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Abstract

Optimal experiment design has been considered as an effective tool to improve

model reliability and accuracy in nonlinear system identification in the past few

decades. This thesis is concerned with the following challenges which have not

been previously addressed: poor initial guess problem of the nominal model

in nonlinear system identification; operating points selection to improve LPV

model identification accuracy; joint experimental design concerning optimal

operating points and input perturbation design simultaneously.

To reduce the influence of poor initial guess of a model, the proposed

constrained receding-horizon design (CRHD) incorporates steady-state con-

straints into the design framework. The other aspect addressed is experiment

design for LPV model identification. An adaptive optimal operating point

design approach is developed requiring no a-priori knowledge about the true

nonlinear system. Joint experiment design involving more than one experi-

ment design factor is also considered. This problem is solved by designing the

operating points and input perturbation simultaneously.
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Chapter 1

Introduction

1.1 Motivation

Most industrial processes are nonlinear which are often modeled based on first
principles such as energy conservation, mass conservation and chemical stoi-
chiometry. These models contain unknown or uncertain parameters that need
to be estimated. The objective of an optimal experiment design is to improve
model estimation accuracy by optimizing over the experimental conditions.
For an industrial process, the experimental conditions usually include what to
sense (parameters selection), what inputs to use (input or testing signal de-
sign), when to sense (sampling time design), how to operate (operating points
design), etc [6]. Many methodologies have been developed since the 1970s in-
cluding ED(expectation of determination)/EID (expectation of the inverse of
determinant)-optimal design [36, 37], minimax experiment design [26, 38], and
adaptive experiment design [33]. In practice, the adaptive experiment design
is more commonly used for applications toward various nonlinear processes
due to its convenience compared with the other two methods. This design
assumes that a nominal process model exists. The efficiency of adaptive ex-
periment design is influenced significantly by the chosen initial model. This
creates a practical dilemma in nonlinear system identification. How to improve
experimental condition as well as parameter estimation under the poor initial
condition is one of the areas that we are concerned with in this thesis.

In addition to first principle models, nonlinear systems can also be mod-
eled as Linear Parameter Varying (LPV) models. Due to its simple structure
and capacity to describe nonlinear behavior, the LPV model is a promising
tool for nonlinear system identification. Considerable amount of work has
been recently devoted to LPV model identification [35, 2, 39, 42]. LPV model
contains a time-varying scheduling variable which is often called the operat-
ing or working point. For most LPV identification approaches, the model’s
accuracy can be significantly affected by operating points selection. In other
words, for different selection of operating points, different LPV models could
be obtained, some of which may deviate significantly from the true nonlin-
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ear system. In most literature concerned with the LPV identification prob-
lem, operating points are considered fixed and known. Therefore, selection of
operating points for a given nonlinear system to improve model accuracy is
considered as a cardinal problem and has not been well investigated [34]. Tar-
geting a solution to this problem, an adaptive operating point design (AOPD)
algorithm is developed in this thesis.

By optimally selecting operating points, the accuracy of LPV models can
be improved as mentioned above. However, for most nonlinear systems, the
optimal experimental design involves more than one experimental factor. For
this reason, a joint experimental design considering two factors is developed,
which simultaneously optimizes operating point and input perturbation.

Thus, the thesis is concerned with the three problems of experimental de-
sign. To give a general perspective about the problems we deal with, the fol-
lowing sections will briefly illustrate the preliminaries and background before
we go to the detail algorithms of the three problems. The thesis contributions
and outline will be given at the end of this chapter.

1.2 Receding-horizon Experiment design

The optimal experiment design is defined as

φ∗ = argmin
φ∈Φ

f(M(θ̂, φ)) (1.1)

where φ is the experiment design, Φ is the space of the feasible experiment
designs, M is the Fisher information matrix and f = det(·)−1, and θ̂ is the
current parameter estimate. This φ can stand for any design variable such as
sampling rate, input or operating point. In this section we mainly focus on
input perturbation design. The Fisher information matrixM is defined as [40]

M = ZTΣ−1Z (1.2)

where Z is sensitivity matrix defined as follows,

Z =


∂y
∂θ1

|t1 ∂y
∂θ2

|t1 · · · ∂y
∂θp

|t1
∂y
∂θ1

|t2
. . .

...
...

. . .
...

∂y
∂θ1

|th · · · · · · ∂y
∂θp

|th

 (1.3)

where t1 and th denote the starting and ending time of the experiment respec-
tively, and Σ is the covariance matrix of output y. Each entry in the jth row
and ith column denotes the sensitivity with respect to the ith parameter θi at
time instant tj (j = 1, . . . , h).

Among various approaches for experimental design, the adaptive design
has gained the most popularity in practice due to its easy implementation and
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samller computational load. There are different ways to implement adaptive
design. In this thesis we utilize the receding-horizon experiment design which
was originally formalized by [14]. In the receding-horizon design, the optimal
input U∗

k is obtained according to the following equation.

U∗
k = [u∗k|k u

∗
k+1|k · · · u∗k+h−1|k ] = arg min

Uk∈U
f(M(θ̂k, Uk)) (1.4)

where U∗
k is the optimal input vector containing u∗k|k, u

∗
k+1|k, · · · , u∗k+h−1|k

calculated at the kth sampling instant, h is the optimization horizon, U is the
feasible set which U∗

k can be chosen from, f and M are explained above in

(1.1) and (1.2), and θ̂k is the parameter estimate at sampling instant k.
The procedure for receding horizon design is performed as follows: solve

the optimal design problem over a time horizon [k, k + h − 1] according to
an objective function such as (1.1) using the current estimate θ̂k to get u∗k|k
to u∗k+h−1|k; implement uk = u∗k|k and obtain the sampled output yk+1 at time
instant tk+1; this new measurement yk+1 will be used to update the current
estimate from θ̂k to θ̂k+1; repeat the optimal design procedure with this new
estimate θ̂k+1. The process is shown in Figure 1.1.

    y            

         u |         u !"|        #        u !$%"|                    

 

      &'  

                    y !"                                                                                      y( 

                        u !"| !"   u !)| !"   #       u !$| !"          #            

 

                       &' !"                                                                                   &'( 

 

Figure 1.1: Receding horizon design

1.3 LPV Model Identification

The LPV model is often described as an Orthonormal Basis Function (OBF)
as follows [35],

y =
n∑

i=1

αi(p, βi)ϕi(p)u (1.5)
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where p is the operating point and αi is a function of p with parameter vector
βi acting as the ith weighting factor, i = 1, . . . , n.

There are basically two groups of methods for LPV identification. One is
the local approach which uses the data collected from experiments at the n
operating points from p̄1 to p̄n. The parameter set βi is estimated by interpo-
lating between operating points p̄i, i = 1, . . . , n. For the local approach, the
LPV model can be interpreted as

G(p, q) =
n∑

i=1

αi(p, βi)Gi(p, q) (1.6)

where G is the model function, q is the shift operator, Gi(p, q) is the ith
local model Gi and n is the number of local models. The other method is
the global approach. To utilize this approach, a single experiment needs to
be performed along an operating trajectory composed of a large number of
operating points. Though with the capacity to represent the nonlinearity
well, the global approach can be hazardous and unrealistic in practice since it
requires extensive testing along all varying operating points.

To address this problem, Xu et al. (2009) [39] developed a hybrid LPV
identification method. In this combined method, local models are identified
using data set at some typical operating points; then the global LPV model is
identified by interpolating all the local models Gi using all data. This hybrid
LPV identification method combines the advantages of both local approach
and global approach. In chapter 3 and 4, this hybrid method will be adopted.

1.4 Contributions

The main contributions of this thesis can be categorized into three aspects
which are elaborated in Chapter 2, Chapter 3 and Chapter 4 respectively.
In Chapter 2, the proposed constrained receding-horizon design (CRHD) ad-
dresses the poor initial guess problem which is common and important in
nonlinear system identification; in Chapter 3, the proposed optimal operating
point design for LPV model identification solves a cardinal problem which has
not been well investigated by other existing work [34]; in Chapter 4, a simul-
taneous design strategy targets at improving the model accuracy based on the
operating points design proposed in Chapter 3. The main contributions of the
thesis are listed below:

1. Further developed optimal experimental design and parameter estima-
tion for nonlinear systems under a receding-horizon framework.

2. Integrated constraints (derived from a priori knowledge about the steady
state) into the parameter estimation process. This addresses the issue
of a poor initial guess which can have a significant effect on nonlinear
system identification.
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3. Proved that the proposed constrained receding-horizon design (CRHD) is
superior to the unconstrained receding-horizon design (URHD) in terms
of parameter uncertainty and estimation convergence.

4. Designed optimal operating points and improved the model accuracy.
Since this optimal design requires no a-priori knowledge about the true
nonlinear system, it is a practical approach for LPV model identification.

5. Simultaneously designed the operating points and input perturbation
based on the hybrid identification framework of Xu et al. (2009) [39]
and Zhu and Xu (2008) [42]. This joint experiment design can enhance
the reliability of LPV models obtained from single factor design such as
operating point-only design.

1.5 Thesis Outline

The rest of this thesis is concerned with solving three important problems in
experiment design. Chapter 2 develops a novel constrained receding-horizon
design (CRHD) combining optimal experiment design and constrained param-
eter estimation. This method proves to be effective and practical in solving
the poor initial condition problem in nonlinear system identification, both by
simulation examples and mathematical derivations. Chapter 3 formulates the
online optimal operating point selection for LPV models. This framework
is based on a hybrid identification method using experimental data obtained
both from local regions and transition periods. Chapter 4 investigates the joint
experimental design problem by simultaneously designing the operating points
and input perturbation. This simultaneous design is applied to two chemical
engineering simulation examples, the continuous stirred tank reactor (CSTR)
and the solid oxide fuel cell (SOFC). As a complicated and highly nonlinear
model, the dynamics and key mechanism of the SOFC model is illustrated
at the beginning of the chapter. This thesis will conclude in Chapter 5 with
discussions and some perspectives for future research.

5



Chapter 2

Constrained Receding-horizon
Experiment Design and
Parameter Estimation in the
Presence of Poor Initial
Conditions

1 An optimal experiment design assumes the existence of an initial or nominal
process model. The efficiency of this procedure depends on how the initial
model is chosen. This creates a practical dilemma as estimating the model
is precisely what the experiment tries to achieve. This chapter develops a
novel approach to experiment design for identification of nonlinear systems,
with the purpose of reducing the influence of poor initial values. The exper-
iment design and the parameter estimation are conducted iteratively under
a receding-horizon framework. By taking steady state prior knowledge into
account, constraints on the parameters can be derived. Such constraints help
reduce influence of poor initial models. The proposed algorithm is illustrated
through examples to demonstrate its efficiency.

2.1 Introduction

Optimal experiment design aims at determining optimal experiment condi-
tions to achieve a specific set of objectives. Experiment design is a broad
subject which includes aspects such as input design, operating point design,
and sampling time design. Though a significant amount of literature on opti-
mal experiment design for linear systems has been published since the 1970s

1. This chapter has been been accepted for publication in AIChE Journal as “Zhu and Huang
(2010). Constrained receding-horizon experiment design and parameter estimation in the
presence of poor initial conditions. AIChE Journal. 2010. ”.
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[9, 41], the optimal experiment design concerning nonlinear systems has re-
mained largely unexplored.

One significant challenge for nonlinear experiment design as well as param-
eters identification is that the sensitivity functions used to search for optimal
conditions depend on the unknown model parameters. Three existing methods
have been proposed to address this challenge: minimax experiment design, ED
(expectation of determinant)/EID (expectation of the inverse of determinant)-
optimal design, and adaptive experiment design.

Minimax experiment design attempts to achieve robust experiment by min-
imizing the largest possible modeling error. This approach needs no prior
information about parameter distributions. There are two recent representa-
tive publications on this topic. Rojas et al. (2007)[26] developed a method
of optimizing the worst case of modeling error over the parameter set, while
a convex optimization algorithm is implemented on a linear system. In con-
junction, Welsh and Rojas (2009)[38] proposed an algorithm to solve a robust
optimal experiment design problem by scenario approach. To construct convex
or semi-definite convex problems, both techniques formulate the identification
problem in frequency domain, but neither of the methods can be used for iden-
tification in nonlinear system. Moreover, the optimality objective function for
nonlinear identification is generally difficult to be formulated as a convex or
semi-definite convex problem.

Another group of methods (especially popular in bioscience fields) are ex-
periment designs by optimizing over the expected determinant of a Fisher in-
formation matrix. Pronzato and Walter (1985)[22], and Walter and Pronzato
(1985)[36] proposed ED-optimal design and EID-optimal design as follows:

(Pronzato and Walter(1985)[22]): An experiment design φED is called ED-
optimal if

φED = argmin
φ∈Φ

Eθ̂[f(M(θ̂, φ))] (2.1)

(Walter and Pronzato (1985)[36]): An experiment design φEID is called
EID-optimal if

φEID = argmax
φ∈Φ

Eθ̂[1/f(M(θ̂, φ))] (2.2)

where φ is the experiment design, θ̂ is the estimate of parameter, E is the
expectation operation, M(θ̂, φ) is the Fisher information matrix and f =
det(·)−1.

Both of these two designs require prior knowledge of unknown parameter
distributions [37]. Since in practice the prior parameter distributions and the
expected value cannot be easily obtained, these methods can only apply to
models with well-posed distributions.

Another solution is the adaptive design which is widely used in engineer-
ing literature [33]. The adaptive design starts from a nominal model guess θ̂0,
by which the design criterion f(M(θ̂0, φ)) is optimized. Then the experiment
is conducted for the next one or several samples and the model parameter
is identified. Afterward, the procedure iterates between experiment design
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and parameter estimation. In linear systems where unbiased or asymptotic
unbiased estimation can be guaranteed, the adaptive design works well and
eventually yields the optimal experimental condition for estimation. However,
this method will likely fail in the case of nonlinear system identification un-
der poor initial guess of the parameters. The poor initial guess problem is
not uncommon especially when we have little prior knowledge about the true
process in practice and is particularly harmful to the adaptive design. Poor
initial conditions induce the problems in the following aspects:

The experiment design φ∗ depends on the optimality criterion:

φ∗ = argmin
φ∈Φ

f(M(θ̂0, φ)) (2.3)

Under an initial guess θ̂0 that is far away from the real parameter, a design φ is
far from the optimal or may even be very deviated from where a normal input
signal should be; therefore, improper experiment conditions will be designed
that may make the estimated parameter deviate further away from the opti-
mal in subsequent iterations. This is particularly problematic for nonlinear
systems.

Adaptive parameter estimation for nonlinear system cannot guarantee the
convergence. In fact, the parameter estimator, typically an extended Kalman
filter, is a local asymptotic observer only when some conditions being met
such as the initial guess is near the true value or the system itself has weak
nonlinearity [32]. Therefore, when the initial guess of the model parameters
is poor, the parameter estimation through the extended Kalman filter may
diverge quickly.

While there are numerous works on adaptive experiment design, to the
best of authors’ knowledge, none of them target solving poor initial condition
problem. This problem is the principal concern of this work.

The remainder of the paper is organized as follows: Section 2 discusses
preliminaries. In section 3, a new method is presented to solve the receding-
horizon experiment design problem with poor initial conditions. To demon-
strate the merits of the proposed method, two nonlinear examples are pre-
sented in section 4. Section 5 provides the conclusion.

2.2 Preliminaries

2.2.1 Sensitivity analysis

The sensitivity analysis method has been well developed over the last several
decades [3]; in system identification, it is often used as a tool to assess estima-
bility of parameters. Such estimability is described as the ability to compute
parameters accurately given data and experimental conditions [40, 14]. In-
creasing parameter sensitivity corresponds to better estimability. In optimal
experiment design where we seek to obtain the most informative data, sensi-
tivity analysis is particularly a valuable tool. Consider the system described
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by the following state space model:

ẋ(t) = f(x(t), u(t), θ) (2.4)

y(t) = h(x(t), u(t), θ) (2.5)

where x is the state, f is state function of the state itself, input u and parameter
θ; y is the output, h is the output function. For illustrative purposes, we
assume this system has p parameters, one state, one output, and y(t) = x(t).
The sensitivity is given by the following definition:

A sensitivity matrix can be computed as follows [40, 7],

Z =


∂y
∂θ1

|t1 ∂y
∂θ2

|t1 · · · ∂y
∂θp

|t1
∂y
∂θ1

|t2
. . .

...
...

. . .
...

∂y
∂θ1

|tN · · · · · · ∂y
∂θp

|tN

 (2.6)

where t1 to tN denote the start and end time of the experiment respectively.
As an example, consider a model with parameter nonlinearity [14]

ẋt = − xt
θ1θ2

+
ut
θ2

(2.7)

yt = xt (2.8)

The sensitivity matrix is calculated as[14]

∂

∂θ
(
dx

dt
) =

∂f

∂θ
+
∂f

∂x

∂x

∂θ
(2.9)

Rearrange (2.9),
d

dt
(
∂x

∂θ
) =

∂f

∂θ
+
∂f

∂x

∂x

∂θ
(2.10)

(2.10) is a differential equation from which the sensitivity (∂y
∂θ

= ∂x
∂θ

in this
case) is calculated. Specifically,

d

dt
(
∂x

∂θ1
) =

x

θ21θ2
− 1

θ1θ2
(
∂x

∂θ1
) (2.11)

d

dt
(
∂x

∂θ2
) =

x

θ1θ22
− 1

θ1θ2
(
∂x

∂θ2
)− u

θ22
(2.12)

(2.11) shows that when calculating the sensitivity matrix for models with
parameters nonlinearity, parameters themselves are needed and so is the input.
For illustrative purposes, Figure 2.1 shows that different nominal values of θ(0)

can lead to quite different sensitivities with respect to some parameters (θ1
in this case), which may induce significant problems within the experiment
design.
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Figure 2.1: Sensitivities corresponding to different nominal values of param-
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1 ) = 1.2, E(θ̂

(0)
2 )= 0.0015; Red dash

line: initial values E(θ̂
(0)
1 ) = 3, E(θ̂

(0)
2 )= 0.006.

2.2.2 Information matrix

From (2.3), we know that the optimality criterion depends on the Fisher in-
formation matrix (FIM). A commonly used optimality criterion is

f(M(θ̂0, φ)) = −log(det(M(θ̂0, φ))) (2.13)

whose property has been discussed by Goodwin and Payne (1977)[9]. The
relation between the sensitivity matrix and the Fisher information matrix M
is[40]

M = ZTΣ−1Z (2.14)

where Z is sensitivity matrix defined in (2.6), and Σ is the covariance matrix
of output y. In the case of covariance scaled response, (2.14) can be reduced
to

M = ZTZ (2.15)

The advantage of the determinant criterion is its independence of the scaling
of the parameters. This optimality criterion also minimizes the generalized
covariance of the parameters estimate. The Cramér-Rao inequality is given by

P ≡ Cov(θ̂) ≥M−1 (2.16)

This inequality states that the inverse of the Fisher information matrix acts as
a lower bound for covariance of parameter estimate. When equality is satisfied,
the estimator is said to be efficient.
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For a class of unbiased estimators, the minimum variance estimator is sta-
tistically efficient. For nonlinear models, unbiased estimation has been widely
known to be theoretically unapproachable. Song and Grizzle(1995)[32] showed
that extended Kalman filter(EKF), as a classical nonlinear approximation fil-
ter, can be an asymptotic unbiased estimator, although certain conditions such
as a proper initial guess or a weak nonlinearity is required in order to achieve
convergence. Practically, EKF works well in most nonlinear models[31]. In
this work, we follow the principle that ”maximizing the Fisher information
matrix corresponds to minimizing covariance of estimates”, as stated in most
of the experiment design methodologies. Therefore the optimality criterion in
(2.13) is used for minimizing the covariance of θ̂.

2.3 Receding-horizon Experiment Design for

Nonlinear System with Poor Initial Con-

ditions

Due to the impact of poor initial conditions on nonlinear system identification,
it is desirable to derive a method which is robust both in experiment design
and parameter estimation. From a practical point of view, among the three
methods—minimax design, ED(EID)-optimal, and adaptive design— adaptive
design is easiest to implement due to relatively small computation load and
suitability for nonlinear systems. As discussed in the introduction, the main
problem with the adaptive design for nonlinear systems is the poor initial
values. We will develop a method that provides a solution for dealing with
poor initial conditions when applying the adaptive design. The flow diagram
of the proposed experiment design is shown first in Figure 2.2 while the details
will be elaborated shortly.

2.3.1 Constructing constraints for parameters

The first step of the proposed design is to impose a constraint according to
certain steady-state information. In some cases, steady states can be known
a priori while in other cases, a simple step test can help determine the steady
states. When a steady state is found, it will impose certain constraints on the
model parameters. Depending on the characteristics of the individual system,
there are two ways to derive the parameter constraints based on the knowledge
of steady states. The first method involves directly substituting steady states
into the state equation and then equating it to zero. Suppose we have nonlinear
state space equation as follows,

ẋt = f(θ, xt, ut) +Nwt (2.17)

yt = xt +Rvt (2.18)
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Figure 2.2: Flow diagram for proposed experiment design
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where wt ∼ N (0, Inx), vt ∼ N (0, Iny), N stands for Gaussian distribution, nx

and ny are dimensions of x and y respectively, N and R are constant matrices of
appropriate dimensions. The steady state is denoted as (xs, us). Substituting
this steady state point into (2.17) gives

ẋ = f(θ, xs, us) (2.19)

Since ẋ = 0 at steady state, the following constraint is established,

g(θ) = f(θ, xs, us) = 0 (2.20)

Another approach for specifying constraints is to approximate this non-
linear model at steady state by using a local linear model; these models can
be identified by a linear identification algorithm around a steady state point.
For illustration purpose, the electronic circuit system as shown in (2.7) is
used to derive the parameter constraints. With perturbations around a steady
state, perform continuous-time system identification [20], and then the follow-
ing model is identified:

ẋt = − xt
0.001783

+
ut

1.1998
(2.21)

yt = xt (2.22)

A constraint can therefore be set up as

θ1θ2 = 0.001783 (2.23)

Note that due to unavoidable estimation error in identification, this constraint
is an approximate one.

Obviously additional steady states can be found from step response tests.
Notice that more constraints are incorporated, the narrower range of parameter
estimate can be. For simplification, we adopt only one constraint derived from
one steady state in the examples. For additional steady state conditions, the
proposed algorithm can also be applied in the same manner.

2.3.2 Receding horizon design

Stigter et al. (2006)[33] proposed an adaptive approach for experiment design
with a receding horizon idea. Jayasankar et al. (2010) [13] later formalized
the design and called it as a receding horizon experiment design. In receding
horizon design, the optimization is performed to obtain U∗

k according to the
following equation.

U∗
k = [u∗k|k u

∗
k+1|k · · · u∗k+h−1|k ] = arg min

Uk∈U
f(M(θ̂k, Uk)) (2.24)

where U∗
k is the optimal input vector containing u∗k|k, u

∗
k+1|k, · · · , u∗k+h−1|k

calculated at the kth time instant, h is the optimization horizon, U is the
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feasible set which U∗
k can be chosen from, f andM are explained in (2.13) and

(2.14) respectively, and θ̂k is the parameter estimate at time instant k.
The procedure of receding horizon design is performed as follows: solve the

optimal design problem according to an objective function such as (2.3) with
the current estimate θ̂k over a time horizon [k, k+h−1] to get u∗k|k till u

∗
k+h−1|k;

implement uk = u∗k|k and obtain the sampled output yk+1 at time instant tk+1;
this new measurement yk+1 will be used to update the current estimate from
θ̂k to θ̂k+1, and repeat the optimal design procedure with this new estimate
θ̂k+1. The process is shown below in Figure 1.1 and will be adopted in this
chapter.

2.3.3 EKF with state constraint

The Extended Kalman filter (EKF) is a classical state estimator for nonlin-
ear systems. Parameters can also be estimated if we consider parameters
as augmented states. As discussed before, reducing Cov(θ̂) is equivalent to
increasing the information in the data. Poor initial conditions can lead to
poor experiment design as discussed before; therefore, it is natural to impose
constraints on the state estimations when using EKF so that the experiment
design and parameter estimation will not be unduly influenced by poor initial
parameters. Contributions on constrained estimation can be found in Simon
and Chia (2002) [31], Simon (2006) [29] and Simon (2009) [30]. In this work,
EKF with equality constraints is adopted.

For illustration, suppose that we have a nonlinear system with one contin-
uous state and one discrete measurement

ẋ = f(θ, x, u) (2.25)

yk = h(xk) (2.26)

In the following, parameters are considered as augmented states. We use x to
signify the state vector which includes parameters θ:

x =

[
x
θ

]
(2.27)

The unconstrained continuous-discrete EKF is shown in 2.1 [5], where x̂
denotes unconstrained state estimate.

Consider that the model described by (2.25) and (2.26) has the following
linear constraint:

Dxk = dk (2.28)

where D is s × nx dimensional matrix, and s stands for the number of con-
straints, nx stands for the number of states being constrained, and dk is s× 1
vector. Thus the problem formulation admits inclusion of multiple constraints.
More constraints are incorporated, the narrower region of parameters, and
more possible to converge to the true set of parameters.
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Table 2.1: Continuous-Discrete Extended Kalman Filter

Model
ẋ(t) = f(x(t), u(t), t) +G(t)w(t), w(t) N(0, Q(t))
yk = h(xk) + vk, vk N(0, Rk)

Gain
Kk = P−

k H
T
k (x̂

−
k )[Hk(x̂

−
k )P

−
k H

T
k (x̂

−
k ) +Rk]

−1

Hk(x̂
−
k ) ≡ ∂h

∂x
|x̂−

k

Update
x̂+
k = x̂−

k +Kk[yk − h(x̂−
k )]

P+
k = [I −KkHk(x̂

−
k )]P

−
k

Propagation

˙̂x(t) = f(x̂(t), u(t), t)

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t) +G(t)Q(t)GT (t)

F (x̂(t), t) ≡ ∂f
∂x
|x̂(t)

Based on basic equations shown in Table 2.1, Simon and Chia (2002) [31]
derived the EKF with equality constraint as

x̃0 = x̂0 (2.29)

x̃k = x̂k −W−1DT (DW−1DT )−1(Dx̂k − dk) (2.30)

following the projection method, where W is any symmetric positive definite
weighting matrix. In (2.29) and (2.30), we have used x̃ to denote constrained
state estimate. Throughout the remainder of this chapter, a ”ˆ” denotes an
unconstrained estimate and a ”˜” denotes a constrained estimate while a ” ∗ ”
denotes an optimal. Usually, W is set as identity matrix I or P−1, where P is
the inverse of the covariance matrix for the unconstrained estimate x̂ obtained
from Table 2.1.

In most nonlinear systems, the constraint is also nonlinear as in (2.20). As
an approximation, (2.20) can be linearized around the current estimate x̃k as

g(x̃k) + g
′
(x̃k)(xk+1 − x̃k) ≈ 0 (2.31)

Then a linear constraint having the form of (2.28) is obtained

g
′
(x̃k)xk+1 ≈ dk+1 − g(x̃k) + g

′
(x̃k)x̃k (2.32)

where g
′
(x̃k) is equivalent to D and dk+1 − g(x̃k) + g

′
(x̃k)x̃k equivalent to d in

(2.28). Then according to (2.29) and (2.30), the constrained estimate becomes

x̃0 = x̂0 (2.33)

x̃k+1 = x̂k+1 −W−1g
′
(x̃k)

T (g
′
(x̃k)W

−1g
′
(x̃k)

T )−1(g
′
(x̃k)x̂k+1 (2.34)

−dk+1 + g(x̃k)− g
′
(x̃k)x̃k)

Note that both Unscented Kalman Filter (UKF) and Moving Horizon Esti-
mation (MHE) can be applied under this constrained framework for parameter
estimation. Their state estimation recursion is analogous to that of constrained
EKF [30].
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Both adaptive experiment design and constrained estimation have their
own advantages respectively. Adaptive experiment design has low computa-
tion cost and is easy to implement. Constraint estimation can improve the
performance of estimation [31]. However, neither one of them individually
can address the nonlinear estimation problem under poor initial conditions.
In terms of constrained state estimation itself, there is one major difference
between Simon and Chia (2002)’s method [31] and the proposed method. For
the constrained EKF in the proposed method, each current x̃k is involved in
the kth step of recursive estimation, while in Simon and Chia (2002)’s method
[31] this x̃k is obtained by projecting the unconstrained estimate x̂k into the
constraint space, but is not involved in the iterative framework of EKF for the
next state estimate.

With (2.33) and (2.34) being available, we use estimate x̃ instead of x̂
in calculating optimality criterion and this gives us the optimal input ũ∗ for
the constrained optimal design. The following Proposition shows that the
constrained design achieves better estimation performance than that of un-
constrained design in terms variance of estimation.

Denote the parameter estimation under constraint optimal design as θ̃(ũ∗)
and the parameter estimation under unconstrained optimal design as θ̂(û∗).
Then the following inequality holds:

Cov(θ̂(û∗)) > Cov(θ̃(ũ∗)) (2.35)

Proof. For any input u, the error between the constrained state estimate x̃,
unconstrained state estimate x̂ and the true state value x has the following
relation [31]:

Cov(x− x̃) < Cov(x− x̂) (2.36)

where the inequality in the form of ”A < B” indicates that the square matrix
B − A is positive definite. According to x defined in (2.27), partition

A = Cov(x− x̂)− Cov(x− x̃) (2.37)

=

[
A11 A12

A21 A22

]
(2.38)

then

A11 = Cov(x− x̂)− Cov(x− x̃) (2.39)

A22 = Cov(θ − θ̂)− Cov(θ − θ̃) (2.40)

A12 = AT
21 (2.41)

= E[(x− x̂)(θ − θ̂)T ]− E[(x− x̃)(θ − θ̃)T ] (2.42)

The following equations hold

Cov(θ − θ̂) = Cov(θ̂) (2.43)

Cov(θ − θ̃) = Cov(θ̃) (2.44)
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Since A is positive definite, A22 is positive definite too, i.e. A22 > 0. In view
of (2.43) and (2.44), this means ∀u,

Cov(θ̂(u)) > Cov(θ̃(u)) (2.45)

where θ̂(u) (or θ̃(u)) elaborates that θ̂ (or θ̃) is an estimate according to the
input u. Therefore, the following two inequalities should hold

Cov(θ̂(û∗)) > Cov(θ̃(û∗)) (2.46)

Cov(θ̂(ũ∗)) > Cov(θ̃(ũ∗)) (2.47)

where each term represents a different experiment design scheme explained as
follows:
Cov(θ̂(û∗)): covariance of unconstrained estimate θ̂ with the optimal input û∗

based on unconstrained design;
Cov(θ̃(û∗)): covariance of constrained estimate θ̃ with the optimal input û∗

based on unconstrained design;
Cov(θ̂(ũ∗)): covariance of unconstrained estimate θ̂ with the optimal input ũ∗

based on constrained design;
Cov(θ̃(ũ∗)): covariance of constrained estimate θ̃ with the optimal input ũ∗

based on constrained design.
Among these four covariances, only Cov(θ̂(û∗)) and Cov(θ̃(ũ∗)) are the co-

variance of the adaptive optimal design schemes without and with constraints
respectively . By optimal design, the following inequalities should hold:

Cov(θ̂(ũ∗)) > Cov(θ̂(û∗)) (2.48)

Cov(θ̃(û∗)) > Cov(θ̃(ũ∗)) (2.49)

From (2.46) and (2.49), we obtain the following result

Cov(θ̂(û∗)) > Cov(θ̃(ũ∗)) (2.50)

2.3.4 Effect of constraints on convergence

In Proposition 4, we show that the estimation covariance with the optimal in-
put ũ∗ obtained from the proposed constrained receding-horizon design (CRHD)
is superior to the one with input û∗ obtained from unconstrained receding-
horizon design (URHD) where the constraint is referred to the constraint on
the parameters. In this section, we shall discuss performance in terms of con-
vergence.

Lemma 1 [32] in the appendices provides a condition for the existence of
M iterations after which the estimation can asymptotically converge to the
true value in unconstrained case. For constrained case, the number M can
be proven to be smaller than that in unconstrained case. In other words,
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imposing constraints will improve the convergency property. This is shown in
Proposition 5 along with its proof in the Appendices.

Remark 1: The poor initial guess can cause problems in parameter es-
timation including large variance and slow convergence speed. Most of the
experiment design algorithms including D-optimality aim at reducing the co-
variance (variance) of the parameter only. Imposing constraints obviously
restricts space of the parameters searching and thus reduces the risk of diver-
gence. As shown in the Proposition 4 in the previous subsection and Proposi-
tion 5 in the Appendices, imposing constrains not only improves convergence
but also reduces estimation variance [25, 32].

2.3.5 Uncertainty in constraint

However, there will also be downside of introducing constraint if the constraint
is not accurate. Constraint can be corrupted with some uncertainties due to,
for example, identification error. This uncertainty in the constraint will lead
to an asymptotic bias in the estimation. Take the electrical circuit system in
(2.7) as example. The constraint as shown in (2.23) which is obtained from
identification contains error since the ideal value for the product of θ1 and θ2
should be 0.0018. Therefore, if this inaccurate constraint is imposed through-
out the whole experiment design and estimation procedure, the convergence
of the parameters estimation to the true values will not be possible owing to
the inaccurate constraint. To circumvent this problem one natural option is
to release the constraint after certain number of iterations. However, too few
steps of estimation with the constraint will not serve the purpose of reducing
the effect of poor initial value either. Thus, there is a tradeoff in choosing a
proper iteration number between improving the convergence and reducing the
estimation bias. The Proposition 5 in Appendices has shown that there exists
an integerM that constitutes a lower bound on the number of iterations, after
which the iteration will converge. This provides a theoretical justification to
release constraints after certain steps of iterations.

Remark 2: In practice, to determine when to release the constraints is not
difficult. For example, after the estimated parameters have converged within
some tolerance, the constraints can be removed and continue for a few more
iterations of estimation until further convergence to eliminate possible bias
due to inaccurate constraints.

2.4 Examples

In this section, two examples are discussed, one with parameter nonlinearity
only, the other with nonlinearity in both parameters and input. The second
example demonstrates the reduction in variance by constrained estimation.
From both examples, we can see the advantage of the proposed method in
dealing with the poor initial value problem.
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2.4.1 The electrical circuit system

The circuit system represented by (2.7) and (2.8) is a fast dynamic system with
nonlinearity in parameters [14] only. As illustrated in the previous sections,
poor initial guess may lead to estimation problems. In this simulation, a poor
initial guess is chosen with E(θ̂

(0)
1 ) = 3, E(θ̂

(0)
2 ) = 0.006, while the true value

is θ1 = 1.2, θ2 = 0.0015.
The efficiencies of the multi-level Pseudo-Random Sequences (MLPRS),

Unconstrained Receding-horizon Design (URHD) as well as the proposed Con-
strained Receding-horizon Design (CRHD) are compared in this example. The
efficiency discussed in the following contains two aspects: efficiency of iden-
tification and design cost. We will show the identification result under poor
initial conditions through the following aspects: the error between the final
estimate and the true value, the convergence rate, the standard deviation of
each parameter estimate and the optimality objective function value achieved.

2.4.2 Comparison of simulation results using different
design algorithms

Multi-level Pseudo-Random Sequences (MLPRS) is considered as a common
input to stimulate a nonlinear system. In this example, we perturb the system
by a 3-level MLPRS with the values from 2 to 4. The standard deviations for
the estimation results in this chapter are obtained from 30 simulations.

The receding horizon design has been illustrated in section 3. The horizon
length is set as N = 4.

From Figure 2.3 and Figure 2.4, one can see that the proposed Constrained
Receding-horizon Design (CRHD) outperforms Unconstrained Receding-horizon
Design (URHD) and multi-level Pseudo-Random Sequences (MLPRS) in terms
of convergence to the true values in the presence of poor initialized conditions.
Since θ2 has larger sensitivity than θ1, the constrained estimation is more ‘ef-
fective’ in θ2. For the case of unconstrained design, θ̂2 does not converge.
Moreover, one can see from Figure 2.5 that the constrained design can achieve
much smaller objective function value than that of unconstrained design.

2.4.3 CSTR with jacket dynamics

In this example, a continuously-stirred tank reactor (CSTR) is used to demon-
strate the proposed method when applied to nonlinear chemical processes. The
first-order, exothermic reaction A→ B without recycle is described as follows:

ċA =
q

V
(cfA − cA)− k0 exp(−(

E

R
)/T )cA (2.51)

Ṫ =
q

V
(T f − T ) +

△H
ρCp

k0 exp(−(
E

R
)/T )cA +

UA

ρV Cp

(Tc − T ) (2.52)

There are totally eight parameters with two states. The description and
nominal value of each parameter are shown in Table 2.2 [10].
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Figure 2.3: Estimate for parameter θ1 with deviation (N=4) (Green: estima-
tion with 3-level PRS; Blue: unconstraint estimation; Red: constraint estima-
tion; Dotted: standard deviation; Straight black: true value of θ1)

Table 2.2: Parameters in CSTR
Parameter Symbol Value
Density of A-B Mixture (kg/m3) ρ 1000
Pre-exponential factor (1/sec) k0 7.2× 1010

Volumetric Flowrate (m3/sec) q 100
Volume of CSTR (m3) V 100
Heat capacity of A-B Mixture (J/kg ·K) Cp 0.239
Heat of reaction for A-¿B (J/mol) △H 5× 104

U - Overall Heat Transfer Coefficient (W/m2 ·K)
UA 5× 104

A - Area this value is specific for the U calculation (m2)
Feed Concentration (mol/m3) cfa 1
Feed Temperature (K) T f 350
E - Activation energy in the Arrhenius Equation (J/mol) E

R
8750

R - Universal Gas Constant = 8.31451 (J/mol ·K)

The two states are concentration of component A, cA, and temperature T .
The temperature of cooling jacket Tc is considered as an input.

Among the large number of parameters shown in Table 2.2, some are eas-
ier to estimate than the others. According to the analysis obtained by Chu
et al. (2007) [4], the fluid density ρ and the pre-exponential factor k0 have
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Figure 2.4: Estimate for parameter θ2 with deviation (N=4) (Green: estima-
tion with 3-level PRS; Blue: unconstraint estimation; Red: constraint estima-
tion; Dotted: standard deviation; Straight black: true value of θ2)

larger sensitivities while activation energy E/R has smaller sensitivity. In the
following simulations, both easier-to-estimate and harder-to-estimate sets of
parameters are tested using the proposed method.

From a preliminary steady state test, this CSTR can be determined to
have one steady state point at cA = 0.9519 and T = 312.7 when the cooling
jacket Tc = 290. Substituting this steady state point into (2.52), the constraint
equation for each pair of parameters is obtained. To deal with the uncertainty
in the constraint, one can release the constraint after some number of iterations
as stated in the previous section.

Estimation of ρ and k0

We start the initial guess of these two easier-to-estimate parameters from rel-
atively poor condition: E(ρ) = 1000, σ(ρ) = 50, E(k0) = 7.3 × 1010, σ(k0) =
1× 109 where σ is standard deviation.

The parameters estimation result is shown in Figure 2.6 and 2.7. From
Figure 2.6 and 2.7 one can observe the notable difference between constrained
design (constraint is implemented throughout the whole estimation) and un-
constrained design in terms of the estimation error and the variance of param-
eters. This result is consistent with previous simulation example.

As stated before, the steady state information in this example obtained
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Figure 2.5: Optimality objective function value (Upper blue: unconstrained
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from step test may not be accurate. In ideal case, the following equation
holds.

g(θ0, x0s, u
0
s) = 0 (2.53)

where (x0s, u
0
s) is the ideal steady state point. However, without knowing

(x0s, u
0
s), (x̂s, û

0
s) will be used in the constraint equation. Therefore, the follow-

ing equation is obtained.
ĝ(θ, x̂s, ûs) = 0 (2.54)

Indeed, the error has been introduced into the constraint because of the inaccu-
rate steady state information. Substitute (x̂s, û

0
s) into the constraint equation

with true parameters, the following equation holds.

g(θ0, x̂s, ûs) = −96.4364 ̸= 0 (2.55)

From (2.55) one can see that there is an error in the constraint equation. This
reflects in Figure 2.8 that the bias appears when the constraint is imposed
throughout the estimation procedure (K = 200). This is consistent with
the analysis in section 3. Results of releasing the imprecise constraint after
different iterations K are shown in Figure 2.8 from which one can find that a
value of M within the range from 30 to 50.

Since states and parameters are estimated simultaneously, we can also ver-
ify the estimate of the states cA and T to see whether the proposed method
shows any advantage.
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Figure 2.6: Estimate for ρ with deviation (Upper blue: unconstraint estima-
tion; Bottom red: constraint estimation; Dotted: standard deviation; Straight
black: true value of ρ)

As shown in Figure 2.9, the state estimation by constrained design is closest
to the true state.

Estimation of ρ and E/R

Compared to the first set of parameters, this is a set of harder-to-estimate
parameters. The initial guesses for the pair of parameters ρ and E/R are
chosen as follows: E(ρ) = 1025, E(E/R) = 8755. For this set of parameters,
constraint is released after 150 iterations. The estimation results are shown in
Figure 2.10 and 2.11.

From Figure 2.10 and 2.11, we can see that both estimated parameters
converge to the true values by constrained design but fail to converge with
unconstrained design. Moreover, from Figure 2.12, one can see that the con-
strained design estimate is closer to the true value comparing to unconstrained
design.

2.5 Conclusion

A constrained receding-horizon approach for nonlinear dynamic experiment
design and parameters estimation was presented, with the purpose of solv-
ing problems brought out by poor initial condition. The proposed method
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incorporated experiment design based on sensitivity analysis and constrained
parameter estimation. It is shown that the steady-state condition can be used
to form the constraint. It is suggested that when the constraint is not exact,
the constraint should be used only for a few iterations in the beginning of the
experiment design and parameter estimation and then release after certain
steps.

Integration of adaptive experiment design and parameter estimation with
constraint proves to be efficient and superior to the unconstrained design. Two
simulation examples are used to demonstrate the advantage achieved by the
proposed method.
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Chapter 3

Adaptive Optimal Operating
Points Design for LPV
Identification

In this chapter, a class of Linear Parameter Varying (LPV) models for nonlin-
ear system identification is considered. Based on a hybrid LPV identification
method and optimal experiment design, an adaptive optimal operating point
design approach is developed. First, experiment is performed based on the
current operating points, and then the global LPV model is identified by in-
terpolating the current local models. Next, the new optimal operating point
is selected in an adaptive manner based on the identified global model. Re-
quiring no a-priori knowledge about the true nonlinear system, the adaptive
optimal operating point design is able to improve estimation performance com-
pared to non-optimal design. Two examples show the improvement over the
experiments with randomly picked operating points.

3.1 Introduction

While nonlinearity is common for industrial processes, identifying a nonlinear
process can be an arduous task. The intuitive approach is to consider a model
with simple structure having flexible parameters which can capture the nonlin-
ear process behavior. The Linear Parameter Varying (LPV) model offers the
possibility of modeling complex nonlinear systems with good accuracy and
low computational cost. This appealing modeling framework has attracted
much attention and a considerable number of algorithms have been recently
developed. The LPV model contains a time-varying scheduling variable p(t)
which is often called the operating or working point [27]. The operating point
of a dynamic system can be given by an input variable, a state, an output,
or an independent variable. For example, in a Continuous Stirred-Tank Re-
actor (CSTR), the operating point can be the cooling fluid flow rate which
is often considered as an input or an independent variable; for a car engine
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model given by [1], the operating point can be the engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions. The structure
of LPV model can be described as a basis function, which is given as follows
[35]:

y =
n∑

i=1

αi(p, βi)ϕi(p)u (3.1)

where p is the operating point and αi is a function of p with parameter vector
βi acting as the ith weighting factor, i = 1, . . . , n.

Depending on which operating period the data is acquired and used, the
algorithms for identification of a LPV model can be categorized into two main-
stream classes [35]:

• Local approach: In (3.1), ϕi(p) is identified using the data collected
through experiments at these n operating points, i.e. from p = p̄1 to
p = p̄n. Then the parameter set βi is estimated by interpolating between
the n operating points p̄i, therefore obtaining weighting factors αi, i =
1, . . . , n. In this case, an LPV model can be interpreted as

G(p, q) =
n∑

i=1

αi(p, βi)Gi(p, q) (3.2)

where G is the model function, q is the shift operator, Gi(p, q) is the ith
local model Gi, and n is the number of local models.

• Global approach: Perform a single experiment along an operating trajec-
tory which covers a large number of operating points. Use this collected
input-output data set to identify αi directly (i = 1, . . . , n). In this ap-
proach, ϕi needs not to be the local model [35].

Both approaches have their own advantages and disadvantages. The local
approach requires less testing but may not be sufficient to capture the global
nonlinear behavior. In contrast, the global approach will not heavily rely on
a few operating points and will represent the nonlinearity well; however, it re-
quires extensive testing along varying operating points which can be hazardous
when applied to industrial processes. One solution which combines advantages
of these two methods is developed by Xu et al. (2009) [39]. In this combined
method, local models are identified using data set at some selected operat-
ing points; and then the global LPV model is identified by interpolating local
models Gi using total data. Although this method shows attractive features
both in identification and control, it makes an assumption that those typical
operating points are sufficiently informative and no discussion is made about
how to select those operating points. It should be noted that how to specify
the operating point can affect modeling accuracy. However, in most literature
about LPV identification, operating points are considered fixed and known be-
fore identification is performed. Choosing operating points for a given physical
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system to improve model accuracy is considered as a cardinal problem but has
not been well investigated [34].

Recently, Khalate et al. (2009) [16] developed an algorithm to determine
the optimal operating points based on a local approach. The system they try
to identify is described as follows:

y(t) = ϕT (t)α0(p) + v(t) (3.3)

where ϕ(t) = [−y(t − 1), −y(t − 2), . . . , u(t − 1), u(t − 2)]T is a regression
vector and y is the output data set, and α0 is the parameter vector changing
with respect to p which is parameterized as

α0(p) = λ0 + λ1p+ . . .+ λmp
m (3.4)

and v(t) is the noise with zero mean and bounded variance. Given an ini-
tial set of fixed operating points P = {p̄1, p̄2, . . . , p̄n}, they used local
input and output data (ϕ and y) at each of the operating points to esti-
mate the parameter vector (denoted as α̂(p̄i)); with these α̂(p̄i) values and the
corresponding operating points in P , the parameters {λi} in Equation (3.4)
were determined by interpolation. For one initial set of fixed operating points
P = {p̄1, p̄2, . . . , p̄n}, a set of parameters {λi} can be obtained. Different
selection of operating points set yield different parameters set {λi} in the pa-
rameter vector α. By choosing operating points set P , they tried to minimize
the error between the interpolated parameter vector α and the true parame-
ter vector α0. Assume that after one selection of operating points set P , the
parameter α is described as:

α̃P(p) = λ̃0 + λ̃1p+ . . .+ λ̃n−1p
n−1 (3.5)

where the m value in (3.4) is chosen as (n − 1). The objective function they
used to determine the optimal operating points set is

JP =

∫ p̄max

p̄min

∥α̃P(p)− α0(p)∥2dp (3.6)

where “∥” denotes the Euclidean norm of α̃P(p)−α0(p), and P = [p̄min, p̄max]
is the range of p.

As a first attempt toward optimal operating points design, this algorithm
is built by making several assumptions to simplify the complex optimal LPV
experiment design problem [16]. The first assumption is that the true nonlin-
ear process is an explicit function of the varying operating points. Another
assumption is the first principle model α0 is known. Although these assump-
tions help derive a solution to the optimal operating point design problem,
they are unrealistic or difficult to realize in practice.

In this work, we propose an optimal adaptive operating point design algo-
rithm which can be applied to systems with nonlinear behavior that can be
approximated by LPV models. No specific a-priori knowledge about the true
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process or first principle model is required. This chapter is organized as follows:
Section 3.2 introduces the hybrid method combining local approach and global
approach for LPV identification. Section 3.3 describes the optimal adaptive
operating point design algorithm which is composed of LPV identification and
optimal experiment design followed by a simple example for illustration. In
Section 3.4, the applicability of the proposed method is shown and discussed
through two examples.

3.2 Hybrid Method for LPV Identification

The hybrid method combining the local and global approaches requires experi-
mentation to be conducted both in local operating points and in the transition
period [39]. Before the identification experiment is performed, the initial op-
erating points as well as transition regions (or operating trajectory) should be
specified. The LPV model can be formulated as follows:

y(t) =
n∑

i=1

αi(p, βi)Gi(p, q)u(t) + v(t) (3.7)

where v(t) is the noise with zero mean and bounded variance. Once the input-
output data is obtained, the local modelsGi can be identified; this is considered
to be the first step of hybrid identification for LPV models. The local model
Gi in Equation (3.2) is usually described by an ARX model, which is valid
given that input perturbation are small [19].

Once the local models Gi are determined based on the nominal operating
points, the weighting function αi can be estimated. There are a number of
ways to model the weighting function. A simple model is a piece-wise linear
function; however, it does not capture the transition nonlinearity. Other more
frequently-used methods include polynomial functions and cubic splines. The
cubic splines function can be represented in the form [39]:

αi(p) = βi,1 + βi,2p+
s−1∑
j=2

βi,j+1|p− kj|3 (3.8)

where k1, k2, ..., ks are a set of knots which satisfy

pmin = k1 < k2 < ... < ks = pmax (3.9)

These knots can be randomly distributed throughout the range of operating
point. Similar to polynomial functions, the cubic splines function is linear
with respect to the parameter set βi,j. When substituting (3.8) into (3.7), one
can see that the output is also linear with respect to the parameter set βi,j.
This model structure enables linear least squares estimation, effectively reduc-
ing the computational cost. Once the experimental test along the operating
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trajectory is done, off-line estimation can be performed using the entire data.
The parameter set βi,j to be estimated can be denoted as

B = [βT
1 , β

T
2 , . . . , β

T
n ]

T (3.10)

where βi corresponds to the ith local model. The objective function for esti-
mation can then be formulated as

B̂ = argmin
B

1

N

N∑
t=1

[e(t)]2 (3.11)

where N is the total number of data points including local regimes and transi-
tions, and e(t) is the output error between measurement and prediction which
is described as

e(t) = y(t)−
n∑

i=1

α̂i(p, β̂i)Ĝi(p, q)u(t) (3.12)

3.3 Optimal adaptive operating point design

The hybrid identification method requires local models to be identified before
a global model is interpolated. As discussed before, it offers advantage in
the computation cost; however, it can also cause problem. Since there is no
a-priori knowledge available about the nonlinear model structure, operating
point design relies solely on the estimated LPV model. On the other hand,
LPV model identification also depends on the operating trajectory where the
experiment is carried out. The LPV model will only be correctly identified if
experiment is done along an appropriate operating trajectory. To solve this
problem, an Adaptive Operating Point Design (AOPD) algorithm is devel-
oped which allows the determination of a single operating point for each new
experimental test, and requires no knowledge about the true process. The
framework for the proposed AOPD procedure is shown in Figure 3.1 with the
details being elaborated afterward.

According to Figure 3.1, the procedure of this operating point design prob-
lem consists of the following steps:

Step 1: Start from two nominal operating points which are typically the min-
imum and the maximum value within the operating range.

Step 2: While traveling through one operating point to the other, perform
experimental along the operating trajectory thus collecting local data Di

and transition data Di,i+1.

Step 3: Identify local models Ĝi using local data set Di.

Step 4: Estimate parameters βi involved in the weighting factor αi using the
entire data set to form a global model.
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Figure 3.1: The framework for adaptive operating point design procedure

Step 5: Simulate the global model to predict output ŷ.

Step 6: Calculate the sum of mean square prediction error MSE = 1
N
(y −

ŷ)T (y − ŷ).

Step 7: Check that whether the mean squares error is smaller than a certain
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tolerance δ, i.e. MSE < δ.

Step 8: IfMSE < δ terminate the design procedure with the current optimal
operating point vector P̄(k−1); otherwise, search the optimal operating

point p̄∗(k) is based on the current global model Ĝ(k−1), where k represents

the kth experiment .

Step 9: Append the new p̄∗(k) into the operating point vector P̄(k). Go to step
2.

3.3.1 The process to determine the optimal operating
point p̄∗

The optimal operating point p̄∗ is determined as follows:

p̄∗ = argmin
p̄∈P

J(p̄, B) (3.13)

where P is the operating point space, B is the parameter set in the weighting
function defined in (3.10), and J is the objective function. The widely-used
objective function for LPV identification problem is MSE.

J =
1

N
(y − ŷ)T (y − ŷ) (3.14)

However, this common objective function cannot be applied since it requires
actual experiment data after trying a new operation point. This forms another
dilemma. To circumvent this problem, we solve the following optimization
problem according to the global model estimated:

p̄∗(k) = arg min
p̄(k)∈P(k−1)

J(k)(p̄(k), P̄(k−1), B(k)) (3.15)

where J(k) is the objective function in the kth optimization step, p̄(k) ∈ P(k)

is the operating point to be searched, P̄(k−1) is the (k − 1)th operating points
vector based on which p̄∗(k) will be added, and B(k) is the parameter set in

the weighting function defined in Equation (3.10) at the kth iteration. The
objective function can be expressed as

J(k) = max{Jk,j|j = 1, . . . , nk−1 − 1} (3.16)

with

Jk,j =

∫ p̄k−1,j+1

p̄k−1,j

∥G(p̄(k), B(k), q)−G(p,B(k), q)∥2dp (3.17)

where j = 1, . . . , nk−1−1 is the index of transition sections after the latest op-
erating point is added, nk−1 is the number of operating points in the (k− 1)th

run of the experiment. P̄k−1 = [p̄k−1,1, . . . , p̄k−1,j, . . . , p̄k−1,nk−1
] denotes as the
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(k − 1)th operating point vector. The optimal operating point p̄∗(k) is deter-

mined by the following procedure: calculate ∥G(p̄(k), B(k), q) − G(p,B(k), q)∥2
at certain p̄(k) and p, where p is a varying operating point; integrate this square
of 2-norm individually over p for each transition section from p̄k−1,j to p̄k−1,j+1,
j = 1, . . . , nk−1 − 1; next, after comparing the nk−1 − 1 values of integration,
choose the maximum Jk,j as J(k) (if k = 1, J(k) = Jk,j); then, the optimal
p̄ which minimizes this Jk,j is defined as the optimal operating point p̄∗(k) in

the kth run of the design. Repeat this procedure until the mean square error
between the measurement and prediction is reduced within a certain small
tolerance.

3.3.2 An illustrational example

For illustration, a pure gain system is taken as an example before proceeding
to the two dynamic systems in the next section. Suppose this static gain has
the following form which is an explicit function of operating point p,

K(p) = −1 + 0.6e−sin(0.06p) (3.18)

where p ∈ [60 150]. Following the description of the optimal adaptive operating
point design procedure discussed above, four new optimal operating points are
found. First, based on the initial set of operating points P̄0 = [60.00 150.00],
the first new optimal operating point p̄∗(1) is determined as 100.27, with the
objective function J(1) = 25.02. Once the first new optimal operating point p̄∗(1)
is obtained, the current operating trajectory has three fixed local operating
points [60.00 100.27 150.00] and two sections of transitions between these
operating points. For each of these two sections of transitions, calculate the
objective function J1,1 = 2.55 and J1,2 = 2.53 as shown in (3.17). The larger
one of these two objective function values (J1,1) is defined as the objective
function value for J(2), which is achieved at p̄∗(2) = 67.54. So the second new
operating point is found at 67.54. This design procedure is carried on until four
new optimal operating points are determined and the last objective function
value is less than a pre-selected threshold of 1.

The vector of optimal operating points is

P̄ ∗
(4) = [60.00 67.54 88.61 100.27 147.18 150.00] (3.19)

Figure 3.2 shows objective functions J(k) when k = 1, k = 2, k = 3 and
k = 4. The p̄∗(k) in each of these runs of experiments are marked with stems
and circles in the four subplots.

Since the static gain K is an explicit function of the operating point p only,
the changing of k with p can be represented in a 2-dimensional figure as shown
in Figure 3.3 where the four new optimal operating points can be visualized.
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3.4 Simulation

3.4.1 Continuous stirred tank reactor (CSTR) model

The continuous stirred tank reactor (CSTR) has been considered as a bench-
mark process for nonlinear process modeling. The dynamics of an irreversible,
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exothermic reaction A→B taking place in a constant-volume reactor, which is
cooled by a single coolant stream, is shown as follows [39, 28],

ĊA(t) =
q(t)

V
(CA0(t)− CA(t))− k0CA(t) exp(−(

E

RT (t)
)) (3.20)

Ṫ (t) =
q(t)

V
(T0(t)− T (t)) +

△Hk0CA(t)

ρCp

exp(−(
E

RT (t)
)) +

ρcCpc

ρCpV
qc(t){1− exp(

−hA
qc(t)ρCp

)}(Tc0(t)− T (t)) (3.21)

The description and nominal value for each parameter in Equation (3.20) and
Equation (3.21) are shown in Table 3.1 [15].

Table 3.1: Parameters and their nominal values in CSTR model
parameters nominal values

production concentration of component A, CA 1st state
temperature of the reactor, T 2nd state

feed concentration of component A, CA0 1 mol/L
feed temperature, T0 350.0 K
specific heats, Cp, Cpc 1 cal/(gk)
liquid density, ρ, ρc 1× 103 g/L

heat of reaction, −△H −2× 105 cal/mol
activation energy term, E/R 1× 104 K
reaction rate constant, k0 7.2× 1010 min−1

heat transfer term, hA 7× 105 cal/(min K)
reactor volume, V 100 L

inlet coolant temperature, Tc0 350.0 K
process flow rate, q 100 L/min
coolant flow rate, qc input

As shown in Table 3.1, the two states are the concentration of component A,
CA and the temperature of the reactor, T , while CA is selected as output. The
coolant flow rate qc is selected as a manipulated variable as well as an operating
point which varies in the range [97 109]. Note that for a given operating point,
steady states are unknown until the local dynamics have been tested.

Following the design framework in Figure 3.1, the optimal operating point
design starts from testing along the operating point trajectory which consists
of the minimum operating point 97 L/min, the maximum value 109 L/min
and the transition between these two values. For all experiments along the
local operating points as well as the transition from one local point to another,
the measurements are corrupted by noise having a standard deviation of 10%
of the measurement. We use generalized binary noise (GBN) [42] for the
simulated input perturbation. For each of the local and transition experiments,
500 sample points were taken. Figure 3.4 shows the GBN input signal qc as
a function of time. Fixing the mean square error tolerance δ to be 0.005,
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the optimal design ends with three newly-added operating points; the set of
operating points is

P̄ ∗
(4) = [97 100.1141 103.0733 105.9893 109] (3.22)

where the middle three are the new selected optimal operating points.
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Figure 3.4: The input qc as a function of time

Figure 3.5 shows that the objective functions changes with varying p when
the number of elements in the current P̄ ∗

(k) increases to 3, 4, 5 respectively.
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Figure 3.5: Objective function value vs. operating point p
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Notice that the objective function we used for determining the new optimal
operating point is not MSE. Instead, we use Equation (3.17). The reason to
do so has been explained in the previous section. It is obvious that adding
more operating point can yield a smaller value of MSE. However, it does not
guarantee a smaller value of the objective function after adding new operating
point. This is simply because after adding the new optimal operating point,
the global model G in the objective function has been changed. Moreover,
this global model is an approximation of the true model, therefore containing
uncertainty. Thus, the objective function value after adding new operating
point is not necessarily smaller than the one with less operating points.

Figure 3.6 shows the comparison between the actual process output and the
identified global model output. The upper two subplots and the left bottom
one show the performance of the proposed adaptive optimal design method
when the number of elements in the current P̄ ∗

(k) equals to 3, 4, 5 respectively.
The right bottom figure shows the mean value of prediction results by repeating
experiments for 20 times where the 5 operating points are randomly selected.
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Figure 3.6: Comparison of outputs

The mean square errors for optimal operating point design are listed in
Table 3.2 when the number of elements in the current operating set n is 3, 4
and 5 respectively. From Table 3.2, one can see that adding more operating
points reduces the MSE, which is intuitive. The average MSE obtained from
20 experiments with randomly assigned operating points is 0.0111. Comparing
the MSE between the two simulations when n = 5 for optimal operating point
design and the one without optimal design, one can see that the MSE is reduced
by 63.96%. Notice that even for n = 3, the MSE of the proposed adaptive
optimal design method is smaller than the one without optimal design, despite
the latter has five operating points.
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Table 3.2: Mean square error for optimal operating point design
n=3 n=4 n=5

MSE 0.0106 0.0085 0.0040

To get a full perspective, we plot the 3-D figure of outputs as a function of
time and operating point in Figure 3.7. The error between the process output
and model output is also shown as a function of time and operating point in
Figure 3.8. One can see that the global model matches the process output
well.
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Figure 3.7: Measurement and predicted output vs. time and operating point

3.4.2 Solid oxide fuel cell (SOFC) model

A solid oxide fuel cell (SOFC) is considered in this example. For the SOFC
modeling, a series of developments have been achieved considering the first
principle model [8, 12, 24, 11]. The structure of SOFC is shown in Figure 3.9.

As shown in Figure 3.9, the fuel cell consists of the anode and the cathode
on either side and an electrolyte in between. The electricity is generated by
feeding hydrogen rich fuel and air into the fuel cell which results in a series
electrochemical reactions. The fuel cell can be divided into four components:
flow channels (including fuel flow channel and air flow channel), electrodes
(including anode and cathode), electrolyte and interconnector. Among the
transport dynamics of these components, the flow channel dynamics and the
electrode dynamics have been investigated in details.
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Figure 3.9: Structure of SOFC [24]

The key reaction occurs in the fuel cell is the reaction which converts the
chemical energy contained in the fuel and oxidant to electrical energy as shown
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below:

anode : H2 +O2− → H2O + 2e− (3.23)

cathode :
1

2
O2 + 2e− → O2−

Dynamic modeling of SOFC

Qi et al. (2005) [23] developed a cell-based dynamic model to investigate the
nonlinear dynamic characteristics of SOFC. This nonlinear state space model
is given by Table 3.3. The inputs, outputs and state variables are defined as
shown in Table 3.4, Table 3.5 and Table 3.6 respectively [13]. The parameters
in the voltage dynamics subsystem are given in Table 3.7.

Table 3.3: State space model for SOFC
State equations:
ẋ1 =

1
RctCct

E − 1
RctCct

x1 − 1
Cct

x1

u1+Ro

ẋ2 = x3
ẋ3 = −h1x2 − h2x3 + h1

1
2F

x1

u1+Ro
+ h3

A
RT

(Ku2 − x4)

ẋ4 = K2u2 −Kx4
ẋ5 = x6
ẋ6 = −o1x5 − o2x6 + o1

1
4F

x1

u1+Ro
+ o3

A
RT

(Ku3 − x7)

ẋ7 = K2u3 −Kx7
ẋ8 = x9
ẋ9 = −w1x8 − w2x9 + w1

1
2F

−x1

u1+Ro
+ w3

A
RT

(Ku4 − x10)

ẋ10 = K2u4 −Kx10
ẋ11 = x12
ẋ12 = −h1x11 − h2x12 − h4

RT
A

1
2F

x1

u1+Ro

−RT
A

4
La

1
2F

[ x1

u1+Ro
− x1

(u1+Ro)2
(Ku1 − x17)] + h1u2

ẋ13 = x14
ẋ14 = −o1x13 − o2x14 − o4

RT
A

1
2F

x1

u1+Ro

−RT
A

4
Lc

1
4F

[ x1

u1+Ro
− x1

(u1+Ro)2
(Ku1 − x17)] + o1u3

ẋ15 = x16
ẋ16 = −w1x15 − w2x16 − w4

RT
A

1
2F

−x1

u1+Ro

−RT
A

4
La

1
2F

[−x1

u1
+ x1

(u1+Ro)2
(Ku1 − x17)] + w1u4

ẋ17 = K2u1 −Kx17
Output equations:
y1 = x1 − Ro

u1+Ro
x1

y2 =
x1

u1+Ro

y3 = x2
y4 = x5
y5 = x8
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Table 3.4: Input variables for SOFC
Inputs Description
u1 External load
u2 Bulk pressure of hydrogen
u3 Bulk pressure of oxygen
u4 Bulk pressure of water

Table 3.5: Output variables for SOFC
Inputs Description
y1 External voltage Vout
y2 Current
y3 Consumption rate of hydrogen
y4 Consumption rate of oxygen
y5 Production rate of water

Table 3.6: State variables for SOFC
State Description
x1 Voltage Vct
x2 Consumption rate of hydrogen
x3 Derivative of consumption rate of hydrogen
x4 Intermediate variable
x5 Consumption rate of oxygen
x6 Derivative of consumption rate of oxygen
x7 Intermediate variable
x8 Production rate of water
x9 Derivative of production rate of water
x10 Intermediate variable
x11 Concentration of hydrogen at tpb
x12 Derivative of concentration of hydrogen at tpb
x13 Concentration of oxygen at tpb
x14 Derivative of concentration of oxygen at tpb
x15 Concentration of water at tpb
x16 Derivative of concentration of water at tpb
x17 Intermediate variable
Note that ”tpb” stands for triple phase boundary

In Table 3.4, the input external load u1 is chosen as the operating point,
which varies from 2 Ω to 6 Ω. The small perturbation ∆u1 along this operat-
ing trajectory is selected as input perturbation using generalized binary noise
(GBN) [42]. Since SOFC behaves strong nonlinearity which is challenging by
using LPV system, experiment design should be carefully investigated to pre-
vent the output to “overreact”. Following the process of adaptive operating
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Table 3.7: Parameters for SOFC

Parameters Descriptions
Nominal values
used in simulation

Rct Charge transfer resistance 0.9 Ω
Cct Charge transfer capacitance 300× 10−6 F
Ro Ohmic resistance 0.1 Ω

h1, h2, h3, h4
Functions of diffusion coefficient

1.041× 10−4

of hydrogen Dh2

o1, o2, o3, o4
Functions of diffusion coefficient

2.451× 10−5

of oxygen Do2

w1, w2, w3, w4
Functions of diffusion coefficient

1.041× 10−4

of water DH2O

R Gas constant
82.05× 10−5

J mol−1 K−1

T Work temperature 1223 K
A Fuel cell effective area 1 cm2

F Faradays constant 96487 C mol−1

La Thickness of anode diffusion layer 1 mm
Lc Thickness of cathode diffusion layer 1 mm
K Approximation factor 15

point design, four optimal operating points are determined:

P̄ ∗
(3) = [2.00 3.00 4.00 6.00] (3.24)

Figure 3.10 shows the objective functions when choosing the 1st and 2nd
operating points. Figure 3.11, 3.12 and 3.13 show the process output, the
outputs of local models and the global model identified through the adaptive
optimal design procedure when the number of operating points n is 2, 3, 4
respectively. One can see that local linear models alone cannot capture the
process output well. On the other hand, from the error between the process
output and the global model, output is reduced when n increases.

The mean square error corresponding to the four optimal operating points
as shown in Equation 3.24 is 1.70 × 10−4. Comparing with the average MSE
of 8.46× 10−4 obtained from 20 experiments without optimal operating point
design, the proposed design shows superiority in improving the modeling accu-
racy. Indeed, the MSE between the model output and the process output based
on three operating points designed by the proposed method is 2.28 × 10−4,
which is smaller than the MSE based on four operating points without opti-
mal design.

3.5 Conclusions

An adaptive optimal operating point design algorithm has been proposed for
LPV identification in this chapter. The formulation of an online optimal op-
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erating point selection scheme is motivated by the fact that selecting differ-
ent nominal operating points can yield significant different error between the
model prediction and system output. Based on a hybrid identification method
combining both local and global approaches, the optimal operating point de-
sign algorithm starts from the initial set of operating points. With this set of
initial operating points, the local models are interpolated using the entire data
set, obtained through experimentation along the operating trajectory, to get a
global model. A candidate operating point within each transition period is ob-
tained by minimizing an objective function. Within the transition region, the
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candidate operating point with the largest objective function value is selected
as the new operating point. The optimal operating point selection procedure
is conducted iteratively until a satisfactory MSE is achieved. The contribution
of this proposed algorithm is the enabling of optimal operation point design
without a-priori knowledge about the true nonlinear system; hence it provides
a practical and usable application of LPV model identification.
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Chapter 4

Simultaneously Design of
Operating Points and Input
Perturbations for LPV
Identification

A joint Linear Parameter Varying (LPV) model experiment design problem is
solved by determining the operating points and input perturbation simultane-
ously. Comparing with operating points-only design, the simultaneous oper-
ating point and input design can further improve identification performance.
The result is illustrated by the CSTR as well as a fuel cell example.

4.1 Introduction

Experiment design is a broad subject that tries to maximize the information
contained in the experiment [9]. In dynamic systems, the experiment design
can be optimized by determining the input, sampling rate, and types of sensors
used. The optimal experiment design has also been applied to Linear Param-
eter Varying (LPV) systems as discussed in the last chapter; such techniques
have recently received ample attention as an effective tool for nonlinear system
identification.

A number of methods for LPV model identification have been developed.
Most of these methods can be classified into two categories: local approaches
and global approaches [35, 2], both of which have their own advantages and
drawbacks. On top of these two categories, the hybrid approach developed
by [39] and [42] combines the merits of both approaches; it is considered as a
promising tool for modeling nonlinear process. In this method, linear models
are obtained by linear identification at prechosen operating points of the non-
linear system. Afterward, the global model is obtained though interpolation
by using the entire data set along the experiment trajectory. Following their
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approach, the LPV model can be formulated as follows:

y(t) =
n∑

i=1

αi(p, θ
(2)
i )Gi(θ

(1)
i , p, q)u(t) + v(t) (4.1)

where u(t) and y(t) are the input and output at time instant t respectively; αi

is the weighting function corresponding to the ith local model Gi, which is the
function of varying operating point p; θ

(1)
i is the parameter set contained in the

ith local model while θ
(2)
i is the parameter set contained in the ith weighting

function αi; v(t) is Gaussian noise with zero mean and bounded variance; q is
a time shifted operator.

The hybrid LPV identification method provides a good alternative for iden-
tifying LPV models. It is assumed that the operating points are known before
the identification is performed. Different operating points can yield different
performances in identification. To determine the optimal operating points
and maximize the accuracy of the identified LPV model, Khalate et al. (2010)
[16] developed a procedure for experiment design. This approach determines
the optimal operating points and minimizes the error between the interpo-
lated weighting function and the true weighting function assuming the latter
is known. However, some of these assumptions are difficult to realize in prac-
tice. One of the most important assumptions is that the first principle model
is assumed to be available for the true process. This is typically an unrealistic
assumption. A first principle model is difficult to obtain and is precisely the
reason to have the data-based system identification.

In view of this problem, an adaptive operating point design (AOPD) al-
gorithm is developed in this chapter to allow the determination of optimal
operating point based on the identified LPV model. This design requires no
prior knowledge about the nonlinear process model, which renders it more
practical. To implement this design algorithm, we start from two nominal op-
erating points along with the transition from one operating point to the other.
The data set obtained at the local operating points is then used to identify
the local models; afterward, the entire data set including the transition data
is used to interpolate the local models therefore acquiring the global model.
Operating points are selected such that the objective function is optimized.
Here, the objective function is obtained as follows:

• Calculate the error between the interpolated global model as a function
of operating point p and the model at a selected operating point between
existing operating points;

• Varying the selected operating point along the transition region and
integrate the 2-norm of the error obtained above;

• Select the operating point which has the largest integrated error to be
the new optimal operating point.
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The new operating point is added into the previous operating point set to form
a new nominal operating point vector. This design procedure is repeated until
the error between the process measurement and the model output is reduced
to a certain tolerance.

As mentioned above, performance of the LPV model can be enhanced by
optimally designing the operating points. However, for most nonlinear sys-
tems, more than one design factors should be considered and selected simulta-
neously to yield higher experimental design efficiency. In other words, a joint
experiment design problem should be considered. For example, both operat-
ing points and input perturbations along the operating trajectory in the LPV
models can be optimally determined. Targeting at solving this joint experi-
ment design problem for LPV model identification, a simultaneous design for
operating point and input perturbations is developed in this chapter.

The remainder of this chapter is organized as follows: Section 2 introduces
the LPV adaptive input design; Section 3 illustrates the recursive method to
estimate parameters both in local models and global model; Section 4 develops
the simultaneous adaptive design procedure for operating points and input
perturbations ; Section 5 gives the simulation results of the CSTR as well
the solid oxide fuel cell (SOFC) example to demonstrate the efficiency of the
proposed method. Sections 6 concludes the chapter.

4.2 Adaptive Input Design for LPVModel Iden-

tification

The optimal experiment design problem is defined as follows:

φ∗ = argmin
φ∈Φ

f(M(θ̂, φ)) (4.2)

where φ is the experiment design, Φ is the space of the feasible experiment,
M is the Fisher information matrix and f = det(·)−1, and θ̂ is the current
parameter estimate. This φ can refer to any design variable such as sampling
rate, input or operating point. In this section we mainly focus on input design.
There are a number of ways to implement input design. An adaptive algorithm
called receding horizon design [33, 14] is formulated as

U∗
k = [u∗k|k u

∗
k+1|k · · · u∗k+h−1|k ] = arg min

Uk∈U
f(M(θ̂k, Uk)) (4.3)

where U∗
k is the optimal input vector containing u∗k|k, u

∗
k+1|k, · · · , u∗k+h−1|k

calculated at the kth sampling instant, h is the optimization horizon, U is the
feasible set which U∗

k can be chosen from, and θ̂k is the parameter estimate at
sampling instant k. The Fisher information matrix M is defined as [40]

M = ZTΣ−1Z (4.4)
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where Z is sensitivity matrix given below,

Z =


∂y
∂θ1

|t1 ∂y
∂θ2

|t1 · · · ∂y
∂θp

|t1
∂y
∂θ1

|t2
. . .

...
...

. . .
...

∂y
∂θ1

|th · · · · · · ∂y
∂θp

|th

 (4.5)

where t1 and th denote the starting and ending time of the experiment respec-
tively, and Σ is the covariance matrix of output y. Each entry in the jth row
and ith column denotes the sensitivity with respect to the ith parameter θi at
time instant tj (j = 1, . . . , h). This receding horizon design scheme allows
the online design of the input and the updating of the parameters occur at the
same time.

In the hybrid identification approach as shown in Equation (4.1), the ability
of the LPV model to capture the nonlinearity of the process is highly related to
the weighting function. Therefore, choosing a proper weighting function can
be crucial in achieving high model accuracy. The weighting function should
also follow parsimony principle; otherwise the identification can have overpa-
rameterization problem. Jin (2010) [15] developed a structure to describe the
weight wi of each local model Gi as shown below,

wi(p) = exp(
−(p− p̄i)

2

2σ2
i

) (4.6)

where p is the varying operating point, p̄i is the ith nominal operating point
corresponding to the ith local model, and σi is the validity width of the ith

local model. The normalized weighting function αi in Equation (4.1) can be
expressed as

αi =
wi∑n
k=1wk

(4.7)

This model of αi, with an exponential structure, can smooth combinations
of predictions from local models and capture the transition nonlinearity. More-
over, it only contains one parameter σi for each local model, which will reduce
the number of parameters to be estimated. With the model of αi as shown
in Equation (4.6) and (4.7), we are able to calculate each entry

∂ŷj
∂σi

|tj of the
sensitivity matrix Z in Equation (4.5).

∂ŷj
∂σi

|tj =
exp(− (p−p̄i)

2

2σ2
i

)∑n
k=1 exp(−

(p−p̄k)2

2σ2
k

)

(p− p̄i)
2

σ3
i

ŷ
(i)
j

= −
exp(− (p−p̄i)

2

2σ2
i

)

(
∑n

k=1 exp(−
(p−p̄k)2

2σ2
k

))2

(p− p̄i)
2

σ3
i

n∑
k=1

exp(−(p− p̄k)
2

2σ2
k

)ŷ
(k)
j (4.8)
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where σi is the validity width of the ith local model, ŷ
(i)
j denotes the predicted

output of the ith local model at time instant tj (j = 1, . . . , h),
∂ŷj
∂σi

|tj is the

sensitivity of the global predicted output with respect to the ith parameter θi
at time instant tj (j = 1, . . . , h), p is the varying operating point, and p̄i
denotes the ith nominal operating point.

4.3 Estimation of Parameters in the Global

LPV Model

As shown in Equation (4.1), the parameters contained in the LPV model
composes of two parts, θ(1) and θ(2). To estimate the parameter θ(1) in the
local models, several algorithms have been developed [19, 18]. Among these
approaches, the Prediction Error Method (PEM) is the most widely-used ap-
proach. Let the local model Gi be a Output Error (OE) model as follows.

Gi =
b
(i)
1 + b

(i)
2 q

−1 + . . .+ b
(i)
nbq

−nb+1

1 + f
(i)
1 q−1 + . . .+ f

(i)
nf q

−nf
(4.9)

where θ
(1)
i = [b

(i)
1 b

(i)
2 . . . b

(i)
nb f

(i)
1 . . . f

(i)
nf ]

T , q is the time shifted operator.

In order to enable the online estimation of parameter set θ(2) in the weight-
ing function along with the input design, we implement recursive prediction-
error method (RPEM) in this nonlinear identification problem. The quadratic
prediction-error criterion Vj(θ, Z

j) at time instant t = j has the following form

Vj(θ, Z
j) =

1

j

j∑
t=1

1

2
ε2(t, θ)

=
1

j

j∑
t=1

1

2
(yt − ŷt)

2 (4.10)

where θ is the parameter to be estimated, Zj is the input and output data at
time instant t = j, Zj = [u1, . . . , uj, y1, . . . , yj], ε is the prediction error,
and the ŷ is the predicted output. This numerical search algorithm aims at
finding a θ such that Vj(θ, Z

j) is minimized. The recursive solution is

θ̂j = θ̂j−1 − µR−1
j V

′

j (4.11)

where θ̂j is the parameter estimate at time t = j, Rj is a nθ × nθ matrix that
modifies the search direction where nθ is the dimension of θ, µ is the search
step size, and V

′
j is the gradient of the criterion function Vj at time t = j.

Different choice of Rj results in different method. One common method is
the Levenberg-Marquardt algorithm [17, 21] in which the following equation
is used to approximate the Hessian matrix.

Rj =
1

j

j∑
t=1

ψ(t, θ̂t)ψ
T (t, θ̂t) + λI (4.12)
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where ψ(t, θ̂t) is the sensitivity with respect to θ̂ at time t described in Equation
(4.13)

ψ(t, θ̂t) =
∂ŷt

∂θ̂t
(4.13)

and λ is tuning parameter which controls the search direction. V
′
j can be

calculated as

V
′

j =
dVj
dθ

= −1

j

j∑
t=1

(yt − ŷt)ψ(t, θ̂t) (4.14)

4.4 Simultaneous Adaptive Design for Oper-

ating Points and Input Perturbations

The online design scheme can cause estimation problems when using the hybrid
identification approach of Xu et al. (2009) [39] and Zhu and Xu (2008) [42].
In their approach, the global model is obtained only after the local models are
identified, while the global model is simply interpolated from the local models.
This may create a conflict between implementing input and identifying the
global model. As shown in Equation (4.5) the structure of output y, with
unknown parameters, should be available to calculate the sensitivity in order
to obtain the optimal input perturbations. For LPV models, the global model
structure will not be available until all the local models are acquired. However,
when performing online input perturbations design, some local models are still
unknown.

To solve the problem mentioned above, we develop an experiment design
procedure in which the operating points and input perturbations are adaptively
determined. The framework of the algorithm is shown in Figure 4.1 with the
procedure stated below:

As shown in Figure 4.1, the simultaneous design follows the procedure
below:

Step 1: Start from two nominal operating points which are usually the min-
imum and the maximum value within the operating range.

Step 2: Perform experiment at the current operating points and in the tran-
sition to get local data Di and transition data Di,i+1.

Step 3: Identify local models Ĝi using local data set Di.

Step 4: Perform design of online input perturbations along the whole operat-
ing trajectory and estimate parameters set θ

(2)
i contained in the weight-

ing factor set αi. At the same time, the parameters set θ
(1)
i in the local

models is re-identified. Therefore, the global is obtained.

Step 5: Compare and calculate the sum of mean square prediction error
MSE = 1

N
(y − ŷ)T (y − ŷ).
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Figure 4.1: The framework for simultaneous adaptive operating point and
input perturbations design procedure
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Step 6: Check whether the mean squares error is larger than certain tolerance
δ, i.e. MSE > δ.

Step 7: If not, terminate the design procedure with the current optimal oper-
ating point vector P̄(k−1); if yes, search the optimal operating point p̄∗(k)
based on the current global model Ĝ(k−1), where k is the kth run of the
experiment.

Step 8: Append the new p̄∗(k) into the current operating point vector P̄(k). Go
to step 2.

Note that in Step 4, the parameter set θ(1) contained in local model Gi is
re-estimated together with parameter set θ(2) in the weighting function. The
reason for this simultaneous estimation is that estimation for θ(1) , conducted
before the on-line design is implemented, uses only the data at the operating
points. Re-estimation for θ(1) using the data along the whole trajectory will
provide better global property of the model. Analogous to Equation (4.8),
the sensitivity with respect to θ(1) needs to be calculated. For example, if
θ
(1)
i = [bi fi]

T and the local model Gi has a 1st order OE structure as shown
in Equation (4.9), the sensitivity corresponding to the ith local model at time
t can be calculated as

ψi(t, θ̂
(1)
t ) =

 1

1+f
(i)
t q−1

u(t− 1)

− b
(i)
t q−1

(1+f
(i)
t q−1)2

u(t− 1)

 (4.15)

The order of local model depends on the system nonlinearity. The more non-
linear the system is, the higher order of the local models should be.

4.5 Simulation

4.5.1 Continuous stirred tank reactor (CSTR) model

The continuous stirred tank reactor (CSTR) is considered here again. The
dynamics of the CSTR model has been explained in Chapter 3 by Equation
(3.20) and Equation (3.21)

Table 4.1 [15] shows the description and nominal value for each parameter
in Equation (3.20) and (3.21).

The production concentration of component A, CA, and the temperature
of the reactor, T , as shown in Table 4.1 are chosen as the two states, while CA

is selected as output. The coolant flow rate qc is selected as operating point
which varies within the range of [97 109]. The inlet coolant temperature, Tc0,
is the input.

Following the design procedure outlined in Figure 4.1, three optimal oper-
ating points are determined. The five operating points, including the minimum
and maximum values of operating range, are determined as

P̄ ∗
(3) = [97, 100.11, 103.00, 105.75, 109] (4.16)
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Table 4.1: Parameters and their nominal values in CSTR model

Variables or parameters
Descriptions or
nominal values

production concentration of component A, CA 1st state
temperature of the reactor, T 2nd state

coolant flow rate, qc input
feed concentration of component A, CA0 1 mol/L

feed temperature, T0 350.0 K
specific heats, Cp, Cpc 1 cal/(gk)
liquid density, ρ, ρc 1× 103 g/L

heat of reaction, −△H −2× 105 cal/mol
activation energy term, E/R 1× 104 K
reaction rate constant, k0 7.2× 1010 min−1

heat transfer term, hA 7× 105 cal/(min K)
reactor volume, V 100 L

inlet coolant temperature, Tc0 350.0 K
process flow rate, q 100 L/min

Figure 4.2 shows the objective function values with different number of
operating points. The optimal operating points are selected when the objective
functions achieve their local minimums. Notice that because the nonlinearity
of the objective function, global minimum cannot always be guaranteed.
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Figure 4.2: Objective function value vs. operating point p
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Figure 4.3 shows the outputs of the process and the prediction of the global
model obtained by using the simultaneous design. One can see that for this
CSTR example, larger operating point has more prediction error. Overall, the
proposed method gives good prediction ability.
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Figure 4.3: Comparison of outputs from the process and the global model
when n = 5 (”−”: process output; ”×”: model output)

Figure 4.4 shows when n = 5 the weighting functions, which are defined in
Equation (4.6) and (4.7), are normally distributed with the optimal operating
points as their mean. This means that when manipulating the operating point
near each selected optimal operating point, the global model will rely more on
the local model determined by the corresponding operating point.

To illustrate the advantage of simultaneous adaptive design, we compare
the prediction errors of the proposed joint design and the one with operating
point-only design. The result is shown in Table 4.2. Although the error re-
duction is not obvious at the local areas, one can still see that the prediction
error with the simultaneous joint design can be reduced up to 56% comparing
to the optimal operating points-only design.

4.5.2 Solid oxide fuel cell (SOFC) model

The commonly-used SOFC developed by Siemens-Westinghouse has two tubes:
the outer tube and the inner tube. The outer tube is the cell while the inner
tube is the air injection and guidance tube. For the model developed by [24],
a finite volume of the cell is studied where the properties such as temperature,
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Table 4.2: Error comparison between operating points design and the joint
design

Operating point- Simultaneous
only design joint design

Error at local models 0.0037 0.0038
Error at transition 0.075 0.031

Error along the whole trajectory 0.0787 0.0348

pressure can be assumed uniform along the axial direction. According to the
structure of the cell, Qi et al. (2006) [24] divided each slice of the cell into five
volumes with the descriptions listed in Table 4.3.

Table 4.3: Descriptions for Control Volumes
Control Volume Descriptions
CV1 Cell tube slice
CV2 Fuel flow in the anode side flow channel
CV3 Air flow in the cathode side air low channel
CV4 Injection tube
CV5 Air flow in side the injection tube

Modeling for the SOFC is equivalent to modeling of the five control vol-
umes. Modeling for CV1 dynamics includes electricity conversion dynamics
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and heat transfer dynamics; modeling for CV2 includes reforming and shift
reaction, mass transfer dynamics, heat transfer dynamics and momentum bal-
ance; modeling for CV3 consists of mass transfer dynamics, heat transfer dy-
namics and momentum balance; in CV4 and CV5 there is no reaction or mass
transfer but only heat exchanges occur. Considering the structure and dy-
namics discussed above, a state space model containing 28 states is derived.
This state space model is given by Table 4.4 as shown below [24], where the
inputs, outputs and state variables as well as their values are defined in Table
4.5, Table 4.6 and Table 4.7 respectively [24].

Table 4.4: State space model for SOFC

State equations:

ẋ1 =
1

RctCct
E − 1

RctCct
x1 − 1

Cct

x1

u1+Ro

ẋ2 = x3
ẋ3 = −h1x2 − h2x3 + h1

1
2F

x1

u1+Ro

+h3
A
dVa

(ẋ22 +
x22

x17
ẋ17)

ẋ4 = x5
ẋ5 = −o1x4 − o2x5 + o1

1
4F

x1

u1+Ro

+o3
A
dVc

(ẋ26 +
x26

x18
ẋ18)

ẋ6 = x7
ẋ7 = −w1x6 − w2x7 + w1

1
2F

( −x1

u1+Ro
)

+w3
A
dVa

(ẋ21 +
x21

x17
˙x17)

ẋ8 = x9
ẋ9 = −h1x8 − h2x9 − h4

Rx15

A
1
2F

x1

u1+Ro
+ h1

R
dVa
x22x17

−Rx15

A
4
La

1
2F

[ ẋ1

u1+Ro
− x1

(u1+Ro)2
(Ku1 − x14)]

ẋ10 = x11
ẋ11 = −o1x10 − o2x11 − o4

Rx15

A
1
4F

x1

u1+Ro
+ o1

R
dVc
x26x18

−Rx15

A
4
Lc

1
4F

[ ẋ1

u1+Ro
− x1

(u1+Ro)2
(Ku1 − x14)]

ẋ12 = x13
ẋ13 = −w1x12 − w2x13 − w4

Rx15

A
1
2F

−x1

u1+Ro

w1
R
dVa
x21x17 − Rx15

A
4
La

1
2F

×[− ẋ1

u1+Ro
+ ẋ1

(u1+Ro)2
(Ku1 − x14)]

ẋ14 = K2u1 −Kx14
ẋ15 =

1
mcellCp,cell

[x2HH2 + x4HO2 + x6HH2O

− u1

(u1+Ro)2
x21 − fa(x27

∑2 420xi

dVa
)1/2A(x15 − x17)

−fc(x28 x25+x26

dVc
)1/2A2(x15 − x18)

− σ
Rrad

A2(x
4
15 − x416)− AKr(

x20Rx17

dVa
)α

×(x21Rx17

dVa
)βexp(− Er

Rx17
)∆Hr]

ẋ16 =
1

mtubeCp,tube
[ σ
Rrad

A2(x
4
15 − x416)

−fc(x28 x25+x26

dVc
)1/2A1(x16 − x18)

−ft(u16 u14

Rx19
)1/2Ao(x16 − x19)]

Continued on next page
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Table 4.4 – continued from previous page

ẋ17 =
1∑24

20(xiCv,i)
[Aa

u2

Ru3
u4

∑9
5(uiH

in
i )

−Aax27
∑24

20(xiHi)
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20 xi
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Output equations:
y1 = x1 − Ro

u1+Ro
x1

Continued on next page
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Table 4.4 – continued from previous page
y2 =

x1

u1+Ro

y3 =
∑24

20 xiRx17

dVa

y4 = x17
y5 = x27
y6 =

x20∑24
20 xi

y7 =
x21∑24
20 xi

y8 =
x22∑24
20 xi

y9 =
x23∑24
20 xi
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x24∑24
20 xi
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25 xjRx18

dVc

y12 = x18
y13 = x28
y14 =

x26∑26
25 xj

y15 = u14
x19

u15

y16 = x19
y17 = u16

Table 4.5: Input variables for SOFC
Inputs Descriptions Values
Rload External load resistance 2∼6 [Ω]
P in
fuel Fuel flow inlet pressure 1 [atm]
T in
fuel Fuel flow inlet temperature 823 [K]
uinfuel Fuel flow inlet velocity 0.927 [m/s]
χin
CH4

Inlet mole fraction of CH4 0.173
χin
H2O

Inlet mole fraction of H2O 0.284
χin
H2

Inlet mole fraction of H2 0.258
χin
CO Inlet mole fraction of CO 0.057
χin
CO2

Inlet mole fraction of CO2 0.228
P in
air Cathode side air flow inlet pressure 1 [atm]
T in
air Cathode side air flow inlet temperature 1104 [K]
uinair Cathode side air flow inlet velocity 7.79 [m/s]
χin
air Inlet mole fraction of O2 0.21
P in
inj Injection air flow inlet pressure 1 [atm]
T in
inj Injection air flow inlet temperature 1104 [K]
uininj Injection air flow inlet velocity 12.08 [m/s]

The default values of parameters in the state space model are listed in
Table 4.8.
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Table 4.6: Output variables for SOFC
Outputs Descriptions
Vout Fuel cell voltage [V ]
i Fuel cell current [A]
Pfuel Fuel flow pressure [atm]
Tfuel Fuel flow temperature [K]
ufuel Fuel flow velocity [m/s]
χCH4 Mole fraction of CH4

χH2O Mole fraction of H2O
χH2 Mole fraction of H2

χCO Mole fraction of CO
χCO2 Mole fraction of CO2

Pair Cathode side air flow pressure [atm]
Tair Cathode side air flow temperature [K]
uair Cathode side air flow velocity [m/s]
χair Mole fraction of O2

Pinj Injection air flow pressure [atm]
Tinj Injection air flow temperature [K]
uinj Injection air flow velocity [m/s]

Results

With a large number of states coupled with each other and highly nonlinearity
of the processes, the experiment design and parameter estimation is challeng-
ing. As stated in the previous section, for highly nonlinear system, an LPV
model requires higher order of local models. For this fuel cell model, at least
3rd-order OE model is adopted. In this example, the first input u1 in Table 4.5
is selected as operating point which has a range from 2 Ω to 6 Ω. Experiment
design seeks the optimal input perturbation along the operating trajectory.

Based on the simultaneous design algorithm described by Figure 4.1, the
following four operating points are obtained:

P̄ ∗
(2) = [2, 3.00, 4.00, 6] (4.17)

Among the 17 outputs, the fuel cell temperature Tfuel, cathode side air flow
velocity uair and injection air flow velocity uinj are selected to monitor and
control. Figure 4.5, 4.7 and 4.9 show the process outputs and model predictions
along the experimental trajectory for Tfuel, uair and uinj respectively. The
three predicted outputs at four local models are also shown in Figure 4.6, 4.8
and 4.10.

Notice that since the temperature is a slow process, time delay is incorpo-
rated into the local models. From Figure 4.5, one can see that the predicted
model output can match the real output well. However, for lower operating
point (smaller resistance load) the slow dynamic cannot be sufficiently cap-
tured. This is shown in Figure 4.6.
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Table 4.7: State variables for SOFC
States Descriptions Initial values
Vct Voltage Vct [V ] 0.84243
Js
H2

Consumption rate of hydrogen [µmol/s] 1.0887× 10−6

J̇s
H2

Derivative of consumption rate of hydrogen [µmol/s2] −2.3809× 10−17

Js
O2

Consumption rate of oxygen [µmol/s] 5.4433× 10−7

J̇s
H2

Derivative of consumption rate of oxygen [µmol/s2] −1.2938× 10−17

Js
H2O

Production rate of water [µmol/s] −1.0887× 10−6

J̇s
H2O

Derivative of production rate of water [µmol/s2] 2.0487× 10−17

ptpbH2
Concentration of hydrogen at tpb [atm] 2.5091× 10−1

ṗtpbH2
Derivative of concentration of hydrogen at tpb [atm/s] −7.3746× 10−14

ptpbO2
Concentration of oxygen at tpb [atm] 1.5583× 10−1

ṗtpbO2
Derivative of concentration of oxygen at tpb [atm/s] −6.3027× 10−13

ptpbH2O
Concentration of water at tpb [atm] 2.8338× 10−1

ṗtpbH2O
Derivative of concentration of water at tpb [atm/s] −3.0365× 10−13

vR Intermediate variable 4.01× 101

Tcell Fuel cell temperature [K] 1.0808× 103

Ttube Fuel tube temperature [K] 1.0930× 103

Tfuel Fuel flow temperature [K] 8.2491× 102

Tair Cathode side air flow temperature [K] 1.1036× 103

Tinj Injection air flow temperature [K] 1.1039× 103

NCH4 Mole fraction of CH4 3.7793× 10−7

NH2O Mole fraction of H2O 6.2663× 10−7

NH2 Mole fraction of H2 5.5964× 10−7

NCO Mole fraction of CO 1.2937× 10−7

NCO2 Mole fraction of CO2 4.9439× 10−7

NN2 Mole fraction of N2 1.5458× 10−6

NO2 Mole fraction of O2 4.1081× 10−7

ufuel Fuel flow velocity [m/s] 9.4325× 10−1

uair Cathode side air flow velocity [m/s] 7.7901
Note that ”tpb” stands for triple phase boundary

The discrepancy within the local model areas in Figure 4.7 and 4.8 indicates
that the u1-uair input-output relationship exists high nonlinearity so that an
OE model cannot completely follow the dynamics of the nonlinear system.
However, the model output at transition period shows nice agreement with
the real output. Similar results are obtained in Figure 4.9 and 4.10. This may
be due to the similar physical characteristic shared by the two output variables
uair and uinj.

Overall, for the three outputs the comparisons of model predictions and
real outputs reach acceptable agreement both in the local areas and transition
periods.

Figure 4.11 shows the weighting factor as a function of operating point p.
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Table 4.8: Parameters for SOFC

Parameters Descriptions
Nominal values
used in simulation

Electrochemical parameters
Ea Activity energy of anode reaction 1.1× 105 J/mol
Ec Activity energy of cathode reaction 1.2× 105 J/mol
F Faraday constant 96487 C mol−1

Electrical parameters
Rct Charge transfer resistance 0.9 Ω
Cct Charge transfer capacitance 300× 10−6 F
Ro Ohmic resistance 0.01 Ω
Mechanical parameters
A Fuel cell effective area 1 cm2

La Thickness of anode diffusion layer 0.1 mm
Lc Thickness of cathode diffusion layer 2.21 mm
Le Thickness of electrolyte diffusion layer 0.04 mm
r3 Radius of outer cell tube 11 mm
r2 Radius of inner cell tube 8.66 mm
r1 Radius of outer inject tube 6 mm
r0 Radius of inner inject tube 5 mm
Aa Fuel channel cross area r23 × (4− π) m2

Ac Air channel cross area π × (r22 − r21) m
2

At Injection channel cross area π × r20 m
2

dVa Fuel channel element volume Aa × A/(2× π × r3) m
3

dVc Air channel element volume Ac × A/(2× π × r3) m
3

dVt Injection channel element volume At × A/(2× π × r3) m
3

Flow mechanics parameters
Da Hydraulic diameter of fuel side flow 0.273× 2× r3 m
Dc Hydraulic diameter of air side flow 2× (r2 − r1) m
Dt Hydraulic diameter of inject tube 2× r0 m
Thermal dynamics parameters
εcell Emissivity of cell inner surface 0.9
εtube Emissivity of inject tube outer surface 0.4
Fc−t View factor: cell to injection tube 0.69
ρcell Density of entire cell 5.67× 10−8 kg/m3

Cp,cell Entire specific heat of cell 740 J/(kg ·K)
ρtube Density of injection tube 3900 kg/m3

Cp,tube Specific heat of injection tube 1217.7 J/(kg ·K)
Other parameters
K Approximation factor 10
Ttube Temperature of injection tube 1123 K

From Figure 4.11 one can see that each local model has varying weights in
different operating regions. Moreover, the weight always reaches a relatively
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Figure 4.5: Output Tfuel from the process and the global model when n = 4
(”-”: process output; ”. . .”: model output)
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Figure 4.6: Local model output Tfuel (”—”: process output; ”- -”: model
output)

large value near the operating point based on which the local model is built.
Table 4.9 is obtained by comparing the mean square error of the proposed

simultaneous design with the optimal operating point-only design which uses
a generalized binary noise (GBN) as input perturbations [42]. From Table 4.9
one can see that by simultaneous design the mean square error can be reduced
significantly.
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Figure 4.7: Output uair from the process and the global model when n = 4
(”-”: process output; ”. . .”: model output)
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Figure 4.8: Local model output uair (”—”: process output; ”- -”: model
output)

4.6 Conclusion

A joint experiment design problem in LPV model is considered in this chapter.
Based on a hybrid LPV identification method, the proposed method incorpo-
rates optimal experiment design and recursive estimation to simultaneously
design the operating points and the input perturbations. In the experiment
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Figure 4.9: Output uinj from the process and the global model when n = 4
(”-”: process output; ”. . .”: model output)
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Figure 4.10: Local model output uinj (”—”: process output; ”- -”: model
output)

design procedure, local models are identified to obtain the initial local model
parameters, while these parameters are re-identified simultaneously with the
parameters in the weighting function by online experiment along the whole
operating trajectory. The superiority of this simultaneous design over the op-
erating point-only design has been demonstrated by simulation examples. The
contribution of this chapter is to show that the accuracy of the LPV model,
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Figure 4.11: Weighting function αi vs. varying operating point p

Table 4.9: Error comparison between operating points design and the joint
design

Only operating Simultaneous
points design joint design

Mean square error
0.0012 0.0001

at transition

which is used to approximate nonlinear process, can be improved by solving
this joint experiment design problem.
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Chapter 5

Conclusions and Future Work

5.1 Summary

This thesis is concerned with problems related to three aspects of experimen-
tal design for nonlinear systems. The ultimate goal of optimal experiment
design is to improve the model accuracy by optimally selecting the experi-
mental conditions. However, the efficiency of optimal experiment design is
often challenged by the following three issues: poor initial guess of the nomi-
nal model; operating point selection; and joint experimental design concerning
operating points and input design simultaneously.

First, the background and preliminaries are presented in Chapter 1. One
commonly-used implementation of adaptive experimental design is the receding-
horizon design. In this method, optimal experiment design and parameter
estimation can be conducted iteratively. LPV modeling for nonlinear systems
is another key technique utilized in operating points-only design and simulta-
neous design. Among different approaches to LPV model identification, the
hybrid identification attracts most attention and is used in this thesis as a
foundation of the proposed LPV experiment design algorithms.

With the motivation to solve the initial condition problem regarding the
nonlinear system identification, a constrained receding-horizon design (CRHD)
is developed in Chapter 2 [43]. Based on sensitivity analysis and the Fisher
information matrix (FIM), the objective function is formulated to reduce the
parameter covariance. However, if the initial guess of the model is inappro-
priately selected, the efficiency of experiment design will be severely compro-
mised. By taking steady-state a-priori knowledge into account, the constraints
on the parameters can be derived and incorporated into the receding-horizon
experiment design. Illustration examples and mathematical derivations prove
that the parameter covariance can be reduced by using the optimal input ob-
tained from the constrained receding-horizon design. On the other hand, it is
also proven mathematically that by using constrained receding-horizon design
(CRHD) the convergence can be faster than the one without constraints. For
practical application, it also considers the uncertainty in constraints. The effi-
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ciency and effectiveness of constrained receding-horizon design (CRHD) have
been demonstrated using a electrical circuit system and a continuously-stirred
tank reactor (CSTR) example.

The objective of Chapter 3 and 4 is to develop experiment design for LPV
identification to improve the model accuracy. Chapter 3 begins with an intro-
duction of LPV model identification approaches including local approach and
global approach. The reason we choose the hybrid identification approach is
that it combines the advantages of both local approach and global approach,
which are the simplicity in structure and the ability to capture global system
nonlinearity. The optimal operating points design starts from the initial oper-
ating points. By interpolating the local models using the entire data set, the
global model is obtained. With the global model, the objective function can
be calculated. The candidate with the largest objective function value will
be selected as the new operating point. This procedure is performed itera-
tively until the error is within certain small tolerance. As mentioned before,
the proposed operating points design requires no a-priori knowledge about the
true nonlinear system, which renders its utility. A brief introduction to SOFC
system dynamics is also given before revealing the superiority of the proposed
method by simulation.

Chapter 3 only takes one design factor (experimental condition) into con-
sideration, which is the operating point. However, in most cases, only one
design factor cannot guarantee the experimental efficiency. Usually more than
one experimental factors need to be optimally selected at the same time. For
LPV model identification, input perturbations need to be designed in addition
to the operating points. A simultaneous operating points and input perturba-
tion design is developed in Chapter 4, incorporating optimal experiment design
and recursive estimation. One of the main differences between the algorithm
in Chapter 3 and the one in Chapter 4 is that parameters contained in local
model are re-identified simultaneously with the parameters in the weighting
function by online experimental data. Two examples are used to demonstrate
that the simultaneous design algorithm outperforms the one with operating
point-only design.

5.2 Recommendations for Future Work

Throughout the entire thesis, we have been working on the solutions to the
three issues regarding optimal experiment design. Based on the current re-
search, we summarize some potential areas that are worthy of future investi-
gations:

• The prediction horizon and the control horizon (the number of input
steps being implemented) of the receding-horizon experiment design are
fixed before the experiment design. By choosing different prediction and
control horizons, it was noticed that these two factors can affect the
efficiency of the parameter estimation as well as experimental design.
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Since tuning the horizon can be easily applied in practice, this aspect of
experiment design will be of interest and useful for process identification
in the future.

• The work has only utilized the equality constraint in the constrained
receding-horizon design (CRHD). Considering that this constraint can
contain uncertainty, the constraint is released after some iterations of es-
timation to avoid the bias induced by constraint uncertainty. However,
inequality constraints can also be utilized in the constrained receding-
horizon design (CRHD). Mathematical development needs to be per-
formed before new recursion of the inequality constrained receding-horizon
design is developed.

• Through two propositions as well as illustrating examples we show that
both the convergence and estimation covariance can be improved us-
ing the constrained receding-horizon design (CRHD). However, how to
quantify the initial guesses which can yield convergence can be difficult.
The research on quantifying the efficiency of the proposed constrained
receding-horizon design (CRHD) is worth investigating.

• For the operating points and input perturbation design in Chapter 3
and 4, the entire experimental data set obtained at the operating trajec-
tory is needed. This may require testing at a large number of operating
points which may not be available in practice. This is also a common
disadvantage shared within any LPV global or hybrid identification ap-
proach. Therefore, it can be desirable to develop a new LPV identifi-
cation framework to render an experiment design with testing at fewer
operating points.

71



Bibliography

[1] Operating point analysis using the gui.
http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/ug/bqkvccz-
1.html, 2009.

[2] A. Baneerjee and Y. Arkun. Model predictive control of plant transitions
using a new identification technique for interpolating nonlinear models.
Journal of Process Control, 8:441–457, 1998.

[3] C. Bohn and H. Unbehauen. Sensitivity models for nonlinear filters with
application to recursive parameter estimation for nonlinear state space
models. IEEE proceedings, control theory and application, 148:137–145,
2001.

[4] Yunfei Chu and Juergen Hahn. Parameter set selection for estimation of
nonlinear dynamic systems. AIChE Journal, 53(11):2858 – 2870, 2007.

[5] John L. Crassidis and John L. Junkins. Optimal Estimation of Dynamic
Systems. Chapman & Hall/CRC Press, 2004.

[6] A F Emery and Aleksey V Nenarokomov. Optimal experiment design.
Measurement Science and Technology, 9:864 – 876, 1998.

[7] M. Eslami. Theory of Sensitivity in Dynamic Systems: An Introduction.
Berlin; New York : Springer-Verlag, 1994.

[8] R. S. Gemmen and C. D. Johnson. Effect of load transients on sofc
operation–current reversal on loss of load. Journal of Power Sources,
144:152–164, 2005.

[9] Graham C. Goodwin and Robert L. Payne. Dynamic System Identifi-
cation : Experiment Design and Data Analysis. New York : Academic
Press, 1977.

[10] John D. Hedengren. A nonlinear model library for dynamics and control.
Computer Aids for Chemical Engineering (CACHE) News, 2008.

[11] B. Huang, Y. Qi, and M. Murshed. Solid oxide fuel cell: Perspective of
dynamics modeling and control. In IFAC International Symposium on
Dynamics and Control of Process Systems, 2010.

[12] P. Iora, P. Aguiar, C. S. Adjiman, and N. P. Brandon. Comparison of
two it dir-sofc models: impact of variable thermodynamic, physical and
flow properties. steady-state and dynamic analysis. Chemical Engineering
Science, 60:2963–2975, 2005.

72



[13] B. Jayasankar, B. Huang, and A. Ben-Zvi. Receding horizon experiment
design with application in sofc parameter estimation. International Sym-
posium on Dynamics and Control of Process Systems, Leuven, Belgium,
2010.

[14] B.R. Jayasankar. Identifiability study and receding-horizon experiment
design for solid oxide fuel cell. Master’s thesis, University of Alberta,
2009.

[15] X. Jin. Multiple arx model based identication for switching/nonlinear
systems with em algorithm. Master’s thesis, University of Alberta, 2010.

[16] A. A. Khalate, X. Bombois, R. Toth, and R. Babuska. Optimal experi-
mental design for LPV identification using a local approach. 15th IFAC
Symposium on System Identification. Saint-Malo, France, 2009.

[17] K. Levenberg. A method for the solution of certain nonlinear problems
in least squares. The Quarterly of Applied Mathematics, 2:164–168, 1944.

[18] L. Ljung. System Identification: Theory for the User. Prentice-Hall:
Upper Saddle River, 1999.

[19] L. Ljung. Estimating linear time-invariant models of nonlinear time-
varying systems. European Journal of Control, 7:203–219, 2001.

[20] L. Ljung. Experiments with identification of continuous time models.
Proceedings of the 15th IFAC symposium on system identification, pages
90–95, 2009.

[21] D. W. Marquardt. An algorithm for least squares estimation of nonlinear
parameters. Journal of the Society for Industrial and Applied Mathemat-
ics, 11:431–441, 1963.

[22] L. Pronzato and E. Walter. Robust experiment design via stochastic
approximation. Mathematical Biosciences, 75:103–120, 1985.

[23] Y. Qi, B. Huang, and K. T. Chuang. Dynamic modeling of solid oxide fuel
cell: The effect of diffusion and inherent impedance. Journal of Power
Sources, 150:32–47, 2005.

[24] Y. Qi, B. Huang, and J. Luo. Dynamic modeling of a finite volumn of solid
oxide fuel cell: The effect of transport dynamics. Chemical Engineering
Science, 61:6057–6076, 2006.

[25] Konrad Reif, Stefan Gnther, Engin Yaz, and Rolf Unbehauen. Stochastic
stability of the discrete-time extended kalman filter. IEEE Transactions
on Automatic Control, 44:714–728, 1999.

[26] C. R. Rojas, J.S. Welsh, G.C. Goodwin, and A. Feuer. Robust optimal
experiment design for system identification. Automatica, 43:993–1008,
2007.

[27] W.J. Rugh and J.S. Shamma. A survey of research on gain-scheduling.
Automatica, pages 1401–1425, 2000.

[28] R. Senthil, K. Janarthanan, and J. Prakash. Nonlinear state estimation
using fuzzy kalman filter. Ind. Eng. Chem. Res., 45:8678–8688, 2006.

73



[29] D. Simon. Kalman filtering with inequality constraints for turbofan engine
health estimation. IEE Proceedings - Control Theory and Applications,
153(3):371–378, 2006.

[30] D. Simon. Kalman filtering with state constraints: a survey of linear and
nonlinear algorithms. IET Control Theory and Applications, 2009.

[31] D. Simon and T. Chia. Kalman filtering with state equality constraints.
IEEE Transactions on Aerospace and Electronic Systems, 38:128–136,
2002.

[32] Yongkyu Song and Jessy W. Grizzle. The extended kalman filter as a
local asymptotic observer for discrete-time nonlinear systems. Journal of
Mathematical Systems, Estimation, and Control, 75:103–120, 1995.

[33] J. D. Stigter, D. Vries, and K. J. Keesman. On adaptive optimal input
design: a bioreactor case study. AIChE Journal, 52:3290–3296, 2006.

[34] R. Toth. Modeling and Identification of Linear Parameter-Varying Sys-
tems. Springer-Verlag, 2010.

[35] R. Toth, P. Heuberger, and P. Van der Hof. Asymptotically optimial
orthonormal basis functions for LPV system identification. Automatica,
45:1359–1370, 2009.

[36] E. Walter and L. Pronzato. How to design experiments that are robust to
parameter uncertainty. IFAC/IFORS Symp. on Identification and System
Parameter Estimation, 1:921–926, 1985.

[37] E. Walter and L. Pronzato. Optimal experiment design for nonlinear
models subject to large prior uncertainties. American Journal of Physi-
ology - Regulatory, Integrative and Comparative Physiology, 253:530–534,
1987.

[38] J.S. Welsh and C. R. Rojas. A scenario based approach to robust ex-
periment design. In Proceedings of the 15th IFAC symposium on system
identification, 2009.

[39] Z. Xu, J. Zhao, J. Qian, and Y. Zhu. Nonlinear mpc using an identified
LPV model. Ind. Eng. Chem. Res., 48:3043–3051, 2009.

[40] K. Zhen Yao, Benjamin M. Shaw, Bo Kou, Kim B. McAuley, and D. W.
Bacon. Modeling ethylene/butene copolymerization with multi-site cata-
lysts: Parameter estimability and experimental design. Polymer Reaction
Engineering, 11(3):563–588, 2003.

[41] Martin B. Zarrop. Optimal Experiment Design for Dynamic System Iden-
tification. Berlin; New York : Springer-Verlag, 1979.

[42] Y. Zhu and Z. Xu. A method of LPV identification for control. In The
International Federation of Automatic Control. Seoul, Korea, 2008.

[43] Yijia Zhu and Biao Huang. Constrained receding-horizon experiment
design and parameter estimation in the presence of poor initial conditions,
aiche-10-12613.r1. AIChE Journal, 2010.

74



Chapter 6

Appendix

6.1 Lemma 1 (Observability condition)

Suppose that a nonlinear system described by (6.1) and (6.2) where wt and
vt are state noise and output noise respectively has the constraint function
g(θ) = 0,

ẋt = f(θ, xt, ut) +Nwt (6.1)

yt = h(xt) +Rvt (6.2)

which satisfies the observability rank condition on a compact subset K ⊂ Rn

(n is the dimension of state). If the estimates of the EKF are sufficiently close
to the true state, then the linearized system along the estimated trajectory of
the EKF is uniformly observable; i.e., there exist γ1, γ2, 1 < γ1 ≤ γ2 <∞ and
δ1 > 0 such that

γ1I ≤ OT
e (X

−
n−1, X

+
n−2)Oe(X

−
n−1, X

+
n−2) ≤ γ2I (6.3)

for all x−l ∈ K such that |x−l − xl| ≤ δ1, l = 0, . . . , n− 1, and all x+j ∈ K such

that |x+j −xj| ≤ δ1, j = 0, . . . , n−2, and for each x0 ∈ K, where xl+1 = f(xl),

l = 0, . . . , n − 2, X−
n−1 , (x−0 , · · · , x−n−1), X

+
n−2 , (x+0 , · · · , x+n−2). ”−” and

”+” denote ”a priori” and ”posterior” respectively.

6.2 Assumption 2

1. A(x) , ∂f
∂x
(x) is invertible at each x ∈ Rn.

2. The following norms are bounded:

∥A∥ , sup
x∈Rn

∥A(x)∥ , ∥A−1∥ , sup
x∈Rn

∥[A(x)]−1∥, (6.4)

∥H∥ , sup
x∈Rn

∥R−1∂h

∂x
∥ , |∥D2f |∥ , sup

x∈Rn

|∥D2f(x)|∥, (6.5)

|∥D2h|∥ , sup
x∈Rn

|∥D2h(x)|∥ (6.6)

3. Let g(x, y) , h(x) − h(y) − ∂h
∂x
(x)(x − y), and suppose that there exists

g <∞ such that |g(x, y)| ≤ g|∥D2h|∥|x− y|2 for all x, y ∈ Rn.
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6.3 Lemma 3 (Asymptotic observer)

Consider the system in (6.1) and (6.2) and the EKF framework for the asso-
ciated noise system. Suppose that Assumption 2 holds. Then, if |ek|, |∥D2f |∥,
and |∥D2f |∥ are such that for some γ > 0,

φ(q
1
2V

1
2 (0, e0), |∥D2f |∥, |∥D2h|∥) ≤ −γ (6.7)

where ek = xk−x−k ; p, q are the corresponding boundaries for error covariance,
i.e.,

∥P+
k

−1∥ ≤ p1 (6.8)

∥P−
k

−1∥ ≤ ∥P+
k

−1∥+ ∥H∥2 ≤ p1 + ∥H∥2 , p (6.9)

∥P+
k ∥ ≤ ∥P−

k ∥ ≤ q (6.10)

q∥H∥∥R−1∥2 , δ (6.11)

and the following equations are set as follows.

V (k, ek) = eTk P̄
−1
k ek (6.12)

ϕ(|ek|, X, Y ) , δgY ∥A∥+ 1

2
X(pq + δgY |ek|)2 (6.13)

φ(|ek|, X, Y ) , − 1

rq2
+ p|ek|ϕ(|ek|, X, Y ){2pq∥A∥+ ϕ(|ek|, X, Y )|ek|}(6.14)

Then the EKF for the noisy system is a local, uniform asymptotic observer
for the system in (6.1) and (6.2).

6.4 Lemma 4

Let O be a convex compact subset of Rn, Õ the complement of O, and ϵ > 0
a positive constant. Define d(x, Õ) = inf{|x− y| : y ∈ Õ}, and Oϵ = {x ∈ O :
d(x, Õ) ≥ ϵ}. Also, assume that

α1 = ∥N∥2(1 + ∥A∥2 + ∥A∥4 + · · ·+ ∥A∥2(n−2)) (6.15)

α2 = λmin(NN
T ) (6.16)

a = max(1, ∥A∥) (6.17)

βk = (1 + ∥P−
0 ∥∥Dh∥2)ak

k∏
l=1

{1 + ∥Dh∥2 (6.18)

× [∥A∥2l∥P−
0 ∥+ ∥N∥2(∥A∥2(l−1) + ∥A∥2(l−2) + · · ·+ 1)]}

Consider the system in (6.1) and (6.2) as well as its associated EKF. Sup-
pose that the system satisfies the observability rank condition on a convex com-
pact set O, and that [∂f

∂x
]−1 exists at each x ∈ O. Let δ1 > 0 be a constant

which satisfies the inequality in (6.3) for some 0 < γ1 ≤ γ2. Let p = (γ2+
1
α2
),

q = a2(α1 +
1
γ1
) + ∥N∥2. Let δ2 > 0 be such that

φ((pq)1/2δ2, |∥D2f |∥, |∥D2h|∥) ≤ −γ (6.19)
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for some γ > 0, where φ is defined in (6.14). Let M be such an integer that
when iteration number k < M ,

[1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)× (1− γ

p
)k/2(pq)1/2 > 1 (6.20)

while when k ≥M ,

[1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)× (1− γ

p
)k/2(pq)1/2 < 1 (6.21)

Suppose further that xk ∈ Oϵ, k ≥ 0, for some ϵ > 0, and that |e0| ≤
δ

βn+M−1
with δ = min(ϵ/2, δ1, δ2). Then we have the following result:

1. |x−k − xk| ≤ δ and |x+k − xk| ≤ δ, ∀k ≥ 0.

2. The linearized system around x−k and x+k , i.e., zk+1 = ∂f
∂x
(x+k )zk, yk =

∂h
∂x
(x−k )zk, satisfies the observability condition in (6.3) for k ≥ n − 1. Thus

there exist q <∞, p <∞ such that ∥P−
k ∥ ≤ q, and ∥P+

k
−1∥ ≤ p, ∀k ≥ n− 1.

3. The error is bounded by δ and converges to zero, i.e., for k ≤ n−1, |ek| ≤ δ,
and for k > n− 1, |ek| ≤ min(δ, (1− γ

p
)(k−n+1)/2(pq)1/2δ).

Note that: (a) In order to satisfy the observability condition, it is necessary
to keep the estimates x−k and x+k near xk for 0 ≤ k ≤ n + M − 1, thus
requiring a good initial guess. (b) We also need to have a converging period
(n − 1 ≤ k ≤ n +M − 1) for the EKF in order to build up the observability
condition; after this, the recursions proceed automatically.

6.5 Proposition 5

Let M̂ be the value of M when there is no constraint and M̃ be the value of
M when there is constraint. Then the following inequality holds:

M̃ ≤ M̂ (6.22)

Proof: The condition for existence of M is that there exist γ1 and γ2 such
that the following inequality holds

γ1I ≤ OT
e (X

−
n−1, X

+
n−2)Oe(X

−
n−1, X

+
n−2) ≤ γ2I (6.23)

where X−
n−1 , (x−0 , · · · , x−n−1), X

+
n−2 , (x+0 , · · · , x+n−2). n is the dimension

of the state. ”−” and ”+” denote ”a priori” (predicted state) and ”poste-
rior” (updated state) respectively. The observability matrix Oe in (6.23) can
be derived by using Lie derivative.

Oe(x
−
0 , x

−
1 , x

−
2 , x

+
0 , x

+
1 ) =

 ∂h
∂x
(x−0 )

∂h
∂x
(x−1 )

∂f
∂x
(x+0 )

∂h
∂x
(x−2 )

∂f
∂x
(x+1 )

∂f
∂x
(x+0 )

 (6.24)

=

 ∂h
∂x
(x−0 )

∂h
∂x
(x−1 )A(x

+
0 )

∂h
∂x
(x−2 )A(x

+
1 )A(x

+
0 )

 (6.25)
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where h is the function defined in (2.5) and A = ∂f
∂x

is the linearized system

function. For (6.23) to hold, the boundaries γ1 and γ2 on Je(X
−
n−1, X

+
n−2) ,

OT
e (X

−
n−1, X

+
n−2)Oe(X

−
n−1, X

+
n−2) (cf. (6.3) in Appendix for detail) should exist.

Define that the ”a priori” estimate x− is within the range x− ≤ x− ≤ x̄−,
the posteriori estimate x+ is within the range x+ ≤ x+ ≤ x̄+. The boundaries
of Je (if exist) in (6.23) can be defined by,

γ̂1 = min
x−≤x−≤x̄−
x+≤x+≤x̄+

λmin{Je} (6.26)

γ̂2 = max
x−≤x−≤x̄−
x+≤x+≤x̄+

λmax{Je} (6.27)

where λ is the eigenvalue of Je.
With the constraint being imposed, the new boundaries with the constraints

can be defined by
γ̃1 = min

x−≤x−≤x̄−
x+≤x+≤x̄+

g(θ)=0

λmin{Je} (6.28)

γ̃2 = max
x−≤x−≤x̄−
x+≤x+≤x̄+

g(θ)=0

λmax{Je} (6.29)

Clearly, the boundaries of Je with constraints will be tighter than the ones
without constraint, i.e.,

γ̂1 ≤ γ̃1 ≤ γ̃2 ≤ γ̂2 (6.30)

LetM be such an integer that when iteration numberK < M (cf. (6.20)[32]),
the following inequality holds,

[1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)× (1− γ

p
)K/2(pq)1/2 > 1 (6.31)

and for K ≥M (cf. (6.21)[32]), inequality 6.32 holds,

[1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)× (1− γ

p
)K/2(pq)1/2 < 1 (6.32)

where the covariance boundaries p and q are defined as follows (cf. Lemma
3[32]).

∥P+
k

−1∥ ≤ p1 (6.33)

∥P−
k

−1∥ ≤ ∥P+
k

−1∥+ ∥H∥2 ≤ p1 + ∥H∥2 , p (6.34)

∥P+
k ∥ ≤ ∥P−

k ∥ ≤ q (6.35)

Here P−
k and P+

k denote covariance of ”a priori” (predicted) and ”posterior”
(updated) state estimate respectively; N is the noise matrix in system equation
(6.1); ∥A∥ is defined as ∥A∥ , supx∈Rn ∥A(x)∥ (cf. Assumption 2 [32]); h is
the output function in (6.2), while Dh is the derivative of h(x); γ is defined

through φ(q
1
2V

1
2 (0, e0), |∥D2f |∥, |∥D2h|∥) ≤ −γ (cf. Lemma 3).
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According to Equation (6.32), to ensure convergence after M iterations,
the following inequality must hold:

[1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)× (1− γ

p
)M/2(pq)1/2 < 1 (6.36)

Let the covariance boundaries p and q satisfy the following equations (cf.
Lemma 4[32]):

p = (γ2 +
1

α2

) (6.37)

q = a2(α1 +
1

γ1
) + ∥N∥2 (6.38)

where α1, α2, and a are defined by the following equations (cf. Lemma 4[32]),

α1 = ∥N∥2(1 + ∥A∥2 + ∥A∥4 + · · ·+ ∥A∥2(n−2)) (6.39)

α2 = λmin(NN
T ) (6.40)

a = max(1, ∥A∥) (6.41)

Denote p̂, q̂ as the covariance boundaries corresponding to γ̂1 and γ̂2 when
no constraints are imposed, while p̃, q̃ be the covariance boundaries correspond-
ing to γ̃1 and γ̃2 when constraints are imposed. From (6.30), (6.37) and (6.38),
we have

p̃ ≤ p̂ (6.42)

q̃ ≤ q̂ (6.43)

Thus,

1 + (q̃∥A∥2 + ∥N∥2)∥Dh∥2 ≤ 1 + (q̂∥A∥2 + ∥N∥2)∥Dh∥2 (6.44)

1 + q̃∥Dh∥2 ≤ 1 + q̂∥Dh∥2 (6.45)

(p̃q̃)1/2 ≤ (p̂q̂)1/2 (6.46)

Notice that here in (6.36), ∥A∥, ∥N∥ and ∥Dh∥ are fixed once the system is
given. Define µ as

µ = [1 + (q∥A∥2 + ∥N∥2)∥Dh∥2]∥A∥(1 + q∥Dh∥2)(pq)1/2 (6.47)

Using (6.44), (6.45), (6.46) and (6.47), we have

µ̃ ≤ µ̂ (6.48)

where µ̃ is defined when p̃ and q̃ are used in (6.47); µ̂ is defined when p̂ and q̂
are used in (6.47).

Considering (6.36) and the definition of µ in (6.47), one can obtain the
following inequalities,

(1− γ

p̃
)M̃/2µ̃ < 1 (6.49)

(1− γ

p̂
)M̂/2µ̂ < 1 (6.50)
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In addition, we have (1− γ
p
) < 1 and µ ≥ 1 which can be inferred from Lemma

4 [32]. Take logarithm from both sides of (6.49) and (6.50), it follows clearly
that

M̃ > 2 log(1− γ
p̃
)

1

µ̃
(6.51)

M̂ > 2 log(1− γ
p̂
)

1

µ̂
(6.52)

From (6.42) and (6.48), we have

(1− γ

p̃
) ≤ (1− γ

p̂
) (6.53)

1

µ̃
≥ 1

µ̂
(6.54)

From the monotony of logarithm with the base less than 1, one can get the
following inequality,

log(1− γ
p̃
)

1

µ̃
≤ log(1− γ

p̃
)

1

µ̂
≤ log(1− γ

p̂
)

1

µ̂
(6.55)

This leads to
M̃ ≤ M̂ (6.56)

where the equality holds only when equalities hold in (6.30).
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