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ABSTRACT 

Surface mining dominates the world's production of minerals. Currently, almost all non-metallic 

minerals (more than 95 %), most metallic minerals (more than 90%), and a significant fraction of 

coal (more than 60%) are mined by surface mining methods. The hydraulic shovel-truck system 

forms the backbone of the surface mining industry. With the complexity of the shovel and the 

tough working conditions, hydraulic system components are more susceptible to failures and are 

often the most expensive system to repair. The failures are highly unpredictable, associated with 

high follow-on failure rates, and cause lengthy downtime. Wear and debris-related failures are the 

most common cause of hydraulic failures. The most common contaminant of wear and debris 

failures is iron contamination which is a constant issue as it is the by-product of machine operation 

and component failures. As the component wear gradually increases in the hydraulic system, it 

leads to debris accumulation in the oil that might trigger multiple component failures allowing the 

contamination to spread rapidly, resulting in catastrophic damage. Hence, companies are 

constantly aiming to improve the hydraulic system condition and prevent major failures by using 

different methods like condition monitoring methods, increasing hydraulic filter capacities, and 

implementing new methods like introducing new filters and using statistical data-driven techniques 

to predict and stop failures.  

Magnetic filters are the newly introduced hydraulic filters that use the most advanced magnetic 

technology to prevent contamination and system wear failures. The first part of the research aims 

to quantitively evaluate magnetic filter performance on hydraulic system components and test their 

effectiveness using failure data of hydraulic shovels.  

The second part of the research focuses to further enhance the mitigation of catastrophic hydraulic 

failures and increase component life with the use of data-driven techniques. The aim is to assess 
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the likelihood of successive failures of hydraulic components in the next 1000 hours of operation 

after a component failure. Historical failures are studied using different machine learning 

algorithms and probability of successive failures are predicted based on the failure patterns 

identified.  
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1. INTRODUCTION 

 

This chapter provides an overview of this research. It includes a general background of the 

research topic, the objectives of this research, methodology adopted to achieve the objectives and 

describes the organization of this thesis.  
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1.1 General Background 

Large mining equipment such as hydraulic shovels are critical in a mine’s production system, and 

unplanned equipment failures negatively affect their ability to meet production targets and 

generate revenue. Hydraulic systems of the large shovels working in mines are often subjected to 

contamination that results from abrasive wear particles generation from the system components 

and dust particles from air drawn into the hydraulic tank. Tiny particles break off hydraulic 

components as normal wear occurs. These particles build up in the hydraulic system often leading 

to catastrophic failures that need the whole system to be repaired and replaced. These failures are 

proven to be very costly and often lead to extended downtime resulting in production loss. Proper 

maintenance of oil and prior knowledge about potential failures can prevent catastrophic failures 

by strategizing maintenance activities that in turn can reduce failure costs and downtime of the 

equipment.  

Several filters have been introduced in the hydraulic system that trap particles of different sizes to 

prevent system contamination, enhance component life and mitigate catastrophic failures. The 

introduction of new magnetic filters (Mag-filters) uses the most advanced magnetic technology 

and can trap metal contaminants up to 4μ sizes in the system and prevent failures. The introduction 

of Mag-filters is widely regarded as positive but there is no existing framework to analyze and 

quantify the impacts of filter effectiveness. Hence, the first part of this analysis tries to establish a 

framework for pre-post analysis of implementing a solution for mine equipment failure mitigation. 

Monitoring and recording equipment conditions/failures regularly and making failure predictions 

based on collected data will help minimize maintenance costs and further prevent catastrophic 

failures of hydraulic systems. Several data-driven techniques are now used in predictive 

maintenance areas to know failures ahead of time so that maintenances interventions can be 
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planned accordingly to prevent unplanned downtime of a run-to-failure strategy.  From the 

equipment failure perspective, machine learning can be useful to identify and replace or repair a 

component before a fault happens and restore the original condition of the equipment to maintain 

reliability especially in an application where avoiding downtime is likely more valuable than 

extracting all the usable life out of a component. The algorithms use historical failure data or 

vibration/ condition monitoring data of the equipment to study failures and make predictions. This 

directly would lead to decreased downtime and achieving expected levels of production. In 

addition, machine learning helps predict future failures to accurately schedule maintenance 

operations. ML techniques are designed to derive knowledge out of existing data. 

Although machine learning techniques have gained a lot of popularity in various engineering 

domains and have been successfully implemented in failure analysis and failure predictions, the 

application is still not widespread in mining engineering to detect faults or predict failures. Hence 

the second part of this research tries to use machine learning methods in assessing the likelihood 

of successive failures that are impacted by other failures which can help reduce maintenance costs, 

downtime costs, labor costs and increase production time leading to an overall increase in profits.  

1.2 Research Objectives 

Addition of magnetic filters in the hydraulic system of the shovel fleet is generally regarded as 

positive by the company that manages shovel hydraulic failures, but the benefits have been 

anecdotal. Hence, the first part of this research focuses on understanding the effectiveness and 

quantitative impacts of Mag-filters. Different methods are used to compare the effectiveness of 

Mag-filters and a pre-post analysis is done using different key performance metrics to quantify 

impact. Hydraulic failures are inevitable. In order to enhance maintenances practices, improve 

hydraulic system conditions and to further reduce sudden and unexpected hydraulic failures, the 



4 
 

second part of the research aims to predict successive hydraulic system failures in the next 1000 

hours of operation, given that a hydraulic component has already failed.  

In order to understand successive failures, data-driven techniques are applied that make use of 

historical data to predict future failures. Using feature variables influencing failure and the lag 

variables, data-driven approaches are used that help identify and understand failures and predict 

the probabilities of successive failures. Using historical failure data, successive hydraulic failures 

that are most probable to occur in the next 1000 hours of operation after a hydraulic component 

failure are identified. To be more precise on the failure analysis, no fabricated data or data 

generated by simulations is used in this research.  

In summary, the objective of the research can be divided into two parts: 

• The first part aims to quantify the performance and effectiveness of hydraulic magnetic 

filters introduced in a company’s shovel fleet 

• The second objective of the study is to predict successive hydraulic failures given a 

hydraulic component failure by developing various machine learning algorithms that use 

historical shovel failure data 

1.3 Research Methodology 

To achieve the objectives of the analysis, a complete framework was developed to quantify the 

impacts of magnetic filters using historical data of giant hydraulic shovels that are working in the 

mines. The conditions of the components before installation of Mags are compared to the 

component conditions post-installation and a weighted analysis method is established to quantify 

the overall efficiency of the system before and after installation of Mag-filters. Different machine 

learning algorithms are also used in the analysis to identify successive failure probability. 
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This thesis demonstrates the use of statistical approaches like I.I.D Tests, ANOVA Tests, Bayes 

theorem, probability distributions, and data-driven approaches like data collection, data 

processing, feature engineering, hyperparameter tuning, and implementation of artificial 

intelligence models to analyze hydraulic system failures. Popular software and platforms such as 

Tableau, R, and Python were used for data visualization and statistical computing. Toolkits and 

packages such as pandas, Matplotlib, Seaborn, and Scikit-Learn were employed in this research. 

To achieve the objectives of this research, the following tasks have been completed: 

• Literature Review: The literature review required for the analysis was divided into 4 

sections and an extensive study in each of the following sections was reviewed: 

o Hydraulic system overview, filter types, hydraulic failures, and criticality levels  

o Oil analysis methods for system condition monitoring  

o Statistical tests and reliability assessment methods of mining equipment 

o Machine learning approaches for failure predictions and predictive maintenance 

• Data Collection: Information regarding historical failures and failure conditions was 

collected from three different data sources for three units of giant shovels working in 

different mines. In order to accurately model and analyze real scenarios, no fabricated data 

or simulated data was used in this research. Component changeout data recorded for each 

failure of the hydraulic system for different units of hydraulic shovels were collected from 

the company database.  Failure details and conditions in which these failures occurred were 

also used to evaluate different metrics and also to analyze failure patterns. Data 
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transformation and filtration were also done in this step according to the analysis 

requirements. 

• Developing framework for assessment of quantitative impacts of Mag-filters: 

Different methods such as component life analysis, reliability assessment, oil analysis, 

particle count methods, comeback failure rate and cost analysis methods were used to 

quantify the effects of Mag-filters on the hydraulic system performance. In addition, 

critical components of the system were identified, and their most common failure causes, 

and effects were studied.  

• Developing ML models for prediction of the probability of downstream failures in the 

hydraulic system: Different ML-based algorithms were used to predict the chance of a 

successive failure given a component has failed and probability of downstream component 

failures in the hydraulic system using historical data of failure events. Algorithms were 

evaluated based on performance criteria identified and the algorithm that best describes the 

failure data was chosen.  

1.4 Organization of Thesis 

To achieve the objective of this research, the thesis is divided into five chapters.  

Chapter 1 (Introduction) – provides a general overview of the project, an introduction to the area 

of research, the problem statement, the objective of the research, and the methodology adopted to 

achieve the objective.   

Chapter 2 (Literature Review) – provides an extensive review of the already existing work in 

this area of research. The chapter is divided into four sections. The first part provides an overview 

of the hydraulic system of giant shovels used in mining, the components that constitute the 
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hydraulic system, hydraulic circuits, and filter types, hydraulic failure causes and modes, and 

particle contamination causes and effects in the hydraulic system. The second section provides an 

overview of the condition-based monitoring of the hydraulic system using hydraulic oil samples. 

The section discusses existing oil analysis methods to detect failures, factors influencing oil 

analysis procedures, ISO cleanliness code to measure system contamination, ICP particle count 

method, and the importance of oil particle count in failure analysis.  The third section focuses on 

different statistical techniques and reliability analysis methods used in equipment performance 

measurements. The fourth section provides a review based on different ML approaches used in 

fault detection and predictive maintenance methods. 

Chapter 3 (Quantitative Impacts of Hydraulic Mag-filters) presents different methods used to 

compare the effectiveness of magnetic filters and discusses the criticality of different component 

failures. The chapter also provides iron content oil analysis basis. The quantitative impacts of the 

filters are assessed by component life analysis, reliability methods, oil and particle count analysis, 

comeback failure analysis, and cost analysis methods. The analysis helps in understanding the 

influence of Mag-filters on the life cycle of hydraulic components and valuates if the system 

performance has improved post-installation of the filters.  

Chapter 4 (Machine Learning algorithms for failure predictions) introduces a method to 

predict successive failures given a component failure and predict the probability of downstream 

failures in the hydraulic circuits. The chapter establishes the benefits of using different machine 

learning algorithms to comprehensively understand failures and predict future failures more 

accurately. Both supervised and unsupervised learning methods were studied to detect faults using 

data-driven techniques. Different ML algorithms are explored to find failure patterns using 

historical hydraulic component changeout data. The model that best describes the data is selected. 
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Chapter 5 (Conclusion) presents the summary and conclusions of this research. This chapter also 

discusses the significance of this research and recommends future work in this area of failure 

detection and predictive maintenance of the hydraulic system and in general.  
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2. LITERATURE REVIEW 

 

This chapter provides an overview of literature related to this research. The first part of the 

chapter presents an overview of hydraulic system design, different hydraulic filters, types of 

hydraulic failures and their effects. The second part of the chapter presents overview of oil analysis 

methods for condition monitoring including particle count lab analysis methods and ISO 

cleanliness code for contamination detection. The third part of this chapter presents different 

statistical tests and reliability methods and their application for time to failure analysis. The fourth 

section presents an overview of machine-learning based algorithms for failure analysis, predictive 

maintenance, and their application.  
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2.1 Hydraulic Shovels Overview and Working 

2.1.1 Introduction 

“Surface mining methods dominate the world production of minerals. Surface mining accounts for 

over 30 billion tonnes of ore and waste materialized each year, that accounts for nearly 25 billion 

tonnes” (V.Ramani, 2012).  

Surface mining today is not feasible without using large excavation equipment that is an essential 

part of the mining process. “In surface mining operations, truck and shovel systems are the most 

prominent type of haulage system” (Yaghini, Hall, & Apel, 2020). A single-bucket mining shovel 

is one of the most used machines in surface mining for digging and loading material. Their cycle 

includes digging, moving the filled bucket to the truck, unloading the excavated material from the 

bucket, and returning to the digging face (Andreev, 2015).  

Shovels are heavy earth-moving machinery that are popularly used in construction and mining 

industries. They are made up of a moving body, a swing body, and a front digging manipulator to 

conduct digging operations. The digging manipulator comprises many moving parts, the most 

important of which are the boom, stick, and bucket, all connected by rotary joints. (Mitrev et al., 

2011). Rope and hydraulic shovels are the two most important types of heavy machinery. They 

are found at almost all modern large-scale surface mining sites. 

2.1.2 Hydraulic Vs Rope Shovel  

Equipment selection is regarded as one of the most important decisions that affect the mine design, 

annual production, and other economic parameters in mining (Snetkov & Kosolapov, 2019). The 

advantages and disadvantages of various established factors are weighed to assess the feasibility 
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of using a certain type of excavation equipment. The production capacity of the mine; properties 

of overburden and minerals, their state of occurrence; slope angles, and bench heights are some 

other considerations that will influence the choice (Burt & Caccetta, 2018). 

Rope shovels and hydraulic excavators have advantages over one another, depending on the type 

of mineral, and the geotechnical and climatic conditions of the region. Electrical rope shovels are 

typically thought to be more reliable and long-lasting and are often simpler and less expensive to 

maintain. They are more resistant to temperature extremes and, as a result, are capable of 

successfully offering higher digging force. Hydraulic shovels, on the other hand, are typically 

preferred where complicated geological conditions exist as they are more technologically robust, 

weigh less, and can be equipped as a "front shovel" or a "backhoe." It offers qualitative selective 

excavation and has a higher power delivery for excavation and has much higher mobility. The 

hydraulic shovels' lower static ground bearing pressure makes them ideally suited to soft mine 

floor conditions (Ozdogan, 2003) (Kelsh, 2008). 

Andreev (2017) carried out investigations and data analysis for evaluating hydraulic shovel and 

rope shovel major costs in operation and discussed that the rope shovel’s main advantages over 

hydraulic shovels are lower cost of excavation and longer expected life. On the other hand, 

hydraulic shovels are considerably less expensive, technologically more flexible, and capable of 

higher production, although they require higher-quality maintenance and servicing. Hydraulic 

shovels have a higher physical availability compared to electric cable shovels. 

Hydraulic shovels are the most common excavation machine used in surface mines. “Although the 

electrification of their powertrains has already begun, hydraulic systems continue to power the 

main actuators, even in a hybrid s excavator” (Park, Yoo, Ahn, Kim, & Shin, 2020). 
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It is safe to claim that the hydraulic shovel excavator generation represents a true breakthrough in 

loading technology and a significant turning point in the global machinery industry. Renowned 

companies including Caterpillar, Hitachi, Komatsu, Liebherr, Terex Mining, Demag, and others 

are manufacturing hydraulic shovels in various styles, bucket capacities, operating weights, and 

other features. They range in size from mini shovels with bucket capacities of 0.008 m3 and 

working weights of 6.7t to super large excavators with bucket capacities of 52 m3 and working 

weights of 900t. This provides a relatively open market for hydraulic shovels, allowing all 

consumers to pick and invest in the appropriate equipment based on their working conditions and 

financial capabilities (Bui & Drebenstedt, 2009). 

2.1.3 Hydraulic Shovel Design and Working 

The hydraulic shovels consist of three major assemblies, an upper structure, a lower structure, and 

an attachment. The upper structure consists of a machinery dwelling, an operator's cab, and a 

counterweight. The propel drive and crawler mechanism are housed in the lower frame, which also 

serves as a stable base for the machine (Andreev, 2015). A hydraulic cylinder powers these 

elements through a transmission mechanism, which is connected to the excavator links and 

working tools. Extension and retraction of hydraulic cylinders as commanded by the operator, 

actuate these elements (Mitrev, Gruychev, & Pobegailo, 2011). Figure 1 represents hydraulic 

shovel front design and Figure 2 represents a simplified diagram of hydraulic system of shovels. 
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Figure 1.Hydraulic front shovel design (Frimpong, Hu, & Inyang, 2008) 

 

 

 

Figure 2. Simplified diagram of shovel hydraulic system (Felix Ng, Jennifer A. Harding, and Jacqueline 
Glass 2016) 
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The main components of a hydraulic system are a reservoir, pump, control valve, motors, actuators, 

hoses and pipes, hydraulic fluid, oil cooler, and filters (Brain, 2021). Every hydraulic system has 

a tank to supply hydraulic fluid to the pump and store fluid returning from the hydraulic circuit. 

Before the fluid re-enters the pump, the reservoir has enough volume to store the returning fluid 

giving it enough time to cool and allow air to escape. Hydraulic pumps generate fluid flow and 

transform mechanical energy into hydraulic energy (Khayal, 2014). The system includes both main 

and pilot pumps. The main pump is a variable displacement axial plunger pump, and the engine 

drives the main pump through a coupler. The pilot gear pump is directly attached to the main 

pump's driveshaft in the pilot circuit. In hydraulic circuits, valves are used to regulate pressure, 

volume flow rate, and flow direction which is in turn used to maintain a safe pressure level in a 

hydraulic circuit. A hydraulic actuator is a system that transforms hydraulic energy into 

mechanical energy. There are two types of actuators, rotary and linear (Khayal, 2014) (Brain, 

2021).  

The actuators in a hydraulic system are powered by pressurized fluid. Hydraulic oil is used to 

actuate power to the shovel operations. The cylinder press exerts pressure on small quantities of 

oil to generate a large amount of power. The energy is transferred to the piston, which will then be 

pushed upward to perform the shovel operation (Strelnikov, Markov, Rattmann, & Weber, 2018). 

 

2.1.4 Hydraulic System Failures  

Hydraulic system components are often susceptible to failures. With the complexity of the shovel 

hydraulic circuits and the tough working conditions they endure, the reliability of such systems 

remains a major concern (An & Sepehri, 2005). Around 80% of equipment shortages and 

component failures are caused by hydraulic breakdown.    
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Hydraulic failure studies include broad-based surveys of the hydraulic failures of the mobile 

equipment working on-site. Hydraulic issues are often caused by faulty pumps, system breaches, 

or temperature issues (Baker, 2020). Air contamination into a hydraulic system often causes the 

problems of aeration and cavitation, both of which can lead to severe damage of the hydraulic 

system over time by wearing down the pump and surrounding components and contaminating 

hydraulic fluids, and even overheating the system. 

Aeration occurs when air enters the pump cavity from an outside source. Aeration is usually caused 

by loose connections or leaks in the system. Aeration problems can lead to constant noise in the 

hydraulic system when the pump runs (Baker, 2020) (Smiley, 2021). Water contamination is also 

a common issue in hydraulic systems, and it is often caused by system leaks or condensation 

caused by temperature changes. Hydraulic components can deteriorate over time due to oxidation 

and freeze damage  (Hu & Men, 2020). 

Hydraulic systems that run too hot or too cold can cause severe problems over time. Hydraulic 

fluids can thin due to heat, preventing lubrication and increasing the likelihood of leakage (Smiley, 

2021). Hydraulic fluid can oxidize and thicken in extreme heat. This fluid thickening can cause 

buildups in the system, which restricts flow and restricts flow and reduces the system's ability to 

dissipate heat. Low temperatures increase hydraulic oil viscosity, making it more difficult for the 

oil to reach the pump. Cavitation may be caused by putting systems under load until the oil reaches 

70 degrees or more.(Baker, 2020) (Smiley, 2021) (Hu & Men, 2020).  All these factors can greatly 

enhance component wear, which results in the contamination of hydraulic oil.  

Hydraulic equipment has improved significantly in complexity and operating pressures over the 

last 30 years. As a result, not only is it more costly to repair modern hydraulic equipment when it 

fails, but proactive maintenance is imperative to increase system life and reduce operating costs 
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(Khayal, 2014). Oil contamination is the major source of failure and wear of hydraulic system 

components. According to a literature survey, approximately 70 % of hydraulic system failures are 

caused by oil contamination. Therefore, in order to operate the hydraulic system reliably, the 

contamination management should be managed effectively (Singh, Lathkar, & Basu, 2012).  The 

National Research Council of Canada also reported that particle-induced failures such as abrasion, 

corrosion, and fatigue account to around 82 % of wear problems.  (Garvey, 2003). 

(Singh, Lathkar, & Basu, 2012) studied the major causes of failure of pumps, valves, actuators and 

reported that the contamination once developed/ingressed in the system, while circulating in the 

system, damages the surface of other components resulting in failure of the entire system. (Khayal, 

2014) also conducted similar studies in the gold mine and identified major causes of equipment 

breakdown. They concluded that most hydraulic system failures in gold mining equipment resulted 

from contamination of hydraulic fluid and suggested good filtration systems to ensure long life 

and proper operation of the system.  

Solid contamination is known to be the leading cause of hydraulic system failures and early decay; 

it is impossible to eliminate solid contamination completely, but it can be kept under control. The 

most popular standard for Contamination Classes in hydraulic systems is ISO 4406:1999. 

In a hydraulic system, there are a surprising number of different sources of contamination 

including new oil that is unsuitable for hydraulic systems; particles that are added during routine 

system maintenance or service; wear contamination that is caused by the pumps, actuators, valves, 

and hydraulic motors; and failure to clean the system thoroughly after failure. Surface degradation 

contaminants are responsible for more than 70% of all hydraulic system downtime (McCloy & 

Martin, 1980) (Khayal, 2014). 
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A contaminant is defined as any material foreign to a hydraulic fluid that has a detritus effect on 

the fluid performance in a system (Singh, Lathkar, & Basu, 2012). Contaminant particles come in 

all shapes and sizes and are made up of a wide variety of materials (S.Cundiff, 2001). The majority 

are abrasive, so they plough and cut fragments from critical surfaces in the components when they 

interact with surfaces. This abrasive wear and surface fatigue is responsible for about 90 % of 

degradation failures (Singh, Lathkar, & Basu, 2012). 

‘Wear rates in successfully operating industrial equipment can vary enormously, from very high 

values under particularly aggressive conditions to very low values in more benign circumstances” 

(Williams, 2005). Wear metals include iron, chromium, nickel, aluminum, copper, lead, and tin. 

The contaminant metals include silicon, sodium, and potassium. The phenomenon of wear was 

given a formal definition in 1968 by the OECD as ‘the progressive loss of material from the 

operating surface of a body occurring due to relative motion at its surface’.  

Hydraulic circuit contaminants affect the performance and life of hydraulic equipment, leading to 

one of three types of system failure:  

• Degradation: “clearance-sized particles interact with both faces, often causing abrasive 

wear, corrosion, and aeration issues” (Babcock & Battat, 2006). 

• Intermittent: “solid particles cause damage according to their size. High concentrations of 

small particles (£ 10 mm) form silt, eroding components' interior mating surfaces, 

rendering them inoperable. Contaminating solid particles equal in size to the clearance 

between two moving surfaces can cause both jamming and wear” (Babcock & Battat, 

2006). 
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• Catastrophic: “this happens suddenly when a few large particles or a large number of small 

particles cause complete seizure of moving parts” (S.Cundiff, 2001). 

In mining, wear has a significant role in energy losses too. The total energy consumption of global 

mining activities, including mineral and rock mining, is estimated to be 6.2% of the total global 

energy consumption. (Holmberg, 2017) stated that about 16.6 % of the energy consumed in mining 

industry, equalling 2 EJ annually on a global scale, is used to remanufacture and replace worn out 

parts and reserve spare parts and components needed due to wear failure. Hence, any hydraulic 

system, no matter how simple or complex, requires contamination control.  Unfortunately, filters 

are often viewed as a necessary evil and are installed in a system as an afterthought rather than an 

advantage (Khayal, 2014). 

 

2.1.5 Hydraulic filters and prevention of system contamination 

Protecting expensive internal hydraulic system components from premature wear and catastrophic 

failure is critical. Longer component life means less system downtime.  In a typical hydraulic 

system, filters function together to preserve these components. Filters are the first line of defense 

to reduce the number of particles in the oil. There are various types of filters situated in the 

hydraulic system depending on their use and filtration capacity (Gannon, 2018). Figure 3 shows a 

typical hydraulic filtration system.  
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Figure 3. Typical hydraulic system filtration(Huang, Nie, & Ji, 2014) 

 

There are four basic types of filters in the hydraulic circuit: 

  

• Suction filters: Suction filters are usually installed at the pump inlet to protect the pump 

from large contaminants that can cause catastrophic failures. They also protect the pump 

from ingesting any debris that is built up in the oil. Suction strainers normally filter particles 

from 75 to 150 microns (Gannon, 2018). 

• Return-line filter: Another common location for filters is in the return line. The return-line 

filter prevents contaminants caused by part wear from getting into the tank. The filter 

ratings range from 3 to 25 microns (Reik & Oberli, 2014).  

• Bypass filter: The flow through the return-filter constantly keeps changing even if it is 

correctly sized. A steady flow through the element gives the most efficient filtration. If the 
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return- filter fills up with contaminant, then the bypass filter valve opens (Reik & Oberli, 

2014). 

• In-line filters: Control valves normally require pressure-line filters as they have low 

contamination tolerance. These valves have small, very close-tolerance fits and must shift 

rapidly at a low pilot-pressure differential (Heney, 2014). 

 (Huang, Nie, & Ji, 2014) studied identification of contamination control for fluid power system 

and discussed several disadvantages of improper maintenance framework. Although several 

studies were undertaken on hydraulic contamination sensitivity analysis, they had difficulties 

reflecting the filtration systems from the perspective of economic effects. They conducted a 

detailed analysis of the filter debris and used the inexact chance-constrained integer programming 

(ICIP) method to control contaminants of the hydraulic system. The method used improved upon 

the existing interval-integer and chance-constrained programming approaches of filter 

replacement. They concluded that effective filter management and control of hydraulic wear 

particles in the system play a crucial role in ensuring reliability and increasing the service life of 

components. The incorrect methods of installing or replacing or prolonging system maintenance 

posed serious contamination threats to the entire system.  

2.2 Oil Analysis for CBM 

2.2.1 Maintenance types and its evolution  

(Dhillon, 2002) defined maintenance as a set of activities performed to restore a component or 

machine to a state where it can perform its intended functions. Improving a maintenance 

management program is a never-ending task that necessitates a progressive approach and active 

participation. In the mining industry, equipment maintenance accounts for a large portion of 
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overall operating costs (Murthy, Atrens, & Eccleston, 2002). “Equipment maintenance costs range 

from 20% to over 35% of total mine operating costs” (Unger & Conway, 1994). “Approximately 

10% of production time is lost by unplanned maintenance in Australian underground coal mining 

industry” [Clark, D 1990]. Selecting a proper maintenance strategy to prevent failures is significant 

in mining due to its fallbacks in the safety and economics of operation (Azadeh & Zadeh, 2015). 

The approach towards maintenance has changed throughout the years, from merely being a part of 

the production to an essential strategic element in mining operations. Figure 4 represents different 

maintenance strategies used in mining industry. 

Figure 4.  Different maintenance strategies (Alla, Hall, & Apel, 2020) 

Maintenance strategies over the years have evolved from reactive (corrective) actions to ongoing 

predictive activities with an aim to optimize time, costs, and quality. Nowadays, maintenance 

management aims to decrease both unscheduled and scheduled downtime. Available time, 

production quality, reduced costs and performance are the basic key performance indicators (KPI), 

which combined give the overall equipment effectiveness (OEE). 
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Figure 5. Maintenance Operations in a time perspective (Pintelon & Parodi-Herz, 2008) 

 

Maintenance was once thought to be nothing more than an essential part of production; it was 

merely a necessary evil. Repairs and replacements were made as needed, and no concerns about 

optimization were posed. Later, maintenance was a technical issue. Maintenance became a full-

fledged function rather than a production sub-function as time passed. Maintenance management 

has clearly evolved into a complex role requiring both technical and managerial expertise and the 

ability to adapt to a changing business climate. Top management recognizes that having a well 

thought out maintenance plan along with a detailed practice of that strategy could have a significant 

financial impact (Pintelon & Parodi-Herz, 2008). Figure 5 represents evolution of maintenance 

practices over the years in mining industry. 

As depicted in Figure 4, maintenance actions or interventions can be of two types. They are either 

corrective maintenance (CM) or precautionary/preventive maintenance (PM) actions. Corrective 

maintenance implies replacing or repairing the equipment after it has failed.  When equipment 

fails, CM tasks locate the problem and fix it so that the equipment can be repaired and thus the 

facility's production can resume. The key drawback of this maintenance technique is the inherent 

level of complexity involved (Dhillon, 2002). Similarly, the technique is highly reactive, capable 

of shutting down an entire operation just because of a single system failure. As a result of its 
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disadvantages, a more proactive maintenance method of recognizing the equipment needs periodic 

maintenance to function smoothly before a breakdown occurred as developed (Deighton, 2016). 

“Preventive Maintenance is carried out at predetermined intervals and according to a prescribed 

criterion; it is intended to reduce the probability of failure or the degradation of an item” (EN 

13306 2001). All preventive management programs are time driven. The component to be 

maintained can either be replaced or reconditioned depending on its condition. PM can be further 

categorized into preventive-based and predicted maintenance (Coetzee, 2004). 

The predictive maintenance strategy detects issues that can be overlooked by preventive 

maintenance. Predictive maintenance monitors the performance and condition of equipment 

during normal operations to prevent failures. The goal of predictive maintenance is the ability to 

predict when the equipment failure could occur based on certain conditions, followed by 

preventing failures through appropriate maintenance strategies. Condition-directed maintenance 

can detect the onset of an equipment failure mechanism. Many businesses are on the brink of a 

second digital revolution known as 'Industry 4.0,' owing to enhanced connectivity and significantly 

expanded access to low-cost computing power (Short & Twiddle, 2019) (Deighton, 2016).  

Condition-based monitoring (CBM) is a form of scheduled maintenance that repairs a system 

before it fails by looking for signs of fatigue or other failure precursors. CBM creates an optimum 

maintenance period by extending the time between preventive maintenance and reducing the 

expenses of unnecessary excessive maintenance and downtime. CBM is based on the study of 

maintenance of gathered data (such as vibration, crack propagation, oil, pressure, and viscosity)  

(A, Correa, & Guzman, 2020). Operators collect, store, and analyze appropriate data and 
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observations to make accurate and timely decisions. The key benefit of CBM is that it aims to 

optimize maintenance cycles. Operators can predict when a system will fail by continuously 

tracking key elements of machine failure over time. This helps the system continue running until 

it is about to fail, with the failure scheduled ahead of time to save on manpower, expedited shipping 

of parts, and rescue operations (Sellathamby, Moore, & Slupsky, 2010). 

Reliability-centered maintenance (RCM) approach includes a structured framework to analyze 

equipment components' functions and potential failures, such as pumps, compressors, motors, etc. 

The strategy of this analysis is to preserve system function instead of focusing on preserving the 

actual equipment. The next step in the process is to determine the function or functions that the 

equipment or systems are intended to perform (Deighton, 2016).  

(Thomas, 2018) in their work mentioned that a case study conducted by (Feldman et al., 2008) 

estimated a return-on-investment ratio of 3.5:1 for moving from reactive maintenance to predictive 

maintenance on an electronic multifunctional display system within a Boeing 737. (Drummond & 

Yang, 2008) mentioned of examination of train car wheel failures showed a potential cost savings 

of up to 56 % of the associated costs when switching from a reactive maintenance approach to a 

predictive maintenance approach. Another work mentioned by (Thomas, 2018) estimates that for 

pumps, reactive maintenance costs $18 per horsepower per year while preventive maintenance was 

$13, predictive was $9, and reliability-centered maintenance was $6. 

2.2.2 Condition-based Oil Analysis Monitoring to Predict Hydraulic Wear Failures 

Nonstationary and time-varying load conditions are common in mining machinery. Condition 

monitoring (CM) is the result of the evolution of diagnostic and prognostic systems. The aim of 
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monitoring mining machinery condition is to determine whether it is in good working order. Real-

time functional health assessment is useful for predicting component failures and thus improving 

equipment efficiency (Marcus, 2004). CM is the method of continuously monitoring various 

condition parameters to detect any noticeable changes that may indicate the onset of a fault. CM 

techniques are normally used on rotating equipment and other machinery such as pumps, motors, 

and internal combustion engines, while stationary equipment is subjected to periodic inspection 

using non-destructive testing techniques and fit-for-service assessment (Chaulya & Prasad, 2016). 

“Diagnostic and prognostic are two important components in a CBM program, where diagnostic 

deals with fault detection and prognostic deals with fault and degradation prevention before they 

occur” (Madenas, Tiwari, Turner, & Woodward, 2014). 

Oil analysis is a central part of any condition-based maintenance program. The right type of oil, 

the right grade of oil, and changing the lubricant and filter at prescribed intervals are critical for a 

machine's reliability and efficiency (Junior, et al., 2020) (Kumar & Kumar, 2018). Establishing 

warning limits is a critical part of an oil-analysis program from a predictive and proactive basis 

(Thibault, 2013). Oil analysis majorly helps to identify changes in oil conditions and detect 

problems related to wear debris, elevations of metal levels, oil consumption and leakage, filter 

problems and deteriorating properties of additives.  
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Figure 6. PF Curve for hydraulic system component (Bengtsson & Lundstrom, 2018) 

 

Figure 6 shows the potential failure curve for the wear failures of the hydraulic component. It 

indicates the progress of wear failures with time. P (in the graph) indicates measurable potential 

failure and F indicates functional failure. Particles in oil can be monitored and can be detected 

anywhere between 1-6 months prior to failure. For condition monitoring to be feasible, a failure 

progress time of significance must exist to serve as a warning period. The National Research 

Council of Canada stated that 82% of wear problems are attributable to particle-induced failures 

such as abrasion, erosion, and fatigue. These particles can range from 1 micron to 200 microns 

(Fitch, 2013). CAT Ltd maintains that the concentration of wear particles in oil is a key indicator 

of potential component problems. Hence, oil analysis techniques for condition monitoring offer 

significant potential benefits to the operator (Ng, Harding, & Glass, 2016).  
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In recent decades, the aerospace industry has become an expert in using real-time data for product 

tracking and maintenance scheduling. Significant amounts of real-time usage data from product 

monitoring are generated and transmitted back to OEMs for diagnostic and prognostic purposes. 

Other sectors, such as mining, construction and automotive, have recently begun to develop 

capabilities in these fields, and condition-based maintenance (CBM) is gaining traction as a 

method of meeting customer demands. CBM necessitates continuous product data tracking in real-

time (Fitch, 2013) (Ng, Harding, & Glass, 2016). 

(Ng, Harding, & Glass, 2016) did research that focused on current dynamic data acquisition 

techniques for mobile hydraulic systems, using inline particle contamination sensor; the aim was 

to assess suitability to achieve both diagnostic and prognostic requirements of condition-based 

maintenance. They could conclude that hydraulic oil contamination analysis, namely the detection 

of metallic particulates, offers a reliable way to measure real time wear of hydraulic components. 

(Ron LeBlanc, 2019) cited a case study of Dominion Diamond Mines, including oil analysis-based 

condition monitoring across the Dominion fleet in conjunction with changing the oil. They 

mentioned that in over two years, Dominion Diamond Mines was able to extend drain intervals 

across its vehicle and equipment fleet to result in $900,000 of potential savings.  In addition to 

achieving considerable cost savings, Dominion achieved an overall reduction in idle time for its 

mobile equipment and drastically improved fleet reliability during harsh Arctic winters delivering 

cold-start capabilities. 
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2.2.3 Oil Analysis Tests for Particle Count Detection 

Routine tests of oil analysis vary based on the originating component and environmental conditions 

but almost always include tests for viscosity, elemental (spectrometric) analysis, moisture levels, 

particle counts, Fourier transform infrared (FTIR) spectroscopy, and acid number. Other tests 

based on the originating equipment include analytical ferrography, ferrous density, demulsibility 

and base number testing (Almasi, 2014). 

Elemental analysis works on the principles of atomic emission spectroscopy (AES), which is 

sometimes called wear metal analysis. This technology detects the concentration of wear metals, 

contaminants, or additive elements within the oil. The two most common types of atomic emission 

spectroscopy are rotating disc electrodes (RDE) and inductively coupled plasma (ICP). The 

methods have limitations in analyzing particle sizes, with RDE limited to particles less than 8 to 

10 microns and ICP limited to particles less than 3 microns. Particle counting method measures 

the size and quantity of particles in the oil. Many techniques can be used to assess this data, which 

is reported based on ISO 4406:99. This standard designates three numbers separated by a forward 

slash providing a range number that correlates to the particle counts of particles greater than 4, 6, 

and 14 microns (Bennett, 2013) (Macuzic, 2010). 

ISO 4406:99 cleanliness codes are referred on a Renard series table in conjunction with particle 

counts of specific micron size. Each code is associated with a specific ISO code. Every time the 

number of particles in the oil gets doubled, the ISO cleanliness code increases by 1. Figure 7 

depicts the ISO code for the range of particles per milliter presents in the oil. 
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Figure 7. ISO 4406:99 code table for particle cleanliness  

2.2.4 Oil Analysis Drawbacks  

(Mayer, 2009)  analyzed drawbacks of oil analysis and summarized the following points on how 

CBM fails to detect failures at early stages.  

• The common pitfall is noted as performing analysis too infrequently.  

• Poor sampling techniques are the weakest links in the oil analysis chain, and representative 

samples have many data disturbances 

• Poor interpretations of the fault diagnostics result and making poor decisions on the 

supplied information 
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• Oil analysis condition monitoring technologies fail to overlap with other condition 

monitoring technologies.  

(Fitch, 2013) mentions that an integrated approach of oil analysis with other predictive 

maintenance technologies would improve equipment reliability and reduce catastrophic failure. 

With the advent of Industry 4.0, the possibility of increased integration of the real-time monitoring 

and operational aspects of equipment can help strategically plan the maintenance activities  (Short 

& Twiddle, 2019) (Deighton, 2016). 

2. 3 Reliability Analysis of Hydraulic System 

Reliability refers to the probability that the system meets its desired performance standards in 

yielding output for a specific time duration when used under specific conditions (Dhillon, 2008). 

The component's reliability is a function of time and is always measured at a specific operating 

time. Reliable operation is interrupted or terminated by failures. A failure is an event that results 

in the inability to complete the required duties and meet the requirements. The theoretical 

definition of reliability is (Reliability = 1 – Probability of Failure), given by R(t). Availability and 

maintenance are related to reliability and are defined as essential components of it (Mencik, 2016).  

If a component's reliability value is near 1, the chances of it being susceptible to interference or 

failure are low. If the unit is run according to procedures and maintenance is performed regularly, 

these conditions will be achieved. The reliability importance of a component is a measure of how 

important it is to the system's overall reliability. This can be useful information for improving the 

overall system reliability as the efforts will be to concentrate on improving the reliability of those 

components that have the greatest effect on the system reliability (Suryo & Bayuseno, 2018) 

(Weibull, 2013). 
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Understanding the complexities of mining equipment, their efficiency, and failures can 

help achieve better results and reduce unexpected and unneeded costs. Mines can maintain 

consistent levels of productivity by conducting regular reliability assessments. Performance 

measurement is significant because it identifies existing performance gaps between existing and 

desired performance and shows how far the gaps have been closed (Troy, 2018)  (Amy, 2020). 

Many KPIs are used to monitor the long-term trends in reliability and maintenance 

performance.  These KPIs help in understanding if all the small and large modifications in 

maintenance practices and system changes are having the desired effect over time. The Mean Time 

Between Failure (MTBF) and Mean Time to Failure (MTTF) are two essential KPIs for 

determining the system's reliability (Kendon, 2019). 

The output of a healthy reliability process is optimal asset reliability at optimal cost. Result 

measures include maintenance cost (as a contributor to total operating cost), asset downtime due 

to planned and unplanned maintenance (as a contributor to availability) and a number of failures 

on assets (the measure of reliability: this can then be translated into the mean time between 

failures). All these results measure lag (Weber, 2005). With the ever-increasing worldwide 

industrial competitiveness, examining the reliability of every piece of equipment (equipment 

reliability) is an important maintenance policy. The most widely applied system reliability models 

are based on graphical techniques, lifetime distribution models, fault tree analysis, and Markov 

models. Each of these approaches has advantages and limitations. (Chatterjee & Bandopadhyay, 

2012). 

2.3.1 Graphical Techniques 

To examine failure trends of repairable systems, graphical approaches using Total Time on Test 

(TTT) plots, first developed by Barlow and Campo, and later advocated by Bergman and Klefso, 
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are useful (K. R. M. Rao, 2001). TTT plots can be used to track the health of equipment by looking 

at the failure rate, whether it is constant, growing, or decreasing (Kumar, Klefsjo, & Granholm, 

1989). After each failure-repair process, it is assumed that these components are as good as new, 

and the data follows an independent and identical distribution. Kaplan-Meier, Piecewise 

Exponential, and Maximum Likelihood Estimators can be used to create TTT plots. Non-

homogenous Poisson process models, which describe repairable equipment with minimum repair, 

can be applied for data that does not satisfy the i.i.d assumption and when a trend is seen. 

Furthermore, proportional hazard models can be used to describe repairable equipment whose 

performance is influenced by concurrent variables (Ascher & Feingold, 1984). 

2.3.2 TTT Plotting Method  

 The graph plots number of failures per unit versus the total time on test per unit. The time between 

failures (TBFs) is assumed to be independently and identically distributed in this method, 

therefore, the actual chronological orderings of the TBFs can be ignored. Thus, it is not useful to 

evaluate failure data that has structures or is positive to the serial correlation test by using a TTT-

plot. However, a significant aspect of these plots is that they can be used to analyze incomplete 

data. The failure rate of the equipment can be inferred from the shape of the plot. If the plot is 

concave downwards, the equipment is deteriorating (increasing failure rate), but if it is concave 

upwards, the equipment improves over time. If the plot crosses diagonal multiple times, the 

equipment has a constant failure rate. (Kumar, Klefsjo, & Granholm, 1989). The procedure for 

making the plot is presented below: 

 

Suppose that 0 = t (0) < t (1) < t (2) ...  < t(n) is an ordered sample of times to failure of a unit and let 
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(And S0 = 0) denote the total time on test (TTT) at time t(i), j = 1, 2, ... n. The TTT-plot is obtained 

by plotting (j/n, uj) where uj = Sj / Sn. A TTT plot lies within the unit square starting at (0,0) and 

ending at (1,1).  

The double TTT-plot proposed by Akersten is a generalization of the TTT-plot. This generalization 

is particularly useful for studying systems with non-constant failure rates. If the successive failure 

times are independent and exponentially distributed, the points plotted in the double TTT-plot are 

randomly spread in the unit square. The points pattern will tend to cluster in the upper section of 

the unit square in cases of increasing failure rate (IFR). There is a tendency for decreasing failure 

rates (DFR) and related instances to cluster in the lower section of the square (Akersten, 1986) 

(Akersten, 1987). Maintenance intervals can also be determined using graphical approaches. For 

repairable equipment with an increasing failure rate, maintenance planning with optimum 

maintenance periods based on minimum cost per unit time can be derived graphically (K. R. M. 

Rao, 2001). 

 

2.3.3 Test for Trend and Independence 

Before fitting the data with a lifespan distribution, the failure and repair data should be tested for 

the presence of trend and serial correlation. The IID assumption is that the observations in the 

samples are distributed independently and identically. Graphical approaches can be used to verify 

the presence of trends in failure and repair data by plotting the cumulative number of failures 

against the cumulative time.  A straight line shows a lack of trend. A convex or concave curve 

indicates a system with a decreasing and increasing failure rate respectively (Ascher & Feingold, 

1984). Before modeling the reliability data, it should also be tested for mutual independence by 
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testing it for the presence of serial correlation. The presence of serial correlation can be tested by 

plotting the ith TBF Xi against (i-1) th TBF, Xi-1. If the plotted points are plotted without any pattern, 

it can be interpreted that the TBFs are free from serial correlation. In case the plot reveals serial 

correlation, then the TBFs are plotted at greater lags, such as Xi against Xi-2, Xi-3, Xi-4 …. etc. to 

search for serial correlation over greater lags (Ahmadi, Hajihassani, Moosazadeh, & Moomivand, 

2020). 

 

When the data are free from the presence of a trend and serial correlation, the next step is to choose 

a best-fit probability distribution model using goodness-of-fit tests to study its statistical 

characteristics. If the TBF shows the presence of any trend, it should be analyzed by nonstationary 

models such as the power law process. The prediction from statistical distributions also serves as 

a measure of the success of the design process (Smith, 2005).  

 

2.3.4 Weibull distribution 

The Weibull distribution is one of the best-known life-time distributions. It adequately describes 

observed failures of many different types of components and phenomena. The Weibull distribution 

is one of the most widely used lifetime distributions in reliability engineering. They are widely 

used in reliability and survival analysis. In addition to the traditional two-parameter and three-

parameter Weibull distributions in the reliability or statistics literature, many other Weibull-related 

distributions are also available  (Lai, Murthy, & Xie, 2006) (Hall R. , 1997).  

 

The 3 parameter Weibull distribution is given by  
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f(t)=
𝛽

Ꞃ
(

𝑡−𝛾

Ꞃ
)

𝛽−1
𝑒

−(
𝑡−𝛾

Ꞃ
)

𝛽

 

 

(1) 

 

Where f(t) >= 0, t >= ϒ; β > 0; Ꞃ > 0 and - ꝏ < ϒ < + ꝏ. 

And Ꞃ = scale parameter, or characteristic life; β= shape parameter (or slope); γ= location 

parameter (or failure free life) 

The 2 parameter Weibull distribution is given by  
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Ꞃ
 (

𝑡
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)
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(2) 

 

and the 1 parameter Weibull distribution is given by 

 
f(t)=

𝐶

Ꞃ
(

𝑡

Ꞃ
)

𝐶−1
𝑒

−(
𝑡

Ꞃ
)

𝐶

 

 

(3) 

 

 

where the only unknown parameter is the scale parameter, η.  

The equation for the 3-parameter Weibull cumulative density function, CDF, is given by: 

 

F(t) = 1−  𝑒
−(

𝑡−𝛾

Ꞃ
)

𝛽

 

 

(4) 

 

 



36 
 

This is the failure rate which is also referred to as unreliability. The reliability function of 

distribution is simply 1- CDF (cumulative density function); the reliability function for the 3-

parameter Weibull distribution is then given by: 

 

R(t) =   𝑒
−(

𝑡−𝛾

Ꞃ
)

𝛽

 

 

(5) 

 

The Weibull distribution is widely used in reliability and life data analysis due to its versatility.  It 

allows for the identification of which components, or locations, in a system contribute to most of 

the unreliability, as well as the calculation of life-cycle costs. The prediction also serves as a metric 

for the system performance. Depending on the values of the parameters, the Weibull distribution 

can be used to model a variety of life behaviors. The values of the shape parameter, β, and the 

scale parameter, η, affect distribution characteristics such as the shape of the curve, the reliability, 

and the failure rate. β is the shape parameter, η scaling parameter and ϒ is a location parameter. 

These equations represent the 3 parameter Weibull. For the 2 parameter Weibull, ϒ is set to zero. 

The shape parameter β indicates whether the failure rate is increasing, decreasing or constant 

(Lazzari, 2017) (Hall R. , 1997). 

2.3.5 Exponential Distribution 

The exponential distribution is the simplest and most widely used reliability distribution. 

The exponential distribution is a continuous distribution that measures the expected time for a 

failure event to occur. It can be used to measure the likelihood of incurring a specified number of 

failures within a specified time. Systems whose failures follow the exponential distribution exhibit 

a constant failure rate. In other words, the failure process has no memory, which means that if the 
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device is still functioning at time t, it is as good as new, and the remaining life has the same 

distribution (Kissell & Poserina, 2017). The exponential distribution is given by: 

 F (t; λ) = λ𝑒− 𝜆𝑡         

 

(6) 

t ≥ 0; λ > 0 

 

where λ is the failure rate, the failure rate function h (t; λ) = λ, is constant over time. 

The exponential model is thus uniquely identified as the constant failure rate model. 

The reliability function for the exponential model is 

 R (t; λ) = exp (− 𝜆𝑡) 

 

(7) 

and the reliable life becomes 

 𝑡𝑅 =  −𝑙𝑛𝑅/ 𝜆 

 

(8) 

The MTTF for the exponential model is λ−1, the reciprocal of the failure rate. The CDF for this 

distribution with parameter α can be written as 

 F(x) =∫ ∝ 𝑒−∝𝑥′𝑥

0
dx' = 1−𝑒−𝛼𝑥 

 

(9) 

The exponential distribution is a skewed continuous distribution. Its rise is vertical at 0, on the left, 

and it descends gradually, with a long tail on the right. 
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2.3.6 Log-Normal Distribution  

Lognormal distribution plays an important role in probabilistic design.  Typical uses of lognormal 

distribution are found in descriptions of fatigue failure, failure rates, and other phenomena 

involving a large range of data (Chang, 2015). 

The lognormal distribution of a random variable X with expected value μX and standard 

deviation σX is denoted LN (μX, σX)  (Hall R. , 1997) and is defined as 

 
𝐹(𝑡) =

1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 [

−(𝑙𝑛𝑡 − 𝜇)2

2𝜎2
] 

 

(10) 

                                                     

 f(t)≥ 0, 𝑡 ≥ 0, −∞ < 𝜇, 𝜎 > 0 

in which f(t) is the PDF of the failure distribution, and 

 

𝑅(𝑡) = 1 − 𝐹(𝑡) = ∫
1

𝑡𝜎√2𝜋
𝑒𝑥𝑝 [

−(𝑙𝑛𝑡 − 𝜇)2

2𝜎2
]

∞

𝑡

 (11) 

 

 

 
λ(t) =

𝑓(𝑡)

𝑅(𝑡)
 

 

(12) 

The parameters μ and σ represent the mean and standard deviation of the natural logarithms of the 

data. An increase in μ indicates an increase in the meantime between failures, and an increase in σ 

indicates that there is more variation in the TBF. Additionally, μ is the scale parameter, and σ is 

the shape parameter (Robert & Jim, 2017).  
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Figure 8. PDF of Log-Normal distribution(Maymon, 2018) 

 

2.3.7 Gumbel Distribution 

Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a 

number of samples of various distributions.  It is also known as the log-Weibull distribution and 

the double exponential distribution. The Gumbel distribution's pdf is skewed to the left, unlike the 

Weibull distribution's pdf, which is skewed to the right. The Gumbel distribution could also be 

appropriate for modeling the life of products that experience very quick wear-out after reaching a 

certain age (Chang K. H., 2015). The pdf of Gumbel distribution is given by 

 
𝑓(𝑡) =  

1

𝜎
 𝑒𝑧− 𝑒𝑧

 

 

(13) 

f(t) ≥ 0, σ >0  

where z = 
𝑡− 𝜇

𝜎
 and μ is the location parameter and σ is the scale parameter.  
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The reliability at time t is given by: 

 𝑅(𝑡) = 𝑒𝑒−𝑧
 

 

(14) 

2.3.8 Parameter Estimation 

The term parameter estimation refers to the process of using TTF data to estimate the parameters 

of the selected distribution. Several parameter estimation methods are available. Rank regression 

(Least squares), Maximum Likelihood Estimate (MLE), and Bayesian estimation are some of the 

commonly used methods for estimating parameters (Hall R. , 1997). The rank regression is a 

simple technique which engages replacing the data with their corresponding ranks. The calculation 

for the rank correlation coefficient is the same as that for the Pearson correlation coefficient but is 

calculated using the ranks of the observations and not their numerical values. This method is useful 

when the data are not available in numerical form, but information is sufficient to rank the data. 

The basic idea behind MLE is to obtain the most likely values of the parameters for a given 

distribution that will best describe the data (Almazah & Ismail, 2021). It is mathematically 

formulated as follows: 

 Let X1, X2, ⋯, Xn be a random sample from a distribution that depends on one or more unknown 

parameters θ1, θ2, ⋯, θm with probability density function f (xi; θ1, θ2, ⋯, θm). Suppose that (θ1, 

θ2, ⋯, θm) is restricted to a given parameter space Ω. Then: 

 L (𝜃1, 𝜃2, … , 𝜃𝑚) = ∏ 𝑓(𝑥𝑖 ; 𝜃1,𝜃2, … , 𝜃𝑚
𝑛
𝑖=1 ) 

 

(15) 

is called the likelihood function. 

The log likelihood function is given by  
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 l (𝜃|𝑥) = 𝑙𝑜𝑔 ∏ 𝑓(𝑥𝑖|𝜃)𝑛
𝑖=1  

 

(16) 

and 𝛼 =   ∑ 𝑙(𝜃|𝑥𝑖)𝑛
𝑖=1 = ∑ 𝑙𝑜𝑔𝑓(𝑥𝑖|𝜃)𝑛

𝑖=1  

The maximum likelihood estimators (MLE) of the unknown parameters 𝜃 are obtained by 

maximizing l.  

Maximization can be accomplished by taking the derivative of α with respect to each 𝜃, setting the 

equations equal to zero, and solving them simultaneously. 

2.3.9 Goodness of fit tests 

A goodness-of-fit test indicates whether it is reasonable to assume that a random sample comes 

from a specific distribution. Goodness-of-Fit (GOF) tests include (Donadio et at., 2006): 

• Chi-square test  

• Kolmogorov-Smimov test 

• Cramer-von Mises test 

• Anderson-Darling test  

• R-squared test 

• Residuals 

2.3.10 Chi-square Test 

The Chi Square test involves comparing the number of data that fall into selected classes with the 

number that would be expected to fall in those classes from the assumed distribution. The test 

compares the empirical histogram against the theoretical histogram (Hall R. , 1997). 

 
Χ2 =  ∑

(𝑥𝑖−Ei)2)

Ei
𝑁
1

 (17) 
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where, 

xi is the observed quantity in the ith class 

Ei is the expected value from the given distribution 

χ2 is the calculated value of Chi Square 

N is the number of classes 

The above equation can be used to calculate the chi-square value. This value can be compared to 

the Chi-Square value for N-P (where P is the number of parameters estimated) degrees of freedom 

at a given confidence level. If the calculated value of χ2 is greater than the tabulated value, then 

the assumed distribution of the data is not supported at the chosen confidence level. 

2.3.11 KS Test 

The Kolmogorov-Smirnov test is a non-parametric test used specifically for a continuous 

distribution. It is an exact test based on the empirical distribution function of observed data. In 

contrast to chi-square test, KS test compares the empirical cumulative distribution function against 

theoretical CDF. KS test is more powerful for small-sized datasets. There is a comparison of the 

ranked value of the data with what the expected value of the ranks would be from the assumed 

distribution. Test statistics are simply the maximum absolute difference between the observed and 

expected rank value of the distribution. If the calculated value is greater than the tabulated value, 

then the assumed distribution of the data is not supported at the chosen confidence level. 

The null hypothesis of the test states that the data comes from the specified distribution, and the 

alternate hypothesis states that at least one value doesn’t match the specified distribution (Hall R. 

, 1997). The test statistics D is given by: 
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 D = sup | F0 (x) – Fdata (x)| 

 

(18) 

where  

• F0 (x) = the cdf of the hypothesized distribution, 

• Fdata(x) = the empirical distribution function of your observed data 

 

If D is greater than the critical value, the null hypothesis is rejected. 

2.3.12 Residuals 

A residual plot is a graph that is used to examine the goodness-of-fit in probability distributions. 

The residuals from a fitted distribution are the differences between the response data and the fit to 

the response data at each value. It can be defined as the total error in describing the data by a 

probability distribution plot.  

2.3.13 Pareto Analysis 

Pareto analysis is a technique for determining which components cause the most significant 

failures. The Pareto principle states that "80% of problems are caused by 20% of events." The first 

step in a Pareto analysis of equipment is to break down it into appropriate subsystems or to identify 

distinct subsystem components. The cumulative percentage cost or downtime or failure 

frequencies are plotted as a function of the cumulative percentage of failures using recorded failure 

data and repair and replacement costs for the associated failures for each of these.  
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It is common to find that about 20% of components are responsible for 80% of failures, 

emphasizing that maintenance activities should be concentrated on these components (Hall, 

Knights, & Daneshmend, 2000), (Kumar U. , 1990). 

 

A graphical depiction of the findings of Pareto analysis is a Pareto histogram. It displays a 

cumulative percentage curve through the right side of the first bar and lists data (failure frequency 

or repair or cost) in descending order of value. The Pareto histogram analysis focuses solely on 

one of downtime, cost, or failure frequency, and it cannot determine which aspects are more 

important. All the failures that occur frequently or that have longer downtime and higher 

costs have an influence on production and are crucial aspects for improving reliability. However, 

a Pareto histogram miss events such as impacts of failures with high downtime or maintenance 

costs and low failure frequency (Du, 2008) (Knights, 2001). 

 

2.4 Machine Learning Algorithms for Failure Predictions 

Early diagnosis of potential failures will improve component and system reliability. The overall 

repair and restoration costs of equipment are determined by scheduling the maintenance 

operations. Maintenance costs account for a major amount of a hydraulic system's total operating 

costs. Wear problems can necessitate unanticipated repair and replacement procedures, which can 

be avoided through preventive maintenance. Early failure prediction may aid in the scheduling of 

routine maintenance, reducing downtime caused by component failures or machinery breakdowns. 

Machine learning is a new technology that is expected to grow in the next years. Machine learning 

methods have used in a variety of applications, including prediction of failures and preventive 

maintenance of systems (Din, Guizani, Rodrigues, Hassan, & Korotaev, 2019). The key element 
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of machine learning and the decision-making system is data preparation. It organizes the data so 

that it may be used to make decisions. The decision results impact future forecasts, failure events, 

and equipment availability (Jan, Farman, Khan, Talha, & Din, 2019). Data mining is a technique 

for classifying and converting data into usable information. It extracts useful models from a large 

amount of data and uses a variety of methods to uncover stored data. Data mining is the process 

of extracting knowledge from raw data. 

 

Feature selection could be a fundamental issue in data processing and machine learning algorithms 

that target the features which are the most relevant to the intended prediction (Kamepalli & 

Mothukuri, 2014). Features collected from the observation of a circumstance aren't all equivalently 

significant. Normally, operational data tends to be incomplete, partially meaningful, or not 

meaningful. Some of the data may be noisy, redundant, or irrelevant. Choosing a feature set 

relevant to a certain duty is the goal of feature selection. This is a multidimensional and 

complicated situation (Rosario & Thangadurai, 2015). Based on the correlation coefficient 

clustering method, Hsu suggested a unique feature selection methodology. It aimed to reduce 

aspects that were noisy, repetitive, or unnecessary. By removing irrelevant features, performance 

in terms of computational speed and classification accuracy can be enhanced (Hsu & Hsieh, 2010). 

Data processing methods aid in the improvement of data quality and the accuracy of data mining, 

making it more efficient. Data quality is critical for the finding of information, the detection of 

anomalies, and the prediction and analysis of data for decision-making. Predicting equipment 

failures is critical for minimizing repair and maintenance costs and evaluating equipment 

availability (Fan & Fan, 2015). 



46 
 

Businesses can benefit from “big data”, which helps guide systems along the proper pathways. It 

is vital to obtain useful data from the dataset to improve the performance of machine learning 

algorithms (Fahad & Mahbub, 2016).  Depending on the availability of labelled data, ML-based 

data-driven methods can be further classified as supervised, semi-supervised or unsupervised 

approaches. Machine learning algorithms are classified into taxonomies based on the algorithm's 

expected outcome. The following is a list of common algorithm types:  

 

• Supervised learning: The algorithm creates a function that maps inputs to outputs. Output 

variables are known. The classification problem is a common supervised learning 

challenge in which the learner must learn (or estimate the behaviours of) a function that 

maps a vector into one of many classes by studying multiple input-output samples of the 

function.  

• Unsupervised learning: In this method, there is no target or outcome variable to 

predict/estimate.  It is used for clustering population in different groups and when there is 

a lack of sufficiently labelled data (Abdi, 2016). 

• Semi-supervised learning: Combines both labelled and unlabeled examples to generate an 

appropriate function or classifier (Ayodele, 2010). 

• Reinforcement learning: Using this algorithm, the machine is taught to make a certain 

decision. It works like this: the machine is placed in an environment where it would 

constantly train itself through trial and error. This system learns from its previous 

experiences and seeks to capture as much information as possible to make 

accurate decisions (Abdi, 2016). 
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2.4.1 Logistic Regression 

In binary classification, logistic regression analysis performs exceptionally well, particularly with 

categorical variables with [0,1] classes. Based on the values of predictor variables, either 

categorical or numerical, logistic regression models can estimate the likelihood of a failure 

occurrence (Kleinbaum & Klein, 2002). In logistic regression, the dependent variable has a 

Bernoulli distribution. Thus, for any given linear combination of independent variables, an 

unknown probability, P, is estimated for the response variable is estimated. To do so, a link 

function must be used to link the independent variables to Bernoulli's distribution, with the natural 

log of the odds ratio or the logit acting as the link function. This function converts a linear 

combination of explanatory variables to Bernoulli's probability distribution, which has a domain 

of 0 to 1. In turn, the natural log of odds is a linear function of the input variables. As a result, as 

illustrated in Equation, logistic regression models the logit-transformed probability as a linear 

relationship with the predictor variables (Bhattacharjee, Dey, & Mandal, 2020) (Hildreth & 

Dewitt, 2016). 

 Logit(P) = log (
𝑃

1−𝑃
) = y 

 

(19) 

 

where log  ( 
𝑃

1−𝑃
 ) is called the logarithm of the odd, also known as log-odd or logit. 

 

The probability of the component failing is represented by the odds. It is the ratio of "successes" 

to "non-successes," i.e., odds are the likelihood of a component failing divided by the probability 

of a component not failing. From above, 
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y = 𝛽0 + 𝛽1 X1 + 𝛽2 X2 + ………………... + 𝛽P XP 

 

(20) 

 

where y is the probability of failure, and 𝛽0, 𝛽1, 𝛽2, ……. 𝛽P are regression beta coefficients of 

explanatory variables X1, X2…. XP (Bhattacharjee, Dey, & Mandal, 2020) . Thus, the logistic 

regression equation can be written in terms of an odds ratio.   

 

 
𝑝 =

1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝)
 

 

(21) 

Parameter Estimations of Logistic Regression 

Maximum likelihood estimation (MLE) is used in logistic regression to provide model coefficients 

that link predictors to the target. The method is repeated until the LL (Log-Likelihood) does not 

change considerably after the initial function is estimated.  The probability mass function is given 

by the Bernoulli equation 

 P(Y=y|X=x) =𝛽(𝜃𝑇𝑥)𝑦. [1 − 𝛽(𝜃^𝑇 𝑥)](1−𝑦) 

 

(22) 

 

From the probability mass function, the likelihood of the data can be written as  

 L(𝜃) = ∏ 𝑃(𝑌 = 𝑦(𝑖)|𝑋 = 𝑥(𝑖))𝑛
𝑖=1  

 

(23) 
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 =∏ 𝛽(𝜃𝑇𝑥(𝑖))𝑦(𝑖). [1 − 𝛽(𝜃𝑇𝑥(𝑖))](1−𝑦(𝑖))𝑛
𝑖=1  

 

(24) 

 

Taking log on both sides of the equation  

 
𝐿𝐿(𝜃) = ∑ 𝑦(𝑖)𝑙𝑜𝑔𝛽(𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))

𝑛

𝑖=1

𝑙𝑜𝑔 [1 − 𝛽(𝜃𝑇𝑥(𝑖)] 

 

(25) 

 

The parameter values are obtained by maximizing the log-likelihood function (Monroe, 2017) 

 

Goodness of fit for Logistic Models 

Goodness of fit in logistic regression attempts to get at how well a model fits the data. It is usually 

applied after a final model has been selected.  

The following measures of fit are available for the Logistic Model: 

• Chi-square goodness of fit tests and deviance 

• Hosmer-Lemeshow tests 

• Likelihood estimate 

• ROC curves 

• Logistic regression Pseudo R2 

The likelihood of the estimated model fitness of the logistic regression analysis is checked, and 

the lower the value, the more appropriate it is and therefore the logistic regression analysis can be 

an evaluation scale that confirms the fitness of the data analysis model. The fitness method statistic 

is χ2, and if the significance probability is less than 0.05, the null hypothesis that the statistical 
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model is valid can be chosen. The receiver operating characteristic (ROC) curve is also used to 

evaluate the classification results that predict two categories of the predictor variable. For the ROC 

curve, when the value of the x-axis is 0, the value of the y-axis becomes 0, and as the x-axis 

increases, the y-axis increases. The ROC curve is a straight line with a slope of 1 across the origin 

if the data is totally randomized. The ROC curve of the classifier is located above the straight line 

with a slope of 1 going through the origin if the classification model's performance is better than 

the random prediction. The ROC curve having a large y-axis value if x points are fixed can be said 

to have a good performance. The AUC (area under this curve) is 1 for a model that totally predicts 

the result of all cases and 0.5, if the completely predicted model and the randomly predicted model 

are identical. The higher the AUC, the better the model distinguishes between two categories (Jin-

Hee, 2018) (Nakamura, 2007) (Narkhede, 2018). 

 

The Wald test is usually used to assess the significance of the prediction of each predictor. Another 

indicator of the contribution of a predictor is odds-ratio of the coefficient, which is the amount the 

logit (log-odds) changes, with a one-unit change in the predictor variable (Forthofer, Lee, & 

Hernandez, 2007).  

 

Logistic regression is often used in failure predictions and preventive maintenance strategies. 

(Hildreth & Dewitt, 2016) used logistic regression models based on cost and use metrics to 

accurately predict economic success or failure using the fleet data for the 378 single axle dump 

trucks. (Bhattacharjee, Dey, & Mandal, 2020) proposed a systematic approach for developing a 

standard equation for Risk Priority Number (RPN) measure, using the methodology of interval 

number-based logistic regression. The aim was to reduce risks of failure, using FMEA in terms of 
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the Risk Priority Number (RPN). The developed logit model helped in identifying probability of 

risk of failure of high-capacity submersible pumps in the power plant. In another study the aim 

was to propose a model for predicting mechanical equipment failure from various sensor data 

collected in the manufacturing process. This study constructed a Hadoop-based big data platform 

to distribute many datasets for research and performed logistic regression modelling to predict the 

main variables causing the failure from various collected variables. As a result of the study, the 

main variables in the manufacturing process that cause equipment failure were derived from the 

collected sensor data, and the fitness and performance evaluations for the prediction model were 

made using the ROC curve (Ku, 2018). (Battifarano, DeSmet, Madabhushi, & Nabar, 2018) 

applied logistic regression to predict machine state 24 hours in the future given the current machine 

state. A confusion matrix was used to evaluate model performance.  

 

2.4.2 Decision Trees 

The decision tree is a supervised machine learning method for constructing classification systems 

based on multiple parameters or generating prediction algorithms for a target variable. In this 

method, a population is divided into branch-like segments that form an inverted tree with a root 

node, internal nodes, and leaf nodes. The algorithm is non-parametric, and it can handle huge, 

complex datasets without imposing a complex parametric framework (Lu, 2015). Decision trees 

are mainly effective in handling non-linear datasets. Like stepwise selection in regression analysis, 

decision tree methods can be used to pick the most relevant predictor variables from a large number 

of features in datasets and to assess the relative importance of these variables on the decision 

variable. Moreover, decision trees can also handle missing data very well. It is also easy in 

handling a variety of input data: nominal, numeric, and textual  (Rokach & Maimon, 2015). 
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Decision trees can be divided into two types: categorical variable and continuous variable decision 

trees (Sharma, 2020). Figure 9 represents a general decision tree structure of models. 

 

 

 

Figure 9. General decision tree structure(Du & Sun, 2008) 

 

 

Attribute Selection Measures (ASM) 

The main aim is to find the optimal decision tree by minimizing the generalization error. However, 

other target functions of the decision tree can also include minimizing the number of nodes or 

minimizing the average depth to find the most important predictors. Heuristics methods are 

required for solving the problem. The decision node and the leaf node are the two nodes that make 

up a decision tree. Decision nodes have been used to make any decision and have multiple 

branches, and leaf nodes are the output of those decisions and do not contain any more branches. 

The tree's algorithms are greedy by nature, and they build the decision tree in a top-down, recursive 

manner. The algorithm considers the partition of the training set using the result of a discrete 
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function of the input characteristics in each iteration. Some splitting measures are used to 

determine which function is the most appropriate (Lu, 2015). After choosing an appropriate split, 

each node divides the training set into smaller subsets until no split achieves a sufficient splitting 

measure or a stopping criterion is reached. In most cases, the discrete splitting functions are 

univariate, meaning that an internal node is split according to the value of a single attribute. 

Consequently, the algorithm searches for the best attribute upon which to split.  There are various 

univariate criteria.  These criteria can be characterized in different ways, such as  

• According to the origin of the measure: information theory, dependence, and distance. 

• According to the measure structure: impurity-based criteria, normalized impurity-based 

criteria, and Binary criteria [for complete details (Rokach & Maimon, Decision Trees, 

2005)]. The most popular technique for ASM is Information Gain.  

Information gain is the measurement of changes in entropy after the segmentation of a dataset 

based on an attribute to calculate how much information a feature provides about a class. 

According to the value of information gain, the decision tree is built by splitting the node. A 

decision tree algorithm always tries to maximize the value of information gain, and a node/attribute 

having the highest information gain is split first. The entropy of an attribute is given by, 

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no) 

Information Gain= Entropy(S)- [(Weighted Avg) * Entropy (each feature) 

where, S= Total number of samples, P(yes)= probability of yes of the split, P(no)= probability of 

no of the split. 

Pruning is the practice of removing redundant nodes from a tree to obtain the best decision tree 

possible. Using strict stopping criteria results in decision trees that are poorly fitted. On the other 

hand, using loosely stopping criteria results in huge decision trees that overfit to the training set. 
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Pruning techniques were created to address this issue. This method provides a weakly stopping 

criterion, allowing the decision tree to overfit the training set. The over-fitted tree is then pruned 

down to a smaller tree by deleting sub-branches that do not contribute to improving accuracy. It 

has been indicated in many research studies that pruning methods can improve the generalization 

performance of the decision tree, especially when there is noise in the data. (Patil, Wadhai, & 

Gokhale, 2010) (Rokach & Maimon, Decision Trees, 2005).  

Decision trees are used in equipment reliability analysis mainly to decide the most important 

factors that influence failure rates, equipment downtime and safety incidents. (Kohli, 2021) in their 

work proposed an equipment reliability model for pumps, designed by applying a data extraction 

algorithm on equipment maintenance records residing in SAP application. The author has initially 

applied unsupervised learning to perform cluster evaluation. After that, the data from the finalized 

model was applied to a supervised learning algorithm where the classifier was trained to predict 

equipment breakdown. The classifier was tested on test data sets where it was observed that 

Support Vector Machine (SVM) and Decision Tree (DT) algorithms were able to classify and 

predict equipment breakdown with high accuracy and a True Positive Rate (TPR) of more than 

95%. (Jiarula, Gao, Gao, Jiang, & Wang, 2016) developed a model of fault mode prediction based 

on the decision tree, C4.5 algorithm. (Doostan & Chowdhury, 2017) studied an approach for 

identifying equipment failure faults in power distribution systems. The output variable was a 

binary classification problem in which outages were classified as equipment failure and non-

equipment failure types. Actual outage data was collected and variables that contributed to 

equipment failure were identified, and their relationships were examined using a decision tree, 

logistic regression, and naïve Bayes classifier, and their performances were evaluated.  
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2.4.3 Naive Bayes Classification 

The Bayesian Classification is a supervised learning and statistical classification method. The 

Bayes Theorem was proposed by Thomas Bayes, and this classification is named after him. The 

algorithm assumes an underlying probability distribution and captures uncertainty about the model 

in a logical manner by calculating probabilities of occurrences. It is used to solve diagnostic and 

predictive issues and calculates explicit hypothesis probabilities and is robust to noise in the input 

data (Zhang, Wu, Yang, & Guan, 2018). 

The Naive Bayes algorithm is a straightforward probability classifier that derives a set of 

probabilities by counting the frequency and combinations of values in a data set. When assessing 

the value of the class variable, the method applies Bayes' theorem and assumes that all variables 

are independent. In a range of controlled categorization challenges, the algorithm learns quickly 

(Saritas & Yasar, 2019). The Bayes theorem is a mathematical formula for calculating conditional 

probability, is  

 
P (A|𝐵) =

𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

 

(26) 

Here; 

• P(A|B) is the probability of the occurrence of event A when event B occurs, 

• P(A) is the probability of the occurrence of A 

• P(B|A) is the probability of the occurrence of event B when event A occurs 

• P(B) is the probability of the occurrence of B 
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If there are X = (x1, x2, x3 ………………………, xn) are the feature variables then  

 
𝑃(𝑦|𝑥1, … , 𝑥𝑛) =

𝑃(𝑥1|𝑦)𝑃(𝑥2 |𝑦) … 𝑃(𝑥𝑛|𝑦)𝑃(𝑦)

𝑃(𝑥1)𝑃(𝑥2) … 𝑃(𝑥𝑛)
 

 

(27) 

The presence of one feature does not affect the other and hence it is called naive (Moghaddass & 

Zuo, 2012). Assuming the prior class probabilities are equal, and the features are independent, this 

can be written as: 

 
𝑃(𝑦\𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1
 

 

(28) 

 

And Naïve Bayes classifier is obtained as  

 
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1
 

 

(29) 

There are different types of Naive Bayes classifiers. When characteristic values are continuous, it 

is assumed that the values associated with each class are spread according to the gaussian 

distribution, which is the normal distribution. On multinomial distributed data, multinomial Naive 

Bayes is preferred. It is commonly used in natural language programming (NLP) for text 

classification. Bernoulli Naive Bayes is employed when data is distributed according to 
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multivariate Bernoulli distributions that is, multiple features exist, but each one is considered to 

have a binary value. As a result, binary values are required for features (Gandhi, 2018) 

(Prabhakaran, 2018). 

Data-based fault diagnostics of mechanical components has become a new hotspot. (Zhang, Wu, 

Yang, & Guan, 2018) used Naïve Bayes for bearing fault diagnosis on enhanced independent data. 

Their approach was based on processing the data vector (attribute feature and sample dimension) 

to reduce the limitations of Naive Bayes by independence hypothesis. The statical characteristics 

of the original signal of the bearings were extracted, and decision trees were used to select 

important features of the signal, and low correlation features were selected. The authors used SVM 

models in the next step to prune redundant vectors and in the last step used Naïve Bayes to the 

processed data to diagnose faults. (Moghaddass & Zuo, 2012) studied non-repairable equipment 

with multiple and independent failure modes where only incomplete information about the failure 

mode was obtained through condition monitoring. The study focused on obtaining a probability 

matrix representing the relationship between actual health and condition monitoring information 

of the equipment, and Naïve Bayes was used as a classifier to classify each failure mode based on 

the degree of damage. (Yi, Chen, & Hou, 2017)  applied Naïve Bayes classifier for diagnosing 

faults of rolling element bearings and indicated that Naïve Bayes classifier presented higher levels 

of accuracy without any feature engineering requirement.  

2.4.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm that can be used for 

both classification and regression problems. In the SVM algorithm, each data item is plotted as a 

point in n-dimensional space where n is the number of features considered, with the value of each 
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feature being the value of a particular coordinate (Ray, 2017). The aim is to perform classification 

by finding the hyper-plane that differentiates the two classes very well. SVMs maximize the 

margin around the separating plane, and the decision function is fully specified by a subset of 

training samples called the support vectors. This becomes a standard quadratic problem that can 

be easily solved by standard methods. Support vectors are the data points that lie closest to the 

hyperplane. They are the data points that are more difficult to classify. The support vectors have a 

direct decision on optimizing the hyperplane location  (Zisserman, 2015) (Gordon, 2004). 

A linear classifier of SVM has the form  

 𝑦 = 𝑓(𝑥) = 𝑤T x + b 

 

(30) 

Where w is the n-dimensional input vector and b is the bias. 

Learning the SVM can be formulated as an optimization:  

min w || w2 || subject to  yi  (w
T xi + b) ≥ 1 for i = 1 …… N  

This is a quadratic optimization problem subject to linear constraints, and there is a unique 

minimum. Not all the points are correctly classified into their respective groups. Choosing the 

hyperplane that accurately divides the data into two groups can lead to overfitting. Hence a 

regularization parameter is required to trade of between the margin and the number of mistakes 

(wrongly classified points) on the training data (Zisserman, 2015). Figure 10 represents the SVM 

hyperplane of a binary machine learning model. 
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Figure 10. Optimal hyperplane for a binary classification(Duc, Kamwa, Dessaint, & Cao-Duc, 2017) 

 

 

SVM Kernel Function 

A separating hyperplane can be used to divide data that is linear. However, the data is frequently 

non-linear, and the datasets are closely linked. The input data is non-linearly mapped to a high-

dimensional space to account for this. After that, the new mapping is linearly separable. Kernel 

trick allows SVM’s to form nonlinear boundaries. The kernel function aims to allow operations to 

be conducted in the input space instead of the possibly high-dimensional feature space. As a result, 
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the two classes can be separated in the feature space. Different kernel functions exist, such as 

polynomial, radial basis function (RBF), and sigmoid function, and the choice of a kernel function 

is determined by the application (Jakkula, 2011). 

(Nirmal, Agarwal, & Reddy, 2019) developed SVM model-based approach to detect faults of 

equipment in oil industry. Temperature and pressure data were collected from sensors every 

minute and failure occurrences were recorded. The noise in recordings was fine-tuned using 

Exponentially Weighted Moving Average (EWMA) method and tabulation of the mean and peak 

measurements every 15 mins were tabulated. These features were used for fault diagnosis in the 

system using SVM K-means algorithm. (Celikmih, Inan, & Uguz, 2020) used aircraft failure and 

maintenance data with nine input and one output variables across two periods. Then a hybrid data 

model was prepared in two steps. In the first step, using a feature selection method the important 

features were extracted and in the next step a K- means algorithm is used to eliminate noise. Then 

different ML methods like SVR (Support Vector Regression), ANN (Artificial Neural Network), 

LR (Linear Regression) are used for performance evaluation and to improve the success of failure 

count prediction. (Hwang & Jeong, 2018) used SVM to detect defects and fault patterns of 

unexpected sudden equipment failures. SVM classifier was used to divide data as normal and 

abnormal, and only normal data was used for learning using the Restricted Boltzmann Machine 

(RBM) and then based on patterns faults in the system were identified.  

2.4.5 k-NN (k Nearest Neighbour)  

The k-nearest neighbours (k-NN) method is a supervised machine learning algorithm that can be 

used to address classification and regression problems (Harrison, 2018) . k-NN is a kind of 

instance-based learning (also known as lazy learning), in which the function is only estimated 
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locally, and all computation is deferred until classification. When there is very little prior 

knowledge about the data distribution, the k-NN is the most basic and simplest classification 

algorithm. The data points are categorized based on how their neighbours are classified. The 

algorithm's idea is that all data points with similar characteristics will be found near together. As 

a result, the data points are initially split based on their similarity in attributes. Given a K value, 

the nearest K neighbours are chosen for any new point, and the class containing the most points 

out of the k points is allocated to the new point. The choice of K, as well as the distance measure 

used to pick the nearest K points, determine the performance of a k-NN classifier. In the case of 

k-NN, a small training sample size can have a significant impact on the selection of the optimal 

neighbourhood size K, and the sensitivity of K selection can significantly decrease k-NN 

classification performance. In general, k-NN is susceptible to data sparsity, noisy mislabeled 

points, and outliers from other classes if K value chosen is too small or too large (Imandoust & 

Bolandraftar, 2013) (Jabbar, Deekshatulu, & Chandra, 2013) (Zhang Z. , 2016).  

(Vahed, Ghodrati, & Hosseinie, 2018) studied a historical failure dataset of a dragline to conduct 

predictive maintenance. The authors used the k-Nearest Neighbors algorithm to predict the failure 

mode but there was a chance of overfitting in the methodology. Hence, a combination of the 

genetic algorithm and k-Nearest Neighbor algorithm was applied for the failure dataset. This 

enhanced the model performance, and the results were better predicted. In another study 

(Moosavian, Ahmadi, & Khazaee, 2013)  collected vibration signals of main journal-bearings of 

IC engine from condition monitoring methods. The vibration signals were classified on three 

conditions: normal, oil starvation condition and extreme wear fault. Thirty features were extracted 

from the processing of signals and k-NN and ANN were applied to train the dataset and later for 

diagnostic use. Variable K ranging from 1 to 20 with the step size of 1 was used to get better 
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classification results. The experimental results showed diagnostic methods were reliable to 

separate fault conditions in the bearings. (Sharma, Jigyasu, Mathew, & Chatterji, 2018) proposed 

a new methodology of Weighted k-Nearest Neighbor Classifier where a square inverse weighting 

technique is used to improve the accuracy of k-NN model for fault diagnosis of rolling element 

bearings. Three bearing conditions, healthy, inner race fault and outer race fault were classified. 

The algorithm indicated that this method enables the fault detection in bearings with high accuracy.  

2.4.6 K-Means Algorithm 

K-Means Clustering is an unsupervised learning approach that is used in machine learning to 

handle clustering problems. It divides the unlabeled data into many clusters. The K-Means 

Clustering method is easy and accurate, flexible to handle large data, has a good speed 

of convergence, and has the adaptability to sparse data.   K-Means clusters the data into different 

groups and provides a simple technique to determine the categories of groups in an unlabeled 

dataset without any training. It is a centroid-based approach, where each cluster has its own 

centroid. The goal of this algorithm is to minimize the sum of distances between the data point and 

their corresponding clusters. The k-means Clustering algorithm finds the best value for K center 

points or centroids by an iterative process and assigns each data point to its closest k-center. Those 

points which are near to the k-center create a cluster. The distance of the point from the centroid 

in each step is calculated using the Euclidean method. Hence data points from each cluster are 

similar in some way and are far from other clusters. The K value is user-defined for the algorithm 

that is generated. The Elbow method is the most popular way that helps in selecting the optimal K 

value. The method is based on minimizing within-cluster Sum-of-square-values (WCSS) that 

defines total variation in the data. The WCSS method formula is as follows:  
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 WCSS=∑ 𝑃𝑖 𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟1𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖𝐶1)2 + ∑ 𝑃𝑖 𝑖𝑛 𝐶𝑙𝑢𝑠𝑡𝑒𝑟2𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖𝐶2)2 +

∑ 𝑃𝑖 𝑖𝑛 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 3 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖𝐶3)2 

 

(31) 

where     

∑ 𝑃𝑖 𝑖𝑛 𝐶𝑙𝑢𝑠𝑡𝑒𝑟1𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖𝐶1)2 

is the sum-of-the-square of the distances between each data point and its centroid within a cluster. 

The WCSS values are plotted against K value starting from 1. The sharp point where the graph 

drops abruptly is selected as the best K value. 

(Zheng, Dai, & Zhou, 2019) applied K-means clustering to process the high non-linear wind 

turbine equipment failure data and group the data into different clusters then analyze the fault list 

for useful information using Long-Short Term Memory (LSTM) model. (Wei, Luo, & Yu, 2019) 

used historical maintenance data of ship’s equipment failure and proposed a data mining method 

based on K-means clustering and analyzed fault phenomenon in the equipment to establish 

different failure modes. (Abdelhadi, 2017) tried to implement a clustering method to group 

maintainable equipment based on their need for maintenance according to time to failure and the 

location of these machines. The main aim was to reduce the scheduling process and time and a 

standard maintenance procedure for the machines in each cell. (Riantama, Prasanto, Kurniati, & 

Anggrahini, 2020) examined the condition-based equipment data using data analytics approach to 

develop a predictive maintenance program. K-means for clustering the failure characteristic, 
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Support Vector Regression (SVR) model used for predicting equipment failure are the two models 

used in their study. 

2.4.7 ANN Algorithm 

The Neural Network (NN) plays a vital part in the human brain, and ANN is an unsupervised 

learning technique created from biology. ANN stands for Artificial Neural Networks, and it was 

inspired by biological neurons. It is a massive parallel computing system made up of many basic 

processors connected by many interconnections. ANNs learn the basic rules from a series of given 

symbolic circumstances in instances, rather than following a set of laws specified by human 

experts. They are organized in three or more layer, (i.e., input layer, several hidden layers, and an 

output layer). Furthermore, the relationships between the network processing units are the source 

of the ANNs' analytical activity. In comparison to other classic machine learning techniques, 

ANNs models have significant advantages in dealing with random, fuzzy, and nonlinear data. 

ANNs are best suited for systems with a complicated, large-scale structure and ambiguous data. 

ANNs are the most extensively used machine learning algorithms. Multilayer Perceptron (MLPs) 

with backpropagation learning are based on a supervised technique and have three layers: input, 

hidden, and output ( (Park & Lek, 2016) (Walczak & Cerpa, 2001). They are commonly employed 

for a wide range of issues. The sample neural network architecture is shown in Figure 11. 
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Figure 11. Sample neural network architecture (Walczak & Cerpa, 2001) 

ANN is widely used in reliability and fault analysis of mining machines. Several literature works 

can be found using ANN for analysis. ANN is used for fault diagnostics of numerous rotating 

machinery that use signal processing techniques to extract features and further input these to ANN 

model to classify faults. (Jia, Lei, Lin, Zhou, & Lu, 2016) (Jonathan P Peck, 1994) (Liu, Yang, 

Zio, & Chen, 2018) (Bin, Bin, Gao, Li, & Dhillon, 2012). (Li, Mechefske, & Li, 2004) studied 

electric motor faults with ANN feedforward networks and self-organizing maps. Data was taken 

from stator current and mechanical vibration signals for major motor faults. The study showed the 

effectiveness of both algorithms and feedforward network looked more promising for electric 

motor analysis. (Zhu, et al., 2019)  proposed a rotor vibration fault diagnosis approach that 

transforms multiple vibration signals into Symmetrized Dot Pattern (SDP) images, and then 

identifies the SDP graphical feature characteristic of different vibration states using a 

convolutional neural network (CNN). A CNN can reliably and accurately identify vibration faults 
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by extracting the feature information of SDP images adaptively through deep learning. Proposed 

approach was tested experimentally using a rotor vibration test bed, and the results obtained were 

compared to those obtained with an equivalent CNN-based image recognition approach using orbit 

plot images. The rotor fault diagnosis precision was improved from 92% to 96.5%.  

 

2.4.8 Performance Evaluation Metrics 

Model evaluation is a process through which the quality of the system’s prediction can be 

quantified. The trained model measurement is tested on validation and test datasets and the labeled 

data (dependent variable) in the validation or test dataset is compared with its own predictions 

(Mishra, 2019). There are different evaluation metrics for classification models like accuracy, 

precision, recall, confusion matrix, AUC score, specificity, and sensitivity. Though empirical 

studies have shown that choosing a metric to employ for a given problem might be difficult, each 

of them has specific attributes that measure different aspects of the evaluated algorithms.  Machine 

learning performance evaluations involve certain level of trade-off between true positive and true 

negative rate. Confusion matrix, precision, recall and F-score are commonly used in the 

information retrieval as performance measures. Accuracy is used to define the overall efficiency 

of the model in predicting output. Receiver Operating Characteristic (ROC) curve serves as 

graphical representation of the trade-off between the false negative and false positive rates. The 

efficiency of any machine learning model is also determined using measures such as True Positive 

Rate, False Positive Rate, True Negative Rate and False Negative Rate (Danjuma, 2020). 

This study mainly uses accuracy, confusion matrix and AUC score to estimate the performance of 

test dataset using machine learning models. The standard definitions for the metrics are as follows: 
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• Accuracy measures the proportion of true results to total cases. Accuracy is presented 

as  

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (32) 

 

• Confusion Matrix assesses the relationship between the label and the classification of 

the model. A confusion matrix has two axes: one for the predicted label and the other 

for the actual label. N represents the number of classes. Confusion Matrix is represented 

as 

True Positive False Positive 

False Negative True Negative 

 

• The area under the curve (AUC) is calculated by plotting true positives on the y axis 

and false positives on the x axis. This metric is useful since it gives you a single value 

to compare different sorts of models. 

2.4.9 Hyperparameter Tuning 

The process of selecting a set of ideal hyperparameters for a learning algorithm is known as 

hyperparameter tuning. A hyperparameter is a model argument whose value is determined prior to 

the start of the learning process. The method entails objectively searching for different values for 

model hyperparameters and selecting a subset that produces the best model on a given dataset. A 

hyperparameter optimization yields a single set of high-performing hyperparameters with which 

the model can be configured. The developer specifies hyperparameters to guide the learning 

process for a specific dataset. Each hyperparameter value is represented by a vector at each point 
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in the search space. The purpose of optimization is to find a vector that gives the best performing 

model, such as maximum accuracy or least error. Random search and grid search are two of the 

simplest and often applied optimization algorithms. Grid search is great for spot-checking 

combinations that are known to perform well generally. Random search is great for discovery and 

getting hyperparameter combinations that the user would not have guessed intuitively, although it 

often requires more time to execute (Brownlee.J, 2020). 

2.5 Summary of Literature Review 

The above literature review helped in understanding in detail the hydraulic system of giant shovels, 

the design of the hydraulic system, the importance of hydraulic system filters, different failure 

modes, and failure causes in the hydraulic system, condition monitoring of the hydraulic system 

based on oil samples, and crucial factors affecting oil contamination and hydraulic system wear. 

The above literature review also summarized various statistical techniques that can be applied in 

different analyses and the major contributions of previous researchers seeking to better understand 

and implement various machine learning techniques for failure analysis and predictions in various 

mining equipment. Researchers have implemented numerous machine learning models and 

achieved satisfactory results for fault diagnostics and predictive maintenance analysis in mining 

and other industries.  

Although numerous statistical techniques are applied in the analysis of failures of mining 

equipment, there is no framework described to quantify the pre-post effects of implementing a 

solution to prevent hydraulic failures. The first part of this study aims to apply different statistical 

techniques to quantify the effects of magnetic filters installed in the shovel hydraulic system. 

Several machine learning techniques are already used in the analysis of mine equipment failures. 

Despite the popularity and application of machine learning techniques, no work is previously 
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found related to the prediction of the probability of successive failure of the mine equipment 

components that are influenced by the previous failure. The second part of this study is an attempt 

in implementing machine learning models to find the probability of successive failure of different 

hydraulic components in the next 1000 hours of operation after a component has failed.  
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3. QUANTITATIVE ANALYSIS OF MAGNETIC -FILTERS 

This chapter presents an approach to analyze the impacts of magnetic filters on hydraulic system 

of shovels and provides a framework to quantify effectiveness of a solution to prevent mine 

equipment failures. The chapter provides information on iron content baselines in oil analysis and 

presents a detailed analysis of impacts of magnetic filters in preventing contamination by 

quantifying different key performance metrics using statistical techniques.  
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3.1 Background Information 

The objective of this phase is to understand the need for magnetic filters in the hydraulic system 

of shovels and evaluate equipment performance before and after installation of Mag-filters in the 

shovels. The hydraulic shovels used in this analysis are 518t machine with a Cummins engine 

which powers this machine with up to 1007kW. The shovels are categorized in the biggest machine 

segment in the crawler excavator’s category. The heaped bucket capacity of the shovels is 27m³, 

which is above average for this type of machine. The system is powered by two engines that supply 

energy for the function of hydraulic actuators. The hydraulic system of the shovels is very complex 

in design and is often subject to failures. The most common cause of hydraulic failures in the 

shovels are related to wear and debris contamination. The two most common causes of wear-

related system failures are poor fluid cleanliness and external system contamination. 

Contamination causes degradation of oil performance and results in hydraulic system failures for 

numerous reasons. 

Hydraulic system contamination results from abrasive wear particles generation from the system 

components, externally drawn in past cylinder seals and dust particles from air drawn into the 

hydraulic tank during servicing. The component surface asperities can break off either by external 

contamination 3rd body abrasive wear or through normal wear, at times of low lubrication or high 

load, and thereby lead to subsequent 3 rd body abrasive wear. Copper alloy particles and prevent 

smooth component operation whereas relatively harder metal alloy particles result in more 

aggressive scoring wear. cause minor abrasive damage. As the number of wear particles increase, 

it can lead to catastrophic component failure, generating many abrasive particles which will be 

required to be cleaned even if they don’t result in the functional failure of the component they 
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contaminate. Neglecting to properly clean the hydraulic system after a failure will very likely result 

in further cause repetitive failure.  

At the same time, external particles also enter the system because of the working environment and 

where the equipment is operated and stored. Leaky or improperly installed seals and caps can allow 

abrasive dirt and particles into the hydraulic system. Water ingress throughout the system will 

increase the formation of corrosion, oxidization, acids, and rust in the hydraulic fluid, which can 

severely impact a hydraulic system's performance and lifespan. 

Hydraulic oil should be maintained at certain cleanliness levels to minimize wear particles and 

prevent debris accumulation. To achieve this, different methods are used to maintain hydraulic 

system cleanliness. Hydraulic screens and filters are installed at different locations in the system 

to continuously remove contaminants in the hydraulic oil. The other popular techniques are 

condition monitoring techniques where equipment parameters indicating failure are measured. Oil 

based condition monitoring method is helpful in detecting high levels of iron and other 

contaminants. This study uses historical hydraulic failure data and oil analysis results of shovels 

to assess the impacts of the newly installed magnetic filters on the shovel hydraulic system. The 

shovels considered in this study are currently working at different mine sites in North America.  

3.2 Oil Contamination Analysis 

Oil samples are taken every 600 hours from the return circuit of the hydraulic system of shovels 

used in this analysis, and the oil contaminant elements are monitored using the ICP particle count. 

ISO4406 code is used as a standard method for expressing fluid cleanliness. This section is 

documented in detail in Chapter 2 of the thesis. The code is expressed in a three-part cleanliness 

rating such as 18/16/13, representing 4/6/14 micron-sized particles per milliliter of oil. Twenty-
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three different metals are identified in the oil including iron, chromium, nickel, aluminum, copper, 

lead, and tin. The contaminant metals include silicon, sodium, and potassium.  A system 

contamination failure is usually followed by a hydraulic tank flushing, replacing the failed or 

contaminated components, lines and filters.  

An excel based oil contamination analysis tool based on oil sample results of the hydraulic shovels 

used in the analysis was built to analyze the effects of variation in ICP measurements and its 

impacts on predicting failures. The tool also helps to understand the criticality levels of different 

elements present in the oil for a given volume of particles present in the oil. The elements that are 

included in the analysis involve wear metals and contaminants mentioned above. The ICP particle 

count per milliliter in oil that is measured in the laboratory has a variation of +/- 15%. The impact 

of variation increases with the increasing particle count in oil. Hence the lower and upper bound 

ranges are added to the analysis to know the range of variation for a particular metal particle count 

and its effects on the criticality index. The following metrics are calculated for each of the wear 

and contaminant metals for a given volume of any metal (VM) with metal density (DM), the 

hydraulic tank capacity (HTC) i.e., 2200 liters for the shovels considered in the analysis, and 

hydraulic oil density (DO) which is approximately 0.847 kg/lt. Different parameters of oil particle 

count analysis are assessed as follows: 

Quantity of metal present in the oil (kg),  

 𝑄𝑀 =  𝑉𝑀 ∗  𝐷𝑀 (33) 

 

The minimum quantity of metal that could be present in oil (kg) 
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 𝐿𝐵 =  𝑄𝑀 − (0.15 ∗  𝑄𝑀) (34) 

 

 

The maximum quantity of metal that could be present (kg) 

 𝑀𝐵 =  𝑄𝑀 + (0.15 ∗ 𝑄𝑀) (35) 

Resultant ICP Particle Count of metal (M1) 

 
𝐼𝐶𝑃𝑀1 =  

𝑄𝑀 ∗  106

𝐻𝑇𝐶 ∗ 𝐷𝑂
 (36) 

 

 

If there are n metals present in the oil with particle count ICPM(n), then the total ICP Count is 

 
𝐼𝐶𝑃 =  ∑ 𝐼𝐶𝑃𝑀𝑖

𝑛

𝑖=1

 (37) 

 

The ISO cleanliness code can then be calculated from the ISO:4406 table based on the total ICP 

count. If a certain volume of metal is present in the oil, then the tool gives information about 

different metrics such as mass of metal present, ICP count, the hydraulic acceptable, moderate, 

and critical limits for each metal, resultant ISO code, and error range by volume, mass, and ppm. 

Different colours indicate the criticality of metal concentration in the ISO particle count cell. An 

example of the results can be found in Appendix A. The tool was used to find the relation between 

the metal volume present in the oil and the ISO cleanliness code.  
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Figure 12. Particle count variation with change in metal volume in hydraulic oil 

 

The iron particle variation in oil with respect to change in metal volume is depicted in the graph 

represented in Figure 12. The green shade in the graph indicates acceptable range of particles, the 

orange shade indicates reportable range, and the red shade indicates critical levels of particles 

present in the oil for the resultant ICP count. It can be inferred that if the iron volume in the tank 

is less than 0.007 L, the ICP particle count is in the acceptable range, i.e., below 22 ppm. The ICP 

particle count is at a reportable range when the iron volume in the tank is between 0.007 Land 0.01 

L. When the iron volume in the hydraulic tank exceeds 0.01 L, the iron count present in the oil is 

at critical levels which are to be immediately reported. From the graph, it can be noted that the 

number of particles per milliliter in oil doubles every time the volume doubles.  The analysis tool 

is also used to calculate the relation of ISO code and ICP count with the number of tablespoons of 

metal present in the oil. Using this information, the minimum amount of material (in tablespoons 
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and liters) that can impact the performance of main pumps, motors, and cylinders are calculated. 

The analysis gives a benchmark for oil sample analysis to track pump, motors, and cylinder 

performance and wear.  The following tables provide information about the minimum quantity of 

material wear from the pumps and cylinders of hydraulic system that can lead to their performance 

issues in the shovels considered.  

Particle count analysis for pump 

performance issues 

Piston to bore clearance should not exceed 

exceeds 0.002" as per the manual 

Diameter of Piston (in.) 1.25 

Height of piston (in.) 3.25 

Approximate wear amount to performance 

reduction per piston (in3) 
0.013 

Number of Pistons per pump 9 

Total wear per pump section (in3) 0.115 

Total wear per pump section leading to 

performance change (liters) 
0.002 

Table 1. Particle count analysis for performance issues in pumps 
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Table 2. Particle count analysis for cylinder performance issues 

 

Although oil analysis can be used as a baseline to track the hydraulic system failures, there are 

some limitations associated with oil analysis.  The analysis noted that particles per million double 

every time the volume doubles. It is challenging to predict failures at early stages as particles 

present per milliliter (particles/ml) hardly show a significant increase with the change in the 

volume of particles. The ICP count measurement in the lab has a variation of +/- 15%. Hence, a 

substantial difference in the number of metal particles present in the oil results in a significant 

variation in the particle count. For example, the ICP particle count of 150 ppm has variations 

ranging from 127 ppm to 172 ppm. This means that when the resultant ppm value is 150 ppm, it 

can range anywhere from 127 to 172 ppm. Hence it is difficult to predict failures only by 

considering the oil analysis reports. 

3.3 Problem Statement 

In order to remove wear particles that are induced in the oil during normal shovel operations, 

different types of filters are used in different locations of the hydraulic system. The basic types of 

filters in the hydraulic system include suction filters, high-pressure strainer filters, full-flow filters, 

The minimum amount of material wear for performance change in cylinders 

Cylinder Type Boom Level Arm Bucket Dump 

From Tube (lt) NA 0.26 0.20 0.14 0.04 

From Rod (lt) 0.08 0.08 0.07 0.04 0.01 

Tube (tablespoons) NA 17.31 13.62 9.64 2.41 

Rod (tablespoons) 5.16 5.16 4.47 2.87 0.61 
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bypass filters, drain filters, and pilot filters. Hydraulic filters protect hydraulic system components 

from damage due to contamination of oils or other hydraulic fluid caused by particles.  The 

following table gives information about the different original equipment manufacturer (OEM) 

filters, their location, and the filtration capacity size of the filters present in the hydraulic system 

of shovels that considered in this analysis. 

Filter Location Filtration Capacity (micron-

meter) 

Suction Filter Hydraulic Tank 177 μm 

High-Pressure Strainer Behind Main Pumps 120 μm 

Full flow filter Return Line 10 μm 

Bypass Filter Return line 5 μm 

 Drain Filter Off-line 10 μm 

Pilot Filter Pilot circuit behind the pilot 

pump 

10 μm 

Table 3. Different filters in the hydraulic system and their filtration capacity 

 

In addition to the existing filters, magnetic filters (Mags) are also newly introduced in the hydraulic 

system that use magnetic technology to filter contaminant particles. Mags remove iron particles of 

5 microns and smaller that pass through OEM filters, resulting in cleaner oil. These particles are 

removed before they enter any pump suction ports. Unlike the OEM filters, Mags are placed in the 

hydraulic reservoir and are able to operate with clearances that functionally produce no pressure 

drop and as a result do not “plug” even at high collection amounts.do. Using this location means 
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all reservoir flow will be cleaned before returning to any pump in the system. Mags remove 95% 

of all iron particles during each pass without restricting the flow.  

Magnetic filters are designed to help prevent OEM filters from plugging, allowing them to 

continue doing their job and remove particles in the reservoir before they can cause damage. 

During normal operation, Mags should remove around 30% more iron particles (≤ 5 microns). 

Magnetic filters are said to have a 15+ year life span.  

While the addition of the magnetic filters has been widely regarded as positive by the company, 

the benefits have generally been anecdotal. The study in this section aims to quantify the effects 

of magnetic filters that are installed on the giant hydraulic-shovel fleet presently working in the 

mines. Figure 13 presents a flowchart detailing the steps involved in identifying the impact of 

Mags that use historical failure data and oil analysis results collected for different hydraulic 

components, along with using troubleshooting information (initial failure reports (IFR)) and 

detailed disassembly component inspection reports known as component condition reports (CR) 

that are tabulated for each failure. The details of data collection are presented in the next section.  
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Figure 13. Flowchart detailing the steps involved in identifying magnetic filter impact 

 

Only major component replacement failures of the hydraulic system of shovels are used in this 

analysis. Different metrics using component average life, reliability analysis, oil particle count 

analysis, cost analysis, and comeback failure rate analysis are calculated to analyze the quantitative 

impacts of the filters. The details of each of these methods are explained in the later sections. The 

main purpose of magnetic filters is to prevent wear and debris related failures of the hydraulic 

system. As the analysis evaluates the effects of magnetic filters, only wear and debris-related 

failures are considered in this study. Hence, there is a loss of wear-related information on the 

components that have functioned and failed for other reasons. The study also does not include 

time-series data and does not track any component wear rate information and hydraulic system 

condition and oil conditions over time. Only historical data of the component replacement failures 
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and oil conditions monitored at the time of failure are used.  The following sections provide 

detailed analysis of methods used in identifying the impacts of hydraulic in tank Mag-filters. 

3.4 Data Collection 

Historical hydraulic component replacement data was collected for three giant hydraulic shovel 

fleet units working at different mine sites in North America. The three machines are named S1, 

S2, and S3 for reference. The failure data for the first shovel, S1, is collected over 15 years from 

2006. The shovel has been in service for 75,198 meter unit hours (referred to as SMU hours or 

SMU unit hours throughout the document) as of 2020/08/01.  Hydraulic failures within 75,000 

hours of S1 operation were used in the analysis. The magnetic filter in this unit was installed at 

57,193 SMU hours. The failure data for the second unit, S2, is collected over ten years from 2011. 

The shovel has been working for 55,972 SMU hours as of 2020/10/06. Hydraulic failures within 

48,225 hours of S2 operation were used in the analysis. The magnetic filter in this unit was installed 

at 29,783 SMU hours.  The failure data for the third shovel, S3, is collected for over four years 

from 2017. The shovel has been working for 19,125 SMU hours as of 2020/11/18. Magnetic filter 

was installed before the unit started working in the mine. Hydraulic failures within 19,000 hours 

of S3 operation were used in the analysis. 

Historical failure data of the three shovels is maintained in a component replacement database. For 

every component replacement, a work order (WO) is generated with a unique ID, the date on which 

the repair started, and the date on which the WO was completed. Additional details w.r.t each WO 

were collected from different sources for the analysis. The data collected from these sources were 

categorized into three parts: Failure Description, Failure Details, and Failure Conditions. Figure 

14 shows the failure information collected for Mags’s analysis and different sources used to obtain 
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this information.  A total of 750 failure records of hydraulic component failure replacements of 

the three units of the hydraulic shovel fleet were collected. 

 

Figure 14. Details on hydraulic failure data collection 

 

The following information is collected in each of these three categories of data collected: 

• Failure Description: Data on work order, time of failure, unit number, fleet information, 

SMU unit at the time of failure, component description, and information about magnetic 

filter installation are collected in this category. 
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•  Failure Details: Details of the failures such as initial complaint, cause of failure, mode of 

failure, failure location, if the warranty is applicable on the failed component, and if the 

failure was caused by damage (operator abuse) are available in this set of information. 

• Failure Conditions: Conditions of the oil at the time of failure and prior to failure, such as 

wear particles generation at the time of failure; if the oil was changed before failure, meter 

reading since the last oil analysis sample was taken; if the oil analysis indicated any 

impending failure, particle count at the time of failure, particle count 600 hours before the 

failure, particle count 1200 hours prior to the failure and H2O level in the oil at the time of 

failure are recorded from the oil analysis results. Particle count measurement measures the 

number of 4μ, 6μ, 14μ, 25μ, 35μ, and 70μ particles (ppm) in the oil. The following table 

represents the percentage of the information available for each type of data collected in the 

three different units of shovels considered for analysis. 

 
Percentage of Data Available 

Failure Data Category 

Unit Time Period 
Failure 

Description 

Failure 

Details 

Failure 

Conditions 

S1 2005-12-19 to 2020-05-12 100% 40% 85% 

S2 2011-02-06 to 2020-03-09 100% 57% 83% 

S3 2016-12-20 to 2020-06-29 100% 32% 66% 

Table 4. Percentage of Information available for each unit 

 

Initial failure reports contain information recorded on-site at the time of failures. A typical IFR has 

a unique work order and consists of information regarding the unit-id, hydraulic failure images, 
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description of failure (example: severe damage to the cylinder eye bearing bore and snap ring 

broken), and details regarding wear of the component. A sample work order history is presented 

in Appendix A. 

Condition reports contain all component rebuild (maintenance/ repair work) data carried out on 

equipment. A typical condition report consists of essential information such as the associated work 

order replacement id, equipment id, the date on which repair work has started and ended, a brief 

description of the failure, and other information about warranty and damage. A sample condition 

report is presented in Appendix A. 

3.5 Data Processing 

The initial stage in evaluating Mags' performance is to filter for wear and contamination-related 

failures and eliminate component failures caused by physical damage and warranty-covered 

component failures. Failures related to design flaws and discrete components that do not satisfy 

manufacturer's standards are typically covered under warranty. As wear-related failures are not 

covered under warranty, the warranty failures have been eliminated. A few examples of wear-

related failures in hydraulic shovels include: 

▪ Scorn, worn, and cavitated cylinder and swash plates 

▪ Boom cylinder seal failure – internally bypassing 

▪ Clam Cylinder Leaking  

▪ Main Pump - Seal Failure - Hardened and Flattened – Leaking oil 
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A few examples of warranty-related hydraulic failures are: 

▪   Rotary Group Free Spinning  

▪ Servo Spools Backed Out  

▪ Poor Rebuild - Did Not Lap Cylinder Block and Valve Plate Surfaces Together -Leaking 

Internally and Plate Separation  

Some examples of hydraulic damage failures are as follows: 

▪ Overloading - Delivery tube hit hard and bent; damage sustained by overloading 

▪ Third Party Damage to Chrome - External Leakage 

Figure 15 represents the percentage of wear-related, warranty, and damage failures. 86 % of 

the total hydraulic component replacements were due to wear and contamination related 

problems, 5% of the component failures were due to physical damage, and 9% were warranty 

covered failures. 

 

Figure 15. Different types of hydraulic failures and their proportions 
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After the exclusion of damage and warranty failures, the wear contamination failures were used to 

analyze the quantitative impacts of Mag-filters. Different criteria such as average component life, 

reliability estimations, particle count analysis, comeback failure rates, and cost analysis were used 

to assess the performance of filters. These indicators were used to assess Mag's performance 

throughout various aspects and potential benefits/effects. The component life analysis is a 

primary key performance indicator that provides an overview of the equipment failures.  The 

reliability analysis describes component behavior over time. The oil particle count analysis aids in 

determining the hydraulic conditions at the time of failure and how they have changed since Mag-

filters were installed. The measures for comeback failure rate will aid in determining how 

component failure affects other hydraulic components. The cost analysis metrics would indicate 

the difference in cost per failure before and after magnetic filter installation. Figure 16 describes 

different steps used in the quantitative analysis of Mag-filters.  

 

 



87 
 

 

Figure 16. Different methods used in measuring efficiency of magnetic filters 

 

3.6 Hydraulic System of Shovels 

The hydraulic system consists of the pilot circuit, main circuit, pump transmission oil cooling 

circuit, oil cooler fan motor circuit, compressor motor circuit, and the travel shock damper/travel 

stop circuit. There are 45 different components located on either side of the system. The left engine 

provides power to the components on the left side of the system, and the right engine provides 

power to the right-side hydraulic components. There is one hydraulic tank in the system with 

2200L storage capacity. The following circuits constitute the hydraulic system: 

• Pilot Circuit supplies the pressure oil from the pilot pump to the operation control circuit, 

the pump control circuit, the travel mode control circuit, the travel parking brake release 
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circuit, the swing parking brake release circuit, the oil cooler fan motor speed control 

circuit, the Fast-Filling panel control circuit, and the auto lubrication circuit.  

•  Main Circuit Controls the pressure oil from the main pump at the control valve to drive 

the hydraulic actuators such as the cylinders and the motors. 

• Oil Cooler Fan Motor Circuit drives the oil cooler fan motor using the pressure oil from 

the oil cooler fan motor drive pump. 

• Compressor Motor Circuit drives the air compressor motor using the pressure oil from the 

compressor motor drive pump. 

• Pump Transmission Oil Cooling Circuit sends the transmission oil by means of the pump 

transmission oil pump to the oil cooler to lubricate and cool the transmission. 

•  Travel Shock Damper / Travel Stop Circuit damps shock loads applied to the front idlers 

and stops traveling if excessive loads are applied. 

 

3.7 Quantitative Analysis of Mag-filters 

The top eight components of the hydraulic system with the highest failure frequency were 

identified and the behavior of these components before and after the installation of Mag-filters 

were used to quantify the effects of the filters. Pareto analysis is performed to determine the 

components that contributed to the highest failure frequency, as represented in Figure 17 and 

Figure 19. The X-axis on the graphs represents the failure component, and the Y-axis represents 

the percentage of failures for each component.  
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Figure 17.  Pareto Charts of frequency of hydraulic failures 

 

Figure 18. Percentage of component failures of top eight identified components 
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Figure 17 indicates that main pumps have the highest failure frequency followed by the swing 

motors, travel motors, clam cylinders, control valves, bucket cylinders, oil cooler fan motors, and 

propel brake valves. The graph indicates that main pumps account for 20% of all failures. As a 

result, it can be deduced that main pumps fail more often than other components. According to the 

graph, the top eight components are responsible for 80% of failures. As a result, these components 

were included in the research to better understand the effects of Mag- filters. Figure 18 shows 

component failures as a percentage of the top eight components identified. The graph represents 

the distribution of data among the top eight identified components considered for further analysis. 

Main pumps, which have the highest failure frequency in the system, account for 27% of total 

failures considered in the analysis, whereas propel brakes, which have the eighth highest failure 

frequency in the system, account for roughly 7% of total failures considered in this study. Different 

approaches represented in Figure 16 were used to analyze and quantify the effects of Mag-filters. 

The five methods used in this study include component life analysis, reliability estimations, oil 

particle count analysis, cost analysis, and study of comeback failures. The data for each of these 

identified components were classified into two groups (before the installation of Mag-filters and 

post-installation of Mag-filters). These methods were used to evaluate the performance of the two 

groups.  The details of the analysis are presented in the following sections.  

After identifying the top eight components, Mag-filters are analyzed on five different metrics as 

represented in Figure 16. For all the eight identified components, performance was measured in 

terms of component life, reliability at different given time, oil analysis methods, cost analysis 

methods, and comeback failure method.  
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In the component life analysis, performance is measured mainly based on the average life of 

hydraulic components before and after the installation of Mag-filters. The ANOVA test is used to 

see if there is a significant difference in component life before and after Mag-filter installation. 

The frequency of failures is calculated before and after installation of filters. The variation in 

component life before and after installation is visualized using trend and histogram charts. 

Reliability analysis estimates the variation of probability of failure over time. Reliability of the 

components before and after the installation of Mag-filters is compared at 5000 hours, 10,000 

hours, and 15,000 hours. This gives an idea about the changes in wear rate and particle 

contamination failures in the system after the installation of Mag-filters.  

Particle count Analysis method is used to understand the change in particle count behavior before 

and after installation of Mag-filters. Pie charts are used to analyze percentage of failures in 

acceptable range, reportable and critical range.  

Comeback failure analysis is used to analyze the impacts of component failure on the performance 

of other components. The main idea of the analysis is that magnetic filters trap particles when a 

component fails. Because the particles are trapped in the filter, there is no spike in particles in the 

hydraulic oil, which helps to prevent failures of other components that might otherwise be 

influenced by prior failures. Hence, comeback failures in the next 1000 hours of operation 

following a component failure are investigated, as well as the change in behavior following the 

installation of Mag-filters is studied. 

Cost analysis helps in identifying the difference in cost spent on each failure before and after 

installation of Mag-filters across different components. This gives an idea about the cost saved per 
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failure after the installation of Mag-filters. The following sections represent in detail on the 

analysis of impacts of Magnetic filters. 

 

3.8 Component Life Analysis 

For component life analysis of hydraulic system, failure data is initially treated for outliers and 

missing values. The performance of magnetic filters is measured mainly based on the average life 

of hydraulic components before and after the installation of Mag-filters. ANOVA is used to check 

if there is significant variation in the average life in the two groups. The frequency of failures for 

every 10,000 hours before and after installation is calculated. Trend charts, box plots, and 

histograms are used to study the variation of component life before and after installation.  

3.8.1 Outlier and Missing value treatment  

Outliers in the collected data are the points that are distant from other similar points. Outlier data 

represents component life beyond manufacturers’ standards. The cause of outliers is due to 

variability and measurement errors in manually recording the failure SMU hours. They are 

detected using a z-score. Z-score indicates how much a given value differs from the standard 

deviation. The z-score of a value is provided by: 

 

 𝒁 =
𝒙 −  𝝁

𝝈
 

(38) 
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The value of z represents the standard score of the observed value. x represents the observed value, 

μ represents the mean of the component life, and σ represents the standard deviation. Data points 

that were 1.5 standard scores above the mean were eliminated.  

3.8.2 Average Life Analysis 

After eliminating the outliers, the average life of the components before and after the installation 

was compared for each of the top eight identified components. A one-way ANOVA test was used 

to compare if the average of the component life before and after installation were statistically 

significant. ANOVA works by comparing the variance of samples within and between the groups. 

If there is a signification variation (spread of data away from the mean) within the two groups, 

then there are greater chances that the mean of the samples selected are different due to chance. 

The F-value and p-value were used to understand whether there is a significant difference in the 

means of the two samples considered.  

The F-value column in the ANOVA test is the test statistic from the F test: the mean square of 

each independent variable divided by the mean square of the residuals. The larger the F value, the 

more likely the variation associated with the independent variable is real and not due to chance. 

The p-value is the probability value of the F-statistic. This shows how likely it is that the F-value 

calculated from the test would have occurred if the null hypothesis of no difference among group 

means were true. The null hypothesis of the test states: Means of the population are equal, all 

population samples have a common variance, and there is no significant difference in the mean of 

the groups. The alternate hypothesis states that the means of two populations vary significantly. 

The p-value is the evidence against the null hypothesis. Smaller the p-value (<0.05), the stronger 

the evidence to reject the null hypothesis. For the component analysis of Mag-filters, the aim is to 

check if the mean component life before and after the installation of Mag-filters is significantly 
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different or not. The null hypothesis is rejected if there is a significant difference between the two 

means i.e., if F> Fcrit (F-critical value) for given degrees of freedom and p-value < 0.05. 

Histograms were used to analyze the component life variation after the installation of magnetic 

filters by grouping TTF data of components into bins of equal width of 5000 hours to detect early 

failures (component life < 5000 hours), their causes, and to check if component life has increased 

after the installation of Mag-filters. The number of component failures every 10, 000-SMU hours 

and performance of components after installation was compared to the average component 

performance before installation for each of the top eight components. Trend charts were used to 

study how the component life changed over time. The results of component life analysis for each 

of the eight components are presented in the following section.  

3.9 Results of Component Life Analysis 

3.9.1 Main Pump Analysis 

Main Pumps are located in the main circuit of the hydraulic system. Main pumps transport fluid 

from the pilot circuit to hydraulic actuators through control valves. Two-unit main pumps are 

arranged in tandem, and 12 units in total (six units each on the right and left engines) are mounted 

on the machine. The right and left suction manifolds are connected to the hydraulic oil tank by two 

suction pipes. Each main pump draws hydraulic oil from the suction manifold. 6 suction filter units 

are provided in the hydraulic oil tank. As a control lever is operated, the pilot pressure oil from the 

pilot valve flows through the main pump regulator at the flow rate control pressure Pi. The pressure 

oil may not be supplied to the corresponding circuit depending on the operations of the control 

valves, even if the main pump delivers pressure oil at the maximum flow rate. Hydraulic oil 

delivered from a total of 12 main pump units is routed to 6 control valve units via the high-pressure 

strainer. 3 control valve units are located on both right and left sides. Hydraulic oil delivered from 
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main pumps (MP1 to MP6) on the left engine flows to the 3 control valve units on the left side, 

and hydraulic oil delivered from the main pump (MP7 to MP12) flows to the 3 control valve units 

on the right side. The following section presents component life analysis results of the main pumps. 

The average life of main pumps before the elimination of outliers is 16,231 hours, and the standard 

deviation (SD) is 9395.9 hours. Data points above 1.5 standard scores, i.e., failures with TTF > 30,000 

hours, were eliminated. The following plot represents outliers in the main pump TTF data. The X-axis 

represents the meter reading (SMU hours) of the shovel fleet and the Y-axis represents the TTF hours 

(Component Life) of the main pumps. 12% data points that had errors in recordings with pump life of 

greater than 30,000 hours. These data points were eliminated.  

Figure 19. Outlier detection in main pump component analysis 

After eliminating the outliers, the main pump average life was calculated. Table.5 through Table.7 

shows the component life analysis of main pumps. The average life of pumps before the installation 
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of Mag-filters is 14915 hours, and post-installation is 12197 hours. The average performance of 

main pumps is 12568 hours. 52% of the pumps performed better than average life before Mags’ 

installation and only 38% of the pumps performed better than average life post-installation. When 

compared to the average life of main pumps before Mags’ installation (i.e., 14915 hours), 32% of 

the magnetic filter pumps have performed better than the pump average life before installation. On 

average, in the S1 unit, 3 pumps were replaced every 10,000 hours before installation, and 3 pumps 

were replaced every 10,000 hours post-Magnetic filter installations. On average, in S2, 1 pump 

was replaced every 10,000 hours before installation and 3 post-Mag installations. The average life 

of S1 main pumps has increased post-installation of Mag-filters.  

MAG-FILTERS AVERAGE LIFE (HOURS) 
%PUMPS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 14915 52% 

AFTER INSTALLATION 12197 38% 

 

Table 5. Average life analysis of main pump failures 

 

X- Average Life of Main Pumps before Mag-filters installation Avg Life – 14915 

%Pumps with higher average life than X after Mags installation 32% 

 

Table 6. Percentage of Mags installed main pumps compared to average life pre-installation 
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Table 7. Frequency of main pump failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the main pump average life 

before installation of Mags and the main pump average life after installation of Mags) varied 

significantly. Normality of main pump failure data is checked by comparing mean and median 

values of the distribution, skewness of the data, and Normal Probability Distribution (NPP plot). 

The details of the analysis are mentioned in Appendix A. With the above tests, the data is nearly 

normally distributed and hence ANOVA test is used to check the significance. The ANOVA test 

results for the main pump average life analysis before and after installation of Mag-filters are 

represented in Table.8.  

The null hypothesis of the test states: Means of the samples are equal, and all populations have a 

common variance. The alternate hypothesis states that the means of two populations vary 

significantly. For the main pump component analysis, F > Fcrit and p <0.05. Hence, the two-

sample means vary significantly. This infers the component life of main pumps post-installation 

of Mags and the component life prior to Mag-filters installation vary significantly. The decrease 

in component life can be largely influenced by the working location and condition of the 

equipment, physical properties that impact rock and soil hardness and abrasion index.  

 

 #PUMPS REPLACE PER 10000 BEFORE MAG-
FILTER INSTALLATION 

#PUMPS REPLACE PER 10000 HOURS 
AFTER MAG-FILTER INSTALLATION 

S1 3 3 

S2 1 3 
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ANOVA - MAIN PUMP      

SOURCE OF VARIATION SS Df MS F P-value F crit 

BETWEEN GROUPS 81115623 1 81115623 1.901863 0.017517 0.072654 

WITHIN GROUPS 1.79E+09 42 42650607    

       

TOTAL 1.87E+09 43     

 

Table 8. ANOVA results for average life analysis of main pumps 

 

Figure 20 and Figure 21 represent histograms for TTF data of the main pumps. TTF data is grouped 

into different bins with equal widths of 5000 component life hours and the number of failures is 

plotted on the y axis corresponding to each bin. Figure 19 indicates that overall, less than 10% of 

the pumps have failed in less than 5000 hours. The pumps (with TTF < 5000 hours) are from unit 

S2 and have failed after the Mag-filters were installed. Most pumps have component life in the 

range of 5000 – 10,000 hours and 15,000 – 20,000 hours intervals. The number of failure before 

and after installment is randomly distributed among all intervals. Figure 20 indicates the number 

of failures in different TTF intervals before and after the installation of Mag-filters. Around 4% of 

pumps have less than 5,000 hours of component life before the installation of magnetic filters and 

10% of pumps have failed in less than 5,000 hours after installation of Mag-filters. Around 26% 

of pumps have achieved a pump life of greater than 20,000 hours before the installation of Mag-

filters and around 14% of pumps have achieved a pump life of greater than 20,000 hours after the 

installation of Mag-filters. The histogram charts indicate that there is same distribution of pumps 

having component life of <10,000 hours before and after the installation of Mag-filters whereas a 
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higher number of pumps have achieved greater than 20,000 hours of life before the installation of 

Mags compared to post-installation of filters.  

Figure 20. Failure frequency of main pumps in different TTF intervals 
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Figure 21. Failure frequency of main pumps in different TTF intervals before and after Mag-filters 

installation 

In order to study the details of performance difference before and after installation of Mag-filters, 

trend charts were plotted to study the change of component life over time. Figure 22 and Figure  

23 represent the component life trend before and after the installation of Mag-filters in both S1and 

S2 units. Unit SMU hours VS Component Life graphs were plotted to check for the variation in 

pump performance before and after the installation of magnetic filters. The red line denotes the 

Mag-filter installation SMU hours. From Figures. 22 and Figure 23, it can be inferred that the 

initially installed pumps when the machine was newer have greater average life (>20,000 hours) 

and the performance of pumps has steadily been decreasing as the equipment is aging. From Figure 

22, in the S1 unit, the pump performance was observed to be varying randomly post-installation 

of magnetic filters whereas, in the S2 unit (Figure 23), the component life of pumps has improved 

steadily after installation of Mag-filters, but the pumps are not able to achieve their full life of 

(>20000 hours). The reasons might be the location of the equipment in the mine site or the previous 
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failures and wear generation in the hydraulic oil over time are having greater impact on pump 

average life. However, after the installation of Mag-filters, the pump life seems to have improved. 

 

Figure 22. Component Life Analysis of S1 Main Pumps 
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Figure 23. Component Life Analysis of S2 Main Pumps 

 

3.9.2 Swing Motor Analysis 

Swing motors are located in the main circuit of the hydraulic system. Swing motors are hydraulic 

motors that form the proper turning force of excavator booms using oil pressure, shift rotation 

either to the right or left and convey or cut off turning power. Swing motors are supplied oil from 

upper left and lower right control valves. There are 4 swing motors, two of which are situated in 

the front and two in the rear of the hydraulic system. The swing motor is driven by the pressure oil 

from the pump and transmits its output to the reduction gear. The following section presents 

component life analysis results of swing motors. 

The average life of swing motors before eliminating outliers is 13,273 hours and the SD is 8786.12. 

Data points above 1.5 standard scores, i.e., failures with TTF > 30,000 hours, were eliminated. The 

following plot represents the outliers in TTF data of swing motors. The X-axis represents the meter 
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reading (SMU hours) of the shovel fleet and the Y-axis represents the TTF hours of the swing motors. 

One swing motor failure had errors in recordings with motor life greater than 30,000 hours. This data 

point was eliminated.  

 

Figure 24. Outlier detection of swing motor failures 

 

After eliminating the outlier, the swing motor average life was calculated. Table.9 through Table. 

11 shows the component life analysis of swing motors. The average life of motors before 

installation of Mag-filters is 12885 hours and post-installation is 11577 hours. The average 

performance of swing motors is 12230 hours. 53% of the motors performed better than average 

before Mag installation and 39% of the motors performed better than average after installation. 

When compared to the average life of swing motors before Mag installation (i.e., 12885 hours), 

39% of the Mag installed swing motors have performed better than the motor average life before 

installation. On average, in the S1 unit, 3 motors were replaced every 10,000 hours before 
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installation and 3 motors were replaced every 10,000 hours post-Magnetic filter installations. On 

average, in S2, 3 motors were replaced every 10,000 hours before installation and 6 post-filter 

installations.  

MAG-FILTERS AVERAGE LIFE 
#MOTORS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 12885 53% 

AFTER INSTALLATION 11577 39% 

 

Table 9. Average Life analysis of swing motor failures 

 

X- Average life of swing motors before Mag installation Avg Life – 12885 

Percentage of Mag swing motors performing above average life X 39% 

 

Table 10. Performance of Mag installed swing motors compared to average life pre-installation 
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Table 11. Frequency of swing motor failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the swing motor average life 

before installation of Mag-filters and the swing motor average life after installation of Mag-filters) 

varied significantly. Normality of the data is checked by comparing mean and median values of 

the distribution, and Normal Probability Distribution (NPP plot). The details of the analysis are 

mentioned in Appendix A. With the above tests, the data nearly followed a normal distribution, 

and hence ANOVA test was used to check the difference in mean. The following table displays 

the ANOVA results for swing motor average life before and after installation of Mag-filters.  

The null hypothesis of the test states: Mean of swing motor life before installation and after 

installation of filters are equal, and all both populations have a common variance. The alternate 

hypothesis states that the means of two populations vary significantly. For the swing motor 

component analysis, F < Fcrit and p >0.05. Hence, the two means do not vary significantly. This 

means there is no significant difference in the component life before and after installation of Mag-

filters.  

 

 TOTAL LIFE 
#MOTORS REPLACED PER 

10000 HOURS BEFORE FILTER 
INSTALLATION 

#MOTORS REPLACED PER 10000 
HOURS AFTER FILTER 

INSTALLATION 

S1 72987 3 3 

S2 46963 3 6 
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ANOVA TEST - SWING 
MOTORS 

            

SOURCE OF VARIATION SS df MS F P-value F crit 

BETWEEN GROUPS 14984015 1 14984015 0.36733 0.548489 4.130018 

WITHIN GROUPS 1.39E+09 34 40791727       

              

TOTAL 1.4E+09 35         

 

Table 12. ANOVA test for swing motor average life analysis 

 

Figure 25 and Figure 26 represent histograms for TTF data of the swing motors. TTF data is 

grouped into different bins with equal widths of 5000 component life hours and the number of 

failures is plotted on the y axis corresponding to each bin. Figure 25 indicates that around 10% of 

the motors have failed in less than 5000 hours. Failures are evenly distributed in all intervals from 

5000 to 20,000. This means most motors fail randomly anywhere between 5000 to 15,000 hours. 

Only 8% of swing motors in total have achieved full life. There are 10% more failures in less than 

10,000 hours after the installation of Mag-filters. 20% of swing motors have achieved more than 

20,000 hours of life before installation, but none of the motors have achieved greater than 20,000 

hours of component life after Mag installation. Figure 26 indicates that the performance of swing 

motors before and after installation is almost similar.   
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Figure 25. Failure frequency of Swing Motors 

Figure 26. Failure Frequency of Swing motors before and after Mag installation 
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Figure 27 and Figure 28 represent the component life trend before and after the installation of 

Mag-filters in both S1 and S2 units. Unit SMU hours VS Component Life graphs were plotted to 

analyze the variation in swing motor performance before and after the installation of magnetic 

filters. The red line denotes the SMU hour at which the filter was installed. From Figure 27 and 

Figure 28, it can be inferred that the initially installed motors when the machine was newer have 

greater average life (>20,000 hours) and the performance of motors has steadily been decreasing 

as the equipment is aging. In S1, the first motor has achieved above 20,000 hours life and then the 

performance is decreasing constantly. The red line denotes Mag installed SMU hour. The 

performance after the installation has somewhat increased.  In S2, there is no trend in component 

life and failures are random. The initial motor has achieved high hours whereas there is a 

significant decline in the second motor. Swing motor life has not increased post-installation of 

Mags. Instead, the failure rate has increased. The reasons might be the location of the equipment 

in the mine site, or the previous failures and component wear generation in the oil influencing the 

average life. 

 

Figure 27. Component Life Analysis of S1 swing motors 

 

0

5000

10000

15000

20000

25000

30000

35000

20000 30000 40000 50000 60000 70000C
o

m
p

o
n

en
t 

Li
fe

 (
h

o
u

rs
)

Unit SMU (hours)

S1 Component life analysis for swing motors



109 
 

 

Figure 28. Component Life Analysis of S2 swing motors 

 

3.9.3 Travel Motor Analysis 

Travel motor is a part of main circuit of the hydraulic system. Travel motors are hydraulic motors 

that increase driving power properly for the travel conditions of shovels using oil pressure, 

maintain adequate speed, shift the gears to move forward or backward, and convey or cut off 

power. Travel motors are supplied oil from center left and upper right control valves when 

operating the left track and are supplied oil from lower left and center control valves when 

operating the right track. There are four travel motors, two of which are located on the left side, 

and two are located on the right side of the hydraulic system. The travel motor is driven by the 

pressure oil from the main pump and rotates the travel reduction gear.  

The average life of travel motors is 20,410 hours, and the SD is 5440.25 hours. There were no outliers 

in the dataset. The following plot represents TTF data of travel motors. The X-axis represents the meter 

reading (SMU hours) of the shovel fleet, and the Y-axis represents the TTF hours of the travel motors. 
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47% of the travel motor failures were damage-related failures.  The component life analysis of travel 

motors is presented from Table. 13 through Table. 15. 

 

Figure 29. Outlier detection of travel motors 

 

The average life of travel motors before installation of Mags is 18,734 hours, and post-installation 

is 23,017 hours. The average performance of travel motors is 20,410 hours. 53% of the motors 

performed better than average life of motors before Mag installation and 100% of the motors 

performed better than average life after installation. When compared to the average life of travel 

motors before Mag installation (i.e., 18,734 hours), all the Mag-filter installed travel motors have 

performed better than the motor's average life before installation. On average, in the S1 unit, two 

motors are replaced every 10,000 hours before installation and one motor is replaced every 10,000 

hours post-Mag installations. On average, in S2, one motor was replaced every 10,000 hours before 

installation, and the machine has run for 19,375 hours until 2020, and none of the travel motors 

have failed. 
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MAG-FILTERS AVERAGE LIFE 
#MOTORS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 18734 57% 

AFTER INSTALLATION 23017 100% 

Table 13. Average Life analysis of travel motor failures 

 

 

Table 14. Performance of Mag installed travel motors compared to average life pre-installation 

 

Table 15. Frequency of travel motor failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the travel motor average life 

before installation of Mag-filters and the travel motor average life after installation of Mag-filters) 

varied significantly or not. Normality of the data is checked by comparing mean and median values 

X- Average life of motors before Mag Installation Avg Life – 18734 

#Motors Performing Above Average Life X after installing 
Mag-filters 

100% 

 #MOTORS REPLACE PER 10000 HOURS 
BEFORE MAG INSTALLATION 

#MOTORS REPLACE PER 1000 
HOURS AFTER MAG INSTALLATION 

S1 2 2 

S2 1 None 
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of the distribution, and Normal Probability Distribution (NPP plot). The details of the analysis are 

mentioned in Appendix A. With the above tests, the data is nearly normally distributed, and hence 

ANOVA test can be used to check the significance. The following table displays the ANOVA 

results for swing motor average life before and after installation of Mag-filters.  

ANOVA – TRAVEL MOTORS        

SOURCE OF VARIATION SS Df MS F P-value F crit  

BETWEEN GROUPS 1.01E+08 1 1.01E+08 3.638638 0.070223 4.324794  

WITHIN GROUPS 5.8E+08 21 27627915     

TOTAL 6.81E+08 22      

Table 16. ANOVA test for travel motor average life analysis 

 

The null hypothesis of the test states: Means of travel motor life before and after the installation 

of Mags are equal, and both populations have a common variance. The alternate hypothesis states 

that the means of two populations vary significantly. For the swing motor component analysis, F 

< Fcrit and p >0.05. Hence, there is a 7% chance that the average of both groups does not vary 

significantly.  

Figure 30 and Figure 31 represent histograms for TTF data of the travel motors. TTF data is 

grouped into different bins with equal widths of 5000 component life hours, and the number of 

failures is plotted on the y axis corresponding to each bin. Figure 30 indicates around 10% of the 

travel motors have failed in less than 5000 hours. Around 17% of the motors have failed between 

15,000 and 20,000 hours, and 73% of components have achieved more than 20,000 hours life. 

From Figure 31, it can be inferred that before Mag- installation, 14% of components failed in less 
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than 5000 hours, around 30% of failures are between 15,000 and 20,000 hours and 57% of 

components have achieved greater than 20,000 hours. After installing Mag-filters, all the 

components have achieved greater than 20,000 hours of component life. Component life has 

significantly after the installation of Mag-filters.  

Figure 30. Failure frequency analysis of travel Motors 

Figure 31. Failure Frequency of travel motors before and after Mag installation 
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3.9.4 Clam Cylinder Analysis 

The average life of clam cylinders is 7172 hours, and the SD is 3308.12 hours. Data points above 2 

standard scores, i.e., failures with TTF > 13,000 hours, were eliminated. The following plot represents 

the outliers detected in TTF data of clam cylinders. The X-axis represents the meter reading (SMU 

hours) of the shovel fleet, and the Y-axis represents the TTF hours of the clam cylinders. 7% of clam 

cylinder failures had errors in recordings with cylinder life greater than 13,000 hours. These data points 

were eliminated.  

 

Figure 32. Outlier detection of clam cylinder failures 

 

Clam cylinder average life was calculated after eliminating the outliers. The average life of 

cylinders before installation of Mag-filters is 8823 hours, and post-installation is 5659 hours. The 

average performance of clam cylinders is 7172 hours. 64% of the cylinders performed better than 

average life before the filter installation, and 42% of the cylinders performed better than average 
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after installation. When compared to the average life of clam cylinders before Mag installation 

(i.e., 8824 hours), 17% of the magnetic filter installed cylinders have performed better than the 

average life before installation. On average, in the S1 unit, two clam cylinders were replaced every 

10,000 hours before installation, and two cylinders were replaced every 10,000 hours post-Mag 

installations. On average, in S2, two cylinders were replaced every 10,000 hours before installation 

and three were replaced post-Mag installations. Table. 17 through Table. 19 present component 

life analysis of clam cylinders. 

ANOVA test was used to check if the mean of the two groups, i.e., (the clam cylinder average life 

before installation of Mag and the average cylinder life after installation of Mag-filters) varied 

significantly. Normality of the data is checked by comparing mean and median values of the 

distribution, and Normal Probability Distribution (NPP plot). The details of the analysis are 

mentioned in Appendix A. With the above tests, the data is nearly normally distributed and hence 

ANOVA test was used to check the significance. Table. 20 displays the ANOVA results for clam 

cylinder average life before and after installation of Mag-filters.  

The null hypothesis of the test states: Means of the population i.e., component life of clam 

cylinders before and after filter installation are equal, and both populations have a common 

variance. The alternate hypothesis states that the means of two populations vary significantly. For 

the clam cylinders, component analysis, F > Fcrit and p <0.05. Hence, the two means vary 

significantly. This means there is a significant difference in the component life before and after 

installation of Mags. The component life is significantly lesser than the average component life 

before the installation of filters.  
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Table 17. Average Life analysis of clam cylinder failures 

 

 

 

 

Table 18. Performance of Mag installed clam cylinders compared to average life pre-installation 

  

 

 

Table 19. Frequency of clam cylinder failures before and after installation of Mag-filter 

 

X- Performance of Cylinders before Mag installation Avg Life – 8824 

% Mag installed Cylinders Performing above Average Life X 17% 

MAG-FILTERS AVERAGE LIFE 
#CYLINDERS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 8823 64% 

AFTER INSTALLATION  5659 42% 

 #CYLINDERS REPLACED PER 10000 HOURS 
BEFORE MAGNETIC FILTER INSTALLATION 

#CYLINDERS REPLACED PER 10000 
HOURS AFTER MAGNETIC FILTER 

INSTALLATION 

S1 2 2 

S2 2 3 
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Table 20. ANOVA test for clam cylinder average life analysis 

 

Figure 33 and Figure 34 represent histograms for TTF data of the clam cylinders. TTF data is 

grouped into different bins with equal widths of 3000 component life hours, and the number of 

failures is plotted on the y axis corresponding to each bin. 17% of the total cylinders have failed 

in less than 3000 hours whereas only 9% failed before installation and 25% of the cylinders failed 

in less than 3000 hours after installation. 36% of the cylinders have achieved greater than 9000 

hours and 18% of cylinders have achieved greater than 12,000 of component life before filter 

installation. Only 17% of the magnetic filter installed cylinders have greater than 9000 hours of 

component life, and no cylinders have achieved greater than 12,000 hours after installation of 

Mags. 

 

ANOVA- CLAM CYLINDER 
           

SOURCE OF VARIATION SS df MS F P-value F crit 

BETWEEN GROUPS 57479153 1 57479153 6.212918 0.021114 4.324794 

WITHIN GROUPS 1.94E+08 21 9251555       

 
            

TOTAL 2.52E+08 22         
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Figure 33. Frequency analysis of clam cylinder failures 

 

Figure 34. Failure frequency of clam cylinders before and after Mag installation 
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Figure 35 and Figure 36 represent the component life trend before and after the installation of 

Mags in both S1 and S2 units. The red line denotes Mag-filter installed SMU hour. The 

performance after the installation has somewhat increased and later decreased again. In S1, there 

is no trend in component life and failures are random. There is a random variation in cylinder 

performance before installation. The performance of the cylinders has increased after installing 

Mags. In S2, the first cylinder has achieved a good life of above 13,000 hours, and then the 

performance is constantly decreasing. The reasons might be the location of the equipment in the 

mine site or the previous failures and other components generating wear in the oil are influencing 

the average life. 

 

Figure 35. Component Life Analysis of S1 clam cylinders 
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Figure 36. Component Life Analysis of S2 clam cylinders 

 

3.9.5 Control Valves 

The control valve is in the main circuit of the hydraulic system. A control valve in the shovel 

hydraulic system is tasked with the regulation of fluid speed, and by regulating the rate, it can 

control the speed of an actuator in the system. The control valve controls the oil flow in the 

actuators as directed by the DQR valves. The pump supplies hydraulic oil to the actuators through 

control valve. There are 6 control valves, three of which are located on the left side and three are 

located on the right side of the hydraulic system of the shovels considered in the analysis. 

Hydraulic oil delivered from a total 12 main pump units is routed to 6 control valve units via the 

high-pressure strainer. One unit of the control valve on each side has the same spool arrangement 

so that all hydraulic actuators such as cylinders and motors can be controlled by operating 3 control 

valve units located on one side.  
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The average life of control valves before outlier elimination is 27526 hours, and the SD is 4584.45 

hours. Data points above 1.5 standard scores from the mean, i.e., failures with TTF > 36,694 hours 

were eliminated. The following plot, Figure 37 represents the outliers in TTF data of control 

valves. The X-axis represents the meter reading (SMU hours) of the shovel fleet, and the Y-axis 

represents the TTF hours of the control valve. These data points were eliminated. Around 20% of 

the data had a component life of above 35000 hours, and these data points were eliminated. 

 

Figure 37. Outlier detection of control valve failures 

 

Control valve average life was calculated after eliminating the outliers. The average life of valves 

before installation of Mag-filters is 23359 hours and post-installation is 18103 hours. The average 

performance of control valves is 20355 hours. 44% of the valves performed better than average 

before Mags installation and 46% of the valves performed better than average after installation. 

When compared to the average life of control valves before Mags’s installation (i.e., 23359 hours), 
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none of the Mag-installed control valves have performed better than the valve average life before 

installation. On average, in the S1 unit, one control valve was replaced every 10,000 hours before 

installation, and three valves were replaced every 10,000 hours post-Mag installations. On average, 

in S2, two valves were replaced every 10,000 hours before installation and one post-Mag 

installation. The component life analysis of control valves is represented in Table. 21 and Table. 

22. 

MAG-FILTERS AVERAGE VALVE LIFE 
#VALVES PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 23359 44% 

AFTER INSTALLATION 18103 46% 

 

Table 21. Average Life analysis of control valve failures 

 

 

Table 22. Frequency of control valve failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the control valve average life 

before installation of Mags and the control valve average life after installation of Mags) varied 

 #VALVES REPLACE PER 10000 HOURS 
BEFORE MAG-INSTALLATION 

#VALVES REPLACE PER 10000 HOURS 
AFTER MAG- INSTALLATION 

S1 1 3 

S2 2 1 
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significantly or not. Normality of the data is checked by comparing mean and median values of 

the distribution, and Normal Probability Distribution (NPP plot). The details of the analysis are 

mentioned in Appendix A. With the above tests, the data is nearly normally distributed, and hence 

ANOVA test can be used to check the significance. The following table displays the ANOVA 

results for control valve average life before and after installation of Mag-filters.  

The null hypothesis of the test states: Means of the population of component life of control valves 

are equal, and all populations have a common variance. The alternate hypothesis states that the 

means of two populations vary significantly. From Table. 23, F< Fcrit and p >0.05. Hence, the two 

means do not vary significantly. This means there is no significant difference in the component 

life before and after installation of Mag-filters. 

ANOVA - CONTROL VALVES             

SOURCE OF VARIATION SS Df MS F P-value F crit 

BETWEEN GROUPS 94711618 1 94711618 3.696116 0.34344 4.747225 

WITHIN GROUPS 2E+08 12 16627403    

       

TOTAL 2.94E+08 13     

 

Table 23. ANOVA test for control valve average life analysis 

 

Figure 38 represents histograms for TTF data of the main control valves. TTF data is grouped into 

different bins width of 5000 component life hours, and the number of failures is plotted on the y 

axis corresponding to each bin. All the failures before the installation of Mag-filters have achieved 

greater than 20000 hours of component life and post-installation of Mag-filters, 75% of valves has 
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achieved component life of greater than 20000 hours. 25% of the failures have less than 10000 

hours of component life.  

 

Figure 38. Failure frequency analysis of control valves 

 

3.9.6 Bucket Cylinders 

The bucket cylinder allows the movement of the bucket, or any other accessory mounted on the 

quick coupler. Bucket cylinders are in the delivery circuit of the hydraulic system. Bucket 

cylinders are supplied oil from all the control valves during tilting-in operations and from four of 

the six control valves during tilting-out operations.  

The average life of bucket cylinders is 15,492 hours, and the SD is 6088.45 hours. Data points 

above 1.5 standard scores, i.e., failures with TTF > 25,000 hours, were identified as outliers. The 

following plot (Figure 39) represents the outliers in TTF data of control valves. The X-axis 
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represents the meter reading (SMU hours) of the shovel fleet, and the Y-axis represents the TTF 

hours of the control valve. As indicated from the graph, no outliers are recorded in the data. 

Figure 39. Outlier Detection of Bucket Cylinder 

Bucket Cylinder average life was calculated before and after Mag installation. The average life of 

the cylinders before installation of Mags is 13347 hours, and post-installation is 12718 hours. The 

average performance of bucket cylinders is 13095 hours. 55% of the cylinders performed better 

than average before Mag installation, and 50% of the cylinders performed better than average after 

installation. When compared to the average life of bucket cylinders before Mag installation (i.e., 

13347 hours), 50% of the Mag installed bucket cylinders have performed better than the cylinder 

average life before installation. On average, in the S1 unit, one bucket cylinder was replaced every 

10,000 hours before installation, and one cylinder was replaced every 10,000 hours post-Mag-filter 

installations. On average, in S2, one cylinder was replaced every 10,000 hours before installation 
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and one-cylinder post-Mag-filter installation. The component life analysis of bucket cylinders is 

represented in Table. 24 through Table. 26. 

 

MAG-FILTERS AVERAGE LIFE #CYLINDERS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 13347 55% 

AFTER INSTALLATION 12718 50% 

Table 24. Average Life analysis of bucket cylinder failures 

 

X - Average Life of cylinders before the installation 
of Mags 

Avg Life - 13347 

#Cylinders Performing Above Average Life X 50% 

Table 25. Performance of Mag installed bucket cylinders compared to average life pre-installation 

 

  #CYLINDERS REPLACED PER 
10000 HOURS BEFORE MAGNETIC 

FILTER INSTALLATION 

#CYLINDERS REPLACED PER 
10000 HOURS AFTER MAGNETIC 

FILTER INSTALLATION 

S1 1 1 

S2 1 1 

 

Table 26. Frequency of bucket cylinders failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the bucket cylinder average 

life before installation of Mags and the bucket cylinder average life after installation of Mags) 

varied significantly or not. Normality of the data is checked by comparing mean and median values 
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of the distribution, and Normal Probability Distribution (NPP plot). The details of the analysis are 

mentioned in Appendix A. With the above tests, the data represents a nearly normal distribution, 

and hence ANOVA test can be used to check the significance. The following table (Table. 27) 

displays the ANOVA results for bucket cylinder average life before and after installation of Mag-

filters.  

The null hypothesis of the test states: Means of the component life of bucket cylinder before and 

after installation of Mag-filters are equal, and all populations have a common variance. The 

alternate hypothesis states that the means of two populations vary significantly. For the bucket 

cylinders component analysis, F < Fcrit and p > 0.05. Hence, the two means do not vary 

significantly. This means there is no significant difference in the component life before and after 

installation of Mag-filters. Hence, the two means do not vary significantly.  

ANOVA             

SOURCE OF 
VARIATION 

SS Df MS F P-value F crit 

BETWEEN GROUPS 44462904.92 1 44462905 1.118059 0.313005 4.844336 

WITHIN GROUPS 437447534 11 39767958 
  

  
      

  

TOTAL 481910438.9 12         

 

Table 27. ANOVA test for bucket cylinder average life analysis 

 

Figure 40 and Figure 41 represent histograms for TTF data of the bucket cylinders. TTF data is 

grouped into different bins width of 5000 component life hours and the number of failures is 

plotted on the y axis corresponding to each bin. Around 31% of the total cylinders have worked 

for greater than 20000 hours, of which 25% are Mag-filter installed cylinders. Around 16% of all 
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cylinders failed have performed lesser than 10000 hours. 25% of Mag installed cylinders have less 

than 10000 hours of average life and around 11% of cylinder failures occurred in less than 10,000 

hours before the installation of Mag-filters.  

Figure 40. Failure frequency of bucket cylinder in different TTF Intervals 

 

Figure 41. Failure Frequency of bucket cylinders before and after Mag installation 
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3.9.7 Propel Brake Valve 

The propel flow control valve is used to reduce shock loads on the shovels. The shock loads are 

caused by the operation of shovel dig functions. The propel brake control valves are located in the 

brake release circuit of the hydraulic system. When a dig function is actuated while propelling the 

pilot pressure signal along with the control valve, oil flows through the orifice of the check valve 

assembly to gradually shift the propel flow control valve spool. The gradual shift of the spool 

slowly restricts the flow of supply oil to the control valve reducing any shock loads. The pilot 

pressure signal is released quickly through the check valve when all the dig functions are returned 

to neutral. The propel flow control valve spool is shifted quickly to the open position by the spring. 

There are four propel brakes in the hydraulic system of the considered shovels, two of which are 

located on the right side and two are located on the left side of the hydraulic system.  

The average life of propel brake valves before outlier elimination is 19315 hours, and the SD is 

8655 hours. Data points above 1.5 standard scores, i.e., failures with TTF > 33,000 hours, are 

identified as outliers. The following plot represents the outliers of TTF data of propel control 

valves. The X-axis represents the meter reading (SMU hours) of the shovel fleet, and the Y-axis 

represents the TTF hours of the control valve. As indicated from the graph (Figure  41), 4 failure 

points that are recorded in the data have component life of greater than 33,000 hours. These data 

points were eliminated.  
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Figure 42. Outlier Detection of Propel Valve failures 

 

Propel control valve average life was calculated after eliminating outliers. The average life of the 

valves before installation of Mag-filters is 15095 hours, and post-installation is 23359 hours. The 

average performance of propel valves is 17849 hours. 75% of the valves performed better than 

average before Mag installation, and 50% of the valves performed better than average after 

installation. When compared to the average life of propel valves before Mag installation (i.e., 

13347 hours), 20% of the Mag installed propel valves have performed better than the average life 

before installation. On average, in the S1 unit, two valves were replaced every 10,000 hours before 

installation, and one valve was replaced every 10,000 hours post-Mag installations. On average, 

in S2, two valves were replaced every 10,000 hours before installation and one post-Mag 

installation. Table. 28 through Table. 30 present component life analysis of propel brake valves. 
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MAG-FILTERS AVERAGE LIFE 

#VALVES PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 23359 75% 

AFTER INSTALLATION 15095 50% 

 

Table 28. Average Life analysis of propel brake valve failures 

 

 

X - AVERAGE LIFE OF PROPEL VALVES BEFORE THE 

INSTALLATION OF MAG-FILTERS 
AVG LIFE - 23359 

#VALVES PERFORMING ABOVE AVERAGE LIFE X 20% 

 

Table 29. Performance of Mag installed propel valve compared to average life pre-installation 

 

Table 30. Frequency of propel brake valves failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the propel valves’ average life 

before installation of Mags and the average life after installation of Mags) varied significantly or 

 

#VALVES REPLACED PER 10000 HOURS 

BEFORE MAG INSTALLATION 

#VALVES REPLACED PER 10000 

HOURS AFTER MAG INSTALLATION 

S1 2 1 

S2 2 1 
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not. Normality of the data is checked by comparing mean and median values of the distribution, 

and Normal Probability Distribution (NPP plot). The details of the analysis are mentioned in 

Appendix A. With the above tests, the data represents a nearly normal distribution, and hence 

ANOVA test can be used to check the significance. The following table (Table. 31) displays the 

ANOVA results for propel valve average life before and after installation of Mag-filters.  

The null hypothesis of the test states: Means of the population are equal, and all populations have 

a common variance. The alternate hypothesis states that the means of two populations vary 

significantly. For the propel valves, component analysis, F >Fcrit and p< 0.02. Hence, the two 

means vary significantly. This means there is significant difference in the component life before 

and after installation of Mag-filters.  

Table 31. ANOVA test for propel valve average life analysis 

 

3.9.8 Hydraulic Oil Cooler Fan Motor 

The hydraulic oil cooler fan motor drives the pressure oil from the oil cooler fan motor pump to 

the hydraulic oil cooler. It is located in the oil cooler fan motor circuit. The oil cooler fan motor 

circuit prevents the oil from overheating which is a critical function in the hydraulic system. There 

ANOVA- PROPEL VALVE             

SOURCE OF VARIATION SS df MS F P-value F crit 

BETWEEN GROUPS 1.82E+08 1 1.82E+08 7.217794 0.022833 4.964603 

WITHIN GROUPS 2.52E+08 10 25231605 
  

  

      
  

TOTAL 4.34E+08 11         
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are two hydraulic oil cooler fan motors one situated on the front and the other on the rear side of 

the hydraulic system.   

The average life of the oil cooler fan motor before outlier elimination is 21307 hours, and the SD 

is 10453 hours. Data points above 1.5 standard scores, i.e., failures with TTF > 38,000 hours, are 

considered outliers. The following plot represents the outliers of TTF data of propel control valves. 

The X-axis represents the meter reading (SMU hours) of the shovel fleet, and the Y-axis represents 

the TTF hours of the control valve. As indicated from the graph (Figure 43), one failure point that 

is recorded in the data has a component life of greater than 38,000 hours. This data point was 

eliminated.  

Figure 43. Outlier Detection of Oil Cooler Fan Motor failures 
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Hydraulic oil cooler fan motor average life was calculated after eliminating outliers. The average 

life of the motors before installation of Mags is 12348 hours, and post-installation is 14482 hours. 

The average performance of oil cooler fan motors is 13826 hours. 40% of the motors performed 

better than average before Mag installation, and 71% of the motors performed better than average 

after installation. When compared to the average life of motors before Mag- installation (i.e., 12348 

hours), 71% of the Mag installed motors have performed better than the motor average life before 

installation. On average, in the S1 unit, two oil cooler fan motors were replaced every 10,000 hours 

before installation, and one motor was replaced every 10,000 hours post-Mag installations. On 

average, in S2, two motors were replaced every 10,000 hours before installation and one post-

magnetic filter installation.  

 

MAG-FILTERS 
AVERAGE LIFE 

(HOURS) 

#MOTORS PERFORMING ABOVE 

AVERAGE LIFE 

BEFORE INSTALLATION 12348 40% 

AFTER INSTALLATION 14882 71% 

Table 32. Average Life analysis of oil cooler fan motor failures 

 

X - AVERAGE LIFE OF OIL COOLER FAN MOTORS BEFORE THE 

INSTALLATION OF MAG-FILTERS 
AVG LIFE - 19431 

#FAN MOTORS PERFORMING ABOVE AVERAGE LIFE 71% 

Table 33. Performance of Mag installed oil cooler fan motors compared to average life pre-installation 
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#OIL COOLER FAN MOTOR REPLACED PER 

10000 HOURS BEFORE INSTALLATION OF 

MAG-FILTERS 

#OIL COOLER FAN MOTOR REPLACED PER 

10000 HOURS AFTER INSTALLATION OF 

MAG-FILTERS 

S1 2 1 

S2 2 1 

Table 34. Frequency of oil cooler fan motors failures before and after installation of Mag-filters 

 

ANOVA test was used to check if the mean of the two groups, i.e., (the oil cooler fan motor average 

life before installation of Mags and the average life after installation of Mags) varied significantly 

or not. Normality of the data is checked by comparing mean and median values of the distribution, 

and Normal Probability Distribution (NPP plot). The details of the analysis are mentioned in 

Appendix A. With the above tests, the data represents a nearly normal distribution, and hence 

ANOVA test can be used to check the significance. The following table (Table. 35) displays the 

ANOVA results for oil cooler fan motor average life before and after installation of Mag-filters.  

The null hypothesis of the test states: Means of the population are equal, and all populations have 

a common variance. The alternate hypothesis states that the means of two populations vary 

significantly. For the oil cooler fan motors, component analysis, F < Fcrit and p > 0.05. Hence, the 

two means do not vary significantly. This means there is no significant difference in the component 

life before and after installation of Mag-filters. Hence, the two means do not vary significantly. 

The null hypothesis of the test states: Means of the population are equal, and all populations have 

a common variance. The alternate hypothesis states that the means of two populations vary 

significantly. For the oil cooler fan motors, component analysis, F > Fcrit and p < 0.05. Hence, the 
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two means vary significantly. This means there is significant difference in the component life of 

oil cooler fan motors before and after installation of Mag-filters.  

ANOVA -OIL COOLER FAN MOTORS 
     

SOURCE OF VARIATION SS df MS F P-value F crit 

BETWEEN GROUPS 703807.7357 1 703807.7 6.864 0.00935608 4.964603 

WITHIN GROUPS 1025409913 10 1.03E+08 
   

       

TOTAL 1026113720 11 
    

Table 35. ANOVA test for oil cooler fan motors average life analysis 

 

 

3.10 Reliability Analysis of Hydraulic Components before and after 

Installation of Mag-filters  

3.10.1 Background Information  

Reliability refers to the probability of the system meeting its desired performance standards in 

yielding output for a specific time duration when used under specific conditions (Dhillon, 2008). 

For instance, if a machine is designed to run continuously for 10,000 hours with no faults in 

between, the machine is said to be 100 % reliable for that period. However, if a failure occurs after 

10,000 hours of operation, the machine's reliability after 10,000 hours is less than 100 % (Carlo, 

2013). The component's reliability is a function of time and is always measured at a specific 

operating time. Reliable operation is interrupted or terminated by failures. A failure is an event 

that results in the inability to complete the required duties and meet the requirements. The 

theoretical definition of reliability is (Reliability = 1 – Probability of Failure), given by R(t). The 
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probability of failure at a given time is the probability that a unit will be failed at a particular point 

in time.   

Reliability assessment gives more details about the component and its operating conditions. The 

reliability analysis of components and equipment can reveal whether there is a link between 

new program implementation and cost savings. Keeping track of reliability can also help 

justify future investment in continued, improved, or new programs. In this study, understanding 

hydraulic component reliability can fairly give an idea on the chances that the hydraulic 

components are still working after specific time intervals and if the performance has improved 

after the installation of Mag-filters.  

The objective of this study is to estimate the reliability of components at 5000 hours, 10000 hours, 

and 15000 hours of component operations for each hydraulic component before and after the 

installations of Mag-filters. This gives an idea about the changes in wear rate and particle 

contamination failures in the system after the installation of Mag-filters. Reliability analysis 

explains component behavior over time and if there is a difference in behavior before and after 

installation of Mag-filters. Different probability distributions are used in the analysis of reliability 

estimations. Relyence software is used to fit the given data in different distributions and calculate 

the best fit distribution that can describe the data. The different probability distributions that are 

used to fit the failure samples are Weibull 2-Parameter, Weibull 3-Parameter, Lognormal 

distribution, Normal distribution, Exponential 1-Parameter, Exponential – 2 Parameter, Gumbel-, 

Gumbel+, Rayleigh -1 Parameter, Rayleigh 2-Parameter. Prior to fitting distributions to the data, 

tests to validate the assumption of independent and identically distribution of data were performed. 

The software is used to plot reliability graphs, failure rate plots, PDF plots, and probability plots. 

The parameters of the best fit distribution are estimated using MLE or Rank regression method. 
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The reliability of each of the top 8 components is calculated and the system reliability is compared 

before and after Mag-filter installation. 

3.10.2 Serial Correlation and Trend Tests 

Trend analysis is used to check serial correlations and if the data is independently and identically 

distributed. Identically distributed data relates that one probability distribution can describe the 

characteristics of the entire dataset samples (Frost, 2020). For the reliability analysis of the 

systems, trend tests were used to check if there was any underlying trend in the failure samples. 

Pearson’s correlation test was used to determine trend and correlation between ith and (i-1)th  

failure. The failure data shows no trend or correlation for any of the top 8 components selected. 

Hence, probability distributions were used to estimate reliability. 

3.10.3 Probability Distributions and Parameter Estimation for Component failure data 

Probability distributions are the most widely used reliability data analysis tool. The basic idea of 

the probability distribution plots is to plot a nonparametric estimate of fraction failing as a function 

of time on a distribution-specific scale. Different probability distributions like the Weibull 2-

Parameter, Weibull 3-Parameter, Lognormal distribution, Normal distribution, Exponential 1-

Parameter, Exponential – 2 Parameter, Gumbel-, Gumbel+, Rayleigh -1 Parameter, Rayleigh 2-

Parameter, and the others are used in plotting sample data. The idea is to assess whether the 

nonparametric estimate data is approximately linear to any of the distributions defined and if that 

distribution could adequately describe the data. The distributions can also describe different failure 

modes of the components like early failures, late failures, etc (Meeker, Hahn, & Escobar, 2017).  

The probability distributions help in estimating reliability at different given times of component 

life. This can help in understanding how reliability and failure rates have changed after the 

installation of Mag-filters. 
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Goodness-of-fit using residuals is used in finding the probability distribution that can best explain 

the data. The residuals from a fitted distribution are the differences between the response data and 

the fit to the response data at each value. It can be defined as the total error in describing the data 

by a probability distribution plot. Residuals and residual plots were used in the software to find 

the best fit distribution. The lesser the value of residuals, the more adequately the distribution 

describes the failure dataset.  

MLE and Rank Regression methods were used for parameter estimation of the probability 

distributions. These parameters define the distribution.  There are four parameters used in 

distribution fitting: location, scale, shape, and threshold.  Not all parameters exist for each 

distribution.  Distribution fitting involves estimating the parameters that define the various 

distributions. Maximum Likelihood estimate involves defining a likelihood function for 

calculating the conditional probability of observing the data sample given probability distribution. 

It involves maximizing the likelihood function in order to find the probability distribution that can 

best explain the observed data. This approach can be used to search a space of possible parameters 

for the distribution (Brownlee, 2019). The rank regression technique involves substituting data 

with their corresponding ranks. Following that, the data can be plotted such that it linearizes the 

failure data for a certain distribution. The failure times are represented by the x-axis coordinates, 

while the unreliability/failure rate estimations are represented by the y-axis coordinates. The 

process involves estimating unreliability using median rankings. 

3.10.4 Reliability Comparison using different metrics 

Failure rate and reliability vs time graphs are also used in the analysis to get more information on 

component behavior before and after the installation of Mag-filters. Failure rate vs time graphs 

gives information on the variation of the number of failures per unit of time at any given time in 
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the hydraulic system. The failure rate can be defined as R/T where R is the number of failures and 

T is the total time. Reliability vs time graphs provides information on the probability that the 

components are successfully running at any given time during the component life. Component 

reliability can be calculated using failure rates in probability functions.  

3.10.5 Results of Reliability Estimations  

Correlation tests were used to check if the failure data of different components were independent 

and identically disturbed. Table. 36 shows the correlation analysis for different components of the 

hydraulic system. The table indicates that the failure data for each component follow i.i.d and 

mostly no correlation is seen between the failures. 

CORRELATION BETWEEN ITH AND (I-1) TH FAILURE 

  S1 S2 

MAIN PUMPS 0.51 0.38 

SWING MOTORS 0.32 0.13 

TRAVEL MOTORS 0.72 0.31 

CLAM CYLINDER -0.39 0.68 

BUCKET CYLINDER -0.54 -0.03 

HYDRAULIC OIL COOLER MOTOR -0.03 0.49 

HYDRAULIC OIL COOLER 0.34   0.52 

MAIN CONTROL VALVE -0.03 0.54 

PROPEL BRAKE VALVE 0.39 0.65 

Table 36. Correlation analysis for i.i.d assumption 
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The best fit distributions were plotted for failure data of components before and after installation 

of Mag-filters. Failure data of components including main pump, bucket cylinder before and after 

the installation of Mag-filters and travel motor, swing motor, clam cylinder, components post-

installation of Mag-filters, and hydraulic oil cooler before installation of Mag-filters follow 

Weibull 3 – parameter distributions. The parameters of the distribution for different component 

failure data that follow 3-parameter Weibull distribution are represented in Table. 37.  Travel 

motor failures, clam cylinders, control valves and oil cooler fan motors failure data follow Gumbel 

distributions. The parameters of the distribution for different component failures that follow 

Gumbel- distribution is represented in Table. 38 and Table. 39.  Travel motor failure data after 

installation of filters follow Weibull 2- parameter distribution represented in Table. 40 and swing 

motor failure data before installation of Mag-filters follow log-normal distribution represented in 

Table. 41. 

WEIBULL DISTRIBUTION- 3 PARAMETERS 

 
Β Η ϒ 

MAIN PUMPS - WITHOUT MAG-FILTERS 1.678 11131.88 4823.96 

MAIN PUMPS - WITH MAG-FILTERS 1.867 12153.22 -838.25 

SWING MOTORS WITH MAG-FILTERS 6.311 32423.5 -19275 

BUCKET CYLINDER WITHOUT MAG-FILTERS 1.952 16673.02 2038.83 

BUCKET CYLINDER WITH MAG-FILTERS 2.512 19091.84 -3983.68 

CLAM CYLINDERS WITH MAG-FILTERS 1.106 4819.76 1481.24 

PUMP DRIVE WITHOUT MAG-FILTERS 0.556 8361.69 18429.94 

Table 37. Parameter Estimates of TTF data 3-Parameter Weibull Distribution 
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Table 38. Parameter Estimates of TTF data Gumbel- Distribution 

 

GUMBEL+ DISTRIBUTION 

 
Δ Ξ 

OIL COOLER MOTOR WITHOUT MAG-FILTERS 8692.39 6379.51 

Table 39. Parameter Estimates of TTF data Gumbel+ Distribution 

 

WEIBULL-2 PARAMETER 

 
β η 

TRAVEL MOTORS WITH MAG-FILTERS 20.528 22759.74 

Table 40. Parameter Estimates of TTF data Weibull 2-parameter Distribution 

 

LOGNORMAL DISTRIBUTION 

 
μ σ 

SWING MOTORS WITHOUT MAG-FILTERS 12540.22 7618.07 

Table 41. Parameter Estimates of TTF data Lognormal Distribution 

GUMBEL – DISTRIBUTION 

 
Δ Ξ 

TRAVEL MOTORS WITHOUT MAG-FILTERS 7.93.06 19616.75 

CLAM CYLINDER WITHOUT MAG-FILTERS 2995.28 10400.75 

OIL COOLER MOTORS WITH MAG-FILTERS 8059.31 18931.9 

MAIN CONTROL VALVES WITHOUT MAG-FILTERS 7779.49 20129.37 
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Reliability of the hydraulic components was calculated using the above mentioned best fit 

distribution and their estimated parameters at different times including 5000 hours, 10000 hours, 

and 15000 hours before and after the installation of Mag-filters. Table. 42 through Table. 45 show 

reliability estimated at different times for the hydraulic components considered in this analysis.  

Table 42. Reliability of Components at 5000 hours of operation life before and after Magnetic filter 
Installation 

 

 

 

 AT 5000 OPERATION HOURS 

 

Reliability before Magnetic filter 

Installation 

Reliability after Nag-Shield 

Installation 

MAIN PUMPS 0.99 0.775 

SWING MOTORS 0.84 0.85 

TRAVEL MOTORS 0.87 1 

BUCKET CYLINDER 0.96 0.86 

CLAM CYLINDER 0.84 0.49 

OIL COOLER MOTOR 0.69 0.84 

MAIN CONTROL VALVE 1 0.87 
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AT 10000 HOURS OF OPERATION LIFE 

 
Reliability before Magnetic filter 

Installation 

Reliability after Nag-Shield Installation 

MAIN PUMPS 0.76 0.45 

SWING MOTORS 0.63 0.59 

TRAVEL MOTORS 0.769 0.97 

BUCKET CYLINDER 0.79 0.64 

CLAM CYLINDER 0.41 0.16 

OIL COOLER MOTOR 0.48 0.71 

MAIN CONTROL VALVE 0.78 0.76 

Table 43. Reliability of Components at 10000 hours of operation life before and after Magnetic filter 

Installation 
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 AT 15000 HOURS OF OPERATING LIFE 

 

 
Reliability before Magnetic filter 

Installation 

Reliability after Nag-Shield 

Installation 

MAIN PUMPS 0.42 0.21 

SWING MOTORS 0.37 0.24 

TRAVEL MOTORS 0.59 0.95 

BUCKET CYLINDER 0.54 0.37 

CLAM CYLINDER 0.18 0.09 

OIL COOLER MOTOR 0.27 0.53 

MAIN CONTROL VALVE 0.56 0.6 

Table 44. Reliability of Components at 15000 hours of operation life before and after Magnetic filter 
Installation 

 

In order to understand in detail regarding the component behaviour, failure-rate vs. time and 

reliability vs. time graphs were plotted for the top 4 highest failing components of the hydraulic 

system to understand the overall change in behaviour of the component. Figure 42 through Figure 

48 represent the reliability over time graphs for failure data before and after installation of Mag-

filters. The x-axis represents time in hours and y-axis represents reliability of the component at the 

given time. The dotted line in the 3-parameter Weibull graph represents 2-parameter Weibull 

distribution of the function. Figure 49 through Figure 54 represent the failure-rate vs. time graphs 

for failure data before and after installation of Mag-filters. The x-axis represents time in hours and 
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y-axis represents failure-rate of the component at the given time. The graphs indicate early failures, 

late failures and variation in reliability and failure rate before and after installation of Mag-filters.  

Figure 44. Reliability Vs time (hours) plot for Main Pumps before installation of Mag-filters 
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Figure 45. Reliability Vs time (hours) plot for Main Pumps before installation of Mag-filters 
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Figure 46. Reliability Vs time (hours) plot for Swing Motors before installation of Mag-filters 
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Figure 47. Reliability Vs time (hours) plot for Swing Motors after installation of Mag-filters 
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Figure 48. Reliability Vs time (hours) plot for Travel Motors before installation of Mag-filters 
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Figure 49. Reliability Vs time (hours) plot for Travel Motors after installation of Mag-filters 
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Figure 50. Reliability Vs time (hours) plot for Clam Cylinders before installation of Mag-filters 
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Figure 51. Reliability Vs time (hours) plot for Clam Cylinders after installation of Mag-filters 
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Figure 52.Failure-Rate Vs time (hours) plot for Main Pump before installation of Mag-filters 
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Figure 53. Failure-Rate Vs time (hours) plot for Main Pump after installation of Mag-filters 
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Figure 54. Failure-Rate Vs time (hours) plot for Swing Motors before installation of Mag-filters 
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Figure 55. Failure-Rate Vs time (hours) plot for Swing Motors after installation of Mag-filters 
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Figure 56. Failure-Rate Vs time (hours) plot for Travel Motors before installation of Mag-filters 
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Figure 57. Failure-Rate Vs time (hours) plot for Travel Motors after installation of Mag-filters 
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Figure 58. Failure-Rate Vs time (hours) plot for Clam Cylinders before installation of Mag-filters 
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Figure 59. Failure-Rate Vs time (hours) plot for Clam Cylinders after installation of Mag-filters 

 

3.11 Particle Count Analysis in Oil before and after Installation of Mag-filters  

3.11.1 Background Information 

The main objective of this study is to analyze failures based on the particle count in the oil prior 

to the failure before and after installation of Mag-filters. Oil samples are collected from return 

circuit of the hydraulic system every 600 hours and these samples are used for analysis of particles 

present in oil and other important factors like viscosity, H2O levels and dirt contamination present 

in oil using ICP elemental analysis methods. The concentration of wear metals present in the oil 

i.e., iron, chromium, nickel, aluminum, copper, lead, and tin, and contaminant metals like sodium, 

potassium, and silicon are measured using ICP methods. The impending failures of the components 
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can be predicted using particle count present in oil. The higher number of particles indicate highly 

likely chances of contamination indicating early failures. Particle count in oil are reported in terms 

of ISO cleanliness code. ISO code of less than 20 indicate acceptable level of particles in oil, from 

20-23 indicate reportable level of particles in oil and greater than 23 indicate critical levels that 

alarm the system to be immediately cleaned and fix the root cause of contamination. In this study, 

percentage of failures in acceptable levels, reportable levels and critical levels were studied before 

and after installation of Mag-filters. This gives an indication on the role of Mag-filters in 

preventing wear and debris related failures.  

3.11.2 Initial Data Exploration of Oil Sample Data 

The 4μ particle contamination in oil for the top eight components is measured before and after 

installation of Mag-filters. Before the installation of Mag-filters, 49% of the failures were at 

acceptable levels, 44% of failures were at reportable levels and 7% of the failures were at critical 

contaminant levels. After the installation of Mag-filters, 61% of failures were at acceptable levels, 

33% of the failures were at reportable levels and 6% of the failures were at critical levels. In the 

S1 unit, before the installation of Mag-filters, 81% of the failures were at acceptable levels and 

19% of failures were at reportable contaminant levels. After the installation of Mag-filters, 41% 

of failures were at acceptable levels, 41% of the failures were at reportable levels and 18% of the 

failures were at critical levels. In S2, before the installation of Mag-filters, 59% of the failures 

were at acceptable levels, 24% of failures were at reportable levels and 18% of them were critical 

failures. After the installation of Mag-filters, 54% of failures were at acceptable levels, 46% of the 

failures were at reportable levels. Figure 60 through Figure 66 shows percentage of failures in 

acceptable, reportable, and critical range of 4μ particles. The red segment indicates critical failures, 

the orange segment indicates percentage of failures that occurred at reportable levels, and the blue 
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segment indicates failures when the 4μ particles in the oil were in acceptable range. From the 

graphs it can be inferred that on an overall level, the number of failures with particles in critical 

range has increased post installation of Mag-filters. The percentage of failures with reportable level 

of particles has increased in S2 post Mag-installation and the number of critical failures has 

increased in S1 post installation of Mag-filters. This can be indicative that the magnetic-filters are 

very effective in containing normal wear and can enhance component life of wear- related failures 

by not increasing wear-rate but cannot contain huge number of particles released specially during 

debris related failures. 

 

Figure 60. Percentage of failures in different oil conditions before Magnetic filter Installation 
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Figure 61. Percentage of failures in different oil conditions after Magnetic filter Installation 

 

 

Figure 62. Percentage of failures in different oil conditions before Magnetic filter Installation in S1 
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Figure 63. Percentage of failures in different oil conditions after Magnetic filter Installation in S1 

 

 

Figure 64. Percentage of failures in different oil conditions before Magnetic filter Installation in S2 
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Figure 65. Percentage of failures in different oil conditions after Magnetic filter Installation in S2 

 

 

Figure 66. Percentage of failures in different oil conditions after Magnetic filter Installation in S3 
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The particle count variation in oil was plotted against meter reading (Unit SMU hours) for S1, S2 

and S3 units and variations in oil count before and after the installation of Mag-filters was studied. 

In S1, the oil particle count shows a few spikes after 50,000 SMU units that might have occurred 

due to the working location in the mine. The frequency of failures has also increased in S1 in the 

interval of 50,000 to 60,000 SMU hours. The particle count has consistently reduced after the 

installation of filters. In S2, the particle counts in oil shows deviation from the acceptable range 

even before Mag-filter installation. The particle count spikes have significantly increased after 

25,000 SMU hours. The particle count of 4μ continues to fluctuate and elevate even after the 

installation of Mag-filters. The particle count in S3 is consistently low from the start. The Mag-

filters for this unit were installed at 22,000 hours before the operation started. Figure 67 to Figure 

69 shows variation of 4 microns particles in oil in different shovel units. The orange line indicates 

magnetic filter installed SMU hour.  

 

Figure  67 Particle count variation in S1 unit 
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Figure 68. Particle count variation of 4 Microns particles in S2 unit 

 

Figure 69. Particle count variation of 4 Microns particles in S3 unit 
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Figure 70 and Figure 71 were plotted to study the correlation of 4μ, 6μ and 14μ particle 

count in the oil. From the three graphs, it can be noted that 4μ and 6μ particle counts are 

highly correlated. If the 4μ particle count in oil is increasing, the 6μ particle count is also 

increasing. The 14μ particles are always at lower and at consistent levels. This means that 

the 4μ and 6μ particles mainly influence the failures of hydraulic components.   

 

Figure 70. Particle Count Variation in S1  
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Figure 71. Particle Count Variation in S2 

 

3.12 Comeback Failure Analysis 

3.11.1 Background Information 

Hydraulic wear and contamination failures often influence the failures of other components in the 

hydraulic system. A large number of particles are released in the hydraulic oil when a hydraulic 

wear/contamination failure occurs. These particles circulate in the oil and increase the wear rate 

of other components. When a debris failure occurs in the system, debris starts traveling 

downstream of the system and eventually causes clogs and may lead to catastrophic failure of the 

system. Thus, comparing the system's comeback failure rate before and after the installation of 

Mag-filters can aid in determining the effectiveness of Mag-filters. When a wear or system 

contamination failure occurs, a large number of particles are released into the oil. These particles 

can enhance the wear rates of other hydraulic components or can result in oil debris leading to 



171 
 

catastrophic failures as the debris circulates in the oil. Mag-filters can effectively capture small 

particles and prevent oil contamination which would ultimately prevent successive failures. Hence, 

the comeback failure rate method is used to identify successive failures in the next 1000 hours of 

operation after a given component failure and compare how it has changed after the installation of 

Mag-filters. This helps in quantifying and analyzing the effects of Mag-filters on successive 

hydraulic failures. The comeback failure rate of a hydraulic component in the shovel fleet is 

calculated as follows:  

 

𝐶𝑅 =  
∑ 𝐹𝑖

𝑖+1000
𝑡=𝑖

∑ 𝐹𝑖
𝑛
𝑡=𝑖

 

 

(39) 

Where CR is the comeback failure rate, Fi is the ith Failure, n is the total number of component 

failures, t is the meter reading (SMU hours) at the time of failure. Table. 45 indicates comeback 

rate for different components of hydraulic system. 
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  COMEBACK FAILURE BEFORE 
INSTALLATION OF MAG-FILTERS 

COMEBACK FAILURE AFTER 
INSTALLATION OF MAG-FILTERS 

MAIN PUMPS 0.92 0.87 

SWING MOTOR 1.21 1 

TRAVEL MOTOR 3 0.5 

BUCKET CYLINDER 0.17 1.5 

CLAM CYLINDER  1.36 1.78 

HYDRAULIC OIL 
COOLER 

0.33 0 

MAIN CONTROL VALVE 0.33 2 

PROPEL BRAKE VALVE 0.5 2.33 

HYDRAULIC OIL 
COOLER FAN MOTOR 

2.5 0.5 

PUMP DRIVE 2 0.67 

Table 45. Comeback rates of different hydraulic components 

 

3.12 Cost Analysis  

3.12.1 Background Information 

Cost analysis involves the comparison of costs of component replacement failures before and after 

the installation of magnetic filters. This can be beneficial in evaluating the effects of Mag-filters 

in terms of the cost saved per failure after installation of the magnetic filters. The goal of this study 

is to compare the failure costs of the identified hydraulic system components for every 10,000 

hours before and after the installation of Mag-filters. The analysis includes component part costs, 

labor costs, and ancillary costs (miscellaneous costs including seal hoses, bolts, etc that are 

required to install new components). 
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3.12.2 Cost Analysis Results 

The cost per 10,000 working hours for each component before installation given by CB of Mag-

filters and cost per 10,000 hours after installation of Mag-filters, CA is as follows  

 
𝐶𝐵 =  

∑ 𝐶𝑘
𝑛
𝑖=1 +  ∑ 𝐿𝐶𝑛

𝑖=1 +  ∑ 𝑀𝑖𝑠𝑐𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑆𝑀𝑈 ℎ𝑜𝑢𝑟𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑎𝑔_𝑓𝑖𝑙𝑡𝑒𝑟𝑠
∗ 10,000  (40) 

 

 
𝐶𝐴 =  

∑ 𝐶𝑘
𝑛
𝑖=1 +  ∑ 𝐿𝐶𝑛

𝑖=1 +  ∑ 𝑀𝑖𝑠𝑐𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑆𝑀𝑈 ℎ𝑜𝑢𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑎𝑔_𝑓𝑖𝑙𝑡𝑒𝑟𝑠
∗ 10,000 (41) 

 

Where Ck is the cost of replaced component, LC is the labor cost for replacing the component, 

Misc. is the approximate miscellaneous cost spent on the component replacement. The total SMU 

hours before the installation of Mag-filters for the data collected for three units of hydraulic shovel 

is approximately 86,158 hours and the total SMU hours after the installation of Mag-filters for the 

data collected for three units of shovel is approximately around 64,137 hours. Table. 46 indicates 

cost analysis for different components of hydraulic system before and after installation of Mag-Filters.  

 

 

 

 



174 
 

COMPONENT 
COST PER 10,000 HOURS 

BEFORE MAG-FILTERS, CB 

COST PER 10,000 HOURS 

AFTER MAG-FILTERS, CA 

HYDRAULIC OIL COOLER  $         9,285   $         2,495  

BUCKET CYLINDER  $       24,691   $       28,430  

CLAM CYLINDER  $       19,917   $       26,755  

HYDRAULIC OIL COOLER FAN MOTOR  $         5,777   $         5,160  

SWING MOTOR  $       31,976   $       47,477  

TRAVEL MOTOR  $       31,091   $       11,933  

MAIN PUMP  $       69,277   $       89,340  

MAIN CONTROL VALVE  $       36,115   $       32,343  

PROPEL/BRAKE CONTROL VALVE  $       13,525   $       18,169  

Table 46. Cost of component replacement per 10,000 hours before and after installation of Mag-filters 

 

3.13 Summary and Conclusions 

Different metrics were used in the analysis of effectiveness of Mag-filters. Pareto analysis was 

used to identify top eight hydraulic components with highest failure frequency. From the pareto 

analysis it was noted that main pumps were responsible for almost 25% of hydraulic wear and 

contamination related failures. In the component life analysis method, average life of components 

before and after the installation of Mags was compared and ANOVA test was used to check if the 

two means varied significantly. Different components had different results with regards to average 

life before and after Mag installation and ANOVA test results were also different. The summary 

of component life analysis for all eight components are presented below in Table. 47. Of the 

identified eight components, the components where ANOVA test shows a significant difference 
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in mean between the two groups (i.e., component average life before and after installation of Mag-

filters) are considered in quantifying the effects of Mag-filters by comparing different key 

performance indicators used in this study. Table. 47 summarizes ANOVA test results for different 

components. 

Component Average life 

before Mag 

installation 

Average life 

after Mag 

installation 

ANOVA Test 

Variation 

Main Pumps 14915 12197 Significant 

Swing Motors 12885 11577 Not Significant 

Travel Motors 18734 23017 Significant 

Clam Cylinder 8823 5659 Significant 

Bucket Cylinder 13347 12718 Not Significant 

Hydraulic Oil Cooler Fan Motor 12348 14842 Significant 

Control Valve 23359 18103 Not Significant 

Propel Valve 23359 15509 Significant 

 

Table 47. Summary of component life analysis results 

From Table. 47, it can be noted that main pumps, travel motors, clam cylinders and hydraulic oil 

cooler fan motor have significant difference in the component life before and after installation of 

Mag-filters. Hence these components were further considered in quantifying the effects of Mag-

filters.  The percentage difference in component life, reliability analysis, comeback failure rate and 

cost impacts for these failures are calculated. Table. 48 through Table. 51 present the percentage 

difference in different metrics post installation of Mag-filters.  
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Component 
Before 

Installation 
After Installation 

Percentage 

Change 

Travel Motors 18734 23017 23% 

Clam Cylinder 8823 5659 -36% 

Hydraulic Oil Cooler Fan 

Motor 
12348 15842 28% 

Main Pumps 14915 12197 -18% 

 

Table 48. Percentage change in component life post-installation of Mag-filters 

 

Component Before 

Installation 

After Installation Percentage 

Change 

Travel Motors 0.87 1 15% 

Clam Cylinder 0.84 0.49 -42% 

Hydraulic Oil Cooler Fan Motor 0.69 0.84 22% 

Main Pumps 0.99 0.775 -22% 

Table 49. Percentage change in reliability at 5000 hours of operation 
 

 

Table 50. Percentage change in comeback failure rate post Mag installation 

 

Component Before Installation After Installation 
Percentage 

Change 

Travel Motors 3 0.5 83% 

Clam Cylinder 1.36 1.78 -31% 

Hydraulic Oil Cooler Fan Motor 0.33 0.01 97% 

Main Pumps 0.92 0.87 5% 
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Component Before Installation After Installation Percentage Change 

Travel Motors $31,091 $11,933 62% 

Clam Cylinder $19,917 $26,755 -34% 

Hydraulic Oil Cooler Fan Motor $5,777 $5,160 11% 

Main Pumps $69,277 $89,340 -29% 

 

Table 51. Percentage change in component replacement cost post-Mag installation 

 

From the above analysis it can be inferred that different metrics are differently affected by the 

installation of Mag-filters. In the component life analysis, certain components have an increased 

life, and the other components have lower average life after the installation of Mag-filters. The 

lower average life post installation of Mag-filters can be attributed to various reasons like aging of 

the machine, location of the equipment and rock hardness variability where the machine is 

working. The reliability metrics also infer that certain component indicate increase in reliability 

whereas a other components have lesser reliability at 5000 hours of operation when compared to 

before filter installation. Comeback failures have significantly decreased post installation of filters 

for mostly all components. Cost analysis also indicates a few components have lesser component 

cost per 10,000 hours post installation of filters whereas few other components indicate an increase 

in component cost per 10,000 hours post installation of Mag-filters. Hence weights were assigned 

to each metric based on the variability the variable can explain. For example, if all the components 

have a positive Mag impact or all components have a decreased performance impact then the 

metric is assigned a higher weight rather than a metric where the component shows both positive 

and no impact.  The weight of each parameter was calculated based on the variability explained 

by the parameter. The weight of each metric is calculated as follows: 
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𝑊𝑀𝑖

=
|𝐶𝑃𝑖

−  𝐶𝑁𝑖
|

∑ |𝐶𝑃𝑖
− 𝐶𝑁𝑖

|4
𝑖=1

 (42) 

 

Where 𝑊𝑀𝑖
 is the weight assigned to the metric, |𝐶𝑃𝑖

−  𝐶𝑁𝑖
| is the difference in count of variables 

explaining positive increament in percentage change post installation of magnetic filters and count 

of variables explaining no change (decreament in terms of negative percentage change post 

installation of magnetic filters). 

Accordingly following weights are assigned to each metric:  

Metric Weight 

Component Life Analysis 0.22 

Reliability Analysis 0.22 

Comeback Rate 0.33 

Cost Analysis 0.22 

 

Using the following weight, percentage impact of each of the metric is calculated for each 

component. The weighted impact of a variable on each component is the product of weight 

assigned to that component and the percentage change in the variable of the component post 

installation of magnetic filter.  

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑚𝑝𝑎𝑐𝑡, 𝑀𝑖  = Percentage change in the variable after Mag installation * 

Weight of the metric 𝑊𝑀𝑖
 

(43) 

A weighted score is then assigned to each component by summing the weighted impact of all the 

variables on the component. The sum of weighted scores is used to calculate the total score. The 

total score explains the overall impact of magnetic filters based on the parameters/ variables 

considered in this analysis. The total score explains the overall weighted difference in performance 
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change post Mag installation of all components across each parameter. If the value is positive, then 

it indicates that the overall Mag effects are positive and if the overall sum is negative then it 

indicates the Mag-filters are not effective in containing failures. Table. 52 shows the overall impact 

of Mag-filters on the four components with a significant variation in component life post-Mag 

installation.  

Component Component Life Reliability Comeback Cost 
Weighted 

Score 

Travel Motors 0.05 0.03 0.28 0.14 0.49 

Clam Cylinder -0.08 -0.09 -0.10 -0.08 -0.35 

Hydraulic Oil Cooler Fan 

Motor 
0.06 0.05 0.32 0.02 0.45 

Main Pumps -0.04 -0.05 0.02 -0.06 -0.13 

     Total Score 0.46 

Table 52. Overall Impact of Mag-filters 

 

As seen from Table. 52, the total score calculated by summing the weighted scores of each 

component is +0.46 indicating the overall change post installation of Mag-filters is positive, and 

hence it is beneficial installing Mag-filters in the hydraulic system. It can also be inferred that 

magnetic filters have significantly decreased comeback failure rate. From the analysis, it is not 

indicative that component life is improving post installation of Mag-filters. The reliability of the 

all the components also do not improve significantly after the installation of Mag-filters. However, 

cost per 10,000 hours of different components has reduced to a good extent with the installation 

of Mag-filters. Hence, it can be concluded that magnetic filters have a positive impact on the 

hydraulic system however they are not the only influencing factor of wear and contamination 
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failures. The other external factors like location of working of equipment, oil cleanliness, type of 

oil and maintenance activities after a contamination failure also influence the wear and 

contamination failure of hydraulic system. 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 
 

4: SUCCESSIVE FAILURE PROBABILITY PREDICTION OF 

HYDRAULIC COMPONENTS USING MACHINE LEARNING 

TECHNIQUES 
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4.1 Background Information 

Failures of hydraulic system components have a significant impact on the failure of other hydraulic 

components. When a hydraulic component wears out, a huge volume of wear particles are released 

into the system. During typical shovel operations, particles are carried in the hydraulic oil, and if 

they are not cleaned by the filters, they increase the wear rate of other components, reducing their 

performance and average life. A significant number of particles are also released into the system 

during a debris failure. The debris particles will eventually lead to catastrophic failure of the 

downstream components of the system.  

The objective of this chapter is to establish a method for determining the probability of hydraulic 

component failures in the next 1000 hours of operation after a given failure. Previous component 

failures, as well as the condition of the oil at the time of failure and 600 hours prior to failure, are 

used to predict the probability of successive component failures. Figure  72 presents a flowchart 

with the steps involved in predicting successive failures using machine learning algorithms.  
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Figure 72. Flow chart detailing steps involved in ML process to identify successive failures 

 

The following sections of this chapter presents a detailed overview of the various steps involved 

in diagnosing successive failures in next 1000 hours after a hydraulic failure such as data 

collection, data preparations, data processing, building machine learning models, hyperparameter 

tuning and evaluating the performance of models. The model performance was also validated by 

a K-fold validation method using different train-test samples from the dataset.  

 

 



184 
 

4.2 Data Collection 

In the analysis and prediction of equipment failures, the machine learning models use a variety of 

input data types. Vibration data, historical failure data, oil analysis and contamination censor data, 

imagery data, and time series data are the most prevalent types. This analysis uses historical failure 

data as well as oil analysis particle count data at the time of failure and 600 hours prior to every 

failure to predict future failures. Failure description data and failure condition data are gathered 

for hydraulic component replacement failures at the SMU* Component level, as specified in 

Chapter 3. Only leakage wear and debris-related failures were used in the analysis to assess the 

probability of successive failures in the next 1000 hours. The objective of using historical failure 

data was to find failure patterns in 1000 hours of operation prior to a component failure. If a certain 

failure pattern of hydraulic component failures in the system is established, the impact of a 

component failure on other components can be investigated, and a relationship between these 

failures can be derived to predict future failures. As a result, the model can assist in identifying 

future failures after a hydraulic component failure. Downtime and maintenance costs for these 

components can be decreased by implementing a proper maintenance plan. 

Oil samples data corresponding to each failure is also used for the analysis. Oil samples from the 

shovels are collected at every 600 hours and particle count of (4\6\10\14\25\35\70)μ particles in 

the oil are measured. The results also indicate if there are any elevations in particle levels and 

information about viscosity and water levels in the oil. As the wear and debris related failures are 

mainly influenced by oil contamination, 4μ, 6μ and 10μ particles at the time of failure and variation 

in particle count 600 hours prior to the failure are considered in the ML model. The hydraulic 

system of shovel consists of 45 critical components. For ease of analysis and improved model 

performance, similar components with same function and capacity were grouped together as one 
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component. (For example, Swing Motor Front Left, Swing Motor Front Right, Swing Motor Rear 

Left, and Swing Motor Rear Right were grouped as Swing Motors). Hence, there were 15 key 

components included in the analysis. Historical failure data of these 15 components were used in 

the analysis. Other minor failures (like rotary joint failures etc.) were excluded from the analysis. 

A total of 490 failure records for the three units of hydraulic shovel were used to predict failures. 

This study uses a total of 9 features, 6 of which are continuous variables and 3 of which are 

categorical. Appendix B contains a sample of the data collected.  The list of 45 major components 

constituting the hydraulic system is mentioned in Appendix B.  The list of 15 majorly grouped 

components is presented in the later sections. 

4.3 Data Preparation 

4.3.1 Data Transformation 

Two machine learning algorithms are used in this study to identify the probability of successive 

failures.  K-NN algorithm is used to predict the probability of a successive failure in the next 1000 

hours after a hydraulic component has failed. The model uses historical component data of failures 

to check if there are any failures in the next 1000 hours of a failure given the oil particle conditions. 

Based on the training data, the KNN model learns to predict the probability of a future failure in 

the next 1000 hours after a hydraulic component failure given the oil particle conditions at the time 

of component failure. The Naïve Bayes algorithm is used to predict the probability of failures of 

all the hydraulic components after a component has failed. Based on the combined probability of 

both the models, decisions can be taken on preventive maintenance actions and component 

replacements.  

The unique key identifier used in data collection for K-NN model is WO (work order). A unique 

work order is created for each hydraulic component replacement. SMU (meter reading) at the time 
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of failure and shovel unit number are also recorded. Information on whether the magnetic filter 

was installed at the time of failure, flagged (1/0) is also tabulated for each failure. Oil particles at 

the time of failure and 600 hours prior to failure are recorded using oil samples data. A component-

failure column is created that is flagged (1/0) to indicate if there is a failure in the next 1000 hours 

of that component failure. The dataset used in the model analysis includes information on WO, 

SMU hours at the time of failure, component replaced, Mag-filter information and 4μ, 6μ and 10μ 

particle count at the time of failure and 600 hours prior to failure. A sample of data collected for 

K-NN algorithm is presented in Appendix B. 

The data used for naïve bayes algorithm records failure status of all 15 components included in the 

analysis at every SMU failure hour. A “failure-status” column is created to indicate the failure 

state (1/0) of components at each SMU failure hour.  A new column called "Failure status in the 

last 1000 hours" was added to identify components that have failed in the 1000 hours previously 

to the SMU failure hour. For each failure, information on whether the magnetic filter was installed 

at the time of failure, flagged (1/0), is tabulated with 1 indicating Mag filter was installed at the 

time of failure. Using oil samples data, oil particles at the time of failure and 600 hours prior to 

failure are collected. The dataset includes information on work order, SMU hours at the time of 

failure, component replaced, failure status of components at the time of failure, failure status of 

components in the last 1000 hours of failure, Mag-filter information and 4μ, 6μ and 10μ particle 

count at the time of failure and 600 hours prior to failure. A sample of data collected for naïve 

bayes algorithm is presented in Appendix B. 

The methodologies used in this study to identify subsequent failures within 1000 hours of a 

component failure using K-NN and Nave-Bayes machine learning approaches are detailed in the 

sections below. 
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4.3.2 Identifying and Handling Null Values  

ML and DL-based algorithms cannot handle missing values, hence missing values in the input 

features must be addressed. The most popular techniques for dealing with missing values in a 

dataset are to replace them with a value of 0; replace them with the mean or median or mode value 

of the feature; use linear interpolation to fill in the missing values, or to remove the missing data 

points from the dataset. In this study, the mean value of a continuous feature was used to replace 

the null values of that feature. There were missing values in features tabulated from oil sample 

data. Around 13% of data from features including 4μ particle count at the time of failure, 6μ 

particle count at the time of failure, and 14μ particle count at the time of failure was 

missing.  Around 19% of data was missing from the 4μ particle count 600 hours prior to failure, 

the 6μ particle count 600 hours prior to failure, and the 14μ particle count 600 hours prior to failure.  

4.3.3 Encoding of Categorical Variables 

Categorical data is information that is divided into distinct categories within a dataset. Encoding 

categorical data is the process of transforming categorical data into integer format so that data with 

converted categorical values can be fed into various models. Label encoding, one hot encoding, 

dummy encoding, binary, and target encoding are the methods for encoding categorical data. 

One hot encoding is used when there is no order in the categorical variable. A new variable is 

created for each level of a category feature in one hot encoding. Each category is represented by a 

binary variable with a value of 0 or 1. The absence of that category is represented by 0 while the 

presence of that category is represented by 1. The number of variables depends on the levels 

present in the categorical variable. One hot encoding was employed in the Naive Bayes dataset to 

encode component failures that failed over the past 1000 hours for each failure. Failures for 

different components in the past 1000 hours prior to each hydraulic failure were encoded in 15 
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newly created categories with binary values 0 and 1. An illustration of the dataset is represented 

in the later section. 

Label encoding technique is used when the categorical feature is ordinal. In label encoding, each 

label is converted into an integer value. Label encoding was used in K-NN and Naïve Bayes dataset 

to encode different components of the hydraulic system.  

4.3.4 Features Selection by Correlation Analysis 

Model training with highly correlated variables may lead to multicollinearity that reduces the 

precision of estimation. Training model with a large number of features is also time-consuming 

and computationally expensive. The Naïve Bayes algorithm also assumes the training features to 

be independent of each other. Hence in this study, if the variables exhibit a strong correlation 

correlation of greater than 0.75 then one of the features is omitted from the model training dataset. 

Different tests are used to estimate the correlation between two variables. Pearson's correlation, 

Spearman's correlation, and Kendall Tau's correlation tests are the most commonly used 

correlation tests. The correlation of continuous variables in this analysis is determined using 

Spearman's correlation test. The Spearman’s correlation test is defined as: 

 
𝜌 =  1 −

6 ∑ 𝑑𝑖
2

𝑛(𝑛2 − 1) 
 (44) 

Where n is the total number of observations, di is the difference between the ranks of corresponding 

variables. The feature selection of continuous variables in this study are presented in the later 

section.  
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4.3.5 Feature Scaling 

Feature scaling marks the end of the data preprocessing in machine learning. It is a method to 

standardize the independent variables of a dataset within a specific range. In other words, feature 

scaling limits the range of variables so that the variables can be compared on common grounds. 

Feature transformation is an essential step of the DM process that rescales the input features to a 

smaller range and is crucial where the values of input features do not have the same order of 

magnitude. The most popular choices for rescaling the input features in ML are min-max scaler 

and standard scaler. A standard scaler is used in K-NN analysis to standardize continuous 

variables. Naive Bayes doesn't require and is not affected by feature scaling. In fact, any algorithm 

which is not distance-based is not affected by Feature Scaling. Standard scaler rescaling is defined 

as: 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑐𝑎𝑙𝑒𝑟 �̅� =  
𝑥 −  𝜇

𝜎
 (45) 

where 𝜇 is the mean and 𝜎 is the standard deviation of an input feature.  

 

4.4 Building ML Models 

4.4.1 k-NN Model 

The k-nearest neighbors (k-NN) method is a supervised machine learning algorithm that can be 

used to address classification problems (Harrison, 2018). k-NN is a kind of instance-based learning 

in which the function is only estimated locally, and all computation is deferred until classification. 

The data points are categorized based on how their neighbors are classified. The algorithm's idea 

is that all data points with similar characteristics will be found near together. To classify an 

unknown instance represented by some feature vectors as a point in the feature space, the k-NN 
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classifier calculates the distances between the point and points in the training data set. The 

algorithm chooses k nearest points to the new point and classifies the new point to that category 

for which the number of neighbors is maximum from the chosen k points. Usually, the Euclidean 

distance is used as the distance metric. Then, it assigns the point to the class among its k nearest 

neighbors (where k is an integer). If A and B are two points represented by feature vectors A = 

{x1, x2, x3,….. xn} and B = {y1, y2, y3,…. yn} where n is the dimensionality of the feature space then 

the normalized Euclidean metric is generally used as 

 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) =  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (46) 

The choice of K, as well as the distance measure used to pick the nearest K points, determine the 

performance of a k-NN classifier. The sensitivity of K selection can significantly decrease K-NN 

classification performance. (Imandoust & Bolandraftar, 2013) (Jabbar, Deekshatulu, & Chandra, 

2013) (Zhang Z. , 2016). The minimal error method and grid search method are used to find the 

best k value using the training and test dataset. KNN algorithm is used to predict the probability 

of a successive failure in the next 1000 hours after a component has failed. The details of using 

this algorithm are discussed in the later section. 

4.4.2 Naïve Bayes Algorithm 

Naïve bayes is a supervised machine learning algorithm that assumes an underlying probability 

distribution and captures uncertainty about the model in a logical manner by calculating the 

probabilities of occurrence. The Naive Bayes algorithm is a straightforward probability classifier 

that derives a set of probabilities by counting the frequency and combinations of values in a data 

set. When assessing the value of the class variable, the method applies Bayes' theorem and assumes 

that all variables are independent. In a range of controlled categorization challenges, the algorithm 



191 
 

learns quickly (Saritas & Yasar, 2019).  Bayes' Theorem is a simple mathematical formula used 

for calculating conditional probabilities. The basic mathematical formula of Bayes theorem is 

given by 

 
𝑃(y|𝑋) =   

𝑃(𝑦) ∗ 𝑃(𝑋|𝑦)

𝑃(𝑋)
 (47) 

Where P (y |X) is the posterior probability, P (X |y) is the likelihood probability, P(y) is the prior 

probability and P(X) is the marginal probability.  

Naïve Bayes classifier is a machine learning classifier that is an extended version of Bayes 

theorem. The variable y is the output class variable with binary or multiclass categories.  

X = (x1, x2, x3, x4, x5, x6,…, xn) represent n features of the model input data. Then the probability 

of y given the X conditions is denoted by  

 
𝑃(𝑦|𝑥1, 𝑥2, … . , 𝑥𝑛) =  

𝑃(𝑥1|𝑦) ∗ 𝑃(𝑥2|𝑦) … … … ∗ 𝑃((𝑥𝑛|𝑦) ∗ 𝑃(𝑦)

𝑃(𝑥1) 𝑃(𝑥2) … … . 𝑃(𝑥𝑛)
 (48) 

Since the denominator in the dataset is constant and does not change,  

 𝑃(𝑦|𝑥1, 𝑥2, … . , 𝑥𝑛) =  𝑃(𝑥1|𝑦) ∗ 𝑃(𝑥2|𝑦) … … … ∗ 𝑃((𝑥𝑛|𝑦) ∗ 𝑃(𝑦) Type equation here. 

 

Therefore,  

 

𝑦 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

 (50) 
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From the above equation, the class of the sample can be obtained, given the predictors. There are 

different types of Naive Bayes classifiers. When characteristic values are continuous, it is assumed 

that the values associated with each class are spread according to the Gaussian distribution, which 

is the normal distribution. On multinomial distributed data, Multinomial Naive Bayes is preferred. 

Bernoulli Naive Bayes is employed when data is distributed according to multivariate Bernoulli 

distributions (Gandhi, 2018) (Prabhakaran, 2018). Since the dataset used in the model has both 

continuous and categorical data, a gaussian distribution classifier was used for the analysis. When 

the predictors take up a continuous value and are not discrete, these values are assumed to be 

sampled from a gaussian distribution (Gandhi, 2018). A probability density function of the variable 

can be assumed by estimating the parameters of the distribution. The formula for conditional 

probability for continuous variables changes to 

 

𝑃(𝑥𝑖|𝑦) =  
1

√2𝜋𝜎𝑦
2

∗  𝑒
−

(𝑥𝑖−𝜇𝑦)
2

2𝜎𝑦
2

 (51) 

 

Where 𝜇𝑦 is the sample mean, 𝜎𝑦 is the sample standard deviation and 𝜎𝑦
2 is the sample variance.  

The Naïve Bayes model is used to predict the probability of failures of all the hydraulic 

components after a component has failed. Based on the combined probability of both the models, 

decisions can be taken on preventive maintenance actions and component replacements. The 

details on using this algorithm are represented in later sections. 
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4.4.3 Train-test Split Method  

The train-test split procedure is used to estimate the performance of machine learning algorithms 

when they are used to make predictions on data not used to train the model. It is a fast and easy 

procedure to perform, the results of which are used to compare the performance of model 

algorithms (Brownlee.J, 2020). A train-test split of 80:20 was used in the KNN algorithm, where 

80% of the data was used in the training set and 20% of the data was used as the test set. In case 

of naïve bayes algorithm, the outcome(dependent) variable is not balanced. Since the data also 

consists of information of components that have not failed along with the failure component at 

each failure SMU hour, the data is biased more towards 0s than 1s. Hence, a stratified sampling 

method was used to balance the binary categories of dependent variable in the train and test groups. 

A stratified train-test split divides the data into train and test sets in such a way that it preserves 

the same proportion of examples in each class of dependent variable observed in the original 

dataset (Brownlee.J, 2020). 

 

4.5 Model Evaluation and Tuning 

4.5.1 K-fold Cross Validation  

Cross-validation is a resampling technique for evaluating machine learning models that have 

smaller data size. The process includes a single parameter, k, which specifies the number of groups 

into which a given data sample should be divided. Cross-validation is most commonly used in 

applied machine learning to validate model efficiency on unknown data. That is, to use a limited 

sample to estimate how the model is expected to perform in general when used to make predictions 

on data not used during the training of the model (Jason, 2020). Since the dataset for naïve bayes 

algorithm was smaller and biased, a k-fold cross validation with the value of k =3 was used to 
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evaluate model performance and efficiency. The value of K =3 generated 3 different models with 

different samplings of train-test groups using stratified sampling method. The model efficiency 

was evaluated by resampling training data into 3 different sets. 

4.5.2 Hyperparameter Tuning 

A hyperparameter is a control parameter for the learning process, and hyperparameter tuning is the 

process of identifying a set of optimal hyperparameters for the chosen learning algorithm in 

machine learning and deep learning. Tuning hyperparameters can be done in a variety of ways, the 

most basic of which is hand tuning, which is labor intensive. Automated hyperparameter tuning 

frameworks such as grid search and random search have been proposed to solve the limitations of 

manual hyperparameter tuning. Grid search includes searching at various hyperparameter value 

combinations in the space of a grid that the user has selected. The Grid search does an exhaustive 

search by calculating the error on a validation set using multiple combinations of hyperparameter 

values and selecting the combination of parameters that provides the least error as the optimal 

hyperparameters (Mishra, 2019). A grid search hyperparameter tuning method was used in the 

KNN model to find the best value of K with minimum error. The search was also validated by 

graphing the minimum error rate for all values of K on training and validation set. 

4.5.3 Performance Evaluation Metrics Used in Failure Prediction Models 

Performance evaluation metrics help in understanding how well the model describes the dataset. 

Model evaluation is a process through which the quality of the system’s prediction can be 

quantified. The trained model measurement is tested on validation and test datasets and the labeled 

data (dependent variable) in the validation or test dataset is compared with its own predictions 

(Mishra, 2019). The model performance metrics give a rough estimate of the accuracy of the 

algorithm on the dataset being used and the chances of over-fitting and under-fitting problems.  
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For classification models, accuracy, log loss, precision, recall, confusion matrix, AUC score, F1 

score, sensitivity and specificity are the mainly used metrics to evaluate model performance. This 

study mainly uses accuracy, confusion matrix and AUC score to estimate the performance of test 

dataset using KNN and Naïve Bayes algorithm  

• Accuracy measures the proportion of true results to total cases. Accuracy is presented 

as  

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (52) 

 

• Confusion Matrix assesses the relationship between the label and the classification of 

the model. A confusion matrix has two axes: one for the predicted label and the other 

for the actual label and represents the number of classes. Confusion Matrix is 

represented as 

True Positive False Positive 

False Negative True Negative 

 

• The area under the curve (AUC) is calculated by plotting true positives on the y axis 

and false positives on the x axis. This metric is useful since it gives a single value to 

compare different sorts of models. 
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4.6 Results and Discussions 

4.6.1 Data Preparation 

Table. 53 shows the components of the hydraulic system that were considered for successive 

failure analysis of system components in the next 1000 hours. The dataset prepared for k-NN, and 

Naïve Bayes algorithm are presented in Appendix B. Around 72% of the times, a component 

failure was associated with a comeback failure in the next 1000 hours. 

HYDRAULIC OIL COOLER FAN 

PUMP 
HYDRAULIC OIL COOLER BUCKET CYLINDER 

PILOT PUMP MAIN CONTROL VALVE CLAM CYLINDER 

A/C COMPRESSOR PUMP TRAVEL MOTOR MAIN PUMP, 5 & 6 

BOOM CYINDER 
HYDRAULIC OIL COOLER FAN 

MOTOR 
MAIN PUMP, 1 & 2 

PROPEL/BRAKE CONTROL 

VALVE 
MAIN PUMP, 9 & 10 SWING MOTOR 

Table 53. Components of hydraulic system 

 

4.6.2 Data Processing and Preliminary Analysis 

An initial analysis was performed to identify components with the highest rates of comeback 

failures in the 1000 hours following the component failure. Figure 73 describes the probability of 

comeback failure of different hydraulic components considered in this study. The swing motor 

failures have the highest probability of having a component failure in the next 1000 hours of 
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operation. After a swing motor failure, there are 48% chances that a component fails within 1000 

hours. Main Pumps, 1 &2 have 33% chances of a comeback failure, followed by Main Pumps 5 

&6 and clam cylinders, which have a 25% risk of a successive failure in the next 1000 hours. For 

the hydraulic components evaluated in the study, the following graph depicts the chance of a 

subsequent failure within 1000 hours of the component failure. 

 

Figure 73. Probability of successive failures of different hydraulic components 

 

The next phase in the data exploration involves investigating components that have higher chances 

of failure after a swing motor and main pump, 1&2 failure. The objective of this phase is to 

determine the likelihood of hydraulic component failures in 1000 hours of operation following the 

loss of swing motors and main pumps 1&2. Figure 74 depicts the likelihood of various component 

failures following a swing motor failure. After a swing motor fails, there is a 44% probability of 

another swing motor failing in the next 1000 hours of operation, followed by a 12% possibility of 
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a bucket cylinder failure, a travel motor failure, and main pump, 9&10 failures. Figure 75 depicts 

the likelihood of distinct component failures following a main pump failure. Following the failure 

of main pump 1&2, there is a 24% chance of main pump 3&4 (grouped as main pump 1&2) failure, 

followed by a 21% possibility of a swing motor failure and a 17% chance of main pump 9&10. A 

bar graph represented in Figure 76 is used to identify if the failures in the next 1000 hours of a 

swing motor failure and a main pump failure are occurring randomly due to chance (i.e., they have 

achieved their expected life) or if they are influenced by the failure of swing motor and main 

pumps. The graph shows difference in failure frequency of components after a swing motor and a 

main pump failure, and the average standard deviation of the components (as indicated in section 

3.4) is greater than at least 7000 hours for all hydraulic components indicating the failures are not 

random (i.e., a component is failing because it has achieved its full life) rather there is an influence 

of previous failures on the successive failures. The probability of successive failures of 

components in the next 1000 hours after a swing motor failure and main pumps is calculated using 

conditional probability theorem as 

 
𝑃(𝐴𝑖 \𝐵) =  

𝑃 (𝐴𝑖  ∩ 𝐵)

𝑃(𝐵)
  (53) 

 

where component Ai is any one of the 15 hydraulic components considered and component B is 

either swing motors or main pumps, 1 &2.  
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Figure 74. Probability of successive failures of swing motors 

 

 

Figure 75. Probability of Successive Failures of Main pump 1&2 
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Figure 76. Comparison of Swing Motor and Main Pump 1&2 Successive failures 

Figure 77 to Figure 82 indicate the probability density of failures in the next 1000 hours of a 

component failure for the given particle count in the system. The x- axis represents particle count 

in oil at the time of failure and y-axis represents the density of distribution. The preliminary 

analysis indicates that there is a change in probability of successive failures with the change in 

particle count in the oil. The chances of a successive failure in the next 1000 hours of operation 

after a component failure are higher when the 4μ particle count are in the ISO code range of 18 – 

21 at reportable levels. The observations from the graphs infer that when there is a debris related 

failure or critical failures (with particle count in oil greater than 22) the hydraulic system might be 

cleaned, and the particles might be flushed out system which would not initiate any further failures. 

But when the particle counts are at reportable levels (18-22), there are higher chances of successive 

failure indicating the particles remain in the system even after the components are replaced and 

these particles flow in the oil eventually causing more failures. Blue bars represent that there are 

no successive failures in the next 1000 hours after a component failure and orange bars represent 
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successive failures in the next 1000 hours of the component failure. The particle count at the time 

of failure is represented on the x axis and the probability density of the particle count is represented 

on y axis. 

 

Figure 77. PDF Plot of Successive failures for variation in 4μ particle 
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Figure 78. PDF Plot of Successive failures for variation in 6μ particle 
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Figure 79.PDF Plot of Successive failures for variation in 14μ particle 
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Figure 80.PDF Plot of Successive failures for variation in 4μ particle 600 hours prior to failure 
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Figure 81.PDF Plot of Successive failures for variation in 6μ particle 600 hours prior to failure 
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Figure 82. PDF Plot of Successive failures for variation in 14μ particle 600 hours prior to failure 

 

There are different Naïve bayes algorithms used for classification analysis. This study uses 

gaussian Naïve Bayes classifier to analyze failure dataset.  When working with continuous data, 

an assumption often considered is that the continuous values associated with each class are 

distributed according to a normal (or Gaussian) distribution. The likelihood of the features is 

assumed to be probability density function of normal distribution. Although, the Naïve bayes 

framework does not assume a distribution on the feature themselves if the data does not fit a near 

normal distribution, this may have a performance hit. Hence Q-Q plots were used to check if the 
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data was normally or nearly normally distributed. All the features used in this study show a near 

normal distribution of data and hence gaussian Naïve Bayes model is used without affecting the 

model performance.  Figure 83 to Figure  86 show Q-Q plots of features including 4μ, 14μ particle 

count at the time of failure and 600 hours prior to the failure.  

 

Figure 83.Q-Q plot of 4μ particle count at failure feature 
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Figure 84.Q-Q plot of 6μ particle count at failure feature 

Figure 85.Q-Q plot of 4μ particle count 600 hours prior failure feature 

0

5

10

15

20

25

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Em
p

ir
ic

al
 D

is
tr

ib
tu

io
n

Theoritical Distribution

Q-Q plot for 4m particles prior to failure



209 
 

 

Figure 86.Q-Q plot of 14μ particle count 600 hours prior failure feature 

 

For the Naïve Bayes model, the component condition for all 15 components is described at each 

failure. For every SMU hour recording of a hydraulic component failure, the information about 

the failure status of all the 15 components are tabulated. A component-failure column was created 

(flagging 1/0) to indicate if the component had failed at that SMU hour. One hot encoding was 

used to identify failures in the 1000 hours prior to the failure SMU hour. A sample of data tabulated 

for Naïve Bayes model is presented in Appendix B.  

For a better understanding of the data preparation for the model input, an example is shown below 

on the tabulation of failure data in Table. 54. 
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SMU 
hours 

Component-
failed 

Component-
failed 

A B C 
Particle Count at 

the time of failure 
(4\6\10) μ 

Particle Count 
600 hours prior 

to the failure 
(4\6\10) μ 

2000 A 1 0 0 0 14 13 

2000 B 0 0 0 0 14 13 

2000 C 0 0 0 0 14 13 

2500 A 0 1 0 0 22 15 

2500 B 1 1 0 0 22 15 

2500 C 1 1 0 0 22 15 

5000 A 1 0 0 0 19 16 

5000 B 1 0 0 0 19 16 

5000 C 1 0 0 0 19 16 

Table 54. Illustration of data input for Naive Bayes Model 

 

Suppose if there were three hydraulic components and the components failed at 2000, 2500 and 

5000 SMU hours. The columns are tabulated in the following way, 

• Each component status (whether it has failed or not) is recorded against each SMU hour.  

• A, B, C columns are created to record if component A, component B, component C failed 

in the previous 1000 hours of each failure. As shown in the table, the first SMU failure 

hour is recorded at 2000 meter-hours.  

➢ Component A has failed at 2000 hours which is flagged 1 in the component-failed 

column. Since B and C have not failed at 2000 hours, they are flagged 0. Since the 

first hydraulic failure is at 2000 meter-hours, no components have failed previously. 

Hence A, B, C are marked 0. 
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➢ The next instance of failure is at 2500 meter-hours. Component B and C have failed 

at 2500 meter-hours which are flagged 1 in the component-failure column. Since A 

has not failed it is marked 0. Since A had failed in less than 1000 hours, Component 

A is marked 1 in column A and the others are flagged 0. 

➢ In scenario 3, all the 3 components have failed at 5000 SMU hours and are flagged 

1 in the component-failure column and since there was no failure in previous 1000 

meter-hours, all columns A, B, C are flagged 0.  

• Particle count (4\6\10) μ at the time of failure and 600 hours prior to the failure are recorded 

for each SMU failure hour.  

Table. 55 shows the correlation coefficients determined by performing a Pearson’s correlation 

test because of its ability to measure the degree of linear relationships, and the following features 

have a high correlation coefficient greater than 0.75 

• 6μ particle count at the time of failure and 4μ particle count at the time of failure are 

highly correlated with correlation coefficient of 0.898. Hence 6μ particle count at the 

time of failure was eliminated.  

• 6μ particle count 600 hours prior to the time of failure and 4μ particle count 600 hours 

prior to the time of failure are highly correlated with correlation coefficient of 0.919. 

Hence 6μ particle count 600 hours prior to failure was eliminated.  
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correlation Matrix 

4M 

Particle 

Count at 

Failure 

6M 

Particle 

Count at 

Failure 

10M 

Particle 

Count at 

Failure 

4M 

Particle 

Count 

600hrs 

Failure 

6M 

Particle 

Count 

600hr 

Failure 

10M 

Particle 

Count 

600hr 

Failure 

4M Particle Count at Failure 1      

6M Particle Count at Failure 0.898 1     

10M Particle Count at Failure 0.511 0.713 1    

4M Particle Count 600hrs Failure 0.670 0.519 0.198 1   

6M Particle Count 600hr Failure 0.586 0.512 0.293 0.919 1.000  

10M Particle Count 600hr Failure 0.315 0.358 0.526 0.592 0.784 1 

Table 55.Correlation metrics of Continuous Variables 

 

KNN algorithm was modeled using train dataset as described in the initial sections. Standard 

libraries in python were used for the analysis of KNN model. The data split of dependent variable 

(1 & 0) in the dataset of KNN model is shown in Figure 86. Since the dataset is nearly balanced, 

a 70:30 train-test split was used to divide the data into training and test sets respectively. The 

continuous variables were standardized using StandardScaler library after eliminating variables 

discussed in the previous sections. The classification accuracy with K=1 was 0.7. A grid search 

method was used to identify best value of K from a value range between 1 to 45 with a 10-fold 

cross validation for each K. According to the grid search method, the best value of K was estimated 

as 13.  
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Figure 87.Category split of dependent variable 

Hence the KNN model with the value of K =13 was used on the training set. The accuracy of the 

model improved to 0.8 with good recall and precision values. Figure  88 shows the classification 

report of KNN analysis with K=13. 
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Figure 88. Classification results of KNN model with k= 13 

 

Naïve Bayes algorithm is used to determine the probability of failure for each of the 15 components 

in the next 1000 hours given a component failure. Dataset for Naïve Bayes was prepared as 

described in section 4.2 with component-failure flagged 1/0 representing if that component failed 

at that SMU failure hour and using one-hot encoding, columns were created for each component 

to indicate if there was a failure in the previous 1000 hours for the given SMU failure hour. The 

particle count at the time of failure and 600 hours prior to failure are also used in the model. 

Analysis results of probability of successive failure for 15 components using Naïve Bayes resulted 

in very low model accuracy of 0.4. Hence, only comeback failures of swing motor failures were 

considered for failure analysis. Since the probability of successive failure in next 1000 hours is 

highest for swing motors, a Naïve Bayes model was built considering only the swing motor 

failures. The model is used to predict probability of component failures after a swing motor failure. 

The failure status of top 5 component failures (from Figure .73) that had highest comeback rate 

were also considered along with swing failure. The data split of dependent variable (0/1) for the 

Naïve Bayes algorithm is shown in Figure  89. Since the dataset is imbalanced, a stratified train-
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test split is used in the analysis to divide the data into train and test group. A 3-fold cross validation 

method was used to analyze model results. 

Figure 89. Binary split of dependent variable 

Three different models were run with different training dataset and model performance was similar 

in the three models. Below is the accuracy and confusion matrix for the three Naïve bayes models 

that were used for predicting probability of component failure given a swing motor failure. Table 

56 through Table. 59 indicate performance metrics of the three Naïve Bayes models used in 

predicting successive failures in the next 1000 hours of operation after a component failure. 

 MODEL 1 MODEL 2 MODEL 3 

ACCURACY 0.88 0.89 0.9 

 

Table 56. Accuracy scores of Naive Bayes Models 
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 0 1 

0 92% 8% 

1 55% 45% 

Table 57.Confusion Matrix for Naive Bayes Model1 

 

 

0 1 

0 96% 4% 

1 60% 40% 

Table 58. Confusion Matrix for Naive bayes Model2 

 

 0 1 

0 93% 7% 

1 60% 40% 

Table 59. Confusion Matrix of Naive Bayes Model3 

 

4.7 Summary and Conclusions 

The main objective of this study was to identify wear/contamination-related failures that were 

influenced by the previous failures. Using the historical data, the aim was to predict the probability 

of successive failures given a component has failed. This can be a crucial step in the maintenance 

activities. If the failures can be identified in advance, then the components that are highly likely to 
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fail after a particular component failure can be replaced along with the initially failed component 

to prevent on additional labor costs, downtime hours and other maintenance and repair costs. 

Machine learning algorithms help in finding failure patterns using historical failure data to predict 

future failures. Two machine learning models were used in this study for successive failure 

analysis. 

k-NN model was used to predict if the possibility of a successive failure after a component has 

failed. The model accuracy is around 0.8 which means that the model can accurately predict 80% 

of the times if there is a possibility of future failure. The model has more than half of the times 

correctly predicted the possibility of a successive failure within 1000 hours of operation and has 

65% of the times has correctly predicted that there is not going to be a successive failure when 

there was no failure in the next 1000 hours.  

Naïve Bayes algorithm was to predict the probability of failure of all 15 components after a 

component failure. 3 folds of training samples were used to test the algorithm efficiency. The 

average model accuracy is around 0.89 which means the algorithm has correctly predicted the 

outcomes 89% of the times. The confusion matrix helps in deciding to use the algorithm in 

maintenance practices. The model has correctly predicted more than 92% of the time that a 

component is not going to fail in the next 1000 hours. The model has correctly predicted the 

chances of successive failure 40% of the time. As the false positive rate of the model is less than 

3%, this is suitable to be adopted in equipment replacement plans. The false-positive rate is the 

number of times the model has predicted a failure when there was no failure. As the hydraulic 

component parts are expensive, a higher false-positive rate would add to a loss on purchasing 

component parts. Thus, a lower false-positive rate ensures that unnecessary costs are not spent on 

buying new components when the component still has not achieved the expected life. The model 
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has identified successive failures 40% of the time. This means, without a prior knowledge on 

successive failures, out of every 10 components failures after a swing motor failure, 4 of them can 

be mitigated using prediction model.  

In order to be more accurate about a successive component failure after a given failure, the results 

of the two algorithms together can be used. If the output of both the KNN and Naïve Bayes models 

are [1,1] there is a highly likely chance of a failure, if the output of the models are [1,0] or [0,1], a 

combined decision can be taken based on the component life and the component type and oil 

conditions. If the output of the models are [0,0], it means there is a highly likely chance that there 

would not be a failure in the next 1000 hours of operations. 
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5. CONCLUSIONS 

 

This chapter presents the summary and conclusions drawn from the research work. The chapter 

also discusses the significance and contribution of this research and suggests recommendations 

for future work. 
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5.1 Summary of Research  

Large hydraulic shovel – truck system forms the backbone of surface mining industry. Hydraulic 

systems are often subjected to wear and contamination related failures. The component failures 

generated by wear particles also lead to debris accumulation in the oil leading to the failure of 

downstream components. Eventually the whole system breaks down. Hydraulic system failures 

are very costly and are associated with longer downtimes. Hence companies are trying to mitigate 

hydraulic failures by introducing new filters to contain contaminant particles, practice CBM and 

use data driven techniques to prevent these failures. With the addition of industry 4.0 to the mining 

industry, the aim is always to extend component lives of equipment, reduce repair bills, get back 

to work faster and reduce follow on failures. This research mainly focused on using data driven 

techniques to identify the effectiveness of hydraulic Mag-filters and predict successive failures to 

improve reliability and availability of the shovels.  

Four distinct sections of a thorough literature review were reviewed and presented. The overview 

of the hydraulic system, the different types of hydraulic filters, hydraulic failures, and their 

criticality levels are discussed in the first section of the literature review. The cleanliness of 

hydraulic oil, its effects on the system, and the oil analysis method for condition-based monitoring 

are reviewed in the second section of the literature review. In the third section of the literature 

study, various statistical and data analytics methods for failure analysis are presented. In the fourth 

section of the literature review, various machine learning approaches used in failure analysis and 

predictive maintenance, primarily for mining equipment are presented. The literature review 

helped in understanding in detail about the hydraulic system of giant shovels, the design of the 

hydraulic system of shovels, the importance of hydraulic system filters, different failure modes, 

and failure causes in the hydraulic system, condition monitoring of the hydraulic system based on 
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oil samples, and crucial factors affecting oil contamination and hydraulic system wear. The 

literature review section also summarized various statistical techniques that can be applied in 

different analyses and the major contributions of previous researchers which helped in better 

understanding and implementation of various machine learning techniques for failure analysis and 

predictions in this study. Researchers have implemented numerous machine learning models and 

achieved satisfactory results for fault diagnostics and predictive maintenance analysis in mining 

and other industries.  

Although numerous statistical techniques are applied in the analysis of failures of mining 

equipment, there is no such framework described to quantify the pre and post effects of 

implementing a solution to prevent equipment failures. The first part of this study aims to apply 

different statistical techniques to quantify the effects of magnetic filters installed in the shovel 

hydraulic system.  

Several machine learning techniques are already used in the analysis of mine equipment failures. 

Despite the popularity and application of machine learning techniques, no previous work is found 

related to the prediction of the probability of successive failure of the mine equipment components 

that are influenced by the previous failure. The second part of this study is an attempt in 

implementing machine learning models to find the probability of successive failures of different 

hydraulic components in the next 1000 hours of operation after a component has failed.  

6.2 Research Conclusions 

Through the first part of this research, an integrated framework has been developed to analyze the 

pre and post effects of implementing a solution to prevent mine equipment failures using different 

statistical techniques. The study demonstrates the use of different statistical techniques like 
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descriptive and inferential statistical analyses, ANOVA test, probability distributions, IID tests, 

Central Limit Theorem, and goodness-of-fit tests. Different key performance indicators are used 

in the pre-post analysis of implementing a solution to mitigate mine equipment failure. The study 

throws light on how a pre-post analysis can be studied from different perspectives using different 

KPIs to assess before and after performance of the mine equipment. To conclude on the overall 

impacts of magnetic filters on the hydraulic system, a weighted variable method was used to 

identify the effects of Mag-filters on different components across different KPIs used in this study. 

Hence, the research work highlights the significance of filter impacts on different KPIs and to what 

extent the performance of hydraulic components has changed across these KPIs post Mag-filter 

installation. The study uses different parameters like component life, reliability, oil particle count, 

comeback failure rate and failure costs to study the impacts of Mag-filters and how these 

parameters are affected post installation of Mag-filters. Most hydraulic component failures have 

seen a large reduction in comeback failures, while component life, reliability, and failure costs 

have improved significantly for a few system components. Different weights are assigned to the 

parameters based on the variability explained by each parameter in order to assess overall Mag 

impacts. A total weighted score is calculated based on the factor change in performance post Mag 

installation for different hydraulic components considered across different parameters. The total 

score indicates a positive change concluding that the Mag-filters are beneficial on the hydraulic 

system. However, as noted in the analysis, not all the hydraulic components across the different 

KPIs considered show an improvement in performance post Mag installation. As a result, it can be 

stated that mag filters are advantageous in extending the life of hydraulic systems, although they 

are not the only element affecting the system performance. Other factors like the location of the 
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equipment in the mine, working conditions, and rock hardness also influence hydraulic system 

performance. 

Through the second part of the analysis, an integrated methodology has been established using 

machine leaning techniques to predict the probability of successive failures in the next 1000 hours 

of operation after a component failure. Supervised classification models were explored and a 

framework to assess failure probability using KNN and Naïve Bayes algorithms was presented 

using historical failure data. This study demonstrates the use of different machine learning models 

and probability theory to assess likelihood of successive failures. KNN model was used to predict 

the chance of occurrence of a successive failure in the next 1000 hours of operation of a component 

failure. The accuracy of prediction model was 0.8 indicating that 80% of the times the model can 

correctly predict if there is a successive failure occurrence in the next 1000 hours of operation after 

a component failure. Naïve Bayes models were used to predict the chance of a component failure 

in the next 1000 hours of operation after a swing motor failure that had the highest comeback 

failure rate. The average accuracy of prediction was around 0.89. An ensemble of the two models 

can be used to make a decision on the output. This can be used in predictive maintenance of shovels 

to schedule component replacements that would reduce the run to failures and increase production.  

In summary, the first part of research developed an integrated framework for pre-post analysis of 

implementing a solution to mitigate mine equipment failures. The second part of research 

presented machine learning classification algorithms to predict successive failures in the next 1000 

hours of operation after a component failure. The results presented in Chapter 3 and Chapter 4 

show that several statistical and machine learning techniques can be employed for solving 

hydraulic system problems of giant shovels.   
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6.3 Research Contribution 

The main contribution of this research is the development of a framework for pre-post analysis of 

the effects of implementation of a solution to prevent mine equipment failures and develop and 

integrate a methodology to assess the likelihood of component failures of the hydraulic system that 

are impacted from previous failures.  This provides a better understanding of the applicability of 

various statistical and machine learning techniques and facilitate the diagnosis of hydraulic failures 

using historical failure data and oil analysis samples. The integrated framework and the KPIs 

developed and used in the first part of the thesis that presents the analysis of pre-post effects of 

magnetic filters can be generalized and used as a hypothesis framework solution to test the pre-

post effects of implementing a solution to prevent equipment failures. The methodology developed 

in the second part of the thesis to predict successive failure probability prediction in the hydraulic 

system using machine learning algorithms can be used to diagnose and predict equipment failures. 

The second part of the research demonstrates several important pre-processing and data 

preparation steps. The research also demonstrates the use and application of different performance 

evaluation metrics and their importance in solving different machine learning problems.  

6.3 Challenges and Limitations 

Various statistical and machine learning algorithms are used in this study to analyze hydraulic 

system failures. The algorithms generate effective results on the mag-filter analysis and probability 

of failure prediction. However, no initial framework was available to analyze the effects of 

implementation of solution to mitigate failures. Hence, one of the challenges of the project was to 

understand and design a framework and cautiously select KPIs that would best describe the effects 

of Mag-filters. The key aspect of all statistical learning and machine learning algorithms is the 

amount and quality of data. Missing values and wrongly recorded failure data affect the results 
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and need initial treatments. As the volume of data increases, the complexities increase. One of the 

main challenges of this research was the difficulty in collecting correct failure data from the data 

base files and dealing with missing values and outliers. The first section of the project draws the 

conclusion regarding the efficiency of Mag-filters, however, the cause of effects of change in 

performance could not be further investigated due to the lack of data. Additionally, the database's 

missing IFRs and CRs led to the information loss, making it difficult to conduct a thorough 

investigation of the cause and nature of hydraulic failures. Understanding and extracting 

information about the cause and type of the failures for which IFR and CR data were available was 

a time-consuming task since the information had to be manually extracted. Based on the results 

presented in this research and the key challenges listed in this section, the choice of data along 

with suitable algorithm will have a significant impact on the outcome of future work based on the 

framework suggested in this research. 

6.4 Recommendations for future work 

 The most important and integral part of any statistical and data analysis is the quality and quantity 

of information obtained for the analysis. The higher the quality of data, the closer the analysis 

results are to the actual observances. One of the biggest challenges in the mining industry is the 

collection and collaboration of quality data. In this research, one of the most time-consuming tasks 

was to access and collect data from different data sources and manually inspect work order reports 

to study the hydraulic failures. With the advancement of big data analytics tools, the foremost 

recommendation is to automate the process of data collection and integrate and store all data 

sources of a company’s data using big data tools so that the data used for analysis is more reliable 

and error free. The first part of the study is to analyze the effectiveness of Mag-filters. A few 

questions regarding the cause of the hydraulic system's performance change after the installation 
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of Mag-filters were challenging to answer due to a lack of knowledge of other external factors 

influencing hydraulic system performance. The extent of each factor's influence on performance 

can be determined if the information on external factors, such as the location and working 

environment of the shovels, can be collected. The second part of this research aims to predict 

successive failure probability of components in the next 1000 hours of operation given a hydraulic 

component has failed. Only oil conditions and component failures in the previous 1000 hours of 

operation before the hydraulic failure are considered in the machine learning models employed 

in this study. The model can be more robust and generalized to hydraulic wear failures of large 

mining shovels if more information about external conditions, the condition of the mines, and the 

cause and type of failure for all shovels can be gathered. Machine learning models are used in 

this analysis to determine the likelihood of subsequent failures. It is not possible to train more 

powerful models, such as deep learning and neural network techniques, using the amount of failure 

data that has been gathered. More complex algorithms can be applied to the training dataset for 

better predictions and enhanced accuracy of the prediction model, and the models can be 

generalized for hydraulic failure analysis if sufficient data on hydraulic failure is gathered. 
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APPENDIX A: OIL ANALYSIS TOOL, WO REPORTS AND 

NORMALITY TESTS 

 

A1: An example of working of oil analysis tool: 
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A2: An example of Initial Failure Report (IFR) 
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A3: Example of Condition Report (CR) 

 

 

Normality Test: The normality test for TTF data of each component is used to check if the data is 

near normally distributed to use ANOVA test to see the significance in variation in component life 

after Mag-filters were installed. Descriptive statistics and NPP charts are used to check normality 

of the data. The mean and median values are compared, and skewness of the data is \checked. If 

the mean and median values are closer, and skewness is <0.5 then the data is indicating normality 



241 
 

and NPP charts are used to see if the data follows near normal distribution. Normal Test Plots (also 

called Normal Probability Plots or Normal Quartile Plots) are used to investigate whether process 

data exhibit the standard normal "bell curve" or Gaussian distribution. Component Life vs their Z-

score values are plotted and if the line is linear or somewhat linear then the data is assumed to 

follow normal distribution or a near normal distribution and ANOVA is used for the test of 

significance. The details of descriptive statistics and NPP charts for all the 8 hydraulic components 

considered are represented below. 

A4: Normality test:  Main Pumps 

Main Pump - TTF Summary (Before Mag Installation) 

    

Mean 14915.34783 

Standard Error 1439.413429 

Median 13943 

Mode 23359 

Standard Deviation 6903.184296 

Sample Variance 47653953.42 

Kurtosis -1.457291689 

Skewness -0.054401758 

Range 20545 

Minimum 3887 

Maximum 24432 

Sum 343053 

Count 23 
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Main Pump - TTF Summary (After Mag Installation) 

Mean 12197 

Standard Error 1330.000473 

Median 11476 

Mode 6048 

Standard Deviation 6094.82784 

Sample Variance 37146926.4 

Kurtosis -0.8490595 

Skewness 0.134092936 

Range 20378 

Minimum 1979 

Maximum 22357 

Sum 256137 

Count 21 
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NPP Chart - Main Pump TTF Analysis - Before Mag Installation
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A5: Normality test: Swing Motors 

TTF Summary: Swing Motors 

    

Mean 12121.78 

Standard Error 1054.809 

Median 11875.5 

Mode 18255 
Standard 
Deviation 6328.852 

Sample Variance 40054363 

Kurtosis -0.655 

Skewness 0.008067 

Range 23612 

Minimum 484 

Maximum 24096 

Sum 436384 

Count 36 
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A6: Normality Test: Travel Motors 

TTF Summary: Travel Motors 

  

Mean 20409.95652 

Standard Error 1159.864188 

Median 22357 

Mode 22357 

Standard Deviation 5562.513236 

Sample Variance 30941553.5 

Kurtosis 6.473972529 

Skewness -2.644377991 

Range 20203 

Minimum 3640 

Maximum 23843 

Sum 469429 
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A7: Normality Test: Clam Cylinders 

TTF Analysis: Clam Cylinders 

    

Mean 7172.217 

Standard Error 705.3744 

Median 7421 

Mode #N/A 

Standard Deviation 3382.857 

Sample Variance 11443719 

Kurtosis -0.91869 

Skewness -0.0068 

Range 11082 

Minimum 1878 

Maximum 12960 

Sum 164961 
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NPP Chart: TTF Analysis of Travel Motors
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A8: Normality Test – Bucket Cylinder 

TTF Analysis: Bucket Cylinders 

    

Mean 15492.08 

Standard Error 1757.603 

Median 13272 

Mode 11901 

Standard Deviation 6337.129 

Sample Variance 40159203 

Kurtosis -1.27746 

Skewness -0.04792 

Range 19045 

Minimum 5468 

Maximum 24513 

Sum 201397 
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NPP Chart: TTF Analysis of Clam Cylinders
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A10: Normality Test – Oil Cooler Motor 

TTF Analysis: Oil Cooler Motors 

    

Mean 17936.32 

Standard Error 2132.149 

Median 18367 

Mode 22357 

Standard Deviation 9293.824 

Sample Variance 86375160 

Kurtosis 0.112277 

Skewness -0.00386 

Range 35415 

Minimum 0 

Maximum 35415 

Sum 340790 
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NPP Chart: TTF Analysis of Bucket Cylinders
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A11: Normality Test – Propel Brake Valve 

TTF Analysis: Propel Brake Valve 

    

Mean 17849.67 

Standard Error 1814.154 

Median 20711 

Mode 20711 

Standard Deviation 6284.415 

Sample Variance 39493870 

Kurtosis -1.64999 

Skewness -0.69599 

Range 13890 

Minimum 9469 

Maximum 23359 

Sum 214196 
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NPP Chart: TTF Analysis of Oil Cooler Motor



249 
 

 

 

 

 

 

 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5000 10000 15000 20000 25000 30000Z 
sc

o
re

Component Life

NPP Chart: TTF Analysis of Propel Brake Valve



250 
 

APPENDIX B: SAMPLE DATA FOR ML MODELS 

B1: Data Collected for ML Models 

WO Unit Component 
SMU 

(hours
) 

Mag-
filter 

Component 
Life 

Achieved 
Warranty 

Damag
e 

Particle 
Count at 
time of 
failure 

Particle 
Count 
1200 
hours 

prior to 
failure 

8392 1 
PUMP, 

MAIN, 1 & 2 18616 No 23892 No No 21/19/16 20/19/15 

9467 1 

MOTOR, 
TRAVEL, 

FRONT LH 18736 No 24096 No Yes 21/19/16 20/19/15 

9438 1 

MOTOR, 
TRAVEL, 

FRONT RH 18736 No 24432 No No 21/19/16 18/16/14 

8332 1 

MOTOR, 
TRAVEL, 
REAR LH 18736 No 24513 Yes No 21/19/16 16/15/10 

8332 1 

MOTOR, 
TRAVEL, 
REAR RH 18736 No 28438 No No 21/19/16 16/15/10 

1206
8 2 

CYLINDER, 
ARM 19229 No 11917 No No 21/19/16 16/15/10 

1507
4 2 

CYLINDER, 
BUCKET, RH 19229 No 11917 No No 21/19/16 16/15/10 

1587
2 2 

PUMP, 
MAIN, 5 & 6 23452 No 31042 Yes No 21/19/16 16/15/10 

2213
4 2 

PUMP, A/C 
COMPRESSO

R, LH 17648 No 31042 No No 21/19/16 19/17/13 

3531
7 2 

PUMP, HYD 
OIL COOLER 
FAN, FRONT 15342 No 11898 No No 17/15/12 19/17/13 

3719
6 3 

PUMP, 
MAIN, 1 & 2 17614 No 31127 No Yes 19/17/13 16/15/10 
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B2: List of 45 hydraulic components considered for analysis 

HYDRAULIC OIL COOLER, FRONT TRAVEL MOTOR, FRONT RH 
MAIN CONTROL VALVE, 

BOTTOM LH 

HYDRAULIC OIL COOLER, REAR TRAVEL MOTOR, REAR LH 
MAIN CONTROL VALVE, 

BOTTOM RH 

BOOM CYLINDER, LH TRAVEL MOTOR, REAR RH 
MAIN CONTROL VALVE, 

MIDDLE RH 

BOOM CYLINDER, RH A/C COMPRESSOR PUMP, LH 
MAIN CONTROL VALVE, 

MIDDLE LH 

BUCKET CYLINDER, LH A/C COMPRESSOR PUMP, RH 
MAIN CONTROL VALVE, TOP 

LH 

BUCKET CYLINDER, RH 
HYDRAULIC OIL COOLER FAN 

PUMP, FRONT 
MAIN CONTROL VALVE, TOP 

RH 

CLAM CYLINDER, LH 
HYDRAULIC OIL COOLER FAN 

PUMP, REAR 
PILOT CONTROL, VALVE 

CLAM CYLINDER, RH MAIN PUMP, 1& 2 
PROPEL/BRAKE CONTROL 

VALVE, LH1 

HYDRAULIC OIL COOLER FAN 
MOTOR, FRONT 

MAIN PUMP, 11 & 12 
PROPEL/BRAKE CONTROL 

VALVE, LH2 

HYDRAULIC OIL COOLER FAN 
MOTOR, REAR 

PUMP MAIN, 3 & 4 
PROPEL/BRAKE CONTROL 

VALVE, RH1 

SWING MOTOR, FRONT LH PUMP MAIN, 5 & 6 
PROPEL/BRAKE CONTROL 

VALVE, RH2 

SWING MOTOR, FRONT RH PUMP MAIN, 7 & 8 
HYDRAULIC OIL COOLER FAN, 

FRONT 

SWING MOTOR, REAR LH PUMP MAIN, 9 & 10 
HYDRAULIC OIL COOLER FAN, 

REAR 

SWING MOTOR, REAR RH PILOT PUMP, LH 
PUMP DRIVE OIL COOLER 

PUMP, RH 

TRAVEL MOTOR, FRONT LH PILOT PUMP, RH 
PUMP DRIVE OIL COOLER 

PUMP, LH 
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B3: Sample data used in K-NN algorithm 

SMU Components 
Component 

Code 
Unit 

4M 
Particle 
Count 

at 
Failure 

6M 
Particle 
Count 

at 
Failure 

10M 
Particle 
Count 

at 
Failure 

4M 
Particle 
Count 
600hrs 
Failure 

6M 
Particle 
Count 
600hr 
Failure 

10M 
Particle 
Count 
600hr 
Failure 

Failure 
status 

30927 
PUMP, MAIN, 1 

& 2 
9 1 20 18 14 19 17 15 1 

31042 
CYLINDER, 

BOOM 
2 1 19 17 13 19 17 15 1 

31146 
COOLER, 

HYDRAULIC OIL 
1 1 20 18 14 19 17 15 0 

31146 
CYLINDER, 

BUCKET 
3 1 20 18 14 19 17 15 0 

31146 
MOTOR, 
SWING 

5 2 20 18 14 19 17 15 0 

35415 
MOTOR, 

HYDRAULIC OIL 
COOLER FAN 

4 2 18 16 13 20 17 13 0 

36502 
PUMP, MAIN, 5 

& 6 
10 2 18 16 12 19 17 14 0 

37949 PUMP DRIVE 6 2 20 18 14 19 17 14 0 

37949 
PUMP, HYD OIL 

COOLER FAN 
8 2 20 18 14 19 17 14 0 

37949 
PUMP, MAIN, 5 

& 6 
10 3 20 18 14 19 17 14 0 

37949 
PUMP, MAIN, 9 

& 10 
11 3 20 18 14 19 17 14 0 

37949 PUMP, PILOT 12 3 20 18 14 19 17 14 0 

40389 
MOTOR, 
SWING 

5 1 20 18 14 18 16 13 1 
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B4: Sample data for Naïve Bayes algorithm 

SMU Components 
Failure 
status 

4M 
Particle 
Count 

at 
Failure 

6M 
Particle 
Count 

at 
Failure 

10M 
Particle 
Count 

at 
Failure 

4M 
Particle 
Count 
600hrs 
Failure 

6M 
Particle 
Count 
600hr 
Failure 

10M 
Particle 
Count 
600hr 
Failure 

Swing 
Motor 
failure 
in last 
1000 
hours 

Main 
Pump, 
1 & 2 
failure 
in last 
1000 
hours 

Bucket 
Cylinder in 

last 
1000hours 

12831 
COOLER, 

HYDRAULIC 
OIL 

0 20 18 15 19 17 13 0 0 0 

12831 
CYLINDER, 

BOOM 
0 20 18 15 19 17 13 0 0 0 

12831 
CYLINDER, 

BUCKET 
0 20 18 15 19 17 13 0 0 0 

12831 
CYLINDER, 
CLAM, LH 

0 20 18 15 19 17 13 0 0 0 

12831 
CYLINDER, 
CLAM, RH 

1 20 18 15 19 17 13 0 0 0 

12831 

MOTOR, 
HYDRAULIC 
OIL COOLER 

FAN 

0 20 18 15 19 17 13 0 0 0 

12831 
MOTOR, 
SWING 

0 20 18 15 19 17 13 0 0 0 

12831 PUMP DRIVE 0 20 18 15 19 17 13 0 0 0 

12831 
PUMP, A/C 

COMPRESSOR 
0 20 18 15 19 17 13 0 0 0 

12831 
PUMP, HYD 
OIL COOLER 

FAN 
0 20 18 15 19 17 13 0 0 0 

12831 
PUMP, MAIN, 

1 & 2 
0 20 18 15 19 17 13 0 0 0 

12831 
PUMP, MAIN, 

5 & 6 
0 20 18 15 19 17 13 0 0 0 

 

 


