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Abstract

A new generation of complex interactive dynamic web applications has emerged with the introduc-

tion of Web 2.0 technologies and development frameworks. The characteristics of dynamic web

applications such as runtime DOM structure and content updates introduced new challenges in the

understanding, maintenance and testing of this type of web applications. In this work we address

two important challenges in the field of web application maintenance. The first challenge is that of

modelling web application behaviour. To solve this task we develop an automatic method for reverse

engineering the features of dynamic web applications by applying a hierarchical clustering algorithm

based on a novel composite-tree-edits-aware distance metric between DOM tree instances of a web

application. The proposed distance metric recognizes simple and composite structural changes in

a DOM tree. We have evaluated our method on three real-world web applications. The evaluation

results demonstrated that the proposed distance metric produces a number of clusters that is close to

the actual number of features and, also, classifies DOM trees into feature clusters more accurately

than other traditional distance metrics. The second challenge is that of systematic acceptance (and

regression) testing at the user-interface level, which we address by developing a tool, CrawlScripter,

for performing automated acceptance testing of JavaScript web applications. CrawlScripter allows

to create easy-to-understand acceptance tests using the provided library of high-level instructions.

The ability of CrawlScripter to create automated acceptance tests for different test scenarios was

evaluated on both pedagogical and real-world dynamic web applications.
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Chapter 1

Introduction

Ever since its inception, the World Wide Web has been evolving with new technologies and frame-

works designed to satisfy an increasing demand for developing complex and highly interactive web

applications. The number of people connected to the World Web Web is dramatically growing every

year [1]. The World Wide Web offers a new convenient way to deploy and access software, and

as a result, today it plays a significant role in business, telecommunication, electronic commerce,

education, and other information services. Web applications have become more popular and more

powerful over the last decade and offer a convenient alternative to desktop software [2]. The simple

applications with static HTML pages have been superceded by complex, highly interactive appli-

cations, with sophisticated graphic user interfaces (GUIs) whose content and structure is generated

dynamically during run-time. As a result, new challenges in understanding, maintenance and testing

of dynamic web applications have emerged. This thesis focuses exactly on two of the challenges in

maintaining dynamic web applications.

Changes in web applications occur more often than in other software [3, 4], and this makes web

applications evolve faster. Such frequent changes and the dynamic nature of such web applications

make them harder to comprehend, maintain and test. Therefore, reverse-engineering approaches are

necessary for automatically extracting models of the underlying behaviour of dynamic web applica-

tions. Furthermore, new testing techniques and methods must be developed to support the quality

control of such web applications.

We suggest a method for automatically extracting features from Ajax-based1 web applications.

Also, we introduce an approach for conducting automated acceptance testing of JavaScript web ap-

plications. In the following sections we will discuss the high-level details on each of these methods.

1In this thesis we use the terms “Ajax-based” and “JavaScript” interchangeably to refer to dynamic web applications that
extensively use JavaScript as a client-side scripting language. Ajax (Asynchronous Javascript XML) is a technique that uses
JavaScript to create asynchronous web applications.
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1.1 Feature Extraction of Ajax-based Web Applications

A feature of a web application represents a functionality that is defined by requirements and is

accessible to users [5]. For example, the web application of an air-travel company can provide

features such as searching for flights, booking flights, online check-in, checking flight status, etc.

The feature “Searching for flight”, for example, may involve (a) interaction with the user (e.g.,

providing input about trip details such as “from” and “to” cities, “departure” and “return” dates), (b)

data validation (e.g., the return date can not be earlier than the departure date), and (c) computation

(e.g, auto complete of “from” and “to” fields). Thorough understanding and documentation of the

behavioural features of a web application is necessary both to ensure proper use of the system by

its users, and to facilitate maintenance, testing, and evolution of the system by future developers, as

well as potentially programmatically to access the services of the web application through mashups.

A standard method [6, 7] for extracting features (services) of a web application consists of col-

lecting web page instances by exhaustive exploration of a web application, and grouping these web

pages into clusters of similar pages. Each cluster corresponds to a functionality that the web applica-

tion supports, which is available to its users through the web pages included in the group. Grouping

pages into feature clusters provides a high-level view of a web application and describes the offered

services as clusters of similar web pages and shows the relationships between them.

The task of collecting web pages though an exhaustive exploration of a dynamic web application

is a challenging one, since the number of web-application states that can be produced is potentially

unlimited. With the introduction of tools for automatically crawling and testing modern Ajax-based

web applications such as Crawljax [8], the problem of collecting web page instances from a complex

dynamic web application can be mitigated. Nevertheless, the problem of feature extraction of such

web applications still remains a challenge, since modern web applications can have web pages with

complex HTML document structures with script and style code segments included in addition to

their HTML content. This can significantly complicate the problem of page-similarity assessment on

which the web clustering is based. Distance metrics, i.e., metrics for computing the similarity among

instances, play an important role in clustering of data objects, and different distance metrics can

produce different clustering results. A number of simple string-differencing approaches have been

previously applied with some success to perform web page similarity [9–13]. Also, the selection of

a distance metric for web page similarity assessment deeply impacts the result of the reengineering

process [10].

The extracted behavioural model represents web-application features (services) as groups of

similar pages and provides an overview of a web-application structure and a navigational model of

a web application from the user’s point of view. This behavioural model can be used in different

software-development tasks, such as user documentation, maintenance and re-engineering, as well

as acceptance testing of web applications.

2



1.2 Acceptance Testing of Ajax-based Web Applications

Acceptance testing is an important activity in any software-development lifecycle and its objective

is to confirm that the software meets the client requirements. To that end, acceptance tests are driven

by, and correspond to, user stories, which are a high-level description of requirements. Automated

acceptance tests can also be included as a part of regression tests to verify that the client requirements

are not violated by the software’s evolution.

Software testing, an admittedly difficult task, is even more challenging in the context of modern

web applications, because of their dynamic behaviour based on the user input, the run-time updates

of the client-side components, and the differences in the rendering of their GUI by the various [14].

The introduction of Web 2.0 technologies and frameworks resulted in a prevailing development of

complex web applications with dynamic structure and content [15]. A considerable amount of appli-

cation logic moved to the browser via such web technologies as JavaScript. JavaScript is a dynamic

programming language that is widely used for creating modern web applications and is responsible

for client-side computations and dynamic updates of web pages. A number of approaches [16, 17]

have been suggested for automated testing of dynamic web applications by “exploring” their behav-

iors. These methods are not suitable for the acceptance-testing task, as they automatically generate

test cases based on the exhaustive analysis of dynamic DOM states of a web application, without

being aware of its intended behavior. Other frameworks and methods have been proposed that can be

adopted for acceptance testing, however they either require substantial programming expertise [18]

or do not have complete testing solutions for Ajax-based (Asynchronous JavaScript and XML) web

applications [19, 20].

1.3 Contributions

In the first part of the thesis we develop a method for automatically extracting features of complex

dynamic web applications. The method is based on collecting DOM trees through the systematic

exploration of a web application and clustering them into groups corresponding to a distinct features.

In the second part of the thesis we propose a method to perform automatic acceptance testing of dy-

namic web applications, more specifically JavaScript-enabled web applications. Using intuitive high

level scripting language our method allows users to translate user stories in high level declarative

test scripts and to then execute these test scripts on a web application using an automated website

crawler.

The contributions of the thesis are as follows:

1. We develop a novel distance metric for assessing structural similarity of web pages. The

proposed novel distance recognizes structural changes in the DOM tree of a web page as

simple or composite: changes applied to a set of nodes located under the same path to the

root of the tree are considered as a single composite change. An example scenario can be a

3



query submitted by a user on a search page. In response to the submitted query, a new page

is generated, which contains a new a rich table component with query results. The rich table

component may provide dynamic features, such as sorting, mouse hover and pop-up menus,

which usually increase the number of generated HTML nodes under the table component.

The definition of the composite-change-aware tree-edit distance is based on the assumption

that complex substructures are frequently replaced by other substructures. We compare the

composite tree-edits based distance metric with the simplified distance metric that treats all

changes uniformly, and with the “flat” Levenshtein [21] string-distance metric, which has

been widely used in the literature for computing the structural similarity of web pages. We

evaluate the ability of each distance metric to produce the correct number of features from a

set of DOM trees extracted from three real-world Ajax-enabled web applications using two

different clustering evaluation methods: the L method [22] and the Silhouette coefficient [23].

These methods can automatically determine the number of clusters to be returned from the

application of the hierarchical clustering algorithm. The results demonstrate that the proposed

composite tree-edits based distance metric is more appropriate for automatically determining

the number of clusters that is close to the actual number of features.

2. We automate the process of feature extraction through the use of the proposed distance metric

in hierarchical clustering of DOM states. From the resulted dendrogram we deduct the cut-

off threshold by applying clustering evaluation methods. Previous approaches used either a

predefined cut-off threshold [9] or a user-defined threshold to determine the number of clusters

from a dendrogram resulted from a hierarchical clustering algorithm application [10, 11, 24].

3. We develop a tool, CrawlScripter, for supporting automated acceptance testing of Ajax-

enabled web applications. The tool provides a high level scripting language that assists with

the creation of easy-to-understand automated acceptance tests for users that do not have nec-

essary programming expertise. The scripting language also supports assertions, which can

verify the presence or absence of an element in the DOM structure of a web page, thus en-

abling the comparison of the actual behaviour with the expected behaviour of the application.

To be able to exercise and record the behaviour of Ajax-enabled web applications we employ

an open-source tool Crawljax [8]. It is designed to exercise Ajax-based web applications at

the client-side, i.e., through the browser, and, in the process, it constructs a flow-graph of

the application’s behavioural states, corresponding to changes in the DOM (Document Object

Model) tree underlying the web page.

4. We evaluate the applicability and usefulness of our method in supporting acceptance testing

with two case studies. Also, we examine to what degree we can maintain the implemented

executable acceptance test scripts during the evolution of the system.

4



1.4 Outline

The result of this thesis is organized as follows.

Chapter 2 presents an overview of related work. We discuss the methods proposed to reverse-

engineer web applications as well as the distance metrics used to group similar web pages. Ad-

ditionally, we give an overview of the methods suggested to tackle the problem of dynamic web

applications testing.

In Chapter 3 we discuss our approach for automatic feature extraction from dynamic web ap-

plications. We describe our composite tree-edit distance metric and provide an overview of the

tree-differencing algorithm used to compute distances between extracted DOM trees. We provide

details of the clustering techniques used to group similar DOM trees and list the advantages with

respect to our problem of the selected clustering technique over other clustering algorithms. We

also describe two methods for automatically inferring the cut-off threshold for the dendrogram re-

sulting from the application of a hierarchical clustering algorithm. Then, we give the details of the

evaluation process with a description of the experimental setup and discuss the obtained results.

Chapter 4 discusses our suggested method for automated acceptance testing of JavaScript web

applications. We give an overview of Crawljax, on which our method relies and we describe

CrawlScripter, our tool for performing automated acceptance testing of JavaScript web applications.

We also describe CrawlScripter’s scripting language, give the details of its architecture, namely the

components, tools and libraries used in its implementation. Next, we present the results of the case

studies performed as an evaluation of CrawlScripter.

Finally, we conclude in Chapter 5, summarizing the main points of the work and evaluation

results, and pointing out some directions for future work.
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Chapter 2

Related Work

In this Chapter we review the research literature related to this thesis, which we organize in two

groups. First, we review reverse-engineering approaches that aim to retrieve comprehensible views

or behavioural models of web applications. Then, we discuss the work on automatic testing of

dynamic web applications.

2.1 Reverse-Engineering of Web Applications

A large number of reverse-engineering techniques have been proposed to support the comprehen-

sion, maintenance and evolution of web applications. A general approach to this problem involves

the decomposition of the system into related groups of elements. The related work discussed in

this section covers the techniques for extracting the architecture or functional behaviour of a web

application [9, 11–13, 24, 25, 25–27]. A common method to achieve this is to cluster web pages

according to the structure of their DOM trees into meaningful groups, using the Levenshtein dis-

tance metric [9–11, 28] or a composite distance metric [12, 13, 25]. Other approaches [24, 26, 27]

employ different techniques such as finding shortest paths in a directed graph, or generating facts to

construct the structural model of web applications.

2.1.1 Web clustering

First, we review approaches that employ simple string-differencing distance metrics in web-page

clustering. Then, we discuss the related work that applies composite metrics to group web pages

and review other approaches proposed to recover the structure of web applications.

2.1.1.1 The Levenshtein distance metric

Ricca and Tonella [9] proposed a semi-automatic approach to identify static web pages with a simi-

lar structure that can be migrated to dynamic web pages. To identify the groups of web pages with

a common structure, they applied an agglomerative clustering algorithm with the Levenshtein edit

distance [21] assessing the structural similarity between web pages. The Levenshtein edit distance

6



between two string sequences is defined as the minimum number of insert, delete, and replace oper-

ations required to transform the first sequence into the second. To compute the Levenshtein distance

metric between web pages, their HTML tags are represented as string sequences constructed during

the traversal of the DOM tree of the web page. Clusters of similar pages are then selected by cutting

the resulting dendrogram (a hierarchy of clusters produced by a hierarchical clustering algorithm),

using a user-defined threshold of the required intra-cluster similarity. Next, for all pages that are in

the same cluster, a common candidate template is extracted to generate dynamic web pages. The

common candidate template contains all unchangeable information and common HTML tags and

is extracted by applying the Longest Common Subsequence algorithm. The variable information,

which is produced by comparing the original pages with the template, is inserted into a database.

Next, the pages are dynamically generated from the template and database records by a server-side

script. Manual refinement is required for the constructed template and database.

A similar approach based on the computation of the Levenshtein edit distance between both

static and dynamic web pages was proposed by De Lucia et al. [10] for the generalization of cloned

patterns. This work focuses on detecting cloned navigational patterns which can be used for reengi-

neering of web applications, as well as for recognizing common information that can be stored in

the database [10]. The Levenshtein edit distance between two web pages is separately computed

at the structural (using string representations of the HTML tags of web pages constructed during

DOM trees traversal) and content levels (using the textual information associated with HTML tags

constructed during DOM trees traversal). For dynamic pages the similarity degree is also computed

for the server-side scripts. Two pages are considered as clones if their edit distance is lower than a

given threshold.

Lucca et al. [11] encoded sequences of tags from HTML and ASP pages into a string repre-

sentation by traversing web pages DOM trees and computed the Levenshtein edit distance between

them in order to detect clone pages that have the same structure and differ only in their content.

The authors defined a separate alphabet for client and server pages, and each HTML or ASP tag

is replaced with a corresponding alphabet character. This was done in order to take into account

the different techniques and languages used to implement control components in these pages. For

every pair of server pages both ASP distance and HTML distance are computed. Along with the

Levenshtein-based technique, the authors suggested to detect duplicate client pages using a fre-

quency based metric, which is the occurrence (frequency) of each HTML tag inside a page. For

the evaluation purpose the groups of cloned pages were created through the manual analysis. The

results of the evaluation performed by the authors show that both methods are comparable, but have

different computational costs.

A comparative study of clustering algorithms for the detection of cloned pages at the structural

level was performed by De Lucia et al. [28]. In particular, the authors considered an agglomerative

hierarchical clustering algorithm, a divisive clustering algorithm, K-means partitional clustering

7



algorithm, and a partitional competitive clustering algorithm (Winner Takes All). As a distance be-

tween two pages, the authors used the Levenshtein edit distance applied to the string representation

of the HTML tags of both static and dynamic web pages. The authors conducted the evaluation of

the selected clustering algorithms over one small and two medium web applications which showed

that the clustering algorithms produce comparable results.

2.1.1.2 Composite distance metrics

To support the understanding of static and dynamic web pages, De Lucia et al. [12] suggested an

approach that groups similar pages using the Winner-Takes-All [29] clustering algorithm, which is a

simple artificial neural-network algorithm for grouping similar patterns of a neuron. The clustering

is based on the correlations of data points (web pages), represented by the distance between those

data points. At the structural level the distance between pages is computed using the Levenshtein edit

distance. As in the aforementioned approach [11], the static/dynamic web pages are represented as

string sequences of HTML tags. The HTML tags in turn are encoded into the symbols of an alphabet,

which helps making the computation more precise and faster. To group pages at the content level

the authors employ Latent Semantic Indexing [30]. Euclidean distance is computed as a similarity

measure between the pages at the content level. The Levenshtein and Eucledian distances are then

given as input to the Winner-Takes-All clustering algorithm which groups pages at the structural and

content level, respectively. The number of clusters to be returned is also assumed to be provided as

input to the clustering algorithm.

De Lucia et al. [13] used the Levenshtein edit distance to identify groups of web pages, similar

at the content level. First, the dissimilarity between web pages at the content level is computed using

the Levenshtein string edit distance and the Latent Semantic Indexing technique. In particular, the

dissimilarity between web pages based on the extracted content is computed by combining a mea-

sure based on the Levenshtein edit distance and the cosine between the vectors of the page in the

latent structure of content [13]. The approach uses a weighted mean to combine these dissimilar-

ity measures. Similar pages are then grouped by iteratively applying a Graph-Theoretic clustering

algorithm [31], which takes as input a graph, and then constructs a minimal spanning tree (MST).

The nodes in the graph represent web page instances and the edges between nodes are assigned

with weights using mean combined dissimilarity measure. All individual clusters are initially re-

moved from the input graph, so it represents a strongly connected graph. Clusters are identified by

pruning the edges of the MST that have a weight higher than a given threshold. The clustering pro-

cess is iteratively performed until no single-page clusters are identified. The arithmetic mean of the

edges of the constructed MST is used as a pruning threshold. However, such methods of computing

thresholds could affect the quality of the results.

To support the comprehension of web applications, Di Lucca et al. [25] applied the agglomer-

ative hierarchical clustering algorithm to decompose web applications into groups of functionally
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related components. As a similarity measure the clustering algorithm takes as input the coupling

measure between interconnected components, which considers the topology of connections (link,

redirect and submit relationships). The output of the agglomerative hierarchical clustering algorithm

represents a hierarchy of clusters, which is then used to understand the structure of a web applica-

tion. The cutting threshold for the produced dendrogram is selected based on a “quality metric”,

computed as a difference between the intra-connectivity and inter-connectivity of the clusters.

2.1.1.3 Remarks

The majority of the aforementioned methods employ the Levenshtein edit distance [21] as a similar-

ity metric between pages. The major limitation of this metric is that it doesn’t consider the structure

of the web page since the web pages are converted into sequences of HTML tags, and therefore the

metrics cannot take advantage of the information embedded in the nesting of the tags. An earlier

result in our research group [32] demonstrated that tree-differencing can be effective in recognizing

similarities and differences between the web pages.

Also, the majority of clustering-based techniques discussed above are semi-automatic and re-

quire to provide or use a predefined threshold to partition web pages into clusters [9,10,12,13]. The

results produced by each threshold should be carefully analyzed in order to identify which threshold

produces the best partition. This requires a huge effort from users. Our method produces a parti-

tion of clusters that closely reflect the actual features of a web application automatically, without

assuming that the user provides a cut-off threshold.

2.1.2 Other methods applied to reverse engineer web applications

Some of the reverse-engineering approaches focus, not on analyzing the web-application behavior,

but rather on migrating static web pages to dynamic [9, 24]. Mesbah and van Deursen [24] used

a schema-based clustering technique to categorize web pages with similar structures. The authors

extract the navigational model of a web application and compute the Levenshtein edit distance be-

tween the reverse engineered schemas of the web pages. The navigational path and schema-based

similarities are then given as input to a clustering algorithm, which finds for a set of clone pairs

(e.g. {(a − b), (b − c), (d − e)}) a transitive closure ({(a − b − c), (d − e)}). The formed clusters

are analyzed to find candidate user interface components to be migrated from a multi-paged web

application to a single-paged Ajax interface.

Hassan and Holt [26] presented a semi-automatic approach for reverse engineering and visual-

izing the architecture of web applications. The authors developed a set of tools that parse the source

code of the subject web application and extract relationships between its components. The special-

ized extractors retrieve software artifacts such as source code, execution traces, and web pages, and

then generate facts about the web application (for example,“function f uses variable a” or “file f1

uses file f2” [26]). The generated facts are then used to produce architecture diagrams. To decom-
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pose the architecture diagrams into smaller subsystems the authors apply a clustering algorithm that

takes into account directory structure, file name conventions, and software metrics. The clusters are

then manually refined by the developers using documentation and specific domain knowledge.

Ricca and Tonella [27] developed ReWeb, a tool for reverse-engineering web applications, which

supports web applications maintenance and evolution. ReWeb also provides a graphical interface

through which users can explore a high-level view of a web application as well as search or navigate

the web application’s structure. The restructuring in the proposed approach is based on such tech-

niques as reaching frames, using dominators, and finding shortest paths. ReWeb consists of three

main components: a Web spider (which is responsible for downloading the subject web applica-

tion), an analyzer, and a viewer. The analyzer constructs a directed graph of a web application with

pages as nodes and links as edges between the nodes. The tool models the web-application structure

by applying analyses techniques such as flow analyses, traversal algorithms, and pattern matching.

The structural and history analysis of the web application is displayed to the user by the viewer

component of the ReWeb. The proposed tool doesn’t provide complete handling of dynamic web

applications, and can only be applied for such dynamic web applications which provide the FORM

construct for user input.

2.2 Testing of Web Applications

Software testing, an admittedly difficult task, is even more challenging in the context of modern

web applications, due to their characteristics such as dynamic DOM content and the structure of

their web pages [14]. A number of approaches [16, 17, 33–35] have been proposed for automated

testing of dynamic web applications by “exploring” their behaviours. These methods exhaustively

explore the dynamic DOM states of a web application. Other methods provide a range of interesting

solutions for web testing, however they can only partially handle testing of dynamic web applications

[19, 20, 36, 37]. Table 2.1 summarizes these methods. Column Technique briefly describes the

technique used in the proposed testing approach. The type of the supported web application (Ajax,

JavaScript, Java, PHP, etc.) is shown in column Type of supported WA, where “WA” stands for

“web application”. Column Tool describes the name of tool/framework in which the approach was

implemented. The type of evaluation performed on the approach is described in the last column of

the table. Additionally, in Section 2.2.3 we discuss the most popular testing frameworks used both

in industry and research.

2.2.1 Exhaustive analysis of dynamic DOM states

Crawljax [8] automatically crawls and tests Ajax-based web applications. Inspecting the clickable

elements on eah page, the tool can crawl Ajax-based web applications by firing events associated

with them. Also, Crawljax can fill the input fields with the random data or, if provided, with the

user data. While exploring the subject web application the tool creates a state-flow graph, where
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vertices are DOM states and edges are the clickable elements whose behaviour connects one DOM

state to another. When Crawljax discovers a new DOM state as a result of DOM tree changes, a

corresponding node and edge with an annotated event are added to the graph. The process is repeated

until no new DOM states are discovered, or the stop condition is satisfied (e.g., the crawler reached

the maximum number of states or maximum crawl depth). The authors of Crawljax evaluated the

accuracy, scalability, and performance of Crawljax in a series of crawling tasks.

To test Ajax-based web applications Marchetto et al. [16] recently suggested a method to dynam-

ically extract DOM states into a finite state machine and to analyze semantically interacting events

sequences in order to automatically generate test cases. To overcome the problem of exponentially

growing search space of semantically interacting event sequences, the authors later suggested to

use search-based algorithms to extract maximally diverse event sequences of different length [17].

This technique reduces the size of generated test cases, since event sequences are not repeated. In

contrast to our approach, the above methods focus on finding faults in a web application, instead of

establishing that it delivers the desired functionalities.

Dallmeier et al. [38] developed WebMate, a tool designed for automatic testing of dynamic

web applications. Automatically exploring a web application, WebMate constructs its usage model

that captures how the user can interact with the web application through triggering JavaScript event

handlers. The usage model represents a graph with the application’s states as nodes and interactions

between the states as edges. After triggering an action on the web page, WebMate extracts each

state of the web page’s DOM structure. The tool navigates to each of the detected functional states

of the application until all elements are explored. This work is similar to Crawljax [8], however the

difference between two tools is that in order to distinguish DOM states Crawljax uses much lower-

level DOM representations than WebMate. Also, WebMate recognizes dynamically attached event

handlers, and Crawljax, in turn, examines all clickable elements on the web page. To evaluate the

tool, the authors applied WebMate for cross-browser testing.

To perform automated testing of JavaScript web applications Artzi et al. [34] suggested an ap-

proach that is based on a feedback-directed random automated test generation used in a number of

prioritization functions and test input generators. The prioritization functions guide the exploration

of the web application’s state space. The execution of the test is analyzed in order to collect more

information for test script generator and to produce additional test scripts, thus increasing the test

coverage. First, the algorithm starts with the creation of initial test input, which consists of the

URL of the initial web page, an entry state parameter, and a pseudo-event that constructs an HTML

DOM structure and executes the top-level script code followed by the unload event handler. The

execution of the generated test scripts is then iteratively repeated by creating new events until no

such tests remain. The approach was implemented in a framework named Artemis. The evaluation

results demonstrated that the registration of event handlers as a test execution feedback produced

reasonable coverage.
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Finally, Saxena et al. [35] proposed an automated method for testing JavaScript web appli-

cations, implemented in the Kudzu tool. Given a URL for the subject web application, the tool

automatically generates tests to systematically explore the web application. The author categorized

the input space of a web application by two components: value space and event space. To explore

the web application’s value state the tool applies symbolic execution. The authors define a new

string constraint language for parsing JavaScript code and implement a constraint solver on which

the symbolic execution engine of the Kudzu is based. To explore the event space of a web applica-

tion the authors implemented a GUI explorer that examines the event sequences using some random

exploring strategy. The authors evaluated the proposed approach on finding client-side injection

code-vulnerables.

2.2.2 Approaches limited to test dynamic web applications

CoScripter was originally developed for automating the browsing of interesting paths through a

web site, and recording user’s actions by demonstrating these paths [19]. CoScripter records user

actions performed in the web browser, such as clicking on links and buttons or providing input for

fields, which make CoScripter well suited for web testing. The recorded actions are described in

human readable and editable textual scripts that can be shared with other users and later replayed.

CoScripter consists of two main components: a Firefox1 browser plug-in that records and replays the

user actions, and a repository where the users can share, edit, and rate scripts. Recording of actions

in CoScripter is done by adding event listeners to the events generated in response to the user’s

interaction with HTML DOM elements. When a new action is detected, a step is added to the script

by filling a template that corresponds to the type of the action [39]. To parse scripts, CoScripter uses

an LR(1) parser, which converts the textual representation of a script into web command objects.

CoScripter uses heuristics to guess labels for a large number of input elements in the DOM structure.

For example, to detect a label of a textbox, the algorithm might look for the text to the left of the

textbox, so the label could be found in the DOM structure between the textbox’ parent element and

the textbox itself. CoScripter does not support actions that rely on DHTML or Ajax updates which

make it not applicable for writing automation tests for Ajax-enabled web applications. Also, being

a Firefox plug-in, CoScripter is limited to one browser only.The authors performed case studies to

investigate how CoScripter can support procedure-sharing practices in an enterprise.

Mahmud and Lau [20] applied CoScripter for web testing and developed CoTester, a system

for automated web-application testing. CoTester extends CoScripter by implementing assertions

and a machine learning algorithm for subroutine identification in the test scripts. A subroutine in

CoTester is a group of test steps that represent a higher level action like ”Log in to the system”.

Subroutines are intended to help test maintenance, and also to better reflect the structure of a test

script. However, CoTester which is built upon CoScripter, is available only for the Firefox browser,

1www.mozilla.org
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and does not support Ajax requests. The authors evaluated the subroutine identification functionality

of CoTester and also performed a user study to analyze the ease of use of the tool.

Similar to Marchetto et al. work [17], Alshahwan and Harman [33] proposed a search based

algorithm for automated web testing. The algorithm starts with the static analysis of a web ap-

plication and collects static information that will be used in the next steps. The authors defined a

dynamically mined seed value used in the search process. This value seeds the search with con-

stants collected from web pages during run-time. To generate the data to be used during the tests

the authors employed “hill climbing” optimization method which is generally applied in searches.

The authors implemented the approach in SWAT, a tool designed to test PHP web applications. The

major limitation of this approach is that it doesn’t support a complete testing solution for dynamic

web applications. The evaluation of the approach consisted in analysis of the test coverage, test

effort, and fault detection.

Sauvé et al. introduced EasyAccept [36], a framework that automatically generates and executes

acceptance tests for Java programs, including web applications written in Java. As an input the

tool takes tests that can be specified in one or more text files. Users are required to write specific

Façade classes which play roles as bridges between the EasyAccept framework and the business

logic of a tested program. The commands of test scripts are defined by method signatures of Façade

classes. EasyAccept also provides some built-in commands, for example, expect means that a string

is expected to be returned. Other examples of EasyAccept commands are expectError, expectTable,

equalFiles, and stackTrace. The system runs the entire test suite and compare the actual results of

the tests with the expected ones.

Later, Araújo et al. [37] developed a web application FLOAppTest based on EasyAccept for

running acceptance tests for Java programs. FLOAppTest provides a visual interface for easier test

script creation and does not require the installation of any additional platforms. The web applications

retrieves Java projects from collaborative environments using web services. The user can define

a Façade class from a list of available Java classes within a Java project. Both EasyAccept and

FLOAppTest are designed only for programs written in Java and in order to run acceptance tests

require access to the source code of a tested program.

2.2.3 Frameworks and tools for acceptance testing of web applications

Selenium [40] is one of the most widely used frameworks for automated browsing of web based

applications. Selenium provides a domain-specific language that allows to write automation tests

in such programming language as C#, Java, Perl, PHP, Python and Ruby. Selenium tools provide

flexible operations for locating GUI elements on web pages, and comparing the actual result with the

expected one. Automation tests written with Selenium can be run on different browser platforms.

The functionality of Selenium test scripts, as well as Selenium frameworks’ functionality, can be ex-

tended, thus making Selenium’s framework highly flexible as comparing to other automation tools.
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However, Selenium users have to use workarounds to handle Ajax elements, which may not properly

work in different cases. Also, Selenium tests are not guaranteed to be compatible across different

browsers.

One of the most commonly used tools designed for acceptance testing is Fit (Framework for

Integrated Test) [18], which is based on the JUnit [41] testing framework. Acceptance tests using

Fit are jointly created by clients and developers: clients write test cases in the form of HTML

tables and for each HTML table programmers write individual Java classes called “fixture” which

must conform to certain Fit conventions. A fixture class reads the content of an HTML table and

automatically generates acceptance tests, which are then executed by the system on a tested program.

In contrast to our approach, Fit requires expertise of developers to create automation tests, since it

is necessary to write fixture classes for every type of HTML table.

Other tools for web-application acceptance testing include Cucumber [42] a behaviour-driven

development framework, and the Robot Framework [43], which uses a keyword-driven testing ap-

proach, with a test case represented as a plain text or HTML file. However both frameworks do not

provide complete testing solutions to handle Ajax-requests in web applications.

2.2.4 Remarks

A number of approaches [16, 17, 33] have been suggested for automated testing of dynamic web

applications by “exploring” their behaviours. These methods are not suitable for the acceptance-

testing task, as they automatically generate test cases based on the exhaustive analysis of dynamic

DOM states of a web application without being aware of its intended behavior. Other frameworks

and methods have been proposed that can be adopted for acceptance testing, however they either

require substantial programming expertise [18, 34, 35] or do not have complete testing solutions for

Ajax-based web applications [19, 20, 36, 37].

Additionally, in contrast to the majority of aforementioned frameworks (except for FLOAppTest

[37], which is suitable only for Java programs), our tool is designed as a web application which can

be accessed through any web browser.
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Author Technique Type of sup-
ported WA

Tool Evaluation

Mesbah
et al. [8]

construction of a state-flow
graph with DOM states as
nodes and events as edges

Ajax-based Crawljax accuracy, scal-
ability, and
performance of
crawling tasks

Marchetto
et al. [16]

automatic test case generation
through dynamic extraction of
DOM states into a finite state
machine and semantic analy-
sis of interacting events se-
quences

JavaScript - test cases cover-
age

Marchetto
et al. [17]

extends [16] with the usage of
search-based algorithm to ex-
tract diverse event sequences
of different length

JavaScript - test cases cover-
age

Dallmeier
et al. [38]

construction of a usage model
represented as a graph with
DOM states as nodes and in-
teractions between the states
as edges

JavaScript WebMate cross-browser
testing

Artzi et
al. [34]

prioritization functions and
test input generators using
feedback-directed random
automated test generation

JavaScript Artemis test cases cover-
age

Saxena et
al. [35]

symbolic execution method
with a constraint solver; ran-
dom exploring strategy to ex-
amine event sequences

JavaScript Kudzu finding client-
side injec-
tion code-
vulnerables

Leshed et
al. [19]

recording and replaying user
actions performed in the web
browser

no support for
DHTML or
Ajax updates

CoScripter analysis of
procedure-
sharing prac-
tices with
CoScripter

Mahmud
and
Lau [20]

extends [19] with assertions
and subroutine identification

no support for
DHTML or
Ajax updates

CoTester subroutine iden-
tification

Alshahwan
and Har-
man [33]

search based algorithm for
run-time collection of the con-
stants from web pages

PHP, no com-
plete testing
solution for
dynamic WA

SWAT test coverage,
test effort, and
analysis of fault
detection

Sauvé et
al. [36]

users write Façade classes
whose method signatures de-
fine commands of test scripts

Java-based,
no support for
dynamic WA

EasyAccept user studies to
analyze if Easy-
Accept assisted
in creating bet-
ter quality soft-
ware

Araújo et
al. [37]

extends [36] by providing vi-
sual interface for easier test
script creation

Java-based,
no support for
dynamic WA

FLOAppTest N/A

Table 2.1: Related literature on web applications testing approaches
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Chapter 3

Feature Extraction

Our approach for detecting features from a set of DOM states [44] of a web application consists of

the following main steps. First, DOM states of the target web application are collected using Crawl-

jax, which is developed for crawling and testing Ajax-based web applications. Second, the collected

DOM states are cleaned up, by removing the content, scripting code, and style rules. Third, using

the VTracker tree-differencing algorithm, the distance between all pairs of collected “cleaned-up”

DOM trees is calculated. Next, the computed distances are given as input to a hierarchical clustering

algorithm, which produces a hierarchy of cluster merges, based on the similarity of the DOM trees.

Finally, two different clustering evaluation techniques are applied, namely the L method [22] and

the Silhouette coefficient [23], to automatically determine the number of clusters that correspond to

the actual features.

To assess DOM-tree similarity we propose a novel composite-tree-edits-aware distance metric

that recognizes structural changes in the DOM tree as simple or composite. We compared the pro-

posed composite distance metric with the simplified one that treats all changes uniformly, and with

the Levenshtein [21] string-distance metric. The results demonstrate that the composite tree-edits

based distance metric is more appropriate for automatically deducing the number of clusters that is

close to the actual number of features. The experimental results also demonstrate that the L method

produced more accurate results for the proposed composite tree-edits based distance metric.

Before describing the approach in detail, we would like to explain key definitions used in this

work:

• Web application page (web page): A dynamic web page of a web application whose user

interface and content are modified through event-driven changes based on the inputs provided

by users. Each web page corresponds to a DOM state.

• DOM state: The internal structure of the DOM tree of the client-side user interface that

represents the state of a web application [8].

• Feature: A feature of a web application represents a functionality that is defined by require-

ments and is accessible to users through the client-side user interface of a web application [5].
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Each feature corresponds to a cluster.

• Cluster: In the context of our feature extraction problem, a cluster is a group of DOM states

that correspond to the same feature of a web application (for example “Login to the system”

or “Search for an item”).

3.1 DOM state collection

The DOM state instances of examined web applications are collected with Crawljax [8]. Crawljax

can crawl any Ajax-based web application by firing events and filling in form data. It creates a state-

flow graph of the dynamic DOM states and the transitions between them. More details regarding

Crawljax are provided in Chapter 4. Given the URL for the examined web application, Crawljax

starts to systematically explore the web application from its main page. We configure Crawljax to

collect 100 different states (at maximum) starting from the main page for each web application. We

also configure Crawljax to ignore crawl depth by setting up the maximum crawl depth value equal to

0. The crawler is configured to click on default clickable elements which include <A>, <BUTTON>,

and <INPUT> tags and to ignore the external links. By setting the clicklOnce value to true we tell

Crawljax to exercise clickable elements on the page only once.

Additionaly, we configure Crawljax to provide meaningful input to simulate user input rather

than generate random input strings. For example, knowing the identifier of the “Submit” field on the

JPetStore search page, we can set up a value for this field which will be used by Crawljax whenever

it will encounter the input field with the specified id attribute. Figure 3.1 shows an example of

Crawljax’s configuration for JPetStore web application.

After the crawling of the subject web application is complete, we traverse the constructed state-

flow graph and collect the discovered DOM states, which are then cleaned up and are given to a

tree-differencing algorithm for pairwise comparison.
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private static final String URL =
"http://http://localhost:8080/petstore";

private static final int MAX_CRAWL_DEPTH = 0;
private static final int MAX_STATES = 100;

private static CrawlSpecification getCrawlSpecification() {
CrawlSpecification crawler = new CrawlSpecification(URL);

crawler.clickDefaultElements();
crawler.setRandomInputInForms(false);
crawler.setClickOnce(true);

crawler.setMaximumStates(MAX_STATES);
crawler.setDepth(MAX_CRAWL_DEPTH);

crawler.setInputSpecification(getInputSpecification());

return crawler;
}

private static InputSpecification getInputSpecification() {
InputSpecification input = new InputSpecification();
input.field("searchForm:searchString").setValue("cat");
return input;

}

Figure 3.1: Crawljax configuration for JPetStore
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3.2 DOM state clean-up

Before being given as input to the tree-differencing algorithm, the DOM trees are traversed and

“cleaned up” from the text content, <SCRIPT> and <STYLE> tags and associated with them code.

More specifically, the clean up process involves the following steps.

• The content (text information associated with HTML tags) of the page is removed.

• Tags <SCRIPT> and <STYLE> (and the content between them) are removed, to exclude scripts

and CSS styling rules.

• Special attributes with script values are removed. For example, we noticed that attributes such

as jsprops, jsdisplay, jstcache, jsattrs, href, onlick of the <DIV> tags

contain scripts as values that are slightly changing between subsequent DOM states and affect

the similarity of the DOM states:

<DIV class=“mv-secondary” jsprops=“activityId:8” style=“height: 26px;”>

<DIV class=“mv-secondary” jsprops=“activityId:9” style=“height: 26px;”>

Figures 3.2 and 3.3 illustrate the excerpts of the “Menu” part in the DOM structure of the JPet-

Store “Search item” page before and after the clean up process respectively. As seen in Figure 3.3

text between opening and closing <TITLE>, <DIV>, <A> tags is removed. All <SCRIPT> and

<STYLE> tags with the corresponding code are completely removed as well.
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<HTML>
<HEAD>

<TITLE>Search Page</TITLE> <SCRIPT src="common.js"
type="text/javascript"></SCRIPT>

</HEAD>
<BODY>

<STYLE type="text/css">#rss-bar { margin: 0 auto 0px;}#rss-bar
table

td#rss-channel { background-repeat: no-repeat;
background-position:

top left; font-size: 14px; font-weight: bold;
vertical-align: top;

text-align: center; width: 254px;}#rss-bar table a { color:
white;

text-decoration: none;}#rss-bar table a:hover { color:
#ffff00;}</STYLE>

<SCRIPT type="text/javascript">var rss = new bpui.RSS();
dojo.addOnLoad(function(){rss.getRssInJson(’
/petstore/faces/dynamic/bpui_rssfeedhandler/getRssfeed’,
’https://blueprints.dev.java.net/servlets/ProjectRSS?type=news’,
’4’, ’4000’, ’News from BluePrints’, ’news.jsp’);});</SCRIPT>

<TABLE bgcolor="white" border="0" bordercolor="gray"
cellpadding="0" cellspacing="0" width="100%">
<TBODY>

<TR id="injectionPoint">
<TD width="100">
<A class="menuLink" href="/petstore/faces/index.jsp">

<IMG border="0" height="70"
src="/petstore/images/banner_logo.gif"
width="70"></A>

</TD>
<TD align="left">
<DIV class="banner">Java Pet Store</DIV>

</TD>
<TD align="right" id="bannerRight">
<A class="menuLink"

href="/petstore/faces/fileupload.jsp"
onmouseout="this.className=’menuLink’;"
onmouseover="this.className=’menuLinkHover’;">
Seller</A>

<SPAN class="menuItem">|</SPAN>
<A class="menuLink" href="/petstore/faces/search.jsp"

onmouseout="this.className=’menuLink’;"
onmouseover="this.className=’menuLinkHover’;">
Search</A>

<SPAN class="menuItem">|</SPAN>
</TD>
...

</TR>
...

</TBODY></TABLE>
...

</BODY>
</HTML>

Figure 3.2: Before cleaning up the “Menu” part in the DOM structure of JPetStore “Search item”
page
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<html>
<head>
<title></title>
</head>
<body>

<table bgcolor="white" border="0" bordercolor="gray"
cellpadding="0" cellspacing="0" width="100%">
<tbody>

<tr id="injectionPoint">
<td width="100">

<a class="menuLink">
<img border="0" height="70"

src="/petstore/images/banner_logo.gif"
width="70">

</a>
</td>
<td align="left">

<div class="banner"></div>
</td>
<td align="right" id="bannerRight">

<a class="menuLink"
onmouseout="this.className=’menuLink’;"
onmouseover="this.className=’menuLinkHover’;">

</a>
<span class="menuItem"></span>
<a class="menuLink"

onmouseout="this.className=’menuLink’;"
onmouseover="this.className=’menuLinkHover’;">

</a>
<span class="menuItem"></span>

</td>
...
</tr>

...
</tbody>...</table>

...
</body>
</html>

Figure 3.3: After cleaning up the “Menu” part in the DOM structure of JPetStore “Search item”
page
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3.3 VTracker

To compute the distance between two DOM states we employ the generic tree-differencing algo-

rithm VTracker [32], which extends the Zhang-Shasha tree-edit distance algorithm [45]. The Zhang-

Shasha algorithm takes as input two ordered-labeled trees and computes the minimum edit distance

between them based on a given cost-function for each of the edit operation types (insert, delete,

change).

VTracker takes as input a pair of XML documents, each one considered as a labeled ordered

trees and produces as output a tree-edit sequence of insert, delete, change, and move edit operations

that can be applied to transform the first tree into the second one. The order of elements in the XML

trees for VTracker is important as it resembles the order of the content of XML documents [32, 46].

As a result of comparing trees T1 and T2 the algorithm produces an edit script, which is a

sequence M of mappings map(i, j), where i is the node from T1 and j is the node from T2 such

that for all (i1, j1) and (i2, j2) ∈M [32, 45]:

• i1 = i2 iff j1 = j1 (each node can be maximum involved in one edit operation);

• T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2] (the siblings order is preserved

during the mapping);

• T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of T2[j2] (the ancestor-child order is

preserved during the mapping).

VTracker extends the Zhang-Shasha algorithm by providing additional properties which are dis-

cussed below.

3.3.1 Affine cost computation

The Zhang-Shasha algorithm considers each insert/delete operation on a node as independent re-

gardless of the edit operations applied to the node’s children or ancestors, and always assigns the

same cost to each operation. As a result, two different edit scripts can have the same type and

number of edit operations and equal minimum edit distances, regardless of the fact that one edit

script may contain changes in a small neighbourhood of nodes where the second script includes

changes scattered across the whole tree. According to [32] such behaviour is unintuitive, since a set

of changes of the same type are likely to occur within the same sub-tree, rather than be scattered

across the whole tree.

VTracker extends the original algorithm by adjusting the cost assigned to edit operations de-

pending on other related operations. The cost of each operation, which in VTracker is considered

as context sensitive, is regulated by an affine-cost function. The logic of this affinity function is as

follows. If all children of a node are candidates for deletion, then it is more likely that the node

itself will be deleted as well and the cost operation for deletion of this node is considered to be less
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than any other regular deletion of a node. The same assumption is preserved for an insertion of a

node. To reflect this affinity the cost of such insert/delete edit operations in VTracker is reduced by

50% [32, 46].

3.3.2 Simplicity heuristics

There are cases when VTracker can produce several edit scripts with the same cost. In such situations

the algorithm should decide which edit script to return as output of XML trees comparison. To

solve this problem VTracker applies a number of simplicity filters. The fundamental assumption in

applying the simplicity heuristics in VTracker is that more complex edit scripts with the same cost

are less likely to be produced than less complex edit scripts [32].

When the set of solutions is produced, VTracker applies the following simplicity heuristics to

discard the most unintuitive solutions.

1. The algorithm looks for the minimal edit sequence path: if there are several paths with the

same minimum cost, the algorithm selects the one that has the least number of addition/dele-

tion operations;

2. The algorithm looks for paths with uninterrupted sequences of similar edit operations. It

considers continuous edit operations of the same type as a single edit operation. If there are

several different paths with the same minimum cost and the same number of edit operations,

the algorithm selects the path that has the least number of changes in operations’ types along

the tree branch.

3. The algorithm considers that the same edit operations should be applied to sibling nodes.

Therefore, VTracker maximizes the number of nodes along the branch tree to which the same

edit operation is applied.

Essentially, the aforementioned heuristics and the usage of the affine-cost function are based on

the assumption that similar edit operations are likely to be applied to the set of related nodes rather

than to the set of independent nodes.

3.3.3 Cross-referencing

VTracker extends the Zhang-Shasha algorithm by introducing the use of cross-references between

nodes of the compared trees, by considering the elements being referenced as a part of the structure

of the referring elements. Also, while matching nodes, VTracker takes into account the context in

which the element is used (i.e. the elements from which this element is being referenced). This

process is called as context-aware matching [32, 46].
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3.4 The Distance Metric

Different distance metrics lead to different clustering results, and it is essential to choose the right

distance metric for clustering purposes because it affects the quality of the resulting clusters. After

the comparison of two DOM trees is done, VTracker produces the edit script, which represents a

sequence of primary edit operations for a pair of nodes that are

• matched (are exactly the same) in both trees;

• changed from the first tree to the second;

• moved from one location in the first tree to another location in the second tree;

• removed from the first tree; or

• inserted in the second tree.

The distance between two compared DOM trees T1 and T2 is defined as follows :

dS(T1, T2) =
|diff(T1, T2)|

|diff(T1, T2)|+ |match(T1, T2)|
(1)

where:

• diff(T1, T2) is the set of change, move, remove and insert edit operations in the tree-edit

sequence for T1 and T2; and

• match(T1, T2) is the set of match edit operations in the tree-edit sequence of T1 and T2.

The distance metric defined in (1) ranges over the interval [0, 1]. It is minimized when

|diff(T1, T2)| is equal to zero (two DOM trees are completely similar) and is maximized when

|match(T1, T2)| is equal to zero (two DOM states are completely different).

We introduce a new distance metric, which recognizes structural changes in the DOM tree as

simple or composite. A single composite edit operation identifies a subset of primary edit operations

in diff(T1, T2) applied to a set of corresponding nodes (in the first tree in the case of remove edit

operations, in the second tree in the case of insert edit operations, or in both trees in the case of

move/change edit operations) located under the same path to the root in the DOM tree. A composite

edit operation may consist of different types of primary edit operations (for example, node inserts

along with node changes), as long as the involved nodes are nested under the same path to the root.

Two or more primary edit operations belong to the same composite edit operation if they are applied

to nodes on the same (sub)path to the root. More specifically, two individual edit operations on
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nodes A, B belong to the same composite edit operation, if the path to node A (starting from the

root) is part of the path to node B.

Having the extracted set of composite edit operations we can define a new distance metric be-

tween two trees T1 and T2 as following:

dC(T1, T2) =
|diff’(T1, T2)|+ |comp(T1, T2)|

|diff’(T1, T2)|+ |comp(T1, T2)|+ |match(T1, T2)|
(2)

where:

• comp(T1, T2) is the set of composite edit operations extracted from the tree-edit sequence of

T1 and T2

• diff’(T1, T2) = diff(T1, T2) \ editOps(T1, T2)

• editOps(T1, T2) =
⋃
x∈comp(T1,T2)

x is the union of all edit operations in the set of composite

edit operations.

Figures 3.4 and 3.5 illustrate a sample section of a DOM state of the JPetStore [47] search page

before submitting a query (Figure 3.4) and after obtaining the query results (Figure 3.5). In response

to the query, the DOM structure of the page is dynamically updated to contain a new table com-

ponent with the query results (HTML element FORM with name="resultsForm" Figure 3.5).

The simplified distance metric dS handles each inserted node under the <FORM HTML element

with id="resultsForm" as a separate primary edit operation. In turn, the composite distance

measure dC considers the insertion of the new FORM HTML node along with its nested nodes as a

single composite edit operation.

In other words, in the proposed distance metric defined in (2), the number of primary edit oper-

ations that belong to composite edit operations is replaced by the number of composite edit opera-

tions. This distance metric is more robust to composite changes by reducing the weight of composite

operations in comparison to non-composite edit operations.
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<HTML>
<HEAD>
<TITLE>Search Page</TITLE>
</HEAD>
<BODY>

<H1>Search Page</H1>
<FORM action="/faces/search.jsp" id="searchForm" method="post"

name="searchForm">
<INPUT name="searchForm" type="hidden" value="searchForm">
<TABLE>

<TBODY>
<TR>

<TH>Search String</TH>
<TD><INPUT id="searchForm:searchString"

value="cat"></TD>
</TR>
<TR>

<TD><INPUT id="searchForm:searchSubmit"
type="submit"

value="Submit"> <INPUT
id="searchForm:searchReset"

type="reset" value="Reset"></TD>
</TR>

</TBODY>
</TABLE>

</FORM>
</BODY>
</HTML>

Figure 3.4: A sample section of the DOM structure from JPetStore “Search page” (before query
submission)
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<HTML>
<HEAD>
<TITLE>Search Page</TITLE>
</HEAD>
<BODY>

<H1>Search Page</H1>
<FORM action="/faces/search.jsp" id="searchForm" method="post"

name="searchForm">
<INPUT name="searchForm" type="hidden" value="searchForm">
<TABLE>

<TBODY>
<TR>

<TH>Search String</TH>
<TD><INPUT id="searchForm:searchString"

value="random string">
</TD>

</TR>
<TR>

<TD><INPUT id="searchForm:searchSubmit"
type="submit"

value="Submit"> <INPUT
id="searchForm:searchReset"

type="reset" value="Reset"></TD>
</TR>

</TBODY>
</TABLE>

</FORM>

<FORM action="/faces/search.jsp" id="resultsForm" method="post"
name="resultsForm">
<INPUT name="resultsForm" type="hidden" value="resultsForm">
<TABLE>

<TBODY>
<TR>

<TH>Map</TH>
<TH>Name</TH>
<TH>Description</TH>
<TH>Tags</TH>
<TH>Price</TH>

</TR>
<TR>
</TR>

</TBODY>
</TABLE>

</FORM>
</BODY>
</HTML>

Figure 3.5: A sample section of the DOM structure from JPetStore “Search page” (after query
submission)
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3.5 The Clustering Algorithm

In this section we discuss the most important clustering techniques as applied to the problem of

feature extraction.

3.5.1 Partitioning clustering algorithms

Partitioning clustering algorithms divide data objects into a set of k clusters, where k is a predeter-

mined number [48], [49]. Such algorithms usually start with a random partitioning of data objects

into k groups, which are then iteratively refined until a termination condition is satisfied. The reas-

signment of clusters is based on the analysis of a fitness function’s value, which usually corresponds

to the cohesion of the clusters. A stopping criteria for the partitioning algorithm can be, for example,

a fixed number of iterations, or when the partition of data objects remains unchanged.

K-means [49] is one the most widely used partitioning clustering algorithms. The algorithm

clusters data objects based on their “neighbourhood”. As input, in addition to data objects, the

algorithm also requires the number of clusters k to be identified, as well as a random initial guess

of k centres (centroids). During the refinement process the algorithm finds for each data object the

closest centre to which the data object will belong. The algorithm then recalculates centres of the

groups based on the data objects they include. These steps are repeated until the centres remain the

same.

The manual specification of k clusters makes the K-means clustering algorithm unsuitable for

our problem, since we don’t know in advance the number of features that exist in a web application.

A number of heuristic approaches are introduced to tackle the problem of automatically determining

the number of clusters k and an initial assignment of centroids [50]. A common approach to address

these two problems is to run K-means algorithm multiple times using different values of k and then

to choose a set of resulting clusters with a smallest sum of the squared error. However, since the

number of clusters k should range from 2 to the number of input data objects, these approaches may

introduce a significant computational overhead if the number of data objects given as input (in our

case, DOM trees) is large. Additionally, if the initial guess of centres was not good enough, the

clusters produced by K-means algorithm can be of a poor quality.

Another problem related to K-means is that the algorithm can produce empty clusters if no

data objects are allocated during the random initialization of clusters [51]. Also, in contrast to the

hierarchical clustering algorithm, K-means is non-deterministic because the random selection of

centroids can produce different final results [52]. Additionally, K-means does not perform well with

input data that contains outliers [53] (detection and removal of outliers can improve the clustering

result, but this requires examination of the input data). Finally, the algorithm can not be applied to

any type of input data, since it is restricted to the data objects that can have specific coordinates in

a feature space (e.g., Cartesian plane) and a notion of centroid [51]. In our problem, we give as an

input the distances between pairs of DOM trees.
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3.5.2 Density-based clustering algorithms

Density-based clustering algorithms define clusters as regions of data objects with high density

separated by regions of a lower density [54]. The outliers and the data objects that separate clusters

are considered as noise and border data points respectively. One the most popular density-based

clustering algorithms is DBSCAN [55], which uses the model of density reachability and density

connectivity. DBSCAN groups the data objects based on a certain density criteria (for example, the

minimum number of data objects in the density area) within a predefined radius. However, in this

case the density depends on the selected radius. Unlike partitioning clustering algorithms, DBSCAN

doesn’t require to provide the number of clusters. However, manual specification of a density criteria

also makes this algorithm not suitable for our problem since it is not clear how to map the density

and the number of DOM trees corresponding to a feature in a web application. Also, the existence of

so called bridges (i.e, data objects which are located at the equal distance from two dense regions)

can potentially cause the merging of clusters of DOM trees that belong to different features.

3.5.3 Agglomerative hierarchical clustering algorithms

To group DOM trees that correspond to the same feature of a web application we employ a hierar-

chical clustering algorithm. The hierarchical clustering algorithm is more suitable for our problem

since it has a number of advantages in the context of our problem as compared to other clustering

algorithms such as partitioning or density-based.

There are two basic hierarchical clustering methods: agglomerative and divisive. Agglomerative

hierarchical clustering algorithm starts with setting each data object as an individual cluster. In each

iteration the algorithm merges the closest pair of clusters based on the provided distance measure

for each pair of data objects. The process is repeated until all data objects are grouped into one

cluster. In contrast to K-means, the hierarchical clustering algorithm is executed only once and

doesn’t require providing initial random guesses of clustering. The produced hierarchy of clusters

with a single cluster with all data objects at the root of the hierarchy is called a dendrogram.

Divisive hierarchical clustering algorithms start with all data objects placed in a single cluster.

In each iteration, the clusters are split into smaller clusters. The algorithm stops when each data

object is placed in a separate cluster. In contrast to agglomerative hierarchical clustering algorithm,

the divisive one needs to know which cluster should be divided and how to do the division [51].

In our approach to group DOM states we employ the agglomerative hierarchical clustering al-

gorithm, which is deterministic. Also, in contrast to partitioning and density-based clustering algo-

rithm, it does not require to manually specify input parameters. In general, the naive implementation

of the hierarchical clustering algorithm has the complexity of O(N
3

), which makes the algorithm

too slow when the size of the input data is large.

The hierarchical clustering algorithm requires a linkage criteria upon which the selection of

the clusters to be merged is being decided. The most commonly used versions of agglomerative
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clustering algorithm are:

• single-linkage or MIN (the minimum distance between any two data objects in two different

clusters);

• complete-linkage or MAX (the maximum distance between any two data objects in two dif-

ferent clusters); or

• group average (the average distance among all pairs of data objects in two different clusters).

This linkage criteria is in-between of the single-linkage and complete-linkage versions.

The single-linkage approach tends to form highly separated clusters whereas complete-linkage

version of the hierarchical clustering algorithm tends to form more tightly centered clusters [31]. In

the context of grouping similar DOM trees, we assume that most of the web pages of a web applica-

tion can have common parts, for example header, footer, and menu. This implies that the distances

between DOM trees are relatively small by default, and in the context of the hierarchical cluster-

ing application, there are no highly distant clusters of DOM trees. Therefore, the single-linkage

approach is not suitable in our case, since it tends to form highly separated clusters. The complete-

linkage version of the algorithm is more appropriate for our problem, since we are interested in

grouping the most similar DOM trees rather than just similar DOM trees (to form tight clusters).

3.5.4 Determining the number of clusters

Given the dendrogram produced by the hierarchical clustering algorithm, a cut-off threshold is re-

quired to determine the actual cluster partition; the threshold essentially decides how many clusters

the final partition will include, eliminating the partitions “higher” in the dendogram. The usage of

a fixed cut-off threshold can result in a set of clusters of different quality varying over the set of

input data objects. A fixed low cut-off threshold can produce clusters with similar data objects scat-

tered across different clusters, while a high cut-off threshold can produce a partition of clusters that

include dissimilar data objects. Therefore, the cut-off threshold is, in most cases, subjectively deter-

mined, assuming some knowledge of the input data. Previous approaches used either a predefined

threshold [9] or required a user-defined threshold [10, 11, 24].

In our approach, we apply two clustering analysis methods to determine the number of clusters

in a partition and thus infer the cut-off threshold automatically. More specifically, we apply two

different methods, namely the L-method [22] and Silhouette coefficient [23] to automatically deter-

mine the number of clusters to be returned by the hierarchical agglomerative clustering algorithm

without providing ground truth for cluster evaluation or using predefined input parameters.

3.5.4.1 The L method

The L-method is a technique for identifying an appropriate number of clusters to be returned by

hierarchical clustering or segmentation algorithms, and it doesn’t require any input parameters or
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constants. Using clustering evaluation metrics such as merge distances produced by the hierarchical

clustering algorithm the L method constructs an evaluation graph (Figure 3.6) where the x-axis is

the number of clusters and the y-axis is the value of the merge distances at x clusters. The knee (the

region of the maximum curve) is used to determine the number of correct clusters to be returned as a

result of the clustering algorithm. The knee on the evaluation graph is estimated as a region between

two lines that most closely fit the curve. To estimate a reasonable number of clusters to be returned

by clustering algorithm the L method should be run only once. The running time of the L method

algorithm is O(N
2

) with respect to the number of data points on the evaluation graph [22].

Figure 3.6: JPetStore evaluation graph

An example of an evaluation graph constructed using the merge distances produced by hierar-

chical clustering algorithm using the complete-linkage criteria for the JPetStore web application is

shown on Figure 3.6. There are three recognizable regions on the graph:

1. an inclined region of data points on the left of the graph;

2. a flat region of data points that form almost a straight path on the right side of the graph; and

3. a curved region of data points between them.

The nearly straight segment that is formed by the data points on the right side of the evaluation

graph indicates that there are a lot of similar clusters that are merged together. The abruptly increas-

ing region (moving from the right) on the left of the evaluation graph means that dissimilar clusters
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are being merged (the merge distances grow very quickly), hence the quality of the clusters at this

point is being decreased. A reasonable number of clusters is located between these two regions in

the curved area, or knee of the evaluation graph [22]. The region of data points that form an inclined

line on the evaluation graph contains clusters that are dissimilar to each other, whereas the flat re-

gion of data points contains many clusters that are similar to each other. Therefore, the knee region

contains clusters that are both highly homogeneous and dissimilar to each other [22].

The L method aims to find a pair of lines that most closely fit the data points on the graph.

Each line must start at either end of the data points and must include at least two points. Both

lines together should cover all data points on the graph. The method does not take into account

the data point that corresponds to the final cluster (when all clusters are merged into one), therefore

the x-values range from 2 to b (which is equal to the total number of elements given as input to

the clustering algorithm), and the total number of data points on the graph is b − 1. If we consider

that the data points are partitioned at x = c (see Figure 3.6), then Lc and Rc are the left and right

sequences of data points, respectively. Left sequence (Lc includes data points x = 2..c and right

sequence Rc comprises data points x = c + 1..b. The total root mean squared error RMSEc is

defined as follows:

RMSEc =
c− 1

b− 1
×RMSE(Lc) +

b− c
b− 1

×RMSE(Rc) (3)

where RMSE(Lc) is the root mean squared error of the best fit line for the left sequence of data

points in Lc andRMSE(Rc) is the root mean squared error of the best fit line for the right sequence

of data points in Rc [22]. The weights are proportional to the lengths of Lc (c− 1) and Rc (b− c),

respectively. The L method seeks the value of c, ĉ, such that RMSEc is minimized. The location

of the knee at x = ĉ is used as the number of clusters to return.

In order to compute ĉ, the L method iterates over the values of c = 3..b− 2 and forms a pair of

lines (the first line by joining the points corresponding to x-values 2 and c and the second one by

joining the points corresponding to x-values c+ 1 and b) in order to compute the RMSEc value for

each possible value of c.

3.5.4.2 The Silhouette coefficient

The Silhouette coefficient [23] is a clustering evaluation metric that describes how well each data

point is located within a set of clusters. The technique that computes the Silhouette coefficient

requires as input dissimilarities (i.e., distances) between pairs of data point and a set of clusters

produced by any clustering algorithm. For every data point i in a set of data points I , it computes

a(i) as an average dissimilarity between i and any other data point within the same cluster A. The
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value a(i) describes how well i fits within its cluster (the smaller the value of a(i), the better the

data point is fitted). Next, for every cluster C which doesn’t contain i, it computes the average

dissimilarity of i with all data points from C. The cluster with the lowest average dissimilarity is

called the nearest neighbour and the average dissimilarity between i and this cluster is denoted as

b(i).

The Silhouette s(i) for data point i, and the average Silhouette coefficient s̄k over all data points

in I in a partition of k clusters are computed as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(4)

s̄k =
1

|I|

|I|∑
i=1

s(i) (5)

If cluster A contains only one data point, s(i) in this case is equal to zero. The value of s(i)

ranges over the interval [−1, 1]; the closer the value of s(i) is to one, the more appropriately the data

point i is clustered within the set of clusters. The larger the value of s̄k, the better the quality of the

clustering is. The complexity of the computation of the Silhouette coefficient is O(N
2

).

3.6 Experiments and Results

We evaluated the proposed distance metric dC in terms of its capabilities to determine the correct

number of features in a web applications using two different methods: the L method [22] and Sil-

houette coefficient [23]. We compared the produced results with the results obtained when using the

Levenshtein edit distance as a distance metric for DOM trees comparison. As discussed in Chapter

2, Levenshtein edit distance has been widely used to compare the structural similarity of web pages.

Additionally, we compared with the results produced when using the simplified tree-edit-operation

based distance metric dS that does not take into account composite changes.

3.6.1 Experimental setup

We conducted the experiments using three different web applications1:

• an online shopping application (garage.ca)

• a map-navigation application (googlemaps.com) and

• an online travel booking application (kayak.com).

1From Google Maps, Kayak, and Garage web applications the only information collected was their DOM structure.
To collect this information, Crawljax parsed the DOM trees located at http://googlemaps.com, http://kayak.com, and
http://garage.ca and then stripped them of all content which was visible on the HTML page. No data besides the DOM
tree itself was collected. The Google Maps API was not used for any data retrieval in the case of Google Maps.
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All three web applications are implemented using Ajax, which allows to dynamically update

their DOM trees at runtime. The DOM trees instances of examined web applications were collected

with Crawljax [8].

Web application # of
states

Average
# of

nodes

Median
(nodes)

Standard
devia-

tion
(nodes)

Average
DOM
depth

Median
(depth)

Standard
devia-

tion
(depth)

Google Maps 45 968 1080 231.83 20 20 0.59
Garage 66 547 540 111.37 12 12 1.60
Kayak 78 894 887.5 541.65 26 29 6.36

Table 3.1: Number of states, DOM size and depth for the examined web applications.

Table 3.1 reports the number of DOM states collected by Crawljax, the average, median and

standard deviation of the number of nodes in DOM states, and the depth of DOM structures for

each of the examined web applications. Analyzing the standard deviation values we can see that

Garage and especially Google Maps have little variation in the size and depth of their DOM states.

This indicates that the DOM states within Garage and Google Maps web applications have similar

structure. For example, Google Maps has a consistent presentation layout (the search panel and the

map area) among different features that the web application offers. Therefore, we expect to have a

set of clusters for these two web applications with a lower accuracy. In contrast, standard deviation

values for Kayak web application show higher variations in size and depth of DOM states. This

can be explained by the nature of the Kayak web application which is a search engine for travel

offers and deals: search queries submitted to Kayak can produce web pages with different search

results that may vary in length, size and structural complexity of the DOM tree of the web page in

general. This results in DOM states with different structures, therefore we expect the accuracy of the

produced set of clusters for Kayak to be higher. Clearly, the different nature of the examined web

applications explains the difference in the variation of size and depth between the generated DOM

trees.

To perform a pairwise comparison of DOM trees using the Levenshtein edit distance as a sim-

ilarity metric we follow the same approach used in the literature [9–11]. We extract a sequence of

HTML tags from the DOM trees and remove the content (text between corresponding tags) and tags’

attributes. An example of such a string for DOM structure from Figure 3.4 is shown on Figure 3.7.

Considering each HTML tag as a token, the Levenshtein edit distance computes the minimum num-

ber of edit operations (insertion, deletion, and replacement) required to transform the first string of

HTML tags into the second one. We normalize the Levenshtein distance within the [0, 1] range by

dividing it with the maximum achievable number of edit operations which is equal to the length of

the largest string of HTML tags (out of two input strings). The normalized Levenshtein distance

metric used for comparison of two strings sequences of HTML tags S1 and S2 is defined in (6):
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dL(S1, S2) =
Ld(S1, S2)

max(length(S1), length(S2))
(6)

where Ld(S1, S2) is the Levenshtein distance between sequences S1 and S2 and length(S) is the

number of tags in sequence S.

<HTML><HEAD><TITLE></TITLE></HEAD><BODY><H1></H1><FORM><INPUT><TABLE>
<TBODY><TR><TH></TH><TD><INPUT></TD></TR><TR><TD><INPUT></TD></TR>
</TBODY></TABLE></FORM></BODY></HTML>

Figure 3.7: An example of a string sequence of HTML tags used to compute the Levenshtein edit
distance

3.6.2 Evaluation Methodology

To evaluate the accuracy of clustering results produced by each distance metric, a set of actual clus-

ters of similar pages (reference) was manually constructed as follows. We captured a screenshot of

the corresponding web page as shown in the browser for each discovered DOM state. Two people

(participants) were involved in the manual clustering process: the author, as well as a fellow member

of the research group. Participants independently examined the screenshots of collected web pages

and independently manually grouped them into clusters of features according to their intuitive visual

perception of the feature that each web page offers. More specifically, both participants agreed to

follow the following rule during the independent clustering: “look for web pages that belong to the

same functionality”. The screenshots corresponding to the same feature (for example “search for

flights”) were grouped into one cluster. In effect the two participants created clusters based on the

collected screenshots, by judging whether two screenshots reflected the same feature. The automated

method then creates clusters by analyzing the DOM states corresponding to the screenshots. Next,

during the meeting, the two participants merged the clusters obtained by each of them, and where

the disagreement of a feature interpretation happened, the participants reached a common consensus

by discussing the decisions between them. The disagreement happened in cases where one partici-

pant grouped sub-clusters of features into a single cluster of a higher-level feature, while the other

participant grouped each of these lower-level features into separate clusters. To eliminate the dis-

similarities in the set of clusters obtained by each participant the two individuals decided to adopt

the approach of fine-grained decomposition of features (where lower-level features are grouped into

separate clusters).

The initial agreement between the two experimenters (before merging) based on the Jaccard

similarity coefficient [51] (which is used to compare the similarity of data sets and measure the level

of agreement) for the examined three web applications is shown in Table 3.2. For two clusterings C

and C ′ the Jaccard similarity coefficient is defined as J(C,C ′) = N11

N11+N10+N01
, where N11 is the
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Web app. Jaccard similarity coefficient
Google Maps 0.890
Garage 0.997
Kayak 0.993

Table 3.2: Jaccard similarity coefficient for the examined web applications

number of data-point pairs in the same cluster under both C and C ′, N10 is the number of data-point

pairs in the same cluster under C but not under C ′, and N01 the number of data point pairs in the

same cluster under C ′ but not under C. The computed Jaccard similarity coefficients for all three

web applications show a generally high agreement (≥ 89% based on Jaccard Index) between the

categories of DOM states obtained from the project participants.

The merged results have been considered as actual clusters of similar pages (reference) based

on which the accuracy of the examined distance metrics was evaluated. Table 3.3 lists the features

extracted by the project participants. The labels assigned to the features were constructed by the

participants based on their shared understanding of the cluster screenshots.

Web app. Features
Google Maps (1) Main search page, (2) Input origin and destination for directions, (3) Dis-

play directions by car, (4) Display directions by public transport
Garage (1) Main page, (2) Gift cards and certificates, (3) Sign-in page, (4) Purchase

gift card, (5) Locate store on GoogleMaps, (6) Online store FAQ, (7) Contact
Garage, (8) Tops, (9) Coats, (10) Tanks, (11) Long sleeves tees, (12) Shirts,
(13) Jeans, (14) Accessories, (15) Sleepwear, (16) Sale items, (17) Item de-
tailed view, (18) Technical help, (19) Payment help

Kayak (1) Search for flights, (2) Login page, (3) Password reminder, (4) Help, (5)
Search for hotels, (6) Hotel search results, (7) Search for cars, (8) Car search
results, (9) Car advanced search, (10) Search for deals, (11) Deals search re-
sults, (12) Flight search results, (13) Trip planner, (14) Find a Kayak booking,
(15) “More” page, (16) Hotel advanced search

Table 3.3: Manually extracted features

3.6.3 Experimental results

On the set of DOM states collected by Crawljax from the examined web applications we have

applied the hierarchical agglomerative clustering algorithm (using the complete-linkage criterion)

with each of the distance metrics: simple tree-edits based distance metric dS , composite tree-edits

based distance metricdC , and Levenshtein distance metric dL.

Using the partitions of clusters and merge distances obtained from the resulting dendrogram for

each examined web application and distance metric:

1. We applied the L method [22] to the evaluation graphs (Figures 3.8, 3.9, 3.10, 3.11, 3.12,

3.13, 3.14, 3.15, 3.16) created using the distances produced by dS , dC , and dL distance met-

36



rics as input to the hierarchical clustering algorithm. For each evaluation graph we computed

the value of x = ĉ that minimizes the RMSEc value and represents a reasonable number of

clusters to be returned according to the L method.

2. For each partition Pk with k number of clusters, where k ranges from 2 to n − 1 (n is the

total number of extracted DOM states for a web application) we computed s̄k. A reasonable

number of clusters kα to be returned corresponds to the maximum value α over all Silhouette

coefficients s̄k:

α = max({s̄k : k = 2, ..., n− 1}) (7)

The predicted number of clusters returned by both methods for each distance metric and web

application were used to produce partitions with ĉ and kα number of clusters, respectively. For each

obtained partition to evaluate its quality we computed precision and recall.

Let the set of actual clusters be defined as reference and the set of clusters returned by a hi-

erarchical clustering algorithm with a distance metric for the same set of elements be defined as

response. A given pair of elements (a, b) is considered as:

• True Positive, if a and b belong to the same cluster both in reference and response

• False Negative, if a and b belong to the same cluster in reference, but to different clusters in

response

• False Positive, if a and b belong to different clusters in reference, but the same cluster in

response.

By applying this process to every pair of elements we can obtain the total number of True Positives

(TP), False Negatives (FN) and False Positives (FP), based on which the precision and recall mea-

sures can be calculated as follows:

precision =
TP

TP + FP
recall =

TP

TP + FN

We can combine both metrics by computing F-measure, which is defined as follows:

F −measure = 2 ∗ precision ∗ recall
precision+ recall

The predicted number of clusters ĉ returned by the L Method along with the corresponding

merge distance, F-measure, precision and recall values for each examined web application are shown

in Tables 3.4, 3.6, and 3.8. The predicted number of clusters kα determined by the Silhouette

coefficient, as well as the corresponding merge distance, F-measure, precision and recall values for

each examined web application are shown in Tables 3.5, 3.7, and 3.9, where column α is the

maximum obtained value over all Silhouette coefficients. The actual number of clusters is obtained

from manual clustering performed by project participants.
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distance min
RMSEc

merge
dist.

ĉ F-
measure

Precision Recall

dS 0.41 1.33 13 0.448 0.963 0.292
dC 0.18 3.33 6 0.832 0.985 0.721
dL 4.41 2.07 15 0.396 0.957 0.250
Actual number of clusters: 4

Table 3.4: L method: Predicted number of clusters, F-measure, precision, and recall for Google
Maps

distance α merge
dist.

kα F-
measure

Precision Recall

dS 0.86 2.91 12 0.458 0.964 0.300
dC 0.79 4.41 5 0.930 0.937 0.924
dL 0.88 2.07 15 0.396 0.957 0.250
Actual number of clusters: 4

Table 3.5: Silhouette Coefficient: Predicted number of clusters, F-measure, precision, and recall for
Google Maps

3.6.4 Discussion

The results shown in Tables 3.4, 3.6, and 3.8 demonstrate that a different number of clusters was

produced for each distance metric using the L method. However, we can see that the best results

for each web application were obtained when using the composite distance dC , which returned a ĉ

value that is closer to the actual number of clusters in all examined web applications (and in the case

of Garage the predicted number of clusters is exactly the same as the actual one). More specifically,

when using the dC distance metric, the predicted number of clusters returned by the L method is 6

for Google Maps (the actual number of clusters is 4), 19 for Garage (the actual number of clusters

is 19), and 17 for Kayak (the actual number of clusters is 16). In turn, for distance metrics dS and

dL the predicted number of clusters ĉ is notably different (larger or smaller) compared to the actual

number of clusters.

Analyzing the evaluation graphs produced for each distance metric (Figures 3.8, 3.9, 3.10, 3.11,

3.12, 3.13, 3.14, 3.15, 3.16), we observe that on the graphs produced with dC as a distance metric

we can clearly identify regions required by the L method to effectively detect a knee. On Figures 3.9,

distance min
RMSEc

merge
dist.

ĉ F-
measure

Precision Recall

dS 4.90 8.52 25 0.861 0.972 0.774
dC 2.26 7.03 19 0.960 0.973 0.947
dL 2.23 11.47 14 0.856 0.840 0.872
Actual number of clusters: 19

Table 3.6: L method: Predicted number of clusters, F-measure, precision, and recall for Garage
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distance α merge
dist.

kα F-
measure

Precision Recall

dS 0.67 20.90 15 0.852 0.834 0.872
dC 0.55 7.93 17 0.937 0.920 0.955
dL 0.78 14.59 13 0.854 0.837 0.872
Actual number of clusters: 19

Table 3.7: Silhouette Coefficient: Predicted number of clusters, F-measure, precision, and recall for
Garage

distance min
RMSEc

merge
dist.

ĉ F-
measure

Precision Recall

dS 2.74 7.79 24 0.832 1.00 0.713
dC 1.24 4.58 17 0.996 1.00 0.992
dL 2.72 4.86 29 0.770 1.00 0.626
Actual number of clusters: 16

Table 3.8: L method: Predicted number of clusters, F-measure, precision, and recall for Kayak

3.12, and 3.15 we can see the following distinct regions: a flat region of data points (on the right)

followed by a sharply-increasing region of data points (on the left) which indicates that the merge

distances started to grow very rapidly. According to [22] this abrupt increase occurs when highly

dissimilar clusters are merged by the clustering algorithm. The reasonable number of clusters to be

returned can be discovered on the evaluation graph right before the sharp increase (when moving

from right to left). The knee region on these graphs (Figures 3.9, 3.12, and 3.15) is well-defined,

therefore the returned ĉ value is more accurate and precise for distance measure dC , than for the

other two distances. These results demonstrate that the hierarchical clustering algorithm with the

composite distance metric dC produced well-separated clusters for which the L method was able to

identify a reasonable number of clusters very close to the actual number of clusters defined according

to human perception. Additionally, as it can be observed from Tables 3.4, 3.6, and 3.8 distance dC ,

which makes a distinction between composite and simple changes, obtained the highest F-measure

value in all three examined web applications (0.832 for Google Maps, 0.960 for Garage, and 0.996

for Kayak) using the L method.

distance α merge
dist.

kα F-
measure

Precision Recall

dS 0.81 51.88 15 0.994 0.996 0.992
dC 0.88 15.61 12 0.992 0.984 1.00
dL 0.80 20.64 21 0.820 1.00 0.694
Actual number of clusters: 16

Table 3.9: Silhouette coefficient: Predicted number of clusters, F-measure, precision, and recall for
Kayak
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Figure 3.8: Evaluation Graph for Google Maps with dS

The evaluation graphs constructed by using merge distances produced by hierarchical clustering

algorithm with distance measure dS (Figures 3.8, 3.11, and 3.14) have a smoother transition between

the flat and increasing paths of data points, and thus the returned by the L method number of clusters

for dS is not so precise.

On the contrary, most of the evaluation graphs in Figures 3.10, 3.13 and 3.16, do not contain any

obvious sharp transition between the flat and the increasing paths of data points, and therefore for the

Levenshtein distance measure dL the L method could not identify an acceptable number of clusters.

The knees on these evaluation graphs are ambiguous. This implies that the distance metric used is

not well-defined, therefore the clusters produced by the hierarchical clustering algorithm with dL as

a distance metric are not clearly separated. The L method could not determine an acceptable number

of clusters for Google Maps web application, and as a result the corresponding partitions have poor

clustering quality which is demonstrated by low F-measure values (0.448 for dS and 0.396 for dL).

For Garage and Kayak web applications the F-measure values for distances dS and dL are notably

lower than the F-measure value for distance dC .

The number of clusters determined by the computation of the average Silhouette coefficient also

varies for each distance metric and web application (Tables 3.5, 3.7, and 3.9). However, analyzing

the computed F-measure (0.930 for Google Maps, 0.937 for Garage, and 0.992 for Kayak), we can

see that the proposed distance metric dC produced sets of clusters of high quality for all three web
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Figure 3.9: Evaluation Graph for Google Maps with dC

applications, whereas the clustering quality of the partitions for distance metrics dS and dL is not

stable and varies for each examined web application. More specifically, the F-measure values (0.458

for dS and to 0.396 for dL) for Google Maps web application indicate that the predicted number of

clusters for distance metrics dS and dL produced partitions with poor clustering results. For other

two web applications, Garage and Kayak, the F-measure values for distance dL are lower than the

F-measure value obtained by distance dC (with the exception of dS for Kayak).

Obviously, the distance metric affects the quality of the produced sets of clusters. In general,

we obtained good results for our distance metric dC using both clustering evaluation methods for

all three web applications (in contrast to other examined distances). Also, by observing that our

distance metric dC produced best results for lower cut-off thresholds we can imply that dC is a

metric that in general produces smaller distances between the compared DOM trees.

3.6.5 Conclusions

The results of the evaluation on three different real-world web applications have shown that the us-

age of the composite tree-edits based distance metric improved the accuracy of the clustering results

over the clustering results obtained by previous approaches that treat web pages as sequences of

HTML tags (i.e., ignoring completely the tree structure of the web pages) and a simplified tree-edit-

operation based distance metric that does not take into account composite changes. Also, these two
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Figure 3.10: Evaluation Graph for Google Maps with dL

distance metrics did not work as well with the L method and Silhouette coefficient, producing clus-

tering results with lower accuracy as comparing with the clustering results obtained by our proposed

distance dC . Moreover, in this research we demonstrated that the process of extracting the features

for a dynamic web application can be fully automated by employing hierarchical clustering algo-

rithms and deducing the reasonable number of clusters in a partition using the clustering evaluation

techniques. Finally, the evaluation results showed that the proposed distance metric dC produced

partitions of clusters with high accuracy for all web applications.

The extraction of web-application features plays an important role in reverse-engineering. The

extracted features can provide an overview of a web application’s structure which can assist in

documenting and understanding the overall functionality of the web application. Also, the retrieved

features of the web application can be used in constructing the web application’s navigational model

from the user’s point of view.
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Figure 3.11: Evaluation Graph for Garage with dS

Figure 3.12: Evaluation Graph for Garage with dC
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Figure 3.13: Evaluation Graph for Garage with dL

Figure 3.14: Evaluation Graph for Kayak with dS

44



Figure 3.15: Evaluation Graph for Kayak with dC

Figure 3.16: Evaluation Graph for Kayak with dL
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Chapter 4

Automated Acceptance Testing of
Ajax-based Web Applications

In this Chapter, we discuss CrawlScripter which is an application for creating easy-to-understand

automated acceptance tests for Ajax-based (JavaScript) web applications [56]. The application pro-

vides a high-level scripting language that eases the creation of automated acceptance tests for users

that do not have necessary programming expertise. The scripting language also supports assertions,

which can be used to verify the presence (or absence) of an element in the DOM structure of a web

page, thus enabling the comparison of the actual behaviour of a web application with the expected

one.

4.1 The Architecture of CrawlScripter

Figure 4.1 illustrates the architecture of CrawlScripter, which consists of three modules: the “Test-

ing Engine”, a “Test Repository”, and a “Web Client”. Each of the modules and their functionalities

are explained in the following sections. We also provide a brief description of the technologies used

in each of the modules, and give an overview of Crawljax, which is a component of the “Testing

Engine” used for executing test scripts on a target web applications. The initial version of the Test-

ing Engine and Test Repository modules were based on a design and implementation of Kristofer

Mitchell as a part of a project for the CMPUT 402 course at the University of Alberta.

4.1.1 The Web Client

The Web Client is implemented using the JSF [57] (Java Server Faces) framework, which allows

the building of rich web user interfaces with Ajax-enabled components and offers a desktop-like

experience to the user through a web browser. In CrawlScripter, the client is responsible for com-

munication with users through the user interface, for database data query and retrieval, and for

interaction with the Testing Engine. It provides a web-based user interface to create new acceptance

tests or to edit existing ones for a selected application, to submit requests to run test scripts, and
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Testing Engine

CrawlManager
Crawljax

JavaScript Plugin

Subject System

Web Client Test Repositorystore user stories, test reports

send test scripts/receive test results

direct crawler

execute javascript

crawl

get assertions, clickables

Figure 4.1: Overview of CrawlScripter design time and run-time architecture

to review test reports. Figures 4.2 and 4.3 illustrate snapshots of user stories/test scripts and test

reports tabs of the Web Clients’ user interface.

4.1.1.1 Typical usage of the Web Client

Users can implement test scripts in CrawlScripter for multiple web applications. They can add a new

application in CrawlScripter by providing its details such as the application URL and application

name. New user stories and corresponding acceptance test scripts are created for a selected target

application by clicking on the “New User Story” button on the user stories tab. After filling in all

the necessary details of a user story such as title, primary actor, goal, and benefit, the user can add

test steps for the test script by clicking on the “Add command” button, which adds a new empty line.

The user can select instructions (Figure 4.4) from the drop down list and specify the arguments of

the instruction in the text box next to the drop down list. Figure 4.5 demonstrates the user interface

for a test script creation.

To execute the implemented acceptance test scripts, the user submits a request to run a (number
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Figure 4.2: Graphic User Interface of the Web Client: User Stories and Test Scripts tab

Figure 4.3: Graphic User Interface of the Web Client: Test Reports tab

of) selected test script(s) by clicking on the “Run selected” button (Figure 4.2). The user is informed

about the test execution progress through a progress bar, which displays which test script out of the

total number of submitted test scripts is currently being executed. The user can interrupt the test

execution process at any time.

The test results can be reviewed under the “Reports” (Figure 4.3) screen in the Web Client.

Test reports for a specific test run can be accessed by selecting a corresponding timestamp of the

test run from the “Test runs” drop-down list. The test reports are designed to provide the user

with information about the results of the executed test cases. The the test reports can be useful

for making further decisions by project managers or other member of the project’s team. Each test

report covers the status (passed or failed) of instructions in a test script. It also gives details about

any failed assertions and the actual result of the tested behaviour. Finally, the test reports include the

screenshots corresponding to each executed test step, which may provide more information about
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the state of the tested web application, beyond what is captured in the state’s DOM, when the result

was obtained.

Figure 4.4: List of available instructions in CrawlScripter

Figure 4.5: Creating test scripts with CrawlScripter

4.1.2 The Test Repository

The Test Repository is implemented in MySQL and is used for storage and retrieval of test scripts,

test reports, and configuration information. The database schema of the application is shown in

Figure 4.6.

The interaction of the Web Client with the repository for data query and retrieval is supported by

the Hibernate [58] library, which provides mappings from Java classes to database tables, and Java

types to SQL types. The CrawlScripter database includes the following main tables: user story,
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Figure 4.6: Database schema of CrawlScripter

configuration, test run, test report, assertion, instruction, and screenshot. The user story table is

used to store the details of a user story such as title, goal, actor, benefit, and comments. Additionally,

each user story is associated with a web application to be tested, whose details (the application

address, and the application name) are stored in the corresponding configuration table. The results

of test runs are stored in test run, test report, instruction, assertion, and screenshot tables. The

test run table stores timestamps of the tests runs. The test report table is used to store the obtained

actual result and the overall status (passed or failed) of the test script. Any message of assertions

that failed during the test script run are stored in the assertion table. The instruction table is used

to store the instruction name, instruction attributes, instruction’s execution status (passed or failed),

and a reference to the associated screenshot. All captured screenshots are stored in the screenshot

table as a BLOB datatype, which is used to store data in a binary format in a database as a single

entity. The screenshots table also stores captions of the captured screenshot, which corresponds to

the instruction name.

4.1.3 The Testing Engine

The Testing Engine is responsible for running test scripts on the pages of the tested JavaScript-

enabled web application. The basic components of the Testing Engine are the CrawlManager, the

JavaScript Plugin, and Crawljax. The Testing Engine automatically iterates over each instruction in
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the test script and performs the associated action in the web application being tested.

4.1.3.1 Crawljax

Crawljax was developed by Mesbah et al. [8] for automatically crawling and testing Ajax-based

web applications. Crawljax can crawl any Ajax web application by identifying “clickable” elements

on a web page rendered at the client’s browser, firing events associated to these clickable elements,

and filling the input fields with data. Through Crawljax’s API users can configure which elements

should be examined as clickable candidates, or which elements should be ignored during the crawl-

ing process. These capabilities make Crawljax a powerful testing tool. The main components of

Crawljax are:

• the “Embedded Browser”, which executes JavaScript and supports the technologies required

by Ajax;

• the “Robot”, which is responsible for clicks and filling input data on the embedded browser;

• the “Controller”, which detects state changes and updates the State Machine; and

• the “State Machine”, which is responsible for maintaining the state-flow graph and a pointer

to the current state.

The “Embedded Browser” is implemented on top of Selenium (WebDriver) APIs [40] and cur-

rently supports Internet Explorer, Firefox, and Chrome. Selenium allows to create automated brows-

ing test scripts in a number of popular programming languages such as Java, C#, PHP, Python and

Ruby. These test scripts are manually written and require a significant amount of manual effort from

users. Using a programmatically remote-controlled instance of a web browser through Selenium

WebDriver, Crawljax examines Ajax web applications in an automatic manner. Additionally, during

the automated crawling process Crawljax takes care of properties that are specific to Ajax-based

web application and which make browsing of such web application challenging. These properties

are [8]:

• client-side execution;

• state changes and navigation within the web application;

• runtime dynamic DOM;

• delta communication style of interaction between client and server;

• internal state changes of clickable elements.

Crawljax creates a state-flow graph that models possible navigational paths of a web application

as a sequence of states (corresponding to the DOM states of the application user interface) and tran-

sitions between them (corresponding to the clickable elements whose behaviour links one state to the
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next). The state-flow graph is built incrementally. In the beginning, it is initialized to contain only a

single state, which is the DOM state of the starting web page of the web application. Crawljax starts

to crawl over the application and as a result of DOM-tree changes new DOM states are produced

and added to the graph. These changes are caused either by server-side changes sent to the client,

or by client-side events. Crawljax defines a set of candidate clickable elements which fire events

of different types, e.g click, mouseOver, submit. Each HTML element that corresponds

to the labelling requirements (based on the tag name, attributes and their values, if specified) is

added by Crawljax to the set of candidate clickable elements. For each element in the set, the Robot

component fills the input data and fires an event. After the event is fired on a candidate clickable

element, Crawljax compares the DOM tree as it was before the event against the DOM tree resulting

after the event. Crawljax supports two ways of DOM trees comparison. One way is based on the

Levenshtein [21] distance computation between the compared DOM trees. Another way to compare

two DOM trees is to pass them through a chain of Comparators, where each one is responsible for

comparing specific parts of a DOM tree and passing the output to the next comparator filter. A new

DOM state is created and added to the state-flow graph if there are changes detected in a resulting

DOM tree. To identify an already discovered DOM state and to eliminate duplicate states, the tool

computes hash-codes for each DOM tree and compares every new state with any other state in the

state-flow graph. Also, a new edge annotated with the event, whose firing led to the new DOM state,

is added to the graph. Finally, the current pointer of the state machine is set to the newly added

DOM state from which the crawling process recursively tries to find other possible reachable states.

The process is repeated until no new states can be found.

4.1.3.2 Test-scripts Execution

To execute an acceptance-testing procedure, the user submits a request to run a (number of) selected

test script(s). The Web Client retrieves from the Test Repository the test scripts written by the user

and sends them to the Testing Engine via a REST API.

In addition to the test scripts, the API also specifies a callback URL and the URL of the web ap-

plication to be tested. On the Testing Engine, the test scripts are parsed into a Test Suite object. For

each test script in the Test Suite, the CrawlManager sets up a Crawljax crawler with a JavaScript

Plugin. During the test execution, when the DOM structure of the web page is changed or the

browser moves to a new page, the JavaScript Plugin’s onNewState or onUrlLoad method is

called, and the JavaScript code of the current test step is executed as a body of an anonymous func-

tion. Clickable elements for the current test step and any assertions that were evaluated are returned

to the CrawlManager, which then directs Crawljax ‘actions’ by specifying Crawljax’s candidate

clickable elements for the current web page. If Crawljax doesn’t find a candidate clickable element,

a “Failed” status is returned to CrawlManager for the current test step. For every new DOM state

(which implies that the candidate clickable element was found and the event was fired) a screenshot
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is captured. The test script is executed to its completion, or until an element specified in the in-

struction is not found and Crawljax cannot proceed. The CrawlManager sends the results of the test

scripts’ execution along with the screenshots back to the CrawlScripter client using the provided

callback URL. The client saves the test execution results in the Test Repository.

4.1.4 Implementation Challenges

During the implementation of CrawlScripter we run into a number of technical challenges. At

first, the use of Crawljax in our approach seemed to be straightforward. However, since Crawljax

crawls the application by clicking on the clickable elements in an ad-hoc order, the hardest part

in the implementation consisted in guiding Crawljax actions via instructions specified in the test

scripts (click on the specific element on the current web page). In our approach test instructions

are converted into JavaScript functions, which allow it to execute assertions, to push elements to

be clicked provided by users into the list of candidate clickable elements, and to set up values in

the input fields on the page. The solution to the problem of guiding Crawljax was to develop the

JavaScript plugin that would be able to execute the JavaScript part of the test script whenever the

DOM state of the page is changed or a new URL is loaded, and the CrawlManager that will be able

to direct Crawljax on each web page by specifying clickable elements for that web page.

4.2 The CrawlScripter Scripting Language

The scripting language of CrawlScripter consists of a library of high-level instructions (input by the

user) that can be used to write test scripts that would be executed by the crawler on the web applica-

tion to be tested. These instructions are close to natural language, therefore users of CrawlScripter

are not required to have specific programming knowledge to write automated acceptance tests. The

grammar of CrawlScripter ’s scripting language is shown in 4.7.

CrawlScripter supports three types of instructions: firing events, specifying inputs, and evalu-

ating assertions. Most of the actions performed by users in web applications can be represented as

web commands that consist of a single verb that corresponds to the action performed, and one or two

nouns (arguments upon which the action will be performed) [59]. Each instruction in CrawlScripter

begins with the verb phrase that expresses the action to be performed, followed by the nouns or, in

case of an assertion’s failure message, a phrase. Event instructions represent Crawljax’s click event

types on the elements of the web page and as an argument require specifying an element’s label to be

clicked on (for example, Click link ‘‘Search’’). Input-specification instructions require as

arguments the name (as an attribute in DOM structure) of an input field element and a value to be

filled in the field (for example, Enter text ‘‘searchField’’, ‘‘dog’’). Assertions are

used to verify the presence or absence of a DOM element on a web page. Assertion instructions take

as arguments the element’s identifier (or name) to be checked for presence (or absence), which is

followed by the failure message (for example, Assert is present ‘‘searchField’’,
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< Instruction >
→< Event > | < Input spec > | < Assertion >
< Event >→ Click < Element >< Label >
< Input spec >→< Input type >< Label >< V alue >
< Assertion >
→< Assert type >< Label >< Failure message >
< Tag >→< Tag name >< Attribute >< V alue >
< Element >→ link | button | checkbox | < Tag >
< Input type >→ enter text | select from drop− down
< Assert Type >→ present | not present
< Label >→ ”String”
< Tag name >→ ”String”
< Tag >→ ”String”
< Attribute >→ ”String”
< V alue >→ ”String”
< Failure message >→ ”String”

Figure 4.7: The CrawlScripter Language

‘‘The search field is not present’’). In case of the assertion failure the provided

message is displayed to the user.

CrawlScripter parses the test scripts and extracts from each instruction the type of the action to

be performed on the web page and its arguments. This information is then compiled into JavaScript

functions.

4.3 Evaluation

We have conducted two studies to empirically assess the applicability of our method in supporting

acceptance testing and translation of functional requirements of dynamic web applications into ex-

ecutable test scripts. We evaluated the ease of use of CrawlScripter in creating test scripts and also

tried to find if CrawlScripter can be applied in a variety of test scenarios. Also, we analyzed the ex-

tent to which we can maintain the implemented acceptance test scripts during the software evolution

being tested. From these studies we discovered opportunities for future extensions of CrawlScripter.

4.3.1 JPetStore

The subject of the first study is the Java Pet Store (JPetStore) [47] sample Ajax-enabled application.

The study consisted of translating user stories for JPetStore into executable automated acceptance

tests and running them on the target web application.

JPetStore is a well-known educational application designed to demonstrate the use of Java Enter-

prise Edition Platform in developing “Ajaxified” web applications. JPetStore is an internet pet store

where users can perform different actions typical to most e-stores. Users can browse the catalog of

products, search for a specific item in the catalog, add a new items for sale, search for items using

their location or tags, rate items, or flag an item as an appropriate. The JPetStore application consists
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of a single page where (based on user actions) different areas of the page are dynamically updated

using Ajax technology.

We constructed the following user stories (and corresponding test scripts) for JPetStore from

the functionalities described in the “About” section which is shipped together with the JPetStore

application:

• Browsing the Catalog

• Searching the Catalog (by keyword)

• Rate an Item

• Flag as an appropriate

• Add new Item for Sale

• Reviewing an Order

• Search Item by Location

• Search Item by Tag

The above 8 user stories were implemented as CrawlScripter acceptance test scripts, and were

successfully executed over the JPetStore web application. Figures 4.8 and 4.9 illustrate snapshots

for an acceptance test script of a JPetStore “Search item (by keyword)” user story and its corre-

sponding test report as shown to users in the CrawlScripter. For brevity and presentation purposes

we show only the test script and its test report for one user story created for JPetStore web applica-

tion.

Figure 4.8: JPetStore: “Search item (by keyword)” test script
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Figure 4.9: JPetStore: “Search item (by keyword)” test report

4.3.2 GRAND Forum

The subject of our second study is a JavaScript-enabled development version of the GRAND Forum

[60], which is a platform for the GRAND NCE [61] community, where its users can participate in

events of interest, and in different forum activities such as collaborating and reporting. The forum

also provides tools for analyzing the evolution of the community network.

4.3.2.1 Evaluation Methodology

CrawlScripter was deployed on one of our lab’s servers and was available to be accessed through

any web browser1. We introduced CrawlScripter to one of the developers of GRAND forum, who is

also a member of our research group. We gave him a one-hour training session, providing details on

how to use CrawlScripter to implement test scripts and to execute them over the target application.

The instructions described the following:

• How to access CrawlScripter through the browser.

• How to create a new user story and the corresponding test script.

• How to add new commands to the test script.

• Types of available commands (events, input, and assertions) and the list of available com-

mands for each type.

• Required arguments for each command, and examples for each of them.

1129.128.184.112:8080/CrawlScripter
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• How to obtain element’s attributes (such as id or name and their values from the web page to

include as arguments of a test command.

• Demonstration of two test script examples for user stories: “Add a member”, “Search for a

member”.

• How to save a test script.

• How to submit single/several test scripts for test execution.

• How to review and understand the produced test reports.

• How to view results for previous test runs.

The participant used the tool every day for one hour for the period of two weeks to create

acceptance test scripts for GRAND forum user stories, which were written by other member of

the GRAND forum development team. The participant independently created the test scripts and

submitted them for execution. Once the test reports were obtained, the participant reviewed them

to verify the results. While the participant was using CrawlScripter, the author was observing the

participant’s actions to ensure proper functionality of the system.

4.3.2.2 Evaluation Results

Using CrawlScripter’s library, the developer successfully implemented 23 acceptance test scripts

(out of 23 user stories) which simulated various usage scenarios over GRAND Forum. The GRAND

Forum user stories that were implemented by the participant in automated acceptance test scripts are

listed in Appendix A. The covered scenarios are of different complexity for a variety of important

functionalities of the collaborative platform such as reporting, notifications, activities, and surveys.

The implemented acceptance test scripts have been successfully executed with CrawlScripter on the

GRAND Forum application. The participant also had the opportunity to review the produced test

reports.

The developer was intrigued with the ability of CrawlScripter to test different parts and scenarios

of a dynamic web application by creating easy-to-understand automated test scripts that are close

to natural language. He reported that “the use of the tool was intuitive for a first time user, and in

general it was fairly easy to apply the CrawlScripter for writing automated acceptance test scripts”.

He also reported that “the translation of a user story into a single executable acceptance test script

didn’t require as much time and effort as he has expected”. Figures 4.10 and 4.11 illustrate snap-

shots for a test script of a GRAND Forum user story created by the GRAND Forum developer and

the corresponding test report produced by CrawlScripter.

The implemented test scripts exercised a variety of clickable elements such as buttons, links,

radio buttons, drop down lists, and checkboxes. The GRAND Forum user stories included complex

scenarios such as generation of reports, filling surveys, or receiving notifications, which involved
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Figure 4.10: An acceptance test script for GRAND Forum web application

excessive JavaScript calls and dynamic updates of the DOM structure of GRAND Forum’s web

pages. The implemented test scripts varied in the number of steps. The test scripts were evaluated by

analyzing the application’s output using the specified by the user assertions. During the execution of

the test scripts the participant discovered a few issues that were not noticed during the earlier testing

of the GRAND Forum application during development. None of the issues which were discovered

were attributed to CrawlScripter. One issue was related to a typo in a name of a link, another issue

was triggered by a MySQL exception on a database insert.

Currently, CrawlScripter does not support the cross-referencing of test scripts, and the GRAND

Forum developer found it cumbersome to write the same test steps for the “Login to GRAND Forum”

functionality in all 23 test scripts. He suggested to extend CrawlScripter with the ability to reference

tests steps for repetitive functionalities with already implemented test scripts rather than have to

create the test steps again from scratch (e.g. test steps in other test scripts related to the Login

functionality can be replaced with test script already implemented to test the Login functionality).

Additionally, he suggested to enhance the CrawlScripter with the functionality that will allow to

export test reports to a file. Another reported limitation of CrawlScripter was related to the current

version of the tool’s user interface, which was the inability to reorder test steps in a test script.

Overall, the developer had a positive experience with CrawlScripter in performing acceptance

testing of the GRAND Forum application. He also reported that he “would definitely continue using

it, when user interface is polished up”.

4.3.3 GRAND Forum: Test-scripts migration

Software systems constantly evolve due to various reasons, and particularly due to the modification

of functionalities. In this case, the acceptance tests, if not being maintained, could either produce
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Figure 4.11: A test report for GRAND Forum

incorrect results or become non-executable and unusable. We were interested in analyzing the im-

pact of changes at the user-interface level over implemented test scripts and to what extent we can

maintain these test scripts which are implemented with CrawlScripter during software evolution.

Our target application, GRAND Forum was also subjected to evolution since a number of user-

interface modifications related to the Reporting functionality were applied to the system due to the

changes in the requirements. The inspection of the modifications and implemented user stories

demonstrated that 8 out of 9 user stories related to the Reporting functionality were affected by

these modifications and clearly failed during the repeated execution of these test scripts on GRAND

Forum. The acceptance test for the user story “ReportArchive should correctly display the proper

Report PDFs when viewed by a CNI/PNI supervisor” wasn’t affected by the changes made on the

GRAND Forum, and was successfully executed without any corrections.

Six of the nine test scripts have suffered from changes applied to the labels of clickable elements.

For example, only the renaming of the button “Generate report” in “Generate report PDF” affected

three test scripts. In addition to this modification, one test script also had a test step that involved

clicking on a button “Download report as PDF” which was renamed to “NI Report PDF”. Another

example of the changes in the labels of clickable elements that affected two steps of the user story

titled as “Project Report must generate correctly on review tab of the report” was the renaming of two

buttons (on the project’s “Review & Submit” page) “Download Overview as PDF” and “Download

Comments as PDF” to “Project Report PDF” and “Project Comments PDF” respectively.

After the corrections were applied to the test steps, the corresponding test scripts were success-

fully executed on GRAND Forum.

The two test scripts related to “Reporting” functionality were not evaluated, since at the mo-

ment of writing this thesis and conducting the case studies, the changes to the functionality that
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corresponds to their user stories were not applied on GRAND Forum.

4.3.4 Conclusions

To evaluate CrawlScripter , we implemented test scripts corresponding to the user stories of peda-

gogical and real-world web applications (JPetStore and GRAND Forum). In the case of GRAND

Forum, the evaluation of CrawlScripter was performed by a participant who carried out the accep-

tance testing of the subject web application. The conducted case studies demonstrated the ease of

use of CrawlScripter in creating automating acceptance tests. The implemented tests scripts were

successfully executed in both case studies. Also, the evaluation of the test script migration demon-

strated that updates necessary to the test scripts in order to maintain their functionality were all fairly

simple. The only changes necessary were updating the clickable labels whose names had changed

in the web application, and that no logic changes were necessary.
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Chapter 5

Conclusions and Future Work

In this work, we proposed solutions for two problems in the area of maintaining web applications,

namely reverse engineering and testing of dynamic web applications. To better comprehend Ajax-

based web applications we developed a method for automatically extracting features from such

web applications. Also, we suggested an approach for performing automated acceptance testing of

JavaScript web applications.

The proposed method for feature extraction consists of collecting DOM trees of a web appli-

cation and clustering these DOM trees into groups, each one corresponding to a distinct feature.

To group DOM trees we apply a hierarchical clustering algorithm with a novel composite-tree-edit

distance metric as a similarity measure. In the context of this research activity, we made two main

contributions. The first contribution is the introduction of a distance metric that makes a distinction

between composite and simple changes in the tree structure of a DOM state, and thus reduces the

impact of composite changes on the computation of structural similarity. The second contribution is

the automatization of the identification of feature cluster partition, which is accomplished by using

the proposed similarity measure as a distance metric within the hierarchical clustering algorithm.

We apply clustering-evaluation techniques, namely the L method [22] and the Silhouette coeffi-

cient [23], to automatically deduce from a resulted dendrogram the number of clusters in a partition

that is close to the actual number of features in a web application.

We evaluated the new distance metric on three different Ajax-based real-world web applications.

The results demonstrated that by using the proposed distance metric we could obtain higher accuracy

of clustering in comparison to related approaches that used string differencing to assess the web page

similarity. Also, the proposed distance metric produced in general better results than the simplified

tree-edit distance metric that didn’t consider composite changes to assess web page similarity.

Additionally, we evaluated the ability of all three examined distance metrics to automatically

determine a number of clusters that correspond to the actual number of features using the L method

and the Silhouette coefficient clustering evaluation techniques. The results of the evaluation over the

three web applications demonstrated that the proposed distance metric produces a number of clusters

that more closely corresponds to the actual number of features, thereby showing that the process of
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features extraction can be fully automated when employing a hierarchical clustering algorithm. On

the other hand, the evaluation results for the other two distance metrics did not work well with the

L method and the Silhouette coefficient, producing lower accuracy results, which demonstrate that

they are not suitable for automatically inferring the cut-off threshold for a resulting dendrogram.

In the second part of our thesis we proposed an approach for supporting automated acceptance

testing of JavaScript web applications. The approach allows the specification of the intended be-

haviours of a target web application and to compare it with the actual behaviour, relying on Crawl-

jax crawling tool. We implemented the approach in CrawlScripter, a tool that provides a library of

high-level instruction for creating automated acceptance test scripts and to execute them on a web

application using Crawljax. The scripting language of CrawlScripter includes assertions that allow

the verification of the absence or presence of elements on a web page.

We evaluated the ease of use of CrawlScripter and its capability in creating acceptance test

scripts for different test scenarios on pedagogical and real-world JavaScript web applications. In

the second case study (real-world application) the tool was used by the developer of a complex web

application, under development in our lab. During the evaluation, automated acceptance test scripts

were implemented for different scenarios, which were then successfully executed on subject web

applications.

As future work for the feature extraction we would like to automatically derive labels for the

produced clusters that could also serve as names for the discovered features by applying the Latent

Dirichlet allocation (LDA) [62] technique on the content of the web pages included in the clusters.

Also, as a future idea we would also like to design and implement a tool that will allow us to visualize

and browse the behavioural model of a web application constructed from the extracted features. The

tool will provide a better comprehension of the application’s behavioural model as well as as will

visualize the available features in the web application and interactions which happen between them.

Future work for CrawlScripter will include more case studies using more real-world JavaScript

web applications to evaluate usefulness, applicability, and scalability of the proposed approach.

Other ideas for future work are related to the enhancement of CrawlScripter, as follows.

• We would like to extend the tool by introducing the ability to reference already implemented

user stories which will allow to reuse the test scripts (for example, Login functionality), and

also will make the test scripts shorter.

• Another possible future extension of CrawlScripter could be the integration of the tool with

the Firefox browser, which will allow the user to add elements to the test script by simple

clicking on them on the web page.

• Finally, CrawlScripter can be extended by providing the functionality of validating web pages

style by comparing it with the provided expected standards. This can be achieved by examin-

ing the DOM structure of the web page, which we can access with the help of Crawljax.
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Appendix A

A.1 Grand Forum User Stories

1. All Researcher Eval PDFs must generate correctly for all CNI, PNI

2. All Project Eval PDFs must generate correctly for all Projects

3. HQP Individual Report must generate correctly on review tab of the report

4. CNI/PNI Individual Report must generate correctly on review tab of the report

5. Project Report must generate correctly on review tab of the report

6. ReportArchive should correctly display the proper Report PDFs when viewed by an HQP

7. ReportArchive should correctly display the proper Report PDFs when viewed by a CNI/PNI

supervisor

8. ReportArchive should correctly display the proper Report PDFs when viewed by a COPL/PL

9. Milestones are editable by CNI/PNI

10. Milestones create Notifications to everybody involved, and to the COPL/PL

11. Milestones create Notifications to NI involved

12. Editing own Profile, but not other people

13. Trying to edit other person’s profile

14. Survey: can proceed with consent

15. Survey: Complete About section

16. Survey: Relationships: Save all friends

17. Survey: Communication: Try saving with validation fail

18. Survey: Communication: Try saving with validation fail2
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19. Survey: Projects: Test validation

20. Survey: GRAND: Validation Fail

21. Survey: Network: Adding people to Final table

22. Adding Activity

23. Check Dashboard values

68


