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Abstract

For a vector (no, ..., n;) of nonnegative integers, and a vector of formal power series
A(z) = (Ao(2),.-.,Ax(2)), a Padé-Hermite System (PHS) S(z)isak+1xk+1
matrix of polynomials satisfying A(z)- S(z) = 2I"*! R(z) where ||| = g+ - - + ny.
Computing a PHS involves solving two linear systems with a block Sylvester coefficient
matrix. We presernt an iterative algorithm based on that of Cabay, Labahn and
Beckermann for numerically computing Padé-Hermite Systems along a diagonal of
the Padé-Hermite table. An easily computed stability parameter +, which estimates
the condition number of the block Sylvester matrix at a given point, is defined in order
to determine if a given Padé-Hermite table point is stable. Stable points have well
conditioned block Sylvester matrices. The iterative algorithm requires approximately
O(|in]|* + s*||n||) operations, where s is the largest step-size taken along the Padé-
Hermite diagonal.

To test the algorithm, a method is developed which enables the construction of
power serizs with unstable blocks in predetermined Padé-Hermite table locatiens.
Experiments using a Fortran implementation of the algorithm are repotted for a
variety of values of k. The relative error in the iteratively computed PHS is found to
be comparable to that of a PHS determined by direct solution of ti: linear systems
using Gaussian elimination requiring O(||n(|®) operations. Based on the findings of

these experiments, a new stability parameter 4 is proposed.
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Chapter 1

Introduction

The concept of a Padé-Hermite approximant was first introduced over 100 years ago
in the thesis of Padé [23]. His work was based on previous results of Hermite [16]
(17]. The Latin [18] or type I polynomial problem as it was known, emerged
from Hermite’s earlier study of a similar type of approximant for a vector of power
series, the simultaneous Padé approximant.

Simultaneous Padé approximants (also known as the Roman [18] or type II
polynomial problem) were used by Hermite when he proved the transcendence of
e. A general definition for Padé-Hermite and simultaneous Padé approximants, as well
as an extensive study of their properties is originally due to Mahler [21]. Ad- .ional
properties have been presented by Jager [18] and Coates [12).

Padé-Hermite approximants can be defined as follows. Let

oo
A(z) = Eaj',‘ 2, i=0,...,k (1.1)
=0

be power series with coefficients a;; from a field F. For nonnegative integers n;, a

Padé-Hermite approximant of type (no,...,n:) is a set of k + 1 polynomials Pi(z)



satisfying
Ao(z)- Po2) + -+ + Ax(2) - Pu(2) = 2 R(z),

where ||n|| = Y%, ni. The power series R(z) is called the residual and the vector of
integars (no, . . . ,ng) is often referred to as a multi-index. The degree of the polynomial
P;(2) is bounded by the integer n;.

Given k power series A;(2), ¢ =1,...,k, a simultaneous Padé approximant of

type (no,...,nk) is a set of k + 1 polynomials P,(2) satisfying
Ai(z) Po(z) + P(z) = MM R(z),  i=1,...,k

The degree of each polynomial P;(z) in a simultaneous Padé approximant is bounded
by |[nl| - n:.

If k=1 and Ay(z) = -1, the Padé-Hermite approximant problem reduces to
the classical notion of a Padé approximant of a single power series. Other exam-
ples of Padé-Hermite approximation include the D-Log approximants of Baker [3]
and the‘quadratic approximants of Shafer [26]. Basic properties of Padé-Hermite ap-
proximants accompanied by additional ekamples can be found in Baker and Graves-
Morris [4],

The applications of Padé-Hermite approximants and simultaneous Padé approxi-
mants are diverse. As mentioned earlier, Hermite used Padé-Hermite approximants
to prove the transcendence of the number e. These approximants can also be used to
form the inverse of block Hankel, block Toeplitz and block Sylvester matrices. Simul-
taneous Padé approximants have proven to be a valuable tool in computing partial
realizations [15]. To illustrate the use of simuiianeous Padé approximants, we will

briefly discuss the partial realization problem for single input, multi-output systems.



The minimal partial realization problem is described by Van Barel and Bultheel
[27] as follows. Let &y, hg, h3,. .. be a sequence of complex numbers called the Markov
parameters. The rational function u(z)/v(z) is called a realization of this sequence
if and only if |

Uz) _ po1 g2
'D(Z) = h]Z + hzZ + ...

If N is finite and

3—23 = hyz7V + hoz2 4+ ...+ hnz~N + 0(z‘N'1), z — 00, (1.3)

then u(z)/v(z) is called a partial realization of order N. When u(2) and v(z) are .

y 2= 00. (1.2)

coprime, the degree m of the denominator v(z) is called the degree of the partial
realization. A partial realization is called minimal if there exists no other partial

realization of lower degree. If
v(2) = wtnz+...+v.2" (vy #0) and
u(z) = votwz+...+Up12™),

then we can express (1.3) in matrix notation as

( 0 0 e \ !um-—l )
Uo
0 A ... bhn
' B I . (1.4)
hi hy ... hpp 0
{ . . . Um
\ hn hngr ... hngm ) \ 0

By making a substitution of variables, we can formulate (1.4) as a Padé approxi-

mation problem. Let

h(z) = hy + hoz™ 4., (1.5)



Then (1.3) becomes
uz) _ -N-1
0 = h(z)+0(zN ) (1.6)
Moving v(z) to the right gives
u(z) = 271 v(z) h(2) + O (z'N‘l) . (1.7)

Replacing z by 1/z results in

o) = (D) s ro@w) 18
mu(3) = [Fo(D)] 4(3)+o (). (L9)

Thus,
u'(z) = v'(2) k() + O (V) (1.10)

where
u(z) = 'gu,,._,-_l 4 v()= gvm..,- 4 k(o) = gh,- F1 (L11)

These polynomials u*(z) and v*(2) give the Padé approximant of type (m — 1,m) for
h*(z). Hence the minimal partial realization of 4*(z) can be found by computing Padé
approximants for increasing m until the required order condition (1.3) is obtained.
Note that a solution of (1.4) always exists if N < m. The polynomials u(z), v(z) can
be used to construct a controller canonical realization of the system [19].
Graves-Morris and Wilkins [15] generalize the partial realization problem by con-
sidering vectors of Markov parameters. Let
A 30
h(z)=] ¢+ [+] ¢ |1 +.... (1.12)
A® A



Let n = (m — 1,m,...,m) be a vector of k¥ 1 nonnegative integers. Then define

Inll = (k+ 1)m — 1. We wish to find a set of vectors v(2),u)(2),-..,u™(z) such

that for some finite integer N,

o : . .
%éi)) =02 4 b2 44 AN 4 0N =1,k (1.13)
Let
km .
v(z) = Y vz, (gm #£0), (1.14)
ord
. km-1
W) = ¥ uf), =1,k (1.15)
j=0
To compute the coefficients of v(z) we can solve the system
k k
AR 1) A PR 11
(Voy-..rvem) | S PO I : | =0. (116)
K k
hgr)rl-l hgv)mv h£1r)l+1 hfm)mv

Then the components u()(z) are given by

( 0 )
Y

(‘vo, ceey vk,,,)
0

\hgi) hf?l.}

A solution of (1.16) always exists for N < m. Thus

uld(2)

@) =2"h(2) + O (z"'N'l) .

Moving v(2) to the right, letting z = 2, and multiplying by z*™~! gives

()« [ Q@) o

e (e, =k

(1.17)

(1.18)

(1.19)



Hence

u(2) = v )k () + O (z""‘"’N ) (1.20)
= v(z) h*(z) + O (™) m>N (1.21)
= v'(2)h%(z) + O (A"H)  m>N, (1.22)
where
km-1 m N
WW(2) = ¥ tmejmr 2, 0(2) = Y vkmei 2, BY(2) = )b 27N (1.23)
j=0 i=0 j=1

The polynomials v(z),u™)"(2),...,u®’(z2) give the simultaneous Padé approximant
of type n. If we substitute z = 1/z for v(z),u(z2),...,ul¥)(2), the resulting simul-

taneous Padé approximant is

u?)z'1 +...+4 ug,)‘_lz""""’1 ugk)z‘l +...4+ u},’,‘,’,_lz""""'1 (1.24)
14vzl4 . Fvgmz™ 77777 1tpz 4. doppztm |- ’

The polynomial coefficients of (1.24) can be used to construct the controller canonical
form of a single input multi-output system [15].

Fundamental to the study of Padé approximants is the two-dimensional Padé
table. The m* row and n** column of the Padé table contain the (m,n) Padé ap-
proximant to a power series. For Padé-Hermite approximants, we can generalize
this to the k + 1 dimensional Padé-Hermite table. Della Dora and Discrescenzo [13]
present a number of relationships between neighboring entries in the table resulting
in an algorithm to compute such approximants. Recurrence relations involving Padé-
Hermite table elements led to the algorithm of Paszkowski [24] with cost complexity
of O (||n||?) operations.

The algorithms of Paszkowski and of Della Dora and Discrescenzo are only valid

for perfect! power series. To compute a Padé-Hermite approximant we can solve an

1 Paszkowski refers to this as being normal.



associated linear system with a block Hankel coefficient matrix of dimension lin]l x lin||
containing coefficients of the input power series A;(z). For a vector of power series
to be perfect, this Hankel matrix along with a specific set of submatrices must be
nonsingular. This restriction requires for example, that all constant terms in the
power series’ be nonzero for the system to be perfect. Non-perfect Padé-Hermite
approximants correspond to singular blocks in the Padé-Hermite table.

Algorithms for computing Padé-Hermite approximants are often characterized as
being fast or superfast. Gaussian elimination with pivoting requires © (lIn|]®) opera-
tions to compute a Padé-Hermite approximant. Fast algorithms are considered to have
a cost complexity of O (||n|?) while superfast algorithms require © (l]nll log® ||n||) op-
erations. The algorithm we will develop has is fast with a cost of O(||n||? + s?|n|))
operations, where s; is the largest step-size taken along the Padé-Hermite diagonal.

Several authors including Antoulas [2], Beckerman [5], and Cabay et al. [10]
and Van Barel and Bultheel [28] give fast algorithms for computing Padé-Hermite
approximants for non-perfect systems. These methods are based on computing a
set of polynomial vectors which describe all possible solutions of the Padé-Hermite
problem. Recently, Beckerman and Labahn [6] introduced a uniform approach to
computing both Padé-Hermite and simultaneous Padé approximants using a power
Hermite-Padé approximant. Cabay and Labahn [9] have also proposed a superfast
algorithm for computing Padé-Hermite, and simultaneous Padé approximants which
also works for non-perfect systems.

A characteristic common to all the algorithms mentioned is their algebraic ap-
proach to computing Padé-Hermite approximants. Exact arithmetic is implicitly as-
sumed in all the aforementioned algorithms. Algebraic programming systems éuch as

Maple, Mathematica, and Macsyma are available for coding these algorithms. These



systems are computationally expensive and are thus limited to small problems. To
our knowledge no attempt has been made to analyze the numerical properties of
algorithms for computing the Padé-Hermite approximant.

The numerical algorithm we will present for computing Padé-Hermite approxi-
mants will be patterned after that of Cabay et al. [10]. This algorithm was cho-
sen over all others because of the natural way it can be extended from algebraic to
numerical. In the algebraic version, singular Padé-Hermite table blocks points are
skipped when iteratively computing a Padé-Hermite approximant. If we view the
Padé-Hermite table numerically as being composed of stable and unstable blocks, we
need only define a stability measure to determine if a point should be accepted.

Some work has been done investigating numerical algorithms for computing Padé
approximants (i.e. the case k = 1) in a stable manner (see Cabay and Meleshko
[11] for discussion and references). In their work, Cabay and Meleshko propose an
algorithm (based on that of Cabay and Choi [8]) which they show to be weakly stable
(cf. Bunch [7]). To obtain the approximant, a number of linear systems involving
Hankel matrices are solved. Successive approximants are computed along a diagonal
path in the Padé table. The stability of each relevant Hankel system is estimated
by a single stability parameter 4. This parameter is determined directly from the
current and previous Padé approximant and estimates the condition number of the
Hankel matrix. Points in the Padé table whose approximant is computed using a
poorly conditioned Hankel matrix are deemed unstable and are jumped over. Error
bounds on the polynomial coefficients are derived in terms of this stability parameter.
Experimental evidence is provided which supports these error bounds.

The goal of this thesis is to extend to arbitrary k, the method of Cabay and
Meleshko [11]. The algorithm so developed, can be applied to any vector of power



series regardless of whether the perfect condition is met. Padé-Hermite approximants
are computed iteratively by solving a set of linear systems involving a Sylvester ma-
trix. To obtain a Padé-Hermite approximant along some diagonal in the Padé-Hermite
table, a recurrence relation is defined which uses the solution of linear systems at the
last computed point and the solution of two linear systems at the current point.
This algorithm will compute Padé-Hermite approximants at stable points along a
diagonal path in the Padé-Hermite table. We develop a stability parameter v which
theoretically provides an a posteriori estimate for the inverse of the condition number
of the Sylvester matrix. Solving a poorly conditioned linear system generally results
in a solution with large error. The parameter 4 enables us to decide if the Padé-
Hermite approximant computed has sufficient accuracy. If the value of 7 is greater
than some user specified tolerance, the approximant is accepted (we consider this
point in the Padé-Hermite table to be stable). Otherwise, we jump over this point as
in the algorithm of Cabay and Meleshko. The parameter « also provides an estimate
on the number of digits of accuracy in the given approximant. By choosing a tolerance
in an appropriate way, a user can specify the accuracy of the requested approximant.
It is of particular importance to understand that the approach taken in this thesis
in developing such an algorithm is largely based on intuition and experimentation.
We proceed without proof in many cases and do not substantiate all decisions leading
to the algorithm. A formal error analysis will not be given for the algorithm.
Analysis of the algorithm will primarily consist of examining numerical results
obtained through experimentation. The parameters of interest include the relative
error in the Padé-Hermite approximant as well as the error in the residual. We
compare results obtained from a Fortran implementation with those obtained using

exact arithmetic in Maple to obtain the relative error in Padé-Hermite approximant



polynomial coefficients. In addition, we obtain the relative error for computing a
Padé-Hermite approximant directly using Gaussian elimination with pivoting. We
illustrate that the error introduced in Padé-Hermite approximant coefficients by our
iterative algorithm is comparable to that of the direct method. We will show that the
growth in residual error and relative error in the coefficients is linear as opposed to
exponential. Several specific conjectures will be made regarding the behavior of the
algorithm. These conjectures will be supported by the numerical experiments.

Random power series coefficients generally result in well conditioned Hankel ma-
trices (stable Padé-Hermite table points). To thoroughly test the algorithm we re-
quired a method to generate power series whose corresponding Padé-Hermite table
contained unstable blocks in predictable locations. To accomplish this, a method was
established which, in exact arithmetic under Maple, could generate power series with
singular blocks of arbitrary size. This method we consider to be a secondary but im-
portant contribution of this thesis. It provides a platform for comparing methods and
their effectiveness in dealing with singular blocks. By perturbing such power series
by small amounts, we can construct a variety of interesting problems. These singular
blocks will no longer be singular when floating point arithmetic is used. Instead, the
singular blocks in the Padé-Hermite table will be extremely unstable as the condition
number of the Sylvester matrix corresponding to the point is large. As we perturb
the power series coefficients by larger amounts, these “singular blocks” become more
stable.

We will compute Padé-Hermite approximant for four classes of problems. The
first class will consist of random power series with coefficients between -1 and 1. The
second class of problem utilizi» power series which are artificially generated to contain

singular blocks in the Padé-Hermite table. The third and fourth problem classes will



be generated by perturbing the singular block power series by varying amounts.

The purpose of this experimental approach is to study the characteristics of Padé-
Hermite approximants for a variety of k and power series class. By better understand-
ing the behavior of Padé-Hermite approximaats, it is hoped that a formal proof of the
stability of the algorithm can be found in the future. This work is also intended to
lay groundwork for a numerically stable superfast algorithm related to that of Cabay
and Labahn. This we consider to be the main contribution of this thess.

The thesis will be organized as follows. In chapter 2 the concept of a Padé-
Hermite System will be introduced. A recurrence relation for computing successive
Padé-Hermite Systems will be given along with the pseudo-code algorithm of Cabay et
al. [10]. In chapter 3 we define several power series and matrix norms and prove their
compatibility. A stability measure v for a Padé-Hermite System is also given. Chapter
4 presents the pseudo-code for the numerical Padé-Hermite algorithm that will be
tested throughout the balance of the thesis. Several pormalizations and scalings
adopted to promote stability are discussed at this time. In chapter 5 we present some
error bounds due to Cabay and Meleshko [11] and poztulate the error behavior of the
Padé-Hermite algorithm. Details of the experimez:ial procedure are highlighted in
chapter 6. A method for generating power series that result in singular blocks in the
Padé-Hermite table is given. The four preble:: classes used in numerical experiments,
along with a description of the resulting #alsies are provided. Experimental results
and analysis are the main focus of chapt+r 7. Results for all four problem classes
are reported for a number of values of k. Based on the experimental findings, a new
stability parameter 4 is introduced. Finally chapter 8 summarizes the results of this

thesis and suggests some future research topics to investigate.



Chapter 2

The Padé-Hermite System

In this chapter we introduce the fundamental structure used by Cabay et al. [10]
to compute Padé-Hermite approximants. The Padé-Hermite System is a matrix of
polynomials formed from the solutions of two linear systems with a block Sylvester
coefficient matrix. Padé-Hermite Systems exist for nonsingular points in the Padé-
Hermite table and contain the Padé-Hermite approximant. Cabay et al. [10] provide
a recurrence relation allowing iterative computation of Padé-Hermite Systems at all
nonsingular points along some diagonal in the Padé-Hermite table. This recurrence
relation leads to a fast iterative algorithm for computing Padé-Hermite Sistems.

In this chapter we will show how to compute a Padé-Hermite System given a vector
of power series and an index vector. We will state the important theorem of Cabay
et al. which motivates the iterative algorithm for computing Padé-Hermite Systems.
Finally, a pseudo-code description of algorithm is given. Many of the results which
follow are adapted from [10] and [9]. We begin by formally defining a Padé-Hermite
Syste::..



2.1 Definitions
Let

A(2) = (Ao(2)| Ar(2), ..., Axl(2)) = (B(2)|C(2)) (2.1)

beal x k+1 vector of power series, where

Ai(z) = Y aj; ¢, 0<i<k, (2.2)
j=0

and the power series coefficients a;; come from a field 7.

Let n = (no, ..., ni) be a vector of nonnegative integers with n; > 0 for at least

one i. Define

k
Inll = Y ni, (2.3)

i=0

and let
[ Soolz) | Soalz) -+ Soal2)

S(z) - 51.?(2) 51'1.(2) Sl,]f(z) - 22P(Z)I U(Z) (24)
| - 2Q(2)| V(2)

\ Sko(2) | Ska(2) -+ Ska(2) )
be a (k+1) x (k+ 1) matrix of polynomials such that the degrees of 5(z) compo-

nentwise satisfy

(no-l-l ny ... no\

1
OIS R B (2.5)

\ "k + 1| ... n
Definition 2.1 (Cabay et al. [9]) The matriz S(z) given by (2.4) is a Padé-Hermite
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I) 5(z) satisfies the degree bounds (2.5);
1) Az)-5() = 24 [Bo(z), ..., By(2)]
= A+ Bz).
where Ri(z), i =0, ..., k, are power series;

III) det(V(0)) # 0 and Ro(0) # 0.

O

A PHS is said to be normalized if Ro(0) = 1 and V(0) = I, (the k x k identity
matrix). An arbitrary PHS can be normalized by multiplying it on the right by the

(%‘@)l ° ) -

o |V

matrix

To obtain the polynomial components of the PHS matrix S(2), two sets of linear
equations are solved. We first consider the polynomials S00(2), S1.0(2),- . -, Sko(2)
which give P(z) and Q(z). From (2.4) and Definition 2.1,

B(z)- P(z) + C(2)- Q(2) = 2IMI-1Ry(2). (2.7)
We can express (2.7) as the matrix problem
( Go,0 Go .k \
0
Go,0 a : Go k X=1": (2.8)
: ' 0
\ %inll-20 *** Giinjj-no-1,0 Qlinli=2k *** Gljn)l-ny-1,k }

where



The component P(z) is then given by

no—1

Plz)= ) p-7 (2.10)
i=0
and the j — th component Qj(z), j = 1,...,k, of Q(z) is given by
n;~-1 )
Qi(2) = X g 7. (2.11)
i=0

The system (2.8) consists of ||n|| - 1 equations and ||n|| unknowns and is therefore
under-determined. Clearly a solution X and consequently a solution (P(2), Q(2))
always exists for this homogeneous system. By setting Soo(z) = z2P(z) and S;p(2) =
z%Qi(2), we satisfy conditions I) and II) of Definition 2.1 for the first column of S(2).

In order to ensure that Ry(0) = 1, we add a row to the matrix in (2.8) and obtain

a new system. For notational convenience we make the following definition. Let

(

Q0,0 Qo,k \

T, = : Go,0 e G k (2.12)

\ Glioli=10 “** Gl-no0 | | Gfnli-1k *** Glilonyk J
be a generalized ||nf| x ||n|| block Sylvester matrix. Then the system (2.8) with
Ro(0) = 1 in (2.7) corresponds to finding the solution X of

T, X =(0,...,0,r), (2.13)

where rp = Ry(0) = 1 for a normalized PHS. Because the matrix T, is square, its
nonsingularity provides a sufficient condition for the existence of a solution for (2.13).

The pair (P(z), Q(z)) satisfying (2.7) and the degree requirements in (2.5), but
not necessarily the condition that Ry(0) = 1, is commeonly called a (na—1..... ne—-1)



Example 2.1 Let A(2) = (Ao(2), Ai(2), A2(2)), where

Ao(2) =1 — 2z +22% — 223 + 328 — 32° 4 425 — 427 + 52° — 52° + ...
Ail(2) = 22 + 32% + 42° 4+ 527 + 62° + ..

Axz) = =1 + 2z + 522 + 32% + 22 — 225 — 625 + 27 — 828 + 52° + ...
and let n = [2, 3, 1]. Then ||n|| = 6 and the resulting Sylvester matrix is

(1 olo 0 of-1)
-1 1{2 00| 1
2 -1[0 2 0| 5

T, = ,  det(T,) = —3T.
~2 2(3 02| 3
3 -2({0 3 0| 2
\ -3 3[40 3|-2

Using T,, we compute the vector X as

X = (—4 4 -22 36 -9 —4)
37’37 37’37 37 37
resulting in

Soo(2) = 2 P(z) = 52+ §7°
Si0(2) = 22Qu(z) = B2+ 85 - 24 (2.14)
S20(2z) = 22Qa(2) = -5 2%

0

Next we focus on computing the components (U(z), V(z)). From Definition 2.1

we have the requirement that

B(2)-U(2) + C(z)- V(2) = M+1R(z), (2.15)

16



To determine (U(z), V(2)) in (2.15) we solve the homogeneous system

( @o,0 Go,1 a0,k \
Qo0 Qo,1 T ao,k (2-16)
\ %linllo *** Cliall-no0 | Fall1 " Gfjnfl-ny,1 il ** Afinll-ny b f
Y= 0,
where
-~ > o 3 I3 3 o t
Y= (u‘(,’), : ..,ua’o)lv{f(),,. ..,v{f,)ul fee |v,(:(),,. . .,v,(c",)‘k) . (2.17)

This system consists of ||n|| + 1 equations and (ng+1) +-+-+ (ny +1) = ||n]| + k+1
unknowns. Therefore at least k linearly independent solutions must exist and (2.16)
is solved for j = 1,...,k. A solution to (2.15) obtained in this manner will satisfy
conditions I and II of Definition 2.1 for columns 1,...,k of S(z), but not necessarily
condition III. We will obtain (U(z), V(2)) with V(0) = I in the following way.

For j=1,...,k, set

o) = 3L (2.18)
Q0,0
: 1, i=3, t=1,...,k
o =47 ] e (2.19)
0, :#7.
Then the remaining components
t
u cou@ o) ol o) o,
Y= : Pl S PP I : (2.20)
K k k k
R RN I IO )

17



of Y in (2.16) satisfy

a0.1 — - a0,k
a1 = oo (F) are - aro (2k)
Tn * Y = E E * (2'21)
29,1 20,k
~G|Injj,2 — @Infj.0 ( 0,0 ) Tt TGk = Gfjnfl0 ( 40,0 )

The j — th component, j = 1...k, of the row vector U(z) then corresponds to

Ui(z) = —22 4 2 u?). 2 (2.22)
oo 15

Similarly, the ¢, j -- th component ¢,j =1,..., k of the matsix V(z) is given by

Soof . 2 i #j,
Vij(2) = ¢ = (2.23)
1+ Ev(’) i=j.
=1

Example 2.2 Continuing with Example 2.1, the system (2.21) becomes
(._2 0 )
0 -7
-3 -1

0 -5
-4 5

\ 0 2

resulting in the solution

Y=| ¥ "% (2.24)

18



This yields the following terms

SO,l (2) So,z(z )
51'1(2) Sm(z) = (2.25)
Sz,l(z) Sz,g(z)

B3, __48.2 - 4 3,2
w? 372 l1-3Fz+ 52
~B,_9,2_1,3 _181,, 13,2, 1233
l-F2—52 377 w7t tFe
1 _ 4
7% 37 ¢

Hence from (2.14) and (2.25) the Padé-Hermite System S(z) forn = (2, 3, 1) is given
by

4,24 443 13, _ 4,2 ~ 44, 3,2
7e t 372 72— 32 72+ n2
~22,2 , 36,3 9,4 1__13,_9.2_ 7.3 _131 1372 , 123.3
372 +37z 37z 1 372 372 372 —37Z+—37z +?‘Z . (2.26)
—4.2 1 _ 4
372 37% 1 372

Note that S(z) satisfies the degree bounds in Definition 2.1. In addition
A(z) S(z) = 2" R(z),

where

(. 20 42, 5.8 4, 516 130 805 , )
R(z)-(1+37z+37z +..., 37+37z 37° +...,37 37z+ 37z +...

so that conditions II and III of Definition 2.1 are also satisfied.
O
When T, is nonsingular, the systems (2.13) and (2.21) have unique solutions up to
multiplication by some nonzero value of F. Cabay et al. [10] showed that det(T,) # 0
provides both a necessary and sufficient condition for the existence of a Padé-Hermite

System of type n.
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We have seen that even if T, is singular, the components (P(z), Q(z)) and (U(z),
V(2)) can still be computed by solving a set of homogeneous equations (2.13) and
(2.21). These solutions may not be unique and may no longer satisfy condition III
of Definition 2.1. In this case, it may be of interest to construct a basis for the
solution space of (2.8) which in turn provides a basis for all Padé-Hermite Forms for
the given vector n and power series A(z). We will further discuss the relevance of

this in Section 2.3.

2.2 A Recurrence Relation

In the previous section we have seen that, for a given vector of integers n and vector
of power series A(z), the computation of a Padé-Hermite System equivalent to solving
sets of linear equations. These systems (2.13) and (2.21) can be computed using a
method such as Gaussian elimination. Computing a PHS in this manner, while not
restricting the input vector of power series, does not take advantage of the inherent
structure of the coefficient matrix T,,.

Cabay et al. [10] describe a recurrence relation for computing Padé-Hermite Sys-
tems. This recurrence relation usually leads to a more efficient algorithm for com-
puting the PHS of any type. The purpose of this section is to briefly describe this
recurrence relation (using a more concise notation).

Given a vector of power series (2.1) and a vector n = (ny, ..., n;) of nonnegative

integers, permute the components of A(z) and n so that
Ao(0) £0, n3 > .- > . (2.27)

Notice that, if Ai(z) = 0 for all 0 < i < k, then by removing the largest factor 2°
from each power series and reordering, (2.27) will be satisfied. A PHS of type n for

20



(272 - Ao(2), ..., 278 - A(z)) is also a PHS of the same type for (Ao(2), -+ -, Ax(2))
Let o = (1,0,...,0) be a1 x k+1 vector. Set M = min{ng, n;} + 1 and define
integer vectors n(?) = (n((,i), ceny ng)) for 0<i < Mbynl® = —¢; and, fori >0,

n?) = max{0,n; - M +i}, j=0,...,k (2.28)

Then the sequence {n?};,, . lies on a piecewise linear path with nf* > ) for
each ¢,7 and

n® =

—€o, (2'29)

w)={&m‘%“% ™ 2 fo, (2.30)
(no - n, 0, ...,0), n; < Ny,

™ = (ng,...,nx) = n. (2.31)

The sequence {n()} contains a subsequence {m?} called the sequence of non-

singular points. This sequence is defined by m() = n{*) where
0, 1=0,
o; = (2.32)
min{o > 0;_; : det(Tyo)) #0}, i> 1.
Observe that the ordering (2.27) implies mg) 2 0 for all ¢ > 1. Therefore, for all
0 < 0; < o it is true that

o —0; =ni — mf. (2.33)

Corresponding to the sequence of nonsingular points {m("}, is a sequence {S“’(z)}
of PHS's with residuals { R)(z)}.

Two special cases of n which are excluded from Definition 2.1 arise in the process
of developing the algorithm. As a new but small contribution, and for algorithmic
purposes, we provide definitions to deal with these special cases. Note that the
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systems as defined below are, strictly speaking, not Padé-Hermite Systems. They act
as initial conditions for a recurrence relation given later.

The first case occurs when n® = m(® = —e;,. We define the corresponding
matrix

SOz) = Iy, (2.34)

where 14, denotes the (k + 1) x (k + 1) identity matrix. Also note
A(z) SO(z) = VI RO () = A(2).

Thus S)(z) satisfies conditions I and II, and III of Definition 2.1. However, $©)(z)
is, strictly speaking, not a PHS since the factor 2? cannot be removed from the first
column giving the polynomials P(2) and Q;(z) according to (2.4)

The second case occurs when » = (s, s, ..., s) for some integer s. In this case,

n) =mM = (0, 0, ..., 0). In this case let

0 1 0
SW(z) =} : (2.35)
\ 0 1)

Clearly from (2.35),
A(2) - SW(2) = z (Ro(2), ... Re(2)),

where R;(z),¢ =0,...,k, are power series so condition II of Definition 2.1 is satisfied.
By inspection we can see that the Ro(0) # 0 and that V(0) = I so Definition 2.1
is satisfied. Finally, it is easy to verify that the degree condition I is also satisfied.
Once again, S()(z) is not a PHS due to the absence of a common factor 22 cannot

be removed from the first column.

0o



Adjusting Definition 2.1 to include the exceptions (2.34) and (2.35), we have that
for i 2 0, the polynomial matrix S¢)(z) is the uniquely defined PHS of type m() with
residual vector R{)(z). Then

A(z)- SO (z) = ZImVIH1 pli);) (2.36)

and B(0) = 1, VO = J,. In addition, with the exceptions (2.34) and (2.35) we
can partition $¢)(z) as

§9(z) = #P0() UO() (2.37)
2Q0(z) VO(z) |’ |

and RP(0) = 1, V@ = J,.

The following theorem provides a relationship of the (i +1)-st PHS of the sequence
in terms of the i-th PHS.

Theorem 2.1 (Cabay et al. [10]) Fori > 1 ando > o;, let v = nl®) — mb)
eo. Then nl) is a nonsingular point for A = (Ao(2), ..., Ax(z)) if and only if v
is a nonsingular point for R¥)(z) = (Rf(,' )(z), . .,Rf)(z)). Furthermore we have the

recurrence relations
SE(a) = S9(z) - 3(z) and R(e) = R(z) (238)

where 5(z) is the PHS of type (mi+) — m0) eo) for the system RY(2) and R(z)
is §ts residual.
Proof: The proof is given in [10].

(]

Theorem 2.1 reduces the problem of determining a PHS of type n to two smaller

problems: determine a PHS of type m() and then determine a PHS of type v =



ml+) — m() — 5, Let R¥)(z) be a 1 % (k + 1) vector of power series with

RY(2) = Zrz,,z i=6,...,k £2.39)
Then define
( To,0 3 Tok \
Tasi) = . To,0 see ro,k . (2.40)
\ Tiisll=10 *** Tiinll~no.0 Tlinl~1k **° r""""’”th

To compute the PHS 5(z) we solve, assuming T,s") is nonsingular, the equations

TH.X = (0,...,0,ro), (2.41)
ra-na(T8) o —re— o ()
TO.y = : : . (242)

=T ~To.k
ikt = Tiinlj0 ( 70,0 ) U TTlinllk = Tinil0 ( 70,0 )

The solutions are combined as in (2.10), (2.11), (2.22), and (2.23) to form 5(z).

The overhead cost of each step of this iterative scheme is the cost of determining
the residual power series and the cost of combining the solutions, i.e. the cost of
computing S(*+1)(z) in equation (2.38). This overhead cost, in general, is an order of
magnitude less than the cost of simply solving the linear systems (2.41) and (2.42).

Theorem 2.1 does not give consideration to the cases (2.34) and (2.35). The
following discussion is intended to show that these cases support the theorem.

Consider first the case (2.34). Let A(z) be a 1 x k vector of power series and
n a vector of integers both arranged according to (2.27). Let m® = —¢;. From
(2:34), SO(2) = Li41 and RO(z) = A(z) is its residual. Let 5(z) be the PHS of type



m®) — m© — e; = m) for R)(z) and let A(z) be its residual. The degree conditions
(2.5) for S1)(z) correspond to those of 5(z) so condition I of Definition 2.1 is satisfied.
In addition,

A(z)SM(z) = A(2)S9(2)S(z)
= R9(2)5(z)

= W -mO)-sl fy )

= z"m(l)""'l R(z).

Thus condition II holds. Finally, R®)(z) = R(z) = 1 and V®)(2) = V(z) = I, so
condition III of Definition 2.1. The recurrence relation (2.38) holds for this special
case.

For the case (2.35), let n = (z,z,...,z) for some nonnegative integer z. From (2.28)
we can see that m() = (0,---,0) is the second vector in the sequence. Let SM)(z)
be given by (2.35) with R(*)(z) its residual and let $(z) be the PHS of type v =
(s=1,s,...,8), s 2 1, for RW(z) with R(z) its residual. We will show that condi-
tions I, IT and IIT of Definition 2.1 are satisfied for S@(z) = SM)(z) - §(z) of type
m(® = (s,s,...,s) where s < z. From this we can then conclude that the recurrence

relation (2.38) holds. To verify condition I observe that

fl 0 .- o\

00 --- 0
359(z) <

\0 0 --- 0



and

( s s-—1 ... s—l\

o +1
83(2) < s s s

\s+1 s e s}
which implies
(s+1 S oo 3\

asP(z) = s+l 8 8

\s+1 s - s )

The degree conditions above corresponds to a PHS of type m(?) = (s,...,s). Next,

condition II is satisfied because

A(2)SP(z) = A(2) S™(2) 8(z)
= z-RY(2).5(z)
= 2. MR
= "I R(z),

Finally,
R®(0) = R(0) =1
and
V@) (0) = vi(0) - V(0) = I,

so that condition III is also satisfied.



Example 2.3 Continuing with Example 2.1 we can compute the PHS of type (3,4,2)
by utilizing the recurrence relation (2.38) and (2.26). In order to do this we must
compute the PHS of type v = (3,4,2) - (2,3,1) - (1,0,0) = (0,1,1). The coefficients
of the matrix T}, will come from the residual R(2) given by (2.27). The matrix T, will

be given by
) _5 3518
T,=| ¥ 3% |[|. (2.43)
s _130
37 37
Using (2.43), equations (2.41) and (2.42) are solved to obtain the PHS
0 & -5
5(2) = %zz 1- %z —%z . (244)
et -5Er 1435,

By multiplying the S(z) in (2.26) on the right by $(z) we obtain the new PHS of
type (3,4,2),

5.,2_ 512 3 _ 6694 - 3 _ 53,1639 2 , 549.3
5% — L — 5z 2z +2 1-52+5 2 +3552
=| 258,2__1%.3_ 1074 _ 81,5 _ 977 | 1489.2 _ 351 82 4
5(2) TY 7w —uE —ut 1-2 it -9+ 8
5,2, 4.3 — 8, L 14
8% + 5% 0 -5zt @2

2.3 Interpretations of the Padé-Hermite System

Padé-Hermite approximants have many applications, some of which are given in the
introduction. It is the primary focus of this thesis to compute them in a stable fashion.

The first column (So,0(2), .. ., Sko(2))* of S(z) is commonly referred to as a Padé-
Hermite Form (PHFo) of type (no ~ 1,...,n; — 1) for A(z) [10] [28] [25]. The
terms Padé-Hermite Form and Padé-Hermite approximant are used interchangeably.



The remaining k columns of the PHS are referred to as a Weak Padé-Hermite
Form (WPHFo) [10]. The main purpose for introducing these remaining compo-
nents (U(z), V(2)) of the Padé-Hermite System S(z) is to facilitate the computation
of (P(z),Q(z)). Thete are however some uses for all the components of S(z) such as
that of obtaining the closed form inverse of a block Hankel matrix [20].

In addition, WPHFo’s yield a set of simultaneous Padé approximants for the
quotient power series A;(z) / Ao(z). We can restate condition II of (2.1) as

Ao(2)U(2) + (Ai(2), ..., Ak(2)) V(z) = ¥ (Ro(2), ..., Ru(2));  (2.45)
~ that is,
Ao(2)U(2) + (Ax(2), ..., A(2)) V(2) = 0 mod zlinlH+1, (2.46)

Since V(0) is nonsingular, the determinant D(z) = det(V/(z)) evaluated at z = 0 is
nonzerv;. Thus, since Ag(0) is also nonzero, it follows from (2.46) that

Aa(2) Ai(2) _ N(z) k2
(Ao(z)’ o Ao(z)) D(z) mod *, (2.47)

where
N(z) = ~U(z) - adjoint(V(z)). (2.48)

Equations (2.47) and (2.48) give a simultaneous rational approximation for each power

series

Az) | Niz) . _
Ao(Z) ~ .D(Z)’ t = 1, veey k. (2.49)

From the degree conditions of (2.5) we see that N;(z) has at most degree ||n|| — n;
and that D(z) has at most degree ||n|| — ng. Therefore the polynomials

(D(2), Mi(2), ..., Ni(2)) (2.50)



form a set of simultaneous Padé approximants to the power series’

AE) A

Aoz)" " Adlz)
of type n.

Example 2.4 Continuing with Example 2.1 and using the PHS (2.26) we have

_ 73 48,2 44 3.2
U(z) = (—3—.,z—§z,1—§z+§z),
-8, 9.2 _ 7.3 _11,, 137,22, 123,3°
3w? 372 372 wit 3y +Fe
V(z) = }
1 . |
37" 1-52

We can compute the determinant of V(z) as

. 5T 10, 5,
det(V(z)) = 1 37t 575+ il

Likewise, the adjoint of V(z) is given by

1—$, 1, 132 1233
. . 7 7 7 37
adjoint(V(z)) = 3 3 8
~dz 1-Br- 82 17

37 37 37

The approximants are therefore given by

40.2 57.3

Az) | _—2tmetgs e
Ao(z) ~ 1 -2z 4 18,2 .78 ’

7% T 37 1

57 249 3 4 5
Ax(z) 1 - Fz— 32?4 10,0 4 48,44 18, lInfj41

= T3 67 53 mod =z

Ao(Z) - 372 4 72 + 32

when here ||n|| = 6.

D

Given that S1)(z) is a PHS of type m(), elements of the residual R are used to
form the matrix 7). Because T is generally small in size, (2.13) and (2.42) can be
solved quickly.



In the worst case, all points in the Padé-Hermite Table will be singular with the
exception of the final point n = n™). The problem reduces to that of solving (2.13)
and (2.21) with Gaussian elimination.

The optimal case occurs when there are no singular points. In such a situation,
v =(0,1,...,1) and T,S‘), is a k X k square matrix for all # < M. The systems
(2.41) and (2.42) are solved using Gaussian elimination with pivoting and the result
multiplied on the left by St)(2) to form SG+1)(z).

Recall that in Section 2.1, the homogeneous equations (2.8) and (2.16) could be
solved to obtain solutions for (P(z), Q(z)) and (U(z),V(2)). We modified these ho-
mogeneous equations in order to satisfy some additional requirements of the PHS,
namely Ro(0) = 1 and V(0) = I;. Regardless of whether T, is singular or not, a solu-
tion to the homogeneous systems will exist because they are under-determined. These
systems may have an infinite number of solutions due to the presence of one or more
arbitrary parameters. Note that the systems (2.41) and (2.42) have corresponding
homogeneous formulations.

If arbitrary parameters exist in the solution of the homogeneous systems, they do
not yield a Padé-Hermite System. Instead, a basis for the solution space of (2.41)
could be used to form a basis of all the PHFo’s of type n. Theorem 2.1 does not permit
subsequent PHS’s to be computed using a basis. Therefore, Padé-Hermite table points
for which T,S‘) is singular, are jumped over by the iterative algorithm. Jumping over
singular blocks in the Padé table allows the PHS at a nonsingular point m(+) in
the Padé-Hermite table to be uniquely determined using the previously computed
system S()(z) and the solutions of (2.41) and {2.42. If the last point n™) = n in
the sequence is singular, the basis for the solution space of (2.8) may be of practical

use to compute.



2.4 An Iterative Algorithm For Computing A PHS

Next we introduce the algorithm of Cabay et al. [10] for iteratively computing Padé-
Hermite Systems. The notation has been modified to conform to previous definitions.
The special case where n = [s,...,s] has also been added. If T is singular for all
remaining points in the Padé table, the associated homogeneous equations are not
solved.

The algorithm consists of two parts. The subroutine INITIAL_PH takes as input a
vector of power series R(z), with Ro(0) # 0 and an integer vector v ordered according
to (2.27). If v #£ [0,...,0], the PHS at the first nonsingular point is returned (if one
exists). If ¥ =[0,...,0] the matrix returned is that given in (2.35). The identity
matrix is returned if no nonsingular point is encountered.

The main routine, PADE_HERMITE invokes INITIAL_PH to iteratively construct
PHS for residuals R%)(z). The PHS S)(z) are computed according to Theorem 2.1.
In the case where INITIAL_PH does not return 2 PHS, PADE_HERMITE returns
the last successfully computed PHS.

INITIALPH(R(z), v)
[F1)d«0, Me~max{w,n}+1, 00
I-2) Do while o < M and d = 0
I-3) g—0o+1
I-4) u](-")(—-max{O,u,-—M+a},j=0,...,k
I-5) If ||| # 0 then compute d — det(T\s)), using Gaussian elimination;
elseset d — 1
End While
I-6) If d # 0 then set 5(z) according to (2.35) or solve equations (2.41)



and (2.42) for R(z) and arrange the solutions into a (k+ 1) x (k+ 1)
matrix 5(z), the PHS of type v() for R(z);
else set 5(z) = Iyyy and 0 — M +1.

I-7) Return(o, 5(z2)).

PADE_HERMITE(A(z), n)

PH-1) Find the largest 8 such that A;(z) = 28 - A(z) are still power series.
Set A;(z) = z7# . Ai(2). Reorder the power series according to (2.27).

PH-2) M + min{ng,m1} +1

PH-3) SON(2)) ~ Ly, 00, mO — gy, i¢0

PH-4) While ¢ £ M do

PH-5) Determine R()(z) using equation 2.36, v «— n — ml) — ¢,

PH-6)  (s;,5(2)) « INITIALPH(R®, »)

PH-7)  S6H)(2) « SU)(2). §(2)

PH-8) o~ 0+s;, m?“’ ~ max{0,n;j— M +0}, j=0,...,k,

tet+1

End While

PH-9) Return (o, 59)(z)).

In order to evaluate the performance of the above algorithm, it was implemented
in the MAPLE symbolic computation environment. MAPLE provides a built-in pro-
gramming language and comprehensive library of common mathematical functions to
facilitate rapid prototyping of algorithms. In addition, calculations can be carried out
in exact arithmetic. Since the algorithm is algebraic in nature, the MAPLE setting

is well suited to simulate performance.



As expected, the algorithm accurately computed Padé-Hermite Systems of varying
size and degree. Real time performance of the system in the MAPLE environment
was unfortunately, very slow.

A number of factors contributed to the poor performance of the algorithm in the
MAPLE environment. Intermediate expression swell in solving the systems (2.41) and
(2.42) made the memory requirements of MAPLE significant. Continuous paging by
the computer often resulted. Numerous expensive gcd computations were required
by MAPLE to minimize the number of digits stored for each polynomial coefficient.
This overhead began to dominate as the parameters ||| and k were increased.

Despite its shortcomings, the MAPLE implementation served to illustrate some
important points about the nature of the coefficients of a PHS and the growth of the
residual vector R(z). In addition, MAPLE played an invaluable role in developing a
method for fabricating power series which contained singular points.

However, for any practical application to utilize Padé-Hermite Systems, a numer-
ical algorithm is necessary. The algorithm must be anmerically stable bécause of the
finite precision associated with floating point arithmetic. The primary goal of this

thesis is to develop, without proof, a numerical algorithm and test it experimentally.



Chapter 3

Towards A Stable Numerical

Algorithm

In the last chapter we saw how Padé-Hermite Systems could be computed alge-
braically by skipping points at which the Sylvester matrix T,(s) was singular. The goal
of 2 similar numerical algorithm is to compute Padé-Hermite Systems at ali points
except those for which Ty is ill-conditioned. If the condition number k(T ) =
Tl - I T3l is large, the resulting components P(z), Q(z), U(z), and V(z) may
contain large errors. Although we can compute k(7)) directly, this is impractical
as it involves inverting the matrix T ).

The purpose of this chapter is to provide a simpler measure by which we can
estimate the condition number of T,.) and determine if the point n(°) in the Padé-
Hermite table is stable. A stability parameter which can be easily computed from
the Padé-Hermite System S¢)(z) will be given.

Before proceeding, we must define the notion of stability as it applies to Padé-

Hermite Systems. Computing a PHS involves the solving of linear systems. A com-



mon definition of algorithmic stability is given by the following.

Definition 3.1 (Bunch [7]) An algorithm for solving linear equations is stable for
a class of matrices M if for each M in M and for each b, the computed solution z,

of Mz = b satisfies Mz, = 3, where M is close to M and b is close to b.

8]

We can think of M as the class of all nonsingular block Sylvester matrices. Defi-
nition 3.1 implies that the computed solution z. as the exact solution of a nearby
problem. Note that the condition of the problem is not constrained in the definition.
For an application that uses Psdé-Hermite Systems, it is more important to obtain
solutions that are close to the actual solution. It is common knowledge that the
accuracy of a solution of a Jinear system depends not only on the method used to
solve it, but also on the condition of the problem. Merely formulating a poorly
conditioned problem numerically can introduce perturbations in the solution. If the
problem is well-conditioned, we would like to compute an accurate solution.

By only solving well conditioned systems, we can construct an algorithm which is

weakly stable. Weak stability is defined as follows.

Definition 3.2 (Bunch [7]) An algorithm for solving linear equations is weakly
stable for a class of matrices M if for each well-conditioned M in M and for each
b, the computed solution z. to Mz = b is such that |z — z.||/||z|| is small.

0

Although stability implies weak stability, the converse is not true. Weak stability
says nothing about those problems which are ill-conditioned.
Thus by choosing to solve equations (2.13) and (2.21) for all well conditioned

matrices T ), we expect the relative error in the components of 5(z) to be small.



3.1 Power Series and Polynomial Matrix Norms

We begin by introducing power series and matrix polynomial norms used throughout
the thesis and proving their compatibility. We assume that F is the field of complex

numbers so that the norm of an element of F is the absolute value. Let
a(z) =Y a; 2 € Flz]], (3.1)
=0
where F[[2]] is the set of power series with coefficients from the field F.
Lemma 3.1 A norm for F|[[z]] is given by
lla(2)l = sup {]a;}. (3:2)
0<i<o0
Proof: If a(z) € F|[z]], then
lla(2)il =0 <« sup {|a;[}=0
0<i<eo

& a;=0, 0<j<0

& a(2)=0. (3.3)
Also, fora € F

lea(z)| = sup {|aa;|}
0<i<00
= sup {lo| |a;}
0<i<o0
= la|- sup {|a;}
0<i<o0

= |ol- la(2)]l (34)

Finally, for a(z), b(2) € F[[z]],

la(z) +b(z)Il = sup {la;+b;}
<i<e0



For some integer 9, let

IN

sup {|a;|+|b;|}

0<ji<o0 :

< sup {|la;|}+ sup {| &}
0<;j<o0 0<I<oo

lla(z)1l + li8(2)]

3
s(z) = ;osjzj € Flz],

(3.5)

(3.6)

where F[z] is the set of polynomials with coefficients over F. Then, as in the proof

of Lemma 3.1, it is easy to show that a norm of s(2) is

i
ls(ll =3 151

§=0

Lemma 3.2 Let a(2) be given by (3.1) and s(z) by (3.6). Then

lla(z) - s(2)lf < Na(=)ll - lls(2)]-

Proof: Conventionally, let a; = 0 for i < 0. Then

lla(z) - s(2)|

IA

IN

i&%ﬂ»

i=0 \;j=0

9
sup {13 aijs;
0<i<oo =0

sup {glas-j|°|35|}

0<i<oo j=0

)
su sup |a¢|})|s;
05:'<poo {Jz;o (0$l<poo| g I) |5 I}
3
sup {|a 8;
o :I}.;ol i |

la(2)l - sz

(3.7)



Thus, the norm (3.7) for F[z] is compatible with the norm (3.2) for F [[2]]. In addition,

for fixed s(z), the bound is reached for a(z) = 1. Therefore,
lla(z) s(=)]

s(z)]] = sup ———-=.
o) = = @

Thus, (3.7) is the operator norm for F[z] induced by the norm (3.2) for F [[2]).

(3.8)

Now let A(z) € Fip1[[2]] be a 1 x k4 1 vector of power series. That is, let

A(2) = (Ao(2),...,Ax(2)) where
A(2) = Zaj,;zj, 1=0,...,k
=0
Lemma 3.3 A norm for A(z) is given by

A=) = max {l|Ai(2)I]} -

0<i<k

Proof: If A(2) € Fi41[[2]], then using (3.3), we have that

4@ =0 < max (A=)} =0

= |A{)][=0 i=0,...

<> Ai(2)=0 i=0,...

Now let a € F. Then, using (3.4), it follows that

le A(2)lf = max {lla Ai(2)[1}

0<i<k

max {| a | -l 4i(2)]}

0<i<k

|| max {||4:(2)Il}

0<i<k

fel-l4@).

Finally, if, in addition, B(2) € Fi41[[2]], then using (3.5), we have that

A me s

(3.9)



IN

Joax {ll4:(2)l + | Bi()11}
ax {14421} + max {[|B;(2)11}

1A + I B(2)]I.

IN

Let S(2)' € Flrsa)x(k+1)lz]. Then S(z) defines a mapping

Famlldl) = Foum izl (3.10)
Alz) - AZ)S()

That is, the polynomial matrix S(z) maps the vector of power series A(z) to the

power series A(z) S(z). We will use the norm

k
IS = gy { S s ). 811

for Fa+1)x(k+1)[2]. As in the proof of Lemma 3.3 it is easy to verify that (3.11)

satisfies the requirements for a norm.

We now prove the norms (3.9) and (3.11) for A(z) and S(z) respectively, are

compatible and tight. Thus, the norm (3.11) is a operator norm induced by the
norm (3.9).

Lemma 3.4 With || A(z)|| defined by (3.9) and ||S(2)|) by (5.11),

1A(z) - S()II < A2 - 1S (=) (3.12)

}

Proof: Using (3.5), (3.8), (3.9), and (3.11), it follows that

l4)- S = ooy

k
2 Ad2)- Sijlz)
i=0




< {140 sue)

i=0

k
< g {E 1o s
k
< g {Samiaen 1s.]

1o g (S sito]

= [lA@N- IS
]
Theorem 3.5 below shows that the bound (3.12) is tight.
Theorem 3.5 For ||A(z)|| defined by (8.9) and ||S(2)|} by (8.11),
lA(2) - S(Z)II}
S(z)||l = sup { ——7—7¢. 3.13
b= e {5 319

Proof: From Lemma 3.4 we have that NA(2) - S(2)l| < J|A(2)]| - |5(2)]|. Therefore,

in order to prove (3.13), we must show
JA(2) 3 l1A(2)- 52l = A=) - IS (3.14)

Let m be such that

k k
o {Z:o IIS.-J(z)II} =Y |ISim(2)]

i=0

and for: = ., k define?

9
Sim(z) = Y88, 2.
I=0




The vector A(z) that we seek is given by

Alz) = Es:gn(s"’ -
def @-0) o1 .
= A7, 1=0,...,k.
2
Note that ||A(z)]| = 1. Let C(2) = A(z) - $(z). In particular, the m ~ th component
Cm(2) of C(2) is given by

Culz) € 302!
=0
k
= %Ai(z)si.m(Z)
Then the coefficient 22 in C(2) is given by

@ = 3 (L arosp)

=0 \I!=0

= 3 (s (512) -5t

i=0 \/=0

iz Is(l) I

:-0 =0
Z [1Sim(2)N
= IIS(Z)II

Thus,

I4@)- SN = el
= my (e
> [Cala)



> ||
= |IS(2)
= [AGE)- IS(2)-

The theorem follows.

Thus (3.11) is the operator norm induced by the norm (3.9).

3.2 Scaled Padé-Hermite Systems

Next we defiLe the notion of a scaled Padé-Hermite System in which the sum
of the norm of elements in each column of $(z) is 1. We will work with scaled
Padé-Hermite Systems in our numerical algorithm due to their desirable roundoff
properties. Also, scaling the PHS after it is computed will reduce the probability of

encountering overflow or underflow during the successive iteration.

Definition 8.8 Let S(z) be a Padé-Hermite System of type n. S(z) is said to be a
scaled PHS of type n if

N 0
Ro(0) =7, V(0) = (3.15)

is nonsingular and

k
LISl =1, 0<j<k. (3.16)



If 5(2) is a normalized PHS with V(0) = Ix and Ry(0) = 1, we can transform

5(z) into a scaled PHS in the following way. Determine

%= ———, 0<iskh
2SN
=0
Then
Y
S(z) = 5(2z)-T where T =
0
is a scaled PHS.
Let

k
v = [I%
=0

(3.17)
0

(3.18)
Yk

(3.19)

As a consequence of Definitions 2.1 and 3.3 we have that for a scaled Padé-Hermite

Syster: S(z),

T = Ro(0) - det(V/(0)).

(3.20)

The parameter + will be used as our estimate of the inverse of the condition number of

the matrix T,.. I T, is well conditioned, v will be close to 1. For a poorly conditioned -

T, v will be small.

In the next section we will justify our choice of stability parameter based on the

inverse of a block Hankel matrix.

3.3 Hankel Systems and Their Inverses



system.

To view the problem in this way, we can, without loss of generality, assume that
Ao(z) = 1. This can be achieved by multiplying A(z) by Ag'(z). By doing this, the
leftmost block of the Sylvester matrix will have 1 along the diagonal with all other
elements of this block being zero. We can algebraically decouple the systems (2.13)
and (2.21) eliminating the uppermost no rows and leftmost no columns. The resulting
matrix H, allows us to compute the components @(z) and V(z) by solving two linear
systems. The components P(z) and U(z) are obtained as functions of Q(2) and V(z)
respectively.

Consider the 1 x k vector of power series
D(z) = B7(2)-C(2) (3.21)

The block Hankel matrix associated with D(z) is defined to be the (||n||—no) x (|| ]| —

no) matrix

( dﬂo.l s dﬂo—n1+1,1 dﬂo.k s dno-nk-!-l.k \

H. = dno:*-l'l dno—'f.7-1+2.1 dno-.l-l,k dﬂo-’.‘k"‘z"‘ . (3.22)

\ Gnlt-12 * Gpnflm 1 L,
We obtain the components P(z), Q(z), U(z), and V(z) of a normalized Padé-
Hermite System by solving linear systems with H, as the coefficient matrix. The

component Q(z) is determined by solving the system
H,-X = (0,...,0,1) (3.23)
where X is the (||n]| — no) x 1 vector partitioned as

X = (qoar---rm-12] "+~ |90s -+ - 1 Grgmr )’ - (3-24)

44



The component Q;(2), j=1,...,k is given by (2.11). The remaining components

of the first column of S(z) are given by
P(z) = —=D(z)- Q(z) mod zl"I-1, (3.25)

Similarly, the component V(z) (with V(0) = I;) is determined from the solution
of

(dno-H.l dpot12 *° dno+1,k\
H, Y =— d"°f’"‘ d’“’"‘z‘z d"°f”" (3.26)

\ Dinllr iz ik

where Y is a (||n|| — no) x k matrix partitioned as

o) e o] e o,

Y={ : : : 2 (3.27)
k k k k
off o ool o

The i,j — th component i = 1,...,k j=1,...,k of V(z) is given as in (2.23). The
1 x k vector U(z) of S(z) is obtained from

U(z) = ~D(z) - V(2) mod zlinl+1 (3.28)

Theorem 3.6 (Labahn [20]) Let A(z) be a vector of k+1 formal power series (with
Ao(z) = 1) and n be a vector of nonnegative integers. Let H, be the block Hankel
matriz (3.22) (where D(z) = (Ai(2),...,Ax(2))) and S(z) be a PHS of type n for
A(2). Recall from the definition of a PHS that

Qi(2) ny-1
Q(z)= : , where Q;(z) = ;) G- 2. (3.29)
Qx(2)

45



Also recall that

where

V(z) =

Let m = ||n)} — no and define

Furthermore let

G(z) =

Via(z)

Z v(a)

Vl,l(z) ees

Vik(2)

.es Vk,k(z)

a=0

T(z) = det(V/(2))

Ve4(z) Q(z) =

G;(z) )

Gx(z)

Given these definitions, we have that

where H, is given by

§

Hn‘(}"Hn
v

?

)

/ N R
: 0
0
o
- 0
oD L 0
0
0
\ ok

46

m
=Zt;-z’

1=0
m-1
where Gj(z)= Y ¢i;- 2.
1=0

I,

gm-15 9o

0 gm"lvj

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



=21 *** Qoa 0\
90,1
0 0 tm 4
- ; SRR B (3.36)
-2k Gok O 0 tm
Go,k
\ 0 ?)
Proof:
The proof is given in [20].
0

As a direct consequence of Theorem 3.6, if we are working in exact arithmetic,

Ly

H'=+4.8, (3.37)

Suppose that we scale H, so that ||Hy||; = 1. We can accomplish this by scaling the
power series D(z) so that

lInf}-1
E ;=1 j=1,...,k (3.38)

i=ng
Then || A, ||, will also be approximately 1. Thus v indicates the inverse of the condition
number of the matrix H,. If v is small, the condition number of H, must be large
and conversely if « is large, then the condition number of H, will be small.
Solving (3.23) and (3.26) when H, is poorly conditioned will result in a loss of
significance in the residual R(z) and in the coefficients of S(z). Therefore we use v

to help us determine whether or not a point in the Padé-Hermite table is stable.

A7



Because of the close relationship between the Hankel and Sylvester systems, we

can also use 4 as a stability indicator for Sylvester systems.



Chapter 4

A Numerical Algorithm for
Computing A Padé-Hermite
System

Until now we have been assuming that all calculations were performed in exact arith-
metic. By computing a PHS numerically, we invite error in the polynomial coefficients
of 5(z) and ihe power series coefficients of the residual R(z). A goal of a stable nu-
merical algorithm is to minimize these errors.

To improve the numerical stability of our algorithm, we introduce a collection
of component scalings. Although intuition plays a role in motivating our choice of
scalings, their purpose is to reduce the likelihood of overflow and underflow occurring,
and reduce the roundoff error arising from solving linear systems using Gaussian
elimination. The components to be scaled include the input power series A(z), the
residuals R0)(z), and the Padé-Hermite Systems S0)(z). In each case, scaling can be
accomplished by multiplying by a diagonal matrix. The scalings can be combined



to form a new recurrence relation for computing the sequence of successive Padé-
Hermite Systems at stable points in the Padé-Hermite table. After defining each

transformation, we give a pseudo-code description of our numerical algorithm.

4.1 Scaling The Residual

Recall that in the iterative method for computing a Padé-Hermite System, the matrix
T is constructed from coefficients of the previous PHS’s residual R®(z). If the
coefficients in RY)(z) are very large, very small, or contain large variances between
series, then a scaling may be appropriate. By scaling, we reduce the likelihood of
overflow and underflow occurring when solving the systems (2.41) and (2.42) and
reduce the accumulation of roundoff errors [14)].

We scale each residual power series independently. Given RU)(z) is the residual for
the PHS S0)(z) of type m'¥), the matrix T{? is of order ||v||, where v = n{?) =m0 — ¢,
Also, define the modulo operation on the power series Rg-i)(z) to be another power
series

) o i
Rg)(z) mod zIMH! = Zrl(:i) -2+ Z 0. zl’ 7=0,...,k (4.1)
=0 I=|lvj}+1

In an effort to reduce the effect of roundoff errors in the solution of (2.41) and (2.42)
obtained by Gaussian elimination, we scale the columns of T}‘) by determining, for

j=0,....k

1, Rgﬁ(z) mod zIMH! = o,
= (4.2)

1R)(2) mod 2IMH1, otherwise,

where the norm used is given by (3.2) for power series. Then scaling the columns of



T4 is achieved by multiplying R%)(z) on the right by A~!, where
a=| - | (4.3)

Next we show that we can recover a normalized PHS from one computed using a

scaled residual vector.
Lemma 4.1 If 5(z) is a normalized PHS of type v for RO (z) A~Y, then S'(2) =
A1 8(2)Q, where

(1 0 )

M
Q= 3 (4.4)

\ 0 M )
is a normalized PHS of type v for RU)(z).
Proof: Let R(z) be such that

RO(z) A" §(z) = MH R(z),
where Ro(0) = 1 and V(O) = Ii. Then

RY(2) §'(2)

RO(2) A §(2)0
= M R(z)q

a.
—

e (),

Since §'(z) also satisfies degree requirements, then 5'(z) is a PHS of type » for RU)(z).



Also note that Ry{0) = Ro(0) =1 and

X0 Mooy
V') = V(0) (=1,
0 /\;l 0 Ak
so that S'(z) is also normalized.

(]

Theorem 4.2 Let S¥)(2) be a normalized PHS of type m® for A(z) with residual
RU)(z) and let 5(z) be the normalized PHS of type v for RO(z) A=1. Then

S'(z) = SO(z) A~ 3(z)Q (4.5)

is a normalized PHS of type m®) + v + o for A(2).
Proof: The result follows immediately from Theorem 2.1 and Lemma 4.1.

(W]

From Lemma 4.1, computing a PHS of type n for A(z) A~! enables us to then
immediately obtain a PHS of type n for A(z). Although we can recover the oﬁginal
normalized PHS, we will not do so in the algorithm given in section 4.5. The next

section describes why.

4.2 Scaling The Padé-Hermite System

In Section 3.2 we defined the concept of a scaled PHS. For the numerical algorithm we
will compute scaled Padé-Hermite Systems instead of normalized ones. The reason
for using scaled PHS’s is twofold. First, by dividing each polynomial in a given

column by the sum of the norms of polynomials we effectively reduce the variation



between columns. That is, if a normalized PHS contains one column with polynomials
having small coefficients and a different column contains polynomials with very large
coefficients, then the corresponding scaled PHS will not have this variation. The
second reason we use scaled PHS’s is that the stability parameter %) can be extracted
easily from them.

In light of this, we can see that there is no need to compute normalized PHS’s at
each iteration. The work expended in obtaining a normalized PHS is negated whea
it is scaled. Specifically, the recurrence relation (4.5) need not include multiplication
by the diagonal matrix . Before stating what the actual recurrence relation is, we

mention one additional scaling.

4.3 Scaling The Input Power Series

If we were to compute a PHS directly (rather than iteratively) by assembling coef-
ficients of A(z) to form T, and solving the appropriate linear equations, we would
once again be faced with the possibility of overflow, underflow and unnecessarily large
roundoff error. To reduce the probability of these events occurring, we could scale the
input power series A(z) much as we did the residual R(2) for the iterative method. It
is of primary interest in this thesis to compare the errors that arise from computing
a PHS directly and iteratively. If we do not scale the input power series before com-
puting a PHS directly by the Gaussian elimination method, we are penalizing this
method and will not achieve as good results as we could. As with scaling R(z), we
can scale A(z) by multiplying by a diagonal matrix. However, if we do scale A(z), we
are no longer solving the original problem since we have modified the input. We can

however recover from this scaling by multiplying the computed Padé-Hermite System



by the inverse of the diagonal scaling matrix.
The scaling that we use is determined by only those terms of A(z) used in obtaining

the Padé-Hermite System. For the system of type m{), the normalization is given by
49(2) mod AW =1, j=o,... kK, (4.6)

where T is a diagonal matrix such that
A(2) = A(z) TL. (4.7)

The norm in (4.6) corresponds to the power series norm (3.2) with A;-i) (z) mod Zlml+1
defined as in (4.1). Thus, if S¢)(2) is a normalized PHS of type m() for A()(z) sat-
isfying

AB(z) . §0)(z) = AN+ g6 (), (4.8)
then Y- S()(z) is an (unnormalized) PHS of type m® for A(z) satisfying

A(z) T $Y)(z) = DI gl 5), (4.9)

4.4 Combining the Scalings

In this section we will describe how to obtain the next PHS in the sequence of stable
PHS and test for stability using the parameter 4. To do this we will assume a number
of things.

Let A(2) be a 1 x (k+1) vector of power series. Suppose SU)(z) is the scaled PHS
of type m(") for the scaled input power series A)(z) = A(z)Y®™ and let R)(z) be
the residual. We want to compute a PHS 5(z) of type » for R¥)(z) such that

S (2) = §0)(2) - §(2)



is the scaled PHS of type m(*!) = m® 4 y 4 ¢; for the scaled input power series

Al (z) = A(z)YEH)™ which we accomplish by the following steps.

Step 1: Determine the scaling of R")(z) by the matrix A=}, where A is given by
(4.2) and (4.3). Note that R¥)(2) A=! mod M1 is a vector of power series whose

norm is a single scalar.

Step 2: Solve the systems (2.41) and (2.42) to obtain the normalized PHS 3(z)

such that
RO(2) A1 §(z) = M1 )
with V(0) = I; and Rg(0) = 1. Then

Az)SO(2) A1 §(z) = AR,y A1 §(2)

= mI B 2)
Step 3: Scale A(z) by T¢+) to obtain
AF(z) = A(z) (X6+0) 7,
where Y(+) js determined so that
1AS Y ) mod AUy =1 j=o,... k.
Step 4: Let
SE(z) = T+ YO 56)(2) A-1 §(2).
Then
AU+ (z) SEH)(z) = A+ () T6+1) (-r(i)) =1 S0)(z) A~ 5’(z)

= AD(z) SO(z) A2 §(2)

= z||m(-'+x)||+1 }“z( z).

(4.10)

(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
(4.17)
(4.18)



Also note that the degree bounds (2.5) are satisfied for the PHS S(+1)(z) of type
m{+1) since all the diagonal scaling matrices consist of constant entries.

Step 5: Convert St+1)(z) to a scaled PHS and compute (1),

Step 6: Accept S(*1)(2) as a stable point if 7¢+Y) js less than some specified

tolerance e.

4.5 The Algorithm

For a given vector of nonnegative integers n, the algorithm NPADE_HERMITE makes
use of Theorem 2.1 to compute the sequence {S0)(2)} of PHS for a given vector of
power series A(z). The points m() now correspond to stable points rather than
nonsingular points and we step over unstable blocks. A quantitative measure of the
stability of a point m() is provided by the stability parameter 4©). The user supplies
the tolerance value ¢.

Tet
A(z) = (Ao(2), Ai(2), ..., Ax(2)),

where

A,-(z) = ioaj,.'zj

NPADE_HERMITE(A(z), n, k,¢)

i « 0, m® — —e, SO e I, TO I
M « min(ng, n;) + 1,

o« 0, stable « true

While ((¢ < M) and stable) do

ve—n-ml-g



s « 0, stable « false
While (s < M — o) and (not stable) do
$ —s+1
VJ(-’) —~ max(0,vy; + 0 - M+3s), j=0,...k
/* compute the residual */
RO(z) — A(2)- (T(s))“ - 80)(z) / AmPUH1 poq AN
[* scale the residual */
R9(z) « R9(z) A-1, where A is given in (4.3)
Construct TS 2,
If Tﬁ, is kumerically nonsingular then
mi+) o gl 4yl 4 €o
Obtain 5(z) using (2.41) and (2.42)
Obtain Y+ satisfying (4.6) and (4.7)
S(i+1)(z) — T+ ('r(s'))-l S(i)(z) A1 5“-(2)
Obtain I'(+1) satisfying (3.17) and (3.18)
[* scale the PHS */
SE+)(5) S+ () (r(s’+1)) -1
stable « 4(*1) > ¢, where v("+1) is given by (3.15) and (3.19)
end if
end While
If stabletheno — o + s, i « i+1
end While



Chapter 5

Previous Numerical Results

5.1 Padé-Hermite Systems In a Numerical Set-
ting

Previously we have considered the elements S(z) and R(z) to be exact. Rather
than introducing new notation, we will now use these components to represent values
computed by our algorithm using finite precision arithmetic. When the exact values
are of interest, we will indicate them with the subscript E as in Sg(z) and Rg(z).
Hence condition II of Definition 2.1, for the exact and the computed scaled PHS of

type n for A(z), become respectively
A(2)- Sg(z) = z||"|'+lRE(z) (5.1)
and

A(z)- S(z) = 8R(z) + 2IMIH1R(2), (5.2)
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where 65(z) is the consequence of the numerical error in S(z}. Note that 6R(z)=0

if and only if S(z) = Sg(z). If we define

§5(z) = S(z) - Sg(2); (5.5)
then from (5.1) and (5.2)
6R(z) = A(2)-65(z) mod 2+ (5.4)
and
R(z) = Rg(z) + (A(2)-85(z) - 6R(z)) /Ini+1, (5.5)

In (5.2), for the purpose of norm compatibility used later, we consider dR(z) to be a

vector of power series whose j* component we represent by

li=] o
5Rj(z)=2rl,,--z' + Z 0.z 7=0,...,k (5.6)
1=0 I=]in]l+1

5.2 Estimating the Error

As with the case of Padé-Hermite approximants, numerous algebraic algorithms have
been proposed for computing Padé Approximants. However, few of these algorithms
has been analyzed from a numerical standpoint. Still fewer have been proven sta-
ble. For a restricted class of power series (those which correspond to positive definite
Hankel matrices) Ammar and Gragg (1] give an algorithm which is stable. Recently,
Cabay and Meleshko [11] generalized the algebraic algorithm of Cabay and Choi [§]
to establish a fast weakly stable numerical algorithm for power series without restric-
tions. While they dealt exclusively with Padé approximants, we can apply many of

their results to Padé-Hermite approximants. In fact the Padé-Hermite approximant
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for k =1 corresponds directly to the classical notitm of a Padé Approximant. Specif-
ically, if the point (no,n;) is a nonsingular point in the Padé table, then the 2 x 2
matrix composed of the (ng,n;) and (ng — 1,n; — 1) Padé Approximants would be
identical to that of a (ng,n;) Padé-Hermite System.

In this section, we highlight some of the important results reported by Cabay
and Meleshko. Error bounds for the residual, 6R(z), and the relative error, §S(z),
establish that the key parameters governing the performance of their algorithm is the
stability parameter 7(). In the following chapters, we will confirm experimentally
that these results hold for our algorithm with & = 1, and draw conclusions along
similar lines for k£ > 1.

Cabay and Meleshko only considered Padé approximants where n = (z — 1,z)
for some nonnegative integer z. This corresponds to computing Padé approximants
along the superdiagonal of the Padé table. This restriction is made without loss of
generality since a Padé approximant at any point in the Padé table can be computed
given that those on the superdiagonal are known.

Let n = (z - 1,z,...,%), then
mt) = (mg),mgi), e ,mf)) (5.7

where m{" = mg) +1, j=1,...,k. Define the step size s; (from m{) to m(+1) to

]
be

si = mi™ - m{). (5.8)
Note that m(i+1) = m0) + p + ¢, where
v=(8—1,8...,8). (5.9)

Cabay and Meleshko provide an error bound for the residual error §R()(z).
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Theorem 5.1 (Cabay and Meleshko [11]) Let k = 1. Assuming that v is large
and ||6RY)(2)|| is small s0 that

22 (m{) + 1) (J6RO(2)]| + 5 (m{ +1) ) < 4O (5.10)

for each i < j, then

_ A i1 AD
IR+ (2)|| < (—7%, + gm) u+ 0, (5.12)
where
A = 404 (i +1) (m +1)° + 512 s py (M) + 1)? (5.12)
+ 808 (my™ +1) (m¥? +1) (s; 4+ 1)
AP = 3232 (s; 4+ 1) (md) + 1) (W +1) (5.13)
+ 4096 5% py (m&) +1)2 (m{*V +1) (5.14)

+ 32.32 (mg"'l) +1)% (s; + 1) (mg) +1)

with 4 = IRg)(O) Vé"(ﬂ)|, pi is the growth factor associated with the Gaussian
elimination performed at the i** step, and y is the machine unit roundoff.

o

Notice that Theorem 5.1 assures us that if [|6RU)(z)] is small and ) is large,
then ||6RU*1)(z)|| will also be small. If the step size s; is chosen so that 7+ is
large as well, then Theorem 5.1 can be applied at the next computed point. Hence
[[6RU+))(2)|| will remain small for all 7, as long as s; is chosen appropriately. Equiv-
alently stated, the error in the residual will be small as long as we step from stable
point to stable point.

Meleshko and Cabay observed experimentally that for power series with randomly

generated coefficients, s; could be chosen so that 74+!) > 10-2. Also ||§RU*(z)|
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depends on 7" in the denominator of the summation and not 4 4(i+1), The overall
error in [|6RU*1)(z)|| was observed to be inversely proportional to the smallest ()

encountered.

Theorem 5.2 (Cabay and Meleshko [11]) Let k = 1. If (5.10) holds for 0 < i <
J, then the epproziments computed by NPADE_HERMITE satisfy

2.2 (mf,j)+1)3 PN S AP 2
3 yo ¥ g.,(f) S | # + 0 (), (5:19)

16s9=)) <

where Aé‘) and Agi) are defined in 5.12.
0

Experimentally, Cabay and Meleshko [11] observed that the large constants and
powers of mf,i) and s; that occur in Theorem 5.2 were not manifested in the experi-
ments,

The question that arises from these is “How do these error bounds relate to those
for Padé-Hermite approximants?” For k = 1 we would expect similar results due to
the fact that our algorithm and Cabay and Meleshko’s behave comparably. However
for larger k it is urnclear as to whether these bounds are significant.

The actual error bounds will contain different Agi), Ag") composed of low degree
polynomials in m’.‘," and s;. In order for the error bounds for k > 1 to be similar, it
must be the case that 4{?) be a good estimate of the condition number H,;. If this is

‘the case, a forward error analysis similar to Cabay and Meleshko [11] could be done

to obtain the actual error bounds for the Padé-Hermite approximant algorithm.
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Chapter 6

Experimental Method

Before presenting the experimental results, we will discuss some of the details involved
in gathering the data. Several programs were written in order to collect the results.
We will describe their implementation and role in the experimental process. Several
problem classes were used in the execution of the experiments. These, along with
a method for generating power series with singular points will be highlighted. The
next chapter contains a collection of tables detailing the numerical values obtained.
The format of these tables will be explained and an overview of the different types of

experiments will be provided.

6.1 Software Implementations

One of the main goals of this thesis is to study the numerical calculation of Padé-
Hermite approximants. Naturally a numerical implementation of the algorithm in
section 4.5 was required. This algorithm was implemented using Sun Fortran 1.3.1.

Fortran was chosen due to its widespread acceptance as the numerical language of
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choice and the availability of numerical libraries such as LINPACK. All calculations
were performed in double precision. The linear systems (2.41) and (2.42) were solved
using the LINPACK routines SGEFA and SGESL!. Numerical singularity of the ma-
trix T'(") was tested using the determinant returned by LINPACK’s SGEDI. Numerical
PHS’s were written to a file in a format (nearly) readable by Maple. A C program
was used to convert the floating point format of the output text file to one compatible
with Maple.

Previously, it was mentioned that the results that are of most interest are the
relative error in the Padé-Hermite System and the error in the residual. In order
to caxipute the relative error in the PHS, we require a means to compute the exact
solution Sg(z) of a PHS for a given n. We also wish to examine the relative error
in the intermediate systems $¢)(z). To accomplish this, an implementation of the
iterative numerical algorithm was done using the programming language offered by
Maple V. The Maple symbolic algebra environment enabled all calculations to be
done in exact arithmetic. All the scalings involved in the numerical algorithm were
incorporated into this implementation. Each PHS was saved in a separate file for
later comparison with its numerical counterpart.

Although this program accomplished the desired goal, it proved very costly in
terms of execution time. As a compromise, a Maple program was written which
directly computed all Padé-Hermite Systems along the desired diagonal in the Padé-
Hermite table using 50 digits of accuracy per polynomial coefficient. This solution
utilized singular value decomposition [14]. Because the numerical implementation

of the algorithm offered only double precision, and due to the fact that only scaled

! Although these routines are written for single precision computation, a compiler flag was used
to force all single precision values to be converted to double precision
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PHS’s were computed, it was felt that these results could be considered to be exact for
our purposes. Note that this Maple implementation contained a test to identify T,,()
matrices with condition number > 10%. Such systems were considered numerically
singular. Solving a linear system with a condition number =~ 10° results in a loss of
accuracy of p digits in the solution [7]. Therefore, by doing all computations with 50
digits of accuracy and rejecting those with condition number > 10%, a minimum of
20 digits of accuracy could always be expected in the resulting PHS.
With the approximate and exact results computed by the two implementations, a
Maple program was written which read in the results and computed the relative error
16591 _ [1S2(2) - $9(2)|
IsPE1 - IsPel

in exact arithmetic for the various stable Padé-Hermite Systems.

(6.1)

The error in the residual was determined by the Fortran implementation. For a

given PHS S¢)(2), we compute
I8RO =1l (4(2) (19) ™ $9(2)) mod s}, (62)

In order to judge how good the numerical solution is, a program was developed
which would compute the Padé-Hermite System directly by solving equations (2.13)
and (2.21) directly using Gaussian elimination with partial pivoting. This was also
implemented in Fortran using the LINPACK routines SGEFA and SGESL. If we let
the PHS’s obtained in this way be denoted by Sg) (2), then the relative error for these
systems is given by

1658() _ 158(=) - s9(2))
I1589(=2) 1S9 (2)l

In developing our algorithm, we have relied on 4) providing a gcod estimate of the

condition number of the matrix T,(;. Therefore a Fortran program was written which



computed the condition number of T, using || - |les. Using the LINPACK routine

SGED], the inverse of T,:) was established and the condition number computed as
&(T)) = [T lloo - 1T lloo (6.4)

Because these values were computed using double precision floating point arithmetic,
they are only estimates of the actual condition number. Estimates greater than 10%7
may be subject to considerable error.

All floating point computations were carried out on a Sun Sparcstation 1. The
unit round u for this computer was 2.22 x 1076, All Maple results were obtained on

a Silicon Graphics 4D/340 and Sun 4/40FC-24.

6.2 Problem Classes

To thoroughly test the numerical algorithm, it must be tested on a variety of different
problems. We can group problems with power series sharing certain common features
into a problem class. Within each problem class, the parameters k and n can be
varied. Note that for all problem classes, it must be the case that Ag(0) # 0 as
required by Definition 2.1.

For the numerical experiments performed, we can consider four classes. The first
class of problem (class I) contains power series with random integer coefficients. Prob-
lems of this type were fabricated by randomly generating numbers between -128 and
128 and using them as power series coefficients. This class includes problems where
we set. Ag(z) = 1 and generate random coefficients for the remaining k power series.
Assuming that Ag(z) = 1 is a common assumption used in many applications (and is

not a further restriction since this can be achieved by multiplying A(z) by A5'(2)).



We will see in Section 7.2 that Ao(z) plays a key ro)¢ in Pt {owth of the relative

error in Padé-Hermite Systems.

The class IT problem consists of power series whoge cQf8sPypding Padé-Hermite
table contain singular points at predetermined positigys- Ty Pryblem of numerically
computing PHS’s at these singular points will be extregely, ghstyple. These problems
are explicitly constructed using relations involving the sdjq;pt 0t yhe PHS matrix. We
introduce the notion of a template PHS which is yged y géygrate a power series

with certain properties. To prove this construction, we req,;ife tye following lemmas.

Lemma 6.1 Let S(z) be a normalized Padé-Hermit, Sysys™ uf type n for a vector
of power series A(z) with Ag(0) = 1. Then

det(S(z)) = i+, (6.5)
Proof: Let $°4(z) = adjoint (S(z)). We have that
A(2)- 5(z) = MHRG),  Ro(0) =1, V)AL (6.6)
So

A(z)-det(S(z)) = A(z)-S(z)rS‘dj(e)

= MMR(:) . Sw(z). (6.7)
The first component of (6.7) satisfies
k
Ao(2) - det(S(2)) = 2+ 3™ Bi(z) - s,.jgj(e) (6.8)
=0

But from the degree bounds (2.5), d[det(S(z))] £ llny + 1 50 that (6.8) becomes

det(S(z)) = 2+ A7 Y2)- i R.(o) . S\\!gj (0) (.9) |
i=Q '



The result (6.5) now follows from (6.6) and (6.9) »fter observin: that ng(O) =
det(V(0)) =1 and that for ¢ =1,...,k, S{gj(O) =0 (since Sjg ), i=1,...,k
each has 22 as a factor).

]

Lemma 6.2 Let A(z) is a vector of k+1 power series and .§(z) be a template PHS
for A(z) of type v = (s — 1,s,...,s) where v is the first nonsingular point along the

superdiagonal of the Padé-Hermite table. Then
A(z)-5(z) = MHIR(z), V(0)=1, Ro(0)=1. (6.10)

Now let B(z) be a vector of k + 1 power series such that

A cdj

B(z) = W(z) (5(2)) (6.11)

for any W(z2) € Fiya[[2]] such that Wy(0) # 0. Then $(z) is a PHS of type v for
B(z). Furthermore, v is the first nonsingular point along the superdiagonal for B(z).

Proof:

B(2)-8(z) = W(z)(5(2))" §(z) (6.12)

= AW (s), (6.13)
Hence the PHS order condition is satisfied. Also note that the remaining two condi-
tions of Definition 2.1 are satisfied, so 5(z) is a PHS of type v for B(2).

Next, suppose that 5(z) is a PHS of type 7 such that 7 lies on the same diagonal
path as v, ||7}| < ||v||, and

B(z)- 5(2) = M5 (2). (6.14)
Then by Theorem 2.1, there must exist a PHS 5(z) of type # = v — # — ¢ where

5(2) = §(z) - 5(2). (6.15)



Then

A(2)5(2)5(z) = MHIR() (6.16)
AZ)5(:) = MHIRG). (5(2))* (6.17)

Also note that the remaining PHS requirements are met for 5(z). But (6.16)‘ implies
that S(z) is a PHS of type 7 for A(z). This contradicts the fact that v is the first
nonsingular point along the superdiagonal. This contradiction establishes the lemma.

(m]

Theorem 6.3 Let $)(z) be a normalized template PHS of type v) = (8i=1,8iy...,8;)
for AQ)(z), i=1,...,5. Consider

Az) = W(z)- (§9(2))™ - ... . (§042))*¢ (6.18)

where Wo(0) # 0. Then the nonsingular subsequence for A(z) alorg the superdiagonal

is given by
mt) =m@ 4 e i=0,1,...,j (6.19)
and the normalized PHS at m®) is given by
S9(z) = g(n(z). .5“(i)(z) (6.20)
Proof: Let
A9(z) = W(z) (§9(2) " . (§9(=), i=0,...,5-1.  (621)
Then A¥(z) = A(z) and

AV(z) = AB(z) (5640(2))* | i =0, 5 - 1. (6.22)



If we assume inductively that A‘(,j)(O) #0,..., (i+l)(0) # 0, it then follows from
(6.21) using arguments similar to those in the proof of Lemma 6.1 that

ADO)#£0, i=j-1,...,0. (6.23)
Let
SO() = 8W(z).....80)(z), i=1,....;5 (6.24)
It is easy to show that S()(z) is a PHS of type m(? for A(z) satisfying
A(z) - S(z) = AmO+1 40 ), (6.25)

From (6.21), (6.23) and Lemma 6.2, the first nonsingular point along the superdiag-
onal for A¥)(z) is $6+1)(z). Thus, from Theorem 2.1 the next nonsingular point for
A(z) is mU*Y) and the PHS at m(+) js S6+1)(z) = §6)(2) . §6+1)(2). The result now
follows by induction on 3.

a

This relationship allows us to construct a vector of power series A(z) with singular
and nonsingular points at chosen locations along a specific path in the Padé-Hermite
table. Because this method requires exact arithmetic, it was performed in Maple. We

illustrate the method with an example.

Example 6.1 Suppose that we want to generate a vector of power series A(z) =



(Ao(2), A1(2)) (i.e. k =1) such that along the superdiagonal the points are as follows

sing

nm
0 1 2 3 4 5 6
0 nonsing
' wne (6.26)
ng 2 sing
3 nonsing
4
5

nonsing

where nonsing represents a nonsingular point and sing denotes a singular one. To
do this we require three template PHS’s, $)(z) of type v, = (0,1), $O)(2) of type
vy = (1,2), and $C)(z) of type v5 = (2,3).

To obtain such systems we can randomly generate power series and modify them
so that the associated Sylvester matrix T., is nonsingular and all submatrices of lower

order are singular. For example, let

Ao(2) = 1432-222+... (6.27)
Az) = z=-28+.... (6.28)
Now
1 00
Toy)=(0) and Tpy=| 3 1 o (6.29)
-2 -11

so the solutions of (2.13) and (2.21) for T(1,2) would generate the PHS $0)(z) since
det(T(,3)) # 0.



Once the template Padé-Hermite Systems have been computed, compute their ad-
joints (5 (1)(2)) 4 , (S (2)(2)) b , (S (3)(z)) ““ Obtain a vector of power series R(z) =
(Ro(z), Ri1(2)) with Ry(0) # 0 and compute

Az) = R(z)- (§0(2))* - (§0(2))*? - (59())*. (6.30)

The power series A(z) will have the Padé-Hermite table up to the point (5,6) given
in (6.26).
O

Note ihat this method cannot generate problems with Ag(2) = 1. If we desire,
we can multiply A(z) by Ag'(z) to obtain this type of problem. The disadvantage
of constructing power series in this manner is that it produces very divergent power
series with rapidly growing coefficients. For this reason, only relatively small problems
(small k and ||n||) can be computed.

The final two classes of power series used in the experiments are perturbed ver-
sions of the class II problem just illustrated. In Maple, the coefficients of class II
power series are perturbed by either 10~12 or 10~ yielding class III and IV problems
respectively. The larger the perturbation, the more stable the system will become at
the points which were originally constructed to be singular. These four classes will

give us opportunity to examine problems of varying instabi’ity.

6.3 Explanation of Table Headings

The headings of the experimental results look like

: ; ; ; ) 5t
i (o) [ 1y [ 20| hom9(ey) | s T s
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Although the table headings indicate that we are only reporting values for stable
points m(), the results for unstable rows are also listed. This allows us to illustrate
why such points were rejected by the algorithm. The first column labeled ny t in-
dicates if the point was accepted as stable. If an entry is blank then the point was
not accepted as stable, otherwise an integer indicating the points position in the se-
quence of stable points appears. The next column provides the condition number of
the Sylvester matrix T,,;. Following that, the value llm)|| as given by (2.3) appears.
Next, the value of the stability parameter v is given. The norm of the error in
the residual occupies the fifth column. Finally the relative error for the iterative and
Gaussian elimination methods is presented. Points decided unstable by the iterative
algorithm are labeled as such. All numerical entries are given in scientific notation

with two digits of accuracy and the exponent appearing in brackets. For example,

10000 would be entered as 1.0(4).

6.4 Overview of the Experiments

As the main purpose of this thesis is to evaluate the propesed numerical algorithm
for computing Padé-Hermite Systems, numerous experiments were performed. Due to
the amount of CPU time required to compute the exact solution of some systems, we
were forced to restrict the parameter k to be relatively small. A short description of
the parameters used for each experiment appears with the tables in the next chapter.
Experiments with values of k equaling 1, 2, and 7 were performed. For k = 1,2,
power series with singular points were generated. These were perturbed and rerun to
study the effect. An experiment was run with k = 2 and very large ||n|| to illustrate

the growth of error when descending deep into the Padé-Hermite table. Several other
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specific experiments were run in order to validate some of the conjectures given in

the next chapter.
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Chapter 7

Numerical Results

In t%i7 #~apiee e present some of the experimental results obtained using the Fortran
impic.aeutatizn if our numerical Padé-Hermite algorithm. Several important results
will be given including the effectiveness of 4(*) in estimating the condition number of
the Sylvester matrix T, the relationship between the tolerance ¢ and the relative
and residual error, and a comparison between the relative error for our iterative
numerical algorithm and that of the direct method of solving T, using Gaussian
elimination. We also compare how the relative and residual errors compare with
bounds of Cabay and Meleshko highlighted in Section 5.2.

The results will be separated into three sections. In Section 7.1, we consider results
for various values of k¥ when Ag(z) = 1. Because our method for generating power
series with singular points does not produce such problems, we rely on randomly
generated power series coefficients. Section 7.2 deals with problems in which Ay(z)
is a formal power series not equal to 1. In this section we consider power series from
classes II, III and IV for various k. In Section 7.3 we study the effect of modifying the
power series A(z) by multiplying it by A5?(z) before testing. A new definition for the
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stability parameter 4 will be provided in Section 7.4 motivated by the experimental
results of the previous sections. Within each section we adopt the format of presenting
a set of observations in point form, a discussion of the implication of each observation,

and a set of tables corroborating the observations.

7.1 Results for Ay(z) =1

As is often the case in the literature, we consider the case in which the power series
Ao(z) is equal to the constant value 1. For our tests, all the remaining input power
series coefficients are randomly generated (class I problem).

Observation 1: The stability parameter v(¥) provides a good estimate for the
condition number of T, ) when k = 1.

One of the premises upon which our algorithm is based is that ¥ is a good
estimate of the inverse of the condition number of T,. By specifying the tolerance
e = 10~% we expect to reject points with a corresponding condition number x(T, ) >
1.0(3). In Table 7.1, thereis a strong correspondence between the value of £(T,,) and
the value of 4{*). For example the point corresponding to 7 = 4, the condition number
estimate 1/7() is 58.8 whereas the computed condition number is 28. Similarly when
i = 24, the inverse of v is 526 and the computed condition number is approximately
890. Observe that for unstable points such as ||m®|| = 43, 1/4%) = 1.8(5) is still
a reasonable estimate of the computed condition number 3.5(4). From this table it
appears that 1/9" is within an order of magnitude of the actual condition number of
Tonw. The numerical results of Table 7.1 confirm the numerical results of Meleshko
and Cabay [22].

Observation 2: For k > 1, 41" is a gross over-estimate of T, (). The discrepancy
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Table 7.1: k=1, €=10"%, Class]
i [T [ 1m0 | 50 | om0y | i T B
1] 1.0 1 37 0.0 | 5.6(-17) | 5.6(-17)
2 | 7.0 3 [55(2) | 2.8(17) | 6.1(-17) | 8.8(17)
3| 25 5 [1.0(-2)] 42(-17) | 1.6(-16) | 6.4(-17)
4| 28 T_|17(-2)] 1.7(-16) | 4.1(-16) | 9.7(-17)
5] 67 9 19.0(-3)| 1.7(-16) | 7.8(-16) | 3.1(-16)
6| 15(2) | 11 [67(-3)| L7-16) | 8.2(-16) | 2.9(-16)
71 50 13 [22(2)| I5(767 11.2(-15) | 3.6(16)
8 | 1.7(2) | 15 [2.2(-3)] 2.7-15) | 2.3(-15) [ 2.7(-16)
9 78 17 [1.4(-2)| 5.4(-16) | 4.0(-15) | 4.6(-16)
10| 14(2) | 19 [99(-3)| 5.4(-16) | 4.0(-15) | 5.1(-16)
11] 39(2) | 21 [1.9(:3)| 3.7(-16) | 9.5(-15) | 8.1(-16)
12| 55(2) | 23 | 13(:3)| 3.9(-16) | 1.0(-14) | L.1(-15)
13] 3.8(2) | 95 |49(3)] 3.9(-16) | 1.2(-14) | 3.5(15)
14| 51(2) | 27 [52(3)]| 44(-16) | 1.5(-1a) | 4.4(-15)
15| 39(2) | 29 [11(2)] 5.4(-16) | 1.4(-14) | 2.1(-15)
16 | 3.7(2) | 31 |6.0(3)| 5.3(-16) | 1.1(-14) | 6.9(-15)
17| 58(2) | 33 | 4.6(:3)| 4.7(16) | 2.7(-14) | 8.1(-15)
18| 6.8(2) | 35 |5.3(3)| 5.9(-16) | 2.7(-14) | 1.0(-14)
19| 1.03) | 37 [1.8(3)| 6.0(16) | 1.8(-14) | 1.1(-14)
20| 95(2) | 39 |3.6(-3)| 5.8(-16) | 1.7(-14) | 8.5(-15)
21| 7.9(2) 41 [5.7(-3) | 5.9(-16) | 1.4(-14) | 2.4(-14)
- | 3.5(4) 43 |5.6(-6)| 6.0(-16) | unstable -
- | 6.0(3) 45 |3.6(-4)| 5.7(-16) | unstable -
22| 1.6(3) | 47 |24(-3) [ &1(-16) | 1.1(-14) | 4.1(-19)
23| L1@3) | 49 |2.1(-3)| 5.6(-16) | 7.9(-15) | 1.4(-13)
- | 7.8(3) 51 [2.3(-5) | 5.8(-16) | unstable -
24| 89(2) | 53 [1.9(-3)| 5.6(-16) | 6.8(-15) | 1.6(-13)
| -1 51(3) 55 |1.6(-4)| 5.9(-16) | unstable -
5.4(3) 57 | 1.5(-4) | 5.6(-16) | unstable
3.7(3) 59 [1.3(-4)| 6.1(-16) | unstable
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Table 7.2: k=2, €=10"%, Class] :
|8 (Tw) | IO | 40| 6B (z)| | g | gl
1] 76 2 | 91(-3) | 56(17) | 1.4(-16) | 1.4(-16)
7 16 5 | 6.5(-3) | 1.7(-16) | 5.3(-16) | 1.9(-16)
3| 27 8 | 6.8(-3) | 19(-16) | 1.0(-15) | 3.0(-16)
1| 8 11| 4.8(4) | 2.3(-16) | L4(-15) | 4.1(-16)
5| 94 14 | 7.8(-4) | 1.9(-16) | 1.2(-15) | 4.1(-16)
-1 2.2(4) 17 |5.7(-11) | 1.7(-16) | unstable -
6 | 17(2) | 20 | 3.1(4) | 24(-16) | 1.8(-15) | 4.1(-16)
T 2.0(2) | 23 | 1.2(-4) | 23(-16) | 1.3(-15) | 5.0(-16)
8 [ 5.02) | 26 | 14(8) | 32(16) | 18(-15) | 5.3(16)
9 | 502) | 29 | 43(-5) | 43(16) | 49(-13) | Z.1(13)
10 31(2) | 32 | 44(5) | 53(16) | 4.4(-15) | 1.1(-15)
- | 1.3(4) 35 | 3.7(-9) | 5.8(-16) | unstable -
1] 2.7(2) | 38 | 1.6(4) | 7.9(-16) | 9.2(-15) | 6.5(-16)
2] 1.23) | 41 | 6.6(6) | 6.9(-16) | L.i(-14) | 7.5(-16)
13| 42(2) | 44 | 6.6(3) | 6.8(-16) | 1.0(-14) | 8.2(-16)
14| 9.7(2) | 47 | 14(6) | 8.0(-16) | 1.3(-14) | 1.9(-15)
15| 1.9(3) | 50 | 1.2(6) | 1.0(-15) | 1.7(-14) | 2.3(-15)
16| 13(3) | 53 | 84(6) | 1.3(-15) | 3.0(14) | Li(-15)
17| 54(3) | 56 | 41(7) | 1.6(-15) | 1.8(-13) | 2.0(-15)
18] 86(2) | 59 75( 6) | 2.0(-15) 41( 14) | 1.9(-15)
19 8.5(3) | 62 | 18(8) | 23(15) | 3.1(14) | 24(-15)
20| 5.7(2) 65 23( 5) | 3.5(-15) 42( -14) | 1.4(-15)
85 | 3.8(4) | 299 2.5(-8) 3.7(-1) 3.7-(-12) 8.7(-15)
86| 2.2(4) | 302 | 2.1(-8) | 3.5(-14) | 3.6(-12) | 8.6(-15)
87| 2.2(4) | 305 | 7.6(8) | 33(14) | £A(12) | LA(-i4)
88| 3.6(4) | 308 | 2.5(-8) | 28(14) | G4(12) | L.4(-14)
89| 30(4) | 3i1 | 40(8) | 2.7(-14) | 8.5(-12) | LA(13)
- | 1.2(5) | 314 | 1.0(-9) | 2.4(-13) | unstable -
“ [ 1.5(5) | 317 |5.2(-10) | 3.4(-14) |unstable| -
90 | 3.0(4) | 320 | 6.3(8) | 3.5(-14) | 4.7(-12) | 1.5(-14)
o1 | 48(4) | 323 | 3.6(-8) | 3.5(-14) | 7.1(-12) | 2.6(-14)
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Table 7.3: k=7, €=10"'°, Class]
. : ; . i U
|6 @) | IO | 49| 5RO | L T
1| & 7| 52(8) | 83(17) | 2.1(-16) | 2.7(-16)
2] 45@2) | 15 [30(-14) | 26(-16) | 1.4(-15) | 1.7(-13)
- | 1.5(5) 23 [5.3(-32) | 9.7(-16) | unstable -
3| 24(3) | 31 [8.0(16)| 1.3(-14) | L1(-12) | 28(-15)
4] 52(2) | 39 [2.7(12)| 13(-13) | Li(-12) | 29(-15)
51 74(2) 47 [1.2(-12) | 1.4(-13) | 1.4(-12) | 2.1(-15)
6 | 3.7(3) | 55 | 7.8(16) | 1.2(-13) | 2.1(-12) | 8.9(-15)
71 40(3) | 63 | 7.6(15)| 2.5(13) | 6.6(-12) | 9.8(-15)
8 | 38(8) | 71 [11(-14)| 3.3(-13) | 2.4(-11) | 6.1(-15)
9] 65(3) | 79 [1.3(16) | 3.5(13) | 4.3(-11) | 6:3(15)
10| 28@) | 87 |19(-13) | 46(-13) | 1.8(-11) | 5.8(-15)
11[ 573) | 95 34(i1)| 45(-13) | 1.2(-11) | 1.7(-14)
12| 1.5(4) | 103 ;5.0(-18) | 5.8(13) | 1.9(-11) | 1.2(-14)
- | 1.1(6) 111 | 5.8(-36) | 3.2(-13) | unstable -
- | 1.8(4) 119 }16.4(-21) | 2.6(-13) | unstable -
13| 1.8(8) [ 127 [1.9(-19)| 5.3(-13) | L7(11) | 2.1(-19)
14| 25(4) | 135 |5.3(-19)] 7.2(-13) | 1.4(-11) | 1.9(-14)
15| 1.2(8) | 143 [90(-17) | 7.7(-13) | 41(11) | 1.3(-14)
16| 1.4(a) | 151 |2.7(-18) | 4.5(13) | 2.6(-11) | 8.0(-15)
17 | 1.4(4) | 159 |1.7(-17) | 6.9(-13) | 2.0(-11) | 1.5(-13)
- | 77(8) | 167 |8.7(-23) | 6.4(-13) |unstable | -
18| 9.23) | 175 | 1.5(-16) | 5.1(-13) | LA(-11) | 1.0(-19)
- [ 54(5) | 183 | 2.2(-29) | 2.9(-13) |umstable | -
191 2.3(4) | 191 [5.3(-19) | 5.4(-13) [ 1.5(-11) | 1.8(-14)
- | 7.1(4) 199 [:8.6(-22) | 5.0(-13) | unstable -
5.0(4) 207 [9.0(-21) | 4.1(-13) | unstable
4.1(4) | 215 | 1.7(-20) | 4.5(-13) [ unstable
- | 7.7(4) | 223 ]4.0(-22) | 3.5(-13) [ unstable -
20 | 3.4(4) | 231 |1.2(19) | 4.7(-13) | 2.4(-11) | 2.0(19)
- | 45(4) | 239 ]75(-21) | 6.2(-13) [ unstable -
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Table 7.4: k=7, €¢=10"1%, Class]

. . . i (s
i | 8(Two) [ ImO | 49 | J5RO()| | Lyt | Eegtal
1| & 7| 5.2(-8) | 8.3(-17) | 2.7(-16) | 2.1(-16)
2 | 45(2) | 15 [3.0(-14) | 2.6(-16) | 1.4(-15) | 1.7(-15)
- | 1.5(5) 23 | 5.3(-32) | 9.7(-16) | unstable -
3| 24(3) | 31 [8.0(-16) | 1.3(-14) | Li(-12) | 2.8(-15)
4 52(2) | 39 |27(-12)| 1.3(-13) | LI(12) | 2.9(-15)
5| 74(2) | 47 [ 1.2(-12) | 14(-13) | L4(-12) | 2.1(-15)
6 | 3.73) | 55 | 7.8(-16) | 1.2(13) | 2.3(-12) | 8.9(-15)
7| 40(3) | 63 | 7.6(-15) | 2.5(-13) | 6.60-12) | 9.8(-15)
81 38(3) | 7 [11(-14) | 33(13) | 3.4:-11) | 6.1(-15)
9 [ 65(3) | 7™ |1.3(-16) | 3.5(-13) | §.21-31) | 6:3(15)
10] 283) | 87 [1.9(-13) | 4.6(-13) [ 1.3{-11) | 5.8(-15)
- | 5.7(3) 95 |3.4(-17) | 4.5(-13) | unstable -
- | 1.5(4) 103 | 5.0(-18) | 5.8(-13) | umstable -
- | L16) | 111 |5.8(-36) | 3.2(-13) [ unmstable -
- | 1.8(4) ; 119 [6.4(-21) | 2.6(-13) | unstable -
- | 1.8(4) | 127 |1.9(-19) [ 5.3(-13) [ unstable -
- | 25(4) | 135 |5.3(19) | 7.2(-13) |unstable| -
- | 1.2(4) | 143 [9.0(-17) | 7.8(-13) [ unstable -
- | 1.4(4) | 151 [2.7(-18) | 4.5(-13) | unstable -
- | 1.4(4) 159 | 1.7(-17) | 7.0(-13) [ unstable -
- | 7.7(4) | 167 |8.7(-23) | 6.4(-13) |unstable| -
11| 92(3) | 175 | 1.5(-16) | 5.7(-13) | 15(-11) | 1.0{-14)
- | 5.4(5) 183 | 2.2(-29) | 3.0(-13) | unstable -
- | 23(4) | 191 [5.1(-19) | 5.3(-13) | unstable -
- | 7.1(4) | 199 |8.6(-22) | 5.2(-13) [ unstable -
- | 5.0(4) | 207 |9.0(-21) | 4.2(-13) |umstable | -
- | 41(4) | 215 |1.7(-20) | 4.6(-13) [ unstable -
- | 7.7(4) | 223 |4.0(-22) | 3.4(-13) [ unmstable -
- | 3.4(4) 231 | 1.2(-19) | 4.5(-13) | unstable -
- | 4.5(4) | 239 |[7.5(-21) | 6.0(-13) | unstable -
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is magnified with increased k. A closer approximation is given by!

k(o) = (3%)—} (7.1)

Consider the point ¢ = 14 in Table 7.2 with &(T, ) = 97C. The stability parameter
7%) estimates the condition number to be 7.1(5). Similarly, at the point i = 12 in
Table 7.3 with k =7, 1/4() = 2.0(17) whereas the actual condition number is 1.5(4),
a difference of approximately 10'3. We should not be completely surprised by the fact
that 41") decreases as k increases. The parameter 7 is the product of the values of
V_,-g-)(O), J = 1,k, and the residual element Rf,i)(O). If these values are each = 10-1,
then ¥ will be about 10-(++1),

Applying (7.1) to the points listed above we have that for the point ¢ = 14 in
Table 7.2 (1/7%)*3 = 7.9(3) and for the point i = 12 in Table 7.3, (1 [79)33 = 2.1(4).
Each of these values lies within an order of magnitude of the actnal condition number
of T,.ci).

Observation 3: Although 4*) does not accurately estimate the condition number
&(Tn(iy), there is a relationship between the two values. Observe that for two points
in a given table, if #(T,») > &(Tpy»), then the relationship 4) < +4) will hold.
This inverse ordering applies as long as there is a reasonable difference in the values
of £(Tr) and &(T,5).

As an example, this ordering holds for the points i = 12 and i = 87 in Table 7.2.
We see that x(Tnen) = 2.2(4) > 1.2(3) = &(T,un) and that 47 = 7.6(~8) <
6.6(—6) = 4(12),

Observation 4: An approximation of the relative error of the iterative algorithm

14 better approximation is given in Section 7.4.
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for the case Ag(z) =1 is given by

8§S0) X
|'I'_(-')(L)" = max K(Tpn) - [ImO - . (7.2)
ISE'G)l  tes

In Section 5.2 we saw the error bound of Cabay and Meleshko for the relative error of
a PHS with k = 1. This error bound involves the sum of the ratio of some low degree
polynomials to the stability parameter y1¥). However, we have shown that 1/y() is
not a very good estimate of k(T,)). Hence a more accurate formulation of (5.15)
might be

1659 < 2.2(m§ +1) £(Tniir) [AF™ - K(Tpo-v) +

]i::Af)'ﬂ(me) K(Tnn) 6 + O (42, (7.3)
where Af,j ) and Ag" ) are low degree polynomials in m((,j ) and s;. Although these error
bounds are supported by Tables 7.1, 7.2, and 7.3, this formulation shows how weak
the bounds actually are. The operational bounds (7.2) are considerably closer to
the actual error. For example in Table 7.3, the relative error at i = 5 would be
predicted by (7.2) to be 2.4(3) - 47-2.2(~16) = 2.5(—11) and the actual relative error
s800 1.4(~12). Using the error bound (7.3) with A and Agj) given by

IsgEN
(5.12), the predicted relative error is .14. Note that this operational bound implies

was

that the growth of the relative error in the PHS is linear as opposed to exponential.
Furthermore, [|6S(2)|| appears to be proportional to the maximum «(T,;)) as opposed
to the sum of condition numbers indicated by (7.3).

Observation 5: The approximate error in the residual §R()(z) obeys the rela-

tionship

I6RO()|| = max K(Tris) - . (74)
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As in Observation 4, we can convert the statement of Theorem 5.1 to use &(Tiir)

instead of v{"). This becomes

BRI ()] < (Aé"’ K(Tin) + :iéaﬁ" K(T) n(Tmum)) u+0(4).(1.5)
The ersor bound (7.5) is also supported by Tables 7.1 - 7.4. Using the point ¢ = 5
of Table 7.3 the error)) in §R®)(2) is predicted by (7.4) to be 2.4(3) x pu = 5.3(-13).
The actual error was found to be §R)(z) = 1.4(—13) and the value predicted by
(7.5) is 6.0(-3). Once again, the bound (7.4) implies that the growth of error in the
residual is linear. Notice also that the growth in the residual error depends on the
maximum &(7,») rather than the sum of condition numbers as suggested by (7.5).

Observation 6: With the tolerance ¢ properly chosen, the relative error occurring
in Padé-Hermite System polynomial coefficients is comparable to the relative error of
the direct method using Gaussian elimination. Unfortunately, because of the lack of
correspondence between (") and &(T,»), the tolerance ¢ was chosen a posteriori for
many of the experiments.

In Table 7.1 we see that the our iterative algorithm is marginally b;etter than
the direct method whereas in Tables 7.2 and 7.3, a slight advantage is held by the
direct method. Note that in these experiments, no points with large (T, ) were
accepted. In Section 7.2 we will see that accepting such points has a dismal effect on
the accuracy of PHS polynomial entries. In such cases, Gaussian elimination on the
matrix T, produces much more accurate solutions.

Observation 7: For well conditioned problems, the choice of the tolerance € is
not critical to the performance of the algorithm. In these Tables 7.3 and 7.4 we
can see that increasing the tolerance causes fewer points to be accepted but little

improvement in the PHS relative error and residual error. In fact if we were to accept



all points as stable by using a tolerance of zero, then by (7.2) we could expect to
have a relative error of approximately 5.8(-8) and error in the residual equivalent to
2.4(-10). In Section 7.2 we shall see that the choice of tolerance is an integral part of

achieving accurate results for problem classes II, ITI and IV.

7.2 Results for Ay(z) #1

In this section we present a number of experiments for class II, I and IV prob-
lems where Ao(z) is a formal power series not identically 1. Using the method of
Section 6.2 for generating a vector of power series containing singularities, we can
ass;mble problems with a wide range of instabilities. Because of the growth of power
series coefficients associated with this method, only experiments where k = 1,2 were
performed. For the most part, the observations made in Section 7.1 will again be
supported by these experiments. We will begin by presenting a brief description of
the experiments.

Tables 7.5 - 7.10 document class II, III, and IV problems for & = 1. In Maple,
a vector of power series was generated so that the points corresponding to |[m®|| =
1,5,7,11,19,23,29,35,37,41,47,49,53, and 57 would be singular. The results of
experiments using these power series (without perturbations in the coefficients except
for those arising from roundoff) are given in Tables 7.5 and 7.6. Perturbing the
coefficients each by 10~12 led to the class III results of Tables 7.7 and 7.8. Finally,
perturbing the original power series coefficients by 10~¢ yielded class IV input for
experiments documented in Tables 7.9 - 7.11.

Similar experiments were run for k = 2. A class II problem with singularities at

[m || = 8,17,20,32,41,44,47, and 53 was generated. Table 7.12 report some results



for this unperturbed problem. Type III problems with 10-12 perturbations of this
the class II data are given in Tables 7.13 and 7.14. Perturbing the class II problem
by 1076 led to the class III problem reported in Tables 7.15 and 7.16.

Before listing the observations that can be made from these data sets, we note
that the error bounds given in Observations 4 and 5 also hold for the case where
A(z) # 1. Alsc note that for these experiments, Observation 6, concerning the
correlation between the relative error of the iterative and direct methods, is valid.

Observation 8: When Aq(z) # 1, 1) is an unreliable estimate of x(T, ) for
all k. Consider Table 7.5 at the point ¢ = 10. The value of £(Tnn) is 1.3(9) and
the estimate given by 1/7) is 9.0(5). In Table 7.9 at the unstable point [[m®]| = 8,
the condition number of Ty is 2.2(10) whereas the value of 1/ is 5.0(17). The
estimate 1/9% is no longer a consistent overestimate of K(Tp) as it was in Sec-
tion 7.1. As these examples show, 1/v() may be an overestimate or an underestimate
of k(T,y). Hence we cannot predict the condition number with the alternative ap-
proximation (7.1) given in Observation 2.

Observation 9: The choice of ¢ is extremely important for problems in which
A(z) # 1. In choosing a tolerance ¢, several criteria must be considered. The prime
motivating factor in choosing the tolerance is the amount of accuracy required in the
PHS coefficients. The larger the tolerance, the more accurate the solution will be due
to selective nature of the algorithm in accepting Padé-Hermite table points as stable.
However, if the tolerance is too large, large unstable blocks will appear in the table.
In the worst case, all points are rejected and the solution is computed by solving T,
using Gaussian elimination.

Table 7.6 gives an example of choosing a tolerance too large. All points after

llm®|| = 27 are rejected due to the tolerance € = 10~%. We see that in trying to find



Table 7.5: k=1, e=10"%  ClassII
N X . i ')z
i |6 (o) [ IO | 20 | RO | Lisstal | gt
- | singular 1 singular | singular | singular | singular
15 3| 002 | TA(-17) | 2.4(-17) | 4.8(-17)
- | 8.8(17) 5 2.2(-17) | 5.6(-17) | unstable -
- | 1.6(17) 7 7.6(-18) | 3.1(-17) | unstable -
2 | 5.7(3) Q 4.6(-3) | 3.6(-17) | 6.4(-15) | 1.8(-14)
- | 4.0(18) 11 | 1.2(-30) | 8.9(-17) | unstable -
3 23(3) | 13 | 84(-4) | 8.3(-17) | 7.1(-14) | 1.4{-13)
T 14(6) | 15 | 2.1(-4) | 42(17) | 7.1(-14) | B#-13)
5| 4.0(6) | 17 | 9.2(5) | 4.2(-17) | 1.8(-13) | 3.5-13)
-1 42(19) | 19 13.6(-31) | 5.9(-17) | unstable -
6 | 15(7) | 21 | 3.4(-5) | 5.9(17) | 3.9(-13) | 2.5(-12)
- | 3.7(18) | 23 14.6(-30) | 5.9(-17) | unstable -
71 1.18) | 25 | 1.6(-5) | 8.7(17) | 1.0(-12) | L.1{-11)
g1 1.7(8) | 27 | 7.0(-6) | 62(-17) | 1.0(-12) | L7(-11)
- 1 1.3(19) | 29 |4.0(-29) | 1.2(-16) | unstable -
9 | 7438 | 31 | 2.4(-6) | L1(-16) | 1.6(-12) | 1.8(-10)
10 1.3(9) | 33 | L1(6) | 6.8(-17) | 1.6(-12) | 4.4(-10)
-1 1.9(19) | 35 |4.3(-19) | 1.2(-16) [ unstable -
- | 1.2(09) | 37 | 4.3(-19) | 1.5(-16) | unstable -
T 1909) | 39 | 6.0(7) | 7.9(-17) | 4.0(-12) | 4.2(-10)
- | 1.4(19) | 41 |8.5(-30) | 1.4(-16) | unstable -
12] 59(9) | 43 | 28(7) | 1.2(-16) | &7(-12) | 1.3(-9)
3] 9208 | 4 | L.0(7) | 14(-16) | 1.6(-12) | 1.7(-9)
- | 1.8(19) | 47 [ 1.1(-19) | 1.4(-16) | unstable -
-1 1.2(19) | 49 | 1.1(-19) | 1.2(-16) | unstable -
4] 94(9) | 51 | 58(8) | 1.5(-16) | 7.1(-12) | 1.8(-9)
T 73.3(19) | 53 | 4.2(-29) | 1.8(-16) | unstable | -
15| 1.3(10) | 55 | 2.8(:8) | Li(-16) | 44(-11) | 1.5(-9)
- | 5.0(18) | 57 [6.6(-30) | 1.0(-16) | unstable -
161 3.7(10) | 59 | T4(8) | L4(-16) | 4.4(-11) | 5.5(-9)
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Table 7.6: k=1, €=10"%  ClassII
. . . ngeli Y(z
|6 (o) [ IO | 29 | JoRO) | B | el
- | singular 1 singular | singular | singular | singular
1] 15 3 0.12 | TA(-17) | 24(-17) | 48(-17)
- | 8.8(17) 5 |22(-17) | 5.6(-17) | unstable -
1 16(17) | 7 | 7.6(-18) | 3.1(-17) | unstable| -
5[ 57(3) | 9 | 46(3) | 3.6(17) | 6.4(15) | 1.8(-14)
- | 4.0(18) 11 | 1.2(-30) | 8.9(-17) | unstable -
3| 2.3(3) | 13 | 8.4(4) | 83(-17) | 7.1(14) | L1(-13)
2] 14(6) | 15 | 2.1(4) | 4.2(-17) | 7.1(-14) | 6.0(-13)
51 20(6) | 17 | 9.2(5) | 4.2(17) | 1.8(13) | 3.9(-13)
- | 42(19) | 19 |3.6(-31) | 5.9(-17) | unstable -
6| 1.5(7) 21 | 3.4(-4) | 5.9(-17) | 3.9(-13) | 2.5(-12)
T 3.7(18) | 23 | 4.6(-30) | 5.9(-17) | unstable | -
71 T1@®) | 25 | 16(5) | 8.7(-17) | 1.0(-12) | Li(-11)
8 1.7(8) | 27 | 7.0(-6) | 6.2(17) | 1.0(-12) | 1.7(-11)
-] 1.3(19) | 29 |4.1(-29) | 9.5(-17) | unstable -
-1 7.4(8) 31 | 2.7(-6) | 1.6(-16) | unstable -
- | 1.3(9) 33 | 1.1(-6) | 1.1(-16) | unstable -
-1 19(19) | 35 |6.2(-19) | 1.1(-16) | unstable -
-] 1.2(09) | 37 |6.1(-19) § 7.5(-17) | unstable -
1.9(9) 39 | 6.0(-7) | 1.0(-16) [ unstable -
- | 1.4(19) | 41 ]6.0(-30) ! 1.4(-16) | unstable -
- | 5.9(9) 43 | 2.8(-7) | 1.1(-16) | unstable -
9.2(9) 45 | 1.0(-7) | 1.3(-16) | unstable -
- | 1.8(19) | 47 |3.4(-20) | 7.9(-17) | unstable -
-1 1.2(19) | 49 |3.1(-20) | 1.3(-16) | unstable -
1 94(8) | 51 | 53(8) | 9.0(-17) | unstable | -
1 3.3(19) | 53 |3.3(-29) | 9.2(-17) |unstable | -
- | 1.3(10) | 55 | 2.8(-8) | 1.0(-16) | unstable -
R.0(18) | 57 |6.1(-30) | 1.4(-16) | unstable -
3.7(10) 59 1.4(-8) | 1.6(-16) | unstable -
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Table 7.7: k=1, €=10"%  Class III
, . , : P
i | (Do) [ 1m0 | 49 | RO | Lyl | st
- 1.0 1 1.0(-24) | 2.0(-28) | unstable -
1| 15 3 12 | 2.0(-28) | 1.0(-16) | 1.0(-16)
- | 7.2(13) 5 |6.1(-14) | 5.6(-17) | unstable -
- | 1.8(14) 7 121(-14) | 4.1(-17) | unstable -
2| 5.1(3) | 9 | 46(-3) | 56(-17) | 1.1(-14) | 1.2(-19)
- | 4.4(14) 11 | 1.9(-23) | 8.3(-17) | unstable -
3| 2.3(5) | 13 | 8.5(4) | 8.3(-17) | 2.1(-13) | L.1(-13)
4 | 14(6) | 15 | 2.0(-4) | 42(-17) | 2.1(-13) | 3.3(-13)
5| 4.0(6) | 17 | 9.2(-5) | 7.6(-17) | 3.5(-13) | 9.8(-13)
- | 5.5(15) 19 19.3(-23) [ 7.6(-17) | unstable -
6 | 1.5(7) | 21 | 34(-5) | L.2(-16) | L.1(12) | 2.7(-12)
- | 29(16) | 23 |5.5(-23) | 1.0(-16) | unstable -
71 1.1(8) 25 | 1.6(-5) | 9.0(-17) | 3.3(-12) | 1.9(-11)
8 | 1.7(8) | 27 | 7.0(:6) | 9.4(-17) | 3.3(-12) | 2.0(-11)
- 19.1(16) | 29 [1.0(-22) | 1.2(-16) | unstable -
9 | 7.4(8) 31 | 2.7(-6) | 1.2(-16) | 1.0{-11) | 1.8(-10)
10| 1.3(9) | 33 | L.1(-6) | 1.2(-16) | 6.6(-12) | 1.5(-10)
- | 6.6(17) | 35 |5.9(-16) | 1.6(-16) | unstable -
T 8.7(17) | 37 |5.9(-16) | 2.0(-16) |unstable| -
11| 1.9(9) | 39 | 6.0(-7) | 1.4(-16) | 5.6(-12) | 1.8(-10)
- | 6.5(18) | 41 |[1.7(-25) | 1.4(-16) | unstable -
12| 5.9(9) | 43 | 2.8(-7) | 1.3(-16) | 9.1(-12) | 8.4(-10)
113 [ 9.2(9) 45 | 1.0(-7) | 1.1(-16) | 2.1(-12) | 1.2(-9)
- | 3.2(18) | 47 |4.3(-18) 7 1.4(-16) | unstable -
- 12.0(19) | 49 |4.3(-18) | 1.6(-16) | unstable -
14| 9.4(9) | 51 | 58(8) | 1.5(-16) | L.I(-11) | 1.3(-9)
- 1 7.9(18) | 53 12.9(-25) | 1.6(-16) | unstable -
15| 1.3(10) | 55 | 2.8(-8) | Li(-16) | 4.1(-11) | 1,5(-9)
- { 44(18) | 57 |1.0(-24) | 1.3(-16) | unstable| -
16 | 3.7(10) | 59 | LA(-8) | L.1(-16) | 4%-11) | 4.0(-9)
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Table 7.8: k=1, e=10"", Class III

i [ 8 (Tao) [ImO) | 20 | JsRO)) | Lt | BT
- 1.0 1 1.0(-24) | 2.0(-28) | unstable -

11 15 3 12| 2.0(28) | 1.0(-16) | 1.0(-16)
2 72(13) | 5 |6.1(-14)| 5.6(-17) | 1.8(4) | 1.3(-9)
3| 18(14) | 7 | 2.1(-18) | 34(-17) | 1.8(-4) | 2.8(-4)
T 573) | 9 | 46(3) | 58(6) | 18(-3) | 1.2(-14)
5] 44(14) | 11 |55(-12)| 3.3(-6) 2.0 | 7.5(-12)
6| 23(3) | 13 | 85(-4) | 2.7(6) | 4.3(-3) | L.I(-13)
71 14(6) | 15 | 2.1(4) | 1.0(6) | 14(-2) | 3.3(13)
8| 40(6) | 17 | 93(-5) | 1.0(-6) | 1.4(-2) | 9.8(-13)
9 [ 55(15) | 19 | 7.1(-8) | 50(7) | 2.0 |8.9(-13)
10| 1.5(7) 21 | 3.5(-5) | 6.6(-7) | 5.9(-2) [2.7(-12)
1] 29(16) | 23 | 1.0(-6) | 6.8(-7) 13 [5.4(-12)
121 1.1(8) | 25 | 1.4(5) | 68(-7) 17 | L.9(11)
13| 1.7(8) 27 | 4.9(-6) | 3.6(-7) 17 ] 2.0(-11)
4] 9.1(16) | 29 | 4.7(-7) | 38(-7) 30 | 1.6(-11)
15| 7.4(8) | 31 | 2.0(6) | 3.8(7) 51 | 1.8(-10)
(16| 1.3(9) | 33 | 89(-7) | 42(7) | 14 | L.5(-10)
17| 6.6(17) | 35 | 2.0(-9) | 4.2(-7) 20 | 7.3(-2)
18| 87(17) | 37 | 80(9) | 46(7) | 20 | 9.6(:2)
9] 1.009) | 39 | 6.1(-7) | 46(7) | 76(2) | 1.8(-10)
20| 6.5(18) | 41 | 44(-10)| 46(7) | 2.0 |8.8(-10)
21| 5.9(9) 43 | 2.9(-7) | 4.6(-7) | 4.2(-2) | 8.4(-10)
53] 9.200) | 45 | L0 | 33(7) | 15(2) | 1.2(-9)
53 [ 32(18) | 47 |13(-11)| 33(7) | 2.0 2.0

54| 2.0(19) | 49 | 4.9(-11)| 34(7) | 2.0 50 |
25 | 9.4(9) 51 | 5.7(-8) | 3.4(-7) 14 1.3(-9)
56| 7.9(18) | 53 | 2.1(-10) | 3.5(-7) 20 | 2.8(9)
37 | 1.3(10) | 55 | 2.8(-8) | 3.5(-7) 20 | 15(9)
98| 4.4(18) | &7 |1.2(-10)| 19(-7) | .23 | 2.3(-9)
29| 3.7(10) | 59 | 12(8) | 23(-7) | 23 | 40(-9)
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Table 7.9: k=1, €=10"%  Class IV
. . . i Qe

i |6 (Two) | IO | 1 | JsROG)) | Ly | ool
- 1.0 1 1.0(-12) 0.0 unstable -

1| 15 3 12 | 28(17) | 94(-17) | 9.4-17)
2 | 72(7) | 5 | 6.1(-8) | 56(17) | 3.7(-10) | 1.1{-10)
3| 1.88) | 7 | 2.1(-8) | 36(-17) | 3.7(-10) | 3.6(-10)
4| 5.703) | 9 | 46(-3) | 55(-12) | 4.5(9) | 1.8(-13)
- | 4.4(8) 11 | 1.9(-11) | 3.1(-12) | unstable -

5 | 23(5) | 13 | 66(-4) | 25(12) | L.7(-8) | 4.2(-13)
6 | 14(6) | 15 | 2.1(-4) | 9.6(-13) | 4.5(8) |1.1(13)
T 406) | 17 | 9.2(-5) | 64(-13) | 4.9(-8) |8.7(-13)
- | 5.5(9) 19 }9.3(-11) | 5.3(-13) [{ unstable -

8| 15(7) | 21 | 34(-5) | 53(13) | 1.2(-7) | 2.1(-12)
-] 29(10) | 23 |5.5(-11) | 4.5(-13) [ unstable -

9| 11(8) | 25 | 1.6(-5) | 45(-13) | 64(-7) | 2.0(-11)
10| 1.738) | 27 | 6.9(6) | 4.2(-13) | 6.4(-7) | L.7(-11)
-1 9.0(10) | 29 |1.1(-10) | 4.2(-13) [ unstable -
11| 76(8) | 31 | 2.1(6) | 4.2(-13) | 4.6(-7) | 1.2(-10)
12| 1.309) | 33 | L1(6) | 40(13) | 4.6(-7) | 2.5(-10)
-1 7.3(11) [ 35 ]5.8(-10) | 3.7(-13) | unstable -

- 191(11) [ 37 |5.7(-10) [ 3.7(-13) | unstable -
3] 1.9(9) | 39 | 6.0(7) | 3.7(-13) | L.2(-7) | 45(-10)
- | 51(12) | 41 }2.2(-13) | 2.7(-13) [ unstable -
4] 6.19) | 43 | 28(7) | 2.7(-13) | 7.6(-8) | 7.2(-10)
15| 9.209) | 45 | LO(7) | 25(-13) | 7.1(-8) | 1.1(-9)
T | 42(13) | 47 | 44(-12) | 2.2(13) |unstable | -

- 1 46(13) | 49 |4.4(-12) | 2.2(-13) | unstable -
16| 9.509) | 51 | 5.8(-8) | 2.1(-13) | 4.9(-7) | 1.5(-9)
- | 3.7(12) | 53 |2.8(-13) | 1.9(-13) | unstable -
17| 1.3(10) | 55 | 2.8(8) | 1.9(-13) | 8.6(-7) | 1.6(-9)
- {33(12) | 57 |9.9(-13) [ 1.6(-13) | unstable -
18| 3.8(10) | 50 | L5(8) | 20(-13) | L.1(-6) | L.1(-8)
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Table 7.10: k=1, ¢=10"12, ClassIV :
i[5 (Too) [ IO | 20 [6ROG)) | el | Bt
- 1.0 1 1.0(-12) 0.0 unstable -
1| 15 3 12 | 2.8(-17) | 9.4(-17) | 9.4(-17)
2 [ 7207 | 5 | 6.1(-8) | 56(-17) | 3.1(-10) | 1.1(-10)
3 | 1.8(8) 7| 2.1(-8) | 3.6(-17) | 3.7(-10) | 3.6(-10)
4| 5.93) | 9 | 46(-3) | 5.5(-12) | 4.5(-9) | 1.8(-14)
5| 2.4(8) | 11 |1.9(-11) | 3.1(-12) [ 5.2(-9) [ 1.8(-13)
6 | 23(5) | 13 | 8.6(-4) | 2.3(-9) [ 42(-7) |4.2(-13)
71 14(6) | 15 | 2.1(-4) | 1.5(-9) | 1.1(-6) [1.1(-13)
8 | 4.0(6) | 17 | 9.2(-5) | 1.0(-9) | 2.7(-6) [8.7(-13)
9 | 5509) | 19 |9.3(-11)] 6.3(-10) | 2.7(-6) | 1.0(-12)
10] 1.5(7) | 21 | 3.4(-5) | 6.4(-10) | 4.1(-6) [2.1(-12)
11| 2.9(10) | 23 |5.5(-11)| 6.4(-10) | 5.1(-6) | 7.6(-12)
12] 1.1(8) | 25 | 1.6(3) | 6.4(-10) | 5.1(-6) | 2.0(-11)
13| 1.78) | 27 | 6.9(-6) | 6.6(-10) | 5.6(-6) [1.7(-11)
14| 9.0(10) | 29 |1.1(-10)| 6.6(-10) | 5.6(-6) | 1.2(-11)
15| 7.6(8) | 31 | 2.7(-6) | 6.6(-10) | 4.6(-6) [ 1.2(-10)
16| 1.3(9) | 33 | L.1(-6) | 6.3(-10) | 1.5(-5) [2.5(-10)
17| 7.3(11) | 35 |5.8(-10)| 5.9(-10) | 6.1(-4) [ 5.0(-8)
181 9.1(11) | 37 |5.7(-10) | 5.9(-10) | 6.1(-4) [ 4.8(-8)
19| 1.909) | 39 | 6.0(-7) | 5.9(-10) | 4.0(-5) |4.5(-10)
- 151(12) | 41 [21(-13)] 4.3(-10) | unstable -
20| 6.109) | 43 | 2.8(-7) | 4.3(-10) | 5.6(:5) | 7.2(-10)
511 92(9) | 4 | 10(-7) | 3.4(10) | 2.7(-5) | 1.1(-9)
22| 4.2(13) | 47 |49(-12) | 3.7(-10) | 1.7(-2) | 3.6(-7)
23 | 4.6(13) | 49 |49(-12)| 3.7(-10) | 1.7(-2) | 2.1(-6)
241 9.5(9) | 51 | 5.8(-8) | 3.2(-10) [ 9.7(-5) | 1.5(-9)
-13.7012) [ 53 |2.7(-13) | 2.8(-10} | unstable -
75| 1.3(10) | 55 | 2.8(-8) | 2.8(-10) | 1.8(-4) | 1.6(-9)
~133(12) | 57 |98(-13) | 2.7(-10) | unstable | -
26| 3.8(10) | 59 | 1.5(-8) | 3.1(-10) | 1.4(-4) | 1.1(-8)
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Table 7.11: k=1, e=10"", ClassIV
: ) , EY. e
i [ R (@) [ IO | 90 15RO | Ll | st
- 1.0 1 1.0(-12) 0.0 unstable -
1| L5 3 12 | 2.8(-17) | 94(17) | 9.4(-17)
- | 7.2(7) 5 6.1(-8) [ 5.6(-17) | unstable -]
- | 1.8(8) 7 2.1(-8) | 2.8(-17) | unstable -
71 573) | 9 | 46(-3) | 8.3(17) | L1(-14) | L.8(-19)
- | 4.4(8) 11 | 1.9(-11) | 9.3(-17) | unstable -
31 23(5) | 13 | 86(-4) | 56(-17) | 1.5(-13) | 4.2(-13)
2| 14(6) | 15 | 2.i(-4) | 42(17) | 2.0(-13) | 1.1(-13)
51 406) | 17 | 92(-5) | 9.7(-17) | 24(-13) | 8.1(-13)
- 1 5.5(9) 19 |9.3(-11) | 4.7(-17) | unstable -
6 | 15(7) | 21 | 34(-5) | Li(16) | 6.5(-13) | 2.1(-12)
-1 29(10) | 23 [5.5(-11) | 9.7(-17) | unstable -
71 1.18) | 25 | 1.6(-5) | 7.6(17) | 2.2(-12) | 2.0(-11)
8| 1.7(8) | 27 | 6.9(-6) | 1.0(-16) | 2.7(-12) | 1.7(-11)
T [9.0(10) | 20 | Li(-10)| 9.7(-17) |unstable | -
9 76(8) | 31 | 2.7(-6) | 8.9(17) | 6.1(-12) | 1.2(-10)
0] 1.3(9) | 33 | Li(6) | 2.4(-16) | 2.3(-12) | 2.5(-10)
- | 7.3(11) 35 |5.8(-10) | 1.8(-16) | unstable -
- 1 9.1(11) 37 |5.7(-10) | 1.8(-16) | unstable -
T 1.909) | 39 | 60(7) | L1(-16) | 7.3(-12) | 4.5(-10)
- 151(12) | 41 |2.2(-13) | 1.2(-16) | unstable -
21 6.109) | 43 | 28(7) | 9.4(-17) | 7.3(-12) | 7-2(-10)
3] 9.209) | 45 | 10(7) | 1.3(-16) | 6.9(12) | 1.1(-9)
- | 4.2(13) 47 | 4.4(-12) | 1.1(-16) | unstable -
4.6(13) | 49 |4.4(-12)| 1.6(-16) [ unstable -
~1795(9) | 5L | 58(8) | 1.7(-16) |unstable
- 137012) | 53 |2.8(-13) | 1.3(-16) | unstable
Ta| 1.3(10) | 55 | 2.8(-8) | 1.7(-16) | unstable
[ 3.3(12) | 57 |99(-13) | 1.3(-16) |unstable | -
(157 3.8(10) | 59 | 1.5(-8) [ 1.6(-16) | unstable -
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Table 7.12: k=2, e=10"1, ClassII
i | 6(Ta) [ ImO | 9| RO | L | Rl
1| 83 5 | 41(3) | 78(17) | 1.9(-15) | 1.9(-15)
5| 5.73) | 5 | 1.0(-4) | 56(17) | 1.3(-14) | 5.6(-14)
- | 2.8(18) 8 |7.5(-44) | 42(-17) [ unstable -
31 15(7) | 11 | 5.1(-7) | LA(27) | 9.0(-13) | 7.5(-13)
1| 64(8) | 18 | 34(=8) | 49(17) | 3.0(-11) | 1.4(-11)
- | 1.3(20) 17 | 3.8(-38) | 4.3(-17) | unstable -
| - ]66(20) | 20 |[2.7(-32)] 4.2(-17) | unstable -
5| 84(11) | 23 | 8.8(-10) | 7.3(-17) | 5.4(-9) | 4.1(-9)
6 | 28(13) | 26 | 8.1(-11)] 7.0(-17) | 3.6(-8) | 1.6(-8)
71 2.0(14) | 29 |55(-12) | 5.9(17) | 3.5(-8) | 1.2(-7)
-1 1.3(21) | 32 |[22(-33) | 1.0(-16) | unstable -
8 [ 20(15) | 35 |3.3(-13) | 7.6(17) | 40(7) | 3.1(-7)
9 | 1.4(16) | 38 |9.2(-14) | Li(-16) | 3.0(-6) | 2.7(-5)
- | 1.2(23) 41 |6.8(-27) | 2.5(-16) [ unstable -
- | 2.4(21) 44 | 7.0(-31) | 3.1(-16) [ unstable -
- | 1.0(21) | 47 |2.9(-22) | 3.3(-16) | unstable -
10| 1.0(20) | 50 |6.8(-14) | 4.3(-16) | 1.3(-2) | .10
- | 74(20) | 53 |5.8(-17) | 2.7(-16) | unstable -
[11] 1.6(21) | 56 |6.3(-15) | 3.2(-16) | .49 1.8
12| 4.6(20) | 59 |5.2(-15) | 48(-16) | 1.1 15
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Table 7.13: k=2, €=10"18,  Class III
; : , : G
i | 8 (Tao) | Im | @ | 8RO | legstall | Hogia
1| &3 2| 4.1(-3) | 5.6(-17) | 5.7(-15) | 5.8(-15)
2| 5.13) | 5 | 1.0(-4) | 2.4(-17) | 3.9(-14) | 1.3(-13)
- | 22(16) | 8 |2.0(-35) | 8.3(-17) |unstable| - |
3] 15(7) | 11 | 5.1(-7) | 3.5(-17) | 4.9(-13) | 2.3(-12)
1| 64(8) | 14 | 34(-8) | 7.1(-17) | 8.3(-12) | 9.2(-12)
- | 9.6(17) 17 | 1.1(-30) | 3.6(-17) | unstable -
-| 84(18) | 20 [ 1.2(-25) | 3.4(-17) | unstable -
5] 84(11) | 23 | 88(-10) | 5.7(-17) | L.i(-9) | 4.9(-9)
61 2.8(13) | 26 |8.1(-11)| 5.8(-17) | 6.7(-8) | 6.5(-8)
71 2.0(14) | 29 |55(-12) | 65(-17) | 6.7(-8) | 1.9(7)
-1 21(19) | 32 |[26(-25) | 1.3(-16) | unstable -
8] 2.0(15) | 35 |33(-13)| Li(-16) | 5.3(-7) | 1.0(-6)
- | 1.4(16) | 38 |9.2(-14) | 1.2(-16) | unstable -
T129(19) | 41 | 1.3(-19) | 2.2(-16) | unstable
- | 2.5(20) | 44 |4.7(-24) | 2.3(-16) | unstable
-1 1.2(20) | 47 [ 1.1(-17) | 1.8(-16) | unstable
1 5.7(19) | 50 | 2.5(-14) | 2.4(-16) | unstable
- 3.5(19) | 53 |5.3(-14) | 3.9(-16) | unstable -
-1 6.0(19) | 56 |[3.2(-15) | 2.2(-16) [ unstable
-135(19) | 59 |5.5(-15)| 4.1(-16) | unstable
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Table 7.14: k=2, e=10"15,  Class III
, . , : .
i[5 (T) [ IO | 0 | N6RO()) | Ll | oo
1| 83 3| 4.1(-3) | 5.6(-17) | 5.7(-15) | 5.8(-15)
21 5103) | 5 | 1.0(-2) | 24(-17) | 3.9(14) | 1.3(-14)
- | 2.2(16) 8 [2.0(-35)| 8.3(-17) | unstable -
3| 15(7) | 11 | 5.1(-7) | 3.5(17) | 49(13) | 2.3(-12)
4 | 6.4(8) 14 | 3.4(-8) | 7.1(-17) | 8.3(-12) | 9.2(-12)
- | 9.6(17) 17 | 1.1(-30) | 3.6(-17) | unstable -
- | 8.4(18) 20 |1.2(-25) | 3.4(-17) | unstable -
5| 654(11) | 23 | 8.8(-10) | 5.7(-17) | L.1(-9) | 4.9(-9)
6 | 2.8(13) | 26 |8.1(-11) | 5.8(-17) | 6.7(-8) | 6.5(-8)
71 20(18) | 29 |55(-12) | 6.5(-17) | 6.7(-8) | 1.9(-7)
- [ 21(19) | 32 [26(-25) | 1.3(-16) | unstable -
8 | 2.0(15) | 35 |3.3(-13) | L1(-16) | 5.3(7) | 1.0(-6)
9 | 1.4(16) | 38 |9.2(-14) | 1.2(-16) | 4.1(-6) | 1.3(-7)
- 129(19) | 41 |13(-19)| 2.3(-16) | unstable -
2.5(20) | 44 |4.7(-24) | 2.7(-16) | unstable
- | 1.2(20) | 47 | 11(-17)| 1.7(-16) | unstable -
10| 5.7(19) | 50 |2.5(-14) | 2.5(-16) | 1.5(-3) | 7.0(-2)
11] 3.5(19) | 53 |5.3(-14) | 3.6(-16) | 7.7(-4) | 8.2(-2)
121 6.0(19) | 56 |3.2(15) | 3.6(-16) | 1.9(-4) | 9.7(-2)
13| 3.5(19) | 59 |5.5(-15)| 4.6(-16) | 3.2(-4) | 6.8(-2)
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Table 7.15: k=2. e=10"13, Class IV

| i i i s | MeSg'ts
K (Tm(')) ]Im( )“ 'Y( ) "6R( )(2)" “65:; )(z)“ ':f;‘:;((z))::

83 51 2.1(3) | 28(-17) | 6.3(-15) | 6.3(-15}

5.7(3) 5 | 1.0(4) | 4.2(-17) | 3.2(-14) | 3.3(-14)

2.2(10) 8 2.0(-18) | 4.8(-17) | unstable

I5(7) | 11| 51(7) | 1.5(-17) [ 8.7(-13) 3.3(.-12)

64(8) | 14 | 34(8) | 33(-17) | 1.6(11) | 8.X(12)

o5(11) | 17 |99(13) | 42(-17) | 5.1(10) |8.0(-10)

8.9(12) | 20 | 1.4(-14) %.5(-17) | unstable

71(11) | 23 | 1.0(9) | t6(-14) | 3.8(8) 2.8.(-9)

17(13) | 26 |43(-11) | 5.7(-15) | 7.5(8) | 18(:8)

T3(12) | 29| 5:3(13) | 54(15) | 19C7) | 3.1(8)

53(1) | 32 | 52(-13) | 44(-15) | 3.2(:6) | 4.2(7)

3.3(14) 35 | 5.9(-14) | 2.4(-15) | unstable -

Ta(1a) | 38 | 14(12) | 36(15) | 5.1C7) | 83(8)

1308) | 4L | 11(13) | &1(-15) | 1.3(3) | 2.3(7)
8.2(14) | 4 [1.2(-15) 4.0(-15) | unstable -

2.7(15) 47 | 1.6(-15) | 3.9(-15) | unstable

1.3(15) | 50 |1.1(-15) 3.5(-15) | unstable

85(14) | 53 |3.8(-14) | 44(-15) |unstable :

1.9(15) | 36 | 6.1(-15) | 3.8(-15) [unstable] -

1.7(15) 59 | 6.4(-15) | 3.5(-15) [ unstable
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Table 7.16: k=2, €¢=10"1%, Class IV

. . . s Y,
i | R(To) [ ImOY | 49 5RO | Lzl | Bocio
S 2 | 41(-3) | 2.8(-17) | 6.3(-15) | 6.3(-15)
2| 5.9) | 5 | 10(4) | 4.2(-17) | 3.3(-18) | 3.3(-13)
T 22(10) | 8 | 2.0(-18) | 4.8(17) | unstable | -
31 L5(7) | 11| 51(7) | L5(-17) | 8.7(-13) | 3.3(-12)
2| 64(8) | 14 | 3.4(8) | 3.3(-17) | L6(-11) | 8.2(-12)
5] 9.5(11) | 17 | 9.9(-13) | 4.2(-17) | 5.1(-10) | 8.0(-10)
6 | 8.9(12) | 20 | 1.4(-14) | 6.5(-17) | 1.5(9) | 2.8(-9)
7 7A(11) | 23 | 1.0(9) | 24(-14) | 2.4(-8) | 2.5(:9)
8 | 1.7(13) | 26 |43(-11) | 89(-15) | 5.1(8) | 1.8(-8)
9 | 1.3(14) | 29 [5.3(-13) | 7.8(15) | 1.3(-7) | 3.1(-8)
10] 23(14) | 32 |52(-13) | 6.7(-15) | 1.4(6) | 4.2(-7)
11] 33(14) | 35 [59(-18) | 3.6(15) | 1.7(-7) | 8.3(-8)
12| 14(14) | 38 | 14(-12) | 3.6(15) | 31(-7) | 1.3(-7)
13] 4.3(14) | 41 |L1(-13) | 3.7(-15) | 3.3(6) | 2.3(-7)
14| 82(14) | 44 | 1.2(-15) | 4.0(-15) | 9.2(6) | 1.3(-6)
15] 2.7(15) | 47 | 1.6(-15) | 3.1(-15) | 1.9(-3) | 1.5(-6)
16| 1.3(15) | 50 | L1(-15) | 3.2(-15) | 4.7(6) | 3.9(-6)
17] 8.5(14) | 53 |3.8(-14) | 3.4(15) | 5.0(6) | 9.0(-7)
18] 1.9(15) | 56 |6.1(-15) | 3.1(15) | 1.8(3) | 1.8(-6)
19] 1.7(15) | 59 | 6.4(-15) | 3.5(-15) | 2.6(5) | 3.5(-6)
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the next stable point, at ||[m®¥|| = 59. T4 is a 31 x 31 matrix. Letting T!") grow large
is undesirable if it can be avcided because of the ||v||® complexity of solving (2.41)
and (2.42) using Gaussian elimination.

Just as setting the tolerance too large is undesirable, setting it too low can also
have dire consequences. From our error boumds (7.2) and (7.4), we see that if we
accept a point where the condition number of T, is large, the relative error and
residual error will grow proportionally. For example, Table 7.8 shows that for k = 1
and a type III problem, 12 digits of accuracy in the PHS are lost at the point ¢ = 2.
It is interesting to note that the error in the residual (the value of §R%¥)(z)) does not
jump until a point with small (T, ) is accepted. This occurs at 7 = 4 in Table 7.8.

Accepting a poorly conditioned point has another negative effect. Upon accepting
such a point, all future values of 7" tend to be larger than they would have been
if the point had been skipped. This leads to acceptance of more poorly conditioned
points and larger errors. Comparing the values of () in Tables 7.7 and 7.8 illustrates
this observation.

To summarize then, the tolerance should be chosen such that as many points as
possible are accepted and the desired accuracy in the solution is maintained. Because

of the lack of correspondence between x(T,,) and 719, the choice of tolerance was

made a posteriori.

7.3 Normalizing by A;!(z)

In this section we examine the effects of normalizing class III and IV problems by
multiplying each component of A(z) by Ag'(z). Performing such a transformation

will cause the coefficients of A4;(z),...,Ax(z) to increase by an amount depending
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largely upon the value of Ag(0). If Ag(0) is small relative to the other coefficients of
Ao(z), the growth can be dramatic.

The Tables 7.17 - 7.20 illustrate the effect of this normalization on two of the prob-
lems considered in Section 7.2. Tables 7.17 and 7.18 show the result of transforming
the input power series’ used to obtain the data in Tables 7.7 and 7.8. Similarly, we
documeut the effect of normalizing A(z) for the data of Tables 7.15 and 7.16 in Tables
7.19 and 7.20.

Observation 10: By multiplying a vector of power series A(z) (where Aqg(2) #1) .
by A;'(z) and then obtaining a PHS for a given n, poorer error results are obtained
than if the problem had been solved without modifying A(z).

In Table 7.17, the tolerance was chosen such so that the point m() = (29,30)
would be accepted (as it was in Table 7.7). If we compare the relative error in the
PHS at that point, we see that by not normalizing we retain approximately 8 more
digits of accuracy. Similarly, in Table 7.19 the relative error of our iterative algorithm
at the point m®% = (19,20, 20) is 2.6(-5) compared with that in Table 7.16 of 2.6(-2).
Notice that, in order to accept the point (29, 30) as stable in Table 7.17, the tolerance
chosen caused several poorly conditioned points (not accepted in table 7.7) to be
accepted as stable.

Observation 11: The condition numbers x(T,,)) of the modified series’ at a
point m() tend to be larger than those for the original series at the same point.

For example, &(T,) for ||m{)|| = 44 on Table 7.15 is 8.2(14) compared with the
value 3.7(16) in Table 7.19. Note that this observation is not always true as in the
case of the first 14 points of Table 7.19.

The reason for this growth in condition number relates back to the growth in the

power series coefficients as a result of multipiying by Ag’(z). Although not listed in
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Table 7.17: k=1, €e=10"13, Class III
. . ., YR 1) 2

i | (o) | ImO) | 4 8RO | Lyl | Beetl
- 1.0 1 1.0(-23) | 6.0(-40) | unstable -

1| 19(7) | 3 48 | L1(-19) | 1.2(-16) | 1.0(-16)
3| 85(18) | 5 | 4.6(-12) | 5.6(-17) | 4.2(-6) | 3.9(-6)
3] 85(18) | 7 |4.6(-13)| 56(17) | 4.2(-6) | 3.9(-6)
| 25(7) | 9 15 | 42(3) | 84(5) | 1.5(-15)
5 | 39(17) | 11 | 76(-11)| 2.5(-5) 2.0 | 1.4(-14)
6 | 6.0(7) | 13 | 4.0(-2) | 2.5(-5) | 7.1(-5) | 6.8(-14)
T 15B) | 15 | 15(-2) | 1.5(-5) | 5.4(-5) | 1.0(-13)
8| 18(8) | 17 | 4.7(-3) | 6.0(6) | 7.0(-5) | L.1(-13)
9 | 22(17) | 19 |54(-10)| 4.8(6) 20 | 1.2(-13)
10| 54(8) | 21 | 84(4) | 2.0(-6) | 84(5) | 2.4(-13)
11| 2.4(17) | 23 | 25(10) | 2.0(-6) | 1.8(-4) | 7.9(-13)
12| 97(8) | 25 | 2.7(-4) | 14(-6) | 1.8(-4) | L7(-12)
13| 1.5(9) 27 | 5.8(-5) { 5.6(-7) | 2.2(-4) | 1.7(-12)
14| 6.3017) | 29 |2.6(-11) | 3.4(7) 30 | L5(-12)
15| 4309) | 381 | 44(6) | L0(7) | 4.9(-4) | L8(-12)
16| 66(9) | 33 | L.1(6) | 58(8) | 6.7(-4) | 1.8(-12)
17| 8.2(18) | 35 |3.8(-10) | 2.1(-8) 30 | 5.2(5)
18| 8.2(18) | 37 | L7(-10)| 9.4(-9) 30 | 5.0(-5)
19| 2.8(10) | 39 | 4.3(-8) | 4.1(-8) | 5.6(-4) | L. 4( 12)
-1 34(19) | 41 |6.8(-14) | 1.3(-9) | unstable

31| 3.2(10) | 43 | 3.8(-9) | 6.0(-10) | 6.0(-4) |3 0( 12)
53| 6.8(10) | 45 |5.9(-10) | 1.7(-10) | 6.0(-4) | 2.5(-11)
- | 82(20) | 47 |5.6(-14) | 8.2(-11) | unstable -

- 1 1.0(21) | 49 [2.4(-14)| 7.9(-11) [ unstable -

53| 2.0(11) | 51 |2.6(-11)| Li(-11) | LI(3) | 3.7(-10)
- | 5.7(19) | 53 |1.3(-17) 4 8(-12) | unstable -
M| 29(11) | 55 | 2.3(-11) | 21(-12) | 1.5(-3) | 1.3(-9)
- | 42(19) | 57 |8.5(-20) | 5.5(-13) | unstable -

35 | 1.0(12) | 59 |2.2(-13)] 1.3(9) | 1.3(-3) | 6.1{-9)
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Table 7.18: k=1, e=10"'%, Class III

. . . i Yy
i (T) [Im O | 40 [ hoRO()| | Bl | el
- 1.0 1 1.0(-23) | 1.8(-40) [ unstable -
1| 1.9(7) | 3 48 | 1.1(-19) | 1.2(-16) | 1.0(-16)
- | 8.5(18) 5 |4.6(-12) | 5.6(-17) | unstable -
- | 8.5(18) 7 |4.6(-13) | 5.6(-17) | unstable -
2| 25(7) | 9 15 | 7.1(-17) | 1.6(-15) | 1.5(-15)
T39(17) | 11| 8.0(-22) | 56(17) | unstable | -
31 6.0(7) 13 | 4.0(-2) | 2.8(-17) | 6.8(-14) | 6.8(-14)
1) 15(8) | 15 | 1.5(:2) | 6.9(-17) | 1.0(-13) | 1.0(-13)
51 18(8) | 17 | 4.7(3) | 2.8(17) | LI(-13) | 1.1(-13)
- | 2.2(17) 19 |5.6(-21) | 6.5(-17) | unstable -
6 | 54(8) | 21 | 8.4(-4) | 14(-17) | 24(-13) | 2.4(-13)
- | 4.4(17) | 23 |1.3(-21) | 2.3(-17) [ unstable -
71 94@) | 2 | 2.4(4) | 2.1(-17) | L.i(12) | L7(-12)
8 | 1.5(9) 27 | 5.8(-5) | 1.0(-17) | 1.7(-12) | 1.7(-12)
T 63(17) | 29 | 54(-22) | 8.3(-18) | 1.5(-12) | 1.5(-12)
9 | 4.3(9) 31 | 44(-6) | 6.9(-18) | 1.8(-12) | 1.8(-12)
10] 6.6(9) | 33 | L1(-6) | 3.5(-18) | 1.8(-12) | 1.8(-12)
- | 82(18) | 35 |[2.1(-16) | 1.7(-18) | unstable -
11| 82(18) | 37 |9.5(-17) | 1.5(-18) | unmstable| -
12| 2.8(10) | 39 | 4.3(-8) | L.7(-18) | 1.3(-12) | L.4(-12)
- | 3.4(19) | 41 |5.4(-27) | 2.6(-18) | unstable -
13| 3.2(10) | 43 | 38(-9) | L.7(-18) | 4.5(-12) | 3.0(-12)
14| 6.8(10) | 45 |5.9(-10) | 1.3-18) | L.I(-11) | 2.5(-11)
T 82(20) | 47 | 1.4(-20) | 1.1(-18) | umstable | -
- | 1.0(21) | 49 |5.8(-21) | 7.1(-19) | unstable -
15| 2.0(11) | 51 | 2.6(-11) | 1.3(-18) | 3.1(-10) | 3.7(-10)
- | 5.7(19) | 53 |2.2(-29) | 5.4(-19) | unstable -
16 29(11) | 55 | 2.3(12) | 24(-19) | 7.0(-10) | 1.3(-9)
- | 42(19) | 57 |1.1(-28) | 3.6(-19) | unstable -
-1 1.0(22) | 59 |22(-13) | 4.3(-19) | unstable -
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Table 7.19: k=2, e=10"*, ClassIV, A(z)=45'(z)- A(z)

i [ (@) [ImO) | 7 | 16RO()) | LiSplel | Bt
1] 3.7 2 | 6.7(-2) | 2.8(-17) |8.8(-17) | 8.8(-17)
2 33 5 | 2.5(-3) | 2.8(-17) [2.1(-16) | 2.2(-16)
3 [ 1.I(7) 8 | 2.8(-17) | 3.4(-17) [1.7(-15) | 4.8(-15)
1] 333) | 11 | 2.6(-5) | 1.0(-8) | 1.5(-6) | 3.9(-15)
5 3.1(4) 14 | 56(-7) | 1.9(-9) | 1.2(-5) | 3.3(-14)
6| 2.0(8) | 17 |Li(-12)| 1.3(-10) [5.1(-10) | 1.5(-12)
71 1.0(9) 20 | 1.1(-14) | 2.2(-11) | 1.4(-4) | 1.4(-11)
8 | 2.8(7) 23 | 6.9(-10) | 5.6(-12) | 1.1(-4) | 2.5(-11)
9 | 4.9(8) 26 | 9.9(-12) | 1.4(-12) [ 1.5(-4) | 4.8(-11)
10| 3.4{10) | 29 [1.9(-14)] 2.3(-13) | 6.1(-4) | 5.5(-11)
11| 6.1(11) | 32 |29(-15) | 3.3(-14) | 3.3(:3) | 1.1(-8)
121 6.1(12) | 35 |4.8(-17)] 4.0(-15) | 5.8(-4) | 6.5(-9)
13| 7.5(12) | 38 |[6.4(-16) | 1.4(-15) | 9.2(-4) | 2.1(-8)
12| 3.9(14) | 41 | 7.7(-18) [ 2.8(-16) | 1.6(-2) | 3.6(-7)
15| 3.7(16) | 44 |3.8(-21) [ 2.9(-17) | 8.3(-3) | 2.1(-6)
16| 2.6(17) | 47 [ 17(-21) | 4.6(-18) | 1.6(-2) | 3.0(-4)
17| 1.4(18) | 50 |3.9(-22) [ 1.9(-18) | 1.8(-2) | 6.7(-5)
18| 2.0(18) | 53 |3.6(-21) [ 2.7(-18) | 5.6(-2) | 3.7(-4)
19| 2.7(19) | 56 |5.0(-23) | 4.5(-19) | 4.0(-2) | 1.9(-3)
20| 2.2(20) | 59 [5.7(-24) | 9.2(-19) [ 2.6(-2) | 8.5(3)
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Table 7.20: k=2, €=10"1% Class IV, A(z) = A7}(2)- A(2)
. N . i 2
i | (Tao) [ 1m0 | 20 [ 16ROG)) | Ll | el
1| 3.1 3| 6.1(-2) | 2.8(-17) | 8.8(-17) | 3.8(-17)
7| 33 5 | 2.5(:3) | 2.8(-17) | 2.1(-16) | 2.2(-16)
- | L7(7) 8 |28(-i7) | 3.4(-17) | unstable -
3| 33(3) | 11 | 2.6(5) | 4.9(-17) | 8.4(-15) | 3.9(-15)
1| 3.1(4) | 14 | 5.6(-7) | L1(-16) | 9.0(-14) | 3.3(-14)
51 20(8) | 17 |L7(-12)| 5.2(-18) | 2.1(-12) | 1.5(-12)
6 | 1.009) | 20 |L1(-14)| 7.4(-18) | 8.0(-12) | 1.4(-11)
7| 28(7) | 23 |6.9(-10) | 1.2(-15) | 2.1(-9) | 2.5(-11)
8 | 49(8) | 26 |9.9(-12)| 1.4(-16) | 2.8(-9) | 4.8(-11)
9 | 3.4(10) | 29 | 1.8(-14) | 2.2(-17) | 1.8(-8) | 5.5(-11)
10] 6.1(11) | 32 |3.0(-15) | 6.4(-18) | 1.3(-7) | L.1(-8)
- 161(12) | 35 [4.7(-17) | 1.1(-17) | unstable -
11| 7.5(12) | 38 | 6.4(-16) | 4.4(17) | &1(-7) | 2.1(-8)
- [ 39(14) | 41 |8.0(-18) | 7.8(-18) | unstable -
- [ 3.7(16) | 44 |3.8(-21) | 5.4(-19) | unstable
56(17) | 47 | 1.2(-21) | 2.3(-19) | unstable
14(18) | 50 |3.9(-22) | 4.9(-19) | unstable
2.0(18) | 53 |3.3(-21) | 3.8(-19) | unstable
2.719) | 56 |5.2(-23) | 3.3(-19) | unstable
2.2(20) | 59 |[5.9(-24) | 2.1(-19) | unstable
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the tables, for the data of Table 7.7, [|A(z) mod 2™““ll ~ 102, By multiplying this
vector of power series by Ag?(z) the norm of the relevant terms of A(z) became = 107.

These large coefficients cause a corresponding increase in the condition numbers of

Tm(.').

7.4 An Alternate Choice of v

The primary deficiency of our iterative algorithm is the lack of a stability parameter
that accurately predicts the condition number of the matrix T, (. In an attempt to
find such a parameter, numerous exper;ments were conducted using different norms
for S6)(z) and using different choices of 7¥). In this section we give an alternate
definition of 4{") and provide some results as to its suitability in approximating the

condition number of T,.).

Let
A = . mi .
g 20 i {7} (7.6)
= B90). min {V¥
= Ro'(0) min {Vij (0)}. (1.7)

where 7;, j =0,...,k, are consistent with (3.15). Using 41 as the stability param-
eter, we obtained the results of Table 7.21 for k = 7, Ao(z) =1 and Table 7.22 for
k=2, A(z) = Ag'(z) - A(2).

Observation 12: The parameter 4(*) is a much better approximate of &(T)
than was v,

Let us examine the effectiveness of 1/4) in estimating #(T,)) by comparing the
Tables 7.3 and 7.21. Recall that in Section 7.1, we saw how the point i = 12 in
Table 7.3, 1/4") provided the condition number estimate 2.0(17) to the actual con-
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Table 7.21: k=1,

€=52%10"°

Class 1

i6s% ()l

i | 8(Ta) | [ImO) | 49 | 6RO | Sl | bogl
1 8 T | 1.2(-2) | 83(-17) | 2.1(-16) | 2.7(-16)
3| 45(2) | 15 | 3.6(-4) | 2.6(-16) | 1.4(-15) | 1.7(-15) |
- | L1.5(5) 23 | 9.4(-8) [ 9.7(-16) | unstable -
3| 24(3) | 381 |2.7(-4)| 1.3(-14) | LI1(-12) | 2.8(-15)
4| 52(2) | 39 |27(-3)| 1.3(-13) | L1(-12) | 2.9(-15)
5| 7.4(2) | 47 |19(-3)| 1.4(-13) | 1.4(-12) | 2.1(-15)
6 | 3.73) | 55 |9.9(-3)| 1.2(-13) | 2.7(-12) | 8.9(-15)
7| 4.0(3) 63 |[5.6(-4)| 2.5(-13) | 6.6(-12) | 9.8(-15)
8| 38(3) | 71 |93(-4)| 3.3(-13) | 2.4(-11) | 6.1(-15)
9| 65(3) | 1 |3.1(-4)| 3.5(13) | 4.3(-11) | 6.3(-15)
10| 28(3) | 87 |9.1(-4)| 4.6(-13) | 1.8(-11) | 5.8(-15)
11| 5.7(3) | 9 |24(4)| 45(-18) | 1.2(-11) | 1.7(-14)
12| 1.5(4) | 108 | 1.1(-4) | 5.8(-13) | 1.9(-11) | 1.2(-14)
- | 1L1(6) | 111 |2.8(-9) | 3.2(-13) | unstable -
- | 1.8(4) | 119 |3.9(-5)| 2.6(-13) | unstable
13| 1.8(4) | 127 |29(-5)| 5.3(-13) |unstable| -
14| 2.5(8) | 135 | 76(-3)| 7.2(-13) | 14(-11) | 1.9(-14)
15| 1.2(3) | 143 | 7.2(5) | 7.1(-13) | 4.5(-11) | 1.3(-14)
- | 1.4(4) 151 | 2.6(-5) | 4.4(-13) | unstable -
16| 1.4(d) | 159 |20(-4) | 7.1(-13) | 2.1(-11) | 1.5(-14)
| 7.7(8) | 167 |5.1(-6) | 6.4(-13) |unstable| -
171 9.2(3) | 175 | 2.0(-4) | 5.5(-13) | 1.6(-11) | 1.0(-14)
- | 54(5) | 183 |6.2(-8) [ 3.2(-13) [ unstable -
18| 23(8) | 191 |53(4)| 5.3(13) | L.I(11) | 1.8(-14)
- 71(4) | 199 |89(-6)| 5.2(-13) | unstable -

5.0(4) | 207 | 1.3(-5)] 4.3(-13) | unstable

4.1(4) | 215 [1.1(-5)] 4.5(-13) | unstable
- | 7.7(4) | 223 |3.7(-6) | 3.6(-13) | unstable -
19| 34(4) | 231 |52(-5)[ 4.6(-13) | 1.6(-11) | 2.0(-14)
-] 4.5(4) | 239 |26(-5)| 6.2(-13) | unstable -
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Table 7.22: k= 2, €= 10"'13’ Class Iv, A(z) = Aal(z) . A(Z)
; At i )z Stz
£ (Tuo) | ImOf | 49| ERO)| w e

o,

T 3.1 2 15 | 2.8(-17) | 8.8(-17) | 8.8(-17)
3| 33 5 | 15(2) | 28(-17) | 2.1(-16) | 2.2(-16)
31 170 | 8 | 1.2(-12) | 34(-17) | L.7(-15) | 4.8(-15)
T 333) | 11 | 20(-4) | 1.0(8) | 1.5(6) | 3.9(-15)
5| 3.1(4) | 14 | 94(-6) | 1.9(-9) | 1.2(:5) | 3.3(-14)
6| 2.08) | 17 |32(-10)| L3(-10) | L.1(4) | L5(-12)
71 1.0(9) | 20 | 24(-11) | 2.2(-11) | 1.4(-4) | L.4(-11)
8| 28(7) | 23 | 2.0(8) | 56(-12) | Li(-4) | 2.5(-11)
9| 49(8) | 26 |88(-10)| 1.4(-12) | 1.5(-4) | 4.8(-11)
10 3.4(10) | 29 | 7.3(-12) | 2.3(-13) | 6.1(-4) | 5.5(-11)
1| 6.1(11) | 32 |3.9(13) | 3.3(14) | 3.3(3) | 11(8)
6.1(12) | 35 [4.6(-14)| 4.0(-15) | unstable -

75(12) | 38 | 1.8(-13) | 1.4(-15) | 9.3(-4) | 21(8)
39(14) | 41 |2.7(-15) | 2.8(-16) | unstable .
3.7(16) | 44 |1.1(-17) | 2.9(-17) | unstable
2.6(
1.4(

L] ] 5 [

6(17) | 47 | 2.1(-18) | 4.6(-18) | unstable
4(18) | 50 | 1.7(-18) | 9.5(-19) | unstable
5.0(18) | 53 | 7.0(-18) | 4.6(-19) | unstable
2.7(19) 56 |2.0(-18) | 3.8(-19) | unstable
22(20) | 59 |2.0(-20) | 3.5(-19) [ umstable
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dition number (T, ¢2)) = 1.5(4). Our new parameter 1/4(*) estimates the condition
number to be 9.0(3).

Further evidence of the suitability of 4} over 41¥) can be seen by comparing
Tables 7.19 and 7.22. From Table 7.19, () predicts the condition number of T,
at the point [jm)]| = 38 to be 1.6(15) whereas the estimate given by 4 is 5.6(12).
The actual value is £(T») = 7.5(12).

Note that the parameter 4 only provides a good estimate of &(T») if Ao(z) = 1.
If necessary, we must normalize A(z) by multiplying by Ag'(z). As we have seen, this
transformation often results in the power series’ A;(z2), ..., Ar(z) becoming extremely

divergent.
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Chapter 8

Conclusions

As more applications are developed which utilize Padé-Hermite approximants, the
need for a fast (or superfast) and numerically stable method of computing them will
become necessary. For large problems, exact methods using systems such as Maple or
Mathematica are not practical due to their slow performance. The only alternative
is to consider numerical methods; and the question now becomes one of stability. An
obvious choice is the Gaussian elimination method which is known to be numerically
stable. But the cost complexity of the Gaussian elimination method for the Padé-
Hermite problem is O(]|n||®), and we seek a faster numericaily stable algorithm. The
work in this thesis has brought the reality of such an algorithm one step closer.

We have provided experimental evidence that the algebraic algorithm of Cabay
et al. [10] for computing Padé-Hermite Systems »n be adapted to function in a
numerical setting with the introduction of a stability parameter 4. Cabay et al.’s
algorithm iteratively computes PHS’s at pei=is along a diagonal path in the Padé-
Hermite table where the block Sylvester mia::ix T ) is nonsingular. The stability

parameter « predicts the condition numbsz of the block Sylvester matrices allowing
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iterative computation of Padé-Hermite Systems at points along the diagonal path
where «(T o)) is within a specified tolerance. The choice of ¥ was suggested by the
inverse formula for a block Hankel matrix.

To test the efficiency of our algorithm, a method was devised for generating a vec-
tor of power series containing singular points at predetermined locations in the Padé-
Hermite table. This method provided a means of generating problems with varying
instabilities. It also provides a framework upon which future numerical methods can
be compared.

Experimental evidence supported the choice of ¥ when Ap(z) =1, k =1 and the
matrices T, () were reasonably well conditioned. As k was increased, the effectiveness
of 4 in estimating the condition number faltered. When tested with power series for
which Ag(z) # 1, v again failed to provide a good estimate of x(T,)), even when
k=1.

We found that the relative error %})&P and error in the residual §R¢)(z) agreed
for k£ = 1 with the error bounds of Cabay and Meleshko [10]. Based on the experi-
mental findings, operational bounds for the two error terms were supplied.

We compared the relative error of the PHS obtained iteratively, with that arising
from solving the ||n(?)|| x [|[n{)|] block Sylvester matrix T,y(c) directly by the Gaussian
elimination method. The error of the two methods was found to be comparable
(provided the tolerance € was chosen carefully).

We also examined the effect of normalizing a vector of power series A(z) by multi-
plying each element by A3?(z) and using this as the input to our problem. Modifying
the input power series in this way resulted in a growth in the power series coefficients
of 4i(z), ¢t = 1,...,k. Because the power series coefficients grew, so did the condition

numbers of T};s) which led to increased relative error in computing the PHS’s.
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Having studied the performance of the algorithm, we proposed a new stability
parameter 4. This parameter was found to provide a much more accurate estimate

of £(T(»)) when Ag(z) = 1. This perhaps is the single most important contribution
of this thesis.

8.1 Future Research

Since the stability parameter is an integral aspect of our algorithm, we would like
to prove that the choice of 4 is correct. Experimental evidence would suggest that
a closed form inverse for block Sylvester matrices, similar to that of Theorem (3.6),
may be found which involves 4. The existence of such a theorem would enable the
proof of weak stability of our numerical algorithm. As a by-product, a new set of
numerical error bounds for  R(z) and #gi_((:)illll could be derived by taking the approach
of Cabay and Meleshko [11].

By scaling the residual R()(z) we are imposing a column scaling on the systems
involving 7). If the linear systems (2.41) and (2.42) were solved using a row-column
equilibration as described by Golub and Van Loan [14], the error in the solutions
may be reduced further. This could be particularly effective for power series vectors
in which Ag(z) = 1. However, as Golub and Van Loan emphasize, this method
may render a worse solution than using no scaling at all. Scaling is very problem
dependent, and identifying the most appropriate scaling to be used in computing
Padé-Hermite Systems is left as an open problem.

Padé-Hermite approximants are themselves a special case of a more general ratio-
nal interpolation problem. M-Padé approximants are a generalization of the Padé-

Hermite problem by requiring that the residual R(z) have specific zeros. The sequence
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{z:} i = 0,...,||n|| of (not necessarily distinct) complex numbers are called Jnets

and represent roots of the residual. That is, using the notation of Chapter 2,
B(z) - P(z) + C(2)Q(2) = (2 — 20) - - - (z — 2y ) R(2)- (8.1)

When these knots are all identically zero, the Padé-Hermite approximant problem
results. Beckerman [5] gives a good explanation of the M-Padé approximation problem
as well as providing a reliable method for computing them. We believe that much of
the results we have presented can be generalized to the rational interpolation problem.

We have evidence to suggest that Padé-Hermite Systems can be used to compute
the greatest common divisor (gcd) of a set of polynomials over the field of integers.

The motivation for this intuition is the following. We have
A(z)- S(z) = 241 R(z)
and from Lemma 6.1
A(z) = R(z) - §*(z).

Thus,

G [ {Ao(2),- .., Ak(2)} = G | {Ro(2),..., Ri(2)}, (8.2)
and

G | {Ro(2),..., R(2)} = G | {40(2),. .., Ax(2)} - (8.3)

If we consider A(z) and R(z) to be vectors of polynomials, then ged { Ag(2), ..., Ax(2)} =
ged {Ro(z), ..., Re(z)}. The guiding premise for this proposed algorithm is that for
nontrivial n, the problem of finding ged { Ro(z),...,Rx(2)} is simpler than finding
ged {Ao(2),. .., A(z)} because the polynomials are of lower degree.
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The results of our fast numerical algorithm may prove fruitful in developing a
superfast O(||n}| - log? ||n||) numerical algorithm for computing Padé-Hermite and si-
multaneous Padé approximants. The incorporation of a stability parameter 4 into the
algorithm of Cabay and Labahn [9] is needed to establish if Padé-Hermite or simulta-
neous Padé table points along a diagonal path are stable or unstable. A crucial result
in formulating a superfast algorithm involves the recurrence relationship relating con-
secutive points along a table diagonal. Ignoring the various scaling matrices we have
in the Padé-Hermite case, the relationship S¥+1)(z) = §t)(:)- 5(z), where now for the
superfast algorithm the degrees of 5(z) are about as large as the degrees of SU)(z).
We would like to be able to predict the value of 4{*+1), based on the known values
4%) and the value of 4 for 5(z). Because of the recursive nature of this algorithm,
detection of an unstable point after multiplication may require expensive calculations
to be repeated. Such occurrences may drastically affect the cost complexity of the
algorithm.

An important issue in the algebraic computation of Padé-Hermite approximants is
the manner in which singular points are handled. Van Barel and Bultheel [28] present
a fast algebraic algorithm that takes a different approach than we have taken. Rather
than computing Padé-Hermite Systems at nonsingular points along the diagonal path,
their algorithm iteratively computes a set of auxiliary vectors at all points (singular
and nonsingular) along the path. They show that a basis for all Padé-Hermite forms
(see Section 2.3) at a given point on the diagonal path can be obtained from the
auxiliary vectors computed at that point. If the point is nonsingular, the basis is
unique (except for multiplication by some element of the field F). To show that the
method of Van Barel and Bultheel is stable, what must be established is that the

construction of the auxiliary set at a point, using the auxiliary set at the previous
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point, is a stable process. Although we have no evidence to support such a claim, we

suspect that it is not stable. The affirmation of this and our previous claims, is left

to future research.
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