University of Alberta

The Theoretical Foundation for I ncremental
L east-Squares Tempor al Difference Learning

by

Martin Zinkevich

Technical Report TR 06-00
November 2006
Revised November 2006

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada



Abstract

Inthis paper we present amathematical foundation for Incremental L east-
Squares Temporal Difference Learning (iLSTD) for policy evaluation in re-
inforcement learning with linear function approximation. iLSTD is an in-
cremental method for achieving results similar to LSTD, the data-efficient,
least-squares version of temporal difference learning, without incurring the
full cost of the LSTD computation. Here, we give atechnica foundation for
the asymptotic properties of iLSTD.

1 Introduction

This paper presents an abstract mathematical result which is fundamental to prov-
ing that iLSTD works correctly. This proof is based heavily on atheoretical result
in [1]. However, we diverge from their proof in some details, for they are con-
sidering coefficients (C; and d;) which aways have a high variance but converge
quickly in expectation, whereas we are considering coefficients which have avery
low variance but converge slowly.

2 Prdiminaries

We begin with some standard definitions. Givenavector z € R”, ||z|| = Y., (2:)?.
Given any matrix B € R"*", define:

Bll= max Bzx 1

1B = _max 52| M

Azuma's Inequality states that, for any ¢t > 0, for any c; . .. ¢,, for any sequence

of random variables X, ..., X,,, where X; € [—¢;, ¢;] which is amartingale dif-
ferencesequence (foranyi € 0...n — 1, z1,..., 2, E[X; 11| X1 ... X;] = 0):

—¢2

Pr[X, >t < _— 2

This can also be applied to a supermartingale, where E[ X, 1| X ... X;] < 0.

Thisisavery effective technigue for bounding how far one will wander in arandom

walk.

3 Theoretical Results

In this section, we prove that the algorithm converges. We follow [1] very closely.
However, we diverge from their proof in some details, for they are considering



coefficients (C, and d;) which always have a high variance but converge quickly
in expectation, whereas we are considering coefficients which have a very low
variance but converge slowly.

We consider the theoretical model, where, for all ¢, y; € R",d; € R™, Ry, Cy €
R™" 3, € R, and:

Ytr1 = Yt + Be(Re)(Crye + dy) ©)

Define F; to be the state of the algorithm before R, is selected on round ¢ (which
is after the selection of C; and d;). It isthe case that C; and d; are sequences of
random variables.

Assumption 1 In order to prove this converges, we assume that thereisa C*, d*,
v, p > 0, and M such that:

1. C* isnegative definite,

2. Cy convergesto C* with probability 1,
3. d; convergesto d* with probability 1,
4. E[R|F)] =I,and |Ry|| < M,

5. limp_, Zthl B¢ = oo, and

6. O < vt™H.

Before continuing with the main proof, we give aresult that shows how, with-
out the randomness, convergence is exponentially fast to C; and d;.

Theorem 1 (Theorem 4 in the paper) If C; is negative definite, for some 5 depen-
dent upon C4, if Ry = I, then there existsan ¢ € (0, 1) such that for all y;, if
Yer1 = Yo + B(Crye + dy), then Hyt+1 + (Ct)_ldtH <( Hyt + (Ct)_ldtH-

Proof: Definew; = y; + (C;)~'d;, and w1 similarly. What we must prove is
that, for some ¢ < 1, ||wr1| < ¢ ||we]|.
Observe that:
Yt+1 = We — (Ct)fldt + B(Cy(wy — (Ct)fldt) +dy) (4
Yer1 + (Co) 7l = wy + B(Crwy) 5)
Wi1 = w + BCw; (6)
Now, we consider the square of both sides:

w1 ]|* = (wy + BCywy)? (7)
wer1]? = [Jwe]|® 4 26w - (Crwy) + 8% || Chawy | (8)



Since C; is negative definite, there existsa § > 0 such that w; - (Cywy) <
—0 ||wt||2. Also, since | Cy|| [|we]| > ||Crwy|| for any Cy, wy:

w1 |* = flwel|* = 286 wel|* + 52 |C:|* flawe | 9)
lwega || = (1 =285 + B |Ce|1?) [lwe | (10)
If 6 < —20; then selecting ¢ = 266 — (52 ||Cy|)* establishes the theorem. .

ICe1*”

The overall proof harnesses this rapid progress towards —(C;)~'d;, and together
with the fact that C; and d; converge, thisyields the desired result.

Theorem 2 (Theorem2inthe paper) Given Assumption 1, y; convergesto —(C*)~1d*
with probability 1. Formally, for all A > 0 there exists a 7" such that with proba-
bilityat least 1 — A, for all ¢ > T

lye + (C) 71| < A (11)

Proof: Inorder to simplify the proof, we assume d* = 0. A similar argument can
be made when thisis not the case. Observe that, for every ¢ > 0, thereexistsaT
such that, with probability at least 1 — € the following hold for all ¢ > T' (which we
will call event E):

1|y — C¥| < e,
2. || dy|| = |lds — &*|| < e, and
3. B <e.

In the following, we are assuming event £ occurs. Thus, we can basically wait for
C, and d; to get arbitrarily close to C* and d* (and stay there). This also allows
for us to definea 8 > 0, and a sequence ki, k2, ... (Where k; > T') such that
P By = By, where § < B, < 2.

Following the technique of [1], we define ¢, = yr,,,. We then break down the
transition from g,,, t0 ¢,,,+1 iNto various quantities:



Epma1—1
g1 =am+ Y, BiRi(Coye+ di) (12)
t=km
km+1—l
m+1 = Qm + Z BiC* gm
t=km
kmﬁ»lfl
+ Z Bydy
t:k’m
k‘m+1—1
+ Z Be(Ry — 1)C* (gm)
t=km
kmy1—1
+ Y BiR(Ci—C*)gm
t=km
Kpmg1—1

+ > BRCiY — gm) (13)

t=km

We can write this in the form g1 = gm + 91m + 92.m + 93.m + gam + g5.m
where g1, . . . g5,m arethefive sums on the right hand side of Equation 13.
We first prove abound on ||g, + g1,m ]|

2

kmy1—1
HQm +gl,mH2 = {|gm + Z ﬂtC*Qm (14)
t=km
= ||gm + BinCa)? (15)
= qTQn +2qm - (BmC*Qm) + (BmC*Qm)Q (16)

Define K = max(M, ||C*|| + ¢), such that K isabound on al ||R||, ||Ct]|,
and ||C*||. Since C* is negative definite, there existsa § > 0 such that for all z,
x - (C*x) < =6 ||z||*. Thus, the above can be reduced to:

gm + g1ml” < llgmll® = 28m0 |gml” + (Bm)? K2 (| gml|” (17)
< lgmll* (1 = 2Bmd + (Bm)*K?) (18)

For a sufficiently small 3,, (which can be guaranteed by a sufficiently small 3),
this is smaller than ||¢,,|*>. The remainder of the terms will do more harm than



good.

Epm1—1
lg2,m |l = Z B Redy (29
t=km
Emg1—1
< Z Br || Redy|| (20)
t=km
k:m+1—1
< ) BiKe (1)
t=km
< BmKe (22)

Observe that the bound in Equation 22 is not dependent on || g, ||. Thisis somewhat
unfortunate, in that it means that we cannot directly prove ||¢,,|| approaches zero:
instead, we prove that it becomes small, in termsrelated to e.

93.m has amore probabilistic flavor, in the sense that it is possible for it to be
quite large.

km+1
lgsmll = || 3= Bi(R: = 1)Cqm (23)
t=km
Bt
< 3" BB = IC* | g (24)
t=km
< (Bn) K (K +1) [l (25)

Inorder to bound g3 ,,, moretightly, we need to bound the size of ij,; 71:1 Ge(Ry — 1) H <
€2. This we can do probabilistically. We can achieve this by bounding each
component of this matrix sum independently. First, observe that, for any i, 7,
(Re — D)ijl < K + 1. Define zmi; = S~ Bi(Re — )iy, This alows
usto use Azuma's Inequality:

Pr(|zm,ij| > €] < 2exp(—2e3/(26(K + 1)*By,.)) (26)
Observe that if 3, = vt *, then:
Pr[zm,i ;] > e2] < 2exp(—2(vkl,e5/(26(K +1)%)) (27)

We can observe that this is decreasing nearly exponentially with respect to m, so
that by Lemmabs:
Pr[Vm,z‘,j : ]wmm\ > 62] < 00 (28)
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For any e5 > 0, we can choose an m* such that:
PriVm > m*, Vi, j : |Xm, | < €2] > 1— € (29)
We will call thisevent E5. Given E and Es:

km+1

lgsmll < || > Be(Re — 1)C*qn,

t:km

(30)

km+1

> Bi(R 1)

t=km
nes K | gm|| (32)

IN

IC*Hlgml (31)

IN

The next term isrelatively smple:

km+171

Y BiRi(Cr = C")gm

t=km

lgamll = (33)

km+1—1

< Z B [|[Re(Cr — C7) | (34)
t=kum
kmt1—1

< S BKe|gnl (35)

t=km
< BnKelgml (36)

Finally, we have to bound the effect of the drift of the algorithm upon the direction
of change.

Lemma3 For all t suchthat k,,, <t < kjpaq:
19t — amll < B K (|| @m | + BmKe) exp(BmK?) (37)
Proof: Observethat, for any x € R™:

|z + BeRe(Cra + di)|| < [[(I + BeRiCr)z|| + || Bt Redy| (38)
< (1+ BEK?) ||z|| + Be ke (39)



Now, applying this operator recursively:

[yell < llgmll H 14 By K?) (40)
— t—1
+ Z BuKe [ (1+psE?) (41)
t"=km t'=t"+1
< (lgmll + B e) exp(Bn K?) if t < ki (42)

We can now compute the difference between y; and ¢,,, (assuming t < ki, +1).

t—1

lye = amll < D Be |R«Co|l [y (43)
t'=km
t—1 B B
< > BrEK(lgmll + BnKe) exp(Bn K?) (44)
t'=km
< B K (|lgm|| + B K €) exp(Bn K?) (45)
|

We now continue with the proof of Theorem 2. The last term g5 ,,, can be bounded
by:

km41—1
||g5,mH S Z ﬂt HRtCtH Hyt - QmH (46)
t=km
karl_l
< Z ﬁtKQBmKQ(HCImH + BmKE) exp(BmKQ) (47)
t=km
< B KQﬁmKQ(HQm” + ﬁmKE) eXP(ﬁmKQ) (48)
< (Bm) K (|lgmll + B K €) exp (B K?) (49)

Observe that we have only assumed that 5 > 0. By making the assumption that
exp(26K?) < 2, 2K?f < 6 (such that —23,,0 + (8n)?K* < —fm0), and re-
membering that 5 < 3, < 20, we can summarize the above results (assuming



E):

gm + g1m* < llgm|* (1 — B9) (50)
lg2,m < 28Ke (51)
g3.m|l < ne2K ||gm| (52)
193, < 28K (K 4 1) ||gm| (53)
g, < 2BKe||gml| (54)
lgs.mll < 86°K*(|lgml + 26Ke) (55)

In order to make these results alittle cleaner, we introduce a variable L:
L = max(2K /e, 2K%\/e, 2\/BK (K +1),2Ke, 88K*,1652K°\/¢).  (56)

Observe that limg .o L = 0, so that we can choose L to be arbitrarily small (with
respect to 6 and M). This alows us to state the above results in a remarkably
cleaner way:

||Qm+91,mH2 < HQm”2 (1—pB6) (57)
lg2,mll < BLVe (58)
193.ml < ne2K [|gm|| (59)
lgsmll < /BL [l mll (60)
94,ml < BL [ gm| (61)
lg5.mll < BL llgm|| + BLVe (62)

Note that the bound on g3 ,,, is weaker than the others, because as 3 — 0, itisthe
casethat /3 > 3. Thus, it will require special attention. Now, we bound ¢, +1:

lgm-+11® < llgm + g1ml* + g2,m + gam + gs.mll” (63)
+2lg2,m + gam + G5.mll [ @m + grmll + lgsml? (64)
+ 2|g2,m + gam + g5mll |g3,m | + 293,m - (@m + 91,m) (65)
We observe that ||gm + g1.mll < [[gmll and [[g2,m + ga,m + g5,mll < 26L([lgml| +
Vo).
lgm+1]1? < llam |l (1 = B8) + (2BL([|gm| + ve))?
+22BL ([ gmll + V) llgmll + llgsml?
+2(28L(Jlgmll + V€)) llgamll +293,m - (¢m + g1m)  (66)
lgm+1]l* < llgml* (1 — B8) + 4B2L2(||gm || + Ve)?
+ABL([|gmll + V) mll + | g3,mlI?
+ 48L([lgm|l + V) l|g3,mll + 293.m - (gm + g1.m) (67)



Now, we can use the weak bound on g3 ,,, on two of its occurrences.
gmi1l? < llgml® (1 = 86) + 48> L*(|lgml| + V)
+ 4BL(|lgml| + Ve) llgmll + BL?
+ 4ﬁL(HQMH + \/E) \/BL + 2gB,m : (Qm + gl,m) (68)

lgm+11* < llgmI* (1 = 88) + 467 L*(lgml| + v/€)?
+4BL(lgmll + V) llgm| + BL* [l

+ 4852 L2l gunll + V/E) g (69)
gm41]I* < max(|lgm |, Ve)*[1 — B8 + 1652 L? + 8L + BL* + 84%/2 L]
+293.m  (@m + g1,m) (70)

If 168L% + 8L + L? + 8/BL? < §/2, then:

gm-s1[I* < max(||gmll, Ve)*[1 = 86/2] + 2g3.m - (gm + g1.m)  (71)

We now fix 8 and e and approach the last term. If E5 holdsand m > m*, then:

gm-1]1* < max([lgml| , Ve)?[L — 85/2] + 2nKes ||gm]|” (72)

Assuming that e < %, then:
g1 l” < max(||gml| , ve)*[1 — B5/4] (73)
Thus, if E and E; hold, for al m > m*, ||g,,|| will contract until it reaches e.
Therefore, if € + €5 < A, theresult will hold. ]

Of course, we have to map iLSTD to such a process:

1y =6,

By = ta/n,
Cr = —A/t,
dy = by/t, and

R, isamatrix, wherethereisan n onthediagonal in position (k, k) (where k
is the randomly selected dimension on round ¢) and zeroes everywhere el se.

o b WD

Theorem 4 (Theorem 3 in the paper) If the Markov decision process is finite,
iLSTD(\) with a uniform random feature selection mechanism converges to the
same result as TD(\).



Proof: Observethat for any e > 0 there existsa At such that A A can be approx-
imated to within e by by only considering the last At steps. Since the distribution
over the last At time steps at time T + 1 can be determined precisely by the last
At time steps at time 7', and there are afinite number of such states, the average of
the AA (i.e,, —C) must converge, at least within e. Since this holds for any ¢, C
converges. A similar argument holds for d;.

Since « is decreasing like t=(1*#) where 1 € (0,1], 8 satisfies the above
properties. [
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Lemmab For any K, a > 0,
oo
D exp(—Kt™%) < o0 (74)
t=1

Proof: Observethat > 7°, t72 < oco. Moreover, t=2 = exp(—2Int). Observe
that for sufficiently larget, —2Int > —Kt~“. Therefore, the tail of the sum hasa
finite value, making the sum finite. [
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