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ABSTRACT 

The winter season is known for brisk cold weather and beautiful snowfalls, but it is also known 

for deteriorated driving conditions to where the risk of collisions becomes a major issue that 

plagues many municipalities around the world. As such, agencies are tasked with and strive to 

prioritize weather-related collision prone locations for an efficient mobilization of winter road 

maintenance services and to improve winter safety of motorists. Finding these locations is known 

as network screening and can be a challenge at times, requiring either a lot of data, or statistical 

background. Presented in this thesis is an alternative network screening method known as 

Regression Kriging (RK) that has recently gained some traction due to its wide applicability and 

excellent performance in modelling regionalized random variables. This thesis has three objectives 

and that is to (1) demonstrate the applicability and usability of RK models, (2) further enhance its 

predictive ability by substituting in network distances, and (3) characterize the underlying spatial 

structure of the winter collisions at various zonal scales to check the spatial continuity assumption, 

otherwise known as a second order stationarity. This thesis employs a case study within the state 

of Iowa where RK was utilized to model winter collisions using large-scale datasets of the entire 

state of Iowa that were collected over five (5) winter seasons from 2013 to 2018. The Winter 

Collision (WC) ratio was used as a surrogate measure for winter collisions as it represents a value 

used for relative comparison of collision sensitivity to winter conditions. 

The results from the case study resulted in some key findings. As an estimator, RK was shown to 

be a very effective providing predicted results that outperformed results from multiple linear 

regression and from ordinary kriging (OK), a precursor to RK. Five statistical measures were used 

to compare model performances with RK outperforming OK on all measures, though the predicted 

values were overestimated. In an exploratory analysis in an attempt to improve RK estimations, 
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network distances were substituted into the kriging modelling process. Using the same five 

statistical measures, it was found that network distances provided marginal improvements to the 

predicted values, but the real improvement was in the level of uncertainty in those values. The 

model now underestimates the true value, but not to the extent that it had previously overestimated 

them, thus reducing the level of uncertainty of the values. As for the underlying spatial structure, 

it was found that the spatial variance that the model relies on was not continuous or stable, thus 

suggesting that models should be built on a zonal level to better capture unique regional spatial 

characteristics.  

The main contribution of this thesis can be broken down into three parts. For the first time in 

literature, RK has been shown to perform well as a network screening tool over a very large 

temporal and spatial scale. Secondly, network distances have now been shown to improve kriging 

results within network screening. And finally, it was determined that the spatial structure is highly 

sensitive to the area and its size. Applying RK over an extremely large spatial scale could possibly 

overlook regional factors that can affect the spatial structure as zonal analysis often gave different, 

often better, results.   
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Chapter 1 INTRODUCTION 

1.1 Background 

There is no question that operating and maintaining a safe transportation network is a challenge 

that all transportation agencies face every day. Unsafe roads lead to situations that impact society 

humanitarianly, economically, and environmentally due to collisions. Because of these types of 

losses, municipalities and transportation agencies strive to ensure that the roads are safe to use for 

the general public. Though it is a year-round task, this is made even more difficult during times of 

inclement weather, especially for those in winter climes. For those that must contend with winter 

conditions, continual and efficient maintenance now becomes a major factor for them when trying 

to maintain safe roads. As of 2016 in the US, upwards of 16% of traffic fatalities are attributed to 

weather related incidences (US DOT Federal Highway Administration, 2020) while in Canada in 

2017, over 14,000 injury collisions occurred in December alone (Royal Canadian Mounted Police, 

2019). Though the travelling public have a responsibility to drive to the conditions, it is the 

managing authorities’ responsibility to ensure the roads are in the best condition possible to reduce 

the chances of an incident due to drivers’ mistakes. There are as many strategies as there are 

agencies that work to manage their roads during the winter and yet they all have the same problem: 

how, when, and where to apply their resources for maximum benefit.  

Winter collisions (WC) and winter road conditions (WRC) pose a unique challenge for road 

maintenance personnel as snow and ice can accumulate on the roads continuously during a weather 

event. This buildup causes persisting slippery conditions that can be extremely hazardous to all 

road users and are difficult to manage as they can deteriorate road conditions rapidly even after 

servicing. Municipalities have a duty of care to their citizens to ensure that their roads are serviced 

by their road authorities after a winter event. Road authorities strive to maintain and service roads 

in a timely manner to improve mobility and reduce the chance of weather induced collisions 

through the active process of servicing winter roads, known as Winter Road Maintenance (WRM).  

There are many aspects to WRM that ranges from planning in the off season to crews doing the 

work, all striving to make the roads less dangerous and more accessible, while improving winter 

mobility. Aside from the need for timely maintenance executions for safety, these processes also 

come with operational costs that municipalities try to minimize. To achieve these goals, one 
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solution would be targeting their operations at high-risk weather sensitive collision locations – a 

process commonly referred to as network screening and is a critical part of the safety management 

process used by transportation safety engineers. Figure 1-1 shows the 6-step cyclic process 

involved in the safety management process. 

 
Figure 1-1 Safety Management Process adapted from the Highway Safety Manual 

(AASHTO, 2010) 

Network Screening is the first and the foremost important step of the safety management process 

as it serves to identify and establish focus to sites for potential assessment or treatment (American 

Association of State Highway and Transportation Officials (AASHTO), 2010). This process 

provides rankings of high risk sites such that agencies are able to make budgetary and long term 

treatment plans. Many network screening methods have been developed over the decades in the 

transportation safety field and continues to be a heavily researched topic.  

1.2 Problem Statement and Motivation 

A US joint task force published the Highway Safety Manual which outlines many common 

network screening methods currently being used (AASHTO, 2010). One of the first renditions is 

also its simplest form, which is just a tabulation of the number of collisions at each location, known 
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as the collision frequency. It comes with a lot of inherent assumptions that limit its accuracy, but 

it is an effective starting point for any transportation agency. Since then, efforts have been made 

to improve network screening analysis to better identify truly problematic locations for further 

attention. Collision rates were used as it accounts for traffic volume exposure and regression 

analysis brings in correlating variables to aid in identifying hot spots, but though these methods 

are relatively simple to implement and understand, they suffer from random fluctuations, over-

dispersion of crashes, non-linear relationships to exposures, and to the phenomenon known as 

regression to the mean (RTM) (Retting, et al., 2003; Srinivasan, et al., 2016). RTM is a 

confounding phenomenon as cases where abnormally high or low numbers of random 

measurements or samples over a large area or period of time will trend towards the mean thereby 

providing misleading data interpretations of perceived trends (De Pauw, et al., 2014). More 

complicated methods were then developed to address these shortcomings such as negative 

binomial regression and the safety performance function, which have been used by transportation 

engineers for many years and have been proven to be effective, but they require a lot of data and 

do not provide a level of uncertainty for its estimates (Srinivasan, et al., 2016). 

Recently, there has been an increasing body of research that has delved into the use of geostatistics 

for network screening as researchers show that collisions may display a level of spatial 

autocorrelation (Islam, et al., 2016; Thakali, et al., 2015). Of the various geostatistical methods 

being used, Kriging has been gaining notoriety for being a very adept estimator as it is able to use 

priori spatial relationships to make better estimations (Olea, 1999). It also provides a probability 

of uncertainty for the estimates generated thus adding a level of information previously not 

considered. With the growing body of research applying kriging to transportation safety, it still 

needs some level of benchmarking and validation of assumptions as there are few studies doing so 

in literature. In particular, Regression Kriging utilizes external covariates to improve estimations, 

but it has yet to be applied to winter collision analysis or for collisions in general. Additionally, 

kriging is normally applied using Euclidean distances between data points as the only factor for 

autocorrelation relationships. A fundamental assumption in kriging is that the autocorrelation of 

the data points between themselves is reliant on the spatial separation between them which is 

defined as their spatial structure (Olea, 1999). However, the true distance between points on a road 

network is dependent on the road network between them thus the spatial structure should rely on 

that instead, but has yet to be conclusively confirmed. Intuitively, the application of kriging in 
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transportation engineering should use the Network Distance over Euclidean Distance, but few 

studies have done so. Figure 1-1 best illustrates the network vs Euclidean problem. 

 

Figure 1-2 Euclidean vs Network Distance from City of Des Moines 

Even with the use of kriging gaining notoriety for its performance for spatial estimation, rarely has 

its underlying spatial structure and its translation invariance been closely examined. The premise 

is that the spatial structure, which is the variance between any two points for a given separation 

distance, of the dataset is assumed to be the same throughout the whole area. This is an important 

premise as urban and rural road networks are spaced and used differently thus potentially having 

very different underlying spatial structures. Likewise, different counties may have different road 

planning and construction policies that again can affect the spatial characteristics of their road 

networks. Formally, this is known as the second order stationarity assumption (SOSA) and it 

implies that the interaction between any two variates is insensitive to the spatial translation (Olea, 

1999). The spatial structure is represented by the semivariogram, which is the graphical 

representation of the change in similarity/dissimilarity between variates as the distance between 

them increases. If the SOSA holds, then it can be said that a single semivariogram is sufficient and 

reliable to be used in developing the kriging model. Otherwise, the underlying spatial structure 
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cannot be represented by a single semivariogram, but instead each sub-region will require a 

semivariogram of their own (Olea, 1999). Outside of fundamental textbooks, the SOSA is rarely 

examined in research studies.  

Identified above are three glaring gaps within network screening academic literature especially 

within the field of winter transportation safety analysis, thus providing the main motivation behind 

this thesis. This body of work will provide supportive justification for an alternative network 

screening method for locating and addressing roads that are disproportionally more collision prone 

under winter conditions helping municipalities maintain safer roads. By providing a more in-depth 

structural analysis of the methodology and providing a benchmark, kriging can become a more 

suitable method of network screening analysis in transportation safety. 

1.3 Research Objectives 

The overall objective of this thesis is to provide credibility and validity to geostatistics as an 

effective tool for winter collision modelling and estimation. The focus is on winter collisions 

because it is one of the more direct and immediate ways that agencies can reduce their annual 

collision statistic through WRM. Additionally, there is a lack of research into winter road safety 

for agencies to refer to when developing or evaluating their practices. Therefore, this will provide 

transportation planners and maintenance managers a new tool for them to make the roads safer 

during the winter months. While proving geostatistics abilities, this thesis has following three 

specific objectives:  

1. Develop a hybrid geostatistical method known as regression kriging (RK) for estimating 

large-scale winter weather collisions by considering auxiliary traffic information and local 

road weather characteristics;  

2. Enhance regression kriging estimates by utilizing Network distances for improved 

estimation accuracy; and 

3. Analyze and characterize the underlying zonal spatial structures for regions with 

distinctively varying road network and environmental features and properties. 

The findings of this thesis will provide justification and verification of RK to interested parties 

looking for an alternative method for modelling winter collisions. Furthermore, this study will 

have also benchmarked and validated the use of Network distance over Euclidean distances and 
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the underlying spatial structure second order stationarity assumption (SOSA) for many other 

transportation engineering problems requiring of geostatistical interpolations and estimations. 

1.4 Thesis Organization 

The remainder of this thesis will be organized as follows:  

Chapter 2 will provide a literature review of winter traffic challenges and safety, geostatistics, and 

regression kriging. This section will provide background into the work done and the gaps in 

knowledge that currently persists.  

Chapter 3 provides a detailed overview of the case study area, data, and data pre-processing prior 

to utilizing it in the case study. Data filtering and descriptive statistics of the data will also be 

presented in this chapter.  

Chapter 4 will outline the workflow and methodological framework for this thesis. It will provide 

an overview of the methodology, a specific process diagram for implementing RK, and the various 

statistics used to determine model goodness.  

Chapter 5 will discuss the results from the case study, notable findings, challenges and solutions, 

and possible considerations.  

Chapter 6 will summarize and conclude main findings and contributions, some areas that could be 

expanded, and future research directions that can be taken from this research. 
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Chapter 2 LITERATURE REVIEW 

Transportation collision analysis has been extensively studied over many decades and there is a 

large body of literature on the subject from all over the world. Winter collisions is a specific topic 

that is often only taken upon by agencies and institutions that experience, and are regularly 

challenged by it, but it still has a significant number of literature on the subject. Likewise, 

geostatistics and kriging has itself a significant body of research in general, but its application into 

transportation engineering problems is relatively recent thus there are limited studies available. 

This section will review the works that have already been done on winter transportation safety, 

factors affecting winter transportation safety, geostatistics and kriging, and applications of 

geostatistics and kriging to collision analysis. Limitations and gaps in the literature will be 

identified where the work of this thesis serves to address. 

2.1 Winter Transportation Safety 

Transportation safety is an important facet for any transportation system around the world. The 

World Health Organization’s (WHO) 2004 report on traffic injury found that over 50 million 

people are injured and 1.2 million people are killed in traffic collisions world wide (Peden, et al., 

2004). In 2016 the US federal highway administration reported a ten-year average of 5,891,000 

collisions annually and approximately 21% of them were weather-related (US DOT Federal 

Highway Administration, 2020). They go on to find that 16% of all crash fatalities and 19% of all 

crash injuries were weather-related. Eisenberg and Warner’s analysis of winter collisions within 

the 48 contiguous U.S. states over 25 years found that first-snow-days are extremely dangerous as 

fatal collision rates are relatively higher than on non-first-snow-day or dry days (Eisenberg & 

Warner, 2005). Furthermore, they found that property-damage-only (PDO) and non-fatal injury 

crashes are generally higher during snow days.  

In Canada, the RCMP has reported that nearly 30% of all collisions happen on wet, snowy, or icy 

roads (Royal Canadian Mounted Police, 2019). They further state that the winter season going 

from November to February accounts for a third of all of those collisions putting a heavy strain on 

to emergency services, hospitals, insurance companies, and society as a whole. Pennelly et al 

(2018) found in their study of Edmonton roads that the number of property damage only (PDO) 

collisions (no injuries or fatalities) are higher over the winter months (Pennelly, et al., 2018). In 
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Andrey and Mills’ (2003) study on Canadian roads, they surmise that Canadian drivers are 

accustomed to winter driving as the relative risk for fatal or major injury collisions in snowy 

conditions are less than in their ideal control conditions (Andrey & Mills, 2003). However, similar 

to Pennelly et al (2018), they found that the relative risk for PDO or minor injury collisions is 

greater, being 40% higher and is comparable to heavy rainfall events. Slippery conditions and 

snow build up tend to make roads less efficient as it impedes speeds by up to 64%, volumes by up 

to 44%, and road capacity by up to 27% (US DOT Federal Highway Administration, 2020). 

As evident, there is no shortage of proof that winter conditions affect transportation safety 

significantly and it is for these reasons that municipalities strive to service their roads effectively 

and efficiently. One method to improve response time and maintenance efficiency would be 

targeted servicing whereby they address priority locations based on level of risk/hazard and the 

identification of these spots is known as Network Screening (AASHTO, 2010). The above 

mentioned studies are also all demonstrative of basic collision frequency analysis whereby 

collision hazards are discussed in terms of direct counts and ratios and how effective they are at 

communicating the core idea. However, this method does not account for traffic volume exposures 

or the phenomenon known as regression to the mean (RTM) leading to the development of more 

advanced analytical methods such as multiple linear regression, logistic regression, and Empirical 

Bayes (EB) method (Srinivasan, et al., 2016). As stated in chapter 1, geostatistics has seen an 

increase in interest and application, specifically kriging. Just like the EB and logistic regression 

methods, it also is not susceptible to RTM. But unlike them, it does not require as high of quality 

or quantity of data to have the best analytical results. The increasing number of research applying 

kriging to transportation engineering problems has shown it to be a powerful and effective analysis 

method. 

2.2 Factors Affecting Winter Traffic Safety 

Winter traffic safety can be heavily influenced and altered by many factors from environmental 

effects to human interventions. Many studies have looked into these various factors to try and 

understand what those factors are, how they affect traffic safety, how to control some of those 

factors, and what ways can it be done. 
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2.2.1 Effect of Winter Weather and Road Surface Conditions on Traffic Safety  

There is no debate that slippery conditions follow winter weather events as they deposit snow onto 

the roads reducing the friction on them. One of the first studies to quantify the relationship between 

road surface conditions and traffic safety was done by (Norrman, et al., 2000). They developed a 

slipperiness classification system with 10 rankings and then matched them with collision rates, 

ultimately finding that 50 to 70% of winter time accidents were attributed to slippery conditions, 

based on the type of collision report. In a more recent government study, the federal highway 

administration (FWHA) found that across the US, 21% of all vehicle crashes, year round, are 

weather-related (US DOT Federal Highway Administration, 2020). In their thesis studying the 

effects of snowfall on the safety of Michigan’s highways, Heqimi (2016) found that the risk of 

crash occurrences on freeways increases as the annual snowfall totals increase and that the majority 

of the crashes were PDO rather than an injury or fatal one (Heqimi, 2016). In either case, a 

significant proportion of winter collisions were due to slippery road conditions. 

Asano and Hirasawa (2003) found that the majority of winter collisions on Japan’s roads were 

both directly and indirectly a result of winter conditions such as ice and snow accumulation on the 

roads. They further noted that collisions from skidding (loss of traction) occurred more frequently 

at temperatures between –5°C to – 3°C than at any other temperature range. They suspect that 

slippery conditions develop more readily given the greater chance for a freeze-thaw cycle to occur 

(Asano & Hirasawa, 2003). A similar temperature trend was also found by Andersson (2010) 

where road surface temperatures (RST) between –4°C and –1°C saw greatest number of collisions 

from their study range of -15°C to +6°C. They also mention freezing rain, a phenomenon where 

rain would be super cooled during its decent from an upper warm air layer to a much colder lower 

air layer and then freeze upon contact with the surface (Andersson, 2010). This instantly adds a 

layer of ice on any surface causing extremely slippery conditions and thus this precipitation type 

was rated as the highest risk greatly affecting traffic safety.  

Likewise, Usman et al. (2012) was able to show, for the first time empirically at the disaggregate 

level, that the road surface condition had a significant influence over the safety of the road segment. 

They defined a unique road surface index (RSI) value where road surface conditions (RSC) were 

used as a surrogate for road friction levels and found that for all of their sites and for all models, 

their RSI was a statistically significant factor. Environmental factors such as Air Temperature, 
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wind speeds, visibility, and precipitation intensity were also found to be significant contributors to 

accident frequencies. Again, in Eisneberg & Warner’s (2005) study they found that the first 

snowfall event of the season has a disproportionally high amount of collisions when compared to 

non-first snowfall events for the rest of the season. In conjunction with the first snowfall event, 

they found that age also contributes to the collision rates, with older drivers being more likely to 

be involved in a first-snowfall event collision over their younger counterparts.  

There has also been a study that found that individuals of differing ages and gender will react very 

differently to deteriorated road conditions that affect collision rates (Morgan & Mannering, 2011). 

Their findings also found that the chance of injuries were highly correlated with age and gender 

under poor road surface conditions as opposed to ideal road conditions. This study only further 

supports the fact that deteriorated road surface conditions can severely affect collision risks and 

outcomes.  

2.2.2 Effects of Traffic and Road Features on Road Safety 

Often not intuitive, but the traffic characteristics will also have an effect on traffic safety. As noted 

by Asano & Hirasawa (2003), despite its low traffic volume, Hokkaido has a disproportionally 

high traffic fatality rate compared to the rest of Japan due to the rural road setting and longer inter-

city distances that tend to promote higher speeds. This was a factor that was also found by Usman 

et al (2010) where traffic volume, storm duration, and route length were found to contribute to the 

increase in collisions. In an interesting study by Pei et al. (2012) they found that on Hong Kong 

motorways, the risk of being in a fatal or serious injury (KSI) collision marginally increases as the 

speeds increase, but the chance of being in a collision in the first place decreases with speed. They 

state that it might be due to the fact that roads that are designed to carry higher speeds and volume 

tend to be more efficient with little to no intersections, thus limiting potential collision conflict 

points (Pei, et al., 2012). However, when they account for time-exposure (travel time spent on the 

roads) they found that both KSI and total number of collisions increase with speeds.  

From Andersson’s (2010) thesis, heavily trafficked roads tend to have less accidents due to 

slippery conditions, suggesting that traffic may prevent or prolong the formation of ice on the roads 

due to the constant breakup of forming ice. However, roads that have high traffic volumes during 

an ongoing snow storm event would see an increase in collisions numbers just due to the increased 

traffic exposure during deteriorating conditions (Usman, et al., 2012). Likewise in El-Basyouny & 
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Sayed’s (2006) regression comparison study where in addition to unsignalized intersection density, 

AADT was a major factor in collision rates within Vancouver and Richmond, BC, Canada. In a 

more generalized Poisson regression analysis study it was also found that AADT and road features 

such as horizontal curvatures, lane dimensions, shoulder and median widths, urban/rural location, 

and section lengths all have direct and significant roles in contributing to collision frequencies, 

(Abdel-Aty & Radwan, 2000). Furthermore, they found that demographic factors such as age and 

gender were also significant when they noticed that more young divers tend to be involved in 

collisions while speeding on roadways with curves. 

It is clear that traffic and road features such as AADT, speeds, and number of lanes play an 

important role in the outcome of safety and should be considered in any model related to traffic 

safety.  

2.2.3 Effects of Winter Road Maintenance on Traffic Safety 

Winter road maintenance (WRM) is one of the more visible factors that can change the level of 

traffic safety as its purpose is to make the roads easier and safer to traverse. Referring back to 

(Norrman, et al., 2000), they determined that increasing the frequency of WRM operations would 

result in a reduction in accidents. Though they also found that accidents will still occur during and 

after WRM thus they call for better public awareness about road conditions. Likewise, Usman et 

al (2010) found that WRM had a significant impact on the road surface condition and in turn, had 

a direct impact on the number of collisions that occurred. Though not directly linked, WRM can 

be said to have an impact on traffic safety levels.  

In some cases, preemptive strategies are implemented to maintain a road network’s safety and 

mobility during an event and can include depositing anti-icing chemicals or road salts to prevent 

the buildup and/or attachment of ice onto the road surface. A reactive strategy tends to address the 

road conditions after the event to bring it back to normal from a slippery and unsafe condition and 

typically involves snow plowing and friction sanding. In either strategy, (Fu & Perchanok, 2006) 

found that it will reduce the number of collision incidences. However, their study did not take into 

account exposure or road surface conditions in their analysis.  
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2.3 Geostatistics and Kriging 

Geostatistics is a broad term that represents a myriad of numerical techniques used to characterize 

spatial attributes (Olea, 1999) and by using these different collections of methods, spatially or 

temporally correlated data can be analyzed and estimated (Einax & Soldt, 1999). As described by 

Hengl (2009), geostatistics is the science of which solutions are methodically developed to analyze 

and understand geospatially mapped data points or measurements. This was originally developed 

for, and matured in, the mining industry given the geospatial nature of their work. Over the years, 

geostatistics has been found to be applicable outside of mining and is being used in fields such as 

agriculture, meteorology, epidemiology (medicine), anthropology, oceanography, and engineering. 

In turn, the field geostatistics itself has also advanced and evolved in order to better apply to the 

unique problems from those fields and has gone from point data analysis to spatially continuous 

geographical information system (GIS) data, noise filtering, and spatial optimization mappings 

(Hengl, 2009). The most common application of this practice is in spatial prediction models where 

predictions and estimations are spatially calculated from the geospatially mapped measurements. 

Given that more and more transportation engineering data is being spatially mapped, it makes 

sense to use geostatistics for transportation analysis. 

Though there are many techniques and methods for geostatistical interpolation, Kriging was one 

of the more popular methods and was often used as a synonym for it (Cressie, 1990). Kriging is 

the brain child of the South African statistician and mining engineer Dr. Danie G. Krige whom 

developed the original idea calling it the weighted moving average (Krige, 1981). It wasn’t until 

French professor and mathematician G. Matheron formally derived the initial formulas thereby 

establishing the field of linear geostatistics and bestowed it the name Kriging in recognition of Dr. 

Krige’s trail blazing of this field (Krige, 1981; Cressie, 1990). It is a type of Linear Statistical 

Probability Model (LSM), where it objectively estimates model parameters that follow probability 

theory (Krige, 1981; Hengl, 2009). The main benefit of this method is that it is able to provide the 

estimate with a prediction error value thus providing a more objective analysis (Olea, 1999; Hengl, 

2009). This results in a more reliable and objective data map, an understanding of possible sources 

of errors, and potential problem zones that may require further investigation. However, in order to 

make use of this methodology, the data must often meet some strict statistical assumptions (Hengl, 

2009).  
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While kriging itself has proven to be quite robust and reliable, a lot of effort has expended by many 

researchers and statisticians to expand it. Three of the most commonly used forms of kriging is 

Simple Kriging (SK), Ordinary Kriging (OK) and Universal Kriging (UK), which synonymously 

called Regression Kriging (RK). Olea, (1999)’s Introductory book on Geostatistics covers these 

three kriging forms extensively. As the simplest form, SK lives up to its namesake and is 

considered the most basic form of kriging in concept and formulation. However, SK makes a lot 

of assumptions that limits its accuracy and effectiveness. A major assumption unique to SK is that 

it assumes that the mean (m) is known and constant. OK is the progression from SK where it now 

assumes an unknown, but still constant mean value in its calculations. This is important as the true 

mean is never really known thus a sample mean is usually used. But through some algebra, the 

mean is removed from the algorithm thereby not having to use a mean value at all, thus any bias 

from using the sample mean is removed from the calculations and allows for varying means. UK 

was developed as a way to remove trends within the underlying spatial structure, and by extension 

considers the mean as a function rather than a value. This is known as detrending the data and the 

trend that UK focused on was on coordinate trends. This is done by conducting a regression 

analysis using only the coordinates as covariates, hence it is also commonly referred to as a special 

case of regression kriging. True regression kriging takes in other covariates that are suspected of 

influencing the variate, thus accounting for more sources of trends and errors (Hengl, 2009). Figure 

2-1 shows how SK, OK, and RK interprets the use of their mean values. 

 

Figure 2-1 Example of SK, OK, and RK mean values 
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As a result, Regression Kriging (RK) has seen a consensus amongst many geostatistics 

professionals as being the Best Linear Unbiased Prediction (BLUP) model (Christensen, 1991; 

Hengl, 2009). As such, RK can be interpreted as not only being the most powerful kriging variant, 

but fundamental to geostatistics. Given the nature of winter transportation being affected by many 

external forces and influences, it naturally follows that RK would be a logical method to employ 

for winter traffic collision analysis. As with all forms of kriging, it makes use of Euclidean 

distances as its measure of separation between data points (Hengl, 2009). In an open field, this 

would make sense, however, on a road network, the true separation distance between points is 

bound by the road network. Therefore, there is the possibility for better estimate results by 

replacing Euclidean distances with network distances.  

2.4 Applications of Geostatistics in Traffic Engineering and Safety 

In Nicholson’s (1999) paper, they noticed how accident distributions changed once an accident 

reduction plan was implemented suggesting a possible spatial influence. In turn they explored 

accident counts using clustering by quadrants and clustering by nearest neighbors and found that 

indeed there was a geospatial relationship present. Levine, et al (1995) looked into the use of the 

nearest neighbor clustering analysis within Honolulu. Black and Thomas (1998) looked into the 

network autocorrelation on Belgium’s motorways using Moran’s I statistic and found that 

accidents showed some autocorrelation along a number of simple linear networks and that it was 

an improvement to the existing methods that use point or count data. For the study done by 

Harirforoush and Bellalite (2019), they applied network kernel density estimation (KDE) to 

identify clusters of crashes on the streets of Sherbrooke and compared it to using aggregated crash 

data. Their study applied geostatistics over the entire road network of Sherbrooke rather than on a 

single length of road, showing the potential of KDE and geostatistics in modelling transportation 

engineering problems spatially. Overall, they found network KDE to be more effective in 

identifying potential hotspots over crash aggregation but more research into geostatistics is 

required. 

Spatial models have the benefit of taking into account any spatial structure and kriging is one 

method that best utilizes this feature. Functionally, it combines both deterministic and stochastic 

analysis to make a more robust prediction model (Olea, 1999) and will be covered in greater detail 

in the next chapter. Kriging has been shown to be an adept modeling and prediction tool and has 
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recently gained in popularity in the traffic/transportation engineering fields. The comparative study 

done by Thakali et al (2015) found that ordinary kriging (OK) performed better than the kernel 

density estimation (KDE). In Gu, et al (2018) study, they made use of regression kriging (RK) to 

interpolate and estimate road surface temperatures (RST) on Highway 16 in Alberta, Canada. They 

were able to demonstrate that RK was an effective interpolation tool for estimating RST between 

road weather information system (RWIS) stations as multiple linear regression was not sufficient 

enough. These studies, however, were limited in scale and were often isolated lengths of road, 

single neighborhoods, or within a municipality. 

In Kwon, et al. (2019), they characterized and developed regional and zonal semivariograms for 

RWIS Network optimization. They developed semivariograms for different climate zones in 

Southern Ontario, Canada and found that the autocorrelation structure differed significantly from 

zone to zone. This implies that a single regional autocorrelation structure may not be optimal when 

developing an RWIS implementation strategy. This study has a much larger area and range than 

the others, but also shows that there is a limit to kriging with the autocorrelation structure and the 

size of area it is relevant in.  

Few transportation studies have applied kriging on a large spatial scale but one of them would be 

Selby and Kockelman’s (2013) study where they estimated AADT for the state of Texas. In their 

study, they compared the model results from using Universal Kriging (UK) to those from 

geographically weighted regression (GWR) and found that UK provided better results over GWR. 

In addition to their spatial method comparison, they also looked into the use of network distance 

between points over the standard Euclidean distance and again found that the former outperformed 

the latter. However, their study was limited to only one year’s worth of data and were isolated to 

interstate roads only limiting its conclusiveness, yet still is suggestive that UK and network 

distances are better methods to employ within kriging analysis for transportation problems. In the 

study done by Zhang and Wang’s (2014) they also applied network distances with kriging in 

analyzing subway ridership on New York’s subway lines. They found that the use of network 

distance outperformed Euclidean distances, but their analysis was limited to only two short lines 

segments from a vast subway system which limits the conclusiveness of their findings, but is also 

suggestive of using network distances. 
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Although few prior studies employed spatial statistical methods in an attempt to conduct a hotspot 

analysis, they were mostly limited to covering relatively small areas within a short time span. More 

importantly, there are no large-scale studies currently available for evaluating the feasibility of 

using one of the most advanced and powerful kriging variants – regression kriging. Combining the 

fact that current collision analysis utilizes auxiliary variables with the notion that collisions may 

have a spatial component associated with it, then using a spatial analysis method that uses auxiliary 

components could prove beneficial. Therefore, in an effort to expand upon the use of geostatistical 

analysis methods on a larger scale, the primary objective of this study is to provide a framework 

and validation for implementing Regression Kriging (RK) to model winter collisions.  

To better examine the effect of winter road conditions on weather related crashes, a ratio of winter 

collisions to all collisions is used in this study, as also suggested in previous studies (Khan, et al., 

2008). Sites where certain weather warning types (snow/ice) and other meteorological factors (e.g., 

road surface temperature) that are shown to have an adverse impact can also be identified to help 

highway authorities make more informed decisions on implementing appropriate countermeasures. 

2.5 Summary 

As illustrated by various studies, winter conditions pose a challenge for jurisdictions tasked with 

keeping their roads safe during their winter seasons. Winter driving conditions have been shown 

to lead to an increased collision rates, traffic delays, and maintenance costs. There are many factors 

that can affect the level of safety upon the roads and planners must find way to handle them 

utilizing the many tools that have been developed to help maintenance crews clear the roads and 

prevent slippery conditions. Many studies have looked into ways to model and forecast some of 

these factors and also how they relate to winter collisions. However, most of them suffered in scale 

and scope with being restricted to small urban areas or select lengths of a single road. Regression 

kriging has not been applied to this context either. These are two glaring gaps in the current body 

of knowledge that will be addressed in this thesis.  

As a way to improve the level of service and response, various approaches have been developed 

to service the road network as quickly as possible and in order to apply their strategy, they must 

have reliable data on problematic roads. Many various network screening methods have been 

developed, but the emerging geostatistical method known as regression kriging is beginning to 

gain notoriety for its performance. However, as reviewed, it has not been applied to analyze winter 
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collisions with correlated variables found by other studies. Given the number of possible factors 

that can affect collisions being present in the winter time, regression kriging is a logical method to 

employ as it can take into account many covariates. Building upon the literature reviewed, some 

the covariates of interest that will be considered in this thesis include, but are not limited to, annual 

average daily traffic (AADT), road surface temperature (RST), air temperature, lane numbers, 

speed, and snowfall amounts. Furthermore, RK estimates could possibly be enhanced by using 

road network distances over Euclidean distances. Finally, none of the studies looked into 

characterizing the underlying spatial structure zonally or as a whole – a prerequisite that needs to 

be tested for improved generalization potential. 
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Chapter 3 STUDY AREA AND DATA DESCRIPTION 

This chapter will detail the study area, describe the data collected, and the data preprocessing. The 

majority of data management, visualization, mapping, and pre-processing was done via ArcMAP 

10.6.1 by ESRI (ESRI, 2011). Other software used in this stage include Microsoft Excel 

(Microsoft, 2016), and R (R Core Team, 2020).                                                                                                                                                                                                                                                                                 

3.1 Study Area and Period 

The study area encompasses the entire state of Iowa, US and sub-regions within it. Iowa was 

chosen for its openly accessible data, up to date databases, non-proprietary data formats, distinct 

winter weather events, gentle topography, and weather/RWIS station network. It covers an area of 

145,700 km2 over 99 counties and has a population of 3.15 million people as of 2019’s federal 

census (U.S. Census Bureau, 2021). There are over 191 thousand kilometers of roads throughout 

the state that saw almost 290 thousand collisions from January 2013 to May 2018. They have 62 

road weather information system (RWIS) stations and 128 reporting national weather service 

cooperative (NWS COOP) stations that provides an extensive state-wide coverage of hourly and 

daily weather conditions, respectively. Iowa is a data rich state, with little bureaucracy to obtaining 

datasets which makes for an ideal location for the intended studies.  

Figure 3-1 shows the various zones that will be considered for thorough investigation in this thesis. 

The study area and its sub-regions were spatially mapped, partitioned, and projected into the 

working coordinate system (NAD 83 UTM 15N) using ArcMAP by ESRI. 

 
(a) 

 
(b) 
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(c) 

 

 

Figure 3-1 Study area (a) Iowa (b) Northcentral Counties (c) Iowa Quadrants 

Figure 3-1 (a) is the whole state of Iowa and will serve as the prime study area for first objective 

covered in Chapter 1. It will serve as a basis for benchmarking RK against MLR and OK. Figure 

3-1(b) will serve as the study area for exploring the enhancement of RK using network distances. 

This region was mainly selected for its smaller road network density that also needed to be 

trimmed, and to run the Network RK modelling in a reasonable amount of time due to the 

computationally intensive process that increases with road network density. The areas denoted in 

Figure 3-1(c) serves as zonal regions for the comparison between the regional and the zonal spatial 

structures as part of the examination of the second order stationarity assumption (SOSA).  

The purpose of this study is to show that geostatistics can be used to estimate winter collisions 

thus the time frame for the analysis will focus on the winter months and transitional months. 

According to the US National Oceanic and Atmospheric Administration (NOAA), Iowa’s winter 

months are December, January, and February and its shoulder months are October, November, and 

March (NOAA, 2020). Typically, these months see snowfall and ice buildup that would constitute 

winter conditions for both the road and the environment. As covered in Chapter 2, winter time 

collisions can be caused by more than just slippery roads and can also be attributed to reduced 

visibility from falling or blowing snow. From here on, the winter season shall be defined as the 

months going from October to March. The other months were omitted given the lack of winter 

weather related collisions occurring in those months, often numbering less than 3 collisions all 

month even in April.  
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The time frame was limited by the number of weather and environmental data obtained and those 

spanned from October 2013 to April 2018. This time frame encompasses the five winter seasons 

(2013-14 to 2017-18) which will make up the study periods.  

3.2 Data Collection, Processing, and Management 

To complete the goals set forth in in Chapter 1, state and county boundaries, road information, 

traffic volumes, and environmental data are required. The source of the data is freely available 

from two online databases managed by the Iowa Department of Transportation (DOT) and Iowa 

State University (Iowa Department of Transportation, 2020; Iowa State University, 2020). The 

Iowa DOT database is managed by them using the ESRI ArcGIS open database system and all 

data from there can be downloaded in multiple formats, quality, and quantity. The Iowa mesonet 

database is managed and updated by the Iowa State University. Their weather information datasets 

are up to date to the day and they make available an extensive historical data library of RWIS, 

NWS COOP, and various other weather station systems. The sources are considered reliable and 

trustworthy as they are from a Government Entity and an internationally well-respected academic 

institution. From the raw data formats, subset datasets were generated for sub regions and zones.  

Road and Traffic Data 

The source of the road data is from Iowa’s Department of Transportation (DOT) Open Data Portal 

that they maintain and is freely available to the public (Iowa Department of Transportation, 2020). 

The roads being used will be those classified under Federal Functions 1 to 5 for the majority of the 

comparisons being made. Table 3-1 provides a breakdown of the roads used: 

Table 3-1 Road Network Details 

Federal Function 

Number 
Description 

Length 

(km) 

1 Interstate Highways 76 

2 
Principal Arterial Freeways and 

Expressways 
3,134 

3 Principal Arterial Other 9,962 

4 Minor Arterial 8,862 

5 Major Collectors 24,300 

Total  46,334 
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These roads are federal interstate highways, principal arterial state highways, secondary state 

highways, major arterials, and main thoroughfares through cities and towns.  

Since comparing Euclidean distance vs Network distance kriging requires the distances between 

every pairing of data points, it can become computationally prohibitive due to the number of data 

points. Therefore, given the computationally complex and intensive process of generating an 

Origin-Destination matrix between every pair of points for Network Distances, only roads that 

have a Federal Function of up to 4 will be used. This will then limit the roads to federal interstate 

highways, primary state highways, and divided secondary highways. Figure 3-2 below show the 

road networks that will be used for their respective analysis.  

 

Figure 3-2 Road Networks used. Red Roads are Roads with Federal Function 1 to 4; Blue 

roads are roads with federal function 5  

3.3 Data Preprocessing  

Prior to utilizing the obtained dataset in kriging, they needed to be cleaned up, quality controlled, 

and if needed, transformed and projected into the same coordinate system. For this thesis, the 

coordinate system used is NAD 1983 UTM Zone 15N as that makes the use of metric units easier 

for calculations and aggregation. The majority of the data processing was done via GIS processing 

with ESRI ArcMAP. GIS processing takes in and spatially locates and places data features such 

as data points, lines, polygons, or shapes into the digital space for analysis.  



A. Wong 

22 

 

Road Network 

To facilitate analysis using the road network, it was divided into segments no longer than 5.0 km 

whereby shorter lengths are usually sections that were broken up by the presence of an intersection. 

This allows for the aggregation of collision and environmental data while maintaining a desirable 

level of fidelity. These road segments will act as data/measurement points for the study. Table 3-2 

provides some details the road network shown in Figure 3-2 before and after the segmentation 

process described below.  

Table 3-2 Road Network Statistics 

 
Unmodified Road Network from 

Shapefile 

Modified Road to max 5.0 km 

segment lengths 

Road 

Network 

Federal 

Function 

Roads 1 to 5 

(a) 

Federal 

Function 

Roads 1 to 4 

(b) 

Federal 

Function 

Roads 1 to 5 

(a) 

Federal 

Function 

Roads 1 to 4 

(b) 

Total Number 

of Segments 
95,241 50,570 33,141 21,955 

Total Length 

(km) 
46,334 19,224 46,334 19,224 

Min. Length 

(m) 
0.002 0.050 0.02 0.50 

Max. Length 

(km) 
16.20 16.15 5.00 5.00 

Average 

Length (m) 
487.2 380.2 1,400.0 1,127.8 

Std. Dev (m) 1,020.1 927.7 1,627.3 1,434.4 

     

ESRI ArcMAP provided functions that in a non-direct way were used to segment the road network 

at a given length interval or at an intersection point. To create these segments, the road was first 

quality controlled to ensure that there are no micro-gaps (breaks in the line) throughout the entire 

road network that could disrupt network tracing and connectivity. These gaps in the virtual road 

network lines stem from imperfect importation of the line work from one CAD software to another 

as the algorithms for the digital representation of the lines are typically proprietary. For example, 

AutoCAD and MicroStation represent their lines and arcs differently thus importing/exporting line 
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work from one to the other typically results in broken and sometimes slightly misaligned lines. To 

ensure that the gaps were not there erroneously, some of the larger one (about 1.0 to 3.0 m) were 

visually verified using Google Maps satellite and street view. Some of the gaps were valid as they 

would represent a closed road to prevent short-cutting traffic through a residential area. Gaps 

greater than 3.0 m were deemed to be purposeful ones and were left as is. During this process, over 

2000 micro gaps were manually closed.  

Once the road network has been checked for completeness, the road network was then dissolved 

to create one continuous line object. Points were then created on this line object at regular intervals, 

and in this case every 5.0 km. Then using the break-at-point function, the single line element was 

then broken into lengths of 5.0 km or shorter as the breaks also occurred at intersections. This will 

lead to some small lengths of road at noted in the table above as these are the “remainders” of 

roads that are just over 5.0 km long before hitting an intersection. Many of these micro lengths, 

those that are less than 1 meter, are kept in the road network for connectivity in order to facilitate 

a network route trace, but are not used as data points given their negligible and meaningless lengths 

in this context. 

The road network also provides several covariates that will be explored along with the other 

suspected environmental covariates to see if things such as geometry or traffic volume affects 

winter collisions more than the weather itself. As reviewed in chapter 2, traffic speed and volumes, 

and the number of travel lanes have been found to be significantly correlated with collision rates 

(Asano & Hirasawa, 2003; Andersson, 2010; Abdel-Aty & Radwan, 2000; Usman, et al., 2012). 

Since the availability of these factors were conveniently part of the road network dataset obtained 

it would be a severe oversight to not include them into the analysis given their prevalence in past 

collision studies. Table 3-3 provides a summary of the road covariates considered in the study.  

Table 3-3 Road Network Based Covariates 

Covariate Min Max Mean 
Std. 

Dev 

Number of 

Lanes 
1 13 2.3 0.70 

Speed Limit 

(km/h) 
0 113 76.0 23.5 

AADT 0 140,300 8013.0 12,067.1 
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Traffic Data 

Annual average daily traffic (AADT) was used to represent the traffic volume demands in this 

thesis. Fortunately, the AADT values for the road network came with the road shapefile thus it 

required little data pre-processing. However, it required GIS processing after the road network was 

segmented. Some of the newly generated 5.0 km study segments overlap more than one base 

segment from the raw file and rather than choosing one or the other, the average AADT was 

calculated and then projected onto the new road segments. This was done using the join-by-

location toolset with the variables being averaged as part of the ArcMAP software environment. 

There were some road segments with a reported AADT value of Zero. These road segments were 

typically park, military, or side roads that were to indicate a turn off from a main road, or were just 

misclassified. These roads were removed from the road network set.  

Given how the AADT is a highly skewed dataset and is significantly larger than the WC ratio, this 

needed to be transformed. Regression analysis using the native values of AADT would result in 

extremely small coefficients (if statistically significant) and would not be meaningful. Therefore, 

a logarithmic transformation is done to reduce the skewness and bring down the values to a more 

manageable and meaningful scale, relative to the WC ratio values, for regression analysis. 

Collision Data 

The collision data was also obtained from the Iowa DOT Open Data portal and at the time of 

download spanned just over 10 years from January 2008 to June 2018. From this main set, 

collisions that occurred in study period and that have occurred on the road segments selected were 

isolated for this study. The collision data was geocoded to the NAD83 UTM 15N coordinate 

system by default at the time of reporting thus it was simple to spatially map them all to the proper 

roads using ArcMAP’s import function. The collision data is point based and records a single 

incident in time and space along with its severity, injuries, damage value, road surface condition, 

and environmental condition. As such, collision statistics are often aggregated onto road segments 

or intersections to provide a spatially continuous and long term picture of the roads’ hazard risk. 

Figure 3-3 shows all the collisions that met the filtering criteria. The overall collision descriptive 

statistics are shown below in Table 3-4. 



A. Wong 

25 

 

 

Figure 3-3 Collisions within the study area and winter periods 

As introduced in Chapter 2, to properly model how winter conditions affect collisions on the road 

network, each road segment will have a Winter Collision Ratio (WC ratio) calculated. This is the 

ratio between all collisions that occurred to those that occurred under winter road and 

environmental conditions and follows the implementation used by Khan et al. (2008) when they 

utilized it to study the effects of various adverse driving conditions on the proportion of collisions 

they contribute to. One benefit of using the WC ratio is the ease it provides in understanding the 

relative effect that WC has on the safety of a road segment. For instance, high WC ratios indicates 

that a road segment is riskier during adverse weather/surface conditions than segments with lower 

WC ratios under the same weather/surface conditions. Since this study mimics Khan et al. (2008), 

but with a focus on winter conditions and utilizing kriging, the use of WC ratio was adopted. 

Simply put, it is represented by: 

𝑊𝐶 𝑅𝑎𝑡𝑖𝑜 =  
𝑋𝑊𝐶
𝑋𝑡𝑜𝑡𝑎𝑙

 (1) 

Where:  

- 𝑋𝑊𝐶  = total winter condition collisions on the road segment 

- 𝑋𝑡𝑜𝑡𝑎𝑙  = total of ALL collisions that occurred on the road segment 
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Table 3-4 Seasonal Collision Descriptive Statistics 

Seasonal 

Collision 

Statistics 

2013-14 

Season 

2014-15 

Season 

2015-16 

Season 

2016-17 

Season 

2017-18 

Season 

5-year 

Seasonal 

Totals 

5-year 

Seasonal 

Average 

Seasonal 

Std. Dev 

Total 

Collisions 
22,178 21,529 22,821 22,264 22,907 111,699 22,340 557.4 

Total 

Winter 

Collisions 

7452 4911 4440 3912 5052 25767 5153 1360.4 

Winter 

Collision 

Proportion 

33.6% 22.8% 19.5% 17.6% 22.1% 23.1% 23.1% 6.2% 

Total Fatal 

Collisions 
95 106 101 127 93 522 104 13.6 

Total 

Major 

Injury 

Collisions 

422 401 390 415 357 1985 397 25.6 

Total 

Minor 

Injury 

Collisions 

1744 1541 1700 1694 1673 8352 1670 76.8 

Total 

Possible 

Injury and 

PDO 

Collisions 

19,917 19,481 20,630 20,028 20,784 100,840 20,168 535.6 

 

To calculate a WC ratio for each road segment, it needs to have a count of all the collisions on that 

road segment and a total count of all collisions that were deemed winter condition collisions. Each 

collision recorded also has the road and weather conditions at the time of the incident. Using these 

two fields, each collision is then labelled as either occurring under winter weather conditions or 

not. This follows the method set forth by the FHWA where crashes that occur under adverse 

weather and/or slippery pavement conditions are classified as “weather-related” (US DOT Federal 

Highway Administration, 2020). In this case, a collision will be classified as a winter collision 

(WC) based on the road or weather conditions listed in Table 3-5 below on the collision report.  
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Table 3-5 Reported Conditions for Winter Condition Collision Classification 

Road Surface 

Condition 

Weather/Environmental 

Condition 

Snow Snow 

Wet Freezing rain/drizzle 

Ice/frost Blowing Snow 

Slush Sleet, hail 

 

In order to ensure no collision was double counted on any segment of road, each collision was 

tagged with the road ID of the nearest road segment. Using ArcGIS, each road segment then got a 

count of all of the collisions by using their road ID. This also provided a count of how many of 

them were WCs. With each road segment having a total and WC count, the WC ratio for each road 

segment was then calculated. There will be sections of road with no collisions at all and thus this 

will throw a null error as dividing by zero (0) is undefined. Additionally, a road with a zero WC 

ratio is not conceptually or mathematically the same as a road with no collisions on it. A no 

collision road would be akin to non-data point rather than a location where winter collisions make 

up no portion of all collisions that occur there. These “null WC ratio” road segments are removed 

from the point dataset. Furthermore, the road segments were then collapsed to the mid-point of the 

road as kriging makes use of point data over line geometries. Figure 3-4 shows all of the “non-

null” road segments and their center points totaling 19,591 valid segments. 

 

Figure 3-4 Non-Null WC Ratio Road Segments and their Mid-Points 
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Road Weather and Surface Conditions Data 

The environmental and road surface data are collected via two common methods; via the Road 

Weather Information System (RWIS) and by the National Weather Service Cooperative Observer 

Program (NWS COOP). A RWIS is a combination of environmental sensors, detectors, imagers, 

and communication systems that is typically installed alongside the road and records the weather 

and road surface conditions at its location. This information is then relayed to a central data center 

where it is recorded and made available to maintenance agencies and the general public. The NWS 

COOP is a series of locations where a locally stationed personnel would make notable 

environmental and climatological recordings at regular intervals and then submit that information 

to a central hub where it is recorded. This system provides a good, long term historical 

environmental history that is often used by climate researchers.  

Together, these two sources of data provide semi-continuous or daily, respectively, environmental 

and surface condition measurements that are used by maintenance agencies tend to use these 

sources of information for planning their operations around weather events. For this thesis, the 

environmental data used was collected from the mesonet database as maintained by the University 

of Iowa (Iowa State University, 2020). From there, the RWIS data and NWS COOP data was 

downloaded, screened, aggregated, and eventually interpolated.   

For each station, the data is screened for completeness (error rates and long-term outages) where 

the data quality may be unreliable. In this case, a data completeness rate of 70% was the cutoff, 

meaning if the station’s total dataset has missing, incomplete, or erroneous data more than 30% of 

the time over the study period, then these stations were omitted. Once this problem stations are 

removed, the data is then aggregated into seasonal averages at each point which makes up the 

weather data for this study. Figure 3-5 shows the location of all the valid stations used. Table 3-6 

provides a summary and descriptive statistics of the covariates used that were deemed relevant and 

from which station network they were derived from.  

From these two station types, the environmental covariates were aggregated by season and 

averaged to obtain seasonal averages. A surrogate for road surface conditions are the road warning 

messages from the RWIS stations. The road condition warning messages were colour coded based 

on their level of severity for winter roads in a similar fashion to the Minnesota DOT (Minnesota 
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Department of Transportation, 2020) and many other state DOTs. A summary of those codes is 

illustrated in Figure 3-6.  

 

Figure 3-5 RWIS and NWS COOP Station Location Map 

 

Table 3-6 Meteorological and Environmental Covariates 

 

Avg 

Mthly 

Road 

Surf 

Temp 

Avg 

Mthly 

Air 

Temp 

Avg 

Mthly 

Red 

Warnings 

Avg 

Mthly 

Orange 

Warnings 

Avg 

Mthly 

Yellow 

Warnings 

Snowfall 

Totals 

Avg 

Daily 

High 

Temp 

Avg 

Daily 

Low 

Temp 

UNIT °C °C Count Count Count cm °C °C 

MIN -7.9 -8.5 0 0 0 0 -10.2 -21.6 

MEAN 2.7 1.0 100 875 30 5.1 5.4 -5.5 

MAX 14.9 14.8 990 2481 213 34.7 21.5 10.7 

STD DEV 6.1 6.2 133 632 33 5.6 7.5 6.8 

STATION 

TYPE 
RWIS NWS COOP 

No. OF 

STATIONS 
33 128 
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Figure 3-6 RWIS Road warning colour codes 

In this study, the three top warning levels (i.e., red, orange, and yellow) are the ones of interest as 

they are indicative of winter road surface conditions and can be associated with WCs. Red 

warnings are the most severe as it is given when there is a very high chance for the presence of ice 

or buildup of snow on the roads make it extremely treacherous thus it is meant to alert drivers to 

adjust to the conditions. Yellow warnings were included as it was considered the lowest indicator 

of a non-ideal road surface condition. What is meant by chemically wet is that there is either anti-

icing solution on the roads from treatment trucks or that there is a salt brine solution that is a result 

of salt melting the ice on the roads. In either case, it signifies the presence of a wet surface at a 

cold temperature. Other environmental factors used are Road Surface Temperatures (RST), daily 

average ambient air temperatures, snowfall totals, and daily high and low air temperatures. 

Recalling the studies from section 2.2.1, it was found that temperatures both from the air and the 

road surface plays a significant role in their contribution to collision frequency. It mostly is related 

to ice formation on the roads as cold RST promotes ice formation and cold air temperatures can 

lead to frost depositing onto the roads. These conditions can cause an increase in the number of 

collisions thus increasing the WC ratio for the road segment. But changes in air temperature are 

also associated with snowfall events. As was mentioned by Heqimi (2016) snowfall amounts also 

play a role in collision occurrences. For these reasons, these covariates were chosen to be included 

in the models.  
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Given the large spatial and time frame of this study, this data needs to be aggregated for data 

management and calculation purposes. Additionally, not all stations were installed near a road 

therefore requiring the weather data to be spatially interpolated in order to have a spatially 

continuous map of the environmental data that covers all road segments.  

There are many studies that looked into the interpolation of weather data and it was found that 

Kriging performed quite well. Kwon and Gu (2017) showed that the road surface temperature 

(RST) interpolated between RWIS stations using kriging gave reliable results. Eguia et al. (2016) 

demonstrated that using kriging for the spatial interpolations of meteorological data can be done 

with confidence. Weather events such as precipitation can also be interpolated using ordinary and 

indicator kriging as was done for mapping precipitation amounts in Switzerland (Atkinson & 

Lloyd, 1998). The results from spatially mapping the weather events are covered in Chapter 5, 

section 5.1.  

3.4 Summary 

The study area of Iowa State was chosen for its distinct seasonality and the quality and quantity of 

data that is freely available. The main administrators of the datasets and the databases they reside 

in are by the Iowa DOT and by Iowa State University. The data and their sources are deemed 

trustworthy and reliable as they are a reputable government and academic, respectively, 

organizations with a long history in transportation engineering research.  

The road network data serves as the base for which all the other obtained data is assigned to for 

analysis. The raw form of the road network required substantial data cleanup and quality control 

before it was segmented into segments no longer than 5.0 km and then turned into data points to 

facilitate kriging analysis. The road dataset came with several covariate values, namely the AADT, 

number of lanes, and speed limits, that were utilized in the case study. The collision data was 

provided in 10-year increments and spanned from 2008 to 2018. From this set, only the winter 

months for the latest five (5) winter seasons were carefully screened, cleaned, and validated before 

they were aggregated onto the road network for analysis. Once the collisions were projected onto 

the roads, the WC ratios for each road segment was calculated and became the variate of study for 

this thesis.  
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Following previous studies, several environmental covariates were selected and then obtained 

from the Iowa mesonet database as administered by the Iowa State University. These covariates 

were the RST, Air Temperatures (Daily average, highs, and lows), snowfall totals, and road 

warning counts. The road warning counts will serve as a surrogate to the road surface index (RSI) 

as that value was not provided natively from any of the RWIS stations. Following the 

methodologies completed by previous weather researchers, the environmental data was 

interpolated via OK in order to ensure that all roads have environmental data associated to it.  With 

all the data now processed, mapped, and projected, the analysis may proceed.
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Chapter 4 METHODOLOGY 

The core of this thesis is to show that regression kriging is a valid and effective estimation tool for 

to geospatially estimate winter collisions and any influential auxiliary variables on a large spatial 

scale, something that has yet to be done in existing literature. As mentioned in Chapter 2, most 

studies have done comparative analysis using kriging, but they were often limited in spatial and 

temporal scope. The enhancement of RK using network distances has also not been done before 

in existing literature and thus will be conducted here for the first time. Finally, the examination of 

the underlying spatial structure is often overlooked when kriging is applied to case studies. Here, 

the spatial structure is thoroughly examined to see if a single spatial structure is representative of 

the entire region, or if zonal structures are more appropriate. By expanding the spatial and temporal 

scope, the results shall be more robust and conclusive. Figure 4-1 below provides a high level 

overview of the workflow for this thesis.  

This chapter will detail the regression kriging methodology, how it may be enhanced with network 

distances, and how the regional and zonal spatial structures will be characterized and analyzed. 

Section 4.1 will go over the multiple linear regression process used. Section 4.2 covers the 

construction and analysis of the underlying spatial structure using the semivariogram. Section 4.3 

details the Regression Kriging formulation and methodology followed by Section 4.4 where it is 

enhanced using network distances in place of Euclidean distances. Section 4.4 details the 

methodology and logic behind the comparisons. Section 4.5 describes how the spatial structure 

will be characterized and examined and what it means by checking the second order stationarity 

assumption. Section 4.6 will summarize the processes and methods covered in Chapter 4.   

The hardware used throughout this process is a University provided Dell Workstation Desktop 

running Windows 10 Education on an Intel Core i7-8700 with 16.0 GB of single threaded RAM. 

Software and coding environments utilized in this study were ArcGIS 10.6.1 (ESRI, 2011), 

MSOffice Excel 2016 (Microsoft, 2016), Python 3.1 (Van Rossum & Drake, 2009), and R via 

RStudio 1.1.456 (R Core Team, 2020).  
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Figure 4-1 Overall Project Workflow 
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4.1 Deterministic Modelling via Multiple Linear Regression 

Regression is a popular form of basic deterministic statistical analysis in transportation safety 

studies by utilizing suspected correlated independent variables to estimate collisions (AASHTO, 

2010). It is also a key step in RK thus it should be completed first. Given the number of covariates 

at hand, the multiple linear regression is done to determine which of them are best correlated with 

the variate. Correlation between the dependent and independent variables do not need to be high, 

for if they were, then regression would be sufficient enough and there would be no need for 

geostatistics. This is to say, that the R-squared value, the measure of the model’s goodness of fit, 

does not need to be high in order for it to be considered a sufficient model for RK. 

Prior to regression, a collinearity and multicollinearity check are done to ensure a robust model. A 

correlation matrix is done for each zone’s dependent variable and its potential covariates to 

ascertain any highly correlated covariates and to also determine if any covariates have a high 

pairwise correlation. Here, highly correlated pairs will have a correlation of 0.60 or higher. From 

this pair of covariates, the one with the highest correlation to the dependent variable is kept, while 

the other one is removed from the model. Interaction terms and polynomial models are not 

considered as they do not maintain a sense of parsimony, the recognized ethical and best practice 

of regression analysis by using the simplest model possible based on the knowledge of the data 

and problem (Montgomery, et al., 2001). 

To determine the best regression model, a backwards elimination stepwise selection analysis can 

be done. This method is often the preferred method of many analysts since it starts out with all the 

variables thus ensuring nothing is missed (Montgomery, et al., 2001). This can be done semi-

automatically using many commercial software including R, which was used in this thesis. The 

function stepAIC(direction = backwards) used is part of the R base package.  

Once the initial analysis is done, a multicollinearity check must be done. If two or more 

independent variables happen to be dependent on at least one other regressor, then that relationship 

will inflate the variance for that term thus also inflating the regression coefficients (Montgomery, 

et al., 2001). This effect is known as the variance of inflation (VIF) and can be used to detect 

multicollinearity for adjustments. For more detailed explanations and formulation for this process, 

the reader is referred to any introductory book to linear regression analysis such as the one 

referenced here by Montgomery, et al (2001). It is calculated based on the following formula: 
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𝑉𝐼𝐹𝑗 = 
1

1 − 𝑅𝑗
2 (2) 

Where: 

- 𝑅𝑗
2 Is the coefficient of determination as obtained when variable 𝑥𝑗 is regressed against the 

remaining 𝑛 − 1 regressors.  

VIF values are provided as part of many linear regression algorithms such as those found in SAS, 

R-script, and MatLAB. The VIF in this study is calculated using the VIF() function from the car 

library package in R. The higher the VIF value, the more inaccurate the coefficient value is due to 

the inflated variance within. A VIF value of 1.0 means near ideal independence of the regressor 

from all other variables as it graphically represents a perfect orthogonality of the variable to all 

others (Montgomery, et al., 2001). VIF values greater than 5 but below 10 would be a cause for 

concern, while values above 10 would indicate a serious issue with multicollinearity. In this thesis, 

the multicollinearity issue is handled by iteratively removing variables with VIF values higher than 

10 and then generating a new model without that variable until the VIFs of the remaining variables 

are all under the value of 10 (Montgomery, et al., 2001). The variable with the highest initial VIF 

is not always the one that is left out of the final model. The final regression model will then be of 

the form: 

𝑦 =  𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 (3) 

Where: 

- 𝛽0 is the model’s y-intercept value 

- 𝛽𝑛 is the coefficient multiplier for variable 𝑥𝑛 

From the regression results, if the R2 value is low, then the precedence is set for using kriging to 

improve upon the estimates. Here, an R2 value below 0.60 is used as it implies that more than one 

third of the variability in y is unaccounted for by the model.  

4.2 Quantifying Spatial Structures via Semivariogram 

Geostatistics is based on the assumption that the data is autocorrelated with respect to the spatial 

distance between each data point in order to generate estimates or predictions. This assumption 

plays a significant role in the development and use of Kriging models. Determining the spatial 

relationship and structure of the measured data points is the deterministic part of kriging in general 

and is done via a semivariogram analysis (Hengl, 2009).  
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The semivariogram is a plot of the level of dissimilarity between points as the distance between 

increases and can be done either by point to point or more commonly via lags. This is done in lags 

in order to smooth out the normally noisy data and makes the plot easier to visualize. In essence, 

the semivariogram helps define the level of dissimilarity given a lag distance between pairs of data 

points, and how it changes as the lag increases (Olea, 1999). The plotted points are known as the 

experimental/sample semivariogram and these points are the result of the measured points. Each 

point represents the average semivariance between points with a certain lag distance, otherwise 

known as the sample variance at lag h. It is calculated using equation (4) below: 

𝛾(ℎ) =
1

2𝑚(ℎ)
∑ [𝑍(𝑥𝑘) − 𝑍(𝑥𝑘 + ℎ)]

2

𝑚(ℎ)

𝑘=1

 (4) 

It is important to note that if the data is not normally distributed or is highly skewed, then it should 

be transformed. Another factor affecting the accuracy of a semivariogram model would be 

directionality which states that if the data shows some form of strong spatial association in a 

particular direction, then it is said to have an anisotropic tendency (Olea, 1999; Oliver & Webster, 

2015) and may require additional investigation. Figure 4-2 is an illustrative example of how the 

semivariogram can be directionality dependent. 

 

Figure 4-2 Example of Semivariogram directionality 
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If there is no spatial association with a particular direction, then it is said to be isotropic and that 

the spatial structure is omnidirectional and that there is no spatial directionally to the variance 

structure in the semivariogram. For this thesis, the data is assumed to be isotropic meaning that 

there is no directionality to the data points and that the data sets are all omnidirectional. 

Once the sample variogram points are calculated, they are plotted and then used to fit a 

mathematical semivariogram model that best fits the data structure. This is known as the fitted or 

functional semivariogram model. Regardless of the mathematical model used, the fitted 

semivariogram model provides three important values: the nugget, the range, and the sill. The 

nugget is the measurement error or variations associated with the data collection and manifests as 

the y-intercept value, even though it should idealistically go through the origin. Data collection 

and measurements are seldom perfect thus the nugget will usually have an effect on the value of 

the sill, shifting it upwards. The range is the distance value where the level of dissimilarity flattens 

out or reaches a plateau. The sill is the value of this plateau and is the point where the level of 

dissimilarly no longer changes. It is at this point where the dissimilarity between data points is at 

its maximum and points that are separated by more than the range value are no longer considered 

spatially correlated. Figure 4-3 illustrates both the experimental and functional semivariograms 

and where the nugget, range, and sill values come from. 

 

Figure 4-3 Example of a typical semivariogram plot 
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As logic dictates, the level of dissimilarity between two data points increases with their separation 

distance and is often reflected in both the empirical semivariogram plot and fitted model as 

illustrated in Figure 4-3.  

Of the many functions that have been developed to fit the experimental semivariogram, the three 

most common functions are spherical, exponential, and Gaussian. Other less-commonly used 

functions are the power, cubic, sine-hole, and pentaspherical (Olea, 2006).  

Table 4-1 below lists the commonly used semivariogram models used and their formulation.  

Table 4-1 commonly used Semivariogram models and their formulas 

 

Spherical 

 

 

𝛾(ℎ) = {
𝐶 (

3ℎ

2𝑎
−
1

2
∙ (
ℎ

𝑎
)
3

) , 0 ≤ |ℎ| ≤ |𝑎|

𝐶 , |𝑎| ≤ |ℎ|

} 

 

Exponential 

 

𝛾(ℎ) = 𝐶 (1 − 𝑒−
3ℎ
𝑎 ) 

 

 

Gaussian 

 

 

𝛾(ℎ) = 𝐶 (1 − 𝑒−3(
ℎ
𝑎
)
2

) 

 

Cubic 

 

𝛾(ℎ) = {
𝐶 (7 (

ℎ

𝑎
)
2

− 8.75 (
ℎ

𝑎
)
3

+ 3.5 (
ℎ

𝑎
)
5

− 0.75 (
ℎ

𝑎
)
7

) , 0 ≤ |ℎ| < |𝑎|

𝐶 , |𝑎| ≤ |ℎ|

} 

 

Power 
 

𝛾(ℎ) = αℎ𝛽  , 0 < 𝛽 < 2  
 

Sine hole 

 

𝛾(ℎ) = 𝐶 (1 −
sin (𝜋

ℎ
𝑎
)

𝜋
ℎ
𝑎

) 

 

Pentaspherical 

 

𝛾(ℎ) = {
𝐶 (

15ℎ

8𝛼
−
5

4
(
ℎ

𝑎
)
3

+
3

8
(
ℎ

𝑎
)
5

) , 0 ≤ |ℎ| < |𝑎|

𝐶 , |𝑎| ≤ |ℎ|

} 
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It is important to note that the accuracy of the semivariogram is highly dependent on the number 

and quality of the data points. There is no consensus for the minimum number of points and varies 

a lot in literature and can be as low as 25, but a minimum of 100 points is suggested though it can 

be lower if the data density is well dispersed (Oliver & Webster, 2015).  

4.3 Regression Kriging: Formulation & Implementation 

There are many variants of Kriging and primarily vary in the assumptions being made and 

computational complexity. However, all of them combine deterministic and stochastic statistical 

analysis whereby the deterministic results are used to reduce the uncertainty with the stochastic 

estimation results (Hengl, 2009). Kriging has expanded from being a linear predictor to now 

include non-linear attributes resulting in a family of kriging methods (Cressie, 1990). The more 

common kriging methods include, in the order of complexity, Simple, Ordinary, Universal, and 

Regression Kriging. 

Simple kriging (SK) is the most basic form of kriging that requires many assumptions that limit 

its accuracy and effectiveness (Olea, 1999). The main assumption made is that sampled values are 

partial solutions to the random function and that this function is second order stationary which 

implies that any two variate points are dependent to each other based solely on the Euclidean 

distance between them (Olea, 1999). Importantly, SK is the only version that assumes that the 

mean (m) is known and constant which may lead to a biased estimator.  

Ordinary kriging (OK), often considered the progression from SK, while still being one of the 

more simple implementations of kriging and is a functional part of the regression kriging (RK) 

process. Given the use of OK and RK in this thesis, the details of these two variants of kriging will 

be covered extensively in this chapter. The mathematical formulation of OK is shown in Equation 

(5) and the estimator is shown in Equation (6) below (Olea, 1999; Hengl, 2009; ESRI, 2011): 

𝑍(𝑥) =  𝜇 + 𝜀(𝑥) (5) 

�̂�(𝑥0) =∑𝜆𝑖 𝑍(𝑥𝑖)

𝑛

𝑖=1

+ [1 −∑𝜆𝑖]𝜇 

𝑛

𝑖=1

 (6) 

Where �̂�(𝑥0) is the estimator at the unmeasured location 𝑥0, 𝑥𝑖 are measured locations, and 𝜆𝑖 are 

the weights for the OK estimator that minimizes the variance of the estimator and the mean squared 

error (MSqE).  
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In OK, the mean µ is assumed to be unknown but constant and through some algebra, it ultimately 

filtered out with the weights’ constraint which results in the estimator being Equation (7) with its 

estimation error variance function being Equation (8).  

�̂�(𝑥0) =∑𝜆𝑖  𝑍(𝑥𝑖)

𝑛

𝑖=1

 

 

(7) 

 

𝜎2(𝑥0) = 2∑𝜆𝑖 𝛾(𝑥𝑖, 𝑥0)

𝑛

𝑖=1

−∑∑𝜆𝑖𝜆𝑗𝛾(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 (8) 

 

The values of the weights become an optimization problem that requires the use of a Lagrangian 

function as the objective function (Olea, 1999). For OK, the Lagrange multiplier is shown in 

Equation (9) below, where 𝜎2(𝑥0) was defined in equation (8). 

𝐿(𝜆1, 𝜆2, … , 𝜆𝑛; 𝜇) =  𝜎
2(𝑥0) + 2𝜇 (∑𝜆𝑖 − 1

𝑛

𝑖=1

) 

 

(9) 

Then with the Lagrangian function defined, then the weights will be the solution to equation (10) 

with γ(ℎ) being any of the negative definite semivariogram functions chosen (some are listed in 

Table 4-1): 

∑𝜆𝑖γ(𝑥𝑖, 𝑥1) −  𝜇

𝑛

𝑖=1

= 𝛾(𝑥1, 𝑥0)

∑𝜆𝑖γ(𝑥𝑖, 𝑥2 −  𝜇

𝑛

𝑖=1

= 𝛾(𝑥2, 𝑥0)

…

∑𝜆𝑖γ(𝑥𝑖, 𝑥𝑛) −  𝜇

𝑛

𝑖=1

= 𝛾(𝑥n, 𝑥0)
}
 
 
 
 

 
 
 
 

 

 

(10) 

Subject to: ∑𝜆𝑖

𝑛

𝑖=1

= 1  

The biggest difference between SK and OK is found in the assumption of the mean value and the 

way the weights are calculated. The weights applied to the measured data is constrained such that 
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all weighting values 𝜆𝑖 must sum to 1. This constraint “filters out” the mean from the estimator 

due to the restriction on the weights summation resulting in the simplified equation 3 (Olea, 1999; 

Hengl, 2009). This greatly reduces the complexity of the process but still assumes that the mean 

is constant despite being unknown and filtered out (Olea, 1999). Naturally, OK shares many of the 

properties of SK but does benefit from the estimator not being biased given the weight constraint.  

However, over a large space the assumption of a constant mean does not account for possible zonal 

means. Therefore, rather than assuming a constant mean, the mean is assumed to be constantly 

changing and can be represented by a function resulting in a kriging variant where there is the 

assumption that there is an inherent drift or trend in the data that needs to be accounted for. It goes 

by the terms Universal Kriging (UK), Regression Kriging (RK), and kriging with external drift 

(KED) and all represent the same technique, but with minor differences between them. This often 

causes some confusion with terminology, but RK can be considered the general term that 

encompasses UK and KED, where the true differences between them actually exist (Hengl, et al., 

2004). Another way to understand it is that UK and KED are special cases of RK where UK models 

its drift or trend as a function of the coordinates only, while KED will incorporate or use other 

auxiliary values that may or may not be locational in nature. When combining both aspects of UK 

and KED is it then truly RK (Hengl, 2009).  

The drift of the deterministic values can be modeled by using a linear combination of functions, 

usually polynomial functions of locational attributes (Olea, 1999). Using polynomial functions, 

the weights for UK are determined by minimizing the mean square error by employing Lagrange 

multipliers to determine the weights (Olea, 1999; Hengl, 2009). RK makes use of regression 

modelling to construct a regression function to detrend any external drift using as many covariates 

as deemed relevant by the modeler. Formulaically it is represented by equation (11) as follows: 

 

𝑧(𝑥0) =  𝑚(𝑥0) + 𝑒(𝑥0) 

 

(11) 

Where 𝑚(𝑥0) is the predicted value from linear regression and 𝑒(𝑥0) is the residuals that are 

interpolated using ordinary kriging (Hengl, et al., 2004; Hengl, 2009). Expanding Equation (6) 

gives Equation (12) (Hengl, et al., 2004) 
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�̂�(𝑥0) =  ∑𝛽�̂� ∙ 𝑞𝑖(𝑥0)

𝑛

𝑖=0

+∑𝜆𝑖(𝑥0) ∙ 𝑟(𝑥𝑖)

𝑛

𝑖=0

 

 

(12) 

Where: 

𝛽�̂� = model coefficients

𝑞𝑖(𝑥0) = auxiliary variables

𝜆𝑖(𝑥0)

𝑟(𝑥𝑖)
= covariance weights

= regression residuals

 

From the regression model, the estimates and residuals are calculated, interpolated, and then added 

back into the estimated values to obtain the spatially fitted values (Zhu & Lin, 2010). This method 

serves to spatially correct or detrend some model variance (i.e., removing external influences) 

resulting from the regression model in order to reduce the mean square error value thus optimizing 

the model (Oliver & Webster, 2015). This method also allows for the inclusion of auxiliary 

variables for study within kriging’s spatial modeling method thus providing insight into the 

influence of covariates. It is for this reason RK can be used in winter collision modelling while 

gaining additional information and understanding of the influences from auxiliary variables such 

as weather conditions, road surface conditions, etc. This use of covariates and spatial correlation 

combines the best attributes of both a deterministic and stochastic estimation process. 

Figure 4-4 outlines the regression kriging process utilized as a flowchart and was adapted from 

Peng et al (2013) in their study of spatial distribution of organic soils (Peng, et al., 2013).  

The validation set in this case would be each data point via the leave-one-out crossvalidation 

process. These calculations were handled within R using functions and algorithms found in the 

following packages. Package gstat was used for the variogram and semivariogram analysis, OK 

interpolation, and leave-one-out crossvalidation interpolation (to be further discussed in the next 

section). The sp package has built-in functions pertaining to spatial data that are required of by 

gstat. In this case it was used to define coordinates and location data and set the imported data 

matrix into a spatial dataframe. The MASS package is a set of quality-of-life supportive functions 

that make statistical analysis simpler and more intuitive to implement. This package was primarily 

used to simplify basic commands to run multiple linear regression and output results into text or 

csv files. The car package is known as the companion to applied regression package and was used 
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to calculate the VIF values. The MLmetrics package is a supplementary machine learning package 

with additional statistics and was used to calculate the RMSE value.  

 

Figure 4-4 Regression Kriging Process Flowchart as adapted from Peng, et al (2013) 

The Correlation and MLR process was covered in Section 4.1 the results from this part is used in 

the key part of regression kriging. Recall that the MLR is a linear approximation of the dataset and 

the deviation from this line results in the residuals of the MLR model. It is these residuals that are 

what will be spatially modelled. The newly modeled residuals are the predicted residuals and these 

are then added back into the residual estimates to obtain the final regression kriging estimated 

value. Figure 4-5 illustrates this concept. 
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Figure 4-5 Illustration of Regression Kriging 

Crossvalidation 

Crossvalidation is often used as a measure of how accurate and reliable the generated model is and 

is how the model is evaluated. There are many ways to conduct a crossvalidation and the Leave-

One-Out (LOO) methods is popular with kriging modeling. LOO is done by removing one data 

point and then using the model and the surrounding variables to calculate an estimate at that point, 

and also the associated variances (Oliver & Webster, 2015). This is repeated for all data points in 

the dataset and the results are then used to calculate comparison statistics using five error metrics 

as summarized in Table 4-2 (Hengl, 2009; Oliver & Webster, 2015; ESRI, 2011). 

The MSqE and MStdE are often used to measure the quality of an estimator and the closer it is to 

zero (0), the better the estimator is. The RMSE is used to measure the accuracy of a model and the 

smaller the value, the better the model is. The ASE is the average standard deviation and should 

be close to the RMSE value. RMSSE is used to examine the variability of the estimations (under 

or overestimations) and should ideally be close to 1. If the RMSSE value is greater than 1, then 
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the variability of the predictions is being underestimated, and vice versa (ESRI, 2011). By using 

these five metrics, the various kriging models can be confidently compared and contrasted against 

each other. 

Table 4-2 Statistical Measures for Model Performance 

Mean Squared 

Error 

 

𝑀𝑆𝑞𝐸 =
1

𝑛
∑[�̂�(𝑥𝑖) − 𝑍(𝑥𝑖)]

2
𝑛

𝑖=1

 

 

Mean 

Standardized Error 

 

𝑀𝑆𝑡𝑑𝐸 =
1

𝑛
∑[

�̂�(𝑥𝑖) − 𝑍(𝑥𝑖)

�̂�2(𝑥𝑖)
]

𝑛

𝑖=1

 

 

Root Mean 

Squared Error 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑[�̂�(𝑥𝑖) − 𝑍(𝑥𝑖)]

2
𝑛

𝑖=1

 

 

Average 

Standardized Error 

 

𝐴𝑆𝐸 = √
1

𝑛
∑�̂�2(𝑥𝑖)

𝑛

𝑖=1

 

 

Root Mean 

Squared 

Standardized Error 

 

𝑅𝑀𝑆𝑆𝐸 = √
1

𝑛
∑[

�̂�(𝑥𝑖) − 𝑍(𝑥𝑖)

�̂�2(𝑥𝑖)
]

2𝑛

𝑖=1

 

 

  

4.4 Enhanced Regression Kriging using Network Distances 

The distance between any two points on a road network is bound by the roads connecting the two 

points. This network distance is not always the same as the Euclidean distance between them, 

especially if the points are separated by a wall, structure, or one-way streets (refer to Figure 1-2 

from Chapter 1 that best illustrates this point). Therefore, the primary assumption that the 

Euclidean distance between any two points is the basis for the underlying covariance spatial 

structure may not be an accurate one for transportation engineering problems. But to confirm this 
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hypothesis, a comparative analysis needs to be done between Euclidean distance results and 

Network distance results.  

Overall, all the same steps are taken as described in the previous sections using the Euclidean 

distance with the addition of generating a semivariogram and kriging model using Network 

distances. The semivariogram model values between the two are recorded as are the interpolated 

model outputs and crossvalidation results. As per previously, the same crossvalidation metrics are 

calculated to compare the Network Distance models to the Euclidean distance models. To ensure 

appropriate comparisons, the same dataset is used in both cases. 

The semivariogram and crossvalidation analysis using network distances was done via a 

combination of ArcMAP, python and R. First, an origin-destination (OD) matrix is required to 

obtain the network distances between all pairs of points in the study area. From ArcMAP, the OD 

matrix is generated by using the Network Analyst package built into the program. It is important 

to note that the distances between any two pairs of points is potentially unique. That is to say, the 

distance from A to B is not necessarily the same as B to A should there be constraints such as one-

way streets or points on expressways with limited access ramps. Therefore the total number of OD 

pairs will always be n2 where n is the number of points on the road network. This can quickly 

increase the computational requirements of the network trace as the number of OD pairs will 

increase quadratically for every additional point increasing the calculation times significantly. It 

is for this reason that this comparison is done on a sub-region and not for the entire state, and the 

region chosen is mostly a rural setting with a smaller density of road which will help keep the 

number of points down.  

To generate the semivariance points, Python (Van Rossum & Drake, 2009), was used to do the 

binning and correlation calculation of the data before that information was passed to R to generate 

the semivariograms. The pseudo code for the Python process is as follows: 

Python Pseudocode: variogram for R 

data_file = file with the variates, and their point IDs 

distance_file = csv file of all the OD distance pairs 

 

define:  
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lag_size = (max distance from OD list) / (# of lags) 

 

function: semivariance 

1) Calculate variance for every pair of points and their 

network distance 

2) Calculate bins limits from lag size 

3) Partition variance values into each bin and calculate 

the semivariance value for that lag bin 

 

Return variogram csv file 

 

The variogram table is then loaded into R for semivariogram model fitting. This was done using 

the gstat package for its vgm and vfit functions that will fit a variogram model to the sample 

variogram points. The pseudo code for this process is as follows: 

R Pseudocode: Construct Semivariogram 

 

roadfile = variogram csv from Python 

for (model in list (Spherical, Gaussian, Exponential)){ 

     vfit = fit.variogram(roadfile, model) 

     img = plot(roadfile,vfit) 

     print(img) to jpeg file 

     return csv with variogram values (nugget, sill, range) 

}  

 

The semivariogram results from R, are then used back in Python to do the model estimation and 

crossvalidation calculations. The crossvalidation results are recorded in a text file for easier record 

keeping and the estimates are outputted into a csv file. The estimates are then loaded back into 

ArcMAP to generate the surface map of the estimates. Once all the calculations are done, it is only 

a matter of putting the results side by side and comparing them.  
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The main issue of this method arises from the computation complexity just due to the sheer amount 

of OD pairs that need to be found and then used for modelling. This takes a lot of computing power 

and time to process thus making it potentially prohibitive to do as the smaller datasets being used 

is still over 1000 points and takes over 3 hours to compute just the crossvalidation. As stated above, 

a mostly rural zone would help in reducing the number of data points. But in this case, the road 

network was further simplified to reduce the number of data points even more as even its base 

condition still incurred an initial run time of over 60 hours. The most ideal location for this process 

was the Northcentral zone as it does not contain any major municipality, it is mostly a rural zone 

with some major state freeways and sections of interstate present. 

4.5 Characterization of Underlying Spatial Structures  

A key part of kriging is the assumption that the spatial structure of the data is the same throughout 

the entire region. By definition, it states that the intrinsic variance structure of the dataset is the 

same regardless of the translation throughout the area. This is the second order stationarity 

assumption (SOSA) and is required when making the interpolations for the whole study area. 

However, past studies utilizing kriging seldom went beyond a single municipality or county. Given 

the size of Iowa being near the size of their study area within Ontario, then a similar analysis 

should done to ensure that the best models are being obtained for use.  

As stated in section 4.2, the underlying spatial structure is characterized by the semivariogram 

which can be used as a point of comparison for models encompassing various spatial ranges. The 

regional size would be the entire state of Iowa, and the zonal spaces will be the areas identified in 

Figure 3-1(b) and (c). The partitions were done in this fashion as it neatly divided the state into 4 

quadrants along existing county lines. The Northcentral zone was partitioned for the reasons 

outlined in section 4.4. This will provide four zones (NE, NW, SE, and SW) with the same data 

density as the region and one zone (Northcentral) with a reduced data density, but using the same 

base dataset. The comparison values will be the five statistical measures used in the previous 

sections and will be based on the OK crossvalidation results and the RK crossvalidation results for 

each zone. The OK and RK results from Section 4.3 will be used to represent the region. The OK 

and RK models are developed in the same fashion as for the region.  
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By analyzing the semivariograms produced for the various spatial extents, it should reveal whether 

or not a single regional semivariogram is appropriate for the entire state of Iowa, or if zonal 

semivariograms must be generated in order to maximize the potential model benefits.  

4.6 Summary 

Presented here is the framework and methodologies for the core of this thesis to address the three 

objectives, which are to 1) develop and expand the hybrid geostatistical method known as 

regression kriging for use in modelling winter traffic safety problems; 2) enhance the estimates 

from this hybrid method by using network distances, and 3) characterize the underlying regional 

and zonal spatial structures.  

The first objective saw the generation of a RK model by conducting a MLR analysis. This process 

will determine what regression model will be used to calculate the residuals for the RK estimations. 

As an important feature of geostatistics, especially kriging, the semivariogram was introduced 

along with its calculation, interpretation, and usage. With the spatial structure understood, a 

preliminary OK analysis was done to set a point for comparison for RK so see if it the estimation 

model is the better performer. Once RK has been determined to be the better performing method, 

the enhancement of its estimates by substituting network distances was explored next. This was 

done by implementing the same RK analysis method, but on a smaller more manageable study 

area, as done for the first objective, only the comparison being made is between RK with Euclidean 

distances and RK with Network Distances. The final objective looks to examine the underlying 

spatial structure and thus the SOSA by again, conducting a comparative analysis of the 

semivariogram, OK crossvalidation, and RK crossvalidation results only this time between the 

region, defined as the entire state of Iowa, and the zonal areas defined in Section 3.1. 
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Chapter 5 RESULTS AND DISCUSSION 

This chapter presents the results of the analysis and findings from the methodology outlined in 

Chapter 4. Section 5.1 details the interpolation of the road surface and environmental conditions 

to ensure every road segment has those values on them. Section 5.2 will discuss the multiple linear 

regression (MLR) work done and the results from it. Details about the coefficients, their 

magnitude, and sign will reveal details about the covariates and their relation to the variate. These 

model results will be used in the regression kriging (RK) process. Section 5.3 models the winter 

collision (WC) ratios with Ordinary Kriging (OK) to set a benchmark for comparison with RK. 

OK was chosen as the benchmark as through many studies, it has been proven to be an effective 

spatial estimation tool for transportation engineering problems. Section 5.4 progresses the analysis 

by generating RK models and their associated spatial structures and their performances analyzed. 

The results of the RK and OK model performances are then compared to each other. Section 5.5 

goes through the results from applying Network distances in place of Euclidean distances and how 

the results from both compare to each other. Section 5.6 provides an in-depth examination into the 

second order stationarity assumption (SOSA) and its findings. Section 5.7 summaries this chapter 

with the work done and its findings.  

5.1 Estimating Region-wide Environmental Variables  

In order to correlate WC collisions to winter condition measurements, the point measurement 

nature of the environmental data needs to be spatially interpolated to cover the entire state and thus 

every road segment. Recall from chapters 2 and 3 that ordinary kriging (OK) was determined to 

be an effective estimator of environmental conditions (Eguía, et al., 2016; Kwon & Gu, 2017). 

Therefore, OK was used to calculate a meteorological surface map for each environmental 

covariate, which was then converted and averaged onto a 1 km x 1 km raster grid over the road 

network to maintain a high level of granularity by averaging onto the road segments. These 

environmental covariates were interpolated via ordinary kriging to build a surface map to provide 

data coverage for all roads in Iowa. This is then mapped onto the road segments along with the 

collision and road geometry data.  

To ensure that the spatial interpolation is valid, there must be a proper underlying spatial structure 

modeled by the semivariogram that provides a nugget, range, and sill. Though the process has been 
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covered in previous studies it still entails a significant amount of work as it requires spatial 

analysis, crossvalidation, mapping, and finally projection. The interpolation was done via 

ArcGIS’s ordinary kriging interpolation tool as part of its Geostatistical Analyst toolbox. The 

semivariograms generated used the stable setting where it would self-determine the best fitting 

semivariogram function. Figure 5-1 shows the optimized semivariograms for each environmental 

covariate and their semivariogram values.  

 

(a)  

 

(b)  

 

(c)  

 

(d)  

 

(e)  

 

(f)  

Figure 5-1 Environmental and Road Surface Conditions Semivariograms (a) RST (b) Daily 

Average Air Temp (c) Total Road Warnings (d) Snowfall Totals (e) Daily High Temp (f) 

Daily Low Temp 
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The semivariogram plots all show that there is a spatial structure to the covariance over space, 

though some are stronger than others. The strongest ones are Figure 5-1(a), (d), and (e) where the 

semivariance points are closely aligned to the model. To check how reliable the models are, the 

crossvalidation results are considered. The geostatistics package in ArcMAP provides 

crossvalidation results with their modelling process. The five statistical measures covered in 

section 4.3 are used in this process as well. Table 5-1 below show the crossvalidation outcomes 

for each covariate. 

Table 5-1 Covariate Kriging Crossvalidation Statistics 

  

Road 

Surface 

Temp 

Average 

Air Temp 

Total Road 

Warnings 

Snowfall 

Total 

Daily High 

Temp 

Daily Low 

Temp 

MSqE 0.0001 0.0018 15.53 0 0 0.0004 

MStdE 0.0008 -0.0596 -0.0231 -0.0046 0.0068 0.0159 

ASE 0.6766 0.5369 151.3 0.8739 0.4568 0.6755 

RMSE 0.5515 0.5367 153.5 0.8857 0.4481 0.5911 

RMSSE 0.7884 1.001 1.002 1.019 0.9859 0.8610 

 

The crossvalidation results show that the spatial structure for the total road warnings is highly 

irregular and not ideal. This could be due to skewness of the data counts or how the road warnings 

are sent out/determined. It could stem from the side of caution where a warning is issued when not 

required thus increasing the count of either Red, Orange, or Yellow warnings. However, serving 

as a surrogate to the RSI value, these covariates are kept and utilized. As for the other variables, 

the MSqE and MStdE are very small, close to zero, which is near ideal. The RMSE and ASE values 

also look to be acceptable as having a low RMSE value is ideal and an ASE value close to the 

RMSE value is desired. And finally, the RMSSE value indicates the level of over or under 

estimation as represented by how close it is to 1.0.  For all the covariates, they are within a few 

points of 1.0 thus the model estimate variances are well accounted for. The crossvalidation and 

semivariogram results indicate that these covariate kriging models are acceptable.  

Using the models chosen, an interpolation was done to generate a surface map of estimated values 

for each covariate. Figure 5-2 shows the various interpolated surface maps generated for the 

covariates being explored. 
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One clear takeaway from the environmental interpolations is that there is a clear divide between 

weather and environmental patterns from the north and south halves of the states. Another 

takeaway from these plots is the fact that there might be collinearity or multicollinearity between 

these factors when conducting the multiple linear regression (MLR) analysis. There may also be 

an issue with the Road Warnings as the crossvalidation results of the amalgamation of all the 

warnings indicate that the interpolation has a high degree of uncertainty in the estimates thus 

possibly inflating uncertainties or becoming non-significant covariates. The surface map for air 

temperature interpolation does not show a nice dividing line as with the other plots with a “spike-

zone” near the middle. That spike-zone is directly over the capital city of Des Moines, Iowa and 

the high air temperature in this area may be attributed to the heat island affect that most major 

cities experience.  The road warnings show a very blotchy pattern to the warning counts, however, 

there is an observable trend where the northern half gets more warnings than the southern half. 

The two areas of higher warnings in the southern half also coincide with the major interstate 

highways, while the lower counts are more rural roads, state highways, and arterial freeways. 

Overall, it still represents the network well.  

 

(a) Seasonal Avg RST (°C)  

 

(b) Avg Monthly Air Temp (°C) 

 

(c) Sum of Red, Orange, and Yellow Road 

Warning Messages 

 

(d) Average seasonal snowfall totals (cm) 
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(e) Avg daily high temp (°C) 

 

(f) Avg daily low temp (°C) 

Figure 5-2 Spatially Interpolated Surface map of environmental and surface condition data 

5.2 Deterministic Modelling of WC Ratios via MLR 

Multiple Linear Regression (MLR) analysis was completed for the state of Iowa, and its sub 

regions as defined in Chapter 3. Using R, an open source statistical analysis package (R Core 

Team, 2020), a MLR was completed using a backwards removal process to determine the 

statistically relevant covariates. A confidence of 95% (α = 0.05) was used as the cutoff for 

statistical significance. The resulting statistically significant variables for each model need to be 

checked first for multicollinearity before the model can be considered statistically relevant. For 

the check, the VIFs of each significant variable within each model were calculated. Recall that any 

VIF value above 10 would signify that the associated variable shows multicollinearity with at least 

one other variable thus inflating its variance contribution. Table 5-2 below summarizes the 

statistically significant covariates and the values of their coefficients, and Table 5-3 summarizes 

their final VIF values as a check for multicollinearity. A discussion about the relevant variables, 

their signs, coefficient magnitudes, and intuitiveness follows afterwards.  

During the regression analysis, RST was found to be a statistically significant variable in most of 

the regression models. However, as can be seen in the final models (Table 5-2), RST is only present 

in the overall regional model. This is because for the sub regions, RST had a large VIF value, much 

greater than 10, for those regression models indicating severe presence of multicollinearity. Once 

RST was removed, the models’ VIF results were much better. Refer to Appendix A to see the VIF 

results for RST. As such, RST was not included in the models as the other variables were found to 

be more relevant. Perhaps it could be used in place of the other variables should they not be 

available. With the final models determined, the model details can now be discussed.  

 



A. Wong 

56 

 

Table 5-2 Regression Results for Iowa State and its sub regions 

Coefficient 

Values 
Iowa State Northwest Northeast Southwest Southeast 

North 

Central 

Number of 

Data Points 
19591 3257 6284 2565 7504 1090 

Adjusted 

R2 
0.0355 0.0190 0.0389 0.0390 0.0182 0.0403 

Intercept 0.1182 -0.0839 -0.4897 -0.1691 0.0521 -0.5572 

Number of 

Lanes 
-0.0254  N/A -0.0217 -0.0237 -0.0305 -0.0475 

Speed 

Limit 
0.0013 0.0015 0.0009 0.0020 0.0009  N/A 

ln(AADT) 0.0165  N/A 0.0258 0.0220 0.0205 0.0470 

RST -0.0418  N/A  N/A  N/A N/A  N/A  

Avg. Air 

Temp 
0.0397 N/A   N/A  N/A -0.0300 N/A  

Seasonal 

Snowfall 

Total 

N/A  0.0558 0.0226  N/A  N/A  N/A 

No. of Red 

Warnings 
 N/A -0.0004 0.0001 0.0014  N/A 0.0002 

No. of 

Orange 

Warnings 

0.00001  N/A 0.0002 0.0003  N/A 0.0005 

No. Of 

Yellow 

Warnings 

0.0009  N/A 0.0040 -0.0074 0.0010   N/A 

       

The results of MLR for all models show a very weak R2 value indicating that regression alone is 

not a very good estimator with all of them being below 0.05. However, some information can still 

be gleaned from the results. In general variables with a positive correlation to WC ratios for all 

models including the speed limit, AADT, and orange stage warnings whereby indicating that if 
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these values increase, so does the WC ratio. This makes intuitive sense as previous literature has 

shown that an increase in exposure (AADT) and speeds tend to lead to increased collisions in 

general, and under the hazards of winter conditions, they are more likely to occur (Andersson, 

2010; El-Basyouny & Sayed, 2006; Usman, et al., 2012; Abdel-Aty & Radwan, 2000). It is 

worthwhile mentioning that the magnitude of their coefficients appears to be small as it needs to 

translate the covariates such as Speed Limits and Warning Counts from values that are well above 

50 or 200, respectively, to values that fit within the WC ratio range between 0 and 1. 

Table 5-3 VIF values for the MLR models 

VIF 

Values  
Iowa State Northwest Northeast Southwest Southeast 

North 

Central 

Number of 

Lanes 
1.2061  N/A 1.2280 1.1146 1.2517 1.0255 

Speed 

Limit 
1.0901 1.0070 1.1451 1.0854 1.1034  N/A 

ln(AADT) 1.2478  N/A 1.3203 1.1077 1.1526 1.3096 

RST 2.1797  N/A N/A   N/A N/A  N/A  

Avg. Air 

Temp 
 N/A N/A  N/A   N/A 1.0149 N/A  

Seasonal 

Snowfall 

Total 

N/A  1.1602 3.7250 N/A  N/A  N/A  

No. of Red 

Warnings 
N/A  1.1610 1.9763 1.4599  N/A 1.0580 

No. of 

Orange 

Warnings 

2.2972 N/A  3.8264 1.2943  N/A 1.2320 

No. Of 

Yellow 

Warnings 

1.0972  N/A 1.8098 1.1603 1.0234  N/A 
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The number of lanes showed a negative correlation which indicates that as the number of lanes 

increase, the WC ratio decreases. This also makes sense as the increased space reduces the chance 

of a WC collision, or it could mean that more collisions occur during non-winter conditions as 

more lanes are indicative of roads that carry higher speeds and traffic volumes.  

Another interesting outcome from this analysis shows that different variables are relevant in 

different regions. For example, snowfall totals seem significant for the north half of Iowa only. 

This makes sense as the northern half of Iowa tends to be colder than the south making it more 

susceptible to snowy weather events. Road warnings messages do not seem to follow any 

discernable pattern for significance. This may be a result of local trends in driver behavior reacting 

to these warnings, or how local maintenance crews react differently to the warnings thus possibly 

affecting the collision rates.  

The less than ideal R2 values indicate that MLR leaves a lot unaccounted for in its model. This 

means that there is room for improvement thus opening up the possibilities for geostatistics to be 

used to improve the WC ratio estimates for network screening. 

 

5.3 Stochastic Modelling with Ordinary Kriging  

Prior to kriging interpolations, the spatial structure, as represented by the semivariogram, of the 

area must first be analyzed and formulated. This process was completed within R using the gstat 

and sp library packages.  Three semivariogram models were initially chosen to be the basis for the 

spatial structure analysis and from these three, one will be used to conduct the kriging interpolation 

and its model performance assessed. As the variate of interest is the WC ratio, a baseline for 

comparison is done using Ordinary Kriging on WC ratios first. Here, the exponential, Gaussian, 

and spherical semivariograms were generated for the state of Iowa as a whole. Figure 5-3 shows 

the three semivariograms for the WC ratio while Table 5-4 summarizes the semivariogram values 

for each of the semivariograms generated. 
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Table 5-4 WC Ratio Semivariogram Variables and Crossvalidation Analysis results 

Iowa State Ordinary Kriging 

Iowa State 
Exponential 

Model 

Gaussian 

Model 

Spherical 

Model 

Nugget 0.069 0.080 0.080 

Range 

(km) 
15.000 19.452 69.013 

P-Sill 0.030 0.018 0.020 

MSqE 0.098 0.098 0.100 

MStdE 0.000 0.001 0.000 

ASE 1.081 1.029 1.113 

RMSE 0.313 0.313 0.316 

RMSSE 0.612 0.436 0.752 

No. of Pts 19591 

 

(a) Exponential 

Semivariogram 

 

(b) Gaussian 

Semivariogram 
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(c) Spherical 

Semivariogram 

 
 

Figure 5-3 Semivariograms for WC Ratios for the State of Iowa 

 

Looking at the crossvalidation results across the three models used, it appears that the three 

perform quite similarly. However, when looking at the RMSSE value, is apparent that the Gaussian 

model is the weakest of the three semivariogram models in accounting for the variance in the 

estimates. Going by the same statistical measure, then it appears that the Spherical model is the 

best performing one of the three. Here, it is good to also look at the semivariogram values from 

the model. As shown, the spherical model has the largest range, which means that its structure is 

able to account for more correlations before it becomes no longer significant. This would mean 

that this model is effective for a larger area. The tradeoff would be the larger nugget value implying 

that there may be more inherent measurement error that is not account for. Based on the results of 

Table 5-4, the spherical model is the best performing model of the three and thus has been used to 

create the surface map of estimations. Figure 5-4 shows the interpolated map of the WC ratio 

estimations using the OK model developed in this section. 

From this map projection, it is obvious that there is a locational attribute to the WC ratio. Higher 

ratios tend to be on the northern half while the southern half have lower WC ratios. Another 

interesting pattern resulting from this mapping is that the urban centers all show a low to very low 

WC ratio as compared to rural roads. This highly suggests that the effects of winter conditions on 

collisions is greater outside of urban centers. One of the benefits of implementing any kriging 

estimate is that it comes with variance/error values, providing a measure of uncertainty to the 

estimates. Figure 5-5 is a plot of the estimation variance from the OK model estimation. 



A. Wong 

61 

 

 

Figure 5-4 Map of OK Interpolated WC Ratios 

 

Figure 5-5 Map of the OK estimate variance 
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5.4 Stochastic Modelling with Regression Kriging 

Using the regression models found earlier, the regression kriging process was conducted following 

the flowchart depicted in Figure 4-4. Following a similar process to OK, the residuals were 

calculated and then a semivariogram analysis was done upon the residuals. The residuals were then 

interpolated based off the underlying spatial structure and then the interpolated values they were 

added back into the MLR predictions to obtain the RK estimates. 

For the state of Iowa, Figure 5-6 shows the semivariograms of the residuals for the three 

semivariogram models, namely Exponential, Gaussian, and Spherical. With the semivariogram 

values and crossvalidation results for RK obtained, they can be compared to the results from OK. 

The regression kriging results are presented in Table 5-5. 

 

Exponential 

Semivariogram 

 

Gaussian 

Semivariogram 
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Spherical 

Semivariogram 

 
 

Figure 5-6 Semivariogram plots of Regression residuals for WC ratios 

 

 

Table 5-5 Regression Kriging Semivariogram and Crossvalidation results for Iowa State 

Iowa State Regression Kriging 

Iowa State 
Exponential 

Model 

Gaussian 

Model 

Spherical 

Model 

Nugget 0.070 0.077 0.075 

Range 

(km) 
16.925 20.446 49.089 

P-Sill 0.027 0.020 0.021 

MSqE 0.098 0.098 0.100 

MStdE 0.000 0.000 0.000 

ASE 1.039 1.014 1.054 

RMSE 0.312 0.312 0.315 

RMSSE 0.659 0.489 0.795 

No. of Pts 19591 

 

Within RK itself, the same conclusion can be made as was for OK and that the Spherical model 

performed the best. Again, it had the best RMSSE value and larger range while the other statistical 

metrics were nearly identical across all three models. But when contrasted with OK, the MStdE 

and ASE remained stable showing neither improvement nor deterioration in the model errors. The 

nugget values for the spherical models, the best of each set, shows that it got marginally smaller 

with RK. This means that the perceived measurement error is reduced suggesting that some 

measurement error has been accounted for. Furthermore, the RMSSE value in all cases saw an 
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improvement by getting closer to the ideal value of 1. What this implies is that more of the 

variability in the kriging estimates is accounted for from RK than from OK thereby better capturing 

the change in spatial structure with the change in separation distance. Based on these 

crossvalidation results, it can be concluded that RK outperforms OK, albeit marginally. This 

marginality is made up for by the larger gain in insight into how additional covariates may be 

relevant in their influence over WC ratios, how they influence it, and where they are prevalent. 

Using the spherical model, the residuals were interpolated and added back into the MLR estimated 

values to obtain the RK estimated values. Figure 5-7 is the surface map of the RK estimated values. 

From the plot results, it can be noted that the WC ratio values are lower than those found with OK. 

The grouping of higher WC ratios being in the northern half still remains, but is now more spotty, 

than uniform across the top half. To compare the variance between the two models, the variance 

plot will have the same values for the various levels as depicted in Figure 5-8 below. 

 

Figure 5-7 Map of RK Interpolated WC ratios 
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Figure 5-8 Map of the RK estimation variance 

In visually comparing the two estimation variance maps, it is clear that OK has a greater number 

of higher variances over that of RK as depicted by the greater density of red. This further confirms 

that even though RK only provides marginally more accurate estimates, the variance or error 

associated with those estimates have been reduced.  

5.5 Enhanced Regression Kriging using Network Distances 

In an attempt to enhance the RK estimates, network distances were substituted for Euclidean 

distances. As discussed thoroughly in the previous section, this distance measure is more intuitive 

for the intended analysis as the true separation distance between two points on a road network is 

bound by the network itself. To find out whether such a hypothesis is true, RK was done for the 

Northcentral zone in Iowa using both Euclidean and Network distances and then are compared to 

each other using the five (5) metrics. Figure 5-9 below shows the semivariograms generated using 

Euclidean and network distances for the Northcentral zone, and a side-by-side comparison of the 

semivariogram results is shown in Table 5-6 below. 
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Table 5-6 Side-by-Side Results of RK using Euclidean Distances and Network Distances 

North 

Central 

Region 

Exponential Gaussian Spherical 

Euclidean 

Regression 

Kriging 

Network 

Regression 

Kriging 

Euclidean 

Regression 

Kriging 

Network 

Regression 

Kriging 

Euclidean 

Regression 

Kriging 

Network 

Regression 

Kriging 

Nugget 0.094 0.023 0.098 0.024 0.097 0.024 

Range (km) 11.801 16.412 11.584 14.716 30.300 40.300 

P-Sill 0.022 0.006 0.016 0.005 0.020 0.005 

MSqE 0.120 0.116 0.119 0.116 0.123 0.116 

MStdE 0.000 0.000 0.001 0.000 -0.001 0.000 

ASE 1.111 0.160 1.051 0.160 1.152 0.160 

RMSE 0.347 0.341 0.345 0.340 0.350 0.340 

RMSSE 0.544 1.001 0.442 1.001 0.652 1.001 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 
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(e) 

 

 
(f) 

 

Figure 5-9 Northcentral Euclidean and Network Distance Semivariograms 

 

Looking at the resulting crossvalidation statistics from Table 5-6, it is clear that network distances 

will result in better model estimate results by all measures. The nugget across all models is reduced 

thus indicating less inherent measurement errors are present. The increase in the range means that 

the effectiveness of the spatial model is increased encompassing a greater spatial reach before it is 

no longer effective. The MSqE and RMSE have lower values indicating a reduction in the overall 

value of the errors, and with RMSSE near the ideal value of 1.0, the variability of the model 

estimates is almost perfectly accounted for. And finally, the ASE values are now lower than, but 

much closer to, the RMSE values indicating that the model now overestimates the outcomes, but 

not to the extent that it had underestimated it. By all accounts, this shows that Network distances 

work well for a large rural region.  

However, this comes at the expense of computational time as it took over 2 hours to run the models 

for this single region compared to a minute or two using Euclidean distances. Recall that this region 

underwent significant data filtering to reduce the amount of data points by about half as detailed 

in Chapter 3. A previous run was done for another zone with about 3400 data points and that 

analysis took well over 60 hours of computer run time. This goes to show that network distances 

require a lot more computational work than using Euclidean distances.  

5.6 Zonal Characterization of Spatial Structures  

For the final objective of this thesis, the regional and zonal spatial structures are characterized 

using their semivariograms and are then compared to each other to check if the SOSA is met. 

Ideally, the spatial structure for any zone should closely match the structure for the region as a 
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whole. A first point of comparison would be the semivariogram values: the nugget, range, and sill. 

As determined in section 5.3 and 5.4, the spherical model tends to be the better performing model 

of the three, thus only the spherical model is considered in this section. For this section, only 

Euclidean distances are used. The spherical semivariogram models for each quadrant of the state 

were generated and their values tabulated. Following Kwon, et al (2019) OK first used to explore 

this case. Figure 5-10 are the spherical semivariograms for each of the zones and Table 5-7 

summarizes the semivariogram values from each of those plots. 

Table 5-7 Semivariogram values for the Iowa region and its sub-regions 

Value Iowa Northwest Northeast Southwest Southeast Northcentral 

Nugget 0.08 0.073 0.087 0.055 0.064 0.098 

Range 

(km) 
69.013 17.041 41.827 22.877 25.082 37.442 

P-Sill 0.02 0.049 0.02 0.041 0.026 0.024  

  

 

(a) Iowa State 

 

(b) Northwest 
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(c) Northeast (d) Southwest 

 

 

(e) Southeast 
 

(f) Northcentral 

 

Figure 5-10 Modelling of Spherical Semivariograms using WC Ratios 

It is apparent that a single region-wide semivariogram does not result in a spatial structure that is 

similar to any of the zonal semivariograms. This is visually apparent within the semivariogram 

plots as shown in Figure 5-10 and by their semivariogram values shown in Table 5-7. The shape 

of the semivariogram plot is a visual representation of how it changes over distance and it can be 

seen that no two plots are similar in shape. When looking to the values, it becomes clear that the 

differences between Iowa and its zones are significant. This implies that the WC ratio is highly 

sensitive to the spatial structure and possibly confounding factors as well. It is possible that unique 

zonal characteristics are lost when aggregated with the whole and the loss of those details greatly 

affects the spatial structure (semivariogram) and the resulting OK model generated. To further 

confirm this suspicion, each zone had their model crossvalidated and their statistical measures 

recorded in Table 5-8 below. 

Table 5-8 Spherical model OK crossvalidation results 

 Iowa 

State 
Northwest Northeast Southwest Southeast 

North 

Central 

P-Sill 0.020 0.049 0.020 0.041 0.026 0.024 

MSqE 0.100 0.127 0.106 0.100 0.083 0.124 

MStdE 0.000 0.000 0.000 0.000 0.000 -0.001 

ASE 1.113 1.147 1.115 1.136 1.090 1.152 

RMSE 0.316 0.356 0.326 0.316 0.289 0.352 

RMSSE 0.752 0.648 0.764 0.206 0.028 0.600 
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It becomes clear from the crossvalidation results that a region wide spatial structure may not be 

appropriate for some of the zones as the zonal semivariogram results are quite different to that of 

the region. Therefore, there is a high case for suggesting the use of zonal semivariograms. The 

next step was to confirm if this result would follow with the use of RK. Following the method 

done for OK, the same results for RK were found and tabulated in Table 5-9 below.  

Table 5-9 RK semivariogram model values and crossvalidation results 

Values Iowa Northwest Northeast Southwest Southeast 
North 

Central 

Nugget 0.075 0.074 0.083 0.054 0.062 0.096 

Range 

(km) 
49.089 18.772 36.663 21.04 25.105 30.272 

P-Sill 0.021 0.048 0.021 0.037 0.025 0.02 

MSqE 0.1 0.127 0.106 0.099 0.083 0.123 

MStdE 0 0 0 0 0 -0.001 

ASE 1.054 1.147 1.115 1.136 1.09 1.152 

RMSE 0.315 0.356 0.325 0.315 0.287 0.35 

RMSSE 0.795 0.685 0.83 0.356 0.032 0.652 

 

As Table 5-9 clearly illustrates, the same result is found with RK as was with OK. Therefore, this 

is a clear indication that the SOSA is not met and that zonal spatial structures are required to have 

the best possible outcome.  

Having the crossvalidation results on hand for the zones for both OK and RK also provides a 

secondary result for this section. By the same metrics used to determine that RK was the better 

estimator over OK, the same can be said for each of the zone here for the same reasons. The 

RMSSE values are better and the nugget values are smaller. This further shows how RK provides 

marginally better estimates, but substantially has better estimation variance results. 

5.7 Summary 

The results of the study have been able to address the three objects set forth in Chapter 1. To 

conduct the analysis, spatial interpolation via ordinary kriging (OK) was done on the road surface 

and environmental conditions to ensure that all road segments had the appropriate information. 

This task also shows how effective of a tool that OK is for handling these types of variates, similar 

to the results of earlier studies exploring OK.  
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Once the weather and road condition information was interpolated then the first objective was 

studied utilizing the whole state of Iowa and modelling the WC ratios using ordinary kriging (OK) 

and its more sophisticated variant, Regression Kriging (RK). By all measures, RK outperformed 

both MLR and OK in their estimates proving how strong of an estimator tool it can be.  

With RK being found to be an excellent estimator, the second objective was to enhance RK using 

network distances. When RK was utilized with network distances, the results were further 

enhanced as the model was able to better account for the variability of the estimates as noted by 

the improved RMSSE, smaller nugget, and greater range values.  

The final objective was to conduct an examination of the underlying spatial structure both 

regionally and zonally. This final task serves to determine if a single semivariogram is sufficient 

enough to represent the entire region, or if the region is too varied with its road network conditions 

and thus zonal semivariograms are better suited. When taking into account all the semivariograms 

and models generated and the results therein, it was found that WC ratios are quite sensitive to the 

underlying spatial structure. This would imply that for modelling WC ratios with kriging, the 

SOSA is not met and that a regional semivariogram should be replaced by zonal semivariograms 

as they better capture any unique spatial structures for those sub regions. 

 

 



A. Wong 

72 

 

Chapter 6 CONCLUSION AND FUTURE WORKS 

Geostatistics is a burgeoning field within the transportation engineering profession as recent 

studies in other disciplines have shown it to be a good estimator. More importantly, the use of 

kriging has started to gain in popularity given its propensity to provide some of the best 

geostatistical model estimates. Several transportation engineering studies have made use of 

kriging, however, those studies were limited in the spatial and temporal scope of their study area 

and were limited to the simpler kriging variants of simple kriging or ordinary kriging.  

This thesis first attempted to show the viability of using regression kriging, a hybrid form of 

geostatistics, as a tool for use in winter collision analysis. To improve upon generated kriging 

estimates, network distances were used in place of Euclidean distances, a consideration that has 

not been extensively explored in previous studies. Likewise, no existing studies looked into 

characterizing the underlying spatial structure even when considering unique zonal spatial features 

and properties. This thesis, therefore, set out to fill in those gaps in current literature to evaluate 

the feasibility and applicability of kriging for tackling challenging transportation problems, one 

being a network screening analysis as done herein. The next being the enhancement of estimates 

using the more intuitive network distances over Euclidean distances. And finally, the examination 

and verification of the second order stationarity assumption (SOSA) to ensure the best models are 

being constructed. 

6.1 Research Findings 

The Winter Collision ratio (WC ratio) is a value that was used as it easily provides a way to 

relatively compare how collisions due to winter conditions differ between road segments. This was 

treated as the dependent variable in MLR and in Regression Kriging (RK) while AADT, lane 

numbers, speed, RST, air temperatures, road surface condition warnings, snowfall totals, and daily 

high and low temperatures were used as covariates. The datasets used in this study come from five 

winter seasons from 2013 to 2018 within the state of Iowa for an expansive spatial and temporal 

study area. Following the methodology outlined, the key findings from this study are as follows: 

 Using the state of Iowa, WC ratios were estimated by using MLR, OK, and RK and their 

results statistically measured. As a result, RK was found to be the better estimator over 

MLR or OK as determined by the five statistical metrics used. This shows that RK is indeed 
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a viable hybrid method for modelling winter collisions when there are covariates available 

to use. During this process, it was found that OK estimates also outperformed MLR, thus 

if no covariates are available, OK can still be used.  

 When substituting network distances in place of Euclidean distances, the model 

performance only resulted in marginally better estimates, but it better accounts for the 

variability of the estimates substantially. This improvement in variability description 

comes at the cost of computational complexity and time. As such, the cost of increased 

computing resources for such marginal benefits needs to be considered.  

 In the characterization of the underlying spatial structure, it was found that an overarching 

regional semivariogram does not perform as well as zonal-semivariograms that better 

capture the localized spatial structure. Furthermore, it was found that many urban centers 

did not have a spatial structure present based off the available data thus implying that 

kriging may not be useful in densely packed zones.  

6.2 Research Contributions 

The primary contribution of this thesis was the development and benchmarking of the hybrid 

method of regression kriging for used in winter collision analysis. Through this thesis, a 

methodological framework was developed to take in covariates and utilize them to make better 

winter collision estimates. The results show that RK is a better estimator over MLR and OK by all 

metrics used in this study and ultimately why it should be considered a power modelling tool.  

The second contribution made by this thesis was the enhancement of RK by using Network 

distances in place of Euclidean distances.  This thesis showed that RK estimates are marginally 

improved by using network distances, but the real gain came in the form of the variability of the 

estimates being better captured as shown by the significant improvement in the RMSSE values. 

This means that the uncertainty of the estimates is greatly reduced. This shows what the real benefit 

is to using network distances over Euclidean distances.  

The final contribution from this thesis is the characterization of the underlying spatial structure for 

the study area. Based off the many semivariogram analysis completed, it is clear that WC ratios 

are sensitive to the underlying spatial structure thereby suggesting that a singular region wide 

spatial structure cannot be used for the whole study area. Rather, zonal semivariograms need to be 
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developed in order to attain the best outcome from the models. Therefore, this would suggest that 

the stationarity assumption required for applying a singular semivariogram to any form of kriging 

for the region does not hold.  

Traditional methods such as the safety performance function or Empirical Bayes method require 

an extensive amount of high quality data in order to conduct a good network screening. Few road 

authorities have the means and/or ability to collect, maintain, and utilize an extensive amount of 

data that can be used for good network screening. Due to limited finances or infrastructure, many 

road authorities around the world have limited collision records, weak record keeping practices, 

or unreliable reporting. Kriging makes use of the spatial correlation of limited data that is not often 

accounted for in other methods. Regression kriging takes in external covariate that are often easier 

to record and can use them to improve their collision modelling. Best of all, the analysis and 

calculations are all open to the user and not done behind a black box such as neural networks or 

artificial intelligence computing. This provides a more transparent, evidence based analysis that 

can be audited and relied on by public officials. Overall, as shown here, RK can effectively model 

WC ratio hotspots over a large spatial area and produce a hotspot map that authorities can use to 

make more informed decisions in regards to their WRM programs.  

6.3 Future Research Directions 

This study is without its limitations and could be expanded upon in future studies. Some 

recommendations are as follows: 

 Include the use of additional weather stations such as those used by the airport authorities. 

This will increase the weather data point density that will improve the spatial modelling of 

some of the weather covariates. Weather stations for air travel also have specific sensors 

for air traffic use and can potentially add additional covariates that were not available from 

the other stations, such as visibility distances, wind speeds, wind direction, gust speeds, 

and sunlight intensity. 

 Including the use of maintenance activities as covariates to the regression analysis to see if 

that has an influence on the collision outcomes. As was covered in Chapter 2, WRM can 

affect the level of risk and occurrences of collisions on the roads during and after a weather 
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event. Including maintenance times, activities, or service level as covariates can affect the 

outcome the regression modelling, potentially improving the detrending ability within RK. 

 This study only took into account one study area so a repeat of this using another state or 

even country altogether would provide additional support for the outcomes found here. As 

with many studies and as a key part of the scientific process, a sample or study of one can 

set an example and a benchmark. But it is only by conducting the same experiment with 

different data can the methodology and theory be upheld and verified. 

Though this was limited to winter collisions only, it could possibly be expanded to account 

for other severe environmental conditions such as fog, heavy rainstorms, etc. Winter 

conditions are not the only weather condition that has been known to increase the risk of 

collisions. Foggy weather reduces visibility and ice fog has been known to generate 

extremely slippery conditions with the formation of ice on roads. Heavy rains can cause 

slippery conditions as well but can also cause flooding of roads or cause vehicles to 

hydroplane if water cannot drain from the roads fast enough. 
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APPENDIX A – Regression Models 

Table A-0-1 Backwards Elimination Stepwise Regression Results prior to VIF elimination 

 Iowa State Northwest Northeast Southwest Southeast 
North 

Central 

Number of 

Data Points 
19591 3257 6284 2565 7504 1090 

Intercept 0.1480 -0.0839 0.4097 -0.5641 0.5631 1.3460 

Number of 

Lanes 
-0.0260 N/A -0.0203 -0.0294 -0.0299 -0.0467 

Speed Limit 0.0012 0.0015 0.0008 0.0019 0.0008 N/A 

lnAADT 0.0167 N/A 0.0240 0.0244 0.0215 0.0521 

RST -0.0575 N/A -0.2172 -0.3172 N/A -0.2563 

Avg Air 

Temp 
0.0397 N/A 0.1270 0.1721 0.0328 N/A 

Avg Daily Hi 

Temp 
-0.0141 N/A N/A 0.1534 -0.0825 N/A 

Avg Daily 

Low Temp 
N/A N/A -0.0343 0.0605 N/A N/A 

Snowfall N/A 0.0558 -0.0226 -0.0711 -0.0347 -0.2467 

No. of Red 

Warnings 
N/A -0.0004 -0.0004 0.0023 N/A N/A 

No. of 

Orange 

Warnings 

0.0001 N/A 0.0002 0.0010 0.0001 0.0004 

No. Of 

Yellow 

Warnings 

0.0011 N/A -0.0052 -0.0063 0.0017 N/A 
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Table A-0-2 VIF values for the initial Regression analysis 

Number of 

Lanes 
1.2106 N/A 1.2417 1.1370 1.2547 1.0262 

Speed Limit 1.1154 1.0070 1.2038 1.1027 1.1417 N/A 

lnAADT 1.3281 N/A 1.4402 1.2596 1.3594 1.2787 

RST 17.0624 N/A 45.7930 68.1959 N/A 42.5372 

Avg Air 

Temp 
22.6663 N/A 19.9496 32.0681 5.9549 N/A 

Avg Daily Hi 

Temp 
19.9911 N/A N/A 28.6329 6.8761 N/A 

Avg Daily 

Low Temp 
N/A N/A 9.7026 6.0729 N/A N/A 

Snowfall N/A 1.1602 8.2108 19.4435 2.2690 42.6072 

No. of Red 

Warnings 
N/A 1.1610 6.4068 1.8429 N/A N/A 

No. of Orange 

Warnings 
4.3531 N/A 7.6093 11.5085 3.0722 1.9015 

No. Of 

Yellow 

Warnings 

2.1290 N/A 5.8279 4.0733 2.5777 N/A 
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APPENDIX B – Exponential and Gaussian Ordinary and Regression 

Kriging Comparisons 

Table B-0-1 Exponential model OK and RK crossvalidation results 

 Iowa State Northwest Northeast 

Exponential 

Model 
OK RK OK RK OK RK 

No. of Pts 19591 19591 3257 3257 6284 6284 

Nugget 0.069 0.070 0.062 0.064 0.086 0.081 

Range (km) 15.000 16.925 6.608 7.041 20.414 16.250 

P-Sill 0.030 0.027 0.062 0.060 0.022 0.024 

MSqE 0.098 0.098 0.123 0.123 0.104 0.104 

MStdE 0.000 0.000 0.000 0.000 0.000 0.000 

ASE 1.081 1.039 1.104 1.104 1.083 1.083 

RMSE 0.313 0.312 0.351 0.351 0.323 0.322 

RMSSE 0.612 0.659 0.525 0.568 0.690 0.767 
 Iowa State Northwest Northeast 

Exponential 

Model 
OK RK OK RK OK RK 

No. of Pts 2565 2565 7504 7504 1090 1090 

Nugget 0.051 0.050 0.058 0.057 0.097 0.094 

Range (km) 10.548 9.566 9.585 9.607 18.673 11.801 

P-Sill 0.048 0.044 0.032 0.030 0.028 0.022 

MSqE 0.097 0.096 0.083 0.082 0.121 0.120 

MStdE 0.000 0.000 0.000 0.000 0.000 0.000 

ASE 1.096 1.096 1.066 1.066 1.111 1.111 

RMSE 0.311 0.310 0.287 0.286 0.348 0.347 

RMSSE 0.177 0.334 0.028 0.019 0.492 0.544 
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Table B-0-2 Gaussian model OK and RK crossvalidation results 

 Iowa State Northwest Northeast 

Gaussian 

Model 
OK RK OK RK OK RK 

No. of Pts 19591 19591 3257 3257 6284 6284 

Nugget 0.080 0.077 0.089 0.088 0.089 0.087 

Range (km) 19.452 20.446 11.050 11.055 18.091 19.679 

P-Sill 0.018 0.020 0.034 0.034 0.019 0.018 

MSqE 0.098 0.098 0.124 0.124 0.104 0.104 

MStdE 0.001 0.000 0.001 0.000 -0.001 -0.001 

ASE 1.029 1.014 1.039 1.039 1.029 1.029 

RMSE 0.313 0.312 0.352 0.352 0.323 0.322 

RMSSE 0.436 0.489 0.372 0.424 0.510 0.585 

  Southwest Southeast North Central 

Gaussian 

Model 
OK RK OK RK OK RK 

No. of Pts 2565 2565 7504 7504 1090 1090 

Nugget 0.060 0.059 0.070 0.068 0.101 0.098 

Range (km) 9.857 9.418 14.749 15.092 17.243 11.584 

P-Sill 0.034 0.031 0.019 0.019 0.022 0.016 

MSqE 0.096 0.095 0.083 0.082 0.120 0.119 

MStdE 0.001 0.001 0.001 0.001 0.000 0.001 

ASE 1.037 1.037 1.023 1.023 1.051 1.051 

RMSE 0.310 0.308 0.288 0.286 0.346 0.345 

RMSSE 0.309 0.432 0.043 0.058 0.413 0.442 

 


