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ABSTRACT

A set of K principal points for the distribution of a random vector X is a
set of K points minimizing the expected squared distance between X and the
nearest point in the set. The thesis is concerned with the use of smoothing in
the estimation of principal points.

Problems considered include the estimation of the risk function and the es-
timation of the optimal smoothing parameter Tpp when estimating principal
points.

The thesis commences with a review of some literature on principal points
and related topics.

The second chapter investigates the effectiveness of optimal smoothing in the
context of the spherical normal distribution.

The third chapter treats the estimation of an optimal smoothing parameter
and evaluation of its effectiveness given a data set from an unknown distribution.

These techniques are applied to several examples in Chapter 4.
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Chapter 1

Introduction And Background

1.1 Definitions and Examples

The K principal points of a p~dimensional random vector X are those points
£1,€2,...,Exk € RP that minimize the expected square distance of X from the
nearest of the & (Flury, 1990).

More formally, define K. : RP*(+K) — {12 . . K} by
K.z,y1,---,yx) =min{k : [z —yel]| < ||z =y for 1 LI < K}. (1.1)

The expression K. is the index of the point y, that is closest to the point z. If z

has equal distance to two or more yi, then K. is the first such index in the list.

Define
1, if k=K. (z,1n,...,yx
0, otherwise .
The dependence of éx(z) on y1,y2,- - -, y& is implicit in this notation. Sometimes
we will make the dependence explicit by writing 6i(z,y1,¥2,-- -2 YK)-

Let X be p-dimensional random vector with distribution function F. Define



the loss function Lz : RP*X — R by
K
Le(unssa -+ 3) = Br {3 600X =3l (1.2)
where ||z — y||2 = (z — y)7(z — y). A set of points minimizing (1.2) is called a
set of K principal points for F and is denoted by &;,&,...,€x. If F is replaced
by F, the empirical distribution function of a sample {z;,Z,...,Z.}, the loss

function (1.2) becomes

n

1 .
Le(yr .- 9x) = = g lz: — yell* (1.3)

i=1
When an estimate such as £ is used, then we will denote the estimated principal
points by £ o bk

The term principal points was introduced by Flury (1990) as a result of a
practical problem in statistical consulting. It started with a project of the Swiss
Army which wanted to design new protection masks. To put the construction
of the new masks on a good empirical grounds, a group of anthropologists was
hired to measure the heads of 900 Swiss soldiers. Twenty five variables were
regarded as potentially important for the fit of the masks. Since human heads
differ in size and shape, several types of masks are needed for adequate fit. Flury
considered how one might determine an optimal set of K types, where K < 3.
The optimality criterion (1.3) was used to construct models of K typical heads,
which were then used to assist in designing masks.

The solution to the mask fitting problem is computationally equivalent to the
K -means clustering algorithm. which attempts to find optimal cluster means for
a multivariate sample using criterion (1.3). Since cluster analysis is usually re-

lated to the idea of finding homogeneous subgroups in a mixture of distributions,



the name principal points was suggested for optimal cluster means in a homoge-
neous population. In addition, the term principal points was introduced as a way
of emphasizing a whole range of applications beyond clustering and a connection
with principal components.

Principal points were studied in the theory of stratified sampling by Dalenius
(1950); Dalenius and Gurvey (1951) and Cox (1957). These authors studied how
to partition a given set of data or items into K homogeneous subsamples. Their
work was restricted to univariate distributions.

Flury and Tarpey (1993) used principal points in the selection of representa-
tive curves from a collection of curves. Suppose we have N curves. Approximate
each curve by a p-dimensional vector obtained by evaluating the curves at equi-
spaced points. Compute a set of K principal points for the p-dimensional data
set, plot the coordinates, and interpolate to obtain K smooth curves.

The A -means clustering criterion (1.3) was introduced by MacQueen (1965).
He suggested applications in classification as well as clustering, i.e., for each class,
find a set of K principal points and use these for nearest neighbor classification.

Finding principal points can be seen as data reduction. In the Signal Process-
ing literature, this technique is called Vector Quantization. In the Information
Theory literature, it is called Source Coding with Fidelity Criterion. The data
set may consist of blocks of pixels extracted from a training image. The di-
mension of this data set is reduced using vector quantization (described later
in section 1.4) and the reduced version of the data set is either transmitted or
stored (Cohn et al, 1994).

Principal point estimates have been used as an initial step in two classifi-

cation algorithms; learning vector quantization (Kohonen, 1995) and piecewise



linear classification (Hooper, 1996), and in two regression algorithms, radial ba-
sis functions regression (Moody and Darken, 1989) and normalized exponential
smoothing (Hooper, 1996).

The thesis is organized as follows. We begin with the review of some literature
in chapter one. In chapter two, we introduce the concept of smoothing. Here we
look at smoothing when estimating principal points for a particular distribution.
Chapter three also looks at smoothing but rather for a general data set. Also this
chapter deals with estimating the loss function for a data set. Vector quantization
is applied to estimate principal points in both chapters two and three. Some

numerical examples are given in chapter four which is the last chapter.

1.2 K-Means Clustering Algorithm.

Partitioning methods in cluster analysis are usually based on an optimization
criterion that measures compatibility of clustering parameters with a data set
describing the objects. In general, an optimal solution cannot be obtained in a
closed form and iterative algorithms are necessary.

The K-means clustering algorithm (Hartigan and Wong, 1979) is a spe-
cial case of the Classification EM algorithm (Celeux and Govaert, 1992). Let

Z1,T2,....Zn € NP be a sample from a mixture of densities

K
f(l') =Zpkf($,ak)1 (1.4)
k=1

where the pi’s are the mixing weights, 0 < pr < 1, for all ¥ = 1,2,..., K and
Sepe = 1, and the f(z,ax) are densities from the same parametric family. For
example, f(z,a;) might denote the p-dimensional normal density with unknown

mean p; and covariance matrix ¥, and a; = (p, X).



The EM algorithm is a general algorithm to compute the maximum likelihood
estimates of px, ar,1 < k < K under the mixture approach. The Classification
EM (CEM) algorithm is a general algorithm to compute the estimates ax, px and
to find the clusters 7x,1 < k < K under the classification approach. The CEM
algorithm incorporates the E-step (Expectation) and the M-step (Maximum
likelihood estimation) of the EM algorithm using a maximum posterior principle.

The CEM is described as follows. Let 7™ = {m™,7™,..., 7™} denote
partition of sample points {1,2,...,n} into K subsets. Start with an initial

partition 7% The mth iteration of the CEM algorithm is given as:

E-Step:- Compute forz =1,2,...,n and k= 1,2,..., K the current poste-

rior probabilities ¢,™(z;) that z; belongs to 7 as

me ) — _p;:nf(zira;cn) 1.5
W) = E o fen ap) (13)

for the current parameter estimates p™ and a™.

C-Step:- Assign each z; to the cluster which provides the maximum prob-
ability ¢,™(z;),k = 1,2,...,K. If the maximum posterior probability is not
unique, we assign to the cluster with the smallest index. Let 7™ denote the

resulting partition.

M-Step:- For £ = 1,2,..., K, compute the maximum likelihood estimates

pe™*Y, ap*! using the subsamples 7,™. We have

pkm+1=#’;" , for al k=1,2,... K. (1.6)

The formula for the a**!’s depends on the family of density functions involved.

3



The K-means clustering algorithm can be obtained as a special case of the
CEM algorithm assuming a Gaussian mixture with equal proportions and com-
mon covariance matrix of the form o2/. The estimation of the scale parameter
o? does not affect the assignment of the z;’s to the clusters #'. In the M-step

we have

m+1 1

= i k= 2,..., ’ .
er e z.-‘e‘__.;;" r;, forall 1, K (1.7)

and
()™ = ifi > -t (1.8)
NP k=1 z,exm

In the C-step, z; is assigned to the cluster with nearest centroid mean #Lm)'

One can specify an initial partition or initial centroids. The final partition will
be, to some extent, dependent upon the initial partition or the initial specified
centroids. It is therefore advisable to repeat the clustering using different initial
partitions or initial centroids.

A stochastic version of the K-means algorithm was developed by Celeux
and Govaert (1992) which improves the chance of finding a global minimum.
In its second step (classification step), the algorithm determines, for each z;, a
probability distribution over the set of all A" cluster means and then assigns z;
randomly according to this distribution. The probabilities are similar to poste-
rior probabilities of cluster membership calculated assuming a normal mixture
model. The probabilities are gradually adjusted so that, as the number of iter-
ations increases, the probability that z; is assigned to the nearest cluster mean

tends to one.



1.3 Stochastic Approximation

In many optimization problems, the solution is a vector of parameter values that
minimizes a given performance index or objective function, usually expressed as
an integral. There are problems where such an optimum can be determined in
closed form but often optimization is not analytically tractable. Robbins and
Monro (1951) introduced an iterative technique for optimization called stochastic
approximation. Benveniste et al. (1990) give a general review of theory and
applications of stochastic approximation. A brief summary is as follows. We
wish to minimize a function R(8) by using an iterative algorithm driven by a

sequence of independent and identically distributed random vectors {Zn}:
The term a,, is called the gain function and H is the updating function. Let the
gain function satisfy ;

an >0, Y am =00, and ) @} <co forsomea > 1. (1.10)

Write

0 = 0(ty) where ¢, = Za;. (1.11)

=1

After an initial transient phase, the behavior of algorithm (1.9) is represented to

a first approximation by the ordinary differential equation

d
59(t) = h(8(t)), (1.12)
where
h(0) = E{H(6,2)}. ' (1.13)

In gradient algorithms, the updating function H is defined so that

h(0) = — 7 R(H).



1.4 Vector Quantization

Vector quantization is a classical method in signal processing that approximates
a distribution by a representative set of vectors (Gersho and Gray, 1992). One
optimal approximation produces a set of K vectors yx so that the expected
squared distance from the nearest y; is minimized.

As mentioned earlier, the data set (vectors z) may consist of blocks of pixels
extracted from a training image. The image is broken up into rectangular pixel
blocks. Each of these blocks is a p~dimensional vector. This p is equal to the
number of pixels within a block. The quantity which is being measured is the
light intensity for each pixel. Hence to obtain a vector, we take the value of the
light intensity of each pixel in a block.

A training set of ten 512 x 512 pixel images can be broken into blocks of
4 x 4 = 16 pixels. So the dimension in this case is 16 and there are 128 x 128 =
16, 384 blocks per image. This gives 163,840 blocks for a training set. In other
words, we have a data set of 163,840 vectors each of dimension 16. A set of
principal points is estimated using vector quantization. This reduced set of
vectors is called a codebook and it is used to encode the image. The reduced
set of vectors is either stored or transmitted instead of the entire data set. This
reduces the transmission costs.

Encoding a gray-scale image (with 8 bits per pixel or 2% different levels of
light intensity per pixel) with a codebook of 256 4 x 4 blocks will require that
log,(256) = 8 bits be used for every 8 x 4 x 4 = 128-bit block, resulting in a
16-to-1 compression ratio. This compression will affect the quality of the final

image to some extent.



Let F be the estimate of the distribution function of the vectors in the image.
Also, let {X»} be a sequence of independent random vectors sampled from F.
Then the function we would like to minimize is

K
Ep {Z Se(X)|X — ykllz} :
k=1
Vector quantization may then be implemented by stochastic approximation with

updating formula
Yi — Yi + ambu(Xn)(Xm — Yi). (1.14)

This means that at the mth iteration the point Y} closest to X,, is moved towards
Xm.

Let M be the number of iterations chosen to evaluate the loss function. We
define the gain function a,, so that 1/a,, varies linearly from 1/a; to 1/ays. The
rate of convergence is determined by the values of a;, ayr and M. Decreasing the
gain slowly is likely to give convergence to a point near optimum. For example
when cooling metals, if the metal is cooled slowly, the resulting crystal is at a
state of minimum energy but when cooled quickly it does not reach this state, but
rather a state of higher energy. Vector quantization can be used to approximate
a set of principal points for smoothed distribution function estimates.

[t appears that the algorithm spends most of its time calculating distances
to obtain K.(z,y1,¥2,---,¥x) SO as to obtain éx(z). The computing time, t.omp
required to implement the algorithm depends primarily on K and p, but not
on n. A double-precision FORTRAN implementation of the algorithm was run
on RS/6000 Model 350 workstation using values of K ranging from 2 to 20, p

ranging from 1 to 10 and for a fixed value of Af = 100,000. The computing



times, temp for this particular M varied from 12 to 74 seconds and are closely

approximated (R? = 99.35%) by the formula
tromp = T.6782 + 0.4243K + 3.7528p + 0.0915Kp. (1.15)

The algorithm is similar to that of MacQueen (1965) described as follows.
Start with K clusters each consisting of a single random point from the set.
Next, select a point randomly from the entire data set and add it to the cluster
whose mean the new point is nearest. After adding a new point to a cluster, the
mean of that cluster is recalculated in order to take account of the new point.
Continue picking a point at random and add it to the cluster whose mean it is
nearest and updating the mean of the receiving cluster to take account of the
new point until the entire data set is grouped into K clusters. The K principal

points can then be taken to be the means of the K clusters.

1.5 Analytical Results

1.5.1 Self-Consistent Points

A set of points y1,¥2, - - ., ¥k is called self-consistent with respect to a p-dimensi-

onal random vector X if
E{X|5k(X,y1,y27~-,yK) = 1} = Yk- (116)

The sample version of self-consistent points is obtained by putting X = zy
where U is distributed uniformly on {1,2,...,n}. A set of points is self-consist-

ent if

(T 3, Y YR (LT
P DL T SRR oL N R S S o (1.17)
Ziék(zivyl’y2v--'1y1\")

10



Some of the results for self-consistent sets of points are:
1. (Flury, 1993). The set of principal points is self-consistent.

2. The K-means clustering algorithm always converges to a set of self-consist—

ent points.

3. (Tarpey, 1992). Let X denote a p-dimensional random vector with zero
mean. Suppose yi1,¥2,-.--,Yk are self-consistent points of X and these
points span a subspace of dimension ¢ < p. Let a;, az,...,a, € R? denote
an orthonormal basis of this subspace, and set B = (a1, a3,...,aq). Then
the random vector B’X has a set of K self-consistent points B'y;, B'ya,. .-,

B'y[\'.

4. (Tarpey et al, 1995). Let X; denote a p-dimensional random vector, and
let X; =6 + pHX, for some § € RP, p € R and for some p x p orthogonal
matrix H. If {y1,¥2,.--.yx} is a set of K self-consistent points of X7,

then § + pHyx, k= 1,2,..., K form a set of self-consistent points of X,.

5. (Tarpey et al, 1995). Let X be p-dimensional vector with y1,¥2,...,¥xk
as self-consistent points. Now if K self-consistent points of X span a
subspace of dimension ¢ < p, then this subspace is also spanned by the

first g principal components.

1.5.2 Principal Points

1. (Tarpey et al, 1995). Let X, denote a p—dimensional random vector, and
let X; = 6§ + pHX, for some § € R?,p € R and for some p x p or-

thogonal matrix H. If {&.&,...,€x} are principal points of Xj, then

11
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6§+ pHE, k=1,2,...,K, are principal points of X;. Denote é + pH&; =
éky k = 1127'-'11{' Then LF: {511527"'151(} = P2LF1 {61)523'-"61\’}
where Lr,, LF, are the loss functions defining principal points for the ran-

dom variables X, X, with distribution functions F}, F, respectively.

(Flury, 1990). Let X be a continuous univariate random variable with
mean, g = F(X), symmetrical density function f(z), and with second

finite moments. Then the K = 2 principal points are
pEE(X - pl)
if and only if f(p)E(JX —p|) < 3.

(a) Example. Let X denote a univariate standard normal variable, and
f(z) its density. Then f(u)E(|X—p|) = F(O)E(|X|) =1 = 0318 <
L. Hence the two principal points of the standard normal are
£, = —(2/7)F = ~0.797T and & = (2/7)% = 0.7977. It follows
that for X ~ N(u,0?)and K = 2, the principal points are uia(Q/r)%
(Cox, 1957).

(b) Example. For a uniform distribution on [ — 7, u + 5] for n > 0, the

two principal points are p + 17.

(Flury, 1990). Suppose a p-dimensional random vector X follows an ellip-
tical distribution with mean vector u and covariance matrix £. Then the

two principal points of X have the form
€k=ﬂ+7kﬂv fork:l,?’

where 8 € RP is the normalized characteristic vector associated with the
largest root of ¥, and 71,72 are the two principal points of the univariate

variable 3'(X — pu).



4. (Flury, 1990). Suppose X ~ N,(g,X) and let w;, and B denote the largest
characteristic root and vector, respectively of ¥. If w; is simple, the two

principal points of X are
px (2w1/7r)%ﬂ.

If w, has multiplicity » (1 < r < p), let V* denote the sphere of radius
(2w /)7, centered at g, in the latent space of w;. Then any two points on

V* symmetric to g are two principal points of X.

5. (Flury, 1990). Let u € R?, and ¥ be a positive definite symmetric p X p
matrix. Suppose a random vector X has a uniform distribution inside the

set
C={:r€§R”:(:1:—;t)TZ_I(:z:—-/,L)S 1}.

Let «o; and 8 denote the largest characteristic root and associated charac-
teristic vector, respectively of ¥, with 3’3 = 1. Suppose that w, is simple.

Then the two principal points of X are

1

Y waf(%p-i- 1)
(p+1)TEp+ 3)T(3)

provided that the local minimum taken at these points is the global mini-

B

mum.

1.5.3 Principal Components

The reason for this section is to give a connection between principal points and

principal components.
Let X be a p-dimensional random vector. Then the principal components

are particular linear combinations of X. Principal component analysis depends

13



mainly on the covariance matrix ¥ of X. The first principal component is the
linear combination with maximum variability and last principal component is the
linear combination with minimum variability. When the last K +1, K +2,...,n
principal components have variances which can be considered as not significant,
then principal components can be seen as a way of dimension or data reduction.

Now the result which gives the connection between principal points and prin-

cipal components is given as:

1. (Tarpey et al, 1995). Suppose X is p—dimensional elliptical with E(X) =0
and Cov(X) = E. If a set of K principal points of X spans a subspace
V= of dimension ¢, then £ has a set of eigenvectors v1,72,...,7, with

associated ordered eigenvalues A\; > A, > ... > A, such that V™ is spanned
by Ty T2y
If the eigenvalues of ¥ are distinct then this result implies that if the K principal
points of X span a subspace of dimension g, then this subspace is identical with

the subspace spanned by the ¢ principal components (¢ eigenvectors) associated

with the q largest eigenvalues of .
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Chapter 2

Smoothing

2.1 Definitions and Rationale

Let X be a p-dimensional random vector having distribution function F. Let E
be an estimate of F. This chapter investigates the use of smoothed estimates F
to estimate principal points .

Let {51, oy .., f;\} be an estimator of a set of A principal points. In evalu-
ating the estimators, we will adopt the loss function Lg (él,fg, cees éx) We get

the risk function by taking the expectation of the loss using the true distribution

function F :
RE,F) = E{Lr(€.&.....éx)} (2.1)
= E{lg}‘i& X—£k||2}, (2.2)

where X has distribution F and is independent of {fk} We will evaluate the

performance using the risk criterion.

This criterion seems to be more reasonable and tractable than a criterion

based on the distance between {fl,éz,. .. 7£K} and the actual principal points



{€1,€2,...,Ex} of X after a suitable ordering of the points. We must note that
the function L may not have a unique minimum.
Define a smoothed empirical density function f» to be the kernel-smoothed

density estimate using the radial symmetric Gaussian kernel :

file) = 23 (o) ™ exp {—5glle — il (2.3)

=1
Let 1':',. be the corresponding estimate of the distribution function, which can be

written in short form notation as a mixture of n normals :

F= % i Ny (z:,7%1,) . (2.4)

i=1

Note that Fy is the empirical distribution function, which puts mass 1/n at z..

When applying vector quantization to minimize Lg. , the optimality criterion

(2.5), we will generate random vectors from F.. The procedure for generation
of the random vectors is outlined in algorithm 2.1 as follows :

Algorithm 2.1

1. Generate a random variable W distributed uniformly on {1,2,...,n}.

2. Generate a p-dimensional vector Z of independent standard normal ran-

dom variables; i.e. Z ~ N,(0,1,), W and Z are independent.

3. Put X =zw +72.

Now consider minimizing

2
W]
T

N » - LA 1 —_— 2
LF’,—(III’!/:!,-w,yA) EF,, {lg}tlsn[\' I‘Y yk” } (

= F {mkin lzw + 72 - yk[|2}

—_— —_ . M . — 17 2
= E ln Z{mkm ”:1." +712Z y:“ }]

i=1

= E{lgy—7Z0...yx —72) | Ea}.
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Note that the estimators {él, éz, .. ,EK} minimize equation (2.5). Then Lz
averages Ly asthe configuration of vectors y1, y2, . . - , yx is shifted by the vector

7Z. Hence Lg_is a smoother function of y1,y2,...,¥x -

2.2 Optimal Smoothing for the
Spherical Normal

In this section, we investigate the optimal values for the smoothing parameter
T when F = N,(0,1I,), for various choices of n, p, and K. We consider the
distribution F' = N,(0,I,) because we know the optimal smoothing parameter
(window width) Tpg for the density estimation criterion (Silverman, 1986, pages

86-87):

2p + 1)n ) ")
TDE = {(—’3—4——)-} : (2.6)

For this particular distribution, how does the risk equation (2.2) relate to (7, n,
p, K )? The value of 7 for which the risk function is minimized will be called
the optimal smoothing value and denoted Tpp. How is 7pp related to (n, p, K)?
How much improvement in the risk is attained using T = 7pp compared with
r = 0, and how is this related to (n, p, A)? Answers to these questions for
a specific distribution may provide insight concerning estimation of rpp from a
data set with unknown distribution.

Now for different combinations and values of nn, p, K we estimate the principal
points and evaluate the risk function. The procedure is outlined as follows:
We start by specifying some values of 7 with the first value 73 = 0 and the upper

bound 7; = 27pg, where 7pg is given as equation (2.6). Compute values of 7
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from

2t .
= %TDE ] fOf 1= 071121"'77‘ (2'7)

Estimation of the principal points and the loss is given in a “Do loop” below.
Doz=0to7
Doj=1to 10
1. Generate a random sample {z,z3,...,2z,} from F = Np(0, I,). The
samples are independent for different (z, 7).

2. Apply vector quantization to estimate the principal points using 7 = 7;

denoted as f’,é",,..,f’l . lLe.
1:82 K

{f{,f{,,f}}} = a.rgxmn E'{ mln lzw + 7Z — €7||? } (2.8)

ST

where W and Z are defined as in algorithm 2.1.
3. Generate an independent sample {y1,¥2, - - ., ¥100.000} from N, (0, I,) and

estimate the loss Lg by

| 100000
Li = To5-000 ; Jin in_[ly - Ek“ (2.9)
End do.
End do.

In the “Do loop” above, we have j going from 1 to 10. The reason for this
repetition is to get a more accurate risk estimate for each combination of n, p,
and K.

Now for T = 7;, we evaluated the risk ten times hence we get eighty different
values of the risk Lg {é{,ég, e ,f;»} each corresponding to some 7 = 7;. Hence

the average, T of the 7's as

~i
i
~| W

TDE = TDE-

| —

-
1]
o



We then approximated the relationship between 7 and Lr with a quadratic

model. Now for fixed p, n, and K, model L;; as
Lij = Bo+ Bi(ri = F) + falri — )% + &35 (2.10)

Fitting a model of this form makes the least squares estimates Bl and Bg uncor-

related.
Then from basic calculus, we differentiate equation (2.10) with respect to

7 and set to zero. Hence we obtain the estimate of the optimal smoothing

parameter Tpp given as
Tpp:f:‘f‘—Bl/ (282). (2.11)

We computed two confidence intervals for each optimal smoothing value 7pp.
The first interval is an exact confidence interval and the second confidence in-
terval is an approximation. In most cases, the two intervals were similar.

Now to compute the first interval for T7pp, we consider the problem of testing

the hypothesis

H,: -@-—1— =C or H,: B, —-2CB, =0; (2.12)
252
where C is some constant. Then the test statistics will be
2 o
- P =2Ch (2.13)

(52 +4c2s3)”

where SE; and ng are the variances of 3 and B, respectively. Then accept H,
if | tc |< tajay, v = 80 —2 —1 =TT is the number of degrees of freedom. Let
ta/2., = t.. We then proceed to solve for C from | t. [*< t2 as

(Bl - 2C32) :
5,7 0%)
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B? +4C?p2 — 4CH B — 1253 —4Ct.2S% < 0

C* (483 — 41283 ) — C (4B1B) + (B3 - t252) < 0.

This usually produces an interval for C with end points

4hifa +\[168287 — 4 (87 - 253, ) (483 ~ 4225}
2 (483 - 4252 )

Let these two values be C; and C,, where C; < C,. We thus have a (1 — a)%

(2.14)

confidence interval
Ci < Bi/(282) < Ca. (2.15)
Now 7pp =T — Bl / (2,32) so a confidence interval for 7pp
F—Cy<tpp £ 7-CI. (2.16)

The second confidence interval is obtained by evaluating the approximate
variance of Bl / (232) and then obtain the confidence interval for [3'1 / (2[;2). After
computing this interval, we then obtain the confidence interval for 7pp. This
is as follows. First let f (Bl,Bz) = BI/BQ. Then the variance of Bl/(2B2) =
tVar (Bl/,ég) = 1Var {f (Bl,,ég) } Using linearization method we have

f (Bh,éz) ~ f(Bi,B2) + (31 - ,Bl) g—ﬁ{- + (Bz - ﬂz) ggz‘

Q
<
8
3
=

A
<
Q
3
—~
» Eb) >
~— ~— ~—

Var {f (B 5)}



So knowing that 7 = 7 — Bl/ (2,3}) =7 - %f (Bl,ﬁz) gives us Var(7) = A/4.
Hence if we let the standard error of 7 = S, = V/A/2, then an approximate

confidence interval for Tpp
rpp €7+ 285, =+ £ VA, (2.17)

Now the variances of 31 and B, used in the two cases (computing the intervals)
are computed in the following manner. We first rewrite equation (2.10) in the

form

Lr=8X"+¢

where 8 = (5o, 51.82) and X = [1,(r —7),(r —7)?]. Then from regression
analysis, we have Var (B) = ¢2(X'X)™! which is a 3 x 3 matrix given as
Var (Bo) Cov (BO,BI) Cov (,’?o, 32)
Var (B) = | Cov (Bl,ﬂ.o) Var (Bl) Cov (Bl, Bg)
Cov (Bg,ﬁo) Cov (BZ,BI) Var (,[;2)
Note that Cov (Bl,,ég) =0=Cov (32,31) as [31 and Bg are defined to be
uncorrelated. The estimate of o2 can be the maximum likelihood estimate which
is the sum of squares of residuals divided by the sample size.

The design considered for the evaluation of the loss function Lf is given in
Table 2.1. This design gave 5 x 5 x 5 combinations of p, K, n. So we obtain 123
different values of the optimal smoothing parameter 7pp.

Plots of pp (not shown) indicate that 7pp is an increasing function of K for
fixed (p, n), a decreasing function of n for fixed (p, K), and decreasing function
of p for fixed (n, A). All the values 7pp were between 0 to 1.

After some exploratory analysis, we notice that rpp/7pg has a curvilinear

relationship in (n, p, i) with an interaction between p and K. Plots of Tep/TpDE
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indicate that 7pp/Tpg is an increasing concave function of K and a decreasing
convex function of p shown as Figure 2.1(b) and Figure 2.2 respectively. We
model 7pp/Tpg as the sum of a linear function of 1//n and a quadratic function

of (p, K). The model equation obtained is

t)
pp/TpE = 0.475 + %_;3 +0.070K — 0.117p — 0.001K? (2.18)

+ 0.009p — 0.003pK.

The fitted model gave R? = 92% . The standard error of regression coefficients
in equation (2.18) is given in Table 2.2. Residual analysis of the fit suggest that
the residual variance is constant as n and p vary but is a decreasing function of
K. The graph of residuals versus K is shown in Figure 2.1(a). A quantile plot
of the residuals of the fit gives a reasonably straight line.

We now examine the reduction in the risk due to smoothing. Let the risk
at 7 =0 be Ry = R(FO,F) and the risk at 7 = 7pp be R,; = min, R(F',,F).
We consider the estimate of the risk ratio R,,/Ro. We note that Ro and Rop
are estimates and are obtained by evaluating the quadratic (equation 2.10) at
7 = 0 and 7 = pp respectively. The risk estimates obtained by computing the
average of the loss Lr (equation 2.9) at 7 = 0 and 7 = 7pp after estimation of
the principal points at these points indicate that there is very little difference
between the two risk estimates and there is no negative bias in the two risk
estimates. This ratio ranged from 0.10 to 1.00, but most of the values were close
to 1.00. This indicates that smoothing provides little improvement for most
values of (n, p, K). Substantial improvement was evident for K large, n small,
and p small. A plot of R,,/Ro versus a linear combination of n, p,.and K is

given in Figure 2.3 from which one can see that most of R,p/Ro values are close

S
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to one. The linear combination of n, p, and K used is
lincomb(n, p, K) = 2.46n — 31.80K 4 177.00p. (2.19)

This linear combination was determined using a flexible exponential regression
technique called normalized exponential smoothing, (Hooper, 1996). Hence as
K increases with small n and p, substantial improvement with smoothing can

be seen as displayed in Figure 2.3.



Table 2.1: Table for Design of Model.

p| 1] 2| 3| 5|10
K| 2| 3| 5| 10] 20
n | 25|50 100 | 200 | 500

Table 2.2: Table for the results for the model approximation.

Dependent variable Tpp/TDE
R Squared 91.9 %
s = 0.0747 | 125 - 7 = 118 degrees of freedom (df)
Source | Sum of Squares df | Mean Square | F-ratio
Regression 7.4727 6 1.2454 223
Residual 0.6389 118 0.0056
Variable Coefficient S.e of Coef t-ratio Prob
Constant 0.4754 0.0319 14.90 < 0.0001
1/vn 1.5286 0.1221 12.50 < 0.0001
K 0.0697 0.0052 13.50 < 0.0001
p -0.1172 0.0103 -11.30 < 0.0001
K? -0.0015 0.0002 -6.77 < 0.0001
p? 0.0089 0.0009 10.30 < 0.0001
Kp -0.0031 0.0003 -9.66 < 0.0001
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Figure 2.1: (a): Plot of residuals versus number of principal points, K and (b):

Plot of 7pp/TpE versus the number of principal points, K.
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Chapter 3

Estimation of Principal Points

3.1 Introduction

Applying the smoothing technique introduced in the previous chapter, we now
consider how to estimate principal points for a data set. Our main interest in
this chapter is to use cross-validation to estimate the risk and then obtain an
estimate of the optimal smoothing value using the procedure in section 2.2. We
begin by introducing the concept of v-fold cross-validation and then proceed to

use it in estimation of the loss.

3.2 wv-Fold Cross—Validation

Cross-validation (Stone, 1974) is a method for estimating prediction error in
regression and classification problems. It has also been used for model selection
in nonparametric applications.

The procedure in v—fold cross-validation is described below. We first parti-
tion the data set randomly into v disjoint groups of sizes n;,na,...,n,, where

[n/v] € n; < [n/v] + 1. Hence groups have roughly equal sizes. Denote the
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groups by Ay, A,, ..., A, with sizes ny,ny, ..., n, respectively . Also let A= be
the subset which contains all observation excluding observations from A;. Then
A= contains (n —n;) observations. We refer to A"") as a training set and A; as
a test set or group. In prediction problems, a prediction rule is developed on the
observations in A(~" and then this rule is tested on the observations in the test
set A;. i.e. evaluate the risk. This procedure is repeated for each : = 1,2,...,v.
Then we get v different estimates of the risk. Finally take the average of these
v risks. This average is called the v—fold cross-validated risk estimate. When
v = n, it is called ordinary cross-validation. Observations are assumed to be
independent. The difficulty with ordinary cross-validation is that it can be com-
putationally very expensive, because an estimate has to be developed n times.
In v-fold cross—validation, v < n, we need to develop the estimate only v times.

The description of the term “ordinary cross-validation” from Stone (1974) is

given as follows :

“Suppose we set aside one individual case, optimize for what is
left, then test on the set-aside case. Repeating this for every case
squeezes the data almost dry. If we have to go through the full
optimization calculation every time, the extra computation may be
hard to face. Occasionally we can easily calculate either exactly or
to an adequate approximation what the effect of dropping a specific
and very small part of the data will be on the optimized result.
This adjusted optimized result can then be compared with the values
for the omitted individual. That is, we make one optimization for
all the data, followed by one repetition per case of a much simpler

calculation, a calculation of the effect of dropping each individual,
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followed by one test of that individual. When practical, this approach

is attractive.”

Stone (1974) argued that the ordinary cross-validation is asymptotically optimal.

Cross-validation looks like the jack-knifing procedure since both employ the
method of omission of one or more observations. But the main difference is cross—
validation deals with the problem of prediction whilst jack-knifing procedure

deals with variance estimation and bias reduction.

3.3 Optimal Smoothing Estimated from a Data
Set

In this section, we discuss how we can estimate the optimal value of 7. Let
{z1,Z2,.--,Z.} € R? be a data set. Partition {1,2,...,n} into subsets A4y, Az, ..
., A, of size ny,n,,...,n, respectively just as in section 3.2. Recall from sec-
tion 3.2 that A" is the training set and the corresponding A; is the test set.
First get an estimate of the risk and then the optimal smoothing value just as
in section 2.2.

Now the estimation of the principal points and evaluation of the risk is as
follows. Start by applying vector quantization to estimate an initial set of princi-
pal points using the entire (unsmoothed) data set. Let these initial K principal
points estimates be f{,f;,...,é;{. With the initial principal point estimates,
compute a scale parameter estimate (the total distance between the nearest

neighbors among the initial principal points estimates) :

: (3.1)

K - -
e = 3 min |65 &7

k II#L
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Note that this estimate tn, is computed only once for each (n, p, K). Empirical
evidence suggests that ¢, can be taken or considered as the upper bound for

the smoothing parameter r. Now define the smoothing parameter as
T = Crlan, (3'2)

where ¢, is some chosen constant. Now apply vector quantization to compute

the principal points using the smoothed data as
Tw+T1Z

from the training set A(~?), where W is a random variable distributed uni-
formly on A=, Z is a p-dimensional vector of independent standard normal
variables, i.e. Z ~ N,(0,1,), Z and IV are independent, and with 7 as in equa-
tion (3.2 ). Let this set of K principal point estimates be denoted -(") =
{é&fli), A,(,}"), .. ( ')} Also let F'®) be the empirical distribution based on A;

(unsmoothed). We then evaluate the risk function using the unsmoothed test

set A;. This is given as
Ly {é.(,.—")} = -Ti— Z mln "z, - f,,' (=9 II (3.3)
tJEA:

Repeat the procedure of estimating the principal points from the training set
A9 and evaluation of the risk for all values of z = 1,2,...,v. This gives v
different values for the risk estimate. Then the cross-validated risk estimate is
the average of the v risks :
R(r) = ZL,,.“ (E9). (3.4)
l"'l
Now to get the optimal value of the smoothing parameter 7, we have to

compute the cross-validated risk estimate for various values of ¢;. The values of
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Cr ca:n be chosen in the following way. Start with the value ¢, = 0 and obtain
the risk estimate. Increase ¢, by a small increment and obtain the risk estimate.
For example, we use increments of 0.025. Empirical evidence suggests that 0.025
is a good choice. Continue to increase the value of ¢, by the same amount and
obtain the corresponding risk estimate until the risk estimate fails to decrease.
Suppose the smallest value of the risk occurred at the mth value of ¢,. Then it
follows that the risk fails to decrease at the (m + 1)th value of ¢,. Because of
the randomness in the computation (vector quantization algorithm), it is likely
that the mth value of the risk obtained will not be the smallest risk. But the
minimum risk will be a value close to the mth risk estimate. Hence obtain three
or four more risk estimate after that minimum risk. i.e. obtain the (m + 2),
(m +3), and (m + 4)th risk estimates. In this case, there is a high chance that
the minimum risk will be within the range of the risk estimate obtained at the
first ¢, value (which is 0) and the (m+4)th value. This computation is done with
the same subsets A;, A, ..., A, throughout. In our computations, we observe
that the minimum risk estimate usually occurs within the first five values of c,.

Hence we will now be able to get an estimate of the optimal value of 7
after fitting a quadratic model just as in section 2.2. Proceed as follows. First
approximate the relationship between R(7) (given as in equation 3.4) and 7 by

fitting a quadratic model as in (2.10) with L;; replaced by R(7) :
R(r)=Bo+ Bi(r = 7) + Bao(r — 7)* + & (3.5)
Then estimate the optimal smoothing value 7pp by
rpp =7 =7 b1/ (252) (36)

which is the same as equation (2.11).



Chapter 4

Numerical Examples

4.1 Representative Curves

Our first example is one which has been studied by Johns and Rice, 1992; Flury
and Tarpey, 1993. The problem they all studied was how to select a set of
representative curves from a collection of curves.

On Figure 4.1 are superimposed a collection of 100 similar curves generated
by an application of a fixed procedure to each of 100 data sets simulated from a
given model. From Figure 4.1, we can see that many lines overlap and it is very
difficult to examine variation among the various curves. We utilize principal
points estimated by application of vector quantization to select representative
curves from the original set. In this example, each of the 100 curves on Figure 4.1

is a kernel density estimate (e.g., Silverman, 1986)

R 138 1 z—-X;
= — 4.1
f(z) 50 :ZI TDE¢{ TDE } ( )
based on a different sample X, X5, ..., Xso from the standard normal distribu-

tion (9 is the standard normal density). The value of the smoothing parame-

ter, Tpg in equation (4.1) is obtained from equation (2.6) (Silverman, 1986) by
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putting p = 1 and n = 50. We select for display a few curves representing the
100 on Figure 4.1. We investigate the effect of smoothing (choosing = > 0) on
this representation.

Evaluate each of the 100 curves at some equally spaced points. We evaluated
at 101 equispaced points. In this way, we obtain a data set of 100 vectors of
dimension 101. Apply vector quantization to estimate the K principal points
corresponding to the values of 7 = 0 and 7 = 7pp, plot the coordinates and
interpolate to obtain K curves (Flury and Tarpey, 1993). Note that we first
have to estimate the value of rpp from this data set.

A 10-fold cross-validation was used to estimate the risk. Listed in Table 4.1
are the ratios of the risk estimates for r = 0 and 7 = 7pp with their corresponding
values of 7pp. Values of K used in the computations are K = 2, 3, 4, 5, 7, 8,
and 10. Principal points for K = 2, 3, 4, and 3 shown as Figures 4.2(a), 4.2(b),
4.3(a), and Figure 4.3(b) respectively. The graph corresponding to the value of
7 = 0 is indicated in all cases as dash lines and those corresponding to the value
T = 7pp as solid lines. There appears to be little difference between the graphs
corresponding to the two values of 7. They almost coincide, especially in the
case K = 2, but as K increases some difference can be seen.

Table 4.1 lists values of 7pp for various K. As anticipated from results in
Chapter 2, 7pp tends to increase with /. Table 4.1 also provides two estimates
of the ratio of the risk for 7 = 0 and 7 = 7pp. The estimates Ry and R, were
obtained by substituting 7 = 0 and 7 = 7pp into the quadratic equation (3.5),
where the coefficients were estimated by the technique of section 3.3. The es-
timates R; and R;, were obtained by 30-fold cross-validation for 7 = 0 and

T —

= TPP.
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The estimates Rope/Ro and R;,,/Rj yield substantially different results. The
first ratio indicates that smoothing produces a substantial reduction in the risk
when 7pp is large. The second ratio indicates that the improvement is slight. I
would argue that the second is more accurate. This is based in part on the plots
in Figures 4.2 and 4.3, and on the following consideration. In approximating the
risk function R(7) by a quadratic, it is possible that R(0) is overestimated and
R(7pp) is underestimated, producing negative bias in Rop:/Ro .

The curves corresponding to 7 = 0 seem to be smoother than those for
r = tpp. This is likely due to the fact that when 7 = 0, the curves are just
weighted averages of the original curves but when 7 = 7pp, small perturbations
are introduced at equispaced points along the curve. This can be viewed as an

argument against smoothing in this context.

4.2 0Ozone Data

Our second example concerns recordings of daily maximum one-hour-average
ozone levels in Upland, California, for the year 1976. Complete data set is given
for only n = 47 weeks of that year. The remaining weeks have missing data
so we use only the complete data weeks. The raw data set, plotted by linearly
interpolating the p = 7 daily values for each week are given in Figure 4.4. High
values of the ozone level were recorded during the summer (May—October) and
low values in the winter (November—April). Some weeks in the summer are
characterized with either decreasing ozone levels or increasing ozone levels or
both.

Some of the authors who have studied this data set are Johns and Rice, (1992)

and Flury and Tarpey, (1993). Johns and Rice (1992) selected representative
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set of curves from a collection of curves using a principal component analysis to
identify important modes of variation among the curves and principal component
scores to identify particular curves for representation. To select say the curve
with the rth greatest variation in a particular principal component axis, select the
curve corresponding to C(») the rth order statistics of the principal component
scores where the 100a% quantile is defined as C(fnaj+1), [Z] 2s the integer part
of z.

The problem is to select for display a few representative curves from a col-
lection of curves. We utilize principal points estimated by application of vector
quantization to select representative curves from the original curves. A 10-fold
cross validation is used to compute the risk estimates. The risk estimates for
7 = 0 and 7 = 7pp is reported as ratio of the two risk estimates with their
corresponding 7pp in Table 4.2. This is done for K =2, 3, 4, 5, 7, 8, and 10.
We produce the graphs of principal points for K = 2, 3, 4, and 5 shown as
Figures 4.5(a), 4.5(b), 4.6(a) and Figure 4.6(b) respectively. For K = 2, we have
a point representing the summer and one representing the winter. Also when
K = 3, we have the same explanation for K = 2 but in addition, a points rep-
resenting between winter and summer. Finally for X > 3, we have points which
are essentially linear changes in levels through the week: some weeks there is an
increase, in others a decrease.

The risk ratio estimate R,y /Ro again appears to be negatively biased, as it

suggests improvement up to 34% while R;,,/Rj indicates only 18%.

4.3 Boston Housing Data

Our third example concerns observations from census tracts in the Boston area

originally studied by Harrison and Rubinfeld, (1978). Some of the authors who
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have also studied this data set are Belsley et al. (1980), Breiman and Friedman
(1985), and Hooper (1996). A listing of the data set is provided by Belsley et al.
(1980). Fourteen variables were observed to describe each tract and they are :
X: = median value of owner-occupied home.

X, = crime rate by town. High crime rate is the inner~city areas and low in the
suburban areas.

X3 = proportion of town’s residential land zoned for lots greater than 25,000
square feet. The proportion is low in the inner—city areas and high in the sub-
urban areas.

X, = proportion of nonretail business acres per town. It is high in the inner—city
areas and low in the suburban areas.

X5 = Charles River dummy = 1 if tract bounds the Charles River, 0 otherwise.
Xs = nitrogen oxide concentration (parts per hundred million). The concentra-
tion is high in the inner—city areas and low in the suburban areas.

X, = average number of rooms in owner units.

Xg = proportion of owner-occupied units built prior to 1940. The proportion is
high in the inner—city areas and low in the suburban areas.

Xo = weighted distance to five employment centers in the Boston region. The
weighted distance is small for the inner-city areas and high for the suburban
areas.

X0 = index of accessibility to radial highways. The index is high for the inner-
city areas and low for the suburban areas.

X11 = full-value property tax rate (per $ 10,000). The property tax rate is high
in the inner—city areas and low in the suburban areas.

X2 = pupil-teacher ratio by town school district. It is high in the inner—city
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areas and low in the suburban areas.

Xi3 = black proportion of population.

X14 = proportion of population that is lower economic status. The proportion
is high for in the inner-city areas and low in the suburban areas.

The sample size for this example is 506 and dimension is 14. Since the
variables were measure on different scales, we first center and standardize each of
the variables to have unit variance and mean zero before computing the principal
points. So the principal points here can be seen as a representative points of
the standardized data. A 10-fold cross validation is used to compute the risk
estimates. Listed in Table 4.3 are ratios of the risk estimates for = = 0 and
7 = 7pp and their corresponding 7pp. This is done for K =2, 3, 4, 5, 7, 8, and
10. We produce the graphs of principal points for K = 2, 3, 4, and 5 shown as
Figures 4.7(a), 4.7(b), 4.8(b) and Figure 4.8(b) respectively. When K = 2, the
principal points are roughly symmetric and one point represents the inner~city
areas with high crime, more industry, poor air quality, more old buildings, high
tax, and more poverty. The second point is just the opposite of the inner—city
areas, and it represent the suburban areas. For K = 3, two points are similar to
those K = 2. Interpretation of the third point depends on whether smoothing
was used. The unsmoothed principal point identifies tracts bounded by the
Charles River. This is not the case with the smoothed principal points.

The risk ratio estimate R,p:/Ro in this example indicates improvement up to
30% but R;,/R; indicates only 15%. Again Rop/Ro appears to be negatively
biased.



4.4 Seals Data

Our last example is concerned with harp seals (Phoca groenlandica), and in par-
ticular the herds from Jan Mayen Island, Gulf of St. Lawrence, and Front. Front
represents the herd which is geographically located to the east of Newfoundland.
A seal is a fish-eating mammal with four flippers which is aquatic but comes
on shore to breed. Seals possess varied repertoires of underwater vocalisations
(calls).

The data set is in the public domain by courtesy of Prof. J. M. Terhune,
Department of Biology, University of New Brunswick. One thousand calls from
each of the three herds were recorded, and several features of each recording
were noted. There are eight variables in total. Complete data are available for
only seven variables. These seven variables are :

X, :— the duration of a single element of a harp seal underwater vocalisation,
measured in milliseconds.

X,:— the number of elements of the call. In harp seals all of the elements within
a single call are similar and the spacing between them is constant.

X3 :— the pitch at the start of the call or the highest pitch if the call has an ex-
tremely short duration (call shape 0 below). This variable is measured in Hertz
(Hz).

X4 :— the pitch at the end of the call or the lowest pitch if the call has an ex-
tremely short duration (call shape 0). This variable is measured in Hertz (Hz).
X5 :— codes a series of waveform shapes (a plot of amplitude versus time) which
lie more or less along a continuum. The waveform shapes are: frequency mod-
ulated sinusoidal = 9, slight FM and complex = 8, sinusoidal (pure tone) = 7,

complex (irregular waveform) = 3, amplitude pulses = 4, burst pulses = 3, knock
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(short burst pulse) = 2, and click (very short duration) = 1.

X :— this codes a series of call shapes as they would appear in a sonogram
spectral analysis (a plot of frequency versus time). The shapes lie along a con-
tinuum.

X7 :— this is the herd from which the recordings were obtained. This variable
is not used in the computation of the principal points.

The sample size is 3000 and dimension is 7. Since the variables were mea-
sured on different scales, we first center and standardize each of the variables
to have unit variance and mean zero before computing the principal points. We
computed 7pp and the risk for £ =2, 3,4,5, 7,8, and 10. A 10-fold cross vali-
dation is used to compute the risk estimates. The results are listed in Table 4.4.
We produce the graphs of principal points for K =2, 3, 4, and 5 shown as Fig-
ures 4.9(a), 4.9(b), 4.10(a) and Figure 4.10(b) respectively. For K = 2, principal
points are roughly symmetric. One principal points represents a pitch at the
start of a call. The second is just the opposite of the first point. For K = 3,
two of the points are similar to the case when K = 2. The third principal point
shows a call with high number of elements and the waveform shape is click, i.e.
has a very short duration. K =4 and K =5 have three of the principal points
similar to that of X = 3. The smallest risk estimate occurs at K = 7, so the
data set contains 7 clusters.

The risk ratio estimate Rope/Ro in our final example indicate improvements
up to 37% but R;,/R; indicates only 16%. Again Rop/Ro shows a negative
bias.

Now Figure 4.11 displays the principal points for K =1 and K = 2 for each

of the three herds. Principal points from Jan Mayen Island is represented as solid
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lines, Gulf of St. Lawrence represented as dotted lines, and Front as broken lines.
When K = 1, it can be seen that the calls from Gulf of St. Lawrence, Jan Mayen
Island, and Front does not show much difference. A multivariate analysis to test
that the principal points of the three region are the same gives a p-value of 0.
Hence we reject that hypothesis. When K = 2, the principal points all have

differences.

4.5 Conclusion

We have considered the estimation of principal points and the risk function
using the smoothing technique. In this approach, we have studied the optimal
smoothing value when estimating principal points. First, we studied in Chapter 2
the relationship between the optimal smoothing values Tpp and 7pg using the
spherical normal distribution. Vector quantization was used in the estimation
of the risk.. It was noted that substantial improvement with smoothing over not
smoothing was evident for large K and small (n, p). In Chapter 3, we suggested
a procedure for the estimation of the risk function using v—fold cross-validation.
Finally in Chapter 4, we give some numerical examples illustrating the procedure
suggested in Chapter 3.

In all of our examples, we observed that the estimate R,/ Ro appears to be
negatively biased. The risk estimates Ry and R}, appears to be more reliable.
The improvement due to smoothing indicated by R;,/Rg in the examples is

small, and may not warrant the substantial computational effort required to

select Tpp.
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Table 4.1: Results for Representative Curves.
n = 100 and p = 101.
R, is the estimate of the risk function evaluated at 7 = 7pp.
R, is the estimate of the risk function evaluated at 7 = 0.
R;,, is the 30~fold cross-validated estimate of the risk function at 7 = 7pp.

Ry is the 30-fold cross—validated estimate of the risk function at r = 0.

K TPP Rope/ Ro R;pt/ R3
0.02340 | 0.99741 | 0.99599

o

0.05905 | 0.96746 | 0.97521

0.08318 | 0.82954 | 0.86729

0.09636 | 0.72057 | 0.89979

0.10415 | 0.58642 | 0.83933
0.10296 | 0.61460 | 0.86360

(o7 BN B N L N I S O

10 { 0.08093 | 0.74186 | 0.84555
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Figure 4.1: A collection of Density Estimates (Example 1). One hundred kernel
density estimates were used based on independent samples of size fifty from the
standard normal distribution overlaid on one another
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Figure 4.2: Representative Curves based on (K = 2 and 3) principal point

estimates in Example 1 (Density Estimation ). The curves based on principal

points when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines).
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Figure 4.3: Representative Curves based on (K = 4 and 5) principal point
estimates in Example 1 (Density Estimation ). The curves based on principal
points when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines).
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Table 4.2: Results for Ozone Data.
n=47Tand p=1T.
R.p¢ is the estimate of the risk function evaluated at 7 = 7pp.
R, is the estimate of the risk function evaluated at 7 = 0.
R=, is the 30-fold cross—validated estimate of the risk function at 7 = 7pp.

opt
Rj is the 30—fold cross-validated estimate of the risk function at 7 = 0.

K| tpp | Ropt/Ro | Ro/ By
7.08604 | 0.95018 | 0.98624

Q]

3.54884 | 0.97733 | 0.97424

5.42396 | 0.86807 | 0.87099

5.74509 | 0.82478 | 0.90576

6.66955 | 0.72737 | 0.92901

0 | 3 [ Ov [ | W

6.70409 | 0.73252 | 0.83769

10 | 7.83980 { 0.65162 | 0.81202
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Figure 4.4: The Ozone Data (Example 2). Plot of ozone data by linearly inter-
polating values for each week. On the x-axis, 1 = Monday,...,7 = Sunday and

ozone levels on the y-axis.
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Figure 4.5: Representative Curves based on (K = 2 and 3) principal point
estimates in Example 2 (Ozone data). The curves based on principal points
when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines). On the

x-axis, 1 = Monday.....T = Sunday and ozone levels on the y-axis.
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Figure 4.6: Representative Curves based on (K = 4 and 5) principal point
estimates in Example 2 (Ozone data). The curves based on principal points
when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines). On the

x-axis, | = Monday,....7 = Sunday and ozone levels on the y-axis.
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Table 4.3: Results for Boston Housing Data.
n = 506 and p = 14.
R, is the estimate of the risk function evaluated at 7 = 7pp.
Ry is the estimate of the risk function evaluated at 7 = 0.
R;,, is the 30—fold cross-validated estimate of the risk function at 7 = 7pp.

Rj is the 30-fold cross-validated estimate of the risk function at 7 = 0.

K TPP Ropt/ Ro R;pt/ Rg
0.66550 | 0.98783 | 0.99784

o

0.53818 | 0.97767 | 0.98136

(]

0.81781 } 0.90673 | 0.97745
0.93491 | 0.82602 | 0.95276

>

[$4]

7 |1.16061 | 0.71503 | 0.92271
8 | 1.15363 | 0.70384 | 0.90703

10 | 1.07624 | 0.7451578 | 0.84748




Census Variables
(a)K=2

Census Variables
b)K=3

Figure 4.7: Representative Curves based on (K = 2 and 3) principal point
estimates in Example 3 (Boston Housing Data). The curves based on principal

points when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines).
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Figure 4.8: Representative Curves based on (K = 4 and 5) principal point
estimates in Example 3 (Boston Housing Data). The curves based on principal

points when 7 = 0 (dash lines) and principal points when 7 = 7pp (solid lines).
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Table 4.4: Results for Seals Data.
n = 3000 and p = 6.
R,y is the estimate of the risk function evaluated at 7 = 7pp.
R, is the estimate of the risk function evaluated at 7 = 0.
R;,, is the 30-fold cross~validated estimate of the risk function at 7 = 7pp.

R; is the 30-fold cross-validated estimate of the risk function at 7 = 0.

K PP Ropt/ Ro R;pt/ R3
0.56711 | 0.97185 | 0.99654
0.53318 | 0.94645 | 0.98940

1SV

> ) W

0.56919 | 0.89210 | 0.98802

w

0.81645 | 0.67113 | 0.90699

7 |0.78756 | 0.62041 | 0.83873
8 [0.79528 | 0.67056 | 0.83699

10 | 0.68459 | 0.72129 | 0.88895
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Figure 4.9: Representative Curves based on (X = 2 and 3) principal point
estimates in Example 4 (Seals data). The curves based on principal points when

+ =0 (dash lines) and principal points when 7 = 7pp (solid lines).
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Figure 4.10: Representative Curves based on principal point estimates in Exam-
ple 4 (Seals data). The curves based on (/{ = 4 and 5) principal points when

7 = 0 (dash lines) and principal points when 7 = rpp (solid lines).
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Figure 4.11: Representative Curves for each of the herds based on (K =1 and 2)

principal point estimates in Example 4 (Seals data).
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