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Abstract 
Many geological deposits contain nonlinear anisotropic features such as veins, channels, 

folds or local changes in orientation; numerical property modeling must account for 

these features to be reliable and predictive.  This work incorporates locally varying 

anisotropy into inverse distance estimation, kriging and sequential Gaussian simulation.  

The methodology is applicable to a range of fields including (1) mining-mineral grade 

modeling (2) petroleum-porosity, permeability, saturation and facies modeling (3) 

environmental-contaminate concentration modeling.  An exhaustive vector field defines 

the direction and magnitude of anisotropy and must be specified prior to modeling.  

Techniques explored for obtaining this field include: manual; moment of inertia of local 

covariance maps; direct estimation and; automatic feature interpolation. 

The methodology for integrating locally varying anisotropy into numerical modeling is 

based on modifying the distance/covariance between locations in space.  Normally, the 

straight line path determines distance but in the presence of nonlinear features the 

appropriate path between locations traces along the features.  These paths are 

calculated with the Dijkstra algorithm and may be nonlinear in the presence of locally 

varying anisotropy.  Nonlinear paths do not ensure positive definiteness of the required 

system of equations when used with kriging or sequential Gaussian simulation.  Classical 

multidimensional scaling is applied to ensure positive definiteness but is found to be 

computationally infeasible for large models, thus, landmark points are used for 

efficiency with acceptable losses in precision.  The methodology is demonstrated on two 

data sets (1) net thickness of the McMurray formation in Alberta and (2) gold grade in a 

porphyry deposit.  Integrating LVA into numerical modeling increases local accuracy and 

improves leave-one-out cross validation analysis results in both case studies.
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Chapter 1: Introduction 

This chapter is organized as follows.  Section 1.1 motivates the use of geostatistics for 
reserve estimation and motivates the use of anisotropy in these calculations for 
increased accuracy.  Section 1.2 introduces the framework that is used throughout this 
dissertation to incorporate locally varying anisotropy (LVA).  Sections 1.3 and 1.4 
describe the problem context and summarize the contributions of this dissertation.  
Section 1.5 provides background on geostatistical techniques relevant to the proposed 
methodology.  Finally, Section 1.6 reviews previous work on the subject of LVA. 

1.1 Motivation 

1.1.1 Motivating Geostatistics for Reserve Estimation 
This dissertation is mainly concerned with the evaluation of mineral and petroleum 
resources.  Evaluation of resources consists of calculating the volume of valuable 
materials (gold, copper, oil, etc.) present in a deposit.  This calculation has far-reaching 
implications for company profit, feasibility of new operations, and the environmental 
impact of resource extraction; an accurate estimate of resource volume is essential.  
Any estimate of resource volume is made based on limited drill hole or well data and as 
such, all estimates contain a certain level of uncertainty (the potential for error).  Thus, 
the primary goal of geostatistics is to make the best possible assessment of resources 
while obtaining the best possible understanding of the associated uncertainty.   

Properties of a deposit that effect its profitable and safe extraction must be modeled 
based on the available sample data.  Examples of properties of interest include: grade 
per ton; porosity; permeability; volume of oil; water saturation; contaminate 
concentrations; volume of radioactive elements and; density.  Modeling these 
properties is simply predicting their values at all locations in a deposit including 
locations that have not been sampled.  It would be unrealistic and too expensive to 
obtain sufficient drill hole data to exhaustively cover the deposit.  Thus, methods have 
been developed that use the available drill hole data to predict values of the properties 
at unsampled locations.  All such geostatistical methods begin with laying a grid over the 
deposit of interest (Figure 1.1 left) and properties are predicted in every block in the 
grid (Figure 1.1 middle).  Calculating volumes from these predicted properties is usually 
a straightforward process; for example, once grade has been modeled at all locations, 
the number of grams in each block can be calculated and the total volume of the 
resource determined. 
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Figure 1.1: The basics of geostatistics.  (image : www.surreyproperty.com).  Left: A grid is placed over the 
deposit.  Two drill holes are shown with grade values of 10 grams/ton and 15 grams/ton of gold, the grade 
is unknown at all other locations (?). Middle: Estimating grade at all unsampled locations.  At a single block, 
i.e. location 1, there would be a total of 10.3g/t · 10m · 10m · 15m · 2t/m3=30.9kg of gold.  This is repeated 
for all blocks and the resource volume can be calculated. Right: A distribution of values is generated at all 
unsampled locations.  Location 1 is closer to a known drill hole so there is less uncertainty. 

Any prediction at unsampled locations is uncertain.  An estimate can be made but a 
measure of the reliability of the estimate is required.  Geostatistics employs statistical 
tools to (1) make predictions of properties in unsampled blocks and (2) quantitatively 
assess the level of uncertainty in those predictions.  The most common tool to describe 
the uncertainty of a property at an unsampled location is to predict a distribution of 
possible values rather than a single value.  It is generally conceded that it would be too 
difficult and inappropriate to generate a single value at all unsampled locations (Figure 
1.1 middle).  As such, distributions of possible values are generated at each location 
(Figure 1.1 right).  This allows geostatisticians to make probabilistic statements such as 
“there is a 90% probability that the value at location 1 is greater than 10.3”.  Looking at 
how this applies to calculating resource volumes, geostatisticians are able to make 
further probabilistic statements such as “with a 90% confidence, there are at least 10M 
tons of gold ore in deposit x” or “with a 90% confidence, there are at least 10B barrels of 
oil in reservoir y”.  Indeed, government regulations are moving towards these types of 
probabilistic reserve estimations, such as the National Instrument 51-101 Standards for 
Disclosure for Oil and Gas Activities in Canada (available from 
www.albertasecurities.com):  

“Possible reserves are those additional reserves that are less certain to be recovered 
than probable reserves. There is a 10% probability that the quantities actually recovered 

will equal or exceed the sum of proved plus probable plus possible reserves.” 

1.1.2 Motivating Locally Varying Anisotropy 
Since the origin of geostatistics with Matheron’s (1962) pioneering work, numerous new 
techniques have been developed to generate the distributions at unsampled locations.  
Many of these techniques are based on the theory of kriging;  introductory discussions 
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of kriging can be found in geostatistical text books (Journel and Huijbregts 1978; Isaaks 
and Srivastava 1989; Cressie 1993, Deutsch 2002).  One advantage of using kriging to 
generate estimates is the incorporation of anisotropy into the modeling process.  
Anisotropy is the concept that the properties in a geological deposit are often more 
continuous in one direction than another.  For example, coal deposits are often aerially 
continuous while gold vein deposits are typically discontinuous even at small scales 
(Figure 1.2). Eriksson and Siska (2000) present an excellent description of anisotropy and 
its application in geostatistics.   

 
Figure 1.2: Left: A continuous coal deposit (www.scienceclarified.com).  In the horizontal directions coal 
deposits typically show very large degrees of continuity.  Right: Gold veins are typically very discontinuous 
and erratic as shown in this core sample (www.jpgold.com). 

 
Figure 1.3: Anisotropy in geostatistics.  Not to scale.  Red/Gray cloud indicates increased concentration of 
pollution. Left: No wind - air pollution radiates from the source in all directions equally, no anisotropy.  A 
moderate pollution level is expected at location A. Middle: North wind - air pollution radiates north from 
the source, constant anisotropy.  No pollution is expected at location A. Right:  Erratic wind - air pollution 
radiates from the source, locally varying anisotropy.  A high pollution level is expected at location A. 

Anisotropy is vital to this dissertation and is elaborated upon using an analogy to air 
pollution spread in the presence of wind.  Following this example the connection 
between wind direction and the anisotropy in geological formations is made.  Consider 
the simplest case of air pollution without wind (Figure 1.3 left); pollution spreads in all 
directions equally (no anisotropy).  Adding a slight northerly wind (Figure 1.3 middle), 
the pollution is now unevenly distributed, it is more continuous in a single direction 
(constant anisotropy).  If we are given the knowledge that the pollution source is 
located in a mountainous valley (Figure 1.3 right), the wind is now more erratic and the 

~2cm~2m
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pollution spread is complex, thus, the direction of anisotropy varies and the pollution is 
said to be continuous in locally varying directions (locally varying anisotropy).  

Knowing the anisotropy of the pollution cloud would help in predicting pollution levels.  
For example, at the unsampled location A, if there is no wind we would predict 
moderate pollution.  Adding constant northerly anisotropy in the form of wind changes 
this prediction to no pollution.  Adding non-stationary anisotropy in the form of erratic 
winds further alters our estimate of the pollution level.  Knowing the direction and 
magnitude of anisotropy helps in making better predictions at unsampled locations.  
This can be directly applied to modeling geological deposits.  Incorporating knowledge 
of anisotropy in modeling improves predictions of property values at unsampled 
locations.  If it is known that this direction changes in different areas of the deposit 
(Figure 1.3 right) that knowledge should be incorporated into the modeling process. 

1.1.3 Locally Varying Anisotropy in Geology 
In a geological setting, anisotropy refers to how continuous a deposit is in different 
directions.  Often, deposits display the type of anisotropy described in Figure 1.3 right.  
Consider the LVA shown in these cross sections: 
 

 
Figure 1.4: Cross sections displaying LVA.  Left:  Folding and faulting caused by the San Andreas Fault 
(http://strike-slip.geol.ucsb.edu/KESSEL/palmdaleroadcut.html).  Right: Folding in the northern Rocky 
Mountains (http://mkutis.iweb.bsu.edu/dept/bghrn3.jpg).   

Anisotropy within geological formations can be exploited to increase the accuracy of 
modeling.  If the direction and magnitude of anisotropy are well understood, they can 
be transferred into modeling to improve performance.  Consider an LVA field modeled 
after the hand drawn directions on Figure 1.4 and two drill holes through the deposit.  
The problem is to estimate at all the unsampled locations.  Techniques, such as inverse 
distance, that do not normally consider anisotropy, cannot capture the horizontal 
continuity of the deposit (Figure 1.5 left).  Other techniques, such as kriging, provide 
disappointing results because only a single direction of continuity can be incorporated 
into the modeling (Figure 1.5 middle).  More geologically realistic results can be 
obtained by considering that the anisotropy varies locally (Figure 1.5 right); however, 
incorporating LVA in even this simple case is difficult.  More complex anisotropy fields, 
such as Figure 1.4 left, are challenging. 

  Approximate Scale

0m               10m

 Approximate Scale 

0m               50m 



5 
 

 

Another example of complex LVA seen in the earth sciences is a fluvial deposits (Figure 
1.6).  Fluvial deposits often show LVA because they are sand that has been deposited by 
ancient river systems (Figure 1.6).  The associated LVA map (Figure 1.6 right) is very 
similar to a weather map showing wind direction; however, in a geological setting the 
lines represent the directions in which the variable of interest is more continuous.  
Considering LVA in such cases would lead to more accurate numerical modeling. 

The geological cross sections in Figure 1.4 and the conceptual model of Figure 1.6 
provide the motivation for considering LVA; traditional geostatistical modeling only 
considers a single direction of anisotropy (Figure 1.5 middle).  Estimates of resource 
volume in these situations would be improved by considering LVA (recall predicting 
pollution levels with LVA).  This dissertation integrates LVA into geostatistical modeling. 

 

 

Figure 1.5: Top: cross section with the two drill holes (www.mkutis.iweb.bsu.edu).  Lower Left: Inverse 
distance estimation.  Lower Middle: Kriging with horizontal anisotropy.  Lower Right: Kriging considering 
LVA.  Plots nominally represent 300m in the x direction and 150m in the y direction, white indicates high 
grade while low grade is black. 

    
Figure 1.6: Plan view of a fluvial deposit. Left: A meandering channel (www.hi.is).  Sand is later enriched 
with migrating oil to form a fluvial reservoir.  Scale not available. Middle: Plan view of a conceptual fluvial 
model. Right: A map of the locally varying directions for the conceptual model.  Typically, fluvial reservoirs 
display locally varying directions of anisotropy. 

 

 

Drill hole 1
Drill hole 2
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1.2 Incorporating LVA: The Shortest Path Between Points 
The motivation for LVA is to incorporate complex nonlinear features to increase 
accuracy and generate realistic numerical models (Figure 1.3 and Figure 1.5).  This 
section introduces the framework that will be used throughout this dissertation to 
model LVA.   

Consider estimating at an unsampled location (?) with four surrounding data (Figure 
1.7).  Without anisotropy, each point receives equal weighting when applying a linear 
estimation technique (Equation 1.5).  Considering anisotropy in different directions 
weights data differently.  Anisotropy is incorporated in traditional geostatistics by 
calculating an anisotropic distance between two locations depending on the direction of 
anisotropy (see Appendix A for a numerical example of how this anisotropic distance is 
traditionally calculated).  In this case, data that are closer to the location being 
estimated are given higher weight.  The justification for this is that, geologically, two 
points are more related along the direction of anisotropy because during the formation 
of the deposit some process (sedimentation, erosion, transpiration, chemical alteration, 
etc) caused higher degrees of continuity in a particular direction.  In the case of N-S 
anisotropy, data that are located to the north or south are effectively closer and, as 
such, have a shorter anisotropic distance (Figure 1.7 middle).    In the case of E-W 
anisotropy, data that are located to the east or west are effectively closer and, as such, 
have a shorter anisotropic distance (Figure 1.7 right).  This anisotropic distance between 
locations can be calculated as shown in Figure 1.8.  The anisotropic distance between 
locations accounts for the preferential relationship between locations along a given 
direction of anisotropy.   

More formally, the anisotropic distance between two points can be calculated using 
Equation 1.1.  The range of anisotropy is specified by ax and ay (and az if considering a 
three dimensional case).  A larger range in a particular direction effectively shortens the 
distance between points in that direction.  The range and direction parameters fully 
define anisotropy (see Chapter 2 for a more in-depth discussion of anisotropy).   

 ݀ଵଶ = ඨቀௗೣ௔ೣቁଶ + ൬ௗ೤௔೤൰ଶ + ቀௗ೥௔೥ቁଶ
  

 
Figure 1.7: Left: all four data locations (circles) are given equal weighting when estimating at the unsampled 
location (?).  Middle: because of the N-S anisotropy the data along the direction of anisotropy receive more 
weight and have a smaller anisotropic distance to the estimation location.  Right: E-W anisotropy.   

1.1 
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Case 1: No anisotropy: ݀ଵଶ = ඥݔଶ + ଶݕ = √8 

 

Case 2: 4:1 Anisotropy in the XY directions 

݀ଵଶ = ඨ൬ ௫൰ଶݔܽ + ቆ ௬ቇଶݕܽ = ඨቀ4ݔቁଶ + ቀ1ݕቁଶ
 

 

Case 3: 4:1 anisotropy in the X’Y’ rotated by α 

݀ଵଶ = ඨቆ ௫ᇱቇଶܽ′ݔ + ቆ ௬ᇱቇଶܽ′ݕ = ඨቆ4′ݔ ቇଶ + ቆ1′ݕ ቇଶ
 

 

Figure 1.8: Above: Anisotropy represented as an ellipse.  In the original coordinate system anisotropy is 4:1 
(ax:ay) and when rotated 30˚ it is 4:1(ax’:ay’).  Below: Calculating the distance between points 1 and 2 
without anisotropy (Case 1) with anisotropy in XY (Case 2) and anisotropy in the 30˚ direction (Case 3). 
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Figure 1.9: Left: An anticline with LVA (www.geology.about.com), scale not available.  Points A and B are 
related along a nonlinear path because of the LVA.  Right: Unfolding the anticline highlights the natural path 
between points A and B.   

 
Figure 1.10: Left: An anticline with a LVA grid.  Locations 1 and 2 are highlighted to show how the 
anisotropic distance in each cell is different and depends on the LVA field.  At point 1 a horizontal path has 
an anisotropic distance of 3 units whereas a vertical path has an anisotropic distance of 12 units.  Right: two 
potential paths between points A and B, each path is the summation of the distance through each cell.  The 
shortest distance between points A and B is 150 units. 

Often, it is implicitly assumed that the straight line path between points is the path 
along which two points are related.  In the case of a single direction of continuity the 
straight line path corresponds to the shortest path between points.  Consider a simple 
folded sedimentary deposit (Figure 1.9).  Unfolding the deposit into its pre-fold state 
reveals the path along which points A and B are related.  In the folded space, this path is 
not linear but follows the locally varying directions of continuity. 

Consider a grid overlain on the anticline in Figure 1.9 with LVA shown in Figure 1.10.  
The anisotropy is now different in each cell of the model.  Just as the anisotropic 
distance is different for a different anisotropy direction (Figure 1.7), each cell of the 
model (Figure 1.10) has a different direction of continuity and the anisotropic distance 

A B A   B  
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then depends on the local direction of continuity.  The distance between two points is a 
sum of the distances within each cell.  For illustrative purposes consider the horizontal 
path between A and B.  The anisotropic distance can be calculated in each of the 18 cells 
this path traverses and the distance from point A to B can be calculated as the sum.  
Considering the more realistic curved path between A and B intersects a total of 25 cells.  
Again the sum of the 25 individual distances represents the anisotropic distance 
between points A and B.  Depending on the anisotropy field the curved path from A to B 
can be shorter than the straight-line path.  This is the central concept used in this thesis 
to incorporate LVA: 

Axiom 1.1: Two points in space are related by the path with the minimum anisotropic 
distance. 

It is critical to note that this discussion is focused on the anisotropic distance (as 
calculated in Appendix A) not the Euclidian distance.  In the case of constant anisotropy 
the shortest anisotropic distance is always found using the straight-line path; however 
this is not the case when considering LVA (Figure 1.10). 

1.3 Problem Statement 
The discussion thus far has broadly introduced geostatistics as a framework for 
calculating resource volumes and properties.  The importance of considering anisotropy 
in these calculations has been motivated.  The specific problem addressed is the 
incorporation of LVA into a numerical modeling framework.  This dissertation is limited 
to the situation when sufficient quantitative or qualitative knowledge is available to 
infer the locally varying geological features.  In such cases these features should be 
incorporated into modeling.  Axiom 1.1 was introduced and provides the basis for the 
methodology used to incorporate LVA, specifically: 

Thesis Statement 
The use of nonlinear paths between points, generated from reliable locally varying 

anisotropy, improves the calculation of resources in numerical modeling. 

1.4 Dissertation Contributions 
The main contribution is a methodology to incorporate LVA into geological modeling in 
an estimation or simulation framework.  The proposed method can consider 
complicated geological features in the form of a vector field of anisotropy (magnitude 
and direction of anisotropy at every location, as discussed in Chapter 2).   

The second contribution is a set of techniques for LVA field inference.  Often only 
qualitative information is known about the anisotropy field with perhaps some limited 
quantitative information.  Generation of the anisotropy field is a crucial step and is the 
focus of Chapter 3. 
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A number of practical considerations arise when applying the proposed methodology, 
including: input parameter inference; uncertainty in the numerical modeling 
assumptions; and uncertainty in the anisotropy field.  Where possible, theoretical 
solutions to these problems are derived, otherwise practical implementation results and 
guidelines are presented.  These practical considerations are addressed through two 
case studies presented in Chapter 6. 

Many of the algorithms used to incorporate LVA are computationally demanding.  A 
major contribution of this work is the incorporation of efficient algorithms to minimize 
the run time required for the estimation or simulation of practically sized geomodels. 

The remainder of this chapter is devoted to (1) a background discussion of traditional 
geostatistical and mathematical concepts that are used throughout the dissertation and 
(2) an overview of previous research that has attempted to integrate LVA into modeling. 

1.5 Background 
The specific topics summarized include: (1) the random variable formalism (2) 
stationarity (3) estimation techniques and (4) simulation.  The random variable 
formulism discusses the basic notation and definitions required to apply the statistical 
tools used in geostatistics.  Stationarity is fundamental to this work as the proposed 
methodology deals with deposits that display LVA.  The final sections on estimation and 
simulation briefly introduce the techniques of inverse distance, kriging and sequential 
Gaussian simulation (SGS) as these are modified to incorporate LVA.  These techniques 
are not fully derived here, interested readers are referred to any introductory 
geostatistics text for further detail (Goovaerts 1997; Chiles and Delfiner 1999;  Deutsch 
2002; Wackernagel 2003 to name a few).  

1.5.1 Random Variable Formulism 
The theory of geostatistics is based on random variables.  Random variables are 
variables where the possible values the variable can be assigned are given a specific 
probability.  A simple example of a discrete random variable would be the potential 
outcome of rolling a fair die.  The variable is denoted by a capital letter (Z) and a specific 
outcome of that variable is denoted by a lower case (z).  Each outcome of the variable is 
assigned a specific probability, p(z): 

 ܼ = ܼ} ݁݅݀ ݎ݂݅ܽ ܽ ݈݈݃݊݅݋ݎ ݂݋ ݁݉݋ܿݐݑ݋ ℎ݁ݐ ݃݊݅ݐ݊݁ݏ݁ݎ݌݁ݎ ܸܴ ∈ ሾ1,2,3,4,5,6ሿ}                           ݖ = (ݖ)݌ of Z ݁݉݋ܿݐݑ݋ =  ݁ݑ݈ܽݒ ݂ܿ݅݅ܿ݁݌ݏ ܽ ݈݈݃݊݅݋ݎ ݂݋ ݕ݈ܾܾ݅݅ܽ݋ݎ݌
(ݖ)݌ =  ൝16 ݖ ݂݅        , =  ݁ݏ݅ݓݎℎ݁ݐ݋                           ,60 ݎ݋ 1,2,3,4,5
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Random variables can also represent continuous values, such as the mineral grade in a 
gold deposit.  Continuous random variables can take any value within a specified range.  
A probability density function is used to represent the probability of all possible 
outcomes of the continuous random variable, rather than assigning discrete 
probabilities as with rolling a die.  Consider the following probability density function, 
f(x), for a random variable, X, that can vary between 2 and 12: 

 
Figure 1.11: Probability density function. 

All possible values of X have an associated probability density in the PDF (Figure 1.11).  
This random variable formulism allows for the usage of mathematical and statistical 
tools that can be used to estimate probability distribution functions for variables of 
interest at unsampled locations (i.e. the distributions discussed in Figure 1.1 and 
reprinted here as Figure 1.12). 

 
Figure 1.12: Reprint of Figure 1.1.  A pdf is estimated at each unsampled location. 

A random function (RF) is a set of RVs.  The distribution at each location in Figure 1.12 
represents a separate random variable but taken together they form a random function.  
More formally, consider a set of random variables, Z,  representing the distributions in 
Figure 1.12 at each spatial location (u); the random function would be denoted: 

,(ܝ)ܼ}   ܝ ∈   {ۯ

where A is the modeling domain in Figure 1.12. 
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1.5.2 Stationarity 
Stationarity is the decision of how to pool data for analysis.  Assuming the modeling 
domain is first order stationary implies that the mean of a random function, Z(u), within 
a domain is constant at all locations, u  (Equation 1.3).  This allows data to be pooled to 
calculate the global mean of a deposit.  In cases where the mean varies across the 
deposit the assumption of first order stationarity no longer holds. 

{(ܝ)ܼ}ܧ   = ∋ ܝ∀     ݉    ۯ

There are techniques available for considering domains that are not first order 
stationary.  Two common approaches are to (1) separate the data into distinct 
populations that have different means and model each population independently or (2) 
introduce a trend model (an exhaustive numerical model of the mean in the domain).  
The trend is subtracted from the data values and the residual is modeled.  McLennan 
(2008) describes in detail methodologies for considering data that are not first order 
stationary. 

Second order stationarity assumes that the covariance function of a random variable is 
invariant under translation.  The covariance between any two points separated by a lag 
distance, h, is given in Equation 1.4.  Second order stationarity assumes that this 
covariance function, C(h), is constant within the modeling domain.  This assumption has 
received less attention in the literature than first order stationarity. 

ܝ)ܼ}ܧ   + (ܐ ∙ {(ܝ)ܼ − ݉ଶ = ∋ ܝ∀     (ܐ)ܥ   ۯ

where h is a lag vector of length ||h|| separating two locations in space.  Consider the 
appropriateness of the assumption of stationarity for a synthetic data set modeled after 
an underlying anticline (Figure 1.13).  The assumption of second order stationarity is 
questionable as there is no single direction of continuity that can be applied.  In fact, 
considering no anisotropy generates estimates that best follow the geological continuity 
of the deposit. 

1.4 

1.3 
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Figure 1.13: Above: Data locations for a non-stationary anticline deposit with an anisotropy field as shown 
in Figure 1.10 and reprinted above right (www.geology.about.com).  Below: kriging with no anisotropy, 45˚ 
and 135˚.  White indicates fabricated high grade areas for illustrative purposes, black indicates low grade. 

1.5.3 Estimation Techniques 
A common goal in numerical modeling is to generate a best estimate at an unsampled 
location given surrounding data.  Two estimation techniques are modified to consider 
LVA, inverse distance and kriging.  Both of these techniques are linear estimators as they 
apply a linear weight (Equation 1.5) to each of the known datum to estimate at 
unsampled locations (Figure 1.14).  Inverse distance is considered because of its 
simplicity although kriging is often preferred as it minimizes the expected squared 
difference between the estimate and the truth. 

 
Figure 1.14: Estimating a value (Z*) at an unsampled grid location (?) using n=3 surrounding data (z1,z2,z3).  
Weights for the three data are determined by inverse distance (Equation 1.6) and the estimate can be 
calculated as z*= z1 λ1+ z2λ2+ z3 λ3.  Data that are closer to the estimation location (i.e. point 3) receive 
higher weight then data further away (i.e. point 2). 
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With inverse distance, the weight given to each datum is calculated as the reciprocal of 
the  distance to the estimation location raised to a power (ω) as in Equation 1.6. 

  ܼ∗ = ∑ ఈ௡ఈୀଵߣ    ఈݖ

ఈߣ  = భ೏ഘഀ∑ భ೏ഘഀ೙ഀసభ   

Inverse distance estimation is straightforward to implement and only requires the 
practitioner to determine a single parameter (ω); however, this simplicity also limits the 
flexibility of inverse distance.  Kriging is often used in geostatistics because it considers 
simple anisotropies, redundancy between data and the covariance in geological data 
(Figure 1.3 middle).   

To determine estimation weights (as in Equation 1.5) kriging incorporates a model of the 
covariance between locations.  Weights are generated by minimizing the error variance; 
the expected squared error (SE) between the unknown true value at a location, z(u),  
and the estimate at that location, z*(u) (Equation 1.7).  Consider the well documented 
kriging equations (Equation 1.8). 

ܧܵ  = (ܝ)ݖሾ}ܧ −    {ሿଶ(ܝ)∗ݖ

 ∑ ,હܝఉC൫ߣ ઺൯ܝ = C(ܝ?, હ)௡ఉୀଵܝ ߙ      = 1, … , ݊  

where uα (α=1,2,…,n) are the data locations, u? is the location to be estimated, C(uα,uβ) 
is the covariance between data α and β, and C(u?,uα) is the covariance between the 
unsampled location and the data (Appendix A provides a numerical example of 
calculating this covariance).  Solving this set of n equations generates the desired 
weights to apply in Equation 1.5.  Derivation of these equations and further discussions 
on kriging can be found in many introductory geostatistics texts (Journel and Huijbregts 
1978; Isaaks and Srivastava 1989; Cressie 1993; Deutsch 2002). 

1.5.4 Simulation 
Estimation produces numerical models that are smooth as the goal of estimation is to 
generate the best possible prediction at unsampled locations; such models vary 
smoothly from one drill hole to another.  Depending on the end use of the numerical 
model, this smoothing may be acceptable but for many applications it is undesirable 
(Journel and Kyriakidis 2004).  More formally, the smoothness of an estimate can be 
measured by its variance.  Estimates have a variance that is less than the variance of the 
input distribution of data (Figure 1.15).  The smoothing effect of kriging is well 
documented (Journel and Huijbregts 1978; Deutsch 2002) and the potential bias 
involved in using kriged maps in mine design or flow simulation necessities alternative 
techniques that accurately reproduce the input histogram.  

1.8 
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Simulation is often employed to overcome the smoothness of estimators and to 
generate multiple possible realities of the variable of interest.  In the framework of 
simulation, multiple realizations are simulated and represent equiprobable states of the 
variable of interest, as opposed to estimation where there is a single best estimate at all 
locations.  Consider the estimated map using kriging (Figure 1.16); multiple realizations 
could be generated to evaluate the uncertainty in tonnage. 

 
Figure 1.15: Probability density function for data (solid line) and potential estimates (dashed line).  Because 
estimates are inherently smooth, they have less variability than the original data. 
 

  
Figure 1.16: Left: A kriging map of estimates.  Right: Five realizations generated with SGS.  The realizations 
contain more realistic variability of the modeled variable.  Each realization represents a potential reality of 
the grade and can be used to generate reserves/resources, oil volume, as input into flow simulation, etc.  In 
this example the resource volume is shown (11, 10, 14, 11 or 8M tons are potential ore volumes). 

Many geostatistical simulation algorithms use kriging.  A particularly popular algorithm 
is sequential Gaussian simulation (Isaaks 1991).  Recall the kriging estimator: 

  ܼ∗ = ∑ ఈ௡ఈୀଵߣ    ఈݖ

 ∑ ,હܝఉC൫ߣ ઺൯ܝ = C(ܝ?, હ)௡ఉୀଵܝ ߙ      = 1, … , ݊  

The variance of the kriging estimate, Z*, can also be derived (Wackernagel 2003) and is 
less than the variance of the input data, C(0), by a predictable amount: 

{(ܝ)∗ܼ}ݎܸܽ  = (0)ܥ − ௦௞ଶߪ   (ܝ)

where the kriging variance, ߪ௦௞ଶ  :is defined as ,(ܝ)

௦௞ଶߪ  (ܝ) = (0)ܥ − ∑ ,?ܝ)ఈCߣ હ)௡ఈୀଵܝ   
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With SGS the smoothing effect of kriging (reduced variance) is overcome by adding a 
random residual directly into the kriging estimate, Equation 1.5 is modified to become: 

(ܝ)∗ݖ   = (ܝ)ܴ +  ∑ ఈ௡ఈୀଵߣ    ఈݖ

where the weights, λα, are generated from the same kriging equations as in Equation 
1.8.  The random component, R(u), is added to account for the missing variance.  In this 
way the resulting numerical models have the same variance as the input data.  
Moreover, by varying the random numbers used, multiple realizations with the same 
statistical properties can be generated, as in Figure 1.16. 

A more detailed derivation and explanation of simulation can be found in (Goovaerts 
1997; Deutsch 2002; Wackernagel 2003; Journel and Kyriakidis 2004).  For the purposes 
of this dissertation only a basic understanding of estimation and simulation is required.  
Equations 1.5 and 1.8 provide the framework for kriging and Equations 1.11, 1.12 and 
1.13 provide the framework for simulation.  Equation 1.8 (reprinted here as Equation 
1.14) is critical to the methodology presented in this dissertation because the 
covariance terms will be modified to incorporate the nonlinear path between points 
(Section 1.2). 

 ∑ ,હܝఉC൫ߣ ઺൯ܝ = C(ܝ?, હ)௡ఉୀଵܝ ߙ      = 1, … , ݊  

1.6 Related Research 
There are a number of fields that have developed techniques to incorporate locally 
varying features into numerical modeling.  This section reviews the relevant works from 
the following areas: 

1. Traditional Geostatistics (kriging)  
2. Multiple Point Geostatistics  
3. Unfolding/Stratigraphic transformations 
4. Environmental Modeling 
5. Generating LVA Fields  

1.6.1 Related Research: Traditional Geostatistics (kriging) 
Much of the past work integrating locally varying directions into geostatistical modeling 
has utilized kriging with a local search (Deutsch and Lewis 1992; Xu 1996; Sullivan et al. 
2007).  To determine how much weight to give each drill hole when estimating at 
unsampled locations, the anisotropy direction at the location being estimated is applied 
to its local neighborhood.   

1.14

1.13
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Figure 1.17:  When estimating the gray locations with the surrounding data (red points) the anisotropy at 
the estimation location is applied everywhere and kriging is performed.   

The direction of anisotropy is assumed constant for each kriging neighborhood.  
Consider estimating at the gray locations in Figure 1.17; the north-west direction would 
be applied to the local area when estimating block 1 and south-east for block 2.  This is 
an exaggerated example where the anisotropy directions at the estimation locations are 
drastically different than the surrounding directions, but it highlights the limitations of 
accounting for LVA in this way.  If the direction changes smoothly over the deposit and 
changes occur over large distances, considering a constant local anisotropy in this way 
may be reasonable.  This idea has been extended to spectral methods (Borgman, Taheri 
and Hagan 1983) where the spectral functions are considered locally variable (Fuentes 
2002a; Fuentes 2002b).  However, it is still assumed that within an arbitrary region 
these spectral functions are stationary. 

Stroet and Snepvangers (2005) have recently proposed a variant of kriging where the 
local anisotropy is automatically calculated from the available data.  They incorporate 
LVA to accurately reproduce curvilinear structures (as in Figure 1.6) using an iterative 
image analysis technique.  Unfortunately, this technique is currently limited to two 
dimensional data and requires sufficient data to directly infer the varying directions.  If 
the data does not show the curvilinear structures, the method is not successful.  Often 
in petroleum and mining applications, the data does not clearly reveal the curvilinear 
features due to large sample spacing but these features are known qualitatively, based 
on additional information.  In this case, this iterative image analysis technique could not 
be applied. 

Yao et al. (2007) have recently proposed a method to incorporate locally varying 
directions into geostatistical analysis.  They suggest using a 1D spectral simulation to 
honor the directions and present 2D examples of their method with a proposal to 
extend to 3D. 



18 
 

 

Almendral et al. (2008) presented a methodology based on multidimensional scaling to 
incorporate LVA.  They consider a nonlinear path between points as well as an 
embedding of the grid in three dimensions to determine the covariance between points 
for use in the kriging equations (Equation 1.8).  This work was done concurrently and 
independently of this thesis. 

1.6.2 Related Research: Multiple Point Geostatistics 
Multiple Point Statistics (MPS) can be used as an alternative to traditional kriging based 
techniques.  Such methods are used to generate rock type (facies) models that contain 
the complex nonlinear features seen in natural deposits and do not rely on kriging 
(Guardiano and Srivastava 1993; Journel 2004)  However, MPS techniques are often 
limited to categorical variables, continuous variables such as ore grade, permeability, 
porosity, and many other important properties cannot be easily modeled.  This is 
extremely limiting.  A further limitation of the methodology is that the majority of the 
techniques developed to date require training images, which are difficult to obtain and 
select. 

The relevance of MPS to the proposed research is that the goals of MPS and kriging with 
locally varying directions are similar; to generate models that have nonlinear and 
geologically realistic features.  Consider the following 2D MPS model with very realistic 
features, including locally varying directions, that would be difficult to reproduce with 
kriging based techniques: 

 
Figure 1.18:  Fluvial model generated with MPS (Strebelle and Remy 2004).  Model scale is typically varied 
to fit site specific conditions such as channel width and length. 

As previously mentioned, MPS techniques rely on the availability of a training image.  A 
training image is a rock type model that is exhaustively populated by the rock types of 
interest.  The training image contains the complex geological features of a deposit such 
as locally varying directions, but is not conditioned to the available data.  It is assumed 
that the training image has the same multiple point statistics as the deposit of interest.  
This is analogous to assuming that the training image contains the same geological 
features as the deposit of interest.  All multiple point statistical algorithms extract 
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features from the training image and use them to generate a model conditioned to drill 
hole or well data.  There has been little work into the development and use of training 
images (Boisvert et al. 2007) and to date training images are only widely available for 
limited deposit types (for vein type deposits see Boisvert et al. 2008 and for 
fluvial/deepwater reservoirs see Pyrcz et al. 2008). 

The use of multiple point statistics is further limited by the computational effort 
required and the ability of the multiple point algorithm to reproduce the desired 
geological features in the models.  Solutions to these problems are becoming available 
(Liu et al. 2004; Zhang et al. 2004; Arpat and Caers 2007).  Even as these difficulties are 
overcome, multiple point statistical methods are still dependent on a training image 
that is representative of the deposit of interest, which may be difficult to obtain.  MPS 
algorithms include: the use of neural networks (Caers 2001), Bayes law (Guardiano and 
Srivastava 1993; Strebelle 2002), simulated annealing (Deutsch 1992), updating 
conditional distributions with multiple point statistics (Ortiz and Deutsch 2004) and 
using a Gibbs sampler (Lyster and Deutsch 2006).  The use of Bayes law in SNESIM 
(Strebelle 2002) is the most well developed and most used algorithm to date, but it still 
suffers from some drawbacks: difficulty obtaining a training image and difficulty 
modeling continuous variables.  Recently, some attempts have been made to 
incorporate continuous variables (Wu et al. 2008) but training image selection and 
implementation decisions remain an issue.  Incorporating locally varying directions into 
modeling as presented in this dissertation meets many of the same goals as MPS, 
without the need for a training image. 

A recently developed technique that shows promise for incorporating complex, non-
linear features into geological models of continuous variables is based on high order 
covariances, termed cumulants (Dimitrakopoulos 2010).  Notwithstanding some initial 
computational issues and the difficulties surrounding the inference of statistics from 
training images (similar to MPS), in the near future this technique may accomplish many 
of the same goals as kriging with LVA if a training image is available for the area of 
interest. 

1.6.3 Related Research: Unfolding and Stratigraphic Transformations 
A technique used to model simple nonlinear features is the application of a coordinate 
transformation to a space where the features become linear.  There are a number of 
transformations that can be applied depending the nature of the geological features.  
These transformations are most commonly applied in the case of a stratified, but folded 
or faulted, deposit.  An assumption is made that the deposit was originally horizontal 
and layered but has since undergone folding and/or faulting that has resulted in 
predictable but nonlinear features; Mallet (2002, pages 379-442) provides an account of 
a number of stratigraphic transformations that can be applied depending on the nature 
of the folding and faulting.  In the flattened space (Figure 1.19) features become linear 
and can be modeled with traditional geostatistics.  Other transformations are also 
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available for straightening channel geometries (Deutsch 2002; Legleiter and Kyriakidis 
2007). 

 
Figure 1.19:  Left: Folded deposit.  Middle: Aligning the fault.  Right: Deposit is linear. 

As Mallet (2002) highlights, applying stratigraphic transformations requires (1) complete 
knowledge of the geometry of the objects in their folded condition and (2) some 
information of the geometry of the objects in the unfolded condition.  Without this 
detailed information, stratigraphic transformations are not possible, and even with such 
detailed information there is no single optimal transformation (Mallet 2002).  
Stratigraphic transformations are effective for highly predictable geology such as 
sedimentary deposits; however, they are not a solution to other situations with more 
complex LVA. 

1.6.4 Related Research: Environmental Modeling 
Environmental modeling must often consider local anisotropies because of the types of 
variables considered.  Pollution spread, rain fall patterns, animal migration etc. exhibit 
very nonlinear features and display LVA in space and often in time.  The pioneering work 
of Sampson and Guttorp (1992) which was expanded upon by multiple authors (Brown, 
Nhu and Zidek 1994; Guttorp and Sampson 1994; Meiring et al. 1997; Meiring et al 
1998; Perrin and Meiring 1999; Damian et al. 2001; Schmidt and O’Hagan 2003), led the 
way for much of the work on LVA in an environmental context.  They utilize 
multidimensional scaling (which will be applied in this dissertation in a similar manner) 
to incorporate LVA into modeling.  Their approach is limited to smaller models as they 
use traditional MDS (Mardia, Kent and Biddy 1979) which is not practical for large grids.  
Moreover, they assume that there are repeated measurements at individual monitoring 
locations, which is rarely the case in mining or petroleum geostatistics.   

Some authors have considered a kernel method or a weighted moving window average 
to incorporate locally varying features (Higdon et al. 1998; Higdon 1998; Nott and 
Dunsmuir 2002; ver Hoef et al. 2006).  The parameters that define the kernel are varied 
locally and often non-stationary features can be reproduced.  The main drawback of 
these kernel methods is similar to the drawback of using locally varying search 
parameters as the kernel is assumed locally stationary during estimation.  Kernels 
cannot consider the case when the kernel parameters vary between data.   
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Considering environmental variables in an aquatic setting has lead a number of 
researches to consider a non-Euclidian distance metric between two locations, similar to 
the proposed shortest path between points (Section 1.2).  Consider the path between 
two points along a stream, the distance traversed is not the straight line Euclidian 
distance; rather, it is the distance along the stream (stream distance).  Incorporating this 
non-Euclidian distance into modeling is not straightforward as there is no guarantee 
that a valid covariance function can be found for the proposed distance metric, leading 
some authors to ignore the few indefinite systems of equations that occur (Gardner et 
al. 2003; Yuan 2004; Ganio et al. 2005; Boisvert et al. 2009).  Little, Edwards and Porter 
(1997) use this stream distance metric to generate 2D numerical models in estuaries but 
do not discuss how such a metric is not positive definite.  Rathbun (1998) present a 
similar method for modeling estuaries and simply check their metric for positive 
definiteness to ensure solvable kriging systems of equations; however, they do not 
propose a framework where positive definiteness is theoretically guaranteed.   

The majority of this type of work in environmental applications focuses on using stream 
distances for pollution or fish migration studies.  Large grids are not required for these 
studies; 1D grids oriented along the streams are often sufficient.  In the case of 
geostatistical modeling for resource prediction, large 3D models containing millions of 
cells are required; such methods would be computationally infeasible.   

Many authors have used these stream distances (Curriero 1996; Cressie and Majure 
1997; Little, Edward and Porter 1997; Rathburn 1998; Kern and Higdon 1999; Loland and 
Host 2003; Krivoruchko and Gribov 2004; ver Hoef et al. 2006).  A similar approach is 
considered in this dissertation with the water distance being analogous to the shortest 
path distance.  The works listed above are important references for the techniques that 
will be used in this dissertation but they have a very different application as nonlinear 
distances are considered to incorporate physical boundaries and barriers (i.e. rivers) 
rather than geological anisotropies as presented in this dissertation.  Guttorp and 
Sampson (1994) and Sampson et al. (2001) provide a review of the work done in this 
field prior to 2001. 

1.6.5 Related Research: Generating LVA Fields 
Determining the anisotropy field is not trivial with sparse data.  Often the direction of a 
deposit can be determined at drill hole locations (Renard and Ruffo 1992); however, an 
exhaustive map of the locally varying directions is required.  One possibility is to 
simulate the directions based on the sparse exploration data available (Xu 1996; 
Fuentes et al. 2005).  Kriging or sequential Gaussian simulation could be used to 
generate the locally varying directions from the drill hole data (Figure 1.20). 

A second method that could be used to determine the directions is to directly infer 
them from the data and a geological interpretation of the data.  Deposits that are very 
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continuous tend to show directionality in the available sample data (Figure 1.21) and 
can be accurately interpreted by geologists to generate the locally varying directions.   

 
Figure 1.20: Left: Nine drill holes indicating the direction of strike of the deposit of interest.  Right: Gray cells 
in the model contain no drill hole information, the direction must be estimated from the surrounding data. 

If a rock type model of the deposit is available, the moment of inertia of the rock type 
can be used to determine the locally varying directions (Mohammadhassanpour 2007).  
This was the technique used to generate the locally varying directions of continuity 
shown in Figure 1.6 (also reprinted here as Figure 1.22).  This technique is expanded 
upon in Chapter 3. 

 
Figure 1.21: A situation where the locally varying directions are easily inferable from the available drill hole 
data.  Circles represent drill hole data with a clearly visible curvilinear structure.  Locally varying directions 
are indicated by arrows. 
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Figure 1.22: Locally varying directions for a fluvial deposit (reprint of Figure 1.6).  Left: Conceptual fluvial 
deposit.  Right: A map of the locally varying directions of anisotropy.   

1.7 Outline 
The focus of this dissertation is the presentation of a methodology to incorporate non-
stationary anisotropy into geological modeling using the nonlinear path between points.  
To determine this path, multiple optimization techniques will be presented in Chapter 4; 
however, first Chapter 2 discusses the physical meaning of anisotropy and its 
incorporation in traditional modeling methodologies.  This chapter provides a better 
understanding of anisotropy and emphasizes the need to incorporate non-stationary 
features and the difficulty in doing so.  Chapter 3 then describes techniques to generate 
the anisotropy field from quantitative and/or qualitative data.  The nature of the LVA 
field affects the resulting numerical models and is an important inference step in the 
proposed methodology.   

Estimation and simulation using the nonlinear paths generated from Chapter 4 will be 
explained in Chapter 5, providing the main contribution of this work.  Inverse distance 
estimation, kriging and sequential Gaussian simulation are modified to incorporate LVA 
in a mathematically sound manner.  In Chapter 6 the application of the proposed 
methodology is demonstrated on two case studies based on net bitumen thickness data 
from an oil sands application as well as gold grade in a porphyry deposit.  Practical 
issues are addressed, such as the extension from 2D to 3D, searching for nearby 
locations when distance is defined nonlinearly, generating the LVA field and model 
validation. 
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Chapter 2: On the Nature of Anisotropy 

The notion of anisotropy is central to the research presented in this thesis.  As such, the 
concept of anisotropy must be clearly defined.  Section 2.1 quantifies anisotropy using 
the variogram.  Section 2.2 further explores the mathematics used to incorporate 
anisotropy into geostatistical modeling.  Section 2.3 treats anisotropy as a geological 
concept and defines the types and sources of anisotropy common in geological deposits.  
Finally, Section 2.4 discusses how the nature of anisotropy is dependent on the scale at 
which it is considered.  While this chapter does not provide an original contribution, the 
nature of anisotropy is central to the proposed methodologies developed and requires 
clarification.   

2.1 Definition of Anisotropy 
Anisotropy is defined as “having properties that differ according to the direction of 
measurement“ (Morris 1975).  The term is used in many scientific fields with similar 
connotation; in the field of geostatistics anisotropy describes the directional 
dependence of the continuity of variables such as rock type, facies type, porosity, 
permeability, mineral grade, concentration, etc.  Natural geological processes can 
spatially elongate these properties in preferential directions.  In such cases the 
properties are said to be anisotropic as their continuity differs when examined in 
different directions. 

2.1.1 Qualitative Assessment of Continuity 
The definition of continuity is not as clear as the definition of anisotropy.  Continuity can 
be qualitatively assessed by visual examination, for example, the coal deposit has a 
higher degree of continuity when compared to the gold vein deposit (Figure 2.1).  The 
continuity is higher in the coal seam because points separated by tens of meters, in the 
horizontal direction, are similar while in the gold vein points separate by only a few 
centimeters appear unrelated.   

               
Figure 2.1: Left: A continuous coal deposit (www.scienceclarified.com).  Right: Gold veins are typically 
discontinuous and erratic (www.jpgold.com). 

The coal seam has a higher degree of continuity in the horizontal direction but the 
stratigraphic deposition of coal results in less vertical continuity.  Thus, the coal grade is 
anisotropic because the degree of continuity in the coal seam depends on direction.  

~2cm
~2m
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This anisotropic behavior is due to the geological processes that result in aerially 
continuous sheets of coal.  Such visual assessments of continuity are important during 
initial data exploration; however, a more quantitative assessment of the degree of 
continuity is required if anisotropy is to be introduced into numerical modeling.   

2.1.2 Quantitative Assessment of Continuity: The Variogram 
Continuity can be assessed quantitatively by considering the separation distance at 
which locations become unrelated.  The most common measure of continuity used in 
geostatistics is the covariance (Equation 2.1) between two locations separated by a lag 
vector, h (Figure 2.2); higher covariance between locations separated by h implies a 
higher degree of continuity.  By definition, anisotropy exists when the covariance 
between locations separated by h depends not only on ||h|| but also on the 
orientation of h.  This covariance measure can be estimated from the available samples 
by considering different lags, h, and calculated as the experimental covariance (Equation 
2.2) between sample locations approximately separated by h.  Normally, tolerance 
parameters are introduced to define points that are separated by h as it is unlikely that 
there are many pairs of data separated by exactly h.  These tolerance parameters are 
explained in detail in Deutsch and Journel (1998). 

(ܐ)ܥ  = (ܝ)ሼܼܧ  ∙ ܝ)ܼ + ሽ(ܐ −  ሾܧሼܼ(ܝ)ሽሿଶ  

(ℎ)ߛ  = ଵଶே(ܐ) ∑ ൫ܼ(ܝ) − ܝ)ܼ + ௜ୀଵ(ܐ)൯ଶே(ܐ  is the variogram.  For convenience the (ℎ)ߛis technically a semi-variogram while 2 (ℎ)ߛ  
term semi is dropped for the remainder of this dissertation with the understanding that ߛ(ℎ) refers to a semi-variogram. 

 
Figure 2.2: A lag vector, h, between locations u and u+h. 

Consider an illustrative example of three fields with different degrees of continuity 
(Figure 2.3).  Isotropy exists when the covariance between locations depends only on 
||h|| (Figure 2.3 middle).  The covariance between points is identical regardless of the 
direction considered and reduces to nearly 0 after a range of approximately 20 units.  In 
contrast, the range for the random case is nominally zero at a very small lag distance.  
Because the isotropic case has a larger range, it is said to be more continuous than the 
random case.  In this way, the continuity of a deposit is quantified. 

The notion of covariance representing the continuity of a deposit can be extended to 
the anisotropic case where the degree of continuity depends on direction.  The tables in 
Figure 2.3 are useful for identifying various directions of anisotropy.  In the anisotropic 

2.2 

2.1 
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case, there is more East-West continuity than North-South because for all lag distances, 
||h||, the covariance in the East-West direction is larger. 

Examining the continuity in multiple directions is more conveniently done by graphing 
the variance in the form of a variogram.  The variogram (Figure 2.4) is a representation 
of the variance between points separated by h and is related to the covariance by 
Equation 2.3.  The benefit of examining the variogram is that the continuity in many 
different directions for anisotropic variables can be visualized simultaneously (Figure 
2.5).  Note that, by definition (Equation 2.3), when γ(h)=C(0) the data are uncorrelated, 
C(h)=0. 

(ܐ)ܥ  = (0)ܥ  −   (ܐ)ߛ

 

Figure 2.3: Left: A random continuous variable.  Middle: An isotropic variable, continuity depends only on 
||h||.  Right: An anisotropic variable, where continuity depends on the orientation and magnitude of h.  
Distances are unit distances. 

 

Figure 2.4: Variograms for the variables in Figure 2.3.  C(0)=1.0. 

2.3 
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Figure 2.5: Variograms in multiple directions for the anisotropic map in Figure 2.3.  Unit distances are 
considered. 

     

 
Figure 2.6: Variograms for the coal and gold deposit images. The data has been standardized by a normal 
score transform to allow for a comparison of the variograms of the two images.   

Previously, it was claimed that coal (Figure 2.1) has a higher degree of continuity than 
gold.  Using the variogram the degree of continuity can be quantified and compared.  
The images of coal and gold are converted to grayscale (Figure 2.6) and the grayscale 
value is assumed to be proportional to the grade of the deposits; associated variograms 
are provided (Figure 2.6).  Coal is more continuous as points separated by up to 19m in 

Vertical 
Range=550cm 

Horizontal 
Range=1900cm 

Vertical 
Range=10cm 
 

Horizontal 
Range=2cm 
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the horizontal direction are correlated, while correlation approaches 0.0 by 10cm in the 
gold deposit.   

This example also highlights the concept of anisotropy.  Both examples show that the 
covariance between locations depends on distance as well as orientation.  In the coal 
example covariance is higher in the horizontal direction while it is higher in the vertical 
when considering the gold sample.  

2.1.3 Incorporating Anisotropy in Classical Geostatistics 
To model the anisotropy in a geological setting, two definitions are required: the 
direction of continuity; and the anisotropy ratio.  Consider the variograms in Figure 2.5, 
the major direction of continuity is the direction in which there is the greatest continuity 
(East).  It is assumed that the minor direction is orthogonal to the major direction 
(North) even if this does not coincide with the direction of minimum continuity.  In three 
dimensions a third intermediate angle is required to fully define the direction of 
continuity.  The magnitude of anisotropy is captured as an anisotropy ratio.  Literature is 
inconsistent in defining the anisotropy ratio.  If the anisotropy ratio is smaller than 1.0 it 
is assumed that Equation 2.4 holds.  When the anisotropy ratio is reported to be larger 
than 1.0 the reciprocal of Equation 2.4 is assumed.  A third form of the anisotropy ratio 
is a true ratio, such as 10:1, where the larger number represents the relative range of 
anisotropy in the major direction (amax),  and the smaller number represents the relative 
range in the minor direction (amin). 

݋݅ݐܽݎ ݕ݌݋ݎݐ݋ݏ݅݊ܽ  =  ௥௔௡௚௘ ௜௡ ௧௛௘ ௠௜௡௢௥ ௗ௜௥௘௖௧௜௢௡௥௔௡௚௘ ௜௡ ௧௛௘ ௠௔௝௢௥ ௗ௜௥௘௖௧௜௢௡ =  ௔೘೔೙௔೘ೌೣ  

The variogram provides a quantitative measure of the existence and degree of 
continuity for any data type: continuous; categorical; exhaustive; or sample.  This is 
commonly referred to as the experimental variogram.  The experimental variogram 
cannot be used when implementing kriging or SGS (Chapter 1) rather, a modeled 
variogram must be generated that results in a positive definite set of kriging equations.  
There are a number of mathematical functions that are known to produce positive 
definite kriging systems of equations (Christakos 1984; Cressie 1993) in 2D or 3D and 
can be used to model the experimental variogram (Table 2.1).  The shape of these 
common variogram functions are shown in Figure 2.7.  These functions can be combined 
in an additive manner to increase the flexibility of modeling (Equation 2.5).   

(ℎ)ߛ  = ∑ ௜ܥ ∙ Γ୧(ℎ)௡௜ୀଵ   

where ܥ௜  is the variance contribution assigned to the i th function, Γ୧(ℎ).  Note that ∑ ௜ܥ =    .and is denoted as the sill of the variogram (0)ܥ

 

2.5 

2.4 
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Table 2.1: Common functions used to model variograms.  These are shown on Figure 2.7  with the exception 
of the nugget effect which acts as a step function. h is the standardized distance discussed in Chapter 1 
(Equation 1.1). 

Function Equation Comments 

Nugget Effect Γ(ℎ) = ൜0 ݂݅ ℎ = 01 ݂݅ ℎ > 0 Used to incorporate small scale variability. 

Spherical Γ(ℎ) = ൜1.5ℎ − 0.5(ℎ)ଷ ݂݅ ℎ < 11           ݂݅ ℎ ≥ 1 Most commonly used structure. 

Hole Effect Γ(ℎ) = 1.0 − cos  Used to incorporate cyclic oscillations in (ℎߨ)
variogram modeling. 

Exponential Γ(ℎ) = 1 − ݁ି௛ 
Similar to the spherical model but rises faster 
at the origin and asymptotically approaches 
its maximum value. 

Gaussian Γ(ℎ) = 1 − ݁ି௛మ   

 
Figure 2.7: Common variograms used to model the spatial relationship between locations.  Left: Variograms 
shown in a standardized 2D X-Y space.  Right: Variograms shown as a function of the distance between 
locations.  All variograms have a sill of 1.0 with an effective range of 1.0. 
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The variogram model for a given deposit is fit to the experimental data but may also be 
influenced by additional expert knowledge of the deposit (Gringarten and Deutsch 
2001).  The process for calculating an experimental variogram consists of searching the 
available sample data for samples separated by the desired lag, h, within some user 
supplied tolerances.  The experimental variance (Equation 2.2) of these pairs provides 
the circular points on Figure 2.8.  Often a number of directions are considered for the 
orientation of h, and the directions that display the maximum and minimum continuity 
are modeled.  The appropriate functions, Γ୧(ℎ), contributions, ܥ௜, and range parameters 
are iteratively selected to fit the variogram model, ߛ(ℎ), to the experimental variogram.  
For further guidance on variogram modeling, the interested reader is referred to Isaaks 
and Srivastava (1989) where a detailed example is provided. 

 

Figure 2.8:  Experimental variogram (points) and modeled variogram (lines) for the vertical and horizontal 
directions in the coal image (Figure 2.6).  Right: Parameters for the modeled variogram. 

For computational simplicity it is useful to standardize the distance vector, h, to a unit-
less scalar distance, h,  that considers the modeled anisotropy in each of the principle 
directions (Equation 2.6).  This is done by calculating an effective anisotropic distance 
between two locations (Chapter 1) as the decomposition of h into three directions (3D) 
or two directions (2D).  The range parameters, amax, amin and avert are specified by the 
practitioner and fit to the available data.  

 ℎ = ටቀ୼௛೘ೌೣ௔೘ೌೣ ቁଶ + ቀ୼௛೘೔೙௔೘೔೙ ቁଶ + ቀ୼௛ೡ೐ೝ೟௔ೡ೐ೝ೟ ቁଶ
  

2.1.4 Summary of the Definition of Anisotropy 
The previous section introduced the concepts of anisotropy, isotropy and continuity.  
Continuity of a deposit is quantified by considering how correlated two locations are.  If 
this correlation is directionally dependent, the property of interest is anisotropic and if 
the correlation does not depend on direction the variable is isotropic.   

௜ܥ  Type of 
Model 

Horizontal 
Range 
(amax) 

Vertical 
Range 
(amin) 

0.25 Nugget N/A N/A 

0.10 Spherical 350cm 140cm 

0.25 Spherical 2200cm 140cm 

0.40 Spherical 2200cm 600cm 

2.6 
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The variogram (Equations 2.2 and 2.5) was introduced as a graphical plot that can be 
used to visualize how the continuity of a variable changes with distance and direction 
defined by h.  The range of anisotropy is most often considered to be the distance at 
which the variogram reaches a value of C(0), or 95% of C(0) when the variogram model 
reaches the sill asymptotically.   

Normally, the variogram is modeled with a function that is known to produce positive 
definite kriging equations (Chapter 1) for a mathematically valid implementation of 
kriging.  Thus, the experimental variogram must be fit with a function (Table 2.1).  The 
anisotropy ratio is used to quantify how much larger the continuity is in a major 
direction compared with the minor direction. 

2.2 Mathematics of Anisotropy 
Anisotropy of a stationary deposit is defined in 2D by one angle (the major direction of 
continuity) and two range parameters.  Anisotropy can be thought of as an ellipse 
(Figure 2.9) with the major direction of anisotropy corresponding to the orientation of 
the semi-major axis and the orthogonal minor direction of continuity corresponding to 
the semi-minor axis of the ellipse.  The radius of the ellipse in these directions is given 
by the appropriate ranges (Figure 2.9).  In 3D, three angles and three range parameters 
are required to fully define anisotropy.   

 
Figure 2.9: Anisotropy visualized as an ellipse.  This example shows a major direction of continuity in the 
East (amax =1900cm) and a minor direction of continuity in the North (amin=550cm).  The range in any 
direction is calculated from the ellipse, as shown for N66˚E. 

2.2.1 Data Transformations 
The transformation from a coordinate system in which the variable of interest displays 
anisotropy to an orthogonal coordinate system where the variable is isotropic is useful 
for (1) computational purposes and (2) to capture anisotropy in the form of a single 
matrix (Equation 2.9).   

Transformation to an isotropic space for 2D data is much simplified over 3D data.  First 
the direction of anisotropy must be determined by either a visual assessment of the 
available data or an examination of the variogram in a number of different directions to 
select the direction with the largest range.  Once the major direction of anisotropy is 
found, the X and Y axes are rotated to align with the major direction of anisotropy and 
scaled to obtain an isotropic coordinate system in which the anisotropy ratio is 
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accounted for by the transformations (Figure 2.10).  The data in the transformed space 
can be fit with an isotropic function (Table 2.1) that only depends on the distance, h. 

 
Figure 2.10: Left: Consider 2:1 anisotropy in N60˚E.  To obtain isotropy, rotate the X axis to align with the 
direction of continuity (middle) and scale the rotated Y’ axis by a factor of 0.5. 

This transformation is obtained by multiplying the data in original coordinates (x,y) by 
the rotation matrix in Equation 2.7 to obtain the rotated coordinates (x’,y’).  These 
matrices are obtained using simple geometry (Eriksson and Siska 2000).  

 ൤ݕ′ݔ′൨ = ൤1 ܽ௠௔௫⁄ 00 1 ܽ௠௜௡⁄ ൨ ቂcos ߙ −sin ߙsin ߙ    cos ߙቃ ቂݕݔቃ  

where α is a clockwise rotation of the azimuth measured from North (Y-axis in Figure 
2.10).  The following is obtained for the example in Figure 2.10: 

 ൤ݔᇱݕᇱ൨ = ൤1 ܽ௠௔௫⁄ 00 1 ܽ௠௜௡⁄ ൨ ቂcos ߙ −sin ߙsin ߙ    cos ߙቃ ቂݕݔቃ = 

 = ൤1 2⁄ 00 1 1⁄ ൨ ቂcos 60 −sin 60sin 60    cos 60ቃ ቂݕݔቃ  

These transformations are only used in the calculation of the covariance between 
locations required for implementing kriging or SGS.  The transformed space is 
convenient as the scalar distance, h, can be used to calculate distance and ultimately the 
covariance between locations using the variogram model.  The extension of these 
transformations to three dimensions is accomplished with three rotations and three 
range parameters (Figure 2.11).  The resulting orthogonal coordinate system (see 
orthogonality proof in Newham 2005, page 11) is isotropic, thus the covariance is a 
function of only the scalar distance, h.  This transformation allows for the 
straightforward calculation of the anisotropic distance between any two locations in the 
presence of anisotropy. 

 

 

2.8 

2.7 
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Again, these rotations can be obtained with the following rotation matrix: 

൥ݔᇱᇱݖ′′ݕᇱᇱ൩ = ێێۏ
ۍێ ଵ௔೘ೌೣ 0 00 ଵ௔೘೔೙ 00 0 ଵ௔ೡ೐ೝ೟ۑۑے

ېۑ ൥ cos ߙ ∙ cos ߮ − sin ߙ ∙ sin ߚ ∙ sin ߮ −sin ߙ ∙ cos ߮ − cos ߙ ∙ sin ߚ ∙ sin ߮ cos ߚ ∙ sin ߮sin ߙ ∙ cos ߚ cos ߙ ∙ cos ߚ sin ߚ−cos ߙ ∙ sin ߮ − sin ߙ ∙ sin ߚ ∙ cos ߮ sin ߙ ∙ sin ߮ − cos ߙ ∙ sin ߚ ∙ cos ߮    cos ߚ ∙ cos ߮൩ ቈݖݕݔ቉  

where α is a strike rotation about the Z axis, β is a dip rotation about the X axis, and φ is 
a plunge rotation about the Y axis, with the magnitude of anisotropy defined by amax in 
the X’’ direction, amin in the Y’’ direction and avert in the Z’’ direction.  The rotation matrix 
in Equation 2.9 is obtained by considering three successive 2D rotations (Equation 2.7) 
in the X-Y, Z-Y’ and X’-Z’ planes (Figure 2.11). 

 

Figure 2.11: Left: Consider amax=amin=2 while avert=1.  To obtain isotropy, rotate three times, first about the 
Z-axis, then about the X’ axis and finally about the Y’’ axis.  Scaling the X’’ and Y’’ axes results in isotropy. 

2.2.2 Types of Anisotropy 
In Section 2.2.1 rotation and scaling of the coordinate system was presented to facilitate 
the calculation of the scalar distance between locations, h, that is used in covariance 
calculations (Table 2.1).  The variogram, along with the range parameters (amax, amin and 
avert) and anisotropy directions (α, β and φ) can be used to visualize different types of 
anisotropy that are common in geological formations.  This discussion is limited to the 
2D case as the variogram function is a 3D function when 2D data are considered.  The 
extension to 3D is conceptually trivial but difficult to visualize. 

There are a number of different schemes used to categorize anisotropy, the most 
common being the division between zonal and geometric anisotropy (Chiles and 
Delfiner 1999; Deutsch 2002; Wackernagel 2003).  Zonal anisotropy, also referred to as 
sill anisotropy (Zimmerman 1993; Eriksson and Siska 2000), occurs when the sill reaches 
different limiting values in different directions (Figure 2.12).  Zonal anisotropy is 
modeled using two nested functions, one with a long range in a given direction (Figure 
2.12).  Geometric anisotropy is defined as any anisotropy that is not sill anisotropy.  
Zimmerman (1993) further separates zonal anisotropy into nugget and range anisotropy 
(Figure 2.12); however, it is more common to consider any type of anisotropy that is not 
zonal to be geometric.  Nugget and range anisotropy effectively alter the shape or 

2.9
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geometry of the variogram before the sill is reached.  The more common and less 
specific categories of zonal and geometric anisotropy are used here.  Examples of each 
type of anisotropy and the geological conditions that cause them are found in Section 
2.3. 

  

Figure 2.12: Types of anisotropy common in geological phenomena.  Slices X=0 (black) and Y=0 (red) are 
shown.  Equations for each variogram model are shown to the right, all structures are exponential models.  
All variograms have a sill of 1.0 and are provided for standardized distances. 

2.3 Processes That Cause Anisotropy 
The cause of the physical manifestation of anisotropy in a geological context requires 
elaboration.  A number of geological processes increase or decrease continuity in a 
particular direction.  Some of the more common processes include: fracturing; vein 
formation; folding; thermal gradients; fluvial and estuarine systems.  The geological 
processes that cause LVA in these situations are described and an example deposit from 
the literature displaying LVA is provided. 

2.3.1 Folding 
Folding is the ductile deformation of a mass of rock and is most clearly illustrated when 
applied to sedimentary deposits.  The planar structures in sedimentary deposits are 
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clearly visible after folding (Figure 2.13).  The type and magnitude of the folding is 
dependent on the forces present at the time of folding and may result in symmetrical 
folds, asymmetrical folds, bending, buckling or parasitic folds (Leeder and Perez-Arlucea 
2006).   

Folding is a process that occurs after mineralization and is not limited to sedimentary 
deposits.  It is important to understand that the process of folding can introduce non-
stationary features into sedimentary, metamorphic or igneous deposits.  Folding is the 
source of the LVA seen in the Zambian Copperbelt (Figure 2.14). 

 

Figure 2.13: Left: Parasitic folds superimposed on a larger symmetrical fold (Leeder and Perez-Arlucea 
2006).  Right: Outcrop of a z-fold (Leeder and Perez-Arlucea 2006).   

 

Figure 2.14: A cross section of the Zambian Copperbelt (Guilbert and Park 2007). 

~1m 
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2.3.2 Fracturing, Faulting and Vein Formation 
When the stresses on a rock mass are greater than the strength of the rock the rock fails 
forming fractures or faults.  There is displacement of the rock mass on either side of the 
fracture or fault resulting in a possible conduit for fluid flow.  In the presence of open 
fractures and faults, this fluid flow is concentrated, causing the preferential deposition 
of minerals, forming a mineralized vein (Guilbert and Park 2007).  When the orientation 
of fractures or faults vary spatially, the resulting mineralization also displays locally 
varying characteristics (Figure 2.15). 

Fractures can occur without the resulting formation of a mineralized vein.  Vein 
formation is treated as a special case of fracturing in which mineralization is 
concentrated in the fracture; however, fractures can cause anisotropy in a more diffuse 
manner if the fractures are the dominate means of fluid flow during the formation of 
the deposit. The fracturing around an intrusive deposit is one example where fracturing 
causes the preferential deposition of minerals, as in a porphyry deposit (Section 2.3.3). 

 

Figure 2.15: Plan view of veins in the Main Leader Reef of the East Rand Basin of the Witwatersrand 
Goldfield of South Africa showing locally varying directions of strike (Evans 1987). 
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2.3.3 Porphyry Deposit 
While the exact definition of this class of deposits is in question and the formation of 
porphyries is a complex multistage process (Guilbert and Park 2007), typical porphyries 
display very interesting non-stationary characteristics.  Consider the porphyry deposit at 
San Manuel-Kalamazoo (Figure 2.16).  This intrusive deposit was formed by the 
convection of water followed by the precipitation and concentration of copper in the 
surrounding host rock.  Convection is possible as the surrounding rock is highly fractured 
because of the intrusion (Pirajno 2000; Guilbert and Park 2007).  Porphyries often 
display a barren core of material surrounded by a mineralized zone (Figure 2.16) 
resulting in an aerially radial pattern of continuity in the expected mineral grade (Figure 
2.17). 

 

Figure 2.16: Vertical cross section of a Porphyry copper deposit at San Manuel-Kalamazoo (after Guilbert 
and Park 2007).  Copper is concentrated in a circular region around a low grade core.  Left: Alteration zones.  
Right: Mineralization zones. 

 

Figure 2.17: Typical cross section of the circular pattern of gold grades in the porphyry deposit modeled in 
Chapter 6.  Mineralization is shown as hot colors (reds and yellows) with the barren core as cool colors 
(blues and greens).  Plot dimensions are 500m in the X and Y directions. 
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2.3.4 Fluvial, Estuarine and Magmatic Systems 
Fluvial deposits are formed from the deposition of sediments transported by rivers.  
Because rivers display sudden changes of direction due to varying ground conditions, 
hydrocarbon saturations found in fluvial deposits display similar locally varying 
characteristics.  Slatt (2006) presents five types of fluvial deposits: alluvial fans; fan 
deltas; braided-river deposits; meandering-river deposits; and incised-valley-fill 
deposits.  Each type of fluvial deposit gives rise to characteristic locally varying features, 
such as curvilinear muddy channels in a meandering river (Figure 2.19) or the point bars 
of the Rulison field (Figure 2.20).  Slatt (2006) provides additional examples of many 
fluvial deposits, all containing significant locally varying features due to the unique 
evolution of different river systems.  

Estuarine environments also have the potential to create hydrocarbon deposits that 
display highly nonlinear features.  Large portions of the oil sands contained in the 
McMurray formation of Northern Alberta are found in sand originally deposited in an 
estuarine environment (Ranger and Gingras 2003).  The branches of an estuary can 
result in clearly nonstationary directions of continuity (Figure 2.21). 

Interestingly, magmatic deposits may also show similar locally varying characteristics as 
seen in estuarine systems.  Consider an idealized model of a komatiite lava field (Figure 
2.22).  The branching and locally varying features are similar to the estuarine system 
because the basic mechanism of fluid flow is similar.  Fluvial, estuarine and komatiite 
deposits all display locally varying features because of the complex dynamics of fluid 
flow involved in their formation.   

 
Figure 2.18: Block diagram showing five types of fluvial depositional environments (1) alluvial fans (2) fan 
deltas (3) braided-river deposits and (4 and 5) incised or nonincised meandering rivers (Slatt 2006).  Not to 
scale. 
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Figure 2.19: Upstream Mississippi River fluvial system.  Point-bar sand deposits shown in light gray and 
muddy channel-fill plugs shown in dark gray (Slatt 2006). 

 
Figure 2.20: Interpreted point-bar reservoir in the Rulison field in the Piceance Basin of Colorado (Slatt 
2006).  Note the curvilinear point bar deposits as well as the LVA found within each point bar. 
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Figure 2.21: Idealized schematic of an estuarine environment (modified from Lettley 2004 and Hassanpour 
2009).  Not to scale. 

 

Figure 2.22: Idealized komatiite lava flow highlighting characteristic nonlinear features showing type 1 and 2 
Ni sulphide ore deposits (Pirajno 2000). 
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2.4 The Scale of Anisotropy 
The anisotropy present in any deposit is most likely a unique combination of a number 
of geological processes.  The examples presented in Section 2.3 show clear LVA features 
and provide justification for the consideration of LVA in geostatistical modeling.  There 
are valid geological reasons that the assumption of second order stationarity is often 
violated by geological deposits because the manner in which deposits are formed 
naturally results in nonstationary features.  Often times these geological processes 
produce nonstationary features that vary according to the scale of interest.  This 
relationship can be fractal in nature with the smaller scales mimicking the larger scale 
features, such as the meandering rivers in an estuarine system (Figure 2.21); however, 
the features seen at various scales can be different and the types of features that should 
be incorporated into geostatistical modeling using LVA requires clarification. 

Typically there are three scales are of interest in geostatistical modeling (1) the point 
scale (2) the block scale and (3) the domain scale.  Scale is a continuous concept and the 
categorization of three scales of interest is a simplistic discretization of a continuum 
(Figure 2.23).  The appropriate features to model with LVA are features that have a scale 
larger than the block scale but smaller than the domain scale.  Features smaller than the 
block scale cannot be incorporated due to block discretization limitations and features 
larger than the domain scale do not impact the models.  This scale range of important 
features (Figure 2.23) is narrowed below. 

 
Figure 2.23: Point, block and domain scales are typically considered in a geostatistical analysis.  The scale of 
features that should be incorporated as LVA should be larger than the block size but smaller than features 
captured by trends.  Figure provided is for general modeling purposes, application specific conditions may 
see scale ranges outside the suggests bounds. 

2.4.1 Point, Block and Domain Scale 
The point scale and the domain scale are fixed by available data.  The point scale is 
defined as the data scale.  Typically this scale is on the order of 0.0001m3-0.2m3.  In 
mining applications this is the volume of the core drill hole samples; in petroleum 
applications this is the effective volume of the available log or core data; and in 
environmental applications this is the volume of collected samples.  This thesis is only 
concerned with geostatistical models that are built on rectilinear Cartesian grids, thus 
the smallest scale that can be considered becomes the scale of a single block in the 
model which is typically several orders of magnitude larger than the point scale.  There 
are many application specific considerations for the selection of a block size, the 
interested reader is referred to the following references for more discussion on block 
size selection (Isaaks and Srivastava 1989; Deutsch 2002).  In a typical geostatistical 
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model the block scale is nominally between 5 m3-100,000m3 in order to cover the 
modeling domain with a manageable number of cells; thus, any micro scale feature 
smaller than the selected block size cannot be incorporated with LVA.  

The minimum size of a feature that should be incorporated is further refined by 
considering the available data spacing.  There must be sufficient data density to warrant 
the features modeled.  Without secondary information, such as geological 
interpretations, remote sensing data or densely sampled secondary data, the lower 
bound on the scale of potentially important features is based on the size of feature that 
can be reliably supported by the available data. 

The block scale provides the lower bound on the scale of features that can be 
considered by LVA while the domain scale provides the upper bound.  The domain scale 
is fixed by the data configuration and the goals of the geostatistical model.  It 
corresponds to the limits of the area modeled.  This scale is typically >108 m3.  The 
appropriate scale to assess LVA is the scale of the most relevant geological features 
within the bounds provided by the block and domain scales.  In this context, relevance is 
defined as the impact this feature is expected to have on the end use of the models.  
Geostatistical models are typically used as input to complex transfer functions such as 
the calculation of reserves (mining), flow simulation response (petroleum), or the 
volume of contaminated material (environmental).  The practitioner must assess the 
potential impact of the geological features on the transfer function and model those 
features that are most likely to have a large impact.   

Large scale features that are either well understood or can be captured deterministically 
should be incorporated as trends (McLennan 2008) rather than as LVA.  A trend is 
considered to have no spatial variability and is well supported by known physical 
characteristics of the variable of interest.  Typically these features are seen at a 
resolution of approximately 0.25-1.0 times the domain scale.  Such large scale 
characteristics are better captured by incorporating a trend model (Journel and Rossi 
1989; Goovaerts 1997) or considering a locally varying mean (Wackernagel 2003).   

Consider the fluvial example from Figure 2.20 (reprinted as Figure 2.24).  The North-
Westerly striking orientation of the sediments is clear when examining the deposit at a 
large scale ( ~5000 ft in Figure 2.24).  As smaller scales are considered, (~750ft in Figure 
2.24) the locally varying features become apparent.  In this example the North-Western 
anisotropy would be considered deterministically with trend modeling while the 
curvilinear locally varying features resulting from the deposition of sediments in the 
point bars would be considered the locally varying features of interest to be modeled.  
As a second example, consider the locally varying features in a gold deposit (Figure 
2.25).  There is a clear vertical trend in the features that should be accounted for with 
trend modeling.  LVA should be used to incorporate the specific features of the 
individual veins (Figure 2.25 left). 



43 
 

 

Figure 2.24: Interpreted point-bar reservoir in the Rulison field in the Piceance Basin of Colorado (Slatt 
2006).  The LVA at a reasonable scale for modeling is shown to the left while the larger scale anisotropy in 
the North West direction (right) should be accounted for with trend modeling. 

 

 

Figure 2.25: Cross section of an Archean mesothermal Au lodes (Pirajno 2000).  The LVA at a reasonable 
scale for modeling is shown to the left while the larger scale anisotropy in the North direction (right) should 
be accounted for with trend modeling. 
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It is important to clearly identify which types of features should be modeled with LVA; 
to summarize the above discussion: 

LVA should not be used to model: 
• features that are smaller than the block size of the geostatistical model 
• features that are too small to be reliably captured by the given data spacing 
• features that are known deterministically and can be effectively modeled with a 

trend 

LVA should be used to model: 
• features that display locally varying directions of continuity 
• features that are expected to have a significant effect on the transfer function 

used 

2.5 Remarks 
Section 2.1 clarified what anisotropy is and how it can be quantified with the variogram.  
The variogram is modeled based on the available sample data and is required for the 
implementation of traditional geostatistical techniques such as kriging and SGS.  Section 
2.2 quantified anisotropy and described how coordinate transformations are used to 
incorporate a single global direction of anisotropy into geostatistical modeling.  Such 
rotations allow for the calculation of a scalar distance, h, between locations in the 
transformed space. 

Section 2.3 is critical to this thesis and provides evidence that LVA is present in the types 
of deposits typically modeled with geostatistics.  The intention was not to provide an 
exhaustive index of deposits that display LVA, rather, sufficient examples were 
presented to justify the development of a methodology for incorporating LVA into 
modeling. 

An exploration of the nature of anisotropy necessarily discusses its dependency on 
scale.  Geological features with LVA can exist within other locally varying geological 
features.  Section 2.4 made clear the range of features that can be appropriately 
modeled with LVA.  The features should be sufficiently large so that they are evident 
within the constraints of the selected block size and should be supported by the 
available data.  Small features cannot be accurately described by widely spaced data 
without significant additional justification.  Moreover, the features should be smaller 
than regional trends that can be effectively modeled with traditional techniques such as 
trend modeling. 

The focus of this chapter was largely on stationary anisotropy (Sections 2.1 and 2.2) with 
the motivation of LVA in Section 2.3.  Chapter 3 further discusses the quantification of 
anisotropy as a locally varying phenomenon. 



45 
 

Chapter 3: LVA Field Generation 

This chapter is organized as follows.  Section 3.1 discusses the parameterization of the 
LVA field.  Section 3.2 explores the various sources of data that can be used to estimate 
the parameters that define the LVA field; however, the details of how to generate the 
LVA field are left to Section 3.3.  Section 3.4 provides practical suggestions for selecting 
an LVA field generation methodology from the methods presented in Section 3.3.  A 
number of examples of LVA fields are provided throughout this chapter for both 
continuous/categorical data and for exhaustively/sparsely sampled data.  This chapter 
provides practical methodologies to generate the LVA field.  Future chapters assume 
that the LVA field is known. 

Real data sources are used in this chapter to highlight the proposed LVA field generation 
methodologies.  Section 3.4 provides a brief summary of the data sets used throughout 
this chapter. 

3.1 LVA Field Parameterization 
Chapter 1 motivated the use of anisotropy by introducing deposits that displayed non-
stationary features, some figures displaying LVA have been repeated in Figure 3.1.  
Further, Chapter 1 motivated the use of LVA to consider different directions or 
magnitudes of anisotropy within a single deposit.  

 
Figure 3.1: Deposits showing anisotropy from Chapter 1.  

The LVA field delineates the direction and magnitude of anisotropy in a modeling 
domain.  The direction of anisotropy is defined by three angles, strike, dip and plunge as 
discussed in Chapter 2.  The magnitude of anisotropy is taken relative to the major 
direction of continuity, thus, two ratios are necessary to define the anisotropy, 
minor/major and vertical/major.  The LVA field is used to calculate the anisotropic 
distance between two points (Appendix A) and can be defined by a rotation matrix 
(Equation 3.1). 

  Approximate Scale

0m               10m

  Approximate Scale 

0m               50m 
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The direction of anisotropy is defined in 3D by three angles, strike (α) dip (β) and plunge 
(ϕ), see Figure 2.1.  The magnitude of anisotropy is defined by two ratios: r1 is the ratio 
between the minor and major directions and r2 is the ratio between the vertical and 
major direction.  The calculation of the anisotropic distance between two points 
becomes: 

 
2 ( ) T Td R R=h h h   

where two points are separated by the vector (h).  Thus, the LVA field is an exhaustive 
set of five parameters (α, β, ϕ, r1 and r2) that vary locally.  Calculating the anisotropic 
distance between points separated by h is accomplished using the local rotation matrix.  
Note that in a 2D case only α and r1 are required.  The remainder of this chapter 
explores sources of data and methodologies that are available to infer the necessary 
LVA parameters.   

3.2 Sources of Data for LVA Field Inference 
LVA is often ignored because there is a lack of available data to infer the LVA field.  This 
section explores the diverse range of sources commonly available for LVA field 
generation (Table 3.1) but the details of how the LVA fields can be generated from these 
data sources is deferred to Section 3.3; rather, in this section each data source is 
described and an example data set with a calculated LVA field is provided.  Real data is 
shown where available, otherwise synthetic data is generated.  Section 3.3 presents 
techniques to generate the LVA field from the data types presented. 

Table 3.1: Possible sources of information that can be exploited when generating the LVA field.  
‘Availability’ represents this author’s subjective appraisal of the potential availability of each data source. 

Source Brief Description Availability 
Drill hole data Samples of the variable of interest. High 

Direct angle 
measurement 

Direct measurements of the strike, dip or plunge at drill hole 
locations using dipmeters, logs or  fullbore formation micro imagers. 

Low 

Remote sensing 
Remote methods including seismic, magnetic, electromagnetic, 
ground penetrating radar and other geophysical measurements. 

Medium 

Structural models 
Stratigraphic deposits are often modeled by layer.  Layer orientation 
can indicate the local direction of anisotropy. 

High 

Facies or rock 
type models 

Categorical variable models generated by any technique can be used 
to generate models of anisotropy. 

High 

Analogue 
Features contained in analogue deposits can be borrowed to infer 
LVA.  Features must be conditioned to the deposit of interest. 

Medium 

3.2

3.1
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Normally, it is necessary to merge multiple sources of information from Table 3.1 to 
generate a single LVA field.  Some areas of the deposit may be extensively sampled and 
the drill hole data can reliably characterize the LVA field.  Sparsely sampled areas may 
require geological interpretation, inference from analogue deposits, exploitation of 
remote sensing information or even a stochastic description of the anisotropy field.    

3.2.1 Drill Hole Data 
If a deposit has been sufficiently sampled, the drill hole data of the variable of interest 
can be used to provide a reliable inference of the LVA field.  Available sample data can 
be either continuous or categorical and are either (1) primary if it is a direct 
measurement of the variable for which the LVA field is being inferred or (2) secondary if 
it is a measurement of a different variable that has the same LVA characteristics as the 
primary variable.  

Assayed drill hole data is available in a mining context and provides the basis for many 
geostatistical models.  This data does not give a direct measurement of the LVA field.  A 
similar situation exists in the petroleum industry where the available data come from 
wells.  Such data does not provide a direct measurement of the LVA field.  Finally, in the 
environmental industry data may be 2D samples collected at the surface, inference of a 
3D LVA field is more difficult with this type of data. 

The available sample data must be interpreted to extract information with respect to 
the underlying LVA field.  In the case of densely sampled areas, such inference is 
simplified.  In the presence of sparse data a more densely sampled secondary variable 
may help infer the LVA field (Figure 3.2).  The primary and the secondary variable must 
be correlated before using the secondary variable for LVA field inference.  If the spatial 
structure of the secondary variable is not related to the spatial structure of the primary 
variable it would be inappropriate to use the secondary information for LVA inference of 
the primary variable. 
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Figure 3.2: Left: Using the more extensively sampled secondary V data to generate the LVA field for U.  The 
V data (Figure 3.3) were kriged using block kriging to obtain a smooth map. Right: Using the exhaustive 
secondary V data to generate the LVA field for U.  The length of the line is proportional to the magnitude of 
the anisotropy (i.e. the anisotropy ratio). 

 

The following example is based on the Walker Lake Data set (Isaaks and Srivastava 
1989).  In this data set there are two variables U and V, refer to Isaaks and Srivastava 
(1989) for a complete description of these variables which relate to elevation.  Consider 
the U variable to be the variable of interest and the more extensively sampled V variable 
is used to generate the LVA field for U.  This is possible under the assumption that U 
displays the same spatial features as V.  This assumption is reinforced by the strong 
correlation between U and V (Figure 3.3) as well as the knowledge that both variables 
were similarly constructed (Isaaks and Srivastava 1989).  The LVA field generated from 
the V sample data is shown in Figure 3.2.  This example presents two different situations 
that are quite common in practice: (1) when a secondary variable, V, has been densely 
sampled and is correlated to the variable of interest, U; and (2) when an exhaustive 
secondary variable is available to generate the LVA field. 

This example explored the situation when a densely sampled secondary variable is 
available to infer the LVA field for a primary variable.  It should be noted that if there are 
sufficient samples of the primary variable it could be used directly for LVA field 
inference.   
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Figure 3.3: Above: Location and values of the available sample data.  Below: Relationship between U and V 
for the Walker Lake samples. 

3.2.2 Direct Angle Measurements 
It may be possible to measure the orientation of a deposit at a sample location.  This 
type of data is a direct measurement of the LVA field.  It is uncommon to have an 
extensive data base of these types of measurements. 

Direct angle measurements can be obtained from outcrops, exposed underground 
workings, down the hole cameras, fullbore formation micro imagers (FMI) or the 
formation dip can be measured directly with a dipmeter (Renard and Ruffo 1992).  
Typically, only the local orientation of the LVA field is measured by these devices.  The 
magnitude of the LVA field (i.e. the anisotropy ratios) must be obtained from one of the 
alternative data sources presented in Section 3.2 or it can be assumed constant for the 
deposit.  Direct measurements of the orientation and magnitude of the LVA field may be 
possible when considering numerical models that depend on natural transport such as 
wind, currents or streams where velocity may provide direction and magnitude.  
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When direct angle measurements are available they are often sparsely sampled.  For the 
proposed methodology (Chapter 4-6) an exhaustive LVA field is required.  This can be 
obtained by modeling the LVA field between the sparse samples with an interpolation 
technique such as kriging or inverse distance (Section 3.3.1). 

Consider Figure 3.4, where there are 22 direct measurements of the orientation of the 
LVA field in a 2D domain.  The azimuth cannot be directly modeled because of the 
continuous nature of angles (0° = 360°).  Each angle is decomposed into its X and Y 
components and these components are modeled independently then recombined, see 
Section 3.3.1 for more details.  

      

Figure 3.4: Left: Synthetic data.  Direction at the locations (circles) is indicated by the orientation of the line 
through each circle.  Right: LVA field after inverse distance interpolation of the X and Y components of each 
angle measurement. 

3.2.3 Remote Sensing 
Geophysical remote sensing data can take the form of seismic, magnetic, 
electromagnetic, gamma-ray or gravitational surveys.  The reader is referred to Moon, 
Whateley and Evans (2007) for a more detailed discussion of each of these remote 
sensing techniques.  For the purposes of this thesis, it is sufficient to understand that 
remote sensing surveys provide a low resolution measurement of a bulk property, such 
as density for gravitation surveys, resistivity for electrical surveys or wave velocities for 
seismic surveys.   

When the bulk property measured by the remote sensing technique is related to the 
variable of interest, it can be used to infer the LVA field.  Often this type of data is 
referred to as soft data.  For example, in petroleum applications seismic surveys are 
often available and are sensitive to porosity changes in the reservoir.  It is desirable to 
first reduce the seismic survey down to a single attribute, such as acoustic impedance, 
that is calibrated to porosity (Deutsch 2002).  From this single attribute, the LVA field for 
the variable of interest can be inferred.  Remote sensing surveys are often available 
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because of their low cost in comparison to exploration data and are attractive because 
of their exhaustive nature.  They provide much needed information where direct 
sampling of the variable is sparse. 

The bulk property measured by the remote sensing technique must be related to the 
variable of interest.  If the correlation is not great the appropriateness of using the 
remote sensing survey should be evaluated.  It may only be appropriate to use the 
survey as correlated secondary information when inferring the LVA field. 

Consider the 62 wells in Figure 3.5 with porosity measurements.  An exhaustive 2D map 
of an interpreted seismic attribute is also available.  There is a high correlation between 
porosity and the seismic attribute, ρ=0.62, which is often the case as seismic data is 
sensitive to local porosity variations (Deutsch 2002).  The seismic attribute and the 
inferred LVA field for porosity are shown in Figure 3.6. 

       
Figure 3.5: Left: location of the 62 porosity well data.  Right: relationship between porosity and the seismic 
attribute. 

 
Figure 3.6: LVA field built from an exhaustive seismic survey.  The gray scale image is the filtered seismic 
attribute.  The moment of inertia method (Section 3.3.3) is used to generate the LVA field.  The length of 
the line is proportional to the magnitude of the anisotropy (i.e. the anisotropy ratio). 
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3.2.4 Structural Models 
Continuity within a stratigraphic deposit often follows the form of the original 
deposition of the layer, that is, the direction of continuity is parallel to the deposited 
layer.  The structural model for a stratigraphic deposit can provide insight into the LVA 
field.  Consider a reservoir with multiple stratigraphic layers (Figure 3.7).  If the 
continuity of properties within each layer follows the stratigraphy, the surfaces of the 
interface between each layer provides the direction of the LVA field.  When such 
stratigraphic deposits are geostatistically modeled, each layer is identified and 
considered independently (Deutsch 2002).  LVA orientation can be extracted directly 
from the structural model; in this example the direction is obtained by averaging the 
slope of the top and bottom surfaces defining the layer.  This would be repeated for 
each layer to generate the exhaustive LVA field.  A constant magnitude or anisotropy 
ratio could be determined for each layer or a different method (Section 3.2) could be 
used to determine the magnitude of the LVA field. 

 
Figure 3.7: A cross section through a reservoir with 6 different stratigraphic layers (Deutsch 2002). A 
potential LVA field for the lower layer is shown.  Scale not available. 

3.2.5 Facies or Rock Type Models 
The generation of facies and rock type models that respect known geological features is 
important.  Traditional facies modeling has been based on a statistical model (SIS, 
truncated Gaussian, etc.) or a subjective geological interpretation generated by the 
geologist.  In the mid 1990’s two alternative modeling approaches emerged to link 
geological interpretations with statistical modeling.  The first technique, multiple point 
geostatistics, uses analogue information in the form of a training image to reproduce 
the desired geological features in a statistical model (Deutsch 1992; Guardiano and 
Srivastava 1993; Caers 2001; Strebelle 2002; Ortiz and Deutsch 2004; Lyster and Deutsch 
2006, Keogh et al. 2007).  The second technique, object based modeling, parameterizes 
the desired geological objects and places an entire object into the modeling domain 
(Mackey and Bridge 1992; Deutsch and Tran 2002; Pyrcz et al. 2008).  The end goal of 
both of these techniques is a facies model that is conditioned to known well/drill hole 
data and contains the desired geological features.   

MPS and object based modeling are presented here only as methodologies to generate 
desired geological features in a facies model with the end goal of generating the LVA 
field.  These facies models can be used to infer the underlying LVA field if the variable of 
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interest follows the geological objects in the facies models.  Consider a simple channel 
facies model (Figure 3.8).  If the property of interest follows the modeled channel 
feature, this can provide valuable information when inferring the LVA field. 

The facies model contains uncertainty.  Any LVA field generated based on facies models 
must consider that the facies models are themselves derived from a stochastic 
technique.  Uncertainty in the LVA field must be carried though the modeling work flow 
by generating multiple LVA fields (Figure 3.9). 

The following example (Figure 3.9) shows the generation of an LVA field from 3D 
channel objects.  In this case it is assumed that the property of interest is continuous 
along the channel.  There is no unique facies model due to the lack of available well 
data, thus, a different LVA field is used for each geostatistical realization.  All facies 
models are conditioned to the available well data and represent different 
interpretations of the geology.  Further modeling would carry forward each LVA field. 

 

          
Figure 3.8: LVA field built from a channel (Chapter 1). The grid is 256 by 256 cells.  The moment of inertia 
method (Section 3.3.3) was used to generate the LVA field. 

3.2.6 Analogue Deposits 
It is common in the petroleum industry to borrow the statistics of a mature reservoir 
and apply the statistics to a less developed reservoir.  This is done because there is a 
lack of data available to infer the desired statistics.  An analogue mature deposit could 
be used to infer the LVA field for a less developed deposit but the LVA field must be 
conditioned to any hard data available.  Some geostatistical techniques, such as multiple 
point statistics, can employ analogue statistics directly; however, when using the LVA 
field of an analogue deposit the geomodeler must maintain consistency between the 
developed LVA field and any other data available for the less developed deposit.   

The need to condition the LVA field to data makes it difficult to infer the LVA field from 
analogue deposits.  However, if there is very little hard data available to generate the 
LVA field and a nearby developed deposit exists that contains similar geology, the LVA 
field of the mature deposit could be imposed.  The LVA field would be generated for the 
mature deposit using one of the available techniques (Section 3.3) and manually 
modified to fit any of the available data for the deposit of interest. 
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Figure 3.9: Two LVA fields built with the moment of inertia method (Section 3.3.3).  The length of the line is 
proportional to the magnitude of the anisotropy.  Models are conditioned to the available data.  Where the 
LVA field is not indicated (white space), the anisotropy ratio is 1:1.  Models taken from Pyrcz et al. (2008).  
Model scale is typically varied to fit site specific conditions such as channel width and length. 
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3.3 LVA Field Inference from Available Data 
Section 3.2 discussed different sources of information that can be used to help infer the 
LVA field.  The following section introduces methodologies for generating the LVA field 
from the data once it has been identified and obtained.  All techniques work with either 
continuous or categorical data (Table 3.2).  There may be situations that require a 
combination of two or more of these techniques; however, they are presented 
independently.   

Table 3.2: Possible methods for LVA field generation.  Difficulty of application represents this authors 
subjective appraisal of the difficulty involved when implementing each technique.  Some techniques can 
only be used to determine LVA orientation. 

Technique 
Orientation/ 
Magnitude 

Brief Description 
Difficulty of 
Application 

Simulation and 
estimation of 
components 

Orientation and 
Magnitude 

If direct measurements of the LVA field are available 
at sparse locations, the exhaustive field can be 
inferred using traditional geostatistical techniques. 

Low 

Manual LVA 
inference 

Orientation only 
A geologist can often generate a single, subjective 
LVA field.  Such methods have the benefit of 
incorporating expert knowledge and experience. 

Medium 

Moment of 
inertia 

Orientation and 
Magnitude 

A moving window moment of inertia calculation can 
give the direction and magnitude of the LVA field 
based on measurements of the variable of interest. 

Medium 

Automatic 
feature 
interpolation 

Orientation only 
Data values that are similar in magnitude are 
automatically joined to generate samples of the LVA 
field orientation. 

Low 

   

3.3.1 Simulation and Estimation of Components 
When direct measurements of the LVA field are available, traditional estimation 
techniques can be used to generate the exhaustive field (Fisher 1996).  There are many 
such techniques available, inverse distance and kriging (as introduced in Chapter 1) are 
used here to demonstrate the methodology but any estimation technique could be 
used. 

The nature of the angular data requires some unique preprocessing before the LVA field 
can be directly estimated.  Because angles are continuous [360˚ = 0˚] the angles cannot 
be directly estimated from the available data.  Consider this example where there are 
two angle measurements of 0˚ and 359˚ located at (0,0) and (25,0) respectively.  Simply 
applying inverse distance or kriging to these values generates a nonsensical LVA field 
(Figure 3.10).  The angles range smoothly from 0˚ to 360˚.  The nature of how angles 
wrap between 360˚ – 0˚ must be explicitly accounted for. 

 
Figure 3.10: Estimation of the angles from two measurements, 0˚ and 359˚ located at 0m and 25m. 
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The unrealistic LVA field in Figure 3.10 can be avoided if the angles are decomposed into 
their X, Y and Z components.  In this methodology the X, Y and Z lengths are estimated 
and then recombined to generate the resulting LVA field.  Consider the synthetic 
dipmeter data from Figure 3.4 reprinted in Figure 3.11.  The X and Y components of the 
angles can be calculated from Equations 3.3 and 3.4.  The X and Y components (Figure 
3.11 right) can be estimated and then recombined to generate the LVA field (Figure 3.12 
and Figure 3.13).  In this example inverse distance was used to interpolate the X and Y 
components, but kriging could also have been implemented. 

 X = sin   ߙ
 Y = cos   ߙ

where α is the strike angle measured clockwise from North. 

 
Figure 3.11: Left: Synthetic dipmeter data.  Right: Each measurement has been decomposed into X and Y 
components. 

    
Figure 3.12: Estimation of the X and Y components. 
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Figure 3.13: Recombining the components to create the final LVA field. 

 

 
Figure 3.14: Variograms of the X and Y components using the 22 synthetic data.  Variograms are fit with a 
single spherical structures with no nugget.  X component range = 30.  Y component range = 30.  The cross 
variogram has a sill of 0.25 and is required to jointly simulate the X and Y components. 

Estimation of the LVA field from the available azimuth measurements generates a single 
LVA field that can be used to capture the desired geological features.  However, in most 
practical applications it is important to quantify the uncertainty in the LVA field and 
carry that uncertainty though the geostatistical analysis into flow simulation 
(petroleum), reserve calculation (mining) or contaminate classification (environmental).  
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This can be accomplished by considering multiple realizations of the variable of interest 
where each realization would be built using a different LVA field.  Simulation is 
considered in more detail in Chapter 5; therefore, in this section the goal is to generate 
multiple realizations of the LVA field to quantify potential uncertainty.  This can be 
accomplished by simulating the X and Y components.  The variograms of the X and Y 
components from the synthetic dipmeter data are shown in Figure 3.14.  Sequential 
Gaussian simulation is used to generate multiple realizations of the LVA field for the 
variable of interest (Figure 3.15). 

    

 

Figure 3.15: Four LVA fields from sequential Gaussian simulation. 

3.3.2 Manual LVA Inference 
Perhaps the most straightforward methodology to generate the LVA field is to manually 
assign the direction and magnitude of the LVA field based on professional expertise.  
Most likely this would be done by an experienced geologist with knowledge of the 
deposit of interest.  Taking into consideration all available types of data from Section 
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3.2, an expert could generate a subjective LVA field that considers many different 
sources of information such as the depositional environment, available sample data, 
available dipmeter data and personal experience with similar deposits.   

The expert could assess the LVA field at a number of discrete locations and then fill in 
the exhaustive field automatically with estimation or simulation.  This would reduce the 
professional time required to determine the LVA field and also reduce the difficulty 
inferring an exhaustive field.  Consider the data in Figure 3.16.  The LVA field has been 
determined by visual assessment at various locations.  The exhaustive field is then 
generated using kriging (Section 3.3.1).  Two different interpretations are shown on 
(Figure 3.17) and are quite similar with the exception of the difference in the south-
western portion of the LVA field.  

 
Figure 3.16:  Data used for LVA field generation.   Original data have been normal scored and kriged to 
produce the underlying smooth map. 

 
Figure 3.17: Points indicate locations were the LVA field orientation is manually assessed.  Left: A 
deterministic interpretation based on defining LVA orientation at 14 locations.  Right: A second 
interpretation based on defining LVA orientation at 23 locations.  The exhaustive field was generated by 
kriging the X and Y components of the measurements.  



60 
 

A drawback of manually estimating the LVA field is the difficulty inferring a large three 
dimensional field.  Likely, a 2D field would be generated by level and the third 
dimension extrapolated.  Moreover, often there is only a single, subjective LVA field 
generated by the expert.  Assessing and accounting for the uncertainty in the LVA field is 
difficult.  Care should be exercised when attempting to infer the magnitude of the LVA 
field.  The magnitude of continuity is often more difficult to assess than the orientation 
of the LVA field.  LVA field orientation can often be seen in geological interpretations as 
well as the sample data available; however, it is often much more difficult to visually 
assess the magnitude of the anisotropy.  A global anisotropy ratio can be determined 
and assumed to be stationary if locally varying anisotropy ratios are difficult to infer. 

3.3.3 Moment of Inertia 
Manual LVA field inference (Section 3.3.2) of many locally varying directions of 
continuity for potentially many variables of interest is time consuming and subjective.  
An automatic method to generate the LVA field directly from available data is required.  
The moment of inertia method (Mohammadhassanpour 2007) is presented here as an 
automatic technique for LVA field generation.   

Consider the problem of determining a globally stationary direction of continuity for the 
data set in Figure 3.18.  A standard approach is to examine the covariance map of the 
available data as in Figure 3.19.  This is a plot of the covariance between any two 
locations in space separated by a lag vector (h).  The plot is generated by scanning the 
data and locating pairs of points separated by lag vectors (i.e. h1 or h2 in Figure 3.19).  All 
data separated by the appropriate lag are paired and the covariance calculated as per 
Equation 3.5.  This is repeated for all lag distances and directions to build the covariance 
map.  In this example, the data are more continuous in the NE direction which appears 
as high covariance values along the NE direction in the covariance map (Figure 3.19).  

(ܻܺ)ݒ݋ܥ  = ܺ)൛ܧ −  ݉௫) ∙ (ܻ − ݉௬)ൟ  

 
Figure 3.18: Data locations.  There are 467 data with an average of 18.4mm of rainfall.  Data are in units of a 
tenth of a millimeter of rain fall.  A map of the block kriging of the data is also shown to highlight trends and 
local anisotropic directions. 

3.5 
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Figure 3.19: Covariance map of Sic data.  Each cell in the model represents the covariance between points 
separated by a lag h.  Two lags are shown: h1 = 56,570m in the N45°E direction; h2 =100,000 m in the N37°W 
direction.  The lag can also be defined by the East and North offsets.  Note that the plot is symmetric. 

The global direction of continuity can often be derived from a covariance map (Figure 
3.19).   This concept can be extended to consider locally varying directions by restricting 
the calculation of the covariance map to local moving windows.  For each location a 
local covariance map is calculated.  The problem now reduces to automatically 
determining the direction of continuity from a covariance map.  This is accomplished 
using the moment of inertia method (Mohammadhassanpour 2007).  In this method the 
covariance values in the covariance map are considered as mass.  The moment of inertia 
tensor of this mass can be determined and corresponds to the major direction and 
magnitude of continuity.  The moment of inertia (I) of a mass (m) describes the 
rotational inertia of a rigid body (Equation 3.6). 

ܫ  = ׬  ଶ݀݉୚ݎ݉   

where r is the perpendicular radius from the axis of rotation.  Each covariance value in 
the covariance map (Figure 3.19) is considered as a mass with distance from the origin 
of the plot (0,0) on Figure 3.19.   

 

 

 

 

 

3.6 
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The moment of inertia tensor is: 

 ۷ = ቎ܫ௫௫ ௫௬ܫ ௬௫ܫ௫௭ܫ ௬௬ܫ ௭௫ܫ௬௭ܫ ௭௬ܫ ௭௭ܫ ቏  

where each component of ۷ represents the moment of inerta of the mass about a 
different axis.  The components of ۷  can be calculated as the sum over N blocks in the 
covariance map: ܫ௫௫ = ∑ ݉௜൫ݕ௜ଶ + ௜ଶ൯ே௜ୀଵݖ ௬௬ܫ  = ∑ ݉௜൫ݔ௜ଶ + ௜ଶ൯ே௜ୀଵݖ ௭௭ܫ  = ∑ ݉௜൫ݔ௜ଶ + ௜ଶ൯ே௜ୀଵݕ ௫௬ܫ   = ௬௫ܫ = ∑ ݉௜ݔ௜ ௜ே௜ୀଵݕ ௫௭ܫ  = ௭௫ܫ = ∑ ݉௜ݔ௜ ௜ே௜ୀଵݖ ௬௭ܫ  = ௬௭ܫ = ∑ ݉௜ݕ௜ ௜ே௜ୀଵݖ  

The eigenvectors of the matrix in Equation 3.7 correspond to the major and minor 
directions of continuity while the major direction of continuity corresponds to the 
eigenvector with the largest eigenvalue (Beer and Johnston 1988).  Once these three 
directions are determined, say directions A, B and C, the magnitude of the anisotropy 
can also be determined with respect to the three directions (Mohammadhassanpour 
and Deutsch 2008): ܫ௔ = ଵହ ݉(݀௕ଶ + ݀௖ଶ)  ܫ௕ = ଵହ ݉(݀௔ଶ + ݀௖ଶ)  ܫ௖ = ଵହ ݉(݀௔ଶ + ݀௕ଶ)   ܫ௔, ܫ௕ and ܫ௖  represent the magnitude of the moment of inertia of the mass about each 
of the 3 principal directions, A, B and C.  The anisotropy ratios necessary to define the 
LVA field are then determined as the ratio of these magnitudes. 

The eigen-decomposition of the moment of inertia tensor for a covariance map provides 
a methodology to automatically generate the LVA field of a variable of interest given 
available sample data.  Specifically, the steps are: 

Step 1: Generate the local covariance maps by considering data within a local window. 
Step 2: Calculate the moment of inertia tensor (Equation 3.7) for the local covariance map. 
Step 3: Determine the eigenvalues and eigenvectors.  The eigenvector with the largest eigenvalue 

corresponds to the major direction of continuity.  Anisotropy magnitude is calculated based on the 
magnitude of the moment of inertia in each direction. 

Rather than determine a global direction of continuity for the data in Figure 3.19, 
consider determining locally varying directions with the suggested methodology.  The 
kriged map is used to generate the locally varying directions as it is smoother than the 
actual data and results in an LVA field that does not contain abrupt changes due to 
sparse or noisy data.  First, locally varying covariance maps are generated at the desired 

3.8 

3.7 
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LVA field grid resolution (Figure 3.20).  In this example the LVA field is generated on a 34 
x 22 grid.  The moment of inertia tensor is calculated for the covariance map at each 
grid location and the LVA field is determined as described above.  

For each local covariance map the moment of inertia tensor can be calculated, thus, the 
major direction and magnitude of continuity can be determined.  Increasing the size of 
the moving window smoothes the LVA field, while applying a small window generates 
an LVA field with more local variations. 

Many sources of data for the LVA field (Section 3.2) are not direct measures of the LVA 
field.  The moment of inertia method provides a valuable technique for inferring the LVA 
field from measurements of intrinsic properties of the deposit such as grade, 
concentrations, porosity, seismic attributes, etc.   

The implementation decisions during estimation of the kriged map have an impact on 
the resulting LVA field.  The goal of mapping is to generate a smooth map that results in 
a smooth LVA field that captures relevant features.  When these features are better 
characterized by the sample data, the data should be used directly for LVA inference.  
Care should be taken in sparsely sampled areas where overfitting is an issue.  The 
apparent features in the estimated map should be carefully judged and disregarded if 
they are the result of sparse data showing geologically unjustified features. 

 
Figure 3.20: LVA field generated by considering a square moving window of +-10 cells.  The size of the 
moving window is indicated by the shaded regions at the three highlighted locations.   
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3.3.4 Automatic Feature Interpolation 
An alternative semi-automatic LVA field generation methodology is based on connecting 
nearby sample values that have similar values.  The orientation of the LVA field is 
estimated as the azimuth of the line connecting a sample location with a nearby sample 
location of similar magnitude.  Consider generating an LVA field for the data set 
presented in Figure 3.16.  Data values have been joined to nearby data of similar 
magnitudes (Figure 3.21).  The methodology for connecting data is expanded upon; first, 
it is important to note that there is no unique way to connect the data (Figure 3.21).  
Many different possible connections are generated and averaged to determine the 
orientation of the LVA field at each sample location. 

 
Figure 3.21: Data points of similar magnitude (+-0.5) are joined.  There is no unique way to join data points.  
Two possible configurations are shown.  The shaded region on the left plot is used to highlight the 
connection methodology in Figure 3.22.  Variable plotted is Cu concentration after a Gaussian 
transformation.  

The methodology used to connect data points in Figure 3.21 requires three tolerance 
parameters (1) a distance parameter, Δ, (2) an azimuth parameter, δ, and (3) a 
magnitude parameter, ξ.  Each sample location is visited in a random order and the 
nearby data within a circular search radius, Δ, are found.  The sample data that is most 
similar in magnitude to the current location is connected to the original location.  The 
polyline direction is controlled by the azimuth tolerance; a change in direction greater 
than δ is not permitted.  This process is repeated to generate pseudo-stream lines 
connecting the data.  The polygon is terminated when either (1) there are no data 
nearby within ξ to connect to or (2) the polyline intersects an existing polygon, in which 
case the proposed polyline is clipped.  This procedure is highlighted in Figure 3.22.  
Specifically, the steps to generate a single realization of the connections are: 
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Step 1: A location is randomly selected to begin the polyline (point A).  The location with the most similar 
data value within a search radius, Δ, is selected to be the next point in the polyline (point B).  ‘Similar 
magnitude’ is the difference between the sample value at A and the value at B and must be smaller 
than ξ or the polyline is terminated 

Step 2: The connection to point B is made. 
Step 3: The azimuth tolerance, δ, and the search radius, Δ, are used to determine potential points to extend 

the polyline.  Within the search area, point C is most similar in magnitude to point B. 
Step 4: The polyline is extend to point C. 
Step 5: The polyline crosses an existing polyline.  The polyline (ABC) is clipped to the existing polyline (123). 
Step 6: Return to step 1 until all locations have been visited.  The azimuth of the polyline at the data 

locations provides a sample of the LVA field orientation.   

The above steps are repeated with a different random number seed to generate 
multiple realizations of the connections.  These realizations are averaged to provide the 
LVA field orientation at the sample locations.  

Once the data have been connected, the orientation of the LVA field can be determined 
at each data location.  The azimuth of the polyline at each data location (Figure 3.21) is 
taken to be the orientation of the LVA field at the data location.  This procedure is 
repeated many times (say 1000 times) and the average azimuth value at each data 
location can be determined (Figure 3.23).  Using the kriging of components 
methodology presented in Section 3.3.1, the exhaustive LVA field can be obtained from 
the LVA field at the sample locations (Figure 3.23).  The LVA field generated with the 
automatic feature interpolation is compared to the orientation determined manually 
(Section 3.3.1) to assess any inconsistencies.  The comparison (Figure 3.23) shows that in 
general the automatic interpolation is consistent with either manual LVA field 1 or 
manual LVA field 2 with the exception of two small areas, A and B, that are consistently 
different.  Area A is a location that shows little anisotropy and would receive an 
anisotropy ratio close to 1.0, thus, the difference in orientation would not be an issue.  
Area B is located in a transition zone where the surrounding anisotropy is highly erratic; 
to the north of B anisotropy is East to West, to the south it is North-West to south-East 
and to the East the anisotropy is highly variable.  The difference seen at B is due to the 
highly erratic nature of the LVA field in this area.  Generally, the automatic interpolation 
method closely matches the manual fields.  Manual post processing could be applied to 
correct any inconsistencies deemed significant based on geological understanding of the 
deposit (such as area B on Figure 3.23). 

The major drawback with the automatic interpolation method is the difficulty extending 
the technique to 3D.  In 3D, the appropriate tolerance parameters become difficult to 
visualize and select.  Moreover, inconsistencies in 3D are more difficult to evaluate in 
the final LVA field.  For automatic 3D LVA field generation the moment of inertia 
methodology is recommended (Section 3.3.3). 
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Figure 3.22: Methodology to connect sample data.  The region shown is the highlighted area on Figure 3.21.  
Polygon 1-2-3 was constructed before starting polygon A-B-C. 



67 
 

 

Figure 3.23: Above left: The orientation of the LVA field at each data location obtained by averaging 1000 
realizations.  Above right: The exhaustive LVA field using the automatic feature interpolation and kriging the 
components of the orientation (Section 3.3.1).  Below:  Difference between the orientation of anisotropy 
using the manual method (Figure 3.17) and the automatic feature interpolation.  Dashed line indicates data 
extents. 

3.4 Selecting an LVA Field Generation Method 
A number of methodologies to generate the LVA field were presented in Section 3.3.  
This section presents recommendations to help determine when to apply each method.  
There are four available techniques: 

1) Manual LVA Inference 
2) Moment of Inertia 
3) Estimation or Simulation 
4) Automatic Feature Interpolation 

The choice of method influences the resulting LVA field.  Consider applying all of the 
available methods to the Jura data set (Figure 3.24). 
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Figure 3.24:  Above Left: Data used for LVA field generation, reproduced from Figure 3.16.  Above Right: 
Manual LVA inference at 22 locations, exhaustive field determined from inverse distance estimation.  Below 
Left: Applying the automatic feature interpolation method.  Below Right: Applying the moment of inertia 
method.  Color scale indicates Gaussian values from -2 (blue) to +2 (red).  Plots cover 6km by 6km. 

Of the methods proposed for LVA field generation in Figure 3.24, all seem plausible and 
consistent with the data with the exception of the moment of inertia method.  In this 
case the data are too erratic for the local covariance maps to provide meaningful 
information about the LVA field.  Visual assessment and a comparison with the available 
data should always be performed on the potential LVA field. 

Beyond the visual inspection of the LVA field, the nature of the available data is the 
driving factor in determining which method to select.  The following discussion 
considers typical situations and provides guidelines for determining which method to 
select once the decision to model LVA has been made.  A decision tree is presented to 
summarize the discussion (Figure 3.25). 

Data Manual LVA Inference 

Automatic Feature Interpolation Moment of Inertia 
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Figure 3.25: Decision tree for the selection of an appropriate LVA field generation methodology.  If there is 
insufficient data to effectively implement one of the given methods an alternative methodology may be 
required to incorporate LVA. 

When direct measurements of the LVA field orientation or magnitude are available, an 
estimation or simulation technique is used to generate the exhaustive LVA field.  Such 
discrete measurements are available if the LVA field has been interpreted by an expert, 
if the LVA field has been measured from an outcrop or if the LVA field has been 
measured by a dipmeter. 

If the available data is exhaustive the only automatic technique available is the moment 
of inertia method.  In this situation the moving window size can be varied to obtain the 
desired features in the LVA field; a large moving window results in a smooth LVA field 
with few abrupt changes while a small moving window displays more of the local 
features of the exhaustive data. 

If a 3D LVA field is required the manual inference of the LVA field can be difficult, 
although inferences could be made on a number of horizontal plans and vertical 
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sections.  This results in a number of discreet measurements which can be estimated or 
simulated to generate the exhaustive 3D LVA field. 

The final situation deals with the availability of sample data.  If direct measurements of 
the variable of interest are the only available data source (as in Figure 3.24) the choice is 
to use either (1) the automatic feature interpolation method or (2) the moment of 
inertia method.  From experience, the automatic feature interpolation method works 
well when the data are not highly clustered in areas of similar magnitude (i.e. high or 
low values).  Where data are clustered, the method may produce unreliable and erratic 
LVA fields.  The automatic feature interpolation method works well for 2D sample data 
that are not highly clustered. 

3.5 Data Sources 
Amoco reservoir data:  This data set was used in Chu et al. (1994) and was used for 
Figure 3.5 and Figure 3.6.  The 2D Amoco reservoir data covers an area of about 2 miles 
square and is the vertical averaging of the porosity of 62 wells.  The reservoir is a mixed 
siltstone-carbonate located in West Texas. 

Jura data: This data was used in Goovaerts (1997).  There are 359 samples of cadmium, 
copper, lead, cobalt, chromium, nickel and zinc.  The copper data was used in Figure 
3.16, Figure 3.17, Figure 3.21, Figure 3.22 and Figure 3.23. 

Spatial interpolation contest (SIC) rainfall data: This data set was used in the 1997 
spatial interpolation contest and consists of 467 rainfall measurements made on May 
8th, 1986 in Switzerland.  The SIC data was used in Figure 3.18, Figure 3.19 and Figure 
3.20. 

Walker Lake data: This data was used in Isaaks and Srivastava (1989).  Two variables, U 
and V, are provided which are functions of the mean and variance of digital elevation 
data from the Walker Lake region near the California/Nevada border.  The exhaustive 
data set for both the U and V variables is available.  There is also a smaller data set 
consisting of samples of the exhaustive field.  The Walker Lake data set was used for 
Figure 3.3 and Figure 3.2. 

3.6 Remarks 
This chapter provides a critical step in the incorporation of LVA into geostatistical 
modeling.  The difficulty inferring the LVA field is often the largest impediment when 
incorporating LVA in numerical models.  This chapter provided a number of techniques 
that can be used to generate the LVA field from a number of different data sources.  
Moreover, situations exist when it is difficult to accurately infer the LVA field because of 
sparse samples.  In such cases, it is necessary to generate multiple LVA fields with 
sequential Gaussian simulation to carry forward into the overall modeling workflow.  
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The remainder of this thesis assumes that the LVA field for the variable of interest is 
known.  
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Chapter 4: Calculating the Shortest Anisotropic Distance 

This chapter is organized as follows.  Section 4.1 discusses the transition from straight 
line Euclidean distances to minimized anisotropic distances in the presence of LVA.  
Section 4.2 presents two methodologies to calculate the shortest path between 
locations.  The first method is based on convex optimization and is an iterative 
algorithm.  The method is found to be impractical for large geostatistical models 
because of high CPU requirements.  A second methodology based on graph theory is 
presented that proves to be faster and able to determine globally optimal paths; 
although, the paths are geometrically restricted to following discrete edges as defined 
by the graph. 

The methodology proposed in this dissertation is to incorporate LVA into geostatistical 
models by calculating the shortest path between points in an LVA field.  This calculation 
is the main contribution of this chapter.  Chapter 5 utilizes this shortest path calculation 
in numerical estimation and simulation. 

4.1 Moving Away from the Straight Line Path Between Points 
A number of practitioners (Deutsch and Lewis 1992; Xu 1996; Sullivan et al. 2007) 
incorporate LVA into geostatistical modeling by considering the variogram to be locally 
variable; that is, the anisotropy specification for the location being estimated is selected 
to be locally representative and the straight line path between the estimate and 
surrounding data is used (Case i in Figure 4.1).  Partitioning the path into piecewise 
linear segments, each with a constant anisotropy specification and calculating the 
anisotropic distance for every cell that the path intersects gives a more accurate 
measure of the covariance between points because this considers how the LVA field 
changes between two locations (Case ii in Figure 4.1).  The methodology in this 
dissertation takes this further and suggests that a nonlinear path between points results 
in a shorter distance when anisotropy is considered (Case iii in Figure 4.1).  There are 
three options to consider when determining the path between two locations: 

Case i:   Straight line path with the anisotropy specification obtained from the estimation location. 
Case ii:   Straight line path with the anisotropy specification obtained from all cells traversed. 
Case iii: Nonlinear path with the anisotropy specification obtained from all cells traversed. 

The distance between locations is calculated as the sum over all intersected blocks of a 
piecewise linear path between locations.  When anisotropy is globally constant the 
shortest anisotropic distance between points is obtained with the straight line path.  
This is not true with LVA.  The three cases are applied to a small example to show 
experimentally that nonlinear paths can be shorter than straight line paths in the 
presence of LVA (Figure 4.1).   
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Many authors have employed Case i (Figure 4.1) for the incorporation of LVA into 
geostatistical analysis; however, this does not consider that the LVA field changes 
between data locations.  If the LVA changes smoothly over the field and changes are 
observed beyond the range of the variogram, considering a constant local anisotropy in 
each kriging neighborhood may be reasonable. 

 
Figure 4.1: Paths between an unsampled location (p1) and a sampled location (p2).  Case i) using a straight 
line path and a single direction of anisotropy.  Case ii) straight line path with anisotropy defined for each 
cell.  Case iii) nonlinear path with anisotropy defined for each cell intersected. 
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Selecting the shortest path between two locations results in the highest covariance 
between points when the covariance is a monotonically decreasing function.  Thus, the 
problem addressed in this chapter is to determine the path between two points that 
results in the minimum anisotropic distance.  Once this optimum path has been found, 
the resulting distance can be used in kriging and simulation.   

4.2 Shortest Anisotropic Distance Algorithms 
Optimization techniques aim to find the parameters of a function that lead to the 
optimal solution.  Often times, this function is complex which limits the available 
algorithms.  With the shortest path problem, the function to be minimized is the 
anisotropic distance between two points (Equation 4.8).  Some optimization methods 
require the first and second derivatives of the objective function; therefore, if the 
objective function is twice differentiable a larger range of algorithms become available.  
Section 4.2.1 develops the objective function, its first and second derivatives and applies 
an iterative convex optimization algorithm, the guarded Newton method (Boyd and 
Vandenberghe 2004), to determine the anisotropic distance. 

A sub-branch of numerical optimization, routing, is of particular interest (Toth and Vigo 
2002; Azaron and Kianfar 2003).  Ship or plane routing in changing wind/current 
patterns and calculating the shortest distance in the presence of LVA are similar 
problems; however, one major difference is the number of calculations that must be 
accomplished.  Millions of paths must be optimized in a typical geostatistical modeling 
application rather than a relatively small number of vehicle routes.  Despite these 
differences, the field of routing provides useful insight into how to solve the shortest 
path problem.  There are many different approaches applied to routing but most often a 
graph is created for potential routes and the shortest path is solved using a graph theory 
algorithm (Laporte and Osman 1995; Anel 2005; Padhy et al. 2008).  Section 4.2.3 
reformulates the shortest path problem as a graph and applies the Dijkstra algorithm 
(Dijkstra 1959) to calculate the anisotropic distance. 

4.2.1 Optimization: The Guarded Newton Method 
Optimization techniques are applicable if an appropriate objective function is available.  
The objective function for this problem is the anisotropic distance between two 
locations (Equation 4.7).  The difficulty with formulating the shortest path problem as an 
objective function to be minimized is that the objective function is not convex.  
Determining the global solution to such problems is difficult and CPU intensive (Boyd 
and Vandenberghe 2004).  Because of the large number of paths that require 
optimization, CPU intensive global optimization schemes are not considered.  The initial 
path is the straight line path between the two locations and successive iterations 
attempt to optimize the path until the local minima is found.  The limitation of this 
assumption is that there could exist an alternative shorter path that is not discovered 
because the local minimum is not necessarily the global minimum.  Moreover, it will be 
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shown that the CPU demands for the local solution are too high for local optimization to 
be considered a practical solution to the shortest path problem (Figure 4.9).  The global 
solution would require additional CPU time and is thus impractical as well. 

The Newton method is an optimization algorithm applicable to functions that are 
convex and twice differentiable (Boyd and Vandenberghe 2004; Sun and Yuan 2006).  
Although the shortest path problem is not convex, it is locally convex and the Newton 
method discovers a local minimum.  The Newton method minimizes a function, f, using 

its second order Taylor approximation, f̂  , with ∇  the first derivative or Jacobian of f 
and 2∇  the second derivative or Hessian of f. 

 21ˆ( ) ( ) ( ) ( )
2

T Tf x u f x f x u u f x u+ = + ∇ + ∇   

This approximation is a second order function of u.  The minimum of this approximation 

occurs when  nu x= Δ , the Newton step: 
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When f is a quadratic function, the Newton step exactly minimizes it; otherwise it is a 
good approximation to the minimum of a non-convex function such as the anisotropic 
distance.  In the case of a non-convex function, the Newton method is developed as an 
iterative algorithm starting with iteration xk-1: 
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This is the pure Newton method; there is no control on where the step nkxΔ  positions 

xk for the next iteration.  For strongly convex functions when xk-1 is near the minimum 
this is usually not a problem.  For non-convex functions when it is unknown that xk-1 is 
near the minimum, the Newton step can position xk further from the minimum than xk-1.  

It becomes a divergent process, which is corrected by adding step control (t) to nkxΔ  : 

 1 1k k k k nkx x tu x t x− −= + = + Δ   

This is the guarded or dampened Newton method (Boyd and Vandenberghe 2004).  
Determination of t is accomplished with a line search algorithm in the direction of the 
Newton step.  There are various line search algorithms available such as the golden 
section search, successive parabolic interpolation or the backtracking line search.  These 

4.4

4.3

4.2

4.1
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and other line search methods are discussed in Chapter 2 in Sun and Yuan (2006).  The 

line search in the guarded Newton method finds the step size t in the direction of nkxΔ  

such that the 1D function 1( )k nkf x t x− + Δ  is a minimum (Figure 4.2).  For this 

implementation the backtracking line search was used. 

 

 
Figure 4.2: A line search algorithm discovers the step size, t=0.3, that results in the minimization of the 
function along the direction, 

nkxΔ . 

The algorithm for the guarded Newton method is: 

Step 1: Newton step: solve 
12

1 1( ) ( )nk k kx f x f x
−

− − Δ = − ∇ ∇   

Step 2: Line search: determine t with the backtracking line search 

Step 3: Update: 1k k nkx x t x−= + Δ ; 1k k= +  

This optimization technique is applied to the problem of shortest anisotropic distance 
with LVA.  In the above functions, x is interpreted as the path between two locations 
and f is the length of the path.  Successive iterations, xk, represent different paths with 
decreasing anisotropic distances.   

The distance between locations depends on the LVA field.  The field’s complexity may 
lead to a distance function that has numerous local minima – there is no guarantee that 
the guarded Newton method determines the global minimum but it does find a local 
minimum.  Visually, the shortest path problem is to determine the optimal red path in 
Figure 4.3. 
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Figure 4.3: Optimized path in the presence of LVA.  In a single block (right) where the anisotropy is constant, 
the path can be considered a series of linear segments.  Calculating the distance of a single segment and 
summing all segments gives the distance d2. 

The equation for the distance between two locations is required; the distance is the 
summation of the linear segments making up the shortest path, d1+d2+d3+d4+d5 (Figure 
4.3).  Equation 4.5 gives the squared distance of a segment when the anisotropy is 
constant (as in a single grid cell). 
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p0 and p1 are the xyz coordinates defining a segment and dij is a single segment as 
shown in Figure 4.3.  t is a control parameter that varies between 0 at p0 and 1 at p1.  
Equation 4.7 is obtained by rewriting Equation 4.5 as a summation over all m line 
segments.   

4.7

4.6

4.5



78 
 

To find the minimum squared distance between p0 and p1, an initial straight line path is 
assumed and the path is iteratively perturbed by adding and adjusting control points 
until the optimal path is found  (Figure 4.4).   

 
Figure 4.4: Components of minimizing the anisotropic distance. 

For n control-points, Equation 4.7 is re-written as the final objective function to be used 
in optimization (Equation 4.8).  The goal is to find the positions for the control-points 
such that the objective function (Equation 4.8) is minimal.  This is accomplished with the 
guarded Newton method, which requires the Jacobian (J) and Hessian (H) matrices of 
the objective function, defined by Equations 4.9 and 4.10 respectively.  Note that the 
objective function, D2(p0,p1), is non-convex because the rotation matrix, Aj(i) in Equation 
4.8 varies in every cell of the model. 
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In the guarded Newton method, the Jacobian and Hessian matrices are used to calculate 
a Newton step (∆v), which is a vector that describes the spatial translation to be applied 
to the control-points.  Calculation of ∆v for iteration k is done by solving the system in 
Equation 4.11.  The backtracking line search (Sun and Yuan 2006) is used to calculate the 
magnitude (α) of the step taken in Equation 4.12.  Implementing a line search prevents 
translation of control-points into undesirable configurations, such as intersecting loops 
or into positions beyond the LVA field.  More control points are added and translated 
according to the Newton step and the process repeats until no improvement in distance 
can be obtained. 

 H J⋅ Δ = −v   

 1k k kα+ = + ⋅Δv v v   

Depending on the nature of the LVA field the necessary number of control points can 
vary; two extreme cases may arise (1) anisotropy is nearly constant everywhere in the 
field or (2) anisotropy is highly variable in orientation and range.  In the first case, the 
minimum anisotropic distance can be found with few control-points, possibly with only 
one.  However, the second scenario may demand a control-point spacing equivalent to 
the LVA grid spacing. 

To account for this variability, control-points are inserted up to a maximum of the 
number of LVA blocks intersected between any two locations of interest.  After adding 
additional control-points, a new solution is found.  Optimization stops and control-
points are no longer added if the decrease in distance is less than ε (~square-root of 
machine epsilon). 

Minimizing the anisotropic distance between any two locations u and v in an LVA field is 
accomplished with the following algorithm: 

Step 1: Calculate initial distance between u and v, D(u,v). 
Step 2: Set iteration k=0, change in distance ΔD=Dk–Dk-1 and the number of control-points Ncp=0. 
Step 3: While ΔD(u,v) > ε and Ncp < maxcp: 

a. Insert 2k control-points, where k is the current iteration, Ncp=Ncp+2k. 
b. Calculate Jacobian, Hessian and Newton step for all control-points. 
c. Calculate step parameter α using backtracking (Sun and Yuan 2006). 
d. Apply the Newton step. 
e. Increment k. 

4.12

4.11

4.10
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A visual representation of how the gradient is used to determine the shortest path is 
illustrated in Figure 4.5. 

 
Figure 4.5: Optimizing the path between p0 and p1. The red path is optimal.  Left: Initial path (green) is 
straight.  The gradient (gray arrows) indicates which direction to translate the nodes in order to obtain a 
solution with a smaller anisotropic distance.  Middle: The control points are moved in the direction of the 
gradient and the resulting green path represents a shorter anisotropic distance.  The gradient is recalculated 
for the new green path Right: The final path is close to optimal. 

4.2.2 Guarded Newton Method Examples 
Example 1: Consider two points and the LVA field in Figure 4.6.  The LVA field is defined 
by the arrows shown on the plot and the different paths correspond to the optimal 
paths considering different anisotropy ratios.  If the anisotropy ratio is 1:1 there is no 
benefit in altering the path and the straight-line path results in the maximum 
covariance.  As the anisotropy ratio increases it becomes progressively more beneficial 
to consider a nonlinear path (Table 4.1).  Higher anisotropy ratios result in paths that 
deviate further from the straight-line path (Figure 4.6).   

 
Figure 4.6: Optimized path between p1 and p2 with various anisotropy ratios.  The major direction of 
continuity for each row is constant and indicated by the arrows. 

p1 

p2 
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Example 2: Consider the four point data configuration and the LVA field in Figure 4.7.  
Two cases are considered.  First, Case 1 considers that the straight line path is used 
between the points and the LVA field is used to calculate the distances of each segment 
(d1+d2+d3).  Case 2 considers optimizing the path between points.  Table 4.2 shows all 
distances between points for both cases; there is a decrease in the anisotropic distance 
when the nonlinear path is used.  If an exponential variogram with no nugget effect and 
a range of 50m is used, the associated covariances are calculated (Table 4.2) for 
estimating at location 1 with data at locations 2, 3 and 4.  Solving the resulting system of 
equations gives the kriging weights in Table 4.3. As expected, using the optimized path 
increases covariance between points and has a large effect on the kriging weights. 

Table 4.1: Optimized and straight-line distances between data in Figure 4.6. 
Anisotropy hstraightline hoptimized Difference 

1:1 8.7 8.7 0.0% 
2:1 15.34 15.31 -0.2% 
4:1 29.25 29.21 -0.1% 
5:1 36.32 31.42 -13.5% 

10:1 71.94 59.66 -17.1% 
1000:1 7170 6147 -14.3% 

Table 4.2: Anisotropic distances between locations for Example 2.  Location 1 is to be estimated with data at 
locations 2, 3 and 4.  Covariance is calculated using an exponential variogram with a range of 50m. 

Locations hstraight-line hoptimized Cstraightline Coptimized 
p1 – p2 36.8 30.3 0.11 0.16 
p1 – p3 18.1 15.2 0.34 0.40 
p1 – p4 40.1 33.5 0.09 0.13 
p2 – p3 29.6 29.1 0.17 0.17 
p2 – p4 48.0 48.0 0.056 0.056 
p3 – p4 18.6 18.5 0.33 0.33 

Table 4.3: Weights (λ) obtained for Example 2 using kriging.  Covariance values determined in Table 4.2. 
Location λ straight-line λ optimized Difference 

p2 0.0543 0.0952 43% 
p3 0.336 0.384 14% 
p4 -0.0229 0.00193 108% 

sum 0.37 0.48 30% 

 
Figure 4.7: Locations 2,3 and 4 are data.  Sample calculation: distance between points 1 and 4 is the sum of 
the segments d1+d2+d3.  Left: Case 1, straight line paths.    Right: Case 2, optimized paths.   
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While the guarded Newton method succeeds at finding a locally minimum nonlinear 
path between points that is shorter than the straight line path, the method is not 
practical for typical geostatistical modeling purposes because of CPU requirements.  The 
number of distance calculations in a typical geostatistical model is large; consider a 
moderate 1,000,000 cell model where the nearest 20 data are used for local estimation 
at each cell.   If kriging is applied, the distances between the 20 local data are required 
(20∙19/2 distances) in addition to the 20 distances between the data and the estimation 
location in question, for a total of 210 distances per grid cell.  In total, 1,000,000∙210  = 
210M distances are necessary for this example.  200M distance calculations is used as a 
benchmark for the following CPU time study; to be practical, the distance calculations 
should take less than a few days.   

For this time trial 10 random smooth LVA fields are generated by kriging the 
components of random control points that consist of an LVA angle and anisotropy ratio 
value.  Two of the 10 LVA fields are shown in Figure 4.8.  The underlying LVA field does 
have some effect on speed but even the most optimistic case requires 69 days to 
calculate the necessary distances.  Moreover, considering a 3D example adds additional 
CPU time not considered in Figure 4.9. 

 

Figure 4.8: 2 of the 10 randomly generated LVA fields.  The length of the line is proportional to the 
magnitude of the anisotropy (i.e. the anisotropy ratio).  
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Figure 4.9: Time required to calculate the required number of distances (d).  Each gray line represents a 
randomly generated LVA field.  The thick black line is a linear fit based on the average time.   

In addition to the excessive CPU requirements of the guarded Newton algorithm, this 
methodology is also unable to determine a globally optimal path; recall the initial 
assumption behind this application is that the locally optimal path, rather than the 
globally optimal path, produces sufficient results.  Consider the LVA field and associated 
optimal paths found with the guarded Newton method in Figure 4.10.  The optimal 
paths found are local minima which are far from the globally optimal paths found with 
the graph theory approach (Section 4.2.3).  Global optimization, such as random restart 
or simulated annealing, could be applied to find better global solutions but this would 
come at the cost of increased CPU time, which is already an issue when determining the 
local solution.  The drawbacks of the guarded Newton method necessitate a departure 
from convex optimization techniques.   

 

 
Figure 4.10: Example optimal paths using a channel LVA field indicated by the gray lines.  Anisotropy ratio is 
10:1.  Above – Using the Dijkstra algorithm (Section 4.2.3)  Below – Using the guarded Newton method the 
global solution is not discovered.  Models are nominally 50 cells by 10 cells. 
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4.2.3 Graph Theory 
Graph theory originated in 1736 when Euler proposed the Seven Bridges of Konigsberg 
problem (Euler 1736).  The shortest path problem is well researched in the context of 
graph theory.  A graph connects vertices (grid cell centers) through edges which are 
traversed to determine the cost between any two vertices (Figure 4.11). 

Rather than consider the shortest path problem as an optimization issue with an 
objective function that requires minimization (Section 4.2.1), the problem is 
reformulated as a graph problem.  Consider the graph in Figure 4.11 with the shortest 
path indicated in blue.  The edges between vertices each have an associated distance.  
The distance between vertices is the summation of the individual edge distances. 

A disadvantage of using this graph formulation is the limitation on the shape of the path 
between two locations.  Because vertices must be linked with individual edges, there is 
a geometric restriction placed on permissible paths (Figure 4.11 middle).  This limitation 
can be mitigated if additional vertices or edges are added to the graph, increasing the 
density of the vertices and increasing the flexibility of the paths (Figure 4.11 right). 

 
Figure 4.11: A graph representation of the shortest path problem in the presence of LVA.  Left: Rather than 
representing a model as a sugar cube grid, a model is represented as a graph with edges between vertices.  
Some relevant unit distances are indicated. Middle: A permissible path between vertices must traverse 
along edges.  The shortest distance between vertex 1 and 2 would be through vertices  3 and 4.  Right: 
Refining the graph allows for more flexibility in the shape of the path. 

 
Figure 4.12: Representation as a graph makes complicated domaining possible without explicitly generating 
multiple models (one inside the channel and one outside). 
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One advantage of the graph reformulation is the ease of integrating constraints into the 
problem; for example, if a channel system exists and is treated as a separate domain, 
the vertices can be disconnected to prevent paths from crossing domains (Figure 4.12).  
A second advantage is the large number of algorithms available for solving the shortest 
path including: Dijkstra algorithm (Dijkstra 1959; Cormen et al. 2003); Bellman-Ford 
algorithm (Cormen et al. 2003; Medhi and Ramasamy 2007); A* search algorithm (Hart 
et al. 1968); use of a genetic algorithm (Ahn and Ramakrishna 2002 which contains 
references to many other genetic algorithm approaches to the shortest path routing 
problem); use of neural networks (Ali and Kamoun 1993; Bu and Chiueh 1999); Johnson 
algorithm (Johnson 1977).  This list of algorithms is not exhaustive.  Cherkassky et al. 
(1996) present a good comparison of algorithms for solving the shortest path problem. 

 
Figure 4.13: Upper Left: The LVA field from Figure 4.1.  Anisotropy ratio is a constant 10:1. Upper Right: The 
grid is redefined as a graph with vertices (black circles) at the grid cell centers with edges (dashed lines) 
connecting the vertices.  Below: Methodology for calculating the distance of edge AB. 

In order to utilize a graph algorithm for solving the shortest path problem, the graph 
must first be constructed which involves defining the vertices and calculating edge 
lengths.  Consider the LVA field from Figure 4.1 with vertices located at grid cell centers, 
a constant anisotropy ratio of 10:1 and vertices linked to adjacent vertices only (Figure 
4.13).  In this example there are 16 vertices and 42 edges.  The length of each edge must 
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be calculated; note that each edge exists in two grid cells and its length is the 
summation of the portions of the edge in each cell.  Figure 4.13 explains the calculation 
of one edge length in a graph.  The final graph is constructed by repeating this process 
for each edge. 

Once graph construction is completed the problem is to calculate the shortest path 
between any two vertices.  In this dissertation, the Dijkstra algorithm (Dijkstra 1959) is 
implemented because it is very common and efficient public implementations are 
available (Siek et al. 2001).  The Dijkstra algorithm determines the shortest path from A 
to B by spiraling out from A until B is reached.  All possible paths are stored in memory 
and the first path to reach B is the shortest path.  Figure 4.14 shows a small example 
with the optimal distances and paths shown between three points in a channel LVA 
field.  The restriction of the path to following edges is apparent. The Dijkstra algorithm is 
explained in detail in Figure 4.15.   

One significant advantage of the Dijkstra algorithm is the ability to simultaneously solve 
for multiple shortest paths in a single pass.  Consider the final path in Figure 4.15.  In 
addition to solving for the optimal path between vertices A and B, the optimal paths 
have also been determined between vertex A and all vertices highlighted blue.  Thus, in 
a single pass with the Dijkstra algorithm the shortest distances from A to all 15 vertices 
are determined.  

 

 
Figure 4.14: Figure 4.10 reprinted.  Example optimal paths using a channel LVA field indicated by the gray 
lines.  Anisotropy ratio is 10:1.  Above – Using the Dijkstra algorithm the global solution is discovered but 
the path is restricted to the edges between vertices.  Below – Using the Newton method the global solution 
is not discovered but the path is unrestricted in shape.  Models are nominally 50 cells by 10 cells. 

The implementation of graph theory to the shortest path problem is beneficial for two 
main reasons.  First, within the initial assumption that potential paths are limited to 
following edges, the global solution is guaranteed.  Regardless of the LVA field, point 
configuration, etc. the Dijkstra algorithm determines the globally shortest path.  
Secondly, there are many efficient publically available implementations of the Dijkstra 
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algorithm.  The publicly available Boost Graph Library (Siek et al. 2001) is used.  The 
Dijkstra algorithm is also parallelizable, further increasing its suitability for the proposed 
problem.  (NOTE: recently an experimental release of a parallel implementation of the 
Boost Graph Library has become available that would significantly improve CPU times.  
See http://www.osl.iu.edu/research/pbgl/ for more details).   

 
Figure 4.15: Dijkstra algorithm steps. 
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The Dijkstra algorithm is sufficiently fast to allow for the calculation of the 200M+ 
distances required in a moderately sized geostatistical model.  The same 10 random LVA 
fields used in Figure 4.9 to test the CPU speed of the guarded Newton method are used 
to assess the speed of the Dijkstra algorithm (Figure 4.16).  Linear regression on the 
average time required for all 10 LVA fields suggests that 200M distances can be 
calculated in under 6 hours; the range in time for the 10 different LVA fields is from 5.2 
to 6.7 hours.  Appendix B presents more detailed time trials for larger grids. 

There are a number of factors that affect the CPU requirements of the shortest path 
optimization using a graph.  Parameters that influence run time include (1) 
dimensionality (2) the number of vertices in the graph (3) the number of edges in the 
graph (4) the LVA field itself and (5) data spacing.  Chapter 5 introduces techniques that 
will significantly reduce the number of distance calculations, as such, further discussion 
on CPU requirements are deferred to Chapter 5 when all elements of the proposed 
methodology are developed and can be jointly assessed. 

 
Figure 4.16: Time required to calculate the required distances (d).  Each line represents one randomly 
generated LVA field.  The thick black line is the linear regression based on the average time.  

4.2.4 Path Flexibility with the Dijkstra Algorithm 
A drawback of the Dijkstra algorithm is the restriction of the path between locations to 
the geometrical constraints of the graph formulation.  The following discusses increasing 
the number of offsets considered in the graph to generate paths that are not as 
constrained.   

Ideally, an infinite number of vertices and edges would populate the modeling domain, 
resulting in completely arbitrary and flexible paths.  However, considering too many 
vertices and edges results in intractable CPU times, while considering too few vertices 
and edges may result in paths that are less than optimal because of the geometrical 
constraints on the paths.  For geostatistical applications, it is recommended that the 
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vertices be assigned to grid cell centers to allow for direct transferability between the 
graph and the model (i.e. the typical sugar cube model).  With vertices fixed to model 
cell centers, only the edges can be manipulated to obtain more accurate paths.   

 
Figure 4.17: Left: Graph with vertices connected by 1 offset.  Right: Graph with vertices connected by 2 
offsets.  Thicker lines indicate which vertices are connected to the central vertex. 

Consider defining the edges by the number of grid offsets connected (Figure 4.17).  
Linking vertices separated by larger offsets increases flexibility in the path separating 
two locations.  When 1 offset is considered paths are limited to following 0˚, 45˚, 90˚ or 
135˚ directions with an average angle between permissible paths of 45˚ (Table 4.4).  This 
implies that the azimuth of the piecewise linear paths is restricted to 45˚ increments.  
Increasing the number of offsets to 2 allows for paths that follow 0˚, 26˚, 45˚, 64˚, 90˚, 
116˚, 135˚, 154˚ or 180˚ directions with an average angle between paths of 22.5˚.  As 
more offsets are considered the range of possible azimuth directions widens and 
increases the flexibility of the path (Table 4.4). 

While adding edges generates paths with increased flexibility there is an associated CPU 
cost.  The complexity of the Dijkstra algorithm is O(e+nlogn), where e is the number of 
edges in the graph and n is the number of vertices; increasing the number of edges has a 
linear effect on the CPU time.  The number of edges required in a graph increases 
quickly with the number of offsets (Table 4.4). 

Table 4.4: Permissible angles for increasing offsets with the Dijkstra algorithm. 
Number of  

offsets 
Number of 
edges (2D) Angles available Average angle 

spacing 
%decrease 
wrt 1 offset 

1 8 0˚, 45˚, 90˚, 135˚ 180˚/4 = 45.0˚ - 

2 24 0˚, 27˚, 45˚, 63˚, 90˚, 116˚, 135˚, 154˚ 180˚/8 = 22.5˚ 50% 

3 48 0˚, 18˚, 27˚, 34˚, 45˚, 56˚, 63˚, 72˚, 90˚, 
108˚,116˚, 124˚, 135˚, 146˚, 153˚, 162˚ 180˚/16 = 11.3˚ 75% 

4 80 
0˚, 14˚, 18˚, 27˚, 34˚, 36˚, 45˚, 53˚, 56˚, 

63˚, 72˚, 75˚, 90˚, 104˚, 108˚, 116˚, 124˚, 
127˚, 135˚, 143˚, 146˚, 153˚, 162˚, 166˚ 

180˚/24 = 7.5˚ 83% 
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The effect of the number of offsets on the optimal paths is shown with two examples, 
an anticline (Figure 4.18) and a channel (Figure 4.19).  Increasing the number of offsets 
beyond 3 does not visually increase the accuracy of the paths and has little effect on the 
average distance of the paths (Figure 4.20).  From these examples and the authors past 
experience with larger models, 3 offsets are sufficient to determine reasonable paths.  
The absolute maximum number of offsets that should be considered is given in Equation 
4.13.  Geostatistical estimation and simulation require the distance between grid cells 
and data, considering more offsets than Equation 4.13 suggests would connect vertices 
separated by more than the data spacing.  Often the number of offsets calculated from 
Equation 4.13 is too large to be practical and using 3 offsets as a starting point in a 
sensitivity analysis is highly recommended.  

 ݊௢௙௙ = ଵଶ ∙ ஽௔௧௔ௌ௣௔௖௜௡௚௅௏஺ ீ௥௜ௗ ௌ௜௭௘  

It is clear that the number of offsets has an effect on the shortest path taken.  Ideally, 
more offsets would be considered to determine optimal paths, but CPU time and 
memory requirements demand fewer offsets for large examples. 

 

 
Figure 4.18: Above Left: 51x51 anticline LVA field.  Anisotropy ratio = 10:1.  Above Right: Kriging result with 
LVA (Chapter 5).  Below: Shortest paths from the three drill holes to the lower left vertex.   Models are 
51x51. 
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Figure 4.19: Above Left: 51x51 channel LVA field.  Anisotropy ratio = 10:1.  Above Right: Kriging result with 
LVA (Chapter 5).  Below: Shortest paths from the three drill holes to the lower left vertex.  Models are 
51x51. 

 

Figure 4.20: Average distance between vertices when considering more offsets for the channel and anticline 
examples. 

4.3 Remarks 
This chapter presented two methodologies for calculating the shortest path between 
points in the presence of LVA.  The convex optimization technique, the guarded Newton 
method, is extremely CPU intensive because of its iterative nature and is unable to 
determine the globally minimal solution.  Alternative global optimization techniques, 
such as random restart or simulated annealing, could be used to obtain better global 
solutions; however, these techniques require additional CPU time and are deemed 
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impractical.  The guarded Newton method is not carried forward because of these 
limitations. 

A second technique based on graph theory proved to be more efficient in calculating the 
necessary number of distances in a reasonable period of time (200M distances in ~6 
hours).  Only the Dijkstra algorithm is used in future chapters to calculate the shortest 
path between locations.   

This chapter was limited to discussions of 2D graphs because the extension to 3D is not 
difficult, the only difference is in the construction of the graph (Figure 4.21) and the 
associated increase in the number of edges (Table 4.5).  Recall that the complexity of 
the Dijkstra algorithm is linear with respect to the number of edges in the graph. 

 
Figure 4.21: Left: 3x3x3 block model.  Right: 26 edges connected to the central vertex (black) in a 3x3x3 
graph.   

The main limitation with the Dijkstra algorithm is the restriction of the optimal path to 
following the edges.  It has been shown that this limitation can be mitigated by adding 
additional edges to vertices separated by larger offsets.  As more edges are added the 
range of angles the path can follow increases but the number of edges also increases 
(Table 4.5).  The addition of edges to obtain path flexibility must be balanced against the 
CPU requirements of the Dijkstra algorithm.  For smaller models more offsets can be 
considered but larger models are restricted to a smaller number of offsets (Chapter 6). 

Table 4.5: Number of edges per vertex in a graph. 
noff 2D 3D 
1 8 26 
2 24 124 
3 48 342 
4 80 728 
5 120 1330 

10 440 9260 
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Chapter 5: Estimation and Simulation with Anisotropy 

Geostatistics is focused on the spatial prediction of variables from sparse sample data.  
From these spatial predications of grade, porosity, saturation, concentration, etc. 
resource calculations can be made (Chapter 1).  This chapter incorporates LVA into the 
spatial prediction of variables by using the shortest path distance (SPD) developed in 
Chapter 4.  Section 5.1 presents a modified version of inverse distance weighted 
interpolation (IDW) to introduce the idea of spatial predictions as well as demonstrate 
the effects of using the SPD in geostatistical modeling. 

Kriging and sequential Gaussian simulation (SGS) are geostatistical tools often applied in 
resource evaluation studies.  These techniques use the best linear unbiased estimator 
(BLUE) to obtain optimal spatial predictions.  This requires the solution to a positive 
definite system of equations.  Section 5.2.2 introduces dimensionality reduction 
techniques that are implemented to guarantee the positive definiteness of this system 
of equations.  Sections 5.3 and 5.4 explore kriging and SGS with the SPD to incorporate 
LVA into resource estimation. 

Only small illustrative examples using simple LVA fields and relatively few cells (<3000) 
are discussed in this chapter.  A larger case study involving 1M cells and many data is 
presented in Chapter 6. 

5.1 Inverse Distance Weighted Interpolation (IDW) 
The most common form of spatial interpolation is the prediction of estimates from a 
weighted average of nearby data (Babak and Deutsch 2008).  This concept was 
introduced in Chapter 1 and is repeated here.  Weights, λα, (Equation 5.1) are assigned 
to surrounding data, zα, to generate an estimate, z*, at an unsampled location, u.  With 
IDW, the weights are inversely proportional to the distance between the unsampled 
location and the nearby samples (Equation 5.2).  The only parameter that is required for 
IDW is ω.  The purpose of this dissertation is not to discuss the parameterization of IDW, 
as such, a constant ω=2 is used throughout this chapter.  Interested readers are referred 
to Mueller et al. (2005) for further discussion on the optimization of ω. 
(ܝ)∗ݖ   = ∑ ఈ௡ఈୀଵߣ    (௨ഀ)ݖ
where n is the number of data available for estimation. 

ఈߣ   = భ೏ഘഀ∑ భ೏ഘഀ೙ഀసభ   

The incorporation of the SPD into IDW is straightforward, the distance in Equation 5.2 is 
replaced with the SPD: 

ఈߣ   = భೄುವഘഀ∑ భೄುವഘഀ೙ഀసభ    5.3 

5.2 

5.1 
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Using the weights in Equation 5.3 the IDW estimate maps are constructed.  Consider the 
anticline LVA field with three drill holes in Figure 5.1.  There are a total of 78 sample 
data, thus the distance matrix (D) between the 2601 grid nodes and the 78 sample data 
is required (Figure 5.2) to calculate the weights in Equation 5.3.  The resulting estimated 
map is shown in Figure 5.1.    

 

Figure 5.1: Left: Anticline LVA field with a constant anisotropy ratio of 10:1.  Right: Spatial estimates using 
IDW estimation with the three strings of data shown as hollow points.  Distances provided as unit distance. 

 
Figure 5.2: Unit distance matrix (D) between 78 data (3 drill holes with 26 data per drill hole).  Each row of 
the distance matrix represents the distance from one of the 78 samples to the 2601 cells in the model.  3 
offsets were used with the Dijkstra algorithm to determine the distance between locations.  Distances 
provided as unit distance. 

The locally varying dips of the anticline are well reproduced in Figure 5.1.  Often IDW is 
used as an exploratory technique in the early stages of a geostatistical project; however, 
there are situations when it is preferred, such as when the variogram is difficult to infer 
for a particular data set.  Notwithstanding the simplicity of IDW with LVA, if an 
estimated map is required it is more common to apply kriging.  Kriging estimates are 
optimal in a least squared error sense when considering all possible linear unbiased 
estimates (recall the description of kriging in Chapter 1).  Moreover, there are practical 
issues with applying IDW such as, sensitivity to the characteristics of the available data 
distributions (skewness, clustered data) and the exponent parameter (Babak and 
Deutsch 2008).  Kriging with LVA is presented as an alternative to IDW.  IDW estimates 
are compared to kriging in Chapter 6. 
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5.2 Embedding in q-Dimensional Euclidean Space 
Incorporating the SPD into kriging and SGS is not straightforward.  The mathematical 
foundation of kriging and SGS is based on the solution of a positive definite system of 
equations known as the kriging equations (Equation 5.4).   
 ∑ ,હܝఉC൫ߣ ઺൯ܝ = C(ܝ?, હ)௡ఉୀଵܝ ߙ      = 1, … , ݊  
If the covariances in Equation 5.4 form a positive definite covariance matrix, the solution 
to the kriging system of equations is unique and can be determined (Christakos 1984; 
Cressie 1993).  Normally, positive definiteness is ensured by using an Euclidean distance 
metric and a positive definite covariance function (Christakos 1984); however, positive 
definite covariance functions do not guarantee positive definiteness when used with the 
SPD metric (Curriero 1996 and 2005).  The SPD metric is mapped to a high dimensional 
Euclidean space using dimensionality reduction algorithms.  In the high dimensional 
Euclidean space it is relatively straightforward to find valid covariance models that are 
positive definite. 

5.2.1 SPD Metric 
The SPD is a valid distance metric (Curriero 2005).  A distance function, d(pi,pj), is a valid 
distance metric if it meets the following conditions for all locations i and j: 
Condition 1: d(pi,pj)≥0 and d(pi,pj)=0 iff pi=pj 
Condition 2: d(pi,pj)= d(pj,pi) 
Condition 3: The triangle inequality: d(pi,pj)≤ d(pi,pk) + d(pk,pj) 

The Euclidean distance metric, ݀(ܘଵ, (ଶܘ = ଵܘ‖ −  ଶ‖ଶ, is a valid distance metric as itܘ
meets all three conditions; constraints on the SPD can ensure that it is also a valid 
distance metric.  If the graph is bidirectional and all edges have a distance greater than 0 
(condition 1) the SPD function is a metric.  A graph is bidirectional when the cost to 
travel from node i to node j is equivalent to the cost to travel from node j to node i 
(condition 2).  Because the Dijkstra algorithm always discovers the shortest path 
between locations, the triangle inequality is also satisfied.  Cases exist when the SPD is 
not a valid distance metric, such as when there is zero cost between nodes (rare in a 
geostatistical application) or when the graph is directional (dij ≠dji).  The assumption that 
the graph is bidirectional (dij=dji) is often valid for typical earth science applications but 
can be violated when considering time series or unidirectional phenomenon such as 
wind patterns or stream currents. 

The SPD is a valid distance metric but this is not a sufficient condition to guarantee 
positive definiteness of the resulting covariance matrix in kriging or SGS (Curriero 2005).  
One solution to this problem is to embed the geostatistical grid into a high dimensional 
Euclidean space where valid covariance functions can be applied to ensure positive 
definiteness.  This embedding can be accomplished using a dimensionality reduction 
technique.  The main goal of these techniques is to reduce the dimensionality of data 
such that it can be analyzed and meaningful relationships determined.  One common 
technique is principal component analysis (PCA) (Pearson 1901; Hotelling 1933).  The 

5.4 
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following discussion explores various dimensionality reduction techniques that can be 
applied to the SPD with the end goal of obtaining a representation of the input distance 
matrix in a high dimensional Euclidean space such that the interpoint SPD is reproduced 
and positive definiteness is guaranteed. 

Dimensionality reduction algorithms take data that are of a high dimensionality and 
attempt to find a lower q-dimensional representation of the data such that the original 
features of the data are optimally preserved.  The original coordinates of earth science 
data are either in one, two or three dimensional space.  It should be noted that in this 
dissertation dimensionality reduction techniques are used to increase the dimensionality 
of the data.  The reduction in dimensionality is not a reference to the coordinates of the 
locations (2D or 3D); rather, consider the input distance matrix, D, between all grid 
locations in a model to be the original space and every location, defined by D, is mapped 
to a lower q-dimensional space.  The goal is to discover the optimal configuration of 
points in an Euclidean q-dimensional space such that D is best preserved. 

The majority of dimensionality reduction algorithms take the coordinates of high 
dimensional data as input and find a lower dimensional representation of the 
coordinates; however, a sub class of dimensionality reduction algorithms specifically 
attempt to preserve the interpoint distances between locations rather than preserving 
the data configuration as defined by a set of coordinates. 

Two algorithms, isometric feature mapping (ISOMAP, Tenenbaum et al. 2000) and local 
linear embedding (LLE, Roweis  and Saul 2000), are carried forward in this chapter.  
These algorithms are selected to be representative of the two categories of available 
techniques, global and local.  This selection, and subsequent rejection of algorithms 
presented in the extensive review of Maaten et al. (2008), is further justified below: 

1) PCA cannot be applied directly to a distance matrix and is very similar to ISOMAP, 
thus, PCA is not considered. 

2) All techniques optimize the dimensionality reduction in some manner; however, 
Autoencoders, LLC and Manifold charting (Maaten et al. 2008) require the 
optimization of a non-convex problem that is not considered because of the 
additional CPU requirements.   

3) As noted by Maaten et al. (2008), Kernel PCA, ISOMAP and Laplacian Eigenmaps are 
highly similar techniques and are special cases of Kernel PCA with different kernel 
functions.  As such ISOMAP is selected to represent these techniques as it is widely 
used in the literature.   

4) LTSA is similar to the Hessian LLE technique which is a variant of LLE (Maaten et al. 
2008).  LLE is carried forward to represent these local techniques. 

5) Diffusion maps require multiple random walks through the original graph and are not 
considered because of the CPU time required by the random walks used in these 
methods. 
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The following discussion introduces ISOMAP as an algorithm to embed points defined by 
a distance matrix into a q-dimensional Euclidean space.  The computational 
requirements of ISOMAP are intractable for the size of problems normally encountered 
in geostatistics; therefore two variants on ISOMAP are explored. 

5.2.2 ISOMAP 
Multidimensional scaling (MDS) (Mardia et al. 1976) is a statistical technique used to 
explain/map any type of similarities (i.e. covariances) or dissimilarities (i.e. distances or 
travel times) between data observations.  When these dissimilarities are obtained from 
a graph rather than from an Euclidean measure, MDS is referred to as ISOMAP 
(Tenenbaum et al. 2000; Maaten et al. 2008).  As an instructional example consider a 
road map, the problem is to spatially represent the travel time between cities on a 2D 
map (Figure 5.3).  The map can be considered a graph with roads (edges) connecting 
cities (vertices).  Travel time depends on a number of factors: distances between cities; 
speed limits; condition of roads; traffic; and road construction.  Two geographically 
close cities may require a large travel time, whereas two distant cities separated by a 
freeway may have a short travel time.  To visualize these travel times on a 2D map, the 
cities must be rearranged until the Euclidean distance between them is roughly 
equivalent to the appropriate travel time.  Because the proposed dissimilarity measure 
(travel time) is unlikely to be Euclidean, it is usually impossible to exactly reproduce the 
dissimilarities even in a higher q-dimensional space; however, MDS can be applied to 
accomplish the rearrangement in a way that minimizes stress (Equation 5.5) after 
mapping the cities to a new coordinate system (Figure 5.3).  The dimensionality of this 
Euclidean space can be as high as the input number of points less one.  Retaining more 
dimensions lowers the stress measure as there is more flexibility for locating the cities; 
alternatively, two dimensions could be retained for visualization but the resulting stress 
measure increases (Table 5.1). 

 
Figure 5.3: Above Left: Locations of 5 cities in Euclidean space with travel times indicated (hours).  Above 
Right: Cities in the first two dimensions (also an Euclidean space).  Note that the cities can also be 
represented in a 1D Euclidean space as a projection onto the first dimension (triangles on the x-axis).  
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Table 5.1: Table of distances/times between cities. 

 

In the context of LVA, ISOMAP is applied with the SPD.  Rather than travel times 
between locations, there are now optimized paths to provide the interpoint dissimilarity 
measure to be used in ISOMAP.   

Consider N observations with M=N(N-1)/2 (dis)similarities between grid cells (nodes).  
These (dis)similarities are often the covariance between points or the inter-point 
distances.  The inter-point distances from the Dijkstra algorithm (Chapter 4) provide the 
dissimilarity measure to be used in ISOMAP; therefore, the inputs to ISOMAP are M 
distances in a symmetric matrix (D).  ISOMAP maps the input dissimilarities, D, to a q-
dimensional Euclidean space where the straight line distances between locations 
approximately match the input dissimilarities.  There is some mismatch in the distances 
in the embedded space because of the impossible geometric configuration of the input 
distance matrix.  ISOMAP minimizes the mismatch between the original distances ( q

ijd ) 

and the mapped distances ( ˆ q
ijd ) in q dimensions as defined by a stress measure: 
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where N is the number of grid nodes in a geostatistical model. 

Applying ISOMAP to a distance matrix involves the following steps (Mardia et al. 1979; 
Tenenbaum et al. 2000; Loland and Host 2003).  Note that in this application of ISOMAP, 
the distance matrix, 2

ijd , is obtained from calculating the SPD between nodes i and j 

with the Dijkstra algorithm: 

 

 

5.5 
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Step 1: Construct matrix 2( 0.5 )ijd= −A .  Note that in D, 0iid =  and 0ijd ≥  

Step 2: Construct matrix B.  Elements of B are  
ij ij i jb a a a a• • ••= − − + , 

1

N ij
i j
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a

N• =
= , 

1

N ij
j i
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Step 3: Find q normalized eigenvectors (V) of B that correspond to positive eigenvalues:  
 1( ,..., )qv v=V   

Step 4: The coordinates of the input data are the q rows of V. 

The number of dimensions to retain, q, is a choice and can be selected to be 2 or 3 for 
visualization purposes; however, the size of q can be as large as the number of positive 
eigenvalues of B up to a maximum of N-1.  Calculating the stress resulting from different 
values of q can help in the selection of the number of dimensions to retain by locating 
the inflection point on a scree plot; however, using more dimensions always reduces 
stress but increases the CPU requirements of kriging and SGS.  Using the maximum 
number of dimensions results in the best reproduction of the input distances and is 
recommended.  It is also important to note that the dimensions can be ordered by 
eigenvalue and if q is selected to be less than the maximum, then the q dimensions with 
the largest eigenvalues should be selected to minimize stress. 

ISOMAP is a coordinate transformation where initially the grid cells are defined by the 
interpoint distance matrix, D.  After applying ISOMAP, each cell has a new set of 
coordinates in q dimensions defined by the rows of V.  Performing ISOMAP for the 
anticline example (Figure 5.1) results in the embedding shown in Figure 5.4.  The volume 
of each cell in the embedded Euclidean space may not be identical; however, volume 
variance relationships need not be considered as the embedded space is used only as a 
higher dimensional representation of the relationship between locations in the original 
space. 

 
Figure 5.4: ISOMAP transformation of a 51x51 grid using the anticline LVA field, distances are considered as 
unit distance.  The length of the path E-E’ is shown in both coordinate systems.  Note that in the ISOMAP 
coordinate system (left) there are 2600 dimensions (2601– 1) but visualization is only possible in the first 2 
or 3 dimensions.  Considering all 99 dimensions the distance E-E’ is 72.9units.  

5.6 
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The benefit of applying ISOMAP is illustrated in Figure 5.4.  All paths between locations 
are considered as straight line paths in the embedded space.  Because the embedded 
space is Euclidean, the resulting covariance matrix, when applying kriging or SGS, is 
positive definite.  One drawback to this embedding is that it is not perfect, thus, the SPD 
between locations are only approximately honored as per the stress criterion (Equation 
5.5). 

ISOMAP requires the eigenvalues/vectors of the distance matrix of all points that must 
be transformed, which would be the distance matrix between ALL nodes in the model at 
the required grid resolution.   This poses two problems (1) solving the eigen problem for 
a large dense system is not feasible, a million grid cell model would require the eigen 
solution of a 1M x 1M dense matrix and (2) generating the difference matrix between 
ALL nodes in a grid using the Dijkstra algorithm would be computationally infeasible 
(~5x1011 distances).  There are solutions to these computational problems which involve 
using the approximate ISOMAP of a subset of the grid.  Two main types of algorithms 
exist, local and global.  Local techniques, such as LLE, require a sparse difference matrix 
informed by local neighborhoods only.  This reduces the dense eigen problem to a 
sparse eigen problem, which is solvable even for large 1M x 1M matrices.  Global 
algorithms, such as landmark-ISOMAP (L-ISOMAP) reduce the number of nodes that are 
used in the distance matrix such that the eigen solution can be feasibly solved. 

Both global and local dimensionality reduction algorithms are attractive for the 
incorporation of LVA.  It is expected that global algorithms should maintain the complex 
nonlinear characteristics of large scale geological features while local algorithms would 
maintain the small scale details found within the larger scale structures.  LLE is a local 
algorithm that uses the distance between points found within a local search 
neighborhood only and ignores the distances between points outside the search, 
generating a sparse distance matrix that can be solved (Watkins 2007).  L-ISOMAP is a 
global algorithm that uses a series of widely spaced landmark points in calculating the 
distance matrix, reducing the size of the distance matrix and thus, reducing 
computational requirements. 

5.2.3 LLE and L-ISOMAP 
LLE (Roweis  and Saul 2000) is a local dimension reduction technique that attempts to 
reduce the computational demands of dimensionality reduction by reducing the number 
of dissimilarities in D.  LLE maps the input data to a set of coordinates where the 
neighborhood points in the original space are still nearby in the mapped space.  Nearby 
is defined by a search radius in original coordinates such that all pairs separated by a 
distance greater than the search are ignored and thus, not explicitly reproduced in the 
mapped coordinate system.  LLE assumes that each point and its neighbors lie on a 
locally linear patch of a manifold defined by the inter-point distances of the points in the 
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neighborhood.  Points are embedded in the new coordinate space using a set of 
reconstruction weights which optimize the squared error between the input coordinates 

of the neighborhood points iX


) and the reconstructed coordinates: 

 ( )2
( ) i ij i

i

Error W X W X= − 
 

  

The LLE procedure is summarized in Figure 5.5.  Roweis and Saul (2000) give a detailed 
description of the LLE algorithm. 

 
Figure 5.5: Steps of LLE: (1) Assign neighbors to each data point (for example by using the k nearest 
neighbors). (2) Compute the weights Wij that best linearly reconstruct D  from its neighbors, solving the 
least-squares problem in Equation 5.7. (3) Compute the low-dimensional embedding vectors best 
reconstructed by Wij, minimizing Equation 5.7 (as shown in Roweis and Saul 2000). 

L-ISOMAP is a global dimensionality reduction technique, significant current references 
include Silva and Tenenbaum (2003),  Balasubramanian et al. (2002) and Tenenbaum et 
al. (2000).  L-ISOMAP uses a set of L landmark points to reduce the computational 
demands of ISOMAP.  Consider the grid in Figure 5.6 with 121 grid cells (nodes).  
Applying ISOMAP to this grid would require the eigen solution of a 121x121 matrix.  
With L-ISOMAP, only the coarser landmark grid points are used in the embedding.  This 
requires the eigen solution of a 9x9 matrix (L=9).  Moreover, there are fewer 
dissimilarities to calculate with the Dijkstra algorithm, only the L(L-1)/2  SPD between 
landmark points are needed, rather than the full N(N-1)/2.  Note that this is equivalent 
to performing ISOMAP on the landmark points only.  To locate the remaining points in 
the grid their distances to the landmark points are also required.  Calculating the 
coordinates of all grid cells not considered as landmark point is analogous to 

5.7 
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trilateration (for example, determining location based on distance from a known set of 
satellites as done with GPS). 

There is an interesting synergy between L-ISOMAP and the use of graph theory to 
determine the distance between locations.  Recall that when applying the Dijkstra 
algorithm the distance from one node to all other nodes is calculated in a single 
execution of the algorithm (Figure 4.14).  As such, the Dijkstra algorithm need only be 
applied L times to obtain all necessary distances.  Further, because the user is free to 
select the value of L, the computational requirements of the proposed methodology can 
be mitigated by selecting a small value of L.  The consequence of a small value of L is an 
increase in the stress.  Chapter 6 shows that a very small value of L can result in 
reasonable results and considerable CPU savings.  This synergy does not exist when 
applying LLE; with LLE the Dijkstra algorithm is applied at each node in the grid to find 
the distances to the nearest k points. 

Many dimension reduction algorithms exist that could be applied to this problem, 
Maaten (2007) provides Matlab code to implement 27 techniques.  Examining LLE and L-
ISOMAP are representative of local and global dimensionality reduction techniques and 
are selected because they are often used in the literature as benchmarks.  Further 
implementation details of LLE and L-ISOMAP can be found in Maaten (2007).   

 
Figure 5.6: Locating point a using distance to nine landmark points (black). 

5.2.4 Comparing LLE and L-ISOMAP 
There are two criteria that must be considered when selecting a dimensionality 
reduction algorithm (1) minimization of the stress and (2) CPU time considerations for 
scalability to practical geostatistical model sizes.  The ideal algorithm provides the 
minimum stress with reasonable effort.  Locations are only embedded once, which 
implies that some extra CPU time can be incurred to minimize stress.  The CPU 
requirements and minimization of the stress for L-ISOMAP and LLE both depend on their 
respective input parameters, number of landmark points (L) and the size of the search 
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radius to define the nearest neighbors (k).  Table 5.2 provides a comparison between 
these input parameters.   

It is expected that both LLE and L-ISOMAP should perform better as k or L increases.  
Consider applying the algorithms to a channel example (Figure 5.7) with increasing 
values of k and L.   Stress is used to measure the performance of the algorithms; the 
lowest theoretical stress is obtained with classical ISOMAP and is 0.04.  Erratic results 
are obtained for some values of k when implementing LLE (Figure 5.7) and in some cases 
the stress measure even increases as k increases (Figure 5.8).  Conversely, L-ISOMAP 
behaves as expected with improving visual results as L increases (Figure 5.7) and a 
consistent decrease in stress (Figure 5.8).  Figure 5.7 also shows the effect of considering 
a limit on the number of dimensions, q, retained. 

LLE is unstable and provides a larger value of stress when compared to L-ISOMAP 
(Figure 5.7 and Figure 5.8); therefore, it is no longer considered.  The potential danger in 
selecting a single dimensionality reduction technique, L-ISOMAP, to carry forward is that 
it may be unable to capture the small scale variations seen in natural deposits.  Local 
techniques such as LLE should better reproduce short scale structures; however, in 
practice the unpredictability of LLE is a significant disadvantage (Figure 5.7 and Figure 
5.8).  Both LLE and L-ISOMAP were implemented but only L-ISOMAP will be discussed in 
the remainder of this dissertation. 

Table 5.2: Comparison of dimensionality reduction algorithms, CPU requirements and the impact on stress. 

Algorithm Control Parameter 
Distances to calculate 

with Dijkstra 
(N=nodes in grid) 

Matrix size for 
Eigensolution 

Expected effect on 
stress 

L-ISOMAP Number of 
landmark points (L) L∙N  Dense L x L ↑L = ↓Stress & ↑Time 

LLE 
Number of nearest 
neighbors in search 

(k) 
N∙k Sparse N x N ↑k = ↓Stress & ↑Time 

Classical 
ISOMAP None N∙N Dense N x N Stress minimized 
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Figure 5.7: Left: Channel LVA field used.  Above plots: Kriging with L-ISOMAP.  Number of dimensions and 
landmark points are varied (i.e. 25x25 = a landmark point every 25 blocks in the x and y directions).  Lower 
plots: Kriging with LLE.  Neighborhoods are defined by a search radius.  Plot dimensions are shown as unit 
distances with the hot colors (white and yellow) as high grades and black as low grade. 
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Figure 5.8: Above: Stress using L-ISOMAP.  Below: Stress using LLE.  Points indicate the stress using various k 
or L parameters.  The solid line represents the lowest possible stress using complete ISOMAP with 2600 
dimensions, note this is equivalent to using L-ISOMAP with L=2601. 

5.3 Kriging 
The only input required to kriging is a covariance function used to calculate the 
covariance between locations separated by a lag vector (h).  Once the covariance 
function is known the kriging weights are solved for all unsampled locations in the 
geostatistical model and a smooth estimated map is generated.  Kriging is implemented 
by the following algorithm.  Steps 4 and 5 have not been discussed and are expanded 
upon below. 

Step 1: Generate the LVA field (Chapter 3). 
Step 2: Calculate initial distance matrix between the landmark vertices (L-ISOMAP) and all cells in the model 

with the Dijkstra algorithm (Chapter 4). 
Step 3: Perform L-ISOMAP to embed all cells in a high dimensional Euclidean space (Section 5.2.3) 
Step 4: Model an isotropic variogram.  This variogram is used to obtain the covariance between locations 

given the SPD (Section 5.3.2). 
Step 5: For every grid cell: 

a. Determine the nearest n neighbors (Section 5.3.1) 
b. Calculate the required n by n distance matrix 
c. From the n by n distance matrix, calculate the covariance matrix using the modeled variogram 
d. Solve the resulting system of equations to determine weights for each datum 
e. Calculate the kriging mean and error variance 
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Kriging for a small example is shown in Figure 5.9.  Steps 1, 2 and 3 have been discussed 
previously.  Step 3 is necessary to ensure positive definiteness (Curriero 2005).  The 
required input parameters to kriging are: 

1) The LVA field (Chapter 3). 
2) The value of n.  In practice this value is usually set between 20-50 depending on the 

application. 
3) The isotropic variogram.  This variogram is modeled from the available sample data. 
4) The necessary parameters for dimensionality reduction.  These parameters, 

introduced in Section 5.2, are discussed more thoroughly in relation to a case study 
(Chapter 6). 

 
Figure 5.9: Kriging with LVA explained.  Note in Step 5, the distance calculated is the Euclidean distance 
between points in q dimensions, which approximates the SPD. 
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5.3.1 Searching for Nearby Data 
For computational considerations, it is common to restrict the number of data used to 
estimate a given location to the nearest n data in the local neighborhood (Deutsch and 
Journel 1998).  This step in kriging requires searching for the n nearest neighbors to the 
estimation location.  One search that has been implemented effectively is the 
superblock search (Deutsch and Journel 1998).  This search strategy indexes the 
available data based on a coarse regular grid and allows for fast retrieval of the nearest 
neighbors.  This indexing is done for each dimension considered, for example, data 
located in three dimensions would require n3 superblocks where each dimension is 
discretized into n superblocks (a detailed description of this search can be found in 
Deutsch and Journel 1998, page 33).  In the proposed methodology the available data 
are embedded in a q-dimensional space, use of the superblock search strategy would 
require indexing nq superblocks, which is prohibitive in terms of memory requirements.  
Consider a very small number of discretizations, n = 10, while retaining 15 dimensions; 
this would require the storage of 1015 indices.  Assuming 4 bytes per number for 
storage, this would require 3730 TB of storage, exceeding current RAM limits. 

An alternative search strategy is to use a k-dimensional tree (kd tree).  Note the change 
of notation, when discussing dimensionality reduction algorithms q denotes the number 
of dimensions for embedding, while k denotes the number of dimensions searched in 
the tree ( k ≤ q ).  The kd tree is a binary search tree specifically designed for searching in 
high dimensional space (Kennel 2004).  The superblock and kd tree search strategies are 
compared in 3D using a 51x51x26 grid (67,626 cells).  Data sets of 1,000, 10,000, 
100,000 and 1,000,000 are randomly generated in the grid and the time required to 
search for n nearest neighbors to each grid cell is calculated for each method (Figure 
5.10).  The large data sets were selected because the kd tree is also used in SGS (Section 
5.4.1) where all grid cells are included requiring searching through many locations.  

 
Figure 5.10: Comparing search times for the kd tree (kd) and the superblock (SB). 
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Even in low dimensional 3D space the kd tree outperforms the superblock search (Figure 
5.10).  For this study the search radius of the superblock search was optimized for each 
run such that 10, 20 or 40 nearest data are found at each estimation location with the 
smallest search radius possible; this represents the minimal time for the superblock 
search, in practice the search radius is rarely optimized and would likely require 
additional time.  The kd tree is more efficient in both CPU time (Figure 5.10) and 
memory requirements (allocation of a nq superblock grid is not required).  Moreover, in 
higher dimensions the superblock search becomes intractable while the kd tree simply 
takes additional time and memory (Figure 5.11).  Thus, the superblock search (Deutsch 
and Journel 1998) is replaced with a kd tree (Kennel 2004) to allow for searching in the 
q-dimensional embedded space. 

Using all available dimensions for searching requires additional CPU time (Figure 5.11).  
In cases of extremely large models it may be necessary to limit the number of 
dimensions such that k<q to decrease run times; however, large models require hours of 
processing time while using 100+ dimensions requires only an additional ~30 minutes 
for a 2M cell model.  The limitation of reducing the number of dimensions searched is 
that data that are in the search neighborhood of the estimation location may not be 
discovered.  Because the additional CPU time for searching is not large, it is 
recommended that all q dimensions be used for searching while kriging.  Searching for 
neighbors is made more difficult with SGS (Section 5.4.1) and considering k<<q may be 
necessary for large models due to memory requirements. 

 
Figure 5.11: Effect of increasing dimensionality and run time of the kd tree.  The 30 nearest neighbors of 2M 
grid cells are searched. 
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5.3.2 An Isotropic Covariance Function 
Kriging requires a function to calculate the covariance between locations, such as the 
variogram, γ(h).  The variogram represents the variance between two locations in space 
separated by a lag vector, h (Equation 5.8).  The variogram is often modeled by first 
calculating experimental variogram points from the method of moments technique 
(Equation 5.9) and fitting them with an analytical function. 

(ܐ)ߛ   = (0)ܥ −    (ܐ)ܥ

(ܐ)ߛ2   = ଵே(ܐ) ∑ ௜ݔ) − ௜ୀଵ(ܐ)௜)ଶேݕ    

The experimental variogram can be calculated for discrete values of h by pairing 
sampled data values separated by an appropriate lag, h, and calculating the variance.  
The covariance can depend on the direction of h as well as the magnitude; however, an 
isotropic covariance function is applied in LVA kriging.  The magnitude of h separating 
two locations in space, say point a and point b, can be determined by calculating the 
Euclidean distance between locations once they have been embedded in q dimensions 
(Equation 5.10).   

  ݀௔ି௕ଶ = ∑ ൫݈௔௜ − ݈௕௜ ൯ଶ௤௜ୀଵ    

where ݈௔௜  is the coordinate of point a in the ith dimension. 

 
Figure 5.12: Using the exhaustive secondary V data to generate the LVA field for U (from Chapter 3).  

Consider the Walker Lake data set introduced in Chapter 3 (Figure 5.12).  Using the LVA 
field developed in Chapter 3 the experimental variogram can be generated after 
applying L- ISOMAP with L=49 landmark points (7x7 pattern).  The experimental 

5.10

5.9 

5.8 



110 
 

variogram is calculated for the first 3 dimensions (Figure 5.13) and displays very little 
anisotropy, all three directions are virtually identical with respect to the variogram.  Of 
concern is the reduction in the range of the variogram, initially the range of correlation 
is between 20m-50m while after applying L- ISOMAP the range is reduced to ~10m.  This 
is because of the imperfect embedding in the new space.  This can be improved upon if 
all 48 possible dimensions are considered (Figure 5.13).  Moreover, increasing the 
number of landmark points, say to 100, better reproduces the variogram range in the 
original space (Figure 5.14 and Figure 5.15).  It is not critical to reproduce the apparent 
range of the variogram in the embedded space.  Consider three cases: 

Case 1) Retaining 3 dimensions using 49 landmark points (apparent range = 11m) 
Case 2) Retaining 48 dimensions using 49 landmark points (apparent range = 18m) 
Case 3) Retaining 99 dimensions using 100 landmark points (apparent range = 20m) 

Kriging with each case (Figure 5.15) reveals that the variogram ranges in the 76˚ 
direction and the 166˚ are actually increased, even though in the embedded space the 
ranges appeared lower.  There is no explicit use of the experimental variograms in the 
76˚ and 166˚directions, thus it is not expected that the experimental ranges of 20m and 
50m respectively be reproduced.  The increase in the variogram ranges (Figure 5.15) is 
due to the incorporation of the LVA field into the modeling process. 

The adoption of an isotropic covariance function is justified as the embedding of the grid 
removes all anisotropy from the data (Sampson and Guttorp 1992), this is the effect 
seen in Figure 5.13 where the variogram is nearly identical in the first three embedded 
dimensions.  An isotropic variogram in q dimensions can reproduce LVA because these 
features are captured by the inter-point distance matrix generated from the Dijkstra 
algorithm, rather than in an anisotropic variogram.  Considering anisotropy in the higher 
dimensional space would be redundant as the anisotropy should be captured in the 
underlying LVA field used to determine the shortest path between locations. 

   

Figure 5.13: Experimental variogram considering data embedded in q dimensions using L-ISOMAP. 
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Figure 5.14: Traditional experimental variogram using the Euclidean metric for the V variable in the 166˚ 
and 76˚ directions.  

 

 

Figure 5.15: Above: Kriging with different cases, color scale ranges from 0 (black) to 1700 (white), plots 
cover 260m by 300m.  Below: Variograms for each case. 
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Kriging requires the variogram so that a model of the relationship between the SPD and 
covariance can be determined.  Normally, the experimental variogram is calculated from 
Equation 5.9.  A positive definite function must be fit to the available experimental 
variogram to facilitate modeling.  Table 5.3 lists the common variogram models used in 
geostatistics.  It should be noted that any linear combination of these different functions 
also guarantees positive definiteness; this fact can be used to increase flexibility when 
modeling the variogram. 

Not all functions in Table 5.3 are positive definite for all dimensions.  Extensive literature 
exists that deals with the mathematical validity of covariance functions as well as testing 
potential functions for positive definiteness, the interested reader is referred to the 
following references for more information (Matheron 1973; Journel and Huijbregts 
1978; Christakos 1984; Armstrong and Diamond 1984; Myers 1991; Cressie 1993; 
Curriero 2005).  Because the available sample data are located in a q dimensional 
Euclidean space, the selected variogram function must also be positive definite in q 
dimensions (Curriero 2005).  If q is selected to be 3, then all variograms commonly used 
in practice are permissible.  However, to reduce stress (Section 5.2) it is recommended 
that q be as large as possible, thus limiting the available variogram models. 

Table 5.3: Some known positive definite variance functions. 

Function 
Name Equation 

Dimensions 
for positive 
definiteness 

Comments Relevant 
References 

Spherical (ܐ)ߛ = 1.5 ℎܽ − 0.5 ൬ℎܽ൰ଷ
  (see comment) 

One of the most common 
variogram types.  Could 

be made positive definite 
by considering the 

volume of intersecting 
hyper spheres. 

 

Exponential (ܐ)ߛ = 1 − ݌ݔ݁ ቆ− (3ℎ)ఠܽఠ ቇ 0 < ߱ < 2 
Any Dimension 

Positive definite in any 
dimension.  Useful as a 
default variogram type. 

 

Nugget Effect (ܐ)ߛ = ܿ Any Dimension   

Power (ܐ)ߛ = ܿℎఠ  0 < ߱ < 2 Any Dimension   

Matern Class 

(ܐ)ߛ  =1−߬ଶ ଶߪ+ ൝൫2఑ିଵΓ(ߢ)൯ିଵ ൭‖ܐ‖ഀഁ మൗథ ൱఑ ఑ܭ ൭‖ܐ‖ഀഁ మൗథ ൱ൡ Any Dimension See references for more 
details. 

Curriero, 2006 
or Paciorek and 
Schervish 2006 

5.3.3 The Kriging Variance 
An interesting result of considering LVA is that the kriging variance is bounded between 
traditional kriging with the maximum range and the minimum range used in the LVA 
field.  Consider a simple channel example where the anisotropy is 10:1 inside the 
channel and 1:1 outside the channel.  The range of the variogram used in LVA kriging is 8 
units with an exponential function (Table 5.3).  The resulting kriging variance is bounded 
by simple kriging with an isotropic range of 8units and simple kriging with an isotropic 
range of 80units (Figure 5.16).  Simple kriging with an isotropic range of 80units 
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represents a best case, minimum variance scenario for LVA kriging; the shortest path 
distance cannot be smaller than considering the straight line path between points with a 
range equivalent to 80units.  Similarly, simple kriging with an isotropic range of 8units 
represents a worst case, maximum variance scenario for LVA kriging; the SPD is smaller 
than or equal to the straight line path between points with a range equivalent to 8units.  
As such, the variance for LVA kriging (considering a monotonically decreasing covariance 
function) lies between the two extremes.   

 

 
Figure 5.16: Above: LVA field, modeling area is 40units by 40units.  Below: Variance with simple kriging 
(range = 8units and range = 80units) and variance with LVA kriging.  Section aa’ and bb’ are shown to the 
right. 

5.3.4 Synthetic Examples of Estimation with LVA 
A single specification of anisotropy is often insufficient to fully describe natural 
phenomenon.  Figure 5.17 contains a number of synthetic examples that highlight some 
of the types of geological features that can be reproduced with LVA including (1) folding 
(2) nonlinear channel/vein deposits or (3) smoothly changing local directions of 
anisotropy. 
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Figure 5.17: Examples of kriging with LVA.  Left: LVA field direction, anisotropy ratio is constant 10:1.  
Middle: Estimates with IDW.  Right: Estimates with kriging with an exponential variogram with a range of 
200 units.  Dimensions of all plots are 51x51 units.  The same three data strings with 78 total data were 
used in kriging.  The scale ranges from Black = 0 orange/gray=6. 

5.4 Sequential Gaussian Simulation (SGS) 
Recall that the motivation for considering SGS is the reproduction of the correct 
variability seen in the original data (Chapter 1).  This is accomplished by generating a 
number of different equiprobable realizations of the desired random function {Z(u)  u Є 
A}.  SGS uses kriging to calculate local conditional distributions; first, a location, u, is 
selected and kriging is performed using the nearby data to determine the parameters of 
the local Gaussian distribution, N(mu,σu).  A simulated value is then drawn from the 
N(mu,σu) distribution.  This simulated value is added to the growing list of simulated 
nodes and is used when simulating all successive locations.  SGS is described in detail in 
Figure 5.18.   Multiple realizations are accomplished by repeating the algorithm with a 
new set of random numbers. 

LVA Field                        Inverse Distance with SPD                     LVA Kriging 
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Figure 5.18: SGS explained.  Simulation of node A is followed by simulation of node B.  This process is 
sequentially repeated for all locations in the model.  Previously simulated nodes are included in the building 
of the kriging system of equations for each location. 

The necessary inputs to SGS are identical to those discussed in kriging: an LVA field; the 
number of nearby data to consider; an isotropic variogram; and the necessary 
parameters for L-ISOMAP.  There are two aspects of SGS that significantly increase 
computational requirements and require practical solutions.  The first aspect is the use 
of previously simulated locations when performing SGS.  As the sequential process 
proceeds, more simulated nodes become available.  When simulating at u, the growing 
list of previously simulated nodes must be searched to find the nodes in the 
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neighborhood of u, which is more computationally demanding than simply searching for 
nearby sample data as with kriging (Section 5.3.1).  The second aspect of SGS that 
increases computational requirements is the common practice of generating multiple 
realizations.  While the CPU time required to generate a single realization is reasonable 
(see Chapter 6) the time required to generate many realizations would not be practical. 
This section presents solutions to these two issues. 

5.4.1 Searching for Nearby Previously Simulated Nodes 
Implementation of the SGS algorithm requires the user to limit the number of data used 
to improve CPU performance.  Not all data can be considered as the solution to the 
kriging system of equations would require excessive CPU time; therefore, it is common 
to use m nearest data to the simulation location and ignore all other data (Deutsch and 
Journel 1998). 

All available conditioning data, such as drill holes or wells, are assigned to grid nodes.  
This is required for the usage of the Dijkstra algorithm when determining the SPD 
between locations.  As such, no distinction is made between previously simulated nodes 
and the initial conditioning sample data; data behave as previously simulated nodes that 
are fixed for each realization.  The term informed nodes is used hereafter to refer to grid 
cells that have been previously simulated or have been assigned data values.  The 
problem then reduces to finding the m nearest informed nodes to a given location, u, in 
a model with N total nodes.  This can be accomplished with the kd tree presented in 
Section 5.3.1 but become more difficult as more dimensions are considered (Figure 
5.19).  All N grid locations are loaded into the search tree and the nearest informed 
nodes are returned. 

 
Figure 5.19: Time required to search for the nearest informed nodes for a single realization.  A 100x100x50 
model (500,000 cells) was sequentially simulated.  Retaining more dimensions increases CPU times.   
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The kd tree built for simulation requires more memory than the tree used for kriging 
because all N grid locations must be added to the tree rather than only the initial sample 
data, often N > 2M.  Memory limitations may require a truncation of the number of 
dimensions used for searching (qsrch) such that qsrch<q.  The drawback of considering 
fewer dimensions in searching is the associated error in incorrectly identifying informed 
nodes that are near to u.  This is highlighted with the channel example (Figure 5.20).  
Consider the two cases where (1) all dimensions are used for searching and (2) only the 
first three dimensions are used for the search.  When all dimensions are used the 
ordering of nodes by distance is shown in Figure 5.21 (above), when only the first three 
dimensions are used the order is different Figure 5.21 (below).  The cross plot of these 
two orderings reveals that there is some difference in the orderings, but there is a high 
correlation (0.91) between them (Figure 5.22) and a very good match when the nearest 
50 data are considered.  The correlation between the ordering using an exhaustive 
search verses the limited search provides a measure of the error in limiting the search to 
only three dimensions.  This correlation would be 1 if the same ordering is found.  
Repeating this exercise for each node in the grid and plotting the correlation coefficient 
between the exhaustive search and the limited search reveals that the error is small 
when retaining only three dimensions for this example (Figure 5.23).  The error depends 
on the LVA field and is higher in areas of complex anisotropy (Figure 5.23).   

  

Figure 5.20: Channel LVA field showing central node (circle) used for searching.  Inside channel, anisotropy = 
10:1. 
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Figure 5.21: Above: Searching using an exhaustive search.  Below: Searching using only the first three 
dimension.  Grid cells are numbered by the order found when searching for neighbors of cell 1.   
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Figure 5.22: Scatterplot between the rank of each cell for the two searches, ρ=0.91. 

 
Figure 5.23: Each grid cell is visited and the 400 nearby cells are searched using the exhaustive search and 
the search limited to 3 dimensions.  The rank correlation between these two searches is plotted at every 
location.  The minimum correlation is 0.909. 

5.4.2 Considering Multiple Realizations 
The CPU requirements of SGS in this implementation are larger than considering 
constant anisotropy because of the calculation of covariance between locations.  When 
anisotropy is constant, a covariance lookup table can be created to determine the 
covariance between grid cells given their xyz index (Deutsch and Journel 1998).  This is 
not possible with LVA for two reasons (1) the data are no longer on a regular grid (recall 
Figure 5.4) and (2) the data are in q dimensions and would require a q dimensional 
lookup table that would be too large to store in RAM.  Regardless of the memory 
requirements, a covariance lookup table is only possible with regularly gridded data.  
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Thus, when simulating, the distances between all informed nodes within the local 
neighborhood must be calculated as in Equation 5.10. 

Multiple realizations, each with a different random path, are typically considered in a 
geostatistical work flow (Deutsch 2002).   Generating realizations with the same random 
path produces kriging matrices that are identical for all realizations.  The kriging 
matrices can be stored and used for all realizations to improve CPU time by a factor of r, 
where r is the number of realizations considered.  The calculation of the necessary 
distances between locations (Equation 5.10) cannot be avoided but if the same random 
path is used for all realizations, these distance calculations are identical for all 
realizations. 

A different random path is used for each realization (Figure 5.18) because some 
practitioners believe artifacts may arise otherwise.  Artifacts do occur if an axis aligned 
sequential path is selected (Isaaks 1991); however, there is no evidence that generating 
realizations using the same random path produces artifacts.  The concern is that 
considering only a single random path may produce realizations that are too similar, 
that is, realizations that to do not properly span the space of uncertainty in the random 
variable modeled, Z(u).  This can be assessed by comparing the statistics of realizations 
produced with the same random path to the statistics of realizations produced with 
different random paths.   

Consider the Walker Lake data set, the same data set used in Isaaks (1991) to show that 
an axis aligned path produces artifacts.  50 realizations are generated with a single 
random path and compared to 50 realizations generated with different random paths, 
no visual artifacts are noted (Figure 5.24).  Two statistics are assessed (1) the histogram 
of the realizations and (2) the variogram of the realizations.  If use of a single random 
path does not adequately span the space of uncertainty, the variations in these 
measured statistics would be reduced.  Figure 5.25 indicates that there is no reduction 
in the space of uncertainty for either the histogram or variogram when using a single 
random path for each realization; however, this result cannot be generalized to all 
models and models generated with a single random path explore a more limited region 
of all possible models.  Realizations with different random paths could be generated at 
an added CPU cost. 
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Figure 5.24: Above: Three realizations using different random paths.  Below: three realizations using the 
same random path. The scale ranges from black = 0m2, gray=1400m2. 

 

 
Figure 5.25: Above: Histograms of 50 realizations.  Below: Standardized variograms of 50 realizations.  SGS 
with LVA does not explicitly reproduce the experimental variograms in the 76˚ and 166˚ directions.  Of 
interest here is only the variability of the resulting statistics using a single random path. 
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5.5 Remarks 
Estimation and simulation algorithms form the core of geostatistical resource 
calculations.  This chapter presented IDW, kriging and SGS implementations that 
incorporate LVA.  Resource estimation methodologies, such as presented in Journel and  
Kyriakidis (2004), can be used with the modified algorithms to incorporate LVA.  

IDW techniques have the advantage of simplicity.  Inference is only required for a single 
power parameter, ω.  There is no need for a positive definite covariance function 
because a system of equations is not solved; the weights are calculated directly from the 
SPD.  This also implies that dimensionality reduction algorithms are not required to 
perform IDW.  The only computational requirement is the calculation of the necessary 
distances with the Dijkstra algorithm.   

Much of this chapter was driven by practical considerations of implementing kriging and 
SGS.  Ideally, a covariance function that ensures positive definiteness with the SPD 
metric would be available; however, no such function is known to exist.  Dimensionality 
reduction techniques, such as ISOMAP, provide a mathematical framework within which 
kriging and SGS can be applied and the original SPD matrix is approximately reproduced.  
Moreover, L-ISOMAP can be applied without the full SPD matrix between all grid 
locations providing a significant reduction in computational requirements. 

A number of approximations were made in this chapter to reduce the computational 
requirements of the methodology: (1) embedding of the grid nodes with an 
approximate dimensionality reduction technique (L-ISOMAP) rather than ISOMAP; (2) 
reducing the number of dimensions retained for kriging/SGS when searching for nearby 
informed nodes; (3) considering only a single random path with SGS.  These 
approximations increase the potential for error in the final estimates but have the 
advantage of reducing CPU run times.  Chapter 6 examines the errors resulting from 
these approximations in the context of resource estimation (i.e. grade/tonnage above a 
cutoff).  The effect of these approximations on the stress criterion (Equation 5.5) is of 
little interest in a practical application, rather the effect on resource estimation provides 
a more meaningful measure of the impact of the errors.  Thus, the focus of this chapter 
was on methodology while Chapter 6 demonstrates the practical implications and 
benefits of considering LVA. 

 



123 
 

Chapter 6: Case Studies 
The methodology for performing geostatistics with LVA was developed in Chapters 4 
and 5 with the generation of the LVA field discussed in Chapter 3.  This chapter presents 
the application of this methodology to model two data sets (1) the McMurray formation 
thickness in the Alberta oil sands and (2) gold grade in a copper/gold porphyry deposit.  
The first case study examines the application of geomodeling with LVA to a 2D thickness 
data set.  The 2D nature of this data set allows for a clear exploration of the details of 
modeling with LVA.  Issues such as selecting appropriate ISOMAP parameters, variogram 
modeling, LVA field resolution, and sensitivity to other model inputs are examined.  
Resulting errors from approximations such as reducing the number of landmark points 
in the application of L-ISOMAP are quantified.  The second case study involves modeling 
gold grade within a porphyry deposits and  demonstrates the methodology in three 
dimensions to provide guidance on practical issues when extending to the third 
dimension. 

6.1 Alberta Oil Sands Thickness 
The data used in this case study can be obtained from www.ercb.ca.  The data was used 
by the Energy Resources Conservation Board (ERCB) to determine which gas pools are in 
pressure communication with bitumen for the assessment of risk associated with 
extracting hydrocarbons with steam assisted gravity drainage (Warren 2003).  The data 
contains the thickness of a number of oil bearing stratigraphic layers.  The thickest and 
most significant layer is the McMurray Channel (Figure 6.1) which contains a significant 
proportion of the hydrocarbon resource in the region.  The ERCB study area consisted of 
two distinct regions, the northern and southern study areas (Figure 6.2).  Only the 
southern region, where the majority of the wells are located, is considered for this case 
study.  Of the 3265 wells evaluated for bitumen thickness, 2342 are located in the 
southern region.   

Further information on the depositional environment and stratigraphy of the Athabasca 
oil sands can be found in Ranger and Gingras (2003), Hein et al. (2000) or Carrigy (1959). 

 
Figure 6.1: Stratigraphic model of the area (Warren 2003). Average thickness of the McMurray channel is 17m. 
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Figure 6.2: Location of the ERCB study area (Warren 2003). 

6.1.1 The Data 
The available data extend 111km in the x-direction and 170km in the y-direction.  In the 
southern area there are a total of 2342 wells where the net continuous bitumen (NCB) 
thickness has been determined (Figure 6.3).  The data is partitioned into four subsets 
based on drill date (Table 6.1).  The base data set contains all wells drilled prior to the 
year 2000.  There are three other data sets that include wells drilled in 2000, 2001 and 
2002.  Such a partition allows for realistic model checking.  For example, geostatistical 
models can be created using the pre-2000 data and checked using the wells drilled in 
2000.  A second model, created using the pre-2001 data can be constructed and 
checked against the wells drilled in 2001.  This mimics the realistic evolution of a deposit 
as past models are often assessed based on future sampling.  The size of the 
geostatistical model for this study is 575 by 900 cells with dimensions 200m x 200m, for 
a total of 517,500 cells.  The cell size is selected to generate a model size that is small 
enough to assess the sensitivity of the methodology to the approximations discussed in 
Chapter 5; implementing a large number of offsets in the Dijkstra algorithm or a large 
number of dimensions with MDS is only possible on smaller models.   

Table 6.1: ERCB data summary.  Only data in the southern area (Figure 6.2) are considered. 
Data set Number of wells NCB Mean NCB Standard Deviation 

Pre-2000 wells 1673 14.3m 12.1m 

Wells drilled in 2000 166 24.4m 13.5m 

Wells drilled in 2001 284 25.7m 14.5m 

Wells drilled in 2002 219 23.3m 15.0m 

All wells combined 2342 17.2m 13.6m 
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Figure 6.3: Wells in the ERCB study area.  Wells are subdivided into four data sets based on their completion 
dates.  The shaded area indicates the extents of the geostatistical model for this case study.  Histograms are 
provided for wells in the southern area. 

6.1.2 The LVA Field 
In this case study it is assumed that there is no available secondary data to help infer the 
LVA field; this is the most difficult situation as little is known about the specific geology 
(i.e. location of the channels) and there is no secondary data that can be used to 
parameterize the LVA field (i.e. geophysical data or extensively sampled correlated 
secondary data).  Therefore, a number of potential LVA fields are generated based on 
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the sample data and carried through the analysis to account for the high degree of 
uncertainty in the LVA field. 

The first methodology used to generate an LVA field is the moment of inertia method 
(Section 3.3.2).  Recall that this methodology provides a direction of continuity as well as 
a magnitude of continuity.  The only parameter required to implement this technique is 
the moving window size, used to calculate the local covariance maps.  Square windows 
of 10km, 12.5km and 15km are used (Figure 6.4 and Figure 6.5).  The window sizes were 
selected based on a visual inspection of the resulting LVA fields; window sizes larger 
than 15km produce LVA fields that appear too smooth and do not capture the locally 
varying directions of continuity while window sizes smaller than 10km appear too 
erratic. 

Two manual LVA fields (Figure 6.6) based on the 2000 data are generated in addition to 
generating the LVA field from the moment of inertia method.  This is accomplished by 
block kriging (Deutsch and Journel 1998) the NCB data with a long range variogram and 
analyzing the resulting smoothed map.  Block kriging is implemented to produce a 
smoother map that highlights large scale features.  A normal score transform (Deutsch 
and Journel 1998) is used before kriging as simulation is performed in Gaussian units 
and requires input parameters, such as the LVA field and the variogram, in Gaussian 
units as well. 

Directions of continuity are manually selected based on the block kriged map (Figure 
6.6) and the x and y components of the directions are kriged to generate an exhaustive 
directional field (Section 3.3.4).  For simplicity, the anisotropy ratio for the first manual 
LVA field is constant.  The value of the constant anisotropy is determined by performing 
LVA kriging with multiple anisotropy ratios and selecting the one that performs best 
with crossvalidation (Figure 6.7).  The procedure, also known as leave one out analysis, 
is to estimate each data location with LVA kriging and compare the estimated values to 
the known truth.  This is done for each datum and the covariance between the true 
values and the estimated values is used as a measure of accuracy.  A range of anisotropy 
values are implemented and a constant value of 1:2.2 or 0.45 is selected.  This is based 
on the plateau reached after an anisotropy of 0.45, beyond 0.45 there is very little 
improvement in the cross validation results (Figure 6.7). 

A second manual LVA field is generated with the same directions of continuity but with 
a variable anisotropy ratio.  The variable anisotropy ratio is determined by further 
analyzing the cross validation results.  For each datum, the anisotropy ratio that 
generated the minimum error is assigned to that location (Figure 6.8 left).  The 
anisotropy ratio is then block kriged to generate the locally varying anisotropy ratio map 
for the second manual LVA field (Figure 6.8 right). 
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Figure 6.4: Major direction of continuity for the LVA fields from the moment of inertia method. 
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Figure 6.5: Anisotropy ratio for the LVA fields built with the moment of inertia method. 



129 
 

 

 
Figure 6.6: Left: Lines manually selected based on block kriged NCB.  Right: Direction of anisotropy from 
kriging the components of the manually selected directions.  NCB in Gaussian units is plotted.  Plot 
dimensions are identical.  

 

 

 
Figure 6.7: Resulting covariance between the truth and the estimate for various anisotropy ratios. 
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Figure 6.8: Left: Data for kriging the anisotropy ratio.  Right: Resulting anisotropy ratio map.  Plot 
dimensions are identical. 

6.1.3 LVA Field Assessment 
Using the moment of inertia method, an LVA field is built for each data set (Figure 6.4 
and Figure 6.5).  Preferably, the inclusion of additional data from 2000, 2001 and 2002 
should not significantly affect the LVA field if the LVA field is consistent with the deposit.  
If the LVA field changes significantly with additional data, the appropriateness of the 
LVA field to this case study would require reassessment.  Two graphical methodologies 
are provided to analyze the difference in LVA fields: (1) vector difference plots and; (2) 
maps and histograms of the errors (Figure 6.10). 

To generate the vector difference plots the anisotropy specification is treated as a 
vector with the direction of anisotropy corresponding to its orientation and the 
anisotropy ratio to its magnitude.  Comparing two LVA fields is accomplished by 
subtracting the vectors and plotting the result.  This provides a graphical representation 
of the variation in anisotropy at a single location and is shown for the LVA fields 
generated with the moment of inertia method and a 12.5km moving window (Figure 
6.9).  The addition of new data does not significantly alter the features of the LVA field; 
similar results were found for 10km and 15km moving window averages. 

A second measure of the difference between LVA fields is the difference between the 
anisotropy ratios and angles (Figure 6.9).  There are very few visual differences between 
the LVA fields generated with additional data, indicating the LVA field generation 
methodology is stable for this example.  The main differences in the LVA fields are 
concentrated at the edges of the available well data where the addition of new wells 
can have a large effect.  This is expected as these areas have the most uncertainty in the 
LVA field due to limited data availability. 
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Figure 6.9: Left: vector difference between data sets (i.e. 2000-2001 shows the vector difference between 
the LVA field built for the 2000 data and the 2001 data).  Right:  Histograms show the difference in the 
angles and anisotropy ratios between the respective LVA fields.  All LVA fields used a 12.5 km moving 
window average.  
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The LVA fields are similar (Figure 6.9) because all the moment of inertia fields are 
generated with the same methodology and additional data to not overly alter the LVA 
field.  Of greater interest is the comparison between the LVA field manually generated 
and the moment of inertia method.  Because the LVA fields are similar for each year 
considered, only the LVA field generated from the pre-2000 data set and a 12.5km 
moving window is shown (Figure 6.10).  There are four highlighted regions within the 
data extents where the LVA fields vary significantly.  The data in these regions do not 
display clear anisotropy, thus, the difference is attributed to the uncertainty in the LVA 
field.  The two LVA fields show similar anisotropy outside the highlighted areas where 
the anisotropy is well defined by denser data.  

 
Figure 6.10: Comparison between the moment of inertia LVA field (below left) and the manual LVA field 
(below right).  Above Left: Difference in the angle between the LVA fields (white = 90˚ difference, black = 0˚ 
difference).  Above Right: block kriging, in Gaussian units, used to determine manual LVA field (Figure 6.6) 
provided for comparison.  Both fields were built using the pre-2000 data.  Plot dimensions are 434750-
549750 in x and 6089750-6269750 in y. 
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Often the manual generation of the LVA field, when available, is preferred as it is a 
product of all expert knowledge available for the project; however, deterministic 
manual LVA fields often do not capture the uncertainty in the LVA field because 
generating many equiprobable fields is difficult.  Close visual examination of the 
highlighted regions on Figure 6.10 does not suggest that one methodology is more 
consistent with the conditioning data.  Rather, all LVA fields are carried forward to 
assess the impact of the LVA field on the methodology.  A single LVA field may suffice in 
situations where the LVA field is known with more certainty.   

There are a total of three LVA fields generated from the moment of inertia method for 
each data set considered with different moving window sizes and there are two LVA 
fields manually generated based on the pre-2000 data.  The different LVA fields are 
summarized in Table 6.2.   

Table 6.2: Summary of different LVA fields generated. 
Methodology Data set used Number of LVA fields Comments 

Moment  
of Inertia 

2000,2001, 
2002,2003 12 3 LVA fields were generated for data 

belonging to each year.   

Manual A Pre-2000 1 

 
Manual A considers a constant 
anisotropy ratio of 1:2.2 
 

Manual B Pre-2000 1 Manual B considers a variable anisotropy 
ratio determined from crossvalidation 

6.1.4 L-ISOMAP 
The mathematical requirement for positive definiteness of the kriging system of 
equations is addressed by L-ISOMAP (Chapter 5).  The input to L-ISOMAP is the location 
of L landmark points that are used to embed the geostatistical grid into a high 
dimensional Euclidian space.  The number and location of these landmark points must 
be determined. 

The most straightforward approach to defining the L landmark points is based on the 
required run time.  Recall that the shortest path distance (SPD, Chapter 4) from the L 
landmark points to each grid cell is required for embedding with L-ISOMAP.  Ideally, 
every cell in the geostatistical grid would be considered a landmark point, however, this 
may require prohibitive CPU time to determine the required distances with the Dijkstra 
algorithm.  Figure 6.11 can be used to determine the necessary run time given a 2D or 
3D geostatistical modeling grid with n cells.  The practitioner can select L such that the 
algorithm effectively runs in the allotted time available.  For example, if a 5M cell 2D 
model is required and 2 offsets for the Dijkstra algorithm are selected, the CPU time to 
calculate the distance from one landmark point to all grid cells is 113s.  If the 
practitioner is willing to wait 12 hours for this algorithm the maximum number of 
landmark points is L = 380.  
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Figure 6.11: Time required to calculate the distance from n grid nodes to a single landmark point. 

A more theoretical determination of L requires the use of an error measure such as the 
stress criterion (Equation 6.1).  L could be selected such that the error criterion is below 
an acceptable threshold.  A drawback to this methodology is that the threshold can vary 
depending on the LVA field used; it is not possible to select an acceptable stress level 
without knowing the lower bound on the stress.  This lower bound is determined by 
implementing traditional classical ISOMAP, i.e. L-ISOMAP with a landmark point at each 
grid cell.  Determining this lower bound is too CPU intensive for large models.  
Moreover, the stress is not necessarily a measure of importance in a geostatistical 
application; consider increasing every ˆ q

ijd  in Equation 6.1 by a factor of 10.  This would 

dramatically increase the stress but the resulting geostatistical realizations would be 
unchanged (only the variogram range would be increased by a factor of 10).  
Alternatively, a more practical solution based on the necessary CPU time can be applied. 
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where q
ijd  is the original distances, ˆ q

ijd  is the mapped differences in q dimensions and N 

is the number of grid nodes in a geostatistical model. 

Once the number of landmark points has been selected their location must be 
determined.  The most straightforward implementation would be a regularly spaced 
pattern of points.  The alternative is to optimize the location of the landmark points so 
as to minimize an error function.  As discussed, the stress measure may not be an ideal 
error measure because the lower bound on the stress is not known aprori. 

6.1 
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The effect of L-ISOMAP on the input grid can be visualized by plotting each grid in the 
first 2 or 3 dimensions of the embedded space (Figure 6.12).  For visualization of a 3D 
grid see Figure 6.24.  The smoothness of the manual LVA field is evident, while the 
moment of inertia method generates more erratic grids.  Note the length of the grid in 
the first three coordinates.  The dimensions are ordered by importance (i.e. variance of 
the linear combinations from L-ISOMAP); therefore, the range of the coordinates are 
arranged in decreasing magnitude. 

 
Figure 6.12:  Grids embedded in 2 and 3 dimensions for select LVA fields.  The moment of inertia LVA field 
was generated with a window size of 12.5km.  All plots have identical axes. 
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6.1.5 Estimation  
With the previous determination of the LVA field (Section 6.1.2) and the location of the 
landmark points for L-ISOMAP (Section 6.1.4), kriging can be applied to map the NCB.  
The same modeled variogram was used for all kriged maps (Figure 6.13) as the 
experimental variograms are similar for each LVA field considered.  Thus, the only 
difference in the kriging maps is the LVA field (Figure 6.14).  The modeled variogram 
consists of two exponential structures with ranges of 900m and 12,000m and 
contributions of 0.35 and 0.65 respectively.  A total of 100 landmark points were used 
with a spacing of 11.5km in the x direction and 18km in the y direction.  Inverse distance 
maps using the SPD are also provided for comparison. 

 
Figure 6.13: The experimental variogram for different LVA fields is different since the distance depends on 
the LVA field. 
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Figure 6.14: Simple kriging and inverse distance in Gaussian units using three different LVA fields.  A search 
range of 7,000m and a maximum of 30 data were used in kriging.  The pre-2000 data is used as conditioning 
data for these maps.  Models are trimmed to the convex hull of the conditioning data. 

A few comments can be made about the maps in Figure 6.14: 
1) The LVA field has a large effect on the continuity seen in the resulting maps, such as 

the NE direction of continuity in the southern area and the NW direction of 
continuity in the northern area.  

2) The effect of the local directions on the kriging variance is an elongation of lower 
variance parallel to the directions and an increase in variance perpendicular to the 
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directions (highlighted regions on Figure 6.14, lower left).  As expected, with 
traditional kriging the variance is elliptical and aligned with the global direction of 
continuity (350˚). 

3) The kriging maps are smoother than the inverse distance maps.  This is because the 
error in applying dimensionality reduction algorithms in this application is realized as 
an increase in the distance between locations, particularly for shorter distances 
(Figure 6.15).  This increase in distance results in a lower weight assigned to nearby 
data and a higher weight assigned to the global mean, effectively smoothing out the 
maps.  Dimensionality reduction algorithms are not required for inverse distance 
thus this smoothing effect is not seen.  

 
Figure 6.15: Distance reproduction (km) with L-ISOMAP. 

6.1.6 Sequential Gaussian Simulation  
Kriging maps are useful as they provide a local estimate that is optimal in the least 
squared error sense; however, they are not appropriate for resource and reserve 
calculations because estimates do not generally reproduce the input histogram and 
variogram (Journel and Kyriakidis 2004) and reserves are often biased.  Sequential 
Gaussian simulation (SGS) emerged as a practical solution to the biased reserves 
calculated with kriging.  The same parameters are required for SGS as with kriging.  The 
variogram in Figure 6.13 is also used here for SGS.  Figure 6.16 shows a number of 
realizations generated for each LVA field.  A total of 100 landmark points were used with 
a spacing of 11.5km in the x direction and 18km in the y direction. 
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Figure 6.16: 3 SGS realizations using various LVA fields.  Gray scale ranges from 0m NCB (black) to 40m 
(white). 
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At a minimum, SGS realizations must reproduce the histogram and the variogram of the 
input statistics (Leuangthong et al. 2004).  These statistics are shown for the LVA 
realizations in Figure 6.17 and indicate good agreement with the input.  Note that 
histogram reproduction is expected as simulations are performed in Gaussian units and 
back-transformed to match the input data histogram; however, the variogram of the 
input data is not explicitly used in the generation of realizations with LVA.  The 
variogram shown in Figure 6.17 is the variogram of the data before coordinate 
transformation with L-ISOMAP, while this variogram is not used in simulation, it is well 
reproduced.  A large discrepancy between the input data and the LVA realizations would 
indicate either (1) the use of an LVA field that was inconsistent with the model area or 
(2) poor parameter selection in L-ISOMAP such as using too few landmark points.   

The LVA is not as visually dominant as with kriging (Figure 6.14) because of the addition 
of variability to match the input histogram and variogram.  The LVA is somewhat 
masked; however, when the realizations are averaged (Figure 6.16) the features are 
more distinguishable.  Of interest when applying SGS is the resulting reserves calculation 
(Figure 6.18).  Often, steam assisted gravity drainage (SAGD) is implemented to recover 
the hydrocarbons present in these areas.  A cutoff of 18m-20m NCB thickness is 
common (Shin and Polikar 2005; Ren et al. 2006; Jimenez 2008); thus, of interest in the 
study area is how reserve calculations change for cutoff values >18m.  Reserve 
calculations are quite similar globally (Figure 6.18) but there is a difference in the local 
reserves (Figure 6.19) when two arbitrary areas, A and B, within the model are 
considered. 

The reserves calculation is sensitive to the choice of LVA field.  Consider the difference 
for area A when using the two manual LVA fields (Figure 6.19).  Both LVA fields consider 
the same directions of anisotropy (Section 6.1.2); however, there is considerable 
difference in the calculated reserves, most notably for the important cutoffs above 20m.  
Further sensitivity to the LVA field is assessed using the various LVA fields generated 
with the moment of inertia method (Section 6.1.2).  Recall that three LVA fields were 
generated with different moving window sizes.  The changes in the reserve calculations 
due to the LVA field are shown in Figure 6.20.   

The LVA field for this case study is not known with certainty and it may be inappropriate 
to assume a single deterministic LVA field.  Three moment of inertia LVA fields and two 
manual LVA fields were carried through the analysis to quantify the uncertainty in 
reserve calculations due to the uncertainty in the LVA field.  It must be stressed that the 
selection of the LVA field is a modeling decision.  Ideally, accurate geological knowledge 
of the area can be relied upon to construct reasonable LVA fields.  If accurate 
information is not available, the LVA field should be treated as an additional unknown 
variable and various LVA fields carried though the analysis, as shown here. 
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Figure 6.17: Above: Histogram reproduction with SGS-LVA.  Below: Original variogram reproduction with 
SGS-LVA.  The average variogram for the 50 realizations is shown as a solid line with points indicating the 
variogram of the original data. 

 

 

Figure 6.18: Reserve calculations using various LVA fields.  Reserves were calculated for 50 realizations and 
averaged. 
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Figure 6.19: % change in reserves compared to traditional SGS. Reserves were calculated for 50 realizations 
and averaged. 

 

 
Figure 6.20: Reserves for the entire area showing different LVA fields generated with the moment of inertia 
method.  Upper right figure shows the reserves for a NCB cutoff of 20m.  The two manual LVA fields were 
added to the upper right plot. 



143 
 

6.1.7 Sensitivity Studies 
This section presents the effect of various input parameters on geomodeling with LVA.  
The three data sets are used to assess the quality of the models generated: 

Case 1: Wells drilled pre-2000 are used to generate geomodels and assessed with wells drilled in 2000. 
Case 2: Wells drilled pre-2001 are used to generate geomodels and assessed with wells drilled in 2001. 
Case 3: Wells drilled pre-2002 are used to generate geomodels and assessed with wells drilled in 2002. 

In each case the models are assessed by examining the set of new wells.  A cross 
validation analysis provides the measure of model quality.  Specifically, the covariance 
between the truth from the new wells and the predicted model value is used.  The 
sensitivity of the covariance measure for the following parameters are assessed: 

1)   The number of landmark points 
2)   The number of dimensions to retain after applying L-ISOMAP 
3)   The grid resolution of the LVA field. 
4)   The number of offsets used in the calculation of the SPD with the Dijkstra algorithm. 
5*) The input LVA field (direction of continuity and the anisotropy ratio). 

* The LVA field is a significant modeling parameter that must be carefully analyzed and 
was the focus of Chapter 3.  The sensitivity of this case study to LVA field selection is 
not discussed here as the effect of the LVA field on reserves for this data set was 
analyzed in Section 6.1.6. 

Sensitivities are assessed for input parameters 1-4.  Each parameter is varied within a 
practical range of possible values (Table 6.3).  Because these parameters affect the 
implementation of L-ISOMAP, the variogram for each model is slightly different.  
Therefore, automatic variogram fitting software was applied for each variogram and 
visually inspected to ensure reasonable fits.  

Table 6.3: Summary of first 4 parameters assessed for model sensitivity. 
Parameter Minimum Value Maximum Value Default Value 

Number of landmark points 2 225 100 

Number of dimensions to retain 15 100 99 

Grid resolution of the LVA field 4 x 4 760 x 1200 230 x 360 

Number of offsets used with Dijkstra 1 5 2 

The grid resolution of the LVA field (Table 6.3) refers to the discretization of the LVA 
field.  A very coarse grid does not allow for flexible paths with the Dijkstra algorithm.  
Increasing the grid resolution generates more accurate SPDs but requires additional CPU 
time. 

The number of dimensions to retain (Table 6.3) refers to the number of dimensions 
after L-ISOMAP to retain in the embedding of the grid in a high dimensional space.  The 
maximum number of dimensions that can be retained is L-1; however, fewer dimensions 
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can be used to reduce the memory requirements of the methodology.  For each grid cell 
location, d dimensions must be stored in memory for easy access with the kd tree.  It 
may not be possible to store all (L-1)N coordinate locations.  Selecting d<<L-1 reduces 
memory requirements. 

As seen in Figure 6.21, the methodology is insensitive to the L-ISOMAP and Dijkstra 
parameters.  Thus, approximations can be made by significantly reducing the number of 
landmark points or offsets without adverse effects, so long as a minimum value is 
selected such that the results are stable (Figure 6.21). 

 
Figure 6.21: Effect of various parameters on the covariance measure.  Note the different scale in the lower 
left figure. 

6.2 Modeling Gold Grade in a Porphyry Deposit 
The previous 2D case study focused on the sensitivity of the methodology to the 
necessary input parameters for estimation and simulation.  The 2D nature of the ERCB 
data is convenient for a detailed analysis of the input parameters; however, the 
extension to 3D must be considered.  As discussed in Chapter 4 the additional issue 
arising from considering a third dimension is the increase in the number of nodes and 
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the edges for calculating the SPD.  This case study demonstrates the application of LVA 
to a 3D model. 

6.2.1 The Data 
The data consist of 119 drill holes for a copper/gold porphyry mine.  More details on the 
geology of porphyry deposits can be found in (Guilbert and Park 2007).  The data has 
been altered slightly to protect its origin; however, the spatial features remain the 
same.  For confidentially reasons, the exact location and geology of this data cannot be 
discussed. 

Data is available for both Cu and Au; however, only the Au grades are considered, 
although both variables display similar LVA.  Moreover, results are only provided for 
Gaussian transformed values to further ensure protection of the original data.  The 
same spatial features are present after the Gaussian transformation and are sufficient 
for this discussion.  

The data displays very clear nonlinear anisotropy (Figure 6.22).  Selecting a single 
direction of continuity for such a deposit is difficult.  Perhaps the best results could be 
obtained with an isotropic variogram because any direction selected is inappropriate for 
some locations in the model (see Figure 6.27 and Figure 6.28).  Taking advantage of the 
known locally varying directions of continuity can improve model performance.  This 
type of deposit is an ideal candidate for kriging with LVA as local features are clearly 
shown in the data but there is not sufficient data density to fully define the complex 
geology and control the resulting geostatistical models.   

A grid cell size of 5m in the x and y directions and 2m in the z direction is used for this 
model.  A model of size 100x100x100 cells is used for a total of 1M cells. 

6.2.2 Generating the LVA Field 
Block kriging generates a smooth map that can be used to determine the orientation of 
the LVA (Figure 6.22 left).  The LVA field is generated manually for this case study and 
consists of three distinct zones (1) within the circular feature, where visually there 
appears to be no anisotropy (2) the circular mineralized zone and (3) a transition zone 
between zones 1 and 2.  Plan sections were examined every 20m and the core of the 
deposit is manually defined by the center and radius of the inner dashed circle (Figure 
6.22 middle).  Parameters for this isotropic core are shown in Figure 6.23.  Within the 
isotropic core an anisotropy ratio of 1:1 is assigned to the LVA field.  Outside the core, 
the magnitude of the anisotropy increases linearly to 10:1; this transition zone has a 
thickness of 20m (Figure 6.22 middle).  The direction of continuity for this LVA field is 
tangential to a circle centered at the manually selected location (Figure 6.22 right).  Such 
an LVA field effectively captures the radial nature of the nonlinear geological features 
(Figure 6.22) as well as the isotropic barren core. 
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The LVA field is subjective and a sensitivity analysis as discussed in Section 6.1 could be 
applied for a better understanding of the uncertainty resulting from the LVA field; 
however, the purpose of this case study is to demonstrate the methodology in 3D.  As 
such, only this single, geologically realistic but subjective LVA field is carried forward. 

 
Figure 6.22: Left: Multiple slices of the block kriging map used to generate the LVA field.  Grade is shown in 
Gaussian units with low grade (blue and green) and high grade (red and yellow).  Middle: For each slice the 
anisotropy ratio is 1:1 inside the circle (defined manually for each slice) and 10:1 outside.  Right: The LVA 
field.  Length of the line is proportional to the anisotropy ratio.   

 
Figure 6.23: Parameters to fully define the isotropic core of the LVA field.  The radius and xy coordinates of 
the center of the circle were manually fit every 20m and linearly interpolated between. 
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6.2.3 Estimation with LVA 
For L-ISOMAP a total of 64 landmark points on a regular pattern of 4 x 4 x 4 are 
distributed evenly in the modeling area.  For the calculation of the SPDs a single offset is 
used.  After application of L-ISOMAP, the resulting 3D grid can be visualized in the first 
three coordinates of the embedded  63 dimensional Euclidian space (Figure 6.24).  Of 
interest in this visualization is the apparent overlapping of multiple gird cell locations 
(highlighted on Figure 6.24 right).  This can occur because there are no restrictions 
placed on the embedding; cell locations are free to be placed in any orientation such 
that the initial distance matrix is best reproduced (Chapter 5).  However, in this 
example, the overlapping of the grid cells occurs because the grid has been embedded 
in 63 dimensions and is only displayed here in the first three.  If the grid could be 
visualized in 63 dimensions, this overlapping would not be seen. 

2D slices of the transformed model indicate that the grid for each elevation is nearly 
identical (Figure 6.24 below right).  This is expected as the LVA field for each elevation is 
also nearly identical, as defined by an isotropic circular region surrounded by radial 10:1 
anisotropy (Figure 6.22). 

Kriging with a horizontal isotropic variogram is compared to kriging with LVA.  The 
variograms used to model the deposit are shown in Figure 6.25 with associated cross 
validation results in Figure 6.26.  There is a small improvement of 0.7% in the correlation 
when applying LVA; however, kriging with LVA realizes a greater gain of 101% when 
measured by the covariance.  Covariance can be a better assessment of model 
performance as it considers the standard deviation of the resulting models. 

Performing kriging with 64 landmark points, a single offset with the Dijkstra algorithm, 
30 nearest data and 1M cells requires a total of 70 minutes of CPU time with Microsoft 
Windows Server 2003 Standard x64 Edition and a 2.41GHz AMD processor. 

The goal of this case study is to generate realistic geostatistical models that incorporate 
LVA.  The conceptual model of this deposit suggested that the mineralized zone is 
concentrated in a radial pattern.  Further study of the kriging maps in Figure 6.27 and 
Figure 6.28 indicates that the assumption of a circular barren core may be too simplistic.  
Consider elevation -20m, in some areas an ellipsoidal core may be more consistent with 
the available data.  In practice, such modifications can be made iteratively to the LVA 
field if deemed necessary.  

When applying traditional methods with either a single direction of continuity or no 
anisotropy the high valued Au zones are often disjointed and interrupted when they are 
expected to be more continuous (Figure 6.27 and Figure 6.28).  When the data density is 
sufficient to adequately describe the geology, such as at an elevation of -20m, 
traditional methods tend to do well; however, this is not the case when the data density 
decreases, such as in elevation -60m. 
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Figure 6.24: 3D visualization of the embedded grid.  Above: the original grid shown in Cartesian coordinates.  
In both figures, the red surface is the upper slice of the model (z = 100) while the blue surface is the lower (z 
= -100).  The green surfaces represent the XZ and YZ boundaries of the block model.  Slices of the 
transformed grid for a constant elevation are shown below. 
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Figure 6.25: Variograms used to build models. 

 

 

 

Figure 6.26: Cross validation using traditional kriging (left) and LVA kriging (right) in Gaussian units. 
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Figure 6.27: Left: Kriging with LVA in Gaussian units.  Middle: Kriging with constant anisotropy in the 45˚ 
direction. Right: Kriging without horizontal anisotropy.  Elevation -80m through 0m.  Dimensions are 500m 
in the X and Y directions. 
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Figure 6.28: Left: Kriging with LVA in Gaussian units.  Middle: Kriging with constant anisotropy in the 45˚ 
direction. Right: Kriging without horizontal anisotropy.  Elevation 20m through 100m.  Dimensions are 500m 
in the X and Y directions.  
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6.3 Remarks 
The methodology proposed in Chapters 3, 4 and 5 was applied to two natural geologic 
deposits.  The first case study modeled the NCB thickness for an oil sands deposit in 
Northern Alberta.  The large extents of this deposit indicated that there were numerous 
directions of continuity within the modeling domain.  These locally varying features 
were effectively incorporated into geostatistical estimation and simulation.   

The main purpose of the NCB thickness example was to demonstrate the selection of 
the various input parameters required to implement the methodology.  Specifically, the 
generation of the LVA field and the selection of the necessary parameters for the 
Dijkstra algorithm and L-ISOMAP.  To summarize, the number of landmark points 
selected should be based on the allotted CPU time available.  The orientation of the 
landmark points can be a regular grid for simplicity.  A sensitivity analysis of the 
methodology to the selection of L-ISOMAP parameters showed that they have a small 
effect on the resulting model and can be lowered to a minimum threshold of 50 
landmark points to improve CPU performance if necessary.  In contrast, selection of the 
LVA field was shown to have a large effect on important reserve calculations and even 
more of an impact when local areas are analyzed.   

The application of LVA to generating 3D geomodels was shown for a Cu/Au porphyry 
deposit.  There are two main issues with extending the LVA modeling methodology from 
2D to 3D, the first was highlighted in Chapter 3 with the discussion of the increased CPU 
time required for determining distances in 3D.  The second issue is the increased 
difficulty in modeling the LVA field.  Often data can be adequately visualized in 2D and a 
number of techniques can be used to generate the LVA field, even manually assigning 
the directions and ratios.  Such data visualization is more difficult in 3D when the data 
are often aligned along a string making it difficult to simultaneously visualize all samples 
in the modeling area.  In the case of the Cu-Au porphyry deposit, the LVA could be 
adequately visualized in 2D slices of the data and manually fit to generate a realistic LVA 
field.  Such data visualization can be more difficult in 3D when the LVA is not axis 
aligned.  Overcoming the difficultly of modeling the LVA field in 3D is case specific. 

The benefits of modeling with LVA were apparent in both the reserve calculations for 
the net thickness (Section 6.1.6) as well as a 101% increase in cross validation 
covariance found in the porphyry example (Section 6.2.3). 
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Chapter 7: Conclusions 

In the case of modeling a variable that displays a single stationary direction of continuity 
over the entire domain of interest, traditional estimation and simulation algorithms 
adequately reproduce the existing anisotropy.  When the orientation or the magnitude 
of the anisotropy of a variable is not constant in the modeling domain, traditional 
methodologies fail to reproduce the LVA unless there is sufficient data density to drive 
the modeling and overcome the limitation of a single global direction of continuity. 

The proposed methodology can be used to incorporate LVA when there is geological 
knowledge that a deposit is characterized by LVA and when there is sufficient 
quantitative or qualitative knowledge to reasonably infer the LVA.  Models that are built 
to reflect this additional information have higher local accuracy and can be used to 
make better engineering decisions. 

7.1 Summary of Contributions  
Two main contributions emerged from this thesis.  The first contribution is the 
generation of the LVA field from a wide variety of data sources.  Typically, the 
exhaustive LVA field is not known for a deposit of interest and it must be inferred.  The 
second contribution is the integration of LVA into inverse distance, kriging and 
sequential Gaussian simulation. 

7.1.1 LVA Field Inference 
Inference of the LVA field is difficult as the available data rarely measures the LVA field 
itself.  Often, orientation and magnitude must be inferred from static point 
measurements of the property at widely spaced intervals.  A number of novel and 
existing methodologies were presented to generate the LVA field: 

1) Estimation or Simulation from Point Data (Section 3.3.1):  In the desirable situation 
when there are point measurements of anisotropy orientation, any estimation or 
simulation algorithm can be used to generate an exhaustive field.  This requires a 
decomposition of the anisotropy vector into X, Y and Z components to facilitate 
modeling of the anisotropy orientation.  This technique is also useful when 
generating a manual LVA field; the practitioner can manually assign the LVA 
specification at discrete locations (on section in 3D) and the exhaustive field can be 
estimated or simulated.  Simulation is used to generate multiple LVA fields when 
there is uncertainty in the LVA field inference. 

2) Manual LVA Inference (Section 3.3.2): Knowledge of the depositional characteristics 
of the deposit of interest can be used to infer the LVA field.  Such qualitative data can 
be incorporated into numerical modeling by imposing an LVA field with inferred 
characteristics from an in depth understanding of the genesis of the deposit.  
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Generating manual LVA fields also provides a base line with which to measure any 
automatic method employed.   

3) Moment of inertia (Section 3.3.3): The orientation and magnitude of anisotropy can 
be obtained by using the moment of inertia of a moving window covariance map.  
The orientation and magnitude are obtained by considering the covariance within 
each cell of the covariance map to be a mass; high covariance corresponds to high 
mass.  The moment of inertia tensor for the covariance map is used to calculate the 
axis direction in which the moment of inertia is minimized.  This corresponds to the 
major direction of continuity.  The magnitude of the moment of inertia can be used 
to determine the magnitude of anisotropy. This methodology can be applied to a 
densely sampled primary or secondary variable with the covariance calculated from 
the sample data or the methodology can be applied to an exhaustive secondary 
variable that is known to have the same LVA structure as the variable of interest. 

4) Automatic Feature Interpolation (Section 3.3.4):  This technique is an attempt to 
automatically replicate the process of a geologist generating an LVA field.  Locations 
that have similar data values are connected by polylines.  The orientation of these 
polylines corresponds to the orientation of the underlying LVA field.  Repeating this 
process many times and averaging the orientations results in a discrete 
measurement of the LVA field orientation at each data location.  These discrete 
angles can be estimated or simulated to generate an exhaustive LVA field 
orientation.  The methodology is straightforward in 2D but the necessary tolerance 
parameters become difficult to infer in 3D. 

The creation of the LVA field is a critical step in the incorporation of LVA into numerical 
modeling.  The LVA field has a significant effect on the resulting realizations or 
estimates.  Relevant geological knowledge should be combined with all primary and 
secondary data available to formulate a geologically realistic LVA field using the 
techniques presented.  If this LVA field is uncertain, which is nearly always the case, 
multiple fields should be generated to span the uncertainty in the LVA field and 
different scenarios carried though any relevant analysis.   

7.1.2 Algorithms: Estimation and Simulation with LVA 
The second contribution of this thesis is the incorporation of LVA into inverse distance, 
kriging and sequential Gaussian simulation which facilitates the generation of spatial 
numerical models for earth science variables.  In order to incorporate LVA into 
modeling, the relationship between locations must be known.  This relationship, or 
distance, between points is determined using the Dijkstra algorithm which calculates the 
shortest path through the LVA field.  Using this shortest path the relationship between 
points can be determined and numerical models can be generated that display complex 
nonlinear geological features.   
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Considering LVA with inverse distance estimation is straightforward.  The weights are 
inversely proportional to the distance raised to a power selected by the geomodeler.  
The shortest path distance is used rather than the traditional Euclidian distance. 

Incorporating LVA into a kriging or sequential Gaussian simulation framework is more 
difficult because the use of the shortest path distance between locations does not 
guarantee a positive definite system of equations.  To solve this problem, the entire 
modeling domain, characterized by a finite number of geological modeling cells, is 
embedded in a high dimensional Euclidian space with L-ISOMAP.  Appropriate variogram 
functions can now be applied to ensure positive definiteness because the space is 
Euclidian and the distances between locations are calculated along straight paths.   

The nonlinear distance calculated with the Dijkstra algorithm is the means by which LVA 
is incorporated into modeling.  The embedding of the grid using L-ISOMAP (or another 
MDS like technique) is simply a correction of the distances such that the kriging matrices 
can be solved.  While this step allows for a sound theoretical framework in which valid 
weights can be calculated, error is introduced into the process.  The distance between 
locations is only approximately reproduced in the embedded space, typically measured 
by the stress (Chapter 4).  This error must be accepted until a covariance or variogram 
function is discovered that proves to be positive definite with the shortest path distance 
metric. 

7.2 Context of Modeling with LVA 
The modeling methodology for an earth sciences problem is highly dependent on the 
unique characteristics of each case, but there are a number of steps that are often 
followed (Figure 7.1).  Many of these steps were not discussed in this thesis as the focus 
was on property modeling in the specific case when information is available that 
indicates that the assumption of second order stationarity is not valid.  In such cases, 
the methodologies presented throughout this dissertation can be applied to the 
Numerical Property Modeling step in a geostatistical workflow (Figure 7.1).   

The proposed methodology does not change the numerical modeling workflow when 
there is a single global direction of continuity that accurately describes the spatial 
structure of the variable of interest (i.e. second order stationarity).  Moreover, when 
there is so little information available about the LVA in a domain that it is not known if 
the assumption of second order stationarity holds, it is unlikely that the proposed 
methodology would improve spatial modeling.  The methodology proposed is intended 
for the situations when additional knowledge, such as geological surveys, extensive 
sampling of secondary variables, understanding of the genesis of the deposit or past 
experience can be relied upon to generate a reasonable assessment of local anisotropy. 
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Figure 7.1: High level flow chart of typical steps in a numerical modeling workflow.  This thesis is concerned 
with the Numerical Property Modeling step highlighted in gray. 
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7.3 Advantages and Limitations 
The main advantage of incorporating LVA into numerical models is an increase in local 
accuracy.  When complex nonlinear features are known to exist they should be 
modeled.  Directly placing these features into numerical models can be difficult and 
time consuming; however, LVA can be used to model the effect these features have on 
the variable of interest.  For example, recall the porphyry deposit from Chapter 6.  
Reproducing the physics of the complex geological events that created the radial 
pattern of grades would be difficult; however, the effect these complex geological 
events have on gold grade is a simple radial pattern of grades that can be modeled with 
LVA. 

A beneficial property of the models generated with LVA is that they appear to be more 
geologically realistic.  A criticism of conventional modeling is that it does not generate 
models that are visually realistic.  While a numerical model is rarely created to visually 
match reality, there is merit to the argument that major geological features that 
significantly impact the variable of interest should appear in any numerical models of 
that variable.   

Often a transfer function is applied to numerical models, such as (1) flow simulation for 
hydrocarbon production prediction (2) reserve calculation for mineral commodities or 
(3) contaminate level prediction for hazardous materials.  An apriori assessment of the 
impact of the perceived LVA on the appropriate transfer function is required.  It is not 
necessary to incorporate LVA if it is unlikely that the LVA will affect the outcome of the 
transfer function.  For example, the calculation of global resources without a cutoff 
grade depends almost entirely on the data histogram rather than the spatial 
arrangement of grades, as such, models built with and without LVA return similar 
resource estimates; however, when models are built to calculate local reserves the 
effect of LVA could be significant depending on the features and the area under 
consideration. 

There are some drawbacks to implementing the proposed methodology.  The most 
significant limitation is based on available computer resources.  Even with efficient 
implementations, the Dijkstra and L-ISOMAP algorithms are extremely CPU and memory 
intensive.  This may limit the size of model that can be generated.  This limit also affects 
the accuracy of the embedding as it is not computationally feasible to consider classical 
MDS (or ISOMAP) for the large grids that are required in the earth sciences.   

With respect to the necessary input parameters of numerical modeling with LVA, kriging 
and simulation require (1) a modeled variogram (2) necessary search parameters (3) the 
LVA field.  The modeled variogram is typically straightforward to estimate in this 
methodology because in most situations there is sufficient data density to inform an 
isotropic variogram; however, with extremely sparse data this becomes an issue.  The 
necessary search parameters are typically straightforward to select and are often based 
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on the range of correlation.  Where the input to kriging/SGS with LVA diverges from 
traditional geostatistical tools is in the inference of the LVA field.  This is the most 
difficult, subjective and time consuming parameter that must be inferred for the 
application of LVA.  Selecting an inappropriate LVA field will have a large impact on the 
resulting models.  Carrying multiple LVA fields through the modeling process is 
recommended to account for the inherent uncertainty in the LVA field but this increases 
the professional time required.  In the situation where there is no reliable information 
to inform the inference of the LVA field, the application of the proposed methodology in 
this thesis is not recommended. 
 
The final drawback of the methodology is the application of L-ISOMAP.  The use of L-
ISOMAP can be thought of as a fix necessary to ensure that the weights in kriging and 
SGS can be determined.  In the embedding process, some information is lost as a perfect 
embedding (stress=0) is rarely possible.  As such, this fix introduces error in the 
distances.  Ideally, classical MDS would be applied to minimize this error; however, the 
computational requirements of MDS are high and L-ISOMAP is required for large 
models.  Note that with inverse distance this is not the case as no embedding is 
necessary. 

7.4 Future Work 
The overall methodology for numerical modeling with LVA was developed in this thesis.  
There are a number of details that could be further researched that are likely to 
generate sizeable incremental improvements over the presented methodology: 

1) The main assumption inherent in the implementation of the Dijkstra algorithm is that 
the path between locations follows the edges that define the graph.  This limits the 
shortest path to a restrictive piecewise linear geometry.  The true minimum distance 
would be determined if an arbitrary geometry was allowed. 

2) The development of a variogram function that is positive definite with the shortest 
path algorithm would eliminate the requirement of embedding with L-ISOMAP.   

3) The incorporation of LVA into numerical modeling for a single variable was 
considered.  In practical applications there are often many variables to consider.  
Modeling multiple correlated variables with potentially different LVA fields should be 
explored. 

4) Ultimately, the numerical models generated with LVA are used for a purpose (Figure 
7.1).  Exploring the effect of LVA on these transfer functions, such as flow simulation 
or contaminate classification, would highlight the utility of the methodology 
presented.  

5) Optimal sample placement in the presence of global anisotropy has been explored 
(McBratney et al. 1981).  New samples are placed such that the most information is 
obtained (i.e. far from existing samples and in areas of high heterogeneity).  
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Exploration of sample design in the presence of LVA would allow for better 
optimization of future sampling campaigns for deposits with LVA. 

6) Integration of the proposed methodology into commercial software packages to 
encourage usage of the methodology. 

7) Creation of additional tools and methodologies to assess and quantify the 
uncertainty in the LVA field and its impact on resulting transfer functions. 

8) Validation of the methodology on other real data sets would increase confidence in 
the methodology.  Demonstrating improved predictions of flow response after flow 
simulation of realizations that display LVA would emphasize the benefits of the 
methodology and establish the place of these tools. 

7.5 Final Remarks 
Inverse distance, kriging and SGS with LVA account for second order stationarity but do 
not explicitly deal with issues of first order stationarity.  In domains that are neither first 
nor second order stationary, the proposed methodology to incorporate LVA should be 
coupled with techniques that consider first order stationarity (McLennan 2008).   

It should be noted that the proposed methodology does have some reliance on the 
assumption of second order stationarity.  Rather than classical second order 
stationarity, where the variogram is constant in the domain, this methodology assumes 
that the isotropic variogram in the transformed q dimensional space is stationarity.  This 
can be thought of as a relaxation of typical second order stationarity assumption. 

The scope of the proposed methodology to incorporate LVA is not limited to mining and 
petroleum applications.  Any industry that requires numerical models of spatial 
variables could potentially require incorporation of LVA.  Chapter 1 briefly discussed the 
application of LVA in an environmental context with the illustrative example of pollution 
spread in the presence of wind.  It is expected that many industries could benefit from 
integrating LVA into numerical modeling. 

Complex nonlinear geological features often have an impact on the end use of the 
numerical models.  Care must be taken such that the geomodeler does not see 
anisotropic features in a deposit that are simply a result of preferential, sparse or 
erroneous sampling.  If the features have a reasonable geological explanation and are a 
characteristic of the modeling domain rather than simply a sampling phenomenon they 
should be incorporated into numerical modeling when they are deemed to have an 
impact on the end use of the model. 
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Appendix A: Detailed Numerical Example: Calculating 
Distance and Covariance in the Presence of Anisotropy  

In a traditional implementation of kriging, anisotropy is constant in the modeling 
domain and is used to calculate the distance between points.  To estimate at an 
unknown grid cell location, the anisotropic distance is used to generate a covariance 
between points with a variogram function; the covariance between points is used to 
generate a weight to give to each datum with the kriging equations.  Once the weights 
have been determined the estimate is calculated.  The following numerical example 
demonstrates how to calculate the anisotropic distance and covariance between two 
points. 

 
Figure A1:  The Euclidian distance between the two points (distance without considering anisotropy) is 2 
units in the vertical direction and 2 units in the horizontal direction.  For the anisotropic calculations an 
anisotropy ratio of 10:1 is assumed. Left: No anisotropy. Middle: Anisotropy in the 30° direction. Right: 
Anisotropy in the 120° direction. 

Case 1: No Anisotropy 
The distances between the two points is, ݀ଶ = √2ଶ + 2ଶ = 2.82 units.  
Case 2: Anisotropy in the 30° Direction. 
First the components in the 30° (d2a=2.73) and 120° (d2b=0.732) directions are calculated 
using basic trigonometry.  Once these components are known, the anisotropy ratio 
(which defines the magnitude of the anisotropy in the 45° direction) can  be used to 
calculate the distance between points.  For this example a 10:1 anisotropy is assumed, 
thus the anisotropic distance (d2) is: 

݀ଷ଴° = ඨ൬ ݀௔ܽଷ଴°൰ଶ + ൬ ݀௕ܽଵଶ଴°൰ଶ = ඨ൬2.7310 ൰ଶ + ൬0.7321 ൰ଶ = 0.781 units 
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Case 3: Anisotropy in the 120° Direction. 
This same equation can be used to calculate the distance if the anisotropy is in the 120° 
direction.  The components are now: d2a=0.732 in the 120° direction and d2b=2.73 in the 
30° direction: 

݀ଵଶ଴° = ඨ൬ ݀௔ܽଵଶ଴°൰ଶ + ൬ ݀௕ܽଷ଴°൰ଶ = ඨ൬0.73210 ൰ଶ + ൬2.731 ൰ଶ = 2.73 units 

The effect of anisotropy is to reduce the distance between points along the direction of 
anisotropy. 

Using a Rotation Matrix to Calculate Distance 
The operations shown above can be automated by introducing a rotation matrix:   

 

( ) ( )
1 1 1

2 2 2

cos cos sin sin sin sin cos cos sin sin cos sin
1 1 1sin cos cos cos sin

1 1 1cos sin sin sin cos sin sin cos sin cos cos cos

R
r r r

r r r

α ϕ α β ϕ α ϕ α β ϕ β ϕ

α β α β β

α ϕ α β ϕ α ϕ α β ϕ β ϕ

 
 − − − 
 

=  
 
 
 − − −
  

  

where two points are separated by the vector (h).  The direction of anisotropy is defined 
in 3D by three angles, strike (α) dip (β) and plunge (ϕ).  The magnitude of anisotropy is 
defined by two ratios: r1 is the ratio between the minor and major directions and r2 is 
the ratio between the vertical and major direction.  The calculation of the anisotropic 
distance becomes: 

 
2 ( ) T Td R R=h h h   

For the example, when anisotropy is considered in the 30° direction: 

( ) ( )

cos30cos0 sin 30sin 0sin 0 sin 30cos0 cos30sin 0sin 0 cos0sin 0 .866 0.5 0
1 1 1sin 30cos0 cos30cos0 sin 0 0.05 0.0866 0

10 10 10
0 0 00 cos30sin 0 sin 30sin 0cos0 0 sin 30sin 0 cos30sin 0cos0 0cos0cos0

R =

− − −  −  
   =   
   − − −   

The distance between two point separated by a lag, h=[2,2,0], becomes:

 
30

2 .866 0.5 0 .866 0.5 0 2
(2,2,0) 2 0.05 0.0866 0 0.05 0.0866 0 2 0.781

0 0 0 0 0 0 0 0

T T

T Td R R°

− −       
       = = • • • =       
              

h h  

This could be repeated for anisotropy in the 120˚ direction by substituting  α=120˚ in 
Equations A.1 and A.2. 

A.2

A.1
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Calculating Covariance from the Anisotropic Distance 
Once the anisotropic distance in each direction is determined, the variogram function, γ(ܐ), provides the covariance between the two points.  Consider a spherical variogram 
with a range of 10m in the 30° direction and 1m in the 120° direction (Case 2 above, 
with anisotropic distance, ||h||=0.781 units).  The equation for a spherical variogram is: 

γ(ܐ) = (ܐ)ℎ݌ܵ = ൜ሾ1.5ℎ − 0.5ℎଷሿ, ݂݅ ℎ ≤ 11                         , ݂݅ ℎ > 1 

Thus the variogram value for a distance of ||h||=0.781 units is: γ(0.781) = ℎ(0.781)݌ܵ = 1.5(0.781) − 0.5(0.781)ଷ = 0.933 

From the variogram value the covariance between these two points, C(h), can be 
determined if the variance of the variable, C(0), is known.  In geostatistics it is common 
to consider that the variable has been transformed to a N(0,1) distribution and by 
definition the variogram is: γ(ܐ) = (0)ܥ −  (ܐ)ܥ

Thus, if the variance of the variable is 1.0, the covariance between these two points is: (ܐ)ܥ = 1.0 − γ(ܐ) = 1.0 − 0.933 = 0.067 
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Appendix B: Implementation Details of Kriging and Simulation 
Source Code 

FORTRAN based GSLIB style (Deutsch and Journel 1998) programs are provided for 
variogram calculation, kriging and simulation.  The majority of the inputs to these 
programs are identical to their GSLIB equivalents and all additional parameters are 
discussed in detail below.  Further detail on programs and access to source code can be 
found in Boisvert (2010). 

Support Program Boost_dijkstra.exe and External Dependencies 
Boost_dijkstra.exe is a C++ wrapper to run the Dijkstra algorithm using the Boost Graph 
Library (BGL) (Siek et al. 2001).  The program reads in the specification of the graph from 
the files grid.out and nodes2cal.out and returns the necessary SPDs in a file 
dist_cpp.out.  This program is called by gamv_LVA.exe, kt3d_LVA.exe and SGS_LVA.exe 
and should not be run manually by the user. 

Gamv_LVA.exe 
To implement kriging or SGS with LVA a variogram of the data in the embedded space 
after L-ISOMAP is required.  Thus, the experimental variogram calculation must first 
embed the data into q dimensions.  Embedding with L-ISOMAP depends on the input 
grid used to locate the landmark points.  When the desired block model and the 
available LVA model have different model specifications, L-ISOMAP must be performed 
on the block model grid.  Within gamv_LVA.exe, there is the ability to regrid an LVA 
model to the desired block model if they differ (lines 11-16, Figure B1).  When these 
grids are identical, no regridding is required.  The LVA model must fully cover the 
desired block model.   

Lines 1-8 are identical to gamv.exe (Deutsch and Journel 1998).  Lines 9-16 are the 
specifications of the required grids.  In the LVA file the angles measure strike (measure 
positive clockwise from north) dip (positive downwards) and plunge.  The anisotropy 
ratios are defined as the min/max range (i.e. a 10:1 anisotropy ratio is 0.1).   

Line 17 indicates how many nodes are connected in the graph.  Connecting more nodes 
results in more flexible, and thus shorter, paths after the implementation of the Dijkstra 
algorithm but requires more memory and may be infeasible for large 3D models.  Line 
18 allows gamv_LVA.exe to read a set of distances previously generated by the Dijkstra 
algorithm to reduce CPU requirements.  Line 19 specifies the location of the landmark 
points for L-ISOMAP.  Line 20 specifies the number of dimensions to retain after L-
ISOMAP for the calculation of the distance between datum.  Using fewer than the 
maximum number of dimensions can reduce run times but does not reduce memory 
requirements. When using fewer than the maximum number of dimensions, the most 
important dimensions, based on the eigenvalues of each dimension, are retained. 



172 
 

 

Figure B1:  Parameters for gamv_LVA.exe. 

kt3d_LVA.exe 
Kriging with LVA requires (1) the embedding of the estimation grid into q dimensions 
with L-ISOMAP and (2) searching for n nearest data to an estimation location in q 
dimensions.  The parameters for L-ISOMAP are identical to the gamv_LVA.exe program 
(lines 8-19, Figure B2).  Searching for n nearest data is accomplished in q dimensions 
with a kd tree (Kennel 2004).  Using fewer dimensions in the search (line 22, Figure B2) 
can reduce run times and memory requirements. 

Because the data are located in q dimensions the distance calculations can be CPU 
intensive.  The onetime calculation of the nxn distance matrix between data can reduce 
CPU time (Figure B3) if fewer than ~10,000 data are used.  If possible, the nxn matrix is 
stored, otherwise the distances are calculated as needed. 

KT3D_LVA.exe can be used to implement IDW.  Setting line 23 <0 indicates IDW.  To 
perform IDW with ω=2.5 set line 23 to “-2.5   0”.  The second value, the simple kriging 
mean, is ignored. 

The remaining parameters (lines 1-7 and 23-25, Figure B2) are identical to the kt3d.exe 
GSLIB program (Deutsch and Journel 1998).  Note that the specified variogram model 
must be positive definite in q dimensions (line 19, Figure B2), the exponential variogram 
model is recommended.  Time trials using Microsoft Windows Server 2003 Standard x64 
Edition, 2.41GHz AMD processor are provided (Figure B4). 
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 Figure B2:  Parameters for kt3d_LVA.exe. 

 
Figure B3:  Time required to krige a 1M cell model using 100 landmark points.  The inflection point at 10,000 
data is a result of the expense of calculating the nxn distance matrix for a large number of data.  

 

Figure B4:  Left: Time required to krige a 2D grid with 3000 data using 20 nearest data.  Each line represents 
a square pattern of landmark points with L-1 dimensions used in MDS.  Right: Time required to krige a 3D 
grid with 3000 data using 20 nearest data. 
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SGS_LVA.exe 
The parameters for SGS_LVA.exe (Figure B5) are identical to kriging (Figure B2).  The 
only implementational difference is in the searching for previously simulated nodes.  
The kd tree is not efficient when there are many empty branches that lead to 
unsimulated nodes; therefore, an exhaustive search is performed until the kd tree is 
more efficient at which point the kd tree is used.  Also note that the input data to the 
program must be normal scored.  There is no normal score transform within the 
SGS_LVA.exe program.  Time trials using Microsoft Windows Server 2003 Standard x64 
Edition, 2.41GHz AMD processor are provided (Figure B6). 

 

 
 Figure B5:  Parameters for SGS_LVA.exe. 

 

 
Figure B6:  Total time required to generate 100 SGS realizations with 3000 data using the 20 nearest 
previously simulated nodes. 
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Basic Workflow 
1) Generate LVA field (Chapter 3).  It is assumed that the strike, dip, plunge and 

anisotropy ratios are available exhaustively in the domain of interest. 
2) Calculate the experimental variogram (gamv_LVA.exe).  An isotropic variogram is fit 

to the experimental variogram. 
3) Select the MDS parameters.  This requires selecting the number of landmark points 

and the number of offsets to use in the Dijkstra algorithm.  These values should be as 
large as possible within CPU constraints.  50 landmark points are recommended by 
Izenman (2008) and it has been the authors experience that there is no need to 
consider more than 100. 

4) Krige or simulate with the modeled variogram. 

Parameter files showing the implementation of each program are provided in Figure 22. 

 
Figure B7:  Parameters used to generate the example. 
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