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1. INTRODUCTION

1.1 Introductory Remarks

Mainframe or minicomputers running finite element programs have simplified
the analysis of complex slab systems. In recent years microcomputers have
become powerful enough to handle many of these tasks and can be used by
structural engineering consultants to augment or entirely supplant mainframe
analysis. The major attraction of microcomputers is that they are relatively
inexpensive to purchase, maintain, and operate. Unfortunately the software to
carry out complex structural computations may not exist for a particular
microcomputer or may be prohibitively expensive to purchase when compared.
to the cost of leasing existing programs on a mainframe system.

1.2 Objectives

This paper discusses the use of spreadsheet programs for the analysis of slab
systems. The objective is to demonstrate a practical approach which can be
employed for preliminary analysis, checking of mainframe solutions, or
complete analysis of less complicated slab systems.

Other than word processing, the most popular use of microcomputers is for
"spreadsheet" analysis of problems. The software is inexpensive, relatively
easy to learn, and a highly versatile and productive tool. This paper will develop
a technique which allows engineers to easily model elastic slab bending
problems using readily available microcomputer spreadsheet programs.

1.3 Scope

A "central difference" formulation of the problems is used because the operators
are well suited to spreadsheet modelling. Generation of the operators is
illustrated using the finite difference method. A compatability approach is
developed for the inclusion of beams in the model. Accuracy, convergence, and
mesh size are all discussed. Several examples showing iterative solution of
both classical and practical plate problems are shown.



1.4 Notation

The following notation has been adopted for use in this paper.

length of a rectangular plate in the "x" direction

length of a rectangular plate in the "y" direction or width of a
rectangular beam

{1-0.63(b/d)}b3d/3 = torsional stiffness of a rectangular beam
Fourier coefficient for plate deflections

depth of a rectangular beam

Et3/{12(1-u2)} = plate flexural stiffness per unit width
Fourier coefficient for plate bending moments

modulus of elasticity of the beam and slab material
E/{2(1+u)} = shear modulus of elasticity of the beam material
distance between node points

bd3/12 = moment of inertia of a rectangular beam
bending moment or twisting moment per unit width of plate
bending moment or twisting moment per width of plate h
bending moment in a beam

total load acting at a node point or joint

uniformly distributed load per unit of area on a plate
smoothing factor to assist convergence

thickness of plate

torsional moment in a beam

vertical shear per unit width of plate

vertical shear per width of plate h

vertical shear in a beam

vertical deflection of the plate

uniformly distributed line load

the matrix of deflections of all nodes on the plate
rectangular reference coordinates

Poisson's ratio
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2. CENTRAL DIFFERENCE OPERATORS

2.1 Objectives

The primary purpose of this section is to provide some understanding of the
generation of the central difference operators used in this paper. Central
difference operators have been derived by other authors! 234 and the reader
should refer to those publications for a complete development.

2.2 Plate operators

The development of the basic equations relating plate deflections to external
and internal forces is summarized as follows:

2.2.1 Governing Equations

The governing equations for elastic plate bending are derived in the literature®
and are listed below for convenience.

Plate equations:
The deflection, w, is related to the loading by the differential equation:
4
0w a4w 84 w q

+ 2 + = —
4 D

ox ox 2 oy 2 oy

The bending and twisting moments are related to the deflections as follows:

32W 82w
Tx =Dl 5t
ox oy
m =D 82w 82w
y - 2 + u 2
oy ox
2
0
Myy =-D(1-p) s



Similarly, the shears are expressed as:

and- vV = y & Xy
X ox oy y oy X

and the reactions at the edge of the slab are:

am am om om
R = X +2 Xy and R
X 9x oy y ay ox

Beam equations:

The equations governing the deflection, flexure, shear, and twisting of beams
are as follows...

beams with their longitudinal beams with their longitudinal
axis parallel to the x axis axis parallel to the y axis
4 4
a W = E_t.) a_V\L = ﬂ)
ax 3 El ay 4 El
2 2
0 W 0 W
MX - 'El My - 'EI ——?
X oy
3 3
0 _ 0w
Ve =-E1 2% Vy =-B1 =X

ox 3
o [ ow

TX =-CGQ —[ — Ty
ox \ dy

ay3
0 [ ow
CG —{ ——
ay \ ox
2.2.2 Coordinate system

Central difference operators solve for deflections at the nodes of an orthogonal
grid. The general form of solution allows grid lines to have different spacings in
each direction. To simplify the discussion of central difference techniques, this
paper will only examine operators whose grid spacings are equal in both
directions. If a rectangular mesh is desired, a finer square mesh can usually be
substituted to get equivalent results. Employing a finer mesh will require very
little extra effort in spreadsheet fomulation although the computer will have to
iterate longer to achieve convergence.
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The central difference equations relate forces applied at the central node
( designated node "O") to the relative deflections of surrounding nodes.
Following conventions used by Ang and Prescott’, adjacent nodes will be
referenced by compass coordinates as illustrated below:

vh%h/ll,h )

Figure 1: Compass conventien for referencing nodes

where "h" is the grid spacing in both orthogonal directions.

2.2.3 Finite difference method

The finite difference technique replaces differentials with linear algebraic
equations ( operators ) in terms of the deflections of the node points of our
mesh. These can be substituted into the governing differential equations to
develop operators relating applied forces to the deflections of the nodes.
Derivation of the operators at point "O" can be demonstrated as follows:

w; = the downward deflection of node "i"

(ow/ox)g = the slope of the slab at point "O" in the x direction

the average of the slopes from nodes "W" to "O" and nodes "O" to "E"
[ (wo - wyw)/h + (wg - wp)h }/2

(WE - Ww)/2h

(aW/aY)O = (WN - Ws)/2h
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(02w/ox2)q the curvature of the slab at point "O" in the x direction
the rate of change of slope between "W" to "O" and "O" to "E"
[ (WE - Wo)/h - (WO - Ww)/h ]/h
(WE - 2WO + Ww)/h2

(02w/oy2)o

(wy - 2wWg + wg)/h2
(2W/oxdy)g = (02W/dyoX)g = d/ox(ow/dy)g
a/ox[ (wy - Wg)/2h ]

[ d/dx(wy) - d/ox(ws) J/2h

( WNE - Wnw - Wsg + Wsy )/4h2

(03w/0x3)q

0/0x(02W/9x2)q

a/aX[ (WE - 2WO + Ww)/h‘2 ]

[ 9/9x(WEg) - 20/0x(Wg) + 9/ox(Wyy) 1/h2

[ (WO - WEE)/2h - 2(WW - WE)/Zh + (WWW - Wo)/2h ]/h2
= (-Wgg + 2WE - 2wy, + wyw)/2h3

(BW/AY3)g = (-wyn + 2wy - 2Wg + Wgg)/2h3
similarly:

(93W/0x2dy) g = 9/dy(02wW/9x2)q
= [ WNE + Wnw - Wsw - Wsg + 2(Wg - Wy) ]/2h3

(03w/axdy2)o = [ WNE - Wnw - Wsw + Wsg + 2(Wy - Wg) J/2h3

(84w/ aX4)O

92/0x2(32wW/ox2)q
(WEg - 4WE + BWg - 4wy + Wy )/h4

(0*W/oyH)o = (WyN - 4WpN + BWg - 4wg + Wgg)/h?

(9*4W/0x20y2) g = (04W/dy20x?) = 02/0y2(02w/0x2)q
= [WNE + Wnw + Waw + WgE - 2(WN + Wg + Wg + Ww) + 4WO ]/h4
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2.2.4 Finite difference solution of the general plate operator

The differential operators developed in section 2.2.3 can be substituted into the
governing differential equation of plate bending given in section 2.2.1:

4 4 4
3W+28w +aw=q_

ox ox 2 oy 2 oy 4 D

to define the operator for a typical node on the plate:

Wo = { gh%/D -[ ( Wy + Wss + WEE + Wyw ) + 2( W + Ww + Wsw + WsE )
—8(WN+W3+WE+Ww)]}/20

Letting P, = gh2 = total load on a node, this can be represented graphically as
follows:

This equation calculates the deflection at node "O" as a function of the applied
load "P" and deflections of the adjacent nodes. Note that this version of the
general plate operator differs from the formulation used by other
authors1,2.34.5.7 who directly solved the simultaneous equations. This version is

more suitable for spreadsheet iteration and is easily transformed algebraically
to the form used by the other authors.



2.2.5 Operators for slab forces

Since the main goal of any structural analysis technique is to calculate the
“internal forces and boundary reactions of the system, then we also need a set of
operators to generate the internal forces once the node deflections have been
solved. The differential operators given in section 2.2.3 can be substituted into
the differential equations for slab moments, shears, and edge reactions given in
section 2.2.1. to derive the following force operators:

slab moments
m =
ox
m -
oy
m
ey > (W)
m = DB
oxy 2

which calculates m,, at point "O", centered between four nodes



slab shears

NOTE: Similar to the operator for Myy, the above operators for shear produces
a value at point "O" which is midway between nodes.

r — )
2 H-2 =
R D ) eemic i I >.
_D_ Foznimd T L > (W)
2h o
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Notice that the operators for the edge reactions require deflections at four nodes
which are not physically on the slab. These "fictitious" points are discussed in
section 2.3.

2.3 Operators for plate boundary conditions

The plate operator derived in section 2.2.4 cannot, by itself, solve for the
deflection of a node on or near an edge because it will "overhang" the plate
boundary, seeking deflections for nodes which are not on the plate. These
“fictitious" deflections describe the shape the plate would have to assume if it
extended past the boundary. The moments and shears required by the real
boundary conditions must be realized as internal forces in the imaginary plate
extension. Operators for various boundary conditions are therefore required to
solve for these "fictitious" deflections.

Note that this section will only discuss operators along the east edge of the
plate. Operators for the north, south and west edges are easily obtained by
rotation.
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2 3.1 Boundary operator for edge moments

The operator for bending moments in the east-west direction was derived in
section 2.2.5. If point "O" lies on the east boundary of the plate then "E" is a

"fictitious" point:

D
mox=_2'<
h

If we rewrite the above equation in terms of the deflection at point "E" we create
an operator which calculates the fictitious deflection in terms of the applied

edge moment:

2.3.2 Boundary operator for edge reactions

The operator for edge reactions along the east edge was derived in section

2.2.5;
R = D
2h3

B

-

1l

Ha.
1

b
il

_

(o))
N

L

=

@

\
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An expression for the fictitious deflection at "EE" can be written in terms of the
edge reaction:

Tl

gy
5
N
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|

lLﬁ
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N
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N
=
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2.3.3 Boundary operators for known edge deflections

Many practical design problems involve a plate whose edges are constrained
against deflection. Analysis of settlements, on the other hand, may require non
zero deflections to be specified. Finally, in checking results from a finite element
solution it may be useful to analyze a portion of a slab by specifying the known
deflections as boundary constraints around the portion being analyzed. In all
these instances the general plate operator from section 2.2.4 will be not needed

at the boundary since the deflections are known explicitly.

Adjacent to any boundary with defined deflections, the general plate operator
may be used but will require a fictitious deflection which is beyond the

boundary:
(O D

Deflections
are known
along the
boundary

13 (W}

fictitious
point j

Fictitious deflection "E" is calculated using the edge moment operator from
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2.3.3.1 Boundary operator for a simply supported edge

A simply supported edge specifies zero moments and deflections along the
edge. Therefore, the deflection of fictitious point "E" can be calculated by using
the operator from section 2.3.1 with mgyx = 0 and eliminating nodes "N", "O", and

"S" whose deflections are all zero:

> (W}

This is simply a statement of anti-symmetric deflections across the boundary.

2.3.3.2 Boundary operator for a fixed edge

A fixed edge specifies zero deflections and rotations along the edge. The
differential operator for rotation ( slope ) is given in Section 2.2.3 as:

(OW/0x)g = (WE - wyy )/2h

For no rotation, ow/dx = 0 SO wg = wyy:

This is simply a statement of symmetric deflections across the boundary.
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2.3.4 Customized plate operators for boundar nditions

Previous Authors'.2:3.45.7.8 have found it advantageous to create custom plate
operators for various boundary conditions. For some boundary conditions it is
very easy to substitute the above boundary operators into the basic plate
equation to eliminate the fictitious deflections. The main advantage of this
approach is that it reduces the number of deflections to be solved. The main
disadvantage is that a special operator needs to be developed for each
boundary condition.

When it becomes necessary to incorporate the effects of beams and columns
into the slab operator equation, the situation becomes much more complicated.
Newmark's® Plate Analogue method offers an alternative approach which
bypasses the differential equations by using an articulated physical model.
Operator equations are easily derived using equilibrium. Interested readers
should refer to the work of Prescott, Ang, and Seiss4.

This paper will demonstrate a compatibility technique which eliminates the
need for dozens of customized plate operators to handle the many
combinations of beams, columns and other boundary constraints. lt's possible
to model any structure using only the plate operator for an interior node,
combined with the operators for fictitious points derived in the previous sections.
Beams, columns, etc. can be superimposed on this basic structure by
calculating and applying their reactive forces.

For the solution given in this paper, it is convenient to eliminate some of the
fictitious points. Two custom operators for nodes along a free edge and at a free
corner are useful where an edge beam will be added to the structure.

2.3.4.1 Custom plate operator for a free edge

Retrieving our plate operator derived in section 2.2.4 and placing it at a node on
the east edge of the plate:
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Fictitious point "EE" can be eliminated by substitution of the edge reaction

operator derived in section 2.3.2, noting that the edge reaction, "Rox" is equal to
zero along a free edge:

—

il

H”I\mul
V

The moment operator from section 2.3.1 could easily be used to eliminate
fictitious points "NE", "E", and "SE". However, these points are required to
incorporate torsional moments from an edge beam or for specifying other
rotational boundary constraints. The addition of torsional edge beams to the

free edge slab ( section 6.4.2 ) uses these deflections to equate the slab edge
moments to the beam torsional reactions.

As was done in section 2.2.4, it is convenient to express the operator in terms of
the total load applied at the node. Since a node on the boundary has slab only

on one side, the load "P" applied at the node must equal gh2/2. Substituting 2P
for gh2 above gives the following operator for a free edge.

(

|

-
&
N
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s
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2.3.4.2 Custom piate operator for a free corner

The zero edge reaction operator from section 2.3.2 can be further substituted
into the free edge plate operator just developed in 2.3.4.1 to create the operator
for a free corner:

J

il

OE

n

g
H
~

e R BT

:

As above, deflections of nodes "NE", "E", "SE", "S", and "SW" will come from the
rotational boundary constraints. Note that "SE" will require an operator which
looks at slopes or moments in a diagonal direction. If the moment at "O" in the
NW-SE direction is equal to mgy, the operator to solve for wgg is easily

developed by rotating the edge moment operator from section 2.3.1 by 45°:

Note that the node spacing becomes hv2 in the diagonal direction so that the
numerator of the mgy term is doubled.

Mpy is calculated by translation of axes for a 45° rotation:

Moy = ( Mox + Moy )/2 + Moxy



17

2.4 Operators for beams

Many concrete designs utilize beams cast monolithically with the slab. The
spreadsheet/iterative approach discussed in this paper uses compatibility of
deflections to calculate the reaction forces which the beams apply to the slab.

All operators derived in this section will be for beams aligned in the east-west
direction. Operators for beams aligned in other directions are easily obtained by
rotation.

2.4.1 Flexural beam operators

This section develops operators which relate beam deflections to the internal
bending moments and the loads applied at the node points.

2.4.1.1 Beam bending moment operator

The differential operator for 92w/dx2 from section 2.2.3 can easily be substituted
into the differential equation of beam bending from section 2.2.1:

4

My = -El—
ax4

to define the beam bending moment operator:

241.2

The differential operator for o4w/ox4 from section 2.2.3 can be substituted into
the governing differential equation of beam bending given in section 2.2.1:

to define the operator relating beam deflections to the applied load:

th4/EI = (Wgg - 4w + BW - dwy + W)
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Letting Py = gyh = total load on the node "O", this can be represented
graphically as follows:

Conceptually, if the deflections of nodes "WW", "W", "E", and "EE" are known,
the above operator defines the relationship between the force "P," and the

deflection of node "O". As written, the operator solves for the force "P," required
to hold node "O" at the deflection "wy". This can be illustrated as follows:

Figure 2: Deflection of node "O" under applied lead Pg

2.4.2 Beam_torsion operator

The differential operators developed in section 2.2.3 can be substituted into the
governing differential equation of beam torsion given in section 2.2.1 :

T, =cal ( )

to define the operator for torsion:

TX = CG( Wnw - WNE + WgE - Wgaw )/4h2
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For a torsion beam spanning in an east-west direction, the beam operator
defining torsion at point "O" would be represented as follows:

CG

Beam axis

It would be useful to define a relationship between an applied moment "Mqy" at
node "O" and the torsional deflections of the beam. This is analogous to the
relationship between the applied load "Po" and the deflection which was

developed in the last section.

Given the deflections at the "NW", "N", "NE", "SE", "S", and "SW" nodes, the
torsional equilibrium at node "O" is as follows:

Figure 3: Torslonal equilibrium at node "G

where: MOY = TOW + TOE
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As was done in section 2.2.5 for mgyy, the operator for T can be "shrunk” to
calculate Ty and Tog on either side of node "O" :

e\l

Beam axis
Note the reversal of signs in Tog due to it's left hand sign convention.

These can be summed to create the operator for the total moment, "Mgy", which
must be applied to hold the beam in the torsionally deflected shape defined by
the array {W} of node deflections adjacent to node "O" :

Beam axis
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2.4.2.1 Qperator for interior beam torsion

When a beam supports a slab, the above operator for torsion will calculate the
moment which must be applied to hold the beam in it's twisted position. Since
our basic plate operator developed in section 2.4.1 only relates node forces to
defiections it would be useful to define Mgy as a pair of point loads applied at

nodes "N" and "S" which straddle point "O":

Figure 4: [Force couple straddling nede *O”

Noting that Py = Pg for vertical equilibrium, then Mgy = 2Pyh = 2Pgh, and the
resulting plate operator to solve for the applied forces would be :

Beam axis
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2.4.2.1 Operator for edge beam torsion

When a beam supports the outer edge of a slab, the torsional moment required
to hold the beam in its torsionally deflected shape must be in equilibrium with
the edge moment of the slab:

Figure 8: Moment equilibrium between the slab aned edge
beam

Section 2.3.1 developed an operator to calculate the deflection of the fictitious
points immediately beyond the edge of the slab based on moment equilibrium.
This operator will enable us to connect a torsional beam to the free edge of a

slab.

Since this operator uses distributed moments, the beam torsion equation
should be rewritten in terms of distributed moments as follows:

-

> (W)

Beam axis
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3. SOLUTIONS USING SPREADSHEET
PROGRAMS

3.1 Objectives

This chapter is intended to give a basic understanding of how spreadsheet
programs function, their advantages, and what features are necessary and
useful when applying them to finite difference solutions. You may wish to skip
section 3.2 if you are already familiar with using spreadsheet programs.

3.2 General description of spreadsheet programs

Spreadsheet programs are presented on the computer video display as a two
dimensional array of boxes called cells. Usually there are many more cells in
the spreadsheet than can be shown at one time. Using cursor keys (or a
pointing device such as a mouse ) the user is able to scroll the displayed
region of the spreadsheet to view any particular cell or cells.

Just as elements of a matrix are addressed by their column and row locations,
each column and row of a spreadsheet is referred to by a letter or number. A
reference to a particular cell is made by specifying the appropriate column and
row address. For example, "F4" or "R4C6" would each refer to cell which is at
the intersection of the sixth ( Fth ) column to the right and the fourth row down.
This paper will use the Letter—Number ( "F4" ) reference system for specifying
the column and row addresses of cells.

Each cell is like a pigeon hole which may contain a number, a formula or some
text. When a cell contains a formula it performs a calculation and will display
the resulting number. A formula can make use of numbers in adjacent cells. For
example, a formula in cell "A8" could be "=A5+A6+A7" which would calculate
and display the sum of three numbers whose values are found in cells "A5",
"A6", and "A7".
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A powerful feature of spreadsheet formulas is that they can employ fixed
addressing or relative addressing to reference a cell's location. A fixed address,
designated in this paper by a "$" sign, points to an absolute location on the
spreadsheet (ie. the Jth column and 4th row is shown as "$J$4" ). A relative
address locates a particular cell by noting its distance from the cell containing
the formula (ie 2 rows up and 3 columns rightis designated "J4" when
referenced from cell G6 ). lt's even possible to mix the addressing schemes
within a cell reference ( $J4 or J$4 ). A formula can be copied toc another cell to
perform the same calculation but on different numbers. For instance, the formula
in cell "A8" given in the last paragraph could be copied to cell "C10". If relative
addressing had been used "C10" would contain the formula "=C7+C8+C9" and
would display that sum. If fixed addressing had been employed then "C10"
would contain the formula "=$A$5+$A$6+3A$7" and would calculate the same
number as displayed in cell "A8". Relative and fixed addressing can be
intermixed within a formula so that constants such as Young's Modulus stay
referenced to an absolute location on the spreadsheet but the rest of the
formula "moves" as it is copied.

3.3 Spreadsheets applied to solution of central
difference equations

There are several characteristics of spreadsheets which make them ideal for
formulating central difference solutions:

- The nodes of a central difference mesh are located on a rectangular grid
which matches nicely with the grid of cells available on a spreadsheet.
This permits the user to graphically visualize the mesh on the computer
screen.

- Many spreadsheet programs allow the user to select cells with cursor
control keys ( or a pointing device such as a mouse ) to enter the cell
reference into a formula. To create a finite difference operator the user
can "point" to the nodes of the mesh while typing in appropriate constants
and mathematical functions from the keyboard. Thus the user is able to
"visualize" the nodes in an operator as it is created.

- The central difference operators are often identical for many nodes in the
mesh. A "relatively addressed" formula can be efficiently copied to other
cells ( nodes ) requiring the same operator. This greatly reduces the
amount of time needed to create the spreadsheet model.
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3.4 Special requirements for a spreadsheet
central difference solution

The finite difference operators developed in chapter 2 calculate the deflection of
node "O" based on the deflections of adjacent nodes. Unfortunately, the
deflection of these adjacent nodes reciprocally depend on the deflection at
node "O". A direct solution is not possible since the equations are mutually
dependant. The classical approach to finite difference solutions involves setting
up a simultaneous equations matrix and solving for the coefficients. This
approach is very cumbersome to implement on a spreadsheet and would
require a sophisticated program to rework the finite difference formulae and set
up the equations in matrix form. Furthermore, routines for solution of the matrix
would also have to be developed by the user since few spreadsheet programs
contain matrix functions.

A better approach is to let the computer iteratively calculate the system of
interdependent operators until convergence is achieved. This may require
thousands of iterations, tying up the computer for tens of minutes. Nonetheless,
this technique is easily understood and is simple to implement.

The techniques described in this paper require the use of a
spreadsheet program which can iterate to solve dependant
formulae.

3.5 Selection of a spreadsheet program

Some of the more popular spreadsheet programs which are suitable for the
formulation described in this paper include Multiplan®, Lotus 1-2-3® and

Excel®. There are very few microcomputers that will not run one of these
programs.
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Microsoft Excel® running on the Maclntosh® microcomputer was chosen for
use in preparing this paper because it has the following features:

- a direct interface with Maclntosh word processing programs so that a
drawing of the screen display can be "pasted” into the word processing
documents to illustrate the text.

- the display of individual cells can be modified ( highlighted, italicized,
and framed ) to enhance the "visual" aspect of spreadsheet formulation.

- powerful charting functions to graphically illustrate the results of
calculations are included with the program.

- complete control of iteration parameters such as the desired accuracy of
the solution and the maximum number of iterations to be tried. ( Note to
Lotus 1-2-3® users: You can only specify a maximum of 50 iterations.
Some solutions discussed in this paper will need up to 10,000 iterations
so you will probably want to develop a macro to repeatedly restart the
iterations. )

- the user can create " command key macros " to automate tasks such as
entering central difference operators into cells. A macro which set all the
deflections of the plate to zero before commencing iterations was
particularly useful to the Author since it provided a uniform starting point
when comparing the number of iterations required to get a solution. More
importantly, the zeroing macro permitted easy recovery if the solution
started to diverge due to an error in the spreadsheet equations.

- custom functions can be written to supplement the mathematical
operations which are included with the spreadsheet program. The Author
created "function” macros to solve systems of simultaneous equations
and Fourier summations of plate deflections.

All solutions illustrated in this paper were performed on a Macintosh® 512k
enhanced microcomputer using the Excel® spreadsheet program. Time
required to achieve the solutions will vary for other microcomputer systems or
other configurations of the Maclntosh®. Microcomputers such as the
IBM PC—-AT® or Macintosh 11® which use more powerful processors and math
co-processors, will solve the same spreadsheets in a fraction of the times
quoted in this paper. Some of the spreadsheet solutions developed in chapters
4, 5, and 6 were translated by Excel® into Lotus 1-2-3® format and were
successfully transferred to and solved on an IBM PC®,
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4. SOLUTION OF A SIMPLY SUPPORTED PLATE

4.1 Objectives

This chapter will illustrate how to use a spreadsheet program to calculate the
deflections and stresses in a simply supported square plate under uniform
loading. It will explore the convergence of the iterative finite difference
formulation, comparing the accuracy to a classical Navier solution. Mesh
fineness and taking advantage of symmetry will also be discussed.

4.2 A square, simply supported plate

Starting off with a "simple" example, the following square slab on knife edge
supports will be analyzed for deflections and moments:

Figure 6: Simply supporteed square plate under uniform

load
where: slab thickness =t =0.30m
slab width & breadth =a=>b =6.00m
uniformly distributed load =q =15.0kPa

The slab is constructed out of concrete with the following properties:

Young's modulus =E =27GPa
Poisson's ratio =pu =0.15

And the slab stiffness is therefore calculated as:

flexural stiffness per unit width =D =62.15MN-m
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4.3 Navier's Solution

An accepted plate bending solution is needed to assess the accuracy of the
spreadsheet formulation. A Fourier series for a simply supported plate under

uniform loading was developed by Navier® and is given below:

where:
1 ™
c 16 q
T e
2 2
5 ={16q (% +”(%) )
" @ T
and:
m=1,3,5,7,.......
n=13,5,7,....

The above equations were programmed as spreadsheet functions of the
following parameters:

w= function(q, a,b,D,Xx,y,terms)

mx = function (q, a, b, 4, X, y, terms )
where: g, a, b, D, and pu are defined as above

x and y define the location on the plate

"terms" defines the number of Fourier harmonics to
be summed
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These spreadsheet Navier functions were used to calculate the deflections and
moments at 0.6 m grid intervals. The Fourier series summed all combinations of
the first 5 terms (n, m = 1,3,5,7,9 ). The number of locations where calculations
had to be carried out was reduced by taking advantage of the double symmetry.
A copy of the spreadsheet is shown below:

Simply supported slab, Navier's Solutioh

{
Slab width: a = 6.00|m Young's modulus; E = 27|GPa
Slabdepth: b= 6.00|m Poisson's ratio; | = 0.15
Slab thickness: t= 0.30Im Slab Stiffness: D= 62iMN-m
Uniformload: q=] 15.00kPa Fourrier term depth = 5

!

Slab deflection ( mm )

x=| 00 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 54 8.0

0.0 0.0000 ; 0.0000 { 0.0000 { 0.0000 § 0.0000 { 0.0000 { 0.0000 i 0.0000 { 0.0000 i 0.0000 } 0.0000
0.6 0.0000 | 0.13600.2523 § 0.3397; 0.39340.4115 i 0.3934 | 0.3397 | 0.2523 § 0.1360 | 0.0000
1.2 0.0000 | 0.2523 { 0.4701; 0.6346; 0.73600.7703 { 0.7360 { 0.6346 ; 0.4701 { 0.2523 | 0.0000
1.8 0.0000 | 0.3397 { 0.6346 : 0.8583] 0.996§1.0436 ¢ 0.9968 { 0.8583 i 0.6346 } 0.3397 | 0.0000
2.4 0.0000 { 0.3934 ; 0.7360 | 0.9968 { 1.15851.2133 § 1,1585 { 0.9968 | 0.7360 i 0.3934 | 0.0000
3.0 0.0000 | 0.4115 { 0.7703 § 1.0436 i 1.2133 { 1,2707; 1.2133 { 1.0436 } 0.7703 3 0.4115 | 0.0000
3.6 0.0000 | 0.3934 { 0.7360 ¢ 0.9968 § 1.1585 { 1.2133 { 1.1585 { 0.9968 { 0.7360 i 0.3934 | 0.0000
4.2 0.0000 | 0.3397 { 0.6346 ; 0.8583 | 0.9968 i 1.0436 : 0.9968 { 0.8583 ; 0.6346 i 0.3397 | 0.0000
48 0.0000 | 0.2523 : 0.4701 ; 0.6346 { 0.7360 § 0.7703 § 0.7360 { 0.6346 } 0.4701 i 0.2523 | 0.0000
5.4 0.0000 | 0.1360 § 0.2523 ; 0.3397 § 0.3934 § 0.4115 § 0.3934 } 0.3397 { 0.2523 § 0.1360 | 0.0000
6.0 0.0000 § 0.0000 i 0.0000 § 0.0000 i 0.0000 i 0.0000 ; 0.0000 { 0.0000 { 0.0000 { 0.0000 { 0.0000

mx ( KN-m/m )

x=| 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 4.14 i 597} 7.08 i 7,51 7.72 § 7.51 7.08 5.97 4.14 0.00
1.2 0.00 7.01 4 10.70¢ 12.83% 13.76{ 14.13} 13.76 | 12.83 { 10.70 7.01 0.00
1.8 0.00 8.96 | 14.07: 17.07% 18.45: 18,95: 1845 § 17.07 i 14.07 8.96 0.00
2.4 000 | 10.054 16.05: 19.62; 21.31} 21.90; 21.31 19.62 ¢ 16.05 i 10.05 0.00
3.0 0.00 | 10.437 16.71: 20.49 22.28% 22,91} 2228 § 2049 § 16.71 i 10.43 0.00
3.6 0.00 10.05 ¢ 16.05 § 1962 i 21.31 ;i 21.90 | 21.31 19.62 ¢ 16.05 i 10.05 0.00
4.2 0.00 8.96 1407 | 17.07 | 1845 : 1895 ¢ 1845 { 17.07 { 14.07 8.96 0.00
4.8 0.00 7.01 10.70 ¢ 1283 1§ 13,76 { 1413 | 13.76 | 12.83 : 10.70 7.01 0.00
5.4 0.00 4.14 5.97 7.08 7.51 7.72 7.51 7.08 5.97 4.14 0.00
6.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 7: Navier's solution of a square simply supporied
clastic plate
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4.4 Symmetry and mesh layout considerations

In section 4.3 we summed only 25 terms of the Fourier series at each point on
the 10 x 10 mesh. This involved a monumental calculation, tying up the
Author's Maclntosh® for over four minutes. For all this effort, the solution only
summed enough terms to give about 0.1% ( 1/113 ) accuracy. While this is well
beyond the precision required for practical engineering, it is needed to calculate
the relative accuracy of the spreadsheet/iterative solutions.

The finite difference formulation discussed in this paper faces a similar tradeoff
between the accuracy of our solutions and our computing resources. A general
principle for descretized solutions of continuum problems is that the results
become more accurate as the mesh is refined. This is known to be true for finite
element solutions10 and is intuitively correct for finite difference formulations.
Section 4.5.1 will explore mesh refinement versus accuracy and computing time
considerations.

Careful consideration of how we define our mesh, and taking advantage of any
symmetry which is available, will allow us to have a fairly refined mesh with a
minimum of unknowns to be solved by the computer. For instance, our 6m by
6m slab could be modelled as a four by four mesh for analysis using finite
differences. We know that the deflections along the edges of the slab are zero
so we only need to solve the interior nodes. If the applied load is non uniform, or
if symmetry is simply ignored, we would need to solve for nine unknown
deflections as follows:

T T T
: 1 2 3 :
Q-Q-Q :
: 6 |

5: 0—0—0 :
! 7 8 o |
5 Q0O '

vl :

< ém >

Figure 8: Nodes on a 4xéd mesh
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However, if we are able to take advantage of the three-way symmetry, we can
see that there are really only three deflections which need to be solved. All
other nodes have identical deflections as numbered below:

™ 1 T 1 1
! 1 2y
; o TO o)
1 3
! > o
E; e
! 1 o 1
\ A I N S S
< 6m >

Flgure 9: Three-way symmetiry on a 4x4 mesh

But can we use our three unknowns more effectively? If we select a 5 x 5 mesh
then we have refined our mesh by 78% ( 4x4 vs 3x3 deflected nodes ). Notice
that with double symmetry we still have only three unknowns:

1

' W
: 01 02 2
X
: 2 43 i3 |2
i o
©! 2 3 i3 2
: 1 12 2 H
yoL ]
< em >

Flgure 10: Three-way symmetry on a 5x5 mesh

In general, when there is symmetry, an odd sized mesh ( 3x3, 5x11, 7x9 ) will
provide the most efficient use of unknowns. Note however that the midspan
deflections will not be solved. It may be desirable to sacrifice the extra efficiency
in order to accurately obtain the ( maximum ) moments and deflections which
occur at midspan.
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4.5 Step by step solution using a spreadsheet

The 6m x 6m slab can be modelled with finite differences on a 5x5 mesh,
employing a spreadsheet program as follows:

Step 1. Open a new worksheet and enter the problem parameters near the
1op.
AT BT CJIDTETF TG [ HTTTJ

1 Finite difference solution of square slabs using a 5x5 mesh
2 ‘
3 Grid spacing: h = 1.20|m Uniform load: g=| 15.00|kPa
4 Slab thickness: t = 0.30{m Grid point load: P=3 21.60{kN
5 [Young's modulus: E=| 27.00|GPa Slab Stiffness: D =i 62148(kN-m
6 Poisson's ratio: 1= 0.15 Ph*2/D =1 0.5005mm
7
8

Notice that: h = 6m+5 = 1.20 m for the 5x5 mesh.

The following parameters were calculated by the spreadsheet when
appropriate formulas were entered into cells "14", "I15", and "16":

P =gh2 = 21.60 kN
D = Et3/{12(1-u2)} = 62148 kN-m

Ph2/D = 0.00050048 m. This was multiplied by 1000 to get mm.
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Sten2:  Setup the zero deflections along the piate boundary fo outline the

whi he n
Al B CJDJETFIGTHTITTTJ
1 Finite difference solution of square slabs us;ng a 5x5 mesh
2 i
3 Grid spacing: h = 1.20|m Uniform load: g=| 15.00/kPa
4 Slab thickness: t={ 0.30[m Grid point load: P =i 21.60ikN
| 5 Young's moduius: E =| 27.00|GPa Slab Stiffness: D=1 62148'kN-m:
6 Poisson’s ratio: 1 = 0.15 Ph*2/D =i 0.5005mm
7
8 AR AR ARASARARN AR ANRARN AN
9 A: DEFLECTIONS: w (mm)
10
11
12 0 0 0 0 0 0
13 0 0
14 0 0
15 0 0
16 0 0
17 0 0 0 0 0 0
18
Step 3: Enter the formula for the plate operator into cell D13
B | C | D | E F G H I
9 [A: DEFLECTIONS: w (mm)
10
11
12 0 0 0 0 0 0
13 0 10.0250 0
14 0 0
15 0 0
16 0 0
17 0 0 0 0 0 0
18

The formula entered into cell D13 was the general plate operator
developed in section 2.2.4:
"=($1$6-(D11+F13+D15+B13+2*(C12+E12+E14+C14)-
8*(D12+E13+D14+C13)))/20"
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If the spreadsheet program allows selection of cells with a pointing
device such as a mouse, formula creation is greatly simplified. Instead
of having to figure out the address of a cell and typing it, you simply
point to, and click on cell you want. This is much faster and gives a
visual feel to the formula.

Notice that the formula which was placed in cell D13 has both relative
and fixed addressing of the cells. No matter where our formula is
copied, we always need to reference the value of Ph2/D which is
found in cell $1$6. The remaining cell references are free to move with
the plate operator formula as it is copied to other grid points in our
model.

The number "0.0250" displayed in cell D13 is the result of calculating
our plate operator formula with all surrounding deflections equal to

zero and is simply Ph2/20D.

tep 4: Copy the plate operator formula to the other nodes where deflections
must be solved:
B C D E F G H ]

11

12 0 0 0 0 0 0
13 0 0.0250{0.0350 0
14 0 0.0365 0
15 0 0
16 0 0
17 0 0 0 0 0 0
18

As shown in section 3.2.2 we only need to solve for the deflections at
three points on our 5x5 mesh since the rest are known by symmetry.

At this point most spreadsheet programs will warn the user that they
"cannot resolve the circular references". This is because the formula
in E13 depends on the value in D13 which itself uses the value in
E13, and so forth. The user should select the spreadsheet options to
carry out iterative calculations to solve these dependant equations.lt
would also be worthwhile to turn off automatic recalculation to prevent
time wasting iterations after each change to the worksheet during the
development of our model. If manual recalculation can be specified,
iterations will not begin until requested by the user.

The values displayed in cells E13 and E14 are based on the values of
the adjacent cells when the formula from D13 was copied into them.
The interested reader may wish to verify that E13 received the formula
before E14 .
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This is necessary because the plate operators need the deflections at

these nodes.

B C D E F G H ]

11

12 0 0 0 0 0 0
13 0 0.0250:0.0350 { 0.0350 { 0.0250 0
14 0 0.0350{ 0.0365 ; 0.0365 { 0.0350 0
15 0 0.0350{0.03650.0365 { 0.0350 0
16 0 0.0250 { 0.0350 { 0.0350 { 0.0250 0
17 0 0 0 0 0 0
18

A typical symmetry formula is "=E14" which is found in cells F14, E15,

and F15. Note that we didn't really require values for cells G15, D16,

F16, and G16 since our operator formulas don't reach them. They

were included for completeness of the solution but can be omitted to

make the iterations slightly faster.
Step 6: Enter formulae for the fictitious points:

The plate operator formulas need deflections from three points which

lie outside the plate boundaries. Section 2.3.3.1 shows that for a

simply supported edge, these fictitious points are antisymmetric

reflections across the plate boundary.

B ] C | D [ E J F J G | H [ 1
9 |A: DEFLECTIONS: w (mm) number of iterations/10000 =} 0.0000
10
11 -0.025 1-0.035
12 0 0 0 0 0 0
13 |-0.025 0 0.0250 : 0.0350 : 0.0350 § 0.0350 0
14 0 0.0350; 0.0365 § 0.0365 { 0.0350 0
15 0 0.0350:0.0365{0.0365{ 0.0350 0
16 0 0.03500.0350 { 0.0350 { 0.0350 0
17 0 0 0 0 0 0
18

The formula for the fictitious point E11 is simply "=—E13". The other
two fictitious points contain the formula "=~D13".

Notice that there is an iteration counting formula in cell 19 to give
additional information about the calculations. This is strictly for the
purposes of this study and is not a necessary part of the solution.
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Step 7. lterate to a solution:

All that remains is to begin the iterations. But how far should the
iterations continue? Excel® allows the user to specify the number of
iterations and/or the desired convergence accuracy, dictated by a test
which looks for a maximum change between subsequent iterations.

In order to explore the accuracy of results against the number of
iterations, the computer was asked to iterate to a specified
convergence. The iteration counting function kept track of the
cumulative iterations.

a) iterate to 0.1 decimal convergence:

B | C T D JE T F ] G [ H I

9 |A: DEFLECTIONS: w (mm)  number of iterations/10000 = { 0.0001

10

11 -0.025 {-0.035

12 0 0 0 0 0 0

13 |-0.025 0 0.0484 :0.0645 i 0.0645{ 0.0484 0

14 0 0.0645:0.0839 { 0.0839{0.0645 0

15 0 0.0645 1 0.0839 1 0.0839: 0.0645 0

16 0 0.0484 {0.0645:0.0645{0.0484 0

17 0 0 0 0 0 0

18 B
- The calculations stopped after only one iteration because there was
no change in the first decimal place in any of the numbers. Note that
there were very large changes in the second decimal place so a finer
convergence accuracy needs to be specified.
b) iterate to 0.01 decimal convergence:
B [ C [ D[ EJT F T G T H ]

9 |A: DEFLECTIONS: w (mm) number of iterations/10000 = | 0.0037

10

11 -0.379 1{-0.588

12 0 0 0 0 0 0

13 |-0.379 0 0.3830;0.5946 ; 0.5946 { 0.3830 0

14 0 0.5946 10.9277 {0.9277 { 0.5946 0

15 0 0.5946 10.9277 10.9277 1 0.5946 0

16 0 0.3830{0.5946 { 0.5946 { 0.3830 0

17 0 0 0 0 0 0

18

- After 37 iterations, taking less than 2 seconds, the results are about
25% less than the Navier solution given on page 23 for grid points
(1.2m,12m), (24 m, 1.2 m), and (2.4 m, 2.4 m).
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c) iterate to 0.001 decimal convergence:

B | C | D E | F | G | H ]

9 |A: DEFLECTIONS: w (mm)number of iterations/10000 = | 0.0091
10
11 -0.464 :-0.722
12 0 0 0 0 0 0
13 |-0.464 0 0.46400.7230 0.7230 {0.4640 0
14 0 0.7230§1.13191.1319:0.7230 0
15 0 0.7230{1.1319{1.1319:0.7230 0
16 0 0.4640{0.7230{0.7230 { 0.4640 0
17 0 0 0 0 0 0
18
- After 3 more seconds of iteration the results are now within 2.5%.
d) iterate to 0.0001 decimal convergence:
B | C | D E | F | G | H ]
9 |A: DEFLECTIONS: w (mm)number of iterations/10000 =} 0.0144
10
11 -0.472 £-0.735
12 ~ 0 0 0 0 0 0
13 |-0472 0 0.47180.73540.735410.4718 0
14 0 0.735411.1517:1.1517:0.7354 0
15 0 0.7354:1.151711.1517:0.7354 0
16 0 0.471810.7354:0.7354:0.4718 0
(17 0 0 0 0 0 0
18
- After 3 more seconds the cumulative totals are 144 iterations in 8
seconds. The values agrees with Navier's solution to within 0.6%.
e) iterate to 0.00001 convergence:
B | C | D] EJ F | G | H I
9 |A: DEFLECTIONS: w (mm)number of iterations/10000 = { 0.0391
10
11 -0473 {-0.737
12 0 0 0 0 0 0
13 |-0473 0 0.47270.7368 0.7368:0.4727 0
14 0 0.7368:1.1539 1.1539:0.7368 0
15 0" 10.7368:1.1539:1.1539:0.7368 0
16 0 0.4727 :0.7368 {0.7368:{0.4727 0
17 0 0 0 0 0 0

18
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- Fourteen more seconds of iteration did not appreciably improve the
accuracy. It is apparant that we have iterated to the limiting accuracy
of the plate analogue descretization of this problem. Any further
increase in accuracy will require a finer mesh.

Step 8:  Solve for m, based on the calculated deflections:
The plate operator for m, is given in section 2.2.5. this can be entered
into a section of the spreadsheet directly below the area which
contains our solved deflections.
AT B [ C DT ETFT] G [HTTJJ
1 [Finite difference solution of square slabs using a 5x5 mesh
2 E E E
3 Grid spacing: h = 1.20[m _Uniform load: q=| 15.00kPa
4 Slab thickness: t = 0.30{m Grid point load: P =1 21.60kN
5 [Young's modulus: E=| 27.00GPa Slab Stiffness: D = 62148kN-m
6 Poisson's ratio: u = 0.15 Ph*2/D =1 0.5005mm
7 D/h*2 =i 43.159/kN/mm
8
9 A: DEFLECTIONS:w (mm) number of iterations/10000 = § 0.0391
10
11 -0.473 {-0.737
12 0 0 0 0 0 0
13 -0473 | 0 ]0.47270.7368{0.7368 0.4727| 0
14 0 10.736811.1539%1.153910.7368| 0
15 0 10.736811.1539:1.1539:0.7368| 0
16 0 10.472710.7368 {0.7368:0.4727] 0
17 0 0 0 0 0 0
18
19
20 B: Moments: mx (kN-m/m)
21
22 0 0 0 0 0 0
23 0 10.35§ 13.47] 13.47 | 10.35 0
24 0 15.51] 20.707 20.70 | 15.51 0
25 0 16.51 1 20.70 { 20.70 { 15.51 0
26 0 10.35 | 13.47 { 13.47 } 10.35 0
27 0 0 0 0 0 0
28

Figure 11: Solution of &

6m x 6m simply suppertec plate

The mément operator formula placed in cell D23 is as follows:

"=(2*(1+$D$6)*D13-(C13+E13+$D$6*(D12+D14)))*$I$7"
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Notice the calculation of D/h2 in cell "17". This was referenced by each

of the four cells containing our moment operator. Both u and D/h?
were given fixed references ( $1$7, and $D$6 ). The rest of the formula
( relatively ) referenced the deflections. This enabled the formula in
D23 to be copied to the other three cells in the north-east quadrant of
the plate. The other three quadrants were reflected by symmetry.

The calculated moments came to within 3.5% of Navier's solution
given in section 4.3

We now have a useful spreadsheet model which can easily calculate the elastic
deflections and moments in any simply supported square plate. It is easy to set
up any of the other force operators given in section 2.2.5 if we want to to know
shears, twisting moments, or edge reactions. We can also change any
parameter so that for instance we could explore the effect of setting u = 0,
h=2.0m,andt=0.5m:

Al B | ¢c ] b | E | F 1l g | H [ 1
1 Finite difference soiution of a square slab using a 5x5 mesh
2 i ]
3 Grid spacing: h = 2.00 |m Uniform load: q = 15.00 [kPa
4 Slab thickness: t = 0.50 [m Grid point load: P =i 60.00 kN
5 | Young's modulus: E= | 27.00 |GPa Slab Stiffness: D = ;281250 ikN-m
6 Poisson's ratio: 1 = 0.00 Ph*2/D = | 0.8533 imm
7 D/h*2 = ¢ 70.313 {kN/mm
8 .
19 A: DEFLECTIONS: w (mm) number of iterations/10000 = { 0.0233
10
11 -0.806 i-1.256
12 0 0 0 0 0 0
13 -0.806 0 0.8059: 1.2562; 1.2562 { 0.8059 0
14 0 1.2562 {1.9673{ 1.9673 § 1.2562 0
15 0 1.2562 { 1.9673 { 1.9673 § 1.2562 0
16 0 0.8059 §1.2562 § 1.2562 i 0.8059 0
17 0 0 0 0 0 0
18
19
20 B: Moments: mx (kN-n/m)
21
22 0 0 0 0 0 0
23 0 25.00: 31.67; 31.67 { 25.00 0
24 0 38.33: 50.00% 50.00 i 38.33 0
25 0 38.33 | 50.00 { 50.00 i 38.33 0
26 0 2500 § 31.67 § 31.67 § 25.00 0
27 0 0 0 0 0 0

Figure 12: solution of 10m x 10m simply supported plate
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Section 4.4 postulated that the results of a finite difference analysis become
more accurate as the mesh is refined. In order to examine this assertion, the 6 m
by 6 m simply supported slab was iteratively solved to four decimal places for
mesh sizes ranging from 2x2 to 15x15. The resulting deflections and moments
at ( or nearest to ) the center of the slab are summarized in the following table:

Finite difference solutions of a simply supported 6m x 6m slab under uniformly distributed load
D= 62.148 kN-mm q=15kPa Iterations to  0.0001

Number| Time to]Number of| Location * | Results of caiculation|Navier's Solution Percent
Grid | of un- | Solve of X y |Deflectionf Moment |Deflection| Moment Error
Size knowns| (sec)|lterations| (m) | (m)]| (mm) | (&N-m/m)| (mm) | kNm/m [Defictn|Moment
2x2 1 <1 8 3.00]3.00| 1.2219 19.406 | 1.2707 ] 22.913] 4.0% | 18.1%
3x3 1 2 36 2.00/2.00 ] 0.9651 17.244 | 0.9743 | 18.765] 0.9% | 8.8%
4x4 3 8 103 3.0013.00] 1.2600 21.831 1.2707 1 22.913} 0.9% | 5.0%
5x5 3 8 145 2.4012.40] 1.1517 | 20.659 | 1.1585 | 21.306 | 0.6% | 3.1%
6x6 6 19 247 3.0013.00] 1.2621 22.315 | 1.2707 | 22.913] 0.7% | 2.7%
7x7 6 29 393 25712571 1.2024 | 21.598 | 1.2127 | 22.083] 0.9% | 2.2%
8x8 10 64 584 3.00]13.00] 1.2558 | 22.364 | 1.2707 ] 22.913] 1.2% | 2.5%
9x9 10 101 823 2.67]2.67] 1.2141 21.809 | 1.2354 |22.389] 1.8% | 2.7%
10x10} 15 171 1114 13.0013.00| 1.2398 | 22.137 | 1.2707 | 22.913| 25% | 3.5%
11x11] 15 225 1447 12.73]12.73] 1.2033 21.621 1.2470 | 22.559 | 3.6% | 4.3%
12x12| 21 409 1832 |3.00§3.00] 1.2102 21.612 | 1.2707 | 22.913| 5.0% | 6.0%
13x13] 21 502 2239 127712771 1.1716 20.977 | 1.2537 | 22.658| 7.0% | 8.0%
14x14] 28 699 2687 13.00{3.00} 1.1618 20.701 1.2707 | 22.913| 9.4% | 10.7%
15x15| 28 886 3122 12.80]2.80| 1.1155 19.887 | 1.2580 | 22.721 [ 12.8% { 14.3%

* Closest point to the centre of the plate

Table 1: I[terative solutions te 0.0001 convergence
acecuraecy using various mesh refinements
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The accuracy of the solutions is shown graphically as follows:
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o 16% -
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r

Finite difference accuracy vs. mesh refinement

Square, simply supported slab, uniform load

{ all iterations to four decimal places )
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Mesh Refinement

O moments deflections

Figure 13: Finite differsnce accuracy vs. mesh refinement

~ Initially, the accuracy improved as the mesh size was decreased. However, as
the mesh refinement was increased above 7x7, the accuracy started to get
worse. What went wrong?

If we look back at the 5x5 mesh anlalysis from section 4.5, recall that the initial
solution failed because the change between subsequent iterations was less
than the 0.1 decimal accuracy specified for the completion. The correct solution
for the midspan deflection was over 10 times this amount, and needed 94
iterations ( with a 0.001 completion test ) to approach 0.1 % accuracy. None of
the 94 iterations changed the deflections more than 0.025 so the iteration
terminated prematurely.

The mesh refinement study shows that the number of iterations ( and time to
solve the problem ) increases as the mesh gets finer. If we look at the number
of unknowns instead of the mesh size, two iteration values were recorded for
each number of unknowns. Note that the odd mesh sizes require more
iterations than the next lower ( even ) mesh size.
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Figure 14: Number of Iterations vs. number of unknowns

As the number of unknowns increases ( ie. using a finer mesh ), the required
number of iterations increases exponentially. The changes between each
iteration must be smaller if more iterations are required to arrive at the same
number. Therefore the iteration will halt at lower overall precision for higher
numbers of unknowns even though the same completion test is used.

If we recalculate the finer mesh sizes using a tighter completion test ( 0.00001
change between iterations ) the results agree with the postulation that finer
meshes give better accuracy:

Finite difference solutions of a simply supporte 6m x 6m slab under uniformly distributed load
D= 62.148 kN-mm q=15kPa lterations to  0.00001
Number] Time tofNumber off Location *|Results of calculation{Navier's Solution Percent
Grid | of un- | Solve of X y |Deflection] Moment |Deflection| Moment Error
Size knowns| (sec)|lterations| (m)| (m)| (mm) | &N-m/m)} (mm) | kNm/m [Deflctn[Moment|
12x12] 21 1160 | 5200 |3.0013.00) 1.2695 | 22.748 | 1.2707 [ 22.913] 0.1% | 0.7%
13x13f 21 1400 | 6251 12.7702.77| 1.2523 | 22530 | 1.2537 | 22.658] 0.1% | 0.6%
14x14] 28 1348 | 5184 [3.0013.00] 1.2592 | 22576 | 1.2707 |22.9135] 0.9% | 1.5%
15x15] 28 18151 6390 |2.80[2.80] 1.2431 22.350 | 1.2580 [ 22.721] 1.2% | 1.7%
" Closest point to the centre of the plate
Table 2: Iterative solutlons to 0.00001 econvergence

acecuracy using various mesh

refinements




43

Which then plots with the 0.0001 completion test iterations as follows:

fgz" Convergence accuracy test vs. mesh size
(-]
o, 16%
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( iterations to decimal places as shown)

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11xi11 12x12 13x13 14x14 15x15
Mesh Refinement

Convergence completion test for the calculated value
O 0.0001 0.0001 0.00001 M (.00001
moments deflections moments deflections

Flgure 15: Convergence accuracy ftest vs. mesh size

This confirms the assertion that finer mesh sizes give greater accuracy. Note
that it also shows that the iteration convergence test required to get at the
greater accuracy must be reduced (and the number of iterations will
increase ).

20% Range of finite difference accuracy
18% vs. the number of unknowns

° Square, simply supported slab, uniform load
16%

( iterations to decimal places as shown )
accuracy = 0.0001

% 14%

E 12% 4 Moments

r 10% 4

r 8%

(o] Deflections

r ‘
accuracy
=0.00001 \__1

28

Number of unknowns

Figure 16: Range of finite difference accuracy vs. the
number of unknowns
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As a final point, it is worth considering how many unknowns can be practically
solved using the iterative spreadsheet technique. The 0.0001 completion test
gave better than 5% accuracy between 3 and 15 unknowns. This is a
reasonable accuracy for many engineering problems. The amount of time that a
user is willing to wait for the iterations establishes the number of unknowns and
final accuracy that this method can practically be used for:

16 =
67 lteration Time vs No of Unknowns

14 + Square, simply supported slab, uniform load

12 1+
10 4

(iterations to four decimal places )

M
i
n
u 8+
t
e
S

Number of unknowns

Fligure 17: Iteration time vs. number of unknowns

As a further step in refining the accuracy, the 15 by 15 mesh was iterated using
a completion test of 0.000001.

Finite difference solutions of a simply supported 6m x 6m slab under uniformly distributed load

D= 62.148 kN-mm q=15kPa Iterations to 0.000001
Number| Time to|[Number off Location * | Results of calculation| Fourrier Solution Percent
Grid | of un- | Solve of X y |Deflection] Moment |Deflection| Moment Error

Size lknowns| (sec) [lterations| (m)} | (m)}}{ (mm) ]| (kN-m/m)| (mm) | kNm/m [Deflctn|{Moment
15x15{ 28 2743 9659 | 2.80]2.80{ 1.2559 22.596 1.2579 122.701 | 0.2% | 0.5%
* Closest point to the centre of the plate

Table 38: Iterative solutlons te 0.000001 ecenvergence
accuracy using 15x15 mesh refinement

This iteration took almost 46 minutes. About 30 unknown deflections iterated to
six place completion ( giving better than 1% final accuracy ) appears to be the

practical limit for the author's MacIntosh® computer to solve in under one hour.
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5. SOLUTION OF A FIXED EDGE PLATE WITH AN
INTERIOR BEAM

5.1 Objectives

This chapter will demonstrate the spreadsheet/iteration technique for modelling
a square plate with fixed edges and an interior beam. The formulation will also
show how non uniform loading is incorporated into the model.

5.2 A square, fixed edge plate.

A 6m by 6m square plate with all edges fixed carries a 100 kN/m line load
directly over a supporting beam:

4 _100 KN/m

Figure 18: Squarse, fixed edge plate with line load and
center beam

The structure is constructed out of concrete with the following properties:

Young's modulus =E =27GPa
Poisson's ratio =u =0.15

The beam is directly under the line load and has the following stiffness:

Moment of Inertia of the beam =] =0.01 m4
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5.3 Solution of the primary structure

We will first solve the slab for deflections under the line load. This structure will
become the primary structure on which we will superimpose the effects of the
interior beam. '

5.3.1 Initialization of the spreadsheet model

As in section 4.5, the problem parameters should be entered near the top of the
spreadsheet and appropriately labelled. Equations should be set up to
calculate constants such as the mesh spacing, D, El, h2/D, etc. Changes to the
parameters such as the slab thickness will then automatically update these
constants. The beam Inertia and calculated stiffness constants were entered for
use in section 5.4 when we add the beam to the primary structure.

Al B | € | b | E T F I G | H [ 1 T J
1_|Solution of a square, fixed edge slab with an interior beam under a line load. 6X6 mesh size
2 i
3 Span: L = 6.000{m Grid spacing: h = 1.000im
4 Slab thickness: t = 0.250|m Grid point load: P = 100.0¢kN
5 Young's modulus: E =] 27.000{GPa Slab stiffness: D = 35965;kN-m
6 Poisson's ratio: | = 0.150 Beam stiffness: El ={ 270000ikN-m~2
7 | Beam moment of inertia: | = 0.010|m*M h"2/D =i 0.0278imm/kN
8 Line load on slab: W = 100{kN/m D2 = 35.97¢kN/mm
9 i § Elh*3 =3 270.00ikN/mm
10 Iterations/100000 = i 0.00266 2+21 = 2.300

Note that all values in column "H" are calculated from the parameters entered in
column "D". As was done in the last chapter, a function to keep track of the
iterations was entered in cell "D10".

5.3.2 Point lo for each n n_the mesh

Since the load is not uniform over the whole slab, a section of the spreadsheet
will be required to map the values of the point loads on each node:

A B Cc D E F G H

11

12 Point loads on the plate (kN)

13

14 0 0 100 0 0

15 0 0 100 0 0

16 0 0 100 0 0

17 0 0 100 0 0

18 0 0 100 0 0

19

The values in cells E14 to E18 all reference the value calculated in cell H4 so
that if we change the line loading it will automatically be carried through the rest
of the spreadsheet.
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5.3.3 Entry of the plate and fictitious point operators

The region of the spreadsheet where the plate operators are entered is set up
as follows:

A B C D | E | F G H
21 Node deflections: w {(mm)
22 0.0000 i 0.0000 i 0.1390
23 0 0 0 0 0 0 0
24 | 0.0000 0 0.0000; 0.0000{ 0.1390; 0.0000 § 0.0000 0
25 | 0.0000 0 0.0000: -0.0139 0.1 89l -0.0139 § 0.0000 0
26 | 0.0014 0 0.0014-0.0239 0.2627; -0.0239 §{ 0.0014 0
27 0 0.0000 § -0.0139 { 0.1891 }-0.0139 { 0.0000 0
28 0 0.0000 § 0.0000 § 0.1390 § 0.0000 i 0.0000 0
29 0 0 0 0 0 0 0

The equation entered into cell E26 is the plate operator developed in section
224
"=($H$7"E16-(E24+G26+E28+C26+2*(D25+F25+F27+D27)
-8*(E25+F26+E27+D26)))/20"

Note the use of fixed reference ( $H$7 ) for the value h2/D which is then
multiplied by the relatively referenced ( E16 ) point load "P" to get Ph2/D. This
formula was copied to cells C24 through E26 and correctly references the
values of "P" stored in cells C14 to E16. As in section 4.5, the spreadsheet was
set up to perform iterations only when requested.

The line load in the north-south direction gives the problem only orthogonal
symmetry so that nine values of the deflection must be solved. ( Recall that the
simply supported slab analysed in section 4.5 also had diagonal symmmetry so
that only six deflections were solved when the same mesh was used. )

The fictitious points were set equal to the deflections on the opposite side of the

plate boundary in accordance with the fixed edge operator developed in section
2.3.3.2.

5.3.4 lterate to a solution

A B C D | E | F G H
21 Node deflections: w (mm)
22 0.1743 ¢ 0.5202 § 0.8330
23 0 0 0 0 0 0 0
24| 0.1743 0 0.1743 0.5202f 0.8330; 0.5202 ; 0.1743 0
25| 03983 0 0.3983: 1.0958{ 1.6312 1.0958 ¢ 0.3983 0
26 | 04892 0 0.4892 1.3202] 1.9297: 1.3202 i 0.4892 0
27 0 0.3983 ¢ 1.0958 § 1.6312 §{ 1.0958 i 0.3983 0
28 0 0.1743 §{ 0.5202 { 0.8330 { 0.5202 { 0.1743 0
29 0 0 0 0 0 0 0

The above solution required 168 iterations to achieve convergence to less than
0.0001 decimal change between subsequent iterations.
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5.3.5 Caiculate the bending moments

The operators for mgyx and mqy from section 2.2.5 were entered to calculate the

bending moments throughout the north-west quadrant of the slab. This
completed the solution of the primary structure:

A | B | ¢ | D J E [ F [ & | H T 1 T J
1_|Solution of a square, fixed edge siab with an interior beam under a line load. 6X6 mesh size
2 :

3 Span: L = 6.000|m Grid spacing: h = 1.000im

4 Slab thickness: t = 0.250|{m CGrid point load: P = 100.0ikN

5 Young's modulus; E={ 27.000{GPa Slab stiffness: D = 35965ikN-m

6 Poisson’s ratio; U = 0.150 Beam stiffness; El =i 270000ikN-m*2

7 | Beam moment of inertia: | = 0.010{m"4 h*2D =4 0.0278imm/kN

8 Line load on slab: W = 100{kN/m D/h?2 = 35.971kN/mm

9 } i E/h*3 =¢ 270.00ikN/mm
10 lterations/100000 = { 0.00170 2+21 = 2.300

11

12 Point loads on the plate (kN)

13

14 0 0 100 0 0

15 0 0 100 Y 0

16 0 0 100 0 0

17 0 0 100 0 0

18 0 0 100 0 0

19

20

21 Node deflections: w {mm)

22 0.1743 { 0.5202 } 0.8330

23 0 0 0 0 0 0 0

24 | 0.1743 0 0.1743:0.5202]0.8330] 0.5202 ; 0.1743 0

25 | 03983 0 0.3983:1.095811.6312] 1.0958 { 0.3983 0
26 | 04892 0 0.4892:1,3202/1.9297| 1.3202 { 0.4892 0

27 0 0.3983 | 1.0958 | 1.6312 | 1.0958 | 0.3983 0

28 0 0.1743 | 0.5202 | 0.8330 | 0.5202 | 0.1743 0

29 0 0 0 0 0 0 0

30

31 Moments mx (kN-m/m)

32 0.00 -1.88 -5.61 -8.99

33 -12.54 -6.44 0.90 22.68

34 -28.65! -10.05 7.72 41.21

35 -35.19] -11.32 10.39 47.06

36

37

38

39

40 Moments my (kN-m/m)

41 0.00i -12.54; -37.42{ -59.92

42 -1.88 -2.71 -1.81 4.62

43 -4.30 3.17 13.50 23.75

44 -5.28 4.69 17.34{ 28.04

45

Flgure 19: Spreadshest solutlon of the fixed edge slab
under [ine loading
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5.4 Superposition of the center beam

Section 2.4.1.2 developed an operator to calculate the loads required to hold
the beam in the shape dictated by an array of deflections {w}. If we apply this
operator to the deflections of the slab which are directly over the beam, we can
calculate the forces required to hold the beam in the same deflected shape.
These reactions from the beam can then be applied as loads on the slab.
Applying these loads we will calculate a new deflected shape for the slab which
gives a new set of beam reactions. If we continue to iterate, applying each new
set of beam reactions to the slab we MAY converge to a solution. Special steps
are outlined in section 5.4.3 to ensure that the solution is reached.

5.4.1 Calculation of beam reaction forces

The next step in the solution is to calculate the forces required to hold the beam
to the same deflections as the slab.

A B C D E F G H i J

11 N Beam
12 Point loads on the plate (kN) Reaction
13 (kN)
14 0 0 100 0 0 333.6
15 0 0 100 0 0 99.4
16 0 0 100 0 0 52.4
17 0 0 100 0 0
18 0 0 100 0 0
19
20
21 Node deflections: w (mm)
22 0.1743 ¢ 0.5202 i 0.8330
23 - 0 0 0 0 0 0 0
241 0.1743 0 0.1743: 0.5202 0.8330] 0.5202 } 0.1743 0
251 0.3983 0 0.3983; 1.0958 1.6313{ 1.0958 { 0.3983 0

[ 26 | 0.4892 0 0.4892 1.3203 1.9297 1.3203 { 0.4892 0
27 0 0.3983 : 1.0958 §{ 1.6313 § 1.0958 { 0.3983 0
28 0 0.1743 ¢ 0.5202 § 0.8330 § 0.5202 ;i 0.1743 0
29 0 0 0 0 0 0 0

The equation entered into cell J16 was the beam force/deflection operator from
section 2.4.1.2 which calculates the force required to hold the beam in the same
deflected shape as the slab:

"=$H$9* (6*E26-4*(E25+E27)+E24+E28)"

This was subsequently copied to cells J14 and J15 to calculate their forces.
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5.4.2 Addition of the beam reaction forces to the slab

Sum the calculated beam reaction forces ( in cells J14 to J16 ) with the line
loads (in cells E14 to E16 ) by modifying the plate operators in cells E24 to
E26. :

A B C D | E | F G H
21 Node deflections: w (mm)
22 0.1743 ; 0.5202 { 0.8330
23 0 0 0 0 0 0 0
24 ] 0.1743 0 0.1743 : 0.5202 | -0.0576 | 0.5202 ; 0.1743 0
25 | 0.3983 0 0.3983 §{ 1.0958 | 0.5127 | 1.0958 { 0.3983 0
26 | 04892 0 0.4892 : 1.3203 | 1.4539 | 1.3203 i 0.4892 0
27 0 0.3983 § 1.0958 | 0.5127 | 1.0958 i 0.3983 0
28 0 0.1743 § 0.5202 ] -0.0576 | 0.5202 § 0.1743 0
29 0 0 0 0 0 0 0

The typical modifications to cell E26 are highlighted in following equation:

"=($H$7*(E16-J16)-(E24+G26+E28+C26+2*(D25+F254+F27+D27)-
8*(E25+F26+E27+D26)))/20"

5.4.3 The need for a smoothing function

When the above spreadsheet was iterated the values did not converge to a
solution. The beam forces started to oscillate wildly between increasing positive
and negative values.

If the reader wishes to observe this phenomenon he should make a backup
copy of his spreadsheet before commencing the iterations. Most spreadsheet
programs do not offer any means to reset the deflected values once they start to
diverge . When the formulas are modified to correct a divergence problem, the
spreadsheet must iterate to the correct solution from the diverged values. This
process takes considerably longer than erasing and reconstructing the plate
and beam operator formulas. The fastest way to recover is to open a backup
copy of the worksheet which was saved before the diverging iterations
occurred.

If you save a backup copy of your spreadsheet and iterate, you will notice that
the oscillation of the slab-beam deflections is not a fundamental displacement
mode. Some nodes will deflect upwards as others deflect downwards.

The reason that the solution diverged is that the beam "over reacted" ( pardon
the pun ) to the deflections imposed by the plate. The stiffness of the beam is
much greater than the stiffness of the slab so it takes large forces to force it to
the slab's deflected shape. See how the reaction force displayed in cell J14 in
section 5.4.1 is much greater than the applied line load. In other words, the
reaction force calculated in the first iteration will locally deflect the slab upwards
in the next iteration. When the slab is Jocally deflected upwards, the beam goes
into negative curvature over that node and will try to pull the slab back down.
The reaction will then sum with the downward line load so that, after the next
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iteration, the slab will deflect downward further than before the beam was
added to the structure. Subsequent iterations will cause greater and greater
upward and downward deflections to occur.

Some sort of smoothing function is needed to damp out these diverging
oscillations and yet allow the slab and beam to converge to compatible
deflections.

The function must reduce the beam's reaction forces initially, when they are
fluctuating wildly, but increase them to their full value as the solution converges.
A reasonable approach might be to average the beam reaction forces between
consecutive iterations.

The following formula was used to get a smoothed value of the reaction after the
ith iteration

R(i) = R{w}(j)/2 + R(j-1)/2
where:

R(i) is the smoothed value of the reaction
R{w}(i) is the unsmoothed reaction
R(i-1) is the smoothed value from the last iteration

While this function works well for small values of beam stiffness, it does not
work when the beam stiffness is considerably greater than the slab stiffness. It
was therefore proposed that the smoothing function incorporate the ratio of
beam to slab stiffness as follows:

R(i) = R{w}(jy/S + R(j-1)"(S-1)/S

where: "S"is called the smodthing factor and is set equal to El/Dh

In the very first iteration, the value of "R(i-1)" is equal to zero. Therefore the

value of "R(j)" equals "R{w}(i)/S" which is only 1/Sth of the true reaction for the

deflected shape of the slab. If "R{w}" changes drastically in the next iteration, as
a result of the previous "R(i)" forcing the slab into a new shape, it will be

proportionally averaged with this "R()" value. Consequently, the new reaction

pushes the slab to the required deflection a little more gently. As the
spreadsheet iterates towards the true solution |, "R(j)" will change very little

between subsequent iterations and becomes almost equal to "R(i-1)". When
convergence is finally reached, "R{w}" = "R(i)" = "R(H )"
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5.4.4 Formulation of the smoothing function

Equations for the beam reactions were corrected to include the smoothing
function as follows:

A | B | C D E F G H I J
8 Lineloadonslab: W=|  100}kN/m D/h"2 = 35.971kN/mm
9 Smoothing factor: S =¢  7.5072§(S-1)/S =10.867 EI/h"3 = 270.00ikN/mm
10 lterations/100000 = { 0.00170 242 = 2.300
11 Beam
12 Point loads on the plate (kN) Reaction
13 (kN)
14 0 0 100 0 o} 334 | 333.8
15 0 0 100 0 0 99 99.4
16 0 0 100 0 0 52 52.4
17 0 0 100 0 0
18 0 0 100 0 0

The smoothing factor "S" in cell D9 was entered on the spreadsheet as the ratio
of the beam and slab stiffnesses in cells 19 and [8. Thus if we change the value
of the beam moment of inertia, slab thickness, or Poisson's ratio, the smoothing
function will automatically be adjusted to suit. The ratio (S-1)/S was placed in
cell F9 for use by the smoothing function.

Cells 114 to 116 were set equal to the values in cells J14 to J16. After each
iteration they will contain the value of the smoothed beam reaction from the
previous iteration. ‘

The formulas for beam reactions in cell J14 to J16 were modified to incorporate

the smoothing function. The changes to the formula in J16 are highlighted
below:

"=$H$9*(6*E26-4*(E25+E27)+E24+E28)/$D$9+116*$F$9"

Thus the smoothing function was very easily incorporated into our spreadsheet
model. Much easier to do, in fact, than to explain in section 5.4.3.



53

5.4.5 lterate to the solution

The rest is easy, we simply start the spreadsheet iterating and wait for it to
converge to the solution:

A | B | ¢ | D | E J F | G | A [ Tt T 4

1 }Solution of a square, fixed edge slab with an interior beam under a line load. 6X6 mesh size

2 {

3 Span: L = 6.000{m Grid spacing: h = 1.000im

4 Slab thickness: t=] 0.250|{m Crid point load: P = 100.0{kN

5 Young's modulus: E=] 27.000|GPa Slab stiffness: D = 35965ikN-m

6 Poisson's ratio; 1 = 0.150 Beam stiffness: El =§ 270000ikN-m*2

7 | Beam moment of inertia: | = 0.010{ m*4 h2D =i 0.0278imm/kN .

8 Line load on siab: W = 100] kN/m D/h?2 = 35.97ikN/mm

9 Smoothing factor: S = {7.5072 {(S-1)/S =10.867 EI/hA3 =i 270.00ikN/mm

10 lterations/100000 = § 0.00266 2+2U = 2.300

11 Beam
12 Point loads on the plate (kN) Reaction
13 (kN)
14 0 0 100 0 0 77 76.6
15 0 0 100 0 0 54 54.4
16 0 0 100 0 0 47 47.3
17 0 0 100 0 0

18 0 0 100 0 0

19

20

21 . Node deflections: w (mm)

22 0.0706 i 0.2070 i 0.3183

23 - 0 0 0_ 0 0_ 0 0
24 | 0.0706 0 0.0706:0.2070]0.3183] 0.2070 i 0.0706 0
25 | 0.1716 0 0.1716{0.4709]0.7003} 0.4709 ; 0.1716 0

| 26 | 0.2149 0 0.21490.5813]/0.8568} 0.5813 | 0.2149 0

27 0 0.1716 § 0.4709 | 0.7003 { 0.4709 { 0.1716 0

28 0 0.0706 | 0.2070 | 0.3183 { 0.2070 { 0.0706 0

29 0 0 0 0 0 0 0
30
31 Moments mx (kN-m/m)
32 0.00 -0.76 -2.23 -3.43
33 -5.08 -2.53 0.59 7.66

34 -12.34 -4.28 3.34 17.72

35 -15.46 -4.98 4.46 21.51

36

37

38

39

40 Moments my (kN-m/m)

41 0.00 -5.08¢f -14.89f{ -22.89

42 -0.76 -1.45 -1.91 -1.09

43 -1.85 1.38 5.90 10.58

44 -2.32 2.30 8.43 14.23

45

Figure 20: Spreadshest solution of the fixed edge slab
with a beam
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5.4.6 Enhancements to the spreadsheet model

We can easily modify our spreadsheet to model other types of structures. Some
of the possiblilites are given below:

- The input parameters in cells D3 to D8 can be changed as required to see
their effect on the solution of the problem.

- The loading on the slab can be changed by modifying the values in cells
C14 to G18. If the loading is not symmetric, the deflections won't be either so
the typical plate operator (in cell C24 for example ) can be copied to any
other cells (nodes) where the deflection are no longer known by
symmetry. Care must be taken that deflections for fictitious points are
properly entered where they are required by the operators.

- If the beam has torsional stiffness it can be incorporated by using the
operator developed in section 2.4.2. A smoothing function may also be
needed to prevent divergence of the solution. Interested readers may wish to
develop an operator to calculate the distribution of the moment on each side
of the beam since the moment operator will only give an average value of
my over the beam ( you might follow the approach used to get the operator

for Mgy in section 2.4.2).

- Adding a negative sign to the formula for the fictitious points will make the
edge simply supported. You can make some of the edges fixed and some
simply supported but must be careful to copy the plate operators to all nodes
whose deflections are no longer known by symmetry.
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6. SOLUTION OF A RECTANGULAR PLATE WITH
EDGE BEAMS

6.1 Objectives

This chapter will demonstrate the spreadsheet/iteration technique for modelling
a rectangular plate with two free edges and two edges supported by torsionally
stiff beams. Uniform loading and the self weight of the beams will be used so

that the problem is doubly symmetric.

6.2 A rectanqular plate with two free edges and two
edge beams

A 6m by 4m slab with two edge beams is simply supported at all four corners:

Edge beam:4
| =0.040 m 4
C=0.025m

Figure 21: Rectangular plate with edge beams

The following properties were assumed for the concrete:

Young's modulus =E =29 GPa
Poisson's ratio =u =0.17
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6.3 Solution of the primary structure

We will first solve a 4m x 6m free edge slab under uniform loading without
including the edge beams.

6.3.1 Initialization of the spreadsheet model

As in section 5.3.1, the problem parameters were entered near the top of the
spreadsheet and appropriately labeled. Equations were set up to calculate LL,
h, D, El, h2/D, G, CG/2h3, etc. so that other structures can be easily analyzed by
changing the parameters in cells D4 to D11. Note that this spreadsheet model
will only analyze rectangular plates where the long span is 1.5 times the short
span.

A | B | ¢ | D ] E | F | G | H J 1 T J
1_|Solution of a rectangular plate with two free edges and two edge beams, simply supported
2 Mesh size = 4X6
3
4 Short span length: LS = 4.000|m Long span length: LL = 6.000im
5 Slab thickness: t = 0.300|m Grid spacing: h = 1.000im
6 Uniformly distr. load: q = 20.0|kN/m~*2 Node load dueto q: Pg=§ 20.000ikN
7 { Beam weight: W = 12.0/kN/m Node load dueto W: PW=§ 12.000ikN
8 | Beam moment of inertia: | = 0.040| m*4 Bending stiffness: EI/h*3 =t 1160.0{kN/mm
9 | B'mtorsional constant: C = 0.025| m*4 Torsional stiffness: CG/h*3 = 309.8:kN/mm
10 Young's Modulus: E = 29.0|GPa Shear Modulus: G=§ 12.393{GPa
11 Pcisson’s Ratio: p = 0.170 D=% 67192;kN-m
12 h?2/D = § 0.01488i mm/kN
13 242U = 2.340
14 lterations/100000 = { 0.00000 CG/2h"3 = 154.9:kN/mm
15
16 | _
17_|Reaction from edge beam: Smoothing factor: Sb=} 17.264 (Sb-1)/Sb = § 0.94208
18
19 | R()= kN
20 | R(@-1)= kN
21
22 |Moment from edge beam: Smoothing factor: St=1{ 4.61111 (St-1)/St = § 0.78313
23
24 M(i) = kN-m/m
25 | M(@-1) = KN-m/im

Notice that room was set aside for the beam reactions and moments which will
be added after the primary structure has been set up. The smoothing factor in
cell G17 gives the product of El/h3 (in cell 18 ) and h*2/D (in cell 112 ) to get
El/hD. The smoothing factor for the torsional moments along the edge beam in
cell G22 contains the formula "=19*112" to get the stiffness ratio CG/hD.
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6.3.2 Point loads for each node on the mesh

Even if the self weight of the beams, W, is zero, the uniformly distributed load
will not give identical loads at all nodes of the mesh. This is because the nodes
on the free edge have only half the tributary area of a node at the interior of the
slab ( This was not considered in chapter 4 because ail edges were supported
so that the load on the edge node was of no consequence. ) For this reason,
and to include the self weight of the beams, an area of the spreadsheet was set
up to calculate the loads at each of the nodes :

| A B | ¢ | D | E | F | G H ]
27 LOADS AT NODES OF THE PRIMARY STRUCTURE (kN )

28 0 22 22 22 22 22 0

29 10 20 20 20 20 20 10

30 10 20 20 20 20 20 10

31 10 20 20 20 20 20 10

32 0 22 22 22 22 22 0

The values in cells C29 to G31 all reference the value of Pq calculated in cell 16.
Cells C28 to G28 contain the value of PW in cell 17 added to half of Pg. The free
edge in cells B29 to B31 only carries Pg/2. The corners were not given any load
because they are support points and their loads will not affect the solution.
Symmetry was used to generate the rest of the loads.

6.3.3 Entry of the plate and fictitious point equations

After setting the spreadsheet to perform iterations only when requested, the
region of the spreadsheet containing the plate deflection operators was set up
as follows:

A B | C_ D | E | F G H ]
| 34 NODE DEFLECTIONS (mm )
35 0.000 0.000 0.000 0.000 0.000

| 36 0.000 0 0.0327 $0.0458 :0.0494 | 0.0458 { 0.0327 o
37 0.000 10.0086 :0.0268 {0.0353 }0.0383 : 0.0000 ; 0.0000 { 0.0086
38 | -0.007 10.0130 :0.0249 0.0295 {0.0347 : 0.0000 i 0.0000 { 0.0000
39 0.000 | 0.0086 : 0.0268 { 0.0353 ; 0.0383 ¢ 0.0000 § 0.0000 § 0.0086
40 0 0.0327 i 0.0458 ; 0.0494 } 0.0458 { 0.0327 0

Please note that the values displayed above are very dependant on the order in
which the formulas were entered and have little meaning before iterations
begin. This is because each operator calculates its value as it is entered. The
value displayed by one operator is used in calculating the value for any
subsequent-adjacent operators. If you were to create the same system of
equations in the same cells, your display would likely be different because of a
different formula entry sequence. During iteration however, all of the deflections
will converge the same solution provided that the operators were correctly
formulated.
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Cells C37 to E38 contained the basic plate operator equation from section
2.2.4. For example, cell C37 contained the formula:

"(C29*$1$12-(C35+E37+C39+A37+2*(B36+D36+D38+B38)
-8*(C36+D37+C38+B37)))/20"

Cells C36 to E36 and B37 to B38 contained the free edge operator developed
in section 2.3.4, rotated appropriately for north and west edges. For example,
the following equation was entered into cell C36 and copied to cells D36 and
E36:

"=C28*$1$12/10-($D$11*((B35+D35-B37-D37)/2+C37-C35)-7*C37
+2*(B37+D37)-4*(B36+D36)+(A36+E36)/2+C38-C35)/10"

The fictitious deflections in Cells C35 to E35 and A37 to A38 use the operator
developed in section 2.3.1, appropriately rotated, with edge moments equal to
zero. An example of one of these equations, is contained in cell A37:

"~$1$13*B37-$D$11*(B36+B38)-C37"

Finally, operators for simple supports ( section 2.3.3.1) were placed in cells B35
and B36 which negatively mirror the deflections on the opposite side of the
corner support.

6.3.4 lterate to a solution

We now have a complete formulation of our primary structure ( free edge plate,
no edge beams ). It isn't necessary to iterate to a solution at this time but we
may want to compare the ultimate solution, with edge beams, to the free edge
plate. It is also possible that we have made an error in our formulation so we
could perform a few hand calculations on the solution to confirm that the
operators are correct so far.

A B C D | E | F G H
33 NODE DEFLECTIONS (mm )
34 -1.303 | 3.5652 | 6.813 1 7.955 | 6.813

35 | -3937 0 3.9371 16.6923 17.6738 | 6.6923 : 3.9371 0
36 | -1.782 11.3026 {45230 :6.8734 i7.7266 | 6.8734 { 4.5230 i 1.3026
37 | -1.001 11.8038 :4.7791 {6.9814 {7.7866 | 6.9814 { 4.7791 i 1.8038
38 | -1.782 | 1.3026 : 4.5230 | 6.8734 { 7.7266 | 6.8734 { 4.5230 { 1.3026
39 0 3.9371  6.6923 § 7.6738 { 6.6923 } 3.9371 0

The above solution required 1194 iterations to reach convergence to less than
0.0001 mm change in deflections. The reader can confirm by hand calculation
that moments along all edges are zero, and that the interior and free edge plate
operators are correct.
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6.4 Addition of beams to the structure

The edge beams can be added to the primary structure in two stages. This
allows us to verify the formulation of each stage and see the effect of each
additional constraint.

6.4.1 Beam flexural reaction forces

The beam force/deflection operator from section 2.4.1.2 was placed in cells C18
to E18 and included a smoothing function identical to the one used in section
5.4.4:

A | B | ¢© D | E | F G H ] 1 J
16 |Reaction from edge beam: Smoothing factor: Sb=§ 17.264 (Sb-1)/Sb = 0.94208
17
18 R(i) = 39.66 27.04 25.44 KN
19 ] R(i-1)= 39.66 27.04 25.44 KN

The formula was entered in cell C18 and before being copied to cells D18 and
E18. The formula in cell C18 with the smoothing function highlighted for clarity
is:

"=$1$8*(6*C35-4*(B35+D35)+A35+E35)/$G$16+C19*$J$16"

Cells C19 to E19 were set equal to the values in cells C18 to E18 as required
by the smoothing function.

The reactions in cells C18 to E18 were applied to the plate by summing them

with the node loads in cells C28 to E28. The free edge operator in cells C36 to
E36 was modified in the same manner as in section 5.4.2.

After 425 more iterations the solution converged to the following deflections:

A B C D E | F G H
33 NODE DEFLECTIONS (mm )
34 -0.839 | -0.377 | -0.071 1 0.036 | -0.071

35 | -0.345 0 0.3450:0.5915{0.6803¢ 0.5915 | 0.3450 0
36 0.680 10.8392:1.0840{1.2811§1.3549; 1.2811 | 1.0840 i 0.8392
37 1.079 11.173341.3816{1.5600:1.6282{ 15601 { 1.3816 { 1.1733
38-1 0680 | 0.8392 { 1.0840 } 1.2811 { 1.3549 i 1.2811 | 1.0840 § 0.8392
39 0 0.3450 § 0.5915 i 0.6803 { 0.5915 { 0.3450 0
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6.4.2 Beam torsional reaction forces

Beam torsional reactions at the edge of the slab were calculated using the
torsional operator developed in section 2.4.2:

A | B | C D | E | F G H | 1 J
21 _{Moment from edge beam: Smoothing factor; St=§ 4.61111 (St-1)/St = § 0.89157
22
23 m(i)=| -14.584 3.626 2.547 2.238:kN-m/m
24 | m(i-1) = 0.000 0.000 0.000 0.000} kN-m/m

The equation in cell C23 ( copied to cells D23 and E23 ) includes the smoothing
function highlighted below:

"=2*$1$14*(-C34+C36+(B34-B36))/$G$21+C24*$J$21"

Since we know that beam torsion cannot occur to the left of cell B23 and the
fictitious deflection of node A34 is not known, the operator in cell C23 cannot be
copied to cell B23. Referring to section 2.4.2 we see that when torsion only
occurs to the right of a node:

Tog = CG/(2h2){Wie-Wyw+Wsw-Wse}
The slab edge moment which must be in equilibrium with this torsion will be
distributed along a length of h/2 at the corner. Therefore the value of the
distributed moment becomes:

my = 2CG/(2h3){We-Wiw+Wsw-Wse}

This was entered into cell B23, above, and incorporates the smoothing function:

"=$1$14*(-B34-D34+B36+D36+2*(C34-C36))/$G$21+C24*$J$21"
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6.4.2.1 Modification of fictitious point operators to include torsional

reactions from the beam

The edge moments calculated in cells B23 to E23 were added to the fictitious
deflection equations from section 2.3.1 which were placed in cells B34 to E34:

A B C D | E | F G H
33 NODE DEFLEGTIONS (mm )
34 -0.622 | -0.431 { -0.109 1 0.003 | -0.109

35 | -0.345 0 0.3450:0.5915:0.6803¢ 0.5915 } 0.3450 0
36 0.650 10.8392:1.0840;:1.281011.3548§ 1.2810 { 1.0840 } 0.8392
37 1.079 11.1733§1.38151.5600{1.6282{ 1.5600 { 1.3815 { 1.1733
38 0.680 1 0.8392 ; 1.0840 { 1.2810 § 1.3548 § 1.2810 { 1.0840 i 0.8392
39 0 0.3450 § 0.5915 i 0.6803 | 0.5915 { 0.3450 0

B34 contains the following formula which was copied into cells C34 to E34:
"=$1$13*B35-$D$11*(A35+C35)-B36-B23*$I$12"

Note that the boundary condition for the glab corner in the north-south direction
has changed. The composite structure ( beam and slab) remains simply
supported because the corner moments are equilibrated internally. However,
neither the siab nor the beam have simple supports since they each have
boundary moments. ,

6.4.2.2 mpatibility of deflections at the slab corner

The boundary conditions at the slab corner now include a moment in the north-
south direction so that the deflection in cell B34 no longer equals the negative
of the deflection in cell B36. If we use the slab moment operator from section
2.2.5 to calculate the corner moment in the east-west direction, we discover that
it no longer equals zero ( due to Poisson ratio effects of having bending in the
north-south direction ). We could use the fictitious deflection operator from
section 2.3.1 to calculate a new deflection for cell A35 get zero moment in the
east-west direction as well:

A B C D | E | F G H
33 NODE DEFLECTIONS (mm)
34 -0.622 i -0.431 § -0.109 0.003 § -0.109

35 | -0382 0 0.3450:0.5915:0.6803} 0.5915 { 0.3450 0
36 0.680 10.8392:1.084011.2810:1.3548; 1.2810 { 1.0840 § 0.8392
37 1.079 11.1733§1.3815;1.5600{1.6282¢ 1.5600 { 1.3815 § 1.1733
38 0.680 | 0.8392 § 1.0840 ;| 1.2810 { 1.3548 { 1.2810 { 1.0840 } 0.8392
39 0 0.3450  0.5915 { 0.6803 ! 0.5915 { 0.3450 0
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The operator for beam bending moments developed in section 2.4.1.1 doesn't
incorporate Poisson's ratio effects in the transverse direction like the slab
moment operator does. It will calculate a beam bending moment at the support
because the deflection in cell A35 no longer equals the negative of the
deflection in cell C35. The formula for the beam moment at the support was
placed in cell B18:

A | B | C D | E | F G H | | J
16 |Reaction from edge beam: Smoothing factor: Sb=}{ 17.264 (Sb-1)/Sb =} 0,94208
17 }lteration Mx R R R
18 | current: ] 42.80 | 45.29 45.85 46.01
19 last: 45.29 45.85 46,01
20 KN-m KN KN KN

Cell B18 references the slab deflections and beam stiffness as follows:
"=18/15*(2*B35-A35-C35)"
The beam end moment was quite large because it is much stiffer than the slab.

For obvious reasons a smoothing function is needed for the beam bending
formula:

A | B | C D | E | F | G | H [ 1T [ J

16 ! Reaction from edge beam: Smoothing factor: Sb={ 17.264 (Sb-1)/Sb = § 0.94208
17 |lteration Mx R R R

i8 | current: | 2.48 42.81 45.85 46.01

19 last: § 248 45,29 45,85 46.01

20 KN-m KN KN KN

The formula in cell B18 was changed to:

"=18/15*(2"B35-A35-C35)/$G$16+B19*$J$16"

Cell B19 was set equal to the value in cell B18 as required by the smoothing
function highlighted in the above formula.

In order for the composite structure to have a simple support in the east west
direction, the beam end moment must be in equilibrium with the slab edge
moment at the corner. The beam moment is distributed over h/2 width of slab at
the corner so it must be multiplied by 2/h to obtain m, for the fictitious deflection

operator in cell A35:

"=$1$13"B35-$D$11*(B34+B36)-C35+B18*$1$12*2/15"
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6.4.3 Increasing the torsional smoothing factor

When the spreadsheet was iterated after the above modifications had been
made, the solution started to diverge. The Author correctly assumed that it had a
cause similar to what was encountered in section 5.4.3. A little experimentation
showed that the divergence occurred because the beam torsional reactions
weren't sufficiently damped by the smoothing factor in cell J22.

The reader should note that the size of the smoothing factor doesn't change the
deflections that the solution ultimately converges to. It does, however, affect the
number of iterations taken to achieve the solution because it slows down the
transfer of forces between the beam and the slab. We must be careful, then, not
to arbitrarily pick a huge number such as 1,000,000 because a lot of iterations
might be needed to reach the desired accuracy.

Intuitively, the stiffness ratio can be used as a guide when picking a smoothing
factor. It can be increased when and if the solution doesn't converge.

We could try doubling the value of the torsional smoothing factor:

D | E | F G
21 Smoothing factor: St=§ 9.22222

The new smoothing factor of 2CG/hD was sufficient to damp out the torsional
"over reactions” so the following solution was obtained:

A B C D | E | F G H
33 N NODE DEFLECTIONS (mm )
34 -0.670 | -0.372 § -0.128 § -0.037 ! -0.128

35 | -0.343 0 0.3424 :0.5868 :0.6748 : 0.5868 { 0.3424 0

| 36 | 0615 10.8032 [1.0722 :1.2872 11.3675 { 1.2872 } 1.0722 i 0.8032
37 1.007 11.1313 $1.3673 11.5675 i1.6438 ! 1.5675 { 1.3673 § 1.1313
38 0.615 | 0.8032 ¢ 1.0722 | 1.2872 i 1.3675 { 1.2872 { 1.0722 §{ 0.8032
39 0 0.3424 : 0.5868 { 0.6748 | 0.5868 | 0.3424 0
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6.4.4 final solution of the rectangular slab with edge beams having
both flexural and torsional stiffness.

After convergence of the deflections, equations from section 2.2.5 were entered
to calculate plate bending moments in the north west quadrant:

A_| B | € | D E | F | G | _H [ 1 J
1 _|Solution of a rectangular plate with two free edges and two edge beams, simply supported
2 Mesh size = 4X6
3
4 Short span length: LS = 4.000{m Long span length: LL = 6.000: m
5 Slab thickness: t = 0.300|m i Grid spacing: h = 1.000im

| 6 Uniformly distr. load: g = 20.0| kN/m~2 Node load duetoq: Pg=§ 20.000{kN

7 § Beam weight: W = 12.0]kN/m Node load dueto W: PW =i 12.000{kN
8 | Beam moment of inertia: | = 0.040{m"4 Bending stiffness: EI/h*3 =i 1160.0tkiN/mm
9 | B'mtorsional constant: C=] 0.025|m*4 Torsional stifiness: CG/NA3 =1 309.81 KN/mm
10 Young's Modulus: E = 29.0|CGPa Shear Modulus: G=3 12.393{GPa
11 Poisson's Ratio: W = 0.170 D= 67192:kN-m
12 h*2/D =$ 0.01488{ mm/kN
13 2421 = 2.340
14 lterations/100000 = §{ 0.01911 CG/2h*3 = 154.9:kN/mm
15 i i
16 |Reaction from edge beam: Smoothing factor: Sb = 17.264 (Sb-1)/Sb = { 0.94208
17 |lteration Mx R R R
18 | current: 0.74 45.06 4512 45.41
19 last: § 0.74 45,06 45.12 45,41
20 KN-m KN KN KN
21 |Moment from edge beam: Smoothing factor: St = § 9.22222 (St-1)/St = ¢ 0.89157
22

23 m{) =] -8.968 0.060 2.768 3.311ikN-m/m
24 | m(i-1)=§ -8.968 0.060 2.768¢{  3.311ikN-m/m

25
26 LOADS AT NODES OF THE PRIMARY STRUCTURE (kN
27 0 22 22 22 2 22 0
28 10 20 20 20 20 20 10
29 10 20 20 20 20 20 10
30 10 20 20 20 20 20 10
31 0 22 22 22 22 22 0
32
33 NODE DEFLECTIONS (mm )
34 -0.670 § 0.372 | -0.128 | -0.037 1 -0.128

35 | -0.343 0 0.3424:0.5868:0.6748¢§ 0.5868 | 0.3424 0

36 0.615 10.8032:1.0722:1.2872:1.3675§ 1.2872 | 1.0722 §{ 0.8032
37 1.007 11.1313£1.367311.5675:1.64383 1.5675 | 1.3673 { 1.1313
38 0.615 | 0.8032 § 1.0722 ¢ 1.2872 ¢ 1.3675 § 1.2872 } 1.0722 | 0.8032

39 0 0.3424 & 0.5868 i 0.6748 i 0.5868 { 0.3424 0
40

41 jmx -1.48 6.40 10.68 12.05

42 |kN-m/m 0.00 8.60 13.85 15.54

43 0.00 9.15 14.73 16.56

44

45 |my -8.97 0.06 2.77 3.31

46 |kN-m/m | 31.01 29.83 29.76 29.81

47 42.81 40.07 ¢ 39.09 38.88

Figure 22: Solution of rectangular slab with flexural and
torsional edge beams
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6.4.5 Check of statics

Agreement with static equilibrium is not a proof of the accuracy of our
spreadsheet solution. However, any solution which is statically admissible is at
least an acceptable lower bound model of the real behavior of the slab-beam
system.

At midspan in the east-west direction, the sum of the slab and beam moments
must be:

M = WI2/8 = (2*12kN/m + 20kN/m2*4m)(6m)2/8 = 468 kN-m
At midspan in the north-south direction, the slab moments are:
>M = WI2/8 = (20kN/m2*6m)(4m)2/8 = 240 kN-m

Finally, the torsion in the edge beam, which equals the edge moment applied to
the slab, must sum to zero along the beam.

Formulas entered into the spreadsheet gave the following results which agree
with statics:

A B C D E | F | G H [ J
49 Statics Check
50 moments in x direction at midspan moments in y direction at midspan
51 i slab= 59.701kN-m slab=1 240.00{kN-m
52 2beams =} 408.30ikN-m
53 total = ¢ 468.00ikN-m edge moments from beam = 0.00ikN-m
54 ; ¢ §

The formula used to sum the slab moments assumed that the distributed
moments and torques varied linearly from node to node. Therefore, if we have
"n" nodes spaced a distance "h" apart with a moment "m;" at each node:

SM=h(my/2+my+ Mg+ ... +M,q+m/2)

Taking advantage of the symmetry, the formulas in cells C51, H51, and H53
were:

C51: "—$I$5*(E43+E41+2*E42)"
H51: "=$I$5* (B47+E47+2*(C47+D47))"
H53: "=$I$5*(B45+E45+2*(C45+D45))"

The longitudinal bending moment at midspan of the two beams was calculated
in cell C52 by using the deflections along the north edge of the slab in the beam
bending moment operator from section 2.4.1.1:

Ch2: "=2"18*15*(2*E35-D35-F35)"

Interested readers can get the same result by applying the end moment and
point loads from cells B18 to E18 on a simply supported, 6m long beam.
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7. DISCUSSION OF RESULTS

7.1 Spreadsheet solutions

The preceding chapters have shown that the spreadsheet/iterative solution to to
elastic plate bending is a practical approach to this important class of
problems.The examples shown in chapters 4, 5, and 6 can be modelled and
solved in under an hour once the user is familiar with the techniques and
operators involved.

Plate, beam, and boundary operator equations are graphically visualized by the
user because they can be formulated by "pointing" to the nodes on the mesh
represented by the spreadsheet cells. These same formulas are easily copied
to other cells ( or even other spreadsheet models ) and modified as necessary
to incorporate various beams or other boundary conditions.

7.2 Solution accuracy

Section 4.6 compared the accuracy of the spreadsheet/iterative solution for a
simply supported plate against the classical Navier solution. The iterative
technique gave satisfactory results for a reasonable number of unknowns and
iterations. Two factors control the solution accuracy:

a) The mesh refinement controls the ultimate accuracy which can be achieved if
the interdependent system of plate operator equations could be solved exactly.
Solutions for the simply supported square plate were within 5% of the Navier
bending moments at midspan using meshes as coarse as 4x4.

b) The number of iterations that are performed controls how closely the
spreadsheet converges to the "true" solution for the particular mesh refinement.
Changes in the deflected shape between subsequent iterations can be used to
establish when to stop iterating. The convergence criteria needs to be several
decimal places finer than the desired accuracy of the solution, and depends on
the rate of convergence ( which is related to the number of unknown deflections
to be solved. )

7.3 Convergence of iterative finite difference

solutions

In the experience of the Author, once the spreadsheet model was correct, it
always converged to a solution. Section 5.4.3 discusses saving frequent
backup copies of the spreadsheet, particularly before commencing iterations, so
that a solution which has diverged to ( infinitely ) large deflections can easily be
recovered.
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The author was able to develop a handy Excel® command key macro to reset
the displayed cell values zero without changing their underlying operator
equations. This was not only useful for recovering from diverged solutions but it
gave a consistent basis when comparing the number of iterations required to
converge to a specified solution accuracy. .

Two situations were encountered where a finite difference formulation failed to
converge. The steps taken to correct the model are detailed below:

a) Errors in the operator formulas were a common cause for the spreadsheet
model to diverge as the iterations progressed. The errors were usually found by
performing hand calculations on the diverged deflections and carefully
examining the formulas in any cells which didn't agree with the hand
calculations. A common error when superimposing a beam's reactive moments
and forces on the primary structure, was to apply them in the wrong direction so
that they increase rather than restrain the deflections.

b) When a beam was superimposed onto the slab model by using the reaction
between the beam and slab for compatible deflections, the difference in
stiffness between the beam and the slab caused the iterations to quickly
diverge. Sections 5.4.3 and 6.4.3 discuss a smoothing function which was
applied to the model to damp out extreme flexural and torsional reactions from
the beam. The required magnitude of the smoothing factor appears to be
related to the ratio of beam to slab stiffnesses. For the examples in chapters 5
and 6, making the smoothing factor equal the beam to slab stiffness ratio was
sufficient to achieve a solution when a flexural beam was added to the model.
When a torsional beam was added to the model in section 6.4.2, the smoothing
factor had to be greater than the torsional stiffness ratio. Increasing the
magnitude of the smoothing factor does not change the solution which the
spreadsheet eventually converges to, but does affect the number of iterations
required to get there.

7.4 Other uses for the spreadsheet/iteration
technique

The solution method used in this paper may be applied to many other classes of
engineering problems, including flow nets for groundwater seepage, slope
stability analysis, and heat transfer equations. Any problem which can be
formulated to relate the state at one node to the states at surrounding nodes on
a regular mesh could potentially be solved iteratively on a spreadshest.
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Within the class of elastic plate bending problems examined in this paper, there
are many areas which couid be explored further:

- Operators can easily be developed to calculate the relationship between a
moment applied at the end of a column and the resulting rotation. Using the
compatibility approach developed in this paper, the moment reaction from a
column could be applied to the slab (and smoothed if necessary ) to
incorporate columns with finite stiffness into the model.

- All of the example problems explored in this paper were at least doubly
symmetric. Non-symmetric problems can easily be formulated but will have
more deflection unknowns to be solved. For instance, "simple" column
supports at the interior of a slab can be placed at random locations by
setting the deflection of those nodes to zero. It also might be interesting to
calculate the deflected shape and stresses in the structure analyzed in
chapter 6 if one of the corners is given a differential settlement by specifying
a non zero deflection.

- Three dimensional rectangular storage containers with hydrostatic loading
can easily be modelled since the deflections adjacent to the corners on each
face of the structure are related to each other by compatibility of slopes and
moment equilibrium.

- Cantilever slabs can be analyzed using the free edge and corner operators
developed in section 2.3.4.

7.5 The effect of future improvements in
microcomputers

The only practical limitation on the use of this method is the number of iterations
required to converge to a satisfactory solution. Chapter 4 showed that the
Maclintosh® microcomputer used by the Author could solve about 30 unknown
deflections to an accuracy of 1% in under an hour. Newer models of all makes
of computers are starting to use faster processors and co-processors to achieve
hundredfold increases in computing speed. The next generation of
microcomputers might practically solve several hundred unknowns in the less
than an hour. As the technology improves, standard spreadsheet programs will
be able to analyze many complex structures which can only be solved using
dedicated finite element programs at the present time.
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