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‘ . An\'s'i'nac'r,, ,
N

A semantic net system 1n‘wh1ch knowledge is topically
‘organlzed around concepts has been under development at the
University of Alberta for some years, This thesis attempts .
to extend the infetehce capabilities of the resolution based
theorem-prover of the - system, so as to enable it to
,eff1c1ently answer some of the"’ questlons that people answer

"without thinking". Two problems dealt with are, first,

genéralizing,and'formalizing to a certain-extent ear;ier
results on taxonomjc‘inference (e:g., for part-of

relationShips or taxonomies of types) and, second, prov1d1ng

- a numer1cally coded spatlaP representatlon for colours whlch

allows constant time compatlblllty checklng of various

hedged and unhedged colour terms,

iv:
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1. Introduction
N .
A semantic net system in which knowledge is topically

organized around concepts has been under development at the
University of Alberta for some year§ [Schubert, Goebel &
Cercone 1979, Covington‘& Schubert 1980). The system is
capable of automatic topical classification and insertion of«
modal logic input seﬁtences, concept and topic orienfed

retrieval, and property inheritance of a rather general

sort,

Inferences are generallylhandled in the systém‘by a
resolution theorem prover. Resolution was chosen because a
canonical representation was necessary for storing
propositions‘and because disiunctive clauses facilitate the
kind of retrieval of relevant propositions that is required
for question answering. Diéjunctive\clauses usually contain
relevant facts, while conjunctive clauses, say, do not ,
always contain literals that shkuld be copinected in any
manner. For example, the clause elephaht(x)v*animal(xb
reflects a natural connection between the concepts‘
"elephant” and "animal" which ought to be exploited in
retrieving relevant propositions for question answering,
while a clause such as arnimal(Clyde)rgrey(Clyde) makes a
conﬁection that cannot be of any use for these purposes.
Moreover, dis{unctive clauses retain the symmetry in the

meaning of utterances, such as "if x is a cat then x is not



a dog", which might, in a natural deduction system be
translated into the clause cat(x)=>~dog(x) while it is
logically equivalent to dog(x)=>-cat(x). In a resolution
theorem prover its representation is ~cat(x)v~dog(x). For

all these reasons resolution was chosen.

This thesis is concerned with extending the inference
capabilities of the system being developed, to enable it to
answer some of the kinds of questions which people can
answer "without thinking". Such special-purpose mechanisms
are essential adjuncts to any general inference system based
on symbolic logic. They may be used by a resolution based
theorem prover to evaluate propositions or to extend the
types of allowable resolutions. These operations can often

reduce long portions of.resolution proofs to single steps.

~Specifically, evaluating propositions is useful a; a
means of eliminating literals that cannot contribute to the
proof. For example, suppose literal P(a,b) expresses that "a
is part of b", and can be proved true or false by a special
reasoning subsystem. Suppose further that the clause
P(a,b)vQ(z) has been generated in the course of a proof.
Then if P(a,b) is proved true, Q(z) can be removed from the
clause (since it does not con£ribute\any new information)
and if P(a,b) is proved false, it can be itself deleted f:;m
the clause. Without speégél methods of evaluation,

~

elimination of these .literals might require many resolution



steps.,

Extended resolution allows literals that are provably
incompatible to be resolved. For example, it should be
possible to resolve {red(x),green(x)} once it has been
determined byxthé»special reasoning subsystem that "red" and
"green” are incompatible predicates; or
{elephant (Clyde),~animal (x)} coula be resolved by a
specialized subsystem that can reason about generalization.
Again, many resolution steps might be required to detect

such incompatibilities without special inference methods.

Special purpose systems have been under development for
many types of inference. Previous work on this subject iﬁ
various areas is surveyed in chapter 2. This thesis has
concentrated on efficient inference of inciusion and
disjointness relationships in quasi-hierarchies of parts and

for (possibly modified) colour predicates.

Most of the work presented here also appears in
[Papalaskaris & Schubert 1981] and [Papalaskaris & Schubert

19821



1.1 Inference about Parts

"problems” such as

Consider the relative ease with which people can solve

(1)  Does a dog have a spine?

(2) Is sulphur a precious metal?
in comparison with a problem such as the following:

(3) The members of a certain group of people have the
following properties. If any one member of the group
envies another member, and that other member envies a
ﬁhird, then the firgt also envies the third; and if
any two members of the group envy the same person then
they fove each other. Al, Biil, Cecil and Didi are
members of the group, and Al envies Bill, Cecil envies

Bill, and Didi envies Cecil. Does Didi love Al?

(1) and (2) can be solved "without thinking™, but (3)
requires some deliberate thought. (Of course some mehtal
effort is réquired ﬁerely to understand the problem, but
séme additional effort is required to solve it). Yet from a
logical point of Qiew (1)-(3) are very much the same kinds
‘ »

of problems, namely problems of inferring inclusion or

disjointness relationships in taxonomic structures, and (2)



,:p:obabl§ requires as many|inference steps as (3) if it is

ansﬁered by applying a uniform proof proéedure‘(resolution
based or otherwise) ?o a set of axioms dgscribiné a taxonomy
of sﬁbstances. Note'that‘it>would be implausible to suppose
that people recall that sulphur is not a precious metal as
an explicitly known fact, rather than an inference.

_ v t

. This suggests that (1) and (2) are.solQed by very
effiﬁient specialfpurpose meﬁhods that exploit the.étructure
of taxonomies, while (3) is éolVed by more laborious general
methods. Which type of method is used'ig_a matter of
familiarity: if we haQe'reflected on.them:elationships,
betﬁegn Al, Bill, Cecil and Didi - or a much larger group -
at'lengtp} and the relationships can bé viewed
taxonoﬁfcaily, we will eventually assimilate the taxonomy in
the same way we have assimilated the taxonomiés of animal

parts, or the taxonomies of substances.

Even if these comments are‘psychdlogically‘incorrect,
théy servé to make a practical point concerning AI systems:
if §uch gfstems are to use'taxonomic knowled§e-with the same
\ease as humans, tﬁey will-have‘to be equipped with
special-pﬁrpose infergnce mechanisms for doing so instead of
Qrélyiné‘on generai probiem-solving strategies such as
recursive problem reduction. This as an important challenge

in AI, given the ubiquity of parts hierarchies and concept

'hierarchies-in.virtually all fields‘of knowledge. A great



many pést and present AI systems have made allowance for
<hiefaréﬁies of various kinds. For exa;ple, Raphael's SIR
[1968] effectiveiy.exploited the transitivity of partFof
reiationships'and Quillian's Semantic Memory [1968]
korganized concepts as "subsgt?superset";taxonomies;
(neithef,jiﬁcidehtally, paid much attention to possible
exclusion relationships among subpérts or subconcepts). More
receﬁlly Philip Hayes [1977] "has developed network o
structures and teéhniéues.for using knowledge abou£ part-of
relationships, and Fahlman [1977] has made proposals for
reasoning about "tangled" overlapping concept bierérchies in

‘his NETL system:

A shortcoming of much of this work has been the lack of
any attempt to analyse ﬁhe adequaty’of the proposed methods;
What types of quesfions can they answer? Are the answers
they derive reliably corr;;t? To\what classes of hietarchie$

~or "tangled" hierarchies do they lapply? Will an answer be
o

[

derived within a reasonable length of time? : /

\\

'In an attempt to remedy this Qbortcoming,‘Schubert
[1979; 1980] studied sets of,partitioging‘agsertiéns of the
form [a P a,...an], meaning that object a is partitionéd
into disjoint parts a,,...,an, with P defined in terms of a
part-of relation "c"., Such sets of assertions correspond to

arbitrarily'"tangled" hierarchies. One of the first findings

was that in this general case even the simplest questions,



such as ?[a part-of b] can be forbiddingly'difficult)to
ansner (co-NP-complete). This is surpriSing if one is
inclined to believe in the generality and'efficiency of
"labelfprdpagation" methods. The next step was to define a
class of P-graphs (where a P-graph:is essentially a set of
_partitioning assertions) which avoids the intractability of
unrestricted P-graphs, yet permits "tangled hierarchies" of
sufficiently general kinds to be useful in practical
inference problems. To this end a closed P- graph ‘was
defined, roughly as a set of P-assertions whlch (directly or
indirectly) decompose'all parts mentioned into a subset of a
fixed set of ultiﬁate'parts. Graphically, closed P-graphs
have the appearance of overlapping part1t1on1ng hierarchies
in which all downward paths terminate at the leaves of some
common "main" hierarchy whose root represents the merge of
all parts mentioned. Thus closed P- graphs can represent

multlple views" of the same object.

o

'Closed P-graphs admit very efficient (linear’or

sublinear) inference methods for QUestions of type
?[a part-of b} or ?[a disjoint—from b} while still allowing
some tangling of hlerarchles [Schubert 1979]. ‘Moreover,
these methods are provably complete. This partlally solves
-the problem orlg;nally addressed.

. T !‘,‘
" The first objective of chapter 3 is to formalize the

definition -of P-graphs, hierarchies and closed P-graphs and,

N



a
in general, to shore up the theoretical foundations of the
earlier work by supplying axioms for the part-of relation,
stafing some immediate consequences and carefully defining
various kinds of P-graphs and relevant notions.
Model-theoretic te;hniqueé are developed which provide a;

basis for proving inference algorithms for P-graphs correct

and complete;

éé?; The sécond objective is to liberalize the notion of a
éclosed P-graph so as to provide a more.flexible. .
representation for parts structures without sacrificing
inference efficiency. It was noted in [Schubert 1979] (and
proved in [Schubert 1980]) that an arbitrary P-graph can in
principle be‘converted to a logically equivalent closed
’ )

P-graph. However, the equivalent closed graph may be much

larger than the original open graph.

Consider the folloying situation. Suppose éhat a person
(or computer) knows who the faculty members a,,...,a,s of
cextain computer science department C are, and also knows )
that the department divides organiiatiqnally'into a set‘of//
non—qverlapping administrative units, viz. a chairman C., én
‘advisory cémmittee C,, a library committee c,, a colloguium
committee c,, and graduate and undergraduate committees, és
and c,. He/she/it doesn't know the current chairman 6r

constitution of the committees (perhaps after being out of

touch for a year). This information, in the form of a



P-graph, is shown in Fig. 1. ' Note that not 1}1 paths in

this graph terminate at the leaves of a commo main

\

=
hierarchy (though all termlnate at the leaves of one of the

two main hlerarchles) so that the graph is open. Conver51on
of the graph to a closed graph would introducé 90 new parts‘
in addition té the 22 already present! (We are ignoring .
constraints such as that Cq, the chairman, must equal one of
a,,...,a,s 'and that each ci must consist of a subset of

the ai,kfor simplipity). This is because conversion to a
closed graph produces an "artificial™ integration of the
alternative viewpoints in the original gfaph, introducing
nodes for all the ways in whichhparts in one view may
ovérlap with parts in the'other.\The question-answering
algorithms rely‘on the presence of theSe;pverlap nodes. Yet
it is obvious that part-of questions and-diéjaiptness
questidns can be answered very easily for the o;gaina}
graph: everything is part of C, and within each of the\Eﬁb\\
partitionings all distinct parts are disjoint while for
parts aj, cj, taken from both partitiénings, the correct
answer to ?tai‘part-of cjl or ?[ai disjoint-from cj] is
"unknown". A reduction to closed graphs would only obscure

the logic of the requisite reasoning process.

\ ,

' For the purposes of this illustration, C is to be
interpreted as the (disconnected) physical whole composed of
the department members, not as a set. Thus the aj and cj are
parts of C, not elements or subsets. :
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Fig.1 A simple non-closed P-graph R

A'similar example would_be provided by a partly
functioéal and partly anatomic representation of brain
structure in which the postulated functional subsystems
(say, perceptual subsystems; motor control subsystems, short
term and long term mehory“'language understanding .
subsystems, etc.) cannot be reliably‘identified w?thA
particular anatomic structures. A computer encoding of such’
incomplete kno&lédge éhould not require introduction of
identifiers and partitioning assertions for all possible
.overlap parts corresponding to the two views. Examples of
this type, involving poorly integfated alternative views of
some physical 6r abstréct entify are'readily construcéted,
and could easily occur in an Al system, partlcularly one

which is fed its knowledge piecemeal.

This motivates the introduction of recursively defined

semi-closed P-graphs. A semi—clqsed P-graph is either a
closed P-graph, or a semi-closed P-graph witﬁ'anofher>
semi-closed P-graph attached to it by one of its main roots.
Clearly the,P-graph of Fig. 1 is a.semi—ciosed P-graph,

sin¢e it consists of the closed committee-structure subgraph

attached by its main root C to the closed faculty-roster
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|

\

\

subgraph. Efficient complete algorithms for answéring
part-of and disjointness questions on the basis of

4

semi-closed P-graphs are developed and their correctness and

completeness is shown, ' \ '
- N : .\‘
: A

The class of semi-closed P—graphs.is prqbébly as large
a class of P-graphs as is. needed for‘mdst prattical’
applicaéiods to taxénomic stfuctures, and as can be easily
mechaniéed, asmfar és answering part-of and disjointness
' quessidns is concerned. P-graphé'can also”represent
partitionings baéed on relations other than the part-gf
relation, as long as these relations satisfy the assumed
properties of "part-of". This includes the subset-of

relation and the‘subconcept-of.(IS-A)_relation commonly used

in taxonomies of types.

1.2 Inference about Colours

As indicated in the previous sectiqh, procedures that
.efficiently infer taxoromic relationships can be built,
making it possible to d&rectly "resolve" literals of the
form {-M(x),m(x)}, when M Subéumes m, and of the form

a

{M(x),N(x)} when M and N are incompatible. Thus, the
resolution-based theorem prover of the semantic net should
be capable‘of directly reSolving not only complementary

pairs of literals such as {elephant(clyde), ~elephant(x)},
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but also incqmpatible pairs suchxés:
{elephant(Clyde), -animal(x)},
{elephant(Clyde)t canary(x)},
{yellow(Clyde), grey(x)},
{(sort-of elephant)(Clyde), -(sort-of animal)(x)},
{(sort;of tan) (Clyde), -(sort-of brown)(x)},

{(sort-of yellow) (Clyde), (sort-of blue)(x)}.

' Qriginaliy, it appeared that all such exahples of
"extended resolution” could be handled by means of the
algorithms for parts. quevgr,-ceftain‘classes of‘colour
resolutions, namely ones involving’the very common, yet
troublesome, "sort of" modifief’on_colburs (exemplified”by
thé lést pair of literals above), do not easily lend

themselves to lattice methods.

The problem stems from the fact that it seems
impossible to finq’é graphical representation of colour
terms, in which links capture the relationship of anything
other tHan the two termsvinvolved. This means that the graph

will have 0O(n?) edges.

In chapter 4 a special group of algorithms is
presented, based on a three-dimensional numerically coded
representation. This solution seems to deai‘with the problem
of inference of subsumption and incompatibility

relationships between (possibly hedged) colour terms neatly.

| |



The representation is based on the observation that
different colours can be constructed by picking a rainbow

hue and "adding white" or "adding black".

13



2. Special Purpose Inference

Although formal systems_ for theorem pro&fng have been
‘u # ‘
available for many years, it is now generally accepted that
proof procedures that are guaranteed to find a proof

eventually are often of no practical use. Even in a formal,

well defined domain, ‘such as mathematical theorem proving
there is a need for some more specific knowledge about the
problem to guide the proof. In reasoning about everyday
facts, even more specialized types of inference are needed,
that take advantaée_of the structure of some of the
relationships, allowing the use of special represeqtation
‘and inference methods. For example, in reasoning about
taxonomies, the transitivity of some of the relations
involved must bé exploited, if inferences are to be made
within a reaéonable time ffame. The use of uniform inference
methbds for these classes of relationshipg is too slow.
Special representations for such relations, coupled with
methods that exploit their structure in inferring facts not
explicitly stored are essential. Indeed, several systems

L4

have recognized this need.

N

This chapter presents a survey of some of the wgrk
aimed at finding such representations and methods, mainly
for reasoning about taxonomic, temporal and spatial
relations. These relations arise a great deal in everyday

inferences and are almost instantaneous for people, to the

14



point that ssome appear as if they are a retrieval of an
explicitly known fact (but this is very unlikely in view of
questions such as "is sulphur a precious metal?", as

mentioned in the introduction).

Lindsay [1973] arques in favour of ad hoc systems,
claiming that generality can be retained by seeking a
general schema of devising épecial purpose representations,
as‘one departs from a general scﬁema of representation:'He
and his students formulated a set of properties of
relations, such as reflexivity, functionality, transitivity,
etc. They devised metﬁods for answering questions about
relations, which were defined in terms of a subset of this
set of properties. For example, an equivalence relation‘is\
reflexive, symmetric and transitive. Ways to deal with the
interaction between -several rélations are also discusséd.
One important finéing was that only in cases involving the
transitive property are there examplet of noh—trivial
inferences to true fa&ts,-i.e., to facts not explicitly

: /
stdreq in the representation., Although thé approach taken
was indeed general in many respects, the nine properties
that he chose could be reformulated so that more of the.
useful relations can be\defined in terms of these
properties. For example it seems impossible to define a

partial ordering directly in terms of the given properties.
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Quillian's Semantic Memory [1968], whose motivation was
partly to model the human brain, was éapable of representing
specialization. The emphasis, however, was on retrieval of
relevant information to be used in inferencing, rather than

.using the representation as a reasoning aid.

hd

Anothe: early éystem, Raphael's SIﬁ [1968% chose a
number of relations (set inclusion, part-whole, numeric
quantity for parts, set membership, left to right and
ownership), giving each a detailed description of "purpose,
 method and procedure". "Procedure" describes the interaction
with other functions; for example, it describes‘how part-of
interacts with set relations (containment and inclusion) and
‘with equivalence. Raphael uses "models" to model meanings of
sentences, which are to be understood as internal
representations of nodes and links that contain the
"meaning” of the sentence. These are recognized as distinct
from models in the logical sénse; as they are used in
chapter 3. In facf, they have almost the opposite meaning:
Raphael defines a model as a symbolic representation of the
real world entities and relations. The semantics of the
symbolic representation are thus yet to be defined. One
drawback of SIR and of Quillian's System is théir inability
to represent negative information, so "unknown" is often the

answer when a "no" would have been preferred.
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More re::FT“efforts ve shown greater concern for
efficiency. Fahlman [1977] in his parallel marker
propagation network describes a way of representing
practically al} that Raphael or Quillian could repre#ent, in
a network that lends itself to very fast.parallel seaches,
He also represents "splits", i.e., disjointness in
specializaﬁion hierarchies, and allows for "tangled
hierarchies™ which can represent multiple vigws.’It is still
not possible to represent splits with respecd to parts,
rather than specialization. More importaﬁt is the lack of a
systéMatic way to deal with inference. Many examples are
given on how to handle specific prdbléms of reasoning and
representation, but no indicatiqn of how the system decides

b
\

to adop& a certain approach.
LN i
~This observation applies also to Philip Hayes' [1977]
CSAW system which is meant to facilitate associative
searches of context for potentially appropriate senses of
ambiguous words. CSAW deals\also with the representatién of

multiple subparts of similar but different entities, while

the main problem addressed is that of propertj inheritance.

! +

| | /

McSkimin énd Minker [1979] use a representation for
taxonomies that is very similar to the one used in this
thesis (and also in [Schubert 1979; Schubert£1980;
Papalaskaris & Schubert i981]). Indeed, the§ can represent

partitioning assertions by way of representing superset,
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disjointness and equality relations. The difficulty in
allowing so much freedom in the representation is
recognized. (In [Schubert 1980) it is shown that confirming
disjointness or part-whole relationships in partitioning
graphs is co-NP-complete). McSkimin and Minker deal with
this problem by precomputing and storing the relationships
between every possible pair of semantic categories in a
triangular matrix. This information can then be extracted
directly by a simple access to the matrix, provided such a
matrix is of manageable size (the storage requirements for
the matrix are O(n?/2)). Unfortunately this is not the case

for most applications involving real world knowledge.

Fikes and Hendrix' [1977;1979]‘K-Net also has the
capabili%y of representing the same types of taxonomies but
their approéch is informal. They show that much can be
inferred from the representation, but provide only sketches

of the methods for mechanizing the inferences.

Special purpose inference has had by far the greatest
attention with respect to taxonomies in the AI literature.

There has also been some interest in some other areas. Prior
L] .
work on representation and methods for reasoning about

colours is summarized in chapter 4.

g

Bundy [1973] describes SUMS, a theorem prover that

draws on the use of diagrams in constructing pfbofs for
/ T
//'> .
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K

arithmetic. fﬁMS arose from aﬁ attempt to represent the

concept of an "ideal (or typical) integer", i.e., an object
with all the properties of an integer (e.g.,.being equai to,
less than, hotlequal to or a diyisor of some other integer),

but which is not”any particular integer. In a "diagram” ' e

composed of "ideal integers" no ‘spurious coincidences arise,

so that anything true in the diagram is provable from the

hypothesés of the theorem ahd‘anything false is not

‘provable. Of course something may be neither true nor false

in the diagram. He succeeded in proving a good proportion of

&

simple afithmeticAtheorems. A problem may be created by the

fact that, in order not to make assumptions about the nature

‘of the integers involved besides those given by the set of

hypotheses of the phéoremn it may be necessary to break down
the proof into a rather large number of cases (e.g., A=0,
A%0, A=1, A#1, etc.).
X .
- Bundy's "ideal integers" and diagrams as théy are used

in proofs can be viewed as a kind of envisioning.

_ EnvisiOning is the subject of a recent paper by de Kleer and

Brown [1982]. Their aim is to construct correct predictions

of a physical device's qualitative behaviour and to produce

' causal explanations of how a device functions (i.e.,

explanations that can be used to predict behaviour of a
device under novel conditions). Their system, ENVISION,
accepts input in the form of a device topology. The nodes

represent the important components (down to a certain level
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of detail that the description confines itself to) and edges

-represent connections between them. There is a component

library which contains component models. These describe the
behaviour of components independént of the device they
belong to. The descriptions consist of all pot;ntiai
beha&iours the component can manifest and are expressed in

qualitative equations called "confluences".

Envisioning determines (1).,in which state(s) the
overall device could be, (2) causal behaviour of the device

in each of these constituent states and (3) possible

“transisions between pairs of glbbal device states. Their

paper concentrates mainly in providing methods- for
determining the causal behaviour of the dévice, giVen the
possible states in which it can be. -
The work of de Kleer and Brown can be viewed as '
providing rebresentation and methods for specialized
reaséning about physical propertigs of objects. Causal,
qualitative reasoning, even as applied to learned |
(assiﬁilated) structurés, ig\a very diffjcult tésk, but

people usually handle it with ease. The authors have

adressed several important issues. The problem of deciding

whether deductions form a significant portion of the total

- effort required to describe and analyze a physical situation

(i.e, is the work of causal reasoning already encoded in the

evidence provided to it?) is dicussed extensively and ways
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o

aré proposed which ensure that the structure and function
descriptiohs are kept distinct.
’ , _

Kahn and Gorry [1977] studied temporal reasoning and
have constructed a time specialist which is capable of
storing, retrie;ing and reasoning about events. The
representation of events takes three forms: (a).organized by
dates, " (b) organized by special referencetgvents and
(c) organized By before-after chains. The éhoice of
representation is left up to the user. Events can be
specified with a certain deéree ;f fuzzinéss and are treated
as 1f they do not have ani duration. The "fetcher" selects
phefor more appropriate methods for answering an incoming
questioﬁ,Afrom a set of available progréms to deal with

particular kinds of questions making use of particular

organizations of facts. It, for example, tries to find

equivalent temporal specifications, use dates, etc.

A question that arises is why not conQert all
equivalent temporal specifi;ations to a uniform
representation, since the system has such a capability. It-
is not clear that the user is not in a sense helping the
system ﬁake its inferences by specifying the input in a
certain form. It appears that temporal reasoning systems‘
could benefit from a more uniform representation. [Taugher &

.

~Schubert 1982]



3. Inference About Parts

3.1 The part—of relation, partitipnings and P-graphs
_ ‘j | A :

The part-of relation, ¢, that £he,given methods rely
upon is assumed to have the following properties [SEhubgrt
19807 : |
(i) 'c' is a partial ordering:

(¥x) [xex]

(¥xy)[[[xcyl&lycsx]l]=lx=y]]

< (ny;)[[[xgy]&[yéz]]D[ﬁsz]]
(ii) Existence of a unique empty object 6 such that

(vx) [Bex] - |
(iii) Existence of an 'overlap' function n such that

(V¥xyz) [[zs(nxy)]z[[2zex]&[zcy]l]]

(iv) Existencé of a 'merge' function v such that

(Wxyz) [[(uxy)ez]z[[xezlalyez]]]

(v) Existence of a 'remainder' function ~ such that

(nyz)[[z=(~xy)]f[[x=(uz(nxy))]&[(nyz)¥9]]]

(vi) Mutual distributivity of n and vu:

(xyz) [ (ax(uyz))=((ulnxy) (nxz))]
(vxyz) [ (ux(nyz))=((n(uxy) (vxz))]

It is shown in [Schubert 1980] that the assumed
properties of the part-of relation induce a boolean lattice

on the set {x|xcw} for any w. The following are some

22
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consequehces of this that are used throughout the proofs.

—

From now on brackets are omitted where no*ambiéﬁigi/;fises.
, : ) o

(a) (Vxy)[[uxy=uyx] & [nxy=nyx]]

(b) (Vxy) [xcy=[nxy=x & uxyfy]]

“(c) (¥xyz)[y=nxz = [(uy(~xz))=x & (ny(~x2))=6]]

(@) (Vx)[nx6=6 & uxB=x] -

() (¥xy)[(ux(axy))=x & (nx(uxy))=x]

(£) The functions n and v are associative.

For brevity, n and v will be informally used as many-place

functions since, from (f), this results in no ambiguity.
Partitionings are defined in terms of the part-of
relation; intuitively, a partitioning assertion enumerates a

set of disjoint parts of the object that it pertains to.

Definition: A partitioning assertion is of the form

[(x Pm y,...ym), m22, where x,y,,...,ym can be constants or
variables of the obje;é‘language and Pm is the m+7 place
ﬁredicate symbol defined by: |

(WVxyz)[[x'P, y z)z[x=uyz & B=nyz]]
and for all me2:

(Vy,...ym)[[x Pm y,...ym} =

Ilx Pm-1 (vy.y.) ys...ym) & ny,y,=6]1]



Thus, by definition, and,(i) above, the order of the

y's is immaterial. "P" will be used for "P,".

Partitioning assertions are the building units of
P-graphs. Theorem 1.1 relates theﬂpart—of relation to

partitionings.
Theorem 1.1: (Wxy)[lysx]=(}5')[x P y x']]

Proof: Suppose ycx. Let x'#(~xy); then by axiom (v):
[x=ux'(nxy)] & [nyx'=0] - (1)
From (1)

[x ¢ ux'(nxy)]

=> [x ¢ a(ux'x)(ux'y)] (axiom (vi))
=> [x ¢ ux'x] & [x ¢ ux'y] (axiom (iii))
=> x ¢ ux'y. (2)

Also from (1),

[ux'nxy c x] => [x'cx & ;xysx] ‘(axiom (iv))

‘ => x'cx » . (3)

From our assumption and (3), uéing axiom (iii) |

Luyx' ¢ x] (4)
so, from (2) and (4) | |

x=yyx' “
also, from (1)

nyx'ée.
Therefore, by the definition of partitionings, [x Py x'].

Now suppose [x P y x'], then



vyx' = x
So that, by axioms (i) and (iv)

'(uyx')sx > yex. [

Theorem 1,2: Fbr ali m22,
A¥xy,...ym)[[x Pm y...;ym]‘ |
([x=vy,...ym] & F/\nyiyj=6]]]

Li<jtm

Proof: For m=2 this is true by definition. Assume .it holds

true for all m<n. Then, - //’~”\—//’

[x Pn y,...yn] f \

m

[X PN'1 (UY‘Yz)'y:v---Yn] & nY|Yz"‘e

[x = vlvy.y.)y....yn
' ZLj<ikn

& Alnyiyj=6 & n(uy,y,)yitell

& ny,y.=6
but n(uy.y;)yf =6 v

viny,yi)(ny,yl) = 8

Ny .yi=6 & ny,yi=0
thus .

[X Pn y1oooyn]

[{x = vy,...ynl]
& Nlnyiyj=6 & ny,yi=6 & ny,yi=8]

JLjejgn

& ny,y. = 8]

1A

[x = vy,...yn] & [/\ninj = 8]

1&j<ign

25
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By mathematical induction this follows for all n22. []

#

Corollary: For all m22, 1<ism,

(Vxy....ym[[x Pm y,...ym} > yicx].

Definition: A P-graph is a finife non-empty set of
~partitioning assertions of the form [x Py z...] together
wifh’non—emptiness'assertions of the form [x#6], where x
occurs in some partitioning assertion, over constants of
the object language. The distinct constants of a P-graph

will be referred to as the "nodes" of the P-graph. .

The reader's attention is drawn to the ﬁact that
disfinct object langgage constants correspond to distinct
nodes by definition. Consequently a statement sucﬁ as a=b
, cah’bnly express that a and b denote the same object, not
that a and b are the same node. However, a metalinguistic
statement such as "x=y", where x and y stand for
metalanguage variables ranging over the nodes of a
P-graph is taken to mean that x and y denote the éame
node. Generally statements of the object language assert
facts such as "a is part of b" and so on, while those of
the metalanguage are about relations between nodes of
P-graphs such as the descendant gelation defined below.
Similarly, "=>" means "it follows that" in the object

language and "=>" means "it follows that" in the
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metalanguage. In general, boldface symbols will be uséd

in the'metalanguage in order to stress this distinction.

It is assumed throughout this chapter that the
assertiéﬁs which make up a P-graph along with the part—of
axioms are consistent. It should be noted, however, that
a. P-graph G along with the part-of axioms and the usual
rules of inference of first order logic ih general
amounts to an incomplete theory'bf the objects of the
graph; i.e., not every well formed formula w built up
from constants that are nodeg.of G, 06, predicate symbols
¢, Pm, =, function symbols n, u, ~ and the logical |
ceonnectives is either provable (G‘k— w) or

disprovable (G |~ -w).

In dgciding whether a statement regarding objects
represented in a P-graph is a valid inférence from the
P-graph, the part-of axioms and the assertions‘that make
up the P-graph are viewed as a theory (in the logical
sense). Thus, the guestion reauces to_what_is a theorem

for that theory.

Because of the soundness and the completeness of

first-order logic, we can write

G ¢ iff G |= ¢ o .
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for any fully consistent P-graph G, meaning that §¢. is

derivable as a theorem iff ¢ is true in all models of G.

A model of a P-graph is an interpretation of the
parts nodes of G, the function symbols v, n, ~, the
relation ¢ and constant 6, such that the part-of axioms

and the assertions of G are satisfied.

When dealing with knowledge representation we are
interested in interpretations whose domain consists of
real world objecté (concrete or abstract). Thus we have
"real world" models for P-graphs.

v v

As an example consider the case where all that is
known is that "b is part of a" and "c is ﬁart of a"; from
this it is clearly undecidable whether or not b and c are
disjoint. Although this is intuitively obvious in such
simple cases; in general, showing that some question
cannot be answered from the infofmation available
reguires a formal argument. Typically, éhowiqg that a
particuiar statement cannot be proved, given the
information available from the P—graph,kwill consist of
exhibiting a model of the graph in which the Sstatement is
in fact false, since, by soundness of the rules of
inference, a statément can be derived from a consistent
set of sentences (i.e., a theory) only if it is true in

all models of the theory.
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3.2 simple graphs and hierarchiés

‘Simply stated,‘aVaescendant of a node x of a P-graph
is any node reachable by a downward path from x. Similarly,
a hierarchy is a P-graph that takes the form of a tree with

no more than one P-assertion about each node.

Definition: The descendant relation < between the nodes x,
Yy, and z of a P-graph G is defined by:
(1) x<x for all nodes x of G

(ii) if x is a direct descendant of y and y<z then z<y.

We say that x is a direct descendant of y if there is
an assertion in G of the form: .
[y Pk x z,...2k-1] for some k. {Of course, x need not be the

first argument following PK).

The ancestor relation is the inverse of the descendant
relation.
Definition: A leaf is a npée that hag no descendants other

than itself.

Definition: A root is a node that has no ancestors other

than itself.
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Definition: A P-graph G is acyclic if and only if for any
two nodes x and y of G, if x<y an? y<x, then x=y,
_ N

The graphs that will be considéred here are acyclic.
Note that all the nodes that make up a cycle in -a P-graph
are forced to be identical in denotation, i.e., the object
language formula x=y can be derived for any two nodes x, Y
from the assertions of the P-graph and the part—bf axioms.'
Thus cycles are easily eliminated by collapsing the cyclic
nodes.

Graphs in which some node is provably émpty'are of
relatively liftle practical Al interest, §ince they do not
reflect the kinds of knowledge typically émplgyed in "common
sense" inferences. For exa@ple, people presumablyldo not

ushally hold beliefs about human anatomy (or about the

“
-

anatomy of’a'bicycle, organization, or computer program)
which logically require some of the parts about which the

beliefs are held to be empty.

Definition: The projection of a node x into the leaves of a
- ﬂ
closed P-graph G is the set of those leaves of G which are

descendants of x.

* Note the distinction between the object language formula
x=y and the metalinguistic assertion of node equality x=y,
in-which the equality symbol is boldface. _

.:/f
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Definition: A P-graph is fully-consistent iff none of its

nodes can be proven to be empty.

Definition: A simple graph is an acyclic P-graph with a

L )
unique root and at most one partitioning assertion about
each node.
Definition: A path is a sequence‘of nodes x,,...,xn of a
P-graph such that xi+7 is a direct descendant of x| for any

i, 1<ign-1.

Definition: A hierarchy is a simple P-graph in which there

is at most one path between any two nodes.

Examples of simple graphs and hierarchies are shown in

Fig. 2.

Lemma 2.1: The root of ‘a 'simple graph is an ancestor of

every node.

Proof: Let G be a éimple graph and let x denote one of the
nodes of G. h

If x is the root, the propetéy trivially holds.

Consider the set of all ancestors of X; note that if a node
is invthe set,‘so ;re all its ancestors; furthef; the set is
finite (since G is finite).

Since G contains no cycles, it follows that there is a node
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AN AN
b )’;’\\) | ,/I/\; /N

Fig. 2: General P-graphs and hierarchies. (a),(b) are simple;
(b) is a hierarchy but (a) is not since there are two paths
between "a" and "b". (c).is not simple, since there are two
assertions about "n". e .
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in that set that has no ancestors other than itself. This

-node is the (unigue) root of G. O
!

7

Lemma 2.2: Let X, y, z range over the nodes of a hierarchy
H, then, if z<x and z<y, then there is a path between x and

y (i.e., there is a path from x to y or from y to x).

Proof: x and'y are both descendants Qf the root (lemma. 2.1);
thus there is a path from the root to z (lemma 2.15 that
contains x, and a,path from the root to z that contains y.
Since H is a hierarchy ﬁhese are iﬁ fact thé same path, so x
and y lie on the_path from the root to z. So there is a

subsequence of this path which constitutes a path from x to

y or from v.to x. 0

-

“Corollary: In a hierarchy every two nodes have a least

common ancestor.

Proof: From lemma 2.2 there is a path between every two
common ancestors; thus they can -all be ordered by the
relation <, and since there are no cycles, there must be a
least one (i.e., a common ancestor that is a descendant of

every other common ancestor of the' two nodes). [



- 34

So far the distinction between theqrems of tﬁe object
language (i.e., theorems of the axiomatic»theory of parts)
and theorems of fhé metalanguage (specifically, theorems
about P-graphs) has been quite é;ear. In particular
theorems 1.1 and 1.2 are evidently object language theoreﬁs
while lemmas 2.1 and 2.2 are metatheorems. Correspondingly,
the proofs in the former case are in essence.sequénces of
object language formulas, where these object language
formulas can be thought of as haviné the force of assertion,
while in the latter case the proofs are ﬁhemselves
metalinguistic, and object language formulas occurring in
them are mentioned father thén'gggg.'The'remaining theorems
- and iemmas“will be of the latter kind but will occasionaly
contain object language proofs, as a concise way of showing
that certain formulaé are first-order deducible from the
stipulated premise formulas (equivalently, that they are

true in any model satisfying the premise formulas).

Lemma 2.3: Let H be a hierarchy with leaves 1,,...,1n. For
all i, j, 1<i<j<n
H |~ nlilj=6

(ife., the leaves of a hierarchy are pairwise disjoint).

Proof: It is clear that any hierarchy can be constructed by
successively adding assertions that preserve the hierarchy
properties. Given any hierarchy, this can be accomplished by

J
starting with the root assertion and systematically adding
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at most one partitioning assertion about each of the leaf

" nodes to the presentr(intermediate) hierarchy until all the

assertions of the target hierarchy are accommodated.

This observation legitimizes the following form of

induction. |

§g§i§: The leaves of hierarchies that contain one
partitioning assertion are paifwise disjoint, by
theorem 1.2,

Induction: Consider a hierarchy H with leaf set {l,..,ln}

i

and assume ' H |- nljlj = 6 for any i, j, 1<i<j<n, (1)
Now if the assértion [1k Pmlk,...km] is added for some
-k, 1Sks<n', then
H |~ nkikj = 6 for all i, j, 1<i<j<m. ‘ (2)
But | |
nlkli = 8 => n(uk,...km)1j =8 for all i, 1<isn

=> u(nk,1li)...(nkmli))

0

=> nkjlji = 8 for all i, j, 1<is<n, 1<jsm,
Thus from (1), H | nﬁjli = 6 and this, together with
(2), shows that the leaves of the hierarchy obtained

by adding another partitioning assertion are pairwise

\

disjoint.

Thus the result holds for any hierar@@g. O

Any assertion added that preserves the hierarchy property
and retains the same root must be of this form since any
assertion of the form [x Pm x,...xm], where x is already in
the graph but is not a leaf node, will be a second assertion
about the node denoted by x, so that the graph would not be
simple and thus not a hierarchy. :

(
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Lemma 2.4: The merge of the leaves 1l,,...,1n of a hierarchy

H is equal to the root ~, i.e., H | (uvl,...1n)=r.

Proof: By induction on the construction of hierarchiés.
Basis: The mefge of the leaves of a hiefarchy that-consists
of one partitioning assertion is equal to the root by
theorem 1.2.
Induction: Refér to the previous proof. .
Suppose H |— (u1|...ln) =-r and'tﬁe assertion
[lk Pm k,...km] is added.
Then H | uk,...km ¥'ik, Qsingvtheorem 1.2,
Thus H |~ (ul,...1k=1(uk,...km)1k+7...1n) = r
s0 H = (ul,...1K-Tk,...kmlk+1...1n) = r.
l,...1k-Tk,...kmlk+71...1n are the leaves of the new

hierarchy obtained from H by the addition ol

assertion [1k Pm k,...km]. O

Corollary: The merge of the leaves of a set of hierarchies
is equal to the merge of the roots.
Proof: Immediate from lemma 2.4 and the associativity of the

merge operator. []
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Lemma 2.5: Hierarchies are fully consistent.

Proof: Let H be a hierarchy with leaves 1,...1n. We wish to
exhibit a model of H that assigns non-empty parts to all the
nodes of H. This is done by:
(a) construc£ing an interpretation of the functions,
relations and the objects denoted by the nodes of
H, Such that the part?of axioms are satisfied, all
the leaves are assigned non-empty, :
pairwise-disjoint objects from the domain of
interpretation and the interpretation of a node is
the»game as the interpretation.of the merge of its
projection onto the leaves of H, and
(b) subsequently showing that this interpretation 'is a
model of H (i.e., it satisfies all the aésertions
of H). |
(a) can be accomplished by finding an interpretation a in
which the functions and relations satisfy the part of axioms
and that contains at least as many disjoint objects in its
domain as leaves in. H, and then interpreting the nodes of H
as follows: _
a(lf)#a(e),and a(nlilj)=a(B) for all i, j, "1<i<j<n (1)
and, for anf node x of H, if x,...xk is its projection onto
the leaves of H, then ot
a(x)=alux, . ..xK). . (2)
For}(b) let [a Pm a,...am] be an assertion of H and let |

A,...Am be the projections (sets) of a,...am onto the leaves



of H, respectively.
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,Note that AjnAj = ¢ for all i, j, 1€i<jsm (since otherwise

there would be multiple‘paths between a and some leaf node).

It is reqhired to show that:

(a) a(va,...am)=a(a) and

(b) a(naiaj)=a(B) for all i, j, 1<i<jsm

({a)

(b)

From (2): a( v x) = alai)
XeAj

so, al(va,...am) = a( v x)
}  XeA

where A = A,u...uvAm,

E 4

thus by theée assumption (2),ksince A is the projection

of a, alva,...am) = ala).

Again, since a( v %) = «lai),

. XeAf
a(najiaj)

a(n( v x)( v y))
XeA] yeAj

alu (n( v x)y))
YeA] xeAl

alf u.( v (nxy)))
YeAjxeAij

a(u (nxy))
yeA]
XeA|

(distr.
(distr.

(assod.

by the assumption (1) a(nxy)=a(8) for all xeAi, yeAj

(since these are leaves).

Therefore, a(najaj)=a(8) for all i, j,

1€i<jsm,
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Lemma 2.6: For any two nodes x, y of a P-graph G, if'xgy
then G | xcy. ’

[N

Proof: Tﬁe claim obviously holds for x=y, by axiom (i). For
X a dir;ct descendant of y, it holds by theorem 1.2 and
axiom (iv). In general, for {y,z,z,,...,ik,x} a path from y
to x, the claim holds by the fransitivity of 5\(axiom (i)).

O

Theorem 2.1: A simple fully consistent graph is a hiérarchy.

Let G be”//

Proof: simple fully ;onéistent P-éraph. Supposé
that a<b and that there are two paths from b to a.

path 1: {b,xn,...,x,,a}

path 2: {b,ym,,..,y.,a}
Further assume, without loss of .generality, that xi#yj for
all 1<i<n, 1<j<m, so that

asx,<...<xn<b -and ac<y,<...<ym<b.
' Now there is only one partitioning assertion about b and
since xn and ym are direct descendants of b (by the
.définition of path) théy must be mentioned in that
assertion.
Therefore,.by theorgm 1.2, G | nxnym=86.
Now G |— acxn and G |- acym | (by lemma 2.6)
so G |- ac(nxnym), (axiom (1ii))

therefore G |~ a=6, which contradicts the assumption that G

o
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is fully consistent. [J

Theorem 2.2: For any two nodes x; y of a hierarchy H,

if H kgy then x<y.

Proof: Suppose H |- xcy. For x=y the conclusion x<y holds
trivially. Assume henceforth that x#y. Consider the’
projection of x and y onto the leaves of H, {x,...xn} and-
{y:....ym} respectively.
For -any i, 1<i<n: xi<x, so by lemma 2.6,

H |- xicx
therefore H | xicy. - (1)
But,

xicy => nxiy=xj => nxi(vy....ym=xi, (by lemma.2.4)

=> v(nxiy,)...(nxiym) X,

Thus, from (1),

H b [v(nxiy,)...(oxiym) = xil. (2)
But for any j, 1<jsm, either xj=yj or H | nxiyj=6

(lemma 2.3).

Thus from (2) and lemma 2.5, xj=yj for some j, 1<j<m,

Now for all j, 1<jsm, yj<y, therefore xi<y, and from

lemma 2.2, since xi<y, it follows that there is a path
between x and Y. |

Now either x<y or y<x (but not.both). Suppose y<x.

Let [x PK z,...2K] be the partitioning assertion about x in

H, and since y<x and x#y, assume without loss of generality

o
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that y<z,.
From theoreﬁs 1.1 and T.2,‘
H |- 2z,cx, H } z,cx, H+|~ nz,z,=6
also y<x => H |- ycx => H |- y=x. (3)
Now fy=x, YSz,cx => y=2,=x => 2z,cz, => z,=0, |
Thus H |- yex => H I z.=6 and thus, by lémma~2.5 and (3),

y<x yields a contradiction.

Therefore x<y. [

Theorem 2.3: Let x, y denote nodes of a hierarchy H. Then
either:
(1) there:-is a (unique) path from x to y or from y to x or

(ii) H b nxy=6

Proof: Sﬁppose the;e is no pat% between #, Y. Then by
lemma 2.2 their projections onio the leaves X={x.,;..,xn}
and Y={y,,...,ym} respectively’haye no common elément,
i.e., Xn¥=g.
From lemma 2.4
H b x=ux,...xn ’ | -
H |- y=uy,...ym
Now axy = (n(ux,...xn)(uvy,...ym)

= (u(nx,y,)...(nx,ym

(;xny.)...(nxnym) )
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So, by lemma 2.3, H | nxy=60.

Conversely, suppose H £ nxy=6.

By the previous argument XnY#g, so let ianY; then z<x and
z<y. Therefore by lemma 2.2 there is a path between x and vy,

and since H is a hierarchy the path is uniquey [

3.3 Closed P-graphs

Hierarchies are the most desirable form of P-graph,
because parts-reasoning for hierarchies is trivial: in a
hierarchy xcy is p}ovable for any two nodes x,.y if and only
if x<y. Further, nxy=8 is provable iff there is no path
connecting x and y, and x=y is provable iff x=y, i.e., all
the nodes represent possibly distinct objects. (theorems 2.2,
2.3). It was also shown that hierarchies ére fully
consistent and that any fully cqngistent simple graph is a

hierarchy (lemma 2.5 and theorem 2.1)

Unfortunately, hierarchies can only represent some very
restricted kinds of information about parts. Usually, parts
knowledge about the world takes the form bf "tangled
hierarchies”. Inferring part-of and disjointness
relationships in arbitrary P-graphs is knoﬁh to be

‘co-NP-complete,
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This problem of computational intractability is dealt
with in [Schubert 1979] by converting arbitrary P-graphs to
closed P-graphs. These allow greater freedom in
representation of partitioning relationships than
hierarchies and are still computationally tractable.
Intuitively, a P-graph is closed if it is acyclic and can be
bu11t up by beginning with a simple graph and then addlng a
sequence of partitioning assertlons, where all arguments of
each assertion except possibly the first argument are
already in the graph. Formally, a P-graph G is closed iff it

1s acyclic and any two of its nodes are projectible into a

common simple subgraph. A node n is projectible into a
subgraph H if‘it lies in H or if it is the root of a simple
Subgraph whose leaves lie in H. Note that any two nodes of a
simple subgraph H are projectible into a common simple

subgraph , viz., H.

It is shown in [Schubert 1980] that for every P-graph
there is an equiwalent closed P-graph. Inference methods are
given to answer the questions ?[b part-of a] and
?[a disjoint-from b] for fully consistent closed P-graphs,
in linear space and time relative to the number of edges of

the closed graph.

It is proved in [Schubert 1980] that all the' leaves of
a fully consistent, closed P-graph belong to a single (not

necessarily unique) main hierarchy whose root represents the

5
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whole entity. Such a root will be called a main root of the
closed P-graph. (This result is included as a theorem
below).

‘:' .
Theorem 3.1: If G is closed then G is fully consistent gf
and only if every simple subgraph of G is a hiérarchy, the
prOJectlon of every node into the leaves of G is unique and
some subhierarchy of G contains all the leaves of G.

[Schubert 1980]

Theorem 3.2: For every P-graph there is a logically
equivalent closeé/?igraph. [Schubert 1980]

In [Schubert 1980] an algorithm is presented that will
transform any P-graph to a logically eqhivalent closed

P-graph.

Theorem 3.3: In a fully consistent closed P-graph G:
(a) all the leaves are pafrwise disjoint
(b) for any node a and leaf 1
G | 1§a <=> l<a
(c) for any node a and leaf 1

G |- [1ga v 1=8] <=> 1{a

Proof:
(a) This follows. immediately from theorem 3.1 .since there is

a subhierarchy that contains all the leaves of G and by
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lemma 2.3 the leaves must be disjoint.

(b) Let {a,,...,an} be the projection of a onto the leaves

of G.

G |- a=

1<a

<=>

<=>

va,...an (1)

l=aj for some i, 15is<n, by the unigueness of
the projection of a (i.e., 1 and aj denote the
same leaf)

G/F— lca (from (1) along with part (a) and the

assumption of full consistency).

l#aj for all)i, 1<i<n

G | nlai=8 (from (a))
vinla,)...(nlan)=6
nl{va,...an)=6

‘nla=6

© 0 0 o
T T T T

[1a v 1=8] [

3.4 Semi-closed P-graphs

Semi-closed P-graphs relax some of the restrictions of

closed P-graphs, thus forming»a'larger class, allowing still

greater flexibility in the representation of partitioning

relationships. The tacit restriction to fully consistent
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graphs should be kept in mind.

R

Definition: A semi-closed P-graph is:

(i) a closed P-graph, or

(ii) a semi-closed P-graph that has a semi—ciosed P~graph
attached by a main root to one of its nodeé. (It is
eaéy to see that a sehi-clbsed P-graph, like a closed
P-graph, must have at least one main roop).

As semi-closed P-graphs are defined in.terms of closed

P-graphs, the inference methods presented here rely on those’

i

developed for closed P-graphs [Schubert 1979].
b9 |
yarithms is based on the

The design of the;followin%¢

o

observation that semi-closed P-gr 2y

{

of closed P-graphs; each vertex represents afélosed subgraph

¥ can be viewed as trees
and each edge a common néde of the two P-graphs (parent and
child subgraphs) that it’ connects. Since the closed

subgraphs can have at -most one node in common, this will be

a tree. Examples of corresponding trees for P-graphs are

given in figure 3(&)}(d) and (e).

9

i

Note that edges out of distinct vertices correspond to
distinct nodes in the P-graph while edges out of the same

vertex may represent the same node.

For any given semi-closed P-graph, it is possible to
attach labels to the nodes which indicate ﬁhe{position in

J

-

o)
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i

Fig. 3: Some examples of semi~closed P-graphs. In (a), the
(closed) P-graph consisting of nodes s, q and r®is joined to the
rest of the graph only through s, and no other nodes. Similarly
in (b) there is a main closed P-graph with two other P-graphs
attached to°it, one of which is itself a closed P-graph with
another closed P-graph attached to it by the root. (c¢) angther
representation’ for semi-closed graphs where the overall =
Structure, rather than individual nodes, is emphasizsd"
(d),(e),(£) corresponding trees for the P-graphs of (a),(b), (c).
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the corresponding tree of.closed P-graphs. Implementation
details are of no concern at the moment; we assume
éemi-closed P-graphs to be searched by the algorithms
presented here have been preprocessed, with labels being
attached to all nodes which indicate their position in the
corresponding tree of closed P-graphs. Thus, for any pair of
nodes of a semi-closed P-graph, it will be possible to ‘
?rrive'at a pair of "ancestor" nodes which both belong tg
the same closed suggraph tree vertex. Note that one (or even

both) of the "ances§drs“ sought may be the same as the

corresponding initial node.

In figure 3(b), for example, for r and q the
cbrresponding pair is r' and q', while for r and s the

corresponding pair is r' and s.

vThe terms "ancestor" and "descendant" are in Quotes
above, since we arq;dealiné with an ancestor (descendant)
felatio¢ which is somewhat more gener;1 than that formally
defined earlier: r' is an "ancestor" of r if and only if
ffr' or r is projectiblelinto a seé of nodes n,,...,nk such
tﬁgt for all i, 1<i<k, either niji<r' or r' is an "ancestor"
of ni (see Fig. 4).

Algorithms for answering the questions
?[x partrof y] and ?[x disjoint-from y] in fully cons{stent;,

closed P-graphs have been developed in [Schubert 1979] and




—t

49

Fig. 4: The semi-closed P-graph G has closed subgraphs
Ci,...,C.. The node r belongs to C, but is not a descendant
of the main root of C,.-It is a "descendant" of r' as
defined in this section.

are incorporated in the methods.given below. So, for any two
nodes x; Yy of a fully consistent closed P-graph G, assume
there are algorithms P(x,y) and D(x,y) that wiil return
"yes", "nb" or "unknown" té the respective guestions, on the
basis of what can be logically deduced from the closed
P-graph G. The algorithms are complete in the sense that
they return "unknown" only if neither a positive nor, a
negative answer logically foliows from the P-graph and the

part-of axioms. The same property is desired for the new

algorithms.

Algorithms P(x,y) and D(x,y).make use of a predicate
N(x,,...,xn) which@ﬁs true if the merge of x,,...,xn is

grovgbfyfnon-empty and false otherwise. It was noted in

[Schubert 1975] that this predicate is efficiently decidable

- for closed P-graphs. In applying P(x,y) and D(x,y) to closed
. 4'1, 'V‘.}l .

P-graphs embedded within semi-closed P-graphs, Q@Qheed to
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assume that N is still efficiently decidable, with the
provability requirement now referring to the entire

semi-closed graph. The assumption is justified since the

only changés in the truth values of N(x,,...,xn) over nodes ’
of a closed graph.C, resulting from attachment of
semi-closed P-graphs to C, are those due to the
non—emptinessrof nodes?to’which a semi-closed graph
containihg a provably nonﬁ@%%éihﬁﬁde was attached (this
information propagates' "upward" in the tree of closed
graphs); and the only chénge potentially resulting from the
attachment of C to a semi-closed P-graph is that due to

provable non-emptiness of the node to which C was attached

~(this information propagates "downward" via main nodes which
£ ' ’ :

e

Fiare points’of attachment in the tree of closed P—graphs):
I‘The emptiness assertions thus necessitated at points of
attachment by the upyaxd and downward flow of informatioﬁ
can be computed in one "pass"™ each over all the nodes of the

semi-closed P-graph, in the worst case.

In the following algorithms the test "a=b" is an
abbreviation wﬁich stands for:
"((c(a,b) and P(a,b)) or ?[é part-of b])"
where C(a,b) is a predicate wﬁich is true if the nodes a and

b belong to a common ®losed subgraph, and false otherwise.

"azb" incorporates a recursive call to the algorithm

?[a part-of b] to determine whether the answer to the
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Fig. 5: G is a fully consistent semi-closed P-graph.
Subgraphs S§,, S,, S, are semi-closed, and C closed. x' and
~Y' belong to the same closed subgraph C, so P(x',y') and
D(x',y') are used. y and y' belong to a smaller semi-closed
subgraph, thus the algorithms can be applied recursively to
determine whether G |~ y=y'. Thus if G | y=y', then if
P(x',y')="yes" the algorithm yields "yes" for ?[x part-of y]

guestion "a=b?" (i.e.,vdo the ncdes a and b denote the sa@e

object?) is "yes", in cases where it is already known thag\b

is part of a; (this test is’only used where a Eﬁ an ancest%r

of b, as for x' and x). Let x', f‘ denote the nearest pair‘\

of "ancestors" which belong to a common closed subgraph for

x and y respectively, as described in the above discussion; \
| \

To answer ?[x part-of vyl:

if (x'2x and y'zy) then return P(x',y')
else if y'Zy then : ‘

if P(x',y')="yes" then return "yes"

else if (D(x',y')="yes" and N(x)) then return "no"

else return "unknown"
else i1f x'=x then :
" if P(x',y')="no" then return "no"

else return "unknown"
else if (D(y',x')="yes" and N(x)) then return "no"

else return "unknown"

AN
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To answer ?[x disjoint-from yl:

if (x'=zx and y'Zy) then return D(x',y')

else if D(x',y')="yes" then return "yes"

else if x'=x then :
if (P(y',x')="yes" and N(y)) then return "no"
else return "unknown" :

else if y'=y then
if (P(x',y')="yes" and N(x)) then return "no"
else return "unknown"

~else return "unknown”

The rest of this section is devoted to showing how much
can be inferred from P-graphs and, in particular, proving
the question answering methods given above correct and

complete. v

The logical foundations of these proofs have been
briefly discussed in section 2. The completeness and
correctness of the given algorithms relates to the
derivability of statements of the form acb, agb, nab=8 or
nab#6. To show that the méthods are complete and correct it
is necessary to prove that for an assertion ¢, the algorithm
will return "yes" if G |- ¢,'"no" if -G I ~¢, and "unknown"

otherwise}

Tﬁeorem\4.1: Let G be é fully consistent closed P-graph. Let
« be an interpretation that assigns functions to the symbols
u, n, and ~, and some relation to the symbol c of the object
language and assigns objects from a set A to the constants
(nodes) of the P-graph so as to satisfy the part-of axioms

and:
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(i) if n and k are leaves of G, then a(nnk)=a(0)
(ii) if n is a node of G marked as non-eﬁpty, then for
 some leaf ni of G, where hiSn, a(ni)#a(6);
(iii) if n,,.;.,nk.is the projection of a node n onto
the leaves of G, §hen |
a{n)=alun,,...,nk)
Then o« constitutes a model of G.
(i.e., éll the assertions of G are true under such an

interpretation)

Proof: Let [n P n,,...,nk] be an assertion of G, and let
N,,...,Nk be the (sets) projections of n,,...,nk into the

.leaves of G, respectively.

-~

From (1i1)

. a(oninj) = a(n(uNj)(uNj))
(v is informally used here as an operator on sets).
‘Since G is a closed P-graph therefore NjnNj=g (for if
S
xeN/nNj for some x, then G |— x=8, since G |~ nninj=8). Thus
from (i) a(nninj)=a(0).

Now a(un,...nk) = a(u(uN,)..,(uNk;

= a(u(N,u...uNK))
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N
Furthermore N,u...uNk is the projection of n into the
leaves of G, since:
1) any leaf in the projection of nji is also in the
projection of n since it is a descendant of n.

2) let x be a leaf in the projection of n

G | nxn=x,
Thus G |~ nx(un,...nk)=x,

G b ax(u(uN,)...(uNk))=x
hence G |- u(nx(uN,)...nx(uNk))=x.

But if x#y.for all leaves y in the union of the
projections of the ni's, then G |- nxy=6 so G |}~ x=8
and G would not be fully consistent. Thus x must be in

the projection of one of the ni's.
So, by (i), a(u(N,u...uNk)) = aln).

Thus a(un,...nk) = a(n), and hence, a([n P n,...nkl)=true.
Finally, from (ii) we have that a(n)#«(8) for any node n
marked as non-empty, by theorem 3.3(b) and the parf;of
axioms, so that the non-emptiness assertions are also true

in a.

The following lemmas lead to the proof of correctness

NG

similar to that of theorem 4.1,
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£ ta

Fig. 6: Diagram for lemma 4.1.

Lemma 4.1: If G is a semi-closed P-graph, consisting of
fully consistent semi-closed subgraphs S and T, such that T
is attached to S by its main root, a, only, then G is fully

consistent.

_Proof: Since S and/T aré fully consistent it is not provable
from the assertions of S and the part-of axioms that any of
its nodes is empty. The same holds for T.
From theorem 3.2, there exist closed fully consistent
P-graphs S' and T' logically équivalent to S and T,
respectively, and thus the same also holds for S§' and T'.
Let {t,,...,tn}»and {s,,...,sm} be the projections of a onto
the leaves of S' and T' respectively.‘
Construct an interpretation « such that v, n, ~ and ¢ are
aséigned functions or relations that satisfy the part-of
axioms and where

a(ut.l..tn)=a(us....sm). (1)
(This can be accomplished by assigning non-empty, pairwise

disjoint objects to the leaves of T' and S' such that



alt,)=a(s,), ..., a(tp-1)=a(sp-1)
and ‘
a(utp...tn)=a(usp...sm),
where p=min{n,m}).
Also, for all leaves 1, k of S' (respectively T')
a(nlk)=a(8), ‘ ' (2)
and for any node x of S' (respectively T') with projectioﬁ
{x,,...,xk} Ontovfhe leaves,
a(x)=a(ux,...xk). . - (3)
By theorem 4.1, « is a model of S' and T'; thus, since from
(1) and (3) it assigns a the same interpretation in each
subgraph, 1t satisfies all the assertions of G', so that it
is also a model of G'.
Also, for any node x of G', a(x)#a(6); thus, by soundness,
G' 1A x=0,
and so G .| x=8, since G and G' are logically equivaleni.

Therefore G is fuliy consistent., [J

For lemmas 4.2 through 4.9 let G be a semi-closed
. P-graph, consisting of fully consistent closed subgraphs S
and T, such that T is attached to S by one of its main

roots, a, only.
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Fig. 7: Diagram for lemma 4.2.

Lemma 4.2: If s and t are leaf descendants of a in S and T

respectively, then G |£ nst=6

Prééf: Since G is fully consistent, there is an
interpretation a which assigns non-empty objects to all
nodes of G and satisties G.
Suppose for some s, t,
G F—‘nst=6.
Then by the soundness,
a(nst)=a(B). ' (1)
Claim: There is a leaf descendant of a in S, s', such that
“a(ns't)#a(B)
Proof: Suppose a(ns't)=a(6) for every s' in the projectioh
of a‘onto the leaves of S, {1,,...,1n}.
Thus a(nlit)=a(6) for all i, 1<isn
: => a(u(nl,t)...(nlnt)) = a(6)
=> a(n(uvl,...1n)t) = o«(86)
=> a(nat) = a(0)

but since t<a, G L nta=t.
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Therefore, a(nta)=a(t), so a(t)=a(B)
which contradicts the assumption that a« assigns
non-empty objects to all the nodes. M
We now construct a new interpretation B such that for any 1i
such that lj#s and lj#s':
B(li)=a(li), B(s)sa(s') and B(s')=a(s)
(i.e., we'interchange the interpretations of s and s') and
for any node n!with projection n,...nk onto the leaves of G:
B(n)=B(un,...nk),
where the interpretation of v, n, ~ and 6 is the same as
in a. Note that the projection of a is not uniquely defined,
but B(a)=a(a), since the interpretation of all the leaves of
T is the same as in a and ﬁ(ulf...ln)=a(ul,..uln), ; - the -
interpretations of 1,...ln‘are all the same as in ¢ toept
for s and s' which are interchanged. a(ul,...1ln)=a(a), since
« is a model of G, and therefore B(ul,...1n)=ala), so that a
has the same interpretation in both cases.
Claim: § is a model of G.
Proof: The inéerpretat'on of all the nodes of T is the same
as in a, so tQJ;%; satisfies all the assertionsiof T.
In S, for any two leaves x, y except s, s',
B(x)=a(x) and B(y)=al(y), so B(nxy)=p(8),
since by theorem 3.3 all the leaves of S aré pairwise
disjoint, because S is closed aﬁd & satisfies G.
Also A Ve
Blns'y) = alnsy) = a(8) \

and
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B(nsy) = a(ns'y) = a(9)
and
Blns's) = a(ns's) = «(6).
Thus, by theorem 4.1 8 satisfies G.
Now
B(nst) = alns't) # «(0),
so Blast) # B(8).
Thus G |# nst=8, which is a contradiction to our assumption.

Hence G |# ast=6. J

Lemma 4.3: Let x and y be nodes of S and T respectively,
such that x 1s projectible into a subhierarchy of S rooted
at a.

(a) G | ye<x => G |~ a=x

(b) G | xcy => G |- a=y

Proof: (a) Consider all the leaf nodes of S and T; Let
{x,,...,%xn} and {y,,...,ym} be the projéctions of x and‘y;
onto the leaves of S and T, respectively. | #
Thus, : _ .

G |~ x=ux,...xn and G |- y=uy,...ym.

‘g;
“44

Now assume there is a leaf 1 in the projection of a “th; isw .

not in that of x.
"By theorem 3.3(c), o :14?
G b nlx=86. ;23'¢~(1)

Suppose ycx; then for all i, 1<ism



Fig. 8: Diagram for lemma 4.3,

=> yylix=x

=> nl(uyix)=6

=> y(nlyi)(nlx, =6
=> u(nlyi)B=86

=> nly/=6

So, flom (1), G — nlyi=6 for all i, 1<ism, which, by

60

lemma 4.2 is a contradiction, Thus {x,,...,xn} is also the

projection of a onto the leaves of S. ‘Hence G - a=ux,..

i.e., G | x=a.

Sl
fie
oy

(b)The proof is the same as for (a). O

;[

Lemma 4.4: Let x and y be nodes of S and T respectively.

Then

G |~ ycx <=> G |— acx.

XN,
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{‘.... l.,\al‘ © @

Y

Fig. 9: Diagram for lemma 4.4.

Proof: Since G |- yca, it follows that 3
G agx.=>qG - yex. \R
Let“il,,...,in,a;,...,am} be the projection of x onto the
leaves of S,\where a,,...,am are also in the p;ojection of
a; Let thej(queét‘language) assertions
o x,=uvl,...1n |
and X;=va,...am
be added to the assertions of G to give a set of assertions
G’; where x,, x, are constants distinct from each other and
from all the nodes of G. Then
G' b [x, P1,...1n],
& b [xaP ar..am)
(since the leaves éf S are pairwise disjoint)
and N
| G' ' [x P x,x,].
Thus the ve assertions, when added to G' to form G", do
th provide any new.information, i.e., for any assertion A

G" |~ A => G' |- A.

N

: ‘ . ;
./ The converse is also true, since G" contains all of the
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assertfons of G', so that
G" |- A <=> G' }— a. (1)
Now, '

(2)

G" | x=ux,x,
and

G" | n(ul,...1n)(va,...am...ar)=0,
wheré {a,,...,ar} is the projection of a into the leaves of
. . _ '
Therefore G" |~ nx,a=8. (3)
Thus, since G" | yca, |

'G' | nx,y=8. | | (4)
Now suppose G |— yg#. ﬂ

ysx:

=> nyx=y,
=> ny(ux,x,)=y‘ 
o= u(nyx.)(nyx;5=y.

Thus G" |— u(nyx,) (nyx,)=y and hence, from (4), :
G" | ub(nyx,)=y, so thét G" }— yex,. /
Using lemma 4.3 , since,“x2 is projectible into a,
subhierarchy of 'S root%a at a,

G" | x,=a. . |
Hence from (2)

G" | acx.
Therefore

G" | yex, =% G" |- acx L -
and from‘(1) | ‘ o

G |~ acx, or equivalently, G' = acxk.
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But since any model o satisfyifig G (and -‘the part-of axioms)

can be modified so as to satisfy G' withoutﬁ%ffecting the

truth value of acx (namely, by setting the dénétations of x,

and x, to L(ul....ln) and a(va,...am) respectively), we have
|=. acx, “ CoX

and hence . B o e

G  acx. [

Lemma 4.5: Let x and y be nodes of S and T respectlvely\ f

G ’-74 acy then G }-74 Xcy

Proof: If G |- xcy, then G |— xca (because G — yca), so x
is projectible into a subhierarchy of S rooted at a. Thus by
lemma 4.3 G | a=y, so that G — acy. O

o
o

ies

Lemma 4.6: Let x and'y be nodes of S and T respectively. If
I [l

G H£ acy then :
G k— ygx iff G |— nxa=8 and G |- y#6.

Proof: Clearlyfif G |— nax=8 and G |~ y#6 then G | y¢x,
since G |- ycai

Also G |- yéx = G — y#6

The proof forlG }— y€x => G | nax=6 is similar to the proof

|

of lemma 4.2. Suppose G £ nax=0. Then the projections of a

and x onto thﬁ leaves of S must have nodes in common.

e
?
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DR

Fig. 10: Diagram for lemma 4.6.

Let 1,,...,1n denote the common leaf nodes. ‘A model a of G
can be constructed using a method similar to‘the one in the
proof of lemma 4;2 so that 1,,...,1n and the projection of y
onto the leaves of T are interpreted in the following way .
‘}QEEE 1: I1f£1,,...,1n is the eﬁtire projection of a (i.e., G
f— acx), then
a{uvl,...1ln) =ma(ut....tK) e afa),
where t,,...,tK are all the leaves of T.
Case 2: If some leaf of S is a descendant of a but not of x,
then \ |
alul,...1n) = alvy,...ym) = aly)
(Note that th§re is-a potential inconsistency in the
interpretations ofva which are "propageted up" from the:
leaves of S and T, in the éase where v,,...,ym is the set of
all leaves of T and there is a lggfhl*bf S, with
l({l‘,...,ln} and 1 is marked no%iembty; but this
inéonsistency is avoided by the premise G |#£ acy, which
guarantees that there are leaves of T other than y,,...,ym).

But then since *
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G | uvl,...1lncx
by soundness, a(ul,...lncx)=true, so that a(ycx)=true.
Hence G |+# yg¢x. O
Lemma 4.7: Leg'x.and y be nodes of S and T respectiyely{ If
G |4 acx then
| G | xfy <=> G |- =xfa.

Proof: G |— xcy=>xca so that G |- xga=>xgy; therefore
G | xfa = G - xcy.
(Forward direction). Let {x,,.;.,XF,l,,...,ln}_and
{1,,...,1n,k,,...,ks} be the projections of x and a
respectively onto the leaves 6f S, and let {yi,e0.,ym}
be the projection of y onto the leaves of T.
Now suppose that G |£ acx and G |- xgy, but G £ xf#a.
" Then {k,,...,ks}#@, for otherwise we would have G |-
x¢a. Then {k,,...,ks}#d, for otherwise“we would have G
— acx; and no node projectible.Qnto.{x‘,...,xn} is

marked nonempty, for otherwise we would have G |~ xga

Then we are able tolconstruct the followiné sort
of model a of G. We assign,a(xi)=a(6) fof 1<i<r; and
we assign non-empty pairwise disjoint objects to the
remaining leaves of S, and non-empty pai:wise disjoint
objects to the leave: »f T, with the following

additional constraints.
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X Y N B

Fig. 11: Diagram for lemma 4.7.

Case 1: If {z,,...,zt}=@, then we let
alul,...lnk,...ks) = a(uy.;.fym) (much as in
lemma 4.1). '

Case 2: I1f {z,,...,zt}#@, then we iet a(ul;;..ln) =
alvy,...ym), and

a(uk,...ks) = aluz,...zt).

. Then we set

aln) = a(un,...nu)

.for any non-leaf node of either closed graph with projection

{n,,...,nu} onto the leaves of that graph.

Now we observe that |

(i) a« satisfies S and T separatély, by theorem 4.1. (Note
that only nodes projectible onto {x,,...,xr} receive
empty interpretations, and no such nodes are marked
non-empty, so that « satisfies all non-emptiness
assertions.)

(ii) In both cases above,

al(ul,...lnk,...ks) = H(UY4{-.sz|.-.zt),

'so that the two assignments “propag:
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identical, i.e., a simultaneously satisfies S and T.
(iii) In both cases,
a(x)=a(u}....ln) and
a([ul..:%i%gy])s true,
y so that a([xsy])= true.

" Hence ¢ £ xcy, in contradiction with one of<fhe

assumptions. [J

Lemma 4.8: Let x and y be nodes of S and T respectively.
Then

G | nxy=6 <=> G |- nax=6.

Proof: Clearly, G |- nax=6 => G }— nxy=6. %\3
Let {a,,...,ak}, {x,,...,xn} and {y.,...,yn} be the

projections of a, x gnd y onto the leaves of S and T
respectively. Now G |— nxy=86 => G |- nxiyj=6, for all i, j,

1<i<n, 1<j<m. Thus, by lemma 4.2, the projections of a and x
have no leaves in common. But then 3 '
G |~ nxiaj=6 for all i, j, 1<isn, 1<js<k

=> G }— v(nx,a,)...(nx,ak)=8,

. G F—~;(hxna,)...(nxnak);6
=> G |- nx,{va,...ak)=8, ..., G |~ nxn(va,...ak)=8
"=> G | ax,a=8, ..., 8%}— nxna=6

=> G i—— nxa=8 E]
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Lemma 4.9: Let x and y be nodes o’ and T respectively. If
G £ acy then

n

G | nxy#8 <=> G |- aéx and G | y#6.

éroof: If G |~ acx then G |~ ycx so that G | nxy=y,
therefore .
(G |- acx and G |~ y#8 ) => G }— nxy#8.
Now suppose G |~ nxy#6. Then G |~ y#6 and
G |- yca
7¥> G b nxa=nx(uya)
=> G | nxa=u(nxy)(nxa)
=> G - nxaxf, €=
Since x, a are in the same closed P-graph, there are common
leaves 1,,...,1k in the projections of:x and a onto the
leaves S. The number of such leaves cannot be zero, for in
that case G - nxa=6 would hold.
Suppose there is a leaf a, in the projection of a but not
‘that of x. Then a model a can be constructed as follows:
Let the projection {y,,...,ym} of y onto the leaves of T, be
: assigﬁed pairwise disjoint objects and let a, be assigned
a(a,) such that
a(a,) = alvy,...ym.
Let the rest of the leéves of T be assigned pairwise
. disjoint objects (here we used G |- acy), disjoint from
Yi,...,¥ym, and let the rest of the leaves in the projection
of a onto the leaves of S be assigned pairwise disjoint with

the same merge as those assigned to the rest of the leaves
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of T. Let the leaves of S be assigned other péirwise
disjoint objects, disjoint from those.

Since all the leaves are interpreted by disjoint objects,
the rest of ;he nodes of G can be interpreted so as to form
a model for G (theorem 4.1). But «(y)=a(a,), so, since for
all i, 1Si$k,‘a(na.li)=a(9), a(nyx)=a(8).

Hence G }£ nyx#6.

This is a COntradiEtion, so there is no leaf a, in the
projection of a that is not in the projection of x.

Thus G |~ acx, so G — nyx#6 => G |- acx. [

The next theorem relaxes the restriction that the

subgraphs T and S be closed, in lemmas 4.4 through 4.9.

Theorem 4.2: Let G be a semi-closed P-graph, consisting of
semi-closed subgraphs SAand T, suchvthé? T is attached to S
by its main root, a, only. Let x and y be nodes of S and T
respectively. If G £ acy then:

(a) G | ygi iff 6 b acx

(b) G F* xcy

(c) G b y¢x iff G |~ nxa=8 and G |- y#8

(d) If G | acx then G | x¢y iff G | xZa

(e) G b nxy=8 iff G |~ nax=0

(f) G | nxy#8 iff G |~ acx and G | y#6

Proof: In [Schubert 1980] an algorithm is given for

generating a closed, logically equivalent P~graph (with



70

.respect to assertions involving constants of the original
P-graph) from an arbitrary P-graph. Thus there is a
logiéally equivalent semi-closed P-graph for G, G', where
the semi-closed subgraph T has been replaced by a closed
subgraph T' and the rest of G without T has been replaced by
a closéd‘subgraph S' (theorem 3.2).
Now, for any assertion A involving constants of G only,

G - A <=>G' |- A,

and using lemma 4.4 through 4.9 the theorem follows. [

For the following corollaries to the theorem let G be a
fully consistent semi-closed P-graph with subgraphs T,, S,
T, such that T1 and T, are rooted at nodes a', b' of §,
respectiﬁely and havg no other common nodes with S or éach
other. Let a, b be nodes of T,, T, respectively, such that

G [# a'c a and G |# b'c b.
Corollary: G £ a < b.
(by part (b))

Corollary: G I~ a ¢ b iff G | na'b'=6 and G | a#8.

(by parés (c) and (4))

Corollary: G b nab=6 iff G | na'b'=6.

(by part (e))
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Fig., 12: Diagram for the corollaries to theorem 4.2.

Corollary: G F% nab#6.

(since by part (b), G | bca, hence G |# b'ca, hence by (f),
G £ nabz6).

The correctness and completeness of the proposed
algorithms follows from the above Eheorem and its
borollaries. In both algorithms line 1 eliminates the case
where x and y belong to a common closed subgraph. In the
algorithm to answer ?[x part-of yl, lines 2‘through 5
correspond to thé case where y is an "ancéstor" of -x and
make use of theorem 4.2 (a) and (c). Lines 6 through 8
correspond to the case where x is an "ancestor" of y and
make use of (d) and (b). When neither is the case (line 9),

the first and second corollaries provide an answer.

Similarly, in the algorithm to answer disjointness
questions, line 2 uses the third corollary, lines 3 through
8 theorem 4.2 (f) and the rest of the cases are taken care

of by the fourth corollary.



4. Inférence about Colours

Consider a systém with a resolution-based deductive
component . The following are some trivial problems it may be
faced with, either'in answering user questidns or in
checking new information for inconsistency and redundancy:

7

1. Given knowledge: elephant(Clyde),

~elephant (x)vgreyx)
uestion: ?grey(Clyde)
Question:

2. Given knowledge: elephant(Clyde),

plus knowledge about types of animals

"Question: ?animal(Clyde)

3. Given knowledge: elephant (Clyde), Vs

' 4
plus knowledge about types of animals

Question: ?canary(Clyde)

4. Given knowledge: yellow(Clyde),
| ~elephant (x)vgrey(x),
plus knowledge about colours

Question: ?elephant(Clyde)

Question 1 can be answered by resolving the two
complementary "elephant" literals, with result grey(Clyde).

In a refutation proof, this would in turn be resolved

72



against the denial -~grey(Clyde) of the question. The

"

resultant empty clause justifies a "yes" answer.
Question 2 could be answered by a series of resolution
steps that progress along the superconcept segquence
connecting "elephant" and "animal"; but this is just‘where
we would like instead to invoke special inference methods

for type lattices, as described in the previous chapter.

From the theorem prover's point of view, /this should be a

one-step inference: in terms of a refutation \proof,
elephant(Clyde) is incompatible with the denial
~animal(Clyde) of the question in much the same way that
complemehtary literals are incompatible, and should yield
the null "resolvent". Similarly, it should be possible to
obtain a one step disproof for question 3 by "resolving" the
incompatible literals elephant(Clyde) and canary(Clyde). In
question 4, one "resolwing" step should recognize the
incompatibility of yellow(Clyde) and gréy(x) and hence infer
the "resolvent" ~elephant(Clyde), which then resolves in the

proper sense with the question clause, to yield a negative

answver,

One interesting question which arises about this sort
of "resolving" is whether it can be extended to deal with

modified predicates such as "large animal", "dark brown" and

"sort of brown" (or brownish). Natural lanquage, after all,

provides a large repertoire of predicate modifiers, and

| | /
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presumably any adequate knowledge representation language

must contain the logicalabounterparts %& at least some, of

L]

these,

o
4.1 Predicates modified by hedges

A particularly troublesome is "sort of"; it is
characteristic ‘of this modifier (and of "hedges" in general)
that (sort-of P)(x) fails to entail P(x); this is in

ontrast with cases like (large P)(x), (typical P)(x), and
(dark P)(x). Note however that we can take P(x) to entail
(sor+-of P)(k)ﬁ For example, an elephant is certainly sort
of an elephant;valtbough the maxims of cooperative
cooversation (specifically the quantity and brevity maxims)
1mply that use of the hedge 1s improper and therefore
mlsleadlng 1f the unhedged predlrate is known to apply
[Grice 1975].

Let us reconsider the~(extended) resolution steps
postulated in examples (1) - (4) with some of the predicates
»modlfled by sort- of e In example (1) the standard resolutlon
{eIephant(Clyde) felephant(x)} was requlred. Accordtng to
the assumed propertieé‘of sort-of, the pair
{(sort—ofvelephant)(Clydé), ~elephant(x)} is compatible
while the pair {elephant(Clyde),.*(sort-of elephant)(x)} is

not. The latter incompatibility is easily detected in two



resolution steps given the axiom schema

-

P(x) v (sort-of P)(x)

which captures the entailment postulated above. No methods
other than standard resolution (in conjunction with rules

- l Bl ' .
for applying scheémata involving predicate modifiers) appear

to be required .in this case,

Example (2) called’for,"resolvipg" the pair
{elephént(Clyde),'”animai(Clyde)}-by Special lattice i
| methods, so as to évgid‘the need for construc£ihg lohg
resolution chains. Now {Ksort—of eleohént)(Clyde)
""anlmal(Clyde)} are compatlble, but {elephant(clyde)
- (sort-of anlmal)(Clyde)} plalnly are not. -In fact the
stroqger statement can be made that »
v{(sort—of‘elephant)(C1yde), L(sort—of animall(Clyde)} aré
inéompatible. (%ﬁe staﬁéme;t is stronger because by the
axiom schema for sort-of, it;entaiis the incompatibility of
ielephanﬁ(Clee) ~(sort-of animalf(Clydé)} ) This
1ncompat1b111ty can agaln be efficiently detected with
essentlally the same lattlce algorithms as were needed for
the unhedged case,lalong~w1th the general rule that if P 1s
superordina£e to Q in a ﬁype'lattice, then (Sorﬁ—of Q) is

incompatible with -~(sort-of P) (i.e., entails (sort-of P)).



For example (3), we observe that |
{(sort-of elephant)(Clyde),zcaﬁary(Clyde)} and
{elephant(Clyde), (sort-of canary)(Clyde)} are incompétible
pairs. Given efficient methods for detect@ng incompatibility
of type predicates P, Q, we can easily detect these new
incombatibilities.as well, using the rule that (sort-of P),
Q are incompatible whenever P, Q are. Note, however that the
stfonger iqcompatibility observed in example (2) now fa1l%
{(sort-of P)(x), (sort-of‘Q)(x)} are compatible even when Piﬁ

Q are not: a.thihg can conceivably be both a sort of an
’

elephant and a sort of canary (consider myths and fairy
tales),.though the actual existence-ofWSUCh a fhiqg (even'
- .allowing erodigious advances in genetic engineering) may be
wildly implausible.

. . :

The,ex§mple§g§eﬂfa§ngn;iﬁsbire the hope .that the data ¥

structures and algoritﬁms de&éloped for efficient detection
of superordination and incompatibility relationships in
predicafe taxonomies are sufficient as well for detecting"
1ncompat1b111t1es of hedged predlcates. Thi3 hope begins to
falter, however, as we proceed to example (4) Curlagsly
colour predicates, which we might imagine to beé part{cularly ;
"primitive" and more simply structured ‘than nominal
predicates,Aéppear to obey more complex iaws. Not only is it
correct to say that {(sort of tan)(Clyde)
ﬁ(sort of brown)(Clyde)} for example, are. incompatible, as -

in the strong analog of example (2),‘but the strong analog

\
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of 4 now holds as well in certain cases; for example, if

|

Clyde is sort of yellow (or yellowish) he cannot be sort of

blue (or blueish). If this inc
‘.,,’-5\}"

cases, there would still be no

patibility held in all

ed for specialized
representations of relationskips among colour terms apart
from those whiéH can be cabtured in a simple specialization
lattice. However, this is not the case; while a colour
cannot be both sort of yellow and sort of blue, it géh be
both éort of yellow and sort of green, fbr examplgy/in some
sehse, this is because yellow and green afe more ngarly

b

.compatible than‘yel%ow aﬁd blue.
2 :
One possible solution is to augment the basic hierarchy
Qith special "sort-of" links. Ordihary links in a
specialization (IS-A) hierarchy indicate subordination, and
&he direct descendants of a ﬁodé aré iﬁplicitly taken to be
';gébmpatible. The "sort-of" links would exhaustively specify

for each colour whether it can be "sort-of" another cplour.

One disédvantage would be the loss of the tree
stgucture; for example, there woﬁld be two "sort-of" links
‘connecting "chartreuse" to yeflow and green respectively,
which are on separate branches of the basic hierarchy. |
Moreover, there would be very many such links. The‘most'
serious problem, however, 1s that compafibilities;and
incompatibilities of new colour terms could not be

predicted. For example, the mere absence of anyhcolour term
‘ §
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qreen

yellow blue

Orange > purple

red

~-Fig. 13: Strong incompatibility links between major colour
terms. (The remaining 5 terms black, brown, grey, white and
pink can be added as well). )

with "sort-of" links to b%@ku"blue" and "yellow" does not

{
rule out the possibility 7h t there could be a colour term
L , —_—

with both links.

Ohe'approach consi%éred introduces "strong
.incbmpatibility" links §Qstead of sort-of links (fig. 13).
Twozéblours P, Q are takeh _to be sfrongly incompatible just
in case another colour ca::ét be bqth "sort-of P" and
"sort-of Q". The resultant graph is rather pleasing'and
solves the problem of predicting incompatibility of hedged

-

colour terms.

However, each new type of link introduced into a
graphical fepresentation of colours seems to capture only
one type of relétionship'among colour terms. For exampIe,

»

the strong incompatibilities appear to provide no
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explanation of the intuition that if a colour is "sort-of

scarlet” then it is pot just "sort-of red", but simply red,
whereas the analogous inference fails for "sort—gf magenta"
(Though magenta is-a shade of red, a "sort-of magenta" may

be too far towards the purple to be properly called red). .

4.2 The cube model

-
Nl

Such subtleties have led to a third “Kind of

it iory, more spec1allzed still than hierarchies,

which takes quantltatlve .account of the (percelved)

composition of colours. Those\w1th experience in painting or

computer graphics may be familiéf withtthrqe-dimenSional
models of colour spaée. Ohé of tbe.simp;est;modeis.fqr
representing colours as mixtures of primitives is‘théﬁéolouru
cube (fig. 14f. Starting-iﬁ one corner (white? each of the
edges coming- out of that corner is increasing in the ‘\
intensity of a primary. Any plane passing through the'colgbr
.cpbg, parallél to one of the faces will be constant in one
of the primarigs ahd?will contain’ all proportions. of thg
.remaining two. ThusAthe corners of the‘cube are: red,
~orange, black, purple, blue, green, yellow and white.

! .
- . It is interesting to note that the star shaped graph of

fig. 13, formed by the strong incompatibility relatlons

among the major colours, can be embedded in the cube

3
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red -

Fig. 14: (a),(b) Two views of the colour cube,

(c) Strong incompatibility links seen as diagonals of
““the d@lour cube. ‘ '

-

(fig. i4 (b)). Also, although there is a smooth transition

betweenﬂany'two colou;;, a given colour term corresponds to
a certain sub-vbl&%ﬁ‘insiaetthe cube’ It becoﬁes\apparent;

that'a criterion(for strong incompatibility is that the-

defining‘volumés for two pfedicatesvare not adjacent.
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Similarly, two colours are incompatible if the defining

volumes are non-overlapping.

As one can appreciate from inspection of fig. 14,
defining the subregions. of fhe colour cube corresponding to
the natural colours is‘not a trivial task. (Although the
exact parameters are not a majoritoncern, it is 1mportant do
]ustlce to the shapes of the regions and their
1nterrelatlonsh1ps in order to achieve our inference
objectives.) Instead of working directly with the primary

values, it is helpful to re-parameterize colours in terms of
® “.‘N" . ) ' "% :

pure colour component

purity = \
pure colour component + black component
pure colour component %%§
i f - white component
and
dilution = whitelcomponent
wvhere _ e
pure colour = 1 - white - black :
= max(red,blue,yellow)" - mln(red blue,yellow),
white = 1 - max(red,blue,yellow),
blaék = min(red}biue,yellow),

and all guantities are assumed to range from 0 to 1.
\
A third quantity is needed to define the hue’of the

pure colour component.
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The cube model, however, despite its inibiaf appeal,
and although it is as adequate as any model for describing
colours as additive or subtractive mixtures of three
primaries, fails ;oiinclude all distinguishgble colours.
Surprising as this may seem, it is due to the fact that any
three primaries caﬁ, at best, produce only part of the whole
specgrum of hues [Judd 1963]. Of course, any graphics tool
'Lhat'we can use to experiment with the model will employ
;h?éé‘ﬁ?imarigs, but nonetheless a model that in theory can
dépict all distinguishable hues 1is preferablé;‘Moreover, we
would like regions defining the'natural»cqlouf terms to be

simpler than those in the cube model.

4.3 Téj]cylinder model

//

P

s
The cylinder model is simila in many respects to

other well known models ([Munséll -], [Ostwald 1969]) in
that the hues are arranged in a cir . ie around some axis and
Hue is specified by angular displacement. The essential
difference from the cube model is that the chromatic

" (rainbow) hues are no longer viewed as composed of
primaries, but simply as particular angular positions
relative to a reference direction (say, scarlet). Purity apd
dilution, as defined»ear;ier, are the other two dimensions.

However, the "pure colour component”™ is no longer reducible

to the difference between -the max and min of the primaries,
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Pu(i+j

Fig. 15: The purity-dilution-hue colour space, illustrated
as a cone. :

but simply repreésents the amount of single—hﬁe colour which
has been "blended" with certain amounts of black and white
to produce the colour in question. Purity is 0 on the axis
and increases radially to 1, and dilution increases
vertiéally (i.e., axially) from 0 to 1. For’purposes of.
graphical illustration, it is natural to shrink ﬁhe top
(white) surface of the cylinder to a point. In the resultant
cone there are no paths of zero colour gradient (see

fig. 15)

The cylindér‘mddel not only encompasses all colours,
but in addition akes it possible to definé colours as
regions bounded by surfaces which are defined simply by
kéeping one coordinate fixed; i.e., colour regions are pie
shaped portions of cylindrical annpli. of course, in a

representation which shrinks the top surface to a point,
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Fig. 16: The cone model as partitioned by the basic colour
regions. Here the red and pink regions are taken out to give
a view of the interior of the solid. :

such regions taper towards the top (fig. 16).

4.4 Inference methods

As emphasized earlier, inference about colours is only
a part of a general inference system. The goal is to design
a special purpose mechanism that, given.two possibly hedged
colour predicates, applied to unifiable arguments, will
determine whefher one is subsumed by the other, or that they
are incompatible or that neither is the case ("unknown"),
Thus, if we wish to resolve colour predicate -M(x) against
m(x), for example, we can query the special purpose system
for the pair {M,m} and if M subsumes m then the resolutidn

can be carried out,.
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Going back to question 4 at the beginning of the
chapter, after resolving elephant(Clyde) against
“~elephant(x) of the second clause in the usual way, we are
left with grey(Clyde) aﬁd yellow(Clyde) — these are the two
literals supplied to the colour reasoning algorithm. In the
model the predicates grey and yellow will correspond to
non-overlapping regions so that grey(Clyde) can be resolved
against yellow(Clyde) to yieid the null clause, thus
yielding "ﬂelephant(&lyde)", in a standard proof by

contradiction. 2

The following examples illustrate th- <ame type of

reasoning as applied to a stucturally different '
question: L | \

1

1. Given knowledge: tan(x)v-elephant (x)
~(sort-of brown) (Clyde),

- plus knowledge about colours

{Question: ?elephant(Clyde)

This states that all elephants are tanrand that Clyde
is not sort of brown. Since tan is a kind of brown it ouéht
to be possiblgvto prove that Clyde is not an elephant.
Resolving the negation of this conclusion against
~elephant(x) of the first cla.se we obtain tan(Clyde). The
literals to be resolved iy “he colour reasoning algorithm

are now "tan(Clyde)" and "~(sort-of brown)(Clyde)". The
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defining region for tan is included in that for brown, so

~(sort-of brown)(Clyde) can be resolved against tan(Clyde),

thus disproving "elephant(Clyde)".

2. Given knowledge: grey(x)v-elephant(x),

~(sort-of brown)(Clyde),

plus knowledge about colours

Question: ?elephant(Clyde)

i

- This is very similar to qguestion 1, but in Ehis case

there is not enough information to answer the guestion,

since the resulting literals are grey(Clyde) and

“(sort—of'brown)(Clyde). It is clearly possible for Clyde éo
' : |

be grey and not sort of brown. Thus we cannot resolve these

clauses.

1)

2)

The above examples indicate the need for:
a procedure relation which takes two colour predicates A
and B and determines the relation of B to A, %y comparing
their hue, purity and dilution intervals, ‘ "

a table which states whether for a given relation of B to

A, and corresponding modes a, b (i.e., "hedged" or

"simple", as giver by the modifiers for A and B in the
literals A and B) either "A includes B", or "A and B are

incompatible” or "unknown".
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If A and B are incompatible, then they can be resolved

and if A includes B, then literal -A can be resolved against

B.

The relation of B to A can be one of the following:

(i) "apart" — iff one or more of the corresponding intervals
for A and B is not overlapping or adjacent

(11) "adjacent" — iff all of the intervals are adjacent and
possibly some but not all are included or ovériépping

(iii) "overlapping” — iff all are overlapping and possibly

some, but not all, are included

(iv) "included" — iff all ofrthe intervals of B are included
in A

(v) "including" — iff all of the intervals of A are included
in B

(vi) "centre-included” — iff they afe included and none of

the corresponding intefvals have commod endpoints
(vii) "éentre-including" — 1ff they are including and none

of the corresponding intervals have common ehdpoints

The table will contain one entry each for "included" -
and "including" and for "centre—included" and
"centre-including™ and the order in which the inputs appear

will determine the direction of the inclusion. Thus, when

': 'thg'pébie is queried~thé included predicate will always be

W

S

»in the position of B. This is to avoid repetitions.
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The reason why we consider "intluded" and
"centre-included" as separate Eases is that they do resudt®
in different resolving patterns. For example, although both
magenta and fire-engine red are special cases bf red and
their regions are thus included in that for red, anything
that is "sort of fire-engine red" is clearly red, but
something that is "sort of mégenta" maybe too far towards

.the‘purple to be considered red.

Another distinction that must be made is between basic
and non-basic colours. Detailed criteria for "basicness" are
listed and discﬁssed in [Kay & McDaniel 1978], [Mervis &

4
Roth 1981] and [Kay 1981]. We take as basic the following 11
terms and no others: black, grey, .white; red, orange,
yellow,\green; blue, purplet pink, and Lrown. We feel. there
is sufficient evidence in'evgryday usagL to assume that
these completely partition the‘é§lour sbace. Non-bqsic
céiours, such as yellow-green, navy, maroon, etc.,fsometimes
lie.across boundaries and in any»égsé overlap.onefbr more
basic colours. Regions ocUppied by non—basie coldhrs are j
generally smaller. A result of this 'is that gl%/shades
binc1uded by a non-basic term which spans two basic‘colours
lie near the bddndafy betweén these basic colours. Thus; for

example, all that is yellow-green 1is sort of yellow, yet not

all that is{ yellow is sort of yellow-green,
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These facts can be dealt with by pre- order1ng literal
pairs A, B before table look~up, in a manner dependent on
“the bas;c or non-basic status of A and B. Since basic
colours always include non-basic ones, rather than
vice-verse, and to be_consistent with che,orde; already
established for the inclnding case; the non-basic term, if
any,“is taken to be B. If both are basic or both' are |
non- ba51c and the order is not forced by an inclusion
relatlon, in the case where:only one is hedged, the hedged

“term is taken to be B.

i

P

How do hedges affect the peiation of B to A once this

- has been established? A simple model is proposed”that
ultlmately ylelds answers compatlble w1th most common -
1ntu1tlons. In th s model let the regxon of A be represented
by a line segment of one unlt length and of B by one. of half
a unit. A hedge is seen as an "aura” half the segment s »
length thick on either élde of it. In fig. 17 a table is
constructed using this model, where the possible

combinations of hedges on A and B are enumerated.

~The table required for the algorithms can now be
constructed from thet of fig;'12 by interpreting its entries.
as "A includes B" when the line segment of A isrcontains
that of B, "incompatible" when the 1ine segments do not
onerlap-and "unknown" when there is'a.partial overalp

(fig. 18).

9



simple A |- simple A hedged A -
relation ~simple B hedged B simple B
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hedged A
‘hedged B

apartom'

§djace§t | ‘A- 'AQEIN'AW-L%

T— £

over;ap.

included

centre-
included.

’ \

Fig. 17: Regions of colours A and B And their correépondihg

hedged terms are modelled by llne segments,

The algorithm can be summarized as follows:

Given llterals aA(x) and bB(x) where A ‘and B are colour

pred1cates and a and b are elther "sort- of" or n

othing,

which correspond to "hedged" and "simple", respectlvely,"

. first determine the relation,between A and B.

P

i\,et
.\‘

7

basic(x);truo,iff x is one of the basic terms;
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simple A

hedged A
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LY

\\‘T_bb =

_ A hedged A
relation Simple B hedged B simple B hedged B
A 5
apart incomp. incomp. incomp. incomp.
adjacent ~ incomp. unknown A unknown
overlap. unknown unknown A A
included A unknown A A
.-cenéref ’ o
~ included A A A A
&
Fig, 18: This table determines the relationship between two -

literals of the form.aA and bB given the relation of the
colour regions /A, B and their corresponding modifiers a, b.
"incomp." means that 4 and B are incompatible and "4&" means
A includes B. | B ’

Then proceed as follows:

. begin

/ r :¥ relation(A,B); .
ba := basic(A);
basic(B); : . ,
. if _(f="centre-included"” or r="included") then table(b,a,r);
‘if--{r="adjacent” or r="overlapping™) then

if (-ba and bb) then table(b,a,r) '

else if (ba=bb and a="hedged" and b="simple")

. ' " then table(b,a,r)

else table(a,b,r); : ~ .
end

-

~



5. Conclusions

Methods for handling spec1al purpose reasonlng havé
been presented for representing and mak1ngn1nferences in
certain classes of.taxonomlc.structurgs (P-graphs) and for
- reasonihg about péssibly hedged colours"Much of the work’

" presented here, howévgr, is not compiete yet. o
| ) o | ,‘ A

In [Schubert 1980] it is shown that the problem of
ans&er1ng quest1ons about part- of and d15301ntness relations -
between nodes of a general P-graph is co—NPfcomplete. This
motivates the.searc; for algof%thms which answer these
questions efficiently for as large a class of P-graphs as-
pgésible; and hence the development of semi—ciosed'P~graphs.
Note,Nhowever, that in’prowing the co-;Pfcompleteness oﬁ
these problems, thé restricfion to fully consistent P-graphs“
“had not beeh made? thus it is concelvable that methods can |
be devised to answer .these questlons eff1c1ently for general
fully con51stent P-graphs. This would clear}y make the |

‘fo:egqing obsolete; thus the co-NP-completeness of the

corresponding problem needs to be investigated.

'Semi—closéd P—grabhs are in most“cdéés sufficiently
general to accommodate all~in§6ming parts information
without an intervening c6nversjon.~Neveftheless, algo}ithms
to convert gené:al tO'sémi-cloéedvP—graéhs‘need to be
developéd; the conversion can be aqcbmpliéhed in a bottom up

,

.

92 ,
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it

fa%hion with relative ease. It should be noted that we are

- mostly interestedtin a"knowledge assimilating system, so the

/7édgr>of‘ehtry of the assertions will be.significant!

/// V’Thé restriction that a semi-closed P-graph consist of a

[

-semi~closed P-graph with another semi-closed P-graph

attached by_the ma n root to one of its nodes éould yet be
rg;axed, léading/po‘a’larger class of graphs. In fact, it
may be_poésible té allow ihtersection of two semi-closed
P-gréphs at any one hode; without forfeiting computational

tractability. ”‘

Anothef;aréa of further ihvestigation is the
applications of P-graphs to propositional logic and theorem
proving. Clqusé sets can be translated to Pfgraphé,
explbiting'the analogy between implication and part-of, and
vice-versa. Thus P-graphs may offer a newfapproach to
ﬁheorémaproving for certain clasSeéQof clauses.

| | | | /

_ From the-gtudy'of-co}our-reasoning of chapter 4, .we

a
&

concludq that there are classes of predicates which at first

' seem to require no more than quasi-hierarchical .

‘representations, but on closer examination are seen to call

for more specialized representations of a quite different
sort - in the case of colours, a numerically coded "spatial”

repfesentation. The-cylin@er model proposed allows constant

time compafibélity checking of various hedged and unhedged
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colour terms, minimizing the need fqr ‘combinatorial
inference: \

The model is also éttfactive for anoth€r reason: the
colour cylinder could serve as the interface betweeh the
percéptual and conceptual systems of a r&bot: the required
parameters should be quité easy to exéract~from the primary
sensory data, and once extractéd, could easily be uséa to
compute an appropriate colour label. |

A colour feasoning subsystem has been built which,
given a pair of possibly hedgéé colour terms determines
&ﬁich“one sﬁbéumes the othes, if any, or that they are
incompatible, or that the answer is "unknown"., The
implementation foilows closely the descripfion of the model

and the algorithms of chapter 4.
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