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ABSTRACT

In this thesis, we consider some mathematical models for the simulation of 

thermistor behavior. We recall that the classical model consists of two partial 

differential equations, which govern the behavior of the temperature and the 

electrical potential respectively. Recently, the advent of micromachined mi­

crosensor devices has led to the introduction of a nonlocal term to one of the 

equations which represents heat losses to the surrounding gas. However, the 

presence of such a nonlocal term in the model could lead to negative temper­

atures at some points, a situation which has no physical meaning.

Several authors considered the stationary version of the nonlocal system 

and proved that for all sufficiently small gas pressures, the temperature is 

always positive. We are interested in extending this result to the time depen­

dent case and prove that a similar result holds for all time periodic solutions. 

Moreover, we consider the long time behavior of the solutions of this nonlocal 

system. The existence of a uniform attractor is obtained and its Hausdorff 

dimension is estimated.

The previous results for the positivity of the temperature are valid only 

for small gas pressures. It is our next intention to develop new models which 

always ensure a nonnegative temperature under all gas pressures and an obsta­

cle thermistor model is introduced. We show that all solutions with positive 

temperatures of this new obstacle model w ill also solve the previous nonlocal 

system and vice versa. Thus, the obstacle model is an extension to the previ­
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ous nonlocal one. The existence of solutions of both its stationary and time 

dependent case is obtained and the long time behavior for the time dependent 

obstacle model is studied.

We also consider the effect of a current source on part of the boundary 

for the time dependent obstacle problem and obtain the existence of a unique 

Holder continuous solution. Finally, a box discretization method is constructed 

for the obstacle problem and an optimal JT1-error estimate is derived.
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Chapter 1

Introduction

1.1 Preamble: thermistor problems

Thermistors are electrical devices whose resistance depends significantly on 

the operating temperature. The mathematical modeling of their behavior has 

a long history [11]. The classical mathematical model consists of two strongly 

coupled nonlinear partial differential equations. Specifically, let u(x , t) be the 

distribution of temperature in the device and 4>(x,t) the distribution of its 

electrical potential. Then u and 4> satisfy a mathematical system as follows:

Here k(u) is the thermal conductivity of the device, and a(u) is the tempera­

ture dependent electrical conductivity. The first equation in the above system 

describes the diffusion of heat in the presence of Joule heating, and the sec­

ond equation describes current conservation. The system (1.1)-(1.2) and its 

stationary version, i.e., u and 4> are independent of time, have received vast in­
terests in the past decade. A great deal of research papers by mathematicians 

and engineers have been devoted to the analysis of these systems. We refer 

interested readers to [3, 4, 6, 8, 10, 12, 14, 15, 19, 20, 22] and the references 

therein. Moreover, the practical applications of thermistors can be found in

Ut — V[fc(«)Vu] =  cr(u) |V</>|2, 

—V[<t(«)V0] =  0.

(1.1)

(1.2)

1
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Recent interest in the problem of the modelling of certain micromachined 

microsensors has led to the addition of a nonlocal term to one of the equations, 

in order to account for the physically important effect of heat losses to the 

surrounding gas, [2, 17]. Specifically, the classical system (1.1)-(1.2) is replaced 

by the following nonlocal equations

ut -  V[k(u)Wu] +  r] I  G(x,y)u(y)dy+ 7U4 =  a[ (1.3)
Jn

—V[(t(m)V0] =  0. (1.4)

Here the domain occupied by the device has been denoted by Q. The nonlocal 

term (i.e., the integral term r) Jn G(x,y)u(y)dy) represents the heat losses to 

the surrounding gas and is obtained by an ad hoc averaging technique first 

introduced in [17]. Here we have also considered the effect of energy loss 

by radiation which is incorporated in the equations by means of expressions 

derived from the Stefan-Boltzmann Law and is represented by the 4th power 

term yu4.

However, the presence of a nonlocal term in a partial differential equation 

could render invalid maximum principle and lead to spurious results. In our 

case, the nonlocal term in (1.3) could lead to negative temperatures in some 

points of the device, [1], which makes no physical sense in our situation. It is 

necessary to investigate new mathematical models for these microsensors. We 

w ill introduce a novel obstacle problem as follows: find u >  0 and 0, such that

u(ut — V[k(u)Vu] + y /  G(x, y)u{y)dy +  yu4) > a(w)|V0|2w, (1.5)
Ja

—V [ct(m)V0] =  0. (1.6)

As we shall show, to some extent, this new obstacle problem can be viewed as 

an extension of the previous system of nonlocal equations.

In this thesis, we w ill concentrate on the study of the system (1.3)-(1.4) 

and the new obstacle problem (1.5)-(1.6). In Chapter 2, we w ill consider the 

system of nonlocal equations. The new obstacle problem w ill be introduced 

and carefully studied in Chapter 3. In Chapter 4, we w ill consider the case

2
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that there is a current driven source on part of the boundary and a box method 

w ill be constructed in Chapter 5 for numerically solving the obstacle problem. 

The main results of these chapters w ill be summarized in the following cor­

responding sections. Moreover, we note that all mathematical notations and 

assumptions on the in itia l and boundary data and coefficients w ill be given in 

each chapter in detail. We also note that

a(u)\V(f)\2 =  V[a(«)0V0]

in the weak sense due to equation (1.2). Thus these two forms are exchangeable 

and the latter w ill be used most often in the rest chapters.

1.2 The tim e periodic system  of nonlocal equa­

tions

In Chapter 2, we w ill consider the system of nonlocal equations (1.3)-(1.4). 

To simplify the discussion we assume that k(u) =  1 and neglect the effect of 

energy loss by radiation, i.e., 7 =  0. It is possible to extend the results in 

this chapter to the general case of k(u). The effect of energy loss by radiation 

w ill be fully studied in Chapter 3. In other words, we consider the following 

system:

ut - A u  +  rj G(x,y)u(y)dy =  a(u) |V0|2, (1.7)
J a

—V[<j (u)V0] =  0. (1.8)

As we mentioned before, the presence of a nonlocal term in the above 

system could render invalid the maximum principle and lead to negative tem­
peratures at some points of the device. Indeed, the authors in [1] considered 

the stationary case of equations (1.7)-(1.8). They gave an example where the 

temperature w ill be negative for some points if  the value of the parameter y is 

very big. But for small gas pressures, i.e., small values of y, and for a special

3
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class of functions of G(x,y), the maximum principle still holds which ensures 

the positivity of the temperature of the solutions. This result was extended to 

the case of a more general class of functions of G(x, y) later in [13]. A ll these 

results are for the stationary case only. To our best knowledge, there are no 

known results available for the time dependent case.

It is the purpose of Chapter 2 to extend the positivity result to the physi­

cally important case of time periodic input. Specifically, let dVt be the bound­

ary of Tt, the domain occupied by the thermistor. The boundary is decomposed 

into two parts T^ and TN. We assume that 0  is smooth enough and To is 

nonempty. Specific descriptions about the domain can be found in [19]. The 

unknowns u and <fi are associated with the following boundary conditions

w|sn =  0, <j>\rD =  <fa{x,t), ^ | r w = 0. (1.9)

The electrical potential input (f>0(x,t) is time periodic with period T.

Suppose the temperature satisfies a periodic condition

u(x, ■) =  u(x, • + T). (1-10)

We first establish the existence of a time periodic solution through the Faedo- 

Galerkin method and the Leray-Schauder degree theory. Next we are inter­

ested in the positivity of the time periodic solutions. We w ill show that, for 

all those potential sources (po which satisfy a certain growth property, there 

exists an rjo independent of the specific choice of (po such that the temperature 

of all time periodic solutions is positive for all 0 < r] < rj0.

We next consider the case of an in itia l condition

u(x,0) =  U q ( x ) .  (1-11)

We are interested in the long time behavior of system (1.7)-(1.8) under the 

boundary and in itia l conditions (1.9) and (1.11). We show that there exists 

a uniform attractor in L2(Tl) and that its Hausdorff dimension is finite. The 

main difficulty related to this problem is the lack of uniqueness of the weak

4
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solution for a given u0(x) € L2(fl). Specifically, to obtain uniqueness, a certain 

regularity of the gradient of 0, say,

|V0| G LP(Q) fo r  some p > 2, (1-12)

is needed. Since in our case 0 satisfies a mixed boundary condition, such a 

regularity (1.12) is not generally available. From a result in [19] we know 

that if  u(x,t) is Holder continuous for each t, (1.12) w ill be true, but this w ill 

require U q { x )  to be Holder continuous as well. To overcome this difficulty, our 

idea is to show that for all positive time t, any weak solution u(x. t) w ill be 

Holder continuous. Moreover, for a given Holder continuous in itia l value, the 

corresponding solution w ill also be Holder continuous for all time t. Thus, the 

long time behavior of (1.7)-(1.8) in L2(fl) (i.e., for all u0(x) G L2(Q)) is the 

same as that in Ca(Q) (i.e., for all uo(x) G Ca(£l)).

To achieve the above results, we have assumed that <To < cr(u) < cri for 

some positive constants a0 and <Ti. The problem is still open for the degenerate 

case, lim^oo a(s) —» 0. The results obtained here are new. No previous long 

time results are known even for the classical system, and there are no positivity 

results for nonlocal parabolic equations.

1.3 A novel obstacle thermistor problem

We obtained positivity results in Chapter 2 for time periodic solutions of the 

nonlocal system (1.7)-(1.8). There are a lot of mathematical difficulties to 

overcome to extend the results to general in itia l conditions. Moreover, even if 

such results are extended, they only hold for the case of small gas pressures. It 

is always possible that a negative temperature w ill occur under the situation 

of large gas pressures. Therefore, instead of focusing on the positivity of the 
temperature of system (1.7)-(1.8), we w ill concentrate on the development of 

new mathematical models which guarantee the positivity of the temperature 

of all solutions under any gas pressure.

It is our purpose in Chapter 3 to introduce the obstacle thermistor system

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(1.5)-(1.6). We first consider its stationary version: find u >  0 and <j> such 

that

u(—V[k(u)Vu] +  r] I  G(x,y)u(y)dy +  yu4) > a(u)\V(j)\2u, (1.13)
J n

—V[cr(u)V0] =  0. (1-14)

It is convenient for what follows to introduce a family of related penalized 

problems given by:

-V [k(x)Vu] + V /  G(x, y)u(y)dy +  ~/u4 
. Jn

I n{u) =  o{u)\V<t>\\ (1.15)

- V [ct(u)V0] =  0, (1.16)

with I n(s) a C°° function such that: 0 < I n(s) < 1; I n(s) =  0 if  s <  0; 

In(s) H(s) in lP(yi) for 1 < p < oo, where H  denotes the Heaviside 

function. The existence of a solution (un, (i>n) of the above penalized problems 

for each n is derived from a truncation method [4, 19] and the Leray- Schauder 

Degree theory. Now by making use of the properties of I n, we can show that 

the lim it (u, <f>) of a subsequence of (un, 0n) w ill be a solution of the obstacle 

problem (1.13)-(1.14).

Next, we consider the time dependent obstacle problem (1.5)-(1.6). We 

recall that in our previous discussion of the stationary case, we have left the 

possibility open that both k(u) and a(u) are degenerate, i.e., both k(u) and 

a(u) w ill approach to zero if u approaches to infinity. However, it is quite chal­

lengeable for the time dependent problem even for the simpler case that only 

a (it) is degenerate, which we assume here, and there are positive constants ko 

and k\ such that ko < k(u) < k\. This degeneracy for the time dependent 

case was first considered in [20, 21] for the classical system (1.1)-(1.2) where 

the authors introduced the notion of “capacity solution” to overcome the dif­

ficulty caused by the term on the right hand side of (1.1). The authors also 

showed that, given that the temperature of the capacity solution is essentially 

bounded, the capacity solution w ill be also a weak solution. In Chapter 3, we 

w ill follow the capacity solution method as well as a similar penalized method
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as above to show that there exists a capacity solution of the time dependent 

obstacle problem.

We observe that for both the stationary and time dependent obstacle prob­

lems, their solutions with positive temperature w ill also solve the correspond­

ing system of nonlocal equations, and vice versa. Thus, to this extent, the 

obstacle problem is an extension to the system of nonlocal equations.

Finally, we are interested in the long time behavior of the time dependent 

obstacle problem. The term simulating energy loss by radiation plays a sig­

nificant role in the discussion. Precisely, this term enables us to obtain the 

existence of a uniform absorbing set B, which means that there exists a pos­

itive constant t0 such that for any in itia l value u(x, 0) =  u0(x) in L2(il), its 

solution w ill enter into the set B after time to- This is a very strong result 

since typically the time to w ill depend on the in itia l value uq{x). Besides the 

previous assumptions, if  we further assume that a(u) is not degenerate and 

(Jo < cr(u) < <7i as in Chapter 2, then there exists a global attractor of the 

system in Ca(Q) which is nonempty, compact and invariant.

1.4 A current driven source on part of the  

boundary

In Chapters 2 and 3, the thermistor devices are totally driven by an electrical 

potential source. We are concerned in Chapter 4, however, with a somewhat 

different situation which arises physically when the devices are also driven by 

a current source at the same time. In this case, the total current through part 

of the boundary of the device is known, but the applied potential on that part 

is not. Specifically, the boundary dVt of the device consists of three parts To, 

Ti and Tjv. There is an electrical potential 4>o(x,t) applied on T0 and Tjy is 

electrically insulated. While on Ti, cf)(x,t) =  £(£). Here, £(t) is an unknown 

constant for each t, but the total current I(t)  through Ti is known for each 

time t. Thus, another nonlocal boundary condition for the problem is given

7
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We are particularly interested in the time dependent obstacle problem

(1.5)-(1.6) associated with above boundary conditions. Before we proceed, 

we recall that a similar boundary condition to (1.17) has been studied by sev­

eral authors for the stationary version of the classical system (1.1)-(1.2), see 

[5, 9, 14]. Various results related to the existence of solutions and their reg­

ularity have been achieved there. But all the results are obtained under the 

assumption that the potential 0 satisfies a homogenous boundary condition on 

r0, i.e., 0 |ro =  <Po(x) =  0. In this thesis we w ill not impose such an assumption 

on 0, and therefore can’t directly apply the methods in [5, 9, 14] even to this 

special version of our case. Moreover, their results are valid for the stationary 

problems only and there are no previous related results for the time dependent 

case. Finally, we refer the interested readers to [8, 12] for the detailed descrip­

tion of physical devices related to this kind of nonlocal boundary conditions 

and for their practical applications.

For simplicity, we assume in Chapter 4 that the thermal conductivity 

k(u) =  1 and we shall not consider the situation where a is degenerate. We 

w ill apply the penalized method to transfer the obstacle problem to a family 

of systems of equations. To overcome the difficulty caused by the nonlocal 

boundary condition, a decomposition of 0 w ill be introduced. Roughly speak­

ing, we decompose the elliptic equation (1.6) satisfied by 0 into two other 

elliptic equations such that each of them is coupled with a usual boundary 

condition instead of a nonlocal one. Therefore, we are able to study these two 

equations by general methods for elliptic equations. This decomposition w ill 

play a significant role throughout Chapter 4 and details w ill be shown in Sec­
tion 4.3. Finally, by arguments of Campanato spaces, we obtain the existence 

of a unique Holder continuous solution.

8
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1.5 A box m ethod for the obstacle problem

In Chapter 5, we cite two thermistor devices. Each of them has a resistor in its 

center whose resistance varies with temperature. Possible loss of energy from 

the resistor occurs through the supporting arms, through the surrounding gas, 

and through radiation effects.

A possible application of such a structure as a gas pressure sensor is as 

follows: The electrical resistance of the structure is monitored and if  the sur­

rounding gas pressure were to drop - thereby decreasing the amount of heat lost 

by the device to the surrounding gas - the resistance would rise. It is therefore 

possible to determine the gas pressure by measuring the device resistance.

The simulation and modeling of such devices are now generally accepted 

as a very useful design tool. Accurate simulations offer the means to rapidly 

investigate the performance of proposed new devices, and to determine the 

effects on sensitivity of modifications of structures already constructed. These 

techniques avoid the lengthy cycle of iterating construction, device measure­

ment, and reconstruction until - if ever - a suitable device is found.

The simulation begin with the formulation of a mathematical model which 

usually is a partial differential system. Then it is necessary to construct an 

appropriate numerical method to solve the corresponding system. Since we 

have to take into account heat losses to the surrounding gas and heat losses 

by radiation for above devices, the obstacle model (1.5)-(1.6) w ill be a good 

candidate for this simulation. It is our intention of Chapter 5 to introduce 

a box method, which is a technique commonly employed in practice, for this 

obstacle problem.

The box method, also so-called the finite volume element method, is a 

numerical method occupying an intermediate position between the finite dif­
ference and finite element methods. Usually it is characterized by a tria l space 

consisting of continuous piecewise linear polynomials on the primary triangu­

lation and by a test space consisting of piecewise constants on the dual box 

mesh. Nowadays, the box method has been extensively and successfully used

9
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not only for various differential equations but also for variational inequali­

ties. For example, the author in [7] developed error estimates for a general 

self-adjoint elliptic boundary value problem and the author in [18] gave com­

parison results between the finite volume element and finite element methods 

for elliptic variational inequalities. However, there are few papers dealing with 

the box method for time dependent obstacle problems due to the increasing 

difficulties in analyzing its convergence.

The main result in this chapter is an optimal H 1 convergence theorem for 

the box method. To obtain such a result, we have assumed that O C R2, 

both u and <fi satisfy Dirichlet boundary conditions, and both a(u) and k(u) 

are not degenerate. Since the devices under consideration are very thin, the 

assumption tt C R2 seems fairly reasonable. However, in realistic situations, 

(f> usually satisfies a mixed Dirichlet/Neumann boundary condition and cr(s), 

k(s) may degenerate as we mentioned in the previous chapters. The study of 

these more general situations is presently under consideration.

10
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Chapter 2

On the Tim e Periodic

Therm istor Problem

2.1 Introduction

The classical system of parabolic/elliptic equations modelling thermistor be­

havior is given as follows:

Here u and 0 are the temperature and the electric potential in the thermistor 

respectively, and a(u) is the electric conductivity. The above system has a 

long history, [16], and has been the subject of a variety of mathematical in­

vestigations in the past decade. We refer in particular to the work of Cimatti, 

[10, 11, 12, 13], the results by various authors in [5, 6, 7, 17, 24, 32, 31, 35] and 

the references therein. The system under consideration often has two features 

which make analysis challenging: a degeneracy in the equations and mixed 
boundary conditions. An important step with regard to the first difficulty was 

taken by X. Xu who introduced the concept of a ’’capacity solution” in the 

time dependent case, see e.g. [34, 33].

Recent interest in the problem of the modelling of micromachined microsen-

ut — A u =  V[<r('i/)0V0] 

-V [< j(i/)V 0] =  0.

(2.1)

(2.2)
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sors has led to the addition of a nonlocal term to one of the equations, in order 

to account for the physically important effect of heat losses to the surrounding 

gas, [4, 26]. Specifically, the classical system (2.1)-(2.2) is replaced by the 

following nonlocal equations

U t - A u  +  r] f  G(x,y)u(y)dy =  V[a(u)4>V(f)], (2.3)
Jn

—'V[a(u)'V(f\ =  0. (2.4)

In order to avoid spurious negative temperature points, this system has also 

been formulated as an ” obstacle” problem, [3]. Indeed, we recall that the pres­

ence of the nonlocal term renders invalid maximum principle/order arguments. 

For the steady state (i.e. purely elliptic) case, results in [2] and [18] showed 

that some form of the maximum principle was indeed valid if the surrounding 

gas pressure was sufficiently small.

It is the purpose of this chapter to consider the long time behavior of 

the solutions to the nonlocal thermistor system (2.3)-(2.4) in the physically 

important case of periodic input. We show the existence of a uniform attractor 

and estimate its Hausdorff dimension. We also prove that the temperature of 

periodic solutions is positive if the gas pressure (i.e. rj) is small. To the best of 

our knowledge, no previous long time results are known even for the classical 

system, and there are no positivity results for nonlocal parabolic equations.

Let Q denote the three dimensional domain occupied by the microsensor. 

Its boundary is denoted by dti which is decomposed into two parts F d and Tn - 

We assume that Q, is smooth enough and is nonempty. Specific descriptions 

about the domain can be found in [32, 31]. The unknowns are associated with 

the following boundary conditions

u\dQ =  o, (p\vD =  =  0. (2.5)

Here the potential source <f>0 is time periodic with period T. Moreover, u 

satisfies either a periodic condition

u(x, •) =  u(x, • +  T), (2.6)

15
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or an  in itia l condition

u(x,0) =  u0(x). (2.7)

We first consider the periodic case (2.6). The existence of a time periodic 

solution is established through the Faedo-Galerkin method and the Leray- 

Schauder degree theory. Next we are interested in the positivity of the time 

periodic solutions. As we mentioned before, the temperature u could be some­

where negative if  p is big. We w ill show that, for all those potential sources 0O 

which satisfy a certain growth property, there exists an rjo independent of the 

specific choice of d>o such that the temperature of all time periodic solutions is 

positive for all 0 < rj < tjq.

Finally we study the in itia l value case (2.7) and consider the long time 

behavior of the non-autonomous system (2.3)-(2.5) and (2.7). We show that 

there exists a uniform attractor in L2(f2) and that its Hausdorff dimension is 

finite. The main difficulty related to this problem is the lack of uniqueness of 

the weak solution for a given Uq(x) G L2(0). Specifically, to obtain uniqueness, 

a certain regularity of the gradient of 0, say,

|V0| G Lp(fl) fo r  some p > 2, (2.8)

is needed. Since in our case 4> satisfies a mixed boundary condition, such 

a regularity (2.8) is not generally available. From a result in [31] we know 

that if  u(x,t) is Holder continuous for each t, (2.8) w ill be true, but this w ill 

require uQ(x) to be Holder continuous as well. To overcome this difficulty, our 

idea is to show that for all positive time t, any weak solution u(x,t) w ill be 

Holder continuous. Moreover for a given Holder continuous in itia l value, the 

corresponding solution w ill also be Holder continuous for all time t. Thus the 

long time behavior of (2.3)-(2.5) in L2(fi) (i.e., for all Mo(̂ ) 6 T2(Q)) is the 
same as in Ca(Cl) (i.e., for all Uq(x) G Ca(Cl)).

We denote by LP(Cl) the standard Lebesgue spaces with norm ||w||£,p(n) = 

(fn \U,\P) 1/,p- The standard inner product and norm in L2(Q) are denoted 
by (•,•) and || • || respectively. Let fd1(n) be the standard Sobolev space

16
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with norm ||u?||tfi(n) = ( /^ (M 2 +  IVwl2)) 1̂ 2. Its dual space is denoted by 

The closure of Co0 (ft) in i f 1 (ft) is denoted by Hq(CI). For simplicity 

we write i?p (ft) =  Hq(Q, U Tn ). Let X  be a general normed space, the 

space Lp(0,T ]X)  consists of functions from (0, T) into X  w ith ||tu||iP(o,T;X) = 

(foT \\w \\xdt) ' l < oo. For 0 < a < 1, we denote by Ca'a 2̂{QT) the collection 
of all Holder continuous functions on Q t =  [0, T] x ft. Details of these spaces 

and norms can be found in [1] and [25]. Other notation w ill be given in the 

following.

For simplicity, we write either

W(T, ft) =  {u\u{x, ■) =  u(x, ■ +  T), u e  L2(0, T; t f^ ft) ) ,  

ut £ L 2(f) ,T -H -l (Sl))},

or

W(T,Q) =  {u\u G L2(0,T ]H l(n)), Ut G L 2{0,T; i T ^ f t ) ) } ,

corresponding to cases (2.6) or (2.7) respectively.

A tuple (u, (f) is called a weak solution of (2.3)-(2.4) if u G W(T, ft) and 

(f) — <po E L°°(0, T; JTp (ft)) and satisfies that, for almost every t,

/ utv +  VuXv +  r) / G(x,y)u(y)dyv (2.9)
•J Cl _ J  Cl

— — j  a(u)4>W(f)Xv, Vu G H o(ft),
Jn

f  cr(u)X74>\7'ip =  0, V 0  G I7pD(ft). (2-10)
Jn

Before we proceed we give some general assumptions on the given data and 

the coefficients.

A l. There are two positive finite numbers <7o and o\ such that cto < o{s) < <j\. 

Moreover a(s) is Lipschitz continuous with Lipschitz constant I.

A2. supXty \G(x,y)\ < Gq and f Q f n G(x, y)w(x)w(y)dxdy > 0 for all w(x) G

L 2(ft).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A3. supx t 1 |  < c>o. Moreover 0O can be extended to be a Lipschitz function 

over Qt which satisfies the same boundary condition as 0. This extension 

w ill also be denoted by 0o-

Observe that we have assumed that a is nondegenerate in order to obtain 

the existence of a uniform attractor and its finite dimensionality. Thus the 

long time behavior for the ” capacity solution” case remains open.

The chapter is structured as follows. The existence of time periodic solu­

tions is presented in Section 2.2. The positivity of time periodic solutions is 

obtained in Section 2.3. In the last section, we first show the Holder continu­

ity  of the weak solutions for positive time t. As a consequence, we obtain the 

existence of a uniform attractor and its finite dimensionality in L2(Q).

In the following, c, C; w ill always denote some generic positive constants 

which may depend on the boundary conditions and the various bounds of the 

coefficients but are independent of the in itia l value and the time t except an 

explicit specification. Moreover their values may vary from one step to the 

next.

2.2 The existence of tim e periodic solutions

We w ill apply the Leray-Schauder degree theory and the Galerkin method 

to show the existence of time periodic solutions. Let wn, n — 1, 2, • • • 

be a countable basis of Hq(Q). W ithout loss of generality, we may assume 

(wn,wm) =  1, if  n — m, and 0, otherwise. The n dimensional subspace 

spanned by w\, ■ ■ •, wn is denoted by Hn. We also write X  =  {d(t)\d(t) G 

C([0, T]), d(-) =  d(-+T)}  and X n the n-power cartesian product of X. A func­

tion un(x, t ) =  YTj=i drj(t)w j(x)  is called a Galerkin approximation solution of

18
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u(x, t ) if  it satisfies that

/  u™Wj +  VunVwj +  rj / G(x,y)un(y)dywj
»/ _ 1/

=  -  f  a W W V F V w j ,  j  =  1, • • • , n, (2.11)
Jn

f  a(«n)V0nV ^  =  0, G {Q). (2.12)
Jn

Here dJ-{t) G X. For simplicity, we write

Fj ( z) =  v G(x,y)z(y)dywj,
J Q J Q,

Ej(z) — -  a{z)ipV(pVwj,
Jn

Oij =  {Vwi,Wwj),

where <p denotes the unique solution of (2.10) with u replaced by z. By the 

assumption on wn, we obtain that

d? + Andn =  En(un) - F n(un), (2.13)

with

<f =  M ,

E"(z) =  (M z ) ,  ■■■ , En(z ))\

F"(z) =  (F,(2), ■■■, F„(z)T,

A (O'ij)nxn-

Here * denotes the transpose of a vector. Let b(t) =  (6i( t), - ■ - , b2(t))* G X n

and write v =  YTj=1 ^jwj- For 0 < A < 1, we define a family of mappings T\ :

b(t) —»• d{t) from X n into itself with d(t) =  (di(t), • • • , dn(t))* G X n satisfying 

the following linear system

dk +  And = \ [E n(v) -  F n(v)]. (2.14)

Since v G C(0,T; H ^a )) ,  there exists a unique solution ip of (2.10) with u 

replaced by v. By the weak maximum principle and the general estimates of

19
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linear elliptic equations we have

sup \<p\ < sup |0O|, sup ||Vy?|| < csup ||V0O||. (2-15)
x ,t  x , t  t  t

Thus supt \Ej(v)\ < oo. In view of the assumption of G(x,y), we also have 

supt |Fj(u)| < oo. Moreover Ej(v) and F3(v) are time periodic. Therefore, 

according to the general theory of linear ordinary differential equations, there 

exists a unique periodic solution of (2.14). Actually the solution is given by

Here I nxn is the n x n identity matrix. Thus for each A, T\ is well defined. 

We observe from (2.16) that {T\b(t)\ ( ) "uxn < 1} is equi-continuous and

equi-bounded. Consequently T\ is compact for each A.

Lemma 2.1. T\ is continuous for each A.

Proof. Let b̂m\ t )  be a convergent sequence of X n with lim it b(t). Then it 

follows from (2.16) that

,An T (2.16)

-  Txb\\Xn < sup ||eAnt|| (A +  ||eAnT -  I nxn||-1) x (2.17)

Here v(m̂ =  Y^j=i b ^ wj, similarly for v. By the definitions and the estimates
(2.15) we have that

+ |*>(m) -  ¥>1 |Vp| +  -¥>)[]

ln ( t,<m>) ~ U W I ^  T  '4 '"' -  dj\ f  f  G (x ,y )w l (y)W j(x)dxdy  <2.19)

Thus

sup |F j ( v ^ )  — Fj(v)\ —> 0. (2.20)

20
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Since - iM  v in Q x [0, T] and cr(s) is continuous, the Lebesgue convergence 

theorem gives that

f  |a(u(m)) -  <r(v)||Vp| |Vwj| -> 0. (2.21)
J Q t

It follows from the equation (2.10) that

f  |V (^ (m) -</?)|2 < c  f  \a (v ^ )~ a (v ) \2\Vip\2, (2.22)
*/ £7 «/

which implies that

f  |V (^ (m) - p )\2 ->0. (2.23)
J q t

Therefore

[  |V (^ m> -» ;)||V iO i|-> 0 . (2.24)
J q t

The Poincare Inequality and (2.23) give that (if necessary, after passing to a 

subsequence) p>^ a.e. in Q x (0, T). We apply the Lebesgue convergence 

theorem again and obtain that

f  |^ (m) -  ip\ |Vp| IV^-I 0. (2.25)
J Qrp

Finally by combining (2.20), (2.21), (2.24) and (2.25) we obtain that

[  [\En{v{m)) - E n(v)\ +  \Fn(v{m}) - F n( v ) \ ] ^  0, (2.26)
Jo

which implies that \\T\tfj ̂  — T\bj\\xn —> 0. Thus T\ is continuous for each 

A. □

Lemma 2.2. There exists a constant (3 independent of A such that, for all 

d(t) G X n satisfying T\d =  d, ||d||x" < (3.

Proof. We m ultiply both sides of equation (2.14) by d* to obtain that

~ \ d \2 +  d*And =  Ad*[En(w) -  F n(w)]. (2.27)
Z CLl
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Here w =  J2 j= i^ jwj- the definition of An and the Poincare Inequality, 

there exists a positive constant u such that

d*And =  ||Vw ||2 > u\d\2.

Furthermore

d*Fn(w) =  rj f  f G(x, y)w(y)w(x)dydx >  0, 
Jn Jn

\d*En(w)\ =  [  o(w)ipVipV ' 1
Jn

<  c+ ^ ||V w ||2,

where the assumptions on G(x,y), the Schwarz Inequality and the estimates

(2.15) have been used. Thus we obtain that

^-\d\2 +  v\d\2 < c. (2.28)
(JjV

Integrating (2.28) from 0 to T  gives / QT \d(s)\2ds < ~T. Thus there exists 

to G [0, T] such that jd(t0)j2 < A Now for any t e [to,to +  T], we integrate 

(2.28) from to to t and obtain that

\d(t)\2 < cT A (2.29)

Thus Lemma 2.2 follows immediately from (2.29). □

Lemma 2.3. There exists at least one time periodic solution to the approxi­

mation system (2.11)-(2.12) for each n.

Proof. From previous discussion we conclude that the family of mappings T\ 

satisfies all the conditions of the Leray-Schauder degree theory. Therefore the 

topological degrees of T0 and T\ are the same. Since 0 is the unique time 

periodic fixed point of T0, the degree of T0 is + 1. Thus T\ is of degree +1 and 

has at least one fixed point. By the definition of this fixed point is a time 

periodic solution of the system (2.11)-(2.12). □

Theorem  2.1. There exists at least one time periodic solution to the system

(2.3)-(2.4).

22
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Proof. Similarly to (2.27)-(2.29), we obtain that

(2.30)
Jo t

Thus there exists a convergent subsequence of un (denoted by un itself for the 

sake of simplicity) and a function u € W(T, 0) such that

By a similar discussion as in Cimatti [12], up to an another extracted subse­

quence, we conclude that

Furthermore <fn satisfy a similar bound as in (2.15), thus there exists a function 

4> such that

Now we fix an m and for any Wj in Hrn we pass to the lim it in (2.11)-(2.12) 

with respect to n to obtain (2.9)-(2.10) for all v G Hm. Since U™=1Hm is dense 

in Hq(Q), we conclude (2.9) is satisfied for all v € Hq(Q). Thus (u,(f>) is a

2.3 The positivity of the tim e periodic solu-

The purpose of this section is to show that if r] is small, the temperature u of 
p e rio d ic  so lu tio n s  o f (2.9)-(2.10) is p o s itive . We assume here that G(x,y) =  1 

(this may be weakened), and require a specific nature of the input 4>o(x,t) 

as given below. In particular, we ask that 0O satisfy the M-property stated 

below. We begin with some preliminary considerations.

un —> u weakly star in L°°(0, T; T2(fi)) 

and weakly in L2{0, T; Hq (fl)).

un —>■ u strongly in L2(Qt).

(f)n —>■ f  weakly star in L°°(0,T; H^D) and in L°°(QT).

time periodic solution. □

tions
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Let 0 < (Jq < a(x) < <Ti, and assume z solves

—V[a(x)V^] =  0, (2-31)

^|r0 =  0, z\r i =  1, (2.32)

| l r „  =  0, (2.33)

where To =  r 0 U Ti, f 0 n f i  is empty, and meas(ri) > 0.

Lemma 2.4. Let w(x) > 0 in ft be a smooth function. Then there exists a pos­

itive constant m independent of the specific a, z such that Ja a(x)\Wz\2wdx > 

m.

Proof. If not, there exist sequences {a*(a;)}, {z j(x )} with a < ai(x) < (3 and 

Zi(x) the corresponding solutions of (2.31)-(2.33) such that f n a{x)\V z\2wdx —> 

0 as i  —> oo. Now {Zi(x)} are bounded in Ca(£l). Thus without loss of 

generality, Zi —> z in Cai for some < a. Clearly z = 1 on L ,  z — 0 

on r 0. Now f a \Vzi\2 is bounded. Without loss of generality Z( z also in 

L2(fl). Let K  be any compact subdomain of f2, then f K \Vzi\2 —► 0. But 

f K <pVzi =  — JK V<pZi —> — f K Vpz for all <p £ Cq3̂ ) .  Thus Vz =  0 in K  

which implies z =  constant. Since K  is arbitrary, z =  constant in 0  which

contradicts with z =  1 on r 1; z =  0 on r 0. □

Next we define the following:

D e fin itio n  2.1. For a given M  > 0, a function /  G L2(0,T) has the M- 

property if  and only if

||/IU 2(0,T) <  -W||/||z,i(0,T)- 

Examples of collections of functions which satisfy this property are:

(a). There exist c\, c<i > 0 such that c\ < f  <  c2.

(b). There exist Ci, c2 > 0 such that sup |/| < c\ and sup | / ;| < c2.

(c). I f  t0 is a point such that sup |/| =  f ( t 0) =  ci > 0 then there exists an

interval I  w ith t0 G I  and for any t G /,  \f'(t)\ <  c2 > 0.

24
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In each of these cases, M  — M (01,02) and does not depend on the specific / .  

We observe that physical limitations w ill force most possible practical inputs 

to satisfy the M-property for some M.

Now let u and 0 solve the system (2.3)-(2.4) with G(x, y) =  1, 0o =  <j>o(t), 

To = Tq U Ti.

Theorem 2.2. Suppose u, 0 are smooth, periodic and 0§(t ) satisfies the Im­

properly. There exists r)0 > 0, dependent on the data but independent of specific 

0o except through M-property, such that i f  0 < r] < r)0 all periodic solutions 

(u, 0) satisfy u > 0.

Proof. Through the transformation of z =  we obtain that u and z satisfy

ut — A u +  r) u =  4>l(t)V[a(u)zVz], (2.34)
Jn

S/[a(u)Vz] =  0. (2.35)

Here u satisfies the same in itia l and boundary conditions as before, but z 

satisfies

dz
z\To =  l ,  z\rx =  0, — \Tn =  0. (2.36)

Let rj be small enough, so that

- A wx+ t] /  wi =  \ iw i,  (2.37)
Jn

has a positive eigenvalue/eigenvector Ai =  Ai (77), W\ — w\ (rj) corresponding to 

the homogeneous Dirichlet condition. Note that Ai(^) is bounded away from 

zero as 77 —> 0. Then

( /  wi u)  + A X ( /  iwiu) =0o (t) /  o-(«)|V 
\Jn  J t \Jn J Jn

Z\2Wi.

Observe that f n z\2wi is bounded above and below by Lemma 2.4.

Write the value of this integral as r(t) and obtain that

/  W\U =  /  Wiu +  /  eAlS0o(s)r(s)ds.
Jn t Jn 0 Jo

eXlt

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since u is periodic, we have

/Jn
W \U

+e~

-A l t  t- l

^ J o
eAlS0o(s)r(s)ds0A1T

A i t  I  \ \ s ±2

Jo
e iS4>0( s ) t ( s ) c I s .

Thus replace u by u/  JQT 4>o{s)ds in (2.34) (then 4>l(s)ds =  1 in (2.34) and 

fo (t)o{s)ds < M 2). We conclude that

/Jn
W \U >C , (2.38)

for some positive constant C independent of u. 

From equation (2.34) we obtain

+  ' 2

<

f  l l \  =  0 0 (0  [  v{u)zSJzVu  
Jn J Jn

||Vu.||2 +  c0o(t) [  a2(u)^2|V^|2,
Jn

for some constant c, while (2.35)-(2.36) and the Poincare Inequality then yield 
for some Ci, c2:

d
dt Ml +Ci|M| < c20o(i).

We obtain by periodicity:

IMI2W < c2 1 + eClT—1 [  eClS$(s)ds. 
Jo

Thus |H |2(i) is bounded by the M-property, and we conclude that

J  UJn
< D ,

for some constant D independent of the specific but dependent on the 

M-property of 0O, the domain and the bounds of the coefficients.
Finally we have

/ uwi > C and 
Jn jJn

u < D.
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Now ut — A u +  r] u >  0. Put Lw =  wt — Aw with w(x, 0) =  w(x, T). We 

obtain that for any t € [0, T7]:

u +  rjL 1

> I <u — r) sup 
In I t
C

~ J ’

I  A )  

L L  ^ l)  ^wi

if  rj is small enough as Jn u | and L  1(1) are bounded. On the other hand, by 

the same calculation,

u +  r]L 1 /a”] } ”1 " I ’

where i f  is a compact subset of Q. Since w\ > 0 in K  and u+r)L  1 [Jn u] >  0,

JA)-c>0-J  \ u + r)L

But since

L u +  rjL u > o,

we can apply Harnack’s Inequality, [15, 25] and obtain for t\ > t0

sup
K

u +  rjL ■(/.u
t= to

< C inf
K

u +  rjL
1 U A t=ti

Since the problem is periodic, u + r)L 1 ( f n u) at t0 and t0 +  T  is the same. 

I.e.

inf
K

U-\-TjL '{JA, > c > 0,

for any t e [0, T].

Let v be the solution of the following problem

— An — 0 in Q\K, 

v =  1 on dK, v =  0 on dfl.

Then u +  rjL^1 (Jn u) > cv in Q\K. We also have u +  r)L~l (Jn uj > c in K.

Thus if  we choose rj small enough, (independent of <p0, except through the 

M-property), we obtain u > 0 in f2 x [0, T\. □
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2.4 The existence of a uniform attractor and 

its dimension

2.4.1 The Holder continuity of the weak solutions

In this part of the chapter we consider the Holder continuity of the weak 

solutions for positive time t. For the case of a Holder continuous in itia l value, 

we show that the solution belongs to C'“ ’Q!/2(Q t) and thus is unique. The 

results are obtained through Campanato space type arguments together with 

a cut-off function method.

Before we proceed, it w ill be convenient to recall some notations and results 

related to Campanato Spaces. For 0 < £0 < t i,  we denote Q x (to, C] by Qt0,h ■ 

For simplicity, if  to =  0, we write it as Qt l . A point (x, t) G Qto,ti is denoted 

by z. Let Br (xo) be the ball centered at xq with radius r  and Qr (zo) be the 

cylinder Br (x0) x (to — r 2, t0\. Then we define

O[zo,r] =  Br (x0) f l O, Q[z0,r\ =  Qr(z0) n  Qto,t1-

Moreover for p > 0, T2,/i(fl) and T2,/i((5t0,t1) denote the Campanato spaces 

on and Qt0,ti associated with the standard norms ||.||2,̂ ,n and ||.||2,/i,Qto tl 

respectively. We refer interested readers to [23] , [28] and [35] for details on 

these spaces and norms.

Let S0 denote the Holder exponent as stated in the De Giorgi - Nash the­

orem, see [28], [35]. In what follows, all a, are in (0. So) and /To, Pi are 

nonnegative numbers such that p0 < N  — 2 +  2S0 and p i < N  +  2S0 where 

N  =  3 is the dimension of G . They may differ from one step to the next. 

Furthermore (n — 2)+ =  max{0, /r — 2}.

Theorem  2.3. Let t0 > 0 and h > 0. There are generic constants pi > 0 and 

P2 > 0 which only depend on h, the bounds of the coefficients, the boundary 

conditions and \Qt0,t0+2h\ and are independent of to and the initial value u0 
such that the weak solution u of (2.3)-(2.f) satisfies

IM Icao.<*o/2(Qto+Mo+2h) < Pi +  P2e~ut\\uol (2.39)
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for all 0 < «o < <5o- Here v is a positive constant dependent on the domain 

only.

Proof. Let 0 < f(t)  < 1 be a smooth function such that f( t)  =  0 for t <  to

and f( t)  =  1 for t > to +  h. Furthermore assume \ft} < [3 for some constant

(3 > 0. Let (u, (p) be a weak solution of equations (2.3)-(2.4) and consider

(£u)t -  A(£u) + fp  [  G(x,y)u(y,t)dy (2.40)
Jn

= £V[a(u)<f>V(l>\+€tU,

£u(x,to) =  0, £«ldn =  0.

It follows from Theorem 3.5.1 of [31] that for all 0 < < N  ~ 2 +  250

|| V0n||2l/io,n < c. (2.41)

By Theorem 1.17 of [28], we have

[  [  \V4>n\2dx < cr2. (2.42)
Jtn-r2 JBJxq)

MO
Ito~r2 J B r (xo)

Thus
sup r  («>+2) /  \V(pn\2dz < c. (2.43)

zo<EQr,r>0 J Q r (z0)

By using a result of [8] we obtain that for all 0 < ji\ < N  +  250

||V0n||2,Ml,Qr < c. (2.44)

Since a(un)<pn £ L°°(QT), we have a(un)<f)nV<pn £ C2,>1i {Qt)- It follows from 
Theorem 1 in [35] and (2.40) that

1 )QtQ,tQ-\-2h

+ IM I  2,(^l-2)+,Qt0,t0+2h +  ||^ IU 2(t0,to+2/i;fr1(n))]- (2-45)

First we apply the Energy Inequality and Gronwall lemma to (2.9) and 

obtain that

||u|| < c +  ||w01|, (2.46)
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and

pto~\~2h

/  ||Vu||2 < c ( l +  e ^ | M ) 2. (2.47)
Jto

Thus

||^ IU 2(to,t0+2/i;H1(n)) < c (l +  e ^IK ID - (2.48)

Applying (2.44) and (2.48) to (2.45) yields that

||CVn||2,w ,Qt0it0+2h < c (l +  e ^||m0||2 +  ||£H|2,(ju i-2)+,Qt0,t0+2J - (2.49)

Now for 0 < ^2 < 2, (/z2 — 2)+ =  0. Since C2'0(Qto,to+2h) is isomorphic to 

L2(Qt0,t0+2h), we obtain that

MVu\\2̂ Qto>to+2h < c (l +  e^WuoW), (2.50)

where (2.46) has been used. (2.50) implies that

\ m \ w ,Qt0,t0+2h <  c(l + e-^Htioll), (2.51)

Now for any 0 < < N  +  2S0, (fi — 2)+ < 3 since in our case N  =  3. Thus we

conclude from (2.49) and (2.51) that

ll£Vu||2)/i)Qtojto+2h < c( 1 +  e-^lluoll), (2.52)

for all 0 < n < N  +  2S0. Consequently,

ll£Ml|2,/i+2,<2t0ito+2/l 5: c (1 +  e - ‘ ]|u0||), (2.53)

In particular, for /x =  N  +  2 +  2q0 with o0 < Sq,

l lu l|2,JV+2+2ao,Ot0+h,t0+2fc ^  C( 1 +  e~Wt\\Uo\\)̂  (2 -5 4 )

where the definition of £ and (2.53) have been used. Thus (2.39) follows from

(2.54) immediately. □

Theorem 2.4. I f  uq e Ca(Cl) and no|an =  0 then the weak solution is Holder 
continuous.
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Proof. We rewrite u =  w +  z. Here z is the unique solution of the simple 

equation

zt -  Az =  0, z(x, 0) =  tt0, z|an = 0, (2.55)

and w satisfies

wt — Aw =  —r) G(x,y)u(y)dy +  V[cr(u)0V0], (2.56)
Jn

w(x, 0) =  0, w\dn =  0. (2.57)

By a classic result in [25], z E Ca’a/2(QT)- By a similar discussion as in 

Theorem 2.3 we also have w E Ca’a 2̂(Q t)■ This completes the proof of the 

theorem. □

From Theorem 2.4, for a given in itia l value Uo E Ca(fl) w ith Uolan =  0, the 

function u is Holder continuous. Thus the potential 0 satisfies the regularity 

(2.8) with some p > 3 due to Lemma 5.3.2 in [31] which implies that the weak 

solution is unique. Moreover the following proposition holds, see [3].

Theorem 2.5. Let (itj,0 j), i =  1, 2, be two C a,a^2(QT) solutions to (2.3)- 

(2.5) corresponding to the initial data ul0, i =  1, 2 and the same 0o- Write 

w =  « i — U2, P =  4>i — </>2; w0 =  rtj — Uq. Under the previous assumptions 

there exists a constant c(t) > 0 such that

\w\\2 + [  \\57w(s)\\2ds+ [  ||VV(s)||2ds < c(t)||u;o||2. (2.58)
Jo Jo

2.4.2 The uniform attractor and its dimension

Since the number h in Theorem 2.3 is arbitrary, we conclude that if the weak 

solution starts from an in itia l value in L2(Q) it w ill enter into the space Ca(Cl) 
im m ediately. Since Guy(fd) is a subspace of L2(f2), we conclude that the uniform  

attractor in Ca(0i), if  any, w ill be the same as in L2(Q). Thus the long time 

behavior of the system in L2(Q) is identical to that in Ca(Ll). From Theorem 

2.4, the weak solution corresponding to an in itia l value u0(x) E Ca(Ut) is
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unique. Thus the solution operator of (2.3)-(2.4) is well defined. Therefore in 

the rest of the chapter we w ill focus on the case u q ( x ) £ Ca(fl) only.

Following the notation of [21] and [29], we first briefly recall some defini­

tions for the reader’s convenience. Let £  be a Banach space subject to the 

action of a two-parameter family of mappings {U ( t , r ) }  =  {U ( t , r ) , t  > t } ,  

U(t,r) : E  —» E, t > r .

Definition 2.2. A family of operators {U(t, t ) }  is said to be a process in E  if

1) U (t, t) =  U(£, s)U(s, r)  Vi > s >  r,

2) U(t, t) — I  is the identity operator Vr.
Moreover a process {U(t, r)} is said to be periodic with period T  if

3) U{t +  T ,t +  T) =  U(t, t ) Vi > r.

Definition 2.3. A set B G E  is said to be uniformly attracting with respect 

to r G R for a process {U(t, r)} if  for all r and for any set A that is bounded 

in E

sup d(U(t +  r, t )  A, B) —> 0 as t —> oo.
T

Here d(A i,A2) denotes the usual semi-distance of Ai and A2. Furthermore, a 

process is said to be uniformly asymptotically compact if B is also compact.

Definition 2.4. A closed subset of E  is said to be a uniform attractor for a 

process {U ( t , r ) }  if  it is the minimal closed uniformly attracting set for this 

process.

Definition 2.5. A curve u(s) £ E, s £ R, is called a complete trajectory of 

a process {U(t, r)} if  U(t, r)u(r) =  u(t) Vi > r; t, r  £ R. The kernel K  of a 

process {U(t, r ) }  consists of all of its bounded complete trajectories. The set 

K,(s) =  (it(s) : u(-) £ 1C} of values of complete trajectories u(s) w ith t — s is 

called the kernel section of this process at the time t =  s.

We refer the readers to [21] and [29] and the references therein for more 

specific descriptions of complete trajectories, kernels, kernel sections and so 
on.
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We first show the existence of a uniform attractor for the in itia l boundary 

value problem (2.3)-(2.5) and (2.7). As in the previous sections, the driving 

source 4>o(x,t) is time-periodic with period T. We define the family of two- 

parameter operators {U(t, r )} : Ca(Cl) —► Ca(Cl), U(t,r)uT =  u(t). Here 

u(t) is the unique solution of the problem but with the in itia l value condition 

replaced by

u(x, t )  — uT(x), uT(x) G Ca(Q), u t \qq =  0. (2.59)

We observe that all conditions in Definition 2.2 are satisfied. Thus {U(t, r ) }  

defines a periodic process. Moreover, it follows from Theorem 2.5 that U(t,r)  

is jo intly continuous with respect to the potential f>q(x, t ) and the in itia l value 

u0(x). Let

B — {w\w G C ^ O ) ,^ ^  =  0, and IM Ioqffi < Pi +  1}, (2.60)

where p\ is the positive constant in Theorem 2.3. According to Theorem 2.3, 

B is a uniform attracting set of U(t, r). Now write

=  Ut>o UTe[o,T) U(t +  r  +  2h,r)B. (2-61)

Here h is a positive constant as specified in Theorem 2.3. We observe that B\ 

is also a uniform attracting set. Since inequality (2.39) is satisfied for all 0 <

cto < 5o, we obtain that B\ is a bounded subset of C'Q°(D) for all a < a 0 < SQ.

Thus by the compact imbedding theorem B\ is precompact in Ca(Cl). This 

implies that the periodic process U (t ,r ) is uniformly asymptotically compact. 

By a result in [29] (See Theorem 2.1) we conclude that

Theorem  2.6. Under the previous assumptions, the system (2.3)-(2.5) has a 

uniform attractor A  in Ca(Ut) which is nonempty and compact. Furthermore,

A  -  Uie[0,T)/C(f). (2.62)

H e re  tC{t) are  the  k e rn e l se c tio n s  o f  {£7(t,r)} w h ic h  have the  fo l lo w in g  p ro p ­

e rtie s :

lC(t +  T) =  JC(t) Vt G R, (2.63)

t/( i,t) /C (t)  =  )C(t), t > r ,  t, t  G R. (2.64)
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In th e  rest of the  chapter we deal w ith  the  finite dim ensionality of the

attractor A  by considerations based on arguments related to these in [9, 20, 29]. 

We first find an upper bound of the dimensions of the kernel sections JC(t). 

Then by an extension of a result in [29] we conclude that the dimension of the 

uniform attractor A  is also bounded.

In this section, besides the assumptions (A l)-(A3), we further assume

A4. o(s) is continuously differentiable and there exist two positive constants 

(72 and Oq such that |cr'(s)| < o2 < oo and |cx/(si) — cr/(s2)| < — S2I00

for all s, Si, s2 >  0.

We linearize equations (2.3)-(2.4) about (u, 0) and obtain

Here u(t) =  U (t,r)uT w ith uT £ /C(t). The unknowns satisfy the following 

in itia l and boundary conditions:

d u  t  (

d i  =  L iu ’ u )•
(2.65)

(2.66)V [ct(m)V 0] =  -V [a '(u )uV 0],

u \ a n  =  0, u ( x , t ) = u t , (2.67)

(2.68)0 | r D = O ,

Moreover the operator L(u, w) is given by

L(u, w) — Aw +  L\{w) +  L 2(u , w ) , (2.69)

w ith

L 2(u , w ) =  V[<t(u)0wV0 +  cr(u)0V0lu +  o'(u)(f)wV4>\. (2.71)

Here 4>w is the solution of (2.66) and (2.68) with u replaced by w. For the case 

of w =  u, it is simply denoted by cj) as before.
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Theorem  2.7. For any w, v € Hq(Q,), the operator L satisfies

\(L(u,w),v)\ < c||Vw|| ||Vu||, (2.72)

(—L(u,w),w ) > ^||V w ||2 — c||tu||2. (2.73)

Consequently the system (2.65)-(2.68) possesses a unique weak solution.

Proof. We recall that there exists a generic constant c > 0 such that

||</>|U«(n)(*), ||V0||Lp(ci){t) < c fo r  all t, (2.74)

where p > 3 is some positive constant, see Lemma 5.3.2 of [31]. Now we 

estimate the terms of L(u,w). We first have

|(Li(u>),u)| < c||tc|| \\v\\. (2-75)

Next we replace u by w in (2.66), then multiply its both sides by and

integrate it over 0  to obtain

j  a(u)\V<j)w\2 — — j  a'(u)wV<f)Vf)w (2.76)
J  Cl Cl

< ^2||V0||u»(n) \\w\\L2P/P-2(n) ||V0W||,

which gives that

||^0w|| — cIM L 2p/p-2(n)- (2.77)

Now we are ready to estimate \(L2(u, w), u)|. In fact, it follows from (2.71) 

that

\(L2(u,w),v)\ =  \{cr(u)f)wv(t> +  (t(u)0V0w +  ct/(m)0u;V0, Vu))(2.78) 

<  [0 i | |V 0 ||L P (n )  ||0w ||i,2p /p-2(n) +  f i W f W l ° ° ( o , )  11^0^11

+^2||0||L°°(n) ||V 0||iP(n) \\w\\L2P/p-2̂ ]  ||V u||.

By the Sobolev imbedding theorem, ||0w||x,2p/p- 2(q) < c||V0w||, we conclude 

from (2.78) that

\ (L2(u , w ) , v )\ <  c||iu ||i 2p/p-2(n) ||V u||. (2.79)
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Finally, thanks to (2.75) and (2.79), we have

\(L(u, w),v)\ < i i "  “ +  \(L1(w),v)\ +  \{L2{ui w),v)\ (2.80)

< ||Vw|| ||Vv|| +c(||w|| ||u|| +  ||w||L2p/P-2(n) ||Vu||).

Then (2.72) follows directly from (2.80), the Sobolev imbedding theorem and 

the Poincare Inequality.

On the other hand,

{-L (u , w), w) =  ||V w \\2 +  (-L i(w ),w ) +  (- L 2(u, w),w) (2.81)

> ||Vu>||2 — c||w||£2p/p- 2(n) IIVtc||,

where the property (—Li(w),w) > 0 and (2.79) are used. From the Sobolev 

interpolation inequality we have

IM IW * )  (2.82)

which together with Young inequality and (2.81) give (2.73).

From the properties (2.72) and (2.73), we conclude that the operator — L 

is continuous and coercive. Thus the existence of a unique solution to the 

problem (2.65)-(2.68) is just a direct application of the results for abstract 

Cauchy problems presented in [30]. This completes the proof. □

Denote the process generated by the problem (2.65)-(2.68) by { { / '( t ,r ) } ,  

i.e., u(t) =  U '(t,r)uT. The following theorem holds.

Theorem  2.8. The process {U ( t , r ) }  is uniformly quasi-differentiable on the 

kernel sections {A5(t)}tG[0,t) in L2(Q) and {Ul (t,T)} is one of its differentials, 

i.e.,

iim sup m , o < - u ( t , T y r - n t , T ) K - « i ) \ \  =  0i (2 83)
a- >0 0 < | | u i - u ? | | < 5  \ \ u t ~  u i - \ \

for all u\, u2 G JC(t), t  G [0, T) and t >  r.

The proof of this theorem is lengthy and similar to that of Theorem 2.5, 

thus we w ill leave it to interested readers.
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Next we estimate the dimension of the kernel sections )C(t), t  G [0, T). Let 

us introduce the following quantities as in [9], [14] and [27],

Here L  is the operator defined in (2.69), and TrmL  is the m-dimensional trace 

of L  defined by TrmL  =  supq T tLQ with the supremum taken over all the 

orthogonal projectors Q in L2(fl) on the space QL2 of dimension m belonging 

to the domain of L  (see [9]).

Before we estimate the bounds of the uniform attractors A, we give an 

extension to the Proposition 3.2 of [9]. First let us recall some basic definitions. 

Let E be a metric space and Y  C E be a subset of E. Given two positive 

numbers d and e, we write

HH(Y, d, e) =  in f ̂  rf, (2.85)
i

M Y ,  d) =  lim  j iH(Y, d, e) =  sup yH(Y, d, e). (2.86)
£ ^ °  £>0

Here the infimum in (2.85) is for all coverings of Y  by balls Bn of E  w ith

radius r* < s. Then the Hausdorff dimension of Y  in E  is defined by

d im ^(y) =  in f{d  : /iH(Y,d) =  0}. (2.87)

Similarly, let J(e, Y) be the minimum number of balls of E of radius e which

is necessary to cover Y, then the fractal dimension of Y in E  is defined by

dim ^(y) =  in f{d  : Hf (Y, d) =  0}, (2.88)

with

(j,f (Y, d) =  lim sup edJ(e, Y). (2.89)
£—̂ 0

Let K 0 be a compact subset in E  and S' be a mapping from K 0 x [0, T]

to E such that S(y, 0) =  y for all y G K 0. We assume that the mapping S is

Holder continuous with respect to both y and t w ith Holder exponents e\ and 

e2 respectively, i.e., for all y\ , y-2 G K 0 and L , t2 G [0, T),

||S(?/i,fi) -  S(y2, t2)\\E < v(\\yi ~ V2\\% +  l*i - M ) -  (2-90)
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The following theorem is an extension of Proposition 3.2 of [9] where the 

case ci =  e2 =  1 has been discussed.

Theorem  2.9. Let K 0 and S be the compact set and the mapping described

above, and also let K t =  S(K0,t), t € [0, T] and Y =  Ute[o,r}Kt . Then

dirnp(y) <  — dirnp(jFTo) +  — , (2-91)
ci e2

dimi f (F) < — dimH{K0) +  —. (2.92)
ei e2

Proof. We first consider the fractal dimension of Y. Given e > 0, we cover K 0 
by a family of balls {B£i{y j)} j=l w ith s' =  ( ^ ) ei. Next we give a partition 

{ t i } f io1 ° f [0, T] w ith to =  0 and tM+i =  T  such that

0 < t i + i - U <  ( 1 ; ) ^ ,  M  < T  ' 2  • (2-93)

Now for any point (y, t) in Y  x [0, T], we can choose some y3 and tt such that 

IIV ~ Vj\\E < e' and \t — ti\ < (^;) '2. Consequently,

||S(2/,t) -  S(y j, U)\\E < +  ^ )  =  £- (2-94)

This implies that Be(S{yj,U)), j  =  1, • • • , J, i — 1, • • • , M  is a covering of 

Y . Thus by definition

/Jjf(Y, —d -\---- ) =  limsupeo’d+'2 JM  (2.95)
ei e2 £̂ o

< T (2u) n d+ 2̂ lim  sup (s')d J
£—J-0

=  T (2u)nd+-kfi F(K0,d),

where the last inequality in (2.93) is used. Thus (2.91) follows immediately.

Similarly, to prove (2.92), we cover K 0 w ith balls {B Ej(y j)} j= l, where £j < 

( 2̂ )ei • ^or eac-h T  we §ive a partition {^ })AfJ0+1 such that

0 < tJi+1 -  , M  < T  . (2.96)

Then for each point (y,t), we can choose yj and t j such that \\S(y, t) —

S(yj, tf'jWE <  2v (£j)ei < s. Therefore, the family of balls

{5 2l/(£.)n(S(%,tD) : j  =  1, • • • , J, i =  1, • • • , M j)
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is a  covering of Y  w ith  radii less th a n  s. Hence

j  Mj

ii„ (y , L* + b < E E P" fe)“ <2-97)
ei £2 j .  1 i=i

3 = 1

< T ( 2̂ d+i £ ( E j )a,
3=1

which implies (2.92). □

Theorem 2.10. Under the assumptions (Al)-(A4), the Hausdorff dimensions 

in L2(fl) of the kernel sections o fU (t,r )  are bounded and

dim^(/C(r)) < m0, Vr G [0, T), (2.98)

where m0 depends on the boundary conditions, the various bounds of the coef­

ficients and the domain.

Proof Let Qm be an m-dimensional orthogonal projector in L2(0), and {w j} f l=1 
be an orthonormal basis in QmL2(Ul). We recall that

m
TrLQm =  ^2(L(u, W j ) , W j ) .  (2.99)

3 = 1

Thus it follows from (2.73) that

- m m
TrLQm < —z llV w i l l2 +  CY1 I l l ' l l 2' (2.100)

3 = 1 3 = 1

But by Lemma 2.1 (Page 390 of [27]), we have

||VrOj||2 > cm1+2/Jv. (2.101)
i= i

Substituting (2.101) into (2.100) yields that

TrLQ m < -^C im 1+2/Ar +  c2m < - c 3m1+2/N +  c4, (2.102)
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where Young inequality is used. Then by the definition (2.84) of qm we obtain

Qm < - c 3m1+2/JV +  c4. (2.103)

( \  wr 2Thus if m > , qrn < 0 . By Theorem 4.1 of [9], we conclude that the

Hausdorff dimensions of the kernel sections fC(r) are bounded and (2.98) is 

satisfied with m0 the minimal integer such that rn > ( ^  ) • □

Finally the estimate of the Hausdorff dimension of the uniform attractor 

A  is summarized in the following theorem

Theorem  2.11. Under the assumptions (A l)-(Af), the Hausdorff dimension 

in L2(Q) of the uniform attractor A  is hounded and satisfies

2
dim#(.A) < m0 H— . (2.104)

a

Proof. We only have to show that U(t, 0) satisfies a similar property to (2.90). 

In fact, let ui, u2 £ /C(0) and ti, t2 > 0, then

jjf/( ti, 0)ui -  U(t2, 0)u2|| (2.105)

< ||I /( t i,0)tti -  U(ti,0)u2\\ +  ||t/(ti, 0)w2 -  U(t2,0)u2\\.

In view of Theorem 2.5

||C /(ti,0)Wl -  C7(ti, 0)u2|| < c||Mi -  u2||.

Since U(t, 0)u2 G Ca,%(QT), we obtain

\\U(ti, 0)u% -  U(t2,0)u2\\ < c|ti -  t2\%.

Thus U(t,0) satisfies the property (2.90) with e4 = 1 and e2 

to Theorems 2.9 and 2.10, (2.104) holds.

2.5 Conclusions

In this chapter we have determined the positivity of periodic solutions to a 

nonlocal thermistor system if the surrounding gas pressure is small. We have

40

(2.106)

(2.107)

= f . According 

□
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also considered the long time behavior of in itia l value problem solutions and 

showed the existence of a uniform attractor. Finally, the Hausdorff dimension 

of the attractor was estimated. We believe these results to be new even for the 

classical thermistor system (i.e. equations (2.1)-(2.2)). The degenerate case 

involving ’’capacity solutions” remains open.
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Chapter 3 

Existence and Long Time 

Behaviour of Solutions to  

Obstacle Therm istor Equations

3.1 Introduction

Equations that determine thermistor behaviour have been investigated for 

more than 100 years, [10] and the advent of micromachined microsensor de­

vices has led to somewhat more general models, [3, 4, 5]. Specifically, if  we 

include radiation effects as well as heat losses to the surrounding gas we obtain 

the system:

-V [cr(u)V0] =  0, (3.1)
du f

-  V[k(u)Vu] +  7? /  G(x,y)u(y,t)dy +  ^u4 =  V[a(u)0V0], (3.2)
J

in a smooth bounded domain 0  C RN, N  =  2 or N  =  3. The cases with N  >  3 

appear to be of primarily theoretical interest. Here 0 <  <j ( u ) ,  k(u) are smooth 
functions and r), 7 denote positive constants. We also assume G(x, y) > 0, and 

that G obeys the further properties given below. W ith (3.1)-(3.2) we associate 

suitable boundary/initial conditions: u =  u0(x) > 0 at t — 0; u =  0 on dVtD, 

4> =  (po(x) on dttD, =  0 on dO,N with: dO,D U dQN — dtt and dVtD
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closed in d fl, d fl^  open in dfl, both nontrivial, smooth. Detailed regularity 

conditions needed for dfl may be found in [24]. In practice we often have 

u0 =  0, and the boundary conditions on u, (j) are piecewise constants. We 

assume that 0O is smooth, but it w ill be convenient to take uo G L2(Q), and 

sometimes u0 G

The presence of the nonlocal term in equation (3.2) leads for r) big to a 

solution behavior that is at odds with what is physically expected, due to the 

failure of the maximum principle. More precisely and specifically, the equation

V[k(x) Vu] +  r) f  G{x,y)u(y)dy +  'ju4 = f(x), (3.3)
Jet

with k(x) > 0 and u — 0 on dfl, w ill have positive solutions u for any /  > 0 

iff 0 <  r) < Tj0 for some r)0 which depends on the data but not on the specific 

/ .  These results are explicitly shown for 7 =  0 under various assumptions in 

e.g. [1, 11], where the parameter r/0 is also estimated in some special cases. If 

7 0, the lack of positivity w ill s till follow by perturbation arguments.

Numerical simulations indicate that the same situation arises for system

(3.1)-(3.2): we may have u(xo,to) < 0 at some xq G , to > 0 for realistic 

values of r) >  0, even though we expect u > 0 on physical arguments. The 

same situation arises in analogous problems from, for example, steady-state 

version of the non-cooperative system:

ut -  Au =  f(x )  -  av, (3.4)

vt -  Av — u, (3.5)

w ith u =  v — 0 on dfl, [17]. Indeed, putting v =  (—A )- 1(w) reduces system

(3.4)-(3.5) to a single equation of the general type (3.3).

It is our purpose to introduce an obstacle problem to replace equation

(3.2), in such a way that (3.1)-(3.2) has solutions (0 ,u) w ith u > 0 for any 
r] > 0. Furthermore, solutions of (3.1)-(3.2) with u > 0, w ill also solve the 

new system so that the new model w ill extend (3.1)-(3.2), in the sense that 

physically meaningful solutions w ill be common to the two models. Some 

numerical methods for such extension was already studied in [2].
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The chapter is structured as follows: we first consider the properties of 

equation (3.3) and consequently obtain results for the steady-state version of 

system (3.1)-(3.2). Next, under more restrictive conditions on a and k, we

an absorbing set. Finally, by still further assumptions, we show the existence 

of a compact, connected, maximal attractor. The presence of the fourth order 

nonlinear term w ill always be convenient in our analyses and, in some cases, 

essential to the proofs.

3.2 The new equation and results in steady- 

state

We consider, as a preliminary step, the obstacle problem

for v,u € Vd '■= U <9fbv)- For the formal definition of Hq(£1 U <9fljv)

we refer to [21, 24], and note that here we do allow the case: <9fljv is empty. 

We assume that 0 < fco < k(x) <  fci for some constants fco> and that 

A(w) := f n G(x, y)w{y)dy maps continuously LPo(Q) to itself for some p0 > N  

such that p0 < if  N  =  3, and with A(w) > 0 if  w >  0. The coefficient k(x) 

is assumed smooth and, finally, we stipulate that the form associated with the 

left side of (3.6) is coercive over Vd which, in turn, is compactly embedded 

into IP for 1 < p < The function /  w ill always be assumed nonnegative, 

and of class L2 unless otherwise specified.

We first note that if  A is symmetric, (3.6) has a solution u obtained as the 

minimum of the functional J over the convex subset K  =  {w\w > 0, w G Vd },

consider the existence of solutions to (3.1)-(3.2) and also show the existence of

kVuV{v — u) +  r) /  /  
J S7 J Cl

kV«V (v — u) +  r) / / G(x,y)u(y)(v — u){x)dydx (3.6)
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where:

m  =  5 /  k(x)\1\/w \2 +  r] / I G(x,y)w(x)w 
Jn Jn J n

(:y)dxdy

+7 f ^ - d x -  [  wf. 
Jn 0 Jn

We recall that N  =  2 or N  =  3 so that by the Sobolev embedding theorem, 

the term f n w5dx is well defined if w 6 K . We also observe that if A is positive 

definite, i.e. (A(u — v), (it —u)) > 0 for u, v £ K, then the solution u is unique. 

This w ill happen if, for example, G(x, y) is a Green’s function or if  G(x, y) is 

a positive constant.

It is convenient for what follows and to deal with cases where A is not 

symmetric, to introduce a family of related penalized problems given by:

-V [A;(x)Vu] + 77 / G(x,y)u(y)dy +  j u 4 
. Jn

In{u) =  /  (3.7)

subject to u € Vd , w ith I n(s) a C°° function such that: 0 < I n(s) < 1; 

I n(s) =  0 if  s <  0; I n(s) —> H(s) in Lp(tt) for 1 < p < oo where H  denotes 

the Heaviside function.

We then observe:

Theorem 3.1. (a) Equation (3.7) has a nonnegative solution un.

(b) There exists a subsequence of un(also denoted by un) which converges 

to a solution of (3.6) strongly in L2 and weakly in VD.

(c) Equation (3.3) admits a positive solution for any f  >  0 i f f  (3.6) admits 

a positive solution for any f  >  0. Positive solutions of (3.3) also solve (3.6) 

and vice versa. By a positive solution u we mean that ifVt' CC  U dVtn then 

there exists e > 0 such that essinfxef2'w(x) > e.

Proof. Choose a po > N, as in the definition of A(w).

(a) Put Z(u) =  [ - V ^ V )]-1 { /  -  [rj G(x, y)u{y)dy +  yu4] I n(u)}. This 
is a continuous compact map Ca° —* LPo Ca° for some a0 > 0, by e.g. [24]. 

I f  u solves u =  Z(u), then:

—̂ V[fc(x)Vit] + rj /  G(x, y)u(y)dy 
. Jn

I n{u) =  /.
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Choosing u~ as a test function and recalling the definition of I n(u) and that 

/  > 0, yield immediately u~ =  0, i.e. u > 0. We also note that —V[fc(a:)Vw] < 

/ ,  and thus u is bounded in L°° for any 77, 7 , whence u is uniformly bounded 

in Ca°(Q), and a homotopy argument gives:

degLs(I — Z, BR, 0) =  1

for some BR C Caa{Vl), where degLs denotes the Leray- Schauder Degree and 

B r  the ball of radius R. The existence of a nonnegative solution follows.

(b) Let n —> 00  in I n, and let un denote the associated solution. Note 

that the arguments in (a) show that un is also bounded in Vd independently 

of n, 77, 7 . There is a subsequence of { un} (also called un) and a function 

u such that un —> u strongly in L2(il) and weakly in Vd- Note that the un 

are also in Ca° and bounded there and thus we assume un —> u in Cai for 

some cci < ao- Suppose at xq 6 D we have u(x0) > 0. Then un(xo) —> u(xo) 

implies I n(un)(x0) =  1 for all large n. Note that 0 < In(un) <  1, therefore, 

without loss of generality, I n(un) —> z weakly in L2, and by the Theorem of 

Banach-Saks,

— V  I n(un) —> z strongly in L2 
n z—'

and so 2 =  1 where u > 0, while 0 < ^ dn(un) <  1 and thus 0 < z(x) <  1, 

for all i g O .

Passing to the lim it, we have

-V [k(x)Vu\ + 77 /  G(x,y)u(y)dy +  j u 4 
. Jo, Z =  f,

u G Vd, and (3.6) follows. We note that inside f I, u is of class H 2 and so on 

the set {u\u =  0} D il, we have Vw =  0 a.e. and thus —V[A:(x)Vu] =  0. We 

conclude z =  f ,, on this set.V j n G {x ,y )u {y)dy

(c) Follows immediately by the definitions.

□

Remark 3.1. Suppose f  =  g0 -  in Theorem 3.1, w ith { ^ } " =1 in

C'1(f2) f lL Po(fi) or in suitable Campanato spaces -  see Section 3.4, go G L2(il). 

Then the result s till holds.
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Remark 3.2. We note that 0 < z < 1, while z =  t  ̂w  w on sê»i Jn G (x ,y )u (y )dy

u =  0. Thus if  G(x,y) =  1, 7 =  0 and, consequently, Ja G(x,y)u(y)dy =
Jn9f 

fn I
f Qu(y)dy =  gz) where —V[/cV(/] =  1 and g satisfies the given boundary

conditions, then on the set ^x\f(x) > Vjr+vY~gz)'\ we ^ave m > 0. In this case, 
it follows that: for any 77 > 0,

{x\u{x) =  0} C ^x \f(x ) < V ■

Remark 3.3. Let w G VD solve —V[fcVw] > / .  Then we must have 0 < u < w. 

Suppose x0 £ f2, 5 > 0 and G smooth. Note that

f ( x) _  f ( x) > f(x )
V Jn G(x,y)u(y) rj Jnn{u>0} G(x,y)u(y) rj f nn{u>0} G(x,y)w(y)'

__ M _____
rIJ(.n\B) G (x ,y )w (y )

I f  u =  0 in {y\\x0 -  y\ < S} C\fl =  B, then x E B  implies - j  , < 1.

Consequently, if  f(x )  > rj f ^ B^G(x,y)w(y)dy for some x in B, then B <£ 

{x\u{x) =  0}.

Remark 3.4. We observe that intuitively we expect the solutions of (3.6) to 

decrease as rj increases. We can show that in one case this is true, namely 

if  G(x,y) ~  const > 0. Indeed, suppose without loss of generality, that 

G(x,y) =  1. Let u\ (resp. u2) solve (3.6) for rji (resp. 772) with 0 < 771 < 772. 

From (3.6) we obtain:

/  fc (x )V lt iV (tt2 -M l)  +  77i ( /  tti j ( /  (u2 -77i)
Jn \Jn /  \Jn

+ 7  /  u \ { u 2 -  M l) >  /  / ( m 2 -  Ml)
Jn Jn

/  k{x)Vu2V{ul - m 2) + ?72 ( /  u2 ) ( /  ( m i - m 2)
Jn \Jn J \Jn

+ 7  /  m2(mi  -  “ 2) >  /  f (ui  ~  m2)
J M f2

A d d in g  a n d  p u t t in g  w  =  U\ — u 2, g ives

-  /  ^ ( ^ ) | V t m |2 +  7  f  ( m ^ - u ^ H  

-ml  w) +[m~ m\ m ( u 2 -  m) > o.
\Jn /  Jn Jn
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Since u\ >  0 by construction, we conclude that f n u2 < f Qu 1. It follows that 

[Vi f Q u1 -  772 f n u2\ [ fn(u2 -  « i)] > 0, i.e. 771 f Q Ul < t]2 f n u2. We can rewrite 

(3.6) in this case as

[  k(x)Vu1V ( v - u i ) + 'y  [  u\(v -  iti)  > [  f i ( v - u i ) ,
Jn Jn Jn

/ k(x)Vu2V{v -  u2) + 7 /  u l { v - u 2) >  / f 2{ v - u 2),
Jn Jn Jn

where f  — rji JQui =  f i  > f 2 — f  — rj2 Ja u2. We observe that consequently

ui > u2(see [21]).

As an application of these results, we assume G smooth, <r(s), k(s) —> 0 as 

s —> 00 and replace (3.1)-(3.2) with the following extension in the steady-state:

- V [ct(u)V0] =  0, (3.8)

/  k{u)VuV(v — u) +  r] /  /  G(x,y)u(y)(v — u)(x)dydx (3.9)
Jn Jn

+7  /  u4( u - u ) > -  /  Cr(u)0V0V(u -  «),
J O J Q

with u >  0, u > 0 and u, <p to be found subject to the earlier given mixed

boundary conditions. An existence result for 0O of small variation (depending

on J^° k/cr), is now obtained by replacing (3.9) by the approximate equation:

—V[/c(u)Vu] + r) /  G(x, y)u{y)dy +  7U4 
. Jn

I n(u) =  V[cr(u)0V0], (3.10)

and following the earlier arguments and those in [6, 24] which we sketch for 

convenience. Choose M  by JQM y =  (max<fo~mm<M 2; an(j truncate u in the 

coefficients k(u), a(u) at M. We solve the problem with k(u), a(u) in place of 

k, a where u =  min(u, M). We observe that the solution un of (3.10) satisfies 

0 < u n < M  even in the truncated case, and set up a map Cao(£l) —> Ca°(fl), 

for some Q!o > 0, along the lines given earlier and in [6, 24]. We conclude 

the existence of a solution pair (4>n,un) to (3.8) and (3.10). We observe that 
((f>n,un) are bounded in C“ °(C) x CQ°(0 ), and passing to a lim it -  as in the 

earlier part of this section -  we obtain the existence of a solution (0 , u) of 

class Ca(Cl) x (7a(f2), for some a > 0, to (3.8)-(3.9) with associated (mixed) 

boundary conditions, and u >  0 for any value of 77 > 0.
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3.3 The tim e dependent case: existence and 

absorbing set

In this part of the chapter we begin considerations of the time dependent

problem, show the existence of a capacity solution and of an absorbing set. 

For any T > 0, we denote by QT =  x (0, T), the parabolic domain and by 

V'D the dual space of Vd • Moreover we define the convex set

K  =  {v G L2(0, T ; Vd ) H L5(Qt ), v  >  0 a.e. in Qt}- 

Our time dependent obstacle problem extending (3.1)-(3.2) then becomes:

where u0 G L2{Vt) and u0 > 0. The coefficients 77, 7 , k(s), a(s) and G(x,y) are 

the same as in the previous section but, for simplicity, we henceforth assume 

G is smooth. Furthermore we assume

0 < ko < k(s) < ki, 0 < cr(s) <  <ti and a(s) —*■ 0 as s —»• oo(3.17)

Since cr(s)—s-0, a s s —>00, the system is degenerate and this leads to new 

mathematical difficulties. To deal with this problem, we adopt the notion of 

capacity solutions which were introduced by X. Xu in [26, 25, 27] to study the 
local thermistor problems.

u £  K, ut £ L2{0, T; V'D) +  T5/4(Qt ) and 0 -  0O G L2(0, T; VD), (3.11)

[  [  k(u)Vu\7(v— u) (3.12)
Jn at Jq

+V G(x,y)u(y,t)(v — u)(x,t)dydx 
J a r2

+ 7  /  u4(v — u) > — /  cr(«)^V 0V (u — u), \/v G K,
Jn Jn

u(x, 0) =  u q ( x )  in 0 ,

I  -Tf n iV oV e = 0. Vi» p L 2 ( 0, T ;  VD) (3.13)

(3.14)

(3.15)u\anD =  0, Q^\anN =  0,

(3.16)
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We say a triplet (u , <f>, g) is a capacity solution to (3.11)-(3.16) if it satisfies

u e K ,  ut £ L2(0, T ; Vff) +  L 5̂A(QT), (3.18)

<t> £ L°°(Qt ) and g £ [L2(QT)]N,

Jn Jn

(3.19)

+7  / uA(v — u ) > — / 4>gV{v — u), Vu € K,

[  =  0, G L2(0,T;Vd), (3.20)
J Q t

fo r  each p G Cq(R), p(u)(p — p{0)(p0 £ L2(0, T; Vd) and (3.21) 

p{u)g = a(u)[V(p(u)(f)) -  fW(p(u))),

u(x, 0) =  U q { x ) . (3.22)

According to [26], we observe the following two remarks.

Remark 3.5. If u is bounded, then the capacity solution is equivalent to the 

solution of (3.11)-(3.16).

Remark 3.6. If there exists a capacity solution to the system, then V0 is 

defined almost everywhere in QT, but may not belong to any space [LP(Q)]N 

for 1 < p < oo. Moreover

Instead of the systems (3.11)-(3.16) and (3.18)-(3.22), we first consider 

their penalized version. The existence of a solution to this penalized system 

is obtained by the standard time discretization technique. Then by a series of 
boundedness estimates, a capacity solution of (3.18)-(3.22) is achieved as the 

lim it of these solutions.

We thus define an(s) =  ^ + a(s). Then by (3.17) we have

g =  a(u)V<j>, a.e. in Qt - (3.23)

0 < — < <7n(s) < <Ti +  1, fo r  all s £ R. n (3.24)
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Our new penalized system is given by the following

dun
'U'n ^ 
dun
dt

dt

V(&(ttM) Vun)

e L 2(0 ,T ;b ')+ L 5/4(QT), (3.25)

(3.26)

+ In{Un)r/ /  G(x,y)un(y,t)dy +  'yu*
. Jn

=  V [a > n)0nV0n], in L2(0 ,T ;^ )  +  L5/4((5r), 

V[anK )V 0 n] =  0, in L2(0, T; Vj',), (3.27)

coupled w ith the same in itia l and boundary conditions.

Before we proceed with our main theorems we state a lemma which is a 

slight modification of the one given for the stationary problem. See in par­

ticular Theorem 3.1, Remark 3.1 and the arguments at the end of Section 

2 .

Lemma 3.1. For each 0 < H(x) e L2(£2), there exists a weak solution (u , 0) 

with 0 < u eVd, <t> — 4>o £ Vd fl and h > 0 a constant to the system:

1
—V(k(u)Vu) +  — u +  /1 1 /  G(x,y)u(y)dy + ~fu4 

. Jn
=  V[an(u)0V0] +  H(x),

V (ffn(«)V0) =  0,
i du |

u\anD =  0, -Q^mN =  0,
<90.

0|ao£) 0o (•̂ ) >

Moreover,

esssup |0(:r)| < sup |0o(x)|,
xef2 aier̂ )

IIV0|| < n(<7i +  l)||V0o||.

I n{u) (3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Next we obtain the following existence result by Rothe’s Method. Hereafter 

for the sake of simplicity, we understand that a sequence is convergent if  it has 

a convergent subsequence and we identify the subsequence with the sequence 

itself. Moreover C always stands for a positive constant which depends only
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on N  and the coefficients rj, 7 and G(x,y), the bounds on k(s) and a(s) 

and the initial/boundary data except otherwise specified. It also may differ 

from one line to another.

Theorem  3.2. For each n there exists a solution (un, <f>n) to the problem

(S.25)-(3.27) which satisfies uniformly with respect to n that

ess SUPQt \M x ,t) \  < C,

ess sup0<t<T

/Jqt

[  u n  +  [  \ ^ u n \ 2 +  [  U n < C ,
J f2 J Q t  J Q t

(3.34)

(3.35)

(3.36)

Moreover is also uniformly bounded in L2(0,T;Vfi) +  L5/A(QT) and thus 

in L5/4(0, T; Vfi).

Proof. Let m be a positive integer. We decompose the interval [0, T] evenly 

into m sub-intervals. The corresponding uniform partition is denoted by 

{tj}fLo w ith t j =  j h , h =  T/m. Discretizing equation (3.26) with respect 

to t and combining with (3.27) give the following system of 2m equations:

-v [*« )v < ]  + s(< -  <-')

+ i) /  G(x,y)u’n(y)dy + ~t(wn,
. Jn

=  V K ( < ) « ,  j  =  l,  . . .  

V K O O V ^ ]  =  0. 3  =  1. ■ ■ ■ , m .

(3.37)

U < )

m ,

(3.38)

Since uo is in L2(Q), thanks to Lemma 3.1, we can solve the above system 

successively. First we derive some a priori estimates of the solutions. To do 

so, we choose vfi as a test function in (3.37) and obtain

^ f c « ) |V < |2 + i  f { u i  -  < - > :

+  [  V f  G(x,y)u3n(y)dy +  'y(yPn)A 
J vl _ J a

= -  f  j  =  1,
Jn

(3.39)

m.
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Simple calculations show that for each j  — 1, • • •, m, the following property 

then holds:

<  xn2 + i k - <  xn2]\  [ M l 2 -  K  xll2

+ /c0||V < ||2 +  2 /  4 ( < ) ( < ) e
JQ.

(3.40)

<C .

We next sum inequality (3.40) from 1 to j  and drop the other positive 

terms to obtain

j r d M M M  2) < jC .

Thus | k | | 2 < C fo r  j  =  1 

m, we find
5 )

(3.41)

m. Summing inequality (3.40) from 1 to

1
h

\u,m  ||2 
n II i m i 2 + E IV? — iP  ̂112\an an II

3=1
m

(3.42)

lit lit n

+k0' £  ||V < ||2 + 2 J 2  /  4 « ) ( < ) 5 < mC,
j - i  j= iJa

which gives:

ut
f c ^ | |V < | |2 < c,

3=1 
m „

/  ( < ) 5 £ 
i-1 ■'«

m

3= i

(3.43)

(3.44)

(3.45)

by the definition of I n.

Now we define the Rothe’s functions u%(x, f), 0£(x,t) and w%(x,t) by the
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following:

u*(x,t) =  <  fo r  t E ((j  -  1 )h,jh], 

j  =  1, • • • , m and u^(x, 0) =  uo, 

</>n(M) = <tii for t e  (O' -  ^)h,jh],

(3.46)

(3.47)

j  =  1, ••• , m,

W n ( x , t )  = < _ 1  +1 , 0  t3 i ) ^ j  _ UJ i) yor t e  [(j -  i)/i,j/i],(3 .48 )
h

Thus we may write the system (3.37)-(3.38) as 

dwZ
dt -  v[*(<£)v«a+ if f  G(x,y 'lv£(y,f)dy +  ' t ( i& )4 

Jn
=  V M u M w J ] ,  

V W W J  =  o.

/„« X 3 .4 9 )

(3.50)

The boundedness of and w% in L2(0, T; Vd) H L°°(0, T; L2(Q)) D L5(Qt ) 

is then a direct application of the earlier estimates, while to show the bound­

edness of in L2(0,T; Vff) +  L5/4(QT), we observe that

\\In(Un){Un)A\\L5/4(QT) < ||^|||,5(qt ) < C ,
h ||4 (3.51)

and all other terms in (3.49) (except ^ L) are uniformly bounded in L2(0, T; Vf). 

Thus ^  is in a bounded set of L2(0, T; Vff) + L5/4(QT). By the definitions of 

uhn and w%,

w £(x ,t)-uZ (x ,t)  =

Thus,

hr„ „.hf„  ^  f - ^ ( u i  -  v?n 0  fo r  (j  -  1 ) h < t <  jh (  3.52)

,h „ .h  112
m  „ j h

I W n  -  U n \ \ L H Q T ) =  J 2  I I W n  ~  M n H 2 0 ) ^

x__i J ( i - l ) h

Iqjj — qjj 1̂1̂
I a n  a n  I I  * (3.53)

j = 1

Therefore by (3.45) and (3.53), w ^ -u ^  —> 0 strongly in L2(QT) as h —> 0.
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We conclude that there exists a common function un(x,t) such that as 

h —► 0,

W n ^ u n, —> un weakly in L2(0,T;Vd), (3.54)

weak — star in L°°(0 ,T ;L2(fl)), 

dwn . dun wmkly in l 2(0,T-,V^) +  L5/4(Qt ). (3.55)
dt dt

Because ^  is uniformly bounded in L2(0, T ; VjD)-\-lJ>l4(QT), it is also bounded 

in L5/4(0, T; VIj). So by a compactness result (see [19], page 271), we also have

—> un, un strongly in L2(Qt). (3.56)

Due to (3.32) and (3.33), 4>n is uniformly bounded in L°°(0, T; Vd ) and L°°(QT). 

Therefore

4>n^4>n weak — star in L°°(0,T]Vd ) and in L°°(QT), (3.57)

and as a consequence, 4>n —► fn  strongly in L2(QT) (see Lemma 4.10 in [18]). 

Since I n(s), crn(s) and k(s) are bounded continuous functions, we have

Ini^n)  ̂In(y,n) > ^Vi(^n)  ̂^ni^n)i k(un) ► k(un) (3.58) 

strongly in LP(QT) fo r  any p >  1.

Now we pass to the lim it in (3.50) and obtain (3.27). To obtain (3.26), we note 

that I n(u^)(u^)A converges to I n(un)(un)4 weakly in L5/A(QT). Indeed, without 

loss of generality we may assume —> un pointwise in QT. Since {u!f)4v is 

uniformly bounded in L 4(QT), and {v!f)4v converges to (un)4v pointwise and 

thus almost uniformly. In view of (3.58) we obtain the desired result.

We now pass to the lim it in (3.49). We note that the dual space of 

L2(0,T;Vf,) +  L5/4(Qt ) is L2(0,T]Vd) D L5(Qt ). Thus if we take the du­

ality product in (3.49) with v € L2(0, T; VD) D L5(QT), then by passing to the 

lim it we obtain
du

< >  -  <X7(k(un)Vun),v > (3.59)

+  < V /  G(x,y)un(y,t)dy +  'y(un)4 
. Jn

I n { u n ) , V  >

< V[an{un)(t)nV f n\,v > .
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Thus equation (3.26) is satisfied. It remains to show that un(x, 0) =  uq. In 

fact, from (3.54) and (3.55),

(w% — un,tp) —> 0, fo r  ip eVf, and fo r  every t G [0, T\. (3.60)

Since w%(x, 0) =  uo, we have un(x, 0) =  u q .

Equation (3.34) follows from (3.32). Estimate (3.35) and the boundedness 

of ^  follow from the given estimates and (3.54)-(3.55). We have (3.36) by 

using <fn — 0o as a test function in (3.27). This completes the proof of Theorem 

3.2. □

It follows from Theorem 3.2 that there are u G T2(0, T ; VD)nL°°(0, T ; L2(fi)) fl 

L5(Qt ), (p e L°°(Qt ), g G [L2(Qt )]n , z  G L°°(Qt ) such that

u
du„ du

u weakly in L2(0,T;Vd) and strongly in L2(Q t), (3.61)
{]'} I

. —  weakly in L2(0,T; Vf) +  L5/4(Qt ), (3.62)

<pn —► (p weak — star in L°°(QT), (3.63)

Vn(un)V<pn -> g weakly in [L2(QT)]N, (3.64)

In{un) —> -z weak — star in L°°(QT). (3.65)

We recall that in [26] (see Claim 1 and Claim 3) it is shown that for each 

p G Cq(R), p(un)<pn —► p(u)<p weakly in L2(0,T]VD), and that

lim  [  |(pn -  (p\ =  0. (3.66)
n̂ °° Jqt

From (3.63) and (3.66) we then conclude that

&n(un)(pn —* cr(u)<p strongly in LP(QT) fo r  each p >  1. (3.67)

Theorem  3.3. (3.18)-(3.22) are satisfied for (u,<p,g) with (3.19) replaced by

ut — V[fc(u)Vu] + z T̂] L G(x,y)u(y,t)dy +  -fu4̂  (3.68)

=  V {(pg) in  L2(0,T;V£) +  L5/4(Qt ).
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Proof. Obviously (3.18), (3.20) and (3.22) hold. For each p G Cq(R),

P('U/n)&n('U,n)'^J(i)n =  (4>np('U,n)') 0n^P(^n))- (3.69)

Equation (3.21) follows by letting n —> oo in (3.69). For each v G L5(Qx), we 

have

f  u*In(un)v f  vfzv. (3.70)
J Q r p  J Q r p

To obtain (3.68), we take the duality product with v G L2(0, T; VD) fl L5(QT) 

in equation (3.26) and get

dun 
< T7T ' V >  +

d t  j q t

f  k{un)VunVv (3-71)
J  Qrp

+  I rj G(x,y)un(y,t)dy +  'yu* ) I n(un)v 
Jqt \  Jn /

=  -  / an(ura)(/)nV0raVu.
J On-’'Q t

We can pass to the lim it in (3.71) to obtain

< ^ , u > +  J  A;(w)VmVu (3.72)

+  /  [V G(x, y)u(y, t)dy +  qu4 J zv 
Jqt \  Jn J

= -  [  gVv,
Jqt

and (3.68) follows. □

Theorem  3.4. There exists a capacity solution to (3.11)-(3.16) which satisfies 

(3.18)-(3.22).

Proof. Actually we only need to show the solution (u, 0, g) in Theorem 3.3 also

satisfies (3.19). Similarly to the steady state problem, z also has the following
p ro p e rty

0 < z <  1, and z = l  i f  u > 0. (3.73)

Thus for all v >  0, v G L2(0, T; VD) n L5(QT),

z(v — u) < v — u. (3.74)
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Hence, from (3.68) we have

/ ut (v — u) +  / k(u)VuS7(v — u ) r j  / / G(x,y)u(y)(v — u)(x,t)dydx
Jci Ja Jq Jci

+7 /  u i{v — u )>  — / 4>gV{v — u).
J £l •/ f]

This means that (3.19) holds. So (u,<f),g) is a capacity solution to (3.11)- 

(3.16). □

The remaining part of this section is devoted to the existence of an ab­

sorbing set for the obstacle problem. We first give a generalized Gronwall 

type inequality. Related results are given in [20], but for completeness and the 

reader’s convenience, we give it  here.

Lemma 3.2. Assume a, 7 , <5, p are positive constants with p > 1. I f  y(t), a 

positive function, satisfies

^  + ay +  yyp < 5 , te(0,oo) ,  (3.75)

then y(t) satisfies the uniform estimate

f  a \  p_1 e~at
y(t) < / / + (  — ]----- --------------------fo r  all t > 0, (3.76)

\ 7  /  [1 — e-a(p-l)t]p-i

where y is the unique solution of ay +  =  5.

Proof First we observe that if  r/(0) < y, then y(t) < y for all t £ [0,0 0 )  and 

if  y(0) > y, there exists a 0 < to < 00 such that y(t) < y for t > t0 and 

y(t) > y  for t £ [0, to)- Thus we only need consider the case that y(0) > y 

and t £ [0, t0)-

Let z(t) — y(t) —y  for t £ [0, t0). Clearly the inequality zp+ y p <  (z+ y )p =  

yp implies

dz dv
— +  az +  7zp < — + ay +  7yp -  ay -  7yp (3.77)

=  +  oty +  7yp -  S < 0.
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Since z(t) is positive by the assumption, we may define

v(t) =
z i - p

1 - p

Then a simple computation yields that

dv -ndZ I t\
—  = z p— < a[p — l)v  — 7 . 
dt d t ~  1

It follows that by integrating above formula from 0 to t,

v(t) < . ^  . [1 -  exp{o;(p -  l) t} ]  +  v(0) exp{a(p -  l) t} .
a{p -  1)

By the definition of v(t) we have

, e xp {-a ( p - l ) i } ---------- ,

'  4 _’’ +  i [ l - e x p { - a ( p - l ) ( } ]  1 1 , 0 1

In view of z0 > 0,

a;\ p_1 e at
S I)  [1 — e-a(p-l)t]P-i 

This completes the proof by the definition of z(t).

Denote

| | 0 o ( ® ) | | o o  : =  e s s s u p x e a f } D  \ M % ) \ -  

By the weak maximal principle, we actually have

essswpxen\(f)n(x,t)\ <  110o1100 a.e. 0 <  t  <  00. 

Furthermore, in view of Remark 3.6 and (3.20) we have

f  ^ V ( 0 - 0 o ) =  f  c r (u )V 0 V (0  -  </>o) =  0 
J o J r2

by using — <pQ as a test function. Thus,

[  c r(u )|V0|2 =  f  cr(u)V0V0o
Jci Jn

f t  \  V2 /  r  \ 1/2
< ( / a(u)|V0|2 ) ( / cr(u)|V0o|2
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(^<r(«)|v,#f) 7 < (jO(«)iv*l2) 7 •
Write ( fn |V0O|2)1/2 =  ||V0O||. Thanks to (3.17) and (3.23),

[  \g\2 < crf\\X7<fio\\2 fo r  all 0 < t < oo. (3.85)
J n

Theorem 3.5. There exists an absorbing set to the obstacle problem which is 

a ball B in K 0 =  {u G L2(f2) | u >  0} centered at 0 with radius p'Q. This ball 

absorbs the elements of Kq uniformly, i.e., there exists a fixed fo(Po) such that 

for any uq G K 0, S(t)u0 will enter into B after time t0(p'Q). Here p'Q and to(p'0) 

are determined in the proof.

Proof. One can easily verify that the solution (u, <t>, g) satisfies

\ l t  f  u2+  /  Mm)IVmI2 +  7 f  u5 < ~  f  4>g^u. (3.86)

Thanks to (3.83), (3.85) and the Schwarz Inequality,

5 l /„ “2+/ / (“)|v“|2+7/n“5sll0oll” ( /nM2) 7 ( i |v“|2) 7 •
(3.87)

By the inequality ab < ^ a 2 + | 62 and the Holder Inequality, (3.87) can be 

written as

j t M \2 +  M V m ||2 +  \\u\\5 <  l|V0o||2. (3.88)

Finally, by the Poincare Inequality ||Vu ||2 > P0|M |2 we obtain

^ IM |2 +  6i||u ||2 +  b2\\u\\5 < bz, (3.89)

where b\ =  k0Po, b2 =  and bz — ^||0o||L  l|V0o||2- Then by the above|H| 2 0
Gronwall type inequality with a — bi, 7 =  b2, S — b3 and p =  2.5 we have

bi 2 c bit
||«||2 <Po +  ( r ) 5----------------2-, fo r  all t >  0, (3.90)

O '" ^2 31 _ e 2blt
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with po the unique solution of b\p +  &2P5//2 =  &3- Now we can choose any

Po > Po to obtain our absorbing ball B. Then, from (3.90) we easily obtain

□

Since the time to(Po) is independent of the in itia l value u0, the set B absorbs 

the elements of K 0 uniformly. This property is due to the 4-th order nonlinear 

term which leads to bounds on u in (3.90) which don’t depend on the in itia l 

value m0-

3.4 The tim e dependent case: global attractor

In this final part of the chapter we show the existence of a global attractor. In 

addition to the previous assumptions, we further assume k(x) =  1, 0  C R3, 

u satisfies a pure Dirichlet boundary condition, i.e. w|an =  0, but keep the 

mixed conditions on f>, and

0 < <Ti < a(s) < 02 < oo, fo r  all s >  0, (3.91)

there exists a positive constant L such that (3.92)

|<j(s) — o-(s')| < L|s — s;| fo r  all s, s '> 0.

Under these assumptions the capacity solutions are also weak solutions since 

the gradient of the potential f> is L2—integrable.

Let us denote the solution operators of (3.11)-(3.16) and (3.25)-(3.27) by 

S(t) and Sn(t) respectively. The main difficulty here is that S(t) (Sn(t)) may 

not define a semigroup in L2(0) since the weak solutions could not be unique. 

To circumvent this difficulty, we first show that if the in itia l data belong to 
Ca(Q,), the solution is unique. Thus we can follow the procedure in [20] to 

prove the existence of global attractors. Systematically, we replace L2(I2) by 

Ca(tt) for some a > 0 and show that S(t) (Sn(t)) does define a semigroup 

in this Banach space. By making use of the term describing radiation heat
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losses, we derive a local a priori estimate for the solutions of (3.11)-(3.16) and

(3.25)-(3.27) which says that any solution w ill be of class C010 (Cl) for some 

a0 > a after a certain time independent of the in itia l data. Thus there exists 

a uniform absorbing set and the semigroups are uniformly compact for t large. 

The existence of global attractors follows immediately.

It w ill be convenient to recall some notation. For 0 < to < t\, we denote 

n  x (to, ti] by QtoM ■ For simplicity, if to — 0, we write it as Qtl ■ A point 

(x,t) G Qt0,ti is denoted by z. Let Br (xo) be the ball centered at xq w ith 

radius r  and Qr (z0) be the cylinder Br (x0) x (t0 — r 2, f0]- Then we define

Moreover for p > 0, C2,fl(fl) and £ 2,M(Qt0,tJ denote the Campanato spaces 

on and Qt0,ti associated with the standard norms ||.||2,/x,n and j|• ||2,p.,Qt0 tl 

respectively. We refer to interested readers to [28], [21] and [14] for details 

on these spaces and norms. The following proposition can be found in [21], 

Theorem 1.17.

Lemma 3.3. (i) I fO  < /i < N, the mapping

defines a norm on which is equivalent to || • 112,p,n-

(ii) C2,N+2̂ (fl) is isomorphic to (7^(0) for p e (0,1).

Similar results for established in [8], are summarized in the
following lemma.

Lemma 3.4. (i) I f  0 < p < N  +  2, the mapping

&[xo,r] Br (xo) n f2, — Qr(z(f) f~l Q t o , t i -

defines a norm on £ 2,fi{Qt0,ti) which is equivalent tov • vu r i /

(ii) C2'N+2+2iX(Qt0iiJ  is isomorphic to Cti'ti/2(QtoM) for p e (0,1).
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We choose and fix a p, 3 < p < 4 and recall the following lemma from [6].

Lemma 3.5. Let aij £ Ca(Cl) and satisfy uniform elliptic conditions. Con­

sider the operator C given by the formal expression — ^  Di(aijDjV) and bound­

ary conditions:
dx)

) • n +  (dv =  (3vq on dttN, (3.93)
O X i

v =  vq on dQr>- (3.94)

Then C maps Vq +  H 1,P(Q U dfl^) onto H~1,P(Q,), the dual space of H 1,P(Q U 

<9fi/v). Furthermore, i f  { f i } f_0 in IP denotes a representation of a member of 

H~1,p and Cv — / 0 +  A (/i)>  then
3

IMI-H1-? < ||/i|Up(n) +  IK IIc i], (3.95)
i = o

where C is independent ofv.

The Gagliardo-Nirenberg interpolation inequality, where Go > 0, constant,

IM Iw /< ,-» (n) <  GolM I’ - ^ ' I I V H I ^  (3.96)

yields:

Lemma 3.6. For all w € Vfi, the estimate:

\\w \\2L2P/(P-2){n) < e||Vit;||2 +  Ce||w||2 (3.97)

holds, where
Q p / ( p - n )

~  _ 2_ ( « 2 ) n / ( p - n ) ' ( 3 .9 8 )
p —n  \  n  /

We say a solution (u,(f>) (respectively (un,<fn)) is a Ca’at2(QT) solution 

of (3.11)-(3.16) (respectively (3.25)-(3.27)) iff it is a weak solution and is in 

Ca’a/2(QT).

Let S0 denote the Holder exponent as stated in the De Giorgi - Nash the­

orem, see [21], Theorem 2.14, page 115 (also see [28]). In what follows, all a, 

cti’s are in (0, So) and may differ from one step to the next. Now we are ready 

to claim the following theorem (which could also be used to show existence of 

Ca'a/2(Qx) solutions).
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Theorem 3.6. Assume that u0(x) G Ca(Cl), u0 =  0 on dfl. Then any weak 

solution (un,(j)n) of the system (3.25)-(3.27) is in C<x'01/2{Qt). Consequently 

there is a Ca,â 2(QT) solution to the system (S.ll)-(3.16).

Proof. Let (un, 4>n) be a weak solution of (3.25) - (3.27). Consider the following 

equation:

wt - A w  =  V[cr(un)0nV </>„]. (3.99)

Here w satisfies the same in itia l and boundary conditions as un. By the com­

parison principles we have 0 < un < w. On the other hand, it follows from

the results of [23] that for all 0 < n < N  — 2 +  2a,

l|V0„||2l/lln < C. (3.100)

By Lemma 3.3, we have

f  f  \V(f)n\2dx < C r2. (3.101)
J t n —r 2 J B r (xn)I to—r 2 J  B r (xo)

Thus,

sup r  (/i+2) f  \V(f)n\2dz < C. (3.102)
Zo€ Q t , T > 0 J Q r { z o )

By using Lemma 3.4 we obtain that for all 0 < /a < N  + 2a,

l|V0n||2l/1,QT < C. (3.103)

Since a(un)(j)n G L°°(QT), we have cr(un)0nV ^n G £ 2,m(Qt)- Thus by the

results of [28], it follows from equation (3.99) that for all 0 < yt < N  +  2a,

llV H kM h. ^  C. (3.104)

Consequently,

lk lli» (Q T) < C. (3.105)

In view of 0 < un < w, we have

l!Mn|U°°(QT) ^  C. (3.106)
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We now decompose un into two parts as un =  v + (un — v). Here v is the 

solution of the following simple equation:

Vt — An =  0, 

v(x, 0) =  u0(x).

(3.107)

(3.108)

Since u0 E CQ(0) and u0 =  0 on <912, the above equation has a unique 

Ca'a/2(QT) solution by a classic result in [15]. Now we apply the results of 

[28] to un — v and obtain for all 0 < p < N  +  2a that

||V(un 112,fj,,QT — C,( llcr(Mn)0nV0n||2,/i,QT (3.109)

+ Tn(̂ re) rj / G(x,y)un(y,t)dy +  ku,
. JQ 2 , ( n - 2  ) + , Q t

By the imbedding theorems and inequality (3.106), we have

In(y,n) T) t)dy +  ku.

< C

/  G(x,y)un(y,
Jet

rj / G(x,y)un(y,t)dy +  ku* 
. J n

< C .  (3.110)

Thus, for 0 < n < N  +  2a:,

||V(un - v ) \ \ 2 t f l , Q T  < C. (3.111)

Therefore for each 0 < y , < N  +  2 +  2a, un — v is bounded in C2,ix{Q t)-  

But v E Ca,a/2(QT) and hence in £ 2,ai( Q t )  by Lemma 3 .4 ,  we conclude that 

un E C2',j’(Q t) -  Moreover, from the previous section, the solution u is attained 

as the lim it of a subsequence of un, we also have u E C2'i i (Q t)-  Thus if  we set 

fx — N  +  2-\- 2 a, due to Lemma 3 .4 ,  we finally have u, un E Ca’a 2̂(QT)- This 
completes the proof. □

Theorem 3.7. Let (Ui,(j>i) (respectively (uni,(f)ni)), % =  1, 2, be two

Ca,a/2(QT) solutions to (3.11)-(3.16) (respectively (3.25)-(3.27)) correspond­

ing to the initial data Uq, i =  1, 2, and the same <j>Q. Write w — u\ — U2,
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ip =  cj)i -  02, 'w0 =  'Uq -  Uq (respectively wn = uni -  un2, <pn =  <j>ni -  0n2, ™n0 = 

'Uq—Uo/ Under the previous assumptions there exist constants C\(t), C2(t) > 0 

such that
ft rt

M l 2 +

\Wn\\2

[  \\Ww(s)\\2ds+ [  ||V(/?(s)||2ds < Ci(0)||u>o||2, (3.112)
Jo Jo

+  [  \\S/wn(s)W2ds+ [  ||V<p„(s)||2ds < ^ (^ ll^ n o ll2. (3.113)
Jo Jo

Proof. We first prove (3.112). It follows from (3.12) that 

1 d
— — I w| 
2 dt

||2 +  ||Vw||2 +  r) /  /  G(x,y)w(y,t)w(x,t)dydx (3.114) 
J n J n

+ 7  /  (m2 + u\)(ux +  M2)t02 
Jo 

< -  /  [cr(tti)0iV0i -  cr(tt2)02V02] Vwcfcc 
Jn

and from (3.13) that

V[<r(iti)V0i] -  V[a(w2)V02] =  0. (3.115)

We observe that

rj f  [  G(x,y)w(y,t)w(x,t)dydx < rj\\G\\ ||w||2, (3.116)

7  /  (u2 +  u2)(wi +  u2)w2dx > 0. (3.117)
Jnin

Thus we have 

1 d

+

/  (fj(« i) -  a(u2))(j)iV(l)iWwdx (3.118) 
Jn

/ a(u2)(pV(j)i\7wdx +  / a(u2)(f)2V(pVwdx +  rj\\G\\ ||w||2.
J r2 «/ q

In view of Lemma 3.5, we can easily see that | |V 0 i||i ,p  is u n ifo rm ly  bounded 
in t. Indeed, 0 i — 0o satisfies

V[<j(tti)V(0i -  0O)] =  — V(cr('Ui)V0o),

d(j)
(0 i — 0o)|anD =  0, -^ - |a n jv = 0)
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which is just a special case of Lemma 3.5. Now we apply the Holder’s Inequality 

and the inequality (3.83) to estimate the right hand side of (3.118).

/ (ct(u i) — o-(M2))0iV0iVu;d:r
Jn

<  C7||V0i||ip(n) IIu'IIl2p/(p-2)(0) +  g ||Vw|

/Jn
r(u2)^V  01V wdx

/ a(u2)(f)2\/(fVwdx 
Jn

Moreover from (3.115) we have

< CIIV^II2 + i|)V<»||2.

/  a{u2)\Vip\2dx =  -  /  (<t(mi) -  g {u2))S7J)\Vtpdx
*J  Cl J  Cl

< L [  |V0i| |V(^| \w\da 
Jn

Hence

H V p l l  <  — | i V ^ > i | | i P ( o )  | M | i 2P/ ( p - 2 ) m ) .<J\
Finally by combining (3.118)-(3.123) it follows that 

1 d
2 dt
<

|w|| +  || Vio||"

C||V0,|||,(n) (1 + ||V *|| LP(n)) IIWIIl2P/(p-2)(̂ )

+  gl|Vw||2 +  77||G|| ||w||2.

Thus it follows that

1 d_
2 dt

|w||2 +  ||Vw||s

< C\\w\\2L2p/(p. 2){n) +  g llV w l|2 +  v\\G\\ ||w||2. 

Applying Lemma 3.6 with e = |  yields that

~ lire ||2 +  ||Vw||2 < C||«;||2.
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In (3.126) we first drop the gradient term and integrate from 0 to t. Then

[|w||2 < exp (C^H^oH2. (3.127)

Integrating (3.126) with respect to time again yields

f  ||Vw(s)||2ds < exp(Ct)||wo||2- (3.128)
Jo

Recalling (3.123), applying Lemma 3.6 again and using (3.127), (3.128) we 

obtain

f  ||V(p(s)||2ds < C'/exp(Ct)||wo||2- (3.129)
Jo

These complete the proof of (3.112). The essential part of the proof of (3.113) 

is similar and left to interested readers. □

By Theorem 3.6 and Theorem 3.7, there exists a unique Ca,a/2(QT) solution 

to (3.11)-(3.16) and (3.25)-(3.27) respectively. Since u and un G Ca,a/2(QT) 

for any T > 0, for each t > 0, we conclude that u and un G Ca(Cl). Thus the

solution operators S(t) and Sn(t) define two semigroups from Ca(Cl) into itself,

and we can show the existence of global attractors in Ca (O). To establish this 

result we need first the following local a priori estimate.

Theorem  3.8. There is a generic constant pi >  0 which only depends on 

the bounds of the coefficients, the boundary conditions and |Qt0,t0+3| and is 

independent of to, n and the initial value uq such that the Ca,â 2(QT) solutions 

satisfy

||Mn|lc“o.«o/2(Qto+2ito+3) < Pi ,  (3.130)

IMIc“o.«o/2(Qto+2:to+3) < Pi ,  (3.131)

for all t0 >1  and all 0 < a0 < So-

Proof. In the proof of this theorem, the positive constant C is also a generic 

constant which has the same dependence on the data as p\. It may be different 

from line to line. Let £(t) be a smooth function such that f( t)  =  0 for t < t0
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and £(t) — 1 for t > to +  1. Furthermore, assume |^| < /? for some constant 

j3 > 0. Let (un, 4>n) be a weak solution of equations (3.25)-(3.27) and consider

V f  G(x,y)un(y,t)dy +  ku. 
. Jn

(£^n)i A(^Un) “I” £-fn(^n)

£m „(x , t0) =  0, £ u n \ d n  =  0.

Similarly to the previous results, we first consider

wt - A w  =  £V[cr(un)(f>nV(j)n] +  &rtn, 

w(x,t0) =  0, w|ao = 0,

and obtain 0 < ^un < w. Moreover,

(3.132)

(3.133)

I Viul 2,/i,(5tQ,tQ+3 (3.134)

<  C '[||^a('Un )0 riV 0 n ||2,Ju ,Qt0,t0+3 d" | | ^ Mri.||2,(/i-2)+,Qt0,40+3 

+  I M U 2( to ,to + 3 ,H 1(« ) ) ] -

By simple calculations we conclude just as before that

||£<T(un)</>nV0ra||2,̂ ,QtOjto+3 — G. (3.135)

Since un satisfies equation (3.26), by using un as a test function in (3.26) we 

obtain

1 d
~ I M 2 +  ||Vun||2 (3.136)

x+rj G(x,y)In(un)(x)un(x,t)un(y,t)dyd:
J £l J £1

+7  /  I n{un)ubn 
Jn

/ o"(un)</>nV0nVun.
Jo.

Since the third term of the left hand side in the above equation is nonnegative, 

we have

d f
TuIK II2 +  l|V«n||2 +  27 /  I n(un)u5n < c,

J
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where the Schwarz Inequality is used. Applying the Poincare’s Inequality, we 

find that
d I*— ||un||2 +  di||un||2 +  27J  I n(un)u5n<C .

Then we can rewrite (3.138) as

d c

(3.138)

(3.139)

and obtain

-̂ ■||un||2 +  dxll^H2 +  d2||un||5 < C, 
at

(3.140)

which is similar to (3.89). Now we apply Lemma 3.2 to (3.140) with p 

and p the unique solution of dip +  d2p5̂ 2 =  C and obtain

,di\2 J d\b

1 — e 2
fo r  all t > 0. (3.141)

Write

P = p 2 +  ( - r ) 3--------u2

-di

Then for all t > 1, we have

1 — e 2dl

K l | 2(t) <  p'- (3.142)

Now integrating (3.139) from to to t0 +  3 yields that

r t o+3 n

/ / ubndxdt < C, fo r  all t0 > 1, (3.143)
Jto Jq

where the inequality (3.142) is used. Thus by the Holder Inequality, we have

||wn||2,3,Qto><0+3 ^  C.

Finally it follows from (p — 2)+ < 3 that

||«n||2,(Al-2)+)Qt0,t0+3 ^  C\\un\\2p,Qt0ttQ+3 < C. (3.144)

Combining the inequalities (3.134), (3.135), (3.142) and (3.144), yields that

II^H|2,n,Qt0,t0+3 — C, (3.145)
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for all 0 < fi < iV +  2<$o- Hence for 0 < a0 < S0, w is of class C,a°’aô 2(<3t0,t0+3) 

Consequently

<C .ll^ll^Wio.to+s) ^  

Since 0 < £un < w, we have

ll£«ra||z°°(Qt0,t0+3) < C. 

In view of the definition of £, we have

||Wn||L°°(Qto+i jto+3) < C,

(3.146)

(3.147)

(3.148)

for all t0 > 1- Now if  we shift the graph of £(t) to the right hand side by one 

unit, then it follows from (3.132) and [28] that

I|v ( ^ ) | | 2,m w +3 (3-149)

< C{\\£In(un)[ri /  G(x,y)un(y,t)dy +  ku4n]\\2̂ 2)+!Qto+hto+3 
Jn

+  ||Ccr(wn )0 n V 0 n ||2,|i ,Qto+i ito+3 +  ||£twn||2 ,(^-2)+,Qt0+1,t0+3 

+  l l ^ n | U 2 ( t 0 + l , i o + 3 ; i r 1 ( n ) ) } -

We estimate the right hand side of the above inequality term by term.

C-̂ n(̂ n)

< c

V /  G(x,y)un(y,t)dy + ku. 

. Jn

2, (V ~ 2) + >Qt0+ l , t0+3

(3.150)

< C t

II6 « J  2) + iQt0+1,to+3 —
L ° ° ( Q t o + i , t 0 + 3 )

(3.151)

where (3.148) is used. Integrating (3.137) from t0 +  1 to t0 +  3 and using 

(3.142) yield that

f t  0-K>

/  ||V ^
Jto + l

12dt < c.

It follows from (3.142) and (3.152) that

||£wn||x,2(to+ljto+3.tfi(n)) < C. 
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The boundedness for the second term is obvious. Thus we finally obtain for 

p < N  +  2<5q,

(3.154)

Therefore, for n < N  +  2 +  26q

IlĈ wlh./̂ Qto+i.to+a — C- 

Since un converges to u strongly in L2(Qto+1,^+3), we also have

(3.155)

(3.156)

Finally, by the definition of £(t) and Lemma 3.4, the desired results (3.130)

for all t >  3. Since the constant p\ is independent of t, n and uq, we easily 

obtain the following theorem.

Theorem  3.9. Let K \ — {u  > 0— u =  0 on dfl, u G (7a(fl)} . Then the 

set Bi =  5(0, pi) fi K i is a common absorbing set for S(t) and Sn(t), where

the elements of K i uniformly and all solutions u and un will enter into this 

absorbing set after time t >  3.

Also in Theorem 3.8, the inequalities (3.130) and (3.131) are satisfied for 

all 0 < Oo < <$o- In particular, picking o0 > a yields that S(t) and Sn(t) 

are uniformly compact for all t > 3, since the imbedding Ca°(Q) Ca{fl) is 
compact.

Now the existence of global attractors for S(t) and Sn(t) is just a direct 

consequence of Theorem 1.1 in [20]. We summarize the results in the following 

theorem.

and (3.131) are obtained. □

From the above theorem we observe that

5(0, pi) is the ball in Ca(Ll) centered at 0 with radius p\. The set absorbs
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Theorem 3.10. The dynamical system (3.11)-(3.16) (respectively, (3.25)- 

(3.27)), under the previous assumptions, possesses an attractor A  (respec­

tively, An) which is compact, connected, and maximal in K \. A  (respectively, 

An) attracts every element of K \. Furthermore, A  (respectively, A n) is con­

tained in Ca°{Fl) for all a < a0 < 80.
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Chapter 4 

Holder Continuous Solutions of  

an Obstacle Therm istor 

Problem

4.1 Introduction

Recently the authors in [2] introduced the following obstacle problem which 

models the behavior of certain micromachined microsensor devices:

du f
(—  -V [k (u )V u ] +  rj / G(x,y)u{y,t)dy+ -fu4)u > V[a(u)(j)V(f)]u, (4.1) 

-V [a (u )V 0 ] =  0. (4.2)

Here the unknown functions u and (j) denote the distributions of the tempera­

ture and the electrical potential in the device. The coefficient a(u) represents 

the temperature dependent electrical conductivity and k(u) the thermal con­

ductivity. The parameters r] and 7 are positive constants. The integral term 

in the first equation describes heat losses to the surrounding gas and the 4th- 
order nonlinear term models the radiation effects. We refer to [2] and the 

references therein for more background information on this obstacle problem. 

In [2], the usual boundary conditions are considered. Specifically, let Cl be a 

domain in RN w ith boundary dCl divided into two parts: r 0 and TN. On the
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boundary, the temperature u satisfies either a homogenous Dirichlet or a ho­

mogenous mixed boundary condition and the potential 0 satisfies 0 |ro =  4>o(x) 

and f^ lrv  — 0- Here 0 q ( x ) is a known function. The authors in [2] discussed 
the existence of solutions to (4.1)-(4.2), and the long time behavior of the 

solutions was described by consideration of global attractors.

In this chapter, we are interested in an analysis of the situation where 

the microsensor is driven by a current source. We are first interested in the 

nonautonomous case, i.e., the source <j)o(x,t) on the boundary is time depen­

dent. Secondly we w ill need to consider a nonlocal boundary condition case. 

This time the boundary dfl is decomposed into three parts, besides To and T'/v, 

there is another piece Ti, i.e., dQ =  r 0 U Ti U Iby. The boundary condition for 

u is the same as before while 0 satisfies 0 |r i = £(t) and the previous boundary 

conditions on the other two parts of the boundary. Here £(f) is an unknown 

constant for each t, but the total current I( t)  through Ti is known for each 

time t. Thus another nonlocal boundary condition for the problem is given by

I ( t )  = J  a ( u ) ^ d s .  (4.3)

We recall that for microsensor devices operating under conditions which 

imply that radiation effects and heat losses are irrelevant, the following well 

known elliptic system is widely used to model their steady state behavior:

-V[fc(u)Vu] =  V[a(u)0V0], (4.4)

V[<t(m)V0] =  0. (4.5)

Several authors have studied this elliptic system with a nonlocal boundary 

condition similar to (4.3), see [3, 7, 9], and various results related to the ex­

istence of solutions are given in these papers. But all results are obtained 

under the assumption that the potential 0 satisfies a homogenous boundary 

condition on T0, i.e., 0 |ro =  <fio(x) =  0. In this chapter we w ill not impose this 

assumption on 0, and therefore can’t directly apply the methods in [3, 7, 9] 

even to this special version of our case. To overcome this difficulty a decom­

position of 0 w ill be introduced. It w ill play a significant role throughout the
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chapter and details w ill be shown in Section 4.3. We also refer to [6, 8] for 

the description of physical devices related to this kind of nonlocal boundary 

conditions. Finally we mention here that the time dependent version of (4.4)- 

(4.5) associated with the usual (i.e., 0 known on 9f2) boundary conditions is 

also well studied. Related results can be found in [4, 17, 16] and the references 

therein.

In this chapter we w ill show the unique solvability of the initial-boundary 

value problem (4.1)-(4.2). Since all results w ill still hold if T i is empty, our 

theorems are also extensions of those in [2] where only the autonomous case 

was studied.

For simplicity we w ill assume that the thermal conductivity k(s) =  1 and 

we shall not consider the situation where a, k degenerate. Mathematically 

the domain VL could be a connected domain in RN for any N, but in prac­

tice O is a bounded three dimensional domain. Thus we w ill restrict the 

explicit presentation to the case N  =  3. Furthermore, in view of the physi­

cally meaningful situation and of the presence of the fourth power term on the 

left hand side of (4.1), we shall consider Ca,â  solutions only. As stated before

90 = r 0 U Ti U r^v, and we w ill assume that both r 0 and Ti are closed and

nonempty. Moreover 0 U Tw is Lipschitz. More specific descriptions about the 

domain can be found in [15]. In particular, we need Poincare’s Inequality for 

functions certain vanishing on r0. Then the associated in itia l and boundary 

conditions to (4.1)-(4.2) are given as

u(x, 0) =  u0(x) in  O, and u\qq =  0, (4.6)

4>|r„ =  <M M ), 0 h  =  £(*), |^ |rV  = 0, (4.7)

I( t)  =  J  a (u )^d s , (4.8)

with (u , 0, £) denoting the unknowns. Before we proceed, we summarize more 

formal assumptions in the following:

A l. 0 < Uq(x) G Ca(fi) and Uo|an =  0. The current source I( t)  belongs to
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C a/ 2([0,T]).

A2. There exist two Lipschitz functions $o(^, t) and $ i(x ) such that $o|r0 = 

0o, ^olr, = 0, $ i|r0 = 0, $ i|ri = 1, = ^ | r w = 0. Moreover for

some constant k > 0, ||V(<f>o(T, h) — $o(^,^2))|| < ft\ti — t2\at2.

A3. There exist three positive constants <To, Ci and I such that cr0 < a(s) < 0\ 

for all s > 0 and |cr(si) — er(s2)| < l\si — S2I for all Si, s2 > 0.

A4. G(x,y) > 0 and sup^g^ \G(x, y)\ < 00. The parameters y and 7 are 

positive constants.

For any T > 0, we denote the parabolic domain by QT =  O x (0, T). 

For simplicity, we write V — Hq(Q), Vo =  Hq(Q U Fjv) and V', V'D the 

corresponding dual spaces of V, Vo respectively. Moreover, we define the 

convex set

K  =  {v £ L2(0,T; H)| v >  0 a.e. in Q t}-

We take advantage of the system structure and say a triplet (u , 0, £) is a weak 

solution of (4.1)-(4.2) if  it satisfies the following conditions:

u £  K, ut £ L2(0, T ; V7),
I* du I*
/  -^ (v  — u) +  /  VuS7(v — u) (4.9)

J q t  d t  J Qt

+y  / G(x,y)u(y,t)(v — u)(x,t)dydxdt
•/Q'j' J17

+7  /  uA(v — u) > — /  a(u)0V0V(u — u), Vu £ K ;
J Q T  J Q r p

^  G L 2(0 ,T ;V b),

a{u)V0Vu =  0, Vu e T2(0, T; VD), (4.10)

/( f)  = [  a(u)Vcf>Vg, Vg £ S. (4.11)
Jn

Here $£ =  <f>0 +  £$1 and S =  {v\v £ H x(Q), u|r0 =  0, u|r i =  1}. Moreover 

we say that (u, 0, £) is a Ca,at2(QT) solution if u and 0 are in Ca’at2(QT) and 
£ ( t)e C “ /2([o,T]).
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We observe that, if  4> G for all g £ S,

(  a(u)^-ds =  f  <7(it)V</>Vg
J t, 9n Ja

(4.12)

where the divergence theorem and equation (4.2) are used. Thus, equation 

(4.11) is a weak form of the expression (4.3) which is actually not formally 

defined for 4> £ H x(0 ).

We w ill follow the penalized method introduced in [2] to solve this problem. 

Let 0 < I n{s) < 1 be a sequence of smooth functions which converges to the 

Heaviside function. Then the related penalized system is given by:

coupled with the same in itia l and boundary conditions. Similar definitions of

n. The method used here involves Leray-Schauder degree theory together with 

Campanato type arguments. We thus obtain a sequence of solutions, {un}, 

and through a series of a priori estimates we show that a subsequence converges 

to a solution of the original obstacle problem. The unique solvability of the 

problems is then obtained through the property of the continuous dependency 

of the solutions on the given data.

The rest of the chapter is structured as the following. In Section 4.2, 

we recall some preliminary results related to Campanato spaces. In Section 

4.3, a related linear elliptic equation with a nonlocal boundary condition is 

considered. The existence and uniqueness of solutions are given in Section 4.4.

In the entire chapter, C and Q  always stand for positive generic con­

stants which only depend on the various norms of the boundary conditions,

(4.13)

=  V[a(un)0nV0n] 

V[ct(u„)V0„] =  0, (4.14)

weak solutions and C'Q,a/,2(Q r) solutions hold for these penalized systems. We 

first establish the existence of solutions to the above penalized systems for each
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the various bounds of the coefficients and the domain 0. Dependence on other 

quantities w ill be explicitly specified. These constants may differ from one 

step to another.

4.2 Notations and known results

It w ill be convenient to recall some notations and results related to Campanato 

spaces. For 0 < to < h , we denote Q x (to, ti] by Qt0,ti ■ For simplicity, if  t0 =  0, 

we write it as Qt l . A point (x,t) £ Qt0,t! is denoted by z. Let Br {x0) be the 

ball centered at Xq w ith radius r  and Qr (zo) be the cylinder Br (x0) x (t0—r 2, to]. 

Then we define

Moreover, for p. > 0, £ 2,M(Q) and £2,/i(Qt0)tl) denote the Campanato spaces 

on f i and Qt0it 1 associated with the standard norms, ||.||2,̂ ,n and ||-||2,/i,Qt0,ti 
respectively. We refer interested readers to [10], [12] and [18] for details on 

these spaces and norms.

Let d0 denote the Holder exponent as stated in the De Giorgi - Nash the­

orem, see [12], [18]. In what follows, all a, cq are in (0, do), and /.t0, pi are 

nonnegative numbers such that /j,q < N  — 2 +  2do and f ii < N  +  2d0. They 

may differ from one step to the next. Furthermore (ft — 2)+ =  max{0, fi — 2}.

We also denote the standard L2 inner product and norm by (•, •) and || • ||, 

respectively. For a general normed space E , we denote its norm by || • ||B. For 

instance, || • Wm̂ ci) denotes the standard norm of the Sobolev space H l {Q) (see

n[xo, r] — b t{xq) n Q[^oj ]̂ — Qr(%o) c Qto,ti■

The following proposition can be found in [12], Theorem 1.17. 

Lemma 4.1. (i) I f  0 < fi < N  the mapping

defines a norm on £ 2,̂ (f2) which is equivalent to || ■ 112,̂ ,0 - 

(ii) £ 2,JV+2̂ (fl) is isomorphic to 0 ^(0)  for fi £ (0, 1).
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Similar results for £ 2,//(<5t0,ti), established in [5], are summarized in the 

following lemma.

Lemma 4.2. (i) I f  0 < p < N  +  2, the mapping

>1/2u —► I sup r   ̂ / u2dz
XzoeQtoM^O JQ[zo,r]

defines a norm on £ 2,/i((5t0,ti)j which is equivalent to || • ||2,̂ ,Qto,tl •

(ii) £ 2,JV+2+2/i(Qt0it1) is isomorphic to C J,’̂ 2(Qt0jtl) for p G (0,1).

The next two lemmas are special cases of some results in [15, 14].

Lemma 4.3. (Lemma 5.3.2, [14]) Let a(x) G Ca(Q) and satisfy 0 < ao <

a(x) < ai < oo. Assume w solves the boundary value problem:

3

V[a(rr)Vu>] =  f 0 +  ]T  A / i  in  f i (4.15)
i = 1

dw
—— =  0 on 8LIn, w =  wd on <9fiz> (4-16)
on

Then there exists a positive number p, 3 < p < 4,

3

i = 0

whenever the norms on the right hand side are bounded. Here C is a positive 

constant independent of w. We denote by wD also the extension of wD to fi.

Lemma 4.4. (Theorem 3.5.1, [14]) Let a(x) G L°°(fi) and 0 < ao < a(x) < 

ax < oo. I f  w solves (4-15)-(4-16), then for 0 < p Q< N  —2 +  250,

11 Vw 112,^,0 < C(\\fo\\2, (̂ 0- 2)+, n +  ||VwD||21(/Uo-2)+>n
3

2— 1

whenever the norms of the right hand side are bounded. In particular, w G 

Ca i(fi) with oil =  {ho — N  + 2)/2 for p0 > N  — 2.
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The following lemma is an analogy of Lemma 4.4 for the time dependent

case which is a special case of the results in [18].

Lemma 4.5. (Theorem 1, [18]) Let a(x) € L°°(Ll) and 0 < ao < a(x) < a\ <

oo. I f  w is a weak solution of the initial and boundary value problem

d 3
-  V [o(i)V t«] = f o  + Y l  A / i  in  fi, (4.17)

i=  1

w =  0 on dfl, w(x, 0) =  0, (4.18)

then for 0 < pL\ < N  +  2<50;

3

11 V « J Qt < C'(||/o||2,(Ati—2)+Qt  +  ^  11/i 112,/n,Qt +  |M U 2(0,T;.H'i(fi))))
i = 1

whenever the norms of the right hand side are bounded. In particular, for

H\ > N, w 6 Ca2,̂ (Q T) with a2 =  (p-i ~~ AO/2-

4.3 A linear elliptic equation with a nonlocal 

boundary condition

Let u be a known measurable function. We first consider the following linear 

nonlocal elliptic problem and establish results that w ill be useful in what 

follows: Find (0, £) such that 0 — <f>£ <G Vfo and

/■J n
a(u)\7(j)Vv =  0, Vu G Vd , (4-19)

1 =  [  <r(u)V0Vs, V# G S. (4.20)
Jn

Here a, 0o, -f, £ and are the same as before. As in the rest of the chapter, 

the functions u(x,t), <f(x,t), £(£), I( t)  and so on may be also time dependent,
but for convenience, we w ill suppress the variable t in this section, and the

results presented w ill hold for every t.
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Lemma 4.6. There exists a unique solution (</>, £) to the equations (4-19)- 

(4-^0) and it is given by (p =  ip +  £(p. Here, ip is the unique solution of the 

following elliptic boundary value problem

ip — $o £ Vd , I  a{u)VipVv =  0, Vv G Vd , (4-21)
Jn

and ip satisfies

cp — $ i G Vd, /  a(u)VipVv =  0, Vu G Vd - (4.22)
Jn

The constant £ is given by

£ =  ( /  -  [  cr(u)W>V<?)/ f  a(u)VipVg, \/g G 5. (4.23)
w fi </

Moreover, there exists a positive constant £* which depends only on the data, 

I ,  </>o bounds a0, of a such that

i«i < f  •

The explicit form of £* is given in the proof Furthermore, <p G L°°(0).

Proof. By standard arguments about linear elliptic equations, we see that the 

two systems (4.21) and (4.22) are both uniquely solvable. If we let cp =  ip + fp ,

then clearly cp satisfies (4.19). Substituting this (p into the nonlocal boundary

condition (4.20) yields that

£ /  cr(w)V</?Vg = I  — f  a{u)VipVg. (4.24)
Jn Jn

In view of (4.22), the value of JQa(u)VipWg w ill not depend on the specific 

choice of g. Thus f Q a(u)V<pVg =  f n <r(u)|V</?|2 > 0 and we may divide both 

sides of equation (4.24) by JQa(u)V(pVg to obtain (4.23). By observation, 

if there exist two different solutions (p1 and <p2 to the equations (4.19)-(4.20), 

then £1 — £2 =  01|r1 — <P2\v1 ^  0. Since both (p1 and (p2 satisfy the nonlocal 
boundary condition (4.20), it follows that

0 =  ^ 2  -<P2)\2,
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by choosing g =  (01 — 02)/(^ 1 ~ £2) as a test function. Thus f Q |V (01 —

(f)2)\2dx =  0. Consequently, 01 — <p2 due to Poincare’s Inequality. This con­

tradicts with 01 7̂  02, and the uniqueness follows.

The rest of the proof deals with the existence of an upper bound £* of |£|. 

By standard estimates of linear elliptic equations we have

IIWH < - | |V 4 „ ||,  i|V^|l < - ||V ® ,| | .  (4.25)
V 0 V o

Due to equations (4.21) and (4.22), the value of £ doesn’t depend on any 

specific g. Thus we set g =  cp and obtain

£ =  ( I  — I  a{u)Vf)Vcp)/ f  <j(u)VcpVcp. (4.26)
Jn Jn

Moreover, by standard variational arguments in f„g5 11V112 exists and is a pos­

itive number. Define

m =  inf ||Vw||2. (4.27)
ves

Therefore, we obtain that |£| < £* with

|7| +  ~ l||V $0|| HV^xll
£* = ------- -  , (4.28)v0m*

where (4.25), (4.26), (4.27) and Schwarz Inequality are used. Finally, that 0 e 

L°°(D) follows from the boundedness of 4>o and the weak maximum principle. 

This completes the proof. □

Now we give some estimates of 0, cp and 0 in the Campanato spaces. 

Lemma 4.7. The following holds for all 0 < < N  — 2 +  2<$o.-

||V ^||2,M0)n < C, (4.29)

||V0||2,Mo,̂  < C'(||4>o||2,/i0,n +  I I V 2)+,ri), (4.30)

||V0||2,Mo,n < C(\I\ +  llt&olk/jo.n + ||V<I>o||2,0*0- 2)+,n)- (4.31)

Proof Due to Lemma 4.4, 0  and cp satisfy the following estimates:

||'V'0||2>AiO,n < C'(||«I>o||2,Mo,n +  ||V4>o||2,(̂ 0-2)+,n +  IM Iirqo)), (4.32) 

||V^||2)(Uo,n < C (||$ i||2lWJ>n +  ||V $ i ||2)(Mo_2)+>q -I- IM Itfi(n))- (4.33)
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O n th e  o ther hand, i f  and  p  also satisfy

I IV 0 I I  <  C '||V $ o ||2 ,( /i0-2 )+ ,n ) l|Vy?|| <  C ' | | V $ i | | 2)(/i0-2 )+ ,n , (4 .3 4 )

where (4.25) and £ 2’^ 0_2)+(Q) ^  L2(f2) are used. Thus (4.29) and (4.30) 

follow immediately. Moreover, by definition (4.28),

|J| +  $ l | v * 0|| W^iW
r  = ------- --------------------- < C(\I\ +  ||V$o||2,(^ -2)+,o). (4.35)

<Jo m*

Since 0 =  0 +  £<p, we have

||V0 ||2lAto,n < C(\I\ +  11 $ 0112,ti0,a +  HVt&olk^o^i+.n). (4.36)

where (4.32)-(4.35) and Poincare’s Inequality are used as well as the fact that 

L°°(fl) is a multiplier for £ 2,po(fl) if  < N. □

In the remaining part of this section, we show the continuous dependence of 

the solutions of (4.19)-(4.20) on the given data. Let (01,£1) and (02,£2) be the 

solutions of (4.19)-(4.20) corresponding to the data (id. 0g, I 1) and (u2,4>l, I 2) 

respectively. Due to Lemma 4.6, we may write 01 and 02 as

f t  =  f t  +  f V ,  02 =  0 2 +  £ V -  (4.37)

Here, 0* and pl w ith i =  1, 2 are the solutions of (4.21) and (4.22), respectively, 

associated with the given data. Then the following lemma holds.

Lemma 4.8. Assume u% G L2p̂ p~2\Vf) and V0*, Vy?1 G LP(Q) for some 

3 < p < 4 with i — 1, 2, then

II01 -  02|Ui(n) <  C (|C  -  I 21 +  ||V (*J  -  *S)|| +  ||u‘ -  «2||lW(P- 2,(n,X.4.38) 

Proof. Due to (4.37),

l|V (0 ‘ -  02)|| =  IIV^ 1 +?y -  0 2 -  fV ) | |  (4.39)

<  liv tv 1 -  0 2)|| +  |C| l|V(¥>> -  P)W +  I?1 -  C l ||V ^ ||.
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We w ill estimate the right hand side of (4.39) term by term. According to 

(4.21), ip1 — ip2 satisfies

f  a ^ M i P 1 -  </>2)|2 =  [  cr(tt1)V (ip1 -  </>2) V ( ^  -  $ 2) (4.40)
•/f) »/

+  f  [ * ( « ' )  -  «t(„2) ]V ^ V (4 > J  -  
Jn

— (  ^ (u 1) — a(u2)]'\/p’2j\/(tp1 — tp2).
Jn

By Schwarz Inequality we have

[  cr(u1)V ('01 -  ^ 2)V (c^ -  $ 2) < cr1||V('0 1 -  ip2)|| ||V($S -  *2)11 (4-41) 
Jn

Moreover by Holder Inequality and the assumptions on a(s) we have

f  [^(u1) -  a(u2)]V ^2V(0o -  <f%) (4.42)
Jn
< J||V(*J -  $g)|| HV^HiP^) Ht*1 -  U2||Lap/(p-2)(n)

Here I is the Lipschitz constant in A3. Similarly to (4.42), we have

f  [^(m1) — cr(u2)]VV;2V('01 — pi2) (4.43)
Jn

<  j l i v ^ 1 -  ip2W  +  CWu1 -  U 2 | | |2p/(p-2)(n)- 

Hence it follows from (4.40)-(4.43) that

IIVO01 -  i,2W  < C(||V(«; -  <6g)||2 + IIm1 -  «2H l„ (̂ , (fi)). (4.44) 

Similarly to the estimate of (4.40), p1 ~ P2 satisfies

IIV^ 1 -  y 2)\\2 < C\\ul -  u2||22p/(p-2)(n). (4.45)

We next estimate l^1 — £2|. From the proof of Lemma 4.6, we have by setting

g =  <p2 that

C [  a(ui )|V(piV ^ 2 =  r -  f  a ^ V p V tp 2, i  =  1, 2. (4.46)
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Consequently

( ? - ? )  [  *(u2) \ W \ 2 =  I 1 ~ I 2
Jn

(4.47)

+  f  [<j(u2)V (,02 — '01) +  (^(m2) — a(u1))VV;1]V</72

+C1 [  [(?(u2)X7(ip2 -  <pl ) +  {(t(u2) -  <t(m1))V ^1]V ^ 2

Thus, it follows from the Holder Inequality, (4.27), (4.44) and (4.45) that

Then it follows immediately from the combination of (4.44), (4.45) and (4.48)

V (</>1 -  02)|| <  C d l1 -  I 21 +  ||V(<&5 -  $ 2)|| +  Hu1 -  u2\\L2P/iP-2)m ). (4.49)

Note that exactly the same estimate holds for ||V(01 — </>2 — 3>g+$g)||, an(̂  since

on T0, we obtain (4.38) by Poincare’s Inequality. □

As we shall see, the assumptions in Lemma 4.8 are reasonable. Indeed 

based on physical considerations, we are only interested in the Ca,a/2(QT) 

solutions. Thus, in our case, u e Ca(Cl) for each t. Then by Lemma 4.3, A 

and tp both belong to for some 3 < p < 4.

solutions

In this part we first w ill show the existence of solutions to the penalized equa-

of the original obstacle system w ill be obtained by passing to the lim it of some 
subsequence o f th e  p rev ious pena lized  so lu tions . Fo r n o ta tio n a l convenience 

we write

C1 -  £2| < C d l1 -  I 21 +  K  -  $ 2|| +  Hu1 -  u2||i2p/(P-2,(f2)). (4.48)

that

4.4 The existence and uniqueness

tions for each n by applying Leray-Schauder degree theory. Then the solution

E(w) =  I n(w) r) /  G(x,y)w(y)dy +  'yw4 (4.50)

(4.51)
L Jn

F{w,4>) =  a(w)4>V(j).
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We now decom pose th e  solution u n of (4.13) into two p arts  as u n =  v  +  zn . 

Here v is the solution of the following simple initial-boundary value problem:

vt — Au =  0,

v(x, 0) =  u0(x), v(x,t) =  0 i f  x G dQ.

(4.52)

(4.53)

Since u0 G Ca(Q) and uq — 0 on <90, the above equation has a unique 

C a 'a / 2 ( Q t )  solution by a classic result in [11]. In view of the equation sat­

isfied by un, we note that zn and (f)n satisfy the following equations

Znt Azn -|- E(zn -|- V) — V F(zn -|- V, 0ri) 

V[a(zn +  v)V(f)n] =  0,

(4.54)

(4.55)

with zn(x, 0) =  0 and the same boundary conditions. Since v G C,q,Q//2(Q t); 

it  is sufficient for us to show zn G Ca’af‘2(Qr) as well. Define the family of 

operators

with 0 < A < 1. Here Zn G (7“ 'a/2(QT) and wn is the solution of the following 

system:

with the same in itia l and boundary conditions as for system (4.54)-(4.55). 

Our results are summarized in the following several lemmas and theorems.

Lemma 4.9. For each 0 < A < 1, L(A) is a well-defined compact operator 

from Ca’a^2(QT) into itself

Proof. In view of Lemma 4.6, the equation (4.58) is uniquely solvable and its 

solution 0n G H 1(f2) D L°°(Q) for each t, uniformly bounded and continuous 

in t by Lemma 4.3 and Lemma 4.8. Thus, by classic results of linear parabolic 

equations [11], there exists a unique weak solution wn to the equation (4.57).

L(A) . Zn > wn) wn L(A )^n, (4.56)

wnt -  A wn =  —X(E(Zn +  v ) -  X7F(Zn + v, </>n)), 

V[cr(Zn +  v)S7(j)n] = 0 ,

(4.57)

(4.58)
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It remains to show that wn E C'y’°'l‘2 (Qr) ■ According to Lemma 4.7, for almost 

every t,

||V0n||2)/iO)n (t) < C. (4.59)

By Lemma 4.1, we have

sup f  |V0ra|2 < ||V 0„|gMo n(t) < C, (4.60)
x o e f 2 , r > 0  JCl [xo,r]

which implies that

f o o + 2 ) [  \V4>n?dz < C, (4-61)
j Q l z n . r ]

T
Q[zo,r]

for all z0 E Q t and r  > 0. Therefore, applying Lemma 4.2 together with (4.61) 

yields that, for all 0 < fj,± < N  +  25o,

IIV0„||1 tfluQr < C sup r _/il /  \V(pn\2dz < C. (4.62)
zo€QT,r>0 JQ[z0,r]

Moreover, by the weak maximum principle 4>n E L°°(Qt)- Thus, o(Zn+v)<pn E 

L°°(Qt). Since L°°(QT) is a multiplier of £ 2,Al1 (Qt), we have a (^n+u)0nV0n E 

£ 2,/il(Qt). Now applying Lemma 4.5 to equation (4.57) yields that

IIVWn\\2,m,QT 5: ^'tll'WVilh./u.Qr (4.63)

+  11 E(Zn +  ,y ) ||2,(/i1- 2)+,QT +  ||^n ||L 2(0,T ;iri(n))]-

According to (4.62), the first term of the right hand side of (4.63) is bounded. 

We notice that E(Zn +  v) E L°°(QT) and F(Zn +  v,(j>n) E L2(QT). Thus, by 

standard a priori estimates for linear parabolic equations [11], the third term of 

the right hand side of (4.63) is bounded too. Since in our case 0 < /q < iV+2(i>o, 

we have (hi — 2)+ < N. By the imbedding theorem L°°(QT) ^  £ 2,m(Q t) for 

0 < n < N, we have that the second term is also bounded. Therefore, there 

exists a positive constant C such that ||Vu;n||2,Ml,QT < C and \\wn\\2tfJll+2,QT < 
C. This implies that wn E C ao,ao/2(Q T ) for all 0 < a0 < <50. Therefore, the 

operator L (A) is well defined for each parameter 0 < A < 1. Now if  we choose 

ao > A(A) maps C a,0lF ( Q T ) into Cc‘°’OL0/2(Qt) and thus it is a compact 
operator for each A. □
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L em m a 4 .10 . For each 0 <  A <  1, L (A) is continuous.

Proof. Let Z™ —> Zn in Ca'a 2̂(QT) as m —► oo. We have to show w™ —> wn 

in Ca'a^{Q T).
We first give an estimate for — f n. By following a procedure similar to

the proof of Lemma 4.8, we write 0™ -  <j>n =  ip™ -  ~ f.nPn and

obtain

l|V (C  -  MW2,»,n < l | V «  -  W lkw .n  (4.64)

+  I CT1 I I ~  +  \ fn  ~  £n|  II^  P n \\2^ 0,n-

Here tjj™ (ipn) and ip™ (pn) satisfy (4.21) and (4.22) respectively with u re­

placed by Zff +  v (Z„ + v). Therefore, ffff — ipn and — pn satisfy

[  a(Zn +  v)V{i>™ -  ^n)Vw (4.65)
Jn

=  -  [  [a(Z? +  v) ~  a(Zn +  «)]'V C V « ,
Jn

f  a(Zn +  vm <pZ-<pn)Vv (4.66)
Jn

=  -  f  [a(Z™ +  v ) -  a(Zn +  v)]V < V u ,
Jn

for all v (= Vd - Applying Lemma 4.4 to (4.65) gives

II V (C  -  ^ n )h ,0,n < C [ l ie  -  i>n\\HHn) (4.67)

+ \M Z™  + v ) - a ( Z n +  v))V^h,»o,n].

Similarly to the estimates of (4.32), (4.34) and (4.44),

H V C Ik ,*,,n  ^  C'(||$o||2^0,n +  l|V$o||2,(MO- 2)+,n), (4.68)

| |V ( C  -  i>n)|| <  c  II2% -  Zn\\L*P/(p-zHn) < C\\Z% -  ^n|U-(QT). (4.69)

Therefore, it follows from (4.67), (4.68) and (4.69) that for all 0 < <

N  — 2 +  2Sq,

||V (C  -  T /vO lk^ < C\\Z? -  Z u \\l ^ q t ) . (4.70)
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Similarly,

l | v «  -  p -o ilw . < C K  -  z»IU“ « t)- (4-71)

According to (4.48) we also have

I f f  -  f„ | <  C | K  -  Z„\\l«(Qt). (4.72)

Now we substitute (4.70)-(4.72) into (4.64) and keep in mind that is uni­

formly bounded by supt £* (£) to obtain

l|V (0 : -  0 „)ll2.».Q < C||Z”  -  Z„\\l« (qt ) . (4.73)

Thus, due to Lemma 4.1 and Lemma 4.2, by a procedure similar to (4.60)- 

(4.62), we obtain

l|V(0™ -  M h , n ,QT < C\\Z”  -  Zn||lM W ri. (4.74)

It also follows from (4.73) that, for /r0 > N  — 2,

110™ -  0„l|i~(n) < C||V(0™ -  0„)||2,Mln < C\\Z% -  (4.75)

Next we derive an estimate for w™ — wn. Actually w™ — wn satisfies the 

following equation

(w™ -  wn)t -  A (w™ -  wn) (4.76)

=  —\ { E ( Z ™  +  v )~  E ( Z n +  v )~  V[F(Z™ +  n, C )  -  F{Zn +  v, 0n)]}.

Applying Lemma 4.5 to equation (4.76) yields

II V «  -  wn)\\2,,uQT < C[\\E(Z? +  v) -  E ( Z n + v)||2,(mi- 2)+,qt  (4.77)

+  11 F(Z™ +  V, <j>™) -  F ( Z n +  V, 4>n)\\2,m, Qt +  II w n ~  wn||l,2(0,T;tfi(O))]- 

From (4.74), (4.75) we obtain

||F(Z™ +  v, 0™) -  F(Zn +  v, 0„)||2,w,Qt < C||Z™ -  Z„||l» (<w . (4.78)
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It follows from the assumptions on G, I n and the fact Zn +  v € C0i'01I‘2{Qt) 

that

\\E(Z™ +  v ) - E ( Z n +  v)\\u »1_2)+,QT < C\\Z? -  ZnWviQr). (4.79)

To estimate the last term in the right hand side of (4.77), we multiply equation 

(4.76) by w™ — wn and integrate over Qt to obtain

||V « *  -  wn) fL2[QT) < C[\\E{Z™ +  v )~  E(Zn +  u)||L2(qt) ] (4.80) 

+  ||F(Z? +  v, C )  -  F(Zn +  v, 0n) \\l2(qt )

< C\\Z? -  Zn\\L- {QT).

Substituting inequalities (4.78)-(4.80) into equation (4.77) gives

l | v «  -  Wn ) h , n ,QT <  C\\Z™ -  Zn\\L„ {QT).

Thus, ||V(w™ — wn)\\2ttlllQT —> 0. In particular, let fa = N  +  2a and obtain 

w™ — wn —► 0 when Z™ — Zn —>• 0 in Ca,aF(QT). We conclude that L {A) is 

continuous in Ca,Q/2(QT) for each A. □

Lemma 4.11. There exists a positive constant M  which is independent of X 

such that for all 0 < A < 1 i f  Zn =  L {\)Z n, then ||^n||ca>“/2(QT) < M.

Proof We write Zn = X  +  (Zn — X), where X  is the solution of the following

equation:

Xt — A X  =  XVF(Zn +  v,(f>n), (4-81)

with zero in itia l and boundary conditions. Due to the weak maximum princi­

ple, Lemma 4.1, Lemma 4.2 and Lemma 4.7,

||0n||L°°(QT), ||V0n||2,w ,QT < C,

which implies that

\\F(Zn +  V ,  0n)||2,ni,QT < fa\\<t>n\\L°°(QT) ||V0n||2,Ml,QT < C. (4.82)
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Then by the earlier procedures we find that

\\VX\\2,k ,Qt < C. (4.83)

Thus, X  is in Ca,â 2(QT)- Consequently, X  is bounded in L°°(QT). Moreover,

Zn — X  satisfies

(X -  Zn)t -  A (X  -  Zn) =  \E (Z n + v), (4.84)

again with zero in itia l and boundary conditions. Since Zn +  v is a solution

of a parameterized version of (4.13)-(4.14), we conclude Zn +  v >  0 by using 

(Zn-\-v)~ as a test function in (4.13)-(4.14). Thus, the right hand side of (4.84) 

is nonnegative. By the maximum principle, we have X  — Zn >  0. Equivalently, 

0 < Zn +  v < X  +  v, and both X  and v are bounded in L°°(Qr) with a bound 

independent of A and Zn. By summarizing the previous results and applying 

the energy inequality to Zn we obtain

WVZnhvudT -  C[\\E(Zn +  ■y)||2,(m-2)+,QT (4.85)

+  ||F(Zn +  V,  <̂ n)||2,/ii,Qt  + H^nllL^O.T^qn))] < C.

Finally we conclude that there is a positive constant M  which is independent 

of A and Zn such that

||^n||c“ .“/2(<9T) ^  M. (4.86)

□
Lemma 4.12. There exists a positive constant C such that, for all n

11'f ’n 11 C “ >“ / 2 (Qt ) i 11 Tn \ | C “ .“ / 2 (Q t)  ’

ll£n||c“ /2([0,T])> ||0n||c“ .“/2(QT) + C. (4.87)

Proof. G iven t i ,  t 2 G [0, T], we consider 4/(:r) =  ijjn(x,tx)  — 'ipn(x,t2) which  

satisfies

V[<r(u>(a;, h ))W ] =  - V[(<r(tw(x, fi) )  -  a(w(x, t2)))Vipn(x, t2)], (4.88)
d

^ |r 0 =  $ o (M i) ~ ®o(x,t2) ■= &{x), ^ | n = 0 ,  —  |r „ = 0 ,  (4.89)
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where w =  Zn +  v. Again from Lem m a 4.4,

||V ^ ||2lW)>n < C G K z fii)  -  w (x,t2)\\Loo(Q) ||V ^n(M 2) llw J  (4.90) 

+ ||0 ||2,/xo,̂  +  l|V0 ||2,(w)- 2)+1n + ||^ ||iri(f2)).

We choose $  -  0  as a test function for (4.88) and integrate it over fi. By

direct calculations we find that

||V *|| < C(\\w(x, h ) -  w(x, t2)|Uoc(Q) + II ve i l ) .  (4.91)

Now we choose a /io such that N  — 2 < no < 2. Then it follows from (4.90),

(4.91) and the Poincare Inequality that

||V tf||2l/JOln < C(\\w(x,ti) -  w (x,t2)\\LOo(n) (4.92)

+ lie ||2̂  + live ||).

Due to w G Ca,a/2(QT) and assumption A2

\ \w (x ,t t) -w (x ,t2)\\Loo(a), ||e||2lW),n, ||V0|| < C\tx -  t2\a/2. (4.93)

Consequently

l|V « |l2,M,n < C lt! -  t2|“ /2. (4.94)

Since n0 > N  — 2, we conclude that W 6 C (It: and 114/11 <V / M II —

C\ti — t2\°/2 which implies that

(4.95)

Now ipn{x,t) G Ca(fl) for each t and (4.95) implies tj;n ( x , i )  G Ca'a/2{QT) and 

is uniformly bounded with respect to n.

Similar results hold for ipn. Through the relations between (f>n  and ipn, 

cpn, the remaining two bounds can be obtained. □

Theorem  4.1. There exists a Ca,a/2(QT) solution to the penalized equations

(4.13)-(4.14) for each n as well as to the original obstacle problem, (4-9)-(4-ll)-
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Proof. When A =  0, the system (4.57)-(4.58) is uniquely solvable and the 

degree of I  — L(A) in a large Ca,â 2(QT) ball at A =  0 is 1. Thus by Lemmas 

4.9-4.11 and Leray-Schauder degree theory, the degree of I  — L( 1) is also 1. 

Therefore, there is a fixed point zn of L ( l)  such that un = zn +  v 6 Ca-a/2(QT) 

is a solution of the penalized equations (4.13)-(4.14).

From Lemma 4.12 and the proof of Lemma 4.11, we can choose a constant 

M i > 0 which only depends on cr0, ai- $ 0, $ i and I  such that

11I1 Ca,a/2 (Q t ) ’ llM™llc'a!>“/2(<3T)> ll£n||cQ/2([0,T])> (4.96)

IIV0n||2lW),(3T, ||Vun||2i/i0l<5T < Mi.

Consequently, both E(un) and F(un,4>n) are uniformly bounded in L 2( Q t ) .  

Thus, it follows from equation (4.13) that unt is uniformly bounded in L2(0, T ; V'), 

and passing to subsequences there exist functions u(x, t), <j){x, t ) and f( t)  such 

that for some a smaller than the one in (4.96),

un —> u weakly in L2(0, T; V) and strongly in Ca,â 2(QT), (4.97) 

unt ut weakly in  L2(0, T; V1), (4.98)

4>n —> 0 weakly in L2(0, T ; Vd )  and strongly in  Ca,â 2(QT), (4.99) 

fn(t) ->■ f( t)  strongly in  Ca/2([0, T]). (4.100)

Since 0 < I n(un) <  1, there is a function 0 < g <  1 such that

I n(%) —>• g weak — star in  L°°(QT). (4.101)

We now multiply both sides of (4.14) by a test function w € L2(0,T;Vb)

and integrate it over Q t ,  then pass to the lim it w ith respect to n  to obtain 

(4.10). Next we multiply both sides of (4.13) by w G L2(0, T; V) and integrate 

it over Q t ,  then passing to the lim it gives the following 

f  du fI — w +  I S/uVw (4.102)
J Q t  J Q t

+rj / G(x,y)u(y, t)g(x ,t )w(x ,t )dydxdt  
J Q'p J fi

+7  /  uAgw =  — cr(it)0V 0Vw.
J Q'p J OrrI QT J  Qrp
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Since un is nonnegative by the weak maximum principle, so is u. Moreover, we 

observe that g(x0, t0) =  1 if  u(xo,to) > 0. Thus g(x,t)(w — u) < w — u for all 

w >  0. Then if we replace w by w — u in equation (4.102) with w G K, (4.9) 

is obtained. Since un satisfies conditions (4.6), so does u. It remains to show 

that (f) satisfies conditions (4.7) and (4.8). We recall that 4>n — tpn +  CnTn, and 

that ip n  —* i j )  and <pn —> ip  where <j> =  ip  +  Thus 0 satisfies the boundary 

condition (4.7). Furthermore,

= I -  f n cr(un)V'i/>nVg  ^  I  -  f n (r(u)VipVg =  
/ n <j(w„)V^nV^ JQa(u)V<pVg

Therefore, the nonlocal condition (4.8) holds. □

In view of Lemma 4.8, we also have the following uniqueness result whose 

proof is by energy inequality arguments (see also [2]).

Theorem  4.2. Let (td, </>*,£*), i =  1, 2, be two Ca'a 2̂(QT) solutions to

(4.9)-(4-ll) corresponding to the data (ul0, (j)l0, P) i =  1, 2. Then there exists 

a positive constant C (t) such that

lu1 -  u2\\2+ f  HV^ 1 -  u2)\\2ds +  f  ||V(01 - 0 2)||2ds (4.103)
Jo Jo

< C ( t ) \ n l - u 2r  + f t \ i1- i 2\ds+ / W o - • ! ) ! ! *
Jo Jo

Similar result holds for the penalized system (4-13)-(4-14)- Consequently, 

both the obstacle problem and the penalized system for each n have a unique 

Ca’a/2(QT) solution.
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Chapter 5

On the Box M ethod for a 

N on-local Parabolic Variational 

Inequality

5.1 Introduction

Micromachined structures fabricated in standard technologies have been pro­

posed and investigated in recent years for microsensor applications, see, e.g. 

[5, 6] and the references therein. These devices consist of very thin structures 

(~  5-lOprn) suspended over a deep trench (~ 80pm). Typical examples are 

Devices 1 and 2 shown in Figure 5-1. The length of Device 1 is approximately 

1000pm, while the serpentine resistor in the center of Device 2 has a width 

of 6pm. The other dimensions may be estimated from the two figures, and 

further practical device details may be found in [5, 6, 7].

An applied current flows through the central resistor in Device 1, and 

through the zigzag resistor in the center of Device 2, which consist of a poly­

crystalline silicon layer whose resistance varies with temperature. Loss of 

energy from the resistor occurs through the supporting arms, through the 
surrounding gas and through radiation effects.

A possible application of such a structure as a gas pressure sensor is as
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follows: The electrical resistance of the structure is monitored and if  the sur­

rounding gas pressure were to drop - thereby decreasing the amount of heat loss 

by the device to the surrounding gas - the resistance would rise. It is therefore 

possible to determine the gas pressure by measuring the device resistance.

Device 1

Device 2

Figure 5-1. Device 1 and Device 2 ([7])

The simulation and modeling of such devices is now generally accepted as a 
very useful design tool. Accurate simulations offer the means to rapidly inves­

tigate the performance of proposed new devices, and to determine the effects 

on sensitivity of modifications of structures already constructed. These tech­

niques avoid the lengthy cycle of iterating construction, device measurement,
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and reconstruction until - if  ever - a suitable device is found. The simulation 

begins with the formulation and analysis of a system of partial differential

equations, which in its most classic form has been studied for more than 100

years, [12]. It consists of the two equations:

ut -V [k (u )V u \ =  a(u)\V<f>\2, (5.1)

—V[u(u)V0] =  0, (5.2)

and does not include terms to account for radiation losses nor for heat losses 

to the surrounding gas.

However, these terms are of paramount importance in the realistic sim­

ulation of the structures presently considered as we show below by actual 

example: their omission leads to very large errors between simulation and ex­

periment. Radiation terms can be incorporated in the equations by means of 

expressions derived from the Stefan-Boltzmann Law, while gas losses are sim­

ulated in practice by means of an ad hoc averaging technique first introduced 

by Mastrangelo in 1991, [15]. In this approach, the heat loss is described by 

a nonlocal (i.e. integral) term, and we obtain the system consisting of (5.2) 

together with:

ut — V[/c(m)Vm] -I- rj j  G(x,y)u(y)dy + au4 =  a(u)\V4>\2 (5.3)
Jn

There have been many papers dealing with (5.1)-(5.2) in recent years. We 

refer the interested readers to [2] for theoretical results dealing with (5.2)-(5.3) 

in steady state (with a =  0) and for further theoretical references, and to [4] 

for numerical results for (5.1)-(5.2) and further numerical references. These 

modifications of the classical thermistor equations lead to good agreement 

between simulation and experiment if  global quantities such as total resistance 

changes versus applied current at various pressures are calculated. A practical 
illustration of the above comments can be seen in Figure 5-2 and Figure 5-3. 

These figures involve a comparison - at steady-state - of the percent changes of 

resistance (^ % ) for Device 1 in a vacuum and at one atmosphere, respectively, 

as a function of the applied current (in milliamps).
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Figure 5-2. % change in resistance as a function of current 

for Device 1 in a vacuum ([7]).
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Figure 5-3. % change in resistance as a function of current 

for Device 1 at one atmosphere ([7]).

We observe the agreement between simulation and experiment, and the 

fact that the current needed to obtain a given is approximately four

times the current required in a vacuum. However, if  a more detailed analysis 

is required, such as an estimate of the heat loss at the base of one of the
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supporting arms, then this model can lead to unrealistic results for large gas 

pressures , i.e. large T]. Indeed, it is possible, as a consequence of (5.2)-(5.3), 

to have negative temperatures in some parts of the device in cases where the 

surrounding temperature is assumed to be zero. To avoid this discrepancy, a 

new model has been suggested, [3], which involves a differential inequality in 

place of (5.3) with zero as the obstacle, thus ensuring that the temperature 

is always nonnegative. Furthermore and most importantly, the new model 

extends the old, i.e. solutions with positive temperature of the old model also 

are solutions for the new.

It is our intention to present results for the numerical discretization of the 

new model using the box method, which is the technique commonly employed 

in practice. This method (also so-called the finite volume element method) 

is a numerical method occupying an intermediate position between the finite 

difference and finite element methods. Usually, it is characterized by a tria l 

space consisting of continuous piecewise linear polynomials on the primary 

triangulation and by a test space consisting of piecewise constants on the dual 

box mesh. Nowadays, the box method has been extensively and successfully 

used not only for various differential equations but also for variational in­

equalities. For example, Z. Cai developed the error estimates for a general 

self-adjoint elliptic boundary value problem in [10] and J. Steinbach gave com­

parison results between the finite volume element and finite element methods 

in [17] for elliptic variational inequalities. One of the important reasons for 

the box method being popular is that most of the time it is derived from local 

balance equations directly and so it conserves important physical properties. 

Another important reason is that it is easy to implement and provides effective 

discretization processes for multilevel adaptive methods (see [16]).

In summary, in this chapter we apply the box method to the following 
nonlocal obstacle thermistor problem:

Find u £ K  =  {v £ i7o(fl)|u > 0} such that
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where (•,•) denotes the standard L2(Q) inner product. Here, u denotes the 

temperature in the thermistor and ip the potential. We shall construct and 

analyze a box scheme for (5.4)-(5.5), subject to the initial/boundary conditions 

given below. Our main result is an optimal H 1 error estimate (Theorem 5.2) 

for the scheme.

We refer the reader to [1] and [11] for the standard definition of L2(fi), 

H s(£l), W s,p(fl) and their associated norms || • ||, || • ||s, || • \\StP. We refer to 

[18] for the definition of the space Lp(0, T ; X)  with X  a Banach space and its 

associated norm.

For simplicity, we assume that C R2 is a polygonal domain. Furthermore, 

we associate with the system (5.4)-(5.5) the in itia l and boundary conditions: 

u(a;,0) =  u0(x), u\du =  0, (j)\dQ =  g(x).

Throughout this chapter we assume that

(A l)  uq(x) G Hq(Q), g(x) G C°°(ri) and r j ,a >  0.

(A2) G(x, y) is positive definite and

L  G(x, y)u(y)dy > 0 if  u >  0, / n f Q G2(x, y) < 00.

(A3) 0 < to < cr(s), k(s) < M  < oo and there exists mo > 0 such that 

|cr(s) — <r(s')| +  |k(s) — k(s')\ <  mo|s — s'|, s, s' G R.

Given these conditions on the data, we assume the solution of (5.4)-(5.5) exists 
and is unique, and also satisfies the following regularity:

(A4) (u, 0) G L°°(0,T] Hq(Q) f ]H 2(fl)) xL°°(0, T\ H 2(ti) n W 1,00(fl)), 

ut £ L 2{Q,T-H\Q)).
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For theoretical results for (5.4)-(5.5) we refer the interested reader to [3].

Finally, we comment on our assumptions: Equations (5.4)-(5.5) and as­

sumptions (A1)-(A4) represent a simplification of the equations actually em­

ployed to simulate structures such as Devices 1 and 2 described earlier, and 

we are not aware of theoretical or numerical results for the fu ll model used in 

practice. We observe, in particular, that since the devices under consideration 

are very thin, the assumption f l C  R2 seems fairly reasonable. However, in 

realistic situations, <f> usually satisfies a mixed Dirichlet/Neumann boundary 

condition and cr(s), k(s) may degenerate as s —> oo, as is described in some of 

the cited references. The study of these more general situations is presently 

under consideration.

5.2 Basics of finite volume m ethods and known 

results

Let T h be a regular and quasi-uniform triangulation (see [4]) of Q and the 

set of vertices of T h. For each p £ T,(\ we associate the box bp £ B h which 

consists of the union of the subregions which have p as a corner. Here B h 

denotes the dual mesh based upon T h. In this chapter we only discuss the 

case that B h is a so-called circumcenter dual mesh (See Figure 5-4). We refer 

to [4] for detailed information on constructing such a dual mesh.

Figure 5-4. A box bp centered at P with Q as the circumcenter
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of the element e € Th.

Our piece-wise linear finite element subspace Sh C H l (Q) corresponding 

to the triangulation Th is given by

Sh =  {v £ i? 1(0) : v\e is a linear function fo r  all e £ T h}

and

S% = Sh nH^(Q).

Then the convex tria l subset K h C K  is defined by

K h =  {v £ Sq \v (p ) >  0 fo r  all p £ Tp}.

It follows from [11, Chapter 3], [9] that the following inequalities hold:

Lemma 5.1. There exists a positive constant C independent of Sh such that

M p ,q < C h ^ - 2max{0’1/p- 1/q}Hull̂ p, (5.6)

0 < p < /? < 1, 1 < P, q < oo, \fv £ Sh,

IMkoo < C'l In /i|1/2||^||i, \ / v £ S h, (5.7)

\\w -  Phw\\ +  h\\w -  Phw\\i < Ch2\\w\\2, Vw £ H 2(Cl), (5.8)

\\w -  Phw\\0yOO < Ch\\w\\2, (5.9)

IIPfcHkoo < CIMkoo, Vu; e H 2(n),

where Ph : L2{Tt) —► Sh is the standard L2-projection.

Let N h(p) denote the set of the neighboring vertices of p £ T f  and dbp

denote the boundary of bp, whence db =  UpeThdbp, dbp =  Up.eiV-'‘(p)-{Tpp*}

where Tpp* — dbp D dbp*, and let Iqi, : db —> R+ be defined as follows: For 

p £ T f  and bp £ Bh.
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ldb\rpp* =  \p — P*\ fo r  p * e N h(p). (5.10)

Then it is easy to see that there exists a constant C > 0 such that C~1h < 

lab\r„. < Ch, \/b G B h.

For b G B h and x G db, we denote the jump in w across db at x by

[w]db(x) =  w(x +  0) — w(x — 0), where w(x ±  0) are the two (outside and

inside) lim it values of w(x) along the normal directions to db.

Moreover, we define the piece-wise constant interpolation operator Ih : 

C(Q) -+ L2{fl) by

I hu =  u(p), on bp e B h, Vp G (5.11)

and the corresponding discrete norms by

IMkfr =  (%21\-I hv]i\2)1/2 and in k *  =  \\ih,v\\. (5.12)
l£db

The subscript ” h” w ill be employed for a norm notation only in these cases. 

Let us recall the following two lemmas from [4, 8, 10].

Lemma 5.2. There exists a constant C > 0 such that

C'-1||Vn|| < |M |U  < Cj|Vu||, Vu G Sh, (5.13)

C ^IM I < ||u||0ih < C\\v\\, \ / v e S h, (5.14)

\\v -  I hv\\ < C hp lh  \ /v e S h. (5.15)

Lemma 5.3. For any a G C(Cl), there exists a constant C > 0 such that

f  O
\ ~ ^ 2  a2 - h v \<C\\u \\1\\v\\i, Mu,v G Sh. (5.16)

btB»Jdb dU

M o re o v e r, i f  th e re  ex is ts  a c o n s ta n t a 0 >  0 such th a t a  >  a 0 in  Q , th e n

~ ^ 2  f  a7TIhV -  C~1WvW2i  ̂ VvZSq, (5.17)
b£B»Jdb dv

where v is the outward normal.
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As in [8] and [10], let Qb '■ —> Sh be defined by Qbw — ihW G Sq and

-  £  [  ad{w -  QhW) I hv =  0, W  £ S f, (5.18)
beBh Jdb V

where i b : (7(0) —> Sh is the Lagrangian interpolation operator with w G 

t f2(0).

It also follows from [4, 8, 10] that the following two lemmas hold.

Lemma 5.4. Assume that a G (7(0) with a > ao > 0. Then there exists 

C > 0 such that for w G H 2(O),

\\w -  Qhw\\i < Ch\\w\\2. (5.19)

Furthermore, i f  w G H 2(fl) f l W 1,oo(0), then

IIQhHkoo ^  C 'dklkoo +  Ik lb )- (5.20)

Lemma 5.5. (also see [11]) There holds for each b G Bh

h1/2|M k a(fi&) < C(\\w\\L2{b) +  h\\w\\Hi {b}), Vw G H \b ).  (5.21)

5.3 The box approximation of the obstacle prob­

lem

5.3.1 The box scheme

We construct the box scheme for (5.4)-(5.5) as follows:

Find  (uh, 4>h) G K h x Sh such that

( Ihv ,l I h(vh -  uh)) -  T  f  k(uh) ^ I k(vh -  u") (5.22)
')v

+T]( [  G(x, y)uh(y)dy, I h(vh -  uh)) +  a{{uhf ,  I h(vh -  uh))
Jci

> (a(uh)\V<ph\2, I h{vh -  uh)), \/vh G K h,
kh

~ Y  [  <?{uh) ^ - I hvh =  0, W *G S 0&> (5-23)
Jdb avb£B h
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and

u*(0) =  P/,1io, ' j 'W t =  j/,j, (5.24)

where Ph is the L2 projection and A is the Lagrangian interpolation operator

as stated in the previous section.

We comment that by uh £ K h we mean that this is true for all t, i.e. 

uh(t, •) £ K h. To avoid complicating the notation, we shall not explicitly 

make reference to ” f” in what follows. Similar remarks apply to <ph, etc.

Under the assumptions (A.1)-(A.4) in Section 5.1 we derive an a priori 

estimate for the solutions of (5.22)-(5.24) which w ill be used later.

Lemma 5.6. Assume that (5.22)-(5.24) has a solution (uh,cf>h) £ K h x Sh. 

Then there exists a constant C > 0, independent o f t  and Sh, such that

l l /W ll i  < C||0(t)||i,p, p >  2, 0 < t < T . (5.25)

Also there exists a constant Co =  C'o(h) > 0 such that

(5.26)

Proof. By choosing vh =  f h — i h<f> as the test function in (5.23) we obtain

(5.27)

In view of Lemma 5.3 we have

(5.28)

On the other hand

l l^ l l i  -  ||*fc0||i < \\(f)h -  i h(f>\\i, 

||40||i < C'll^lli.p, P >  2.

(5.29)

(5.30)
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Thus, (5.25) follows from (5.28)-(5.30) immediately.

By assumption (A.2) together with uh > 0 on 0, we have

v( [  G(x, y)uh{y)dy, h u h) + a((uhY, i huh) > o. (5.31)
Jn

Therefore, if  we take vh =  0 as the test function in (5.22), then it follows from 

(5.17), (5.31) that

~ | | / h« i 2 +  C - V ||?  < (a(uh)\V<f>h\2, I huh). (5.32)

But from (5.25) and (5.7) we also have

(u(uh)\V<t>b\ \ l hv!‘) < C\\<t>h\ \ l \ \ h u X „  < C||(!>*||;||M', j|„,0o (5.33)

< C |ln /i|1/,2||0||^p||t(,t||1 < C(A)P||JJ, + T | | u»||a.

Hence,
d 
dt

Integrating both sides of (5.34) from 0 to t gives

ii7k«,‘f +  /Vii;<iiap»«oii2+cw  fmi
Jo Jo

Therefore,

(5.35)

\A? + f  ll«*li; <  C||«ol|2 + C '(ft)T ||^ ||l„(0XK.,„). (5.36)
Jo

Finally, (5.26) follows immediately from (5.36). □

5.3.2 Existence and uniqueness of the semi-discrete sys­
tem

In this section we w ill show that the semi-discrete system (5.22)-(5.24) has a 

unique solution.
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First of all, we define an operator uh — Fwh: Sh —> 8h in the following 

way: Given wh,

f ind  uh G K h, <fh G Sh, such that uh(0) =  PhUo, 4>h\dn — ih9 and 

(JhUt, I h(vh - u h)) +  awh (uh, vh -  uh) (5.37)

> (a(wh)\V(f)h\2, I h(vh -  uh)), Mvh G K h,

~ f  a{wh) ^ - I hvh =  0, \/vh G Sq. (5.38)
b e B * j 8 b  d U

Here, the bilinear form awh(-, •) is defined by

duh
I  k{w“ ]

b£Bh

awh(uh,vh) =  — Y "' [  k(wh) ^ - I hvh (5.39)
btB»Jdb ^

+r]( f  G(x,y)uh(y)dy,Ihvh(x))
Jn

+a((wh+f u h, I hvh), \fuh G K \  vh G S%.

with

u/f =  wh, i f  wh > 0; 0, otherwise. (5.40)

Obviously, awh(-,-) satisfies

awh(uh,uh) > C\\uh\\l, Vuh G K h, (5-41)

awh(uh,vh) < C H u iiH ^ ll!, \/uh G K h, vh eS%. (5.42)

These two properties (i.e., (5.41), (5.42)) ensure that the linear system 

(5.37), (5.38) has a unique solution in K h x Sh (see [14]).

If there exists a fixed point for the map F, i.e., for some uh, Fuh — uh,

then uh is a solution of the system (5.22)-(5.24), since uh > 0 and u+ — uh by 

the definition. We now show that F  is a contraction map and hence it has a 

fixed point.

Similar to Lemma 5.6, the solution (uh, f>h) of (5.37) and (5.38) also satisfies

(5.26). I f  we define the subset E  C  S q by

E  = {wh G S q : \\u] H\\l °°(q,T -,L^) < Cll^oll +  ^oW ^^ll^lllo^o/TjW i.p)}) (5.43)
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then clearly F  : E  —> E  for 0 < t < T.

Let Wi, W2 E E. The corresponding solutions of (5.37) and (5.38) are 

defined by (u^, <j>f) and (u^, 4>2). Then we have the following lemma.

Lemma 5.7. The solutions (ttj, ftf) and (u^, (fy) satisfy

\\<t>i-<f>2\ \<C (h )\\w *-w *\\ ,  (5.44)

02(h) exp(Ci(h)t) f  ||wi — w%||2ds. (5.45)
Jo

4 - 4 W 2 10

Proof. It follows from (5.38) by taking v‘ =  that

Idb
-  E /  W f  -  t f )  (5.46)

fees'* ^  dP

=  J 2 [  - a (w2) ) ^ r W i  - $ ) ■
b£B h b

In view of (5.17) and (A.3) we have

1101 — 02 111 — C'lKlli.oo 'y^J | K  — W2 IU2(db)- (5-47)
fees'1

The inverse inequality (5.6) and Lemma 5.5 show that

Wrthoc < Ch-'WtflU, (5.48)

\\W1 ~ w2\\L*(db) (5.49)

<  C h - ^ i H  ~  w 2 I U 2 (fe) +  h\ \w \  -  w%\\Hi (b))

< Ch~1/2\\w$ -w%\\L2(b)-

Substituting (5.48) and (5.49) into (5.47) yields (5.44).

To show (5.45), we choose the test function vh =  ub w ith respect to wb

and vh =  ub w ith respect to wb in (5.37) and add the resulting inequalities 
together to obtain:

-  A ) f  +  awh(u\,v!t -  11%) -  awh («2, Wi -  u£) (5.50)

<  (a (to f)|V 0 f|2 -  <t( « £ ) | V $ | 2, -  < ) ) •
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We first estim ate the  left hand side of (5.50) te rm  by term .

where (5.6), (5.17), (5.21) and (A.3) have been used. Furthermore, thanks to 

(5.6) and (5.43), we have

v( [  G(x,y)(u i -  u2)(v)dy,h{u\ -  u2)) (5.52)
Jn

— V [  f  G (x ,y ){u \-u ^ )(y ) Ih( v ! l - u 2)dydx 
Jn Jn

< yWu’l  -Uallo.oo \\G{x,y)\\L2{axn) l K ~ < i

< c m M  -  vlw2 + Ic-'Wvl; -  4 \ \ l

« )  V  -  « ) M >  h (u i -  v%)) (5.53)

=  « ) 3K  -  «2) [ K \ ) 3 -  (^ 2+)3]«2> h iu 'l -  u\ ))

< c(h) H  -  uh2 II2 +  C(h)\\wh1+ -  < 1 1  K  -  <411

< Ci{h)\\u\ -  W2II2 +  C2{h)\\w,l  -  w21|2.

Thus, the combination of (5.51) - (5.53) gives that

awh{u\ , u\ -  u2) -  awh(u£, u j -  v%) (5.54)

> -  uh2\\\ -  C^h) |K  -  uh21|2 -  C2(h)\\w* -  w2\\2.

Now we estimate the right hand side of (5.50). In view of (5.6) and (5.44), we
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find

(<r(wf)|V05|2 -  cr(m|)|V |̂2,4(«f -  <4)) (5-55)
= (<r(«.f)V(0f + 05)V(0j -  05), 4(«{ -  «})) 

+((u(Kjf) -  ff(«,5 ))|v0 ‘ |2, ih(u\ -  «5 ))
< C ( /> ) |K -» J || K - « 5 | | .

Substituting (5.54) and (5.55) into (5.50) together with (5.6) and (5.14), yields

j t \\h{ui -  *4 )II2 -  C i(/i)||IftK  -  *4)112 < C2{h)\\w\ -  w£||2. (5.56)

Applying the integrating factor exp(—Ci(h)t) to both sides of (5.56) and in­

tegrating from 0 to t gives

\\Ih(ui — ?4)l|2 ^  C^ih) exp(Ci(h)t) j  exp(—Ci(h)s)\\wi — w%\\2ds. (5.57)
Jo

By the equivalence ||/^-1| and || • ||, estimate (5.45) is obtained. This completes 

the proof. □

Now we are ready to state our main result of this section.

Theorem 5.1. There exists a unique solution to (5.22)-(5.24) for all 0 < t < 

T.

Proof. By estimate (5.45) in Lemma 5.7, the map F  earlier defined is a con­

traction under the norm || • ||z,°°(0,T;L2(n)) for t sufficiently small, say 0 < t < t0. 

Thus it has a fixed point in E  for t € (0,to]- Therefore, (5.22)-(5.24) has this 

fixed point as a solution in (0,to]- Moreover, it is easy to show that the solu­

tion is unique. Otherwise, let (uf, <pf) and (u%, 4>f) be two different solutions. 

A procedure similar to that used in the proof of Lemma 5.7 shows that

II 4>1 -  021|2 < c ih)\\ui -  *4l|2 < c 2(h) exp{Ci(h)to} [  II u\ -  u^fds. (5.58)
Jo

Then Gronwall’s Lemma implies that u\ =  uh2, so <pi =  Due to the 

boundedness of the solutions, as a consequence of Lemma 5.6, a standard 

bootstrapping argument shows that one can extend this solution to a unique 

global solution. □
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5.3 .3 A n  Hl e rro r estim ate

In what follows, we w ill analyze the proposed box scheme (5.22)-(5.24) for the 

obstacle problem (5.4)-(5.5). An optimal H 1 error estimate w ill be derived. 

Our main results are summarized in the following theorem.

Theorem 5.2. Assume that (A.1)-(A.4) hold. For sufficiently small h, there 

exists a positive constant C > 0, independent of h, such that

110 — 4̂ 11 l°°(o,T',h1) llu — uH\\l°°(o,t-,l2) +  ||w — '̂ ft||z,2(o,T;.ff1) < Ch. (5.59)

Proof. We simplify the long calculations by decomposing the proof into several 

lemmas.

Lemma 5.8. V[fc(u)Vn] G L2{Q) for a.e. t G [0,T].

Proof. (A3) implies that k(s) is differentiable a.e. in R. Moreover, if  the 

derivatives k'(s) exists, it is uniformly bounded by m0. Thus,

V[A;(u)Vm] =  k'{u)\Vu\2 +  k(u)Au. (5.60)

Obviously, the Sobolev imbedding theorem guarantees that the right hand 

sides of (5.60) is in L2(0). So the lemma holds by (A.4). □

Hereafter, we denote I  as the identity.

Lemma 5.9. Let (u , <fi) be the exact solution of (5.f)-(5.5) and (uh, <f>h) be the 

solution of the box scheme (5.22)-(5.2f), then

110 -  0'l ||i < C(h +  ||uh -  Pfcu||). (5.61)

Proof. Let Qh be defined as in (5.18) with a and w replaced by a(u) and 0,
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respectively. Letting v h =  (f)h — Qh<f> in (5.23) , we obtain
Lh

0 = - V  f  cr(uh) ^ —I h((f)h — Qh4>) (5.62)
u ^ hJdb OUbeBh

= - E i a ^ a{* h ~a?h4,)^ ^
b<EBh '

~ Y 1  f  (a (uh) -  <r{u))d ^ h^  Ih((f>h ~  Qh&)
beBh d v

V "1 f  { \d(Qh4> — 0) r I xh r\ a\
-  -------a--------- Ih W Qh<P)

S i Jst dv

-  E f  -  7)+ -
~ E / - Of,©)

6eBh Jdb
— I\  +  I 2 +  3̂ +  4̂ +  5̂-

We estimate (5.62) term by term. First, by (5.17) we obtain

h  > C~l \\(f>h -  Qh(j>\\\. (5.63)

Since a is Lipscbitz continuous and Ih(4>h ~ Qh4>) is a constant on any box 

b G Bh, it follows from (5.14), (5.20) and the Schwarz inequality that

h  < C\\4,h -  f  (5.64)
beBh Jdb Jdb OU

<  C\\4>h -  Qh(f)\\i( Y ]  [  ds f  (uh - u ) 2)1/2
beBh dh db

< Ch1/2\\J)h -  Qh(f>\\i{ J 2  \\uh ~ u \\l2(3b))1/2-
beBh

Using the trace inequality (5.21), inverse inequality (5.6) and the property 

(5.8) of Ph, we obtain

hWu ~ uhWlndb) < C Y1  (ll“ h “  uWL\b) +  hV  _  u\\m(b)) (5-65)
b e B h

^ C Y 1  (llM “  p hu \\2m b ) +  h2\\u -  PhU\\2Hi {b)

b e B h b e B h

beBh

+ ||uh -  Phu\\2L2{b) +  h2\\uh -  Phu\\2HHb)) 

< C (h A +  \\uh - P hu f ) .
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Substituting (5.65) into (5.64) yields

h  < C\\(ph -  Q h tU h ,2 +  IIuh -  Phu\\). (5.66)

By the definition (5.18) of Qh, h  — 0. Applying Green’s theorem in J4 together 

with (5.5), (5.15) and (5.8) give that

h  =  [  V [a(«)V0][(J -  I h){<j>h -  Q M  (5.67)
Jn

+  [  a{u)V4>V{4>h -  Q hcj>)
Jn

=  !  V [a (u )V 0 ][( /-4 )(0 / l -Q ,0 )]
Jn 

=  0.

We observe

h  = f  (j{u)^-{4>h -  Qh4>) =  0. (5.68)
Jan ° v

Finally, (5.9) follows by substituting the estimates of I\ to 7s into (5.62) and 

(5.19). This completes the proof. □

Lemma 5.10. The following inequality holds:

(a(uh) | V 0 Y , h {u h -  Phu)) +  (a(u)|V</>|2, u -  uh) (5.69)

< Cxh2 +  C2(h +  ||uh -  Phu\\)\\uh -  P ^IK  

+C2>\\nh\l /2\\uh -  Phu\\ \\uh - P hu\\2.

Proof. A simple computation gives that

(a(uh)\V(f)h\2,Ih(uh ~ PhU)) +  (a(u)\Vf\2,u -  uh) (5.70)

=  {a{uh){\V<t>h\2 -  |V0|2), I h(uh -  Phu)) 

+((a(uh) - c j ( u ) ) \V ^ 2, I h(uh - P hu))

+(cr(u)'“ ; ;2, (.i h -  i) (u h -  phu))

+(ct(u)|V0|2,w -  Phu)

= Ji + J2 + J3 + Ja-
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By (5.14), Lem m a 5.9 and  the  inverse inequality (5.7), we have

J1 =  (a(uh)\V<t>h -  V0|2, I h(uh -  Phu)) (5.71)

+2 {a{uh)Vcf>{VJ>h -  V 0 ) ,4 (^  -  Phu))

< C\\4>h -  f 111 IIuh -  Phu\\0tOO + C\\4>h -  (f)\\i IIuh -  Phu||

< C(h2 +  || uh -  Phu\\2) \ In h ^ W ti1 -  Pbulh 

+C(h  +  \\uh — Phu\\)\\uh — Phu\\.

I f  h is small enough, say h < and h\ \nh \1/2 < 1, then

Ji < C(h +  ||uh -  Phu\\)\\uh -  Pnulh (5.72)

+C| In/i|1/21 | -  Phu\\ ||uh -  Phu\\\.

By the triangle inequality, (5.8) and (5.15) the following inequalities hold:

J2 < C M U \ u h -  u\\ \\uh - P hu\\ (5.73)

< C(\\u -  Phu\\ +  IIuh -  Phu\\)\\uh -  Phu\\

< C(h2 +  ||«fc -  Phu\\)\\uh -  Phu\\i,

j 3 < CUWl, ||(J -  I h){uh -  Phu)II < Ch\\uh -  PnulU, (5.74)

J4<C\\<j>\\21A \ \u -P hu\\ < C h 2. (5.75)

The proof is completed by substituting (5.71)-(5.75) into (5.70). □

Lemma 5.11. The following inequality holds:

E C Oi i ̂
/  k(uh)——I h(uh -  Phu) +  (k{u)Wu, V(« -  uh)) (5.76)

beBh Jdb du

> C?\\uh -  Phu \\2 -  C2(h +  ||uh -  Phu\\)\\uh -  Pbuh -  C3h2.
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Proof. A ctually  we have

duhC t h>
-  V  /  k(uh)— I h(uh -  Phu) +  (k(u)Vu, V(« -  uh))

beB»Jab d u

= - E  f  K u *)d- ^ ^ h ( u ^ P hu)
dv

-E  /
- XI f  u‘*) ~  k(u) ) j r M uh -  phu)

l  H u ) p ( I h - I ) ( u h - P hu) +  (k(u)Vu,V(u-
beBh dzy

-  5Z  /  k(̂ ) % (yuh -  phu)-
b tB » Jdb 6U

=  k 1 +  k 2 +  k z +  k^ +  at5.

By the coerciveness condition (5.17),

Ad > C'~1||u/l — P/iitHi-

Let u € C(0) and denote by Uj its piecewise linear interpolation i] 

by Lemma 4.2 in [10] together with (5.17) and (5.8), we obtain

K 2 < C\\Ph(u -  u j)||i||u fc -  Phu\h

+ E  I /  |
< C7i||uft -  Phu\\x +  C7i|M|2 ||uft -  Pfcullx

< Ch\\uh — Phu\\i.

We also have:

Ks < C ^ + I I^ -P ^ ID I I^ -P ^ I I l  

To estimate K x, we observe that

-  ^  [  k (u )^ - ( Ih -  I)(uh -  Phu) 
beBh Job d u

=  -  [  V(k{u)Vu){Ih - I ) ( u h - P hu )+  [  k{u)WuV(uh - 
J  n J n
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(5.81) 
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Thus, by Lem m as 5.1, 5.2 and 5.8, we have

K a =  -  f  V(k{u)Vu){Ih -  I){uh -  Phu) (5.82)
Jn

■ I k(u)S7uV (u — Phu)
Jn

Ch\\uh -  PhU^ +  | f  V {k {u )V u ){u -P hu)\
Jn

+

<

< Ch2 +  Ch\\uh -  Phulh.

Obviously,
C

K 5 =  -  k{u)— {uh - P hu) =  0. (5.83)
Jan ov

Finally, (5.76) is obtained by substituting (5.78)-(5.83) into (5.77). □

Lemma 5.12. The following inequalities hold:

r)( [  G(x, y)uh(y)dy, I h(uh -  Phu)) (5.84)
Jn

+Tj( /  G{x, y)u(y)dy, u -  uh)
Jn

< Ch2 +  C(h +  ||uh -  Phu\\)\\uh -  Phu\\u

a((uh)A, I h{uh -  Phu)) +  cc(u4, u -  uh) (5.85)

< C^h-'Wu* -  Phu \\3 +  ||«fc -  Phu f  +  ||«fc -  Phu\\)\\uh -  Phu\\\ 

+C2h\\uh -  Phu\\! +  C3\\uh -  Phu \\2 +  C±h2.

Proof. First to prove (5.84), we write it in the following form and apply (5.8),
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(A.2) and  (5.15) to  obtain

v( [  G(x> y)uh(y)dy, h(uh -  Phu)) (5.86)
Jn

+7]( /  G(x, y)u(y)dy, u -  uh)
Jn

= r ) ( f  G{x, y)(Mh -  Phu)(y)dy, I h(uh -  Phu))
Jn

+r]( [  G(x,y)(Phu -  u)(y)dy,Ih(uh -  Phu ))
Jn

+r)( [  G(x,y)u(y)dy, (Ih -  I)(uh -  Phu))
Jn

+r)( /  G{x, y)u(y)dy, u -  Phu)
Jn

< C\\uh -  Phu f  +  Ch\\uh -  Phu\\ +  Ch\\uh -  Pnulh +  Ch2

< Ch2 +  C(h +  \\uh -  phu\\)\\uh -  Phu\h.

Before we prove (5.85), we recall the Gagliardo-Nirenberg interpolation 

inequality. For w G Hq(Q) and p > max(2,n), there exists a constant C > 0 

such that

lh l|0,2p/(p-2) -  G\\w \\1~n/p\\w \\i/p- (5-87)

Similarly to (5.84), we decompose (5.85) into four terms,

a((uh)4, I h(uh -  Phu)) +  a(u4, u -  uh) (5.88)

=  a(((uh)4 -  (Phu)4) , Ih(uh -  Phu))

+a(((Phu)4 -  u4), I h(uh -  Phu))

+a(u4, (Ih -  I)(uh -  Phu)) +  a(u4, u -  Phu)

— L i +  L 2 +  P3 +  L4.

We estimate (5.88) term by term. Simple computations give

Lx =  a((ufc -  P r f  +  APhu{uh -  Phu f  +  6(Pfcu) V  -  Phu f

+4 {Phu f {u h -  Phu), I fc(Mh -  Phu)) (5.89)

< a\\uh -  P^llo.oo \\uh -  Pĥ Ho.e 11  ̂-  PhU\\

+C\\uh -  Phu\\l6 ||uh -  Phu\\

+C\\uh -  Phu\\2A ||uh -  Phu\\ +  C\\uh -  Phu\\2.
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By the above interpolation inequality (5.87) and the inverse inequalities (5.6), 

it follows that

IIuh -  PhM||o,oo < Chrl \\uk -  Phu \\, (5.90)

||uh -  Phu\\lfi < C\\uh -  Phu\\ ||uh -  Phu\\\, (5.91)

IIuh -  Phu\\lA < C\\uh -  Phu\\ ||uh -  Phu\\i (5.92)

< C\\uh -  Phu\\\.

Therefore, L\ can be estimated as

L i < C(h~1\\uk -  Phu \\2 +  ||uh -  Phu\\ +  1)||uh -  Phu\\ ||uh -  Phu\\\

+C\\uh -  Phu f .  (5.93)

It follows from (5.6)-(5.7) together with (5.8), (5.9), and (5.15) that

L2 =  a(((Phu)2 +  u2)(Phu +  u)(Phu -  u), I h(uh -  Phu)) (5.94)

< C h 2\\uk - P hu\\.

Ls < «||«||40,oo 11(4 -  I){uh -  phu)II (5.95)

K C h W ^ -P n u ^ .

L4 < a||w||o)00 ||m -  Phu\\ (5.96)

< Ch2.

Now substituting the above inequalities into (5.88) gives (5.85). □

The last lemma deals with the error resulted from the time derivative part. 

Lemma 5.13. The following inequality holds:

( IhUt, I h{uh -  Phu)) +  (ut ,u -  uh) (5.97)

> \ f \ \ v h -  Phn f  -  Cfclln.lliIlM'1 -  P„u ||

-Ch\\ut\\ ||uh -  Pnu^ +  Ch2\\ut \\.

Proof. Write the left hand side of (5.97) in the form

( IhUt, I h(uh -  Phu)) +  (ut , u -  uh) =  (I h(uh -  Phut), I h{uh -  Phu)) 

+ (( Ih -  I)Phut, I h(uh -  Phu)) + (Phut -  Ut, I h(uh -  Phu))

+  (ut, (4  -  I)(uh -  PhU)) +  (Ut, u -  Phu).
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Then, by using Lemma 5.1 and Lemma 5.2, we easily obtain the desired result.

□
To complete the proof of the main Theorem 5.2, we choose v =  uh in (5.4) 

and vh =  Ph'u in (5.22) and add them together. By applying Lemma 5.9- 

Lemma 5.13 and simplifying the resulting inequality, we obtain

^ \\Jh(uh ~ Phu)\\2 +  ||uh -  Phu\\\ (5.98)

< C ih2( l +  ||t(t||2) +  C2||w  ̂— fftM||2 +  C3(h 1||uh — Phu \\2 

+  11 uh -  Phu\\ +  |ln /i|1/2 +  1)||uh -  p hu\\ IIuh -  Phu\\\.

To estimate the right hand side of (5.98), we apply the induction method

discussed in [13]. First we assume that

Cz{hrl \\uh -  Phu \\2 +  IIuh -  Phu\\ +  | ln /i|1/2 +  1 )\\uh -  Phu\\ <  ^ (5.99)

for t e (0, T). Then (5.98) can be written as

^ I I 4 ( ^  -  Phu)||2 + ||uh -  Phu\\\ (5.100)

< Ch2( l  +  ||ut ||2) +  Cllu^1 — Phu\\2.

Integrating (5.100) from 0 to t and keeping in mind the equivalence of \\Ih • || 

and || • || we obtain

I uh -  Phu \\2 +  r  IIuh -  Phu\\l < Ch2 +  f  IIuh -  Phu\\2. (5.101)
Jo Jo

Thus Gronwall’s inequality leads to

ll«A _ -^l'l l l l loo(0,T;L2) P \\uh ~  ■̂5/i^lll,2(0,T;i/1) — Ch2, (5.102)

which implies (5.59).

Now we show that for h small enough, (5.99) holds. By definition uh{0) =

PhUQ, thus (5.99) holds for t =  0. Assume that (5.99) is not true for some

t e (0, T}. Then there exists a r  6 (0, T] such that

t  := inf{0 < t  < T  : C3(h~1\\uh -  Phu\\2 +  \\uh -  Phu\\ (5.103)

+ |ln h |1/2 +  l ) | | ^ - P , u | | > i } > 0 .
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C3(ft-1||(u'‘ -  Phn ) ( T ) ||2 + ||(u‘  -  P»u)(r)|| (5.104)

+ | \nh \1*2 +  l ) | | ( « ft — Pft^)(r)|| >

Thus (5.99) holds for t G (0, r)  and similar to (5.102) we have

\\uh -  Phu 11100(0,̂ 2) +  \\uh -  Phu|||2(0iT;Hi) < Ch2, (5.105)

Therefore,

\\(uh - P hu )(r)\\<C h.  (5.106)

This contradicts (5.104) for sufficiently small h and completes the proof. □
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