
Accurate RGB-D Salient Object Detection via
Collaborative Learning

Wei Ji?1, Jingjing Li?1, Miao ZhangB1, Yongri Piao1, and Huchuan Lu1,2

1 Dalian University of Technology, Dalian, China
2 Pengcheng Lab, Shenzhen,China

weiji.dlut@gmail.com, jingjing.dlut@outlook.com,
{miaozhang, yrpiao, lhchuan}@dlut.edu.cn

https://github.com/OIPLab-DUT/CoNet

Abstract. Benefiting from the spatial cues embedded in depth images,
recent progress on RGB-D saliency detection shows impressive ability
on some challenge scenarios. However, there are still two limitations.
One hand is that the pooling and upsampling operations in FCNs might
cause blur object boundaries. On the other hand, using an additional
depth-network to extract depth features might lead to high computation
and storage cost. The reliance on depth inputs during testing also limits
the practical applications of current RGB-D models. In this paper, we
propose a novel collaborative learning framework where edge, depth and
saliency are leveraged in a more efficient way, which solves those prob-
lems tactfully. The explicitly extracted edge information goes together
with saliency to give more emphasis to the salient regions and object
boundaries. Depth and saliency learning is innovatively integrated into
the high-level feature learning process in a mutual-benefit manner. This
strategy enables the network to be free of using extra depth networks
and depth inputs to make inference. To this end, it makes our model
more lightweight, faster and more versatile. Experiment results on seven
benchmark datasets show its superior performance.

1 Introduction

The goal of salient object detection (SOD) is to locate and segment the most at-
tractive and noticeable regions in an image. As a fundamental and pre-processing
task, salient object detection plays an important role in various computer vision
tasks, e.g., visual tracking [25, 52], video SOD [58, 20], object detection [50, 14],
semantic segmentation [37], and human-robot interaction [13].

Recent researches on RGB-D salient object detection have gradually broken
the performance bottleneck of traditional methods and RGB-based methods, es-
pecially when dealing with complex scenarios like similar foreground and back-
ground. However, there are some limitations with the introduction of FCNs [40,
51] and depth images. Firstly, the emergence of FCNs enables automatic ex-
traction of multi-level and multi-scale features. The high-level features with rich
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Fig. 1. (Left) First two rows: feature maps in different layers of CNNs. Last two rows:
RGB image, depth image, edge map, saliency ground truth (GT) and saliency results
of several state-of-the-art methods. * means RGB-D methods. (Right) Two kinds of
previous RGB-D SOD network structures. (a) Processing RGB input and depth input
separately and then combining the complementary RGB and depth features through
cross-modal fusion (e.g. [7, 23, 5, 6, 46]). (b) Using tailor-made depth subnetworks to
compensate for RGB representations (e.g. [68, 65]).

semantic information can better locate salient objects but the pooling and up-
sampling operations in FCNs might result in coarse and blur object boundaries
(Fig. 1 (left)). The low-level features contain rich local details but suffer from ex-
cessive background noises and might cause information chaos. Secondly, the spa-
tial layout information from depth images can better express 3D scenes and help
locate salient objects. However, previous RGB-D methods either adopted two-
stream architectures that process RGB and depth images separately with various
cross-modal fusion strategies (Fig. 1a) [7, 23, 5, 6, 46], or utilized subnetworks tai-
lored for depth image to compensate for RGB representations (Fig. 1b) [68, 65].
In those methods, the additional depth-networks might lead to high computa-
tion and storage cost, and cannot work without depth input, seriously limiting
their practical applications.

In this paper, we propose a novel collaborative learning framework (CoNet)
to confront the aforementioned limitations. In collaborative learning, multiple
group members work together to achieve learning goals through exploratory
learning and timely interaction. In our framework, three mutually beneficial col-
laborators are well-designed from different perspectives of the SOD task, namely
edge detection, coarse salient object detection, and depth estimation. On the one
hand, a edge collaborator is proposed to explicitly extracts edge information from
the overabundant low-level features and then goes together with saliency knowl-
edge to jointly assign greater emphasis to salient regions and object boundaries.
On the other hand, considering the strong consistencies among global semantics
and geometrical properties of image regions [54], we innovatively integrate depth
and saliency learning into the high-level feature learning process in a mutual-
benefit manner. Instead of directly taking depth image as input, this learning
strategy enables the network to be free of using an extra depth network to make
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inference from an extra input. Compared with previous RGB-D models which
utilize additional subnetworks to extract depth features and rely on depth images
as input, our network is more lightweight, faster and more versatile. To our best
knowledge, this is the first attempt to use depth images in such a way in RGB-D
SOD research. Finally, a unified tutor named knowledge collector is designed to
accomplish knowledge transfer from individual collaborators to the group, so as
to more comprehensively utilize the learned edge, saliency and depth knowledges
to make accurate saliency prediction. Benefiting from this learning strategy, our
framework produces accurate saliency results with sharp boundary preserved
and simultaneously avoids the reliance on depth images during testing.

In summary, our main contributions are as follows:

– We propose a novel collaborative learning framework (CoNet) where edge,
depth, and saliency are leveraged in a different but more efficient way for
RGB-D salient object detection. The edge exploitation makes the boundaries
of saliency maps more accurate.

– This learning strategy enables our RGB-D network to be free of using an
additional depth network and depth input during testing, and thus being
more lightweight and versatile.

– Experiment results on seven datasets show the superiority of our method over
other state-of-the-art approaches. Moreover, it supports the faster frame rate
as it runs at 34 FPS, meeting the needs of real-time prediction (enhances
FPS by 55% compared with current best performing method DMRA [46]).

2 Related Work

Early works [27, 10, 45, 36, 61] for saliency detection mainly rely on hand-crafted
features. [2, 3, 55] are some comprehensive surveys. Recently, traditional methods
have been gradually surpassed by deep learning ones. Among those researches,
2D methods [32, 33, 53, 67, 30, 35, 56, 57, 16, 41, 60] based on RGB images have
achieved remarkable performance and lone been the mainstream of saliency de-
tection. However, 2D saliency detection appears to make a downgrade when han-
dling complex scenarios due to the lack of spatial information in single RGB im-
age. The introduction of depth images in RGB-D saliency researches [49, 31, 48,
23, 7, 5, 6, 68, 46, 65] has made great promotions for those complex cases thanks
to the embedded rich spatial information of depth images.

The first CNNs-based method [48] for RGB-D SOD uses hand-crafted fea-
tures extracted from RGB and depth images for training. Then, Chen et al.
propose to use two-stream models [23, 7] to process RGB and depth image sep-
arately and then combine cross-modal features to jointly predict saliency. They
subsequently design a progressive fusion network [5] to better fuse cross-modal
multi-level features and propose a three-stream network [6] which adopts the
attention mechanism to adaptively select complement from RGB and depth fea-
tures. Afterwards, Piao et al. [46] utilize residual structure and depth-scale fea-
ture fusion module to fuse paired RGB and depth features. The network struc-
tures in [23, 7, 5, 6, 46] can be represented as two-stream architectures shown in
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Fig. 1a. Another kind of structure is the use of subnetworks tailored for depth
images to extract depth features and make compensation for RGB representa-
tions [68, 65] (Fig. 1b). Zhu et al. [68] utilize an auxiliary network to extract
depth-induced features and then use them to enhance a pre-trained RGB prior
model. In [65], Zhao et al. first enhance the depth map by contrast prior and
then think of it as an attention map and integrate it with RGB features.

Those methods have some limitations. Using additional depth networks to
extract depth features leads to high computation and storage cost. The reliance
on depth images as input during testing also severely limits the practical appli-
cations of current RGB-D models. Moreover, we found that the boundaries of
the produced saliency maps in those methods are a bit coarse and blur. This
is mainly because the pooling and upsampling operations in FCNs might lead
to the loss of local details and current RGB-D methods have not taken steps to
emphasize the boundaries of salient objects.

Some RGB-based SOD methods attempt to enhance the boundary accuracy
through adding edge constraints or designing boundary-aware losses. An edge
guidance network [66] couples saliency and edge features to better preserve accu-
rate object boundary. Liu et al. [38] train their pooling-based network with edge
detection task and successfully enhance the details of salient regions. A predict-
refine architecture [47] equipped with a hybrid loss segments salient regions and
refines the structure with clear boundaries. An attentive feedback module [21]
employs a boundary-enhanced loss for learning exquisite boundaries.

In this paper, we propose a novel collaborative learning framework where
edge, depth and saliency are leveraged in a different but more efficient way. Dif-
ferent from previous RGB methods using edge supervision [66, 38] or boundary-
aware losses [47, 21], we further combine the learned edge knowledge with saliency
knowledge to give extra emphasis to both salient regions and boundaries. For
the use of depth, we innovatively integrate it into the high-level feature learning
process in a mutual-benefit manner, instead of directly taking depth images as
input. Free of using the depth subnetworks and depth input during testing makes
our network more lightweight and versatile.

3 Collaborative Learning Framework

3.1 The Overall Architecture

In this paper, we propose a novel CoNet for RGB-D SOD. The overall architec-
ture is shown in Fig. 2. In this framework, three mutually beneficial collabora-
tors, namely edge detection, coarse salient object detection and depth estimation,
work together to aid accurate SOD through exploratory learning and timely in-
teraction. From different perspectives of the SOD target, knowledges from edge,
depth and saliency are fully exploited in a mutual-benefit manner to enhance
the detector’s performance. A simplified workflow is given below.

First, a backbone network is used to extract features from original images.
Five transition layers and a global guidance module (GGM) are followed to per-
form feature preprocessing and generate the integrated low-level feature fl and
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Fig. 2. The overall architecture of our collaborative learning framework. Details of the
Global Guidance Module can be found in Fig. 3. Here, Att∗ = 1−Att∗.

Table 1. Detailed information of the five transition layers in Fig. 2. We show the input
size and output size of the feature maps before and after those transition layers, and
represent their specific transition operators for better understanding.

Transition Input Size Transition Operators Output Size
trans1 128× 128× 64 Upsample×2 256× 256× 64
trans2 64× 64× 256 Upsample×4 256× 256× 256
trans3 32× 32× 512 Upsample×2, Conv3×3 + BN + PRelu 64× 64× 64
trans4 16× 16× 1024 Upsample×4, Conv3×3 + BN + PRelu 64× 64× 64
trans5 16× 16× 2048 Upsample×4, Conv3×3 + BN + PRelu 64× 64× 64

high-level feature fh (details are shown in Sec. 3.2). Then an edge collaborator is
assigned to fl to extract edge information from the overabundant low-level fea-
ture. For the high-level feature fh, saliency collaborator and depth collaborator
work together to jointly enhance the high-level feature learning process of global
semantics in a mutual-benefit manner. Finally, all learned knowledges from three
collaborators (Attedge, Attsal and Attdepth), as well as the integrated low-level
and high-level feature (Fg), are uniformly handed to a knowledge collector (KC).
Here, acting as a tutor, KC summarizes the learned edge, depth and saliency
knowledges and utilizes them to predict accurate saliency results. We elaborate
on the three collaborators and the KC in Sec. 3.3.

3.2 Feature Preprocessing

Backbone Network. We use the widely used ResNet [24] suggested by other
deep-learning-based methods [15, 39, 60] as backbone network, where the last
fully connected layers are truncated to better fit for the SOD task. As shown
in Fig. 2, five side-out features generated from the backbone network are trans-
ferred to five transition layers to change their sizes and the number of channels.
Detailed parameters are listed in Table. 1, and the five output features are de-
fined as {f1, f2, f3, f4, f5}.
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Fig. 3. The architecture of global guidance
module (GGM).

Global Guidance Module. In order
to obtain richer global semantics and
alleviate information dilution in the
decoder, a Global Guidance Module
(GGM) is applied on high-level fea-
tures (i.e. f3, f4, and f5)(see Fig. 3).
Its key component, global perception
module (GPM), takes the progres-
sively integrated feature as input, fol-
lowed by four parallel dilated convo-
lution operations [62] (kernel size =
3, dilation rates = 1/6/12/18 ) and
one 1×1 traditional convolution op-
eration, to obtain rich global seman-
tics. Benefiting from the dilated con-
volution [62], the GPM captures af-
fluent multi-scale contextual informa-
tion without sacrificing image resolution [8, 9]. Here, we define the process of

GPM as F̃ = Φ(F ), where F denotes the input feature map and F̃ means the
output feature. In GGM, we take the summation of the feature in current layer
and the output features of all high-level GPMs as input to alleviate informa-
tion dilution. Finally, three output features of GPMs are concatenated and an
integrated high-level feature fh is produced, which is computed by:

f̃i = Φ(fi +
∑5
m=i+1 f̃m), i = 3, 4, 5, (1)

fh = Up(Wh ∗ Concat(f̃3, f̃4, f̃5) + bh), (2)

where * means convolution operation. Wh and bh are convolution parameters.
Up(·) means the upsampling operation.

3.3 Collaborative Learning

Edge Collaborator. Existing 3D methods [48, 5, 6, 46, 65] have achieved re-
markable performance in locating salient regions, but they still suffer from coarse
object boundaries. In our framework, we design an edge collaborator to explic-
itly extract edge information from the overabundant low-level feature and use
this information to give more emphasis to object boundaries.

Specifically, we first formulate this problem by adding edge supervision on the
top of integrated low-level feature fl. The used edge ground truths (GT) (shown
in Fig. 1) are derived from saliency GT using canny operator [4]. As shown in
Fig. 2, fl is processed by a 1×1 convolution operation and a softmax function to
generate the edge map Medge. Then, binary cross entropy loss (denoted as losse)
is adopted to calculate the difference between Medge and edge GT. As the edge
maps Medge in Fig. 2 and Fig. 6 show, edge detection constraint is beneficial for
predicting accurate boundaries of salient objects. Additionally, we also transfer
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the learned edge knowledge before the softmax function (denoted as Attedge) to
the knowledge collector (KC), where the edge information is further utilized to
emphasize object boundaries. The reason why we use Attedge rather than Medge

is to alleviate the negative influence brought by accuracy decrement of Medge.
Saliency and Depth Collaborators. When addressing scene understanding
tasks like semantic segmentation and salient object detection, there exist strong
consistencies among the global semantics and geometric properties of image re-
gions [54]. In our framework, a saliency collaborator and a depth collaborator
work together to jointly enhance the feature learning process of high-level se-
mantics in a mutual-benefit manner.

Stage one: The high-level feature fh is first processed by a 1 × 1 convolution
operation and a softmax function to predict a coarse saliency map Scoarse. Here,
binary cross entropy loss (denoted as losss) is used for training. Then, the learned
saliency knowledge acts as a spatial attention map to refine the high-level feature
in a similar way like [60]. But different from [60] which considers Scoarse as
attention map directly, we use the more informative feature map before softmax
function (denoted as Attsal) to emphasize or suppress each pixel of fh . Identify
mapping is adopted to alleviate the errors in Attsal to be propagated to depth
learning and accelerate network convergence. Formally, this procedure can be
defined as:

Attsal = Ws ∗ fh + bs, (3)

f̃h = Attsal � fh + fh, (4)

where � means element-wise multiplication. f̃h denotes the output saliency-
enhanced feature.

Stage two: As pointed out in previous RGB-D researches [46, 65], the spatial
information within depth image is helpful for better locating salient objects in a
scene. In our network, we innovatively integrate depth learning into the high-level
feature learning process, instead of directly taking depth image as input. This
learning strategy enables our network to be free of using an extra depth network
to make inference from an extra depth input, and thus being more lightweight
and versatile. As in Fig. 2, a depth head with three convolution layers (defined as

Ψ(·)) is first used to make feature f̃h adapt to depth estimation. Then, its output

Ψ(f̃h) is followed by a 1 × 1 convolution operation to generate the estimated
depth map Attdepth. Here, depth images act as GTs for supervision and we use
smooth L1 loss [22] to calculate the difference between Attdepth and depth GT,
where smooth L1 loss is a robust L1 loss proposed in [22] that is less sensitive
to outliers than L2 loss. Formally, the depth loss can be defined as:

Lossd =
1

W ×H

W∑
x=1

H∑
y=1

{
0.5× |4(x, y)|2, if |4(x, y)| ≤ 1,

|4(x, y)| − 0.5, if 4(x, y) < −1 or 4(x, y) > 1,
(5)

where W and H denote the width and height of the depth map. 4(x, y) means
the error between prediction Attdepth and the depth GT in each pixel (x, y). Since
each channel of a feature map can be considered as a ‘feature detector’ [59], the
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depth knowledge Attdepth is further employed to learn a channel-wise atten-
tion map Mc for choosing useful semantics. Identify mapping operation is also
adopted to enhance the fault-tolerant ability. This procedure can be defined as:

Attdepth = Wd ∗ Ψ(f̃h) + bd, (6)

Mc = σ(GP (Wc ∗Attdepth + bc)), (7)

fhc = Mc ⊗ f̃h + f̃h, (8)

where w∗ and b∗ are parameters to be learned. GP (·) means global pooling
operation. σ(·) is the softmax function. ⊗ denotes channel-wise multiplication.

After these two stages, two collaborators can cooperatively generate opti-
mal feature which contains affluent spatial cues and possesses strong ability to
distinguish salient and non-salient regions.
Knowledge Collector. In our framework, the KC works as a unified tutor to
complete knowledge transfer from individual collaborators to the group.

As illustrated in Fig. 2, all knowledges learned from three collaborators (i.e.
Attedge, Attsal, and Attdepth) and the concatenated multi-level feature Fg =
Concat(fl, fhc) are uniformly transferred to the KC. Those information are com-
prehensively processed in a triple-attention manner to give more emphasis to
salient regions and object boundaries. In Fig. 2, we show a detailed diagram
with visualized attention maps for better understanding. To be specific, Attedge
and Attsal are first concatenated together to jointly learn a fused attention map
Attf , where the locations and boundaries of the salient objects are considered
uniformly. Then, Fg is in turn multiplied with the depth attention map Attdepth
and the fused attention map Attf , which significantly enhances the contrast be-
tween salient and non-salient areas. Ablation analysis shows the ability of the
KC to enhance the performance significantly.

There is a vital problem worth thinking about. The quality of Attdepth and
Attf might lead to irrecoverable inhibition of salient areas. Therefore, we add
several residual connection operations [24] to the KC to retain the original fea-
tures. Formally, this process can be defined as:

Attf = σ(Wf ∗ Concat(Attsal, Attedge) + bf ), (9)

F̃g = Attdepth � Fg + Fg, (10)

F = Attf � F̃g + F̃g. (11)

In the end, F is followed by a 1 × 1 convolution operation and an upsampling
operation to generate the final saliency map Sfinal. Here, binary cross entropy
loss (denoted as lossf ) is used to calculate the difference between Sfinal and
saliency GT. Thus, the total loss L can be represented as:

L = λeLosse + λsLosss + λdLossd + λfLossf , (12)

where Losse, Losss, and Lossf are cross entropy loss and Lossd is a smooth L1

loss. In this paper, we set λe = λs = λf = 1 and λd = 3.
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4 Experiments

4.1 Dataset

To evaluate the performance of our network, we conduct experiments on seven
widely used benchmark datasets.
DUT-D [46]: contains 1200 images with 800 indoor and 400 outdoor scenes
paired with corresponding depth images. This dataset contains many complex
scenarios. NJUD [28]: contains 1985 stereo images (the latest version). They
are gathered from the Internet, 3D movies and photographs taken by a Fuji W3
stereo camera. NLPR [44]: includes 1000 images captured by Kinect under
different illumination conditions. SIP [19]: contains 929 salient person samples
with different poses and illumination conditions. LFSD [34]: is a relatively small
dataset with 100 images captured by Lytro camera. STEREO [43]: contains
797 stereoscopic images downloaded from the Internet. RGBD135 [11]: consists
of seven indoor scenes and contains 135 images captured by Kinect.

For training, we split 800 samples from DUT-D, 1485 samples from NJUD,
and 700 samples from NLPR as in [5, 6, 46]. The remaining images and other
public datasets are all for testing to comprehensively evaluate the generation
abilities of models. To reduce overfitting, we augment the training set by ran-
domly flipping, cropping and rotating those images.

4.2 Experimental setup

Evaluation metrics. We adopt 6 widely used evaluation metrics to verify the
performance of various models, including precision-recall (PR) curve, mean F-
measure (Fβ) [1], mean absolute error (MAE) [3], weighted F-measure (Fwβ ) [42]
and recently proposed S-measure (S) [17] and E-measure (E) [18]. Saliency maps
are binarized using a series of thresholds and then pairs of precision and recall
are computed to plot the PR curve. The F-measure is a harmonic mean of aver-
age precision and average recall. Here, we calculate the mean F-measure which
uses adaptive threshold to generate binary saliency map. The MAE represents
the average absolute difference between the saliency map and ground truth.
Weighted F-measure intuitively generalizes F-measure by alternating the way to
calculate the Precision and Recall. S-measure contains two terms: object-aware
and region-aware structural similarities. E-measure jointly captures image level
statistics and local pixel matching information. Details of those evaluation met-
rics can refer to [55]. For MAE, lower value is better. For others, higher is better.
Implementation details. We implement our proposed framework using the
Pytorch toolbox and train it with a GTX 1080 Ti GPU. All training and test
images are uniformly resized to 256×256. Our network is trained in an end-to-end
manner using the standard SGD optimizer, and it converges after 50 epochs with
batch size of 2. The momentum, weight decay and learning rate are set as 0.9,
0.0005 and 1e-10, respectively. Any post-processing procedure (e.g., CRF [29])
is not applied in this work. The model size of our network has only 167.6M and
the inference speed for a 256 × 256 image only takes 0.0290s (34FPS).
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4.3 Ablation Analysis

Overview of Performance. We show the quantitative and qualitative results
of different modules of our proposed network in Tab. 2 and Fig. 4. The backbone
network (denoted as B) is constructed by directly concatenating low-level feature
fl and high-level feature fh without using GGM for prediction. Comparison of
the results (a) and (b) shows that adding our GGM can more effectively extract
rich semantic features and prevent information dilution in the decoding stage.

Table 2. Quantitative results of
the ablation analysis on two bench-
mark datasets. B means the back-
bone network. E and S represent
edge supervision and saliency super-
vision respectively. SSA+DCA means
our mutual-benefit learning strategy
between depth and saliency. +KC
means adding our knowledge collec-
tor on (e).

NJUD NLPR

indexes Modules Fβ ↑ MAE ↓ Fβ ↑ MAE ↓
(a) B 0.831 0.065 0.797 0.050
(b) B+GGM 0.839 0.060 0.813 0.044
(c) (b)+E 0.851 0.056 0.825 0.041
(d) (b)+E+S 0.857 0.054 0.833 0.038
(e) (b)+E+SSA+DCA 0.864 0.051 0.841 0.035
(f) (e)+KC 0.872 0.047 0.848 0.031
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Fig. 4. Visual saliency maps of ab-
lation analysis. The meaning of the
indexes (a)-(f) can refer to Table. 2.

After introducing edge supervision (E), the
boundaries of the saliency maps are sharper
(b vs c in Fig. 4). The edge maps (Medge)
in Fig. 2 and Fig. 6 also show the ability of
our network in explicitly extracting object
boundaries. By adding additional saliency
supervision on fh (denoted as S), the per-
formance can be further improved. How-
ever, by comparing (d) and (e), we can see
that our mutual-benefit learning style be-
tween saliency collaborator and depth col-
laborator (SSA and DCA) can further im-
prove the detector’s ability to locate salient
objects. This also verifies the strong cor-
relation between saliency and depth. Fi-
nally, by using our proposed KC, all learned
edge, depth and saliency knowledges from
three collaborators can be effectively sum-
marized and utilized to give more empha-
sis to salient regions and object boundaries,
improving the average MAE performance
on two datasets by nearly 9.6% points. By
comparing (e) and (f) in Fig. 4, we can also
see that salient regions in (f) are more con-
sistent with the saliency GT and the ob-
ject boundaries are explicitly highlighted
benefiting from the comprehensive knowl-
edge utilization. Those advances demon-
strate that using our collaborative learning
strategy is beneficial for accurate saliency prediction. We list some numerical
results here for better understanding. The Root Mean Squared Error (RMSE)
of depth prediction on NJUD and NLPR datasets are 0.3684 and 0.4696, respec-
tively. The MAE scores of edge prediction are 0.053 and 0.044, respectively.

The Interactions between Collaborators.
Saliency and Edge. To explore the correlation between saliency and edge, we
gradually add edge supervision (E) and saliency supervision (Sl) on the low-
level feature fl. From the quantitive results in Tab. 5, we can see that adding
edge supervision can explicitly extract clear boundary information and signifi-
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cantly enhance the detection performance, especially for the F-measure scores.
However, when adding Sl on fl, the performances on both datasets decrease.

Table 3. Ablation analysis of the
interactions between three collabo-
rators. The meaning of indexes (b)-
(f) can refer to Table. 2. +Sl means
adding saliency supervision on low-
level feature. D means depth super-
vision.

NJUD NLPR

Modules Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

Saliency & Edge
(b) 0.839 0.060 0.813 0.044
(b)+E (c) 0.851 0.056 0.825 0.041
(b)+E+Sl 0.835 0.062 0.807 0.044

Saliency & Depth
(c) 0.851 0.056 0.825 0.041
(c)+S (d) 0.857 0.054 0.833 0.038
(c)+S+D 0.859 0.054 0.835 0.037
(c)+S+DCA 0.861 0.053 0.837 0.036
(c)+SSA+DCA (e) 0.864 0.051 0.841 0.035

Saliency & Edge & Depth
(e) 0.864 0.051 0.841 0.035
(e)+Attedge 0.868 0.049 0.846 0.032
(e)+Attsal 0.866 0.049 0.844 0.033
(e)+Attedge+Attsal 0.869 0.048 0.846 0.031
(e)+Attedge+Attsal+Attdepth (f) 0.872 0.047 0.848 0.031

��	��������
�������

Image GT Ours M"#$" M"#$"

Att'()

Att'()

Att"#$"

Att"#$"

Att*+'"

Att*+'"

Att*

Att*

Att#",-.

Att#",-.

Fig. 5. Internal results in the knowl-
edge collector. The results of another
sample can be seen in Fig. 2. Here,
F = 1− F .

This is partly because the low-level features
contain too much information and are rel-
atively too coarse to predict saliency, and
partly because the two tasks are to some
extent incompatible, in which one is for
highlighting the boundaries and another is
for highlighting the whole salient objects.
Hence, it is optimal to only add edge su-
pervision on the low-level feature.
Saliency and Depth. In order to verify
the effectiveness of the proposed mutual-
benefit learning strategy on high-level fea-
ture fh, we gradually add two collabora-
tors and their mutual-benefit operations
to the baseline model (c). As shown in
Tab. 5, adding saliency supervision (S) and
adding depth supervision (D) are all ben-
eficial for extracting more representative
high-level semantic features. In addition, by
gradually introducing our proposed mutual-
benefit learning strategy between two col-
laborators (SSA and DCA), spatial lay-
outs and global semantics of high-level fea-
ture can be greatly enhanced, which conse-
quently brings additional accuracy gains on
both datasets. These results further verify
the effectiveness of our collaborative learn-
ing framework.
Saliency, Edge and Depth. In our
knowledge collector, all knowledge learned
from three collaborators are summarized
and utilized in a triple-attention man-
ner. As the visualized attention maps in
Fig. 2 and Fig. 6 show, the edge knowledge
(Attedge) can help highlight object bound-
aries, and the depth and saliency knowledge (Attdepth and Attsal) can also be
used to emphasize salient regions and suppress non-salient regions. We can see
from Tab. 5 that both Attedge and Attsal are beneficial for enhancing the fea-
ture representation and improving the F-measure and MAE performance. In our
framework, we adopt a better strategy that Attedge and Attsal are concatenated
together to jointly emphasize salient objects and their boundaries. Finally, by
comparing the results in the last two lines of Tab. 5, we can see that by fur-
ther utilizing the learned depth knowledge, the detector’s performance can be
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Table 4. Quantitative comparisons on seven benchmark datasets. The best three re-
sults are shown in blue, red, and green fonts respectively.

Dataset Metric DES LHM DCMC MB CDCP DF CTMF PDNet MPCI TANet PCA CPFP DMRA Ours
[11] [44] [12] [69] [70] [48] [23] [68] [7] [6] [5] [65] [46]

DUT-D [46]

E ↑ 0.733 0.767 0.712 0.691 0.794 0.842 0.884 0.861 0.855 0.866 0.858 0.854 0.927 0.941
S ↑ 0.659 0.568 0.499 0.607 0.687 0.730 0.834 0.799 0.791 0.808 0.801 0.749 0.888 0.918
Fwβ ↑ 0.386 0.350 0.290 0.464 0.530 0.542 0.690 0.650 0.636 0.712 0.696 0.644 0.858 0.896
Fβ ↑ 0.668 0.659 0.406 0.577 0.633 0.748 0.792 0.757 0.753 0.779 0.760 0.736 0.883 0.908
MAE ↓ 0.280 0.174 0.243 0.156 0.159 0.145 0.097 0.112 0.113 0.093 0.100 0.099 0.048 0.034

NJUD [28]

E ↑ 0.421 0.722 0.796 0.643 0.751 0.818 0.864 0.890 0.878 0.893 0.896 0.894 0.908 0.912
S ↑ 0.413 0.530 0.703 0.534 0.673 0.735 0.849 0.883 0.859 0.878 0.877 0.878 0.886 0.894
Fwβ ↑ 0.241 0.311 0.506 0.369 0.522 0.552 0.732 0.798 0.749 0.812 0.811 0.837 0.853 0.856
Fβ ↑ 0.165 0.625 0.715 0.492 0.618 0.744 0.788 0.832 0.813 0.844 0.844 0.850 0.872 0.872
MAE ↓ 0.448 0.201 0.167 0.202 0.181 0.151 0.085 0.062 0.079 0.061 0.059 0.053 0.051 0.047

NLPR [44]

E ↑ 0.735 0.772 0.684 0.814 0.785 0.838 0.869 0.876 0.871 0.916 0.916 0.924 0.942 0.936
S ↑ 0.582 0.591 0.550 0.714 0.724 0.769 0.860 0.835 0.855 0.886 0.873 0.888 0.899 0.907
Fwβ ↑ 0.259 0.320 0.265 0.574 0.512 0.524 0.691 0.659 0.688 0.789 0.772 0.820 0.845 0.850
Fβ ↑ 0.583 0.520 0.328 0.637 0.591 0.682 0.723 0.740 0.729 0.795 0.794 0.822 0.855 0.848
MAE ↓ 0.301 0.119 0.196 0.089 0.114 0.099 0.056 0.064 0.059 0.041 0.044 0.036 0.031 0.031

STEREO [43]

E ↑ 0.451 0.781 0.838 0.693 0.801 0.844 0.870 0.903 0.890 0.911 0.905 0.897 0.920 0.923
S ↑ 0.473 0.567 0.745 0.579 0.727 0.763 0.853 0.874 0.856 0.877 0.880 0.871 0.886 0.908
Fwβ ↑ 0.277 0.369 0.551 0.445 0.595 0.576 0.727 0.799 0.747 0.811 0.810 0.818 0.850 0.871
Fβ ↑ 0.223 0.716 0.761 0.572 0.680 0.761 0.786 0.833 0.812 0.849 0.845 0.827 0.868 0.885
MAE ↓ 0.417 0.179 0.150 0.178 0.149 0.142 0.087 0.064 0.080 0.060 0.061 0.054 0.047 0.041

SIP [19]

E ↑ 0.742 0.722 0.787 0.715 0.721 0.794 0.824 0.802 0.886 0.893 0.898 0.899 0.863 0.909
S ↑ 0.616 0.523 0.684 0.624 0.597 0.651 0.716 0.691 0.833 0.835 0.844 0.850 0.806 0.858
Fwβ ↑ 0.352 0.286 0.426 0.474 0.411 0.411 0.551 0.503 0.726 0.762 0.777 0.798 0.750 0.814
Fβ ↑ 0.646 0.593 0.646 0.573 0.494 0.672 0.684 0.620 0.795 0.809 0.824 0.818 0.819 0.842
MAE ↓ 0.300 0.182 0.186 0.163 0.224 0.186 0.139 0.166 0.086 0.075 0.071 0.064 0.085 0.063

LFSD [34]

E ↑ 0.475 0.742 0.842 0.631 0.737 0.841 0.851 0.872 0.840 0.845 0.846 0.867 0.899 0.897
S ↑ 0.440 0.558 0.754 0.538 0.658 0.796 0.796 0.845 0.787 0.801 0.800 0.828 0.847 0.862
Fwβ ↑ 0.278 0.379 0.605 0.401 0.524 0.645 0.700 0.738 0.668 0.723 0.720 0.779 0.814 0.819
Fβ ↑ 0.228 0.708 0.815 0.543 0.634 0.810 0.781 0.824 0.779 0.794 0.794 0.813 0.849 0.848
MAE ↓ 0.415 0.211 0.155 0.218 0.199 0.142 0.120 0.109 0.132 0.111 0.112 0.088 0.075 0.071

RGBD135 [11]

E ↑ 0.786 0.850 0.674 0.798 0.806 0.801 0.907 0.915 0.899 0.916 0.909 0.927 0.945 0.945
S ↑ 0.627 0.577 0.470 0.661 0.706 0.685 0.863 0.868 0.847 0.858 0.845 0.874 0.901 0.910
Fwβ ↑ 0.301 0.372 0.173 0.516 0.484 0.397 0.694 0.731 0.656 0.745 0.718 0.794 0.849 0.856
Fβ ↑ 0.689 0.857 0.228 0.588 0.583 0.566 0.765 0.800 0.750 0.782 0.763 0.819 0.857 0.861
MAE ↓ 0.289 0.097 0.194 0.102 0.119 0.130 0.055 0.050 0.064 0.045 0.049 0.037 0.029 0.027

further improved. We visualize all internal results of the KC in Fig. 6 for better
understanding.

4.4 Comparison with State-of-the-arts

We compare results from our method with various state-of-the-art approaches on
seven public datasets. For fair comparisons, the results from competing methods
are generated by authorized codes or directly provided by authors.
Quantitative Evaluation. Tab. 3 shows the quantitative results of our method
over other 13 RGB-D ones on seven benchmark datasets. We can see that our
proposed collaborative learning framework achieves superior performance. Noted
that our method avoids the reliance on depth images and only takes RGB im-
age as input in the testing stage. To comprehensively verify the effectiveness of
our model, we additionally conduct comparisons with 9 state-of-the-art RGB
methods on three public datasets. Results in Tab. 4 consistently show that our
method also achieves comparable results compared to 2D methods. The PR
curves in Fig. 8 also verify the superiority of our method.
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Table 5. Quantitative comparisons with state-of-the-art 2D methods.

Dataset Metric DSS Amulet R3Net PiCANet PAGRN EGNet PoolNet BASNet CPD Ours
[26] [63] [15] [39] [64] [66] [38] [47] [60]

NJUD [28]
S ↑ 0.807 0.843 0.837 0.847 0.829 0.871 0.872 0.872 0.876 0.894
Fwβ ↑ 0.678 0.758 0.736 0.768 0.746 0.812 0.816 0.839 0.834 0.856
MAE ↓ 0.108 0.085 0.092 0.071 0.081 0.057 0.057 0.055 0.054 0.047

NLPR [44]
S ↑ 0.816 0.848 0.798 0.834 0.844 0.861 0.867 0.890 0.887 0.907
Fwβ ↑ 0.614 0.716 0.611 0.707 0.707 0.760 0.771 0.834 0.820 0.850
MAE ↓ 0.076 0.062 0.101 0.053 0.051 0.046 0.046 0.036 0.036 0.031

STEREO [43]
S ↑ 0.841 0.881 0.855 0.868 0.851 0.897 0.898 0.896 0.899 0.908
Fwβ ↑ 0.718 0.811 0.752 0.774 0.792 0.847 0.849 0.873 0.865 0.871
MAE ↓ 0.087 0.062 0.084 0.062 0.067 0.045 0.045 0.042 0.042 0.041

Image GT Ours* DMRA* CPFP* TANet* PCA* EGNet PoolNet CPD PiCANet R3NetPAGRNPDNet*Depth

Fig. 6. Visual comparisons of our method with other state-of-the-art CNNs-based
methods in some representative scenes. * means RGB-D methods.

Qualitative Evaluation. Fig. 7 shows some representative samples of results
comparing our method with some top-ranking CNNs-based RGB and RGB-D
approaches. For the complex scenes with lower-contrast (the 4th and 5th rows) or
multiple objects (the 8th row), our method can better locate the salient objects
thanks to the useful spatial information in depth image and sufficient extraction
and utilization of edge information. Thus, our method can produce accurate
saliency results with sharp boundaries preserved.
Complexity Evaluation. We also compare the model size and run time (Frame
Per Second, FPS) of our method with 11 representative models in Tab. 5. Thanks
to the well-designed depth learning strategy, our network is free of using extra
depth networks and depth inputs to make inference. It can also be seen that
our method achieves outstanding scores with a smaller model size and higher
FPS (enhances FPS by 55% compared to current best performing RGB-D model
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(a) DUT-D dataset (b) NJUD dataset (c) NLPR dataset (d) STEREO dataset

Fig. 7. The PR curves of our method compared to other state-of-the-art approaches
on four datasets.

Table 6. Complexity comparisons of various methods. The best three results are shown
in blue, red, and green fonts respectively. FPS means frame per second.

NJUD [28] NLPR [44]

Types Methods Years Size FPS Fwβ ↑ MAE ↓ Fwβ ↑ MAE ↓

2D

DSS 2017’CVPR 447.3MB 22 0.678 0.108 0.614 0.076
Amulet 2017’ICCV 132.6 MB 16 0.758 0.085 0.716 0.062

PiCANet 2018’CVPR 197.2 MB 7 0.768 0.071 0.707 0.053
PoolNet 2019’CVPR 278.5 MB 32 0.816 0.057 0.771 0.046

CPD 2019’CVPR 183 MB 62 0.834 0.054 0.820 0.036

3D

PCA 2018’CVPR 533.6 MB 15 0.811 0.059 0.772 0.044
TANet 2019’TIP 951.9 MB 14 0.812 0.061 0.789 0.041
MPCI 2019’PR 929.7 MB 19 0.749 0.079 0.688 0.059
PDNet 2019’ICME 192 MB 19 0.798 0.062 0.659 0.064
CPFP 2019’CVPR 278 MB 6 0.837 0.053 0.820 0.036
DMRA 2019’ICCV 238.8 MB 22 0.853 0.051 0.845 0.031

* Ours 167.6 MB 34 0.856 0.047 0.850 0.031

DMRA). Those results confirm that our model is suitable for the pre-processing
task in terms of model size and running speed.

5 Conclusion

In this work, we propose a novel collaborative learning framework for accurate
RGB-D salient object detection. In our framework, three mutually beneficial
collaborators, i.e., edge detection, coarse salient object detection and depth esti-
mation, jointly accomplish the SOD task from different perspectives. Benefiting
from the well-designed mutual-benefit learning strategy between three collabo-
rators, our method can produce accurate saliency results with sharp boundaries
preserved. Free of using extra depth subnetworks and depth inputs during testing
also makes our network more lightweight and versatile. Experiment results on
seven benchmark datasets show that our method achieves superior performance
over 22 state-of-the-art RGB and RGB-D methods.
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