National Library
of Canada

du Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street 395, rue Wellington
Ottawa, Ontano Ottawa (Ontano)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dcpendent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Bibliothéque nationale

Direction des acquisitions el
des services bibliographiques

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Ncus avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualit¢é d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont ete
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

The Enterprise User Interface and
Program Animation Component

by

@
Greg Lobe ’

A thesis
submitted to the Faculty of Graduate Studics and Rescarch
in partial fulfillment of the requirements for the degree of
Master of Science

Department of Computing Science

Edmonton, Alberta
Fall, 1993

National Lib
Al e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des serv..:es bibliographiques

395 Wellington Street
Ottawa, Ontar.o
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by anv means and
in any form or format, making
this thesis available to interested
persons.

The author retains cwnership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-315-88183-6

Canada

395, rue Wellington
Ottawa (Onltano)

Your e Vol reienee

Our tie Notre ieteiem e

L’'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: Gregory L. Lobe

TITLE OF THESIS: The Enterprise User Interface and Program
Animatior Component

DEGRIEL:: Master of Science

YIEAR THIS DEGREE GRANTED: 1993

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly, or

scientific rescarch purposes only.

The author reserves all other publication and other rights ir association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author's prior written permission.

yay

‘f |74
Gregory L. Lobe
6307 84 Avenue
Edmonton, AB
T6B OH3

September 17, 1993

UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCHH

The undersigned certify that they have rcad, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled The Enterprise User Interface and
Program Animation Component here submitted by Gregory L. Lobe in partial finnllment
of the requirements of the degree of Master of Science.

LA

rd

YA
C)/n{than}%cﬂ‘cr
?o,‘b__ J— 6{&

Peter y‘i.l\\h Beek - » |
f\\\ &) \(

Bruce Cockburn

September 16, 1993

Abstract

Interprise is an integratcd graphical environment for developing large-grained
distributed programs. It provides a palette of high-level parallelization techruques that
allows it to automauzally insert code for communication, synchronization, and fault
tolerance, freeing the user from tedious, error-prone details. The environment suppoits
designing, coding, compiling, and executing distributed programs. Its program animation
component can be used to find certain types of bugs and to tune performance.

This thesis focuses on the user interface and program animation components of the
sy¢ am. It shows that a user interface can be designed and implemented to effectively
support the Enterprise programming model, and that animation can be used to tune the
performance of distributed systems.

Acknowledgments

I would like to thank my supervisor, Duane Szafron, for his help with the design of
the interface and the animation components. As well as creating the basic architecture, he
was always available to answer questions or to help when I ran into problems. 1 would
also like to thank him for his patience in waiting for this thesis.

I am grateful to Jonathan Schaeftfer for making his exnerience with parallel
programming available. His suggestions about which features were useful, which were
not, and which needed to be changed were invaluable. He gave the project a practicul
grounding.

I would also like to acknowledge the rest of the Enterprise group for their work.
Pok Sze Wong and iZnoch Chan implemented the first version of Enterprise and their
experience led directly to the new version. In addition to Dr. Szafron and Dr. Schaefter,
Tan Parsons, Carol Smith, Paul Lu, Paul Iglinski, Stan Melax, Dr. Z. Yang, and Dr. Greg
Wilson all contributed their ideas and criticisms during our weekly project meetings.

And finally, I would like to thank my wife Barbara for her support and love during
these past two years.

Table of Contents

Chapter 1. The Enterprise Programming Environment ... 1
L1 INErOAUCHION ..ot 1
1.2, MOBVALION ..o 1
1.3. The Enterprise Environment ... 2
1.4, Related WOrk ..o i 4
1.5. Scope and Organization of the Thesis ... 5
Chapter 2. The Enterprise Programming Model.............. 7
2.0 Module Callsoooiiiiiiiie 7
2.2. Module Roles and ASSEtS...........ccoeiiiiviiriiiiiiniiii 8
2.3. Replication and Orderingocooooiiin 10
2.4, Hicrarchical ASSEIScc..ooovviiiiiiiieniii i 10
2.5 The User INterfaceoooeeiviiiiiiiiiii e 10
2.6. Program AnIMAatioN.............oooiiiiiiiiiii it 11
Chapter 3. Programming in Enterprise.............occooooviiini, 14
31 The Problem ... 14
3.2. Selecting a Parallelization Technique..............ccooooiii 15
3.3. Building the Asset Graph ... 15
3.4. Entering and Editing the Source Code....................ccoooooin 18
3.5. Setting Compile and Run Options ... 19
3.6. Compiling Assets and Fixing Syntax Errors............................ 20
3.7. Ruining the Program ..o 20
3.8. Performance TUNING..............oooiiiiieiii e 22
Chapter 4. The Enterprise User-Interfacecccoocooiiiiii 26
4.1. Using the Interface................ccooiiiiiiiiiii i 26
.11 OVEIVIEW ..o 26
4.1.2. The User Model ..o 26
4.1.3.8tarting UP ..o 31
4.1.4 The Design Menu............ccocoooiiiiiiiniiiicccc 32

4.1.5. Common Operations 0n ASSEtS.............ccooveeeiiriieninnnn 38

4.1.6, Assetmenus RPN |

4.2, Implementation................ .. o 42
4.2.1. The Control Model............................. 42
4.2.2. Drawing ASSCtS ... R 43
4.2.3. Communicating with Other Components SN
4.2.4. Sub-Directories 48

4.2.5. The Asset Inheritance Hicrarchy....... 47

Chapter 5. Program Animation ... 40
5.1. The Animation Model ... B L

5.1.1. The Animation View ..o Lo

5. 1.2 StAteS ... 52

5. 0.3 EVentS ..o 53

5.2. Using the Animation System.......................55

5.2.1. The Animation Menus 56

5.3. Implementation............................. . U P RS URRTO §7

5.3.1. The Animation View ... 57

5.3.2. The Animation Architecture58

Chapter 6. Conclusions and Future Work 62
6.1, Unimplemented Features.................cccocooeooi 02

6.2. Problems with the Current Implementation...................... ... 03

6.3. Future WOrKooiiiiiii e 04

6.4, CONCIUSIONSooiiiiii it 60
REFEIENCES .. .o 67
Appendix A. The Enterprise Graph File Format.................................. 69
AT NOLAON ..o 69

A2 SYNEAX. ... 69

A3 SeMANTICS. ..ot 70
Appendix B. The Enterprise Event File Format................................ 72
Bl NOAON. ...t 72

B.2 SYNEAK....ouiiiieeiitiie it 72

B3 S OmMANICS ..o ooeee et e R

Appendix C. Installation and SEtUp........... 75

G ISt A ON

C 3 OURCT VCTSIONS o oot e e 76

List of Kigures

Figure 2.1: A department with 3 component assets........ L I
Figure 2.2: The animation view of a simple program............. o 12
Figure 3.1 A new Enterprise program........ ... S
Figure 3.2: A program named Animation........... ... e
Figure 3.3: An enterprise containing onc individual o
Figure 3.4: A program containing aline...................... . 1o
Figure 3.5: An expanded line asset ... 17
Figure 3.6: The finished asset graph for the Animation program ... 18
Figure 3.7: The asset options dialog box............................ : 19
Figure 3.8. The global options dialog box...... Y
Figure 3.9: Compiling the sample program 20
Figure 3.10: The Machine File Editor...................... .. 21
Figure 3.11: Screen display afier exccuting the Animation program. 22
Figure 3.12: The animation view of the sample program............. ... 23
Figure 3.13: A point in the animation...................... ... 23
Figure 3.14: The replication dialog box ... S 24
Figure 3.15: Animation view after replicating Sphit 28
Figure 4.1: Collapsed and expanded enterprisc assets 27
Figure 4.2 Collapsed and expanded department assets..................28
Figure 4.3: Collapsed and expanded line assets................. 28
Figure 4.4: Collapsed and expanded division assets.................... ... 29
Figure 4.5: Dialog box for selecting a file toedit ... 34
Figure 4.6. Dialog box for global options30
Figure 4.7: The machine file editor ... 37
Figure 4.8: The Service Canvas...................ocooivoiioni TR
Figure 4.9: The replication dialog box ... 39
Figure 4.10: Asset Options Dialog Box ... 40
Figure 4.11: The asset inheritance graph................. .47

Figure 4.12: The asset inheritance tree..................oo 48

Figure 5.1: Aline in the design view ... 50

Figure 5.2: The line during areplay50
Figure 5.3: An asset with mesSage qUEUES ... 51
Figure 5.4: Icons for messages and message qUENES. ... 51
Figure 5.5; The state transition diagram for enterprise assets 54

Figure 5.5: Message paths ... 61

List of Tables

Table 4.1: Menu choices forassets.

41

Chapter 1.

The Enterprise Programming Environment

1.1. Introduction
This thesis is part of an ongoing research project on the design and implementation

of a programming environment for developing distributed programs. The environment,
called Fnterpra-e, was built with the following objectives in mind:
« to provide a simple high-level mechanism for specifying parallelism that is
independent of low-levei synchronization and communication protocols,
« 1o provide transparent access to heterogeneous computers, compilers, languages,
networks, and operating systems,
« to support the parallelization of existing programs, and
e to bec a complete programming environment that supports programming,
compiling, monitoring, and debugging of distributed programs.

Enterprise provides a simple programming model consisting of a small number of
commonly used parallelization techniques. The user writes sequential C code, then
expresses parallelism by manipulating icons from within a graphical user interface.
Enterprise inserts code for communication and synchronization, then compiles and
exccutes the program. The user then uses the system's program animation component for
monitoring, debugging, and performance tuning.

The author's contribution to the project involved:

« participation in the design of the programming model [LLM92],

« implementation of the user interface,

« participation in the design of the program animation component [LSS93], and
« implementation of the animation component.

The user interface and animation component are critical to the success of
Enterprise, and this thesis describes the design and implementation of these compo.ents.

1.2. Motivation 4
The last decade has sven a steady shift from large central time sharing systems to

networks of personal computers and workstations. This is mostly due to advances in
hardware technology that have made individual workstations more powerful while
simultaneously lowering their cosi. Applications that previously required the resources of
an uxpensive mainframe or microcomputer can now be run on relatively inexpensive
personal workstations. However, large CPU-intensive applications require more
computational power than a single workstation can provide.

A network can be viewed as a large parallel computer, each workstation being an
independent processor. The combined processing power available is more than that
provided by most supercomputers. Also, many workstations are not used continually, but
sit idle on their owners' desks. By taking advantage of these 'idle cycles', users can get

-1- The Enterprise User Interface

supercomputer performance for their programs, while having a minimal effect on other
users of the system.

However, several factors make this difticult:

Sequential programs must be redesigned as distributed programs. This involves
considering parallelization techniques, synchronization, and fault tolerance.

The programmer must insert low-level communication and synchronization code.

In a heterogeneous environment, the programmer must consider machine word
sizes and the byte and bit ordering within words.

Different machines may use different operating systems, compilers, or linkers.

The ordering of events in parallel programs is non-deterministic, which makes
them much more difficult to test and debug than sequential programs.

Finding idle machines invoives searching the network and checking machine loads.
Machine loads may change over time.
Machines may crash unexpecicdly.

When the program ends, the user must ensure that no processes are left running on
other machines.

Performance tuning requires monitoring several machines and analyzing large
amounts of information.

1.3. The Enterprise Environment

Enterprise is a programming environment for designing, coding, debuy 2ing,

testing, monitoring, profiling, and executing programs in a distributed hardware
environment. It has a number of features that distinguish it from other parallel and
distributed program development tools:

Programs are written in a sequential programming language that is augmented by
new semantics for procedure calls that allows them to be executed in parallel.
Users do not deal with implementation details such as communication and
synchronization. Instead, Enterprise inserts all the necessary communication code
automatically. Unlike other systems, such as HeNCE [BDG91], Enterprise
requires no modifications to existing sequential code.

Enterprise can generate the code automatically because most large-grained paralicl
programs make use of a small number of regular techniques, such as pipelines,
master/slave processes, and divide and conquer. In Enterprise, the user specifies
the desired technique at a high level by manipulating icons using a graphical user
interface. The user's code is independent of the parallelization technique selected.
The implementation assistants used in the PIE system [LSV89] are similar, but
they are not specified graphically and focus on parallel systems with shared
memory rather than distributed message passing systems.

Enterprise uses an analogy between the structure of a parallel program and the
structure of an organization. The analogy eliminates inconsistent terminology such

-2- The Enterprise User Interface

as pipelines, masters, and slaves, replacing it with a consistent terminology based
on assets such as individu © departments, and receptionists. Organizations are
inherently parallel and oftc . * /e efficient parallelism. This analogy provides the
programmer with a different, but familiar, model for designing parallel programs.

« Enterprise supports the dynamic distribution of work in environments with
changing resources. For example, assets can be replicated a variable number of
times. During the life of a program, the amount of resources committed to it can

vary depending on the resources available.

« Users can control the mapping of processes to processors. Hiding hardware
realities of the environment can result in major performance degradation of
distributed systems [JS80]. Enterprise is quite flexible in this regard, giving users
as much or as little control as they desire. Using a high-level notation, users can
specify the processor assignments completely, partially, or leave it entirely up to
the environment.

« Enterprise provides global system monitoring to achieve load balancing, detecting
when workstations fall idle or become heavily loaded, and monitors system
performance for the user.

« Enterprise supports displaying a previous execution of a program with animation
of process states and messages. This helps users to find certain types of bugs and
identify performance problems. For example, consider an asset that makes a call to
another asset, then blocks until it receives a result. If there is a bug in the called
asset so that it does not return a result, the user will see the call made, see the
caller block, see the called asset receive the call, and see the called asset end
without returning anything. The calling asset will remain blocked, and it will be
obvious that the problem is that the called asset never returned the result.

Using the graphical user interface, the user draws a diagram of the parallel
computation and writes sequential code that is devoid of any parallel constructs. Based on
the user's diagram, Enterprise automatically inserts all the necessary code for
communication, synchronization, and fault tolerance. It then compiles the routines,
assigns processes t0 processors, and establishes the necessary connections. When the
program runs, events like message sends and receives are captured and logged to an event
file. The user can then have Entcrprise display the execution using the event file. The
system displays asset states as they change, displays message queues, and animates
messages as they move between assets. The user can pause, single step, or restart the
animation at any time, expand message queues to examine the messages they contain, or
expand messages to view their parameters.

Enterprise's user interface was designed to allow a user to express parallelism in a
simple graphical manner. Although other parallel programming environments like HeNCE
support graphical views, these views are either non-editable or are edited by drawing
nodes and arcs that represent processes and communication paths. In Enterprise, the
application graph is an asset graph and it is constructed in a novel way. The user starts
with an enterprise asset and constructs the graph by re-classifying, expanding, and

-3- The Enterprise User Interface

replicating individual icons. This approach has several advantages over an arbitrary graph
structure:

o Enterprise assets represent high-level parallelization techniques, not individual
processes. This allows the user to design at a higher level of abstraction.

o Assets themselves are not drawn and connected by the user in an arbitrary manner.
Instead, assets are re-classified and expanded to create a program. This reduces
the drawing errors that result from indiscriminately connecting and disconnecting
nodes using arcs.

« Using re-classification to create programs prevents cycles of asset calls and thus
prevents the possibility of deadlock.

« The structure of an Enterprise program clearly indicates the type and degree of
parallelism. The flow of information is reflected in the call structure, the type of
parallelism is reflected in the asset type, and the degree of parallelism is reflected in
the asset replication factors.

« Enterprise manages program complexity by allowing assets to be expanded and
collapsed so that the program can be viewed at different levels of abstraction.

+ Experimentation is encouraged because the parallelization technique is specified
graphically and is independent of the code.

The program animation component was designed to help users debug, test, and
monitor their programs. A user can watch a program run graphically. There is no need to
try to infer what is happening during a run by techniques such as monitoring machine
loads or inserting special code. The entire program is shown on the screen at once.
Events that occur concurrently actually happen concurrently on the display, greatly
simplifying the task of determining exactly what a program is doing when there arc bugs
or performance problems. It uses graphics to present large amounts of data in a highly
organized, easy to understand form. The program can be stepped to any point, stopped,
and messages with their parameters can be examined. Bottlenecks can be identificd by
watching for messages building up in message queues. Wasted resources can be identified
by watching for idle assets.

1.4. Related Work

Some similar work developing integrated environments for distributed
programming has been done, but few make use of program animation.

The JADE system described in [JLU87] has parts that are similar to Enterprise. It
is a complete environment that includes a distributed kernel and window system. Unlike
Enterprise, however, users do not write normal sequential code, but must write programs
using JADE's primitives to express the parallelism in the code explicitly rather than
graphically. For animation, data collection is separated from data display by using sensors
attached to processes to collect data and consoles to display the data captured by the
sensors. Several consoles have been implemented, including a graphical one called a mona
console that is similar to the Enterprise animation display. Processes are represented by
icons and the state of each process is indicated graphically. Unlike Enterprise, JADE

-4- The Enterprise User Interface

allows the user to position the icons. Messages do not move on the display, but the icons
indicate when messages are sent and received.

David Taylor has implemented a debugger for distributed programs that use the
Hermes system [Tay92]. Like the Enterprise animation system, Taylor's debugger is
event-based and uses animation of events and messages to help the user understand the
interaction between processes. Taylor presents the logical partial ordering of events rather
that an imposed total ordering [Fid88] to avoid misleading the user with fictitious
information, but he makes no attempt to indicate the elapsed time between events. This
contrasts with Enterprise, which attempts to present events in the order in which they
occurred in real time, and to model the real elapsed time between them. Taylor's event
display uses a time-process diagram where events are plotted along one axis, and time is
plotted along the other. Enterprise animation displays a sequence of snapshots of the state
of the entire program.

The PIE system described in [SR85] and [LSV89] has some similarities to
Enterprise, but it focuses on shared-memory parailel systems rather that large-grained
distributed systems. PIE provides an integrated programming environment that includes a
program animation component. As in Enterprise, separate views are used for
programming and for animation. PIE programs use a language-independent meta-
language to express parallelism by building a hierarchical structure of communicating
processes. Unlike Enterprise however, PIE provides real-time animation. The user marks
what to monitor, and the system uses sensors to collect data at run-time. A variety of
animation displays are supported, including a time-process graph of execution times and
an animated process invocation tree. PIE uses objects called implementation assistants to
express parallelism at a high level, much like Enterprise does with assets. An
implementation assistant is a template for the decomposition of a parallel computation and
the way it is controlled.

The system most similar to Enterprise is HeNCE [BDG91]. Like Enterprise, it is a
complete environment for developing distributed programs. The user expresses
parallelism graphically, independently from the code. The system then inserts code for
communication and synchronization, captures events at run time, and can replay the
exccution using animation. The parallelism graph is built by drawing arcs representing
dependencies and control flow between nodes representing subroutines. Unlike
Enterprise, HeNCE allows users to draw arbitrary graph structures. This allows the
possibility of cyclic graphs which may cause deadlock or livelock at run time. In addition,
HeNCE requires the parameters for calls to be specified in the graph as well as in the code
for the call. In some ways, the system is more sophisticated than Enterprise. For
example, it supports heterogeneity by allowing different implementations of nodes for
different architectures, and uses checkpointing to achieve fault-tolerance.

1.5. Scope and Organization of the Thesis

The emphasis of this thesis is on the Enterprise user interface and its program
animation component. Both were implemented as a result of the thesis research. The
thesis is organized as follows:

o Chapter 2 describes the Enterprise model and gives an overview of the user
interface and program animation components.

-5- The Enterprise User Interface

Chapter 3 gives an example of writing, compiling, running, animating, and tuning a
program from the user's point of view.

Chapter 4 gives a detailed discussion of the user interface and how it was
implemented,

Chapter 5 gives a detailed discussion of the animation system and how it was
implemented.

Chapter 6 summarizes the thesis and discusses the ongoing rescarch.

-6- The Enterprise User Interface

Chapter 2.

The Enterprise Programming Model

The overall organization of a parallel or distributed Enterprise program is similar
to the organization of a sequential program. The structure of an application program is
unaffected by whether it is intended for sequential or distributed execution. The user
views an Enterprise program as a collection of modules. Each module consists of a single
entry procedure that can be called by other modules and a collection of internal
procedures that can be called only by other procedures in that module. No common
variables among modules are allowed. In many ways, this is analogous to programming
with abstract data types, which provide well-defined means for manipulating data
structures while hiding all the underlying implementation details from the user.

Within any module, the code is executed sequentially. For example, a sequential
program consists of a single module whose entry procedure is the main program.
Enterprise introduces parallelism by allowing the user to specify the way in which the
modules interact. Module interaction is specified by two factors: the role of a module and
the invoking call to a module. The role of a module defines which one of a fixed set of
parallelization techniques, or asset kinds, the module will use when it is invoked. The call
to a module defines the identity of the called module, the information passed, and the
information returned. The role of a module is specified graphically whereas the call is

specified in the code.

2.1. Module Calls

In a sequential program, procedures communicate using procedure calls. The
calling procedure, say A, contains a procedure call to a procedure, say B, that includes a
list of arguments. When the call is made, procedure A is suspended and procedure B is
activated. Procedure B can make use of the information passed as arguments. When
procedure B has finished execution, it can communicate results to procedure A via side-
effects to the arguments and/or by returning a value if the procedure is in fact a function.

Enterprise module calls are similar to sequential procedure calls. As with
procedure and function calls, it is useful to differentiate between module calls that return a
result and those that do not. Module calls that return a result are called f~calls (function
calls) and module calls that do not return a result are called p-calls (procedure calls).
Conceptually, there is no difference between a sequential function call and an Enterprise
module call except for the parallelism.

An Enterprise f-call is not necessarily blocking. Instead, the caller blocks only if
the result is needed and the called module has not yet returned. Consider the following

example:

result = B(data);
/* some other code */
value = result + 1;

-7- The Enterprise User Interface

When this code is executed, the arguments of B (data) are packaged into a message and
sent to B. A continues executing in parallel with B. However, when the calling module
tries to access the result of the call to B (value = result + 1), it blocks until R
has returned a message containing its result.

There is no syntactic difference between procedure calls and module calls. This
makes it easier to transform sequential programs to parallel ones and makes it simple to
change parallelization techniques using the graphical user interface, without making
changes to the code.

2.2. Module Roles and Assets

The role of a module is based solely on a parallelization technique and is
independent of its call. There are a fixed number of pre-defined roles corresponding to
asset kinds.

Enterprise uses an analogy between distributed programs and the structure of an
organization to help describe module roles. In general, an organization has various assets
available to perform its tasks. For example, a large task could be divided into sub-tasks
where various sub-tasks are given to different parts of the organization such as individuals,
departments, assembly lines, or divisions to perform in parallel. In addition, an
organization usually provides such standard services as time keeping or information
storage and retrieval.

Currently, Enterprise supports the roles corresponding to six different asset kinds:
enterprise, individual, department, line, division and service. In addition, two other
specialized individual assets are defined: receptionist and representative.

Enterprise

An enterprise is a single program. It is analogous to one organization or
enterprise.

An individual contains no other assets. An

Vosisiiy individual is analogous to an individual person
— in an organization. For cxample, a clerk in a
grocery store is an individual. When called, an
individual executes its sequential code to completion. Therefore, any subsequent call to
the same individual must wait until the previous call is finished. The individual can be
viewed as a process executing a sequential program. In general, an individual can be re-
classified as another asset kind at any time. However, there are two special kinds of
individuals: receptionists and representatives. Receptionists serve as the first element of a
department, line, or division. They provide the name by which the assct can be called and
serve as its entry point. Receptionists can't be re-classified as any other assct type.
Representatives are used in divisions as the leaves of a parallel recursion tree. They can
be re-classified as divisions only. Each individual, including receptionists and
representatives, has code associated with it.

-8- The Enterprise User Interface

construction, manufacturing, or assembly line in an organization where at each
point in the line, the work of the previous asset is refined. For example, a line
might consist of an individual who takes an order, a department that fills it, and an
individual that addresses the package and mails it. A subsequent call to the line waits only
until the first asset has finished its sub-task for the previous call, not until the entire line is
finished. The first asset in a line is a receptionist that shares its name with the line. It is
the only asset that is externally visible. That is, the first asset of a line is the only asset that
may be called from another asset. Lines are often referred to as pipelines in the parallel

computing literature.

Department
A department contains a fixed number of heterogeneous assets. A single

receptionist asset shares its name with the department so that it can be called
by other assets. The other assets in a department are called directly by the
receptionist and are not allowed to call each other. A department is analogous
to a department in an organization where a receptionist is responsible for directing all
incoming communications to the appropriate place. Note that in our analogy, a
department consists of a collection of assets of any kind: individuals, departments, lines
and divisions. A department has no analogous term in the parallel computing literature.

Line
A line contains a fixed number of heterogeneous assets in a fixed order. Each
W asset contains a call to the next asset in the line. This is analogous to a
7 ‘

Division
—l__l A division contains a hierarchical collection of identical assets where work is
é@ divided and distributed at each level. Divisions can be used to parallelize
ﬁ'_é'dj divide-and-conquer computations. When a division is created, it has a single
receptionist asset that shares its name with the division so that it can be called
by oiher assets. In addition, it has a single representative asset that represents the parallel
recursive call made by the receptionist to the division itself. When the receptionist makes
a recursive call, it is calling the representative. When a representative makes a recursive
call, it is making a normal sequential recursive call to itself. The user may change the
breadth of the division's first level by replicating the representative. The user may add a
level to the depth of the recursion by re-classifying the representative as a division. The
new division contains a receptionist and a representative. The breadth of the tree at any
level is determined by the replication factor of the representative or division it contains.
This approach is capable of specifying arbitrary fan-out at each level of the division.
Divisions are the only recursive assets in Enterprise.

Service

A service contains no other assets. Services cannot be replicated, but they can
% be called by any other asset in the program. Work is processed on a 'first-

come / first-served' basis. A service is analogous to any asset in an
organization that is not consumed by use and whose order of use is not
significant. For example, a clock on the wall and a counter that records the total number
of vehicles that have passed through several toll booth lanes can be considered services.

-9- The Enterprise User Interface

2.3. Replication and Ordering

As well as the module role, there is another dimension to parallelism in Enterprise.
replication. When an asset is replicated, more than one process can simultancously
execute its code. The user specifies a minimum and maximum replication factor, and
Enterprise dynamically allocates as many processors as are available, up to the maximum.
Each processor will run a copy of the code for the asset. When a replicated assct is called,
the first available replica does the work. If all replicas are busy, the call waits for the first
one that becomes free.

Replication and asset type are orthogonal — all assets except receptionists can be
explicitly replicated. A receptionist cannot be explicitly replicated since it serves as the
entry point for another asset, but it is implicitly replicated when the asset that contains it is
replicated.

Replicated assets may be ordered or unordered. If an asset is unordered, any
reference to the return value of the asset will receive the first value returned from any
replica of that asset. If an asset is ordered, the first reference to the return value of an
asset will receive the return value of the first call. Assets are ordered by default.

2.4. Hierarchical Assets

Enterprise assets can be built from any combination of assets. For cxample, a user
could construct a department where one subordinate asset is itself a line of individuals and
another is a division. The model allows the user to re-classify an asset without any
changes to the source code. The only change that might occur is the gathering or
separation of functions from one file to another.

Lines, departments, divisions, and enterprises are all called composite assets
because they contain other assets. The assets they contain are called their components. 1f
an asset is a component of a composite asset, the composite asset is called its paremt.

2.5. The User Interface

The Enterprise user interface provides a complete environment for writing,
compiling, executing, and testing distributed programs. Source code for assets can be
entered using a standard text editor, parallelism can be specified graphically by
manipulating icons that represent assets, and the compiler can be invoked for any part of
the asset hierarchy with error messages displayed in a window for use while making
corrections. The program can then be executed with the output of each asset going to its
own separate window, and animation can be used to replay the program. All of this can
be done without leaving the environment.

Assets are displayed as icons. Actions are performed by making sclections from
context sensitive menus linked to the assets. Pressing the middle mouse button causes a
menu to appear at the mouse cursor location. If the cursor is over an asset, the menu for
that asset is displayed. The menus for assets contain only those actions that can be applicd
to the asset in its current context. For example, the enterprise asset cannot be deleted, so
there is no Delete action in its menu. When the cursor is not over any asset, the menu for
global program operations is displayed.

The main Enterprise window consists of one or two canvasses. The program
canvas is used to display and edit the graphical representation of the program. The

-10- The Enterprise User Interface

service canvas contains the services that the program can use. It can be hidden or
displayed. Both canvasses use the same menu of global program operations. The menu
contains choices like Save Program and Compile Program that allow the user to perform
operations on the program as a whole.

When Enterprise is first started, the program canvas contains a single enterprise
asset that itself contains a single individual asset. The user builds the program by
modifying this individual asset. For example, to build the department of three assets
shown in Figure 2.1 the user would do the following:

e create a new enterprise named ABC,

o expand the enterprise asset to reveal the individual it contains,

o re-classify the individual as a department,

» expand the department, which will contain a receptionist and a single individual by
default,

« add one more individual to the department,

« name the assets A, B, and C, and

 replicate the second component of the department.

The source code for the three components can then be entered and the program
can be compiled and executed. Chapter 4 gives a detailed description of the interface and
explains the elements visible in Figure 2.1. Chapter 3 contains a complete example of
building an Enterprise program.

[@] Enterprise v1.0: ABC RN

] — — ﬂ:
Figure 2.1: A department with 3 component assets

2.6. Program Animation

Enterprise also provides a program animation facility that can be used to monitor a
program's performance and to identify parallel programming and logic errors. The system
captures events as the program runs and logs them to an event file. Animation then
displays the execution using the event file.

When a program runs, assets change state as they send messages and replies to
each other. The animation system displays the state of each asset, animates messages and

-11- The Enterprise User Interface

replies as they move between assets, and displays message queues. There are no facilities
for setting breakpoints or examining the values of variables.

Animation is displayed using a different view of the program than the one used tor
editing. When Animate is selected from the program canvas menu, the design view,
described above, is replaced with the animation view. In this view, cach asset that is
replicated is expanded to show all of its replicas. In addition, assets have message queues
for incoming calls and received replies, and the menus contain actions for animation
instead of editing.

The menus for assets contain choices for expanding or collapsing the assets. The
menu for the animation view itself contains choices to pause or restart the animation,
single step, set animation options, or end the animation and switch back to the design
view. Figure 2.2 shows the animation view of the department in Figure 2.1 at a point
during a replay.

i ET]

[@] Enterprise v1.0: ABC (Animating) Bl

Al
al _ @2]
@ BUSY.
o 2
Vi L |12 C.11
8.1.1.2
g — =)

Figure 2.2: The animation view of a simple pwroigﬁrnam

At this point in time, A has sent work to B and C, and is now busy doing some
other work. It has a result from a previous call waiting in its reply queue to its right. Cis
busy working on a job and has two more waiting in its input queue at its top lefl. B has
two replicas that share a common input queue. There are two jobs waiting in the qucuc.
B.1.1.1 is currently working on a job. B.1.1.2 has just completed a job and the result can
be seen on its right hand side on its way back to A. At the same time, a new job is on its
way from the shared input queue to B.1.1.2.

Chapter 5 describes the animation system. The example in Chapter 3 includes
program animation.

-12- The Enterprise User Interface

Chapter 3.

Programming in Enterprise

This chapter contains a complete example of building a distributed program using

Enterprise. Parallelizing an application using Enterprise involves the following main steps:

Divide the problem into assets and select one of Enterprise's parallelization
techniques for each asset.

Build the asset graph.

Enter the source code for the assets.

Set compile and run options.

Compile the assets and fix any syntax errors.

Run and debug the program, fixing any logic errors

Tune the program's performance.

3.1. The Problem

Consider a program called Aniniation that displays a group of animated fish

swimming across a display screen. This problem was cortributed by the graphics research
group in our department. The program computes frames for the animation usinz three
major procedures: Model, PolyConv, and Split. They have the following functionality and
pseudo-code:

The main procedure, Model, computes the location and motion of each object in a
frame, stores the results in a file, calls PolyConv to process the frame. and goes on
to the next frame:

Model ()
{

for each frame

{

compute location of objects, generate frame
PolyConv(frame);

)
PolyConv reads a frame from a disk file, then performs data format
transformations, viewing transformations, projections, polygon sorting, and back-
face removal. When these are done it calls Split:

PolyConv{(frame)

{

perform transformaticns and projections
Split(polygons, frame);
)

Split performs hidden surface removal and anti-aliasing, then stores the final
rendered image in another file:

-13- The Enterprise User Interface

Split(polygons; frame)
{

perform hidden surface removal and anti-aliasing

)

3.2. Selecting a Parallelization Technique

Examining the structure of the program shows that Model consists of a loop that,
for each frame in the animation, performs some work on the frame and calls PolyConv
with the results. PolyConv manipulates the frame produced by Model and calls Split.
Split does the final polishing of the frame and writes the final image to disk.

There is no reason why Model should wait for PolyConv to finish a frame before
starting the next one. Model could be working on the second frame while PolyConv is
working on the first. Similarly, PolyConv docs not nced to wait for Split. This type of
parallelism is called a pipeline in the literature. In Enterprise it can be represented by a line
asset. Model, PolyConv, and Split will be threce components of the line. The line will
share its name with its first component, so it will be named Model. That is, we will build a
line named Model that has three components: a receptionist named Model, an individual
named PolyConv, and an individual named Split.

3.3. Building the Asset Graph

Building the asset graph is done from the Enterprise user interface. When
Enterprise is installed, it sets up a directory structure in a sub-directory specified by the
user. To run Enterprise the user must make that directory the current directory and enter
the command 'st80', which starts a Smalltalk interpreter. Once Smalltalk starts, the user
must evaluate the expression 'Enterprise open'. This can be done by typing it into a
workspace, selecting it, and then selecting doit from the middle mouse button menu. The
user interface will then appear as shown in Figure 3.1.

[@®) Enterprise v1.0: (unnamed) R]

-

L= === 73
Figure 3.1: A new Enterprise program

As mentioned in Chapter 2, the program canvas initially contains a new enterprise
asset. To build the graph we modify this enterprise asset. The first step is to name the
program using the context-sensitive asset menu. Moving the cursor so it is over the
enterprise asset and pressing the middle mouse button will display the menu, which
contains the single choice Name. Moving the cursor to Name and releasing the button will
display a dialog box. Typing the name Animation into the dialog box and pressing ENTER
names the program, with the result shown in Figure 3.2.

-14- The Enterprise User Interface

[@] Enterprise v1.0: Animation -@

Figure 3.2: A program named Animation

Mol < } y
Animatio

The assct menu now changes to contain the choices Name and Expand. Selecting
Expand from the menu will expand the enterprise asset to reveal the single individual it
contains, giving the view shown in Figure 3.3. Note that the individual has been given a

default name of unnamed1.

[®] Enterprise v1.0: Animation [l B1]|

unnamed

v

g B

Figure 33 An enterprise containing one individual

Selecting Line from the asset menu for the individual will change the individual to a
line. Naming the line Model by selecting Name from the line's asset menu gives the view
shown in Figure 3.4. The icon now represents a line, aird the numeral 1 indicates that the
line currently consists of a receptionist and one individual.

[®] Enterprise v1.0: Animation S 1]

-~

Model

i

!

q —
L

Figure 3.4: A program containing a line

The line can be expanded by selecting Expand from its asset menu. Doing this
reveals a receptionist named Model and an unnamed individual as shown in Figure 3.5.
The double line represents the enterprise, the dashed line represents the line, and the icons
represent the receptionist and individual. Clicking inside the enterprise rectangle but
outside the line rectangle will display the asset menu for the enterprise asset. Clicking
inside the line rectangle but outside either of its componeni's icons will display the asset

-15- The Enterprise User Interface

menu for the line. Clicking on the icons for the receptionist or individual will display their
respective asset menus.

—E] Enterprise v1.0: Animation |l

v

(! | ¥
Figure 3.5: An expanded line assct

The second component of the line can no'v be named PolyConv by choosing Name
from its asset menu. A third component can then be added by selecting Add After from
PolyConv's menu. The new individual can then be named Split using its own asset menu.
The finished graph is shown in Figure 3.6.

[@] Enterprise v1.0: Animation il

| Je ——————— ﬁ.'&:
Figure 3.6: The finished asset graph for the Animation program

-16- The Enterprise User Interface

3.4. Entering and Editing the Source Code

Enterprise includes an integrated editor for editing asset source code. The editor
can be one selected by the user, or it can be the one provided by Enterprise. When the
system starts up, it reads a file named .ENTrc in the user's home directory. This file
contains global system options, one of which is the editor to use. To specify an editor, the
user inserts the line 'EDITOR=<editor_ cmd>' where <editor_cmd> is the command that
invokes the editor.

To invoke the editor, the user selects Code from the asset menu for an asset. If
source code already exists for the asset, the file is read into the editor, otherwise a new file
is created. There can be several editors open at the same time, one for each asset. If the
built-in editor is used, text can be copied and pasted between assets.

The code for an asset consists of an entry function, with the name of the asset, plus
any support functions it calls. Procedures that are common to several assets can either be
placed in a separate file that will be automatically compiled and linked with the asset code,
or the user can build a library and have Enterprise link it with the asset modules.

For this example, existing code needs to be organized into files for Model,
PolyConv, and Split. For each of the assets, we select Code from its menu to display an
editor. Then we read in the original sequentia' code and distribute it to the appropriate
assets. Note that there is no code associated with the line as a whole, so there is no Code

action in the line asset's menu.

3.5. Setting Compile and Run Options

Before compiling and running the program, the user can set some options.
Sclecting Options from an asset's menu displays a dialog box for setting compile and run
options for that asset. Selecting Options from the design view menu brings up a dialog box
for setting global compile and run options. The boxes are shown in Figures 3.7 and 3.8.
They are described in more detail in Chapter 4.

3 £l

[@] Asset Options: Mode| EEEiTRGN

Compile and Link Options

debug @ ON (OFF
optimize (O ON (®) OFF
CFLAGS

Run Options
output windows () ON QorrF
error windows Qon (® OFF

INCLUDE
EXCLUDE

OK l CANCELI

Figure 3.7: The asset options dialog box

-17- The Enterprise User Interface

;[:TProgram Options: Animation |l @T

Compile and Link Options
verbose: (@) ON Qort

libraries:
—IUTILITY —Ifb =Im,

Run Optlons
event log: (@) ON Qorr
input file:
output file:
command line arguments:

oK _| CANCEL
Figure 3.8: The global options dialog box

For our example, because we want to use the same sct of options for Model,
PolyConv, and Split, we set them in the dialog box for the line asset Model. Setting them
for the line sets them for all the components of the line. The line's menu is invoked by
clicking inside the dotted line rectangle but outside the asset icons shown in Figure 3.6.
We set the options as shown in Figure 3.7. The global program options are set as show in
Figure 5.8.

3.6. Compiling Assets and Fixing Syntax Errors

The next step is to compile the code and fix any syntax errors. When the assets
are compiled, the Enterprise precompiler inserts the parallelization code, then invokes a
standard C compiler and linker to produce the executable program. The compiler can be
started from either the design view menu or from an asset menu. If it is started from an
asset menu, only the asset is compiled and the linker is not run. If the asset is a line,
department, or division, then all of its components are also compiled. If the compiler is
started from the design view menu, the entire program is compiled and linked. The system
contains a built-in "make" facility, so only those assets that have changed since the last
compilation will actually be compiled. Only one compilation can be active at a time.

When the compiler is invoked, a window is opened that will contain messages from
the compiler, including error messages. The output at a point during the compile of the
sample program is shown in Figure 3.9. Note that the verbose option was enabled for this
example.

-18- The Enterprise User Interface

[8] Complie: Animation ISR

enterprise: convert graph
enterprise: make headers
enterprise: asset is < Model > with calls to { PolyConv }
precompiler: add definitions
precompiler: compile first pass
precompiler: fix block structure
precompiler: find asset header
precompiler: insert asset calls
precompiler: find futures
precompiler: compile second pass
precompiler: futures:
no futures
precompiler: second compilation done
precompiler: insert waits
enterprise: stubs generation
enterprise: compiling Src/Model.c
enterprise: asset is < PolyConv > with calls to { Split }
precompiler: add definitions
irecompiler: compile first pass

Figure 3.9: Compiling the sample program

If there are errors, the user can leave the compiler window open, invoke editors on
the assets, and fix the errors. When the program is being re-compiled, it will use the same
compiler window. If there are no errors, the window can be closed to conserve screen

space.

3.7. Running the Program
Before the compiled program can be executed, the system must be told which

machines it can use. This is done by selecting Edit Machine File from the design view
menu. The machine file editor will then open as shown in Figure 3.10. Here we specify a
set of machines that Enterprise will use to execute assets. The current set of machines are
displayed in a list box. Typing the name of a machine in the text field below the box, then
clicking the Add button will add the machine name to the list. Selecting a machine name
from the list, then clicking the Delete button will delete the machine from the list. Clicking
the OK button saves the list and exits the editor.

(@] Machine File Editor

s < Delets

thorhild —-—-—-J

therien

senex

sunwapta

sunnysiope

. Add |
0K | CANCEH

Figure 3.10: The Machine File Editor

-19- The Enterprise User Interface

Once the machines have been specified, the program can be executed. This is done
by selecting Execute from the design view menu. Note that when we set the options in
Section 3.5, we elected to have output windows opened for each asset. This means that
when the program is run, a window will be created for each asset that will contain any
output the asset writes to its standard output file. After the run, the windows are left open
until explicitly closed by the user.

A console window is also opened for the run. This window will contain messages
from the Enterprise run-time executive. It is left open after the run for use as a shell by
the user for examining the results of the program. The window closes when the shell is
exited.

The program runs in a sub-directory of the directory where Enterprise resides.
Each program has its own directory whose name is based on the name of the program, as
described in Chapter 4. The program runs from this directory. The sample program reads
two files from its current directory and requires that a sub-directory named data exists.
After the files were copied and the data sub-directory was created from a UNIX shell
running outside the interface, the program was executed. Figure 3.11 shows the resulting
screen display.

Output; Model.1 (~C to exit)) @} Fnterprise v1.0: Animallon BN
P
Calling polyoonv at time = 7438B00R7
Starting frame 16 at time = 743680087
Calling polyconv at time = 743000114 r----- A
gtarting frame 17 at time = 74)000114 " |
Calling polyconv at time = 743880134 H
Starting frame 18 at time = 743880134 !
Calling polyconv At time = 743880151 [| |
Starting frame 19 at tima - 733880153 | Model1 |
calling ?o'lyeonv At time = 743880171 LIS LA |
l;ca)ggl;‘a 1 work {5 now done at timo = 74 : — - !
nodelo 15 DONE [@®] Output: PolyConv.1.1 ("C to exit) | :
Sending ENT_DONE to node 0| [o6e | i
Sending ENT_DONE to node 2| |PolyConv: calling split ot time = 743840 1 {polyConv 1t
[8] 099 | o $
fgéyConv: calling split at time = 7430E0 1]
1
fg}ycanv: calling split at zime « 743000 ' :
fg%yt:onv: calling split at time = 743880 : split1.1) :
Fg;yConv: calling spl.t at time = 743880 e ~
1
node 1 1§ DONE -
fending ENT_DONE to node € (@] Output: Spiit.1.1.1_("C 1o exit) 2]
ES]cndlng ENT_DONE to node 3 cover (type 1) S10 bytes
Split: finish 18 a% time 7313000165
hidden: frame 19 M
Writing frame buffer: —— i

red (type i) 1i36 bytes
qgrean (typa 1) 1140 hytag
blue (typa 1) 0 bytaa
2buf (typo 2) 14138 bytos

[®] Run: Animation covar (typa 1) SRl bytns
T oS gos Arat saia machines ‘ SpliL finish 19 ut tims 742380180
- i A nude DONE
:ggﬁ:"grggrgg run Hs«:.dmg ENT_DONE Lo nixde 0

Running asset ENTERPRISE, on machine thorhild (nmp rode
Running asset Mode ., on machine sunset (nmp node 1).
Running asset PolyConv, on muchine sunnyslope (nmp node 2).
Running asset Split, on machine sunwapta (nmp nude 3).
node 17 IS DONE

node 2 I8 DCNE

node J IS DONE

thorhild 1 % J

Figure 3.11: Screen display after executing the Animation program

-20- The Enterprise User Interface

After execution we want to check that the program produced the correct results.
The sample program creates files containing animation frames in its current directory. To
check the results, we ran a utility program that reads the animation frames and displays
them in an X window. This was done from the console window.

3.8. Performance Tuning

When we set the global compile and run options in Section 3.5, we turned on the
event logging flag. This caused the program to capture events while it ran and logged
them to an event file so the execution can be animated. This allows us to see if there are
any performance bottlenecks and to see if the program is making full use of its resources.

Program display is done from the animation view. The view is displayed by
selecting Animate from the design view menu. After changing views, the program appears
as in Figure 3.12. The view is similar to the design view in Figure 3.6, but now the state
of each asset is displayed and there is space to display message queues above the assets
and reply queues to their right.

[@] Enterprise v1.0: Animation (Animating) EEEEN

1.1

v

< >

Figure 3.12: The animation view of the sample program

-21- The Enterprise User Interface

@ Enterprise v1.0: Animation (Animating) NN £

i

Figure 3.13: A point in the animation

The menus that appear are now different as well. Clicking in the animation view,
but outside of the assets brings up the animation menu. 1If we select Start from the menu,
the program execution will be displayed, showing messages and replies moving between
assets and updating asset states as they change. Eventually, we sce that the messages arc
building up in Split's input queue as shown in Figure 3.13.

Split can't keep up with the amount of work being sent to it by PolyConv. We can
try to improve the performance by replicating Split. To do this, we end the animation by
selecting Stop from the animation view menu, then switch back to the design view by
selecting End. Once we are in the design view, we select Replicate from Split's assct menu,
causing the replication dialog box to appear as shown in Figure 3.14.

[@] Replication: Split

REPLICATION
minimum 3
maximum 3 J
(®) ORDERED (O UNORDERED
oK | CANCEL

Figure 3.14: The replication dialog box

We replicate Split three times by clicking on the up arrow until the maximum
replication factor becomes 3. This gives us three copies of Split when we run the
program. Now we can close the box, re-compile, and re-execute the program.

-22- The Enterprise User Interface

When we switch to the animation view after re-executing the program, we can see
the replicas of Split. This time when we display the run, we see that all assets keep busy
and no messages build up in Split's input queue as shown in Figure 3.15.

We could try to improve performance further by replicating PolyConv, but when
we do this we see that all but one of the replicas are idle most of the time. This indicates
that we are wasting resources without improving the performance. We could also try
other things like adjusting the replication factors or changing Split into a line to do hidden
surface removal and antialiasing in separate steps. None of these changes makes much

difference to the performance however.

[@] Enterprise v1.0: Animation (Animating) HEEENEEENEEN)

sl

Ji

BUSY

—_

Solit.1.1.1

—— i — —— o —— ———— ———— - = = — — o= o)

[e e e - — o — ——— — - —

(! |2
Figure 3.15: Animation view after replicating Split

-23- The Enterprise User Interface

Chapter 4.

The Enterprise User-Interface

This chapter describes the Enterprise user interface. It consists of a section that
describes how to use the interface, followed by a section on how the interface was
implemented. The first section defines the system at the point in time that this thesis was
written. Time constraints prevented finishing all of the implementation, but the major
parts have been implemented and the rest of the features exist in prototype form. Chapter
6 lists the parts of the system described here that have not been completely implemented.

4.1, Using the Interface

4.1.1. Overview

Enterprise is a complete environment for building distributed programs. Enterprise
programs are organized into assets as described in Chapter 2, and consist of two main
elements, a graphical specification of the parallelism among assets and normal C source
code specifying asset behavior. The user-interface provides integrated facilities for editing
the parallelism graph, editing the source code, compiling and executing the program, and
monitoring the program using animation. Eventually the system will include real-time
monitoring and a debugger as well. All functions are invoked from context-sensitive
menus linked to graphical objects. The object under the cursor when a menu is invoked
determines which menu appears and what operations are available. The operation sclected
is applied to the object linked to the menu.

The user-interface has been implemented in Smalltalk-80, version 4.0. It may be
used to construct programs on any machine supported by Smalltalk-80, including UNIX'™
workstations, Macintoshes, and IBM 80x86 or compatible machines. However, since the
rest of the Enterprise programming environment is UNIX dependent, some features such as
Compile and Execute only work on UNIX workstations. The rest of this chapter discusses
the UNIX version of Enterprise, which runs under X windows.

4.1.2. The User Model

As described in Chapter 2, Enterprise represents a distributed program using an
analogy with a business organization. Program modules and parallelization techniques arc
represented by assefs such as individuals and departments. The assets are displaycd as
graphical icons in the interface, where the user builds programs by manipulating the asscts
using menu commands.

If an asset is selected by clicking the middle mouse button, a menu is displayed that
contains only those operations that are currently valid for the asset. If no asset is selected
when the button is clicked, the design menu containing global program operations is
displayed. Thus it is impossible for a user to select an invalid operation. This approach
simplifies the user's mental model of the programming cnvironment since it reduces the
number of operations the user sees [LSW87]. It contrasts with pull-down menus where

T™ Unix is a trademark of Bell Laboratorics

-24- The Enterprise User Interface

the user is presented with a plethora of choices, some of which have subtle differences and
some of which do not even apply to the user-interface component being considered. For
example, if the user chooses Compile from an asset's menu, only the code for the asset is
compiled. If the user chooses Compile from the design menu, all assets are compiled.
Furthermore, the Execute command does not even appear in an asset menu. In a pull
down system, Compile Asset, Compile Program, and Execute would all appear in the menus.
The interface uses several windows and dialog boxes. The window title bars
identify the kind of window and indicate its status. For example, when there is no
program currently being edited the title bar contains 'Enterprise: (unnamed)’, but when a
program is being edited the name of the program replaces '(unnamed)’. The title bars of
dialog boxes indicate the type of dialog box and the name of the asset or program it is

linked to.

Hierarchical Assets
Assets can be nested inside each other hierarchically. Composite assets such as

enterprises, departments, lines, and divisions that contain other component assets can be
expanded to display their components and allow them to be edited, or collapsed to hide
the components and allow the entire unit to be viewed as a single icon. In either case, the
menu of the composite asset is always available. If the asset is collapsed, the menu
appears when the icon is selected. If the icon is expanded, the composite asset becomes a
rectangle with its components nested inside it and the menu that appears is determined as
described below. The border style and the position of the components inside it indicate
the type of the asset. Figures 4.1 through 4.4 show the collapsed and expanded composite
assets.

When the middle mouse button is clicked, the innermost rectangle containing the
cursor determines which menu appears. For example, in Figure 4.3, if the cursor is inside
the dashed line rectangle but outside the icons, the menu for the line asset appears. If the
cursor is inside the double line rectangle but outside the dashed line rectangle, the menu
for the enterprise asset appears. The different borders provide an easy way for the user to
determine which asset a border represents when several levels of nesting are visible.

Expanded enterprise assets have a double line as a border. The enterprise asset
represents the entire program or enterprise and initially has a single individual as a
component. No other components can be added to the enterprise, but the individual can
be re-classified as a department, line, or division by making the appropriate selection from
its asset menu. Neither the enterprise nor its component can be replicated.

[®] Enterprise vi.0: ABC B £7]] [®@] Enterprise vi.v: ABC B E1)

2]

ABC

1 ((f—— 5
>
ES

T y]

Figure 4.1: Collapsed and expanded enterprise assets

Every composite asset, except the enterprise asset, has a receptionist as its first
component. Expanded department assets have a double width solid border and have their

-25- The Enterprise User Interface

components arranged horizontally below their receptionist. Expanded linc assets have a
double width dashed border, and their components are arranged vertically below their
receptionist. As well as a receptionist, each department and line initially contains one
individual as its second component. More components can be added by selecting Add After
from the menu for either the receptionist or individual. A new individual will be added
after the component whose menu was used. Components can be deleted by selecting
Delete from their asset menus. All components except the receptionist can be replicated or
re-classified as departments, lines, or divisions by making selections from their asset
menus. ‘

[®) Enterprise v1.0: Aprogram [N (@ Enterprise v1.0: Aprogram NN £J]

et

A

] R |
18 C
T—_————————|" q =)

Figure 4.2: Collapsed and expanded department assets

[®] Enterprise v1.0: Aprogram [l £J)] [@] Enterprise v1.0: Aprogram RN FJ|

A A

3 | R
@

V- v
e T3

| ———— — D] z
Figure 4.3: Collapsed and expanded line assets

Expanded division assets have a shaded double width border and a single
component directly below their receptionist. Initially this component is a representative,
which can be replicated or re-classified as a division. As discussed in Chapter 2, divisions
are used to represent parallel recursion in Enterprise. The receptionist and the

-26- The Enterprise User Interface

representative share the same code and have the same name. When the receptionist makes
a recursive call, it actually sends a message to the representative. A parallel recursive
program is built by constructing a tree of nested divisions with representatives at the

leaves

[®] Enterprise vi.0: Aprogram |} [®] Enterprise v1.0: Aprogram Jj EJ]

.‘J=_.——=_==.’J:J A= — N
Figure 4.4: Collapsed and expanded division assets

Programming Semantics
The code for each asset must have a function with the name of the asset. The asset

is invoked by calling this function. The first asset in the program must take the parameters
arge and argv. It cannot be named main.

The asset types impose some restrictions on which asset calls are legal. Each of
the composite assets represents a template for a high-level parallelization technique. The
compiler restricts the calls that assets can make to ensure that they conform to the
template. For example, a line asset represents the pipeline parallelization technique. This
means that each asset in the line should perform some work, produce an intermediate
result, then pass the result to the next asset in the line. No asset should call any other
asset that is not the next one in the line. The compiler enforces this rule.

Any calls that violate the rules are reported at compile time and are treated as fatal
compile time errors. This way Enterprise can improve run time performance by setting up
the connections between assets before the program first starts.

Departments, lines, and the enterprise asset can never make asset calls because
they do not have code associated with them. For other asset types, whether a call is legal
depends on the type of the caller's parent. The following restrictions are made on asset

calls:

» Services are globally visible and can be called by any other asset, but cannot make
any calls themselves.

e Only the receptionist of a composite asset is visible outside its parent. It is the
only asset that can be called from outside the composite asset.

« Inside a department, only the receptionist can call the other components. If the
department itself is a component of a line, all components of the department,

-27- The Enterprise User Interface

including the receptionist, can call the next component of the line. Note that if this
next component is a composite arset, the call will actually be to its receptionist.

o Inside a line, each component, including the receptionist, can only call the next
asset in the line. If the line itself is a component of a second line, the lasi
component can call th next component of the second line.

o Inside a division, both the receptionist and the component division or
representative can recursively call the division. Like a department, if the division is
a component of a line any of its components can call the next component of the
line.

Replication

Most assets can be replicated. Replicating an asset creates copics of the asset that
execute in parallel, each replica using the same source code. The run-time executive
keeps track of which replicas are busy and which are idle. When a call is made to the
replicated asset, the job will be processed by one of the replicas. If all replicas are busy,
the job will wait until a replica becomes free. If enough machines are available, cach
replica will be placed on a different machine. Otherwise, some may share machines with
each other or with other assets.

Replicable assets have minimum and maximum replication factors which set a
range for the number of replicas of the asset that are created. The minimum replication
factor specifies the number of replicas created statically, beforc the user's program is
started. The maximum replication factor specifies the maximum number of replicas that
will be created for an asset, including those created dynamically at run-time. When a call
is made to an asset at run-time, if all its replicas are busy and it has less total replicas than
its maximum replication factor, a new replica of an asset is created dvnamically. If the
maximum number of replicas are already running, the job waits until one is available. The
minimum must be greater than zero, and the maximum must be greater than or cqual to
the minimum.

Divisions are used to represent parallel recursion. They consist of a tree of nested
divisions with representatives at the leaves. The branching factor of the tree is set for a
level by replicating the division or representative. When a recursive call is made to a
division, it will execute in parallel if a replica is available, or wait until one becomes free.

Receptionists cannot be replicated. If a receptionist was replicated, there would be
several entry points to the same composite asset. When a composite assct is replicated all
of its components, including the receptionist, are replicated as a unit, giving cach
composite replica a unique entry point. In both cases the caller would call one of several
copies of the receptionist, but in the first case they would all talk to the next component. in
the same composite asset, whereas in the second case they would each talk to a
component in a different composite asset.

Neither the enterprise asset nor its component can be replicated. This is becausc
the current version of Enterprise does not support multiple copies of a program running
under one copy of the interface.

There is a subtle difference between the semantics of replicated assets that usc
static variables and the semantics of a sequential program using the same code. Replicas
are not re-created each time they are invoked, but are implemented as a process that starts

-28- The Enterprise User Interface

up, then waits in a polling loop for incoming messages. When a message is received, the
replica processes the job, then goes back into the loop. It does not re-initialize static
variables each time. On the other hand, the semantics of sequential C are that all static
variables are initialized when the program first starts. Thus, a replica may incorrectly
assume that a static variable has been initialized when it actually contains a value from a

previous call.
Re-Classifying Assets

The kind of parallelism is determined by the asset kind as described in Chapter 2.
An asset's kind can be changed by re-classifying it. Initially, a new program consists of an
enterprise with a single individual as a component, representing a sequential program. To
change the asset kind, the individual must be re-classified as another kind such as a
department or line by making selections from the asset menu. For example, to re-classify
an individual as a line, the user selects Line from the individual's asset menu. The
individual will then be replaced by a line.

Re-classifying an asset causes a new asset of the desired type to be created that
replaces the original one in the asset hierarchy. The new asset has all of the original's
attributes such as its name and replication factors. New departments and lines are created
by re-classifying individuals. They initially have two components: a receptionist which has
the same name as the composite asset and an individual which has a default name assigned
by the system. Any existing code is transferred to the receptionist. New divisions are
created by re-classifying individuals or representatives. Like departments and lines, a
division has a receptionist that shares its name, but its second component is a
representative rather than an individual. Both of the components of a division have the
same name as the parent division.

There are some restrictions on which assets can be re-classified. Receptionists
cannot be re-classified because their role is fixed as the entry point of a composite asset.
Representatives can only be re-classified as divisions because their role is fixed as the
leaves of a division tree. Services cannot be re-classified as any other asset kind, and no
other assets can be re-classified as services. Individuals can be re-classified as
departments, lines, or divisions. Divisions that have another division as a parent can only
be re-classified as representatives. Other composite assets, including divisions whose
patcnt is not a division, can only be re-classified as individuals.

When a composite asset is re-classified as an individual, all of its components are
deleted and a new individual with the same attributes is created to replace it. The code
from all of its components is concatenated into one file for the new individual and the files
for the components are deleted. The user is warned before these actions are taken.

4.1.3. Starting Up

-

Running the Interface
Assuming that the interface has been installed as described in Appendix C and the

Smalltalk image has been saved with the default name of st80, start Smalltalk by changing
to the Enterprise directory and executing the UNIX command 'st80'. Once Smalltalk has
started, evaluate the expression 'Enterprise open' to start the interface. This can be
done by typing it into a workspace, highlighting it, and then selecting doit from the middle
mouse button menu. If there is no workspace, open one by selecting workspace from the

-29- The Enterprise User Interface

Launcher Utilities menu. A window should then open that displays an enterprise asset as
shown in Figure 4.1.

Initial Menus

To begin building a program, you must first either select an existing program to
edit or create a new one. This can be done by using the design menu or the asset menu for
the enterprise asset.

The design menu contains the choices Edit Program and New Program. Sclecting
Edit Program will display a list of existing programs to choose from. Clicking on the
desired program will load it for editing. Clicking outside of the list will cancel the
operation. Selecting New Program will cause a dialog box to appear asking for a name.
Type a name in the box and press ENTER. The interface checks that the name is unique,
then creates the required directories and files.

The asset menu contains the single choice Name. Selecting it will display a dialog
box asking for the name of a program to edit. Typing the name of an existing program
will load it just as though the program had been selected from the list displayed b, Edit
Program in the design menu. Typing a name that does not already exist causcs a new
program to be created with that name just as if New Program had been selccted from the
design menu. To avoid creating a new program by rnistake, it is safest to load an existing
program from the design menu.

Once a program has been created or loaded, the menus change to include more
choices and the title bar of the window changes to include the name of the program. The
enterprise asset menu will still contain the choice Name, but selecting it will now rename
the program instead of creating or loading one.

4.1.4. The Design Menu
The design menu contains the following choices:

New Program Create and edit a new program.

Edit Program Load and edit an existing program.

Save Program Save the current program.

Delete Program Delete the current program.

Edit User File Edit non-asset C source, header, or data files.
Compile All Re-compile all assets and source files.

Make Re-compile changed assets and source files.
Execute Execute the program. '

Animate Switch to the animation view.

Set Options Set global compile and run options.

Edit Machine File Edit the list of available machines.
Show Services Display the service canvas.

New Program

This command is used to create a new program. Selecting this command causes a
dialog box to appear asking for a program name. Pressing ENTER with no name in the
box cancels the operation. Typing a name in the box and pressing ENTER creates a new
program and readies it for editing. If the name is in use by a program, an error message is
displayed and the operation is aborted.

-30- The Enterprise User Interface

After the name has been entered, Enterprise creates sub-directories for the
program as described in Section 4.2. It then saves the current program, creates a new
enterprise asset, and replaces the current enterprise asset with the new one. The name of
the new program appears in the window title bar. Because of the implicit save, the user is
not warned that the current program will be replaced. It can be re-loaded simply by

selecting Edit Program.

Edit Program
This command is used to load an existing program for editing. Selecting this

command causes a list of existing programs to appear. Selecting one of the programs by
clicking on it causes the current program to be saved and the new program to be loaded.
Clicking outside of the list will cancel the operation. The new program replaces the
current program in the window and its name is displayed in the title bar.

Save Program
This command is used to explicitly save the current program. A representation of

the asset hierarchy is written to a graph file. The graph file is used to save and re-load
programs, as well as to communicate between the interface, pre-compiler, and executive.
Its format is described in Appendix A.

The file is written in the Graph sub-directory of the program's directory. Its name
is the name of the program with the extension .graph appended to it.

Currently there is no Save As facility for saving the program with a different name.
Instead, the user must first rename the program by selecting Name from the enterprise
asset's menu, then select Save from the design menu.

Delete Program
This command is used to delete a program. Selecting this command causes a

dialog box to appear asking the user to confirm the operation. Selecting NO aborts the
operation. Selecting YES causes the current program to be deleted. All of its files are
deleted including its asset code and graph file. The program cannot be recovered
afterward.

The interface will return to the state where no program is being edited, as was

described above.

Edit User File
This command is used to edit files containing anything other than asset source

code. Asset source code is edited by selecting Code from the asset's menu. Selecting Edit
User File causes a sub-menu to appear with the choices, Edit Source File, Edit Header File,
and Edit Data File.

Edit Source File edits code that is shared by assets. Because all assets are linked
together into one executable program, common code must not appear in more than one
asset. It is sometimes easier to put common code into a separate file that is then linked
with the assets. For example, consider an individual asset containing functions Read (),
sort (), and write() that all call another function named DisplayTime(). If the
individual was re-classified as a line with component assets Read, Sort, and Write, the
code for Read(), Sort (), and write() would all be put into files for their associated
assets. DisplayTime () could be put into a separate file. The files are placed in the User

-31- The Enterprise User Interface

sub-directory of the program directory and are automatically compiled and linked with the
program. They are not pre-compiled, so they cannot contain asset calls.

Edit Header File allows header files to be edited. They are placed in the Include sub-
directory of the program directory. The compiler searches this directory when processing
#include directives.

Edit Data File edits input data files used by the program at run time. The file name
can be specified as an input file in the run-time options section of the Set Options dialog
box described below. Data files are placed in the Data sub-directory.

All three selections display a dialog box containing a list of existing files of the
appropriate type as shown in Figure 4.5.

animation.h
1 com.h
polygon.h

polyread.h

Figure 4.5: Dialog box for selecting a file to edit

Selecting the CANCEL button aborts the operation. Selecting a file from the list,
then selecting OK will start an editor containing the selected file. Typing a name in the
Name box, then selecting OK will create a new file and start an editor for it. If an editor
was specified in the .ENTrc file, it is used. Otherwise a standard Smalltalk editor is used.

Compile All
This command is used to compile and link the entire program. The source code

for all assets is pre-compiled, the resulting files are compiled, and the files in the User
directory are compiled. Then the resulting object modules are linked with Enterprise
system modules, Enterprise system libraries, and user specified libraries to produce an
executable program. The user specifies libraries in the Set Options dialog box described
below. The current program is saved before comptlmg to ensure that the graph file is up
to date for the pre-compiler.

When the compiler is running, the cursor changes to indicate that Enterprise is
busy. The interface will be inactive until the compilation is finished. Pressing CTRL-C will
abort the compile.

A window is opened that shows the status of the compilation. All compiler and
linker messages, including error messages, are displayed in the window. When the
compilation is done, the window is left open with a UNIX shell running in it. The user can
enter commands or scroll the window back to view error messages. Pressing CTRL-D
exits the shell and closes the window.

Any part of the asset hierarchy can be compiled without linking by selecting
Compile from the asset menus. The asset and all of its components will be compiled as
described below.

-32- The Enterprise User Interface

Make
This is similar to Compile All, but only the code that has changed since the last

compile is re-compiled. It has a functionality similar to UNIX make, except it does not
consider header files and the user has no control over dependencies.

Run
Once a program has been successfully compiled and linked, Run can be used to

execute it. The current program is first saved to its graph file, then the program is started
in its directory. While the program is running, the cursor changes to indicate that the
interface cannot be used until execution is finished. Pressing CTRL-C aborts the run.

If the program has not been compiled or if the executable is older than the source
code for an asset, a dialog box appears. The box contains the choices None, Old, and Doit.
Selecting None will abort the run. Selecting Old will execute the out-of-date executable.
Selecting Doit will re-compile the program, then run it.

A console window is opened that contains messages from the Enterprise run-time
executive. Like the compile window, it is left open so the user can review system
messages or enter UNIX commands to test the result of the run. If output or error window
options were enabled for any assets, windows containing the standard output and standard
error files for the assets would also appear. These types of asset specific options are set
using the dialog box invoked by selecting Set Options from the asset menus. Global
program options such as command line arguments or input data file names are set using
the dialog box invoked from the design menu. The boxes are described below.

Animate
This command is used to display the program's last execution. Selecting Animate

causes the design view to be replaced by an animation view where replicated assets are
expanded to show all their replicas, asset states are displayed, and message queues are
visible. If the design view is thought of as a view from in front of the asset graph with all
but the first replica hidden, the animation view can be thought of as a view from the side
of the graph with all replicas visible. When the animation view is visible, the choices
available in the menus change to include animation commands.

The execution is displayed using an event file produced during program execution.
The event logging flag must be turned on in the program's Set Options dialog box before
events are captured.

Chapter 5 describes the animation system, including the animation view, in more

detail.

Set Options
This command is used to set compile and run options that affect the program as a

whole. Options that affect single assets or a part of the asset hierarchy are set from the
asset menus as described below. The options are not saved between sessions, but are
reset to their default values every time the interface is started or the current program
changes.

Selecting Set Options causes the dialog box shown in Figure 4.6 to appear.
Compile options appear in the top half of the box, and run options are in the bottom half.

-33- The Enterprise User Interface

[@] Program Options: Animation R

Compile and Link Options
verbose: (O ON (® oFF
libraries:

A

Run Options
event log: QON (® oFF
input file:
output file:
command line arguments:

oK | CANCEL|
Figure 4.6: Dialog box for global options

The available compile options are the verbose flag and a specification of external
link libraries. The verbose flag determines how much information the pre-compiler
displays in the compiler window as it works. Turning the flag on causes more output to
appear. Most of the extra output is only useful for debugging the pre-compiler itself. The
libraries box specifies options for the linker. Whatever is typed into the box is appended to
the link command by the compiler. For example, to have the program linked with the
math library and a graphics library named 1ibUTILITY.a, '-1m -1UTILITY' should be
typed in the box. Enterprise adds the User directory to the compiler's library search path.

The run options are the event logging flag, input and output file names, and
command line arguments. Turning on the event logging flag will cause cvents to be
captured and saved to an event file as the program runs. The file will be used to display
the execution using Enterprise's animation component as described in Chapter 5. The
format of the file is described in Appendix B. Entering the name of an input file or output
file will cause the first asset in the program to read its standard input or standard output
from the file. The contents of the command line box will be passed to the first asset in the
program when it starts.

Once all the fields in the box have been set as desired, pressing the OK button or
pressing ENTER will set the options. Pressing the CANCEL button will discard the
contents of the box and leave the options as they were set before it was opened.

Edit Machine File

This command is used to maintain the list of machines that are available to run an
Enterprise program. Enterprise maintains a mactine file for each program that determines
the machines that are available. When Edit Machine File is selected, the machine file editor
window shown in Figure 4.7 appears.

-34- The Enterprise User Interface

[@] Machine File Editor [NEEEGEGEGNGN £
"""""""" 2 Delete
sass—lake -——‘I
senex

therien

thorhild

samson-pk add |

OK | CANCEL|

Figure 4.7: The machine file editor

The list contains the current set of machines. A new machine can be added to the
list by typing its name into the box below the list and pressing the Add button. The
machine name will be added to the list and disappear from the Add box. The name should
be one that can be used in a UNIX rsh command. The interface does not check that the
name is valid. A machine can be deleted from the list by selecting it in the list, then

pressing the Delete button.
Pressing the OK button will update the machine file and close the box. Pressing

CANCEL will close the box but ignore its contents, ieaving the machine file unchanged.
The set of machines used to run a given asset can be overridden using the

EXCLUDE and INCLUDE options in its options dialog box described below.

Show Services

[@] Enterprise v1.0: Aprogram

1> v

U) |
Figure 4.8: The service canvas

This command is used to display the service canvas. When the interface first
starts, the program canvas fills the entire window. The service canvas exists, but it is

-35- The Enterprise User Interface

hidden. Selecting Show Services causes it to appear in the top half of the window as
shown in Figure 4.8.

If the program currently contains services, they will appear in the service canvas
and their menus can be selected like any other asset. Both canvasses can be scrolled
independently.

The Show Services menu choice will disappear and be replaced with the choices
Add Service and Hide Services. Add Service will add a new service to the program, causing
a new service icon to appear in the service canvas. Hide Services will cause the service
canvas to be hidden once again and the menu will change back to its original contents.

4.1.5. Common Operations on Assets

Several operations that are common to all assets are discussed here. Not all of
them appear in the menu for every asset; only those that are legal for the assct at its place
in the graph appear.

Naming

When an asset is created, Enterprise gives it a default name. This name can be
changed by selecting Name from the asset's menu. A dialog box will appear containing the
current name. Typing a new name and pressing ENTER rcnames the asset. Deleting the
name and pressing ENTER will cancel the operation. It is impossible to have an asset
without a name.

The name of the asset must be unique within the program or an error message will
appear and the operation will be aborted. No asset can be named main. There is no limit
on the length of names, but shorter names fit inside the asset icons better and look better
on the display.

A department or line shares its name with its receptionist. Naming a receptionist
also names the parent, and naming the parent also names the receptionist. A division
shares its name with both its receptionist and its component representative or division.
This means that all elements of a division tree share the same name. Naming any
receptionist, representative, or division in the tree names them all. The full name of an
asset in a division consists of this base name and a numerical suffix appended by the
system, giving each element of the tree a unique name. The algorithm used to gencrate
the suffix is described in Chapter 5.

Expanding and Collapsing

As discussed previously, a composite asset can be expanded to reveal its
components to make them accessible for editing, or collapsed to view it as a single unit.
An expanded asset displays itself as a rectangle containing its components. The border
style of the rectangle represents the type of the composite asset. The menu for the
composite asset can still be accessed by clicking inside the rectangle but outside of any
component.

The menu a collapsed composite asset contains the Expand command. Sclecting
the Expand command expands the asset and changes the menu to contain the Collapse
command instead of Expand. Selecting Collapse will collapse the asset and replace its
menu entry by Expand.

Collapsing assets can be used as a form of clustering [Tay92]. Asscts can be
collapsed and expanded to control the amount of detail displayed at any place in the assct

-36- The Enterprise User Interface

graph. This is very useful in the animation view where all replicas are visible and the user
may only be interested in a small part of the graph.

Adding and Deleting
Departments and lines are created with a receptionist and one individual as

components. More components can be added by selecting Add After from the asset menu
for one of the components. A new individual is added to the department or line after the
asset whose menu was used. Services also have Add After in their menus. A new service
can be added by selecting Add After from the asset menu of an existing service or by
selecting Add Service from the design menu when the service canvas is visible.

If an asset can be deleted, the choice Delete will appear in its menu. Selecting it
will cause a dialog box to appear asking for confirmation. Clicking on the YES button will
delete the asset and all of its associated files. Clicking on the NO button will abort the
operation.

Components cannot be added to or deleted from divisions.

Replicating

If an asset can be replicated, the choice Replicate will appear in its menu. Selecting
Replicate will cause the replication dialog box shown in Figure 4.9 to appear.

To set the replication factors, click on min or max, then click on the arrows to
increment or decrement the selected value. If min is equal to max, incrementing min will
also increment max. If max is equal to min, decrementing max will also decrement min.
Neither can be decremented to less than 1. To set the ordering option, click the
ORDERED or UNORDERED radio buttons.

[@] Replication: B

I

REPLICATION
minimum 1

4@
maximum 1 b

(®) ORDERED (O UNORDERED

0K | CANCEL

Figure 4.9: The replication dialog box

Clicking on the OK hutton or pressing ENTER will update the asset's attributes
using the values set in the box. Clicking CANCEL will abort the operation and leave the

asset unchanged.
Re-Classifying

Assets that can be re-classified have the names of other asset kinds in their menus.
The names that appear depend on the asset that owns the menu and its location in the
graph. For example, divisions can be re-classified as individuals if they are the root of a
division tree, but must be re-classified as a representative if they are an internal node. The
choice Individual appears in the menu of a root division. The choice Representative appears
in the menu of an internal division.

As discussed previously, re-classifying an asset by selecting the name of another
asset kind from its menu causes a new asset to be created that replaces the original one. If

-37- The Enterprise User Interface

a composite asset is being re-classified as an individual, a dialog box will appear warning
that information is being re-organized and asking for confirmation.

Editing Code

Assets like individuals and services that have code associated with them have the
choice Code in their menus. Selecting this command causes an editor to open on the code
for the asset.

If no code currently exists, a new file is created. The new file will have the same
name as the asset, with the extension '.e'. It will be placed in the Assets sub-dircctory of
the program's directory. If code does exist, it will be loaded into the editor. Editors can
be open on many assets at the same time. If the Smalltalk editor is used, code can be
copied between editors.

The editor that is used is specified in the .ENTrc file as explained in Appendix C. 1If
no editor is specified, a standard Smalitalk editor is used. Details on using it can be found
in the Smalltalk documentation [PP90].

Setting Compile and Run Options
Each asset has the choice Set Options in its menu. This command allows compile

and run options to be set for the asset. When Set Options is selected, the dialog box
shown in Figure 4.10 appears.

[@] Asset Options: Model RN

Compile and Link Options
debug ON OFF
optimize ON OFF

CFLACS

Run Options
output windows (QON (® OFF
error windows QoN (® OFF

INCLUDE
EXCLUDE

oK | CANCEL
Figure 4.10: Asset Options Dialog Box

If the asset has components, the options are set for all its components as well,
overwriting any options previously set. Alternate options for the components can then be
set individually from their own menus.

When a program is compiled, Enterprise first inserts code for communication and
synchronization by precompiling the assets. It then invokes a standard C compiler on the
result. The compile options are for the standard C compiler and consist of a debug flag,
an optimize flag, and a string of compiler options. The two flags are compiler
independent. If the debug flag is ON, the asset will be compiled using the compiler's debug
option so that a standard debugger can be used. If the optimize flag is ON, the asset will
be compiled using the compiler's optimization. The CFLAGS box may be used to enter any
other compiler options that the user desires. They are not examined in any way by the
interface, but are passed directly to the compiler. It is the user's responsibility to ensure

-38- The E.terprise User Interface

that they are valid options for the compiler used. The flags are most useful for entering
such things as macro definitions. For example, an asset could have some code that is
included only if the symbol TEST is defined. The string '-DTEST' can be entered in the
CFLAGS box to have the compiler include the code.

The run time options specify whether output windows appear, as well as lists of
machines to use or avoid when running the asset. If the output windows option is ON, a
window is created for the asset when it runs. The window will contain everything the
asset writes to its standard output file during the run. Similarly, if the error windows
option is on, a window for the asset's standard error output is created. The INCLUDE and
EXCLUDE boxes are used to specify machines. They override the list in the machine file
described previously. Any machines listed in the INCLUDE box will be used to run the
assct. If they are not available the asset will not be started; no other machines will be
used. Any machines listed in the EXCLUDE box will not be used to run the asset. These
options can be used for such things as forcing an asset to run on a specific graphics
workstation or a workstation with a large memory capacity.

Like the other dialog boxes in the system, clicking on the OK button or pressing -
ENTER will use the settings in the box to update the assets. Clicking on CANCEL will
abort the operation and leave the asset unchanged.

Compiling
This command is used to compile an asset and all its components without invoking

the linker. The asset will be pre-compiled and compiled. No code in the User directory is
compiled and no linking is done. If the asset has components, all the asset's components

will be compiled.

4.1.6. Asset menus

Command Individual Receptionist | Representative Department Line | Division | Service Enterprise
Name v v v N v v V v
Expund/Collnpse v Y v v
Add ARer Vi V Vi y! 12 v

Delete V! V! V1 1.2 v

Individual v v V2

Representative ‘/3

Department v

Line N

Division v v

Code v v N v v

Compile vV N v J v Vv v

Replicate V! v V! V1 Jl

Options v v v v V v v

1- only 1f the parent of the asset is not an enterprise
2- only if the parent of the assct 1s not a division
3. only 1t the parent of the asset 1s a division

< only if’a program 1s cunently being edited

Table 4.1: Menu choices for assets

-39- The Enterprise User Interface

Table 4.1 shows which menu choices appear in the menus of cach asset kind. Note
that when no program is currently being edited, the enterprise asset menu contains the
single choice Name. Also, neither the enterprise asset nor its component can be deleted or
replicated, and no more components can be added to the enterprise asset. Thus Add After,
Delete, and Replicate will not appear in an asset's menu if it is the single component of the
enterprise asset.

4.2. Implementation

4.2.1. The Control Model

Under X Windows, Smalltalk runs as a single process. Since a program may
display many Smalltalk windows, the Smalltalk interpreter polls the windows, asking cach
in turn if it wants control. The default behavior is that a window takes control whenever
the cursor is inside it.

The Model View Controller (MVC) paradigm [LP91] is used where the model is
an instance of class Enterprise, the view is an EnterpriseWindow, and the controller is an
EnterpriseController. The EnterpriseController behaves exactly the same as a default
Controller except when the program is animated, which will be described in Chapter S.

The model is responsible for knowing its enterprise (program). The window is
responsible for displaying the enterprise using the values stored by the model. Views arc
composite objects that can contain sub-views, but the location and size of a sub-view
within its parent view is maintained by a wrapper object. That is, sub-views are contained
in wrappers, which are themselves contained in a parent view. An instance of
EnterpriseWindow contains two wrapped sub-views: an Enterprise view and a Scrvice
view. The Enterprise view displays the enterprise and the Service view displays the
service assets used by the enterprise. As described in Section 4.1, the Service view can be
hidden when it is not used.

When a mouse button is pressed, the window passes control to the view that
contains the cursor. The view then determines which asset, if any, was selected. The
selected asset is one whose rectangular bounds contain the cursor point. However, since
assets may be nested in a hierarchical structure, many assets may contain the point. The
selected asset is defined as the innermost one that contains it. Once the selected assct has
been determined, it takes control, displays its menu, and takes the appropriate action.

Assets are responsible tor knowing their locations, their parent asset, and the other
assets they contain. As assets are expanded and collapsed, their locations change and
must be updated. Determining the selected asset must take this into account.

The following naive approach for determining the selected asset was tricd first.
The Smalltalk-80 implementation of MVC provides a default behavior that passes control
to the innermost view that contains the cursor. This is implemented by maintaining a list
of controllers of currently active windows. Each of the controllers in the list is sent a
message in a polling loop. If a controller's view has the cursor, it takes control and asks
its view if one of its sub-views wants control. If one does, the controller gives control to
the sub-view's controller, otherwise it keeps control itself. The sub-view's controller
behaves the same way. Thus, the controller for the innermost sub-view that contains the
cursor gets control. Since assets are views, the method that determines if a sub-view

-40- The Enterprise User Interface

wants control was re-implemented. This was necessary since Smalltalk assumes that sub-
views are always displayed. If an asset is collapsed or has no components, the method
returns the asset itself Otherwise the method invokes the original method that recursively
finds a component of the asset that wants control.

Unfortunately, this approach failed. There were times when the wrong menus
would be displayed. Clicking on an asset would bring up the menu for one of its
components, its parent, or even one of its parent's parents. Clicking at the same location
again would sometimes display the same menu, but would sometimes display the right one
or a completely different one. It seemed like the wrong controller was taking control.
This behavior was caused by two different phenomena. First, each asset asked the cursor
for its location. When the cursor was moved between the times that two assets queried it,
cach would receive a different point. Second, the control method was not actually as
simple as described previously. The method in the controller that asks sub-controllers if
they want control is sent from a loop. The loop iterates until the asset no longer has the
cursor. When a menu was displayed, the active control loop was initiated from a
controller in a loop that was initiated from a controller in a loop, etc. When the active
controller finished processing the user's choice, that loop would not end. The next time the
user clicked the mouse the controller would assume that it had the cursor (because it was
active), would find that no sub-view wanted control, and would thus take control and
display its own menu.

Our second approach alleviated this problem. The Enterprise view determines the
coordinates of the cursor and asks the enterprise which asset should be selected. The
selected asset is then told to display its menu and perform the appropriate action. The
enterprise or any other asset uses the cursor point to determine the selected asset as
follows: If the point is outside its bounds it answers nil. If the point is inside its bounds
and it does not contain any component assets or it contains component assets but they are
not currently displayed, then it returns itself Otherwise, the asset asks each of its
component assets in turn to identify the selected asset until one answers an asset or all
respond with nil. The asset then returns this result. Before asking each component asset,
the asset asks the wrapper of the component to change the coordinates of the cursor point
to the local coordinates of the component. This way the cursor coordinates are only
determined once. Also, the menu for an asset is invoked by the Enterprise view directly,

not from inside of nested control loops.

4.2.2. Drawing Assets
When an asset receives a display message, it draws itself. Any asset that contains

component assets can be either collapsed or expanded. Assets that are collapsed or do not
have components are displayed in the same way. First the asset draws its icon. Then it
displays its name in the lower left corner of the icon. If the asset is replicated, the
replication is indicated by drawing lines above and to the right of the icon to simulate a
stack of icons, and by displaying the number of replications outside of the top right corner
of the replication lines.

An expanded asset first draws a rectangular border. The size of the rectangle is
computed by asking each component for its size and adding room for space between the
components. Next, a display message is sent to sach component so that it draws itself.

-41- The Enterprise User Interface

The parent asset then draws the connections between the components. Finally the
replication is indicated in the same way as it is for collapsed assets.

The basic drawing behavior is implemented in the Asset class and cach Asset
subclass provides a method for drawing its own icon. In addition, different hine styles are
used for the borders of expanded assets as discussed in Section 4.1. The method that
draws the border is overridden in these assets to use the appropriate behavior. Similaily,
the method that draws connections is overridden to draw the appropriate connections for
the various Asset sub-classes.

4.2.3. Communicating with Qther Components

Although the user-interface is implemented in Smalltalk, the other two Enterprise
system components are implemented in C. The user-interface communicates with the pre-
compiler and the executive through UNIX pipes and text files. This section describes the
technique for connecting to the external UNIX processes, the organization of the
directories containing C source and object code files for a program, and several kinds of
text files that are used to communicate with the other Enterprise components.

Graph, Event, Preference, and Machine Files

A graph file describes a single Enterprise program. It specifics the hicrarchical
structure of the assets, replication factors, compile and link options, and any user machine
preferences. The assets are listed in a depth-first order. This makes it simple to write the
file by traversing the asset hierarchy, and allows the hierarchy to be rebuilt by reading the
file sequentially. For each asset there is a line with its name, type, replication factor and
options for ordering, debugging and optimization. If the asset has internal components
there is also a count of components. Following this are four lines that specify the compile,
link and run options. If the asset has components, these lines are followed by their
descriptions in the same format. Appendix A contains a description of the Enterprisc
graph file format.

Graph files are created and edited by the user-interface. When the user selects the
Save, Compile, or Run commands from the design menu, the enterprise is asked to store a
representation of itself in a graph file whose name is the enterprise name with a .graph
appended. Each asset type knows how to write a description of itself and if it has
components, it asks its components to write themselves as well. Alternately, when the
user wants to load a previously saved program, the graph file is read and as it is parsed,
assets are created and displayed to represent the saved program.

The pre-compiler uses the information contained in a program's graph file to
identify procedure/function calls to assets and replaces them with message sends and
receives. The runtime executive uses the graph file to determine how many processcs to
launch, the execution role of each process and the appropriate communication links
between these processes.

Event files are created by the run-time executive's monitor process while a
program is running and are used later to animate the program. The event file name is the
name of the enterprise with a .ev appended to it. The events contained in the file arc
described in more detail in Chapter 5. Appendix B contains a description of the Enterprise
event file format.

-42- The Enterprise User Interface

Enterprisc maintains a preferences file. When the user-interface first starts, it
looks in the current directory for a file named .ENTrc. The file is read and global
preferences are set from its contents. Appendix C includes a list of the preferences
currently supported.

Each program also has a machine file located in its Graph sub-directory. The file
contains a list of machines that the run-time executive can use. Each line of the file
contains the name of one machine. The file can be modified by the user from ths: design

menu by selecting Edit Machine File.

External Processes
The user-interface launches external processes for compiling code, running a

program, and possibly for editing code. The user may use a standard Smalltalk editor or a
non-Smalltalk editor may be selected. Several editors can be active at the same time, one
for each asset. If the Smalltalk editor is used, no new process is launched. Instead, a new
Smalltalk window is created and the window is added to the list of active windows. It is
given control by the Smalltalk interpreter whenever its window has the cursor. If an
external editor is used, an X window is created. The editor becomes an X windows task
that executes concurrently with the Smalltalk interpreter.

The Compile and Run commands are only usable with the UNiX version of the
user-interface since the pre-compiler and executive currently require UNIX. Both
commands launch an external process and establish communications with it. Smalltalk
simplifies this task by providing a UnixProcess class. A message is sent to this class
specifying the name of a UNIX program, an array of arguments for the command, and a
block. The block is evaluated with the external process as an argument. This provides a
mechanism for referencing the process from Smalltalk after it has been created. When the
message is sent, the process is created and two pipes are established, one connected to
the process' standard input and the other connected to both its standard output and
standard error. These pipes are represented as Smalltalk strcams that are contained in the
instan:e of ExternalConnection that is returned by the message.

The user can elect to compile and link the entire program or to compile part of the
asset hierarchy. In either case, if the program has been changed, the user-interface first
writes out the graph file. The Enterprise pre-compiler process is then started and a
window is created to display all text that is sent to the ExternalConnection's output
stream. The event polling loop in the controller for the Enterprise view monitors the
stream. Whenever new text is available, it is displayed in this window. If there is no new
text, the polling loop just continues normally. The user can interact with the system
normally and may even cancel the compile. When the compile is finished, the window is
left open so that the user can review the compiler messages. Programs are run in a similar
manner except output is displayed in another window.

4.2.4. Sub-Directories
The Enterprise interface runs in the directory created during installation. Two sub-
directories are also created:

Bin This directory holds UNIX scripts and executable programs used by the pre-
compiler and run-time executive. Some of the scripts are used by the interface

-43- The Enterprise User Interface

Lih

as well. For example, when Run is selected from the design menu, the script
Bin/runprogram is called to execute the program.

This directory holds Enterprise system libraries and object modules that are
linked with the compiled asset code in Obj and the compiled modules in User.

Whenever a new program is created, Enterprise creates a new sub-directory for the
program. The directory has the name of the program with ".A" appended to it, and contains
the following directories inside it:

Assets

Data

Err

Graph

Include

Out

Obj

Src

Tmp
User

This directory holds the C source code files for all of the assets. Each asset's
code is stored in a file ending with .e. The pre-compiler parses these files and
produces corresponding files ending with .c. These are written to the Src
directory. For example, the user's code for an asset named Model will be stored
in Assets/Model.e. The pre-compiler produces the corresponding file
Src/Model.c.

This directory holds input data files for the program. When Edit Data File is
selected from the design menu, the file is written here. The file can be
specified as an input file in the options box invoked from the design menu.

This directory holds the assets' standard error output. Each assct is assigned a
unique file name in the directory. When it runs, anything an assct writes to its
C standard error file goes into the file for the asset. The file is rewritten each
run. If an error window has been enabled for an asset, the file is copied to the
window after the run.

This directory holds system generated files like the graph file, the cvent log,
and the machine file for a program.

This directory holds C header files. When the compiler processes #include
directives, it searches this directory. When Edit Header File is sclected from the
design menu, the files are written here.

This directory holds the assets' standard output. Each assct is assigned a
unique file name in the directory. When it runs, anything an asset writes to its
C standard output file goes into the file for the asset. The file is rewritten cach
run. If an output window has been enabled for an asset, the file is copicd to
the window after the run.

This directory holds object modules containing the compiled assct code. These
are .o files that are linked together with libraries to form the final program.

This directory holds pre-compiled C source code for the assets. These are the
user's code with the calls to the Enterprise system libraries inserted into them.
The files here are compiled using a standard C compiler, producing object
modules that are stored in the Obj directory.

This directory holds temporary files used by the pre-compiler.

This directtty hetds C source code for user modules that are to be linked to
the asset cede. Common routines called by all assets can be placed into files

-44- The Enterprise User Interface

here and they will be compiled into object modules and linked with the assets.
When Edit Source File is selected from the design menu, the file is written here.
This directory is also added to the linker's library search path.

As well as these directories, the program's directory holds the executable program itself.

4.2.5. The Asset Inheritance Hierarchy
The section above described the way that assets are drawn and the approach relied

heavily on inheritance. In fact, inheritance is used extensively throughout the user-
interface, but the asset hierarchy can be used to illustrate its importance. The asset kinds
form a natural inheritance graph as shown in Figure 4.11. A solid triangle in the upper left
corner of a class denotes an abstract superclass as described in [WWW90]. The abstract
class, Asset, is the root of the inheritance tree. Universal responsibilities like naming are
defined and implemented in this class. Below the Asset class is a level of abstract
superclasses that define several responsibilities that are shared by several of the leaf asset
classes. A CodableAsset has an external file of C source code associated with it which can
be edited and compiled. A ReplicableAsset can be replicated and transformed to an asset
of a different type. A DeletableAsset can be deleted from its parent asset. An
ExpandableAsset has component assets so it can be expanded or collapsed. An
AddableAsset can have components added to it after it has been created.

The rest of the asset classes are concrete subclasses. A ReceptionistAsset has
code, but can't be replicated, deleted, or expanded. A RepresentativeAsset has code and
can be replicated but can't be deleted or expanded. An IndividualAsset is like a
RepresentativeAsset, except that it can be deleted. A DivisionAsset is like an
IndividualAsset, except that it can be expanded. A ServiceAsset has code and can be
deleted, but it can't be replicated or expanded. A LineAsset or DepartmentAsset can be
replicated, deleted, or expanded, but has no code. An EnterpriseAsset is expandable, has
no code, can't be replicated and can't be deleted.

Expandable
Asset

Deletable
Asset

Codable
Asset

Replicable
Asset

Receptionist Representative Addable Enterprise
Asset Asset Asset Asset Asset
Individual Department Line
Asset Asset Asset

Division
Asset

Figure 4.11: The asset inheritance graph

-45- The Enterprise User Interface

Unfortunately, Smalltalk is restricted to tree inheritance, which required several
compromises to be made in transforming this inheritance structure to a trec. The result is
shown in Figure 4.12. A comparison of Figures 4.11 and 4.12 illustrates clearly that
support for multiple inheritance is essential for applications with real-world models. The
lack of multiple inheritance was the most difficult obstacle that needed to be overcome in
using Smalltalk for the Enterprise project.

complle
replicate
coerce
delate

exennd

Expandable\
Asset

P

Codable (edit)
Asset

run
~delete
~replicate
~coerce

~delete

individual epresentative V' Addable Enterprise
Asset Asset Asset Asset
A . A
Receptionist Division

Asset

Asset @

~replicate
~coerce

~raplicate
~coerce

Department Line
Asset Asset

Figure 4.12: The asset inheritance tree

ReplicableAsset and DeletableAsset were merged with Asset. The rounded
rectangles contain the main messages defined by each class and the symbol ~ means that a
message was overridden because it should not exist for a class. For example, the
ReceptionistAsset class overrides the replicate, coerce, and delete methods. The Division
class was made a subclass of ExpandableAsset instead of IndividualAsset. The code
editing methods were then re-implemented in DivisionAsset. In addition to these changes,
the Asset class was made a subclass of the Smalltalk pre-defined class CompositeView so
that all assets could inherit the behavior of visual objects that have sub-parts.

-46- The Enterprise User Interface

Chapter 5.

Program Animation

Enterprise has a program animation component that can be used to monitor a
program's performance and to help identify certain types of parallel programming and
logic errors. The user can examine the amount of parallelism, when and where
synchronization occurs, which machines are being used and their loads, the lengths of
message queues, and the state of each process during execution. Currently, there are no
debugging facilities for setting breakpoints or examining the values of variables.
Animation consists of displaying asset states, displaying messages as they move between

assets, and displaying message queues.
This is similar to the mona console used in the JADE system [JLU87]. Both

display a view of the state of the program at a point in time, rather than event histories like
the JADE text consoles or the time-process views used in HeNCE [BGD91], PIE [SR89],
or Taylor's Hermes debugger [Tay92].

5.1. The Animation Model

When an Enterprise program runs, events are captured and logged to an event file.
The animation system then replays the run using the file. The options dialog box for the
program contains a set of radio buttons used to specify whether or not events are
captured. If event logging is turned on when a program is executed, the program can be
animated after the run by selecting Animate from the design menu. The design view
described in Chapter 4 will then be replaced by an animation view, which is described
below.

At run-time, Enterprise assets become processes which communicate with each
oth~r by sending messages. Assets in the interface maintain a state. Animation proceeds
in a series of steps, each step corresponding to one event. Events cause messages to move
between assets and assets to change state.

During animation, the time between animation steps is proportional but not equal
to the real-time program execution. The proportionality factor can be adjusted by the user
to speed up or slow down the animation. The user can also execute the animation one

event at a time.

5.1.1. The Animation View

When the user selects Animate from the design view menu, the design view is
replaced by an animation view. Here, assets have message queues associated with them
and all replicas of replicated assets are visible. The state of assets is displayed and
messages move from assets into message queues. Figure 5.1 shows a line of 3 assets in
the design view. Figure 5.2 shows the same line in the animation view at a point during a

replay.

-47- The Enterprise User Interface

[@) Enterprise v1.0: ASC NNEENEER)
°

BB

v

L r— =——H
Figure 5.1: A line in the design view

[®] Enterprise v1.0: ABC (Animating) IREREEEEDEEINNEN |
J

______________________ 1

|

|

1

|

1

|

|

1

8 }

® 1

1

|

§

|

{

i

i

i

5 |

= |

|

|

|

______________________ J
K] — — TN

Figure 5.2: The line during a replay

5.1.1. Message Queues and Messages

When an asset call is made, a call messuge containing the parameters moves from
the caller to the receiver. For function calls or procedure calls that change their
arguments, a reply message containing the return values moves from the receiver back to

-48- The Enterprise User Interface

the caller when the job is done. Messages are represented by small rectangular icons.
Different icons are used for calls and replies. This helps the user distinguish between them
in complicated programs with several messages moving concurrently. In Figure 5.2, a
message can be seen above B.1.1.2 on its way to B.1.1.3. A reply can be seen beside
C.1.1.1.1 on its way to B.1.1.1.

Assets have icons that represent queues for incoming calls and received replies.
Figure 5.3 shows an asset with input and reply message queues. The queue for incoming
calls is called the input quene and is located just outside the top left corner of the asset.
The location corresponds to the fact that assets handle calls by executing from their first
program statement. The queue for received replies is called the reply quene and is located
just outside the center of the asset's right side. The location corresponds to the fact that
replies can be received from any point in an asset's code.

Figure 5.3: An asset with message queues

When a message arrives at its destination, it first moves to just outside an input or
reply queue, then into the queue. The queue indicates the number of messages it contains
in two ways: it displays a count and it uses different icons when it contains 0, 1, or more
messages. The icons for messages, replies, and message queues are shown in Figure 5.4.
Quecues with 0 messages are not displayed. When animation is stopped, the user can select
a message queue and display a menu of the messages it contains. Selecting one of the
messages will display its parameters.

Message Reply

E

Input Queues Reply Queues
Z] one one
many many

Figure 5.4 Icons for messages and message queues

The messages are removed from the queues in response to events. This is
explained in more detail in the events section below.

If a composite asset like a department, line, or division is collapsed in the
animation view, it will have an input queue but no reply queue. The input queue is shared
with the receptionist for the composite asset. There is no reply queue because the replies
are for component assets inside the composite asset, not for the composite asset itself. If
the user wants to see replies, the composite asset must be expanded.

-49- The Enterprise User Interface

Replicas

When a program is being edited in the design view, replication is indicated by
drawing lines outside the asset icon and displaying its replication factors. During
animation, however, each replica is independent and must maintain its own state. The
animation view shows all replicas. The asset's maximum replication factor is used to
determine the number of replicas created.

The replicas are displayed inside a rectangle that represents the replicated asset as
a whole. The rectangle represents an entity used by the executive called a manager. The
manager is responsible for allocating work to replicas and keeps track of which replicas
are busy and idle. Messages sent to replicated assets actually go to the manager, which
then sends them to the appropriate replica. Replies move from the replica directly back to
the original sender. Managers have an input queue located just outside of the top left
corner of their rectangle, but have no reply queue. :

All assets, including managers and replicas, have a name that uniquely identifics
them. The name is built by appending a system-generated suffix to the base name assigned
by the user. The suffix is generated by the run-time executive based on the
communication paths between assets. The executive builds a graph whose nodes are
assets and whose arcs represent communication links. The root of the graph is the
component of the program's enterprise asset. An asset's children are all assets it can
legally call. The following rules are then used to generate suffixes:

« Suffixes consist of digits separated by periods.

« Composite assets share their suffix with their receptionist.

o The root asset is assigned the suffix '.1'

o An asset's parent is defined as its node's parent in a depth-first traversal of the
graph.

o Assets build their suffix by appending a '.' and their replica number to their parent's
suffix. Replica numbers are integers from 1 to the asset's maximum replication
factor.

In Figure 5.2, B is replicated 3 times, so we have a manager and 3 replicas of B.
The manager is connected to A.1, so it is named B.1.1. It is represented by the rectangle
around the 3 replicas of B, but its name is not displayed. The replicas are all connected to
the manager, so they are named B.1.1.1, B.1.1.2, and B.1.1.3. C is connected to all 3
replicas. The leRmost replica has a suffix of .1.1.1, so C is named C.1.1.1.1.

5.1.2. States

As an asset executes, it can be in one of four states: idle, busy, blocked, or dead.
An asset changes state in response to events that affect it. The following states are used in
the system:

Idle An idle asset is one that is not currently executing. It is waiting to receive a
message. The next message sent to it will be received and processed
immediately. Initially, all assets are idle.

Busy A busy asset is one that is executing code in response to a message from a
caller asset. It can send messages to other assets and receive replies from
them, but cannot process a message from another caller until it completes the

-50- The Enterprise User Interface

active message. Any messages sent to a busy asset will be put into its input
message queue.

Blocked A blocked asset is one that has stopped execution to wait for a reply to a
message it has sent. This occurs when an asset tries to access the return value

from a called asset that has not yet replied.

Dead A dead asset is one that has stopped execution because of some kind of error.
The Enterprise executive has determined that it can no longer communicate

with that asset.

The state of a collapsed composite asset is defined by the states of its components.
If at least one component is busy, the asset is busy. This indicates that the asset is doing
some useful work. If no component is busy and at least one is blocked, the composite
asset is blocked. This indicates that some component is waiting because of
synchronization. If no component is busy or blocked, and at least one is idle, the
composite asset is idle. This indicates that no work is being done. If no component is
busy, blocked, or idle, they must all be dead. In this case the composite asset is dead.

The state of an asset is indicated by one of two user-selectable mechanisms: color
or state name display. If color is used, icons for busy assets are green, idle assets are
yellow, blocked assets are red, and dead assets are black. If the state name display is used,
the name of the state is displayed at the top left of the asset's icon as shown in Figure 5.2.

5.1.3. Events
Assets change state in response to events that occur when the program is running.

An event logging process in the executive monitors programs as they run, identifies when
important events occur, and writes event records to the event file. This process is
responsible for capturing events, determining the partial ordering between them [Fid88],
and assigning a real time to them.

The event file is an ASCII text file. Each event starts on a new line. It begins with
a # character followed by an event type and parameters separated by spaces. An optional
sequence of information strings can appear on the following lines before the next event.
The information strings are displayed when the user inspects message contents. Event
parameters depend on event types. They include asset names, message tags, and
timestamps. Asset names are the names with suffixes described above. Tags are integers
that are used to associate message sends with message receives. The combination of the
name of the sending asset and the message tag uniquely identifies a message. Timestamps
are integers representing times in milliseconds. They are measured from some arbitrary
start time and refer to the time that the event was inserted into the event file. The
sequence of times must be monotonically non-decreasing. The animation system modifies
the timestamps by subtracting the time of the first event, then multiplying the result by a
scaling factor. The scaling factor can be set by the user to adjust the speed of the
animation. The event file is described in detail in Appendix B.

The animation system reads the events from the event file and processes them in
order. Processing an event can cause assets to change state and messages to move
between assets. Sever:. events are supported: SentMsg, RcvdMsg, Block, SentReply,
RcvdReply, DoneMsg and Die.

-51- The Enterprise User Interface

Figure 5.5 is a state-transition diagram that summarizes the relationship between
the asset states, represented by circles, and the events, represented by arrows.

SentMsg

RevdMsg

Block

SentReply

RcvdReply

RvcdReply SentMsg

RevdMsg RevdReply

| Blocked

DoneMsg Block

Figure 5.5: The state transition diagram for enterprise assets

When the event logging process detects that an asset has scnt a message to
another asset, it inserts a SentMsg event in the event file. The information
strings contain the names and values of all message arguments. During
animation, a message moves from the sender to the input queue of the
receiver. The sender must be busy and it does not change state. The
receiver does not change state.

When the event logging process detects that an asset has received a message
and staried processing the task that the message represents, it inserts a
RcvdMsg event in the event file. The receiver must be idle and the message
must be in its input queue. During animation, the receiver removes the
message from its input queue and changes its state from idle to busy.

When the event logging process detects that an asset has tried to access a
result computed by another asset, and the result is not available, it inscrts a
Block event into the event file. The asset must be busy. During animation,
the asset state changes from busy to blocked. When the result becomes
available and the asset resumes executing, the event logging process inserts a
RcvdReply event in the event file.

When the event logging process detects that an asset has sent a reply
message to its caller, it inserts a SentReply event into the event file. The
information strings contain the names and values of all message arguments.
During animation, a message moves from the sender to the reply queue of
the receiver. The sender must be busy and does not change its state. The
receiver does not change state.

When the event logging process detects that an asset has accessed a return
value in a message reply, it inserts a RcvdReply event into the event file. The

-52- The Enterprise User Interface

asset may be busy or blocked. The reply must be in the asset's reply queue.
During animation, the message is removed from the reply queue. If the asset
is busy, it remains busy. This situation occurs when a call is completed
before the return value is needed. If the asset is blocked, it becomes busy.
This situation occurs when an asset was blocked waiting for the value it has

just received in the reply.
DoneMsg When the event logging process detects that an asset has finished executing a

message, it inserts a DoneMsg event in the event file. The receiver must be
busy. During animation, the receiver changes its state from busy to idle.

Die If the event logging process determines that an asset is not responding for
some reason, it inserts a Die event into the event file. During animation, the
asset becomes " -+ message queues are not affected. The asset can
be in any state L. .ot

Note that when a rcv.’ it Jccurs it means that the code for an asset has
started executing, nct tr. . . .ransmitted across the network has arrived. This
matches the user modei of o . interacting “nd avoids introducing implementation

details. When an asset makes a call to another asset, the code inserted by the Enterprise
pre-compiler builds a data structure contatning the call parameters and transmits it across
the network from the machine running the calling asset to the machine running the called
asset. The called asset's code is invoked by a process created by the run-time executive
that receives the transmitted data and calls the asset. This process consists of a loop that
receives a message then calls the asset. If the asset is busy executing a previous call when
a new message arrives, the message is stored in a buffer until the call completes and the
next iteration of the loop occurs. To hide these details from the user, the animation
system indicates that the call has been made by the caller by generating a sentMsg event
and indicates that the caller's code has started executing by generating a rcvdMsg event.

Similarly, when a rcvdReply event occurs it means that an asset has consumed a
result of a call it previously made, not that a message containing the result has arrived
from the called asset. This way, the order of block and rcvdReply events indicates how
lazy synchronization affects the parallelism acheived by a program. If a result of a call is
accessed hefore it has been computed and transmitted back to the caller, the caller stops
executing and a block event is generated. When the result arrives and the caller resumes
execution, a rcvdReply event is generated. If a result has been returned before it is
accessed, no block event is generated.

5.2. Using the Animation System

This section describes the user interface of the animation system. Like editing,
animation is controlled from menus associated with assets and with the program as a
whole. Clicking on an asset displays the asset menu, and clicking outside of any asset
displays the animation menu. Clicking on a message queue displays a menu of messages it
contains. A message can then be selected and its parameters can be examined.

-53- The Enterprise User Interface

5.2.1. The Animation Menus

As described in Chapter 4, when the user selects Animate from the design view
menu, the desiun view is replaced by the animation view where all replicas are displayed,
messages and message queues appear, and assets are assigned unique names. As in the
design view, clicking the middle mouse button when the cursor is outside all assets will
display a menu of global operations. In the animation view however, clicking on an asset
will display an asset menu only if animation is stopped. In addition, clicking on a message
queue will display a message queue menu.

The Animation Menu

Clicking outside all assets and message queues displays the animation menu. 1ts
contents change, depending on the current state of the system. When an animation is
running, the menu contains the single choice Stop. Selecting Stop will stop the animation
after the current event has been processed. All messages will move into their destination
queues before the system stops.

When the system is stopped, the animation menu contains: either the single choice
Start or both Reset and Resume, Step, Set Speed, either Color On or Color Off, and Design.

Start This choice will only appear if the first event in the animation has not been
processed. Otherwise the choices Reset and Resume will appear. Sclecting
Start will cause the system to begin processing events and will change the menu
to contain the single choice Stop.

Reset This choice will only appear if an animation has been stopped after one or more
events have been processed. Selecting Reset will reset the system to its initial
state so that the animation can be restarted from the first event. The menu
choices Reset and Resume will be replaced with Start. Animation will not be
started until Start is chosen from the menu.

Resume Like Reset, this choice will only appear if one or more events have been
processed. Selecting Resume will cause the system to continue processing
events from where it was stopped. The menu will change to contain the single
choice Stop.

Step This choice will only appear if there are more events to be processed.
Selecting Step will process one event, then stop.

Set Speed Selecting Set Speed will display a dialog box asking the user to enter a scaling
factor. Typing a number into the box, then pressing ENTER will set the
system's scaling factor for event timestamps. Pressing ENTER with nothing in
the box will leave the current scaling factor unchanged. The scaling factor is
used to adjust the speed of the animation so that events can be replayed in time
proportional to real time without the system falling behind. The algorithm
used and the effect of the scaling factor are described in the implementation
section below.

ColorOn This choice will only appear if asset states are currently being displayed using
state names. Selecting Color On will switch to using colors instead. The choice
Color On in the menu will be replaced with Color Off.

-54- The Enterprise User Interface

Color Off This choice will only appear if asset states are currently being displayed using
color. Selecting Color Off will switch to using state names instead. The choice
Color Off in the menu will be replaced with Color On.

Design Selecting Design will switch from the animation view back to the design view.
The animation view can be re-displayed by selecting Animate from the design

menu.

Asset Menus
Clicking on an asset when animation is stopped displays an asset menu. Because

no editing of the asset hierarchy or code is allowed, the only cloices that appear in
animation view asset menus are Expand and Collapse. They only appear for departments,
lines, and divisions, and perform the same function they do in the design view. Other
assets do not currently have an asset menu in the animation view.

Message Queue Menus and Messages
Clicking on a message queue when animation is stopped displays a menu of

messages that the queue contains. The menu displays the name of the sender and the
message tag for every message in the queue. Selecting a message from the menu will
display a window containing the information strings for the event that generated the
message. Currently, the information strings contain message arguments. They are built by
the run-time executive and passed to the animation system for display. For example, if
asset A.1 calls B.1.1, passing it two arguments a and b with values 3 and 4 respectively, the
event file will contain the event:
#sentMsg A.1 B.1.1 1 1000
a=3
b=4
When the event is processed, a message will be created that ctores the information
strings 'a=3" and 'b=4'. The message will animate from A.1 to B.1.1 and into B.1.1's input
queue. If animation is then stopped, B.1.1's input queue menu will contain the choice:
'from:A.1 tag:1'. Selecting that choice will display a window containing the strings 'a=3' and
'b=4',
The information strings could also be used to pass other run-time information like
the machine CPU load or memory usage.

5.3. Implementation
This section discusses the implementation of the animation system. Several new

classes were added to the user-interface to support animation and several behaviors were
" added to the existing classes.

5.3.1. The Animation View

When the animation view is displayed, the asset graph is modified. Each
replicated asset is wrapped in an instance of ReplicatedAsset that contains the original
asset together with a list of replicas that are constructed by copying the original asset.
The copies are identical, except that each is given a different replica number. As an
animation proceeds, the siates of these replicas may diverge. The ReplicatedAsset

-55- The Enterprise User Interface

represents the manager of the replicas. It is also responsible for drawing the rectangle
around the replicas, much like ExpandableAssets do around their components.

Two new responsibilities are added in the Asset class: knowing the input message
queue and knowing the reply message queue. Both queues are instances of the subclasses
of MessageQueue, which are InputQueue and ReplyQueue. A MessageQueue contains an
ordered collection of messages, which are instances of class Message. The display method
in Asset checks to see if animation is active and if so, allocates room for the message
queues when it computes its bounding rectangle. When an asset is told to draw itseif, it
also tells its message queues to draw themselves.

Message queue selection is implemented by augmenting the message that is sent to
an asset to ask it for its sub-asset that contains the cursor point. An asset now considers
its two queues as candidates in addition to its component assets. A MessageQueuc
instance determines if it contains the cursor point by testing if the point is within its screen
extent. Thus the method that determines the asset at a point may now return a message
queue or an asset. In either case the object is asked for its menu by sending it the ‘'menu’
message. MessageQueue's menu method simply builds a menu from the names of the
messages it contains.

5.3.2. The Animation Architecture

The animation architecture has an asynchronous component that is responsible for
processing events at the correct animation time and a synchronous component that is
responsible for animating messages. Both components periodically stop to allow the
system to check for user input.

The Control Mode!

Two new objects were added, EventQueue and AnimationQueue. An EventQueue
contains a collection of events read from the event file. It processes events asychronously.
An AnimationQueue contains a collection of objec*s that are to be moved on the screen in
discrete steps. It animates messages synchronously. An enterprise contains an instance of
EventQueue and an instance of AnimationQueue. When animation is active, the control
loop for the window sends the message ‘animate’ to the enterprisc every time through the
loop. The enterprise responds by telling its animation queue to animate its objects and
telling its event gieue to process its events. The animation qucue moves each of its
objects one step along their path, then returns. The event qucue processcs its cvents in
order until the event time equals the current time. Control is then returned to the control
loop, which checks for user input. In this way the animation system only takes control
periodically and, when it does, only for a short time.

The enterprise maintains a flag that is false if animation is stopped, true when
animation should be running. The animate method checks the flag and only processes the
event and animation queues if the flag is true. When the user first switches to the
aiimation view, the flag is set to false so that animation is stopped. When Stait or Resume
is selected from the animation menu, the flag is set to true, causing animate to begin
processing events and animating messages. If the user then selects Stop frem the menu,
the flag is set to false causing event processing and message animation to stop.

One problem had to be solved before the counrol model worked properly. As
described in Chapter 4, Smalltalk-80 polls the controllers of all active windows to

-56- The Enterpri: = Iser Interface

determine if any want control. In addition to checking to see if their views have the
cursor, controllers also share a semaphore. If the semaphore is set, the controllers block
untii it is cleared. The semaphore is set if the user does not interact with the system
periodically. Thus the animation would stop executing unless the user kept moving the
mouse every few seconds. The problem was r-rtially solved by overriding the Enterprise
controller's control loop so that it did not check the semaphore. However, the animation

will still stop if the cursor is in another window.

The Asynchronous Component
An instance of EventQueue is responsible for knowing the start time for an

animation and the events from an event file. It is created when the animation view is first
displayed. That is, to speed up event processing, the event file is parsed and all events are
created before the animation begins. The animation start time is set when the user actually
starts an animation.

The events in an event queue are instances of subclasses of AnimationEvent.
When the event file is parsed and »nimation events are created, the timestamps in the event
file are translated to times relative to the start time for the event queue before storing them
in the events. The first event is assigned time 0. All other event times are calculated by
subtracting the original timestamp for the first event from the timestamp for the event.

The event queue maintains a start time and a pointer to a curreat event. When the
enterprise tells the event queue to process events, the event queue looks at the time stored
in the current event. If the current time of day is later than or the same as the event time
plus the start time for the event queue, the event is told to process itself and the pointer is
moved to the next event. This continues until the current time is earlier than the event
time plus the start time or we reach the end of the events. Tr> event queue then stops
processing events and returns control to the enterprise. To allow the user to inter: :t with
the system, it must process eveits fast enough so that it can return control to the
enterprise frequently. To ensure this, the event times are actually multiplied by a scale
factor before being added to the start time. That is, the condition for processing an event
is that

current_time >= /start_time + scale*event_time)
where current_time is the current time of day, start_tiie is the start time sto.ed in the
event queue, scale is the scale factor, and event_time is the time stored in the event.
The scale factor can be set by the user by selecting Set Speed from the animation menu. A
larger scale factor will increase the real time between events, allowing the event queue to
process fewer events each time through the control loop, which lets the animation system
aniinate messages and check for user input mere often.

The event queue sets its start time when it is asked to reset or to resume. When
asted to reset itself, the event queue sets its current event pointer to its first event and sets
its start time to the current time of day. It is then ready to begin processing events starting
at its first event. When asked to resume processing events, the event queue does not
change its current event pointer, but sets its start time to the current time minus the scale
factor times the time in the current event. It is then ready tc begin processing events
starting from the current event.

Each animation event represents one event from the event file. In addition to the
event time, an animation event contains a collection of responses. Each response consists

-57- The Enterprise User Interface

of an asset, a message selector, and an array of arguments for the message. When a
response is processed, the message specified by the selector is sent to the asset using the
arguments. One event may contain several responses. For example, a SentReply event
contains two responses: one to tell the sending asset it has sent a reply and one to tell the
receiving asset it has been sent a reply. The set of responses for one event is treated as a
transaction; if one message is sent they all are. There is a subclass of AnimationEvent for
each type of event. Each subclass only implements creation methods. All other behavior
is implemented in AnimationEvent.

In addition, the asset classes implement methods for the messages sent by
responses. For example, one of the responses for a SentMsg event tells the receiver that is
has been sent a message by the sender by sending a Smalltalk message to the receiver,
passing it the sending assect, the message tag, the event time, and an array of information
strings. The receiver will ke one of the Asset subclasses. A.-et implements the method
for the response. The inethor’ creates an Enterprise call mess..ge, determines the path it
must follow to move from the sender to the receiver's input queue, and puts the message
into the animation jucue. The message will then be moved along the path by the
gnimation queue as described below.

The Syachronous Componrent

An instaace of AnimationQueue is responsible for maintaining a collection of
objects to be animated and for moving them along pre-computed paths. Initially, the
enterprisc’s animation queue has no objects to animate. As the event queue processes
events, it creates Enterprise call and reply messages and inserts them into the animation
queue. Along with other information, each message knows the path it must follow.

Animation proceeds in a sequence of equally spaced time steps. This step time is
stored in a class variable of AnimationQueue. When the enterprise tells its animation
queue to animate its objects, the queue checks to see how much time has elapsed since it
last animated. If the elapsed time is longer or the same as the step time, it tells cach of its
objects to animate itself. Each object responds by moving itself to the next point on its
path, then returning true or false. Any object that returns false is removed from the
animation queue. The animation queue then returns control to the enterprise. To cnsure
that animation is smooth, the animation queue must be told to animate frequently enough
that the elapsed time will be close to the step time.

Messages move from the sending asset to either the input queue or the reply queue
of the receiving asset. Because the destination queue is part of the receiver, the message
is actually created by the receiver. When a SentMsg or a SentReply cvent is processed by
the event queue, one of the responses informs the 1 zceiver that it has been sent a message,
passing it the sending asset, message tag, event time, and information strings as
arguments. The receiver then determines the path a message must follow to move from
the sender to the destination queue, creates a message of the appropriate type, and adds
the message to the animation queue. The first time it is told to animate, the message
draws itself at the first point on its path, dcletes the point from the path, and returns true.
Each time the message is then told to animate itsclf, it erases itself from the display, draws
itself at first point on its path, deletes the point from the path, and returns true. If the path
is empty, the message erases itself from the display, tells the destination queue that it has
arrived, then returns false so that it will be removed from the animation queue.

-58- The Enterprise User Interface

The paths are created in three steps. First, the sending asset is asked for the point
where the path should start, and the destination message queue is asked for the point
where the path should end. Using these, the corners of the path are determined. Two
corners are generated for call messages, three for replies. Once the corners are known,
evenly spaced points are found along the lines from the start point, to each corner in turn,
ending at the end point. Figure 5.5 shows the paths generated. The crosses mark the start
and end points, and the bullets mark the corners.

Call Mes« "ges Reply Messages
Figure 5.5: Message paths

A problem arises because of the interaction between the asynchrenous event
processing and the synchronous message animation. When a RcvdMsg or a RevdReply
event is processed, the system assumes that the message has reached the receiver's input
or reply queue. The message is removed from the receiver's queue and the receiver
changes its state to busy. However, there are cases where a message may not have
animated all the way to its destination queue when the KcovdMsg or RcvdReply is
processed. In this case the receiver would change to busy before the message reached it.
To fix the problem, messages have a state that can be either pending or recei-ed. When a
message 1s put into the animation queue, it is also put into the destination message queue,
but marked as pending. Message queues do not include pending messages in the count of
messages they display to the user. When a message reaches its destination, it marks itself
as received, causing the destination queue to include the message in its count. When a
RevdMsg or RevdReply is processed, the receiver first determines the status of the
message. If the message is pending, it is removed from the animation queue and erased
from the display before it is removed from the receiver's message queue or the receiver
changes state. The result is that a message that has not reached its destination will
disappear from the display, then the asset will change to busy. This synchronizes the
events presented to the user without slowing down the animation system.

-59- The Enterprise User Interface

Chapter 6.

Conclusions and Future Work

6.1. Unimplemented Features

Because of time constraints, some of the non-essential features described in the

thesis were not implemented:

Design View

The .ENTrc file has not been implemented. Instead, the EDITOR option and the
ENTERPRISE path are specified using UNIX environment variables.

Deleting a program has not been implemented. A program can be deleted by
deleting its directory tree from outside the interface.

Renaming an enterprise has not been implemented. An enterprise can be renamed
from outside the interface by renaming its directory, then renaming the graph and
event files in its Graph sub-directory.

Renaming an asset has not been implemented. An asset can be renamed from
outside the interface by renaming its source code file in the program's Asset: wit:-
directory, then changing the asset's name in the graph file.

Compile All has not been implemented. The system can be made to re-compile all
assets by changing their time of last modification from outside the interface using
the UNIX touch command.

Compiling assets from asset menus without linking has not been implemented. The
Enterprise compiler can be invoked from outside the intcrface to compile
individual assets if needed.

The libraries from the program compile options dialog box are not passed to the
linker. For programs that use libraries, the linker must be invoked - . .21 outside the
interface.

The verbose and event logging flags are always on. The values sct in the dialog
box are remembered and stored in the interface, but they are not passed to the run-
time executive.

When a composite asset is re-classified as an individual, the code from its
components is not concatenated into one file. The user must do it manually from a
code editor. The files for the components are not deleted, but will still exist in the
Assets sub-directory.

If Execute is chosen after a program's graph has been changed, no check is made to
ensure that the program was re-compiled. This could result in a program whose
graph file does not match its executable code.

Animation View

There are no asset menus, message queue menus, or message windows.

-60- The Enterprise User Interface

« Composite assets must be fully expanded before animating the program. If they
are left collapsed, the system still assumes they are expanded and messages will

move to the wrong places on the display.

6.2. Problems with the Cusrent Implementation
During implementation, a few problems became evident:

Program and Asset Options
The options set in the asset options and program options dialog boxes are not

saved between sessions. They are re-set to their default values every time the program is
re-loaded for editing. It would be better to save and restore the options set by the user.
This could be done by adding a file to hold program options. The asset options could be
saved by adding sections to the graph file that would be used only by the interface.

Pending Messages

It is confusing when pending messages are removed from the display by a
RcvdMsg event before they reach their destination queue. The receiving asset changes its
state to busy, but it is not always clear where the message was going. Instead of removing
a pending message from the display, the RcvdMsg event could be forced to wait until it
arrived. This could be implemented by having events return either true or false when the
event queue tells them to process themselves. True would mean that the event was
processed successfully. False would mean that the event was not processed and should be
re-tried later. When an event returned false, the event queue would not increment its
current event pointer, but would stop processing events and return to the control loop
instead. The next time it processed events, the event queue would start with the same
event. To ensure that they eventually get processed, events that return false should
eventually return true. Another solution would be to have the event queue limit the

number of re-tries

Message Speed
Currently, when message paths are created, every path contains the same number

of points. The distance between points is calculated based on the length of the paih
through the corners. This makes each message take the same time to move from its
sending asset to its destination queue. Replies usually have longer paths, so they move
faster during animation, giving the falsc impression that the actual message transmission
was quicker. Also, long paths may have points far enough apart that the animation
beccimes jumpy.

It would be better to have all messages move at the same speed. Although some
messages would take longer to move than others, it would be less misleading than moving
them at different speeds and the animation would always be smooth. This could be done
by using :te same distance between points on every message path.

Asset SufTixes
The algorithm for generating asset suffixes builds long asset names that are

difficult to read 7nd display. The purpose of the suffix is to ensure that every asset in a
prograra has a unique name at run-time, but the names were not designed to be readable

by human beings.

-61- The Enterprise User Interface

It would be better if the interface used a more readable naming scheme for display
and converted between the two suffixes when communicating with the exccutive. The
names could then be made more readable and the suffixes could be based on the structure
of the graph instead of the structure of the communication links.

Event Files

For real programs, the event files may be large. It is impractical to read and parsc
the entire file before starting animation. It takes too long and it may require too much
memory to store the entire event queue. Instead, the event file could be read in blocks.
Whenever there are no more events in its collection, the event queue can read another
block from the file.

Currently the event files consist of ASCII characters. This made them casier to
create during development and testing, but makes them too large for real programs.
Events should be encoded into binary files instead. Using binary files would make them
much smaller. For example, a 4 bit field could represent any of the seven event types and
still leave room for expansion, whereas it currently requires an average of 9 bytes.

Animation

When the animation system was implemented, several problems became cvident.
Initially, messages were moved by asking their wrappers to move. This was simple to
implement because wrappers already knew how to move themselves without damaging the
background. The strategy failed, however, when several messages were being moved at
once. When a wrapper moves itself it invalidates the rectangle at its previous position,
causing the view it was contained in to re-draw the background, then it draws itself at its
new position. The result was that the entire Enterprise window was told to re-draw itsell
once for every point on the path of every message. Even though the re-drawing was
confined to small damage rectangles, the animation was very slow.

To solve the problem, the system now handle; restoring the background itself.
Before drawing a message, the background is saved. At the next step of the animation,
the saved background is restored, the background at the new location is saved, and the
message is drawn at its new location. Smalltalk provides a built-in method that
implements this. This made the animation faster and smoother, but caused another
problem. The built-in method moves one object along its entire path each time it is
invoked. The resul is that the first message moves along its entire path, then the next one
moves along its entire path, and so on, until the eniire animation queue has been
processed. This prevents the animation queu€ from returning control to the control loop
until all animation is done, disrupting the timing of subsequent event processing.

The system method should be re-implemented so that it will move cach message
one step along its path, then return control like the original algorithm did. It may be
difficult to find an efficient algorithm to do this, however, because the source and
destination rectangles of different messages may overlap.

6.3. Future Work

Current Work
Enterprise is an ongoing project, and several things are currently being done to

improve the interface and animation crmponents:

-62- The Enterprise User Interface

o The missing features in the interface and animation components are being
implemented.

« Work is being done to implement input and reply queues for collapsed composite
assets. The input queues will be shared with the receptionist. The reply queres
will contain only those replies that come from assets outside the collapsed asset.

« The states of collapsed composite assets are being re-defined. The current model
is misleading and is inconsistent with the states of the components. For example, a
busy or blocked composite asset's receptionist could be idle and thus still receive
messages. During animation, the blocked asset could consume messages from its
input queue.

« Currently, the manager for replicated assets cannot be collapsed, does not have a
state, and has no reply queue. Work is being done to define and implement these.

« The synchronous component of the animation architecture is being re-designed to
solve the problems described in the previous section.

Future Enhancements
Several ideas have been put forward for enhancements:

o It would be useful to have performance meters or memory usage statistics
displayed for the machines running specific assets. This could be implemented by
adding a switch to the run-time options that causes the run-time executive to
capture the relevant data and log it to the event file. The asset menus in the
animation view could then have choices that enable the data displays during
animation.

« Information about messages could be encoded in the way they look or move. For
example, messages that contain a large amount of data could be drawn with
bulging sides, or messages could be traced by having them leave colored trails
behind them.

« The interface could support multiple graph files for the same program. This would
allow using the same source code in different configurations. It would also be
useful to have several event files for a given graph file. The user could then
compare different runs without re-executing a program just to generate an event
file.

« An event browser could be provided that allows the user to view the entire event
file and perform operations on events. Breakpoints could be set this way.

o Machines could be specified by type or selected features. For example, the user
may want all Sun-4 machines that have more than 8 megabytes of memory. A
database of available machines could be maintained and made accessible to the
user. In addition, machines could be assigned access permissions so their owners
could prevent their use at certain times or under certain conditions.

Real-Time Animation
An eventual goal of the animation system is to provide real-time animation of a

distributed program. This presents some problems for the current system that must be

solved:
o Zvent logging is now done by one process in the executive. It implements an

algorithm to determine the partial ordering between events. It also assigns events

-63- The Enterprise User Interface

a timestamp by reading its time of day clock when it writes the event to the event
file, then sorts the event file by timestamps when the program ends. In real time,
the algorithm for assigning real times would have to be more sophisticated because
there would be no opportunity to sort the file. These problems have been
addressed in other work [Tay92], and similar solutions will have to be
implemented.

o The animation system may not be able to process events fast enough to keep up in
real-time. Even if it could, messages would move between assets in fractions of
second, too fast for the user to see them. The purpose of showing messages
moving is to indicate that communication across the network has occurred. This
could be indicated instead using methods like those used in JADE [JLUS87] that do
not require objects to move on the display.

6.4. Conclusions

Using object-oriented techniques and Smalltalk made implementing the interface
much easier than using other software design methods or languages. Two attempts to
implement the interface using C and X Windows tool kits failed because they required
more time and resources than the project could provide. Using Smalltalk, a working
prototype was built in three weeks. The system was then developed as an evolving
prototype, which worked well in conjunction with the object-oriented design and
programming models. The design had to be flexible because the specifications changed at
almost every project meeting as features were rejected or modified after seeing them in the
prototype. Adding or modifying features was easy, and did not require large changes to
existing code.

The animation architecture is application independent. The event queue consists of
event objects which must understand the 'process’ message and know the time at which
they occur. Any object that meets these requirements can be an event. Processing the
events can then be done by periodically telling the event queue to process itself. Similarly,
ihe animation queue can animate any object that understands the 'animate' mescage. The
object must respond to the message by performing one step of its animation. Fo: example,
assets could implement an animate method that switches between two different icons.
They could then be made to flash by adding them to the animation queue.

We have a small user community that has used Enterprise to wrile several
programs. It has proven to be easy to map applications to Enterprise assets [Par93]. The
user interface is intuitive to use because operations are always accessed from one of two
menus, and only legal operations are ever available. It is easy to experiment with different
types of parallelism in an application by simply modifying the graph and re-compiling the
program. In most cases the code does not need to be changed at all. T he animation
system has been useful for identifying performance bottlenecks and wasted resources.
Presenting the execution graphically summarizes large amounts of data in an easily
interpreted form. There is no need to insert code to gather statistics or to analyze them
after a run. Even though the animation system does not currently support real-time
animation, it is useful in its present form and will continue to be provided in future
versions of Enterprise.

-64- The Enterprise User Interiace

[BDGO1]

[Cha92]
[Fid88]
[1S1592)
[JLU87]
[Jssoj
[Lam78]

[LLM92]

[LP91]

[1.SS93]
[LSV89]

[LSW87]

References

A. Beguelin, JJ. Dongarra, G.A. Geist, R. Manchek, V.S. Sunderam.
Graphical Development Tools for Network-Based Concurrent
Supercomputing. ACM Supercomputing, pp. 435-444, June 1991.

E. Chan. The Enterprise Code Librarian. M.Sc. thesis, Dept. of Computing
Science, University of Alberta, 1992.

C. J. Fidge. Partial Orders for Parallel Debugging. Proceedings of the 1988
Workshop on Parallel and Distributed Debugging, ACM, pp. 1-10, 1988.

ISIS Distributed Systems, Inc., Ithica, N.Y. The Distributed ISIS Toolkit:
Version 3.0 User Reference Manual, ISIS Distributed Systems, 1992.

J. Joyce, G. Lomow, and B. Unger. Monitoring Distributed Systems. ACM
Transactions on Computer Systems, Vol. 5, No. 2, pp. 121-150, May 1987.

A. Jones and A. Schwartz. Experience using Multiprocessor Syztems - A
Status Report. , Computing Surveys, Vol. 12, No. 3, pp. 121-166, 1980.

L. Lamport. Time, Clocks and the Ordering of Events in a Distributed
System. CACM, Vol. 21, No. 7, pp. 558-565, 1978.

G. Lobe, P. Lu, S. Melax, 1. Parsons, J. Schaeffer, C. Smith and D. Szafron.
The Enterprise Model for Developing Distributed Applications. Technical
Report TR 92-20, Dept. of Computing Science, University of Alberta, 1992.

W. LaLonde and J. Pugh. [Inside Smalltalk Volume II, Prentice-Hall,
Englewood Cliffs N.J., 1991.

G. Lobe, D. Szafron, and J. Schaeffer. Program Design and Animation in
the Enterprise Parallel Programming Environment. Technical Report TR 93-
04, Dept. of Computing Science, University of Alberta, 1993.

T. Lehr, Z. Segall, D. Vrasalovic, E. Caplan, A. Chung, and C. Fineman.
Visualizing Performance Debugging. /EEE Computer, pp. 38-51, October
1989.

D. Lanovaz, D. Szafron and B. Wilkerson. The Synergism of Logic-Based
Programming and Software Engineering: A Programming Environment
Approach. CIPS Edmonton '87 Intelligence Integration Conference
Proceedings, pp. 43-53, November 1987.

-65- The Enterprise User Interface

[MHS9]

[NMP38]

[Par93]

[PDT93]

[PP90]

[SR85]

[SSG91]

[SSW92]

[Tay92]

C.E. McDowell and D.P. Helmbold. Debugging Concurrent Programs.
ACM Computing Surveys, Vol. 21, No. 4, 1989.

T.A. Marsland, T. Breitkreutz, and S. Sutphen. NMP - A Network Multi-
processor. Technical Report TR-88-22, Dept. of Computing Science,
University of Alberta, 1988.

1. Parsons. An Appraisal of the Enterprise Model. M.Sc. thesis, Dept. of
Computing Science, University of Alberta, 1992.

J. Schaeffer, D. Szafron, G. Lobe, and 1. Parsons. The Enterprise Model for
developing Distributed Applications. [EEE Paraliel and Distributed
Technology Systems and Applications, 1993, to appear.

ParcPlace Systems, Inc. Objectworks\Smalltalk Release 4 User's Guide,
ParcPlace Systems Inc., 1990.

Z. Segall and L. Rudolph. PIE: A Programming and Instrumentation
Environment for Parallel Processing. /lEE Software, pp. 22-37, Nov. 1985,

A. Singh, J. Schaeffer, and M. Green. A Template-Based Approach to the
Generation of Distributed Applications Using a Network of Workstations.
IEEE Transactions on Parallel and Distributed Systems, Vol. 2, No. 1, pp.
52-67, 1991.

D. Szafron, J. Schaeffer, P.S. Wong, E. Chan, P. Lu, and C. Smith. The
Enterprise Distributed Programming Model. Programming knvironments
for Parallel Computing, N. Topham, R. Ibbett and T. Bemmerl, cditors,
Elsevier Science Publishers, pp. 67-76, 1992.

D. Taylor. A Prototype Debugger for Hermes. Cascon '92, IBM Canada
Ltd, Toronto, pp. 29 - 42, November 1992.

[TOOLS93] G. Lobe, D. Szafron, an¢ !, Schaeffer. The Object-Oriented Components of

| Won92]

[WWW90]

the Enterprise Parallel Programming Environment. Proceedings of the
TOOLS 11 Conference, pp. 215-229, 1993.

P.S. Wong. The Enterprise Executive. M.Sc. thesis, Dept. of Computing
Science, University of Alberta, 1992.

R. Wirfs-Brock, B. Wilkerson and L. Wiener. Designing Object-Oriented
Software, Prentice Hall, 1990.

-66- The Enterprise User Interface

Appendix A.

The Enterprise Graph File Format

This appendix describes the format of the Enterprise graph file using extended
BNF notation.

A.1l. Notation

<abed>* means 0 or more occurrences of <abcd>
<abed>+ means 1 or more occurrences of <abcd>

A.2. Syntax

<graph> 1:= <asset>
<service>*
<asset> ::1= <name> <simpType> <min> <max> <order> <debug> <opt>
<options>
| <name> <compType> <min> <max> <crder> <debug>
<opt><count>
<options>
<asset>+
<service> ::= <name> service <debug> <opt>
<options>
<name> ::= <string>
<min> ::= <positive integer>
<max> ::= <non-negative integer>
<order> ::= ORDERED | UNORDERED
<debug> ::= DEBUG | NDEBUG
<opt> ::= OPTIMIZE | NOPTIMIZE
<simpType> ::= individual | representative
<compType> ::= line | department | division
<count> ::= <positive integer>
<options> ::= CFLAGS <flags>
EXTERNAL <libraryList>
INCLUDE <machinelist>
EXCLUDE <machinelist>
<librarylList> ::= <string>
<machineList> = <string>
<flags> ::= <string>

-67- The Enterprise User Interface

A.3. Semantics

<graph>

A graph represents the entire Enterprise program. It consists of an asset definition
followed by 0 or more service definitions. The file can be parsed from top to bottom to
perform a depth-first traversal of the graph.

<asset>

An asset can either be simple or composite. Simple assets are cither individuals or
representatives. Each is represented by one line containing information about the asset
followed by four lines containing information about options. Composite assets are
represented in the same way as simple assets except that they also specify a count of
children and are followed by a definition for each child.

<service>
A service asset is represented in the same way as a simple asset, except that it cantot have
a replication factor or ordering option.

<name>

A name may be used as the base name of an asset or a C source fiie.

<min> and <max>

These are integers representing the minimum and maximum replication factors. If they are
both 1, there is no replication. Min must be > 0 and max must be 0 or >= min. An assct
will be replicated at least min times and at most max times. If max is O, there is no fixed
maximum and the asset is replicated as many times as necessary to usc all available
processors. If max = min, an asset will be replicated exactly min times.

<order>

This flag indicates whether a replicated asset's return values are returned in the order that
the assets were called (ORDERED) or in the order that they finish (UNORDERED).
<debug>

This flag indicates whether an asset should be compiled using debug flags (DEBUG) or
not (NDEBUG). It may also be used to turn the debugger on and off for each asset.
<opt>

This flag indicates whether an asset should be compiled with optimization off
(NOPTIMIZE) or on (OPTIMIZE).

<simpType>

The type of a simple asset must be individual or representative.

-68- The Enterprise User Interface

<compType>
The type of a composite asset must be line, department or division.

<childcount>

This integer is a count of components in the composite asset. It includes the receptionist.

“options>

Four lines give options for compiling, linking and executing each asset and all four lines
must appear. If an option does not apply to an asset, the rest of the line is left blank. The
options are treated as character strings by the interface. That is, they will not be parsed
but will be passed to the Enterprise executive in the form that they are entered by the user.
CFLAGS gives a list of compile flags to use when compiling the asset. They are appended
to the compile command by the executive. EXTERNAL gives a list of external modules
or libraries to be linked with an asset. They are appended to the link command by the
exccutive. INCLUDE gives a list of machines that can execute an asset. If the list is
present, the machines will be used instead of the machines in the Enterprise machine file.
EXCLUDE gives a list of machines that are forbidden to exccute an asset. These will be

excluded from the list in machine file.

-69- The Enterprise User Interface

Appendix B.

The Enterprise Event File Format

This appendix describes the format of the Enterprise cvent file using extended BNF

notation.

B.1 Notation

<abcd>* means 0
<abcd>+ means 1
ailb means a
() is used

B.2 Syntax

<eventFile>

<event>
<blockEvent>

<sentEvent>
<msgTag>

<rcvdEvent>
<msgTag>

<doneEvent>
<blockEvent>
<dieEvent>
<comment>
<assetNamae>
<msgTag>
<evTime>
<assetBase>

<assetSuffix>

or more of <abecd>
or more of <abcd>
or b

for grouping

1= <event>*

::= #(<sentEvent> | <rcvdEvent> | <doneBEvent: |

| <dieEvent>) <evTime> <comment>*

::= {sentMsg | sentReply) <assetName> <assctMame -

:= (rcvdMsg | rcvdReply) <assetName> <assetNam

::= doneMsg <assctllame>
::= block <assetName> <msgTag>
::= die <assetName>

:= <onelineOfFile>

::= <assetBase> <assetSuffix>+
:= <integer>
::= <integer>
:= <string>

::= <integer>

-70- The Enterprise User Interface

B.3 Semantics

ceeyentllles

An ~eventFiles contains all of the events that were captured for one run of the program.
It consists of zero or more event records. The file is used to communicate between the
run-time cxecutive and the animation system.

LA PAVICY SR AT
An <event repiesents the occurrence of one run-time event. Because each event may
span multiple lines in the file, each must be prefixed with the # character. Events are

generated in response to actions taken by the user's program. Each event record contains
the time at which the event occurred. The sequence of times must be non-t reasing,

<sentBEvent>

A <sentEvent> can be either a <sentMsg> Of a <sentReply>. A <sentMsg> is
generated by an asset that has sent a message to another asset. A <sentReply> is
generated by an asset that has previously received a message from another asset and has
just sent a reply for this message. In both types, the record contains the name of the
sending asset, the name of the receiving asset, and the tag for the mess~ne. Following this
line is an optional comment. The comment will be displayed in the mecsage when it is
expanded by the user during an animation. Each line of comment will be .spiayed on a
separate line in the expanded message.

<recvdEvent>

A <rcvdEvent> can be either a <rcvdMsg> OF a <rcvdReply> A <rc Msg> is
generated by an asset that has received a message from a caller and started to work on the
task. A <revdreplys is generated by an asset that has accessed a reply from a previous
call to another asset. In both types, the record contains the name of the receiving asset,
the name of the sending asset, and tiic ~essage tag. The tag must match the tag of a
message (for <rcvdMsg>) or reply (for <rcvdireply>) that was previously sent.

<doneEvent>

A <doneEvent> is generated by an asset that has finished a task an " become idle. If a
reply was sent, the asset must gencrate a <sentReply> event befere the <doneEvent>.
The event record contains the name of the asset.

<blockEvent>

A <blockEvent> is generated by an asset when it tries to access the returned value of a
previously sent message and the reply is not yet available. The event record contains the
name of the blocking asset and the tag of the message that was sent and has not yet

returned.

-71- The Enterprise User Interface

<dieEvent>

A <dieEvent> is generated by the run-time executive when it detects that an asset is no
longer responding to messages. The event record contains the name of the asset that has
died.

<comr.nt>

A <ccmment> is a string of characters with embeddead spaces, ended by an end of line. It
will be displayed wh- . ite mevsage is e..panded by the user during an animation. The
animiation sysiem * ‘- process the string in any way. The run-time exccutive is
rechonsible for builainy tr - string before writing it to the event file.

<assertName>

An <assetda-~ s a string that matches the name of one of the assets in the graph,
including its sut, .. An asset's <assetName> is unique within a program, even when
replicas are considered. The <assetName> is built by appending its suflix to the basce
name ascigned by the user.

<msgTag>

A <msgTag> is an :nteger that uniquely identifics a message hoin a specific asset. The
combination of the sender and message tag uniquely identifies a message in the system.
Message tags are used to associate message receives with message sends.

<evTime>

An <evTime> is an integer time measured from some arbitrary start time in mitliscconds.

-7 The Enterprise User Interface

Appendix C.

Installation and Setup

C.1. Installation

The interface requires that the user have a licensed copy of Smalltalk-80 ersion
4.0 installed on their system. The rest of this section assumes that Smalitalk and X
windows have been installed.

The interface is distributed as several files containing the required classes. The
files have been collected into one file ard then compressed by using the Unix tar and
compress commands. The resulting file is named interface.tar.z. This file must be
uncompressed and expanded, then the classes must he installed into a Smalltalk image.
Installing the interface involves the followiny steos:

« (rcate a new directory to cortain the in--- ice . he rest of this section calls this
the Interprise direciory.

e Copy the file interface. tar.z into the Enterprise directory.

< Make the Interprise directory the current directory.

o Uncompress the file using the comm:nd 'uncompress interface.tar.z'. This
will nroduce a file named interface.tar.

s (micr interface.tar by using the command 'tar -»vf interface.tar'.
This will create a sub-directory named Filein holding the class files.

« Create a new Smalltaii: image in the Enterprise directory or ~¢pv an existing image
o it. The image will consist of two files. The rest of this section assumes that
the image files have the default names =t80.im and st80. changes.

o Start Smallalk.

o When Smalltalk comes up, go to the Launcher and select File List.

« Type Filein/* and press ENTER in the top pa» ' ~“the file list window that appears.

e Sclect enterprise. filein from the middle panel of the window.

o \Wait whiir he classes are filed in. They wiil be put into a category called
Enterprise ' 2 Browser.

o Arrange the windows, then save the image by selecting Save from the Launcher
Special menu.

o Exit Smalltalk by selecting Quit from the Launcher Special menu.

e Ifdesired, interface.tar, all of the files in the Filein directory, and the Filein

directory itself can now be deleted.

C.2. Setup

The user must next create an ASCII text file named .ENTrc in their home
directory. When the interface first starts, it reads this file and sets some global options.
tach iine of the file contains one option and is of the form <option> = <value> where
<opticn> is the name of the option and <value> is the value it is set to. Currently two
options are supported:

-73- The Enterprise User Interface

e EDITOR = <editcr command>

This option does not hove to appear in the file. 1f it appears, <editor command-
is used as the name of a command to run to invoke a text editor for editing code.
The command will have the nam> of a ' appended to it when it is invoked. For
example, to 1se the Unix vi editor, .ENTrc should centain the line: EDTTOR - vi.
Then, to edit a file named AssetA.e the interface will exccute the command *vi
AssetA. '. The vi editor will be run in an X wvindows xterm window. If this
optior -1ous not appear in . ENTrc, a siandard * malltalk editor is used instead.

e ENTE®F:-ISE = <path>.
This ption r:ust appear. <path> is the full path name of a directory that contains
the Enterprise scripts and executable fiies for the other system components like the
compiler.

C.3. Other Versions

As well as the version of Enterprise described in this thesis, two previous versions
exist. The first version is that described in [Won92], [Cha92], and [SSWO2]. It used a
similar analogy to a business organization, but different asset types. Replication and re-
classification were integral parts of the asset type instead of scparate attributes. The
compiler did not support as many features as the current version, aird the execuiive was
based on the ISIS [ISIS92] library. The user interface had not been implemented, so the
asset types and relationships were specifies! using 21 ASCH goaph file. A similar file is still
used by the current interface to communicate with the compiier and exccutive, but ti.
syntax is different.

A second version was develope! and distributed as Enterprise v1.0. U was
described in [LLM92] and [LSS93]. It inc'uded the current set of asset types and the
current programming mndel using independent replication and re-classification. The graph
file format was the same as the current one described in Appendix A. The interface had
beer: iraplemented, but some features were missing or in a different form than the current
version. The compiler supported more features like passing arrays. The executive was
based on NMP [NMP88] instead of ISIS, and the animation component of the interface
was not included.

The current version, described in this thesis, has improved the interface and added
the animation component.

Existing prograris from other versions can be converted by building the
appropriate directory structure for the program, writing a new graph file if necessary, and
copying the graph file and source files into the proper directories. The interface will then
recognize that the program exists and allow editing it. The directory structure, file
extensions, and file locations were described in Chapter 4. The graph file format was
described in Appendix A.

-74- The Enterprise User Interface

