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Abstract

In this paper we present a mathematical foundation for Incremental Least-
Squares Temporal Difference Learning (iLSTD) for policy evaluation in re-
inforcement learning with linear function approximation. iLSTD is an in-
cremental method for achieving results similar to LSTD, the data-efficient,
least-squares version of temporal difference learning, without incurring the
full cost of the LSTD computation. Here, we give a technical foundation for
the asymptotic properties of iLSTD.

1 Introduction

This paper presents an abstract mathematical result which is fundamental to prov-
ing that iLSTD works correctly. This proof is based heavily on a theoretical result
in [1]. However, we diverge from their proof in some details, for they are con-
sidering coefficients (Ct and dt) which always have a high variance but converge
quickly in expectation, whereas we are considering coefficients which have a very
low variance but converge slowly.

2 Preliminaries

We begin with some standard definitions. Given a vector x ∈ Rn, ‖x‖ =
∑n

i=1(xi)2.
Given any matrix B ∈ Rn×n, define:

‖B‖ = max
x∈Rn,‖x‖=1

‖Bx‖ (1)

Azuma’s Inequality states that, for any t > 0, for any c1 . . . cn, for any sequence
of random variables X1, . . . , Xn, where Xi ∈ [−ci, ci] which is a martingale dif-
ference sequence (for any i ∈ 0 . . . n − 1, x1, . . . , xi, E[Xi+1|X1 . . . Xi] = 0):

Pr[Xn ≥ t] ≤ exp
( −t2

2
∑n

i=1 c2
i

)
(2)

This can also be applied to a supermartingale, where E[Xi+1|X1 . . . Xi] ≤ 0.
This is a very effective technique for bounding how far one will wander in a random
walk.

3 Theoretical Results

In this section, we prove that the algorithm converges. We follow [1] very closely.
However, we diverge from their proof in some details, for they are considering
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coefficients (Ct and dt) which always have a high variance but converge quickly
in expectation, whereas we are considering coefficients which have a very low
variance but converge slowly.

We consider the theoretical model, where, for all t, yt ∈ Rn,dt ∈ Rn, Rt, Ct ∈
Rn×n, βt ∈ R, and:

yt+1 = yt + βt(Rt)(Ctyt + dt) (3)

Define Ft to be the state of the algorithm before Rt is selected on round t (which
is after the selection of Ct and dt). It is the case that Ct and dt are sequences of
random variables.

Assumption 1 In order to prove this converges, we assume that there is a C∗, d∗,
v, µ > 0, and M such that:

1. C∗ is negative definite,

2. Ct converges to C∗ with probability 1,

3. dt converges to d∗ with probability 1,

4. E[Rt|Ft] = I , and ‖Rt‖ ≤ M ,

5. limT→∞
∑T

t=1 βt = ∞, and

6. βt < vt−µ.

Before continuing with the main proof, we give a result that shows how, with-
out the randomness, convergence is exponentially fast to Ct and dt.

Theorem 1 (Theorem 4 in the paper) If Ct is negative definite, for some β depen-
dent upon Ct, if Rt = I , then there exists an ζ ∈ (0, 1) such that for all yt, if
yt+1 = yt + β(Ctyt + dt), then

∥∥yt+1 + (Ct)−1dt

∥∥ < ζ
∥∥yt + (Ct)−1dt

∥∥.

Proof: Define wt = yt + (Ct)−1dt, and wt+1 similarly. What we must prove is
that, for some ζ < 1, ‖wt+1‖ ≤ ζ ‖wt‖.

Observe that:

yt+1 = wt − (Ct)−1dt + β(Ct(wt − (Ct)−1dt) + dt) (4)

yt+1 + (Ct)−1dt = wt + β(Ctwt) (5)

wt+1 = wt + βCtwt (6)

Now, we consider the square of both sides:

‖wt+1‖2 = (wt + βCtwt)2 (7)

‖wt+1‖2 = ‖wt‖2 + 2βwt · (Ctwt) + β2 ‖Ctwt‖2 (8)
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Since Ct is negative definite, there exists a δ > 0 such that wt · (Ctwt) ≤
−δ ‖wt‖2. Also, since ‖Ct‖ ‖wt‖ ≥ ‖Ctwt‖ for any Ct, wt:

‖wt+1‖2 = ‖wt‖2 − 2βδ ‖wt‖2 + β2 ‖Ct‖2 ‖wt‖2 (9)

‖wt+1‖2 = (1 − 2βδ + β2 ‖Ct‖2) ‖wt‖2 (10)

If β < 2δ
‖Ct‖2 , then selecting ζ = 2βδ − β2 ‖Ct‖2 establishes the theorem.

The overall proof harnesses this rapid progress towards −(Ct)−1dt, and together
with the fact that Ct and dt converge, this yields the desired result.

Theorem 2 (Theorem 2 in the paper) Given Assumption 1, yt converges to−(C∗)−1d∗

with probability 1. Formally, for all ∆ > 0 there exists a T such that with proba-
bility at least 1 − ∆, for all t > T :

∥∥yt + (C∗)−1d∗
∥∥ ≤ ∆ (11)

Proof: In order to simplify the proof, we assume d∗ = 0. A similar argument can
be made when this is not the case. Observe that, for every ε > 0, there exists a T
such that, with probability at least 1− ε the following hold for all t > T (which we
will call event E):

1. ‖Ct − C∗‖ < ε,

2. ‖dt‖ = ‖dt − d∗‖ < ε, and

3. βt < ε.

In the following, we are assuming event E occurs. Thus, we can basically wait for
Ct and dt to get arbitrarily close to C∗ and d∗ (and stay there). This also allows
for us to define a β > 0, and a sequence k1, k2, . . . (where k1 > T ) such that∑km+1−1

t=km
βt = β̄m, where β ≤ β̄m ≤ 2β.

Following the technique of [1], we define qm = ykm . We then break down the
transition from qm to qm+1 into various quantities:
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qm+1 = qm +
km+1−1∑
t=km

βtRt(Ctyt + dt) (12)

qm+1 = qm +
km+1−1∑
t=km

βtC
∗qm

+
km+1−1∑
t=km

βtdt

+
km+1−1∑
t=km

βt(Rt − I)C∗(qm)

+
km+1−1∑
t=km

βtRt(Ct − C∗)qm

+
km+1−1∑
t=km

βtRtCt(yt − qm) (13)

We can write this in the form qm+1 = qm + g1,m + g2,m + g3,m + g4,m + g5,m

where g1,m . . . g5,m are the five sums on the right hand side of Equation 13.
We first prove a bound on ‖qm + g1,m‖:

‖qm + g1,m‖2 =

∥∥∥∥∥∥qm +
km+1−1∑
t=km

βtC
∗qm

∥∥∥∥∥∥
2

(14)

=
∥∥qm + β̄mC∗qm

∥∥2
(15)

= q2
m + 2qm · (β̄mC∗qm) + (β̄mC∗qm)2 (16)

Define K = max(M, ‖C∗‖ + ε), such that K is a bound on all ‖Rt‖, ‖Ct‖,
and ‖C∗‖. Since C∗ is negative definite, there exists a δ > 0 such that for all x,
x · (C∗x) ≤ −δ ‖x‖2. Thus, the above can be reduced to:

‖qm + g1,m‖2 ≤ ‖qm‖2 − 2β̄mδ ‖qm‖2 + (β̄m)2K2 ‖qm‖2 (17)

≤ ‖qm‖2 (1 − 2β̄mδ + (β̄m)2K2) (18)

For a sufficiently small β̄m (which can be guaranteed by a sufficiently small β),
this is smaller than ‖qm‖2. The remainder of the terms will do more harm than

4



good.

‖g2,m‖ =

∥∥∥∥∥∥
km+1−1∑
t=km

βtRtdt

∥∥∥∥∥∥ (19)

≤
km+1−1∑
t=km

βt ‖Rtdt‖ (20)

≤
km+1−1∑
t=km

βtKε (21)

≤ β̄mKε (22)

Observe that the bound in Equation 22 is not dependent on ‖qm‖. This is somewhat
unfortunate, in that it means that we cannot directly prove ‖qm‖ approaches zero:
instead, we prove that it becomes small, in terms related to ε.

g3,m has a more probabilistic flavor, in the sense that it is possible for it to be
quite large.

‖g3,m‖ =

∥∥∥∥∥∥
km+1∑
t=km

βt(Rt − I)C∗qm

∥∥∥∥∥∥ (23)

≤
km+1∑
t=km

βt ‖Rt − I‖ ‖C∗‖ ‖qm‖ (24)

≤ (β̄m)K(K + 1) ‖qm‖ (25)

In order to bound g3,m more tightly, we need to bound the size of
∥∥∥∑km+1−1

t=km
βt(Rt − I)

∥∥∥ <

ε2. This we can do probabilistically. We can achieve this by bounding each
component of this matrix sum independently. First, observe that, for any i, j,
|(Rt − I)i,j | ≤ K + 1. Define xm,i,j =

∑km+1−1
t=km

βt(Rt − I)i,j . This allows
us to use Azuma’s Inequality:

Pr[|xm,i,j | ≥ ε2] ≤ 2 exp(−2ε22/(2β(K + 1)2βkm)) (26)

Observe that if βt = vt−µ, then:

Pr[|xm,i,j | ≥ ε2] ≤ 2 exp(−2(vkµ
mε2

2/(2β(K + 1)2)) (27)

We can observe that this is decreasing nearly exponentially with respect to m, so
that by Lemma 5:

Pr[∀m, i, j : |xm,i,j | ≥ ε2] < ∞ (28)
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For any ε2 > 0, we can choose an m∗ such that:

Pr[∀m > m∗,∀i, j : |xm,i,j | < ε2] > 1 − ε2 (29)

We will call this event E2. Given E and E2:

‖g3,m‖ ≤
∥∥∥∥∥∥

km+1∑
t=km

βt(Rt − I)C∗qm

∥∥∥∥∥∥ (30)

≤
∥∥∥∥∥∥

km+1∑
t=km

βt(Rt − I)

∥∥∥∥∥∥ ‖C∗‖ ‖qm‖ (31)

≤ nε2K ‖qm‖ (32)

The next term is relatively simple:

‖g4,m‖ =

∥∥∥∥∥∥
km+1−1∑
t=km

βtRt(Ct − C∗)qm

∥∥∥∥∥∥ (33)

≤
km+1−1∑
t=km

βt ‖Rt(Ct − C∗)qm‖ (34)

≤
km+1−1∑
t=km

βtKε ‖qm‖ (35)

≤ β̄mKε ‖qm‖ (36)

Finally, we have to bound the effect of the drift of the algorithm upon the direction
of change.

Lemma 3 For all t such that km ≤ t < km+1:

‖yt − qm‖ ≤ β̄mK2(‖qm‖ + β̄mKε) exp(β̄mK2) (37)

Proof: Observe that, for any x ∈ Rn:

‖x + βtRt(Ctx + dt)‖ ≤ ‖(I + βtRtCt)x‖ + ‖βtRtdt‖ (38)

≤ (1 + βtK
2) ‖x‖ + βtKε (39)
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Now, applying this operator recursively:

‖yt‖ ≤ ‖qm‖
t−1∏

t′=km

(1 + βt′K
2) (40)

+
t−1∑

t′′=km

βt′′Kε
t−1∏

t′=t′′+1

(1 + βt′K
2) (41)

≤ (‖qm‖ + β̄mKε) exp(β̄mK2) if t < km+1 (42)

We can now compute the difference between yt and qm (assuming t < km+1).

‖yt − qm‖ ≤
t−1∑

t′=km

βt′ ‖Rt′Ct′‖ ‖yt′‖ (43)

≤
t−1∑

t′=km

βt′K
2(‖qm‖ + β̄mKε) exp(β̄mK2) (44)

≤ β̄mK2(‖qm‖ + β̄mKε) exp(β̄mK2) (45)

We now continue with the proof of Theorem 2. The last term g5,m can be bounded
by:

‖g5,m‖ ≤
km+1−1∑
t=km

βt ‖RtCt‖ ‖yt − qm‖ (46)

≤
km+1−1∑
t=km

βtK
2β̄mK2(‖qm‖ + β̄mKε) exp(β̄mK2) (47)

≤ β̄mK2β̄mK2(‖qm‖ + β̄mKε) exp(β̄mK2) (48)

≤ (β̄m)2K4(‖qm‖ + β̄mKε) exp(β̄mK2) (49)

Observe that we have only assumed that β > 0. By making the assumption that
exp(2βK2) ≤ 2, 2K2β ≤ δ (such that −2β̄mδ + (β̄m)2K2 ≤ −β̄mδ), and re-
membering that β ≤ β̄m ≤ 2β, we can summarize the above results (assuming
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E):

‖qm + g1,m‖2 ≤ ‖qm‖2 (1 − βδ) (50)

‖g2,m‖ ≤ 2βKε (51)

‖g3,m‖ ≤ nε2K ‖qm‖ (52)

‖g3,m‖ ≤ 2βK(K + 1) ‖qm‖ (53)

‖g4,m‖ ≤ 2βKε ‖qm‖ (54)

‖g5,m‖ ≤ 8β2K4(‖qm‖ + 2βKε) (55)

In order to make these results a little cleaner, we introduce a variable L:

L = max(2K
√

ε, 2K2√ε, 2
√

βK(K + 1), 2Kε, 8βK4, 16β2K5√ε). (56)

Observe that limβ,ε→0 L = 0, so that we can choose L to be arbitrarily small (with
respect to δ and M ). This allows us to state the above results in a remarkably
cleaner way:

‖qm + g1,m‖2 ≤ ‖qm‖2 (1 − βδ) (57)

‖g2,m‖ ≤ βL
√

ε (58)

‖g3,m‖ ≤ nε2K ‖qm‖ (59)

‖g3,m‖ ≤
√

βL ‖qm‖ (60)

‖g4,m‖ ≤ βL ‖qm‖ (61)

‖g5,m‖ ≤ βL ‖qm‖ + βL
√

ε (62)

Note that the bound on g3,m is weaker than the others, because as β → 0, it is the
case that

√
β > β. Thus, it will require special attention. Now, we bound qm+1:

‖qm+1‖2 ≤ ‖qm + g1,m‖2 + ‖g2,m + g4,m + g5,m‖2 (63)

+ 2 ‖g2,m + g4,m + g5,m‖ ‖qm + g1,m‖ + ‖g3,m‖2 (64)

+ 2 ‖g2,m + g4,m + g5,m‖ ‖g3,m‖ + 2g3,m · (qm + g1,m) (65)

We observe that ‖qm + g1,m‖ ≤ ‖qm‖ and ‖g2,m + g4,m + g5,m‖ ≤ 2βL(‖qm‖ +√
ε).

‖qm+1‖2 ≤ ‖qm‖2 (1 − βδ) + (2βL(‖qm‖ +
√

ε))2

+ 2(2βL(‖qm‖ +
√

ε)) ‖qm‖ + ‖g3,m‖2

+ 2(2βL(‖qm‖ +
√

ε)) ‖g3,m‖ + 2g3,m · (qm + g1,m) (66)

‖qm+1‖2 ≤ ‖qm‖2 (1 − βδ) + 4β2L2(‖qm‖ +
√

ε)2

+ 4βL(‖qm‖ +
√

ε) ‖qm‖ + ‖g3,m‖2

+ 4βL(‖qm‖ +
√

ε) ‖g3,m‖ + 2g3,m · (qm + g1,m) (67)
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Now, we can use the weak bound on g3,m on two of its occurrences.

‖qm+1‖2 ≤ ‖qm‖2 (1 − βδ) + 4β2L2(‖qm‖ +
√

ε)2

+ 4βL(‖qm‖ +
√

ε) ‖qm‖ + βL2

+ 4βL(‖qm‖ +
√

ε)
√

βL + 2g3,m · (qm + g1,m) (68)

‖qm+1‖2 ≤ ‖qm‖2 (1 − βδ) + 4β2L2(‖qm‖ +
√

ε)2

+ 4βL(‖qm‖ +
√

ε) ‖qm‖ + βL2 ‖qm‖2

+ 4β3/2L2(‖qm‖ +
√

ε) ‖qm‖ (69)

‖qm+1‖2 ≤ max(‖qm‖ ,
√

ε)2[1 − βδ + 16β2L2 + 8βL + βL2 + 8β3/2L2]
+ 2g3,m · (qm + g1,m) (70)

If 16βL2 + 8L + L2 + 8
√

βL2 ≤ δ/2, then:

‖qm+1‖2 ≤ max(‖qm‖ ,
√

ε)2[1 − βδ/2] + 2g3,m · (qm + g1,m) (71)

We now fix β and ε and approach the last term. If E2 holds and m > m∗, then:

‖qm+1‖2 ≤ max(‖qm‖ ,
√

ε)2[1 − βδ/2] + 2nKε2 ‖qm‖2 (72)

Assuming that ε2 < βδ/4
2nK , then:

‖qm+1‖2 ≤ max(‖qm‖ ,
√

ε)2[1 − βδ/4] (73)

Thus, if E and E2 hold, for all m > m∗, ‖qm‖ will contract until it reaches ε.
Therefore, if ε + ε2 < ∆, the result will hold.

Of course, we have to map iLSTD to such a process:

1. yt = θt,

2. βt = tα/n,

3. Ct = −At/t,

4. dt = bt/t, and

5. Rt is a matrix, where there is an n on the diagonal in position (k, k) (where k
is the randomly selected dimension on round t) and zeroes everywhere else.

Theorem 4 (Theorem 3 in the paper) If the Markov decision process is finite,
iLSTD(λ) with a uniform random feature selection mechanism converges to the
same result as TD(λ).
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Proof: Observe that for any ε > 0 there exists a ∆t such that ∆A can be approx-
imated to within ε by by only considering the last ∆t steps. Since the distribution
over the last ∆t time steps at time T + 1 can be determined precisely by the last
∆t time steps at time T , and there are a finite number of such states, the average of
the ∆A (i.e., −Ct) must converge, at least within ε. Since this holds for any ε, Ct

converges. A similar argument holds for dt.
Since α is decreasing like t−(1+µ) where µ ∈ (0, 1], β satisfies the above

properties.
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Lemma 5 For any K, α > 0,

∞∑
t=1

exp(−Kt−α) < ∞ (74)

Proof: Observe that
∑∞

t=1 t−2 < ∞. Moreover, t−2 = exp(−2 ln t). Observe
that for sufficiently large t, −2 ln t > −Kt−α. Therefore, the tail of the sum has a
finite value, making the sum finite.
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