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Abstract

Ecological stoichiometry is a framework that allows explicit consideration of

nutrient restrictions on growth, and can be used to answer important ecological

questions. First, we consider the impact of the turnover rate of producer

biomass on ecosystems, since it is usually much faster in aquatic ecosystems

than terrestrial. The WKL model uses ecological stoichiometry to describe

the flow of phosphorus and carbon through a producer-grazer system, hence

varying the model parameters allows for analysis of different ecosystems of this

type. Here we explore the impacts of the intrinsic growth rate of the producer

and the maximal ingestion rate of the grazer on these dynamics. Simulations

show that for low intrinsic growth rate and maximal ingestion rate, the grazer

goes extinct; for higher values, coexistence occurs in oscillations. Analyses

show that the persistence of terrestrial grazers despite lower turnover times

likely relies on additional factors, such as light intensity and grazer loss rate.

Second, we extend the WKL model to allow for consideration of the im-

pacts of elevated atmospheric carbon dioxide concentration on producer-grazer

dynamics. Three new models are developed, with varying amounts of system

openness to carbon as well as consideration of different impacts of elevated

atmospheric carbon dioxide concentration on photosynthesis. The most basic

of these models is analysed further using primarily local bifurcation analysis.

Overall, these analyses show that increased carbon sequestration and decreased

stoichiometric quality of producers would require sufficient amounts of other

factors necessary for photosynthesis.
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Chapter 1

Introduction

1.1 Ecological Stoichiometry

Ecological stoichiometry is a framework that applies the law of conservation

of mass to ecological interactions and studies the balance of the elements that

make up life [44]. This approach quantifies relationships between organisms

made up of several measurable elements. These elements can be neither cre-

ated nor destroyed in ordinary chemical reactions, imposing a balance on the

amounts in a closed biological system throughout its interactions and pro-

cesses. Consideration of this balance in mathematical modelling of ecological

systems allows for study of the flow of nutrients and energy in these systems.

There are many elements that are required for growth, reproduction, and

survival of organisms. Three of the main elements in biological molecules are

carbon, nitrogen, and phosphorus, despite their scarcity in the Earth’s crust

relative to other elements [44]. Carbon provides structure, and its compounds

store energy, while nitrogen and phosphorus are crucial constituents of proteins
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and nucleic acids [44]. However, due to different biomolecule requirements for

structural, metabolic, and reproductive components, the stoichiometric ratios

of organisms vary. In general, herbivores are assumed to have more rigid

requirements, as well as higher nutrient requirements than the producers they

consume. Many models assume that the grazers exhibit strict homeostasis,

meaning that they maintain a fixed nutrient to carbon ratio by excreting excess

carbon or nutrient ingested due to an elemental imbalance with their food

[29, 53]. This nutrient imbalance means that grazers can be limited either

by the quantity or quality of their food. This adds a degree of complexity to

modelling grazing. There can also be elemental imbalance between a producer

and its environment [44], and nutrient limitation in the producer can lead to

nutrient limitation in the grazer [6].

A common application of ecological stoichiometry is in the study of producer-

grazer systems. Initially, these were modelled using the Lotka-Volterra predator-

prey equations [14]:

dx

dt
= bx− axy,

dy

dt
= cxy − dy,

where x and y correspond to the prey and predator respectively, b is the net

growth rate of the prey in the absence of predators, d is the net death rate of

the predators in the absence of prey, and c/a is the conversion efficiency from

prey to predator biomass (a > c) [14].

The Lotka-Volterra predator-prey equations have been widely used to model

predator-prey and producer-grazer interactions, explaining examples such as
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the changes in fishing during World War I that sparked Volterra’s interest

in the topic, as well as the cycles in lynx and snowshoe hare pelts traded in

the 1840s by the Hudson Bay Company [14]. However, there are cases where

considering all prey/producers to be identical at the elemental level fails to

capture realistic dynamics.

For example, an experiment involving Daphnia and a green alga showed

that at very high light intensity, the algal population boomed due to increased

photosynthetic rate, but the grazer abundance remained low [16, 48]. While

the light limited growth of the algae at low light levels and the resulting low

grazer abundance can be explained by the Lotka-Volterra equations, the model

cannot explain a case where high algal abundance does not result in a high

grazer abundance. This is because in any non-stoichiometric form of the Lotka-

Volterra equations, increased algal growth can only be beneficial to the grazer.

However, as experimentally demonstrated, this is not always true – when there

is too much growth of the algae, their more flexible nutrient requirements allow

them to become phosphorus-poor, and therefore they can limit grazer growth

due to being poor quality food relative to the requirement of the grazer [29].

One model developed using the framework of ecological stoichiometry to

deal with this counterexample is the LKE model [29], which is a predator-prey

model. In this case, the prey is a primary producer, such as a phytoplankton,

and the predator is a zooplankton grazer, such as Daphnia. This model tracks

only two elements, carbon (C) and phosphorus (P), where all others are as-

sumed to be sufficiently abundant so as to be nonlimiting – that is, there is

enough in the environment for the requirements of the organisms considered.

Carbon is often included in ecological stoichiometry models, since it can be
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used to represent energy or biomass. The producer population is quantified

by the density of carbon in the producer, x, and the grazer population by the

density of carbon in the grazer, y. In this case, phosphorus was chosen as a

focal nutrient since it is often a limiting nutrient in freshwater systems, and it

is used in construction of several biological molecules for structure and energy

metabolism [29, 44].

The LKE model [29] is

dx

dt
= bx

(
1− x

min(K, (P − θy)/q)

)
− f(x)y,

dy

dt
= êmin

(
1,

(P − θy)/x

θ

)
f(x)y − dy,

where x and y are the producer and grazer carbon densities respectively, b is

the intrinsic growth rate of the producer, d is the specific loss rate of the grazer

(including respiration and death), K is the constant light-dependent carrying

capacity of the producer, ê is the maximal conversation efficiency, f(x) is the

ingestion rate of the grazer, q is the minimum phosphorus to carbon ratio

(P:C) in the producer, θ is the fixed P:C of the grazer, and P is the total

phosphorus in the system [29].

Here Liebig’s Law of the Minimum is applied. The Law of the Minimum

states that organisms are limited by whatever resource is least available rel-

ative to their requirements [44]. We see that in the absence of the grazer,

the producer exhibits logistic growth limited either by energy or by the avail-

ability of phosphorus [29]. If solar energy is in lower supply relative to the

organism’s needs, then we will see K < (P − θy)/q, and the growth rate of

the producer (dx/dt) is determined by the light-dependent carrying capacity
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K. Conversely, if the intracellular phosphorus of the producer (P − θy) is in

lower supply relative to the producer population’s minimal requirement (xq),

then (P − θy)/q < K and the growth rate of the producers is determined by

the availability of phosphorus [29].

We observe that grazer carbon density undergoes exponential decay in the

absence of the producer [29]. The growth of the grazer is limited either by

food quantity or food quality. That is, by either the amount of producer

carbon available or by the amount of producer phosphorus available relative

to their needs. Here θ is the fixed P:C ratio grazers must maintain to survive

[29]. This in particular allows for the model to exhibit such dynamics in the

very high light case as those presented by Elser and Kuang (2002) [16], where

abundant light energy caused the algae to become poor quality food for the

grazer relative to their needs – (P − θy)/x < θ, where (P − θy)/x is the P:C

ratio of the algae and θ is the homeostatic requirement of the grazer – and

thus to limit the grazer abundance.

This model’s applications are limited by one of its main assumptions, which

states that “all phosphorus in the system is divided into two pools: phosphorus

in the grazer and phosphorus in the producer” [29]. This requires immediate

recycling of phosphorus and immediate utilization by the producer, and does

not allow for any free phosphorus in the medium. The relaxation of this

assumption yielded the WKL model [53], which is presented in Section 2.2

and is the basis for this work.

Despite the difficulty in analyzing the nonsmooth LKE model [29], some

analysis has been completed. If f and g are assumed to be Holling type I

functional responses, then the system has no limit cycles and the internal equi-
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librium is globally asymptotically stable [28]. With Holling type II functional

responses, bifurcation analysis of the parameter K revealed the potential for

bistability and several bifurcations [28]. A global analysis of the LKE model

with Holling type II functional responses was also completed, revealing four

types of bistability as well as many possible bifurcations [58]. These analyses

illuminate the rich and complicated dynamics this relatively simple stoichio-

metric model can exhibit.

There are several possible applications of ecological stoichiometry, many

of which involve extensions of the LKE model [29]. These applications are

primarily focussed on looking at the effects of food quality on population

dynamics, since explicit consideration of non-carbon nutrients allows nutrient

limitations to impact the model dynamics in realistic ways [22]. For example,

there are models incorporating the stoichiometric knife edge, which is a theory

that there is an ideal nutrient richness, supported by evidence that grazers are

affected by both insufficient and excess food nutrient content [36, 37, 60].

There is also a model which considers phosphorus loading of the environment

[3]. This topic is globally relevant because of anthropogenic nutrient loading

due to agricultural fertilizers and industrial emissions [15, 22].

There is evidence that trophic level elemental inbalances can impact for-

aging and therefore impact population growth [35]. Ecological stoichiometry

has been used to capture this influence through consideration of varied ener-

getic costs of foraging dependent upon food nutrient content. Such models

have been used to show that grazers can benefit from compensatory feeding

behaviours when consuming non-optimal food [35, 46].

The impacts of seasonal changes in light level were also investigated using a
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variant on the LKE model [2]. Seasonal fluctuations in light level were shown to

lead to more complicated population dynamics. Whereas the basic LKE model

allows for stable equilibria or limit cycles, seasonal forcing produces periodic

and quasi-periodic solutions [2]. This analysis provides more insight into the

complicated relationship between grazer growth and the nutrient quality of

their food.

Additionally, an asexual clonal genotype model was developed following

the WKL model, including rapid evolution in order to investigate the impacts

of evolution of the grazer’s P:C on dynamics [59]. This model together with a

quantitative genetic model indicated rapid evolution can destabilize dynamics

and prevent extinction of the grazer. The resulting changes in allocation and

flux of nutrients in a system could have far reaching impacts in the environment

[59].

Another extension of the WKL model to two grazer species was used to

study the success of an invasive species of the zooplankton Daphnia [52]. Using

a microcosm experiment as well as the extended model, the authors found that

the invasive species, which which was more prone to carbon limitation than

nutrient, could be outcompeted by the native species in low light cases, where

energy limitation was more likely than nutrient limitation [52]. Such insights

allow for better management of invasive species.

An algae only stoichiometric model was used to more specifically clarify the

impacts of light and nutrient availability on algal growth [27]. Severe nutrient

limitation was found to always cause algal extinction, while sufficient nutrient

and any nonzero light intensity allowed persistence of the algae. For this model,

there were two possible globally attracting states: an internal equilibrium or
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an equilibrium with algal C at its carrying capacity, which is on the boundary

of a positively invariant open trapezoid domain [27].

Many developments in ecological stoichiometry focus on consumer home-

ostasis, mass balance, and trophic transfer efficiency [22]. Additionally, there

are many studies on the growth rate hypothesis, which links growth rate, phos-

phorus content, and RNA content. More broadly, there has been research done

on the stoichiometry of pelagic systems in addition to freshwater and estuar-

ine, as well as the impacts of light and carbon dioxide on stoichiometry. All

of these developments could be important for environment management given

the current extensive anthropogenic impacts on global carbon, phosphorus,

and nitrogen cycles [22].

However, despite its global applications, stoichiometry comes with many

associated challenges. As with all models, one must balance the realistic-

ness of the model with the ease of analysis. Stoichiometric systems are often

nonsmooth, and require consideration of multiple cases due to applications of

Liebig’s Law of the Minimum [60]. Additionally, data on elemental composi-

tion in different species are relatively limited, as are efforts to compile these

data [44]. In particular, element explicit data for terrestrial ecosystems are

difficult to find, due to the fact that terrestrial experiments are often time-

consuming, and determining elemental composition usually involves incinerat-

ing specimens.

Some analysis has already been completed for the WKL model [53]. The

analysis is focussed around K, the resource carrying capacity determined by

light. This particular parameter is controllable in a laboratory setting. How-

ever, there are other parameters that remain to be investigated. These pa-
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rameters help uniquely define the conditions both within and surrounding the

biological interactions we consider.

1.2 Mathematical Concepts

1.2.1 Sensitivity analysis

Here we apply the definition of sensitivity analysis established by Nestorov

(1999) [33]; that is, the examination of model responses to either perturbations

of the model’s quantitative factors, such as parameters, or variations in the

model’s qualitative features. In particular, in Chapter 2, we investigate the

impacts on the system’s asymptotic state of perturbing parameters from some

baseline values. Sensitivity analysis can provide insight into how robust model

predictions are to small errors or uncertainties in parameter values [7].

There are two main categories of methods for sensitivity analysis: local

and global [20]. The sensitivity analysis used in Chapter 2 applies a local

method, since only one parameter is changed per index computed while other

input factors (including the other parameters) are fixed at their baseline values.

Comparatively, global methods vary all uncertain input factors simultaneously

over the entire input space [20]. Global methods use variance- or sampling-

based approaches and allow for study of interactions between inputs, which

are likely important for biological systems [47]. Consider, for example, the

relationships seen between birth and death rates of species, which tend to

be positively correlated. However, despite their limitations, local sensitivity

analysis methods are applied here due to their simplicity and the lack of im-
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mediately applicable data to determine realistic parameter ranges, especially

for terrestrial ecosystems. Local methods are also more directly interpreted.

Local sensitivity methods are limited by their baseline parameter set [20,

47]. Depending upon the system, parameters may vary considerably, and local

sensitivity results are only applicable for some narrow subset of all possible

parameter regimes. Given the general applicability of the WKL model which

is used in Chapter 2, clearly there are natural cases to which our sensitiv-

ity results do not apply. However, even global methods require some degree

of confidence in realistic parameter ranges, which are difficult to define for

terrestrial systems.

In order to determine how impactful individual parameters are on the

asymptotic state of our system for several different parameter regimes, sensitiv-

ity indices of target quantities to each parameter are computed. In particular,

we find the normalized forward sensitivity index, which is the ratio of the rel-

ative change in the target value to the relative change in the parameter [7].

Here it is defined as

Υu
ρ ≡

∂u

∂ρ
× ρ

u
,

where u is the target quantity and ρ is the parameter [7]. To estimate the

partial derivative, a central difference approximation is used:

∂u

∂ρ
=
u(par + h)− u(par − h)

2h
+O(h2),

where par is the baseline value of the parameter. For the step size, h, 1% of
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the baseline parameter value is used.

The absolute values of the indices are then compared between parameters

for a specific baseline parameter regime. A larger magnitude of the sensitivity

index is indicative of a stronger relative impact of the parameter on the target

quantity and thus on the asymptotic state of the system [23]. Conversely, a

smaller magnitude means the system is more robust to variation in that param-

eter. Here the target quantities include the equilibrium values of the variables,

and the period and amplitude of oscillations, depending on which asymptotic

state the system displays for a particular combination of parameters.

The sign of the indices corresponds to the direction of the relationship

between the parameter and the target value. A positive sign means that an

increase in the parameter value increases the target value, and a negative sign

means an increase in the parameter decreases the target value [23]. Although

the relationships between the key parameters and the equilibria values are

mostly well known, we briefly discuss the signs since there are some inconsis-

tencies between regimes with different light intensities.

1.2.2 Bifurcation analysis

Bifurcations are changes in the qualitative behaviour of the solutions of a set

of equations that occur at certain parameter values, called bifurcation values

[18]. For example, if a system with parameter µ tends towards an equilibrium

for µ < µ̃, and it tends towards a different equilibrium for µ > µ̃, then a

bifurcation has occurred for this system at bifurcation value µ = µ̃.

Consider a system of differential equations with parameter µ given by
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ẋ = fµ(x), x ∈ Rn, µ ∈ Rk. Equilibria satisfy fµ(x) = 0. An equilibrium

(x0, µ0) where Dxfµ has at least one zero eigenvalue is a point of bifurcation

[18]. A bifurcation value of µ is a value for which the flow of the system is

not structurally stable [18, 19]. In general, it is theoretically possible to an-

alytically determine these values; however, for models as nonsmooth as those

analysed in this thesis, that can be incredibly difficult, if not impossible. Bi-

furcation softwares such as XPPAUTO and MatCont are commonly used for

models like these.

There are many different types of bifurcations. Rigorous classification of

a bifurcation point requires one to check several conditions on the differential

equations at the bifurcation point. Bifurcations which require changing only

one parameter are codimension 1 bifurcations; codimension 2 bifurcations re-

quire changing two parameters [17]. Examples of codimension 1 bifurcations

include the saddle-node bifurcation, the transcritical bifurcation, the pitchfork

bifurcation, and the Hopf bifurcation [18].

A saddle-node bifurcation occurs when equilibrium points are created or

destroyed. Typically a saddle-node bifurcation at which two equilibria are

created produces an unstable saddle and a stable node. This bifurcation is

also called a fold bifurcation [19]. An example of a saddle-node bifurcation is

the one that occurs at µ = 0 for the differential equation ẋ = µ− x2 [18].

A transcritical bifurcation occurs when changing the parameter value causes

an existing equilibrium to change its stability. For example, at µ = 0 there is

a transcritical bifurcation for ẋ = µx− x2 [18].

A pitchfork bifurcation occurs when an equilibrium changes its stability

and two new equilibria appears with the opposite stability [19]. There are two

12



types of pitchfork bifurcation [18]. At a supercritical pitchfork bifurcation, an

equilibrium changes its stability from stable to unstable, and two new equilibria

appear and are stable. At a subcritical pitchfork bifurcation, an equilibrium

changes its stability from unstable to stable, and two new equilibria appear

and are unstable [19]. An example of a supercritical pitchfork bifurcation

occurs at µ = 0 for ẋ = µx−x3, and a subcritical pitchfork bifurcation occurs

at µ = 0 for ẋ = µx+ x3 [19].

A Hopf bifurcation occurs where an equilibrium changes its stability, and

a limit cycle with opposite stability appears. For the following system, there

is a Hopf bifurcation at µ = 0 [18]:

ẋ = −y + x(µ− (x2 + y2)),

ẏ = x+ y(µ− (x2 + y2)).

There are five types of codimension 2 bifurcations: Bogdanov-Takens, Zero-

Hopf, double-Hopf, cusp point, and Generalized Hopf point [17]. The first

three are determined by the Jacobian. If it has a double-zero eigenvalue with

geometric multiplicity one, the point is a Bogdanov-Takens bifurcation; if it

has zero eigenvalue and a conjugate pair of pure imaginary eigenvalues, the

point is a Zero-Hopf bifurcation; and if it has two conjugate pairs of pure

imaginary eigenvalues, the point is a double-Hopf. A cusp point is found on a

fold curve (a bifurcation curve in two-parameter space where a real eigenvalue

crosses the imaginary axis) where 0 = pTG0
xxqq, with Gx equal to the Jacobian

of the system and with p, q the left and right singular vectors of Gx, normalized

such that 〈p, q〉 = 〈q, q〉 = 1. A Generalized Hopf point occurs where the first
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Lyapunov value vanishes on a Hopf curve. See [17] for more details.

All of the above pertains to the local bifurcation properties of the system.

Theoretical classifications of local bifurcations require coordinate transforma-

tions into normal forms, which can be classified using the Taylor series at

a point [18]. Global bifurcation analysis involve changes in global aspects of

flows, including homoclinic orbits. These analyses cannot be reduced to study-

ing the vector field of a neighborhood of an equilibrium or closed curve, unlike

local bifurcation analysis. More information on global bifurcation analysis can

be found in [18].

1.3 Outline

In Chapter 2, we will contrast terrestrial and aquatic ecosystems using the

WKL model [53]. It is known that the average turnover rate of producer

biomass in terrestrial ecosystems is much lower than in aquatic ecosystems

[42]. Two parameters in the WKL model, the intrinsic growth rate of the pro-

ducer (r) and the maximal ingestion rate of the grazer (c), are major factors

in determining this turnover rate. Although some analysis has been completed

for the WKL model, it is focussed on the producer’s light-dependent carry-

ing capacity, K. To our knowledge, no prior bifurcation analysis has been

completed for r and c. In addition, we analyze the stability of the equilib-

ria for Holling type II functional responses in the WKL model, where before

Holling type I responses were assumed for stability analysis [53]. We find that

for sufficiently low values of r and c, grazer extinction is always observed.

This suggests terrestrial grazer populations should not persist. However, this
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is likely because other parameters may differ between terrestrial and aquatic

ecosystems, such as the constant grazer loss rate, d̂, which has a strong impact

on grazer persistence.

In Chapter 3, we will extend the WKL model by incorporating carbon lim-

itation of producer growth, since carbon dioxide is required for photosynthesis

and climate change models have predicted a drastic increase in atmospheric

carbon dioxide concentration. Three models will be developed. The first, the

local closed model, will incorporate carbon limitation of producer growth and

consider the system as closed to carbon in addition to phosphorus, rather than

completely open to carbon. The second model will build on the first by in-

cluding the reduction in photorespiration rate due to competitive inhibition

of oxygenation by carbon dioxide. The third model will allow for some level

of transfer of carbon between the system and its exterior. All three mod-

els will be briefly compared. The local closed model will be analyzed more

extensively, including exploration of an invariant set, separate stability anal-

yses for Holling type I and type II functional responses, and both one- and

two-parameter bifurcation analyses for the light-dependent carrying capacity

(K), the total phosphorus in the system (TP ) and the total carbon in the

system (TC). A general trend is observed due to sequential limitation, with

the nutrient in lowest supply determining whether the system approaches the

grazer extinction equilibrium, a coexistence equilibrium, or a stable limit cycle.

The models suggest that increased carbon sequestration and decreased stoi-

chiometric quality of producers due to elevated atmospheric concentration of

carbon dioxide would require sufficient light and nutrients, as expected given

the application of Liebig’s Law of the Minimum.
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Chapter 2

Contrasting terrestrial and

aquatic ecosystems

2.1 Introduction

Earth has many diverse habitats. One of the most fundamental dichotomies

in the biosphere is between aquatic- and terrestrial-based ecosystems. These

two groups vary greatly in average scale, both spatially and temporally. For

example, consider the difference between an acacia tree, which grows at a rate

of 44.2 cm per year [38] and feeds giraffes with an average individual ingestion

rate of 16.6-19.0 kg per day [39], and a microscopic phytoplankton species

which supports zooplankton grazers, both of which cannot be individually

discerned by the naked human eye. These two systems also vary in time scale,

particularly in the rate of turnover of the producer species at the base of these

food chains. While a cyanobacteria bloom on the surface of a lake can appear

in a matter of days or weeks, some trees take years to reach maturity. We
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apply ecological stoichiometry to compare these seemingly opposite systems

at the elemental level.

This chapter intends to compare the dynamics in a terrestrial ecosystem

versus those in an aquatic ecosystem by specifically focussing on two param-

eters: r and c. The maximal growth rate of producers, r, tends to be higher

in aquatic systems than in terrestrial [42]. Similarly, the maximum ingestion

rate of grazer’s, c, tends to be higher in aquatic producer-grazer systems than

terrestrial. There is evidence that producer biomass can be consumed at a rate

four times higher by aquatic grazers than terrestrial [42]. Comparison of the

life cycle of an acacia tree to that of a phytoplankton clearly exemplifies this

phenomenon. Investigating these parameters can allow us to rigorously com-

pare such terrestrial and aquatic ecosystems, despite the extensive biological

differences.

Another related contrast in parameter values lies in the tradeoff between

r and c. Often, prey species must “choose” between investing energy into

their growth, increasing r, or into their defences against predation, decreasing

c [21, 52]. For example, undefended Caribbean coral reef sponges have been

found to exhibit higher growth rates than those of defended species when

predation is prevented by cages [26]. Therefore, we expect to naturally see

systems with low r and low c, and systems with high r and high c. This

is similar to the above contrast between terrestrial and aquatic ecosystems.

Thus, the investigative efforts within this paper can also allow for comparison

between organisms’ survival and reproductive strategies.
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2.2 Model Formulation

The WKL model tracks the amounts of carbon and phosphorus in the producer

and the grazer [53]. Let x be the density of carbon in the producer and y be the

density of carbon in the grazer, both measured in (mg C)/l. For phosphorus

contents measured in (mg P)/l, we use p for the density of phosphorus in the

producer and P for the density of free phosphorus in the medium. Hence, p/x

is the phosphorus to carbon ratio (P:C) of the producer.

The resulting equations are [53]

dx

dt
= rx

(
1− x

min{K, p/q}

)
︸ ︷︷ ︸

producer growth limited by nutrient & light

− f(x)y︸ ︷︷ ︸
uptake by grazers

,

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y︸ ︷︷ ︸

grazer growth limited by food quality & quantity

− d̂y︸︷︷︸
grazer death and respiration loss

,

dp

dt
= g(P )x︸ ︷︷ ︸

P uptake by producer

− p

x
f(x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

,

dP

dt
= −g(P )x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θd̂y︸︷︷︸
P recycling from dead grazer

+
(p
x
− êmin

{
θ,
p

x

})
f(x)y︸ ︷︷ ︸

P recycling from grazer feces

.

The model uses two major assumptions. The first is that “the total mass

of phosphorus in the entire system is fixed” [53], i.e., the system is closed to

phosphorus but open to carbon. The second is that the producer P:C varies,

but never falls below a fixed minimum q ((mg P)/(mg C)); the grazer P:C is

equal to a constant, denoted by θ ((mg P)/(mg C)), which is known as strict
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homeostasis [44, 53]. Note that due to assumption 2, we do not directly track

the phosphorus content in the grazers – the instantaneous phosphorus content

in the grazer is simply θy.

From assumption 1, the total phosphorus T in the system is constant, i.e.,

dT

dt
= 0

for T = p + P + θy. Thus, we can write P = T − p − θy, and we can reduce

the system to three equations [53]:

dx

dt
= rx

(
1− x

min{K, p/q}

)
− f(x)y, (2.1)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y − d̂y, (2.2)

dp

dt
= g(T − p− θy)x− p

x
f(x)y − dp. (2.3)

The parameters are r, the producer intrinsic growth rate (day-1); K, the

producer light-dependent carrying capacity ((mg C)/l); q, the minimal pro-

ducer P:C ((mg P)/(mg C)); ê, the grazer maximal conversion rate; θ, the

constant grazer P:C ((mg P)/(mg C)); d̂, the grazer loss rate (day-1); and d,

the producer phosphorus loss rate (day-1) [53]. Due to the second law of ther-

modynamics, ê < 1, and in reality, θ >> q [53]. Therefore, we assume herein

that θ > q.

The model also uses two functions: f(x), which is the rate at which the

grazers ingest producer biomass, and g(P ), which is the per capita phosphorus
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uptake rate of the producers [53]. If we assume f(x) and g(P ) take the form

of the Holling type II functional response, then we have

f(x) =
cx

a+ x
,

g(P ) =
ĉP

â+ P
.

In general, f and g are assumed to be bounded smooth functions that are

zero at zero (f(0) = 0), strictly increasing (f ′(x) > 0 for x ≥ 0), and concave

down (f ′′(x) ≤ 0 for x ≥ 0) [53]. For the Holling type II functional responses

chosen here, let c be the maximal rate of ingestion of producer biomass by

the grazers (day-1); ĉ be the producer maximal phosphorus uptake rate ((mg

P)/(mg C)/ day); a be the grazer carbon half-saturation constant ((mg C)/l);

and â be the producer phosphorus half-saturation constant((mg P)/l) [53].

For analyses, parameter values from Wang, Kuang, and Loladze (2008)

[53] are used, as shown in Table 2.1. The baseline values used for r and c are

0.93 day-1 and 0.75 day-1 respectively. Therefore, we consider values ranging

from 0.1 up to 2.00 for these two parameters, which includes a maximum

value more than double the realistic parameters used previously. Within these

analyses, all other parameters are assumed to be equal between terrestrial

and aquatic ecosystems, which clearly limits the applicability of the results

somewhat. The model was originally parametrized for a freshwater system.

Hence, we consider the parameter values for r and c less than the specified

baseline values representative of terrestrial ecosystems, and those greater than

or equal to the baselines representative of aquatic ecosystems.
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Table 2.1: The parameter (P) values (V) used for simulations [53].

P Description V

r Producer intrinsic growth rate 0.1-2.0 day-1

K Producer light-dependent carrying capacity 0.25-2 (mg C)/l

c Grazer maximal ingestion rate 0.1-2.0 day-1

ĉ Producer maximal phosphorus uptake rate 0.2 (mg P)/(mg C)/day

a Grazer carbon half-saturation constant 0.25 (mg C)/l

â Producer phosphorus half-saturation constant 0.008 (mg P)/l

ê Grazer maximal conversion rate 0.74

d̂ Grazer loss rate (death and respiration) 0.22 day-1

d Producer phosphorus loss rate 0.05 day-1

θ Constant grazer P:C ratio 0.04 (mg P)/(mg C)

q Minimal producer P:C ratio 0.004 (mg P)/(mg C)

T Total system phosphorus 0.03 (mg P)/l

2.3 Mathematical Analysis

2.3.1 Invariant set

Wang et al. (2008) [53] presented the following theorem for positive invariance.

Theorem 1. Solutions with initial conditions in the set

Ω = {(x, y, p) : 0 < x < min{K,T/q}, 0 < y, 0 < p, p+ θy < T}

remain there for all forward times.
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This is proven by way of contradiction. The full proof was provided by

Wang et al. (2008) [53], but in brief, one considers a solution X(t) with initial

condition in Ω, then assumes there is a time t1 such that X(t) touches or

crosses the boundary of the closure of Ω for the first time. Then one considers

cases for different segments of the boundary and reaches a contradiction in

each case.

The invariant set is biologically meaningful. Densities of elements cannot

be negative and therefore positivity is required. Also, growth of the producer is

limited either by light (K ) or by the maximum phosphorus availability relative

to their needs (T/q). This is Liebig’s Law of the Minimum – the resource

which is least abundant relative to an organism’s needs becomes limiting [44].

Hence, the bounds on x in Ω make sense. The bounds on phosphorus levels are

also realistic: the phosphorus contained in the producers and grazers (p+ θy)

cannot exceed what is available in the system (T ).

For the purposes of this chapter, this set should be kept in mind when

considering stability. Equilibria outside of this set cannot be globally attract-

ing, since no solution starting in this set will ever leave it. Also, for numerical

simulations, once a solution enters this set, we know the general location of

the solution for all forward times.

2.3.2 Equilibria

Wang et al. (2008) [53] found the equilibria for the model when f and g are

Holling type I functions, then analyzed the stability of the boundary steady

states. For this simplified case, there were two boundary equilibria: the ex-
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tinction equilibrium E0 = (0, 0, 0), and the grazer extinction equilibrium E1

where the form depends on if light or nutrients are limiting for the producer

[53]. E1 is given by


(
K, 0, TK

K+d/α

)
, K < T

q −
d
α,(

T
q −

d
α, 0, q

(
T
q −

d
α

))
, K > T

q −
d
α,

where f(x) = βx and g(P ) = αP [53].

As stated in Section 2.2, for the model, f and g are always assumed to

be bounded smooth functions that are zero at zero, strictly increasing, and

concave down. While the Holling type I functional responses used in Wang et

al. (2008) [53] do satisfy this requirement, they are not realistic. Holling type I

requires the assumption that there are no physical limits to the amount of food

the grazer can consume. Clearly metabolic restrictions make this unrealistic.

Thus, while Holling type I makes mathematical analysis more manageable, it

limits applicability of the results.

For the numerical analyses, we assume that f and g are Holling type II

functions. Hence, we find equilibria that will match our numerical analyses.
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Then, any equilibrium (x̄, ȳ, p̄) satisfies

0 = x̄

(
r

(
1− x̄

min{K, p̄/q}

)
− cȳ

a+ x̄

)
≡ x̄F (x̄, ȳ, p̄), (2.4)

0 = ȳ

(
êmin

{
1,
p̄/x̄

θ

}
cx̄

a+ x̄
− d̂
)
≡ ȳG(x̄, ȳ, p̄), (2.5)

0 =
ĉ(T − p̄− θȳ)x̄

â+ (T − p̄− θȳ)
− cp̄ȳ

a+ x̄
− dp̄ ≡ H(x̄, ȳ, p̄). (2.6)

To find the equilibria, we split into cases based on the minimum functions

included in F (x̄, ȳ, p̄) and G(x̄, ȳ, p̄), given by

1. p̄ < Kq and p̄ < θx̄ : producer is nutrient limited and grazer is limited

by food quality;

2. p̄ < Kq and p̄ > θx̄ : producer is nutrient limited and grazer is limited

by food quantity;

3. p̄ > Kq and p̄ < θx̄ : producer is light limited and grazer is limited by

food quality;

4. p̄ > Kq and p̄ > θx̄ : producer is light limited and grazer is limited by

food quantity.

All four cases have between one and three boundary equilibria: the extinc-

tion equilibrium E0 = (0, 0, 0), and the grazer extinction equilibrium/a E1.

As with the Holling type I case, the form of E1 depends on what resource is

limiting for the producer, i.e., it is the same for Case 1 as Case 2, and the

same for Case 3 as Case 4. When the producer is nutrient limited, E1 is

(
dq(â+ T )− ĉT

q(dq − ĉ)
, 0,

dq(â+ T )− ĉT
dq − ĉ

)
.

Note that for the above, x̄ = p̄/q. Also, for the given baseline parameter values
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for the WKL model, this equilibrium is non-negative and thus biologically

feasible (E1 = (7.4980, 0, 0.0300)). When the producer is light limited, E1

actually has two possible values of p̄, both of which are positive:

(
K, 0,

(âd+ dT + ĉK)±
√

(âd+ dT + ĉK)2 − 4ĉdKT

2d

)
.

For Cases 1 and 3, we also have an additional mathematically possible bound-

ary equilibrium if we assume quality is limiting:

(
0,−ad

c
,
ad̂θ

êc

)
.

However, this is not biologically feasible. All parameters are assumed to be

positive and thus for this equilibrium ȳ < 0, which is not realistic since we

cannot observe negative carbon densities. Also, this equilibrium would not

satisfy the quality limitation condition if we multiply the terms within the

minimum by f(x̄), since f(0) = 0 < ((cp̄)/(aθ)) = d̂/ê.

For the parameter values used in the numerical simulations, K < (T/q) =

7.50 for all K in 0.25-2.00. Also, for K < 7.5, Kq < p̄ for either form of the

grazer extinction equilibrium. Thus for the range of K we consider and the

values of T and q used, we will never have Kq > p̄ and thus these equilibria

will always fall in the producer light limited region of the phase space. Hence

we are restricted to Cases 3 and 4 for the parameters given in Table 2.1. For

the condition that distinguishes Case 3 from Case 4, we note that x̄θ = Kθ.

Also, since p̄ does not depend on r or c, we can fix r and c at their baseline

values and check the condition only varying K. Therefore, we only need to
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check the sign of p̄− θx̄ for our various values of K, and for both of the grazer

extinction equilibria (varying p̄). For the version of p̄ that uses the plus sign,

we observe that p̄−θx̄ > 0 for all K ∈ (0, 2]. Hence this boundary equilibrium

is always in Case 4. On the other hand, the equilibrium applying the negative

sign has p̄− θx̄ > 0 until a value of K between 0.74 and 0.75, when it becomes

negative. Hence this equilibrium is in Case 4 until approximately K = 0.75,

at which point it switches to Case 3. We also note that our grazer extinction

equilibria will never be in the invariant set presented in Section 2.3.1, since

the set does not include y = 0 or x = K.

Observe that in all cases, the forms of the biologically feasible boundary

equilibria have no explicit dependence on either r or c. Given our assumption

that all other parameters are the same between terrestrial and aquatic ecosys-

tems, this means that the value of the boundary equilibria will not depend on

whether the ecosystem is terrestrial or aquatic. However, the asymptotic state

of the system will still depend on r and c, since they will determine which

equilibria are stable.

Lastly, there may exist coexistence equilibria which satisfy

0 = r

(
1− x̄

min{K, p̄/q}

)
− cȳ

a+ x̄
,

0 = êmin

{
1,
p̄/x̄

θ

}
cx̄

a+ x̄
− d̂,

0 =
ĉ(T − p̄− θȳ)x̄

â+ (T − p̄− θȳ)
− cp̄ȳ

a+ x̄
− dp̄,

i.e., F (x̄, ȳ, p̄) = 0, G(x̄, ȳ, p̄) = 0, and H(x̄, ȳ, p̄) = 0. Clearly there is likely

to be an explicit dependence on r and c for coexistence equilibria, although
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analytically determining the explicit dependence is incredibly time consuming

and may be impossible due to extensive nonlinearity.

The results of this section are summarized in the following theorem.

Theorem 2. Equations (2.1)-(2.3) with Holling type II functional responses

yield the trivial extinction equilibrium E0 = (0, 0, 0), at most two grazer ex-

tinction equilibria E1, and may have coexistence equilibria, where the grazer

extinction equilibria satisfy the following:

(i) If p̄ < Kq, then there is one grazer extinction equilibrium

E1 =

(
dq(â+ T )− ĉT

q(dq − ĉ)
, 0,

dq(â+ T )− ĉT
dq − ĉ

)
;

(ii) If p̄ > Kq, then there are two grazer extinction equilibria

E1 =

(
K, 0,

(âd+ dT + ĉK)±
√

(âd+ dT + ĉK)2 − 4ĉdKT

2d

)
.

2.3.3 Stability

For the extinction equilibrium, Wang et al. (2008) [53] proved a stability

theorem for the extinction steady state. Here we improve upon the theorem,

using a very similar proof:

Theorem 3. The extinction steady state E0 = (0, 0, 0) in Equations (2.1)-

(2.3) is globally asymptotically stable if d > m̃g(T ), where m̃ = min{x(0)/p(0),

[1 + d/r]/q}.

Proof: Let u = x/p, then applying quotient rule as well as Equations (2.1)

- (2.3)
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du

dt
=

d

dt

x

p

=
(dx/dt)p− x(dp/dt)

p2

=
dx/dt

p
− xdp/dt

p2

=
1

p

(
rx

(
1− x

min{K, p/q}

)
− f(x)y

)
− x

p2

(
g(T − p− θy)x− p

x
f(x)y − dp

)
=
rx

p

(
1− x

min{K, p/q}

)
− f(x)y

p
− x2

p2
g(T − p− θy) +

f(x)y

p
+
dx

p

= ru

(
1− x

min{K, p/q}

)
− f(x)y

p
− u2g(T − p− θy) +

f(x)y

p
+ du

= ru

(
1− x

min{K, p/q}

)
− u2g(T − p− θy) + du.

Since g(0) = 0 and g′(P ) > 0, −u2g(T − p− θy) ≤ 0. We observe that

min{K, p/q} ≤ p/q ⇐⇒ 1

p/q
≤ 1

min{K, p/q}
⇐⇒ − 1

min{K, p/q}
≤ − 1

p/q
.

Therefore, we can bound the first term in du/dt with ru(1− x/(p/q)).

Thus

du

dt
≤ ru

(
1− x

p/q

)
+ du = ru(1− qu) + du.

Then,

du

dt
≤ ru(1 + d/r − qu).
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Therefore, u ≤ min{x(0)/p(0), [1 + d/r]/q} ≡ m̃. From Equation (2.3)

dp

dt
= g(T )x− p

x
f(x)y − dp

≤ g(T )x− dp

≤ g(T )m̃p− dp

= (g(T )m̃− d)p,

since u = x/p, and u ≤ m̃. Since we assume d > m̃g(T ), and this implies

g(T )m̃− d < 0, then p→ 0 as t→∞.

Now, consider Equation (2.1)

dx

dt
= rx

(
1− x

min{K, p/q}

)
− f(x)y

≤ rx

(
1− x

p/q

)
= rx

(
1− qx

p

)
.

Therefore, lim supt→∞x(t) ≤ p/q. Since p→ 0 as t→∞, then this implies

x → 0 as t → ∞. Then as t → ∞ in Equation (2.2), the first term goes to 0

and thus y → 0.

Thus, if d > m̃g(T ), then the extinction steady state is globally asymptot-

ically stable.

The original theorem from Wang et al. (2008) [53] had d > mg(T ) with

m = min{x(0)/p(0), [1 + (d + f ′(0)T/θ)/r]/q}. Since we assume f is strictly

increasing and all parameters are assumed to be positive, then f ′(0)T/θ > 0,

and thus

[1 + (d+ f ′(0)T/θ)/r]/q > [1 + d/r]/q.
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Therefore, m ≥ m̃, and hence there is a potentially larger range of values of d

for which the extinction equilibrium is stable if we use m̃ instead of m.

This theorem was proven for the general form of f and g, and thus applies

for Holling type II functional responses. We observe the possible dependence

on r and c. However, for the parameter regimes considered here, this condition

requires m = x(0)/p(0) < 0.3167, which is highly unrealistic as it requires

the initial P:C of the producer to exceed 3.1579. Still, this condition is not

necessary, and we may observe stability of the extinction steady state within

this parameter regime.

It remains to investigate the stability of the other boundary equilibria. The

Jacobian matrix is

A =


F + xFx xFy xFp

yGx G+ yGy yGp

Hx Hy Hp

 .

Let Akk be the determinant of the matrix produced by removing row k and

column k from matrix A. By the Routh-Hurwitz criterion, all eigenvalues of A

have strictly negative real parts if the following conditions hold [53]: trA < 0;

detA < 0; and detA - (trA)(
∑3

k=1Akk) > 0.

We compute the Jacobian by finding the partial derivatives of F and G

(as defined in equations (2.4)-(2.6)), as well as the appropriate sums for the

Jacobian:
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∂F

∂x
= − r

min{K, p/q}
+

cy

(a+ x)2
, F + xFx =


r − 2rx

K
− acy

(a+ x)2
, K < p/q,

r − 2rqx

p
− acy

(a+ x)2
, K > p/q,

∂F

∂y
= − c

a+ x
, xFy = − cx

a+ x
,

∂F

∂p
=


0, K < p/q,

rqx

p2
, K > p/q,

xFp =


0, K < p/q,

rqx2

p2
, K > p/q,

∂G

∂x
=


acê

(a+ x)2
, 1 <

p/x

θ
,

− cêp

θ(a+ x)2
, 1 >

p/x

θ
,

yGx =


acêy

(a+ x)2
, 1 <

p/x

θ
,

− cêpy

θ(a+ x)2
, 1 >

p/x

θ
,

∂G

∂y
= 0, G+ yGy =


cêx

a+ x
− d̂, 1 <

p/x

θ
,

cêp

θ(a+ x)
− d̂, 1 >

p/x

θ
,

∂G

∂p
=


0, 1 <

p/x

θ
,

cê

θ(a+ x)
, 1 >

p/x

θ
,

yGp =


0, 1 <

p/x

θ
,

cêy

θ(a+ x)
, 1 >

p/x

θ
.

Similarly, for H,

∂H

∂x
=

ĉ(T − p− θy)

â+ (T − p− θy)
+

cpy

(a+ x)2
,

∂H

∂y
= − âĉθx

(â+ T − p− θy)2
− cp

a+ x
,

∂H

∂p
= − âĉx

(â+ T − p− θy)2
− cy

a+ x
− d.

Therefore for the four cases described in Section 2.3.2, we have different

Jacobian matrices for E1.
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CASE 1: p̄ < Kq and p̄ < θx̄: E1 = (p̄/q, 0, p̄),

A1 =


−r − cp̄

aq + p̄

r

q

0
cêp̄q

θ(aq + p̄)
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθp̄

q(â+ T − p̄)2
− cp̄q

aq + p̄
− âĉp̄

q(â+ T − p̄)2
− d

 .

CASE 2: p̄ < Kq and p̄ > θx̄: E1 = (p̄/q, 0, p̄),

A2 =


−r − cp̄

aq + p̄

r

q

0
cêp̄

aq + p̄
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθp̄

q(â+ T − p̄)2
− cp̄q

aq + p̄
− âĉp̄

q(â+ T − p̄)2
− d

 .

CASE 3: p̄ > Kq and p̄ < θx̄: E1 = (K, 0, p̄),

A3 =


−r − cK

a+K
0

0
cêp̄

θ(a+K)
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθK

(â+ T − p̄)2
− cp̄

a+K
− âĉK

(â+ T − p̄)2
− d

 .

CASE 4: p̄ > Kq and p̄ > θx̄: E1 = (K, 0, p̄),

A4 =


−r − cK

a+K
0

0
cêK

a+K
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθK

(â+ T − p̄)2
− cp̄

a+K
− âĉK

(â+ T − p̄)2
− d

 .

To determine the stability of E1 for Case i (i ∈ {1, 2}) we need to find

the trace and determinant of Ai . However, this is not particularly illuminat-
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ing mathematically – determining conditions such that A1 and A2 satisfy the

Routh-Hurwitz criterion seems very complicated (see Appendix A). The eigen-

values are similarly non-illuminating, other than demonstrating that stability

does not depend on K for Case 1, and it does not depend on K or θ for Case

2. However, for Cases 3 and 4, we can explicitly compute the determinant of

A−λI. For either case, a cofactor expansion along the third column yields the

product of A33
i − λ, and the determinant of a 2 x 2 upper triangular matrix.

Thus, the eigenvalues of Ai are along the main diagonal for i ∈ {3, 4}. For

both Case 3 and 4, we have two eigenvalues which are always negative:

λ1 = −r,

λ2 = − âĉK

(â+ T − p̄)2
− d.

Thus, stability of a grazer extinction equilibrium is determined by the sign

of the eigenvalue A22
i for i ∈ {3, 4}. Since all parameters are positive, then E1

is a stable node for

d̂ >
cêp̄

θ(a+K)

for Case 3, and

d̂ >
cêK

a+K

for Case 4. When the inequalities are reversed, then E1 is a saddle with a

one-dimensional unstable manifold and a two-dimensional stable manifold.

We can find the value of c such that d̂ is equal to the right hand side in the

above conditions. The values are in Table 2.2. We observe that the minimum

condition for stability of our equilibria for this parameter regime involves a
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low maximal ingestion rate, which suggests that terrestrial systems would be

more likely to trend towards the grazer extinction equilibria based purely on

r and c.

Table 2.2: The value of c for the appearance of a zero eigenvalue for Cases 3 and
4. Note that there are two possible values of p̄ for Case 3 and the bifurcation value
depends on p̄, thus there is a row for each of these equilibria.

Case K=0.25 K=0.75 K=1.00 K=2.00

3+ 0.0059 0.0040 0.0037 0.0033

3- 0.1998 0.3975 0.4965 0.8928

4 0.5946 0.3964 0.3716 0.3345

Recall that when the producer is light limited, there are two grazer ex-

tinction equilibria. To decide which, if either, is stable, we use the following

theorem:

Theorem 4. The grazer extinction equilibria E1 = (x̄, 0, p̄) for (2.1)-(2.3)

satisfy the following when p̄ > Kq.

(i) If p̄ < θx̄, a grazer extinction equilibrium has a bifurcation at

d̂ =
cêp̄

θ(a+K)
.

The equilibrium is a stable node for d̂ greater than this bifurcation value, and

a saddle for d̂ less than this bifurcation value.

(ii) If p̄ > θx̄, a grazer extinction equilibrium has a bifurcation at

d̂ =
cêK

a+K
.

The equilibrium is a stable node for d̂ greater than this bifurcation value, and
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a saddle for d̂ less than this bifurcation value.

2.4 Numerical Dynamics

2.4.1 Numerical simulations

Using MATLAB, the system was simulated using the parameter values in

Table 2.1. Since the model is nonsmooth, ode45 was not reliable for certain

combinations of parameters. A singularity produced negative densities, thus

ode23s was used instead since it is a stiff solver. The initial condition was

always held at (x0, y0, p0) = (0.3, 0.3, 0.01), which is not in the invariant set

from Section 2.3.1 but is at least biologically feasible and orbits starting here

can still enter the set in time. This initial condition was selected since it was

the one used in the paper where the model was presented.

First the simulations were run for t ranging from 0 to 50 days, varying one

of the two focal parameters at a time. For each K ∈ {0.25, 0.75, 1.00, 2.00},

the system was numerically simulated for r ∈ {0.1, 0.2, ..., 2.0}, with c held

constant at the baseline value 0.75. Then the process was repeated with r

held constant at 0.93 and c ∈ {0.1, 0.2, ..., 2.0}. The lower values of r and c

were used to represent the slower average turnover rate of terrestrial systems,

and the higher parts of the ranges were used for the faster average turnover

rate of aquatic systems.

For the intrinsic growth rate of the producer (r), we see that as r increases

with K held at the following level:

• K=0.25: grazers benefit; producers harmed until they plateau; coexis-
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tence at a steady state.

• K=0.75, 1.00: oscillations appear and then replaced by coexistence at a

steady state.

• K=2.00: grazers benefit; producers harmed until a point where grazers

go extinct.

For the maximal ingestion rate of the grazer (c), we see that as c increases

with K held at the following level:

• K=0.25, 0.75, 1.00: grazers benefit and producers harmed until oscilla-

tions appear.

• K=2.00: grazers benefit until the carbon density curves intersect and

the system trends toward oscillations.

Figures 2.1 and 2.2 show the shifts in dynamics described above.

Then the simulations were run for t in 0 to 200, varying both of the focal

parameters. The time limit was extended since there appeared to be some

dynamics that had not completely ‘settled’ by t = 50. The values of the fo-

cal parameters were selected based on the previous simulations to align with

where shifts in dynamics occurred. Thus the simulations were run for all pos-

sible combinations of K ∈ {0.25, 0.75, 1.00, 2.00}, r ∈ {0.1, 0.5, 1.0, 1.5, 2.0},

and c ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, again using ode23s in MATLAB. The behaviour

at t = 200 was then classified according to the possible dynamics seen in prior

papers [29, 53]. The dynamics were classified as either grazer extinction; coex-

istence at a nonzero steady state; coexistence with oscillations; or coexistence

with oscillations with decreasing amplitude, leading to coexistence at a steady

state. Examples of the above dynamics are shown in Figure 2.3. These ob-

served dynamics were then used to develop classifications for two parameter
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Figure 2.1: Sample dynamics for various r values, r = 0.1, 1.0, 2.0, for K =
0.25, 0.75, 1.00, 2.00 and baseline c (as well as all other parameters). For low to
intermediate light, we observe that increasing r in general increases the carbon
densities for both producers and grazers. In the high and very high light cases,
increasing r to 2.0 is detrimental to the grazer, likely due to nutrient limitation of
grazer growth.
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Figure 2.2: Sample dynamics for various c values, c = 0.1, 1.0, 2.0, for K =
0.25, 0.75, 1.00, 2.00 and baseline r (as well as all other parameters). In general,
increasing c is detrimental to the producer population, and beneficial for the grazer
in all cases except low light.
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bifurcation diagrams and expectations for what dynamics may be produced.

2.4.2 Sensitivity analysis

Local sensitivity analysis was completed with various light intensities. For

K = 0.25, 1.00, and 2.00, the baseline parameters produce a solution which

tends to an equilibrium. After visually assessing the dynamics for each of

the required parameter combinations using a plot in MATLAB, the variables

selected for sensitivity analysis for these K values were x, y, and p at t = 200

days. The normalized forward sensitivity indices for x(200), y(200) and p(200)

for all parameters were computed using the formula

Υu
ρ ≡

∂u

∂ρ
× ρ

u
,

where u is the variable and ρ is the parameter [7]. To estimate the partial

derivative, a central difference approximation was used:

∂u

∂ρ
=
u(par + h)− u(par − h)

2h
+O(h2),

where u is the variable, ρ is the parameter, and par is the baseline value of

the parameter, as given in Table 2.1. For the parameters that vary between

simulations, r = 0.93 and c = 0.75 were used for the baseline values. To

approximate the values of x(200), y(200), and p(200) for par+ h and par− h,

ode23s was used, with all other parameters set at baseline values except the

one for which the index was calculated. The step size h was taken to be one

percent of the baseline value. The results for K = 0.25 are shown in Table
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Figure 2.3: Sample dynamics: (a) grazer extinction (terrestrial r and c); (b)
coexistence oscillations to coexistence steady state (mixed r and c); (c) coexistence
oscillations (aquatic r and c); (d) coexistence at a steady state (mixed r and c).
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2.3. This process was repeated for K = 1.00 and K = 2.00, with the results

shown in Table 2.4 and Table 2.5 respectively.

Table 2.3: The sensitivity of variables to the parameters, sorted from largest to
smallest absolute value, for low light (K = 0.25).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 ê -1.6572 ê 2.5140 ê -1.3297

2 c -1.6572 d̂ -2.5130 d̂ 1.3294

3 d̂ 1.6568 K 1.9132 T 1.2674

4 a 1.000 c 1.5148 c -1.0321

5 r 4.4438e-10 r 1.0000 K -0.7885

6 K 2.1687e-10 a -0.9130 a 0.6225

7 T -1.7783e-10 T 6.54054e-11 r -0.4121

8 ĉ -1.3844e-10 ĉ 4.8559e-11 θ -0.2979

9 â 1.1039e-10 â -3.7830e-11 ĉ 0.1321

10 θ 8.0970e-11 θ -2.9463e-11 â -0.1015

11 d -3.9728e-13 d -1.5743e-12 d -0.0179

12 q 0 q 0 q 0

For K = 0.75 (intermediate light), the baseline parameters produce a limit

cycle. Accordingly, local sensitivity indices were computed for the amplitude

and period of the oscillations in the variables, using the same formulas to

estimate the partial derivatives and the normalized forward sensitivity indices.

Each of the necessary simulations was run using ode23s, and the time span

[0, 200] was determined to be adequate to capture the settled behaviour. The

period of the oscillations was estimated to be between 25 and 30 days, and in

order to make sure that enough troughs and crests existed in the tail for each
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variable, the tail used was [≥ 140, 200], i.e., roughly the last 60 days, depending

on the intervals selected by ode23s. Amplitude was determined by finding

the maximum and minimum values in the tail for the variable. The period

was determined by first finding places where the sign of the difference in the

variable value from one element of the array to the next changed, then finding

the time difference between the last and third last such point. The resulting

sensitivity indices are shown in Table 2.6 and Table 2.7 for the amplitude and

period respectively.

Table 2.4: The sensitivity of variables to the parameters, sorted from largest to
smallest absolute value, for high light (K = 1.00).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 K 3.2753 θ -4.0834 θ 3.3279

2 θ 3.2020 T 4.0779 c -3.3247

3 c -3.1968 c 3.0786 K 2.3832

4 T -3.1953 K -2.1853 T -2.3250

5 r 1.6325 d̂ -2.0146 d̂ 2.1432

6 d̂ 1.5715 ê 2.0145 ê -2.1430

7 ê -1.5715 r -1.0892 r 1.1878

8 a 0.8625 a -0.8336 a 0.8999

9 ĉ -0.0357 ĉ 0.0458 ĉ -0.0260

10 â 0.0343 â -0.0440 â 0.0250

11 d 0.0050 d -0.0064 d 0.0036

12 q 0 q 0 q 0
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Table 2.5: The sensitivity of variables to the parameters, sorted from largest to
smallest absolute value, for very high light (K = 2.00).

Strength P S.I. x(200) P S.I. y(200) P S.I. p(200)

1 K 1.0014 d̂ -40.3478 T 0.9945

2 d̂ 0.0018 θ -34.2900 d̂ 0.0066

3 c -0.00157 T 34.1587 K 0.0058

4 θ 0.00156 c 33.4886 c -0.00551

5 T -0.00155 ê 33.0903 θ 0.00547

6 ê -0.0015 K -29.3316 ê -0.0054

7 a 1.7753e-04 a -3.7990 d -0.0010

8 r 7.5568e-05 r -0.6150 ĉ 9.9984e-04

9 ĉ -2.1494e-06 ĉ 0.0473 â -9.9613e-04

10 â 2.1034e-06 â -0.0463 a 6.2477e-04

11 d 1.5530e-06 d -0.0243 r 1.0118e-04

12 q 0 q 0 q 0

For K = 0.25 (Table 2.3), we see that the intrinsic growth rate of the

producer, r, ranks fifth for x(200) and y(200), and seventh for p(200). For

K = 0.75 (Tables 2.6 and 2.7), it ranks sixth for the amplitude of producer

carbon oscillations and seventh for the amplitude of grazer carbon and pro-

ducer phosphorus oscillations; it ranks third, fourth, and second respectively

for the periods of oscillations of x, y, and p. For K = 1.00 (Table 2.4), it ranks

fifth for x(200), and seventh for both y(200) and p(200). For K = 2.00 (Table

2.5), it ranks eighth for x(200) and y(200), and eleventh for p(200).
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Table 2.6: The sensitivity of the amplitude of oscillations to the parameters, sorted
from largest to smallest absolute value, for intermediate light (K = 0.75).

Strength P S.I. x amp P S.I. y amp P S.I. p amp

1 c 3.9124 c 4.2797 c 5.7681

2 a -3.6197 T 4.0362 T 5.1911

3 θ -3.3473 θ -3.9980 a -4.1941

4 T 3.3446 a -2.9970 θ -4.0400

5 d̂ -2.0498 ê 2.4612 d̂ -3.0475

6 r -2.0058 d̂ -2.4329 ê 2.9610

7 ê 1.5260 r -2.0534 r -2.7508

8 K 1.3498 K 0.2578 K 0.1410

9 ĉ 0.1715 ĉ 0.2078 â -0.1270

10 â -0.1544 â -0.1908 ĉ 0.0372

11 d -0.0094 d -0.0108 d -0.0118

12 q 0 q 0 q 0

Comparatively, the grazer ingestion rate c ranks second, fourth, and fourth

for K = 0.25 for x, y, and p respectively. It ranks first for all amplitudes

of oscillation for K = 0.75, and fifth, fifth, and sixth for the periods. For

K = 1.00, c ranks third, third, and second. Finally, for K = 2.00, c ranks

third, fourth, and fourth for x, y, and p respectively.

The local sensitivity rankings of the intrinsic growth rate of the producer,

r, and the maximal grazer ingestion rate, c, out of the twelve parameters are

summarized in Table 2.8. Also, the signs of the sensitivity indices are in Table

2.9 for steady states and Table 2.10 for amplitude and period.
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Table 2.7: The sensitivity of the period of oscillations to the parameters, sorted
from largest to smallest absolute value, for intermediate light (K = 0.75).

Strength P S.I. x pd P S.I. y pd P S.I. p pd

1 θ 1.2673 K 1.2723 K 1.2832

2 K 1.2498 θ 0.9735 r -1.0029

3 r 1.2461 T -0.6442 θ 0.9537

4 d̂ -1.1570 r 0.6073 d̂ -0.8080

5 c -0.6355 c -0.5824 T -0.6410

6 T -0.5347 ê -0.3794 c -0.5695

7 ê -0.4139 a -0.3253 ê -0.3749

8 a 0.1283 â -0.0576 a -0.2894

9 â -0.0867 ĉ 0.0570 â -0.0558

10 ĉ 0.0852 d̂ -0.0314 ĉ 0.0553

11 d 0.0019 d 0.0019 d 0.0019

12 q 0 q 0 q 0

In particular, we see that increasing r consistently increases the steady

state producer carbon density, indicated by the positive sign of the index; for

low light, it increases the steady state grazer carbon density and decreases

the steady state producer phosphorus density, and vice versa for (very) high

light. This suggests that increasing the intrinsic growth rate of the producer is

consistently good for the producer carbon density, while it is only good for the

grazer at low light and harmful for higher light conditions. This is likely due to

the resulting decrease in nutrient quality of the producer with higher growth

rates but limited phosphorus resources. At intermediate light, increasing r
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decreases the amplitude of oscillations in all three variables, while it increases

the period for carbon but decreases the period for producer phosphorus. This

suggests that overall r has a dampening effect on oscillations. In this case,

increasing K consistently increases both amplitude and period of oscillations.

Comparatively, increasing c consistently decreases the equilibrium values

for the producer, and increases them for the grazer. This is the relationship

we expect, given that a higher ingestion rate of producer biomass would cor-

respond to a decrease in their population. For intermediate light, increasing

c increases the amplitudes of oscillations and decreases the periods. Thus, c

appears to have an amplifying effect on oscillations.

Overall, we notice that the system is more sensitive to the grazer ingestion

rate than to the intrinsic growth rate of the producer. Therefore, the grazer’s

impact on the turnover time is more influential in the contrast between terres-

trial and aquatic ecosystems than the producer’s. In general, the sensitivity

rank of r decreases as light intensity increases, and the system is overall more

sensitive to c for intermediate to high light levels.

Given this is local sensitivity analysis, it is entirely dependent on the base-

line parameters. Note that for the parameters used, the systems with K = 0.25

and K = 1.00 approach a coexistence equilibrium; K = 0.75 produces coexis-

tence oscillations; and K = 2.00 approaches a grazer extinction equilibrium.

Since we explicitly know the forms of the grazer extinction equilibria, the sen-

sitivity results for K = 2.00 are not unexpected. However, the results for

K = 0.25 and K = 1.00 give us insight into a coexistence equilibrium that

was not solved for explicitly.
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Table 2.8: The rankings of r and c among the twelve parameters for the sensitivity
indices. For K = 0.75, the rankings are amplitude first, then period.

K r S.I. x r S.I. y r S.I. p c S.I. x c S.I. y c S.I. p

0.25 5th 5th 7th 2nd 4th 4th

0.75 6th/3rd 7th/4th 7th/2nd 1st/5th 1st/5th 1st/6th

1.00 5th 7th 7th 3rd 3rd 2nd

2.00 8th 8th 11th 3rd 4th 4th

Table 2.9: The signs of the normalized forward sensitivity indices among the twelve
parameters. The three signs correspond to the cases of K = 0.25,K = 1.00 and
K = 2.00 respectively. q had index 0 for all quantities, so no sign could be selected.

P S.I. x(200) S.I. y(200) S.I. p(200)

r +/+/+ +/-/- -/+/+

K +/+/+ +/-/- -/+/+

c -/-/- +/+/+ -/-/-

ĉ -/-/- +/+/+ +/-/+

a +/+/+ -/-/- +/+/+

â +/+/+ -/-/- -/+/-

ê -/-/- +/+/+ -/-/-

d̂ +/+/+ -/-/- +/+/+

d -/+/+ -/-/- -/+/-

θ +/+/+ -/-/- -/+/+

q 0/0/0 0/0/0 0/0/0

T -/-/- +/+/+ +/-/+
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Table 2.10: The signs of the normalized forward sensitivity indices among the
twelve parameters for K = 0.75. The first three columns correspond to amplitude,
and the last three correspond to period. q had index 0 for all quantities.

P S.I. x amp S.I. y amp S.I. p amp S.I. x pd S.I. y pd S.I. p pd

r - - - + + -

K + + + + + +

c + + + - - -

ĉ + + + + + +

a - - - + - -

â - - - - - -

ê + + + - - -

d̂ - - - - - -

d - - - + + +

θ - - - + + +

T + + + - - -

2.4.3 One parameter bifurcation analysis

Bifurcation analysis was performed using MatCont [10]. For all one parameter

bifurcation diagrams, a solid blue curve represents a stable equilibrium point;

a magenta dashed curve is an unstable equilibrium point; and a cyan dotted

curve represents the minimum/maximum of a stable limit cycle.

In Figure 2.4, we see that the boundary equilibria are unstable for all

r ∈ (0, 2]. Therefore, the coexistence equilibrium is always stable for K =

0.25, r ∈ (0, 2], and c held at its baseline value. There is a neutral saddle
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Figure 2.4: One parameter bifurcation diagrams for r with low light (K = 0.25);
c is held at its baseline value. x is on the left and y is on the right. There are no
bifurcations. The coexistence equilibrium is stable throughout.

equilibrium that occurs at r = 0.0575, as well as a branch point, a Hopf point,

and another branch point which occur at values that are essentially 0 and are

too small to continue in the two parameter diagrams.

In Figure 2.5, for K = 0.25, we see that there is a transcritical bifurca-

tion, which occurs at c = 0.594560. At this bifurcation, the grazer extinction

equilibrium becomes unstable and the coexistence equilibrium becomes sta-

ble. Note that before this bifurcation point, the coexistence equilibrium is

not biologically feasible. In Section 2.3.3, we found that the determinant of

the Jacobian evaluated at the grazer extinction equilibrium changed signs at

c = 0.5946, since K = 0.25 falls under Case 4. This validates our result.

As shown in Figure 2.6, the complete extinction equilibrium and the grazer

extinction equilibrium are both unstable for the full range of r values for
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Figure 2.5: One parameter bifurcation diagrams for c with low light (K = 0.25);
r is held at its baseline value. x is on the left and y is on the right. There is a
transcritical bifurcation around c = 0.59. For c < 0.59, we observe a stable grazer
extinction equilibrium; for c > 0.59, the coexistence equilibrium is stable.

K = 0.75. However, there are several bifurcations. There is a saddle-node

bifurcation at r = 1.151380, where an unstable saddle coexistence equilibrium

collides with a stable node coexistence equilibrium. There is a Hopf bifurca-

tion at r = 1.23910, where a stable limit cycle disappears, and a branch of

the coexistence equilibrium becomes stable. Then there is another saddle-node

bifurcation at r = 1.23951, at which this stable branch of the coexistence equi-

librium collides with an unstable branch. Note that this interval of stability is

too small to see in the diagram. Between r = 1.23910 and r = 1.23951 there

may be bistability between two equilibrium points. There is also a neutral

saddle equilibrium point, and a branch point at a very low parameter value.

From Figure 2.7, for K = 0.75, the grazer equilibrium is stable until the

transcritical bifurcation at c = 0.397464, where the coexistence equilibrium be-
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comes biologically feasible and stable. There are two saddle-node bifurcations:

the first is at c = 0.62783 and the second is at c = 0.650870. Note that only the

second is clearly visible in Figure 2.7. Also, a stable limit cycle appears with

an increasing amplitude at a Hopf bifurcation around c = 0.62800. As with

the bifurcation diagram for r, there is clearly an interval of bistability between

the Hopf bifurcation and the second saddle-node bifurcation, and there may

be an interval of bistability with two equilibria for c ∈ [0.62783, 0.62800]. In

Section 2.3.3, we found that the determinant of the Jacobian evaluated at the

grazer extinction equilibrium changed signs at c = 0.3975, since K = 0.75 is

in Case 3. This agrees with the transcritical bifurcation point observed here.
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Figure 2.6: One parameter bifurcation diagrams for r with intermediate light
(K = 0.75). There is a saddle-node bifurcation around r = 1.15, a Hopf bifurcation
around 1.23910, and another saddle-node bifurcation around r = 1.23951. For
r < 1.23910, there is a stable limit cycle; for r > 1.15, there is a stable coexistence
equilibrium. There may be bistability between a coexistence equilibrium and a limit
cycle for r ∈ (1.15, 1.23910).
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Figure 2.7: One parameter bifurcation diagrams for c with intermediate light (K =
0.75). There is a transcritical bifurcation at c = 0.40, saddle-node bifurcations at c =
0.62783, 0.65, and a Hopf bifurcation at c = 0.62800. For c < 0.40, grazer extinction
is stable; for 0.40 < c < 0.65, coexistence; and for c > 0.62800, oscillations.

For all values of r for K = 2.00, the grazer extinction equilibrium is stable,

as shown in Figure 2.8. A possible explanation for this result is that the

baseline value of c is insufficient for the grazers to consume enough phosphorus

to balance their death rate given the poor quality of the producer as food.

For K = 2.00 and c, the grazer extinction equilibrium is stable until the co-

existence equilibrium becomes biologically feasible and stable at c = 0.892787,

which matches the value found in Section 2.3.3 (Figure 2.9). There is also a

saddle-node bifurcation at c = 1.302372, and a neutral saddle equilibrium at

c = 0.698479. Based on the dynamics, there should be another saddle-node

bifurcation and a Hopf bifurcation between the unstable coexistence equilib-

rium and the stable limit cycle (as in Figure 2.7), but they could not be found

using MatCont. Period doubling happens at the left end of the oscillations.
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Figure 2.8: One parameter bifurcation diagrams for r with very high light (K =
2.00). There are no bifurcation points. The grazer extinction equilibrium is stable
throughout.
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Figure 2.9: One parameter bifurcation diagrams for c with very high light
(K = 2.00). There is a transcritical bifurcation around c = 0.89 and a saddle-node
bifurcation at c = 1.30. Grazer extinction is stable for c < 0.89; then coexistence
for 0.89 < c < 1.30; then oscillations for c > 1.30.
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2.4.4 Two parameter bifurcation analysis

For Figure 2.10 (a), the vertical line is the transcritical bifurcation. The sta-

ble behaviours in the regions are: (1) grazer extinction equilibrium; and (2)

coexistence equilibrium.

For Figure 2.10 (b), the vertical line is the transcritical bifurcation and

the diagonal line corresponds to the saddle-node bifurcation along the coexis-

tence equilibria curve. There is a cusp point where the two curves intersect.

Note that from the one parameter analysis, we know there should also be a

Hopf branch, but it could not be continued in two parameters using MatCont.

There should also be another saddle-node curve. There is probably a region

of bistability missing from this diagram, but the saddle-node bifurcation likely

provides a decent approximation of the transition between a stable coexistence

equilibrium and stable coexistence oscillations. The regional stable behaviours

are: (1) grazer extinction equilibrium; (2) coexistence equilibrium; and (3) co-

existence oscillations.

For Figure 2.10 (c), we see the similar curves and regions to Figure 2.10

(b). This is due to the smaller difference between K = 0.75 and K = 1.00

relative to the other increments in K. However, the shift in the saddle-node

curve is sufficient to justify the different behaviours observed at baseline for

K = 0.75 and K = 1.00 by Wang et al. (2008) [53].

For Figure 2.10 (d), the vertical line is the transcritical bifurcation. The

magenta curve is from the saddle-node bifurcation along the coexistence equi-

libria curve. The point where the curves intersect is a cusp point. As in the one

parameter bifurcation analysis, there is likely a missing Hopf curve and a miss-
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ing saddle-node curve. However, these curves could not be located properly to

be extended in the two parameter diagrams. The regional stable behaviours

are: (1) grazer extinction equilibrium; (2) coexistence equilibrium; (3) coexis-

tence oscillations; and (4) coexistence oscillations. Note that the lower part of

the saddle-node branch does not appear as a limit point when one parameter

bifurcation diagrams are created for r, using c = 1.00 or c = 2.00.

We assumed that all parameters other than r and c are the same between

terrestrial and aquatic ecosystems. Since the baseline values for r and c (0.93

and 0.75 respectively), were for an aquatic system, then we consider roughly

the lower left hand corner of the diagrams to represent terrestrial ecosystems

and the opposite to represent aquatic. Thus, in low light conditions, we ex-

pect either grazer extinction or coexistence at an equilibrium for terrestrial

ecosystems, and coexistence at equilibrium for aquatic (Figure 2.10 (a)). For

intermediate to high light levels, we would expect to see a variety of possi-

ble dynamics for terrestrial systems including grazer extinction, coexistence at

equilibrium, and coexistence oscillations; for aquatic, these results suggest co-

existence would occur in some form (Figure 2.10 (b)-(c)). Lastly, for very high

light levels, achievable only in a laboratory setting, we expect the terrestrial

grazer to die out completely, and the aquatic system to exhibit some form of

coexistence (Figure 2.10 (d)).

We observe that from the grazer equation with Holling type II functions

dy

dt
= y ∗

(
êmin

{
1,
p/x

θ

}(
cx

a+ x

)
− d̂
)
< y ∗ (êc− d̂).

Since y ≥ 0 biologically, then this means that for c < d̂/ê = 0.2973, the
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Figure 2.10: Two parameter bifurcation diagrams, varying K. Green solid curves
correspond to transcritical bifurcations, and magenta dashed curves to saddle-node
bifurcations. For regional stable behaviour, (1) corresponds to the grazer extinction
equilibrium, (2) to a coexistence equilibrium, (3) to coexistence oscillations, and (4)
to coexistence oscillations.

56



grazer’s population density is decreasing, regardless of the size of the producer

population or the light intensity. Therefore, for low c, we can only ever see

extinction of the grazer, as found in the bifurcation diagrams. Given that

terrestrial grazer populations persist, this would seem to suggest that the

value of c must be above this threshold, even in terrestrial ecosystems. This

may also suggest that the grazer’s loss rate should also be lower in terrestrial

populations than in aquatic.

2.4.5 WKL vs. LKE model

Wang et al. (2008) [53] found that solutions of the WKL model are almost

identical to those of the LKE model for small or large K, while they slightly

differ for intermediate K. However, when K is near the homoclinic bifurcation

point (K = 0.95), they are completely different.

To investigate if there are any other differences between the two models

as r and c vary, simulations were completed using ode23s for the WKL and

the LKE models for all possible combinations of K ∈ {0.25, 0.75, 2.00, 0.95},

r ∈ {0.1, 1.0, 2.0}, and c ∈ {0.1, 1.0, 2.0}.

The two differ slightly quantitatively for

• K = 0.25 : r = 1, c = 2; r = 2, c = 2.

• K = 0.75 : r = 1, c = 1; r = 1, c = 2; r = 2, c = 1; r = 2, c = 2.

• K = 2.00 : r = 1, c = 1; r = 1, c = 2; r = 2, c = 2.

• K = 0.95 : r = 1, c = 1; r = 1, c = 2; r = 2, c = 1; r = 2, c = 2.
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We notice that there are never discernible differences for r = 0.1 or c = 0.1.

Thus for very low intrinsic growth rate and grazer ingestion rate, there is no

noticeable difference between the two models, regardless of the value of K. For

none of the simulated combinations were there completely different dynamics

as there were for K = 0.95 with the baseline values of r and c. This indicates

that the bifurcation point in K shifts for different values of r and c.

The differences between the WKL and LKE model relate to the relaxation

of the assumption that there is no free phosphorus in the medium. Given the

above, we can conclude that this assumption matters more for aquatic ecosys-

tems with intermediate to high turnover rates than for terrestrial ecosystems.

This is likely because at very low values of c, the nutritional quality of the

producer is less likely to be the controlling factor in the grazer’s population

density since the inability to balance their loss rate is more important.

2.5 Discussion

Multiple mathematical models have been developed to study the flow of nu-

trients and energy through a producer-grazer system. In particular, the WKL

model tracks carbon and phosphorus while allowing for free phosphorus in the

medium. The impacts of changing the light-dependent carrying capacity of

the producer on the dynamics of this system have been studied in the past.

However, other parameters are also of interest.

In particular, the intrinsic growth rate of the producer (r) and the maximal

ingestion rate of the grazer (c) vary between aquatic and terrestrial ecosystems,

particularly for terrestrial systems with large producers and herbivores. In
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general, both rates are lower in terrestrial ecosystems than aquatic, resulting

in a lower turnover rate for producer biomass in terrestrial-based than aquatic-

based ecosystems. Here, all other parameters were assumed to be the same,

regardless of whether the system was terrestrial or aquatic.

For very low r and c, extinction of the grazer is observed numerically; for

very high r and c, oscillatory coexistence or coexistence at a steady state is

observed, depending on the value of K. This suggests that aquatic ecosystems

are more prone to exhibiting coexistence than terrestrial ecosystems.

Overall, local sensitivity analysis implies that r and c are not the most

important parameters in determining the asymptotic behaviour of the system.

Other parameters have more influence over the results for this particular pa-

rameter regime, and these parameters may differ in general between aquatic

and terrestrial ecosystems. Generally c has more influence than r, and chang-

ing K has more of an impact on the sensitivity of the system to r than to

c. We also observe that the grazer loss rate is more influential for interme-

diate to high light levels, and that the system becomes more sensitive to the

light intensity dependent carrying capacity as it increases. Note that this is

likely because at (very) high light levels and these parameter values, the sys-

tem reaches the grazer extinction equilibrium, where the prey population is at

their light intensity dependent carrying capacity.

Part of the reason that the analysis indicates that terrestrial populations

should not persist could be due to additional parameters that should differ.

As mentioned in the bifurcation analysis, the grazer’s loss rate is likely to have

a strong impact, which is supported by the fact that it was one of the param-

eters the system was the most sensitive to at extreme values of K and the
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observation that it is part of the stability condition of the grazer extinction

equilibrium. Light intensity likely also differs considerably between terrestrial

and aquatic ecosystems, and we see that the grazer extinction region shrinks

with increasing K until a point and then grows again. Intermediate light levels

in some terrestrial ecosystems may explain the persistence of grazer popula-

tions observed naturally, while a lower grazer loss rate may explain terrestrial

grazer persistence in low light conditions (e.g., in the shade of a dense rain-

forest canopy). In addition, the elemental imbalance between the grazer and

the producer is larger in terrestrial than in aquatic systems because plants

are more reliant on carbon rich structural matter than phytoplankton [5, 22].

This seems to suggest that q, the minimal P:C ratio of the producer, may be

lower in terrestrial ecosystems than aquatic. However, rather than explaining

the persistence of terrestrial grazers, this change would only further emphasize

the grazer extinction observed here. Also, sensitivity analysis indicated q did

not have an impact on the asymptotic target values.

Future work could include examination of larger parameter ranges. During

bifurcation analysis, bifurcations were observed at higher values of the pa-

rameters in some cases, but were not included due to the a priori parameter

restrictions. It also bears mentioning that the baseline values used for r and c,

which lie in the middle of the investigated parameter ranges, are for an aquatic

system. Further investigation of data to determine other parameter regimes

to test would help to more definitively contrast these ecosystems. Data could

also validate our hypothesis that there are other parameters that differ largely

between these systems and contribute to the results observed naturally. Given

the system’s sensitivity to grazer loss rate, further explicit consideration of
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this parameter in addition to those examined here may also help explain the

unrealistic results implying that land grazers cannot persist. Global stability

and sensitivity analyses focussing on r and c also have yet to be completed.

Most stoichiometric models, including the ones mentioned here – LKE and

WKL [29, 53] – assume strict homeostasis for heterotrophs, that is, that the

grazer in the system must maintain a specific, fixed nutrient ratio within its

tissues, regardless of the nutrient availability in its food [44]. This is in con-

trast to the larger variation in chemical content in the organisms it consumes.

However, this assumption is not completely realistic. It has been shown to be

reasonable when the variability is sufficiently narrow, independent of variation

in their food source, and to be not valid for herbivores with small mortality

rates [55]. Therefore, in the case that explicit consideration of grazer loss rate

is taken into account, a model may need to be used that relaxes or removes

this assumption [54].

61



Chapter 3

Incorporating atmospheric

concentration of carbon dioxide

3.1 Introduction

Since the Industrial Revolution, Earth’s atmosphere has been experiencing

an unprecedented rate of increase in carbon dioxide [34]. Climate change

models have predicted that atmospheric concentrations of carbon dioxide may

surpass 700 ppm by 2100 from the current ambient level of approximately 390

ppm [34]. Such a substantial change will likely have far-reaching impacts on

the environment and all life on earth. Changes in the global carbon cycle

may also influence the global phosphorus and nitrogen cycles due to their

coupling through biological interactions [22]. The main mechanisms by which

ecosystems are directly impacted by increased atmospheric carbon dioxide

concentration are changes in photosynthesis, transpiration and respiration [12].

However, there are also indirect impacts.
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According to Elser et al. (2010) [15], the three possible scaling links be-

tween atmospheric concentration of carbon dioxide and producer stoichiometry

are: stimulation of plant photosynthesis, potentially leading to increased car-

bon sequestration subject to soil resource constraints; increased plant root:shoot

ratios and leaf area, impacting photosynthetic capacity and nutrient require-

ments; and reduction in Rubisco production due to increased efficiency, allow-

ing for reallocation of nitrogen. The increased rate and efficiency of photosyn-

thesis in C3 plants occur due to changes in the light-independent reactions.

Photosynthesis is divided into two main components: the light-dependent

reactions, and the light-independent reactions. The light-dependent reactions

use solar energy as well as water to produce the energy compound ATP and

the electron carrier NADPH. The light-independent reactions, also known

as the Calvin Cycle, use these two products to fix carbon dioxide into glu-

cose. Specifically, in the carbon fixation step of the Calvin Cycle, the enzyme

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the car-

boxylation reaction, in which the carbon dioxide molecule combines with a

five-carbon acceptor molecule, ribulose-1,5-bisphosphate (RubP). The result-

ing 6-carbon molecule then undergoes several other reactions to ultimately

either make glucose or regenerate the RubP acceptor molecule [45].

However, Rubisco can also catalyse the oxygenation of RubP, which begins

the “photosynthetic carbon oxidation or photorespiratory pathway (PCO),

which decreases the net efficiency of photosynthesis by 20-50%” [12]. Car-

bon dioxide (CO2) competitively inhibits the oxygenation reaction, causing

a increase in both Rubisco- and RubP-limited net photosynthesis [12]. This

decrease in oxygenation along with the fact that Rubisco is not CO2-saturated
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at the current atmospheric concentration of CO2 in some plants are thought

to be the reasons that increased concentrations of atmospheric CO2 have been

shown to increase the rate of photosynthesis is C3 plants, which have no mech-

anisms in place to reduce photorespiration [1]. According to Ainsworth and

Rogers (2007) [1], we know that at room temperature, approximately 23% of

fixed carbon is lost due to photorespiration, and that with all oxygenation re-

actions replaced with carboxylation reactions, uptake of carbon dioxide would

be increased by around 53%.

The meta-analysis of terrestrial plants completed by Du et al. (2019) [13]

showed that elevated carbon dioxide stimulates photosynthesis, causing an

increase in plant carbon (C) and carbon to nitrogen ratio (C:N), and a decrease

in plant nitrogen (N), phosphorus (P), and nitrogen to phosphorus ratio (N:P).

Thus elevated atmospheric carbon dioxide has a larger impact on levels of N

than P, likely due to the fact that a large proportion (approximately 25%) of

the nitrogen in a leaf is in Rubisco [12]. Notably, the slight increase in C:P was

not statistically significant, despite the relatively large sample size [13]. An

alternative explanation for the differences between nitrogen and phosphorus

could consider the growth-rate hypothesis [13]: increased growth rate is related

to the decrease in N:P because phosphorus-rich RNA is required by plant

organs for rapid protein synthesis [44].

There is also evidence that increasing atmospheric carbon dioxide con-

centration also increases the rate of photosynthesis in non-vascular plants.

Experimentally, Urabe, Togari and Elser (2003) [49] found that increased at-

mospheric concentration of carbon dioxide also increases the partial pressure

of carbon dioxide in water, resulting in the stimulation of algal growth. The
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saturation level of algal abundance was higher in the increased CO2 treat-

ments, suggesting that growth of algae in the control was limited by carbon

dioxide. Also, there was a significantly lower final algal cellular quota (P:C)

for the elevated carbon dioxide treatments compared to the control treatment.

Although the major direct impacts on ecosystems of atmospheric carbon

dioxide concentration are related to the producer at the base of the food chain,

there are also indirect impacts on the grazer. Since herbivores tend to have

more rigid, higher nutrient requirements, their food can become less than

optimal if the nutrient content of their food falls below their requirement [44].

Hence, the decrease in algal P:C that may result from increased atmospheric

carbon dioxide concentration can result in a decrease in growth of the grazer

[49]. Additional experiments conducted by Urabe et al. (2003) [49] confirmed

that the decrease in grazer growth they observed was due to the decreased

algal P:C, and not due to a direct impact of carbon dioxide on the grazer or

to excessive food levels interfering with feeding activities.

Due to dissolved organic carbon from terrestrial ecosystems being miner-

alized by bacteria into CO2, lakes are often carbon dioxide sources, not sinks

[50]. In natural lakes, the partial pressure of CO2 can vary over four orders

of magnitude and is impacted by environmental perturbations [49]. If algae

species have carbon concentration mechanisms (CCMs) that allow them to

use dissolved bicarbonate ions (HCO3
-) in photosynthesis efficiently, increased

partial pressure of carbon dioxide in their lake (pCO2) would have a reduced

impact on their growth, since in most lakes pCO2 is much lower than the con-

centration of HCO3
- [32, 49]. However, CCMs appear to operate less efficiently

under light or nutrient limitation [49]. Therefore, an increase in atmospheric
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carbon dioxide may have a larger impact in natural lakes where both nutrient

and light are not sufficiently abundant [49]. Note that the rate of exchange

of carbon dioxide between water and the air above is directly proportional to

the concentration gradient of carbon dioxide across the water’s surface [32].

The proportionality constant, which is known as the gas exchange transfer

velocity, is hard to determine due to its relationship with wind speed, which

differs globally and temporally [56].

Despite the direct relationship between the exchange rate of carbon dioxide

and the concentration gradient of the gas across the boundary, water bodies

are rarely equilibrated with the atmosphere [32, 50]. They can either be car-

bon sources, such as in many freshwater lakes, or sinks, as in many oceans

[32]. This is determined primarily by the amount of terrestrial carbon that

enters the water [50]. However, in their experiments, Urabe et al. (2003) [49]

found that when algal biomass reached saturated levels in the elevated carbon

dioxide treatments, the carbon dioxide in the water decreased to levels not

significantly different from the control treatment. Hence, the amount of algae

in the water can also impact the concentration of dissolved carbon dioxide,

since their uptake rate of carbon dioxide can exceed the diffusion rate from

the atmosphere [49]. Additional factors that can determine carbon dioxide

concentration in ocean surface waters include mixing, temperature, salinity,

respiration, and calcification [4].

Models such as the WKL model track the flow of carbon and phosphorus

through a producer-grazer system [53]. However, these stoichiometric models

assume that the system is open to carbon, given the prevalence in the atmo-

sphere and relatively rapid dissolution of carbon dioxide into water. Thus, the
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intention of this chapter is to expand the WKL model to explicitly incorporate

atmospheric carbon dioxide concentration, by considering a local system which

is closed to carbon, with and without the impacts of photorespiration, and by

considering a local system with some degree of exchange with the atmosphere.

The three models will be analyzed mathematically and/or numerically, with

the intention of addressing the potential impact of elevated atmospheric car-

bon dioxide concentration on the absolute and relative amounts of nutrient in

the producer, and moreover, the impact of this change on the persistence of

the grazer population.

3.2 Model Formulation

3.2.1 Local closed model

The first model used to investigate the impacts of elevated atmospheric con-

centration of CO2 on a producer-grazer system is a completely closed form

of the WKL model from Section 2.2, with an additional carbon-dependent

carrying capacity (h(C)) for producer growth.

This model assumes that in the immediate area of the system, there is some

fixed total amount of carbon. Here C is the free carbon in the medium. The

producer’s growth follows Liebig’s Law of the Minimum, where the growth

rate is now either limited by some light-dependent carrying capacity (K ), the

amount of phosphorus in the producer (p/q), or a carrying capacity depen-

dent on availability of carbon in the medium (h(C)). All three factors are

assumed to be independently colimiting. Independent colimitation between
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light and phosphorus was assumed for the WKL model [53], as well as for the

LKE model from which it was derived [29]. Also, data were fit for the algae

Chlamydomonas acidophila to four different Monod-type models for phospho-

rus and carbon limitation, and dependent colimitation was rejected in favour

of independent colimitation between these two factors [43]. However, there is

no strong evidence for classification of colimitation between light and carbon,

and independence was assumed for simplicity of modelling.

The equations are

dx

dt
= rx

(
1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

producer growth limited by nutrient, light, & carbon

− f(x)y︸ ︷︷ ︸
uptake by grazers

− lxx︸︷︷︸
respiration

,

(3.1)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y︸ ︷︷ ︸

grazer growth limited by food quality & quantity

− d̂y︸︷︷︸
grazer death

− lyy︸︷︷︸
respiration

, (3.2)

dp

dt
= g(P )x︸ ︷︷ ︸

P uptake by producer

− p

x
f(x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

, (3.3)

dP

dt
= −g(P )x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θd̂y︸︷︷︸
P recycling from dead grazer

(3.4)

+
(p
x
− êmin

{
θ,
p

x

})
f(x)y︸ ︷︷ ︸

P recycling from grazer feces

+ θlyy︸︷︷︸
P recycling from grazer respiration

,

dC

dt
= lxx︸︷︷︸

producer respiration

+ lyy︸︷︷︸
grazer respiration

− rx
(

1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

C uptake by producer

(3.5)

+

(
1− êmin

{
1,
p/x

θ

})
f(x)y︸ ︷︷ ︸

C recycling from grazer feces

+ d̂y︸︷︷︸
C recycling from dead grazer

.
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To make the system closed to carbon, terms specifically representing respi-

ration have been added to the equations. Now Equation (3.1) includes a term

for producer respiration, where the rate of respiration is given by lx. Equation

(3.2) also includes a term for loss of carbon due to grazer respiration, where

the rate of respiration is given by ly. Note that whereas in the WKL model

d̂ included grazer death and respiration loss, now d̂ is only for loss due to

grazer death. Due to the assumption of strict homeostasis for the grazers, a

term for compensatory loss of phosphorus due to respiration is now incorpo-

rated in Equation (3.4). Lastly, Equation (3.5), which is for the free carbon

in the medium, includes producer respiration, grazer respiration, uptake by

the producer via photosynthesis, recycling from grazing, and then degrada-

tion/decomposition of dead grazers which is assumed to be instantaneous. As

in the WKL model, all parameters are assumed to be positive.

As aforementioned, h(C) is the carbon-dependent carrying capacity of the

producer. This term captures the limitation of carbon fixation by insufficient

available carbon dioxide, since Rubisco is not CO2-saturated at the current

atmospheric concentration in some C3 plants [1, 12]. In general, we assume

that h(C) is non-decreasing, and that h(0) = 0. The most basic choice for

h(C) is a scalar multiple of C, although it is likely h(C) should plateau at

some threshold value of C.

Recall that the system is assumed to be closed to both phosphorus and

carbon. Let TP be the total phosphorus in the system, and TC be the to-

tal carbon in the system. Using Equations (3.1)-(3.5), it can be shown that

dTP/dt = 0 = dTC/dt. Note that TP = p + P + θy, and TC = x + y + C.

Hence, we can write P = TP − p− θy and C = TC − x− y. Thus, through the
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Law of Conservation of Mass, we can reduce the dimensionality of the system:

dx

dt
= rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y − lxx, (3.6)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y − d̂y − lyy, (3.7)

dp

dt
= g(TP − p− θy)x− p

x
f(x)y − dp. (3.8)

3.2.2 Local closed model with PCO

The second model developed is an extension of the local closed model:

dx

dt
= rx

(
1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

producer growth limited by nutrient, light, & carbon

− f(x)y︸ ︷︷ ︸
uptake by grazers

− ρ(C)lxx︸ ︷︷ ︸
respiration

,

(3.9)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y︸ ︷︷ ︸

grazer growth limited by food quality & quantity

− d̂y︸︷︷︸
grazer death

− lyy︸︷︷︸
respiration

, (3.10)

dp

dt
= g(P )x︸ ︷︷ ︸

P uptake by producer

− p

x
f(x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

, (3.11)

dP

dt
= −g(P )x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θd̂y︸︷︷︸
P recycling from dead grazer

(3.12)

+
(p
x
− êmin

{
θ,
p

x

})
f(x)y︸ ︷︷ ︸

P recycling from grazer feces

+ θlyy︸︷︷︸
P recycling from grazer respiration

,

dC

dt
= lxx︸︷︷︸

producer respiration

+ lyy︸︷︷︸
grazer respiration

− rx
(

1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

C uptake by producer

(3.13)

+

(
1− êmin

{
1,
p/x

θ

})
f(x)y︸ ︷︷ ︸

C recycling from grazer feces

+ d̂y︸︷︷︸
C recycling from dead grazer

.
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In addition to incorporating the fact that Rubisco is not carbon dioxide

saturated at ambient atmospheric concentrations, this model also includes

the reduction in photorespiration rate due to competitive inhibition of the

oxygenation reaction in Equation (3.9). Here ρ(C) is a decreasing function of

C which allows for the reduction of photorespiration at higher carbon levels.

We observe that ρ(C) should not tend towards 0 as C → ∞ since the total

respiration term should also include mitochondrial/cellular respiration.

The net respiration of the producer can be modelled using [51]

Net respiration =
2Γ∗Vcmax

Cc +Kc(1 +O/Ko)
+Rd,

where Cc is the CO2 partial pressure at the reaction site (µbar); Γ∗ is the CO2

partial pressure at which the carboxylation rate is equal to half the oxygenation

rate (µbar); Vcmax is the maximal carboxylation rate (µmol m-2s-1); Kc is the

CO2 Michaelis Menten constant (µbar); O is the O2 partial pressure at the

reaction site (mbar); Ko is the O2 Michaelis Menten constant (mbar); and Rd

is the cellular respiration in light not associated with the PCO pathway (µmol

m-2s-1). Note that some of these parameters vary between autotroph species.

Values were selected from [51].

This equation produces a respiration rate in µmolm-2s-1. In Equation (3.9),

ρ(C) is a dimensionless quantity. However, the above formula can be used

to find approximate values of the net respiration rate which can be rescaled

such that ρ(C) = 1 at ambient carbon dioxide concentration. These values

can then be used to find appropriate parameters for a function of the form

ρ(C) = η+ ζe−ξC . This form was selected to reduce the number of parameters
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and the complexity of estimating these quantities.

Once again, the system is closed locally to both carbon and phosphorus.

Therefore, we can reduce the dimensionality of the system as in Section 3.2.1.

3.2.3 Local open model

The third model extends the local closed model by allowing for some degree

of openness in the system for carbon (Equation (3.18)):

dx

dt
= rx

(
1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

producer growth limited by nutrient, light, & carbon

− f(x)y︸ ︷︷ ︸
uptake by grazers

− lxx︸︷︷︸
respiration

,

(3.14)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y︸ ︷︷ ︸

grazer growth limited by food quality & quantity

− d̂y︸︷︷︸
grazer death

− lyy︸︷︷︸
respiration

, (3.15)

dp

dt
= g(P )x︸ ︷︷ ︸

P uptake by producer

− p

x
f(x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

, (3.16)

dP

dt
= −g(P )x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θd̂y︸︷︷︸
P recycling from dead grazer

(3.17)

+
(p
x
− êmin

{
θ,
p

x

})
f(x)y︸ ︷︷ ︸

P recycling from grazer feces

+ θlyy︸︷︷︸
P recycling from grazer respiration

,

dC

dt
= lxx︸︷︷︸

producer respiration

+ lyy︸︷︷︸
grazer respiration

− rx
(

1− x

min{K, p/q, h(C)}

)
︸ ︷︷ ︸

C uptake by producer

(3.18)

+

(
1− êmin

{
1,
p/x

θ

})
f(x)y︸ ︷︷ ︸

C recycling from grazer feces

+ d̂y︸︷︷︸
C recycling from dead grazer

+α(β − C)︸ ︷︷ ︸
C exchange

.
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In this model there is an additional term for the exchange of carbon dioxide

through the boundary of the system: α(β − C). Here β is the carbon density

in the external medium, which is assumed to be constant; that is, the system

has no impact on the external source of carbon dioxide. Hence, the rate of

exchange of carbon dioxide is proportional to the gradient across the boundary,

as in the literature [32]. The parameter α is the rate of exchange between the

system and the external environment, also known as the transfer velocity [56].

A higher value of α means the system is more “open”. Note that for α = 0, we

have the local closed model. As α → ∞, the system becomes entirely open,

and there is an essentially unlimited amount of carbon, as in the WKL model

[53]. All parameters are assumed to be positive.

3.2.4 Parameters

The parameters originally present in the WKL model were set at the values

given in Wang et al. 2008 [53], with the exception of d̂ which was adapted due

to the separate loss terms in the equation for grazer carbon.

In order to select the ranges for the total carbon inside the system (TC) and

the fixed external carbon (β), the atmospheric carbon dioxide concentrations

used in the experiments conducted by Urabe et al. (2003) [49] were converted

to carbon concentrations with classical stoichiometry. The ambient level used

was 360 ppm, which is equivalent to 360 mg/l, and one of the elevated values

was 1500 ppm, or 1500 mg/l. These numbers were converted to 98.2 (mg C)/l

and 409.4 (mg C)/l respectively using a relative atomic mass of carbon equal

to 12.0107 g/mol and 15.9994 g/mol for oxygen, which gives a total mass of
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carbon dioxide of 44.0095 g/mol [40].

Table 3.1: The parameter (P) values (V) used for simulations.

P Description V

r Producer intrinsic growth rate 0.93 day-1

K Producer light-dependent carrying capacity 0.25-2 (mg C)/l

c Grazer maximal ingestion rate 0.75 day-1

ĉ Producer maximal phosphorus uptake rate 0.2 (mg P)/(mg C)/day

a Grazer carbon half-saturation constant 0.25 (mg C)/l

â Producer phosphorus half-saturation constant 0.008 (mg P)/l

ê Grazer maximal conversion rate 0.74

d Producer phosphorus loss rate 0.05 day-1

θ Constant grazer P:C ratio 0.04 (mg P)/(mg C)

q Producer minimal P:C ratio 0.004 (mg P)/(mg C)

TP Total system phosphorus 0.003-0.3 (mg P)/l

TC Total system carbon 98.2-409.4 (mg C)/l

d̂ Grazer death rate 0.055 day-1

lx Respiration rate of producer 0.183 day-1

ly Respiration rate of grazer 0.165 day-1

γ Scaling factor for C-dependent carrying capacity 0.0045-0.021

η Asymptote for PCO function 0.901639

ζ Difference between max and asymptote for PCO 0.670890

ξ Exponent for PCO function 0.019552 l/(mg C)

α Rate of C exchange between system and exterior 1e-6 - 1e6 day-1

β Constant exterior C concentration 98.2-409.4 (mg C)/l
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The carbon-dependent carrying capacity is given by h(C) = γC. The range

of the parameter γ was selected in order to allow for carbon limitation to occur

before light limitation prevents growth at ambient carbon concentration. In

particular, for γ = 0.00767, ambient carbon is limiting for K > 0.75, and for

γ = 0.01023, ambient carbon is limiting for K > 1.00. This allows the addition

of the carbon-dependent carrying capacity to have an impact given the range

of K studied here.

The respiration parameters were selected by adapting those of Diehl (2007)

[11] to the system parameters selected by Wang et al. (2008) [53]. Diehl

modelled a Daphnia-algae system with explicit respiration of the grazer and

algae, as well as a grazer death rate [11]. The values assigned were 0.1 day-1

for algal respiration, 0.09 day-1 for grazer respiration, and 0.03 day-1 for the

grazer death rate [11]. Hence, the total loss rate for the grazer used by Diehl

(2007) [11] is 0.12 day-1, which is less than the value used for the WKL model

[53], which is 0.22 day-1. In order to match the rest of the parameters in the

system, the values used by Diehl (2007) [11] were rescaled by the same factor

(approximately 1.83) such that the total loss rate matched that in the WKL

model [53].

The additional parameters for the local closed model with photorespiration

are η, ζ, and ξ. The derivation of the values is described in more detail in

Section 3.2.2. Essentially, a formula for net respiration in µmolm-2s-1 was used

to produce two points, which were then rescaled such that the value of ρ(C) at

ambient carbon dioxide is 1, and then used to find parameters for a function

of the form ρ(C) = η + ζe−ξC .

For the parameter that quantifies the degree of openness of the system
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in the open model, α, we know α = 0 produces the local closed model, and

that as α → ∞, the local open model tends towards the completely open

WKL system with respiration. Thus, α was selected to range from 0.000001

to 1000000 to give a broad range in order to begin to consider the impact of

α on the system.

3.3 Local Closed: Mathematical Analysis

3.3.1 Invariant set

Similar to the WKL model [53], we have a theorem that shows that solutions

which start in a biologically meaningful region remain there for all forward

time. As well as the biological constraints discussed in Section 2.3.1, there are

two additional restrictions on this set. The first is that the producer population

is also bounded by their maximal carbon-dependent carrying capacity (h(TC)),

similar to the light and phosphorus limitation conditions. The second is that

the amount of carbon in the combined biomass pools should not exceed that

in the whole system, similar to the original phosphorus condition. The proof

of this theorem also very closely follows that of the dissipativity theorem for

the WKL model [53].

Theorem 5. Solutions of Equations (3.6)-(3.8) with initial conditions in the

set Ω remain there for all forward times, where

Ω = {(x, y, p) : 0 < x < min{K,TP/q, h(TC)}, 0 < y, 0 < p,

p+ θy < TP , x+ y < TC}.
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Proof Let X(t) ≡ (x(t), y(t), p(t)) be a solution of Equations (3.6)-(3.8) with

initial conditions in Ω. Then, 0 < x(0) < min{K,TP/q, h(TC)}, 0 < y(0), 0 <

p(0), p(0) + θy(0) < TP , and x(0) + y(0) < TC . Assume for the sake of contra-

diction that there is time t1 > 0 such that X(t) touches or crosses the boundary

of the closure of Ω (Ω̄) for the first time. Therefore, (x(t), y(t), p(t)) ∈ Ω for

0 ≤ t < t1. We now consider cases for which part of the boundary of Ω̄ X(t1)

lies on.

Case 1 x(t1) = 0 but p(t1) 6= 0. Since (x(t), y(t), p(t)) ∈ Ω for 0 ≤ t < t1,

then 0 < p(t) and p(t) + θy(t) ≤ TP for 0 ≤ t ≤ t1. Also, all parameters are

assumed to be positive. Therefore,

y(t) ≤ TP/θ − p(t)/θ < TP/θ

for 0 ≤ t ≤ t1. Let p1 = min{p(t) : t ∈ [0, t1]} > 0, x1 = max{x(t) :

t ∈ [0, t1]} > 0, and y1 = max{y(t) : t ∈ [0, t1]} > 0. Both x1 and y1 are

guaranteed to exist since the initial conditions are in Ω and thus are positive.

Then for 0 ≤ t ≤ t1, we have (using Equation (3.6))

dx

dt
= rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y − lxx

≥ rx

(
1− min{K,TP/q, h(TC)}

min{K, p1/q, h(TC − x1 − y1)}

)
− f ′(0)(TP/θ)x− lxx

=

[
r

(
1− min{K,TP/q, h(TC)}

min{K, p1/q, h(TC − x1 − y1)}

)
− f ′(0)(TP/θ)− lx

]
x ≡ µx,

where µ is a constant. Then, x(t) ≥ x(0)eµt for 0 ≤ t ≤ t1, which implies

x(t1) ≥ x(0)eµt1 > 0, which is a contradiction.
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The proof of this case relies on the following inequalities. First, for t ∈ [0, t1]

p1 ≤ p(t)⇒ p1/q ≤ p(t)/q.

Second, for t ∈ [0, t1]

x(t) ≤ x1, y(t) ≤ y1 ⇒ −x1 ≤ −x(t),−y1 ≤ −y(t)

⇒ TC − x1 − y1 ≤ TC − x(t)− y(t)

⇒ h(TC − x1 − y1) ≤ h(TC − x(t)− y(t)),

since h(C) is assumed to be non-decreasing.

Third, for t ∈ [0, t1]

p1/q ≤ p(t)/q, h(TC − x1 − y1) ≤ h(TC − x(t)− y(t))

⇒ min{K, p1/q, h(TC − x1 − y1)} ≤ min{K, p(t)/q, h(TC − x(t)− y(t))}

⇒ x

min{K, p(t)/q, h(TC − x(t)− y(t))}
≤ x

min{K, p1/q, h(TC − x1 − y1)}

⇒ 1− x

min{K, p1/q, h(TC − x1 − y1)}
≤ 1− x

min{K, p(t)/q, h(TC − x(t)− y(t))}
.

Fourth, since we assume that f(0) = 0, f ′(x) > 0, f ′′(x) ≤ 0 for x ≥ 0,

then f(x) ≤ f ′(0)x, where the right hand side is the linear approximation of

f(x) at 0.

Case 2 x(t1) = min{K,TP/q, h(TC)}. Since (x(t), y(t), p(t)) ∈ Ω for 0 ≤ t <
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t1, we know 0 ≤ y(t) and p(t) + θy(t) ≤ TP for 0 ≤ t ≤ t1. Therefore,

p(t) ≤ TP − θy(t) ≤ TP

for 0 ≤ t ≤ t1. Clearly TC − x(t) − y(t) ≤ TC for x(t), y(t) ≥ 0. Since h(C)

is non-decreasing, then h(TC − x(t)− y(t)) ≤ h(TC) for x(t), y(t) ≥ 0. Hence,

for 0 ≤ t ≤ t1, we have from Equation (3.6)

dx

dt
= rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y − lxx

≤ rx

(
1− x

min{K,TP/q, h(TC)}

)
.

Note that the right hand side is logistic growth in x with the carrying

capacity given by min{K,TP/q, h(TC)}. The standard comparison argument

yields that x(t) < min{K,TP/q, h(TC)} for all 0 ≤ t ≤ t1, a contradiction.

The proof of this case requires on the following inequalities, for 0 ≤ t < t1:

p(t) ≤ TP , h(TC − x(t)− y(t)) ≤ h(TC)

⇒ min{K, p(t), h(TC − x(t)− y(t))} ≤ min{K,TP , h(TC)}

⇒ x

min{K,TP , h(TC)}
≤ x

min{K, p(t), h(TC − x(t)− y(t))}

⇒ − x

min{K, p(t), h(TC − x(t)− y(t))}
≤ − x

min{K,TP , h(TC)}

⇒ 1− x

min{K, p(t), h(TC − x(t)− y(t))}
≤ 1− x

min{K,TP , h(TC)}
.
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Case 3 y(t1) = 0. For 0 ≤ t ≤ t1, we have from Equation (3.7)

dy

dt
= êmin

{
1,
p/x

θ

}
f(x)y − d̂y − lyy

=

(
êmin

{
1,
p/x

θ

}
f(x)− d̂− ly

)
y

≥ (−d̂− ly)y = −(d̂+ ly)y,

since all parameters are assumed to be positive; f(0) = 0, f ′(x) > 0, f ′′(x) ≤

0 for x ≥ 0; and (x(t), y(t), p(t)) ∈ Ω for 0 ≤ t < t1. Hence, y(t) ≥

y(0)e−(d̂+ly)t > 0 for 0 ≤ t ≤ t1, a contradiction.

Case 4 p(t1) = 0. Since (x(t), y(t), p(t)) ∈ Ω for 0 ≤ t < t1, we know

p(t) + θy(t) ≤ TP for 0 ≤ t ≤ t1. Therefore, TP − p(t) − θy(t) ≥ 0 for

0 ≤ t ≤ t1, and since we assume that in general g(0) = 0 and g′(P ) > 0 for

P ≥ 0, then

g(TP − p(t)− θy(t)) ≥ 0

for 0 ≤ t ≤ t1.

Also, since 0 ≤ p(t) and p(t) + θy(t) ≤ TP for 0 ≤ t ≤ t1, then

y(t) ≤ TP/θ − p(t)/θ ≤ TP/θ

for 0 ≤ t ≤ t1, and therefore −TP/θ ≤ −y(t).

Thus, for 0 ≤ t ≤ t1, we have from Equation (3.8)

dp

dt
= g(TP − p− θy)x− p

x
f(x)y − dp ≥ −p

x
f(x)y − dp

≥ [−f ′(0)(TP/θ)− d]p ≡ νp,
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where ν is a constant. Thus, p(t) ≥ p(0)eνt > 0 for 0 ≤ t ≤ t1, a contradiction.

The proof of Case 4 also relies on the fact that since f(0) = 0, f ′(x) >

0, f ′′(x) ≤ 0 for x ≥ 0, then f(x) ≤ f ′(0)x and thus −f ′(0) ≤ −f(x)/x.

Case 5 p(t1)+θy(t1) = TP . Let z(t) = TP −p(t)−θy(t). Since p(t1)+θy(t1) =

TP , then z(t1) = 0. Also, since t1 is assumed to be the first time that X(t)

touches or crosses the boundary of Ω̄, then p(t) + θy(t) < TP for 0 ≤ t < t1

and thus z(t) > 0 for 0 ≤ t < t1. Then for 0 ≤ t ≤ t1, we have

dz

dt
=

d

dt
(TP − p− θy)

=
d

dt
TP −

dp

dt
− θdy

dt

= −dp

dt
− θdy

dt

= −
(
g(TP − p− θy)x− p

x
f(x)y − dp

)
− θ

(
êmin

{
1,
p/x

θ

}
f(x)y − d̂y − lyy

)
= −g(TP − p− θy)x+

p

x
f(x)y + dp− θêmin

{
1,
p/x

θ

}
f(x)y

+ θd̂y + θlyy

≥ −g(TP − p− θy)x+ dp+ θd̂y + θlyy

≥ −g(z)x+ dp+ (d̂+ ly)θy

≥ −g′(0)zmin{K,TP/q, h(TC)}+ min{d, d̂+ ly}(TP − z)

= min{d, d̂+ ly}TP − [g′(0)min{K,TP/q, h(TC)}+ min{d, d̂+ ly}]z

≡ µ̃− ṽz,

where ũ > 0 and ṽ > 0 are constant. Thus z(t) ≥ e−ṽtz(0) > 0 for 0 ≤ t ≤ t1,

a contradiction.
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Case 6 x(t1) + y(t1) = TC . Consider the limit of dx/dt as t→ t1:

lim
t→t1

dx

dt
= lim

t→t1

[
rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y − lxx

]
= lim

t→t1
rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− lim

t→t1
f(x)y − lim

t→t1
lxx

= rx(t1)− lim
t→t1

rx2

min{K, p/q, h(TC − x− y)}
− f(x(t1))y(t1)− lxx(t1).

Since h(0) = 0, then the limit as t → t1 of min{K, p/q, h(TC − x − y)}

is 0. However, x(t1) > 0. Therefore, as t → t1, the limit of dx/dt is −∞.

Clearly this implies that dy/dt → −∞ as t → t1. But then as t → t1,

x(t) + y(t)→ −∞, a contradiction.

3.3.2 Equilibria

Consider the local closed model, Equations (3.6)-(3.8). Let h(C) = γC. We

consider two cases for f and g, dependent on if both f and g are Holling type

I or Holling type II functional responses.

Holling type I

Substituting f(x) = cx, g(P ) = ĉP and h(C) = γC into Equations (3.6) -

(3.8), we get the following system:

dx

dt
= rx

(
1− x

min{K, p/q, γ(TC − x− y)}

)
− cxy − lxx,

dy

dt
= êmin

{
1,
p/x

θ

}
cxy − d̂y − lyy,

dp

dt
= ĉ(TP − p− θy)x− p

x
cxy − dp.
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Equilibria satisfy

0 = x̄

(
r

(
1− x̄

min{K, p̄/q, γ(TC − x̄− ȳ)}

)
− cȳ − lx

)
≡ x̄F (x̄, ȳ, p̄),

0 = ȳ

(
êmin

{
1,
p̄/x̄

θ

}
cx̄− d̂− ly

)
≡ ȳG(x̄, ȳ, p̄),

0 = ĉ(TP − p̄− θȳ)x̄− cp̄ȳ − dp̄ ≡ H(x̄, ȳ, p̄).

Clearly the trivial extinction equilibrium E0 = (0, 0, 0) is a possible solution

of the above. We can also explicitly find the form of the grazer extinction

equilibrium. The grazer extinction equilibrium always takes the form E1 =

(x̄, 0, p̄), where x̄ and p̄ are decided by what is limiting the producer.

When the producer is phosphorus limited at equilibrium (p̄/q ≤ K, γ(TC−

x̄− ȳ)), the grazer extinction equilibrium is given by (x̄, 0, p̄) where

x̄ =
ĉTP (r − lx)− dqr

ĉqr
,

p̄ =
ĉTP (r − lx)− dqr

ĉ(r − lx)
.

We assume all parameters are positive. For x̄ ≥ 0, we need ĉTP (r− lx)−dqr ≥

0. Then, for p̄ ≥ 0, we need r − lx > 0.

When the producer is light limited at equilibrium (K ≤ p̄/q, γ(TC−x̄− ȳ)),

we have (x̄, 0, p̄) where

x̄ = K

(
1− lx

r

)
,

p̄ =
ĉTPK(r − lx)
dr + ĉK(r − lx)

.
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Note that for this equilibrium to be biologically feasible (i.e., non-negative),

we require r − lx ≥ 0, since

r − lx ≥ 0 ⇐⇒ r ≥ lx ⇐⇒ 1 ≥ lx
r
⇐⇒ 1− lx

r
≥ 0.

Lastly, when the producer is carbon limited at equilibrium (γ(TC−x̄− ȳ) ≤

K, p̄/q), we have (x̄, 0, p̄) where

x̄ =
γTC(r − lx)
r + γr − γlx

,

p̄ =
ĉγTCTP (r − lx)

d(r + γr − γlx) + ĉγTC(r − lx)
.

For this equilibrium to be biologically feasible and not equal to E0, we require

either r − lx > 0 and r + γr − γlx > 0, or r − lx < 0 and r + γr − γlx < 0.

There may also be coexistence equilibria, which would satisfy

0 = r

(
1− x̄

min{K, p̄/q, γ(TC − x̄− ȳ)}

)
− cȳ − lx = F (x̄, ȳ, p̄),

0 = êmin

{
1,
p̄/x̄

θ

}
cx̄− d̂− ly = G(x̄, ȳ, p̄),

0 = ĉ(TP − p̄− θȳ)x̄− cp̄ȳ − dp̄ = H(x̄, ȳ, p̄).

The results of this section are summarized in the following theorem.

Theorem 6. The local closed model (3.6) - (3.8) with Holling type I functional

responses has the trivial extinction equilibrium E0 = (0, 0, 0) which always

exists, up to one grazer extinction equilibrium E1, and may have coexistence

equilibria, where the grazer extinction equilibrium satisfies the following:
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(i) If p̄/q ≤ min{K, γ(TC − x̄− ȳ)}, then

E1 =

(
ĉTP (r − lx)− dqr

ĉqr
, 0,

ĉTP (r − lx)− dqr
ĉ(r − lx)

)
;

(ii) If K ≤ min{p̄/q, γ(TC − x̄− ȳ)}, then

E1 =

(
K

(
1− lx

r

)
, 0,

ĉTPK(r − lx)
dr + ĉK(r − lx)

)
;

(iii) If γ(TC − x̄− ȳ) ≤ min{K, p̄/q}, then

E1 =

(
γTC(r − lx)
r + γr − γlx

, 0,
ĉγTCTP (r − lx)

d(r + γr − γlx) + ĉγTC(r − lx)

)
.

Holling type II

Using f(x) = cx/(a+ x), g(P ) = ĉP/(â+ P ), and h(C) = γC,

dx

dt
= rx

(
1− x

min{K, p/q, γ(TC − x− y)}

)
− cx

a+ x
y − lxx,

dy

dt
= êmin

{
1,
p/x

θ

}
cx

a+ x
y − d̂y − lyy,

dp

dt
=

ĉ(TP − p− θy)

â+ TP − p− θy
x− p

x

cx

a+ x
y − dp.

Equilibria satisfy

0 = x̄

(
r

(
1− x̄

min{K, p̄/q, γ(TC − x̄− ȳ)}

)
− c

a+ x̄
ȳ − lx

)
≡ x̄F (x̄, ȳ, p̄),

0 = ȳ

(
êmin

{
1,
p̄/x̄

θ

}
cx̄

a+ x̄
− d̂− ly

)
≡ ȳG(x̄, ȳ, p̄),

0 =
ĉ(TP − p̄− θȳ)

â+ TP − p̄− θȳ
x̄− cp̄

a+ x̄
ȳ − dp̄ ≡ H(x̄, ȳ, p̄).
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Clearly the trivial extinction equilibrium E0 = (0, 0, 0) is a possible solu-

tion of this system. We can explicitly find the form of the grazer extinction

equilibrium/a, dependent upon what is limiting the producer.

When the producer is phosphorus limited at equilibrium (p̄/q ≤ K, γ(TC−

x̄− ȳ)), the grazer extinction equilibrium is given by (x̄, ȳ, p̄) where

x̄ =
p̄

q

(
1− lx

r

)
=
dqr(â+ TP )(r − lx)− ĉTP (r − lx)2

dq2r2 − ĉqr(r − lx)
,

ȳ = 0,

p̄ =
dq(â+ TP )− ĉTP

(
1− lx

r

)
dq − ĉ

(
1− lx

r

) =
dqr(â+ TP )− ĉTP (r − lx)

dqr − ĉ(r − lx)
.

Consider the equation for x̄ that includes p̄. Since we require x̄, ȳ, p̄ ≥ 0 for

the equilibrium to be biologically feasible, then we require r − lx ≥ 0, since

otherwise x̄ is negative for positive p̄. The equation for p̄ would also yield

additional conditions for non-negativity, which are not included here.

When the producer is light limited at equilibrium (K ≤ p̄/q, γ(TC−x̄− ȳ)),

we have two possible grazer extinction equilibria, given by (x̄, ȳ, p̄) where

x̄ = K

(
1− lx

r

)
,

ȳ = 0,

p̄ =
ĉK(r − lx) + dr(â+ TP )±

√
(ĉK(r − lx) + dr(â+ TP ))2 − 4ĉdKrTP (r − lx)

2dr
.

For x̄ ≥ 0 to be true, we need r− lx ≥ 0. Hence, for r− lx < 0, this equilibrium

is not biologically feasible. The equation for p̄ yields conditions for existence

of the equilibrium that are not included here.
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Lastly, when the producer is carbon limited at equilibrium (γ(TC − x̄ −

ȳ) ≤ K, p̄/q), we again have two possible grazer extinction equilibria, given by

(x̄, ȳ, p̄) where

x̄ =
γTC(r − lx)
r + γr − γlx

,

ȳ = 0,

p̄ =
ĉγTC(r − lx) + d(â+ TP )(r + γr − γlx)

2d(r + γr − γlx)

±
√

(ĉγTC(r − lx) + d(â+ TP )(r + γr − γlx))2 − 4ĉdγTCTP (r − lx)(r + γr − γlx)
2d(r + γr − γlx)

.

For x̄ ≥ 0, we need either r − lx ≥ 0 and r + γr − γlx > 0, or r − lx ≤ 0 and

r + γr − γlx < 0. Note that r − lx > 0 and r + γr − γlx < 0 is not possible

for positive parameters. Thus, the equilibrium is not biologically feasible if

r − lx < 0 and r + γr − γlx > 0. As in the light limited case, the equation for

p̄ would also yield conditions for existence of the equilibria.

There may also be coexistence equilibria, which would satisfy

0 = r

(
1− x̄

min{K, p̄/q, γ(TC − x̄− ȳ)}

)
− c

a+ x̄
ȳ − lx = F (x̄, ȳ, p̄),

0 = êmin

{
1,
p̄/x̄

θ

}
cx̄

a+ x̄
− d̂− ly = G(x̄, ȳ, p̄),

0 =
ĉ(TP − p̄− θȳ)

â+ TP − p̄− θȳ
x̄− cp̄

a+ x̄
ȳ − dp̄ = H(x̄, ȳ, p̄).

The following theorem summarizes these results.

Theorem 7. The local closed model (3.6) - (3.8) with Holling type II func-

tional responses has the trivial extinction equilibrium E0 = (0, 0, 0) which al-

ways exists, up to two grazer extinction equilibria E1, and may have coexistence
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equilibria, where the grazer extinction equilibria satisfy the following:

(i) If p̄/q ≤ min{K, γ(TC − x̄ − ȳ)}, then there is one grazer extinction

equilibrium, given by

E1 =

(
dqr(â+ TP )(r − lx)− ĉTP (r − lx)2

dq2r2 − ĉqr(r − lx)
, 0,

dqr(â+ TP )− ĉTP (r − lx)
dqr − ĉ(r − lx)

)
;

(ii) If K ≤ min{p̄/q, γ(TC − x̄ − ȳ)}, then there are two grazer extinction

equilibria, given by E1 = (x̄, 0, p̄) where

x̄ = K

(
1− lx

r

)
,

p̄ =
ĉK(r − lx) + dr(â+ TP )±

√
(ĉK(r − lx) + dr(â+ TP ))2 − 4ĉdKrTP (r − lx)

2dr
;

(iii) If γ(TC − x̄− ȳ) ≤ min{K, p̄/q}, then there are two grazer extinction

equilibria, given by E1 = (x̄, 0, p̄) where

x̄ =
γTC(r − lx)
r + γr − γlx

,

p̄ =
ĉγTC(r − lx) + d(â+ TP )(r + γr − γlx)

2d(r + γr − γlx)

±
√

(ĉγTC(r − lx) + d(â+ TP )(r + γr − γlx))2 − 4ĉdγTCTP (r − lx)(r + γr − γlx)
2d(r + γr − γlx)

.

3.3.3 Stability

For the trivial extinction steady state, we have a theorem with a sufficient

condition for stability in the local closed model. This is very similar to a

theorem proven for the WKL model [53], and the proof follows similarly. Note

that this theorem holds for the general forms of f , g, and h.
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Theorem 8. If d > mg(TP ), where m = min{x(0)/p(0), [1 + (d − lx)/r]/q},

then the trivial steady state E0 = (0, 0, 0) for (3.6) - (3.8) is globally asymp-

totically stable.

Proof: Let u = x/p, then

du

dt
=

d

dt

x

p
=

(dx/dt)p− x(dp/dt)

p2
=

dx/dt

p
− xdp/dt

p2

=
rx

p

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y

p
− lxx

p

− x2

p2
g(TP − p− θy) +

f(x)y

p
+ d

x

p

=
rx

p

(
1− x

min{K, p/q, h(TC − x− y)}

)
− lxx

p
− x2

p2
g(TP − p− θy) + d

x

p

= ru

(
1− x

min{K, p/q, h(TC − x− y)}

)
− lxu− u2g(TP − p− θy) + du.

Since g(0) = 0 and g′(P ) > 0 for P ≥ 0, then −u2g(TP −p−θy) ≤ 0. Note

that min{K, p/q, h(TC − x− y)} ≤ p/q if and only if

− 1

min{K, p/q, h(TC − x− y)}
≤ − 1

p/q
.

Thus

du

dt
≤ ru

(
1− x

p/q

)
− lxu+ du

= ru(1− qu)− lxu+ du = ru(1− qu) + (d− lx)u

≤ ru(1− qu) + ru
d− lx
r

= ru

(
1− qu+

d− lx
r

)
.
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Hence, u ≤ min{x(0)/p(0), [1 + (d− lx)/r]/q} ≡ m. Consider the equation

for (dp/dt):

dp

dt
= g(TP − p− θy)x− p

x
f(x)y − dp ≤ g(TP )x− dp

≤ g(TP )mp− dp = (g(TP )m− d)p.

Since d > mg(TP ) implies g(TP )m− d < 0, then dp/dt < 0 and thus p→ 0 as

t→∞.

Now, consider the equation for (dx/dt):

dx

dt
= rx

(
1− x

min{K, p/q, h(TC − x− y)}

)
− f(x)y − lxx

≤ rx(1− (qx/p)).

Hence lim supt→∞x(t) ≤ p/q and x → 0 as t → ∞. Given the dependence of

y on x, this implies that y → 0 as t → ∞. Therefore, the extinction steady

state E0 = (0, 0, 0) is globally asymptotically stable if d > mg(TP ), where

m = min{x(0)/p(0), [1 + (d− lx)/r]/q}.

It remains to investigate the stability of the other boundary equilibria. We

have

dx

dt
= xF (x, y, p),

dy

dt
= yG(x, y, p),

dp

dt
= H(x, y, p).
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The Jacobian matrix is

A =


F + xFx xFy xFp

yGx G+ yGy yGp

Hx Hy Hp

 .

Let Akk be the determinant of the matrix produced by removing row k

and column k from matrix A. By Routh-Hurwitz criterion, all eigenvalues

of A have strictly negative real parts if the following conditions hold [53]:

trA < 0; detA < 0; and detA - (trA)(
∑3

k=1Akk) > 0.

Once again, we consider Equations (3.6)-(3.8) where f and g are both

Holling type I functional responses, then when both are Holling type II func-

tional responses. Throughout, we assume h(C) = γC.

Regardless of what form f and g take, we will have to consider six cases:

1. p̄/q ≤ min{K, γ(TC − x̄ − ȳ)} and p̄ < θx̄: producer is nutrient limited

and grazer is limited by food quality;

2. p̄/q ≤ min{K, γ(TC − x̄ − ȳ)} and p̄ > θx̄: producer is nutrient limited

and grazer is limited by food quantity;

3. K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ < θx̄: producer is light limited and

grazer is limited by food quality;

4. K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ > θx̄: producer is light limited and

grazer is limited by food quantity;

5. γ(TC − x̄ − ȳ) ≤ min{K, p̄/q} and p̄ < θx̄: producer is carbon limited

and grazer is limited by food quality;
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6. γ(TC − x̄ − ȳ) ≤ min{K, p̄/q} and p̄ > θx̄: producer is carbon limited

and grazer is limited by food quantity.

Holling type I

For f(x) = cx, g(P ) = ĉP , and h(C) = γC,

∂F

∂x
=


− r

min{K, p/q}
, γ(TC − x− y) ≥ K or p/q,

− r(TC − y)

γ(TC − x− y)2
, γ(TC − x− y) < K and p/q,

∂F

∂y
=


−c, γ(TC − x− y) ≥ K or p/q,

− rx

γ(TC − x− y)2
− c, γ(TC − x− y) < K and p/q,

∂F

∂p
=


0, p/q ≥ K or γ(TC − x− y),

rxq

p2
, p/q < K and γ(TC − x− y),

∂G

∂x
=


êc, 1 < p/x/θ,

0, 1 ≥ p/x/θ,

∂G

∂y
= 0,

∂G

∂p
=


0, 1 < p/x/θ,

êc

θ
, 1 ≥ p/x/θ,

∂H

∂x
= ĉ(TP − p− θy),

∂H

∂y
= −ĉθx− cp,

∂H

∂p
= −ĉx− cy − d.
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We compute the products/sums we need for the Jacobian:

xFx =


− rx

min{K, p/q}
, γ(TC − x− y) ≥ K or p/q,

− rx(TC − y)

γ(TC − x− y)2
, γ(TC − x− y) < K and p/q,

F + xFx =


r − 2rx

min{K, p/q}
− cy − lx, γ(TC − x− y) ≥ K or p/q,

r − rx(2TC − x− 2y)

γ(TC − x− y)2
− cy − lx, γ(TC − x− y) < K and p/q,

xFy =


−cx, γ(TC − x− y) ≥ K or p/q,

− rx2

γ(TC − x− y)2
− cx, γ(TC − x− y) < K and p/q,

xFp =


0, p/q ≥ K or γ(TC − x− y),

rx2q

p2
, p/q < K and γ(TC − x− y),

yGx =


êcy, 1 < p/x/θ,

0, 1 ≥ p/x/θ,

yGy = 0,

G+ yGy = G = êmin

{
1,
p/x

θ

}
cx− d̂− ly,

yGp =


0, 1 < p/x/θ,

êcy

θ
, 1 ≥ p/x/θ.

There are different Jacobian matrices dependent upon the limiting factors.

We determine the entries based on what is limiting for the producer (nutrient,

light, or carbon) and grazer (quality or quantity), then substitute the equilibria

found in Section 3.3.2.
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CASE 1: Nutrient and quality

The corresponding Jacobian matrix is

A1 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where

a11 = lx − r,

a12 =
−cĉTP (r − lx) + cdqr

ĉqr
,

a13 =
(r − lx)2

qr
,

a21 = 0,

a22 =
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly,

a23 = 0,

a31 =
dqr

r − lx
,

a32 = − ĉTP θ(r − lx)− dqrθ
qr

− cĉTP (r − lx)− cdqr
ĉ(r − lx)

,

a33 = − ĉTP (r − lx)
qr

.

Determining the eigenvalues here is not particularly illuminating, as in the

nutrient limiting cases in Chapter 2. The eigenvalues, trace, and determinant

of this matrix are in Appendix A. From the explicit form of the eigenvalues, we

do observe that stability does not depend upon K, TC , or γ. Given that these

factors pertain to light or carbon limitation, and thus do not appear in the
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equations in this case due to the minimum term, this result is not unexpected.

CASE 2: Nutrient and quantity

The corresponding Jacobian matrix is

A2 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where

a11 = lx − r,

a12 =
−cĉTP (r − lx) + cdqr

ĉqr
,

a13 =
(r − lx)2

qr
,

a21 = 0,

a22 =
cĉêTP (r − lx)− cdêqr

ĉqr
− d̂− ly,

a23 = 0,

a31 =
dqr

r − lx
,

a32 = − ĉTP θ(r − lx)− dqrθ
qr

− cĉTP (r − lx)− cdqr
ĉ(r − lx)

,

a33 = − ĉTP (r − lx)
qr

.

Once again, the eigenvalues do not readily provide stability conditions, as

in the nutrient limiting cases in Chapter 2. The eigenvalues, trace, and deter-

minant of this matrix are in Appendix A. From the form of the eigenvalues,

we observe that stability does not depend upon K, TC , γ, or θ, because these
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parameters do not appear in the equations for the case where nutrient and

quantity are limiting due to the minimum functions.

CASE 3: Light and quality

Here, the Jacobian is

A3 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where

a11 = lx − r,

a12 = −cK
(

1− lx
r

)
,

a13 = 0,

a21 = 0,

a22 =
cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

− d̂− ly,

a23 = 0,

a31 =
ĉdrTP

ĉK(r − lx) + dr
,

a32 = −ĉθK
(

1− lx
r

)
− cĉKTP (r − lx)
ĉK(r − lx) + dr

,

a33 = −ĉK
(

1− lx
r

)
− d.

For this matrix, a cofactor expansion along the third column of (A3 − λI)

yields the product of a33 − λ and the determinant of a 2 x 2 upper triangular

matrix. Thus, the eigenvalues of A3 are along the main diagonal.
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The eigenvalues of A3 are

λ1 = lx − r,

λ2 =
cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

− d̂− ly,

λ3 = −ĉK
(

1− lx
r

)
− d.

Stability requires all of these to have a negative real part. For the first

eigenvalue, we need lx − r < 0, or r − lx > 0. Note that when this is true,

lx − r < 0 ⇐⇒ r − lx > 0 ⇐⇒ 1− lx
r
> 0,

since r is positive.

Thus if λ1 is negative, then λ3 < 0. Then we just need λ2 to be negative:

cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

− d̂− ly < 0 ⇐⇒ cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

< d̂+ ly.

Hence, when r − lx > 0 and

cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

< d̂+ ly,

the grazer extinction equilibrium is a stable node.

Conversely, when r − lx > 0 and

cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

> d̂+ ly,

the grazer extinction equilibrium is a saddle with a two-dimensional stable
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manifold and a one-dimensional unstable manifold.

Now, when r − lx < 0 (i.e., λ1 > 0), the sign of neither λ2 nor λ3 is

guaranteed. Thus, when r − lx < 0 and both of the two following conditions

hold, the grazer extinction equilibrium is a saddle with a two-dimensional

stable manifold and a one-dimensional unstable manifold:

cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

< d̂+ ly,

−ĉK
(

1− lx
r

)
< d.

If one of these two conditions fails, the equilibrium is a saddle with a one-

dimensional stable manifold and a two-dimensional unstable manifold; if both

fail, the equilibrium is an unstable node. However, when r − lx < 0, the

equilibrium is not biologically feasible.

CASE 4: Light and quantity

Here

A4 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
where

a11 = lx − r,

a12 = −cK
(

1− lx
r

)
,

a13 = 0,
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a21 = 0,

a22 = êcK

(
1− lx

r

)
− d̂− ly,

a23 = 0,

a31 =
ĉdrTP

ĉK(r − lx) + dr
,

a32 = −ĉθK
(

1− lx
r

)
− cĉKTP (r − lx)
ĉK(r − lx) + dr

,

a33 = −ĉK
(

1− lx
r

)
− d.

As in Case 3, the eigenvalues are the values along the main diagonal. That

is,

λ1 = lx − r,

λ2 = êcK

(
1− lx

r

)
− d̂− ly,

λ3 = −ĉK
(

1− lx
r

)
− d.

As with the light and quantity case, r − lx > 0 means both λ1 and λ3 are

negative. Therefore the only other condition we require for stability is that

êcK

(
1− lx

r

)
− d̂− ly < 0 ⇐⇒ êcK

(
1− lx

r

)
< d̂+ ly.

Hence, the grazer extinction equilibrium is a stable node when r − lx > 0

and

êcK

(
1− lx

r

)
< d̂+ ly.
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It is a saddle with a two-dimensional stable manifold and a one-dimensional

unstable manifold for r − lx > 0 and

êcK

(
1− lx

r

)
> d̂+ ly,

since these conditions mean that λ1, λ3 < 0 and λ2 > 0.

Now, when r − lx < 0, then λ1 > 0. Moreover, since r − lx < 0 implies

that 1− lx/r < 0, then λ2 < 0. However, the sign of λ3 is not guaranteed from

r− lx < 0. Thus, when r− lx < 0 and the following condition holds, the grazer

extinction equilibrium is a saddle with a two-dimensional stable manifold and

a one-dimensional unstable manifold:

−ĉK
(

1− lx
r

)
< d.

If this condition fails (i.e., λ3 > 0), then the equilibrium is a saddle with

a one-dimensional stable manifold and a two-dimensional unstable manifold.

However, when r − lx < 0, the equilibrium is not biologically feasible.

CASE 5: Carbon and quality

The Jacobian takes the form

A5 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
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where

a11 = −(r − lx)(r + γr − γlx)
r

,

a12 = −γ(r − lx)2

r
− cγTC(r − lx)
r + γr − γlx

,

a13 = 0,

a21 = 0,

a22 =
cĉêγTCTP (r − lx)

dθ(r + γr − γlx) + ĉγθTC(r − lx)
− d̂− ly,

a23 = 0,

a31 =
ĉdTP (r + γr − γlx)

d(r + γr − γlx) + ĉγTC(r − lx)
,

a32 = − ĉθγTC(r − lx)
r + γr − γlx

− cĉγTCTP (r − lx)
d(r + γr − γlx) + ĉγTC(r − lx)

,

a33 = − ĉγTC(r − lx)
r + γr − γlx

− d.

A 3 x 3 matrix with zeros in these specific entries has its eigenvalues along

the main diagonal, as in Cases 3 and 4. Thus, in this case

λ1 = −(r − lx)(r + γr − γlx)
r

,

λ2 =
cĉêγTCTP (r − lx)

dθ(r + γr − γlx) + ĉγθTC(r − lx)
− d̂− ly,

λ3 = − ĉγTC(r − lx)
r + γr − γlx

− d.

Consider r + γr − γlx and r − lx. We see that for r, γ, lx > 0,

r + γr − γlx < 0⇒ r + γ(r − lx) < 0⇒ r − lx < −
r

γ
⇒ r − lx < 0.
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Also, since all parameters are assumed to be positive,

r − lx > 0⇒ γ(r − lx) > 0⇒ r + γ(r − lx) > 0⇒ r + γr − γlx > 0.

For stability of the grazer extinction equilibrium, we need λ2 < 0, which

requires

cĉêγTCTP (r − lx)
dθ(r + γr − γlx) + ĉγθTC(r − lx)

< d̂+ ly

and either r + γr − γlx < 0 (in which case r − lx < 0) or r − lx > 0 (in which

case r + γr − γlx > 0). Then, the grazer extinction equilibrium is a stable

node since λ1, λ3 < 0 when r + γr − γlx and r − lx have the same sign.

For either r + γr − γlx < 0 or r − lx > 0, and

cĉêγTCTP (r − lx)
dθ(r + γr − γlx) + ĉγθTC(r − lx)

> d̂+ ly,

the grazer extinction equilibrium is a saddle with a two-dimensional stable

manifold and a one-dimensional unstable manifold.

Now, for r − lx < 0 and r + γr − γlx > 0 we have a few cases. λ1 is

guaranteed to be positive, but the signs of λ2 and λ3 depend on additional

conditions.

For λ2 < 0, we need either d(r+ γr− γlx) + ĉγTC(r− lx) > 0 or d(r+ γr−

γlx) + ĉγTC(r − lx) < 0 and

cĉêγTCTP (r − lx)
dθ(r + γr − γlx) + ĉγθTC(r − lx)

< d̂+ ly.

102



For λ3 < 0, we need

− ĉγTC(r − lx)
r + γr − γlx

< d.

Hence, for r− lx < 0 and r+γr−γlx > 0, we can have either a saddle with

a one- or two-dimensional unstable manifold, or an unstable node. However,

when r − lx < 0 and r + γr − γlx > 0, the equilibrium is not biologically

feasible.

CASE 6: Carbon and quantity

The Jacobian is as follows:

A6 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where

a11 = −(r − lx)(r + γr − γlx)
r

,

a12 = −γ(r − lx)2

r
− cγTC(r − lx)
r + γr − γlx

,

a13 = 0,

a21 = 0,

a22 =
êcγTC(r − lx)
r + γr − γlx

− d̂− ly,

a23 = 0,

a31 =
ĉdTP (r + γr − γlx)

d(r + γr − γlx) + ĉγTC(r − lx)
,
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a32 = − ĉθγTC(r − lx)
r + γr − γlx

− cĉγTCTP (r − lx)
d(r + γr − γlx) + ĉγTC(r − lx)

,

a33 = − ĉγTC(r − lx)
r + γr − γlx

− d.

As in the previous case, this matrix has its eigenvalues along the main

diagonal. Thus, we have

λ1 = −(r − lx)(r + γr − γlx)
r

,

λ2 =
êcγTC(r − lx)
r + γr − γlx

− d̂− ly,

λ3 = − ĉγTC(r − lx)
r + γr − γlx

− d.

If r+γr−γlx < 0, then we know r− lx < 0. Therefore, if r+γr−γlx < 0,

then λ1, λ3 < 0 and we also need

êcγTC(r − lx)
r + γr − γlx

< d̂+ ly.

If r − lx > 0, then we know r + γr − γlx > 0 and therefore λ1, λ3 < 0. For

λ2 to be less than 0 and therefore for stability we also require

êcγTC(r − lx)
r + γr − γlx

< d̂+ ly.

Hence, the grazer extinction equilibrium is a stable node for

êcγTC(r − lx)
r + γr − γlx

< d̂+ ly
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and either r + γr − γlx < 0 or r − lx > 0.

For either r + γr − γlx < 0 or r − lx > 0, and

êcγTC(r − lx)
r + γr − γlx

> d̂+ ly,

the grazer extinction equilibrium is a saddle with a two-dimensional stable

manifold and a one-dimensional unstable manifold.

For r−lx < 0 and r+γr−γlx > 0, we have λ1 > 0 and λ2 < 0. Therefore, we

have a saddle. If λ3 < 0, the saddle has a two-dimensional stable manifold and

a one-dimensional unstable manifold; if λ3 > 0, it has a one-dimensional stable

manifold and a two-dimensional unstable manifold. Note that for r − lx < 0

and r + γr − γlx > 0, the equilibrium is not biologically feasible.

The stability results for Cases 3 to 6 are summarized in the following

theorem.

Theorem 9. For the local closed model (3.6) - (3.8) with Holling type I func-

tional responses, the following stability results hold for the grazer extinction

equilibrium E1 = (x̄, ȳ, p̄).

(i) If K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ < θx̄, then the equilibrium is a

stable node for r − lx > 0 and

cĉêKTP (r − lx)
ĉKθ(r − lx) + drθ

< d̂+ ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable

manifold, or an unstable node.

(ii) If K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ > θx̄, then the equilibrium is a
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stable node for r − lx > 0 and

êcK

(
1− lx

r

)
< d̂+ ly,

and otherwise it is a saddle with either a one- or two-dimensional unstable

manifold.

(iii) If γ(TC − x̄− ȳ) ≤ min{K, p̄/q} and p̄ < θx̄, then the equilibrium is a

stable node for either r + γr − γlx < 0 or r − lx > 0, and

cĉêγTCTP (r − lx)
dθ(r + γr − γlx) + ĉγθTC(r − lx)

< d̂+ ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable

manifold, or an unstable node.

(iv) If γ(TC − x̄− ȳ) ≤ min{K, p̄/q} and p̄ > θx̄, then the equilibrium is a

stable node for either r + γr − γlx < 0 or r − lx > 0, and

êcγTC(r − lx)
r + γr − γlx

< d̂+ ly,

and otherwise it is a saddle with a one- or two-dimensional unstable manifold.

Note that for Cases 3 and 4, the equilibrium is biologically feasible only for

r− lx ≥ 0; for Cases 5 and 6, we require either r− lx > 0 and r+γr−γlx > 0,

or r − lx < 0 and r + γr − γlx < 0. Hence, the only biologically feasible

classifications for the equilibrium in these cases are either a stable node or a

saddle with a two-dimensional stable manifold and a one-dimensional unstable

manifold.
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Holling type II

For f(x) = cx/(a+ x), g(P ) = ĉP/(â+ P ), and h(C) = γC,

∂F

∂x
=


− r

min{K, p/q}
+

cy

(a+ x)2
, γ(TC − x− y) ≥ K or p/q,

− r(TC − y)

γ(TC − x− y)2
+

cy

(a+ x)2
, γ(TC − x− y) < K and p/q,

∂F

∂y
=


− c

a+ x
, γ(TC − x− y) ≥ K or p/q,

− rx

γ(TC − x− y)2
− c

a+ x
, γ(TC − x− y) < K and p/q,

∂F

∂p
=


0, p/q ≥ K or γ(TC − x− y),

rxq

p2
, p/q < K and γ(TC − x− y),

∂G

∂x
=


acê

(a+ x)2
, 1 < p/x/θ,

− cêp

θ(a+ x)2
, 1 > p/x/θ,

∂G

∂y
= 0,

∂G

∂p
=


0, 1 < p/x/θ,

cê

θ(a+ x)
, 1 > p/x/θ,

∂H

∂x
=

ĉ(TP − p− θy)

â+ TP − p− θy
+

cpy

(a+ x)2
,

∂H

∂y
= − âĉθx

(â+ TP − p− θy)2
− cp

a+ x
,

∂H

∂p
= − âĉx

(â+ TP − p− θy)2
− cy

a+ x
− d.

Note that since the producer phosphorus equation has no minimum term,

the partial derivatives of H(x, y, p) do not depend on what is limiting the

producer or grazer, and thus are the same in all cases.
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The necessary products and sums for the Jacobian are

xFx =


− rx

min{K, p/q}
+

cxy

(a+ x)2
, γ(TC − x− y) ≥ K or p/q,

− rx(TC − y)

γ(TC − x− y)2
+

cxy

(a+ x)2
, γ(TC − x− y) < K and p/q,

F + xFx =


r − 2rx

min{K, p/q}
− acy

(a+ x)2
− lx, γ(TC − x− y) ≥ K or p/q,

r − rx(2TC − x− 2y)

γ(TC − x− y)2
− acy

(a+ x)2
− lx, γ(TC − x− y) < K and p/q,

xFy =


− cx

a+ x
, γ(TC − x− y) ≥ K or p/q,

− rx2

γ(TC − x− y)2
− cx

a+ x
, γ(TC − x− y) < K and p/q,

xFp =


0, p/q ≥ K or γ(TC − x− y),

rx2q

p2
, p/q < K and γ(TC − x− y),

yGx =


acêy

(a+ x)2
, 1 < p/x/θ,

− cêpy

θ(a+ x)2
, 1 > p/x/θ,

yGy = 0,

G+ yGy = êmin

{
1,
p/x

θ

}
cx

a+ x
− d̂− ly,

yGp =


0, 1 < p/x/θ,

cêy

θ(a+ x)
, 1 > p/x/θ.

There are different Jacobian matrices dependent upon the limiting factors.

We determine the entries based on what is limiting for the producer (nutrient,

light, or carbon) and grazer (quality or quantity), then substitute the equilibria

found in 3.3.2.
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CASE 1: Nutrient and quality

The corresponding Jacobian matrix is

B1 =


lx − r − cp̄(r − lx)

aqr + p̄(r − lx)
(r − lx)2

qr

0
cêp̄

θ(a+ x̄)
− d̂− ly 0

dqr

r − lx
− âĉθx̄

(â+ TP − p̄)2
− cp̄

a+ x̄
− âĉx̄

(â+ TP − p̄)2
− d

 .

As with the corresponding Holling type I case, the eigenvalues (see Ap-

pendix A) are not particularly illuminating. Also similar to the Holling type

I case, stability does not depend on K, TC , or γ. Given the producer is nutri-

ent limited at this equilibrium, it is reasonable that the light-dependent and

carbon-dependent carrying capacities have no impact on its stability.

CASE 2: Nutrient and quantity

The corresponding Jacobian is

B2 =


lx − r − cp̄(r − lx)

aqr + p̄(r − lx)
(r − lx)2

qr

0
cêp̄(r − lx)

aqr + p̄(r − lx)
− d̂− ly 0

dqr

r − lx
− âĉθx̄

(â+ TP − p̄)2
− cp̄

a+ x̄
− âĉx̄

(â+ TP − p̄)2
− d

 .

The eigenvalues (see Appendix A) do not provide any stability conclusions

in this case. As in Case 2 for Holling type I functional responses, stability does

not depend on K, TC , γ, or θ. The producer is nutrient limited at equilibrium,

so K, TC and γ should not impact stability of the equilibrium. Note that since

the grazer is quantity limited at equilibrium, we would also expect the stability

of the equilibrium to not depend on the grazer’s P:C ratio, θ.
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CASE 3: Light and quality

Here

B3 =


lx − r − cK(r − lx)

ar +K(r − lx)
0

0
cêrp̄

θ(ar +K(r − lx))
− d̂− ly 0

ĉ(TP − p̄)
â+ TP − p̄

− âĉKθ(r − lx)
r(â+ TP − p̄)2

− crp̄

ar +K(r − lx)
− âĉK(r − lx)
r(â+ TP − p̄)2

− d

 .

Note that for ease of reading, p̄ has not been substituted in. As in the

previous sections, we know that a matrix of this form (i.e., with zeros in these

entries) has its eigenvalues along the main diagonal:

λ1 = lx − r,

λ2 =
cêrp̄

θ(ar +K(r − lx))
− d̂− ly,

λ3 = − âĉK(r − lx)
r(â+ TP − p̄)2

− d.

Stability requires r − lx > 0. Then, λ1 < 0 and λ3 < 0. In order for the

second eigenvalue to be negative, we require

cêrp̄

θ(ar +K(r − lx))
< d̂+ ly.

Therefore, the equilibrium is a stable node when r − lx > 0 and the above

condition is satisfied.

If the condition for λ2 < 0 is not satisfied but r − lx > 0, then the equilib-

rium is a saddle with a two-dimensional stable manifold and a one-dimensional

unstable manifold. If r − lx < 0, then λ1 > 0, and the equilibrium is either a
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saddle with a one- or two-dimensional unstable manifold or an unstable node,

depending on the signs of λ2 and λ3. However, r − lx ≥ 0 is required for the

equilibrium to be biologically feasible.

CASE 4: Light and quantity

Here, the Jacobian matrix is

B4 =


lx − r − cK(r − lx)

ar +K(r − lx)
0

0
cêK(r − lx)

ar +K(r − lx)
− d̂− ly 0

ĉ(TP − p̄)
â+ TP − p̄

− âĉKθ(r − lx)
r(â+ TP − p̄)2

− crp̄

ar +K(r − lx)
− âĉK(r − lx)
r(â+ TP − p̄)2

− d

 .

The eigenvalues are along the main diagonal. Hence

λ1 = lx − r,

λ2 =
cêK(r − lx)

ar +K(r − lx)
− d̂− ly,

λ3 = − âĉK(r − lx)
r(â+ TP − p̄)2

− d.

For λ1 to be less than 0, we require r − lx > 0. Then, λ3 < 0 for positive

parameter values. In order to ensure λ2 < 0, and thus to make this equilibrium

a stable node, we would also require

cêK(r − lx)
ar +K(r − lx)

< d̂+ ly,

in addition to r − lx > 0.

If the parameters satisfy r − lx > 0 but λ2 > 0, then the equilibrium is a

saddle with a two-dimensional stable manifold and a one-dimensional unstable
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manifold. If r − lx < 0, then λ1 > 0, and the classification of the equilibrium

depends on the signs of λ2 and λ3. If both are negative, then the equilibrium

is a saddle with a one-dimensional unstable manifold; if they have opposite

signs, it is a saddle with a two-dimensional unstable manifold; and if both are

positive, then it is an unstable node. However, r − lx ≥ 0 is required for the

equilibrium to be biologically feasible.

CASE 5: Carbon and quality

Here

B5 =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,
where

b11 = −(r − lx)(r + γr − γlx)
r

,

b12 = −γ(r − lx)2

r
− cγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

,

b13 = 0,

b21 = 0,

b22 =
cê(r + γr − γlx)p̄

aθ(r + γr − γlx) + γθTC(r − lx)
− d̂− ly,

b23 = 0,

b31 =
ĉ(TP − p̄)
â+ TP − p̄

,

b32 = − âĉγθTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− c(r + γr − γlx)p̄
a(r + γr − γlx) + γTC(r − lx)

,

b33 = − âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− d.
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The corresponding eigenvalues are along the main diagonal:

λ1 = −(r − lx)(r + γr − γlx)
r

,

λ2 =
cê(r + γr − γlx)p̄

aθ(r + γr − γlx) + γθTC(r − lx)
− d̂− ly,

λ3 = − âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− d.

For these eigenvalues, we consider stability cases using r−lx and r+γr−γlx.

As in the Holling type I corresponding case, we recognize that r+γr−γlx < 0

implies r− lx < 0, and r− lx > 0 implies r+γr−γlx > 0, when all parameters

are assumed to be positive. Therefore we consider three cases.

If r+ γr− γlx < 0 (and therefore r− lx < 0), then λ1 < 0 and λ3 < 0. The

sign of λ2 depends on the sign of p̄. Looking at the forms of the equilibria in

Section 3.3.2, we observe that for r+γr−γlx < 0 and r−lx < 0, both equilibria

have a positive p̄. Hence, the equilibrium is a stable node for r+ γr− γlx < 0

and

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly.

If r + γr − γlx < 0 but the additional condition is not satisfied, then the

equilibrium is a saddle with a two-dimensional stable manifold and a one-

dimensional unstable manifold.

If r − lx > 0 (and therefore r + γr − γlx > 0), then λ1 < 0 and λ3 < 0.

Since p̄ > 0 for r− lx > 0 and both forms of p̄, then the equilibrium is a stable

node for r − lx > 0 and

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly.
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If r − lx > 0 but λ2 > 0 because the above condition is not satisfied, then

the equilibrium is a saddle with a two-dimensional stable manifold and a one-

dimensional unstable manifold.

Lastly, if r− lx < 0 and r+ γr− γlx > 0, then λ1 > 0. The signs of λ2 and

λ3 depend on additional conditions. For the equilibrium to be a saddle with

a two-dimensional stable manifold and a one-dimensional unstable manifold

when r − lx < 0 and r + γr − γlx > 0, we require

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly,

− âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

< d.

Note that here the sign of p̄ is not determined by the signs of r − lx and

r + γr − γlx alone. If either one of these additional conditions is not satisfied

(i.e., λ2 > 0 or λ3 > 0) and the other is satisfied, then the equilibrium is a

saddle with a one-dimensional stable manifold and a two-dimensional unstable

manifold. If both of these additional conditions are not satisfied, then the

equilibrium is an unstable node. However, in this case, the equilibrium is only

biologically feasible when the signs of r − lx and r + γr − γlx are the same.

CASE 6: Carbon and quantity

The Jacobian takes the form

B6 =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,
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where

b11 = −(r − lx)(r + γr − γlx)
r

,

b12 = −γ(r − lx)2

r
− cγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

,

b13 = 0,

b21 = 0,

b22 =
cêγTC(r − lx)

a(r + γr − γlx) + γTC(r − lx)
− d̂− ly,

b23 = 0,

b31 =
ĉ(TP − p̄)
â+ TP − p̄

,

b32 = − âĉγθTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− c(r + γr − γlx)p̄
a(r + γr − γlx) + γTC(r − lx)

,

b33 = − âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− d.

Once again, the eigenvalues are along the main diagonal:

λ1 = −(r − lx)(r + γr − γlx)
r

,

λ2 =
cêγTC(r − lx)

a(r + γr − γlx) + γTC(r − lx)
− d̂− ly,

λ3 = − âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

− d.

We consider cases based on r − lx and r + γr − γlx. Note that we cannot

have r − lx > 0 and r + γr − γlx < 0 for positive r, γ and lx.

If r− lx < 0 and r + γr− γlx < 0, then λ1 < 0 and λ3 < 0. Therefore, the
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equilibrium is a stable node if r + γr − γlx < 0 and

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly.

If this additional condition is not satisfied (i.e., λ2 > 0), then the equilibrium

is a saddle with a two-dimensional stable manifold and a one-dimensional

unstable manifold.

Similarly, if r − lx > 0 and r + γr − γlx > 0, then λ1 < 0 and λ3 < 0.

Hence, the equilibrium is a stable node if r − lx > 0 and

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly.

If the above condition is not satisfied, then the equilibrium is a saddle with a

two-dimensional stable manifold and a one-dimensional unstable manifold.

If r − lx < 0 and r + γr − γlx > 0, then λ1 > 0. The equilibrium is a

saddle with a two-dimensional stable manifold and a one-dimensional unstable

manifold if

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly,

− âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

< d.

If either of these conditions is not met, the equilibrium is a saddle with a

one-dimensional stable manifold and a two-dimensional unstable manifold; if

both conditions are not met, the equilibrium is an unstable node. Note that

if r − lx < 0 and r + γr − γlx > 0, then the equilibrium is not biologically
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feasible.

The stability results for Cases 3 and 4 are summarized in the following

theorem.

Theorem 10. For the local closed model (3.6) - (3.8) with Holling type II

functional responses, the following stability results hold for a grazer extinction

equilibrium E1 = (x̄, ȳ, p̄).

(i) If K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ < θx̄, then the equilibrium is a

stable node for r − lx > 0 and

cêrp̄

θ(ar +K(r − lx))
< d̂+ ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable

manifold, or an unstable node.

(ii) If K ≤ min{p̄/q, γ(TC − x̄− ȳ)} and p̄ > θx̄, then the equilibrium is a

stable node for r − lx > 0 and

cêK(r − lx)
ar +K(r − lx)

< d̂+ ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable

manifold, or an unstable node.

As in the Holling type I cases, for the equilibrium to be biologically feasible

in Cases 3 and 4, we require r − lx ≥ 0. Thus, in applications, we expect to

see either a stable node or a saddle with a one-dimensional unstable manifold.

The stability results for Cases 5 and 6 are summarized in the following

theorem. Case 5 is summarized in parts (i)-(iii), and Case 6 in parts (iv)-(vi).
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Theorem 11. For the local closed model (3.6) - (3.8) with Holling type II

functional responses, the following stability results hold for a grazer extinction

equilibrium E1 = (x̄, ȳ, p̄).

(i) If γ(TC−x̄− ȳ) ≤ min{K, p̄/q}, p̄ < θx̄, r−lx < 0, and r+γr−γlx < 0,

then the equilibrium is a stable node if

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly,

and otherwise it is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold.

(ii) If γ(TC−x̄−ȳ) ≤ min{K, p̄/q}, p̄ < θx̄, r−lx > 0, and r+γr−γlx > 0,

then the equilibrium is a stable node if

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly,

and otherwise it is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold.

(iii) If γ(TC−x̄−ȳ) ≤ min{K, p̄/q}, p̄ < θx̄, r−lx < 0, and r+γr−γlx > 0,

then the equilibrium is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold if both of the following hold:

cê(r + γr − γlx)p̄
aθ(r + γr − γlx) + γθTC(r − lx)

< d̂+ ly,

− âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

< d.

Otherwise it is either a saddle with a one-dimensional stable manifold and a
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two-dimensional unstable manifold or an unstable node.

(iv) If γ(TC−x̄−ȳ) ≤ min{K, p̄/q}, p̄ > θx̄, r−lx < 0, and r+γr−γlx < 0,

then the equilibrium is a stable node if

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly,

and otherwise it is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold.

(v) If γ(TC−x̄−ȳ) ≤ min{K, p̄/q}, p̄ > θx̄, r−lx > 0, and r+γr−γlx > 0,

then the equilibrium is a stable node if

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly,

and otherwise it is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold.

(vi) If γ(TC−x̄−ȳ) ≤ min{K, p̄/q}, p̄ > θx̄, r−lx < 0, and r+γr−γlx > 0,

then the equilibrium is a saddle with a two-dimensional stable manifold and a

one-dimensional unstable manifold if both of the following hold:

cêγTC(r − lx)
a(r + γr − γlx) + γTC(r − lx)

< d̂+ ly,

− âĉγTC(r − lx)
(r + γr − γlx)(â+ TP − p̄)2

< d.

Otherwise it is either a saddle with a one-dimensional stable manifold and a

two-dimensional unstable manifold or an unstable node.

Note that both (iii) and (vi) are not biologically feasible.
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3.4 Numerical Dynamics

3.4.1 Numerical simulations comparing models

For all numerical simulations, we used Holling type II functional responses for

f and g; that is, f(x) = cx/(a + x), g(P ) = ĉP/(â + P ), and h(C) = γC. In

order to compare the dynamics between models, simulations were run using

ode23s, with a time span of [0, 200]. For all cases, we assumed γ = 0.01023, and

we used the same initial conditions for all models, although initial conditions

differed between parameter combinations dependent upon the value of TP .

Eight simulations in total were ran for each combination of TC ∈ {98.2, 409.4},

TP ∈ {0.003, 0.030, 0.300}, and K ∈ {0.25, 0.75, 1.00, 2.00}. For the local open

model, we used C(0) = β − x(0)− y(0) for β = TC . The simulations included

one each for the local closed model, the local closed model with PCO, and

the WKL model with explicit respiration, and five for the local open model,

varying α ∈ {1e − 6, 1e − 3, 1e0, 1e3, 1e6}, for a total of 8 simulations for

each combination of TC , TP and K. The resulting dynamics were plotted

and compared. We also individually graphed what was limiting the growth

of the producer and grazer, as well as the resulting producer P:C. All other

parameters were held constant at the values given in Table 3.1.

Here the WKL model with explicit respiration follows the form of the

model in Section 2.2, but with the term −lxx added to the producer equation

(Equation (2.1)). Grazer respiration is already modelled in the basic WKL

model with the term d̂y. For the WKL model, we used d̂ = 0.22, where

d̂ is the total loss rate of the grazer, including both respiration and death;

for the new models presented here, we used ly = 0.165 for respiration loss
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and d̂ = 0.055 for loss due to death, for a total loss rate of 0.22. Therefore,

addition of producer respiration is sufficient to eliminate cellular respiration as

the differing factor between the models, allowing us to focus on the differences

in the level of openness and the mechanisms considered.

Overall, the models did not differ much within the parameter regimes con-

sidered here. We tended to see grazer extinction when one of the potentially

limiting parameters is very low. As the limiting parameter increased, the sys-

tem switched to coexistence at an equilibrium, then coexistence in oscillations.

We know that the local closed model can also demonstrate a switch back to

coexistence and then grazer extinction at high parameter values (see Section

3.4.2). We would have to look at additional parameter values if we wanted to

verify if the other models also exhibit this behaviour, since the behaviour was

observed outside the regimes investigated here. Qualitatively, the dynamics

seem to be very similar between the models, with the exceptions of the cases

where the WKL model with respiration is drastically different from our three

models due to carbon limitation (i.e., TC = 98.2, TP = 0.030, K = 2.00, and

TC = 98.2, TP = 0.300, K = 2.00 – see Figure 3.1). Quantitatively, it appears

that the local closed model with PCO is the most different from the rest. In

particular, this model differs the most at higher total carbon levels, where it

demonstrated different periods of oscillations, as well as different maximum or

minimum values.

When considering the limiting factor for producer growth, we notice that

the models often agreed, and the results seem to be fairly logical (e.g., light

limited at K = 0.25; phosphorus limited at TP = 0.003 so long as K ≥ 0.75).

We determined the limiting factor by computing min{K, p(t)/q, h(C(t)) for
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Figure 3.1: Comparison of the local closed model and WKL model for K =
2, TC = 98.2, TP = 0.03, γ = 0.01023. The local closed model exhibits coexistence
oscillations, while the WKL model is approaching the grazer extinction equilibrium.

each time in the array produced by ode23s. Phosphorus limitation is rare in

the intermediate or high phosphorus regimes – it mostly occurs at the starts of

troughs in oscillations. Phosphorus limitation in producer oscillation troughs

is likely due to the high concentration of phosphorus in the grazer pool causing

the available phosphorus to considerable decline. There are some cases where

there is alternation between limiting factors, which will be discussed later in

this section. The degree to which this switching happened varied with α –

as α increased, we observed less carbon limitation. It is interesting that in

the cases where there are different limitations between models, we still see the

same dynamics, likely due to the very small difference between K and h(TC)

in these regimes. Carbon limitation never occurs for high carbon with the

parameters considered here. With both phosphorus and light limitation of

producer growth included, the WKL model with explicit respiration would be

essentially equivalent to the new models for high system carbon.

At very low concentrations of available phosphorus, the grazers are always
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quality limited (i.e., p/x/θ < 1) and tend towards extinction. For intermediate

system phosphorus and low light-dependent carrying capacity of the producer,

the grazers are always quantity limited (i.e., p/x/θ > 1) except at the initial

condition we used. For high phosphorus, the grazers are quantity limited after

the initial condition. We observed switching between quantity and quality

limitation for K = 1.00 or 2.00, TC = 98.2, TP = 0.3; and for K = 1.00,

TC = 409.4, TP = 0.03. The grazers are quality limited in an interval between

their oscillation’s trough and the crest (i.e., while the population is increasing).

Unlike with the producer limiting factors, which differed dependent on α, we

rarely saw any difference between the models in what was limiting the grazer,

except when the WKL dynamics were completely different than the rest (i.e.,

intermediate/high phosphorus, ambient carbon, and very high light).

We observed that the producer’s P:C oscillates whenever the system vari-

ables are oscillating. When the systems tend towards grazer extinction, pro-

ducer P:C settles quickly to a plateau. The grazers over-grazing immediately

before their subsequent decline appears to coincide with sharp dips in producer

P:C. Other than the cases where the WKL dynamics were completely different

than the rest, we did not notice differences between models for P:C for ambient

carbon. This also holds for the high carbon but very low phosphorus cases. At

high carbon and intermediate phosphorus levels, we started to see differences

in P:C between the model considering photorespiration and the other models.

The local closed model with PCO exhibits the following differences from the

other models:

• Lower plateau: TP = 0.003, ∀K; TP = 0.03, K = 0.25 and 2; TP =

0.3, K = 0.25.
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• Lower trough, higher crest for oscillations: TP = 0.03 and 0.3, K = 0.75.

• Lower trough, lower crest for oscillations: TP = 0.03 and 0.3, K = 1.00;

TP = 0.3, K = 2.00.

The oscillations produced may also have a different period in the case where

TP = 0.3 and K = 1.00, although any difference is minimal and hard to

distinguish visually.

For the open models, we did also examine the changes in free carbon with

time (i.e., C(t)) for different parameter values. In particular, when we used for

our initial condition C(0) = β instead of C(0) = β − x(0)− y(0), we observed

that as α increases, the changes in C are more rapid, and the range of values of

C decreases severely. When the other system variables are oscillating, C also

oscillates, with the amplitude of the oscillations decreasing with increasing α.

The oscillations also get much sharper for higher α, especially for higher K. In

general for C(0) = β−x(0)−y(0), the system starts out with slightly less free

carbon than the external environment, and thus must immediately compensate

to equilibrate with the environment. This change is more immediate for higher

α since the system can compensate very quickly. The oscillations are much

harder to distinguish in this case because they are very small relative to the

initial carbon gradient across the boundary, especially for higher α.

Overall, we observed a lot of similarities in the dynamics between models.

We saw more quality limitation of grazers in the high carbon case only for

K = 2.00, TP = 0.03, where the new models matched the WKL model rather

than oscillating. This change was due to the lessening of carbon limitation of

the producer growth for elevated carbon dioxide.

As mentioned previously, there were a few parameter regimes where we
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observed alternation of limiting factors for the growth of the species. One

such parameter regime shows all three types of producer limitation, and both

types of grazer limitation: K = 1.00, TC = 98.2, TP = 0.034, γ = 0.01023. This

parameter regime corresponds to high light, ambient total system carbon, and

intermediate system phosphorus.

In Figure 3.2 (a), we see that for this parameter combination, the sys-

tem is oscillating. The producer alternates between carbon limitation at its

crests, phosphorus limitation in the troughs, and then light limitation until it

switches back to carbon limitation, as shown in Figure 3.2 (b). From Figure

3.2 (c), we observe that the grazer is primarily quantity limited, but is briefly

quality limited between the trough and the crest. Superimposing Figures 3.2

(b) and (c) allow us to see how the limiting factors and carbon densities of the

two populations align, as shown in Figure 3.3. We notice that the producer

becomes carbon limited near or immediately after the grazer population be-

gins to recover from its minimum. Conversely, the producer becoming light,

then phosphorus, then light limited in short succession aligns with just after

the grazer population begins to decline from its maximum. The grazer being

phosphorus (i.e., quality) limited tends to align with where the producer is at

its crest and shortly after, when the producer P:C has declined to accommo-

date the additional carbon uptake despite no additional available phosphorus.

We observe that carbon limitation can be reduced or even completely re-

moved by increasing the openness of the system, as shown in Figure 3.4. We see

that as the parameter α increases, there is more light limitation and less car-

bon limitation. By α = 1, the only remaining carbon limitation is at the initial

condition. This is as expected, since carbon limitation requires K > h(C),
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(a) Overall dynamics
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(b) Producer limiting factors
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Figure 3.2: Local closed model special case: K = 1.00, TC = 98.2, TP = 0.034, γ =
0.01023. In (a) we see that the system is undergoing coexistence oscillations, while
(b) and (c) show the limiting factors at a given time for the producer and grazer
respectively.
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Figure 3.3: Local closed species limiting factors in the special case: K = 1.00, TC =
98.2, TP = 0.034, γ = 0.01023. The dotted line represents the grazer, and the solid
the producer. From this we can see how the limiting factors of the two different
species align with each other and with the carbon densities of the populations.
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(a) α = 0

0 50 100 150 200

time (day)

0

0.2

0.4

0.6

0.8

s
p

e
c
ie

s
 d

e
n

s
it
ie

s

Carbon limiting
Phosphorus limiting
Light limiting

(b) α = 1e− 6
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(c) α = 1e− 3
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(d) α = 1

Figure 3.4: Local open model special case: K = 1.00, TC = β = 98.2, TP =
0.034, γ = 0.01023. The parameter α increases from (a) to (d), corresponding to
an increased “openness” of the system. As the system becomes more open, carbon
limitation is lessened.

128



and if C is fixed at or near ambient levels, then for this value of K, the condition

will not be satisfied, as demonstrated by Figure 3.4.

As mentioned previously, one possible reason for the similarity in dynamics

despite varying limiting factors based on α is because alternation of carbon and

light limitation requires K and h(TC) (or h(β) for the open system) to be very

close to each other. This results in the numerical difference between having

a denominator of K and h(C) in the producer equation being insufficient to

change the dynamics drastically.

3.4.2 One parameter bifurcation analysis

In order to compare and contrast the impacts on dynamics of the parame-

ters that determine limitation of the producer, MatCont was used to perform

bifurcation analysis for K, TC and TP for the local closed model only [10].

Multiple diagrams were generated for each parameter, varying the other two

parameters as well as γ to get as broad an idea of the impact of each parameter

as reasonably possible. In general, the regimes for the non-bifurcating param-

eters included combinations of K ∈ {0.25, 0.75, 1.00, 2.00}, TC ∈ {98.2, 409.4},

TP ∈ {0.003, 0.030, 0.300}, and γ ∈ {0.0045, 0.00767, 0.01023, 0.021}.

For all one parameter diagrams, a solid blue curve represents a stable

equilibrium point; a magenta dashed curve is an unstable equilibrium point;

and a cyan dotted curve represents the minimum/maximum of a stable limit

cycle.
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Figure 3.5: K bifurcation diagrams: TP = 0.003, TC = 98.2, γ = 0.01023. x is
on the left and y is on the right. There are no bifurcations. The grazer extinction
equilibrium is stable for all values of K shown.

Light-dependent carrying capacity: K

For low phosphorus (TP = 0.003), both ambient (TC = 98.2) and high (TC =

409.4) carbon produced the grazer extinction equilibrium for K up to at least

2, as shown in Figure 3.5. At equilibrium for the parameter combination

shown, the producers are light limited for low K, then phosphorus limited

for higher K, with the change occurring around K = 0.75. The grazers are

initially quantity limited for K < 0.09, and then quality limited.

For intermediate phosphorus (TP = 0.030), the results vary more. For

ambient carbon (TC = 98.2), the system tends towards the grazer extinction

equilibrium for K ∈ (0, 0.20440). Then there is a transcritical bifurcation,

at which point the coexistence equilibrium becomes biologically feasible and

stable. For γ = 0.0045, there are no more bifurcations for K up to at least 2,

as shown in Figure 3.6. In this case, the producers are light limited for low K

130



until around K = 0.44, after which they are carbon limited; the grazers are

quantity limited throughout at equilibrium.

For γ ∈ {0.00767, 0.01023, 0.021}, the coexistence equilibrium remains sta-

ble until K = 0.72004. At this point, there is a Hopf bifurcation at which a

stable limit cycle emerges. The limit cycle remains stable for K up to at least

2 for γ ∈ {0.00767, 0.01023}, as shown in Figure 3.7. For both the grazer and

coexistence equilibrium, the producer is light limited and the grazer is quan-

tity limited for the parameter combination shown. For γ = 0.021, there is a

saddle-node bifurcation at K = 1.41757 and there are new stable and unstable

coexistence equilibria. As shown in Figure 3.8, the stable branch remains sta-

ble for K up to at least 4. Note that although the curves appear to overlap, the

x value for this second stable coexistence equilibrium is slightly smaller than

the grazer extinction equilibrium value (difference is approximately 0.0056);

conversely, the y value is slightly larger for coexistence than grazer extinction

(difference is approximately 0.0065). At equilibrium for γ = 0.021, the pro-

ducers are light limited before the limit cycle (K < 0.72), and after the limit

cycle until around K = 2.028, after which they are carbon limited; the grazers

are quantity limited before the limit cycle (K < 0.72), and quality limited

after the limit cycle (K > 1.42).

For high carbon (TC = 409.4), the system tends towards the grazer ex-

tinction equilibrium for K ∈ (0, 0.20440), then there is a transcritical bifur-

cation, causing the coexistence equilibrium to become stable. This lasts until

K = 0.72004, at which point a stable limit cycle emerges. The limit cycle is

stable until the saddle-node bifurcation at K = 1.41757, where a stable and an

unstable coexistence equilibrium appear. The stable coexistence equilibrium
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Figure 3.6: K bifurcation diagrams: TP = 0.030, TC = 98.2, γ = 0.0045. x
is on the left and y is on the right. There is a transcritical bifurcation around
K = 0.20. For K < 0.20, the grazer extinction equilibrium is stable; for K > 0.20,
the coexistence equilibrium is biologically feasible and stable.
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Figure 3.7: K bifurcation diagrams: TP = 0.030, TC = 98.2, γ = 0.01023. x is on
the left and y is on the right. There is a transcritical bifurcation around K = 0.20
and a Hopf bifurcation around K = 0.72. The stable behaviour is as follows: for K <
0.20, grazer extinction equilibrium; for 0.20 < K < 0.72, coexistence equilibrium;
and for K > 0.75, coexistence oscillations.
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Figure 3.8: K bifurcation diagrams: TP = 0.030, TC = 98.2, γ = 0.021. x is on
the left and y is on the right. There is a transcritical bifurcation around K = 0.20, a
Hopf bifurcation around K = 0.72, and a saddle-node bifurcation around K = 1.42.
The stable behaviour is as follows: for K < 0.20, grazer extinction equilibrium;
for 0.20 < K < 0.72, coexistence equilibrium; for 0.72 < K < 1.42, coexistence
oscillations; and for K > 1.42, a second coexistence equilibrium.

remains stable until K = 2.04143 when there is another transcritical bifurca-

tion, at which point the system returns to the grazer extinction equilibrium.

The multiple bifurcations are shown in Figure 3.9. Bifurcation analysis of the

grazer extinction equilibrium for values of K higher than 2 revealed that this

additional transcritical bifurcation occurs for TC > 201.19309. At equilibrium,

the producer is light limited for K < 4.1540; the grazer is quantity limited

before the limit cycle (K < 0.72), and quality limited after the limit cycle

(K > 1.42).

For high phosphorus (TP = 0.300) and ambient carbon, we observe the

same bifurcations as intermediate phosphorus for γ ∈ {0.0045, 0.00767, 0.01023}.

However, for γ = 0.021, we do not see the saddle-node bifurcation, and in-

stead it follows the same pattern as TP = 0.030 (intermediate phosphorus),
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Figure 3.9: K bifurcation diagrams: TP = 0.030, TC = 409.4, γ = 0.01023. x is on
the left and y is on the right. There is a transcritical bifurcation around K = 0.20,
a Hopf bifurcation around K = 0.72, a saddle-node bifurcation around K = 1.42,
and another transcritical bifurcation around K = 2.04. The stable behaviour is
as follows: for K < 0.20, grazer extinction equilibrium; for 0.20 < K < 0.72,
coexistence equilibrium; for 0.72 < K < 1.42, coexistence oscillations; for 1.42 <
K < 2.04, a second coexistence equilibrium; and for K > 2.04, grazer extinction
equilibrium.
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Figure 3.10: TC bifurcation diagrams: K = 1.00, TP = 0.003, γ = 0.01023. x is
on the left and y is on the right. There are no bifurcations. The grazer extinction
equilibrium is stable for all values of TC shown.

TC = 98.2 (ambient carbon), and γ = 0.01023 (shown in Figure 3.7). For

high carbon, we observe the same bifurcations as TP = 0.030 (intermediate

phosphorus), TC = 98.2 (ambient carbon), and γ = 0.01023, regardless of γ.

Total system carbon: TC

In all cases, for sufficiently low TC , the system tends towards a grazer extinction

equilibrium. For low phosphorus (TP = 0.003), this equilibrium remains stable

until TC at least 1000 (Figure 3.10). For intermediate/high phosphorus, this

equilibrium becomes unstable at a transcritical bifurcation, at which point

the coexistence equilibrium becomes stable. The bifurcation value does not

depend on TP or K, but it does occur at a lower value for higher γ, likely since

an increase in γ would increase h(C) and cause carbon limitation to end at a

lower value.

Regardless of if TP is intermediate or high, the range of TC for which the
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Figure 3.11: TC bifurcation diagrams: K = 0.25, TP = 0.030, γ = 0.01023. x is on
the left and y is on the right. There is a transcritical bifurcation around TC = 20.14.
For TC < 20.14, the grazer extinction equilibrium is stable; for TC > 20.14, the
coexistence equilibrium is feasible and stable.

system trends towards the coexistence equilibrium remains the same. For

K = 0.25, the coexistence equilibrium remains stable for TC up to at least

1000, as shown in Figure 3.11. For K ∈ {0.75, 1.00, 2.00}, the coexistence

equilibrium remains stable until a Hopf bifurcation point, where a stable limit

cycle appears. As with the transcritical bifurcation, the Hopf bifurcation value

is lower for higher γ.

For intermediate phosphorus (TP = 0.030), with K ∈ {0.75, 1.00}, the limit

cycle remains stable for TC up to at least 1000, as shown in Figure 3.12. This

also holds for high phosphorus (TP = 0.300) and for K ∈ {0.75, 1.00, 2.00}.

However, for intermediate phosphorus (TP = 0.030) and very high light (K =

2.00), the limit cycle becomes unstable or disappears entirely at a saddle-node

bifurcation, the value of which decreases with increasing γ, as shown in Figure

3.13. After this bifurcation, the coexistence equilibrium is stable once more,
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Figure 3.12: TC bifurcation diagrams: K = 1.00, TP = 0.030, γ = 0.01023. x
is on the left and y is on the right. There is a transcritical bifurcation around
TC = 20.14 and a Hopf bifurcation at TC = 70.96. For TC < 20.14, the grazer
extinction equilibrium is stable; for 20.14 < TC < 70.96, the coexistence equilibrium
is stable; and for TC > 70.96, the limit cycle is stable.

for up to at least TC = 1000.

Note that for the low phosphorus case shown in Figure 3.10, the producers

are carbon limited at equilibrium until around TC = 73, after which point

they are phosphorus limited; the grazers are quantity limited until around

TC = 8.9, after which they are quality limited. For the low light case shown

in Figure 3.11, the producers are carbon limited at equilibrium until around

TC = 24, after which they are light limited; the grazers are quantity limited

throughout. For the intermediate light and phosphorus case shown in Figure

3.12, the producers are carbon limited at equilibrium throughout and the

grazers are quantity limited before the limit cycle at equilibrium (TC < 70.96).

For the high light case shown in Figure 3.13, the producers are carbon limited

at equilibrium before the limit cycle (TC < 70.96), as well as after the limit
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Figure 3.13: TC bifurcation diagrams: K = 2.00, TP = 0.030, γ = 0.01023.
x is on the left and y is on the right. There is a transcritical bifurcation around
TC = 20.14, a Hopf bifurcation at TC = 70.96, and a saddle-node bifurcation around
TC = 139.61. For TC < 20.14, the grazer extinction equilibrium is stable; for
20.14 < TC < 70.96, the coexistence equilibrium is stable; for 70.96 < TC < 139.61,
the limit cycle is stable; for TC > 139.61, the second coexistence equilibrium is
stable. Note the different axes scales between (a) and (b).
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cycle until around TC = 196, after which they are light limited. The grazers

are quantity limited before the limit cycle (TC < 70.96), and quality limited

after the limit cycle (TC > 139.61).

Total system phosphorus: TP

All bifurcation diagrams for TP begin with the stable grazer extinction equilib-

rium, until it becomes unstable and the coexistence equilibrium becomes stable

at a transcritical bifurcation. The bifurcation value depends on K and γ. In

general, as K increases, the bifurcation value of TP increases, until a point.

For γ = 0.0045, the maximum TP bifurcation value appears to be 0.00963; for

γ = 0.00767, it is TP = 0.01354; for γ = 0.01023, it is TP = 0.01670; and for

γ = 0.021, it is at least TP = 0.02947 (achieved for K = 2.00). The bifur-

cation values for high carbon (TC = 409.4) match those for ambient carbon

(TC = 98.2) and the maximum γ value (γ = 0.021), with the exception of

K = 2.00, γ = 0.0045 and TC = 409.4, which has a slightly lower bifurcation

value.

The transcritical bifurcation yields stability for the coexistence equilibrium.

For a sufficiently low light-dependent carrying capacity, K = 0.25, the coexis-

tence equilibrium remains stable for TP up to at least 3 regardless of γ or TC ,

as shown in Figure 3.14. This also holds for all K when γ = 0.0045 at ambient

carbon (TC = 98.2). For all other parameter combinations investigated, the

coexistence equilibrium remains stable until a saddle-node bifurcation. The

relative saddle-node bifurcation values follow a similar pattern to the trans-

critical bifurcation values. For any regimes that underwent the saddle-node

bifurcation, the limit cycle remains stable for TP up to at least 3, as shown in
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Figure 3.14: TP bifurcation diagrams: K = 0.25, TC = 98.2, γ = 0.0045. x is on
the left and y is on the right. There is a transcritical bifurcation around TP = 0.0072.
For TP < 0.0072, the grazer extinction equilibrium is stable; and for TP > 0.0072,
the coexistence equilibrium is feasible and stable.

Figure 3.15. Given the dynamics, there should likely be another saddle-node

bifurcation along the unstable coexistence equilibrium, followed by a Hopf bi-

furcation, but these could not be located using MatCont. Note that as the

limit cycle approaches the visible saddle-node bifurcation from the right, the

period increases drastically. A similar behaviour was observed for ambient

carbon for K = 1.00 with γ = 0.01023 or 0.021, and for K = 2.00 with

γ = 0.01023; as well as for high carbon for K = 1.00 with γ = 0.0045. In all

of these cases except the one shown in Figure 3.15, MatCont detected a limit

point bifurcation of cycles.

We can consider what factors are limiting at equilibrium for these dia-

grams. For Figure 3.14, the producers are limited by phosphorus until around

TP = 0.0010, after which they are light limited; the grazers are quality (phos-

phorus) limited until around TP = 0.0099, after which they are quantity lim-
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Figure 3.15: TP bifurcation diagrams: K = 2.00, TC = 98.2, γ = 0.021. x is on the
left and y is on the right. There is a transcritical bifurcation around TP = 0.029 and
a saddle-node bifurcation at TP = 0.039. An additional saddle-node bifurcation and
Hopf bifurcation may also occur. For TP < 0.029, the grazer extinction equilibrium
is stable; for 0.029 < TP < 0.039, the coexistence equilibrium is stable; and for
TP > 0.039, the limit cycle is stable.

ited. For Figure 3.15, the producers are limited by phosphorus until around

TP = 0.0080, after which they are light limited; the grazers are quality (phos-

phorus) limited throughout. We observe that there is a pattern here: the

producers are limited by phosphorus until TP = Kq.

There were some cases where bistability was observed. At ambient carbon

(TC = 98.2), bistability occurred for K = 0.75, γ ∈ {0.00767, 0.01023, 0.021};

K = 1.00, γ ∈ {0.00767, 0.01023, 0.021}; andK = 2.00, γ ∈ {0.00767, 0.01023}.

Of the high carbon (TC = 409.4) bifurcation diagrams produced, bistability

was observed for K = 0.75, γ = 0.021. The bifurcation diagrams look similar

to Figure 3.16, which demonstrates the high carbon bistability observed. The

limitations at equilibrium in this figure follow the same pattern as Figure 3.15,

with the change around TP = 0.0030.
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Figure 3.16: TP bifurcation diagrams: K = 0.75, TC = 409.4, γ = 0.021. x
is on the left and y is on the right. There is a transcritical bifurcation around
TP = 0.014, a saddle-node bifurcation at TP = 0.0196, a Hopf bifurcation at TP =
0.0197 and a second saddle-node bifurcation at TP = 0.0203. For TP < 0.014, the
grazer extinction equilibrium is stable; for 0.014 < TP < 0.0203, the coexistence
equilibrium is stable; and for TP > 0.0197, the limit cycle is stable.
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More specifically, a stable equilibrium point and a stable limit cycle were

both observed for the same parameter values but different initial conditions,

as shown in Figure 3.17. Note that TP = 0.02 lies in the bistable region, since

this is between the Hopf bifurcation and the second saddle-node bifurcation in

Figure 3.16. The brief interval of stability of the second coexistence equilibrium

branch between the first saddle-node bifurcation and the Hopf bifurcation is

too small to distinguish in the diagram. There is also an unstable equilibrium

around (x, y, p) = (0.1642, 0.3001, 0.0069), with eigenvalues given by λ1 =

−3.7428; λ2 = 0.0059 + 0.2686i; and λ3 = 0.0059 − 0.2686i. Given how

close the real part of λ2 and λ3 is to 0, tristability may also be possible.

However, the correct parameter regime to produce tristability has not yet

been determined. Given the relative bifurcation values of the first saddle-node

bifurcation and the Hopf bifurcation, we would guess tristability would occur

for some TP ∈ (0.0196, 0.0197).

3.4.3 Two parameter bifurcation analysis

Two parameter bifurcation diagrams were also generated using MatCont [10]

for the local closed model. Note that for low phosphorus, there are no bifur-

cations – the grazer extinction equilibrium is stable for all parameter com-

binations considered with TP = 0.003. Bifurcation diagrams were made for

each pair of light-dependent carrying capacity, total system phosphorus, and

total system carbon. In addition to the two parameters being considered, the

other two of K, TP , TC , and γ are also varied within the sets described in the

previous section.
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Figure 3.17: Bistable states for the local closed model, with K = 0.75,
TC = 409.4, TP = 0.020, γ = 0.021, and two distinct initial conditions. For
(x(0), y(0), p(0)) = (0.3599, 0.2445, 0.0097), the coexistence equilibrium point is sta-
ble; for (x(0), y(0), p(0)) = (0.17, 0.30, 0.015), coexistence oscillations are stable.

Light-dependent carrying capacity (K) and total system carbon (TC)

Recall that for low phosphorus, there are no bifurcations and thus the two

parameter bifurcation diagrams would have no curves. The intermediate and

high phosphorus diagrams have more bifurcations and regions.

For intermediate phosphorus (TP = 0.030), the resulting diagrams are sim-

ilar to Figure 3.18 (a). Note that changing γ has no impact on the K bi-

furcation values, while the TC bifurcation points occur at a lower value for

higher γ. We see that for the lowest values of K and TC , there is extinction of

the grazer; then as either or both parameters increase, there is a transcritical

bifurcation and the coexistence equilibrium becomes stable; then there is a

Hopf bifurcation and there is a stable limit cycle; then after a saddle-node

bifurcation, another coexistence equilibrium becomes stable; and then after

a transcritical bifurcation, the grazer extinction equilibrium becomes stable
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Figure 3.18: Two parameter bifurcation diagram for light-dependent carrying
capacity (K) and total system carbon (TC). The stable behaviours in the regions
are: (1) extinction of the grazer; (2) coexistence equilibrium; (3) coexistence limit
cycle; (4) coexistence equilibrium; and (5) extinction of the grazer. There is a
Generalized Hopf point where the Hopf curves intersect.

once more. There is a Generalized Hopf point where the vertical and horizon-

tal Hopf curves intersect. For Figure 3.18 (a), this occurs at K = 0.721274

and TC = 70.962739.

For high phosphorus (TP = 0.300), the diagrams are similar to Figure 3.18

(b). Unlike the intermediate phosphorus case, there are only three regions. As

the parameters increase, the system’s stable behaviour shifts from the grazer

extinction equilibrium, to the coexistence equilibrium, to a limit cycle. There

is no switch to another coexistence equilibrium and then back to the grazer

extinction equilibrium in this case. Similar to the intermediate phosphorus

case, there is a Generalized Hopf point where the Hopf curves intersect. For

Figure 3.18 (b), this occurs at K = 0.721273 and TC = 70.962739.
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Light-dependent carrying capacity (K) and total system phosphorus

(TP )

For ambient carbon (TC = 98.2), two categories of diagrams were observed.

The first occurred for γ = 0.0045, and is shown in Figure 3.19 (a); the second

is shown in Figure 3.19 (b) and occurs for γ ∈ {0.00767, 0.01023, 0.021}. For

the lowest value of γ, there are only two sections: extinction of the grazer

closest to the axes, then coexistence after the transcritical bifurcation. For

higher values of γ, we see more regions. The general pattern is similar to what

has been observed thus far: as either or both parameter values increase, the

stable behaviour is the grazer extinction equilibrium before the transcritical

bifurcation, then the coexistence equilibrium before the Hopf or saddle-node

bifurcation, and then the stable limit cycle.

For ambient carbon and higher γ, there is an interesting transition across

the saddle-node bifurcation curve (see Figure 3.19 (b)). For K larger than the

Hopf bifurcation value, the saddle-node bifurcation value approximates where

the stable behaviour switches from the coexistence equilibrium to the coexis-

tence limit cycle. However, for the brief portion of the saddle-node bifurcation

occurring at K less than the Hopf bifurcation value, a coexistence equilib-

rium is stable both before and after this bifurcation. Consider, for example,

K = 0.65. The bifurcation is now a change in which coexistence equilibria

is stable: for TP less than the saddle-node bifurcation value, the equilibrium

value requires the producers to be light limited and the grazers to be quality

limited; for TP greater than the saddle-node bifurcation value, the equilibrium

value requires the producers to be light limited and the grazers to be quantity
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limited. Comparatively, for K = 0.25, the producer is light limited and the

grazer is quantity limited for TP greater than the transcritical bifurcation; for

K = 1, the producer is carbon limited and the grazer is quality limited. This

suggests that the saddle-node curve should intersect the transcritical curve at

some point with 0.25 < K < 0.5; however, this point could not be found using

MatCont.

For high carbon (TC = 409.4), varying γ does not appear to have a large

effect – only causing a very small difference in bifurcation values for TP . Oth-

erwise the shape and layout of the regions in the high carbon case match

the high γ dynamics for TC = 98.2, as shown in Figure 3.19 (c). However,

the slopes of the slanted transcritical and saddle-node bifurcation curves are

steeper, allowing for the case with four bifurcations seen in Figure 3.9 since a

horizontal line at TP = 0.030 can intersect all four curves, as shown in Figure

3.19 (d).

As in the TP one parameter bifurcation diagrams, there are regions of po-

tential bistability. For Figure 3.19 (b), there is a very small region between

the horizontal saddle-node and Hopf bifurcation curves where bistability was

observed in the one parameter diagrams for TP . Figure 3.19 (c) is more com-

plicated. For the TP bifurcation diagrams, parts of regions 4 and 5 seemed to

possibly allow bistability between an equilibrium and a limit cycle. However,

for the K bifurcation diagrams made, region 4 had only a stable grazer ex-

tinction equilibrium, and region 5 had only a stable coexistence equilibrium.

In these cases, any definitive conclusions on the potential for bistability would

require further study.
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(c) TC = 409.4, γ = 0.00767

0 0.5 1 1.5 2 2.5

K

0

0.01

0.02

0.03

0.04

0.05

T
P

Transcritical
Saddle-node
Hopf
T

P
 = 0.030

1 2 3

1

4

5

(d) TC = 409.4, γ = 0.00767

Figure 3.19: Two parameter bifurcation diagram for light-dependent carrying
capacity (K) and total system phosphorus (TP ). The stable behaviours in the
regions are: (1) extinction of the grazer; (2) coexistence equilibrium; (3) coexistence
limit cycle; (4) bistability or grazer extinction equilibrium; and (5) bistability or
coexistence equilibrium. Note that (d) explains the behaviour observed in Figure
3.9.
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Total system carbon (TC) and total system phosphorus (TP )

The two parameter bifurcation diagrams for TC and TP appear to produce

three general patterns. The first occurs for K = 0.25, and all γ investigated.

In this case we see again the pattern of a stable grazer extinction equilibrium,

then a transcritical bifurcation, and then a stable coexistence equilibrium as

parameters increase. This is shown in Figure 3.20 (a).

The second pattern occurs for γ = 0.0045 for K ∈ {0.75, 1.00, 2.00}. Here

we see that for the lowest parameter values, there is extinction of the grazer.

Then there is a transcritical bifurcation, which yields a coexistence equilibrium.

There is a vertical Hopf bifurcation curve, and a primarily horizontal saddle-

node curve. As parameters increase beyond this, there is a stable limit cycle,

as shown in Figure 3.20 (b). There is also a cusp point along the saddle-

node curve. For Figure 3.20 (b), this point occurs at TC = 107.82902 and

TP = 0.01694185.

Similar to some of the light and total system phosphorus diagrams, in

this pattern we see an extension of the saddle-node curve into the coexistence

equilibrium region. For TC = 99.9629 and TP = 0.015, the producer is carbon

limited at equilibrium, while the grazer is quality limited; for TC = 99.9629

and TP = 0.020, the producer is carbon limited and the grazer is quantity

limited. Therefore, the extension of the saddle-node curve into Region 2 is

indicative of a switch between quality and quantity limitation of the grazer.

Although both are coexistence equilibria, they likely have different forms.

The third general two parameter bifurcation diagram was observed for

K ∈ {0.75, 1.00, 2.00} and γ ∈ {0.00767, 0.01023, 0.021}. This diagram closely
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resembles Figure 3.19 (b), and follows the similar pattern we have observed

several times: as either or both parameter values increase, the stable behaviour

is the grazer extinction equilibrium before the transcritical bifurcation, then

the coexistence equilibrium before the Hopf or saddle-node bifurcation, and

then the stable limit cycle. At the intersection of the Hopf curves, there is a

Generalized Hopf point. For Figure 3.20 (c), this codimension 2 bifurcation

occurs at TC = 94.455184 and TP = 0.0195455.

For both Figure 3.20 (b) and (c), there is a region of potential bistabil-

ity between the horizontal Hopf curve and the horizontal saddle-node curve.

While this region was observed in the one parameter TP bifurcation diagrams,

the appropriate TC bifurcation diagrams have yet to be completed. Further

investigation would be required to validate the bistable region indicated by

the horizontal Hopf curve.

3.5 Discussion

There are many ecological stoichiometry models which have been developed

to explicitly track the impacts of multiple elements on ecological interactions.

However, these models usually assume that the system is completely open

to carbon. This limits their usefulness in studying the potential impacts of

increased atmospheric carbon dioxide concentration on food webs, since the

availability of carbon for photosynthesis is not modelled. It has been proven

that an increase in atmospheric carbon dioxide can cause an increase in the

rate of photosynthesis, and a corresponding increase in growth and production

of autotrophs. When producer-grazer systems are closed to nutrients such as
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Figure 3.20: Two parameter bifurcation diagram for total system carbon (TC)
and total system phosphorus (TP ). The stable behaviours in the regions are: (1)
extinction of the grazer; (2) coexistence equilibrium; and (3) coexistence limit cycle.
In (b) there is a cusp point at TC = 107.8, TP = 0.01694; in (c), there is a Generalized
Hopf point where the Hopf curves intersect.
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phosphorus or nitrogen, the resulting decrease in nutrient levels in the producer

can impact the growth of the grazers, which tend to have higher, more rigid

nutrient requirements [44, 49].

In order to study the potential impacts of the current global increase in

atmospheric carbon dioxide on producer-grazer systems, several models were

developed to allow for explicit consideration of carbon availability. All three

models were based on the WKL model [53], which was itself based on the LKE

model [29]. The first model developed here has an additional carbon-dependent

carrying capacity (h(C)) for producer growth in the minimum term, as well

as explicit consideration of respiration. This “local closed model” is closed to

carbon. The second model builds on the local closed model by including the

reduction in photorespiration rate observed due to elevated CO2 by using a

function of free system carbon that reduces the producer respiration rate with

more free carbon in the system, and is here called the “local closed model with

PCO”. The third, and final model, extends the local closed model by allowing

for some degree of openness in the system for carbon, and is therefore called

the “local open model”.

Most of the analysis completed here was for the local closed model. For

this model, there is a biologically meaningful region which is positively invari-

ant. There is also a sufficient condition for global asymptotic stability of the

total extinction equilibrium, which depends on several parameters, including

the total phosphorus in the system. If we assume Holling type I functional re-

sponses for f and g, there are between 1 and 2 boundary equilibria, and there

may also be coexistence equilibria. When f and g take the form of Holling

type II functional responses, there are between 1 and 3 boundary equilibria,
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and potentially coexistence equilibria. There are many complicated conditions

for stability of these equilibria, dependent upon which factors are limiting for

producer and grazer growth at the equilibria.

Bifurcation analysis of the local closed model generally demonstrated se-

quential limitation by the different growth factors for the producer, with the

general pattern being stability of a grazer extinction equilibrium, then a co-

existence equilibrium, and then a limit cycle. Occasionally the system also

transitions to a second stable coexistence equilibrium via a saddle-node bi-

furcation, and very rarely, the system then returns to the grazer extinction

equilibrium.

The three parameters examined in the bifurcation analysis were K, TC ,

and TP . These parameters contribute to determining the limiting factors for

growth of the producer and grazer. We note the similarities between the

diagrams for K and TC in particular. For example, for low phosphorus and

γ = 0.01023, we have Figure 3.5 and 3.10. In both diagrams, the grazer

extinction equilibrium was stable throughout, and for a sufficiently high value

of the bifurcating parameter, we have the same phosphorus limited grazer

extinction equilibrium. We can similarly match the rest of the K and TC

diagrams, with the exception of the last K diagram. The figures match up as

follows: 3.6 and 3.11; 3.7 and 3.12; and 3.8 and 3.13. The corresponding TC

diagram for Figure 3.9 is not shown here, but we found that there is also a

second transcritical bifurcation in TC for values of K higher than 2.04 around

TC = 201.19309. Although they follow a similar pattern, the TP bifurcation

diagrams are not nearly as similar to K and TC as they are to each other.

The similarity between the qualitative impacts of K and TC explains the
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matching vertical and horizontal lines intersecting at almost right angles ob-

served in the two parameter bifurcation diagrams for these parameters, shown

in Figure 3.18. We also note the similarities between Figures 3.19 and 3.20,

particularly between the low γ and light cases (a), and the intermediate γ

and light cases (b). Here changing γ is an analogue for changing TC , since

TC >> x, y, and thus changing either γ or TC has a similar impact on

h(C) = γ(TC − x − y). Altogether, these similarities suggest that the light-

dependent producer carrying capacity should not be included as well as the

carbon-dependent producer carrying capacity in these new models.

Simulations were used to compare the three models, along with the WKL

model with respiration, for a variety of parameter combinations. In general,

the combinations examined either produced a grazer extinction equilibrium, a

coexistence equilibrium, or coexistence oscillations. In certain cases, bistabil-

ity between a coexistence equilibrium and a limit cycle was observed. Overall,

the dynamics seemed to be very similar between the models, with the excep-

tion of the cases where the WKL model with respiration is drastically different

from our three models. Even though the differences were minimal, the most

distinct model at high carbon was the one incorporating consideration of reduc-

tion of photorespiration with increased availability of carbon. Taken together,

the models suggest that increased carbon sequestration and decreased stoi-

chiometric quality of producers would require sufficient light and nutrients, as

expected given the application of Liebig’s Law of the Minimum.

There are limitations for both these models and their analyses. All three

models rely on an assumption of independent colimitation of producer growth

by light, carbon, and phosphorus. The assumption of independent colimitation
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by light and phosphorus is a common assumption in ecological stoichiometry

models [29, 53]. Also, there is evidence for independent colimitation by carbon

and phosphorus [43]. However, there is no strong support for the assumption

of independent colimitation of producer growth by light and carbon. This

simplifying assumption is not only a limitation on applicability of the results,

but it also may unrealistically limit the growth of the producer. There is em-

pirical evidence that elevated carbon dioxide is correlated to increased growth

of plants growing in shade [24, 31, 57]. This is likely because elevated car-

bon dioxide increases light use efficiency, partially since the increase in carbon

fixation due to reduction of photorespiration requires no additional light [12],

as well as because elevated CO2 can decrease the light compensation point of

a leaf [30]. This evidence supports the theory that colimitation of light and

carbon may not be independent.

Additional impacts of increased carbon dioxide on producers that were not

incorporated into this model include changes in carbon allocation, changes in

light or nutrient efficiencies, changes in dark respiration (mitochondrial/cellular

respiration), and changes in decomposition rates. There is contradictory ev-

idence for changes in carbon allocation. Some evidence seems to support an

increase in plant root:shoot ratio and leaf area [15]; some supports no stimula-

tion in foliage [12]; and some suggests an increase in fine root allocation at the

expense of wood and leaves, or increase in wood allocation at the expense of

leaves [9, 41]. Similarly, the evidence for changes in respiration is inconsistent,

with plants grown in elevated carbon dioxide exhibiting an increase, decrease,

or no significant change in dark respiration rates [25]. Lastly, incorporation of

changes in the rates of decomposition in this model, such as those discussed
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in [8], would require relaxation of the assumption that carbon and phosphorus

released by the producer and grazer is immediately available for use.

There are many opportunities for future work for both this specific research

question and these models. The vast majority of analysis completed is for

the local closed model, and thus the more complicated models remain to be

analyzed. In particular, it would be interesting to consider the impact of the

“openness” (α) for the local open model. For the model with PCO, a more

evidence-based method of selecting ρ(C), as well as modification to see at

what point dynamics shift, may allow us to better understand the impacts of

increased global atmospheric carbon dioxide concentration on producer-grazer

systems. Also, the bifurcation analysis completed is local. Even with the

variety of parameter regimes considered, there are likely other behaviours that

would be observed in natural systems that are not explored here.

Modelling wise, incorporation of more factors such as those described above

may be interesting. In addition, a model considering nitrogen instead of phos-

phorus as a limiting nutrient could be illuminating. Nitrogen is a commonly

limiting nutrient in terrestrial systems [44], and it may be more closely related

to photosynthesis since up to 25% of leaf nitrogen is used in Rubisco, the

carbon fixation enzyme, and increased efficiency of Rubisco due to increased

atmospheric carbon dioxide concentration causes a reduction in allocation of

nitrogen to Rubisco [12].

Additional research questions that could be addressed using these models

include investigation of dynamic shifts due to elevated carbon dioxide specifi-

cally for terrestrial versus aquatic systems, similar to Chapter 2; and investi-

gation of the impact of elevated atmospheric carbon dioxide concentration on
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competition between grazers with different nutrient requirements.

Lastly, all of these models would likely benefit from data fitting and vali-

dation. As it stands, many of the parameter regions examined are primarily

theoretical. It would be valuable to apply data from free-air carbon enrich-

ment experiments, as well as experiments such as those conducted by Urabe et

al. (2003) [49] to understand which parameter regions require further study.
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Chapter 4

Discussion

4.1 Conclusions

Many stoichiometric models have been developed from the LKE model, which

was itself developed to address the paradox in which abundant producers did

not increase abundance of the grazers which consumed them [29]. The WKL

model relaxed the assumption that there was no free phosphorus in the medium

[53]. Prior to this thesis, analyses of the WKL model in particular include sta-

bility analysis assuming Holling type I functional responses, and local bifurca-

tion analysis for the light-dependent carrying capacity, K. Although analyses

focussing on K provide information about the potential for this paradox occur-

ring, they do not address other questions, such as how the different producer

turnover rates between terrestrial and aquatic ecosystems impact dynamics.

Also, since this model, as well as most other stoichiometric models, requires

the system to be open to carbon, it is difficult to answer questions about the

impacts of elevated atmospheric carbon dioxide concentrations on ecosystems
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using the WKL model.

From chapter 2, we observe that the WKL model suggests that aquatic

ecosystems are more prone to exhibiting coexistence than terrestrial ecosys-

tems when we assume that the producer’s intrinsic growth rate (r) and the

grazer’s ingestion rate (c) are the only two parameters that differ between

these ecosystems. Local sensitivity analysis implies c has more influence than

r on the asymptotic system state, and changing K influences the impact of

r more than c. However, other parameters seem to be more influential. At

extreme values of K, the grazer loss rate is relatively influential, and if d̂ is too

high relative to c, extinction of the grazer is guaranteed. Intermediate light

levels in some terrestrial ecosystems may explain persistence of grazer popula-

tions observed naturally, while a lower grazer loss rate may explain terrestrial

grazer persistence in low light conditions.

In chapter 3, we developed a few different models to study the impacts of el-

evated atmospheric carbon dioxide concentration on producer-grazer systems.

For the local closed model, the focus of this chapter, we have a biologically

meaningful forward invariant set, a sufficient condition for global asymptotic

stability of the total extinction equilibrium, and the forms and some stabil-

ity results for the grazer extinction equilibria using either Holling type I or

II functional responses. We observed sequential limitation by the producer

growth factors, where the limiting parameter increasing forces the system to

follow a pattern of a stable grazer extinction equilibrium, then a stable coexis-

tence equilibrium, and then a stable limit cycle. Ultimately, the three models

produced very similar results for the parameter regimes examined.
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4.2 Future Work

Future work to address differences between terrestrial and aquatic ecosystems

could include examination of larger parameter ranges. In particular, param-

eter ranges or combinations determined via data fitting could be particularly

illuminating. Also, explicit consideration of the grazer’s loss rate in addition to

the parameters that determine the producer turnover time may allow us to un-

derstand how terrestrial grazer populations persist naturally. This may require

relaxation of the assumption of strict homeostasis for the grazer, which may

require a different model [54, 55]. Global stability, bifurcation, and sensitivity

analyses could also be useful, as those completed here are all local.

For the impact of elevated carbon dioxide on producer-grazer systems, fu-

ture work could include consideration of other effects assumed to be negligible

here, such as changes in carbon allocation, dark respiration rates, and decom-

position rates. Analyses for the local closed model with PCO and the local

open model also have yet to be done. Similarly, global analyses for the local

closed model could also be completed. Due to its close ties to photosynthesis,

modelling nitrogen instead of phosphorus as the limiting nutrient may be illu-

minating, although considerably more complicated due to systems rarely being

closed to nitrogen. One might also have to consider if colimitation between

nitrogen and the photosynthetic factors is independent. However, before any

of this is completed, it would be beneficial to use data to validate these models,

and decide what parameter regimes are realistic.
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Appendix A

Additional stability analysis for Chapter 2

Case 1: p̄ < Kq and p̄ < θx̄: E1 = (p̄/q, 0, p̄).

Boundary equilibrium:(
dq(â+ T )− ĉT

q(dq − ĉ)
, 0,

dq(â+ T )− ĉT
dq − ĉ

)
.

Jacobian:

A1 =


−r − cp̄

aq + p̄

r

q

0
cêp̄q

θ(aq + p̄)
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθp̄

q(â+ T − p̄)2
− cp̄q

aq + p̄
− âĉp̄

q(â+ T − p̄)2
− d

 .

Let the entries of matrix A1 be labelled with aij, for the entry in row i,
column j of matrix A1. Then we have

a11 = −r,

a12 = − c[dq(â+ T )− ĉT ]

q[a(dq − ĉ) + d(â+ T )]− ĉT
,

a13 =
r

q
,

a21 = 0,

a22 =
cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂,

a23 = 0,
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a31 = dq,

a32 = −θ(dq(â+ T )− ĉT )(dq − ĉ)
âĉq

− cq[dq(â+ T )− ĉT ]

âdq + (aq + T )(dq − ĉ)
,

a33 = −d
2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq
.

Then

tr(A1) = a11 + a22 + a33

= −r +
cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂− d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq
.

det(A1) = a22(a11 ∗ a33 − a13 ∗ a31)

=

(
cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂
)

(
r

(
d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
− dr

)
.

A11
1 = a22 ∗ a33

=

(
cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂
)(
−d

2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
.

A22
1 = a11 ∗ a33 − a13 ∗ a31

= r

(
d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
− dr.

A33
1 = a11 ∗ a22

= −r ∗
(

cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂
)
.

We observe that this matrix has the following eigenvalues (see App. B):

λ1 =
cêq[dq(â+ T )− ĉT ]

θ(aq(dq − ĉ) + dq(â+ T )− ĉT )
− d̂,

λ2 = −1

2

√(
−r +

d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)2

+ 4dr

+
1

2

(
−r − d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
,
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λ3 =
1

2

√(
−r +

d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)2

+ 4dr

+
1

2

(
−r − d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
.

The WKL model with Holling type II functional responses has 12 param-
eters: r, K, c, ĉ, a, â, ê, d̂, d, θ, q, and T (see Table 2.1). The parameter that
is not in these eigenvalues is K. Therefore, stability of this equilibrium does
not depend on K.

Case 2: p̄ < Kq and p̄ > θx̄: E1 = (p̄/q, 0, p̄).

Boundary equilibrium:(
dq(â+ T )− ĉT

q(dq − ĉ)
, 0,

dq(â+ T )− ĉT
dq − ĉ

)
.

Jacobian:

A2 =


−r − cp̄

aq + p̄

r

q

0
cêp̄

aq + p̄
− d̂ 0

ĉ(T − p̄)
â+ T − p̄

− âĉθp̄

q(â+ T − p̄)2
− cp̄q

aq + p̄
− âĉp̄

q(â+ T − p̄)2
− d

 .

Let the entries of matrix A2 be labelled with aij, for the entry in row i,
column j of matrix A2. Then we have

a11 = −r,

a12 = − c[dq(â+ T )− ĉT ]

q[a(dq − ĉ) + d(â+ T )]− ĉT
,

a13 =
r

q
,

a21 = 0,

a22 =
cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂,

a23 = 0,
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a31 = dq,

a32 = −θ(dq(â+ T )− ĉT )(dq − ĉ)
âĉq

− cq[dq(â+ T )− ĉT ]

âdq + (aq + T )(dq − ĉ)
,

a33 = −d
2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq
.

Then

tr(A2) = a11 + a22 + a33

= −r +
cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂− d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq
.

det(A2) = a22(a11 ∗ a33 − a13 ∗ a31)

=

(
cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂
)

(
r

(
d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
− dr

)
.

A11
2 = a22 ∗ a33

=

(
cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂
)(
−d

2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
.

A22
2 = a11 ∗ a33 − a13 ∗ a31

= r

(
d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
− dr.

A33
2 = a11 ∗ a22

= −r ∗
(

cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂
)
.

We observe A2 has the following eigenvalues (see App. B):

λ1 =
cê[dq(â+ T )− ĉT ]

aq(dq − ĉ) + dq(â+ T )− ĉT
− d̂,

λ2 = −1

2

√(
−r +

d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)2

+ 4dr

+
1

2

(
−r − d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
,
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λ3 =
1

2

√(
−r +

d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)2

+ 4dr

+
1

2

(
−r − d2q2(â+ T ) + ĉT (ĉ− 2dq)

âĉq

)
.

The WKL model with Holling type II functional responses has 12 param-
eters: r, K, c, ĉ, a, â, ê, d̂, d, θ, q, and T (see Table 2.1). The parameters
that are not in these eigenvalues are K and θ. Therefore, stability of this
equilibrium does not depend on these two parameters.

Additional stability analysis for Chapter 3

Holling type I

Case 1: p̄/q ≤ min{K, γ(TC − x̄− ȳ)} and p̄ < θx̄.

Boundary equilibrium: (x̄, ȳ, p̄), where

x̄ =
ĉTP (r − lx)− dqr

ĉqr
,

ȳ = 0,

p̄ =
ĉTP (r − lx)− dqr

ĉ(r − lx)
.

Jacobian:

A1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
where

a11 = lx − r,

a12 = −cĉTP (r − lx) + cdqr

ĉqr
,

a13 =
(r − lx)2

qr
,

a21 = 0,

a22 =
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly,

a23 = 0,
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a31 =
dqr

r − lx
,

a32 = − ĉTP θ(r − lx)− dqrθ
qr

− cĉTP (r − lx)− cdqr
ĉ(r − lx)

,

a33 = − ĉTP (r − lx)
qr

.

We see

tr(A1) = lx − r +
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly −

ĉTP (r − lx)
qr

.

det(A1) =

(
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly

)((
ĉTP (r − lx)2

qr

)
− d(r − lx)

)
.

The eigenvalues are λ such that (see Appendix B for proof)

0 =

(
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly − λ

)
(

(lx − r − λ)

(
− ĉTP (r − lx)

qr
− λ
)
− d(r − lx)

)
.

Therefore, the three eigenvalues for A1 are

λ1 =
cĉêTP (r − lx)− cdêqr

ĉθ(r − lx)
− d̂− ly,

λ2 = −1

2

√(
lx − r +

ĉTP (r − lx)
qr

)2

+ 4d(r − lx) +
1

2

(
lx − r −

ĉTP (r − lx)
qr

)
,

λ3 =
1

2

√(
lx − r +

ĉTP (r − lx)
qr

)2

+ 4d(r − lx) +
1

2

(
lx − r −

ĉTP (r − lx)
qr

)
.

The local closed model with Holling type I functional responses has 14
parameters: r, K, c, ĉ, ê, d, θ, q, TP , TC , d̂, lx, ly and γ. From the above
equations for λ1, λ2 and λ3, we see that the eigenvalues do not depend upon
K, TC , or γ. Therefore, stability of this equilibrium does not depend on these
three parameters.
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Case 2: p̄/q ≤ min{K, γ(TC − x̄− ȳ)} and p̄ > θx̄.

Boundary equilibrium: (x̄, ȳ, p̄), where

x̄ =
ĉTP (r − lx)− dqr

ĉqr
,

ȳ = 0,

p̄ =
ĉTP (r − lx)− dqr

ĉ(r − lx)
.

Jacobian:

A2 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
where the entries are the same as in Case 1 (above), except

a22 =
cĉêTP (r − lx)− cdêqr

ĉqr
− d̂− ly.

We know that the middle entry is an eigenvalue. Also,

tr(A2) = lx − r +
cĉêTP (r − lx)− cdêqr

ĉqr
− d̂− ly −

ĉTP (r − lx)
qr

.

det(A2) =

(
cĉêTP (r − lx)− cdêqr

ĉqr
− d̂− ly

)((
ĉTP (r − lx)2

qr

)
− d(r − lx)

)
.

We can solve for the eigenvalues, as in the Case 1 (see Appendix B):

λ1 =
cĉêTP (r − lx)− cdêqr

ĉqr
− d̂− ly,

λ2 = −1

2

√(
lx − r +

ĉTP (r − lx)
qr

)2

+ 4d(r − lx) +
1

2

(
lx − r −

ĉTP (r − lx)
qr

)
,

λ3 =
1

2

√(
lx − r +

ĉTP (r − lx)
qr

)2

+ 4d(r − lx) +
1

2

(
lx − r −

ĉTP (r − lx)
qr

)
.

The local closed model with Holling type I functional responses has 14
parameters: r, K, c, ĉ, ê, d, θ, q, TP , TC , d̂, lx, ly and γ. We see that stability
does not depend on K, TC , γ, or θ, since these parameters are not in the
equations for the eigenvalues.
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Holling type II

Case 1: p̄/q ≤ min{K, γ(TC − x̄− ȳ)} and p̄ < θx̄.

Boundary equilibrium: (x̄, ȳ, p̄), where

x̄ =
p̄

q

[
1− lx

r

]
=
dqr(â+ TP )(r − lx)− ĉTP (r − lx)2

dq2r2 − ĉqr(r − lx)
,

ȳ = 0,

p̄ =
dq(â+ TP )− ĉTP

(
1− lx

r

)
dq − ĉ

(
1− lx

r

) =
dqr(â+ TP )− ĉTP (r − lx)

dqr − ĉ(r − lx)
.

Jacobian:

B1 =


lx − r − cp̄(r − lx)

aqr + p̄(r − lx)
(r − lx)2

qr

0
cêqrp̄

θ(aqr + p̄(r − lx))
− d̂− ly 0

dqr

r − lx
− âĉθp̄(r − lx)
qr(â+ TP − p̄)2

− cqrp̄

aqr + p̄(r − lx)
− âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d

 .

The eigenvalues are (see Appendix B for proof)

λ1 =
cêqrp̄

θ(aqr + p̄(r − lx))
− d̂− ly,

λ2 = −1

2

√(
lx − r +

âĉp̄(r − lx)
qr(â+ TP − p̄)2

+ d

)2

+ 4d(r − lx)

+
1

2

(
lx − r −

âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d
)
,

λ3 =
1

2

√(
lx − r +

âĉp̄(r − lx)
qr(â+ TP − p̄)2

+ d

)2

+ 4d(r − lx)

+
1

2

(
lx − r −

âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d
)
,

where â+ TP − p̄ = − âĉ(r − lx)
dqr − ĉ(r − lx)

.

Note that these eigenvalues do not have p̄ substituted in. The local closed
model with Holling type II functional responses has 16 parameters: r, K, c, ĉ,
a, â, ê, d, θ, q, TP , TC , d̂, lx, ly and γ. Similar to Case 1 for the Holling type
I functional responses, the eigenvalues do not depend on K, TC or γ.
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Case 2: p̄/q ≤ min{K, γ(TC − x̄− ȳ)} and p̄ > θx̄.

Boundary equilibrium: (x̄, ȳ, p̄), where

x̄ =
p̄

q

[
1− lx

r

]
=
dqr(â+ TP )(r − lx)− ĉTP (r − lx)2

dq2r2 − ĉqr(r − lx)
,

ȳ = 0,

p̄ =
dq(â+ TP )− ĉTP

(
1− lx

r

)
dq − ĉ

(
1− lx

r

) =
dqr(â+ TP )− ĉTP (r − lx)

dqr − ĉ(r − lx)
.

Jacobian:

B2 =


lx − r − cp̄(r − lx)

arq + p̄(r − lx)
(r − lx)2

qr

0
cêp̄(r − lx)

aqr + p̄(r − lx)
− d̂− ly 0

dqr

r − lx
− âĉθp̄(r − lx)
qr(â+ TP − p̄)2

− cqrp̄

aqr + p̄(r − lx)
− âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d

 .

The eigenvalues are (see Appendix B for proof)

λ1 =
cêp̄(r − lx)

aqr + p̄(r − lx)
− d̂− ly,

λ2 = −1

2

√(
lx − r +

âĉp̄(r − lx)
qr(â+ TP − p̄)2

+ d

)2

+ 4d(r − lx)

+
1

2

(
lx − r −

âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d
)
,

λ3 =
1

2

√(
lx − r +

âĉp̄(r − lx)
qr(â+ TP − p̄)2

+ d

)2

+ 4d(r − lx)

+
1

2

(
lx − r −

âĉp̄(r − lx)
qr(â+ TP − p̄)2

− d
)
.

The local closed model with Holling type II functional responses has 16
parameters: r, K, c, ĉ, a, â, ê, d, θ, q, TP , TC , d̂, lx, ly and γ. Similar to Case
2 for the Holling type I functional responses, the eigenvalues do not depend
on K, TC , γ, or θ.
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Appendix B

Claim: For a matrix of the form

A =

a b c
0 d 0
f g h


where all entries are real numbers, the eigenvalues are

λ1 = d,

λ2 =
1

2

(
−
√

(a− h)2 + 4cf + a+ h
)
,

λ3 =
1

2

(√
(a− h)2 + 4cf + a+ h

)
.

Proof: We know an eigenvalue λ of matrix A satisfies det(A−λI) = 0. Hence,
we solve this equation for λ.

We see that

det(A− λI) = det

a− λ b c
0 d− λ 0
f g h− λ

 .

Using a cofactor expansion along the second row, we see

det(A− λI) = (d− λ)det

([
a− λ c
f h− λ

])
= (d− λ)((a− λ)(h− λ)− cf)

= (d− λ)(ah− (a+ h)λ+ λ2 − cf)

= (d− λ)(λ2 − (a+ h)λ+ (ah− cf)).

We can find solutions to the following using the quadratic formula:

(d− λ)(λ2 − (a+ h)λ+ (ah− cf)) = 0.
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The resulting solutions are

λ1 = d,

λ2 =
1

2
(
√

(a+ h)2 − 4(ah− cf) + a+ h),

λ3 =
1

2
(−
√

(a+ h)2 − 4(ah− cf) + a+ h).

Clearly

(a+h)2−4(ah−cf) = a2+2ah+h2−4ah+4cf = a2−2ah+h2+4cf = (a−h)2+4cf,

and this proves the claim.
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