750 (13.2) 1483 (11.9) 267 (33.1) 
Medulloblastoma, PNET 363 (2.7) 343 (2.8) 20 (2.5) 
Non-Hodgkins lymphoma 973 (7.4) 916 (7.4) 57 (7.1) 
Other bone tumors 50 (0.4) 47 (0.4) 3 (0.4) 
Other leukemia 131 (1.0) 121 (1.0) 10 (1.2) 
Acute myeloid leukemia 332 (2.5) 314 (2.5) 18 (2.2) 
Ewings sarcoma 380 (2.9) 343 (2.8) 37 (4.6) 
Kidney tumors 1141 (8.6) 1110 (8.9) 31 (3.8) 
Neuroblastoma 880 (6.7) 843 (6.8) 37 (4.6) 
Osteosarcoma 667 (5.0) 625 (5.0) 42 (5.2) 
Other CNS tumors 281 (2.1) 267 (2.2) 14 (1.7) 
Soft tissue sarcoma 1145 (8.7) 1059 (8.5) 86 (10.7) 

Childhood cancer radiation therapy  
N (%) 

8504 (64.3) 7858 (63.3) 646 (80.0) 

Alkylating agent score N (%)    
0 5805 (43.9) 5507 (44.3) 298 (36.9) 
1 2503 (18.9) 2374 (19.1) 129 (16.0) 
2 1655 (12.5) 1528 (12.3) 127 (15.7) 
3 1123 (8.5) 1010 (8.1) 113 (14.0) 

Treatment era N (%)    
1970-1974 2336 (17.7) 2097 (16.9) 239 (29.6) 
1975-1979 3718 (28.1) 3457 (27.8) 261 (32.3) 
1980-1986 7171 (54.2) 6864 (55.3) 307 (38.0) 

Splenectomy N (%) 692 (0.3) 37 (0.3) 5 (0.6) 
Anthracycline exposure, mg/m2    

None 7583 (57.3) 7102 (57.2) 481 (59.6) 
1-100 480 (3.6) 466 (3.8) 14 (1.7) 
101-300 1862 (14.1) 1752 (14.1) 110 (13.6) 
301+ 2100 (15.9) 1963 (15.8) 137 (17.0) 

Epipodophyllotoxin exposure, mg/m2    
None 11570 (87.5) 10838 (87.3) 732 (90.7) 
1-1000 280 (2.1) 271 (2.2) 9 (1.1) 
1001-4000 245 (1.9) 232 (1.9) 13 (1.6) 
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4001+ 283 (2.1) 267 (2.2) 16 (2.0) 
Platinum exposure, mg/m2    

None 11875 (89.8) 11130 (89.6) 745 (92.3) 
1-400 257 (1.9) 249 (2.0) 8 (1.0) 
401-750 234 (1.8) 220(1.8) 14 (1.7) 
751+ 87 (0.7) 80 (0.6) 7 (0.9) 
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Table 3-2 Estimated regression parameters and confidence intervals associated with explanatory 

variables on the cause-specific and subdistribution hazards of second malignant neoplasm (SMN) 

  Cause-specific 
hazard ratio 
(95%CI+) 

Subdistribution  
hazard ratio 
(95%CI+) 

Childhood cancer 
radiation therapy  

No Reference 
Yes 2.03 (1.60 to 2.57)* 2.00 (1.59 to 2.53)* 

Sex Male Reference 
Female 1.83 (1.56 to 2.15)* 1.86 (1.59 to 2.19)* 

Age at diagnosis 0-4 Reference 
5-9 1.19 (0.92 to 1.54) 1.17 (0.90 to 1.52) 
10-14 1.70 (1.32 to 2.21)* 1.67 (1.29 to 2.16)* 
15+ 2.09 (1.59 to 2.75)* 2.02 (1.54 to 2.64)* 

Treatment era 1970-1974 Reference 
1975-1979 0.82 (0.66 to 1.01) 0.83 (0.67 to 1.01) 
1980-1986 0.86 (0.69 to 1.07) 0.86 (0.70 to 1.07) 

Race Black Reference 
White 1.11 (0.69 to 1.78) 1.10 (0.69 to 1.77) 
Hispanic/Latin 1.20 (0.66 to 2.19) 1.17 (0.64 to 2.12) 
Other 0.84 (0.41 to 1.72) 0.82 (0.40 to 1.69) 

Childhood cancer 
diagnosis 

Acute lymphoblastic 
leukemia 

Reference 

Astrocytomas 1.11 (0.74 to 1.66) 1.05 (0.70 to 1.57) 
Hodgkins disease 2.49 (1.86 to 3.33)* 2.51 (1.88 to 3.36)* 
Medulloblastoma, 
PNET 

1.69 (1.00 to 2.83)* 1.62 (0.97 to 2.72) 

Non-Hodgkins 
lymphoma 

1.00 (0.68 to 1.47) 1.03 (0.70 to 1.52) 

Other bone tumors 1.75 (0.55 to 5.59) 1.80 (0.55 to 5.87) 
Other leukemia 2.87 (1.45 to 5.68)* 2.57 (1.29 to 5.16)* 
Acute myeloid 
leukemia 

0.96 (0.51 to 1.81) 0.95 (0.51 to 1.78) 

Ewings sarcoma 1.61 (1.01 to 2.56)* 1.54 (0.97 to 2.42) 
Kidney tumors 0.84 (0.56 to 1.29) 0.85 (0.55 to 1.30) 
Neuroblastoma 1.41 (0.94 to 2.14) 1.40 (0.92 to 2.15) 
Osteosarcoma 1.44 (0.91 to 2.29) 1.51 (0.95 to 2.39) 
Other CNS tumors 1.29 (0.67 to 2.50) 1.19 (0.61 to 2.32) 
Soft tissue sarcoma 1.62 (1.18 to 2.22)* 1.61 (1.17 to 2.21)* 

Splenectomy No Reference 
Yes 0.74 (0.24 to 2.31) 0.74 (0.24 to 2.25) 

Alkylating agent score 0 Reference 
1 1.14 (0.90 to 1.45) 1.14 (0.90 to 1.44) 
2 1.25 (0.97 to 1.60) 1.26 (0.96 to 1.62) 
3 1.22 (0.95 to 1.56) 1.16 (0.91 to 1.49) 

Anthracycline 
exposure, mg/m2 

None Reference 
1-100 0.70 (0.38 to 1.27) 0.67 (0.36 to 1.24) 
101-300 1.31 (1.01 to 1.69)* 1.28 (0.99 to 1.66) 
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301+ 1.41 (1.09 to 1.82)* 1.37 (1.07 to 1.75)* 
Epipodophyllotoxin 
exposure, mg/m2 

None Reference 
1-1000 0.89 (0.43 to 1.85) 0.83 (0.40 to 1.73) 
1001-4000 1.15 (0.62 to 2.15) 1.03 (0.55 to 1.96) 
4001+ 1.96 (1.15 to 3.32)* 1.87 (1.07 to 3.27)* 

Platinum exposure, 
mg/m2 

None Reference 
1-400 0.68 (0.31 to 1.49) 0.63 (0.29 to 1.37) 
401-750 1.55 (0.86 to 2.78) 1.49 (0.82 to 2.70) 
751+ 2.36 (1.08 to 5.15)* 1.97 (0.88 to 4.41) 

Note: *Statistically significantly different from 1.0 with p-value < 0.05+Confidence interval. 
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Table 3-3 Comparison of the effects of estimated associations with explanatory variables on the 

cause-specific and subdistribution hazard ratios, stratified into three scenarios 

 
Cause-specific hazard 

ratio for SMN 
(95%CI) 

Cause-specific hazard 
ratio for Death 

(95%CI) 

Subdistribution 
hazard ratio for SMN 

(95%CI) 
Scenario 1 

Childhood cancer 
diagnosis: Hodgkins 
disease 

2.49 (1.86 to 3.33) 0.77 (0.52 to 1.15) 2.51 (1.88 to 3.36) 

Childhood cancer 
diagnosis: Soft 
tissue sarcoma 

1.62 (1.18 to 2.22) 1.11 (0.76 to 1.63) 1.61 (1.17 to 2.21) 

Scenario 2 
Platinum exposure, 
mg/m2: 751+ 

2.36 (1.08 to 5.15) 2.74 (1.34 to 5.60) 1.97 (0.88 to 4.41) 

Scenario 3 
Sex 1.83 (1.56 to 2.15) 0.69 (0.57 to 0.83) 1.86 (1.59 to 2.19) 
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Chapter 4: Conclusion and discussions 

In this thesis, I have mainly focused on the following two questions in survival 

analysis: 

1. How to estimate the burden of recurrent events in a population in the 

presence of competing risks? 

2. How to introduce covariates in the context of competing risks to assess 

the association of risk factors with event occurrence in terms of risk and 

rate? 

In Chapter 2, we proposed a novel statistical approach, termed 

cumulative total incidence, which can directly capture the burden of recurrent 

events in a population by a given time in the presence of competing risks. We 

further mathematically proved and empirically showed the equivalence between 

the CTI and the sum of CI for incremental numbers of events in the population.  

Using the data from the CCSS with subsequent neoplasms as the event of 

interest, the result of CTI approach suggested an approximately 3.5 times higher 

number of subsequent neoplasms for the survivors who received radiation 

therapy treatment compared with those who did not receive radiation therapy 

treatment at 39 years since diagnosis. This is informative for survivors’ follow-

up care or guideline/policy making as it quantifies healthcare service 

needs/utilizations. The cumulative incidence included only the first occurrence 

of subsequent neoplasm for each survivor and reflected that the probabilities of 

developing at least one subsequent neoplasm at 39 years since diagnosis was 2.6 

times higher for the survivors who received radiation therapy than those who did 
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not. By comparing the results of the CTI approach and the CI approach stratified 

by treatment status, one could observe that cumulative incidence analysis that 

incorporates only the first occurrence of event would underestimate the total 

burden more severely with longer follow-up time and more frequent recurrence. 

Therefore, when analyzing data with recurrent events, if a summary of the total 

number of events occurring in a population is of primary interest, the proposed 

CTI approach would be useful.  

In Chapter 3, we reviewed the concepts of risk and rate and linked the 

relationship between risk and rate in survival analysis regression framework. By 

comparing these two fundamentally distinct but mechanically related concepts, 

we highlighted that risk and rate reflects different aspects of disease occurrence, 

and the choice of either of them should be driven by the scientific questions. 

Cox proportional hazards models on cause-specific hazards and Fine and 

Gray’s regression approach on subdistribution hazards were discussed. A real 

data example from the CCSS with second malignant neoplasm and death as 

competing-risk outcomes was used to illustrate the utility of the two regression 

approaches. The results reveal that the difference between the cause-specific 

hazard ratio and the subdistribution hazard ratio was dependent on how the 

covariate is associated with competing-risk event (death). In competing-risk 

settings, the cumulative incidence for a specific type of event is not determined 

solely by the cause-specific hazard for that event; it is also influenced by all 

cause-specific hazards of competing-risk events.  
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We suggest that future work could include the development of statistical 

inference methods with CTI approach, including significance test and confidence 

intervals.  It is also of interest to consider regression methods for total 

cumulative incidence.  Statistical software package can be developed to conduct 

these analyses. The CTI approach could also be examined with other recurrent 

event.  
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Appendices 

Appendix 1: Mathematical proof of Equation (8) in Chapter 2 

The following content shows the mathematical proof of Equation (8). 

We assume there are 0n  individuals initially at risk in the study. Each 

individual could experience three distinct kinds of events at time jt during follow 

up: (1) occurrence of the event of interest; (2) occurrence of a competing-risk 

event; and (3) censoring. 

The times at which any of the three events occurs can be ordered as

1 2 ... nt t t≤ ≤ ≤ .  

Individuals could experience the event of interest, (1), multiple times and 

remain in the study. However, they can only experience outcomes (2) or (3) 

once. We further define the following: 

je : The number of events of interest at time jt (first-ever or recurrent); 

jr : The number of individuals who experience a competing-risk event at 

time jt ; 

jc : The number of individuals who are censored at time jt ; 

jn : The number of individuals who are at risk and under observation of 

the study beyond time jt . 

If we assume an individual can experience at most m  times of the 

recurrent event in the study, for ( 1,2, , )thp p m= K  occurrence of the event of 

interest: 
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pje : The number of individuals who experience the event of interest at 

time jt ; 

pjr : The number of individuals who experience a competing-risk event at 

time jt ; 

pjc : The number of individuals who are censored at time jt ; 

pjn : The number of individuals who are under study beyond time jt . 

For calculating ( )pCI t , we only treat the thp occurrence of event as the 

event of interest. The population at risk for the thp  occurrence of event would 

consist of those individuals who have had the ( 1)thp −  or less occurrence of the 

event of interest, and who are not censored or experience competing-risk event 

before thp  occurrence of the event of interest. After having the thp  event, 

individuals would leave the population at risk for the thp  occurrence of event.  

Since there are 0n  individuals initially at risk, we have 0 0pn n=  and 

0
1
( )

j

pj pk pk pk
k

n n e r c
=

= − + +∑                                         (Eq. 9) 

Note that je is the number of events of interest by time jt , regardless of 

whether it was the first occurrence or not; therefore, we have 
1

m

j pj
p

e e
=

=∑ .  

Now, we want to mathematically prove that the CTI at time t is 

equivalent to the sum of ( )pCI t ’s, such that: 

1
( ) ( )

m

p
p

CTI t CI t
=

=∑  
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Here ( )pCI t represents the CI for the ( 1,2, , )thp p m= K  occurrence of the 

event of interest by time t .  

Based on the formula for calculating ( )CTI t and ( )CI t , we have 

1

0

-1
1

2 10 -1 -1

0                                            0

( )                                         1

(1- )        2
js

j k

j kj k

if s
eCTI t if s
n

e re if s
n n n= =

⎧
⎪

=⎪
⎪⎪

= =⎨
⎪
⎪
⎪ + ≥
⎪⎩

∑ ∏

, and  

1 11

1 1 0 10

1

1 0

0                                                                                   0
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m m

p
p

p p p

m
p

p p

if s
e eCI t if s
n n
e
n

= =

=

=

= = =∑ ∑

∑
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1 2 1 1( -1) ( -1) ( -1)

(1- ) (1- )         2
j jm s

pj pk pk

p j k kp j p k p k

e r e
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n n n= = = =

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ + ≥
⎪⎩

∑∑ ∏ ∏

 

where s  is the largest j  such that jt t< . 

Mathematical Induction is applied for the following proof. 

Basis step:  

When 1s = , since 11 1e e= and 10 0n n= , we have
1

( ) ( )
m

p
p

CTI t CI t
=

=∑ . 

Inductive step: 

We assume the equation holds for s i= , which means
1

( ) ( )
m

i p i
p

CTI t CI t
=

=∑ . For

1s i= + , we have 

1
1

1 1

( ) ( ) (1 )
i

i k
i i

ki k

e rCTI t CTI t
n n
+

+
= −

= + −∏  
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( 1)
1

1 1 1 1 1( 1) ( 1)

( ) ( ) (1 ) (1 )
i im m m

p i pk pk
i i

p p p k kpi p k p k

e r e
CI t CI t

n n n
+

+
= = = = =− −

= + − −∑ ∑ ∑ ∏ ∏  

By definition,  

(        |        )th
pi in n P being at risk for p event at t i being at risk for an event at t i= × = =  

The above conditional probability can be calculated by 

1 1( 1) ( 1)

1 1

(1 ) (1 )

(1 )

i i
pk pk

k kp k p k
i

k

k k

r e
n n

r
n

= =− −

= −

− −

−

∏ ∏

∏
 

Because 1 ( 1)
1

m

i p i
p

e e+ +
=

=∑ and 
1

( ) ( )
m

i p i
p

CTI t CI t
=

=∑ , we can show that

1 1
1

( ) ( )
m

i p i
p

CTI t CI t+ +
=

=∑ . 

To sum up, we conclude that the CTI is equivalent to the sum of the CIs 

for incremental numbers of events in the population. 
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Appendix 2: R code for CCSS data analysis in Chapter 2 

library(etm) 
 
 
#####Basic Information from Original Data##### 
 
#read data# 
SN=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/SN.csv",h=T) 
 
#the overall number of patients in the study# 
#12630 total patients# 
length(table(SN$ccssid))             
 
#get only event data, regardless of the group id# 
event_data_SN=SN[SN$sn==1,] 
 
#the number of patients who experienced event (first-ever or recurrence)# 
#1448 patients# 
length(table(event_data_SN$ccssid))  
 
#total number of events# 
#2391 total events# 
nrow(event_data_SN)    
               
#check the distribution of the number of events# 
table(table(event_data_SN$ccssid)) 
 
 
 
#####Data Manipulation##### 
 
#format study start date# 
d_start=as.Date(SN$d_start, "%d%b%Y") 
 
#format study stop date# 
d_stop=as.Date(SN$d_stop, "%d%b%Y") 
 
#format patient death date, the competing risks event date# 
d_death=as.Date(SN$D_DEATH,"%d%b%Y") 
 
#format SN event date# 
sn_date=as.Date(SN$sn_date,"%d%b%Y") 
 
#id# 
ccssid=SN$ccssid 
 
#group indicator# 
rad=SN$rad_yn 
 
#change the dataset to long format# 
#event=0: censoring# 
#event=1: event of interest# 
#event=2: competing risks event# 
id=NULL;entry=NULL;exit=NULL;group=NULL;event=NULL 
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for (i in 1:nrow(SN)) 
{  
 
#No event date or death date# 
#Means censoring individuals# 
  if (is.na(d_death[i]) & is.na(sn_date[i]))   
     { id=c(id,ccssid[i]) 
       entry=c(entry,as.character(d_start[i])) 
       group=c(group,rad[i]) 
       exit=c(exit,as.character(d_stop[i]))               #date=stop following up date# 
       event=c(event, 0)                                     #censoring is coded as 0# 
      } 
 
#Have event date but no death date# 
#Means event of interest individuals# 
  if (is.na(d_death[i]) & !is.na(sn_date[i])) 
      { id=c(id,ccssid[i]) 
        entry=c(entry,as.character(d_start[i])) 
        group=c(group,rad[i]) 
        exit=c(exit,as.character(sn_date[i]))             #date=event of interest date# 
        event=c(event,1)                                     #event of interest is coded as 1# 
 
        if (d_stop[i]>=sn_date[i]) #event individual be censored at following up end date# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            group=c(group,rad[i]) 
            exit=c(exit,as.character(d_stop[i]))          #date=stop following up date# 
            event=c(event,0)                                 #censoring is coded as 0# 
          } 
      } 
 
#Have death date but no event date# 
#Means competing risk event individuals# 
  if (!is.na(d_death[i]) & is.na(sn_date[i])) 
      { if (d_death[i]>d_stop[i]) #Death happened later, then treat as censoring# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            group=c(group,rad[i]) 
            exit=c(exit,as.character(d_stop[i]))          #date=stop following up date# 
            event=c(event,0)                                 #censoring is coded as 0# 
          } 
    
        if (d_death[i]<=d_stop[i]) #Death happened earlier# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            group=c(group,rad[i]) 
            exit=c(exit,as.character(d_death[i]))         #date=competing risk event date# 
            event=c(event,2)                                 #competing risk event is coded as 2# 
          } 
      } 
 
#Have death date and also event date# 
  if (!is.na(d_death[i]) & !is.na(sn_date[i])) 
      { id=c(id,ccssid[i]) 
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        entry=c(entry,as.character(d_start[i])) 
        group=c(group,rad[i]) 
        exit=c(exit,as.character(sn_date[i]))            #recode the event date first# 
        event=c(event,1)                                    #event of interest is coded as 1# 
 
        if (d_death[i]>d_stop[i]) #Death happened later, then treat as censoring# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            group=c(group,rad[i]) 
            exit=c(exit,as.character(d_stop[i]))         #date=stop following up date# 
            event=c(event,0)                                #censoring is coded as 0# 
          } 
    
        if (d_death[i]<=d_stop[i]) #Death happened earlier# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            group=c(group,rad[i]) 
            exit=c(exit,as.character(d_death[i]))        #date=competing risk event date# 
            event=c(event,2)                                #competing risk event is coded as 2# 
          }  
       } 
} 
 
data.SN=data.frame(id=id, group=group,entry=entry,exit=exit,event=event) 
#remove the duplicated rows# 
data_SN=data.SN[!duplicated(data.SN),] 
#order the dataset by id and event order# 
ii=order(data_SN$id,data_SN$exit) 
dataSN=data_SN[ii,] 
write.csv(dataSN,"Z:/Common/Huiru/Cumulative Total 
Incidence/dataSN.csv",row.names=FALSE) 

 
 
 
#####Prepare Data to Calculate CTI##### 
 
dataSN=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/dataSN.csv",h=T) 
#the data is already sorted by id and exit time# 
#calculate the follow up time# 
dif=as.numeric(difftime(as.Date(dataSN$exit,"%Y-%m-%d"),as.Date(dataSN$entry,"%Y-%m-
%d"),unit="days")) 

 
#Total number of subjects# 
index=table(dataSN$id) 
N=length(index)         
 
event.number=NULL 
for (i in 1:N) 
{  
  if (index[i]==1) 
    { event.number=c(event.number,0)} 
  if (index[i]!=1) 
    { event.number=c(event.number,1:index[i])} 
} 
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#first happened is censoring or competing risk event, will all be coded as 0# 
#this is because no matter which time of occurrence is of interest, we need to include them# 
#we need to always include event.number==0 subjects for calculating any occurrence of event# 
 
SN.CTI=data.frame(dataSN,dif=dif,event.number=event.number) 
 
#There are total M times of the events that we need to calculate the CI# 
M=max(SN.CTI$event.number) 
 
#calculate for each id, what is the max number of event# 
id.table=SN.CTI$id[!duplicated(SN.CTI$id)] 
max.id=NULL 
for (j in 1:N) 
{  
  max.id[j]=max(SN.CTI$event.number[SN.CTI$id==id.table[j]]) 
} 
freq=match(SN.CTI$id, id.table) 
SN.CTI=data.frame(SN.CTI,max_e=max.id[freq]) 
 
#generate full dataset for calculating mth event of CI# 
data.CTI=NULL 
for (i in 1:M) 
{ 
  x=SN.CTI[((SN.CTI$max_e>i)&(SN.CTI$event.number==i))| 
  ((SN.CTI$max_e<=i)&(SN.CTI$event.number==SN.CTI$max_e)),] 
  data.CTI=rbind(data.CTI,cbind(x,m_event=rep(i,nrow(x)))) 
} 
 
#This dataset contains the data needed for each time of the occurrence# 
#There are some patients have event earlier/on than the start of the study# 
aa=c(data.CTI[data.CTI$dif<=0,1],19052013) 
#we also need to remove the data for id=19052013 which is wrong data# 
data.CTI.final=data.CTI[!(data.CTI$id%in%aa),] 
write.csv(data.CTI.final,"Z:/Common/Huiru/Cumulative Total 
Incidence/data_CTI.csv",row.names=FALSE) 

 
 
 
#####Recalcuate the Basic Information After Removing the Wrong Records##### 
 
duplicated(aa) 
remove.id=aa[!duplicated(aa)] 
length(remove.id) #removed 43 patients from the analysis# 
#the overall number of patients in the study# 
removed.SN=SN[!(SN$ccssid%in%remove.id),] 
length(table(removed.SN$ccssid)) 
 
#event-data# 
event_data_SN=removed.SN[removed.SN$sn==1,] 
 
#total number of events# 
nrow(event_data_SN) 
 
#the number of patients who experienced event (first-ever or recurrence)# 
length(table(event_data_SN$ccssid)) 



 

58 
 

table(table(event_data_SN$ccssid)) 
 
#separate by group# 
length(table(removed.SN[removed.SN$rad_yn==1,]$ccssid))   #number of patients in group1 
length(table(removed.SN[removed.SN$rad_yn==2,]$ccssid))   #number of patients in group2 
 
nrow(event_data_SN[event_data_SN$rad_yn==1,])                #number of events in group1 
nrow(event_data_SN[event_data_SN$rad_yn==2,])                #number of events in group2 
 
length(table(event_data_SN[event_data_SN$rad_yn==1,]$ccssid)) 
table(table(event_data_SN[event_data_SN$rad_yn==1,]$ccssid)) 
 
length(table(event_data_SN[event_data_SN$rad_yn==2,]$ccssid)) 
table(table(event_data_SN[event_data_SN$rad_yn==2,]$ccssid)) 
 
 
 
#####Calculate CIs and CTI##### 
 
SN_CTI=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/data_CTI.csv",h=T) 
 
#There are total M-1 times of the events that we need to calculate the CI# 
M=max(SN_CTI$event.number) 
M1=max(SN_CTI[SN_CTI$group==1,]$event.number) 
M2=max(SN_CTI[SN_CTI$group==2,]$event.number) 
 
time.interval=seq(0,max(SN_CTI$dif),1);length(time.interval) 
CTI.base1=rep(0,times=(M-
1)*length(time.interval));dim(CTI.base1)=c(length(time.interval),(M-1)) 

CTI.base2=rep(0,times=(M-
1)*length(time.interval));dim(CTI.base2)=c(length(time.interval),(M-1)) 

 
###for group1### 
for (j in 1:(M1-1)) 
{ 
 CI_group1=data.frame( 
 P=summary(etmCIF(Surv(dif, event!=0)~ 
group,data=SN_CTI[SN_CTI$m_event==j&SN_CTI$group==1,] 

          ,etype=event,failcode=1))[[1]]$'CIF 1'$P, 
 Time=summary(etmCIF(Surv(dif, event!=0)~ 
group,data=SN_CTI[SN_CTI$m_event==j&SN_CTI$group==1,] 

          ,etype=event,failcode=1))[[1]]$'CIF 1'$time) 
 CTI.base1[CI_group1$Time+1,j]=CI_group1$P 
 
 for (i in 2:length(time.interval)) 
  {  
    if (CTI.base1[i,j]==0) 
      { CTI.base1[i,j]=CTI.base1[i-1,j]} 
  } 
 
} 
 
CTI_group1=data.frame(CTI=rowSums(CTI.base1),time=time.interval) 
 
###for group2### 
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for (j in 1:(M2-1)) 
{ 
 CI_group2=data.frame( 
 P=summary(etmCIF(Surv(dif, event!=0)~ 
group,data=SN_CTI[SN_CTI$m_event==j&SN_CTI$group==2,], 

          etype=event,failcode=1))[[1]]$'CIF 1'$P, 
 Time=summary(etmCIF(Surv(dif, event!=0)~ 
group,data=SN_CTI[SN_CTI$m_event==j&SN_CTI$group==2,], 

          etype=event,failcode=1))[[1]]$'CIF 1'$time) 
 CTI.base2[CI_group2$Time+1,j]=CI_group2$P 
 
 for (i in 2:length(time.interval)) 
  {  
    if (CTI.base2[i,j]==0) 
      { CTI.base2[i,j]=CTI.base2[i-1,j]} 
  } 
} 
 
CTI_group2=data.frame(CTI=rowSums(CTI.base2),time=time.interval) 
 
#Save the results# 
write.csv(CTI.base1,"Z:/Common/Huiru/Cumulative Total 
Incidence/CTI.base1.csv",row.names=FALSE) 

write.csv(CTI.base2,"Z:/Common/Huiru/Cumulative Total 
Incidence/CTI.base2.csv",row.names=FALSE) 

write.csv(CTI_group1,"Z:/Common/Huiru/Cumulative Total 
Incidence/CTI_group1.csv",row.names=FALSE) 

write.csv(CTI_group2,"Z:/Common/Huiru/Cumulative Total 
Incidence/CTI_group2.csv",row.names=FALSE) 

 
 
 
#####Use Bootstrap to Get Confidence Interval for CTI##### 
 
CTI_bootstrap=function(T,groupid) 
{ 
 SN_CTI=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/data_CTI.csv",h=T) 
 time.interval=seq(0,max(SN_CTI$dif),1) 
 
 #get the subgroup dataset for groupid# 
 SNgroup=SN_CTI[SN_CTI$group==groupid,] 
 
 #the total number of patients in the analysis for groupid: samplesize# 
 #each re-sample size# 
 samplesize=nrow(SNgroup[SNgroup$m_event==1,])  
 
 #bootstrap table# 
 id_table=SNgroup$id[1:samplesize] 
 CTI=time.interval 
 
 for (i in 1:T) 
  { 
    #the following ids has been selected# 
    sampleid=sample(id_table,samplesize,replace=T) 
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    sample=NULL 
    for (m in 1:samplesize) 
       { sample=rbind(sample,SNgroup[SNgroup$id==sampleid[m],])} 
 
    #There are total M-1 times of the events that we need to calculate the CI# 
    M=max(sample$event.number) 
 
    #calculate CTI# 
    CTI.base=rep(0,times=(M-1)*length(time.interval)) 
    dim(CTI.base)=c(length(time.interval),(M-1)) 
 
    for (j in 1:(M-1)) 
       { 
         CI_group=data.frame( 
         P=summary(etmCIF(Surv(dif, event!=0)~ group,data=sample[sample$m_event==j,] 
          ,etype=event,failcode=1))[[1]]$'CIF 1'$P, 
         Time=summary(etmCIF(Surv(dif, event!=0)~ group,data=sample[sample$m_event==j,] 
          ,etype=event,failcode=1))[[1]]$'CIF 1'$time) 
         CTI.base[CI_group$Time+1,j]=CI_group$P 
 
         for(i in 2:length(time.interval)) 
            {  
              if (CTI.base[i,j]==0) 
                {CTI.base[i,j]=CTI.base[i-1,j]} 
            } 
        } 
 
  CTI=cbind(CTI,bootCTI=rowSums(CTI.base)) 
  } 
 write.csv(CTI,paste("Z:/Common/Huiru/Cumulative Total 
Incidence/bootCTI_group",groupid,"_",T,".csv",sep=""),row.names=FALSE) 

 
 #the 95% confidence interval# 
 boot=rep(0,times=length(time.interval)*3);dim(boot)=c(length(time.interval),3) 
 boot[,1]=time.interval 
 for (i in 1:length(time.interval)) 
   { 
     boot[i,2]=quantile(CTI[i,2:(T+1)],0.025) 
     boot[i,3]=quantile(CTI[i,2:(T+1)],0.975) 
   } 
 write.csv(boot,paste("Z:/Common/Huiru/Cumulative Total 
Incidence/result2_bootCTI_group",groupid,"_",T,".csv",sep=""),row.names=FALSE) 

} 
 
CTI_bootstrap(1000,1) 
CTI_bootstrap(1000,2) 
 
 
 
#####Use Bootstrap to Get Confidence Interval for CI##### 
 
CI_bootstrap=function(T,groupid) 
{ 
 SN_CI=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/data_CTI.csv",h=T) 
 time.interval=seq(0,max(SN_CI$dif),1) 
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 #get the subgroup dataset for groupid# 
 SNgroup=SN_CI[SN_CI$m_event==1&SN_CI$group==groupid,] 
 
 #the total number of patients in the analysis for groupid: samplesize# 
 #each re-sample size# 
 samplesize=nrow(SNgroup) 
 
 #bootstrap table# 
 id_table=SNgroup$id[1:samplesize] 
 CItable=rep(0,times=length(time.interval)*(T+1)) 
 dim(CItable)=c(length(time.interval),(T+1)) 
 CItable[,1]=time.interval 
 
 for (i in 1:T) 
   { 
     #the following ids has been selected# 
     sampleid=sample(id_table,samplesize,replace=T) 
     sample=NULL 
     for (m in 1:samplesize) 
       {sample=rbind(sample,SNgroup[SNgroup$id==sampleid[m],])} 
 
     CI_group=data.frame( 
     P=summary(etmCIF(Surv(dif, event!=0)~ group,data=sample 
          ,etype=event,failcode=1))[[1]]$'CIF 1'$P, 
     Time=summary(etmCIF(Surv(dif, event!=0)~ group,data=sample 
          ,etype=event,failcode=1))[[1]]$'CIF 1'$time) 
     CItable[CI_group$Time+1,(i+1)]=CI_group$P 
 
     for(j in 2:length(time.interval)) 
       {  
        if (CItable[j,(i+1)]==0) 
          {CItable[j,(i+1)]=CItable[j-1,(i+1)]} 
       } 
   } 
 
 write.csv(CItable,paste("Z:/Common/Huiru/Cumulative Total Incidence/ 
bootCI_group",groupid,"_",T,".csv",sep=""),row.names=FALSE) 

 
 #the 95% confidence interval# 
 
 boot=rep(0,times=length(time.interval)*3);dim(boot)=c(length(time.interval),3) 
 boot[,1]=time.interval 
 for (i in 1:length(time.interval)) 
    { 
      boot[i,2]=quantile(CItable[i,2:(T+1)],0.025) 
      boot[i,3]=quantile(CItable[i,2:(T+1)],0.975) 
    } 
 write.csv(boot,paste("Z:/Common/Huiru/Cumulative Total 
Incidence/result_bootCI_group",groupid,"_",T,".csv",sep=""),row.names=FALSE) 

} 
 
CI_bootstrap(1000,1) 
CI_bootstrap(1000,2) 
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#####Compare Bootstrap Results with R Command for CI##### 
 
#get cumulative incidence and confidence interval# 
CI=function(groupid) 
{ 
  SN_CTI=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/data_CTI.csv",h=T) 
  time.interval=seq(0,max(SN_CTI$dif),1) 
 
  #get the subgroup dataset for groupid for the first occurrence of event# 
  SNgroup=SN_CTI[SN_CTI$group==groupid&SN_CTI$m_event==1,] 
  CItable=rep(0,times=length(time.interval)*4);dim(CItable)=c(length(time.interval),4) 
  CI_group=data.frame( 
   Time=summary(etmCIF(Surv(dif, event!=0)~ group,data=SNgroup, 
                etype=event,failcode=1))[[1]]$'CIF 1'$time, 
   P=summary(etmCIF(Surv(dif, event!=0)~ group,data=SNgroup, 
                etype=event,failcode=1))[[1]]$'CIF 1'$P, 
   lower=summary(etmCIF(Surv(dif, event!=0)~ group,data=SNgroup, 
                etype=event,failcode=1))[[1]]$'CIF 1'$lower, 
   upper=summary(etmCIF(Surv(dif, event!=0)~ group,data=SNgroup, 
                etype=event,failcode=1))[[1]]$'CIF 1'$upper 
                   ) 
   CItable[,1]=time.interval 
   CItable[CI_group$Time+1,2]=CI_group$P 
   CItable[CI_group$Time+1,3]=CI_group$lower 
   CItable[CI_group$Time+1,4]=CI_group$upper 
       
   for (j in 2:4) 
      { 
        for (i in 2:length(time.interval)) 
           {  
             if (CItable[i,j]==0) 
               {CItable[i,j]=CItable[i-1,j]} 
           } 
      } 
 write.csv(CItable,paste("Z:/Common/Huiru/Cumulative Total 
Incidence/result_CI_group",groupid,".csv",sep=""),row.names=FALSE) 

} 
 
CI(1) 
CI(2) 
 
 
 
#####Figure 2 for Paper##### 
 
CTI_group1=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/CTI_group1.csv",h=T) 
CTI_group2=read.csv("Z:/Common/Huiru/Cumulative Total Incidence/CTI_group2.csv",h=T) 
bootCTI_group1=read.csv("Z:/Common/Huiru/Cumulative Total 
Incidence/result2_bootCTI_group1_1000.csv",h=T) 

bootCTI_group2=read.csv("Z:/Common/Huiru/Cumulative Total 
Incidence/result2_bootCTI_group2_1000.csv",h=T) 

CI_group1=read.csv("Z:/Common/Huiru/Cumulative Total 
Incidence/result_CI_group1.csv",h=T) 
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CI_group2=read.csv("Z:/Common/Huiru/Cumulative Total 
Incidence/result_CI_group2.csv",h=T) 

 
###Figure 2a### 
tiff(filename="Z:/Common/Huiru/Cumulative Total Incidence/figure.2a.tiff",width = 1024, 
height = 1024,units = "px") 

plot(CTI_group1$time,CTI_group1$CTI,ylim=c(0,0.72),type="n",xlab="",las=1,ylab="",xaxt="
n",yaxt="n",bty="n") 

rect(CTI_group1$time-1,bootCTI_group1[,2],CTI_group1$time, 
     bootCTI_group1[,3],border ="gray80", col ="gray80") 
lines(CTI_group1$time,CTI_group1$CTI,lwd=4) 
rect(CTI_group2$time-1,bootCTI_group2[,2],CTI_group2$time, 
     bootCTI_group2[,3],border = "gray80", col = "gray80") 
lines(CTI_group2$time,CTI_group2$CTI,lwd=4,lty=3) 
 
 
axis(side=1, at=seq(0,365.25*40,365.25*5),label=seq(5,45,5),line=-
2.2,padj=0.5,lwd=2,cex.axis=1.8) 

axis(side=2,at=seq(0,0.8,0.1),label=seq(0,0.8,0.1),las=1,line=-2.3,lwd=2,cex.axis=1.8) 
mtext(side=1, text="Years since diagnosis", line=2,cex=2) 
mtext(side=2, text="Average number of events per person", line=2,cex=2) 
legend(500,0.65,c("RT group","No RT group"),bty="n",lty=c(1,3),lwd=4,cex=2) 
#legend(750,0.605,c("95%CI (RT group)","95%CI (No RT group)"),pch=15, 
#       col=c("pink","light blue"),bty="n",lty=0,lwd=2,cex=1.8) 
dev.off() 
 
###figure 2b### 
tiff(filename="Z:/Common/Huiru/Cumulative Total Incidence/figure.2b.tiff",width = 1024, 
height = 1024,units = "px") 

 
plot(CI_group1[,1],CI_group1[,2],ylim=c(0,0.72),type="n",xlab="",las=1,ylab="",xaxt="n",yaxt
="n",bty="n") 

rect(CI_group1[,1]-1,CI_group1[,3],CI_group1[,1], 
     CI_group1[,4],border ="gray80", col ="gray80") 
lines(CI_group1[,1],CI_group1[,2],lwd=4) 
rect(CI_group2[,1]-1,CI_group2[,3],CI_group2[,1], 
     CI_group2[,4],border = "gray80", col = "gray80") 
lines(CI_group2[,1],CI_group2[,2],lwd=4,lty=3) 
 
 
axis(side=1, at=seq(0,365.25*40,365.25*5),label=seq(5,45,5),line=-
2.2,padj=0.5,lwd=2,cex.axis=1.8) 

axis(side=2,at=seq(0,0.8,0.1),label=seq(0,0.8,0.1),las=1,line=-2.3,lwd=2,cex.axis=1.8) 
mtext(side=1, text="Years since diagnosis", line=2,cex=2) 
mtext(side=2, text="Cumulative probability", line=2,cex=2) 
legend(500,0.65,c("RT group","No RT group"),bty="n",lty=c(1,3),lwd=4,cex=2) 
 
dev.off() 
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Appendix 3: R code for CCSS data analysis in Chapter 3 

library(etm) 
 
#read data# 
SMN=read.csv("Z:/Common/Huiru/Risk and Rate/smn_huiru_regression.csv",h=T) 
#delete the duplicated rows# 
SMN=SMN[!duplicated(SMN),] 
 
#####Data Manipulation##### 
 
#format study start date# 
d_start=as.Date(SMN$d_start, "%d%b%Y") 
 
#format study stop date# 
d_stop=as.Date(SMN$d_stop, "%d%b%Y") 
 
#format patient death date, the competing risks event date# 
d_death=as.Date(SMN$D_DEATH,"%d%b%Y") 
 
#format SMN event date# 
smn_date=as.Date(SMN$smn_date,"%d%b%Y") 
 
#id# 
ccssid=SMN$ccssid 
 
#change the dataset to long format# 
#event=0: censoring# 
#event=1: event of interest# 
#event=2: competing risks event# 
id=NULL;entry=NULL;exit=NULL;group=NULL;event=NULL;infor=NULL 
 
for (i in 1:nrow(SMN)) 
{  
#No event date or death date# 
#Means censoring individuals# 
  if (is.na(d_death[i]) & is.na(smn_date[i]))   
     { id=c(id,ccssid[i]) 
       entry=c(entry,as.character(d_start[i])) 
       exit=c(exit,as.character(d_stop[i]))               #date=stop following up date# 
       event=c(event, 0)                                     #censoring is coded as 0# 
       infor=rbind(infor,SMN[i,c(4,8:19)]) 
      } 
 
#Have event date but no death date# 
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#Means event of interest individuals# 
  if (is.na(d_death[i]) & !is.na(smn_date[i])) 
      { id=c(id,ccssid[i]) 
        entry=c(entry,as.character(d_start[i])) 
        exit=c(exit,as.character(smn_date[i]))             #date=event of interest date# 
        event=c(event,1)                                     #event of interest is coded as 1# 
        infor=rbind(infor,SMN[i,c(4,8:19)]) 
 
        if (d_stop[i]>=smn_date[i]) #event individual be censored at following up end date# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            exit=c(exit,as.character(d_stop[i]))          #date=stop following up date# 
            event=c(event,0)                                 #censoring is coded as 0# 
            infor=rbind(infor,SMN[i,c(4,8:19)]) 
          } 
      } 
 
#Have death date but no event date# 
#Means competing risk event individuals# 
  if (!is.na(d_death[i]) & is.na(smn_date[i])) 
      { if (d_death[i]>d_stop[i]) #Death happened later, then treat as censoring# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            exit=c(exit,as.character(d_stop[i]))          #date=stop following up date# 
            event=c(event,0)                                 #censoring is coded as 0# 
            infor=rbind(infor,SMN[i,c(4,8:19)]) 
          } 
    
        if (d_death[i]<=d_stop[i]) #Death happened earlier# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            exit=c(exit,as.character(d_death[i]))         #date=competing risk event date# 
            event=c(event,2)                                 #competing risk event is coded as 2# 
            infor=rbind(infor,SMN[i,c(4,8:19)]) 
          } 
      } 
 
#Have death date and also event date# 
  if (!is.na(d_death[i]) & !is.na(smn_date[i])) 
      { id=c(id,ccssid[i]) 
        entry=c(entry,as.character(d_start[i])) 
        exit=c(exit,as.character(smn_date[i]))            #recode the event date first# 
        event=c(event,1)                                    #event of interest is coded as 1# 
        infor=rbind(infor,SMN[i,c(4,8:19)]) 
 
        if (d_death[i]>d_stop[i]) #Death happened later, then treat as censoring# 
          { id=c(id,ccssid[i]) 
            entry=c(entry,as.character(d_start[i])) 
            exit=c(exit,as.character(d_stop[i]))         #date=stop following up date# 
            event=c(event,0)                                #censoring is coded as 0# 
            infor=rbind(infor,SMN[i,c(4,8:19)]) 
          } 
    
        if (d_death[i]<=d_stop[i]) #Death happened earlier# 
          { id=c(id,ccssid[i]) 
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            entry=c(entry,as.character(d_start[i])) 
            exit=c(exit,as.character(d_death[i]))        #date=competing risk event date# 
            event=c(event,2)                                #competing risk event is coded as 2# 
            infor=rbind(infor,SMN[i,c(4,8:19)]) 
          }  
       } 
} 
 
data.SMN=data.frame(id=id, entry=entry,exit=exit,event=event, infor) 
#remove the duplicated rows# 
data_SMN=data.SMN[!duplicated(data.SMN),] 
#order the dataset by id and event order# 
ii=order(data_SMN$id,data_SMN$exit) 
dataSMN=data_SMN[ii,] 
 
#follow up duration# 
dif=as.numeric(difftime(as.Date(dataSMN$exit,"%Y-%m-%d"),as.Date(dataSMN$entry,"%Y-
%m-%d"),unit="days")) 

 
#age at diagnosis of childhood cancer# 
age.cancer=as.numeric(difftime(as.Date(dataSMN$D_DX,"%d%b%Y"),as.Date(dataSMN$D_B
IRTH,"%d%b%Y"),unit="days"))/365.25 

 
#age at stop following-up# 
age.stop=as.numeric(difftime(as.Date(dataSMN$exit,"%Y-%m-
%d"),as.Date(dataSMN$D_BIRTH,"%d%b%Y"),unit="days"))/365.25 

 
#event number indicator# 
index=table(dataSMN$id) 
N=length(index)         
 
event.number=NULL 
for (i in 1:N) 
{  
  if (index[i]==1) 
    { event.number=c(event.number,0)} 
  if (index[i]!=1) 
    { event.number=c(event.number,1:index[i])} 
} 
 
#format other variables# 
v.sex=NULL; v.dxgroup=NULL; v.race=NULL; v.era=NULL; v.agedx=NULL; v.sple=NULL 
v.anth=NULL; v.epip=NULL; v.plat=NULL 
 
v.sex[dataSMN$SEX=="Male"]=0; v.sex[dataSMN$SEX=="Female"]=1 
 
 
v.dxgroup[dataSMN$DXGROUP=="Acute lymphoblastic leukemia"]=0 
v.dxgroup[dataSMN$DXGROUP=="Astrocytomas"]=1 
v.dxgroup[dataSMN$DXGROUP=="Hodgkins disease"]=2 
v.dxgroup[dataSMN$DXGROUP=="Medulloblastoma, PNET"]=3 
v.dxgroup[dataSMN$DXGROUP=="Non-Hodgkins lymphoma"]=4 
v.dxgroup[dataSMN$DXGROUP=="Other bone tumors"]=5 
v.dxgroup[dataSMN$DXGROUP=="Other leukemia"]=6 
v.dxgroup[dataSMN$DXGROUP=="Acute myeloid leukemia"]=7 
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v.dxgroup[dataSMN$DXGROUP=="Ewings sarcoma"]=8 
v.dxgroup[dataSMN$DXGROUP=="Kidney tumors"]=9 
v.dxgroup[dataSMN$DXGROUP=="Neuroblastoma"]=10 
v.dxgroup[dataSMN$DXGROUP=="Osteosarcoma"]=11 
v.dxgroup[dataSMN$DXGROUP=="Other CNS tumors"]=12 
v.dxgroup[dataSMN$DXGROUP=="Soft tissue sarcoma"]=13 
 
v.alkscore=dataSMN$alkscore5 
 
v.race[dataSMN$race4=="Black,NH"]=0 
v.race[dataSMN$race4=="White,NH"]=1 
v.race[dataSMN$race4=="Hispanic/Latine"]=2 
v.race[dataSMN$race4=="Other"]=3 
 
v.era[dataSMN$y_dx=="1970-1974"]=0 
v.era[dataSMN$y_dx=="1975-1979"]=1 
v.era[dataSMN$y_dx=="1980-1986"]=2 
 
v.agedx[dataSMN$age_dx=="<5"]=0 
v.agedx[dataSMN$age_dx=="5-9.9"]=1 
v.agedx[dataSMN$age_dx=="10-14.9"]=2 
v.agedx[dataSMN$age_dx==">=15"]=3 
 
v.sple[dataSMN$sple=="no"]=0 
v.sple[dataSMN$sple=="yes"]=1 
 
v.anth[dataSMN$anth_5=="None"]=0 
v.anth[dataSMN$anth_5=="<=100"]=1 
v.anth[dataSMN$anth_5=="101-300"]=2 
v.anth[dataSMN$anth_5==">300"]=3 
 
v.epip[dataSMN$epip_5=="None"]=0 
v.epip[dataSMN$epip_5=="<=1000"]=1 
v.epip[dataSMN$epip_5=="1001-4000"]=2 
v.epip[dataSMN$epip_5==">4000"]=3 
 
v.plat[dataSMN$plat_5=="None"]=0 
v.plat[dataSMN$plat_5=="<=400"]=1 
v.plat[dataSMN$plat_5=="401-750"]=2 
v.plat[dataSMN$plat_5==">750"]=3 
 
 
SMN.all=data.frame(dataSMN,age.cancer=age.cancer,age.stop=age.stop,v.sex=v.sex,v.dxgroup=
v.dxgroup,v.alkscore=v.alkscore,v.race=v.race,v.era=v.era,v.agedx=v.agedx,v.sple=v.sple,v.ant
h=v.anth,v.epip=v.epip,v.plat=v.plat,dif=dif,event.number=event.number) 

 
#we only include first event in the regression analysis# 
regress.smn=SMN.all[event.number==0 | event.number==1,] 
 
write.csv(SMN.all," Z:/Common/Huiru/Risk and Rate/SMN.all.csv",row.names=FALSE) 
write.csv(regress.smn," Z:/Common/Huiru/Risk and Rate/regress.smn.csv",row.names=FALSE) 
 
 
#####Data Analysis##### 
regress.smn=read.csv("Z:/Common/Huiru/Risk and Rate/regress.smn.csv", h=T) 
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###basic information### 
cases=regress.smn[regress.smn$event==1,] 
no.cases=regress.smn[regress.smn$event !=1,] 
 
n.all=nrow(regress.smn) 
n.cases=nrow(cases) 
n.nocases=nrow(no.cases) 
 
#age at diagnosis of childhood cancer# 
mean(regress.smn$age.cancer) 
median(regress.smn$age.cancer) 
 
mean(cases$age.cancer) 
median(cases$age.cancer) 
 
mean(no.cases$age.cancer) 
median(no.cases$age.cancer) 
 
#age at diagnosis of SMN# 
mean(cases$age.stop) 
median(cases$age.stop) 
 
#gender# 
sum(regress.smn$v.sex==1)/n.all 
sum(cases$v.sex==1)/n.cases 
sum(no.cases$v.sex==1)/n.nocases 
 
#race# 
table(regress.smn$race4)/n.all 
table(cases$race4)/n.cases 
table(no.cases$race4)/n.nocases 
 
#childhood cancer diagnosis# 
table(regress.smn$DXGROUP)/n.all 
table(cases$DXGROUP)/n.cases 
table(no.cases$DXGROUP)/n.nocases 
 
#radiation# 
table(regress.smn$rad_yn)/n.all 
table(cases$rad_yn)/n.cases 
table(no.cases$rad_yn)/n.nocases 
 
#alkylating agent score# 
table(regress.smn$alkscore5)/n.all 
table(cases$alkscore5)/n.cases 
table(no.cases$alkscore5)/n.nocases 
 
#treatment ear# 
table(regress.smn$y_dx)/n.all 
table(cases$y_dx)/n.cases 
table(no.cases$y_dx)/n.nocases 
 
#splenectomy# 
table(regress.smn$sple)/n.all 
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table(cases$sple)/n.cases 
table(no.cases$sple)/n.nocases 
 
#anthracycline exposure# 
table(regress.smn$anth_5)/n.all*100 
table(cases$anth_5)/n.cases*100 
table(no.cases$anth_5)/n.nocases*100 
 
#epipodophyllotoxin exposure# 
table(regress.smn$epip_5)/n.all*100 
table(cases$epip_5)/n.cases*100 
table(no.cases$epip_5)/n.nocases*100 
 
#platinum exposure# 
table(regress.smn$plat_5)/n.all*100 
table(cases$plat_5)/n.cases*100 
table(no.cases$plat_5)/n.nocases*100 
 
###fit Cox Regression### 
library(splines) 
library(survival) 
 
event.cox=rep(0,times=nrow(regress.smn)) 
event.cox[regress.smn$event==1]=1 
 
rad=NULL 
rad[regress.smn$rad_yn==2]=0 
rad[regress.smn$rad_yn==1]=1 
 
regressSMN=data.frame(regress.smn, event.cox=event.cox,rad=rad) 
 
COX=coxph(Surv(dif,event.cox) ~ 
factor(rad)+factor(v.sex)+factor(v.dxgroup)+factor(v.alkscore)+factor(v.era)+factor(v.race)+fac
tor(v.agedx)+factor(v.sple)+factor(v.anth)+factor(v.epip)+factor(v.plat),regressSMN) 

 
summary(COX) 
 
#for competing-risk event# 
event.cox.c=rep(0,times=nrow(regress.smn)) 
event.cox.c[regress.smn$event==2]=1 
 
rad=NULL 
rad[regress.smn$rad_yn==2]=0 
rad[regress.smn$rad_yn==1]=1 
 
regressSMN=data.frame(regress.smn, event.cox.c=event.cox.c,rad=rad) 
COX.c=coxph(Surv(dif,event.cox.c) ~ 
factor(rad)+factor(v.sex)+factor(v.dxgroup)+factor(v.alkscore)+factor(v.era)+factor(v.race)+fac
tor(v.agedx)+factor(v.sple)+factor(v.anth)+factor(v.epip)+factor(v.plat),regressSMN) 

 
summary(COX.c) 
 
 
###fit Fine & Gray subdistribution hazards model### 
library(cmprsk) 
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#generate dummy variables# 
 
#radiation# 
v.rad=regressSMN$rad 
 
#v.sex# 
v.sex=regressSMN$v.sex 
 
#race# 
race1=ifelse(regressSMN$v.race==1,1,0) 
race2=ifelse(regressSMN$v.race==2,1,0) 
race3=ifelse(regressSMN$v.race==3,1,0) 
 
 
#v.dxgroup# 
v.dxgroup1= ifelse(regressSMN$v.dxgroup==1,1,0) 
v.dxgroup2= ifelse(regressSMN$v.dxgroup==2,1,0) 
v.dxgroup3= ifelse(regressSMN$v.dxgroup==3,1,0) 
v.dxgroup4= ifelse(regressSMN$v.dxgroup==4,1,0) 
v.dxgroup5= ifelse(regressSMN$v.dxgroup==5,1,0) 
v.dxgroup6= ifelse(regressSMN$v.dxgroup==6,1,0) 
v.dxgroup7= ifelse(regressSMN$v.dxgroup==7,1,0) 
v.dxgroup8= ifelse(regressSMN$v.dxgroup==8,1,0) 
v.dxgroup9= ifelse(regressSMN$v.dxgroup==9,1,0) 
v.dxgroup10= ifelse(regressSMN$v.dxgroup==10,1,0) 
v.dxgroup11= ifelse(regressSMN$v.dxgroup==11,1,0) 
v.dxgroup12= ifelse(regressSMN$v.dxgroup==12,1,0) 
v.dxgroup13= ifelse(regressSMN$v.dxgroup==13,1,0) 
 
#v.alkscore# 
v.alkscore1=ifelse(regressSMN$v.alkscore==1,1,0) 
v.alkscore2=ifelse(regressSMN$v.alkscore==2,1,0) 
v.alkscore3=ifelse(regressSMN$v.alkscore==3,1,0) 
 
#v.era# 
v.era1=ifelse(regressSMN$v.era==1,1,0) 
v.era2=ifelse(regressSMN$v.era==2,1,0) 
 
#v.agedx# 
v.agedx1=ifelse(regressSMN$v.agedx==1,1,0) 
v.agedx2=ifelse(regressSMN$v.agedx==2,1,0) 
v.agedx3=ifelse(regressSMN$v.agedx==3,1,0) 
 
#v.sple# 
v.sple1=ifelse(regressSMN$v.sple==1,1,0) 
 
#v.anth# 
v.anth1=ifelse(regressSMN$v.anth==1,1,0) 
v.anth2=ifelse(regressSMN$v.anth==2,1,0) 
v.anth3=ifelse(regressSMN$v.anth==3,1,0) 
 
#v.epip# 
v.epip1=ifelse(regressSMN$v.epip==1,1,0) 
v.epip2=ifelse(regressSMN$v.epip==2,1,0) 
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v.epip3=ifelse(regressSMN$v.epip==3,1,0) 
 
#v.plat# 
v.plat1=ifelse(regressSMN$v.plat==1,1,0) 
v.plat2=ifelse(regressSMN$v.plat==2,1,0) 
v.plat3=ifelse(regressSMN$v.plat==3,1,0) 
 
#generate covariates matrix# 
cov=cbind(v.rad,v.sex,race1,race2,race3,v.dxgroup1,v.dxgroup2,v.dxgroup3,v.dxgroup4,v.dxgro
up5,v.dxgroup6,v.dxgroup7,v.dxgroup8,v.dxgroup9,v.dxgroup10,v.dxgroup11,v.dxgroup12,v.d
xgroup13,v.alkscore1,v.alkscore2,v.alkscore3,v.era1,v.era2,v.agedx1,v.agedx2,v.agedx3,v.sple1
,v.anth1,v.anth2,v.anth3,v.epip1,v.epip2,v.epip3,v.plat1,v.plat2,v.plat3) 

 
CR<- crr(regressSMN$dif, regressSMN$event,cov) 
summary(CR) 
 


