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Abstract

Trade-offs between dispersal and reproduction are known to be important drivers

of population dynamics, but their direct influence on the spreading speed of a

population is not well understood. Using integrodifference equations, we de-

velop a model that incorporates a dispersal-reproduction trade-off which allows

for a variety of different shaped trade-off curves. We show there is a unique

reproductive-dispersal allocation that gives the largest value for the spreading

speed and calculate the sensitivities of the reproduction, dispersal, and trade-

off shape parameters. Uncertainty in the model parameters affects the expected

spread of the population and we calculate the optimal allocation of resources

to dispersal that maximizes the expected spreading speed. Higher allocation to

dispersal arises from uncertainty in the reproduction parameter or the shape

of the reproduction trade-off curve. Lower allocation to dispersal arises from

uncertainty in the shape of the dispersal trade-off curve, but does not come

from uncertainty in the dispersal parameter. Our findings give insight into

how parameter sensitivity and uncertainty influence the spreading speed of a

population with a dispersal-reproduction trade-off.
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1. Introduction1

The principle of allocation states that if an organism has limited resources,2

then energy allocation to one function reduces the amount of energy available to3

all other functions (Cody, 1966). Under resource limitation, it can be assumed4

that an inherent trade-off will usually occur between different functions. There5

are a variety of trade-off effects that occur in populations such as behavioral6

trade-offs (Cressler et al., 2010; Verdolin, 2006), evolutionary trade-offs (Burton7

et al., 2010; Hughes et al., 2003; Yoshida et al., 2004), and life history trade-offs8

(Hanski et al., 2006; Zera and Harshman, 2001). In this work, we are interested9

in the life history trade-off between dispersal and reproduction. That is, by the10

principle of allocation we will consider the case in our study in which the further11

an individual disperses the fewer resources it will have for reproduction and vice12

versa.13

The empirical evidence for the dispersal-reproduction trade-off effect in nat-14

ural ecosystems occurs in a variety of insect species (Stevens et al., 2000; Zhao15

and Zera, 2002; Hughes et al., 2003; Hanski et al., 2006; Elliott and Evenden,16

2012; Duthie et al., 2014; Tigreros and Davidowitz, 2019). In extreme cases,17

some female insects completely lose the ability to fly (Harrison, 1980; Roff, 1984,18

1990; Zera and Denno, 1997). This response is commonly interpreted as an evo-19

lutionary adaptation to increase fecundity in a specific location. To elaborate20

on one example of this trade-off, we briefly discuss the results from Elliott and21

Evenden (2012) on the effect of flight and reproduction in an outbreaking forest22

lepidopteran, Choristoneura conflictana. Here, the population density of the23

insects limits the post-flight reproductive investment by females. High density24

levels reduce the amount of resources available to the individuals within the pop-25

ulation and an adaptive response would be to disperse in order to access more26

food. Flight, however, reduces the stores available and in response individuals27

that disperse further also produce fewer eggs.28

The dispersal-reproduction trade-off is not limited to insects. This trade-off29
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has also been examined in diaspores (a seed with additional tissues that assist30

dispersal). There is a relationship between seed mass and dispersal capacity in31

wind-dispersed diaspores (Siggins, 1933; Greene and Johnson, 1993; Thompson32

et al., 2002). This is directly related to reproduction because increases seed33

mass is proportional to maternal provisioning. Assuming there is only passive34

wind-dispersal, the trade-off occurs because diaspores with larger seed mass35

will not spread as far as those with a lighter mass by wind due to the force36

of gravity causing the larger mass diaspores to settle earlier. There is also37

evidence for a trade-off between dispersal and reproduction for migrating birds38

(Gill, 2006; Proctor and Lynch, 1993; Prop et al., 2003; Récapet et al., 2017;39

Schmidt-Wellenburg et al., 2008). For migratory birds, the reproductive success40

of an individual correlates with the migration timing, which is determined by41

the pre-migration body fat stores. A similar trade-off has also been documented42

in a wild population of lizards (Cotto et al., 2015).43

Incorporation of trade-offs into models has produced rich dynamics that are44

not present without such effects (Chuang and Peterson, 2016). By incorporating45

a trade-off between reproduction and dispersal ability in a population of non-46

pollinating fig wasps Duthie et al. (2014) constructed a model to explain the47

coexistence of these different strategies. At first glance, this result appears to be48

paradoxical to the competitive exclusion principle because non-pollinating fig49

wasps share similar life histories and compete for similar resources. However,50

the trade-off in the model influences individuals to specialize to different degrees51

on dispersal and reproductive abilities and create individual niches.52

Models can also be used to study the evolution of dispersal in populations53

with multiple phenotypes in a spatially heterogeneous habitat. A primary find-54

ing from these studies is that the phenotype with the lowest diffusion rate is55

selected in a competitive environment (Hastings, 1983; Dockery et al., 1998).56

However, in our work, we are interested not in what is happening in a compet-57

itive environment but during colonization. During colonization, the spreading58

speed of the population is the primary driving force, not high level density-59

dependence or intraspecific competition, unlike in stationary competitive sys-60
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tems. Thus, our analysis aims to address a complementary area that evolution61

of dispersal models do not consider. That is, we are interested in understanding62

how dispersal is chosen in a colonizing population under range expansion.63

In this work, we construct a mathematical model for population spread that64

incorporates a dispersal-reproduction trade-off. For our mathematical model, we65

use an integrodifference equation for reproduction and dispersal. We chose this66

particular model type because of its wide applicability in ecological modeling of67

populations with non-overlapping generations (Kot, 1992). The shape of trade-68

off curves are critical for predicting population dynamics (Hoyle et al., 2008).69

Therefore, in our model, we aim to incorporate a general trade-off effect that70

can encompass many different scenarios.71

Throughout our analysis, we focus on the formula for the spreading speed be-72

cause we are interested in how the dispersal-reproduction trade-off influences the73

colonizing population dynamics. Our goal is to understand how the dispersal-74

reproduction trade-off affects the spreading speed. In particular, we perform75

a sensitivity analysis to determine parameter sensitivity to the formula. This76

allows us to understand how the spreading speed would change with parameter77

variation. We then consider how parameter uncertainty in the trade-off affects78

the spreading speed formula. To achieve this, we assume that the uncertain79

parameters in the model are random variables with an underlying probability80

distribution, and then analyze the impact on optimal resource allocation.81

In Section 2, we provide a general background for integrodifference equa-82

tions, describe our assumptions on how the dispersal-reproduction trade-off is83

incorporated into the model, and present the trade-off model. We begin Section84

3 with determining the condition for population persistence and calculating the85

formula for the spreading speed. The remainder of Section 3 is broken down86

into two primary parts; the first concerning the sensitivity of model parameters87

(Section 3.1), and the second for the uncertainty in the model parameters (Sec-88

tion 3.2). In Section 3.1, our results are divided into two pieces; in the first part89

we perform a sensitivity analysis on the trade-off parameters (Section 3.1.1),90

and in the second part we perform a sensitivity analysis on the reproduction91
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and dispersal parameters (Section 3.1.2). In a similar manner for Section 3.2,92

we partition the results into two parts; the first concerning how the trade-off93

parameters affect the expected spreading speed (Section 3.2.1), and the sec-94

ond understanding how the reproduction and dispersal parameters affect the95

expected spreading speed (Section 3.2.2). To conclude the results, we provide96

a discussion of our model, techniques, and analyses in Section 4. For those97

interested in the technical details of our results, we present the proofs of the98

theorems in the Appendix.99

2. Mathematical model100

Integrodifference equations are a popular tool used in theoretical ecology101

to model spreading populations (Kot and Schaffer, 1986). Traditionally, the102

integrodifference equation is written in the following form103

ut+1(x) =

∫ ∞
−∞

k(x− y)f(ut(y)) dy, t > 0, x ∈ R (1)

where u is the population density, f is the density-dependent local population104

growth function, and k(x − y) dy is a probability density function, commonly105

called the dispersal kernel, describing the movement of individuals from the106

interval (y, y + dy] to location x.107

To incorporate a dispersal-reproduction trade-off into (1) we assume that the108

dispersal capability of an individual and the population growth rate are each109

given by a single parameter, and that the proportion of resources allocated to110

dispersal is given by p and the proportion of resources allocated to reproduction111

is given by 1− p. Under resource limitation, we assume power functions for the112

change in reproductive and dispersal ability, so they are proportional to (1−p)α113

and pβ , respectively where α, β > 0.114

For simplicity, we consider a population that spreads by diffusion (Kot et al.,115

1996) and reproduces according to a Beverton-Holt type growth function (Bev-116

erton and Holt, 2012). That is, the dispersal kernel k is a Gaussian probability117
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density function with zero mean and variance σ2,118

k(x− y) =
1√

2πpβσ2
e
− (x−y)2

2pβσ2 , (2)

and the growth function f is given by the Beverton-Holt dynamics119

f(ut(y)) =
(1− p)αRut(y)

1 + (1−p)αR−1
K ut(y)

(3)

where K is the carrying capacity and R is the growth rate per generation. By120

incorporating the dispersal-reproduction trade-off into the model as described121

above, the population density is then governed by122

ut+1(x) =

∫ ∞
−∞

1√
2πpβσ2

e
− (x−y)2

2pβσ2
(1− p)αRut(y)

1 + (1−p)αR−1
K ut(y)

dy. (4)

When α, β = 0 there is no trade-off in the model. Note that since we are123

modeling the trade-off in terms of resources allocated we obtain two different124

curves, one for the reproductive value against the allocation of resources, and125

the second for the dispersal value against the allocation of resources. We can see126

from Figure 1 that if the shape parameter is equal to one, then the corresponding127

resource allocation curve is linear. This means that the change in reproductive or128

dispersal ability is directly proportional to the proportion of resources invested.129

If the shape parameter is less than one, then the corresponding curve is concave,130

suggesting that the growth rate per generation (variation in dispersal distance)131

has an increasing (decreasing) rate of decrease (increase) with the proportion of132

resources allocated to dispersal. If the shape parameter is greater than one, then133

the corresponding allocation curve is convex, suggesting that the growth rate per134

generation (variation in dispersal distance) has a decreasing (increasing) rate of135

decrease (increase) with the proportion of resources allocated to dispersal. Note136

that the value of α and β can be chosen independently allowing for the curves to137

have different shapes. Previous studies have also incorporated trade-off effects138

using these same types of power functions (Cressler et al., 2010; Jones and139

Ellner, 2004).140

In the trade-off model, the growth rate per generation is given by (1−p)αR.141

Thus, was have that R is the scaling parameter and α is the shape parameter.142
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Figure 1: Allocation for dispersal and reproduction for different values of α and β with

parameter values R = 4 and σ2 = 1 chosen arbitrarily.

The variation in dispersal distance is given by pβσ2. In a similar manner, we see143

that σ2 is the scaling parameter and β is the shape parameter. One interesting144

consequence of our model is the scaling of how we incorporate the trade-off in145

the model. For example, if β = 1, then we are assuming that the variance in146

dispersal distance is proportional to the proportion of resources invested. When147

β = 2, we are assuming that the standard deviation in dispersal distance is148

proportional to the proportion of resources invested.149

3. Results150

In this section, we provide the theoretical results for our model with the151

trade-off presented in (4). We begin with a brief description of fundamental152

results related to the existence, persistence, and spread of populations governed153

by (4). Once this preliminary material is established, we move into our primary154

analyses that are composed of two parts. We begin with performing a sensi-155

tivity analysis on the parameters of the model in Section 3.1. This section is156

split into two parts, a sensitivity analysis on the trade-off parameters (Section157

3.1.1), and a sensitivity analysis on the reproduction and dispersal parameters158

(Section 3.1.2). Then, we move onto the second part where we explore the ef-159

fects of parameter uncertainty in Section 3.2, which is also split into two parts.160
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First, we calculate the expected spreading speed and optimal resource alloca-161

tion to dispersal when the trade-off parameters are uncertain (Section 3.2.1),162

and second we perform the same kinds of calculations when the reproduction163

and dispersal parameters are uncertain (Section 3.2.2).164

We first deduce when the study population is persistent. When we say the165

population is persistent, we mean that there exists a traveling wave solution to166

(4) that spreads at some positive speed. This idea is consistent with the concept167

of weak uniform persistence (Freedman and Moson, 1990; Vasilyeva et al., 2016).168

The condition for persistence can be calculated directly by applying the seminal169

work from Weinberger (1982) see Property 3.1, and is provided in Proposition170

1.171

Proposition 1. The population modeled by (4) is persistent if172

(1− p)αR > 1. (5)

Note that this condition does not depend on the dispersal parameter, σ2,173

or its shape parameter, β, but it does depend on the proportion of resources174

allocated to dispersal, p. In Figure 2, we can see that there are two areas of175

interest; above each curve is when (1− p)αR > 1 and hence we have population176

persistence, and the area equal to or below each curve is when (1 − p)αR ≤ 1177

and the population becomes extinct. Note that when (1− p)αR = 1 our model178

becomes a purely diffusive process and hence the population cannot persist.179

Notice that as α increases the (p,R) parameter space where we have population180

persistence decreases, which is evident from the different curves plotted in Figure181

2. As α approaches 0, we see that our persistence requirement becomes the182

standard persistence requirement in absence of the trade-off; that is, R > 1.183

When the population is persistent, (4) emits traveling wave solutions (Wein-184

berger, 1982, Theorem 6.6) and we can determine the spreading speed associated185

with the traveling wave solutions. That is, the population density spreads with186

fixed spatial profile that is translated by a fixed distance per generation. This187

translation is called the spreading speed. For a newly introduced population,188

the asymptotic spreading speed can be thought of in the following way. The189
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Figure 2: The stability regions for the parameters p and R are shown. For each value of α,

the area above each respective curve corresponds to population persistence whereas the area

below the curve results in population extinction.

population is said to spread with asymptotic speed c∗ if an observer who trav-190

els at some speed c > c∗ will eventually be ahead of the population and see a191

density of zero whereas an observer who travels at speed c < c∗ will eventually192

see the population at this carrying capacity.193

Proposition 2. Assume that the population in (4) is persistent, then the spread-194

ing speed of the population is given by195

c∗ =
√

2pβσ2 ln[(1− p)αR]. (6)

Throughout our analysis we use (6) frequently. The first thing we notice196

from the formula for the spreading speed is that it depends on the dispersal and197

reproduction parameters, the shape of the trade-off curves, and the allocation198

of resources. Thus, as we continue our analysis, we break down our results in199

terms of these individual pieces.200
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3.1. Sensitivity analysis201

The technique of parameter sensitivity analysis is used to understand how202

the model response is altered by perturbations in the parameter values. The sen-203

sitivity is defined by the incremental rate of proportional change in the response204

(output) λ related to an incremental rate of proportional change in parameter205

values (input) θ (Haefner, 2005). In this paper we use proportional sensitivity206

Sensitivity(λ, θ) :=
θ

λ

∂λ

∂θ
, (7)

henceforth referred to simply as sensitivity. In some contexts this is called207

elasticity (Neubert and Caswell, 2000). The proportionality in (7) allows us to208

compare parameters with different scales (Link and Doherty Jr, 2002).209

3.1.1. Sensitivity of trade-off parameters210

In this section, we aim to understand how the trade-off parameters in our211

model affect the value for the spreading speed of the population. Using (7), we212

compute the sensitivity of c∗ with respect to α, β, and p and find that213

Sensitivity(c∗, α) =
α ln(1− p)

2 ln ((1− p)αR)
, (8)

Sensitivity(c∗, β) =
β ln(p)

2
, and (9)

Sensitivity(c∗, p) =
1

2

(
β − αp

(1− p) ln ((1− p)αR)

)
. (10)

Since 0 < p < 1, we can immediately conclude that Sensitivity(c∗, α) < 0214

and Sensitivity(c∗, β) < 0. Thus, we find that any increase in α or β will215

cause the spreading speed of the population to decrease. We also see that216

when Sensitivity(c∗, p) = 0, we obtain an interesting result that we outline in217

Theorem 1. In particular, we can determine the fastest speed at which a species218

can spread and how it should allocate its resources to do so.219

Theorem 1. Consider (4) with the persistence condition (1−p)αR > 1. Then,220

the optimal allocation of resources to dispersal (p∗) for the fastest spread of the221

population is given by the unique solution to the transcendental equation222

β ln ((1− p∗)αR)

p∗
=

α

(1− p∗)
. (11)
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The proof of Theorem 1 is provided in the Appendix (Section 5.1). It is223

interesting to note that the optimal allocation of resources does not depend on224

the diffusivity parameter σ2. This is because the formula for the asymptotic225

spreading speed scales linearly with σ. We also see that the optimal resource226

allocation to dispersal is obtained when Sensitivity(c∗, p) = 0. To illustrate the227

results of Theorem 1, a plot of the spreading speed for different value of p and R228

with fixed values for α, β, and σ2 is provided in Figure 3. Here the solid lines are229

a contour plot for the spreading speed where we vary the values of proportion230

of resources allocated to dispersal (p), and the growth rate per generation (R).231

The dashed line in Figure 3 is the optimal resource allocation to dispersal as232

calculated by Theorem 1. Notice that for each value of R > 1, there is a unique233

value for p that maximizes the spreading speed as predicted by Theorem 1.234
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Figure 3: A contour plot for the spreading speed, c∗, for α = 1, β = 1, and σ2 = 1. In the

plot above we vary the values of p and R. The dashed line is the optimal resource allocation

to dispersal (p∗) as calculated by Theorem 1.

In Figure 4 we plot the spreading speed (c∗) against the proportion of re-235

sources allocated to dispersal (p), for various values of α and β. The optimal236
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resource allocation to dispersal can be determined from the peak of each curve.237

From these plots, we can see that, as we increase β, the value for the optimal238

resource allocation to dispersal increases. As we increase the value of α, the239

value for the optimal resource allocation to dispersal decreases. This intuitively240

makes sense since p is the proportion of resources allocated to dispersal. Next,241

we determine whether α or β is more sensitive when the population is at its242

optimal resource allocation to dispersal.243
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Figure 4: Three plots for the spreading speed, c∗, where R = 4 and σ2 = 1. In the left,

center, and right plots the values for α are 1
4

, 1, and 4, respectively. In each plot we vary β

as indicated by the legend.

Theorem 2. Let the optimal resource allocation to dispersal be denoted by p∗.244

Then, for the spreading speed (c∗)245

• If p∗ < 1
2 , then α is less sensitive than β.246

• If p∗ = 1
2 , then α and β are equally sensitive.247

• If p∗ > 1
2 , then α is more sensitive than β.248

The proof of Theorem 2 is provided in the Appendix (Section 5.1). The first249

result of Theorem 2 states that if more resources are allocated to reproduction250

than dispersal, then the shape parameter for the dispersal trade-off curve is more251

sensitive than the shape parameter for the reproduction trade-off curve. The252
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second result of Theorem 2 states that if the resources are split equally between253

dispersal and reproduction, then the shape parameters for the dispersal and254

reproduction trade-off curves are equally sensitive. The third result of Theorem255

2 states that if more resources are allocated to dispersal than reproduction, then256

the shape parameter for the reproduction trade-off curve is more sensitive than257

the shape parameter for the dispersal trade-off curve. Intuitively, allowing a258

majority of the resources to be allocated to one function decreases the amount259

available for the other function, thus increasing the sensitivity of the shape260

parameter for the function with the lower resource allocation.261

0.3818 0.5 0.6374
-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 5: In this figure we plot the sensitivity of the spreading speed with respect to the

parameter values α and β against different values for the optimal resource allocation to dis-

persal (p∗). In all three simulations we used the parameter values σ2 = 1, α = 1, β = 1 and

vary R = 3, 2e, and 16, for the left, center, and right bar plots, respectively where e is Euler’s

constant.

Theorem 2 is illustrated in Figure 5. Recall that the optimal resource alloca-262

tion to dispersal can be determined by calculating where Sensitivity(c∗, p) = 0263

or by solving (11). In the left bar plot of Figure 5 the optimal resource allocation264

to dispersal is approximately 0.3818, in the center plot the optimal resource al-265

location to dispersal is 0.5, and in the right plot the optimal resource allocation266

to dispersal is 0.6374. In the left bar plot of Figure 5, we can see that since the267

optimal resource allocation is less than one half, that β is more sensitive than268
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α. In the center bar plot of Figure 5 since the optimal resource allocation is269

exactly one half, then α and β are both equally sensitive. In the right bar plot270

of Figure 5 since the optimal resource allocation is greater than one half, then271

α is more sensitive than β.272

3.1.2. Sensitivity of reproduction and dispersal parameters273

In this section, we aim to understand how the growth rate and standard274

deviation in dispersal distance affect the value for the spreading speed of the275

population. This idea is not novel; previous studies have used sensitivity analysis276

to understand the effect that dispersal and demographic parameters have on the277

spreading speed (Neubert and Caswell, 2000; Gharouni et al., 2015; Bateman278

et al., 2017). A commonality between all these studies is that the model used279

was a structured integrodifference equation. We are able to apply a simplified280

version to the theoretical results from Neubert and Caswell (2000) to perform281

a sensitivity analysis because we are studying a scalar model.282

In our analysis, we consider the sensitivity of the spreading speed with re-283

spect to the population growth rate per generation (R) and the standard devi-284

ation in dispersal distance (σ). Using (7), we calculate285

Sensitivity(c∗, R) =
1

2 ln ((1− p)αR)
, and (12)

Sensitivity(c∗, σ) = 1. (13)

The first thing to notice from these sensitivity calculations is that286

Sensitivity(c∗, σ) = 1. Since Sensitivity(c∗, σ) = 1, we can conclude that σ is a287

scaling parameter in the formula for the spreading speed. This is also evident288

from looking directly at the formula for the spreading speed in (6).289

Assuming that the population is persistent, we can conclude that the290

Sensitivity(c∗, R) is always positive. Since the natural logarithm is a monotone291

increasing function, we can conclude that when (1 − p)αR is small (but still292

greater than one) then Sensitivity(c∗, R) is high, but when (1 − p)αR becomes293

large then Sensitivity(c∗, R) becomes smaller. By a direct comparison between294

(12) and (13) we can conclude that if (1− p)αR < (>)e
1
2 , then R is more (less)295

14



sensitive than σ, and if (1−p)αR = e
1
2 , then R and σ are equally sensitive. This296

is seen in Figure 6. Recall that if population is persistent when (1− p)αR > 1,297

and notice that e
1
2 ≈ 1.6487. Therefore, the region where R is more sensitive298

than σ is quite small and only occurs when the growth rate per generation of299

the population is small.300
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Figure 6: In this figure we plot the sensitivity of the spreading speed with respect to the

parameter values R and σ against the persistence formula (1 − p)αR.

3.2. Parameter uncertainty301

In this section, we attempt to understand how the spreading speed changes302

when there is parameter uncertainty in the trade-off shape and scale parame-303

ters. To achieve this, we assume throughout that the parameter of interest is a304

random variable with some underlying probability distribution and then com-305

pute the expected value for the spreading speed. We break the results into two306

sections; the first section covers the case when there is uncertainty in the shape307

of the trade-off curves (Section 3.2.1), and the second section covers the case308

when there is uncertainty in the reproduction and dispersal parameters or as309

15



mentioned earlier the scaling parameters for the trade-off curves (Section 3.2.2).310

3.2.1. Uncertainty in the shape of the trade-off curves311

In this section, we study the uncertainty in the shape parameters for the312

trade-off curves α and β. To model the uncertainty in the parameters for α313

and β, we assume that these parameters are random variables. Since β can be314

any nonnegative real number, the probability density function for β must also315

cover the nonnegative real numbers. For α, we need to place a restriction on the316

upper bound because we require that the population is persistent. Returning317

to (5) we can see that the upper bound for α should be − ln(R)
ln(1−p) . Thus, the318

probability density function for α needs to be defined on
(

0,− ln(R)
ln(1−p)

)
. With319

this given uncertainty about the shape parameters for our trade-off curves, we320

wish to find the expected value for the spreading speed.321

We begin with the case where the reproduction trade-off shape, α, is known322

and the dispersal trade-off shape, β, is uncertain. In this scenario, the parameter323

of interest is defined on (0,∞), and we use the gamma distribution with shape324

parameter a > 0 and scale parameter b > 0. This distribution is325

f1(β) =
1

Γ(a)ba
βa−1e−

β
b (14)

with mean ab and variance ab2. For shorthand notation we denote that β326

is a gamma distribution with shape parameter a and scale parameter b by327

β ∼ Gamma(a, b). We choose to use this distribution because of its generality328

due to the fact that special cases of this distribution are the exponential distri-329

bution, chi-squared distribution, and Dirac-delta distribution. We calculate the330

expected spreading speed in Theorem 3.331

Theorem 3. Let us assume that β is a random variable distributed on (0,∞).332

Then, the expected value for the spreading speed is333

E [c∗] =
√

2σ2 ln[(1− p)αR]Mβ

(
ln(p)

2

)
(15)

where Mβ is the moment generating function of β. Moreover, if β ∼ Gamma(a, b),334
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then335

E [c∗] =

√
2σ2 ln[(1− p)αR](

1− b ln(p)2

)a (16)

and the optimal resource allocation to dispersal (p∗) is given by the transcen-336

dental equation337

E[β]

α
ln [(1− p∗)αR] (1− p∗) = p∗

(
1− 1

2

Var[β]

E[β]
ln(p∗)

)
. (17)

The proof of Theorem 3 is provided in the Appendix (Section 5.1). The338

results from Theorem 3 can be applied to understand how a population would339

expect to spread if the shape of the dispersal trade-off curve is uncertain. Here340

we provide a general formula for the expected spreading speed for a random341

variable β defined on (0,∞) in terms of its moment generating function in (15).342

In the special case when β ∼ Gamma(a, b), we calculate the formula for the343

expected spreading speed in (16) and calculate the optimal resource allocation344

to dispersal by the implicit equation (17). When Var[β] = 0, we have that345

E[β] = β and (17) is equivalent to (11) in Theorem 1.346

To understand the effects of the variation in the dispersal trade-off shape347

parameter, β, we provide plots of the optimal resource allocation to dispersal348

in Figure 7. In both plots, we see that as the expected dispersal trade-off shape349

increases, the optimal resource allocation to dispersal also increases. We also350

see that as the variation in the shape of the dispersal trade-off increases, the351

optimal resource allocation to dispersal decreases. That is, if there is a lot of352

uncertainty in the shape of the dispersal trade-off curve, then the best choice353

for the population is to invest more resources into reproduction.354

Next, we consider the case when the reproduction trade-off shape, α, is355

uncertain and the dispersal trade-off shape, β, is known. To be able to discuss356

the spreading speed for the population here, we need to guarantee that the357

population is persistent. That is (1 − p)αR > 1. Recall that this is satisfied358

when α < − ln(R)
ln(1−p) . This provides us with an upper bound on the potential359

values for α. Hence, our distribution for α must be defined on the bounded360

interval
(

0,− ln(R)
ln(1−p)

)
to guarantee persistence. In our case we will use a scaled361
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Figure 7: The plot in this figure shows the dispersal resource allocation versus the E[β] for

different values of Var[β] for the parameter values α = 1 and R = 4.

beta distribution given by362

f2(α) =
αa−1

(
− ln(R)

ln(1−p) − α
)b−1

B(a, b)
(
− ln(R)

ln(1−p)

)a+b−1 (18)

with shape parameter a ≥ 1 and scale parameter b ≥ 1 where B is the beta func-363

tion. For our shorthand notation we say that α ∼ Beta(a, b) on
(

0,− ln(R)
ln(1−p)

)
.364

We choose this distribution because it is a well-known continuous distribution365

defined on a finite interval with two shape parameters which allows for a variety366

of distribution shapes. It is interesting to note that when the shape and scale367

parameters are both equal to one, then the scaled beta distribution becomes the368

uniform distribution on
(

0,− ln(R)
ln(1−p)

)
.369

Theorem 4. Let us assume that α is a random variable distributed on
(

0,− ln(R)
ln(1−p)

)
.370

Then, the expected value for the spreading speed is371

E [c∗] =
√

2σ2pβ ln(R)

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n
E [αn] . (19)

Moreover, if α ∼ Beta(a, b) on
(

0,− ln(R)
ln(1−p)

)
, then372

E [c∗] =
√

2σ2pβ ln(R)
Γ(a+ b)Γ

(
b+ 1

2

)
Γ(b)Γ

(
a+ b+ 1

2

) (20)
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and the optimal resource allocation to dispersal (p∗) is the largest value of p that373

satisfies374

p < 1− 1
α
√
R
. (21)

The proof of Theorem 4 is provided in the Appendix (Section 5.1). A plot of375

the optimal resource allocation to dispersal is provided in Figure 8. Figure 8 is376

split into two parts for the shape of the reproduction trade-off curve. That is, in377

the left plot when 0 < α < 1 the reproduction trade-off curve is convex and in378

the right plot when 1 < α < 10 the reproduction trade-off curve is concave. It379

is clear from the left plot in Figure 8 that when α and R are small, the optimal380

resource allocation to dispersal is highly volatile. We also see that by increasing381

the growth rate parameter, R, increases the optimal resource allocation to dis-382

persal. This is interesting because it suggests that by increasing the growth rate383

parameter an individual should invest more resources into dispersal to maximize384

their spreading speed. We also can conclude from Figure 8 that by increasing385

the reproduction trade-off shape parameter, α, decreases the optimal resource386

allocation to dispersal.387
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Figure 8: The contour plots in this figure show the optimal resource allocation to dispersal

for different values of α and R. In the left plot, we have 0 < α < 1 that means the shape of

the reproduction trade-off curve is convex. In the right plot, we have 1 < α < 10 that means

the shape of the reproduction trade-off curve is concave.
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3.2.2. Uncertainty in the reproduction and dispersal parameters388

In this section we will study the uncertainty in the reproduction and dispersal389

parameters R and σ. To model the uncertainty in the parameters for R and σ,390

we assume that these parameters are random variables. First, we will consider391

when R is known and σ is uncertain. Since σ is the standard deviation in392

dispersal distance, this value can be any real valued number so our distribution393

for σ should be defined over the nonnegative real line. We begin with calculating394

the expected spreading speed and the optimal resource allocation to dispersal395

in Theorem 5.396

Theorem 5. Let us assume that σ is a random variable distributed on [0,∞).397

Then, the expected value for the spreading speed is398

E [c∗] =
√

2pβ ln[(1− p)αR]E [σ] . (22)

Moreover, the optimal resource allocation to dispersal (p∗) is given by399

β ln ((1− p∗)αR)

p∗
=

α

(1− p∗)
. (23)

The proof of Theorem 5 is provided in the Appendix (Section 5.1). Since σ400

is a scaling parameter in the formula for the spreading speed, we see that the401

by simply replacing σ by E[σ] in (6), we obtain the formula for the expected402

spreading speed. Notice that (23) is the same as (11) in Theorem 1. This means403

that the optimal resource allocation to dispersal when all parameter values are404

known is the same for when σ is uncertain. Therefore, the uncertainty in σ does405

not affect the optimal resource allocation to dispersal.406

Next, we will consider when R is uncertain and σ is known. Since R is the407

population growth rate parameter, this value must be greater than 1
(1−p)α to408

guarantee population persistence. For simplicity in our calculations, we look at409

the distribution of ln(R) on (−α ln(1 − p),∞). Thus, we look at a translated410

random variable that is shifted by −α ln(1 − p). In this scenario, we assume411

that ln(R) is a shifted gamma distribution on (−α ln(1 − p),∞) with shape412

parameter a > 0 and scale parameter b > 0. For shorthand notation, we say413

20



that ln(R) ∼ Gamma(a, b) on (−α ln(1− p),∞). This distribution is given by414

f4(ln(R)) =
1

Γ(a)ba
(ln(R) + α ln(1− p))a−1 e−

(ln(R)+α ln(1−p))
b (24)

for ln(R) ∈ (−α ln(1− p),∞).415

Theorem 6. Let us assume that ln(R) is a shifted random variable distributed416

on (−α ln(1− p),∞). Then, the expected value for the spreading speed is417

E [c∗] =
√

2pβσ2E
[
(ln(R) + α ln(1− p))

1
2

]
. (25)

Moreover, if ln(R) ∼ Gamma(a, b) on (−α ln(1− p),∞), then418

E [c∗] =
√

2pβσ2b
Γ
(
a+ 1

2

)
Γ(a)

, (26)

and the optimal resource allocation to dispersal (p∗) is the largest value of p that419

satisfies420

p < 1− 1
α
√
R
. (27)

The proof of Theorem 6 is provided in the Appendix (Section 5.1). In Theo-421

rem 6, we compute the expected spreading speed for the population for a shifted422

random variable distributed on (−α(1−p),∞) in (25). Notice that the expected423

spreading speed is written in terms of the one halfth moment. In (26) we pro-424

vide an example for when ln(R) ∼ Gamma(a, b) on (−α ln(1− p),∞) where the425

expected spreading speed now depends on the shape and scale parameters of426

the distribution. After computing the spreading speed, we also determine the427

optimal resource allocation to dispersal in (27). Note that the optimal resource428

allocation to dispersal in this theorem is the same as when we assumed that α429

was uncertain in Theorem 4. Therefore, a plot of the optimal resource allocation430

when R is uncertain is also given in Figure 8.431

4. Discussion432

The model presented in (4) provides a framework to understand the effects433

of dispersal-reproduction trade-offs on population persistence and the spreading434
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speed of a population. From our analysis, it is evident that resource allocation435

is an important feature that impacts both the persistence and spread of a pop-436

ulation. The influence of the trade-off shows that if an organism allocates too437

many resources to dispersal there may not be enough resources left for success-438

ful reproduction. Alternatively, if an individual spends too many resources on439

reproduction then it will not be able to spread quickly. We also determined how440

sensitive the spreading speed is to small changes in the model parameters, and441

studied how parameter uncertainty impacts the population spread.442

To understand how trade-off parameter values affect the spreading speed443

of the population we performed a sensitivity analysis in Section 3.1 (Haefner,444

2005). In Theorem 1, we were able to prove that there is a unique value for the445

optimal allocation of resources to dispersal that maximizes the spreading speed446

for the population. However, this unique value is not always observed in prac-447

tice for other trade-offs. For a trade-off between seed size and number, Geritz448

(1995) showed that by assuming asymmetric intraspecific competition in favor449

of larger seeds that any unique seed size can be unstable and the evolutionary450

stable strategy becomes polymorphic. In another study, intraspecific competi-451

tion, determined by a trade-off between egg load and dispersal ability, leads to452

coexistence of non-pollinating fig wasps that specialize to different degrees on453

dispersal ability and fecundity (Duthie et al., 2014).454

By calculating the sensitivity of the spreading speed with respect to the455

trade-off shape parameters α and β, we first deduce that these quantities are456

always negative. This means that the spreading speed always decreases when457

the trade-off shape parameters increase. We were able to prove in Theorem 2458

that if the population is at its optimal resource allocation and the resources459

are split equally between dispersal and reproduction, then α and β are equally460

sensitive. The results from Theorem 2 also show that if the population is at its461

optimal resource allocation and more (less) resources are allocated to dispersal462

than reproduction, then α is more (less) sensitive than β. An example of this463

result is seen in Figure 5. This result is somewhat counter intuitive because α464

is the shape parameter for the reproduction trade-off curve and β is the shape465
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parameter for the dispersal trade-off curve. This means that if more (less)466

resources are allocated to dispersal than reproduction, then the shape of the467

reproduction (dispersal) trade-off curve is more sensitive than the shape of the468

dispersal (reproduction) trade-off curve.469

In Section 3.2, we explored how parameter uncertainty influences the ex-470

pected spreading speed of the population and the optimal resource allocation to471

dispersal. This problem has been studied before for linear models with an em-472

phasis on how stochasticity can influence the spreading speed (Mollison, 1991)473

and more complicated nonlinear models (Lewis and Pacala, 2000). We split our474

results into two parts: Section 3.2.1 considers the case when the trade-off shape475

parameters are uncertain, and Section 3.2.2 considers when the reproduction476

and dispersal parameters are uncertain. To include the parameter uncertainty,477

we assume the parameter of interest is a random variable distributed on a suit-478

able interval. In all cases, we determine two things; the expected spreading479

speed for the population and the optimal resource allocation to dispersal.480

Throughout our analyses, we find that the expected spreading speed is slower481

than if there was no uncertainty. Previous studies have also found slower spread-482

ing speeds when there is individual variation in dispersal rates or demographic483

stochasiticty (Clark et al., 2001; Snyder, 2003). While this type of variation is484

not the same as the parametric uncertainty we consider it suggests in general485

that uncertainty can slow the speed of a spreading population. For a popula-486

tion with uncertainty about the nature of the trade-off between dispersal and487

reproduction, the maximization process calculates the resource allocation strat-488

egy that would maximize its expected rate of spatial spread, given the nature489

of uncertainty in the trade-off. Uncertainty in the trade-off can be in terms of490

uncertainty in the shapes of the trade-off curve for the reproduction (as given491

by parameter α) or dispersal (as given by the parameter β) or uncertainty in the492

reproduction parameter (R) or dispersal parameter (σ). In the case when the493

growth rate or the shape parameter for α is uncertain, we find that the strategy494

to maximize the expected spreading speed is to allocate as many resources as495

possible to dispersal, while still maintaining the persistence criterion. However,496
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when there is variation in the shape of the dispersal trade-off curve, β, then497

the optimal strategy involves investing more resources into reproduction. Due498

to the fact that σ is simply a scaling variable in the formula for the spreading499

speed, we see that when there is uncertainty in σ the formula for the spreading500

speed is altered by replacing σ in (6) with the expected value of σ. In Theorem501

5, we calculate the optimal resource allocation to dispersal in (23), where we502

find that the formula in (23) is the same as (11) in Theorem 1.503

While dispersal-reproduction trade-offs have been widely accepted in the lit-504

erature, it should be mentioned that there are numerous examples for which505

this trade-off does not occur, or if it does, the degree of the trade-off varies506

greatly (Mole and Zera, 1994; Tigreros and Davidowitz, 2019; Therry et al.,507

2015; Guerra, 2011; Roff, 1995; Sappington and Showers, 1992). These studies508

argue for a lack of a trade-off between dispersal and reproduction in some insect509

species, or even a positive association between dispersal and reproduction. A510

recent meta-analysis indicates that although trade-offs between dispersal and511

reproduction likely occur in many insects, the strength and correlation of the512

trade-off vary significantly across insect orders (Guerra, 2011). Our model sug-513

gests that the trade-off occurs due to resource limitation, which is supported514

by another meta-analysis showing that in 76% of the studies, conditions of515

resource restriction result in a negative association between dispersal and re-516

production (Tigreros and Davidowitz, 2019). Moreover, negative associations517

between dispersal and reproduction do not necessarily indicate a resource allo-518

cation trade-off.519

Our results are based on Gaussian dispersal kernels and Beverton-Holt growth520

functions. We chose these functions because they allow us to express the formula521

for the spreading speed explicitly, as given in (6). For non-Gaussian, thin-tailed522

dispersal kernels, we would still have an abstract formula for the spreading speed523

(Weinberger, 1982), but we would not be able to perform many of the explicit524

calculations done in our work. If one were interested in fat-tailed dispersal ker-525

nels, then we would no longer have a traveling wave solution, but an accelerating526

wave where the speed of the wave increases over time. The choice of the growth527
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function also does not consider an Allee effect or overcompensatory population528

dynamics. For the Allee effect, there is only one function where an explicit529

form of the spreading speed is known (Wang and Kot, 2001). By considering530

a function with overcompensation and Gaussian dispersal one could still obtain531

an explicit formula for the spreading speed (Li et al., 2009).532

The results presented in Theorems 3-6 assume that the underlying param-533

eter values are unknown and follow a given distribution. In these scenarios,534

we calculate the expected rate of spatial spread, but we neglect to compute535

any results regarding the uncertainty in the distribution for the rate of spatial536

spread. From a theoretical standpoint, one way to quantify the uncertainty in537

the distribution for the rate of spatial spread is to calculate the variance of the538

spreading speed. While this is possible, it is quite complicated to achieve an an-539

alytical result for these calculations and hence would be best done via numerics.540

Alternatively, confidence intervals could also be computed.541

A shortcoming in the model is the assumption that the life history strategies542

do not evolve over time. This assumption is only biologically reasonable if the543

time scale of the model is much shorter than the time it takes for the life history544

to change. In many cases this is not feasible. It has been empirically shown545

that resource allocation can have seasonal fluctuations (Barbour et al., 1999) or546

evolve due to genetic mutations in offspring (Burton et al., 2010). Typical annual547

plants, a plant that completes its life cycle within one year and then dies, devote548

most resources to growth in the early part of the growing season with a small549

amount of resources for maintenance, and late in the growing season nearly all550

the resources are devoted to reproduction. Whereas stress-tolerant plants such551

as shrubs in subarctic or dessert regions must allocate most resources to mainte-552

nance, and a small amount to growth. Only during good years, when resources553

are plentiful, can they devote resources to reproduction (Barbour et al., 1999).554

Thus, the type of resource allocation is highly dependent on the particular pop-555

ulation of interest. Time-dependent variation in reproduction and dispersal can556

accelerate the spread of invading species (Ellner and Schreiber, 2012). In our557

study, we find variation in reproduction slows the spread, whereas variation in558
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dispersal does not alter the expected spreading speed. This provides motivation559

to extend the model to include time-dependent trade-offs.560

Another drawback of the modeling techniques presented is that there is no561

spatial heterogeneity in the resource allocation. In other systems, resource allo-562

cation is highly dependent on the location of the individuals in the population563

(Burton et al., 2010). Individuals in the core of the population were found to564

allocate more resources on reproduction than dispersal while individuals at the565

front of the population allocated more resources to dispersal than reproduc-566

tion. Understanding the consequences of populations colonizing new habitats567

can also be explored by incorporating spatial heterogeneity in the resource al-568

location. One way to incorporate this into the model would be to consider569

density-dependent trade-offs.570

Habitat fragmentation can affect the dispersal-reproduction trade-off (Ziv571

and Davidowitz, 2019). Using a common garden experiment, Gibbs and Van Dyck572

(2010) studied the effects of increased dispersal on the reproduction of speckled573

wood butterflies from closed continuous woodland populations to open highly574

fragmented agricultural landscapes. Gibbs and Van Dyck (2010) concluded575

that butterflies from fragmented landscapes were better able to cope with the576

increased dispersal demands relative to those from non-fragmented landscapes577

suggesting a difference in the strength of trade-off due to the energetic cost of578

dispersal. Theoretical studies using integrodifference equations have previously579

investigated the role that landscape heterogeneity plays in predicting popula-580

tion dynamics (Dewhirst and Lutscher, 2009; Kawasaki and Shigesada, 2007;581

Latore et al., 1999; Van Kirk and Lewis, 1997), but have yet to incorporate582

dispersal-reproduction trade-offs into the models. A natural extension would be583

to fuse these two approaches together.584

While our model is aimed to be applied to populations with nonoverlap-585

ping generations that have distinct dispersal and reproduction phases in their586

life cycle, these kinds of dispersal-reproduction trade-offs have also been docu-587

mented in smaller scales of daily dispersal and foraging patterns (Bonte et al.,588

2012; Van Dyck and Baguette, 2005). Empirical evidence for these small scale589

26



dispersal-reproduction trade-offs have been documented in insects (Harrison,590

1980), guppies (Ghalambor et al., 2004), lizards (Cox and Calsbeek, 2010; Miles591

et al., 2000), and snakes (Seigel et al., 1987). Thus, extending this model-592

ing approach beyond integrodifference equations would allow for these types of593

trade-offs to be considered in a theoretical framework.594
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5. Appendix605

5.1. Proofs of the theorems606

Proof of Theorem 1.607

Proof. To begin, it should be noted that we treat α, β, R, and σ2 as constants608

since we are interested in how p affects the asymptotic spreading speed c∗. To609

find the optimal allocation of resources for a species to spread we first find the610

first derivative of (c∗)2/2σ2 with respect to p. Using Equation (6), we calculate611

d(c∗)2/2σ2

dp
= βpβ−1 ln ((1− p)αR) + pβ

−α(1− p)α−1

(1− p)α
(28)

= pβ
(
β ln ((1− p)αR)

p
− α

(1− p)

)
. (29)

Hence, we have a critical point when612

β ln ((1− p)αR)

p
=

α

(1− p)
. (30)
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Next, we show that Equation (30) has a unique solution. Define613

l(p) :=
ln ((1− p)αR)

p
and (31)

r(p) :=
1

1− p
. (32)

Both l(p) and r(p) are continuous functions on (0, 1). Also, l(p) is a monotone614

decreasing function for p ∈ (0, 1) where limp→0 l(p) =∞ and limp→1 l(p) = −∞.615

We also have that r(p) is a monotone increasing function for p ∈ (0, 1) where616

r(0) = 1 and limp→1 r(p) = ∞. Therefore, for each α, β, and R there exists a617

unique value p∗ ∈ (0, 1) such that p∗ solves Equation (30).618

Proof of Theorem 2.619

Proof. Recall that the optimal resource allocation is given by (11). That is,620

β =
αp

(1− p) ln ((1− p)αR)
. (33)

To determine which parameter is more sensitive we compare Sensitivity(c∗, α)621

and Sensitivity(c∗, β). Recall that from (8) and (9) we know that Sensitivity(c∗, α)622

and Sensitivity(c∗, β) are both negative. When Sensitivity(c∗, α) = Sensitivity(c∗, β),623

this means that α and β are equally sensitive, when Sensitivity(c∗, α) > Sensitivity(c∗, β)624

this means that α is less sensitive than β, and finally when Sensitivity(c∗, α) <625

Sensitivity(c∗, β), this means that α is more sensitive than β. We will first626

compute when α and β are equally sensitive. That is,627

Sensitivity(c∗, α) = Sensitivity(c∗, β) (34)

gives628

α ln(1− p)
2 ln ((1− p)αR)

=
β ln(p)

2
. (35)

Since we are assuming we are at the optimal resource allocation, substituting629

(33) into the previous equation we have630

α ln(1− p)
2 ln ((1− p)αR)

=
αp ln(p)

2(1− p) ln ((1− p)αR)
. (36)
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Simplifying, we find that631

(1− p) ln(1− p) = p ln(p). (37)

The only solution to this equation is given by 1 − p = p. Solving for p we find632

that p = 1
2 . Thus, if the optimal resource allocation is p = 1

2 , then α and β633

are both equally sensitive parameters. Repeating these same calculations but634

with Sensitivity(c∗, α) > Sensitivity(c∗, β), we find that 0 < p < 1
2 . Thus, if the635

optimal resource allocation is less than 1
2 , then β is more sensitive than α. By re-636

peating these same calculations but with Sensitivity(c∗, α) < Sensitivity(c∗, β),637

we find that 1
2 < p < 1. Thus, if the optimal resource allocation is greater than638

1
2 , then α is more sensitive than β.639

Proof of Theorem 3.640

Proof. Assuming that β is a random variable defined on (0,∞) with probability641

density function f1(β), the expected spreading speed is given by642

E [c∗] =

∫ ∞
0

√
2pβσ2 ln[(1− p)αR]f1(β) dβ (38)

=
√

2σ2 ln[(1− p)αR]

∫ ∞
0

p
β
2 f1(β) dβ (39)

=
√

2σ2 ln[(1− p)αR]

∫ ∞
0

eβ
ln(p)

2 f1(β) dβ (40)

=
√

2σ2 ln[(1− p)αR]Mβ

(
ln(p)

2

)
. (41)

Note that the above integral becomes the moment generating function of f2(β),643

with parameter ln(p)
2 . If f1(β) is a gamma distribution, then644

Mβ

(
ln(p)

2

)
=

∫ ∞
0

eβ
ln(p)

2
1

Γ(a)ba
βa−1e−

β
b dβ (42)

=
1

Γ(a)ba

∫ ∞
0

βa−1e−
β
b (1−b ln(p)

2 ) dβ (43)

=
1

Γ(a)ba
Γ(a)

 b(
1− b ln(p)2

)
a

(44)

=
1(

1− b ln(p)2

)a (45)
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for ln(p)
2 < 1

b . Since 0 < p < 1 and b > 0, this condition is always satisfied.645

Therefore,646

E [c∗] =

√
2σ2 ln[(1− p)αR](

1− b ln(p)2

)a . (46)

We can next determine what the optimal resource allocation to dispersal should647

be in order to maximize the expected value of the spreading speed. To do this,648

we determine when649

d

dp
E [c∗] = 0. (47)

We find that the implicit equation that satisfies this is given by650

a

α
ln [(1− p)αR] (1− p) =

p

b

(
1− 1

2
b ln(p)

)
. (48)

Recall that the E[β] = ab and Var[β] = ab2. We can rewrite our previous651

condition as652

E[β]

α
ln [(1− p∗)αR] (1− p∗) = p∗

(
1− 1

2

Var[β]

E[β]
ln(p∗)

)
. (49)

Therefore, the optimal resource allocation for dispersal is given implicitly by653

(49).654

Proof of Theorem 4.655

Proof. Assuming that α is a random variable defined on
(

0,− ln(R)
ln(1−p)

)
with656

probability density function f2(α), the expected spreading speed is given by657

E [c∗] =

∫ − ln(R)
ln(1−p)

0

√
2pβσ2 ln[(1− p)αR]f2(α) dα (50)

=
√

2pβσ2

∫ − ln(R)
ln(1−p)

0

√
ln[(1− p)αR]f2(α) dα (51)

=
√

2pβσ2

∫ − ln(R)
ln(1−p)

0

√
α ln(1− p) + ln(R)f2(α) dα. (52)

Using Newton’s Generalized binomial theorem, we have that658 √
α ln(1− p) + ln(R) =

∞∑
n=0

( 1
2

n

)
(ln(R))

1
2−n (α ln(1− p))n (53)

=
√

ln(R)

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n
αn. (54)
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This series converges when ln(R) > |α ln(1− p)| which is equivalent to our659

persistence criterion R(1− p)α > 1. Using Fubini’s theorem,660 ∫ − ln(R)
ln(1−p)

0

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n
αnf2(α) dα =

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n ∫ − ln(R)
ln(1−p)

0

αnf2(α) dα

(55)

=

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n
E [αn] .

(56)

From (52), (54), and (56) we can see that when α is uncertain the expected661

value for the spreading speed is given by662

E [c∗] =
√

2σ2pβ ln(R)

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n
E [αn] . (57)

Therefore, we can express the expected value for the spreading speed in terms of663

a series of the moments of the distribution. In particular, when α ∼ Beta(a, b)664

on
(

0,− ln(R)
ln(1−p)

)
,665

E [αn] =

∫ − ln(R)
ln(1−p)

0

αn
αa−1

(
− ln(R)

ln(1−p) − α
)b−1

B(a, b)
(
− ln(R)

ln(1−p)

)a+b−1 dα (58)

=

(
− ln(R)

ln(1− p)

)n ∫ − ln(R)
ln(1−p)

0

αa+n−1
(
− ln(R)

ln(1−p) − α
)b−1

B(a, b)
(
− ln(R)

ln(1−p)

)a+n+b−1 dα (59)

=

(
− ln(R)

ln(1− p)

)n
B(a+ n, b)

B(a+ b)
(60)

=

(
− ln(R)

ln(1− p)

)n
Γ(a+ b)Γ(a+ n)

Γ(a)Γ(a+ b+ n)
(61)

for n ≥ 0, and the expected value for the spreading speed is666

E [c∗] =
√

2σ2pβ ln(R)

∞∑
n=0

( 1
2

n

)(
ln(1− p)

ln(R)

)n(
− ln(R)

ln(1− p)

)n
Γ(a+ b)Γ(a+ n)

Γ(a)Γ(a+ b+ n)

(62)

=
√

2σ2pβ ln(R)
Γ(a+ b)

Γ(a)

∞∑
n=0

( 1
2

n

)
(−1)n

Γ(a+ n)

Γ(a+ b+ n)
(63)
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Using the fact that667

∞∑
n=0

( 1
2

n

)
(−1)n

Γ(a+ n)

Γ(a+ b+ n)
=

Γ
(
b+ 1

2

)
Γ(a)

Γ
(
a+ b+ 1

2

)
Γ(b)

, (64)

we can simplify (63) to668

E [c∗] =
√

2σ2pβ ln(R)
Γ(a+ b)Γ

(
b+ 1

2

)
Γ(b)Γ

(
a+ b+ 1

2

) . (65)

Attempting to determine the optimal resource allocation to dispersal, we find669

that there are no critical points for 0 < p < 1 since670

d

dp
E [c∗] =

√
2σ2 ln(R)

Γ(a+ b)Γ
(
b+ 1

2

)
Γ(b)Γ

(
a+ b+ 1

2

) d
dp
p
β
2 (66)

=
√

2σ2 ln(R)
Γ(a+ b)Γ

(
b+ 1

2

)
Γ(b)Γ

(
a+ b+ 1

2

) β
2
p
β
2−1 (67)

> 0. (68)

Therefore, we can conclude that the best resource allocation would be to allocate671

as many resources as possible to dispersal while still maintaining the persistence672

condition that (1− p)αR > 1. This would mean that673

p < 1− 1
α
√
R
. (69)

Therefore, we would want to choose p as close to 1 − 1
α√
R

as possible without674

reaching or going over this value.675

Proof of Theorem 5.676

Proof. Assuming that σ is a random variable defined on the real line with prob-677

ability density function f3(σ), the expected spreading speed is given by678

E [c∗] =

∫ ∞
0

√
2pβσ2 ln[(1− p)αR]f3(σ) dσ (70)

=
√

2pβ ln[(1− p)αR]

∫ ∞
0

σf3(σ) dσ (71)

=
√

2pβ ln[(1− p)αR]E [σ] . (72)
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Determining the optima resource allocation to dispersal, we find that679

0 =
d

dp
E [c∗] (73)

= E[σ]
d

dp

√
2pβ ln[(1− p)αR] (74)

= E[σ]pβ
ln((1−p)αR)

p − α
1−p√

2pβ ln ((1− p)αR)
. (75)

Hence, we have our critical point when680

ln ((1− p)αR)

p
=

α

1− p
. (76)

681

Proof of Theorem 6.682

Proof. Assuming that ln(R) is a random variable defined on (−α ln(1− p),∞)683

with probability density function f4(ln(R)), the expected spreading speed is684

given by685

E [c∗] =

∫ ∞
−α ln(1−p)

√
2pβσ2 ln[(1− p)αR]f4(ln(R)) d ln(R) (77)

=
√

2pβσ2

∫ ∞
−α ln(1−p)

√
ln[(1− p)αR]f4(ln(R)) d ln(R) (78)

=
√

2pβσ2

∫ ∞
−α ln(1−p)

√
α ln(1− p) + ln(R)f4(ln(R)) d ln(R) (79)

=
√

2pβσ2E
[
(ln(R) + α ln(1− p))

1
2

]
. (80)

Assuming that ln(R) ∼ Gamma(a, b) on (−α ln(1−p),∞), we define r = ln(R)+686
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α(1− p) and calculate the one halfth moment to be687

E
[
(ln(R) + α ln(1− p))

1
2

]
= E

[
r

1
2

]
(81)

=

∫ ∞
−α ln(1−p)

r
1
2 f4(ln(R)) d ln(R) (82)

=

∫ ∞
−α ln(1−p)

r
1
2

1

Γ(a)ba
ra−1e−

r
b d ln(R) (83)

=
1

Γ(a)ba

∫ ∞
−α ln(1−p)

ra+
1
2−1e−

r
b d ln(R) (84)

=
1

Γ(a)ba
Γ

(
a+

1

2

)
ba+

1
2 (85)

=
Γ
(
a+ 1

2

)
b

1
2

Γ(a)
. (86)

Then, using (86) the expected spreading speed becomes688

E [c∗] =
√

2pβσ2E
[
(ln(R) + α ln(1− p))

1
2

]
(87)

=
√

2pβσ2
Γ
(
a+ 1

2

)
b

1
2

Γ(a)
(88)

=
√

2pβσ2b
Γ
(
a+ 1

2

)
Γ(a)

. (89)

Determining the optimal resource allocation to dispersal, we find that689

d

dp
E [c∗] =

d

dp

√
2pβσ2b

Γ
(
a+ 1

2

)
Γ(a)

(90)

=
√

2σ2b
Γ
(
a+ 1

2

)
Γ(a)

β

2
p
β
2−1 (91)

> 0. (92)

Therefore, we can conclude that the best resource allocation would be to allocate690

as many resources as possible to dispersal while still maintaining the persistence691

condition that (1− p)αR > 1. This would mean that692

p < 1− 1
α
√
R
. (93)

Therefore, we would want to choose p as close to 1 − 1
α√
R

as possible without693

reaching or going over this value.694
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