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ABSTRACT L

1 4 A - L
. We use the equation aaFaﬂ-= - ABAaAa as the basis for our

models of charged and neut'ral particles‘. -A class of time \Bependent
tsoJutions‘of thjs equation is constructed’using the faCt that it is .§
invariant under the specda1 conformal group.* We then investtgatéx ‘ oo
time debendent solutions of aaFaB =‘-'AB(AaAq,+ bz) where'b is a \(F”l
| parameter with the dimensions 6f inverse length which breahs the con-
.formal invariance in.the Original systém. Our results lead ds to stady

a more sophisticated method of breaking the‘contonmal symmetry'based
SR _ N

on the ansatz A' A o+ A' where'ﬂ_ is a coherent excitation 1mmersed ’ .‘:

in-a random]y f]uctuat1ng f1e]d A' ~ We 1ntroduce a sca]ar f1e1d

f = ﬁ A‘a , where the bar represents 3, stat1stica1 average over the’///

-

random f]uctuat1ons, that is cons1dered as an observable in add1t1on ’
to- K_' we break th3 conforwnl 1nvar1ance by using 3 part1cu1ar expans1on
of I" f,. and the1r der1vat1ves Var1ous mode]s of charged and neutra]
part1c1es based on the nature of this expans1on are studied. s-we show .
that it is poss1b]e to obtain some -equatfons with a. d1screte set of .
charged so]ut1ons a]l of them hav1ng the same chargev(pOSLtive or
‘negat1ye2/yufq a positive def1n1te rest mass. A discrete set of neutral
solutions. wh1ch have a p051t1ve def1n1te rest mass and the Yukawa .
"asymptot1c fonn are obtained (essent1a11y) by setting ¢ = = 0 1n the :
;charged equatdons, Other neutra] so]ut1ons are shown to exlst but

they necessari]y have a degenerate/mass spectrum.
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{ A B * ,
_ o + INTRODUCTION - | ..
' t . P % B . A

\\\, The problem of infinite self energies and singular potentials ‘/)~~

. inherent in'M;xwell's p61n§»change fheory of elgcfrodynamics has led
physi;1§ts for ‘many years £o search #b}-charged parfic1e~models yhich

. are free from these difficllties. Most of thegé models aré ﬁfaguéﬁ
with mathematical prob]emsro} ihcbﬁsistencieé with experimental.obser-
vagions, and the quantization of Maxwe1l's~éﬁuation hés not satisfac-
torily resd]ved thé problem of 1nfinities.‘*Hence; the distinct possi-’

2 bi]iéy that we need é‘more complete classical théory of charged and
neutral partiéles} Stjll remains; Difpg (1951) §trohgi& believed this .-
to Pé;thevcgse; and $tated: “the tfoub]es of the présent quan%um eléctro—

dyn;mics should bé'ascribed pfimari]yfxin my opinion; not to a fau1t jn

- the generé] princip]es of quéntizatioﬁ; but tc ur working ffgm é wrong
ciassicai ?heoryj/ To make progress one should therefore rg-examine the
c]?ési;a1,fheory of electrons and tfy ié.iﬁprove on it." )

There éré two different approaches that have been Qsed to obtain
é hew~theory of é]ectrpdypamils. dfhe oldest andrmost familiar is the
“dUaJisfic pointﬁﬁ’view. -Heré, the,&artih]es are the sources of the
_ field, and are acted ubon‘b} the field, Eut are hot part of it. The -, '
- sources in the field equations must be completely specified beférg the
" field can be calculated. | | -

" The other appkoach is known as ihe’upitary viengjht;‘whereby_the‘
mqtier is cbnstructed fromfa'fie1d. Pafticles Eﬁﬁbar as solutions to the
: ) . ) . 7 - ’ .‘ : . - ’ .

equations governing the field which are finite everywhere, and exhibit an

asymptotic form which i$ in accord with experimental obsérvatiqns.

1
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Hence, the'name "particle-1ike solutions". In what follows we have -

. .
adopted th15*ph1losophy in our attemLt‘to construct/a new classical theory
* of charged and neutral part1cles

vWe start with the equation : N .o
)

: ‘ _ aB _ 4By 4G
(1.1] ‘ [ o,F .= -A AaAf

3

and use it as the‘basis for our models.” The fact that it is not 1nvar16ht
under gauge transformat1ons daes not appear to lead to. d1ff1cu]t1es What
1s‘more interesting is that [1.1] is the only equat1on W1th the current
constructed entlre]y 1n terms of the fields A R that ?E invariant under
‘the spec1a1 conforma] group S)nce this is the largest coq&rnuous group
of coord1nate transformations in Minkowski- space GhEZr wh1ch Maxwell 's
equat1ons are 1nvar1ant, it is reasonable to single out the equation wh1ch‘
departs from Maxwe]l S theory but reta1ns the same symmetries under co- .
'ord1nate transformat1ons - As conforma]ly 1nvar1ant systems, however have
some unde51rab1e propert1es, such as a continuous mass speetrum, (d1s-
cussed in Chapter 3) th1s symmetry must therefore be broken so that we

can obtain phys1ca]]y meaningfuyl systems With non-zero rest masses. We L.
achieve this goal by 1ntrodgc1ng a random background flé~d 1nto the class1ca1

T

f]e]d theory Eased on [1.1]. .- - - » ' )
A ) ’ ,—/\

The use of - fluctuat1ng background fields have proved to be fru1tfu1
in extend1ng the realm of classical field theor1es Ne]son‘(l966) has-
shown that nonreiat1v1st1c c1a551ca1 mechan1cs on\Wh1ch is super1mposed a -
Brown1an mot1on w1th diffusion coeff1c1ent gi 1s fully equ1va1ent to non-

.relat1v1s}1c quantum theory. Boyer (1968, 1975) has bee le to déscr1be

many wel] known phenomena by the 1ntroduct1on of "random electrodynam1cs", .

‘which is now br1ef1y descr1bed L -



- >
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y . . . (
i

~ Maxwell's equations can be
7 [ e * N

A In the Cou]omb gauge, V-A =

I3
’

written af ‘ .
. ) »
n.l - - e'= - Amp ]
; ) o . L I
[1.3] | (OR =] N\ T

S CooshyT T

which have the general solutions

-

»

[1.4] S J%——'—%d | - )
sk m;t)=zo<:,t)+fJl('.:',t'.)e(:,t;a,q)d“x-,

where G is the familiar Green's function and 50 is a solution to the

N

homogeneous vector wave equation. Traditionally, G is taken to:be the
’ 28 s

retarded Green's function, andal is put tovzero.  These criter)é require

0
all rédiation to come from somewhere at a finite time. The ufiverse in

/

the 1nf1n1te past, as descr1bed by this model, would.contain“matteﬁ but

not radiat1on Boyer abandoned thefboundary condition®of K =0 and

-

1ntroduced the not1on of a random rad1ation assoc1ated with ﬁ ance
the existence of th1s rad1at1on wzs a fundamenta] hypothesis in his
theory he reasoned that the random radiation "should possess the funda-

i 4
mental aspects of what is presently regarded as: empty space", it should

be isotropic and. homogeneous as no direction or position in space is pre-

ferred, and Lorentz invariant becaitse no inertial frame is preferred.

He found that the reouirenent'of Lorentz invariance implied a

e L}

Jrandom rad1at1on Spectrum for K which was un1que up to b mu1t1p11cat1ve

constant, which he’ denoted by éﬁ?' in order to obta1n a zero poiat,energy/

: L2
of %-ﬂm per nonna] mode AS‘ﬁ + 0, K yan1shes and he recovers the usual

-
. ]

. . . Al
.
I . . 3 ay

143
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electrodynamics. Using the statistical model of Einstein and Hopf'(]910)

for a nonreTat1v1st1c particle with a dipole moment , Boyer was able to
arr1ve at the Planck radiation law. He rea11zed that if matter is present

the zero- po1nt radiation would interact w1th the matter and give rise to

a d1fferent random radiation pattern, which in turn gives rise to forces
o

between objects. He calculated these forces and showed that they agreed

' with the Van der Waals force calculations of quantum theory (Casimir 1948).

J

time dependent solutions to the efuation .

Thus it is apparent, at least in these cases, .that classical theories

augmented with random background fields are-quite capable of predicting

fundamental resu]ts]. ,; o
\ ' PN
After d1scuss1ng 'some solutions to [1.11+ih Chapter(ﬂ we\look for"'“

\ » ‘,\

[1.6] . ® adF"‘B = -AB(AaAa + b?)

where bis a parameter with the dimensions o{ inverse length wh1ch breaks

the conforma] Symmetry, “

A
In Chapter 6, we 1ntroduce some equat1ons which exhibit n1cer

properties than those assqc1ated with [1 6]. - This is ccomp11shed by

assum1ng the existence of so]ut1ons to [1.1] whlch can\be wr1tten as the

sum of a coherent field and a f]uctuat1ng background fleld\\\The conformal

[

invariance is then broken as a resu]t of an ensemble averaging process

]Random background fields also prove useful in the study of quantum
fluctuations (Dew1tt 1967, Brown 1975). .«

,;“ibf



* o CHAPTER 2

HISTORICAL BACKGROUND

l

\
The eak]y history of a classical theory of a charged particle

;as directed primarily toward a theory of the electron. Abraham (1903)
was the first to_study in detail the model which depicted the electron

| to be a rigid sphere with a spherically symnetr1c charge d1str1but1on -
He obta1ned the same expreSS1on §s J.J. Thomson (1881) for the electro-

magnetic mass, namely \

2 . ‘ . )
« _ fe .
[2]] , megm- —2—

rc ' BN
0 ) .

o

[ Q)
which was fixed when the manner in which the charge was distributed in

the sphere was specified. .Later;fAbrébam-(1904) believed that his
results were ihconsfstent with the,tréﬁsfo}mationgvproposed by Lorentz
in fhe same year] Moreover, it was ev1dent that the nonrelativistic
theory of the electromagnetic e]ectron was hampered by the fact that
the various parts of the charged sphere must repel one another fff
‘according to Coulomb's law, giving rise to an unstable e]ectppnf' |
Poincaré came t@the rescue in 1905 ‘b}’ postu]atlingu some co-
hesive forces of non—electrbmagnetic or1gln which stab111zes the
e]ectron and also carries one third of the self energy S0 that the ex-
pressions for energy and momentum agreed with'thé\ifecia] fejativistic

$ -~

results.

]It wasn't realized that th1s was due to an 1mproper treatment of the
"transformation properties of the CouTomb field for a point charge
(Rohrlich 1965).

.

where " is the classical electron radius and f was a geometrical factor

N



Lorentz abandoned the idea of a rig}d sphere and investigated
in detail his "compressible" electron whose shape became tﬁaﬁ"of an
6b]ate sﬁhqroid undér Lorentz transformdtion

The facts that-these theories must make geometrica] assumptions
about the shape and charge distribution of the electron, in addition to
being compelled to introduce cohesive forces of some strange origin in
order to achieve stability warrants them unsatisfactory.

It was not until 1938 that important progress wfth a dgg]iifie/
model was made. Dirac constructed a re]ativisﬁica]]y invariantf%ﬂ;ory
by treating the electron as a point charge. The difficulties with the

_infinite Coulomb energy were avoided b&.a procedure which‘allowed
unwanted terms to cancel %ut. The eduafions obtained were not really
new, but in their physical interpretation the finite size of-the electron

\

appeared in a new sense; the interior of the electron was a region of
»

space through which’siigg1s_cou1d be transmitted faster than the speed
of light. | | :

The proh*em wjth causality and also the well known runaway
501ut16ns of the Loréntz-Diraé equatio; led physicists in the 1940's

to searéh further for classical models of the.eléctron, Bopﬁ.(1940)

and Landé and Thomas (1941) propoéed eSSentially'the same ideas.

They used a modified eleétrogtatic‘pOtential V=V"-V' where V" and V"

.

‘satisfy Maxwell's equation -
[2.21 | vV = - dmp

and.YukaWjjs equation

( ,

— A




(2.3 PV =‘t)4np + k
respectively, so that

. e _e
[2.4] v==2-2e

' N

By introducing another,fie]d into the'usual electrodynamic picture, "

with both fields having thé same point charges as sources, they were
: 2 :

able to construct 3\{inite self energy W = fé— . They were not able’
. 0 " /,'
to understand from a physical point of view why V should be the d1fference/

rather than the sum of the two independent fields. ///

Podolsky (1942) solved this problem when he investigateq/é
Lagrangian‘approach to deriving generalized linear e]ectromagnetic field
equations. He found the only non-trivial generaiizatfon of this kiﬁd
leading to difterentia] equations of order below 8 was obtained by

taking the Lagrangian LF to be

3 F

2
B B) )

' ]
[2.5] Lp=5F

The reéu1ting field equations contain the Landé- Thomas theory and

* _account for the choice of sign requ1red when one wishes to cons1der

the tota] field to be constructed “from the Maxwe]l and Yukawa fields.

The h1gher order derivatives in the differential equations give an

‘ extra freedqm of choice of solutions for a given problem. They

appeared - to be important for constructing finiteness conditions Which7
serve to remove infinities inherent in the usual treatment of finite

charges.




,{ N
/
\
Another approach toward finding an extendgd charge model was

proposed by McManus (1948) and Bohm et al. (1949). They essentially R

oy
W

replaced the delta function in the usual charge density by some .
function f, which characterizes the shape of the charge, and has the
same transformation and normalization properties of the delta function.

The theory gave a stable electron with a finite self energy but contained

a great deal of arbitrariness because the form factor fj was not known

from experiment. ' l (’ S -

L Prigogine and F. Henin (1962) and others have méde attempts

N

to modify models like those discussed above; but the,ﬁrbblems‘with

the introduction of "form factors" or "cutoffs" héYe not been satis-

factorily resolved. |
Mie (1912) was the first person to dispense with the duaTistic

1

models. He adopted the unitary‘philosophy by demanding that matter in
his theory was to be der%vab]e from a field. Mie's ideas evolved

@

around Maxwell's equations A . ' ' -

) :

2.6 . » ‘F =
(c.6] o 91 y]
Ny
[2.7] 5 F8 = g8
o .

. ‘
from which it follows that the conservation law v 1 .// ,
[2.8) .- e p . |

. holds. Mie noted that if J® is derivable from an antisymmetric tensor

1B according to : : o B




o w1th mass, an upper bound ¢ is’required, and the Newtonian act1on

[2.9]

aaHQB = 9B

the coneervat1on 1aw still holds, but HOB could be a more genekel

tensor -than F B, in fact, he set HO‘B to be some funct1on of FO‘B nd

the fields Aa. He obtained some non11near f1e1d'equat1ons(Pau11 (1958))
\\which he hoped would have sb]utions which differ from the Maxwell-

Lorentz theory'mainly inside the eiectron.’/ﬁbwever, no modification

was found which gave satisfactory re;u]ts. The‘main difficu]ty was
’tnat all trial solutions investigated had an arbitrqry charge. |

Mie's work, however, showed that the notion of -3 unitary theory

was norihy of further jnvestigation.‘“Bnrn and Infeld (1934) retained

the.unitary approach and attempted to remove the infinities‘in ph?sica]

quantities according to "the principle of finiteness", which postulates ¢

"/

" reasoned that if this principle is applied to the speed of particle 2

that a satisfactory fheory=shou]d be free of such infinities. They

kY
¢
»

funct1on -;_,—-mv2 shou]d be replaced by mc (1 - —7-). They carried

o
t
this correspondence over to the e]ectromagnetic field and constructed

the gauge -invariant iagrangian deneity o

N . ) 2 ‘ y .'

210 A = b‘[ Ty g - lJ P
. i , ‘ “o:

whichlthey believed\would rebresent aisingu]arity free system- They
were ab]e to strengthen this argument by der1v1ngd(1r1a more rigorous

manner. They constructed an action integral

[ ay

- o, 1= jc{ ' N

which was inVariant under all space-tfmeetransformati0ns by means. of

Y



‘Eddington's result which states thate must have the form T

(.11 N A AR y | B . g
- where aaB is some asymmetric tensor. With an appropriate form of aa&

in terms of the electromagnetic fields and the'spacé-time metric, the

above Lagrangian density could be obfained.. However, when they.cal-

ﬁg_’
'

cu]ated the radial glectr1c field E , they obtained
&\ ~

12.12] [~ N o
rr 2 . 'y, . -
ro. /1% (;304 - _

- Ay

which does not vanish at_r =0 as a non-singu1ar>radia1 vector should.
Another attempt to construct a unitary theory of a charged ‘
‘part1c1e was proposed by Dirac in 1951. He did not invoke gauge
invariance in his model, believing that a.more,pbwerfu1 theory could -
. be developed without it, "capable of being transformedlinto a wide
;var1ety of d1fferent forms, and S0 prov1d1ng better prospects fof
enab11ng one to 1ntroduce electr1c charges in a satlsfactory way."
He, broke the gauge invariance by 1ntroduc1ng the, s1mp1est re]at1v1s-~

‘ t1ca11y invariant cond1t1on possible, namely RS ;

a3t AR =
' i . . “
which was used as a constraint in the usual Maxwell Lagrangian. The .

resulting field-equations were



[2.14] BUF“V = AAY

where A is some ‘constant.

Dirac investigated the motion of charges in his theory in the

following manner. With A infinitesimal, let F(o)‘be the field corres-
ponding'to no charges (i.e. a F(o)“v = 0) constructed from A The

new fields A , which have charge associated with them were connected
{‘lr;-
to A by a gauge transformat1on subJect to the constralnt that

A Au -k2, i.e.

,;[*2.15];‘ SRENRER
means that | |
(2.161 - ., (3 S + A*)(a“s + A“*) = -k2. : ,'

P,s

. Hence, 1f kK = e , he obtained the Ham11ton Jacobi equat1on for an electron

moving according to Lorentz's equation in the fie]d Au' “The “four velocity

Vh is then interpreted as '

[2.17 - =k Tas + a9
-7 T kRS A

_ when A 1s not small, the motion of the correspond1ng charge 1s ob-

ta1ned by mak1ng successive 1nf1n1tes1ma1 changes in the so]utlon of

14

the equat1ons T ' é’.

—

It was po1nteA out to Dirac by D. Gabor that his theory only
\x :

a1lowed "electron streﬁﬁs" wh1ch are frrotational as fo]lows from [2 lZ],

and it is concelvab]e that vort1ca1 e]ectron clouds can ex1st In 1952

- he modified his theory to include such-effects, and in ]954 he extended

it to interacting electron beams. However, his theory became increasingly

complicated: and he abandoned it soon afterward.

11
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>

H. Schiff (1962), (1969) introduced the field equations

]
[2.18] N A L7 W R ) “
- . o1 A R
* | : |
o where b is a constant, and showed that partic1e>1ike solutions existed
«
which were finite everywhere. With a g1ven charge a d1sceé;g“mas§
spectrum was obtained. ~ Neutral systems had a mutual interaction of the
Yukawa type, and charges moved according to the Lorentz equations in
weak external fields. - % |
In the 1969 paper, he also proposed the equations
&
. [2.19] o a1 B ahy
. o 2 A .
. ) L Y e - ' . .
e on TS 2 2 o ..\
He observed that the relation F BFOL8 = - —§-(A A%)¢ is satisfied

identically-in the L1enard N1echert gauge for a charge e in arb1trary

accelerated mot1on Us1ng this as a constraint in the usual e]ectro-
m;;né{ic Cagrangian, he obtained [2.19]. He showed that nonsingu]ar
so]ut1on5\$o [2. 19] exist which represent d1screte neutral and charged .
states with zero energy
o
. ' B1sshopp (1972) also stud1ed [2 19] ang constructed a class of
plane’wave solutions. He chese the field vector A "to be of the form
Aa(xs) = aa(e(xB))i= a (kz - w t) with a 9 = u, = (?}“ W, )’ wh1ch has
constant comnonents ThlS ansatz dlffers from that employed in. Fourler
analysis of a 4nnear prob]em in so far as the functlonal dependence of i
aa(? X = wot) is not necessarily<sinusoidal, buc }s determlned_froml'

the field equations themselves.



CHAPTER 3
'SOME PROPERTIES OF THE SPECIAL CONFORMAL GROUP 4

A general conformal coordinate transformation is defined by

(Haantjes 1940)

o sy an® B } :
3.1 g (') = Alx) S = aB( x) = Ax)g)(x") A
4 ax' " 9x
where;guv(x) is the metric associated with the space-time coordinates -
. . x%, gC (x") is thécbnformal]y transformed metric in the new systém-of

coord1nates x'%, and x(x) is an arbitrary d1fferent1ab]e funct1on of

2

ggfv From 311, it fo]]ows that 'the line element ds® transforms

L)

according to
c _ 2
[3.2] ds” = A(x)ds*

from which we can calculate the angle between two.jnfiniteSimal vectors

“dx® and dy® by means of the expression

. UV R h
guvdx dy N

(3.3] - cos a = - .o o
| (9, dx“dx“)”(g 20 LI S

It fo]lows from [3 1] that [3.3] is a conforma]]y 1nvar1ant deect and v

. 4
hence the name "conformal" transformat1ons : ' .“G -

The conformal transformat1ons wh1ch mapha flat space 1nto a

f]at space are known as the spec1a1 conformal (abbrev1ated by S.C.)
transformatlons These transformat1ons are defined by

Y

. 13
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-~

- c ,. el ax axB‘ 6
[3.4) g {(x') = Ny x(x) '

ax'¥ ax
“ " -

.vlvaBA

which is obtained‘from [3.1] b}kSetting both g“v'and gﬁv equal to the |

o . Minkowskt metric

(3.5] o | n_ = !

As shown in Appendix 1, ghe 15 parametek S.C. group is generated from

'[3.4] and the infinitesimal transformations

[y

[3.6] ° ox™M =M e et (x)

where &x" is an infinitesimal diffeérentiable ‘real function. From N

[A1.14], the cokresponding finite coordinate transformatiops are

t

[§.6a]» - B x'H =’xvas
- [3.6b] - o x'H = x4 o
w, [36C] 'x'u:vgﬁxu | Y
S o : W b2
[3.6d] XlLl = X + C°X
g . . g
~where | T . | S, ' K
- . o T YR | I | Y
[3.6e] . ) g 1+ 2 X, + X

and X2 = x“xu.’ Equations [3.6a] and [3.6b] togethér constitute the
Poincaré group of coordinate transformatidné; eqn. f3.6c] defines the
,di]atfbnal transformations and [3.6d] are the 'S.C. or "acceleration"

_transformations.

4
.

I
A

14



3.7 .A'.(x')=A(')3_XB_ \
* - ". a BX , ’

: The 's.C. gronp is isamorphic (Dirac 1936) to the group

50(4,2) of ortthona] transformations in six diménsions This group
involves ]1near transformat1ons in contrast to the nonlinear relations
given by [3. 6d] in M1nkowsk1 space, and is therefore usefu] in some
ca]culat1ons However, the prOJect1on from six space to four space |
1ntroduces,non -linear quantities and makes most ca]culat1ons as difficult
as when [3 6d] are applied directly in four space. We therefore-prefer
to use equatwon; [3.6] in M1nkowsk1 space fgr our purposes. )

CIf, under as. C coord1nate transfornat1on the coyar1ant com-

ponents of a vector K transform accord1ng to
2

[3-3] A% (x') = oz(x)AB(x) x . L v o

The reason why a factor of ozvappears in [3.8] fo]iows from {3.4] and
. ) . .’

[3.6d]:

. 1 ' ‘ . rlu
[3.9] | g'-(x") = GZ(X)nw EXTx\iT

MV

with o given by'[3.6¢]. The scalar product Aa'(x')A&(x) has. the form

¢
-

B0 AR - o).

- A

15



by

Conversely, if Aa(x) transforms like an ordinary contravariant vector,
s ? o .

then we wou}d have

1 [ .al- ' Aa(X)Aa(X)
\ . Aa(x JAT (x') = —;2————
so we see that it is important to estab1ish how the field variables
. N
should transform under a S.C. transfonnat1on b

The S.C. transformat1ons (3. 6d] are equ1va1ent to an inversion
2 u

MU xv , followed by a translation x"™ = x'¥ + au, followed by
TOX X ' . ) '
v L~
.angther inversion - s | : R
: —
‘ me 2 :
R ' A _x""k . .
[3.11] ~ ) X u-—"—w s - &
A . x"x . ‘
v

N
where k% and a* are some constants helated to the oahameters ! in
[3.6e] .- Hence, if an equation is invariant Lnder an inversionllike
[3.111, then it is-invariant under a-$.C. transformat1on Bateman
(1910) and Cunningham (1909) used th1s fact to. show that Maxwell's
“equations are invariant: under the S, C group of coord1nate trans-
formations - not just the_Po1ncare group. . | )
Kgstrup (1962)'has shonn that the dilatfons and S.C. trans-
format1ons can be 1nterpreted as a- change in the units emp]oyed during
a measurement of- ang1ven quant1ty This observat1on can be estab]1shed
as fo]lows -Let E be the 1nterva1 ‘between two events 1n space t1me
E can be wr1tten as £ = dse where e is the unit chosen for the measure-

ment. If we had chosen .some other un1t e' which is re]ated to e by

'means of the relation

16



- ) ’ . «
, .
| ) i
(3.12] e' = o(x)e
Lo o : N
then,jsihce E must remain’unchanged, 4
E = dse = ds'e' = ds'ce :
. A : i} J
S0 we have
R -
4.2 v
[3.13] S et &y | o
' a 5 o : :
3 o A

* which is just [3.2] in flat space.. We can therefore obtain the

i AY
transformations [3.6d] ascpefore. The S.C. transformations can thus

be interpreted as a space-time depéndent change in units. If we
~ ) . .

change the unit ¢ by a scale factor 8, i.e. e' = Be, then it can be

shown in a similar fashion that the dilations are equivalent to a

change in scale of the unit.
- S.C. transformations are often referred to as acceleration

4 .

transformations. This name comes from a study of uniform acceleration '
by Hi11 in 1947 which is now briefly summarized. < A particle is said

to be uniformi]y accelerated when it experjences a constant acceleration

in its instantaneous rést frame. Let ¥ and v = %% be the position and
velocity of a particle in a giéen‘frame of reference. Then, it can be .

shown that the equation

| - YT |
0 [3.]4] (lfv )v_+‘3y(y-v) =0

U must be_satjsfiedlgy V if the particlejs uniformily accelerated.



'

!

Hill ghowed that if r(t) is the trajéctory of a unifofma]]y akce]erated
particle, the point transformationsr[3.6d]\map r(t) into ' (t') which
satisfies [3.14]. He also proved that the S.C. group of transformations
is the only one vwhfch ieavesr[3.14]1nvariant. V

Laue (1971) has calculated the orbits r'(t') for a particle at

rest at r(t) = F_ = const., and shows that

0
S N . 22
e NN A
'S4 :
: - ‘r—> > Fo‘.* E*Fg . +
with ¢! = (¢,0), . = = 757 » and the acceleration vector ¢
1+2r +c°r 5 /

; . 0 -0 N
in the instantaneous rest frame '
[3.16] ¢ = 232?0 - 2¢ - 43-?63 = constant;

; . | . .
[3.17} L) s —0 [1 . ﬁ s 4(c4)2?2(c4t'+1)2:'
2(c,)r 0
) 4’ o0 -
- A : Ll - 4 + 2> : .
: with ¢ = (0,c”) and ¢ = # 2(c4) ro We see that the orbits are
hyperbolas-and that the acceleration depends on"?‘ and c".
Milner (1921) demonstrated that whe ' charge g, initially at
rest-at Xy = constant, *is accelerated in a ménner equiva]ent (Fu]ton
. . and Rdh?]ich‘1960) to a one dimensiona] special conformal point

transformation; the fésu]tjng orbit is a hyperbola with branches cdn-
| sisting of equal and opposite charges. The effect of the acceleration

in thfs example is therefore'to "transform away" the.origfnal charge,

The orbits given byA{3.45] and 13.17] are geomeprica]]y similar t&

Milner's problem, but in three dimensions. THis raises the following
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A .

e, .
N

question - can we take a charge at a position Fo # 0 at some time t,
perform a general S.C.poinf transformation on it, and obtain a con-
Figuration with zero total charge as astesult of the acceleration?
As shown in Appendix 2 lthis situation can be realized.

However, under a conformal coordinate transformation, the-

charge Q behave5~iq a differen manner. It can be shown (Fulton et al.

1962) that Q defined by )/ - .
5 :
[3.18] \\\\\ ﬁ = J I’do
DY A
o
s a conformally invariant object:
= |V = WVegt
[3.19] Q = j IYdo, J I'"do .

¢

Here, IY = 0“/[g] is a vector density of weight + 1, and ddv is a
space-like surface of weight'- 1.

Schouten and Haantjes (1936) observed that a S.C. or dila-

1/2

tional transformation on a non-zero rest mass (pupu) does not

Teave it invariant but rather allows it to take on any value in

- . ; Y v - vy 2
(-»,»). - This follows from the generatprs x93, and ku 2xux Bv x'av
for the dilational and S.C. transformations respectively., It can
L4
be shown. (Barut and Haugen 1972) that
. -Bx"d Bxs. e .
[3.20] " e Vpple V=effpopH - e
, » H U : .
holds.for the dilations, and A - ' .
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(3.21] ;e pp e 4 o= 02 pp

. | r
is true forfthe“3{§¢ transformations. We see that only\zero mass

particles will remain inva(iant under-the special conformal group'

of transformations.

L}

A S.C. transformation does not necessarily preserve he
" causal relatjon between a pair of events‘x], and X From 13.6d],

the length between X1 and Xo transforms according to-
o - [(xy), = (%,) 1 T(x0 ¥ (x,)M]
' - ) 1\ - 1yHy o ] H "2 V] 1 2
[3.22] [(x])l.1 (x2), 110 )" = {xp)"] 5T%7 151K, ;

N\ - . [ . ’

If (x]—xz»)2 # 0, Rosen (1968) has 'shown that ity is always possible to

choose ¢ such that o(x,)o(x,) can change its sign. . <

’

Using the fact thét a(x) = 0 defines a‘singular surface
((x])u and (x2)u must 1ie on d{fferent sides of this sqrface in ordér
to allow o(x])o(xz)}to change its Eigh) Laue (1972) showed thgf the
point transforﬁations [3.6d] map the world 1ine_of a charged particle
at rest into two branches of an hyperbola. ‘The ffé]ds are given by
the Liéﬁard-wiecheft potentials for the charge g on one of the branéhes,
the other corregpondihg to the édvanced poteﬁtia]s of the opposite charge (the =~
\ | ’ -Liéﬁard-Wiechert po;entia]s are conformaf]y invariant éXCEpt for an g
unimportant gradient term (Haantjeg 1940)).

This result comes from the fact that
o
i . ) ' i A adV( ret (xs’q). o | '

B ) '-
o -X " q)- = AO.

" We see that the conformal point transformatinne indice twn cvmmotvinr



CHAPTER 4
THE EQUATION ao‘F"‘B = ABAaAa

-

4.1 Invariance of [1.1] under the S.C. group.

The equation2

.11 ’ 5 B = - pBa p®
. _ o o

can be obtained from the Lagrangian

2, 4
X .

L.l a8 , (4 A%
[4'1] . . 16m [ [FaBF N (AaA )"1d
Under a S.C. transformation, the_.four dimensional volume element

d4x transforms in_the following manner:

4
‘d4x' = d—ﬁ(-

[4.2) -
a g

If the transformation Taw [3.7] is employed, we see that FaB = aaAB-aBAa
~ transforms like an ordinary tensor under a S.C. transformation, and

‘ . | A' 108 = 4 FaB
[4.3} ) FaBE o FaB

From [3.10], [4.2] and [4.3], it follows that

which is a sufficieﬁt condition for the field equations obtained from
L to be invariant under a s.C. transformation. .Furthermore, we see

that [4.1] 15 the only Lagrangian with an "intéractionﬁ term involving

2The c6ﬂ§liﬁg constant e in [2.19] has been removed by an amplitude
transformation on Aa.' We also takg c =fi =1 so [Aa] = L‘],

21
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(

only the Aa's that is invariant under the group of S.C. coordinate

transformations.

.~

4.2 Solytions of 11.1] obtained by using the conformal symetry of [1.1]. f

Di]atioha1.invarian¢e of a given differgntiaT equation is useful j
in obtaining a certain class of so]ufions.to such an equafion. Morgan
(1952) proved that if a partial differential eduation exhibits dilational
invériance, then sblutiOns exist with ‘the number of independent Variab]es
reduced by one. As shown by Schiff (1969), this theorem can be used fo !

obtain radially symmetric solutions of7[1.1] by setting

4.4 A(r,t) = fgéfl. ,
_ ‘ i -no(}Q)
[4.5] () =

with q = %—. no(q) satisfies the equation

3 2

2 . i 2 .3 _
( n, +2q°n, + fq -l)no =0

[4.6] a?(q%-1)7, + 4q

~

where the dot represents é%-. It can be shown that

7] ‘ oo %) s,
 Equation [4.6] can be reduced to

L%

~nN

3. 

¥ 2 _
= -y

[4.8] o (552 ¢

o

S

by means of the substitutions

22




(4.9] | s = 33{}- -1<s<3 ,
and ‘

(4.10) | y(s) = 2(a-1)n (q) .

Solutions of<[4.8] are either antisymmetric or symmetric at s = 0 if
y =0 or g§-= 0 respectively. . It can bée shown (Pounder 1Q69) that

“symmetric solutions Yo, have the property

. dy, (3)
8] Ypn(3) = agéﬂ
and tHe~gntisymmetric ones Yon+l satisfy p'
[4.12] Yone1(3) = 0 . - L

An' expansion of n(q)‘about q = 0 shows that

. | _ 3 5
[47]3] no(q) =319 +axq + a:q +...

-.andvnear'€‘= o,

. G.]
[4.14). | »no(q) gt ;g +...

with

s e 9 2,  p(Bayq)

An expansion of y about s = 3 ;hows that o, =0 for symmetrié so1utidns; B

-~

-and a; = 0 for antisymmetric solutions, : Ty

1*A set of ﬁumerica1 solutions for t4.]0] was op}aihed by choosing

e

23
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an appropriate eigenslope at s = 1. One algebraic solution was found to be

(4.16) npla) = 22243

143 q

The electric field as a function ofﬁhg and ﬁo is

;o o

(4.17) E(rot) = 95 (@™, + ala®-1)7 ]
r .

so the charge Q is given by

. A o
[4.18] Q="V%imrtE-=- . \
reeo K
We cén obtain additional solutions to [1.1] by applying a

S.C. transformation to the fields [4.4] and (4.5]. From [3.6d] and

[3.7] with ¢* = (0,0,0,-k), we obtain

A
o -2kt _
[4.19] ~A(r,t) = —S5r , ,
: t+k(ro-t°) 0 (t+k(rz-t2)'J
' A 9 2.
[4.20] o(r,t) = Lt=k(t ;r %J g r
: ‘ rit+k(ro-t7)] t+k(re-t

where f—f—l%r4jr— is the argument of,no. '
t+k(r°-t%) - v

We can write these potentials as

[4.21] At =1 T @)
=

| R
(4.22y -oolrt) = = ) ngla)(kr)
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and determine X§ and ng from the Taylor expansions of [4.19] and

[4.20). The “c" on the fields signifies that they satisfy the con-

formally ;nvariant equation [1.1].

o

- [4.23]

and .

[4.24]

prove to be mosf

work in terms of

When s =

¢

[4.25] fo
: c
(4.26] go
With 5 =

4.2717 ‘ff
(4.28)  _of
: and s = 2 gives,
, c
[4.29] f7
) c
(4.301 .92

£C
fS

Yo
wn
11

convenient in
thesefunctions.

- _
0, Ng =y» and

t
3
—~

—
1
£

2_‘.I )

n, (g

q

o,

C

Xg = an
C
ng - X

EY

: 2.. 2 - . .

The combinations

w0

(qz-l)[qn0 + (qz;l)ﬁol ,

+

¢

various calculations, so we choose to

#

M

. | - -
1) 02 . 2y 02702 yye o
‘@%iﬁfl (-2q o * 2qn9(1-2q )-9(q =lingl



These express1ons are useful in the investigation of the equat10ns to

be d1scussed in the next chapter

1

4.3 -Calculation of the energy for the fields [4.19]. and [4.20].

The energy € is given by
- 3. _ 1 3 2 . 2\/p2,,,2
(4.31] ¢ ——f’u4ﬂ X-Tffjd X&E + (AS- )(A+%_J .

From [4.3], the new electric field is

~

22 2.2
(4.32] E(r,t) = [ )o@ sale=r) 4, (g J
r T i .

where T = 1 + kr(q - %)_= 1+ kt(q%-1). The energy is

| 3
(4.33] e = T%E‘f _g_;.[ 2n(q%4+8)% + 2 391—7?—1
r

e’y Dhi ¢l 2) to2erZea 1kt (%1 )12 ]

where the dot denotes ——gj-., Using [4.16] ,

RCE
4.34) e= 8 X L]( )3/4[16 16kt (kt-2) (- 8)-3val
n ’ a ) Y ‘,7 :
ey L, 068 - 180y + 3v(1-8)]
. . L3($)7’4[25 - 3v - 98]y

3The corresponding charge is 0,

Zb
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where ez {1 - kt)2
B.= 2kt(1-kt)
Yy = k2t2
v =1-T10kt+ 10k2t«2\/_f;j'\\‘>
C - fw ¥n+%ay ‘i
" o (1+28,y+y1"
28y = ':6_+T73’Z ‘
(yo)
“and k£0. If k=0, ¢=0.

In the intervals 7-< kt <= and -= < kt < - ?' IB]|< 1

so we set cos W = B]. Ln then has the form

[4.35] Ln = 27/2 sin'7/2w F(g)B(n)(n +‘%3 %;-- n) n7£2 (cos w)

\

where B(n)(x;y) is the beta function and Ps is the associated Legendre

function. In the regions for which [B]|‘> 1,

L 12 2 1)-7/21,(3_)8(n)(_13 —n, +/%4Pn7§2 (8,).

[4.36] | L ] -

The recursion relations

( P, = {v-u + I)Pv+] = (v+1)8,P0 s

. d
[4.37] By - 1)53

[4:38) (20 + 1)BPY = (v = s+ 1PE L+ (e )Pg -

e



and

!‘)

B Hoo_ pH
[4.39) T Pl N

hold for all 8]. It is clear that
1
5 51 Ly 5(2) - 403)

so we have

[(4.40] L] = L4 and L2 = L3. K
From [4.38] ,
[454]] LO = 3L2 + 281 1.
and [4.37) gives
4
, =L2
[4.42] L] =z (7 + 231) .

We can easily evaluate L3; .

x'/%dx . _ 5
1+281xf22)4 256(1+3])7/2~

r

(4.43] L. ¢ J
37 007

for any 81 > = 1. _

We must now determine thé signs of the square roots of a and y.
Mhen - me< Kt < 0, a% =1 - kt and v? = - kt. We observe in [4.34]
that-any explicit appearance of‘am;_where_m is a fraction; A]ways

" occurs with a product or quotiént of Ym. The energy for kt < 0 must.



1/2

therefore have the same formnés whén kt > 1, since a = kt - 1
‘andAY]/2 = kt in thié region. When 0 < kt < 1, we have 61/2 = 1;kt
and v'/% = kt. o
1/2 and y]/z, we have ' o

From these values of a

. (4.48) e=| KT okt<o, T<kt< o
3/3 |
0 0<kt<l "

\ \

Atvkt,=”1” the energy diverges.- Equation [4.44] shows how the conformal
parameter k enters explicitly into ¢ and therefore demonstrates the con-

tinuous nature of the mass spectruma

\

4.4 Propagating solutions of [1.1].

iave solutions of [1.1] have been obtained by Bisshopp

,;, the nature of propa@ating,wa?es is more generally
kuing at the characteristics of [1.1}. . This was done
_vd Capri (1974) who showed that the characteristic deter-"

minant} f?for (1.1) is ‘ X N

. 2
» (A n*)“ 7
DM)=mn%3Pna+2-JL——J=O
. o A AP

. ,B

&.45]‘

where nU is the normal to the characteristic surface. Hence, in

addition to the light cones given by

(4.46)  an® =0 , R
a ) -



L4

there exists another characteristic surface giveh By

L

[.A._.47] S ee 2

Solutions to (1.1} which allow [4.47) to be satisfied with real

values of n, guarantee the system-to be hyperbolic.

30
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CHARTER 5
POINCARE INVARIANT SYSTEMS OBTAINED FROM (1.1). I

5.1 Breaking the conformal symmetry.

L

As mentioned previously, conformai]y invariant systems have a

contiguous'mass spectrum. We must therefore construct some means by

* which that syhmetry can be broken in order to describe a physically
meaningful system. One method to achleve this goal was Q
‘constructed-By Schiff (1969). He proposed tﬁat particle-like
solutions of [1.1] consist of c@herent excitations immersed in a ran-
domly fluctuating background'field.‘ The observab{é states are obtained
by some average over the random fluctuations. The coherent and inco-

herent fields were separated by iatroducing the gomp]ex fields

(5.11 = FB = AB + 1BB

and .
¢, P ='A - iB . ‘
5 [5.2] B‘Bf"s

‘where AB and Bé represent the coherent and random fields respectively.
[t .can then be shown that the observable field satisfies

-~

1.6] T o F%es Bplen At
. a A
R to
where
o ’ é 1 T a
(5. 3] ! bé = T‘f B 8™dt
a
' 0 4 —
- 3
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providing the random fields fluctuate over a period T much faster
than the coherent fields. The parameter b has the dimensions of
inverse length, go it-is apparent that the random "background" field

determines the length and time scales for this system.

5.2 Static solutions of [1.6]

1

Static solutions of [1.6] have been investigated by Schiff
(1962) and Darewych (1969). The radially symmetric static solutions,
as diséu%sed by Schiff, are now brief]ybdescribed.

By means of scale and amplitude ggﬁhsformations, the equations
. ey ) ‘

G Vo = o1 + Booy?) )
and
[5.5] | R+ A% 2%) = 0

can be obtained from [1.6 ]. If K vanishes everywhere it can be shown

that (Finkelstein et al. 1951) RS

4

Y

5.6] R TR

i

- ‘," ‘:“/
has spherically symmetric solutions with %%- » = 0 which aiz finite
r=0 : :
everywhere. One type of solution forms an infinite discrete set
; -r - '
asymptotic to zero as EF_ » and another continuous set exists which

is asymptotic to #1 as STnij;ngﬁ‘ where o is arbitrary. The .

v

7exponentia11y decaying solutions correspond to a discrete value of

3%(0) > V2 , while the oscillatory set is charactérized by any value

o]
BN

- of ¢(0) in (-w,x). The discrete solutions must represent neutral .

particles. because ¢‘decays faster than % . Furthermore,vfhe mass of

AN
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C5.11] v

the neutral system My is
X

. 1 (.23
5.7) | My = = f 9°d”x

_ : ’ v
which is degenerate because both ¢ and -¢ satisfy [5.6].

Other solutions to [5.4] and [5.5] can be obtained by setting

- N

[5.8] Ay =0 0<r<r
and - . o
[5.9] B(r) - 62(r) = -1 r>R .

where Rn is any.zero of 1 - ¢2. The equations gpverqing ¢ are then

L

15.10] o= o -9 0<r<R
and
2 “
=0 r> Rn'

The solution to [5.70] ¥s that part of a solution to [5.6] which is
_ SRR Ab ' ‘ _
asymptotic to t1; ¢ = a + 7; in the outer region, and ¢ and %%— are

" required to be continuous at r= Rnf Since A(r) is continuous at

.d2 5 . -
r = Rn? SO is ——% . The parameters a, b], and Rn are related by the
dr N
condition
v 'b] .
a.+§-=i’].
n

Equations 5.8 to 5.11] describe a localized charge distribution
outside of which Maxwell's equations are satisfied. A discrete set of'

charged solutions are qbtéine@ for this system if a parficu]ar charge

b] is chosen.

ro | P . - r

-
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5.3 On time dependent solutions of [1.6] .

Although time dependent solutions to [1.6] in the form of

plane waves are’ not difficult to find (Darewych 1966), we have not

been able to construct any additional solutions in an unambiguous manner.

At first sight there appears to be the bossibi]ity of formally writing
down a time dependent series expansion, in the mass parameter b, of

the form

A =aC+pall) g2 a02)
04 [0 a Qa

. Q , ‘
where A; satisfies the conformal equation [1.1], which is just [1.6]

with b = 0. We dbserve, however, that in [1.6] the'maghitude of b can
be made to have any value by a scale and amplitude transformation on

x“ and Aa respectively. Consequently b cannot be regarded as a

“small" parameter, and the validity of the above expahéion is not clear. -

Nevertheless, we thought it would be instriuctive to investigate

the expansions

8

e ] S ~-
[5.12) Alrot) =2 T (br)” x.(q) - ‘
v 4 r S
| p $=0
and = K .
[5.13) ety =1 N
. \ s=
~ where - )
R . . oy «
q = ?

Express1ng the f1e1ds in th1s form a]]ows us to use the con-
forma] solutions [4. 21] and [4 22] to s1mp11fy the prob]em at hand
Furthermore us1ng the variable q permits. us to deal with two first .

order ord1nary d1fferent1a] equations.
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[5.14]

gives

[5.15]

where

[5.16]

35

Substituting [5.12] and [5.13] into the first order equation

2

a A -
aa[A (AAA +b7)] =0

o

2, 2 22] T \l4s, . 2,
[ﬁo (@-1) + r' ] SZO (br)" 7(s Xj4¢ * 9 s = 9 Nyag)

r

: 2+s
) (br) ?2+s + .

8

‘.‘3+s ~
(br) 93+s

i~

+2r|0 Z

S 0

22, . °
20y + Zo(br)]+sxl+s)
S:

+

+

2an, 1001 [ (14) (e o - n]+s)+[ﬁo(q2-1)+Qﬁ0](x]+S-QH]+S)]

° s=0

2+s | 2.
(br) [ang (oye = Bpy)(24s) + 2hoys - 29°C, ]

-

G-

3+s 2n .
(br) [By,g - 47D 1 =0

+
Il ~—1 8

s=0

>

2+s = X1 X7+ +"wxzxs * X3X531 oo
Bovs = MMas * NpNg * ngng_y *e..
Ao E.X][”d(qxl+s'”1+s)(]+S)+q(X0X1fs+xoxl+s;”o”1+s'”o”1+s)]

txplnglaxg - n)s + qlxoxg + XoXs = fgNg = mgng)1.




" We have another first order differential equation

36

X][(A2+5“'-82+s)(2+s) ¥ q().‘2+s ) 82+s)] oo

bt

3+s

[ep]
|

2+s - n][”o(qus B n]+s) " XoX14s T NoMas]

D305 = M Uas = Baugd ¥ mplhpeg - Byl 4

_ | oL 2.\,
2vs = (0 = ) (Sxqpg * axg g - aTgLg) *o

<

e

_ * 2.
O34s = (AZ ) B2)(SX1+S X4 -,q v1+s) te

and the dot denotes é% "

-\
. From
[5.17) qu-E + -gg = (A -q9) (A% - 4% + b%)
with the radial electric field given by
. _ ] . ‘20‘ ] py 3 ]+S . 2. .
[5-]8] E(rqt) - ;?“(no = QHO +q XO) + ;7 SZO(br) (-S n4+s+q X]+S'qn]+s) .

[5.197 [réb? + noz(qz-i)] Zo(br)1+s(x]+s -GNy )
s=0 '
. T (p2+S ‘
+ 2 n, Sgo(br) [q(A2+S f §2+S = qT2+S) - T2+S]
£ Lr)

s=0

- sgo (br) (aT¥s)my,g - q“X1+s(].,1'ks~) ' ”1t§;5(1+s)]
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where

(5.20] To4s = MX14s ¥ NpXg * 3Xg-p *oo

and

H3+S = (X‘|+S- qfl]+s)()\2 - 82) t...

We observe that the pafameter b does not explicitly appear in
-the field equations until we consider the (br)2 and “higher order co-
efficients. wé therefore have |
c

[{5.21] 7 . X] = X]Co n] = n]

The (br)? coefficiehts give the equations

15.221 - 6qn ‘g, + nofz(qz-l)[?qﬁo-+ o] * af g1 (a°-1)

qu] Y | . 2 . 2 '12 |
+ ano +'__.] - [f]no_+ g]no(q -1) + qnog] = Ny (q%-1)9
-q ) .
. 2n._ - L
‘ ] 2 2 .
+‘}ji?'(72qgl fafyt - fig) = 0

and ' | / |

L%

o, ‘ , L
(5.23) f,n:2(a%-1)% = 4% - 2;?§2+1)92-2q2(1-q2)92~

.j>2>ﬂ0f]9](q2‘]) =0 1

hd

from [5.15] ghd (5.19] respecfively, We have used the definitions

analogous to [4.23] and [4.24], namely

)




(5.24] | f = x

5 s ~ g
and &
[5.253 gs = Ne = QXS

We know that~[5,12] and [5.13] are equivalent to the conformal
fields [4.21] and [4.22] when the parameter b vanishes in [1.6] .
. Furthermore, the equations obtained from the coefficients of (br)S in

.[5.15]) and [5.19] are‘liﬁear%in fS and gs» SO by setting

4 _ s C
[5.26] . : fSA: fs< + FS
and ‘
_ e
[5.27] g =29 +6

the equations for FS and GS are more easily solved. Hence, frqm [5.22)

we Obtainf.
, | 2, 2.2 .2
- 2 - n.7(q%-1)%~4q
. . . ] 0
5.28] 6, + G ﬁﬂ-i-%- - Fy = 0
2 q(1-q") ¢ 24°(1-¢°) ,

and {5.23] gives R

_ ) ' . ‘ B
[5.29]- - 69 n "G, + nOFZ(qZ—l)(ano‘+ ng) * qFanz(qz-l) +2qn, = 0

4

- which can be uncoupled to yield the equation - ‘ t, Co
L A o
(5.300 . F, + P(a)F, * Q(a)F, = R(q)
where . o
e a3 v _ "o 14342 o
| g (q
(qﬁo+ﬂo)
Plq) 2 —2-0°



]

e =y Ine (1481 + apa®1)]

It is well known that any solution.of the homogeneous equation

(5.32) | ' E + P(q)F + Q(q)F =

gives the general solution to [5.30]. Equation [5.32]with "o given by

[4.16] corresponds to the Heun equation, as is.shown in Appendix 3.

This result, however, does not help us to obtain a c]osed form solution

for F2. . |
We now determine the asymptotic form of F, and 6, as q + ® S0

that we can numerically integrate

8
2

5.33] F, + ——F +12 3 ‘4q 59)

F, = =0 .
2" D) ¢ @ 2 R

-1)

and

- 2 ..2 | 2
] 2 (1+439°)
(5.34] 6G. = - 3 %F + (q°-1)f, +
2" " (14367 )q 2;‘ 2 »’Tq \

which fo]]ow, respect1ve1y, from [5 301 and (5. 29] w1th [4 16].
From (5.33], F, has the form , '

. ‘ . ’ . | .C
. [5 35] . F2 "' Aq+ B'_F+.a—+.-.

and [5 34} requires :
5.3 ? G'={l~\q+§«+-c--+ .
Ives .‘ ‘ 2 q ..

We can eliminate some of the constants in these expressions by

(imposing the condition that the electric fiéld vanishes at t = 0;-i’e.



‘[5.38]

5.37] | E(r,0) = E5(r,0) + EN(r,0) = 0

where EC corresponds to the conformal electric field (4.32], and EN
is the non-conformal contribution. Equation [4.32] shows that the
charge of the corresponding conformal system vanishes for any t. It
is unreasonable to have a charge suddenly created at t = 0 by a con-

tribution to E(r,0). from EN(r,0), so we require [5.37].
The conformal solutions we are concerned with correépond to
the expansion of A and ¢ in the range 0 < br << 1, so [4.14] with

the argument % gives

)2 +...

where k in the definition of 1 is Eep]ated by b. Hence,

(5.39] "E(r, 0)

r

C c
E 3

+.0.
1 \

I

+,Eg +_E
with Eg praportional to (br)n;;
The reIations in [4.15] require VES(F»O) =0 so

N

o -, N oy = 12 SN2y o
(5401 Ep(ri0) = Ep(r,0) = b%(emy - any +a%x) T
. where _ | L
_ ' | N _ N *
s - Fs = xg - ang S e

(5.42) S e

—%—[Zbk(a]-a3) + 3(br)2(aé-a4j + 40> (ay-0) + 0(br))

40
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It follows from [5.35] and [5.36) that : ' .
2 E L2 1
[5.43) _Ez(r,O) = b [2A + B + a»(B +C) + 0(—5)]’
. ‘ , Y
o) »
[5.44) | 20 + B = 0.
From [5.35], [5.36], [5.33], and [5.34] we can obtain the
relations 7 :
[5.45) . R
and | _ \
[5.46] . %§-= C '
so from [5.44)
©[5.47) ‘ A=C=8=0.
) - ' - : Y
Hence, the asymptotic forms of F2 and 62 become
S ~ ' _ D °
[5.48] F2 =B+ — t... _
- q - :
and o | ' _ o -
[5.49] 6, = Aq+ S+ |
’ _ 2 q B}
respectively. : _ :
< ’ . - | | ,
Equation [5.48] and the requirement that F2 should be finite
everywhere were used in conjunction witﬁ,the power series |
_ —(]+ ) = o ,
: 2 2 2 5N -
Fp = 1021157 Ta1q?1|™ + T Jo?|" =

n=0 n=0

- about q2 = 1,'WHEre a, = 1, tolnuﬁerically integréte‘k5.33].




The series 1nvo]v1ng (1 + /r_') is a solution to the homogeneous

part of [5.33] which is d}scussed in Appendix 3.-»The integration

was performed jn two separate parts; the first covered the o
range q > 1 by matching F2 with the asymptotic form [5.48] at q =

and the second segment started at q = 1 and moved inwards to q = 0 with the

condition that F, must be finite at q = 0. F2 and its first two derivatives

2
vanish at q = 1, but F2 is not an analytic function. Hence, [5.34] implies
that 62 is not analytic either, and it‘follows that Xé and Ny behave in a

.

‘similar fashion. - | 1 - .
Although it has been possibié.to construct a solution to second
order'in_br which is physically acceptable - all physical quantities are
continuous and finite at q = 1, because of the non-analytic behavior at
- 1 we expect that the'higher order contributions would not be physically
acceptab]e ggrthermore because of the prob]em of ‘defining the smallness
of the mass parameter we cannot assign a radius of convergence for the
series [5.]2] and [5.13]. whether or not the non-ana]yth‘property is a
consequence of the lack of a “sma]]ness criterion is difficu]t to say,
but would merit further study.
It is interesting to note that the time dependent‘systems based
on [1.1] or [1.6] must be unstab]e' Schiff (1969)\ﬂndicated that because
the. conforma]]y invariant System has a traceless energy momentum tensor,

10ca11zat1on cannot be achieved if the energy ‘is non- zero The“system

corr}espondmg to [1.6]éat1sf1es :
4 Lo _
j o X Ta ',0

from which the same cohclusion foT]ows:



CHAPTER 6

i WARIANT SYSTEMS OBTAINED FROM (1.1]. 11
ffbrmal symmetry.

_‘ﬁssed one method of breaking the conformal symmetry

r Chapter 5, we now propose a different scheme We assume
_st so]ut1ons to 1. 1] which fluctuate rapidly and that an
Fthese fluctdations yields a coherent (or mean) field which '
we conSd ;en observabIe. “

| | ieveraging process referred to above_fs to some extent ary

bitrary. 3k can imagine either an ensemble average over coordinate

independe;: Ugndom fluctuations in a statistical sense, or a time average S
over the f]dctuat1dns It follows that 1f we denote the averaging by a

bar (Aa) theef.

6.1] A=k
o .a.
'and‘
6.2] - W -pK. ©
. a o2 ’

-

where D represents any differential or 1ntegra7 operat1on

' ‘ 7 i ‘ LI
_We defirie the f]uctuatlng f1e1d A by writing
L. _ ) S ! ;
[6 . 3] V ‘ A - A— . + A s g ..;/4'\«'. g - x/' . > .

It follows from [6.1] that

6.4] o - A =0, e {.
\ | a

.S
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' The "vacuum" state in this formulation is taken to be the one
for which
\)
e R
and S -
" [6.6) h X;z-z Aéo? = constant -

corresponding to a randomiy‘ffuctuéting "béckground" fie]d; denoted by
, Aéo); which is homogeneous and isotropic in the sense of [6.6]. -
In addition to [6.6], the associated tensor

£(0) = 5 4 (0) (0)
. q@ =9 AB ?BAa

has a special property directly observable from theiequatiqn‘for the.

"pure background" field R “ @

“

%

; ‘ _ Q
7] R Aofs Ao) -

—
[=]
—

Multiplying- [6.7] by Aa

, 8 1 g _ 0),8 ‘
(6.8] aB[F?O)AéO)] + Fég)p‘("o)g - [Aé )A\(}o)} .

AN
\ %

Averaging both’ sides - and not1ng that because of the homogene1ty and isoo \

af

tropy in F( o) A( ), we have X

i R ' : 12
(O]caf _ 270 _ 7%l _ [To), B
[6.9] fag Flo) =E 7 - H”‘Q? i ‘[AB A(°)} 70

1
2

g 2(0),8
provided A8 A(o) # 07

{




-~
N

This suggests that if excited states of the "background” field
exist they might exh1b1t e]ectr1c propert1es, i. €. e]ectr1c charge.
Insegting (6.3] into [1:1], and using an ensemble average with

the proﬁértﬁes (6.1], [6.2], and [6.5], ‘gives the equations

—

aB - o,z RA ' ;k ' N TN T aA
(6.10] aBF = —’A (AAA + A'"A A) - A (AA AT+ ZAXA )

and

}aBA_ “a Y S .A. a7 oA VAT RA L A 11‘ = A
(6.11] BBF = -k (AAA - AAA +.2AlA ) - A (AAA + AAA + ZAXA )

<

£ RN aAt ¢ 2R A | ~

v If we multiply [6.1]] by A& and average the resU1t, we obtain, after some

.algebraic manipulations,

(6.12] 3 3°f = 22 AL A'B + sA“

.K + 2R K%f
B o
AG '—2 Y 151 Q 2 i ' V;GB
AR+ 2(AA )J * Fogf .
where f is defined by s
[6.13] Cfz AR
A —~
' L

We deal with [6. 10] and [6 12] rather than‘[s 10] and [6 11] 1n order

v

to avo1d the deta1]s of the f]uctuat1ons , ™

- Co
Both [6 10] and (6. 12] present us w1th a rather forﬂ!@ab]e

M
mathematical probﬂem (genera]ly character1st1c of non11near equat1ons

involving f]uctuat1ng f1e1ds). we consider £ to be an- observab]e ’

) TWe also have -4? § ( )F(o) . (e“spcAéQ)ébAga))‘= 0. The"

symbol (o) is not a tensor index.

45




classical scalar field and for purposes of tractability, express the
right hand sides of [6.10] and [6.12] as "functionals" of f, K;} and
der1vat1ves bf these quantltles This leads.us to coupled equations

of the form '4 y

. . . L
- af . a5 FA _ 20y 7B =

[6.141 .aBF ZA (AAA + f), A](A ’f’an’aBAy’ etc.)

and '

(AP0 £,0 A, etc.)

. . a =

&
where the fuhctiona]s A? and A2 are given in terms of Ke,f, and their
derivatives. By ‘a judicious choice of fhese functionals, it is.peséibTe
to break the conformal invariance. |
In principle, there 15 an infinite number of equations we could
investigate, so we will look at the s1mp1est ones wh1ch Tead to reasonable
results. MWe remove ‘the complexity with the der1vat1ves in A] and A2 by
- including derivatives only 1n.A2. Hence, A]‘= A](AB,f). This assumption
- is §omewhat unwarranted but it leads ta a system of‘eduations which
become much more tractable.
| " In-addition, we require [6.14] and [6.15] to be derivable from a
‘Lagrangian. This p]aces further restr1ct1ons on A] and A2 as -well as
g1v1ng us an energy momentum tensor fr:mféhich we can 1nvest1§ate the -
energy for various models we can const uct . '
‘ It is well known that eharged,e]ementary particles occur inh
singlet pairs with opposite charges. -Thus for examd]e there is only
one type of ntoor meson. Since we have an additional scaaar field,
namely f wh1ch appears in our equat10ns, we must therefore demand that

~-f is not a so]ut1on to the field equat1ons 1f f sat1sf1es them Other-

Aw1se we wou]d necessar11y have a -descriptign of doub]y degenerate charged

particles,
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6.2 Systems without derivatives in A2'

We consider static systems described by [6.14] and [6.]5] with
2 o 2
radial symmetry and A= 0.] . When A = 0, it is reasonable to assume that
the coub]ing between ¢ and ¢' is much stronger than that between 5 and A'.

This allows us to set A :'K(o)’ so f is given by

L2 2 g2 2
[6.16] Felfe o=y -0

which we take to vanish as r > =, The case where f > constant as r + «

is considered later.

In the rest frame we now investigate the equations derivable

from a Lagrangian density of the form

| | : 2 .
[6.17] A - = [ﬂgi - »? ﬂ?— + G(f‘;.cb?')]

where we have dropped the bars on ¢ for simplicity, and A is a parameter <

;

with the dimensions of 1¢ngth. G is a scalar so it must contain even

powers of ¢. This ensures that -¢ is a soiution to the field equations -

der%vab}e from [6.17] if ¢ is a solution. Hence, both positive and

negative charges belong to the same solutian ¢. ‘It is ‘also clear that

- neutral solutions to the equations with & } O,havela degenerate rest. mass.
We can, However, remove tbis degeneracy by setting Q = 0 and taking the .

resulting equation for f to represent singlet neutral systems.

]K = 0 requires the intrinsic anguiar momentum (spin) to be zero.
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In an arbitrary Lorentz frame, the Lagrangian density becomes

6.18) .,C [ 2‘[ BFO‘B %xz 2 % + G(f,AaA"‘)]

" so that the pufe electromagnetic term has the usual form and sign as in

conventional electromagnetism.

Our main effort in this thesis will be to examine the consequences
of such a Lagrangian density using differeht expressions for G.

From [6.18] we define the canonical energy-momentum tensor.

| - o 3L 3
(6191 . Ty AL S g “TF'K“T -3 ﬁsrs;ry

The pure electromagnetic part can be symmetrized in the usual way.

~ The 4- momentum is

PP =-f 4o
: Q

where the integration is taken over an arbitrary space—like’surface.

If we choose the surface t = constant, we.can write

L

b =-J 844

so the energy (mass) is

[6.20]

o
!

bam=- f 4 43

i
i

For static fields, 46.19]‘giges



(6.21] | M= - fc{?d3x - oL

M can be written more compactly if we use some integral relations which

we now derive. {
. - N

We can perform an amplitude veriation, f » af, and by requiring

da
as r » <, we obtain the integral relation

Fﬂﬁl = 0 for any f which satisfies tMe field equations and vanishes
a=] : .

SG

6.221 0= f d3x 28 (vF)2 128

Similarly, we can vary the amplitude of ¢ and obtain the relation

,
»
i

. [6.23] : - 0 = f d3x[(\7¢)2 +v¢%%q .
If we change the scaie inrbya, i.e. r~+ar, and requ1re oL 3 | =0,
. a=l -
we have
[6. 261 T 0= f B ((76)% - A2(vF)2 + 66] .
, : - _ ~

—~

Hence, from [6.22], [6.23], and [6.24], M is given by *

[6. 25 M=]—]é—fdxlx (vf)2 - (w63 . .o

1 (.3 _ | ﬂ!{
'ﬁf““‘. ) » I

1 (.3 .36 . .36 L
Tz?fd"[fé'f'”’é‘]' | |

/

This shows that M is generally indefinite in sign. It is poésib]e in’
. certain cases however to construct a p051t1ve -definite rest mass.

These Situations are discussed later. - It is apparent that neutral -



soldtions with ) =.O always have a positive definite rest mass.
‘We wish to work with equations which involve dimensionless

Qquantities, so we perfonn the scale and amplitude transformations

+ h A ’f\ ' )
[6.26] : ¢ = i , f = , r=rax
o A N

where ¢, f, and r are dimensionless. The energy calculated from [6.26],

~ [N

M,.is related to M according to

[6.27] ' ' M=

> =

We now drdp the hats on ¢,f, and r for the sake of simp]icity,
and 1nvestlgate various models of charged and neutral part1c]es based

on the Lagrang1an density .
| (0 0
6.2 of = gt [ - v g(r02)]

~ The simplest equation we can~obtain from [6.14] is

16.29] ‘ Vo = o(f - ¢°) | |

. | o o B

- Charged pa’%ic]e solutions to [6.29] therefore“require f > ¢2 as

r o, Furthermore the Lagrangian density for [6.29] must conta1n
~ the terms - 9— + 12 > SO that the f equation 1nvo]ves the term 7»%; .

Therefore, G is of the form _
[ - ) 7' ~> ‘l 22'
6= - g{f - ¢°) +N(f)

where N(f) is some polynomial in f. For simplicity we choose
£) = _ B3
N(f) 5 f
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where B is a dimensionless parameter. The equation for f is then

2 O

(6. 30] © glf = %(f-(pz) v gfl.
It is easy to verify that
b,
[6.31] ¢ =
VAR
énd
' _ , b]2(r2+a2)-3a2 R
16.32] | f = -
- (+Zrad)?
satisfy [6.29] and [6.30] with
2_9. 2.7

B=‘8,b]=]0’a.=—g_

We thus have a non-singular solution for the poténtial ¢ which is
Ssymptofic to the Coulomb? solution.
Neutral solutions which have an asymptotic expansion of the

form

6.33] ‘. =7

f’

[6.34] . f= 3

4

b

' ZThe Coulomb potentia1‘¢ f,;;-is also an exactvsolutionsto these

0.
.._‘

equations'(singular'at r



o

' b
with 2y # 0 for any ¢ of the type [6.33]; i.e. ¢ = —%— vy ¢ = —%
r
etc. Hence these expansions require the f equation to be of the form

(6. 35] o 7 = - %_,f y 2

where the subscript N here, and in what. follows, refers to neutral systems -
»‘y . 3 R

“With ¢ # 0.
One exact neutral solution of [6.29] and (6.35] is

. bN‘
[6.36] : ¢° = 2 2
o : r +aN
with .
' 2r2 + bN - 6aN2 .
[6.37] ’ f = 2 Z 2 >
‘ (r".+ aN ) -
~and
78,2 (2 104 o 18 \ !

The rest mass for charged particles, Mc,,is given by

'/ M. = o f (2 - oY)

For the exact solution presented above,

which 1s negat1ve A
Other charged part1c1e solut1ons were sought for by nuher1cally
.1ntegrat1ng [6 29] and {6.30], but none were found Furthermore, we .
see from [6. 12] that a term 1nvo]v1ng f¢ appears exp]1c1t1y in the f
equation. .Th1s~geeds.to ourknext mode]. ’
We consider the equation



[6.381 ° Vr = 5(f-02) + 8 - yf + dfed
which forces us to write the ¢ equation as
16.39] v2e ='¢(ff¢2) - dof?

for a charged system. Neutral solutions with a degenerate mass follow

from the equations

(6.40] P = a(f-ef) - dyof

and e , S
A ‘ 2 2. .2 3

(6.41] - vt = - %?-+ Byf™ - Nf + d f¢

and singlet meutral states are obtained by solving

o _f L2 3
[6.42) \  V2f R L T

where the subscript n is dsed for neutral systems with ¢ = 0. -
- It is interesting to note that the charged and neutré].eddatidns
with ¢ # 0 are the simplest ones we can cqnstrdctvwhich‘are equivalent

to equation [1.6] with -
o' = 4% - ¢%)

- when f = constant. everyWhere fn fact we have b2

_f
m2

. An exact sélution of [6.38) and (6.39] with ¢ of fLe form- [6.31] .

1s obtained by sett1ng f= ¢?. The parameters in these equatqons satisfy

N

" the relations

[6.43] " 3 =bd, 2=
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é neutral solution of the form [6.36] with

R . : 3 .
(6.44] Fo sl
Tty
satisties [b.40) and [6.41] proViEed\
by, 2 : 2 2
_ __N . = n 2y L =
(6.45) 4 = - - 4g,» - 820 = b Tdy - Gy, 82" = ddy + byS
Tbe rest mass of the exact charged so]ution is W
(6.46) | : | M= (4 - 6a’) ,
- 96a
and that for the exact neutral solution is
. 2 Yy
[6.47] | T (4 -b2) ‘
: , ~ 24a '

oo'it is clear that the parametebs may be chosen to ensure both
masses are pos1t1ve | |

Other solutions for these charged and neutral equations were.
obtained numer1ca11y The resuTts are presented in tables 6.1 and 6. 2
Flgures 6.1 and 6. 2 represent the node1ess so]ut1on for ) and the cor-

reSponding so1ut1on with one node in f The so]ut1ons were obta1ned by

7"ihtegrating inwards from r = o with the asymptotic expansions

b a a3 :

'_o - —% ., and f = —g‘*-f— +... , with or andsfr-both zero at /o

r o r2 r,3 X T
0.

Two free parameters which become e1genva1ues were genera1]y

r

requ1red to sat1sfy these boundary conditions.
We now present a phase plane analysis of the neutral equat1on

[6.421. This 1s the. equatlon for whlch it is pract1ca1 to carry out

such an -analysis because when ¢ 1srnot zeno, we must deal with der1va-

tive terms in the Lagrangian with an indefinite relative sign.

a



to cdst it into the form.

: \
We can perform scale and amplitude transformations in [6.42])

.

[6.48) Ve = f 4 g, f°

- uf3
where u = 2y , and 2 B = B].

The critical points of [6.48] are situated at

f=A , f=A_, andf=20

(6.49) ' A =

_because [6.48] can be expressed as
[6.501 . ©vPF = - uF(F-A)(F-A)

The solutions about the critical points are obtained by setting
f = c + w, where w is small and c is put equal to zero or At. Inserting

this form for f into ([6.50] and retaining the linear terms in w gives

2

(6.511 Vw'= -wic(c? + AA_ - cA_ - TA,)

+ o+ w(3c? - 2cA_ - 2cA_ + AA)] .

When ¢ £ 0,

[6.52] ' W= oy

where’a] is some constant.

At>c_= A’Ff wevif}/w ? -

|<

, and see that v;satis%ies-v ) "
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\“ - N
2 k\
dv:_/B] + 4y 5
ar? ‘Tﬁr‘“‘\[ VAL R }V ;
so the asymptotically bounded solution is
' : ‘ sin a,r ’
[6.53] W = -

where’a2 is the square root of the coefficient of - v.
As the name sdggests, phase plane analysis draws some useful

notions over from classical mechanics (Finkelstein et a].i]951). ﬂe

set :
K=T+V = %~#2 sV :
where '
‘ ‘ 3 2
o : - f",ud f
(6.54] V= - By 5+ Z-f -

/ .
is lhe “potentié1"}énergy,function, and K plays the role of the energy
for a conservétive system. ’

The critical or equilibrium points follow from & - 0, and the
equilibrium curves_are'oﬁtaihed'when %é = 0. If we multiply [6.48] by

f, we have

o
Fas
—He

2 o
+V)=- % 2

!

a
7

. s _d
(6.55) 2 EF_(

|

b

‘

SO the orbits in the phase plane must move inwards across the lines of
constant K. |
When K .= 0, - - | B

N R R ORY

6561 x5 i

1]

so: f must lie 'in tneArange f] < f < fd where fO and f] are ‘the greater

and smaller of. ;vz"'
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—
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(%] g o

L2/ L
T g

respectively.
The curve for K = 0 must be symmetrical about the f axis in

the phase plane, but not about the f axis if B] # 0. The situation is

plotted in Figure 6.3.

When K = consgant = - A with A> O: we have
‘ 22 4 B 2
6.57] %J-u%+%ﬁ+%uA.

Applying Descarte's rule of signs shows us that the right“hand
side of [6.57] has two or no real positive roots. Setting f - - f in
this equation also gives two variations in sign so there are two or no

negative rea]‘roots: Furthermore, f cannot vanish jn [6.57] because this,

would imply i; = - A, which is impossible. Henée the cur?es with K < 0
enclose ohly dhe of A -or A, and must lie inside the curve defined by )
K= 0. This situation is depicted in Figure 6.4. | |
| When K > 0, we have
(6.58] . ;§-= - u %; +‘§%-f3 + 2; * A
G

R -5, L. ‘ o . ' o 4
so there'is one positive real root, and one negative real root with .

2 0. These curves lie outside of those with K =0, and f = 0 allows

—

2, . - , :
i%—= A, so both A, and A_ can’be encompassed by these curves as is shown
in Figure 6.5. : T ; L an m

From (6.55] we :see that any orbit which passes inside one of

the K = 0 lobes must tenninaté in that lobe. Also, any initial value of

f yhich keeps the orbit outside of the K = 0 lobes forces the orbit to

terminate:gtvf}= 0. . Thése solutions are the exponentially dECaying‘”‘

fhis system. The eigeqvafues'of f must clearly be

I
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[8=]
2

y
¥

greater than f, or Tess than f,. Note that f = 0 is an unstable critical

point while A, are both stabbe: Near r = 0, a power series of the form

[s o}

ontl 0, so we must have

f(0) =0 .

f=7 En r" satisfies [6.48) with a

We thus have an .infinite discrete set of eigensolutions asymptotic to '
-r ’ r .

zero as g;— , and a continuous set asymptotic to A, as sin fF; : Both

types of solutions are finite everywhere, and the rest energy for this

neutral system is given by the positive definite expression

' - B 2 3
(6.59] A T .

1

6.3 Systems with derivative terms in AZ'

By Tooking at the power series expansibn of ¢ and f for large
r, we can ascerfain whether or not all s&]utions to the equations have
the same charge. This'must be the case if we hope to construct a theory )
of chérged scalar elementary particles. The modefs preéenfed above do
nof generally exhibit this propertygwso we now depart from them and con-
struét some equatidns which give us fixed charge solutions.

We can achieve this goal by including derivative terms in A2.

We considér a Lagrangian density of the form

. @ 2 - ‘
16.601 f = k(f,5) 1‘7;)(?\) )+ n(F.)76-7F + G(f,0)

. ) b

where h and k and G are polynomials in f and ¢, and v isra-parameter;

h is'actually the fourth companent of a 4-vector h8 since the covariant
geneké]iiation of {6.60] is J :
9€ o | _ . e

-,
3.3 N~ \ R

-k ar _ Vv a8 ;. craf
O{izaafaf 7 Fugf +aafF‘?hB+G



- We obtain the field equations

36 1ok oey? , 3k 2%+ i + 2
[6.61] 3. 2 (VF)™ + 30 V0" Vf + kVOf + Vo + (v¢)
and ¥ .
2 : ;
3G . Jk giQ 2 2 oh 2
[6.62] % + % 5 = Wi+ hv f + F (Vf)
which give-‘ S
2 | | © |
~ 240y N5y - 26 21 3k _3h . h 3k
_23G+ﬁ_3__ Vp-Vf + ﬂ%\'(Vcb)z
k of ~ k 3¢ k 3¢ :

-t

The only way-we can avoid the derivative terms in the right hand side

of [6.63] with h # 0 is to have -.

[6.64] L k =&~ = k(f)
where "a" is a constant. OQur equations then become i \
a6 16T

[6.65] V2¢"{E?T'[a¢"ah af}.
and

. . 1
| v 36 _1dh o2 1 G
(6.66] Vg = v 30 1dh g 36

i . . . . O

2

If we require a @(f - ¢ i term 1n [6. 57] and the cond1t10n that

f>0 as r.» @y the asymptot1c form of f and ¢ are given by

16.67] ' ¢ =
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D
with b]2 = a,. The charge B] is therefore fixed if a, is fixed,

which leads us to investigate the jZ coefficients in [6.66].
o r
From [6.65],

[6.68] - Eﬁ'ﬁ_;L ¢(f—¢2) + higher order asymptotic terms odd in ¢

SO

[6.68] — —&¢ - —-%—-~ - ﬁ-[%(f-¢2) + %——% (l-- v) + higher order asymptot1é].
¢ ‘terms odd in ¢

Now G is a scalar, and 1ntegra1s 1nvo]v1ng G, such as the rest

mass, are finite only if G ~ 0 (r 4), Hence G . ¢ , f¢ , f 2, ...+ higher

order terms 50 gf ~ ¢ R + h1gher order terms. If h ~-Jﬁ where n
{ . f
is a positive 1nteger, [6. 69ﬂ drops off too fast to contain a Jz-contri-
r
bution. If h ~ f" with m a positive integer, then the term Q%- would
) > ! f

force b] to vanish from. [6.66], and this term, because of the manner in
which the odd and even quantities involving ¢ enter in [6.69], can never
be cancelled by another term. The only possibility we have to fix the
charge in a system with G given by
| | 4 2
-6 -4y

R i %T +0(r %)

with the boundary condition f -+ 0 as ¥ - %, is therefore with b = constant,

which we now consider. We take k = -1 and split G(f ,¢) into the even and

odd - powers of ¢, G(f,¢2) and H(f ,¢) respect1ve]y, accord1ng to the pres-

€

cription
"1 6.70] , - G=04hH.
The equation | o : ‘
ﬂ 2 2 3G , . 9Hy _"3G , . oH
[ 6.71] Ve (v +(h‘) - h(S? + h SF) 5 + h 5



is obtained from [6.65]. Equating the odd terms in ¢ gives
[6.72] h® <=+ === 7 ¢(f - ¢2) + 7 S(f,0)

where S contains odd powers in ¢, and Z = v + h2. #The even powers: .

in ¢ require

(6.73] : TS T he 0. .
Hence [6.66] becomes | ¢
- 2. . 2 56 _, oH

(6.74) V'f = he{f-¢") + h S - oF - N 3F -

r

\4" ) /
- Differentiating [6.72] with respect to.f, [6.73] with respect to ¢,

and adding the results gives

2 2

‘ 3°H , 2 3°H 35
[6.75] B L TR A
542 v i

RN

We now consider the simplest equation we cdn obtain from *[6.71],

namely that when S = 0:

oA

‘o

, . ‘
[6.76] Vo = o(f - ¢%) .
| by 3
Charged solutions require ¢ - - and f - 7 and we keep all
- r
odd terms in H which drop off as r ', Hence, .
(677 H=a g +bf ¢ +cfle +dfe + 2656° + v + pfs

+ q¢7 + nf3¢3 + mf2¢5~+ sf¢7‘+ t¢9 + A¢]] + B¢9f

+ 07 + e + refeS ¢ P L



Inserting [6.77] into [6.75) gives the conditions

Lo
2ph, 10a=2h%, 2ch® = 7

(6.78] P =-"d.n= ;g-i%-, v = —%—,
: h h

L
h4

with all other coefficients except b-and ¢ e§D§T~to zero. Equation

[6.74} becomés

~

16.79] VOF = ho(f -¢%) + 5as” + 3bfo + cf + dfe’ + 3uFlel

>

4 5

+vES + pft + Infoel + pf

- h[b¢3 +2cfe + d¢5 + 22f¢3 + 3vf2¢ +_4p¢f3
+ 3nfle” + sPely)

which, with [6.78] and the scale and amplitude transformation,

L

2

(6. 80] ' fofo,d-0al, x>x a

- where a% = h, can be transformed into the equafion

N .

2

3 )4

- (2b+1)6° 4 (1-2¢)F + cf

(6.81] VF = b(f+) + 5a(f+e

+ dh2(f+¢)5

¢
after dropping the twiddle on f, ¢; and r for the sake of simplicity. ~
Here, ¢ = % and b = -1 for Charged solutions; “"a", h, and d are
»~  Parameters. Equation [6.76] retains the same form under [6;80]. The

. N i N . ’

-45 coefficients in [6.81] give

'Ar‘r‘,.
e - 2 _ . _ _4
(©-82 ~ by F % T T

so the chérge;is fixed for a given value of "a". Equations [6.81] and

»

.
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"[6.76] can be more easily studied by letting f + ¢ be a new variable.

From [6.78].the‘re1ation

6.83] 2ch? = hl =7 =vinl

can only be satisfied provided v = 0, Consequently the pure electro-
magnétic‘contribution to the Lagrangian [6.60] aﬁsappears. Thus even

though we cap-show that the rest mass js given by

3 2

(6.84] M= j%-f d3x (vf)

which is positive definite, such a'Lagrangian would have to be rejected
(this object would not be able to radiate electromagnetic energy).
Hence, we continue our search for a better model which contains fixed

charge solutions. If we put h = 0 in [6.61], we have‘

(6.85) e 9k (g

2 _ 1
2k d )

@l
-Hh{ D

- where k = k(f). If k -~ —l-, theh a o7 term in l-§§-can'occur only
fn " k af |

when n = 1.  However, it is easy to verify that the corresponding )
contributioﬁ to‘the left hand side of [6.85] vanishes, andfﬁe canngt
fix the charge. Furthermore, [6}69] shows that L diverges if’k ~vfn ‘
with n > 1, and [6.85] does not allow n = 1 to Tead to a fixed charge
either. }he only other possible form for k is wheﬁ it is a constant
but tﬁis case has already been investigated in the first two models
we‘discussedf J » .

One fina]léﬁferhative approach to construct equation; with a
fixed charge from [6.60j With f > 0 as r » = is to introduce)§ingu]ar

terms 1nto f G(f,¢)d3x.  For example, consider the Lagrangian density



2 \2 » 2 2 — 6
6.85) - (%) +§[—?—(VI) -4af] -5 (5= ) HN(E) ¢ 2 S

where € = + 1. We must have

.
[6.87] o = —
4

o

where a, is again defined by f R -%— ., in order to obtain a finite

rest energy M = - L.
The field equations obtained from [6.86) are

[6.88] Vo = o(f -2+ 1 ¢’
and

" 2 N 2,2
(6.89] voF - iY;l_ = - 2of% + cf? %¥_+ "o e .

2
‘ s
From [6.88] we neéd b 2 , as before, and the 1 term in
1 ) ;I
[6.89] is. cons1stent with [6.87]. Hence the charge 1s,f1xed far a given
value of q. )
. 2
’w1th‘N(f) = - 1%— , we introduce the?§ca1e and amplitude

trapéformations,

: - _ .2z o t
[6.90] ‘ f =s"f(sr), o = ¢(sr)
~and ca]cu]ate ds = 0 to obtain the 1ntegrél relation
R : £ 30b g 6
o ae [ w- L )
which allows the rest mass to be obtained from

S C P S B 6 4
[6.92]° M= zlﬁf d3x [-?2.+ yfz & %—} g

' : l‘

An exact charged solut1on to [6.88] and [6 89] 15 g1v by

- .
/

Th1s choice ensures that the e term in the Lagrang1an g1ves a f1n1te

" rantvihabinn
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f=¢" and

(6.93] b=

r + a4 [\: 3
with -.3a2 = Rbld, ab]Z =1, 8a2 = cb]4(2y - 1). The corresponding

rest mass is
' = T -
[(6.94] M = 63 (16a° ¢ b]

which is positive for a~ > 3

With ¢ = 0, an exact neutral solution was found to be

[6.95]. fe—a— o .

PRI S - o

Q|—

with A =
so € must be + 1 if y >0, which is necessary for M to be > 0.

| Another charged solution was found ﬁumerwca]ly for e = + 1 wich
the property that f » 0 as r » 0 in such a way that 1——1 van1shed at
‘the origin. ,No_other solutions With charge in addition to theones .
;mentioned here were obtained. ~
| However, th1s mode] . has the drawback._ that it descr1bes a system

with 1nf1n1te stat1c self-stresses. This is ev1dent from.[6;86] by

calcu1at1ng‘ : : -

(6.961 T° = J d3x[(\7¢>)2 - 5 (7907 + Beaf + ai(f) - of + 27g? + 2 £¢6]_.

Such an unstable static system seems physically unrealistic, so

we have given little weight to thjsvtype_offconstructioh.

{



6.4 The boundary condition f -+ constant as r -+ «,

A1l of the systems we have ‘discussed so far had the property that
~ f vanished at spatial infinity. This condition is néw relaxed, and
we will see that having f going to a constant as r -~ « leads to the

most fruitful equations of any we hqvé constructed.

We -set
-p 22 5 2 Z 2 .2 1
[6.16) £ = Ay = 0" = Ay - 01)" + 0" - 0 <»=(e_+g(r));5_.

& , . .
where the 1ength scale A is taken to be

: 2 21\~ .
and g(r) vanishes as r > €=t 1 since the relative sign of
A(o)2 - ¢(0)2 is 1ndeterm1nate We must remember that A has been

removed from the field equations to obtain a dimensionless system, so
in what follows, |

f=ce+gq.

Our previous models dea]f with terms in A? which dropbed fo :

faster than the quantity ¢(f - éz) as r + w, qu,'any higher order terms

in f will have a nonzero contributiqh at Spatialﬁinfinfty, so there is - ;
no a priori réaspnfwhy.wé‘shopld not include qydntities'in_A?'of the . f
same .or of’similar'typé as ¢f and é%;gfﬂence.ﬁe.wrfte'GVéé.

B f2 ; e )
[6.97] G = %F [ﬁ + (TH)F + Afe + Bf?}'+‘%r-[$-i'f Cf + Df%} -

2.8 3.y.4,05 6
RS RIS SRS LIRS =

| - T T

hﬂa‘f
"lee



J

which, from [6.28], gives the field equations

[6.98] ¥4 = IR + (T+1)f + AFZ + BFS) + ¢O[S-1 + CF + DFZ) -

and _
(6.99]  vof

‘u

S 4
[T+ 1+ 2Af + 386%] - 4 + 20f)

- tag - 892 - vo® - og® - ug®

It showld be pointed out that for S <1 and T > - 1; we can

make the scale and amplifude transformations

[6.100] ¢ = §(T+T)(1-5)7", ¢ = £(4T)(155) 7, v = R 14Ty T (105)"

and deal with equations in which S and T are removed. -We do not Wish’ 

. to do this betause'é'system with S > 1 can be constructed with a

- positive definite rest mass:

N

Inserting the power series :5

A . . A o b
. : .. n=lr -
and :
’ @ a )
[6.102] g= ] =
. ‘' n=

—
e |

into [6.98] and 16.99] allows us to investjgate,theAchigse by. The

¢ equation‘give; - 7 ;
(6.103] A 0=T e+R+A+B
. x S o
§6104) 0= a (T, +.2Ae +3B)
[6.105] 0 = aé(T] + 2he ._+" 3B) .+ af:z(A+3Be) + b],?('gcwwz) ‘

%
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where
|
[6.196] \ _ T, T, = S -1.
From [6.99] we have
[6.107]. o aay =0
b2 1 ) E
' 1 2
{6.108] 0= —— (T, + 2Ac + 3B) + Ba," + a a
o 7~ N TR 2
. - 2 ) , ' 3 N
[6.109) 0= b,"(A + 3Bela, ¢+ 2a; a gt qa. + ya
i 1 ] 2 3 1
o +b bz(T + 2hc +38)
\.
[6.110] = -2a, = (2b,b +b 2)“(-Tl+ A + 38
' "% 12T N T RE T
+ 2b1b2a](A +3Be) taa, .o
| b. 4
2 . ' 3B .2 1
T b] [(A + 3Be)a2 + 5 a, ] 7 (C + 2De)
4 ,

+ 8(23163 + a22) + 3ya12a2 o3

Suppo%e-a]_f 0. Then we must have

6.111) a=0,T +2Ac+38=0,8=0

1
50 | : o
L | 2 2 (A +3Be)
s ey ém—%;

" which Shows that the charge is arbitrary.

aIf'a]'= 0 and o # .0, We 6btain'the relations,
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(T, + 2Ae + 3B) 20a

‘azeg+n+5 CTTT

6131 b° -

2
+ 2he + 3B

-

®
and from [6.98] we have

Y

[6.114) 2b, = b + 2Ae + 38)

) T, + 2he + 3B) + b, a (T

1 23(T, 2 4th

) E _
bZ(T2 + ;C + D);

If b # 0, we can obtain another relation between b] and 3,. ¥
However, it is easy to check from [6.113] and [6 114] that th1s leads
to a contradiction, and we cannot obtain a fixed charge with o # 0.
. . - . X LS
Our goal can be achieved with o = a, = 0. This gives
§ .
[6.115] . 0= T1 + 2R + 3B _
[6.116] , 0=eC+D+ TZ
which forces b, to vanish and requires
S S 14
2 2 b | 2
[6.1171 2a2 = - b] a“(A + 3Be) --—I—.(C'+ 2D¢) -»Ba2 .
with o o : | B )
E TR 1) |
[6.118] A = -5 (38 + T]) R=c¢

2

There are two ways we can arrive at a f1xed charge depend1ng

-

on whether or not a3 van1shes - o S
Suppose ag f 0 Then, from (6. 99],

L 6= b]2(A_+ 3Be) - 26a :

N . .. . Lo

~ which, from [671']8]4 is equiv____afgt to
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- b "R+ Be) - € )
[6.119) gz = 78 .
Inserting this into [6.117) gives
_ . 4 2 2
[6.120] 0 .= b, "[B(C+2De) - (R+Be) 1-4b,"(R+Be) + 12

from which we can fix the charge.

We looked at the case when w =0 = R =T =S = 0 which, from ‘

[6.118], means A = -‘25, B = T, and the equations become
(6.121] ¥ = g%o(e + g) + 6°L(1 + D)ge + Dg)
_ : , ~

| 29 1 ¢ 2 _ .3
[6.122] v = - &4 (2¢ + 39) - & (e + De + 2Dq) - g’ - g,

. ‘ AN
An exact solution to these equations was found to be given by
. Vv~ - ) . b] . -
| r’ +a
and :
- . N : \ )‘c
(6.124] g <
_ r- +a
with ,
S S T TP
[6.125] D = F y = 3a° = b] )\CE, 8a =‘ )\C(_b] + Y%‘C)’
1. ' g
by blze -
-2=13+— 7 _f,BAc A
c. 5.
| , P
The rest mass for this solution is .
: o - T 3 2 2

[(6.126] ; o Mc — (2x7 - 3a b] )

482>  ©

which has the values



gt

[6.127] S T e Sy - 3] for ¢ = |
| - ; 16Ty { b, j
s m 10
- 3y} for e = - 1./
{ 16V 5y (;2

" Other numerical solutions were found with ¢ and g having no nodes. The
results are presented in Table 6.3.

With ¢ = 0, a neutral solution of

(6.128] TN L ,
s |
: R k A n
(62129] g = ;;7-:-;2-{
where ‘. ‘ ‘ Co \
6130 L2, Baley i ?

|

The corresponding rest mass has the value

(6.131) Mo T%E‘f'dBX(Vg)Z L
. v ; T 3,

If we allow the parameter a to vanish only;%%

and neutral systems, we can recover an equation ana]ogous to- [6 42]

whlch has the dlscrete set of solutions. asymptotic to the Yukawa form

- and a’ nonsgpgenerate mass spectrum which is positive def1n1te:

2 ‘ 2 3
[6.132] , .v g —»ang - B9 - Y,9

' The exact solutions [6.123] and [6.124] must have a; = 0, so

they do not have the Same»"symhetry“ as the numerical so]utioné presentéd
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" in Table 6.3. It is possible, however, to fix the charge with ag = 0.

We arrive at the relation

(6.133] 2= - b]Z(R + Be)

from [6.117] by setting

and
C = -20e .
If 8 =0, then [6.133] forces ag to vanish. The field equations now

take the form

2

2 3 372
(6.134] - Vo = - 29+ B9’ + Doy
. b,
and
5
[6.135} V?g =\9§.(_£§._ 3892)- g-¢4g - Y93 - 094 Swg,

b] ‘

and - equation [6.116] with C = - 2De requires
[6.136] . ' D= T2 .

An exact solution of the form [6.123] with [6.124] when o = w= 0

was found. The parameters satisfy the relations

16.137] 3a°b,% = 23 °
. ¢
S and’ o W4 2
% 6138 =020 L 21 6. 32
a6 S I N 6 = 30y v
o | _

The rest mass for this solution vanishes, which'is evident from (6.126]

and [6.]371. One numerical solution with no nodes in ¢'and‘g was found

‘



a)

with B = 1,

73
)

‘D =-1,andoc =w = 0. The resu]t’is éhdwn in Table 6.4

along with the corresponding parameters for the exact solution

6.5 Charged systems with a positive definite mass spectrum
D

A1l of the chérged sysféms considered thus far allowed both

positive and negative values. for the rest mass. We now construct two

expressions for the rest energy corresponding to equations [6.134] and

[6.135] which can.be made positive definite.

From the integral relations

[6.139] 0 = f d3x [g.% - (Vg)21 .
[6.140] ) 0 - jf d3«x[(V¢)2 ¢;§1 ,

3
and %?'

) s . 2 2 .h
. [ 30 (ve)S  (vg)
6.1411 0= ] d x[i——?)— L§L+ 86)

“ the rest mass can be. expressed as B g
3
o @
(6.142a) N R S I
B
" [6.142b] ?l( ax6
. ) .
or ‘ ¢.
(6 ldéc] | M= { d’x (g 5G}+~~;: ]
L& o 2s 9 T3¢
where G i1s given by o
2.2 P |
6143 B D U SR S S
(6.143 ] G NAEAAIRS AL RS S AR S ERS LIE



n

) 4

"

We take the linear combination

) .
W%%T f d3XIZbG + (9 + 0 gg) |
to construct ) | ‘
[6.1441_ M. = W:)Wf [ 3;2 (4c+6p) f%i (5¢c+6p)

+ 3 6% (cHp) + X t3p + 2¢)

t T g>(6p + 5c) * g o°(p + C)] :

We can set 5c = -6p and gbtain the result

1322 82 A )
[6.145f} 4 Mc = j%“f d3X{ Zﬂ_%_ +D ¢ 9 _ 1%_-+ %_96]’

or we can choose 3p = -2¢ to get -

i ‘[6‘.14'6']. MC = %f d’3x[ -2—' ¢492 '+ g 95‘ ;3“3. 96 f% ¢j293 ] ’
If we sét D = 1' gm =g = o ihen, | ,; * | | .
| [6.147]' S ,'v2¢=( -3-2+ Bg )¢ +g¢ |
8[6.148] /,  v - ‘»z(b—zf’ %Bg)»-;’%i- yo©

A thoroggh numer1ca1 study of these equat1ons for va]ues of y and ‘B over

i J B

a W1de range (1nc1udfhg B and y both zero or van1sh1ng separate]y) d1d not pe

" .2
ST : ‘ . . v ! |

74
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. . ’ Q
reveal any solutions.

It is .apparent.that the sign of D in [6.134] plays an importangf"
role concerning the existence of so]ufions and the nature of M ;
solutions do ex1st when D is negat1ve but- this does not guarantee that
the correspond1ng rest mass is pos1t1ve We can avoid th1s predicament

¢ , ;
by demanding that D = 0. : L

The next set of equations we consider are thus

[6.149] | - v% = - 2vg% + Bog®
& . .
and
[6.150] Vg = g¢?(2 - §éB*J) - Y937 - og’
‘where wé Rave set b] = 1 for convenience. An expression of the form
. ' L2 2 - e TR T
[6.151] ) _ﬂﬂ.u--¢~=»—ir' "a'%"
r-+a%)
with
: Al v
[6.152] g = —zr——Lj?.‘
. - : r-+a ,
o &
satisfies these eQuatléns provided
[6.153] Lga 2 =12 L i0, =0 ‘
\TS S . ° A 37 e -?, Y ’ ;

Incadenta]]y, [6.151] and [6 152] force Bwand w to. vanlsh ” The rest

mass for th1s so]utlon is

o | Sy -0 [43 5. 1 (.3 22 I5
'[6.]54] : M'F-.T',Tr'fdxg '--Z_Tf-'deQ(pl-m . |



We now show that B must always vanish; otherwise, we will have

a continuous set of nodeless solutions which contradiqts the requirements

of having a discrete set. he put

(6.155] | T g= xcaz

into [6.149] and [6.150] , which uncouples these equations to give

g do 6 - 3By 2— I} 4
[6.156] [‘d—rr] C'(b ['T)‘:'?_'}‘c‘b (B+?)] + 4

We then use [6.156] to calculate V2¢ ‘and equate that result to’the
right hand sideiof [6.149] to obtain the expression

(6.157] rzaz[z;r (3 +2) Bef -2 e 4 4?)]2 =‘4[AC2N¢2-AC3P¢4+1]
where

L
r

[6.1581 Nz2-352 -% and PzB+3
- c \
When Ac s infinitesimally small and ¢ bounded, we have
- ! BA , '.
2.2 _ 4 "¢ 2 v 2
‘ . ‘ Y‘»(b =] -3T¢ +0()\C.)
so-that h
: - . r2~+\’ c
- .which shows that a cont1nuum of ¢ s must exist un]ess3 B = 0. With
=0, ¢ ;;,finlte at the,orlg1n 1f -g # 0 and it approaches 1 as roo, -
/ - . -

,\

>

A similar calcg]at1on with a]] of the parameters in [6 134] and [6 135]

1nc1uded requ1res only that B = 0. ,/d/’(;:H\‘ . ]
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t
r

We are theregore obliged to study the equat}ohs

b
R - 2
(6.160] ¢ = - 209
“and
[6.161] ¥7529 = 29¢2 t‘Y93 - o9

3
With y = 0, no solutions in addition to [6.151]'with t6.152] could be

found. However, with y < 0, we have a positive definite rest mass,

3
|

[6.162] Q = 1| a3k(2g%? - 121) .
(o 00 T Bt S oy
which follows from [6.145], and the numerical solutions prégénted in

Table 6.5, were obtained. We have the unusual result that “the energies

decrease as the number of nodes in ¢ increases. The function g‘has no

e

nodes for any of the ¢'s. The resuldl are plotted:in Figures 6.6 to

i

6.11. | o
We also studied the equations -
(6.1600 -~ g% = - 2%
and
[6.163] - Vg =298t vygd s wg e
which: has the’cprrespdnding rest mass : | f, ;
e vem w63
‘ [6.]64] - MC = m-f gl'dsx o

o

3
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Although these equations have the undesirable property that both g -
and -g are sp}utionslwith the same ¢'(1eading:t9 a mass degenerac}){
numerical soiutions nere obtained with the energies increasing as the ‘
number of nodes in ¢ increases. The ground state is therefore mare easw]y
defined than that of the preced1ng model. The results are presented
in Table 6.6 with Figures 6.12 to 6 15 depicting the solutions with ene
and two nodes in ¢; g is nodeless in a]l cases. |

| The obv10us system to study now is’that with both of the g4

and 95 terms included in the g- equat1on. i.e. . @

[5']653 - V= 2967 - g - o - ug®
with o - ‘ij .' . .
_ [6.160] | Py= - 2g2¢ e e

The numer1ca1 solut1ons presented in Table 6 7 were obta1ned As ex- |

pected, g is nodeless fbr al] of the ¢ s. Note that Mc 1ncreases and -
A \ - 4

then decreases as the number of nodes in¢ increases.
By adding even higher order terhs‘in g to the g eqdation in an

appropriate manner we can always obta1n a posit1Ve de1n1te rest mass

- With no g + - g symmetry. For example, cons1der

- R » i . S s ~
B R (L MER” (O PN SP LA,
| . T 9" !
, : : 5 9 c/
B [6- 1 60] ) , ,i:. v ¢ = _Zg ¢ . v
s C » . - s T ) ’ ' >
A | . e

- ~» The rest energy is. S

Y saen ow - I‘-fd3 [29@ %-g +e 'l+g)]

o

7/ e 3 - ’ . .

/8



| which is goaranteed to be posttive‘definite for y < 0.

[t is 1nterest1ng to note that spherically symmetr1c chérged

i

particles corresponding to a Lagrang1an dens1ty

N X B

2 2 , - 3
‘ - [ (9)"  (vg) : :

that are fah apart and instantaneous]y at rest {Rosen ano Rosenstock .
1952) interact accord1ng to the Coulomb force (Schrff 1962) plus some |
hwgher order corrections. The Coulomb contr1but1on_1s»ca]cu]ated in,

Appende 4, o

F1na11y, we comment on the uniqueness of the asymptotlc expansions

“which we. have used -to obta1n fixed charge solutions. In all of the models:

¢ .
, constructed above we»employed the series oo
' . o s b b . -,,7 . . .
- S . 1, 72
[6.169] - : ¢ = ~— + —
L E r r_‘z o :
and Ty ‘ , o ' B
' I "a a , ., _
[(6.170] . . g=—t =+ ", o §.
o . ‘ :E r3 _ : g o

" Other possible expansiohs we cou]d write dbwn are

X -c._r
A | N w d e N
(6.171] : * /:-. —r.:l' %-— Zu- d en - i "k b
‘ n=0 r '
and | ' _ - . "PpT
) i - . 1 o -an e . . ;
[6.172]- .- R I )
e - j L . r n-_z-o ' Vrn X b

- . " 3 . . B . v o "

\v

that S =0 and d is arb1trary We cannot therefore f1x the chaﬁ--

with such expans1ons“of ¢'and'g, . ‘ ‘j L




It is possible to construct other types of power series

which may or may not lead to fixed charges. This point requires.
‘ .

more study to answer correctly.
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‘ and rest masses

CHAPTLR /

DISCUSSION

‘We have shown that it is possible to obtain a set of equations
?

from [6.14] and [6.15] such that all charged solutions had ‘the same

charge, a non-degenerate posdtive definite rest mass, and were finite
everywhere. Numer1ca1 integration of these equations indicated that the

solutions form a discrete set characterized by the number of nodes in ¢

Two free parameters which become e1genva]ues were requ1red to obta1n these

'solutions.

Furthermore, it was _possible to obta1n a discrete set. of neutral
J

soJut1ons with a non-degenerate rest mass wh]ch wene asymptot1c to-the

| Yukawa form, by taking ¢ to vanish everywhere and al]owlng the parameter

‘a in [6. 97] to vanish on1y for charged solut1ons There were also "1ong

range“ neutra] particles given by [6.129], the physical significance of
nhich-(if any) is not understood, byfallowing,ah to ranish»hyt not Bn

and vy .
n- }

Althddgh these-eqUations were obtained by reqairing f - constant
©as r +. o, we could replace g in these equatlons by f with the boundary
cond1t1on f - 0 as r+w and dea] with essent1al]y the same system In.

“either case, the 1mportant phy51cal propert1es were a consequence of

t“alloW1ng A? to conta1n terms proport1ona1 to ¢f and ¢ ; in fact with L
._; {. . s R

| ’h, =l '-j.‘¢;2.>-+ higher b'rder .-A‘te*’ms}-'fi

.e

we a]so SaW that lnc]udlng derivatives in Az he1ped us to obtain .

f1xed charge solut1ons but compl1cated the situat1on re?arding stabrlity

4



To summarize then, we have shown thatfit is possible to ]
devise a vector-scalar system which has the «desired behavior to represent'
V discrete bosons with fixed charge and positive mass. -If we adopt a
unftary philosophy it}is possible to conceive of the vector and scalar
fields as having a common origin - a conforma11y inVariant 4-vector.
Hdwever, the transition frbm the latter requires.a heuristic statement
regardlng the funct1ona1 propert1esw0f various averaged quantities,

The great comp]ex1ty of the system is such that we have not been able
- to establ1sh the validity of the expans1ons used Presumab]y a. concrete
mode] for the f]uctuat1ons themse]ves wou]d lead ‘to -a better understanding
of the poss1b111t1es of our approach

' The essential problem we faced was in determtning a sat1sfactory

express1on for the non- der1vat1ve terms 1n the Lagrang1an Tofa_1arge

extent our approach was an ad hoc one. Needless to say that if a finite .

82

class1ca] field theory can be shown. to prov1de a sattsfactory pre-quantum h c

'mode] for part1c1es. the form of the Lagrang1an would have to exhibit

. special’ propert1es part1cularly with regard to some yet to be- def1ned if

synmetry»operat1ons Th1s 1s;¢1ear1y cruc1al to any acceptab]e theory

N -

-and could represent the p01nt of departure for' further 1nvestigatlon.

’k’{; o \ : 7 T‘» ‘» . . - »- ' . _‘»‘ ‘ S



“Table 6.1

Nodes in (9,f)
(0,1)
(0;2)
(151)

(1,2)

Nodes -in '(¢;f)

(0.1

1)

-

0.2

B 3y

Numerical Integration of [6.38} and [6.39].

d

-«

M
c

7.50282  0.023265 -0.457609 © -0.04898]

0.924144  156.899
2.03910 1.88183
2.64277  16.2527

-

¢

_3.61890 0.1 . 0.74
3.62390° 0.2 1.15

211053 0.5 - 0.20

3.1466% 4. SRET v

8.43991 0.045280

7.14245  * 0.330544

6.44739  -0.406639

N

2758

088

¥

9529

L)

Table 6.2 :NuneriCPI Integration of (6.40) and [6.41]. .

L:MN vty

-0.012786
7

3129.834

a‘§0.8391<- | o

hY

>

53



Table 6.3 Mumerical Integration of [6.121) and [6.122] with e=-1.

b] 8 : Y 9] . a2 ﬂ a3 - M;
5 ;—(‘5 0.655989 5 _25 9.33536 0.700409
5. ;—(‘5 2.243058 - 5 225 ° -75.9834 ~0. 261806

Table 6.4 Numeriéa] Xntégratfon of [6.134) and [6.13%] with w = ¢ = 03 .

2 Qa ‘/ ' ' . N _ N :. )
b] | °3 & Y ' D B 3’2‘ HC
S 4
2 0 2 A ] 2 0
2 0 22134 - -1, 1 1.80625  -0.266970
fal .
B Y - . )
| 7 a .,
. 2
: el
\ .



?.
!
" Table 6.5. Numerical Integration of [6.160] and [6.161].
Nodes in (¢,q) Y’ o a, MC
R .
. - (1,0) - 0 ] 7.03125 - 0.860361
o .
’ (2,0)  -0.109856 1 34.0377 - 0.841526
(3,0) -~ -0.097999° 1  120.252 0.751935
Table's.6  Numerical.Integration of [6.160] and [6.163]."
; o oy —
Nodes in (¢,g) 'y_ W L2, € ‘Mc
(1,00 0.278677° 1 8.02775 .0.751951,
3 Q (2,0)  '0.0592413 1, 32.8343  0.921674°
- ,‘}a; . , o ‘ '(. - , - e
L. - Y (30)  0.0179423 1 108.894  0.979628
. (4,0)  0.00633783 1  328.409 1.00286
Table 6.7 ~Numerical Integration of [6.160] and [6.165].
Nodes in (6,9) ¥ o w a, M

3 TR 4

(1,0) 0.11463 1. 1 . 121638 " 0.496645

Y -

o _'_(2,0)41'540,6556019 1 5@.3550-‘_ 0.554541

A

(1,00 0.678249 1 1 5.648%2  1.08111 .

\ . A . . B . 4
. (3,0) 0 -0.0679895 1

¢

R
e

172.062 . 0 0.541872

'S
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~ APPENDIX 1: Derivation of the Generatons for the §.C. Group

The ca]cu]at1on is similar to that presented by Rosen (1972)
but is presented here for the sake of completeness
\Cons1den>\he infinitesipal transformations
o al :
] xR ey +'5xu(x) .

. where dx“(x) is an 1nf1n1§e51ma1 d1ffErent1ab1e funct1on of x* ' j

From [3. 4] we can-write _ o ‘?y _ﬁ

[A1.1) L "avétu +;3u5xv‘= §;nup ; o B ’

’15 obtained by contract1ng p and A. Equatibn [41.1] is d%ﬁf@rentiated

“and v and.\ are interchanged to obtafn

f=where

w

with respect to  to g1ve o o IR L | .o

Y axavaxp‘+,a 3 8x =3 (). .-,

AT v ey "@

« X : ) .

: SRR 5 B S 7:3 T o
ara” avakax + a ) cxA av(st)nﬁx_ ,

Cam : PR L
. . N . B ST
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.which is differentiated with respécf -toAxp to get

8% Asxv - avdx

[A1.5] 23,5 (3
/.

Using the symmetry iin u and'g gives the integrabi]ity'conditions

L3

[A].6] lap§A(6A)nﬂv - 32,(8Nn =33k, + 33, (SAngy = 0.

 SMultiplyjng [A1.6] by n*® and contracting o and v gives -~ ., ,

Y . . A- - - . - . 1/

) o S ~. ‘..' "a o : . N
‘[AI.7] - N 2,apax(dk) + 9 aa(ax)npx 0,
. L N ’/ N
from which we ,also have’
. o -
ey - (e =0

so it follows ghat &) is a linear function of x*:

LQ,AA

e S g R
' Inserting [A1.9] into (A}.4) gives

CIRLT0T B30, - B0 = 8B,y - 40BN,

“andintegrating [A1.10] with respect to-dx “yields'
T

[N ’ T : o e
. I+

- ‘{A]}]}]; - .akf§xv)-51?v§5§A? 5_45§xef5 4§BVX3*+'2§QVX";:

*
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where 6o . = - 8a, -are six constants of integration.
S, VA AV . :

From [A1.1] and [A1%9] , we have -
S | ‘ o e . .
[A1.12] avsxkn+“axoxv = nAv(4§sa; .+_453)

which, when added to [A1.11], means

L

| O T |
[A1.13] _3A‘va) = 20y 38X + 8Byx, 681 + 8By + Ga

L4
1 ' T A

. Integrating [A1.13] With‘respeotjto'x gtues L

IA],]4] : 'oxv J [nAvGB x + GBAx ]dx - GB X" x

+ §Bxy +.§avax .+ Gay»

) i:-

w8y

zfn”B* XQ§B.E §8fo80 ' Gsfv'+ ba

5 GO s O e e, e
- o6C X7+ X+ + o+ S
-2 xvdcax dovgax:. 6§§v': 6a. x," Oa,

hwhEFE da are 7our more. tntegrat1on constants and we have set .
.Adcv : - 68 to. br1ng [A] 14] 1nto the usua] ndtat1on The parameters .;teu;hggleé
i 553 and da v descr1be the translat1ons and homogeneous Lorentz n}’. IR

.‘!vtransformat1ons of the Povncaré group, 53 COrresponds to the dllations
) ‘and Gc . are. the four spec1a1 conformal parameters It is now c]ear '. ‘jll ff;;

3 how to wr1te the generators for the S C group .f'*;; {* ”gh}.L],‘.;-LF
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 [A2.1] _ 1_n sin 8 cos o = ——— T

2l ot =t st )

; 'fHere r and t' denote the new space-time po1nts obtained from ? t in tf“"

"_fztand ca]culate Q from [A2 5] }#5”;\

',';[A26] A =A ar.. +A 20 291 Q

[2.2]  rsinosinag

C[A2.3] .7 rcos 8

lsame coord1nate system we p]ace a charge at some non—zero po1nt 1n space )

. B o T _ - _
APPENDIX 2: Calculation of the C?arge Under a General S.€. Point

o

Transformation.

_The S.C. point transformations written ¥n spherical cOordinates'

1

are

- ‘ ' sin \el' cos o' _Cx(rlz _t.2) -

c. }

,,r!:sir}e' sin a‘~-&e¥}r‘2h{ t'z)'
IR e 4:r{f cos. é -c; (r _‘tfz), 51‘ U

K |

01 =

teketoed

‘ ‘.g.. IS

. where o’ 1 --2 cr -C0S" y - Zkt' + (c -k )(r'2 t'z),, , '(Ef-E), 15_:"
V‘and Y is the angTe between ¢ and r we denote the e1ectr1c f1e1d

'obta1ned through the po1nt transformat1on é% E' ' The charge Q 1s theg

e

C a2 o4~‘~j X" z J?'-ndS' " rhm Jdg " ruz

St
e

.s1nce S is. the surface over the sphere w1th norma] n in the rad1a1 d1rect1ong,fdn

s at. sone. t‘me t perform th€ Pﬁlnt transformations [A2 1] to [A2 4], [.fi-”

From the transfonned fie]ds S

SRR o T ar 6 ar _~ a ar
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;we.have' - e I &.

_uz__l"_ &»
[A2.8] | Er ... .Bt.'-+' !

b g fer et aroat), ?i‘é;aﬁt 3 9t - 30 3t)
. IR CI AT T N O T A '5"5?' ~at' ar)

o[, 20 (o 2t a3t A;-”?‘.‘r{-;?i‘é_fi or 3a Lam S

From equat1ons [A2 1] to [A2 4], we see that r anﬂ t tend to @“f:f:e"*i'

some- comb1nat1on of c k as.r' > o so that the asymptotic form of

E' \s determ1ned by the der1vat1ves of r e,a t with respect to r
g B and t' . L e S ,-_: _’”,-Vf: ' R
We wr1te ' F o

el S 1¥; ‘_.,
: SR R . -
':--2c cos Y, a2 z cz-kz, a0 E ] - 2kt"b t'2 2

: m’_‘: .
. oo

oz Ll "2( "'2)'” F Xl '2. '2)

: ".10’.




' 'providing a, # 0. Because -

C o ands

where

F = ¢, cos B’ +-Sin.6'(ck'cos a' + cy}sin a')

1 we:can show that fdr'large rY,

L2y r é:,_= 1 ﬂi_ 2 3 cos y
: : ar - 2

o e

..t.'b:

: .C2

and -
SR 2

vz ey O(r';’t3)-f‘~ |

| . | '."Bt ‘._ - ZkC COS ' 3
[A24,v,],3]‘_..“_ﬂ e Tt "T_.Z'y* o(r )

8- r

READEEEE et o AR

XA

- [A218) c . sec > #0(r' )
. Y oSSR T ‘

- with, C;fso;“it‘. follows that =~ it

S ';[Az_.:fl;s'_]_:; 2 O(r

owean 7. ,O(r' 2) at 1east

“—3“}"0( | 3’
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If.'cZ =0, . ‘>\ 2\,.

' LN

[(A2.18]

I 20, I

Re22l e T e 0
oIt
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"éﬁ_ .2 cos 6 t' | | ;;4 o
t ‘ +,0(r.‘ ),'

[AZ..]9]‘ i W'+ i. i __2_ #

If ¢, =5C~'?’ci*= 0, then 8 5-3'-3nd~a =fa'¢“SqT f ff. - i'sf;,,. :

 For the angle a,:wefhayé_théjexpfessjpn;éi”

r"sin e s1n o -'c (r'z '2)

e tana- o ffff St

D Y
.. .// -0

r sin. e' cos a'- c (r t )

"’53"v“1A?#?15f»'5,tf,'f. £'73 ;i'f@zj;4'btt'f3)gfii

b Y
e ‘.. BRI -.‘.- ;

o Zt' s1n e' cos o flﬁff}ffjfi




- [A2.24] Sk, _sinblcosal gy .
- , » -\ C r.4 . ) ; ’ )
- ‘ y

Ifc"y-o thena=a D

| ’ From [A2. 1] to- [A2 4] , We see. that a]] funct1ons of e',d N Y‘lﬂ.
’..‘qre mu1t1p11ed by r's so 1n our asymptot1c expaoswons of the der1vat1ves
. as g1ven above, no funct1ons of the angles can appear 1n the. denom1nators
”_.Furthermore, 1ntegrat1on over “the angles does not eﬁaqge th"r dependence
in E‘ We therefore see that | ) | | |
T'fm r"‘[ E' dQ-+0

1f a f 0 If a2 =0, then [A2 ]0] shows that r + o 1f r' o+ w, Ne
é'want r to be s1tuated at a fin1te point 1n space after the charge IS

- ‘v
h acce]erated 50 we must have c f k2 Ne also require r f 0 because
_ .

N must vanash w1th kt # 1 and c 0 1f r 1s zero Ne wish to have the ,;55 '

Vfreedom to put ¢ -'0 50 we ensure that r w111 nOt van1sh by,demanding

We have therefore shown that apply1ng a- genera] S C po1nt

'v‘§~trah\¥ormat1on to a charge, s1tuated at a po1nt r f 0 in space at

:'fa t1me t # k s results 1n a conf1guration with zero total charsef'.!i"zflliﬁv“
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- APPENDIX 3: Solution of the Homogeneous Equation [5.32].

f‘ If we put the power ser1es expans1ons of n about q =0, 1,1.’

o and o 1nto [5 32] we see that these po1nts are.. regu]ar s1ngu1ariti$s

‘J.A so]ut1on of the form

U S ) n+c
B0 Z a4 (a-a,)" - _
v B ul i”" - - L
with ao' 1 therefore ex1sts prov1ded the roots’. c} and c2 of the B

'-'1nd1c1a] equat1on (ca]]ed the exponents at the s1ngular point 9, )
1A[A;{21,1 t:“ ;v:.i .:; fs(Po-'t])F *5Qolf 0

i

e s an W

LR

'of P and Q about q def:nes P and Q 311 3?d

RN (. ) IR P=1 n(q%q ) . .
e me M . o

- '\ oo o

.-y e S

—
2

j—

L

“.1'51';“h” 'At q= 0 ¢ 1 and c -'-3, at q £ 1. ,Cy =
E ‘ ‘2 rhas

B

A-'G' .

'h.nére such that the Re c] > Re c2 (Ra1nv11]e 1964) Theetauneht”égbaﬁsibh'hgfl:gf

A complete exam1nat1on of [5 32] 1s feas1b1e ffawe have a c]osed
3

R ."ﬁhform fOr n s S0 we now emp]oy [4 16] Sett1ng X b-qz and 1nsert1ng [4 16]

3(x+3)(1 Sx)F
(x 1)/ (1+3X)

’ 110




>

_ where the-prime denotes §%~; This equatfon has re§u1ar singuiarities

‘at X =.0 1, - ;, and ot and 1s therefore of the Fuch51an type A we]l V
'known theorm_ for FQEhs1an equatlons w1th s1ngular po1nts at x = X1 Xos t
3, and « alldws [A3 5] to be wr1tten 1n the form . | |

lfk’“n o ]‘%é‘“&'+lf“m*‘%ﬂ¢u7f

X=X Xy Xy

B . ’ . /

CoA3.6] R

| %1‘&1 %2 %2 %3 %3
Loa?” (-52)7 (x-x;)2

“ O‘2 a]] 21‘“12“22”“13 23 ¥ C3(X1 x3("2 3) ]F = 0
(x- xl)ﬁx,xz). o Tﬁlx])(x xé)(x- )

f

- where alk and aZk are the exponents at x xk, a] : and a2 are'thOSe at
X = ®; C3 1s a constant equal to T2 here and 1s the coeff1cient of the
h“;l;¥~‘ factor when Q(x) 1s hroken 1nto part1a] fract1ons | The exponents

. at the s1ngu1ar po1nts of’ DA3 5] are the follow1ng _~J,if§‘ .“-f fﬁ,.; T

&,

wen
_"c>m-

. . [A3.7}': ‘ x] .

K “a ) ]
e

It 1s conven1ent to represent [A3 6] 1n terms of the R1emenn P

- Symboll

3 Th1s s “Ot a: unlque representat1on 1f more than three regu] ’ }iQ i
s1ngu1ar1t1es are present ey R B



[A3.8) . -+ °F

' transformatlons of the form
- A fﬁA3“9] " - _ | ..”F ;fgx_x
'f_Henéel'the transformation

oy

| LA3.1jJ LvER [y X, X3

. m[‘*—

1"
o
X

—
>
N

Ay A:I .
N1 % %3 %

Wé can remove the poles of order two in [A3 6) by using

j .

. L o B T
3001 F = (XK, Pxexg) Py

| F;Q;ixﬁhA}:O %J'I_!:'q.erv ] ]2+a]3
[ Sl P E I 0‘2 *“12*“13

S
PAS

oA

EER P WHieh;fff?@:TA3;1Oi,,[A3{5];iand;IA3}CJ@ ;epresents;fheéeQQetighfﬁb'

5, 14TE _g_] | [ M1 4__45 3.
1

T 1
o X+§

Zx(x 1)(x+—a Ax- 1)(x+3)

We can now 1dent1fy LA3 12] with the Heun equat1on

[A3 13] x(x 1)(x+ 7v" + [ x{a+6 ﬁ+? ( +6 }*'aY + X2(3+B+1).;

]vfo

. )"\“

“/}JE.f

nez ..



-

4 L L |
P .

w

where the: exponents at 0, 1, ;, and = are, respect1vely, (0 T1-v),

(0,1-68), (0 ﬁ—e), and (a,B); k is a parameter wh1ch is f1xed for a-

| given r/ua‘cmn The re]atlon

L _ a+-8+'| Y+5+€.

| "holds froh'Fueh'S"theorm Ihe Heun equat1on is a genera11 ati

the hypergeometr1c eyuat10h the former 1nvo]ves four reg/ ar S
']ar1t1es wh11e the latter 1s character1zed un1que]y by,
to [A3 13] “is denoted by |

(A3.14] - vo= v ;—k o) By ¥ 6:X) =

N

?IM 8
S .
<

' and converges abso]utely for |x| < l-, v has,the follow1ng form

(Murphy 1960) : ( T
S . a._- g L . ) .. : : "-. ‘ s .
: 7-:IA3.151"Vi'fe'y(a,k;d,séy,6:X);= 1h+‘aﬂ(y1zr+*YZZ%-+,.§)ﬂ:'Jf'f

T a

i1

s
o

i

PR

.. where a = -

[A3.16] " - yn -

’ .

k) A) aBk2 * [1 SR BR RS a(y+<s)1k . ay Lo

~e;/ A'sblution ”

) ey e

) (k) :ii°vf7li’"*'"3f»fif-7f e

n+1(k) fhfa+8f8+n+a(7+6+n+1)ia+zdsk16 (k)i-; T

' (a+n 1)(s+n 1)(Y+n 1)naa ](k) 1;ff‘ﬁ7”" =
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- There has not been a greagadea] of work on the Heun | equat¥on,

sq it is of little va]ue in obta1n1ng closed form or numer1qg]

- . ’

‘ so]ut1ons to [A3 5] o : .

o . '
. - . .. !
s - - .

v
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" the tota] field on's because both partlr-

APPENDIX 4: Asymptotic Static_Interaction Between Chq(ged Partjc]es

S
}

We now demonstrate that two s1m11ar spher1ca11y symmetr1c '

part1c1es which are far apart and instantaneously at rest 1nteract

~according to the CouTomb force.

' Suppose that at a certa1n moment charges q anid 9 are located

on the 2 ax1s w1th a large separat1on R.: Ihe force between the particles

is

(Ad.1] I‘- ‘ ' ) F3 = -.f T33 dS} D L
) "(4 . S o » . .
where’S is a two d;mens1onal surface wh1ch enc]oses one of the part1c1es,ﬁ

.and has the geometry of a p]ane (normal to the z ax1s) Tocated at a

d1stance Z from part1c1e 1 (e losed w1th an fhf1n1te hemisphere wh1ch

nges no contr1butlon to F3) 'T3é is the zz component of the symmetrized

stress tensor and is g1ven by

D. . . )

E C : 2 2 | o -
01 - 1 . (V%) AN L 75 |
‘since we are.lnterested on]y 1n the 1ead1ng contr1but1ons to T33 ) . ;Q

;'H1gher order correct1ons are d1ff1cu1t to calculate " We must spec1fy o

las w111 contr1bute

We take each part1c]e to sat1s y

(JA

N N 5
[A4'_,4?,). S gE0L L
. Hence’ . . # . - . . RS . L



/
( r '
. \ ,I‘
has) . R D coo
5] . ¢ = =+ »
[ . r ' l—;-ﬁl .
is the total potential, and T33 becomes
. . ~Q
2 2 P
. - -2 -2R - — + 5
33 4 o r6 (R2+r2-22R)3 | 2

2
.

| - q1q2 e 22° 'tR o -5y
Y+ -—-zr_ir__qe;jrz (1 ¥ + = '], +0(r7) .
T r(RR 2R)¥¢ 24
1th\§he he]p of cy11ndr1ca1 coordTnates 'R and 9 we f1nd that

the q]2 termsVintegrate to zero as do the qz2 terms. The problem then

s1mp11f1es to 1ntegrat1ons over the q]q2 contr1but1ons wh1ch g1ve
N S |
dsT

. w

9% s
—-2—R + O(R )
Here, a and q2 are equ1va1ent to t b]

Charged part1c1es therefore 1nteract according@to the Coulomb

- Taw p]us some h1gher order correct1ons The structure of G 1s unlm-

portant unt11 these correct1ons are calculated [:»‘ 't, ’ff',;_i/.f-f |
v §ﬁf:k‘ o
.
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