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ABSTRACT

Global soil moisture data from seven global climate
models (AES, GISS, GFDL, OSU, UI, NCAR and UKMO) were
obtained from the models’ developers, and Alberta soil
moisture values were extracted. For each model, the 1XC02'
and 2XCO2 simulation runs were compared. The models were
also compared with each other. Observed Alberta spring and
fall stubble soil moisture measurements were obtained from
Alberta Agriculture and converted to model units. Observed
soil moisture means and standard deviations were calculated
for each model’s Alberta grid, for each spring and fall that
observed soil moisture values were available. The observed
means were compared with the values of model 1XCO2
simulations.

The results showed that all the models (except NCAR)
had similar annual variations in both the 1XCO, and 2Xco,
runs. They exhibited an increase in soil moisture during
spring, a decrease in late summer and a fairly constant soil
moisture during winter. The UI model displays the closest
1Xco,, simulation match to the observed spring and fall
means. The AES model runs an order of magnitude wetter than
the other GCMs. The UKMO model shows an incorrect surface
type for some areas of the province. All the models (except
AES) showed an increase in winter 2XCO2 soil moisture
compared to 1XCO, simulations and a decrease in summer 2XCO,

soil moisture compared with 1XCO,.
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Chapter 1

1.1 Introduction

Worldwide monitoring gives concrete evidence that the
composition of our atmosphere is changing (Ramanathan et
al., 1985). The increasing concentration of coz, water
vapour, and some 30 additional radiatively-active trace
gases in the atmosphere is resulting in a change in the
radiation budget and thus a general warming at the surface
of the earth. This global warming, commonly referred to as
the "greenhouse effect", has potentially far-reaching
impacts on global ecosystems, agriculture and water
resources in the near term (Bach, 1988).

Climate impact studies assess the consequences for
society of climate variability caused by anthropogenic
sources (Bach et al., 1985). There are two major assessment
approaches. Using climate modeling (e.g. general
circulation models) to contruct climate scenarios to
guantitatively assess regional and seasonal patterns of
climate change induced largely by CO, is the "physical"
method of assessment (Bach et al., 1985). The second main
approach to assess climate change is the "analogue" method
(Lough et al., 1983). This method uses regional and
seasonal climate patterns based on instrumental data to
build analogues for global warming scenarios. Bach (1988)

discussed the advantages and disadvantages of both methods.



The physical method, considered in this thesis, has the
advantage of describing past and present climates in a
physically consistent manner, as well as showing climate
response to a change in some external forcing, such as

through CO Bach emphasized that both the analogue and

o°
physical methods, and the interpretation of the results
derived from them must be approached with caution, since
they are beset with many difficulties.

Climate impact researchers use global climate model
(GCM) results in their scenarios of a warmer future climate
and its efrects on regional agriculture, forestry,
recreation and the economy. However, if the model’s
simulation of 20th century climate is not accurate, one
cannot put much confidence in the forecasts made by the
model. According to Walker (1991), a number of independent
critical studies have tried to validate the regional output
of climate models and all have concluded that the models
fail to adeqguately simulate the present climate. Walker did
not reference which studies these were or for which regions.
Moreover, he suggested that the climate change impact
studies "throw all the uncertainties out the window".

The objective of this thesis is to examine Alberta soil
moisture in seven of the most referenced global climate
models (AES, GFDL, GISss, 0SU, UI, NCAR and UKMO), comparing
them with one another and with observed Alberta soil

moisture. The global climate models had been run both with

currentc CO2 concentrations (1XC02) as well as with double



the present Co2 concentrations (2XC02). The output from
these model runs has not heretofore been examined with a
view to soil moisture in Alberta. Consequently, this study
provides a unique opportunity to show which models predict a
decrease or an increase in soil moisture amounts with future
climate warming, at what time of year they predict this, and
for which areas of the province. By comparing the 1Xco,
model results with observed Alberta soil moisture, it is
also possible to obtain some measure of validation of the
models.

An examination of soil moisture was undertaken because
it is more important than temperature and precipitation in
determining where things grow (Kellogg and Zhao, 1988) yet
is virtually ignored in GCM studies in favor of temperature
and precipitation results. Alberta was chosen as the area
of study because of its importance as an agricultural
province and because no research has been conducted in this
field for this region. Seven GCMs were selected for the
study because regional comparisons between no more than two
GCMs had been found in a study of the related literature
(though, in some cases, comparisons between multiple
versions of the same model were made). The seven particular
models used in this paper were chosen because they appear to
have the greatest profile, documentation and use. In
theory, this should facilitate the acquisition of model

data. Unfortunately, experience contradicted this naive

assumption.



1.2 Literature Review

A complete review of GCM modelling could take thousands
of pages, so this literature review is limited to studies of
GCM results for Canadian prairie provinces and existing
comparisons amongst GCM soil moisture simulations.

The concern over global climate change projected by
GCMs has resulted in numerous Canadian impact studies:
estimating effects of climate change on agriculture in the
prairie provinces (Arthur, 1988}, implications of climatic
change for agriculture in Ontario (Smit, 1987), the effects
of a sea level rise at St. John, New Brunswick (Martec,
1987), and at Charlottetown, Prince Edward Island (Lane,
1988), implications of climate change for downhill skiing in
Quebec (Lamothe and Periard, 1988), economic perspectives on
the impact of climate variability and change (Timmerman and
Grima, 1988), implications of climatic change for tourism
and recreation in Ontario (Wall, 1985), estimating effects
of climate change on agriculture in Saskatchewan (Stewart et
al., 1987), climatic trends and the effects of weather
variability on wheat yields on the Canadian Prairies
(Stéwart, 1987), a socio-economic assessment of the physical
and ecological impacts of climate change on the marine
environment of the Atlantic region of Canada (Stokoe, 1987),
climate variability and the immediate concern for prairie
agriculture (Shaykewich and Dunlop, 1987), and an overview

of the effects of climatic change and climatic variability



on forest vegetation in Western Canada (Singh and
Higginbotham, 1987). The canadian Climate Centre of
Environment Canada has sponsored these studies and others as
part of its Canadian Climate Impacts Program (Environment
Canada, 1987). Arthur (1988) reported that the prairie
regions would not suffer substantial crop losses and that
with minor adjustments to crop management the losses to all
crops could be attenuated or avoided entirely. Arthur based
her study on temperature and precipitation changes using the
GISS and GFDL models. She stated that in Alberta the GFDL
crop losses associated with the ZXCO2 scenario could be
attenuated by shifting cropping patterns. sSmit (1987) also
used the GISS and GFDL models for his study of the
implications of climate change for agriculture in Ontario.
He expected that a 2XCO2 climate change could have
"profound" effects on Ontario’s agri-food sector, with
production diminishing for many common crops. Smit used
mean daytime temperature, poﬁential evapotranspiration and
precipitation output from the two GCMs.

In estimating the effects of climate change on
agriculture in Saskatchewan, Stewart et al. (1987) used the

GISS 2XCO. temperature and precipitation predictions and

2
compared them with 30-year normals for the province. They

wrote that the lxco2 model climate did not resemble the
actual Saskatchewan climate, and consequently they replaced
it for comparison purposes with the 1951 to 1980 normals.

Stuart (1991) studied climate and climate change in the



Mackenzie Basin using the surface air temperature and
precipitation output of the GISS, GFDL and OSU models for
that region. Stuart mentioned that because of the poor
horizontal resolution of the models, the Basin failed to
show up in any model’s surface topography. The variability
(standard deviation) in the mean of the monthly temperature
and precipitation amounts was so large for each model that
the differences may not be statistically significant.

These impact assessments are well intentioned, but
typically they use data from only one or two GCMs (usually
the GISS and GFDL models), without knowing which model does
a better job of simulating the present climate. The
assessments evaluate the impacts of only one or two of the
climate variables modelled by the GCMs (usually temperature
and precipitation). Soil moisture is often completely
ignored. 1In a U.S. EPA-sponsored report on the impacts of
climate warming on water availability and hydrology in the
U.S., prepared by the NASA Goddard Space Flight Center (Rind
and Lebedeff 1985), a consideration of soil moisture is
partially absent from the assessment. In addition, although
the authors are mindful of the shortcomings of GCMs, they
base their impact assessment of the large field of water
resources on only one GCM, their own GISS model.

An investigation of the annual variation of temperature
and precipitation in three GCMs (GISS, GFDL and OSU) was
recently made for Alberta (Wong et al., 1988). The models’

projections of the changes in the Alberta temperature and



precipitation fields due to a doubled atmospheric carbon
dioxide concentration were also studied. However, soil
moisture was again not considered. Their comparison of the
models’ predicted monthly mean temperatures with those
observed showed the models’ temperatures differing by up to
3°C from the observed temperatures at grid points averaged
over the province (predicted often being warmer than
observed). There also exists a lag time of about 1 month
petween the models’ annual temperature time series and the
observed series. The OSU model most closely simulated the
observed data. The GISS model’s temperature profiles
closely resemble the shape of the observed temperature
profiles but show a greater lag and a higher summer
temperature than the OSU model. The GFDL model consistently
exhibits higher peak temperatures than do OSU and GISS (by 1
to 3°C). OSU had the highest index of agreement for
southern Alberta (0.87), northern Alberta (0.87) and all of
Alberta (0.88), followed by GISS and GFDL (see Table 1).

The index of agreement (d) is a measure of the degree to
which a model’s predictions are error free (Willmott, 198i).
It varies between 0.0--indicating one of a variety of
complete disagreements--and 1.0, which indicates perfect

agreement between the observed and predicted observations.



index of agreement, d=1~- i=1 (Pi - 0)°
N 1.2.1
IR IAEICINES
1=1

where P = predicted variates, O = observed variates,

P’, = P, - O and 0/; = O, = O (where O is the observed mean)

The agreement between the observed and predicted
precipitation in Alberta was far poorer than the temperature
agreement. All of the models produced more precipitation
than observed throughout the year. The exception is 0OSU
which produced less precipitation than observed during
summer and winter. The GFDL model exhibited the best index
of agreement for precipitation in southern Alberta (0.34),
northern Alberta (0.37) and all of Alberta (0.40), followed
by GISS and OSU. For the index of agreement, the sums are

done with monthly means.

Table 1
Comparisons of GCM Results With
Observations of Normal Climate for Alberta
(Based on Wong et al., 1989)

GCM TEMPERATURE COMPARISONS
ALL ALBERTA NORTH ALBERTA SOUTH ALBERTA
GISS GFDL OSU GISS GFDL OSsU GISS GFDL OSU
CORRELATION 0.99 0.94 0.97 0.99 0.93 0.97 0.97 0.93 0.96

INDEX OF
AGREEMENT 0.83 0.81 0.88 0.86 0.83 0.87 0.88 0.82 0.87

GCM PRECIPITATION COMPARISONS
ALL ALBERTA NORTH ALBERTA SOUTH ALBERTA
GISS GFDL OsU GISS GFDL OSU GISS GFDL OSU
CORRELATION 0.92 0.67 0.35 0.90 0.51 0.34 0.83 0.80 0.24

INDEX OF
AGREEMENT 0.37 0.40 0.28 0.36 0.37 0.27 0.30 0.34 0.33



The report of Wong et al. is extremely useful in that
it intercompares GCMs, compares their output with observed
climate variables, and does this for Alberta. Soil
moisture, however, considered the most important parameter
in determining where things can grow (Kellogg and Zhao
1988), was not assessed. This was an unfortunate oversight,
considering Alberta’s agricultural requirements, and one
which this thesis proposes to redress.

Why is soil moisture rarely examined in impact
ascessments? First, it is more difficult to acquire and
assemble soil moisture data from model archives. Soil
moisture is obtained from secondary model calculations. The
temperature and precipitation variables are primary rather
than secondary variables (generated from the primary
variables). Secondary model parameters are calculated by
GCMs but they are not always included in the data archives.
It is also less time consuming to acquire these data for
only a few GCMs rather than for the seven considered in this
thesis, although this is not a problem specific to the soil
moisture parameter. Finally, some researchers, such as the
authors of the Goddard-EPA report, make the mistake of
assuming that temperature and precipitation are the most
important variables to consider in impact assessments.

Some previous considerations of soil moisture in the GCM
models appeared, for example, in a paper describing the

sensitivity of soil moisture in North America and Asia to

the doubling of CO, (Kellogg and Zhao, 1988). The authors



considered the NCAR, GFDL, GISS, UKMO and OSU models, but on
a continental scale rather than a regional scale. The AES
and UI model results, not available at the time, were not
included. Part I of the paper dealt with soil moisture
changes over North America due to CO2 doubling. The paper
provides low-resolution maps of soil moisture changes on a
continental scale and does not examine soil moisture data
for individual grid points or for Alberta. Kellogg and Zhao
(1988) also considered the sources of observed soil moisture
data and mentioned the desirability of comparing a model’s
1Xco, soil moisture distribution with the real distribution.
They recognize a serious problem in knowing what the real
distribution is, since it is rarely measured directly and
must be deduced indirectly. Xellogg and Zhao discussed the
general characteristics of the five GCMs and their soil
moisture algorithms. They came to the following general
conclusions about the sensitivity of soil moisture in the
models based on monthly mean GCM data. First, the 1XCO2
models do not perform well in simulating the seasonal
changes of observed soil moisture. They found modest
agreement in the large-scale regional increases that occur
in winter, but relatively poorer agreement with the summer
changes. Kellogg and Zzhao also concluded that the
modellers’ high degree of confidence in their own individual
soil moisture climates was not justified in an absolute
sense when soil moisture predictions are compared with real

data. They found, however, that there was some useful
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information in the results. For example, evidence pointed
towards a Coz—induced jincrease in soil moisture in winter in
the middle and high latitudes of North America, including
Alberta. Results of the comparison for summer tended to
show a decrease in soil moisture for the prairies. Soil
moisture is the result of a near-balance between
precipitation and evaporation. Evaporation is largely
dependent on surface temperature. Kellogg and Zhao suggest
the drier summer results are consistent with the mean

temperature increase at higher latitudes.

Meehl and Washington (1988) of NCAR compared the
soil moisture sensitivity of two GCMs (NCAR and GFDL). In
this paper, the authors used soil moisture-cloud-
precipitation feedback mechanisms to explain the models’
results and differences. The authors mentioned that the two
models reach soil moisture saturation at different times in
the control (1XC02) runs (GFDL earlier than NCAR).

According to them, the extent of summer dryness with
increased CO, is determined by how close the control runs
are to saturation in the spring. The closer the NCAR model
is to saturation in late winter and spring in the control
run, the greater the summer dryness with increased CO,!

This paradox is difficult to explain because the NCAR and
GFDL models use different field capacities, and this changes
the time at which soil becomes saturated in the models,
making soil moisture intercomparisons difficult.

Meehl and Washington also mentioned that adjustments

11



made to the surface drag coefficient and land albedo can
affect soil moisture amount. Evaporation affects soil
moisture, ard adjustments of the surface drag coefficient
could increase or decrease evaporation, which could lead to
an increase or decrease in soil moisture. The NCAR GCM uses
a non-zero surface wind constraint for evaporation. In low-
wind situations, this increases the evaporation and results
in lower soil moisture. A higher land albedo results in a
decrease of absorbed solar radiation at the surface and a
corresponding decrease of surface temperature. The authors
associate these changes with increases in precipitation, low
cloud, and soil moisture. The adjustments are made when the
model’s control run does not accurately simulate the
observed climate. Different GCMs use different values for
these parameters. They point out that global soil moisture
in the NCAR model are significantly less than that in the
GFDL model in spring. Also, the increase in soil'ﬁoisture
in the NCAR model in winter and spring is much greater than
that in the GFDL model. This is somewhat misleading. It
does not mean that the NCAR model receives more
precipitation in winter and spring. The GFDL model is
already close to saturation in winter and spring, hence any
additional precipitation due to CO, warming results in
runoff. The confusion is caused by Meehl and Washington’s
loose usage of the term "deficit". To a hydrologist, a soil
moisture deficit occurs when cumulative evaporation is

greater than cumulative precipitation, resulting in a

12



reduction of soil moisture storage below some long-term
average. Meehl and Washington, however, appear to think of
a soil moisture deficit as occurring if the modelled 2XCO,
soil moisture drops below that simulated in the control run.
In other words, they use the term "deficit" to refer to what
should rather be described as a negative soil moisture
anomaly.

Manabe and Wetherald (1987) also investigated the
large-scale (North American) changes in soil moisture
induced by an increase in atmospheric carbon dioxide. The
investigation was based on two versions of a GDFL general
circulation model of the atmosphere with a static mixed
ocean layer. The first version of the model specifies the
distribution of cloud cover. The second version computes
cloud cover and incorporates the interactions among cloud
cover, radiative transfer and the atmospheric circulation.
Results from both models showed that, in response to a
doubling (or guadrupling) of atmospheric C02, soil moisture
is reduced in summer (June, July and August) over extensive
midcontinental regions of North America. Over northern
Canada, the Coz-induced reduction of soil moisture results
from an earlier occurrence of snowmelt, followed by a period
of intense evaporation. During the GCM winter (December,
January and February) their simulations showed increasing
soil moisture with increasing carbon dioxide over most of
North America poleward of 30 °N. Their results differ from

those of Washington and Meehl (1984), whose NCAR model
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‘suggested a Coz—induced increase of zonal mean soil moisture
throughout the year in the middle latitudes of the Northern
Hemisphere. The magnitude of the NCAR models’s increase in
summer, though, was considerably less than its increase in
winter. Both models use the so-called "bucket" (15-cm field
capacity) soil moisture method. The GFDL model simulates
more snowmelt in winter and early spring and less in late
spring in 2XC62 runs compared with 1XCO, runs. Both models
also predict more runoff in early spring and less in late
spring. In comparing the 2XCO, and 1XCO, runs, however,
significant differences exist between the two models
(Washington and Meehl, 1988). The GFDL model indicates
winter and spring soil moisture close to saturation (15 cm).
The increased winter and spring precipitation with increased
CO2 therefore goes mostly to runoff. The NCAR model
predicts soil moisture much less than saturation, so that
similar C02-induced increases in precipitation are retained
in the NCAR "bucket" at most gridpoints, with less runoff
than in GFDL. Both models predict similar increases in
springtime evaporation. Washington and Meehl mentioned the
lack of appropriate observed data as one critical factor
prohibiting the verification and calibration of the soil
moisture parameterization in the models. Other factors
include the highly parameterized hydrology in the models and
the complexity of hydrological processes in the real world.

They suggest that the NCAR model underestimates and that the

GFDL model overestimates summer soil dryness due to
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increased coz.
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Chapter 2
DESCRIPTION OF GLOBAL CLIMATE MODELS

2.1 Introduction

So far, GCMs are considered to be the most appropriate
and most sophisticated means to analyse whether and how
climate may change when some climatic variables do.
Specitically, the variable of greatest concern in recent
years is the increase in the concentration of atmospheric
carbon dioxide. These models which are used by climate
impact assessors, have been reviewed in Chapter 1.
Unfortunately, a high degree of sophistication does not
necessarily imply results with corresponding validity.
Climate impact assessors will sometimes use GCM results
without fully understanding how these results were obtained,
how they differ from model to model, and whether the GCM
variables being examined are the best ones for the
researchers’ purposes. Impact assessors may tend to trust
the relative sophistication of three-dimensional, dynamic
GCM models (compared, for example, with simple heat balance
climate models or models with only one or two dimensions).
They also have a tendency to take the results of a single
GCM model at face value and incorporate them into an impact
forecast. In some instances they may use the results of the
perturbed GCM run (GCM experiments using double or quadruple
CO. concentrations) without first verifying how well the

2
control run (1xc02) results simulate current climate.
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Although the researcher may have neither the time nor the
endurance to assemble and compare the results, variables,
requirements and characteristics of the various GCM models,
this really should be done if the model predictions are to
be used for climate impact assessment.

One GCM variable rarely considered in comparisons of
the models is soil moisture. This is strange in view of the
fact that soil moisture is considerably more important than
temperature in determining where things can grow (Kellogg
and Zhao, 1988). Even though the temperature range may be
within plant growth tolerance, growth will not occur if
there is insufficient soil moisture available to the plants.
It is necessary for this reason for climate impact assessors
to assign more importance to the role of soil moisture than
to the more commonly considered variables of temperature and
precipitation in their studies. It is also prudent that
they be made aware of the strengths, shortcomings and
differences in the way in which soil moisture is treated by

the various GCMs. The present thesis represents a first

step towards this goal.

2.2 Global Climate Models Defined

Comparisons will be made between seven Global Climate

Models (see Table 2) selected for being the most

comprehensive, evolving and well known models. Other two-
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and three-dimensional models exist, but they appear to be

used far less in climate impact studies than the seven

models shown in Table 2.

1)

2)

3)

4)

5)

6)

7)

Table 2

The Global Climate Models Compared in This Thesis

Model; Researcher(s); Laboratory Location; Version Year

AES; Boer, McFarlane, Laprise, Henderson, Blanchet;
Atmospheric Environment Service, Canadian Climate Centre,
Downsview, Ontario; 1990

GFDL; Manabe, Wetherald; Geophysical Fluid Dynamics
Laboratory of NOAA, Princeton; 1986

GISS; Hansen, Russell, Rind, Stone, Lacis, Lebedeff,
Ruedy, Travis; NASA’s Goddard Institute of Space Studies
New York; 1983

OSU; Schlesinger, Han, Gates; Oregon State University,
Corvallis, Oregon; 1985

UI; Schlesinger; University of Illinois, Champaign; 1988
NCAR; Washington, Meehl; National Center for Atmospheric
Research, Boulder, Colorado; 1984

UKMO; Mitchell; United Kingdom Meteorological Office,

Bracknell; 1987

A Global Climate Model (GCM), also referred to as an

Atmospheric General Circulation Model (AGCM) is a set of
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computer programs based on the equations of motion which,
"retain sufficient resolution to represent atmospheric
structure at synoptic and planetary scales and
include explicit representations of the main physical
processes that determine the atmospheric circulation
on seasonal and longer time-scales" (Boer et al.
1984).

The models consider thermodynamic physical processes such
as long and shortwave radiation, condensation, evaporation,
freezing and melting, etc. They also simulate ocean-
atmosphere interactions, with varying degrees of ocganic
complexity.

GCMs are similar to numerical weather prediction (NWP)
models, and in some cases derived from them. Although their
resolution is lower than that for NWP models (about 500 km
compared with about 100 to 200 km for NWP models) they
predict the same details as NWP models. These models should
correctly handle the climatic effects of variables such as
clouds and radiation, atmospheric moisture, precipitation,
ocean fluxes (currents) and land surface processes. They
attempt to correctly simulate feedbacks among these
variables. Then in a numerical experiment, if one parameter
(say, the amount of CO2 in the atmosphere) is changed, the
model can be used to determine what the response of the
earth’s climate will be. According to Chahine (1992), GCMs
are the basic tools for studying these exchanges, and are

valuable for forecasting weather up to 10 days. He mentions
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that GCM use for climate forecasting, though, is not as
developed. The models do not yet account for the full
hydrological cycle and its interaction with the atmosphere,
oceans and land.

In a GCM, the fundamental dynamical equations
describing large-scale atmospheric motion are coupled with
boundary conditions (land and ocean albedo, surface drag
coefficient, surface elevation, sea surface temperature and

sea ice) and other input such as solar radiation at the top

of the atmosphere.

2.3 GCM Characteristics

Once the parameters and initial conditions have been
set, the time variation of the input conditions is
determined numerically over a global network of gridcells.
The gridcells contain a gridpoint at the centre of each
cell. The input values at a gridpoint do not indicate the
condition at that discrete point, but rather they represent
the mean of the data over the cell for which that gridpoint
serves as centre. Figures 1 to 7 show the gridpoint spacing
(horizontal resolution) of each model over western Canada.
Within Alberta boundaries, this resolution results in 7
gridpoints for AES, 5 for GFDL, 3 gridpoints for the GISS
model, 7 for OSU and UI, 3 for NCAR and 2 for UKMO. The

global horizontal resolution for the models appears in Table
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3a. The calculations are then run until a statistical
equilibrium is achieved (the model’s time-averaged
statistics are no longer changing significantly). When we
speak of averaging times for the models to reach a kind of
equilibrium we are speaking of model time. Most of the GCMs
settle down to a steady state after 10 to 15 years, and the
climate statistics are developed after that, as the model is
run for 20 to 50 years or more. Some models (not the ones
compared in this thesis) have been run for several
centuries, but this is at a sacrifice of model complexity
and requires a lot of computer time. According to Kellogg
(in correspondence), this procedure had to be followed for
both the control run (1xc02) and the perturbed run (2XC02),
and the model response was then the difference. The model
provides the global spatial distribution of various climate
variables, and these can be compared with the present
observed climate (usually a 30 year period e.g. 1951-80) to
determine the accuracy of the model’s simulation. These
control runs can be changed to perturbed runs by altering
one or more parameters and determining how the variables
have changed once the model has again reached equilibrium.
This may be done by altering the parameter either
instantaneously (e.g. doubling the concentration of carbon
dioxide at the beginning of the run) or gradually throughout
the run, giving more realistic transient runs. From
correspondence with Kellogg, the former experiments are

referred to as "equilibrium experiments" as distinct from
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the latter, "dynamic experiments" run by more modern GCMs.
This thesis will consider how well the seven GCMs
simulate the observed soil moisture variable in control runs
(1 X co2) for Alberta and their projections of soil moisture
in Alberta for perturbed runs (2 X CO2). The GCM simulation
results were obtained from several sources, mostly the

modelling labs. Section 5.2 discusses the sources of the

data.
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Table 3a:
General Characteristics of the Seven Global Climate Models Considered”

Model Horizontal domain; Vertical domain; Horizontal Vertical
coordinates coordinates resolution resolution
(degrees) (layers)
AES global; latitude- surface to O mb; 3.75 lat by 10
longitude gx* 3.75 long
GFDL global; latitude- surface to 0 mb; 4.5 lat by S
longitude gk * 7.5 long
GISS global; latitude- surface to 10 mb; 8 lat by 9
longitude gx* 10 long
osu global; latitude- surface to 200 mb; 4 lat by 2
longitude o** 5 long
Ul global; latitude- surface to 200 mb; 4 lat by 2
longitude oxx* 5 long
NCAR global; latitude- surface to 0 mb; 4.5 lat by 9
longitude gxx 7.5 long
UKMO global; latitude- surface to tropo- S lat by 11
longitude pause; o** 7.5 long

*

Characteristics for GCMs except AES and UI based on Kellogg and Zhao
(1988)

*

o = (p~p_)/ (P -pt) where p is pressure, p, is the pressure at the top
of the mode&, and 2 is the surface pressure.
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General Characteristics of the Seven Global Climate
Models Considered

Table 3b:

Land/ocean Topoaraphy

distribution

Cloud distribution Insolation

in troposphere;

Model

AES

GFDL

GISS

osu

Ul

NCAR

UKMO

influence on
radiation

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

clouds are allowed
to form in each
layer; they affect
albedo and IR
radiative transfer

seasonal and
diurnal cycles

seasonal
cycle

seasonal and
diurnal cycles

seasonal
cycle

seasonal
cycle

seasonal
cycle

seasonal and
diurnal cycles

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

realistic

*
Characteristics for GCMs except AES and UI based on Kellogg and Zhao

(1988)

See Section 2.3 for meaning of "realistic" land/ocean distribution and
topography
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Table 3c:

Model

AES

osu

Ul

GFDL

GISS

NCAR

UKMO

General Characteristics of the Seven Global Climate Models

Considered’

Ocean

mixed layer

50 m deep;

prescribed seasonal
heat flux convergence
correction is applied
(see Sec. 2.3)

mixed layer
60 m deep

mixed layer
60 m Jdeep

mixed layer
SO0 m deep

mixed layer with
seasonally varying

depth is prescribed

from climatology

but with a maximum
allowed depth of

65 m; prescribed
seasonal ocean heat flux
convergence

mixed layer
50 m deep

mixed layer

50 m deep; pre-

scribed seasonal

ocean heat flux conver-
gence

*
Based on Kellogg and Zhao (1988)

25

Climate Averaging time
for 1 X €02 and
2 X CO2 results

The monthly averages
are calculated over the
last 10 years of each run

last 10 yrs. of
simulation

last 10 yrs. of
simulation

last 10 yrs. of
simulation

last 10 yrs. of
simulation

last 3 yrs. of
simulation, but last

7 yrs. for calculation
of significance

last 8 yrs. of
simulation for 1 X CO_,
last 5 yrs. for 2 X cé2
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2.4 Model surface Types

The five GCMs that were studied by Kellogg and Zhao
(1988) and are compared with two additional GCMs in this
thesis, involved rather low horizontal resolution (see Table
3a); nevertheless, the outlines of the continents and
positions of major mountain ranges were specified. From
correspondence with Kellogg, this is why the term
‘realistic’ is used to describe how the models introduced
topography. Some earlier models used highly idealized
topography, for example, just one continent. There are some
minor differences in the topographic data used, but these
differences are small compared to the problem of low
resolution. At the time GCM data were obtained for this
thesis, results from the current generation of GCMs with
better resolution were not available.

Without going into a treatise on ocean models, four of
the climate models used a simple mixed layer ocean model
that had about the right heat capacity to simulate the SST
(sea surface temperatures) changes between summer and
winter. The ocean temperatures were determined by the heat
flux at the surface, and there was no horizontal transport
of heat by the oceans, i.e., no ocean currents. In the case
of the GISS ocean model, another contraint was introduced,
and that was to preserve the present SST gradients. This
was an attempt to introduce the effects of ocean currents,

even though there were no actual currents in the model. It
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should be added at this point, that the current generation
of climate models by GFDL, GISS, NCAR and UKMO all have
circulating oceans with various degrees of complexity. ubhis
is a very fundamental improvement and one of the reasons the
new models should be compared once data are available.

The GISS model is the only one of the seven that allows
more than one type of surface (land, water, ice) to exist at
the same time within one grid box. The model allows for
four surface categories in each cell:

-land, no permanent ice (a fixed fractional coverage)

-land ice (glaciers, fixed coverage)

-ocean or lake ice (coverage varies)

-open water (ocean or lake, coverage varies).

Although the topography of the models generally
resembles the Earth’s, the Earth’s detailed elevation
structure is smoothed out in each model. This is not a
cause for concern in the relatively flat regions of Alberta,
but it is a problem in the mountains. For example, the GISS
model’s highest elevations are about 1800 m in the Rockies,
while the actual height of mcuntain ridgelines is more like
3400 m. Orographic precipitation can change rapidly near
hills and mountains and with it the amount of soil moisture
and runoff. The GCMs can reproduce the broader effects of
orographic precipitation but the impact assessor should be
aware that the soil moisture data at a gridpoint is an areal
mean and that the topography is idealized. Small-scale

topographic features that affect soil moisture, such as
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slope, aspect, peaks and valleys, are not resolved by the

models.

2.5 Model Temperature Sensitivity

The temperature sensitivity of a GCM is often
characterized by how much the equilibrium global mean
surface temperature is increased when the concentration of
co, is doubled. It is important to recognize that the CO,
increase does not directly cause the entire temperature
increase. Various feedback mechanisms raise the temperature
as well. For example, in the GISS model, the total global
mean surface temperature change of 4.2 C, associated with a
doubling of Coz, has been broken down as follows (Jenne,
1989) :

a. Temperature change at the surface due to the enhanced
greenhouse effect of the CO2 AaloNe..veeesccas cees. 1.6°C
b. Water vapor mass increaised by 33% in the total
atmospheric column and located at higher levels .. 1.6°C
c. A decrease of 1.7% in total cloud amount,
with some increase in cirrus clouds.

Cloud tops became somewhat higher........... ceeess 0.8°C

d. Changes in the surface albedo, mostly due to

a reduction in sea iCe....ceccerieenccccns ceeessses 0.4°C
Total 4.4:C
Actual surface temperature increase in the GISS GCM 4.2-C
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The temperature sensitivity of the other models is
quaiitatively similar to the above. Table 4 gives global
annual average differences in surface air temperature and
precipitation for the GCMs considered in this thesis. Table
5 gives changes simulated for the globe, the land area and

for the ice-free ocean for the AES model.

Table 4
Model Comparison of Global Results for 2xco,, Simulations
Showing Global Annual Average Differences in Surface Air
Temperature (T) and Precipitation (P) Simulated by GCMs

(Based on Env. Can., 1990)

Model Change in T (°C) Change in P (% 1xcoz)
AES 3.5 8%

GISS 4.2 11%

GFDL 4.0 9%

0OSU/UI 2.8 8%

NCAR 4.0 7%

TUKMO 1.9 to 5.2 2 to 15%

Table 5

Mean Annual Changes Due to Double 002 for the AES Model

(Based on Env. Can., 1990)

Variable Globe Land Ice Free Ocean
Percent of globe 100.0 29.0 63.5
Surface air temp. (°C) 3.5 4.4 2.7
Precipitation 3.8% 0.9% 4.3%
Evaporation 3.8% 3.8% 3.3%
Cloud cover -2.2% ~1.9% -3.3%
Soil moisture -6.6%

Sea ice mass -66.0%

The importance of clouds in the models can be seen in the
GISS example breaking down the surface temperature incre~se

into various feedback mechanisms. All models parameterize
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clouds and allow them to vary. The AES GCM has a
complicated cloud model in which six types of clouds are
considered, each with a typical liquid water content. In
the AES model, the clouds may be fully overlapped, non-
overlapped or randomly overlapped (Boer et al., 1984).
Clouds both transmit and scatter solar radiation. Low
clouds generally reflect sunlight, thereby cooling the lower
atmosphere. High clouds reflect solar radiation poorly but
radiate at a much lower temperature than low clouds near the
Earth’s surface, causing a net warming compared with a cloud
free atmosphere (Jenne, 1989). Consequently a detailed
treatment of clouds is necessary for GCMs. AES’s cloud

model appears to be the most detailed of the six.
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Chapter 3

A Brief Description of Soil Moisture Characteristics

3.1 Introduction

The most common definition of "soil moisture" according
to Ward (1975) is simply all the subsurface water above the
water table in the zone of aeration. The zone of aeration
is the zone in which the pore spaces are filled with both
water and air; capillary forces predominate. The zone of
aeration comprises the layers of soil from the ground
surface to the underground zone of saturation (see Fig. 8).
Within the zone of saturation, pore spaces are completely
filled with water and the pressure within the water is equal
to or greater than the atmospheric pressure. While all
water below the ground surface is commonly referred to as
groundwater in lay terms, groundwater is more accurately
the water within this saturated zone, and its

characteristics will not be considered here.

3.2 Storage of Soil Moisture

Soil particles are never in perfect contact with other soil
particles and this creates small pore spaces between then.
The different structure of the soil will create different

pore spaces (see Fig. 9). Water can be stored within these
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spaces but must be retained against the downward force cof
gravity. Soil water can be held between soil particles by
the capillary force. Most water in coarse-grained, moist
soil is retained by this force. Surface tension results
from the fact that water molecules are more strongly
attracted to other water molecules within the same body of
liquid than to molecules of surrounding water vapour. This
attraction holds the water in situ and must be overcome in
order to create movement between the air and water
interface. The capillary force varies inversely with the
radius of curvature of the water surface. The force will
decrease as the radius of the pore space increases.

Soil water can also be stored as a thin film around
soil particles by the retention process of adsorption.
Adsorption is an electrostatic process whereby polar water
molecules are attracted to charged soil particles. The
force is significant only over a small distance, accounting
for a thin film of 3 to 7 molecules thickness (Low 1961).
Within certain soils, however, the combined effect of the
adsorption retention can result in large amounts of soil
moisture storage. If the soil has a larg. area of adsorbed
water film (as in the case of some clays), as much as 800
g/m2 of water can be retained over the surface cross-
section. Soils such as sands by contrast, with smaller
specific surfaces (surfaces that can adsorb water), will
retain less than 1 g/m2 of water (Hillel 1971). Another

soil moisture retention force is osmotic pressure. Kirkham
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(1964) describes how dissolved salts in the presence of a
semi-permeable membrane (a plant root, for example) increase

the force with which water is held in the soil.

3.3 Field Capacity of Soils

GCMs calculate soil moisture using certain physical
assumptions (see Section 5.2). The GCMs consider the amount
of soil moisture in their control and perturbed runs either
as a fraction of field capacity or as an absolute mass of
water in a given volume of soil. Field capacity is defined
by Veihmeyer and Edlefsen (1937) as '"the amount of water
held in soil after excess water has drained away and the
rate of downward movement has materially decreased" (see
Fig.9a). For the AES model, this "amount of water" has an
extensive property, i.e. it depends on the region it
considers, but is expressed as an ‘ntensive quantity (i.e. a
mass of water per unit of cross-sectional area, e.g. a field
capacity of 150 kg m2). It may also be expressed as an
equivalent depth of bulk water, e.g. 15 cm. GCM scientists
define important soil moisture terms differently than soil
scientists do. Soil moisture is calculated for the GCMs in
this thesis using the "bucket" method. In this method, one
imagines a "bucket" of a certain depth (the field capacity)
in the ground with its rim at the surface. The depth of the

bucket differs, depending on the model (and, in the case of
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AES, with the location). The amount of water in the bucket
at any time is the accumulated precipitation minus
evaporation, as in Thornthwaite’s water balance model
(Thornthwaite, 1948). When the bucket becomes full, the
soil is saturated, field capacity has been reached, and any
further precipitation results in runoff. Different bucket
depths used in the GCMs mean different field capacities.
Soil scientists, however, consider soil saturation and field
capacity to be separate entities, functions of soil texture
and porosity. To a soil scientist, saturation occurs when
soil pores are filled with water. For medium textured
soils, a porosity of 50% would approximate saturation.
Field capacity occurs at approximately 35 to 40% by volume.
The use of the bucket concept is not very realistic, but
Ward (1975) states that, although untenable in theory, the
subjective variable "field capacity" has proven valuable in
practice. Van Bavel (1969) suggested that the idea of a
retentive capacity is essential and useful in broad
generalizations pertaining to watershed hydrology, drainage,
and irrigation. The AES model uses a modified bucket
approach. For the AES model, field capacity is set to
various but unchanging values, that is, this field is
specified for each gridpoint, and remains fixed throughout
the model runs (Sargent, correspondence, 1993). This field
is only available in a "specified fields" dataset, provided
by Environment Canada. These "FCAP" values for Alberta

appear in Table 8a (Chapter 5.2b). It is difficult to find
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details on how che other models handle field capacity or

runoff. The GISS model has variable field capacities for
different terrain types in its top and bottom soil layers
(see section 5.1d). From available literature, it appears
that field capacity for the five other GCMs does not vary

from point to peint, for soil type, or for season.
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Figure 9: Types of Water Retension

1. Capillary wedges in pores
capillary water

soil particle
soil particle

2. Capillary wedges in equilibrium with adsorbed water layer
adsorbed water

3. Capillary wedges, adsorbed water layer, and the retention of free-
standing water on concave surfaces of coarse material

retention in pools
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Adapted from Ward, 1975

44



Figure 9a: Soil Science vs. GCM Treatment of Soil Moisture
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In soil science, saturation and field capacity are a function of porosity.
At saturation, all the pores are full of water and this amounts to
about 50% of the total volume.

GCMs use the "bucket method* of measuring soil moisture. A "bucket”,

usually 15 cm deep does not take soil texture or porosity into consideration.
The bucket has no soil in it. When the bucket is full, saturation occurs and

field capacity is reached--a different definition of terms than above.

saturation and

field capacity

15 ecm water=precipitation - evaporation
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Chapter 4

Observed Soil Moisture
4.1 Methods of Measuring Soil Moisture

While many methods exist to measure soil moisture in
the field, Wilson (1970) has described nine of the ones most
frequently used. They are:

1. Gravimetric

2. Neutron scattering

3. Gamma-ray attenuation

4. Electrical resistance

5. Electrical capacitance

6. Archimedes principle
7. Chemical

8. Thermal conductivity

9. Ultrasonic

Wilson considered the first three methods to have gained the
greatest acceptance because they are often the easiest to
implement and the most accurate. The method used to measure
the observed Alberta soil wetness for this thesis was not
one of these nine. It is by Howard, Heywood and Michielsen
(1992) and is explained later in this section.

The gravimetric method involves weighing a soil sample
pefore and after it has been dried and attained a constant

weight. The weight of the water in the wet sample is the
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difference between the weights of the wet and dry samples,
and can be expressed as a percentage of the mass of the dry
sample. The gravimetric method is labour intensive and time
consuming, making a survey of soil moisture for a region the
size of Alberta difficult. The neutron scattering method
involves placing a high-energy neutron emitter into the soil
where the neutrons are slowed by collisions with hydrogen
nuclei present in soil water. An underground receiver
counts the neutrons. The neutron count is a function of the
soil moisture by volume, which must be determined by
calibration. The neutron scattering method saves labour but
requires a large initial investment. The gamma ray
attenuation technique is based on the observation that the
scattering and absorption of gamma rays are related to the
density of water in the soil (Dmitriyev, 1966). A gamma ray
emitter is placed underground and a receiver measures the
amount of scattering and absorption of the gamma rays by the
soil water. This technique also requires a large initial
investment and while it has been used extensively in field
studies in the U.S.S.R., in North America it is primarily
used in the laboratory.

The Alberta soil moisture data in this thesis were
provided by soil moisture specialist A.E. Howard of the
Alberta Agriculture Conservation and Development Branch.
Sites are selected where topography is level, and, when
possible, where the soil is medium textured. Sites in

southern areas usually are stubble fields (no fall tillage).
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Sites in many central and northern regions are cultivated
fields. The number of sample sites ranges from about 250 in
the early 1980s maps to about 400 in the recent maps.
Samples have been taken throughout October since 1982 to
produce the "Stubble Soil Moisture for Fall" maps, and
throughout April since 1988 to produce the "Stubble Soil
Moisture for Spring" maps (see Appendix A). Soil is sampled
using a 2-m king tube probe. The probe is pushed without
turning into the soil. The depth of penetration is the depth
of the moist soil, since the probe will penetrate moist soil
but will be stopped by dry soil, rock, gravel, and frozen
soil. A collector at the end of the tube provides a sample
of soil (about 10 cc) at the spatial end of the penetration
depth, after a clockwise twist of the probe. The soil is
removed from the collector and inspected for degree of
wetness, depth of moisture, and soil texture (Howard et al.,
1992). The moisture category of the soil is determined by
the depth to which moist soil was found. This determination
is done with a simple visual, hand-held examination of the
sample. Soils are considered to be moist if they remain in
the shape of a ball after being pressed into that shape by
the hand. The auger method has not been calibrated against
one of the "standard" methods. The categories are shown in

Table 6 and are estimated for a medium textured soil.
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Table 6
Alberta Stubble Soil Moisture Categories
for Medium Soil Textures

(Compiled by Alberta Agrigulture)

Category So0il Moisture Depth
High Subsoil moist to beyond 75 cm

below surface. No dry layers
Medium Subsoil moist to 45-75 cm
Low Subsoil moist to 15-45 cm
Little or no available water

Very Low

below 15 cm

These categories apply to medium soil textures. Wherever
possible, samples were taken from this type of soil. For
coarse sandy soils, the penetration depth (soil moisture
depth) is multiplied by 1.5 and then Table 6 applies, using
this adjusted soil moisture depth. For fine clay soils, the
penetration depth is multiplied by 0.7.

This method provides measurements of Alberta stubble
soil moisture as an effective depth of moist soil, whereas
in the GCMs soil moisture is considered to be the effective
depth of liquid water in the soil. A conversion method or
factor is required to translate the Alberta soil moisture
measurements into GCM units of moisture if the two are to be
compared. Mr. Howard and the Environment Canada Winnipeg

Climate Centre are developing such a technique. As of 1992,
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a rough procedure has been developed, shown in Table 7. For
the conversion of soil moisture to a water depth, 75 cm of
wet soil translating to 11.25 cm of water is basically an
assumption that the moist soil has a water content of 15 %

by volume.

Table 7?7
Conversion of Alberta Agriculture
Stubble Soil Moisture Measurements into

Percentage of Field Capacity (F.C.)

W w*
Category Soil Moisture Depth $ of F.C. cm _moisture
High Subsoil moist to > 75 cm > 75 > 11.25

No dry layers

Medium Subsoil moist to 45-75 cm 45 to 75 6.75 to 11.25
Low Subsoil moist to 45 cm 15 to 45 2.25 to 11.25
Very Low Little or no available water < 15 < 2.25

below 15 cm

*
where Field Capacity = 15 cm

4.2 Observed Soil Moisture in Alberta

Kellogg and Zhao (1988) stated that it is useful to
compare the monthly average distribution of soil moisture
calculated for a GCM control run to the average for the real

soil. Data on temperature, pressure, etc. are readily
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available for such a comparison, but this is not the case
for soil moisture. Lawford (1992) mentioned that reliable
soil moisture datasets for verifying GCM outputs are

difficult to obtain. In Alberta, soil moisture measurements

Section 4.1, but only at small ntal sites. For the
province as a whole, however, t: e:xtensive soil
moisture measurements are the Aii: .a Agriculture

Conservation and Development Branch "Soil Moisture Maps"
(see Appendix A). The data, collected as described in
Section 4.1, have been used to generate maps of Alberta
stubble soil moisture for the spring (April) and fall
(October) seasons (Howard et al., 1992). At the time of
writing this thesis, Alberta spring soil moisture maps were
available from 1988 to 1991. Alberta fall soil moisture
maps were available from 1982 to 1991. The maps are based
on about 400 single measurements made over the spring and
fall periods. When comparing the GCMs to actual Alberta
soil moisture, then, comparisons can cnly be made between
the October and April monthly GCM soil moisture data and the
October and April actual soil moisture. The NCAR model
could not be compared with the observed April and October
values since only winter and summer seasonal soil moisture
data were provided by NCAR. The variation of 1XCO2 and

2XCO., average soil moisture of the models for NCAR-type

2
seasons appears in Appendix B, Tables 8a %o 8g. In these

tables, the monthly means (20-minute time steps averaged
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over each month, with the monthly values averaged over a
climatological period of 10 model-years) for models other
than NCAR were averaged over the winter and summer seasons.
The maps generally show greater soil moisture in the spring,
due to infiltration of snowmelt water, than in the fall,
when soil moisture is evaporating or percolating deep into
the soil, below the 100 cm level. Soil moisture remains
generally low to very low in the southeastern region of the
province in both seasons throughout the period of
measurement. West-central Alberta tends to have
consistently the greatest amount of soil moisture, and the
Peace River and Grande Prairie regions tend to be slightly
drier than central Alberta. These are general geographic
regions and not well-defined agricultural regions.

only four years of spring measurements and nine years
of fall measurements make it difficult to derive a stable
"normal" seasonal soil moisture amount over an area, using
these data. It is not possible to tell whether any of the
soil moisture seasons are particularly anomalous (abnormal)
because they are all anomalous! An anomalously large amount
of precipitation does not necessarily imply a corresponding
soil moisture anomaly since a lot of evaporation in the same
season may even bring about a soil moisture deficit. An
average actual soil moisture for the seasons is calculated
for the model gridpoints shown in Figures 1 to 7. The
procedure for calculating the mean and s%andard deviation

soil moisture values from the observed maps, and comparing
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them with the GCM data is described in Section 5.2a.
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Chapter 5

Soil Moisture Sensitivity in the Models

5.1 Soil Moisture Parameierization in the Models

5.1a Introduction

Sensitivity analysis assesses the change in model
output resulting from a change in inputs or model
parameters. To begin with, it is important to see how the
GCMs parameterize soil moisture.

More current versions of the models than those compared
in this thesis may have upgraded soil moisture
parameterizations, but details were not available to the
author. Delage and Hogue (1992) discussed a more
sophisticated treatment of soil moisture for the Canadian
NWP model. Their plan was to incorporate the newly
developed Canadian Land Surface Scheme, CLASS (Verseghy,
1991), which contains all of the important physical
processes such as snowmelt, soil freezing/ thawing, and
seasonal changes in vegetation characteristics. CLASS has
three soil layers, capped by an explicit snow layer and one
of five types of canopy. The changes in the NWP moydel will

eventually be incorporated into the AES GCM.
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S.1b AES Model

This model’s treatment of soil moisture and hydrology
is more realistic than the usual "bucket" treatment (see
Section 3.3). Soil moisture and snow mass are prognostic
variables in the model. Soil moisture, w, is expressed as:

wo= W/W_ 5.1.1
where ¥ is the total soil moisture mass in the surface soil
layer (single layer model), and wc is the field capacity
(see Table 8a, Chapter 5.2b). This superscript parameter is
jidealized because in the natural situation, the field
capacity varies widely according to the soil’s
characteristics. The field capacity in the AES model is
«xpressed in kg/m’ instead of a "bucket" depth in cm.
Clearly, however, 200 kg m’ is equivalent to a 20 cm bucket
depth.

The soil moisture in this model is further subdivided
into both liquid Wy and frozen We forms so that:

w = wl + wf 5.1.2
The prognostic equations for these two components of soil

moisture anf suow mass, S, are:

wC%v_v,=Pl-El+Mf+MS-R 5.1.3

t

W, dw, = -E; - M, 5.1.4
dt =

ds = P_-E_-M 5.1.5

at S S S

where P,, P_ are respectively rain and snow precipitation
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rates; El' Ef, Es are respectively the liquid soil moisture,
frozen soil moisture and snow evaporation/sublimation rates;

Ms’ Mf are the melting rates of snow and frozen soil
moicture; amd R is the runoff. Precipitation arriving at the
sur'facc is regarded as either rain or snow (no hail)
according to whether the surface air temperature (T,) is
apuve or below the freezing point (Ty).

The evaporatior rates in the prognostic equations must

add up to the total evancration rate:

where E, is the liquid evaporation rate, E. is the frozen
sublimation rate, Ew is the total soil moisture evaporation/

sublimation rate, Es is the snow evaporation/sublimation

rate and Eyrs is the turbulent vertical flux density of
moisture at the surface. The contributions of El and Ef to
Ew are assigned according to whether the surface temperature

is above or below the freezing point, i.e.:

Ef = 0 if Ts > Tf 5.1.8

1 £ Ew if Ts < Tf 5.1.9

Pack ice and glacial ice are also considered in the model

El = Ew,

= 0, E

E

but their parameterization is of no concern for Alberta soil

moisture comparisons.

Runoff is not explicitly calculated. When the total
soil moisture reaches a value in excess of the field
capacity (w»1), the excess is assumed to run off, and w is

set to unity.
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S.1c The GFDL Model

The surface hydrology of this model is similar to that

of the NCAR moc

prognostically from a one-layer model with 15 cm field

capacity.

Soil moisture is dete 1ined

The prognostic equations for scil moisture, over snow-

free land are:

if

aw
dt

if

aw
at

fc
=P - E
W= wfc
= 0 and

and over snowcover they are:

if

aw
at

if

aw
dat

where:

fc

[
"

W

<

S
m

0 and R = 8§
m

wfc

+ P

wfc

= soil moisture (cm)

= runoff rate (cm/s)

rainfall rate (cm/s)

and P > E

R

-+

= field capacity (cm)

Sm = snowfall rate (cm/s)

P

P - E

W
W
E = potential evapotranspiration rate (cm/s)
R
p

Runoff occurs only when the bucket is full.
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5.1d The GISS Model

In this model, the soil moisture is determined
prognostically from a two-layer model. The upper/lower
layer field capacities in cm are prescribed as 1/1 for
desert, 3/20 for tundra, 3/20 for grass, 3/30 for shrub,
3/30 for woodland, 3/45 for deciduous forest, 3/45 for
evergreen forest and 20/45 for ra.nforest. When the ground
is frozen, water cannot be taken out of the soil.

The prognostic equation for the upper layer is:

dWl = (P_- E - R) + (W2 = W1) 5.1.15
dt chl T
The prognostic equation for the lower layer is:

dw2 = Wfcl x (W2 - W1) 5.1.16
dat Wfc2 T

where: = precipitation rate
= evaporation rate

runoff rate

S %" ™ 7
i

= time constant for diffusion of moisture
between layers

Wfcl = field capacity in the upper soil layer

Wfc2 = field capacity in the lower soil layer

W1l = layer 1 soil moisture depth

W2 = layer 2 soil moisture depth
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5.1e The 08U Model

In this model, soil moisture is determined
prognostically from a one-layer model with a 15-cm field
capacity. The prognostic equation is:

W = P + Sm - E-R 5.1.17
dt

where W = soil moisture depth
P = precipitation rate
Sm = snowfall rate
E = evaporation rate

R = runoff rate

If W > 15 cm, W is set to 15 cm and excess ground water is

taken as additional runoff.

5.1f The UI Model

This model is an updated version of the OSU model, but
soil moisture is determined prognostically using the same

equations as the (03U model.

5.1g The NCAR Model

Soil moisture is determined prognostically from a one-
layer model (as with AES) but using a 15 cm field capacity.
The eguation for soil moisture is:
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dw = P - E + S 5.1.18

s}
ct

where E is the rate of evaporation, Sm is the rate of snow
melt and w is soil wetness. If the soil wetness in the
bucket equals the field capacity and additional
precipitation is added, runoff occurs. The evaporation rate
is related to soil moisture amount such that the greater the
soil moisture, the greater the evaporation rate. If the
soil moisture amount exceeds a critical value (75% of the
field capacity), the evaporation is that of a liguid
surface. If soil moisture is less than the critical value,

the evaporation rate is reduced linearly as a function of

soil moisture amount.

5.1h The UKMO Model
Soil moisture is determined prognostically from a one-

layer model with a 15-cm field capacity. The prognostic

equations are the same as for GFDL.
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5.2 8o0il Moisture in Alberta for GCM Control Runs

5.2a In.roduction

In this section, the annual soil moisture variations of
control and perturbed GCM runs are compared with each other
and with observed stubble soil moisture for different areas
of Alberta. An exact spatial comparison of soil moisture
values between models cannot be performed since model grid
locations differ. Because of the grid locations differing
from model to model, as well as the availability of only two
months of observed mean soil moisture data, simple side-by-
side comparisons are made rather than the objective
univariate statistical tests proposed by Chervin (1981).
None of the models’ data included standard deviations of
soil moisture.

The Alberta Agriculture "Alberta Stubble Soil Moisture
Maps" provide data based on measured soil moisture for the
province. The maps consist of polygons showing the
different depths to which soil is moist in April and October
throughout agricultural regions of the province.

Comparisons can thus be made between the actual values and
GCM values for two months of the year.

To begin the comparison, a conversion is made from
depth of so0il moisture on the maps to cm of soil moisture to
match the units of model output (see Chapter 4).

Transparent soil moisture maps (see Appendix A) for each

year and season (spring and fall) are then overlaid on maps
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of the same scale showing each model’s Alberta gridcells. A
second transparency with dot matrix is then put over the two
images. The dot resolution is about 40 km on the scale of
the gridcell and moisture maps. By counting the number of
cells in each obsgrved soil moisture polygon for each GCM
grid cell, one can calculate the spatial mean stubble soil
moisture in each GCM grid cell for each April and October in
the available years of data. The spatial standard deviation
for each GCM grid cell is also calculated. A temporal mean
of actual Alberta stubble soil moisture for both April and
October is calculated as the mean of each year'’s spatial
mean value. A temporal standard deviation is also
calculated about this temporal mean. Unfortunately, the
complete province could not be sampled using soil moisture
maps. The northern regions and parts of the eastern slopes
have no soil moisture data. Consequently, no comparison
between model control run values and actual soil moisture
values could be made in these areas. In other GCM grids,
observed moisture values are available for only part of the
grid. If observed values exist for less than 50 % of the
grid area, a comparison is also not made, since the
available observed values may not be representative of the
whole grid’s stubble soil moisture. This occurs for regions
north and east of 56°N, 114°W, and for regions south and

west of 55°N, 118°W.
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5.2b AES IXCOZ Run

The AES Global Climate Model (1990) control and
perturbed data were obtained from Dr. Neil Sargent at the
canadian Climate Centre in Downsview, Ontario. Five
megabytes of condensed data containing several model
parameters were received in ASCII format on 3.5 inch
diskette. Liquid and frozen soil moisture data were
extracted from this data set. A program was written to
convert the data into Statistical Applications Software
(SAS) format to allow for data analysis using SAS. A subset
of gridpoints in and around Alberta (25 points) was then
created, and soil moisture amounts for these points were
converted ii'“o cm of field capacity to make the units of
soil moisture comparable with those of the other models.

Figure 10 (A to T) shows the annual variation of AES
1XCO2 soil moisture as well as the mean and standard
lcviation of the observed April and October Alberta stubble
soil moisture (where data are available). Each figure
presents the results for a single GCM grid cell in Alberta.
Each cell is identified by its corresponding central point.
The AES soil moisture values are a sum of model frozen soil
mcisture and liquid soil moisture. The most interesting
feature is how much higher the soil moisture values are
compared to the other GCMs. It is important to note that
there is a different field capacity for each grid cell.

These values are shown in Table 8a and should be consulted
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when viewing the AES figures. The values still seem
impossibly high for some months, however. Dr. Neil Sargent
(Canadian Climate Centre) mentioned in correspondence that
the model "runs fairly wet". The AES "bucket size" of
approximately 80 cm would require 5.4 m of soil at the 15 %
volume value used in converting observed soil moisture to
water depth. This depth of soil is, of course, unrealistic,
which demonstrates that that AES soil moisture values are
also unrealistic. Most AES grid points show soil moisture
peaking in spring, (April or May), with a minimum during
fall, between August and September. Soil moisture tends to
increase from September to December and remains almost
constant throughout the winter at all grid points in the
province until the spring recharge and peak. The values
increase toward the Eastern Slopes and the north and
northwest parts of the province (with about 40 to 75 cm of
soil moisture). The drier areas tend to exhibit more annual
variability than the wetter areas. Unfortunately, since
observed soil moisture values are only available for April
and October, it is not possible to tell how accurately the
model’s annual variation simulates the actual soil moisture
annual variation. All AES model values are at least double
the observed stubble soil moisture values. Spatial
differences in soil moisture show similar trends. The areas
and months with low observ.*~ zoil moisture are areas of low
model soil moisture. The observed wetter regions of che

province are also simulated by the AES model, but in both
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cases the model values are much larger.

Tablec 8
Annual Soil Moisture Means (cm) for the AES GCM
1XCO, Run as a Function of Lat. and Long.

2
for Gridpoints in and near Alberta (see Fig. 1)

LONG W
LAT °N 123.75 120.00 116.25 112.50 108.75
61.22 56.2 21.8 21.6 58.1 73.7
57.51 55.3 57.0 57.9 29.0 65.0
53.80 62.5 70.1 71.3 36.7 37.5
50.09 48.3 58.0 49.3 35.3 26.9
Table 8a

AES GCM Field Capacity Values (cm) for

for Gridpoints in and near Alberta

LONG "W
LAT °N 123.75 120.00 116.25 112.50 108.75
61.22 64.1 52.1 60.1 72.1 80.1
57.51 56.2 59.9 64.9 45.6 80.1
53.80 64.1 72.1 74.9 42.0 48.0
50.09 56.2 64.1 56.2 45.0 48.0
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5.2¢c GFDL 1XCO2 Run

The GFDL (1926) control and perturbed data were
obtained from Mr. Roy Jenne at the United States National
Center for Atmospheric Research (NCAR) in Boulder, Colorado
and were supplied in printed form. Monthly soil moisture
climate data for North America were provided and a subset of
gridpoints for the Alberta region was identified. These
were keyed in manually. Soil moisture units were provided
in mm and were converted to cm for comparison purposes.
Figure 12 (A to F) shows that the GFDL model soil moisture
values are far lower (about 8 to 12 cm) than those of the
AES model. The GFDL spring and fall values compare well
with the observed stubble soil moisture values at most
gridpoints, and generally lie near or within one standard
deviation of the observed mean.

While the soil moisture absolute amounts differ
considerably between the AES and GFDL models, both models
exhibit similar annual variations. The GFDL model exhibits
the maximum soil wetness during April and the minimum in
August or September, as does AES. Where there is a spatial
increase or decrease in observed mean April or October soil
moisture, there is a similar fluctuation in GFDL model
values. South and central areas of the province are drier
than north and west areas. GFDL soil moisture values do not
exceed field capacity (15 cm) so there is no runoff in any

of its Alberta grids.
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Table 9
Annual S8oil Moisture Means (cm) for the GFDL GCM
1XCOo. Run as a Function of Lat. and Long.

2
for Gridpoints in and near Alberta (see Fig. 3)

LONG "W
LAT'N 120.00 112.50
59.99 12.7 8.8
$5.55 13.4 8.1
51.11 12.4 10.1

5.24 -TRS IXCO2 Run

The GISS GCM (1985) control and perturbed data were
also obtained from Mr. Roy Jenne a: NCAR and were received
in the same format as the GFDL data. Figure 11 (A to D)
shows that the model’s soil wetness for each Alberta
gridpoint (about 8 to 20 cm) is substantially lower than the
AES values but higher than those of GFDL. While closer to
the observed mean than AES, the soil moisture does not
compare as closely as GFDL. The model values fall outside
one standard deviation of the observed mean except for
October at 50.87 N, 110.00 W and'at 50.87 N, 120.00 W. The
annual cycle of GISS soil wetness is similar to that of AES
and GFDL, where the minimum occurs in August or September
and the maximum occurs in April or May. GISS soil moisture
increases north and west in Alberta. The model soil

moisture values exceed field capacity in some cases, so
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runoff occurs.
Table 10
Annual Soil Moisture Means (cm) for the GISS GCM
1XCO. Run as a Function of Lat. and Long.

2
for Gridpoints in and near Alberta (see Fig. 2)

LONG ‘W
LAT °N 120.00 110.00
58.70 19.2 16.9
50.87 15.6 10.6

5.2e OSU 1X002 Run

The OSU (1985) and UI (1988) control and perturbed data
were provided by Drs. Michael Schlesinger and Hajo Smit of
Champagne, Illinois, in both digital and hard-copy form.

The data were multiplied by 15 cm (the field capacity) to
obtain the soil meoisture amount in cm. According to Dr.
Schlesinger (personal communication), the 0SU model is the
"51d" model and the UI model is the new one. The values
never exceed field capacity (15 cm) so there is no runoff.
The OSU model tends to show decreasing soil moisture amounts
toward the north and western regions of Alberta. This is
opposite to AES, GFDL and GISS. OSU moisture values vary
from about 6 to 12 cm. They exhibit the closest fit to
observed April and October mean values, being within one
standard deviation of the observed October mean at all six

gridpoints with available data, and one standard deviation
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of the observed April mean at two of the six gridpoints with

available data.

Table 11
Annual S8oil Moisture Means (cm) for the 0OSU GCM
1XCO. Run as a Function of Lat. and Long.

2
for Gridpoints in and near Alberta (see Fig. 4)

LONG ‘W
LAT N 120.00 115.00 110.00
$8.00 5.5 4.0 5.1
54.00 5.8 5.4 3.6
50.00 7.8 6.4 5.4

5.2f UI 1XCO2 Run

Figurzs 14 (A to I} shows the annuil variation of UI
1XC02 GCM soil moisture values versus the mean and standaru
deviation of actual stubble soil moisture (where available)

for the UI gridpoints in Alberta. This model shows similar

annual variation tc AES, GFDL and GISS, with the maximum
soil moisture in April or May and the minimum in August cor
September at each gridpoint. Unlike AES, GFDL and GISS,
there is not a clear trend of increasing soil moisture
toward the northwest region of Alberta. Five out of nine UI
gridpoint April soil moisture values lie within one standard

deviation of the observed mean. Four out of nine October
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soil moristure values lie within one standard deviation of

the observed mean.

17at e 12
Annual S5o0il Moisture Means (cm) for the UI GCM
1XCOo. Run ar » Yunction of Lat. and Long.

2
for Gridpoints in and near Alberta (see Fig. §5)

LONG "W
LAT N 120.00 115.00 116.00
58.00 5.1 4.3 3.8
54.00 6.5 4.8 3.9
50.00 7.5 6.2 4.8

5.29g NCAR 1X002 Run

NCAR GCM ‘1984) data were obtained from Mr. Roy Jenne
at NCAR, after consulting with Drs. Warren Washington and
Gerald Meehl, also of NCAR. The data were downloaded from
an NCAR file through a modem. A SAS program was written to
read in the appropriate gridpoints and a conversion from
metres to centimetres of soil moisture was made. Since NCAR
model soil moisture values were provided for only winter
(average of December, January and February) and summer
(average of June, July and August) its annual variability
cannot be plotted. In addition, a comparison cannot be made

with the observed mean April and October soil moisture
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values. Table 4 shows the variation with season for NCAR
1XCO2 and 2XCO2 average soil moisture. Soil moisture values
for this model never exceed field capacity within the
Alberta grid, so there is no runoff. There is a sharp
increase in winter soil moisture as one MOVeS north and west
toward the 61.90 N grid, and a decrease in sunm:r soil
moisture toward the northwest. NCAR soil moigi.ure amcunts

are the lowest of all the six models for the ~arieatucal

regions of Alberta.

Table 13
Annual Soil Moisture Means (cm) for the NCAR GCM
1XCO. Run as a Function of Lat. and Long.

2
for Gridpoints in ard near Alberta {(sce Fig. 6)

LONG "W
LAT'N 120.00 112.50
61.90 3.6 2.1
57.40 6.3 3.1
52.90 7.2 3.1
48.40 0.9 2.2

S.2h URMO 1X002 Run

UMKO GCM (1987) data were obtained from Dr. Paul Norris
at the Bri..sh Meteorological office, Bracknell, U.K. The
data were global soil moisture values provided on a 3.5"

diskette. A SAS program was written to read the data into
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SAS format and a subset of Alberta values was created.
Values greater than 99 indicate a non-land surface type
(ice, sea, and sea ice). At first, most values for the
province indicated a surface type corresponding to sea.
Correspondence with Dr. Norris did not clear up the matter.
Eventually, an error in the U.K. documentation was found by
the author, Dr. Norris was notified of this, and the data
were read in correctly. Some of the monthly data, however,
still indicate a surface type equal to sea or ice.

Figure 15 (A to L) shows the annual variation ¢t UKMO
1XCO2 GCM so0il moisture values versus the mean and standard
devia’ 'n of actual stubble soil moisture (where available)
for tre WUKMO gridpoints in Alberta. This irodel shows
similar annual variation to AES, GFDL and GISS, with the
maximum soil moisture in April or May and the minimum in
August or September at most gridpoints. Missing points for
months in the graphs indicate values out of range (again,
the bogus values of 100 or 10,000 cm).

Table 14
Annual Soil Moisture Means (cm) for the UKMO GCM

1xco2 Run as a Function of Lat. and Long.

for Gridpoints in and Near Alberta (see Fig. 7)

LONG ‘W
LAT N 123.70 116.20 108.70
57.50 12.2 11.3 13.0
52.50 12.4 12.2 11.9
47.50 11.9 11.1 10.9
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Table 14 is based on a sample where units greater than 99 cm

(indicating surface type=sea or sea ice) have been removed.

$.2h Discussion

Based on the datz made available by the AES, GiDL, GISS,
OSU, UI, NCAR and UKMO GCM labs, as well as available Alberta
stubble sou1l moisture data, the UI model most accurately
simulates current Alberta soil moisture. The UI model also
has one of the better model grid resolutions for Alberta (nine
grids). The OSU model values also approximate several
observed means. The AES model }l.as goc? resolution but
compares poorly with the observed means, lying jurther from
the observed mcans than all the other GCMs in the comparison,
except, in some cases, UKMO, where some months are not
represented in the annual variation because of their incorrect
surface type and accompanying values of greater than 99 cm of

soil moisture.
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5.3 GCM perturbed Run Data for Soil Moisture in Aliberta

5.3a Introduction

In this section, we compare each model’s perturbed
(2XCOZ) run with its control run. We also compare GCMs.
Comparison is made between anaual variation of the runs in
timing and magnitude. Changes in soil moisture amounts with

changes in location are also considered.

5.3 AES 2XCO, Run

2

Figure 16 (A to T) shows the annual cycle of the AES

1XCO, and 2XCO, GCM soil wetness. The most striking feature

2
is the large decrease in soil moisture for the perturbed run
from November to March at 18 of the 20 gridpoints. These
particular values now resembl: the values of the other models’
control runs. For 8 of 20 grids, April to November moisture
amounts are 1 to 6 cm below control values. In the extreme
northwest (61.22 N, 120.00 W) the ZXCO2 run shows a 10 cm
increase from May to October. Small increases in 2xco,, values
over lXCO2 values occur in south and central Alberta for
October and November at 50.09 N, 116.25 W, at 53.80 N, 112.50
W and at 53.80 N, 116.25 W. The model simulates small

increases of about 1 or 2 ¢m of =o0il moisture for June to

November at 57.15 N, 108.75 W, for May and June at 57.51 N,
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112.50 W, for May to September at 61.22 N, 116.25 W, for June
to October at 61.22 N, 123.75 W, and a large increase of 10 cm

for May to November at 61.22 N, 120.00 W.

$5.3¢ GFDL ZXCO2 Run

Figure 18 (A to D) shows far less variation between GFDL

control ¢ - - #urbed monthly soil mecisture values than occurs
in the The control and perturbed variations are
similar. 1 cthe southeast region of the province (51.11 N,

112.50 W) there is an increase in the perturbed soil moisture
values over the control values of about 2 to 4'cm during
December to March. A decrease in the perturbed values occurs
in this region from April to December (about 0.5 to 4 cm;.
The southwest region of the province (51.11 N, 120.00 W) shows
perturbed values almost identical to control values from
December to August. Decreases in soil moisture occur from
August to mid-November, with the largest decreases of about 3
cm occuring around mid-September. GFDL east-central Alberta
(55.55 N, 112.50 W) 2XCO2 soil moisture is greater than
control values by about 1 to 3 cm from September to mid-March,
but lower values occur during the summer (April to August).
West-central (55.55 N, 120.00 W) perturbed values exhibit a
similar pattern, as does the northern region of the province.

GFDL perturbed soil moisture values never exceed field

capacity.
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5.32 GISS 2X002 Run

Figure 17 (A to I) shows that the GISS model’s pesturbed
run soil moisture exceeds the control values for most months
at all four gridpoints. The annual variations for both runs
are similar. The greatest increases in 2XCo,, soil moisture
(about 2 o0 8 cm) compared to 1XCO2 occur during winter months
and the smallest increases occur in August and September.
Southeast Alberta (50.87 N, 110.00 W) sustains a slight
decrease in soil moisture during September and October. The
GISS 2XCO2 run shows a small decr: &~ in July to September at
58.70 N, 120.00 W during June to . .uber. GISS 1XCO, and

2XCO? soil moisture values at times exceed field capacity.

5.3e OSU ZXCO2 Run

Figure 19 (A to I) shows that a similar variation occurs
at all nine grids, with 2Xco,, values increasing over 1Xco,
values in spring (March to May) and remaining below 1XCO2
values for most of the remaining months. The largest 2XC02

decreases o<cur from July to September. osu 2XCO2 soil

moisture values do not exceed field capacity.
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5.3f UI 2XCO2 Run

Figure 20 (A to I) shows a similar annual v iation for
Ul 1XCO2 and 2xc02 soil moisture values, with increases in
spring and decreases in summer. At all nine grids, perturbed
soil moisture exceeds control soil moisture by about 2 cm from
December to March. The peak values occur one month sooner
(March) for the 2XCO2 simulation. 2XCO2 soil moisture is
ljower frorm mid-March to mid-July then again in September.
However, for the driest month in each run, (August), the
control arnd perturbed values are nearly equal. The UI 2XCO2

soil moizture values do not exceed field capacity.

5.3g NCAR 2xCO, Run

NCAR so0il moisture data were made available cnly for two
seasons--winter (Deceamber, January and February) and summer
(June, July and August). Table 2 was created to allow for
comparisons to be made between the control and perturbed GCM
runs for NCAR-typz2 seasons. The NCAR model simulates an
increase in perturbed soil moisture over control soil moisture
during winter for all the Alberta gridpoints. NCAR simulates
a decrease ir summer soil moisture in the 2XCO, run for all
Alberta gridpoints except in the far northern region of

Alberta, where an increase occurs.
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$.3h UKMO 2xC02 Run

The UKMO perturbed run shows its greatest departure from
the control run at southern and central Alberta latitudes. At
high latitudes (57.5 N, 62.5 N) there is little departure,
with the perturbed run showing slightly lower soil moisture
compared with the control run. In general, the 2XCO,
simulation follows a similar annual variation to the 1XCO, run
(fairly constant mid-summer soil moisture, a decrease in late
summer, and a recovery in fall to the mid-summer values), but
is drier, especially from July to September. An exception
occurs in March, when, in the 1low =:nd centr- Alperta

latitudes, the 1XCO, run simulates a decr:.:>;> in soi. moisture

while the 2XCO, run simulates an increase.

$.31i Discussion

Based on the soil moisture data made available by the GCM
labs as well as available observed Alberta stubble soil
moisture data, the GFDL, GISS and UI model zxco2 runs closely
simulate the annual variation of their 1XCO, runs in monthly
timing of increases and decreas:s. The AES model’s perturbed
run is not realistic with its huge departure from control run
winter soil moisture values. For agricultural regions of
Alberta, most of th2 models (AES, GFDL, OSU, UI, NCAR, UKMO)
predict drier conditions during summer months and most models

(GFDL, 0OSU, UI, NCAR) predict wetter soil moisture conditions
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during the winter. These wetter conditions disappear in the
perturbed runs before the increases in 1xco,, spring soil
moisture peak, though, so the simulated wetter conditions do
not continue into the planting season. The GISS model
predicts more soil moisture year-round with. its 2xco,,
simulation compared to its control run at two of its four
grids (central and north-central Alberta).

It can be argued (Dr. David Halliwell, personal
correspondence) that since some of the modellers do .ol use
soil moisture as a diagnostic variable (to check the validity
of the model), there is little importance *5 the actual awde:
other than how it modifies the behavicur of the model {«..;.
evaporation). One GCM may use a completely different range of
nurhers for soil moistur~, yet get the same evaporation since
soil moisture is used differently. From this viewpoint,
ctanges in soil moisture may be more critical. Yet soms GCM
modellers use their GCM soil moisture values to help verify
their model’s accuracy (Boer et al., 1992, Kellogg and Zhao,
1988, Meehl and Washington, 1988), and climate change impact
assessors will use the simulated soil moisture numbers.

The okserved data can be used to show that one model or
another has realistic values for soil moisture, but this is an
independent question from whether or not the changes in soil
moisture between control and perturbed simulations are
realistic. The changes are what is interesting in the 2XcCoO,
scenario. In response to this, Appendix F shows the percent

change in 2XC02 so0il moisture with respect to 1XCO02 soil
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moisture for the GCMs. The AES model shows a 70% to 90%
decrease in soil moisture over winter (primarily February) and
small (less than 10%) decreases in summer soil moisture for
ost grids. GISS shows 10% to 60% increases in winter soil
noisture and a decrease in summer soil moisture only in the
far northwest portion of the province. GFDL shows mostly 5%
to 50% increases in winter soil moisture and approximately 20%
to 40% decreases in summer soil moisture. The OSU and UI
models also show winter increases and summer decreases in soil
moisture, however the change in the timing and magnitude of
the so0il moisture variability is 1large. incre2ses and
decreases of 70% to 140% occur at different locations in June-
July and August-September for these two models. The UKMO
model shows its largest soil moisture increases in March (40%
to 80%) except in northern Alberta. Its largest soil moisture
decreases occur in August-September (40% to 80%), though again
not for northern Alberta. Differences in seasonal changes

micht be related to seasonal precipitation or evaporation.
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Chapter 6

Discussion, Interpretation and Conclusions

The research documented in this thesis was undertaken to
provide an original investigation into scil moisture in
Alberta through a comparison of seven ( .obal Climate Models
and obser-ations. It was found that climate change impact
assessors frequently use only one or two GCMs in their
assessments, :ieglect the assessment of soil moisture, and
often do not go directly to the source for data, but consult
"third-hand" reports for GCM simulation results. This thesis
is a first step in .-medying that situation.

Each of the seven GCM model developers were contacted to

acquire first-hand soil moisture data. This was a frustrating

experience in some cases. In theory, all GCM data can be
acce=c~’ ‘rhough NCAR digital archives in Colorado. NCAR,
howe - .uvested several thousand dollars to provide the

neces.ary ua.a. The data for som~ GCMs were not available in
their archives, even though those model developers mentioned
through correspondence that they had provided NCAR with such
data. These data were then provided free of charge by the
developers for use in this thesis.

The observed soil moisture data provided by Alberta
Agriculture are the best source of measurements available for
the province. They are, however, as yet insufficient both
temporally and spatially to make good comparisons with the

annual variabiliity of the GCMs. Their units of measurement
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slso differ from GCM units and this contributes to
unreliability in the comparisons.

The differences between the GCMs’ units of soil moisture
measurement (especially in the case of AES), soil moisture
field capacities and resolutions also adds to frustration in
comparison attempts. The GCMs’ use and definition of soil
moisture terms is often different or incorrect compared to
those in the field of soil scuiu ce.

The lack of detail in GCM documentation of soil moisture
processes is unfortunate considering the importance of soil
moisture. Errors in GCM documentation and data significantly
slow down the comparison procedure, but offer valuable
reminders that researchers can contribute to building a false
paradigm if they use third-hand data.

Despite the problems encountered while developing this
thesis, they offered useful lessons in gathering and quality-
controlling data. As stretched as the comparisons arc (with
adjustments for insufficient data, unit conversion, etc.),
they nonetheless present a first look at soil moisture in
Alberta through comparisons of GCMs and observations.

Considering the general characteristics of the GCMs
compared in this thesis, the AES model has the best horizontal
resolution (3.75 deg. lat. by 3.75 deg. long.) and the second
best vertical resolution (10 layers). The UKMO model has the
best vertical resolution (11 layers), but at 5 degrees
latitude by 7.5 degrees longitude, its horizontal resolution

is the second most coarse. The O0SU and UI models have the
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closest comparison to observed soil moisture values, but they
have the least vertical resolution (2 layers). The GISS model
is the only one of the seven that allows more than one type of
surface to exist at the same time within one grid box. Its
more detailed treatment of surface type, though, is undermined
by its low horizontal resolution. The UKMO model is wrong in
some of its surface type designations for Alberta.

Considering the soil moisture parameterization of the
models, each model is highly unrealistic in how it treats soil
moisture storage, field capacity, saturation and runoff. The
AES model makes the attempt to achieve some realism in soil
moisture storage by not keeping the "bucket" depth constant
for all regions. As described in section 5.2b, however, the
model’s field capacities are an order of magnitude greater
than the other models. Another annoying feature of the AES
model was to treat soil moisture as a different physical
guantity (mass per volume) than the other models (depth). The
GISS model appears to have the most detailed of the GCM soil
moisture parameterizations with a two-layer model having upper
and lower layer field capacities that differ according to a
selection of eight canopies. The GFDL, NCAR, OSU and UI
models are similar in their parameterizations of soil
moisture.

The timing of the models’ annual variability for 1XCO,
run soil moisture simulations is similar, though the
magnitudes differ. The models generally show constant winter

soil moisture, increases in spring soil moisture with snow
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melt and runoff, then decreases in late summer. The UI model
most accurately simulates observed Alberta soil moisture for
spring and autumn.

For the 2XCO, runs, most of the models predict less soil
moisture during summer months. Most models predict more soil
moisture cduring the winter.

The main objective of this thesis was to bring together
soil mojsture values from seven GCMs and observed measurements
for intercomparison. Some reasons for the differences in
values for the models exist in their parameterization of soil
moisture (Chapter 5). Other reasons can be found in feedback
mechanisms that incorporate several other aspects of GCM
behavior besides soil moisture. The great amount of time
required for a thorough analysis of each model’s behavior puts
that study outside the realm of this thesis.

A conclusion of this thesis that needs to be stressed is
the weakness with which soil moisture is treated by the GCMs.
People are using the output for policy decisions. As
mentioned by Dr. D. Halliwell and Dr. D. Chanasyk (personal
correspondence), the modellers cannot respond to criticism by
saying the models "were not set up to do realistic soil
moisture simulations" if they are neglecting to tell people
not to treat the numbers as if they are realistic! The
modellers can’t claim that soil moisture is only used in the
models to adjust evaporation, and then use it as an indicator

of future conditions.
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Appendix A:

Alberta Stubble Soil Moisture Maps
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Appendix B:
variation of GCM 1XCO2 and 2XCO2 Average

Soil Moisture for NCAR-Type Season:
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APPENDIX B
Table 15a

Vvariation of AES 1XCO2 and 2XCO2 GCM Average Soil Moisture (cm)
for NCAR-type Seasons (Winter=Dec. to Feb., Summer=Jun., to Aug.)

LAT

W
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NNVNININ ~ 3 b e 2 O
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MONTH

WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER

CONTROL DOUBLE

25.8 9.0
37.3 16.6
55.3 28.4
63.8 56.6
55.8 56.1
36.7 10.1
37.8 1.4
72.6 18.4
72.0 18.1
64.0 37.6
64.5 16.8
29.4 6.0
59.0 15.5
59.0 13.7
56.0 1.3
75.2 9.9
57.2 8.0
20.7 2.9
21.1 5.0
56.6 10.3
28.8 23.4
33.9 31.2
44.4 43.9
52.1 47.8
41.4 35.1
38.8 36.4
35.8 35.1
70.0 69.1
67.8 65.0
60.0 57.4
63.6 67.3
26.6 27.2
55.4 51.5
54.3 51.4
54.0 52.4
71.0 69.2
56.7 53.7
19.3 20.0
19.8 32.0
54.4 55.7

CONTROL=1XCO2 run in cm, DOUBLE=2XCO2 run in cm
See Section 4.2 for averaging procedure
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variation of GISS 1XCO2 and 2XCO2 GCM Average Soi
for NCAR-type Seasons (Winter=Dec. to Feb., Summer=Jun.

LAT

variation of GFDL 1XCO2 and 2XCO2 GCM Average Soi
for NCAR-type Seasons (Winter=Dec. to Feb., Summer=Jun.

LAT

IR

viuiuniiuiuiiuauiuawnan
VOV 2 OOV 2
VOV 2 cd OO U b s
OOV 2 OO VIV 2 2

for NCAR-type

LAT

CONTROL=1XCO2 run in cm,
See Section 4.2 for averaging procedure
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Table 15b

MONTH CONTROL
WINTER .1
WINTER 6.4
WINTER 6.1
WINTER 6.8
SUMMER 2.8
SUMMER 3.8
SUMMER 4.9
SUMMER 5.9
Table 15¢

MONTH

WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER

CONTROL
3.7

WRN S NIWNI NN
“ e 0 s 0 @
RONOWOWRN—O

Table 15d . .
variation of Ul 1XCO2 and 2XCO2 GCM Average Soil Moisture (cm)

MONTH

WINTER
WINTER
WINTER
WINTEn
WINTER
WINTER
WINTER
WINTER
WINTER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER
SUMMER

CONTROL

[a\]
-

mmbmmwo;nbcowln'\):o;.nb:o'

e .

DOUBLE

s 8 o n oo
OO ONVOO

DOUBLE
4.2

[STSTPORTI] RPN NN
OO WUINI & = ONO

DOUBLE
3.2

| Moisture (cm)

to Aug.)

| Moisture (cm)

to Aug.)

Seasons (Winter=Dec. to Feb., Summer=Jun. to Aug.)

DOUBLE=2XCO2 run in cm
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Table 15e
variation of OSU 1XC0O2 and 2XCO2 GCM Average Soil Moisture (cm)
for NCAR-type Seasons (Winter=Dec. to Feb., Summer=Jun. to Aug.)

LAT LONG MONTH CONTROL DOUBLE
50.00 110.00 WINTER 1.6 2.%
50.00 115.00 WINTER 2.7 3.2
50.00 120.00 WINTER 3.0 2.9
54.00 110.00 WINTER 1.1 1.9
54.00 115.00 WINTER 1.9 2.4
54.00 120.00 WINTER 2.0 2.2
58.00 110.00 WINTER 1.3 1.7
58.00 115.09 WINTER 1.2 1.7
58.00 120.00 WINTER 1.8 2.2
50.00 110.00 SUMMER 1.9 0.7
50.00 110.00 SUMMER 1.9 0.7
50.00 115.00 SUMMER 0.8 0.7
50.00 115.00 SUMMER 0.8 0.7
50.00 120.00 SUMMER 3.2 0.1
50.00 120.00 SUMMER 3.2 0.1
54.00 110.00 SUMMER 1.0 0.3
54.00 110.00 SUMMER 1.0 0.3
54.00 115.00 SUMMER 1.0 0.6
56.00 115.00 SUMMER 1.0 0.6
54.00 120.00 SUMMER 1.9 0.3

.00 120.00 SUMMER 1.9 0.3
58.00 110.00 SUMMER 2.1 0.6
58.00 110.00 SUMMER 2.1 0.6
58.00 115.00 SUMMER 0.8 0.6
58.00 115.00 SUMMER 0.8 0.6
58.00 120.00 SUMMER 1.3 0.7
58.0 120.00 SUMMER 1.3 0.7

Table 15
Variation of NCAR 1XCO2 and 2XCO2 GCM Average Soil Moisture (cm)
Seasons (Winter=Dec. to Feb., Summer=Jun. to Aug.)

LAT LONG MONTH CONTROL DOUBLE
48.40 112.50 WINTER 0.0 8.6
48.40 120.00 WINTER 0.0 14.2
52.90 112.50 WINTER 5.6 8.1
52.90 120.00 WINTER 13.0 14.2
57.40 112.50 WINTER 5.8 10.2
57.40 120.00 WINTER 12.0 13.7
61.90 112.50 WINTER 4.0 7.8
61.90 120.00 WINTER 6.9 1.3
48.40 112.50 SUMMER 4.5 2.3
48.40 120.00 SUMMER 1.9 2.5
52.9 112.50 SUMMER 0.7 1.7
52.90 120.00 SUMMER 1.4 4.6
57.40 112.50 SUMMER 0.3 0.7
57.40 120.00 SUMMER 0.6 2.2
61.90 112.50 SUMMER 0.3 0.6
61.90 120.00 SUMMER 0.3 1.7

CONTROL=1XCO2 run in cm, DOUBLE=2XCO2 run in cm
See Section 4.2 for averaging procedure
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Appendix C:
Spatial Mean and Standard Deviation of
Measured Alberta Stubble Soil Moisture for

Spring and Fall at GCM Gridpoints
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YEAR  MONTH LAT
2 53.80

198 10 3

1983 10 53.80
1984 10 53.80
1985 10 $3.80
1986 10 53.80
1987 10 53.80
1988 10 53.80
1989 10 53.80
1990 10 53.80
1971 10 53.80
1982 10 57.51
1983 10 57.51
1984 10 57.51
1985 10 57.51
1986 10 57.51
1987 10 57.51
1988 10 57.51
1989 10 57.51
1990 10 57.51
1991 10 57.51

SPACMEAN = spatial mean for each year measured

Table 16a con't.
Sgatial Mean and Standard Deviation of Measured Alberta Stubble
oil Moisture for Spring and Fall (cm) for AES GCM Gridpoints
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SPACSTD = spatial standard deviation for each year measured
MOISTURE = Global Climate Model soil moisture value

See Section 5.2a for calculation procedure
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Table 16b
Spatial Mean and Standard Deviation of Measured Alberta Stubble
goil Moisture for Spring and Fall (cm) for GISS GCM Gridpoints

YEAR  MONTH LAT LONG  SPACMEAN  SPACSTD  MOISTURE
1988 4 50.87 110.00 7.99 4.81 14.49
1989 4 50.87 110.00 8.1 4.53 14.49
1990 4 50.87 110.00 8.58 4.37 14.49
1991 4 0.87 110.00 7.0 3.19 14.49
1988 4 50.87 120.00 7.63 2.97 22.45
1989 4 50.87 120.00 14.44 1.70 22.45
1990 4 50.87 120.00 14.06 2.n 22.45
1991 4 50.87 120.00 11.12 2.62 22.45
1988 4 58.70 110.00 11.10 2.60 18.89
1989 4 58.70 110.00 7.60 3.n 18.89
1990 4 58.70 110.00 13.24 3.27 18.89
1991 4 58.70 110.00 9.12 4.34 18.89
1988 4 58.70 120.00 11.01 4.02 20.82
1989 4 58.70 120.00 11.08 3.26 20.82
1990 4 58.70 120.00 12.55 3.5 20.82
1991 4 58.70 120.00 6.38 2.13 20.82
1982 10 50.87 110.00 5.37 3.05 7.93
1983 10 50.87 110.00 3.79 2.22 7.93
1984 10 50.87 110.00 9.83 4.46 7.93
1985 10 50.87 110.00 8.73 4.26 7.93
1986 10 50.87 110.00 13.28 3n 7.93
1987 10 50.87 110.00 7.28 4.36 7.93
1988 10 50.87 110.00 5.38 4.10 7.93
1989 10 50.87 110.00 6.81 4.13 7.93
1990 10 50.87 110.00 2.97 1.50 7.93
1991 10 50.87 110.00 3.44 1.92 7.93
1982 10 50.87 120.00 8.04 2.39 2.04
1983 10 50.87 120.00 8.33 2.24 9.04
1984 10 50.87 120.00 14.31 1.86 9.06
1985 10 50.87 120.00 15.00 0.00 9.04
1986 10 50.87 120.00 15.00 0.00 9.04
1987 10 50.87 120.00 8.35 3.82 9.04
1988 10 50.87 120.00 11.12 2.62 9.04
1989 10 50.87 120.00 13.74 2.36 9.04
1990 10 50.87 120.00 4.19 2.03 9.04
1991 10 50.87 120.00 6.22 2.07 9.04
1982 10 58.70 110.00 2.25 0.00 16.13
1983 10 8.70 110.00 5.56 1.63 16.13
1984 10 58.70 110.00 14.48 1.64 16.13
1985 10 58.70 110.00 10.02 1.79 16.13
1986 10 58.70  110.00 10.22 2.02 16.13
1987 10 58.70 110.00 10.08 2.14 16.13
1988 10 58.70 110.00 6.35 2.93 16.13
1989 10 58.70 110.00 7.68 3.73 16.13
1990 10 58.70  110.00 3.94 2.67 16.13
1991 10 58.70 110.00 3.02 2.03 16.13
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Table 16b con't.
sgatial Mean and Standard Deviation of Measured Alberta Stubble

oil Moisture for Spring and Fall (em) for G1SS GCM Gridpoints

YEAR  MONTH LAY LONG  SPACMEAN  SPACSTD  MOISTURE
1982 1 58.70  120.00 2.49 0.75 18.05
1983 10 58.70 120.00 5.08 0.93 18.05
1984 10 58.70 120.00 14.43 1.70 18.05
1985 10 8.70 120.00 11.02 3.39 18.05
1986 10 58.70 120.00 6.99 2.93 18.05
1987 .10 58.70 120.00 9.70 5.12 18.05
1988 10 . 120.00 6.29 2.35 18.05
1989 10 58.70 120.00 10.08 4.65 18.05
1990 10 58.70  120.00 4.46 2.44 18.05
1991 10 58.70 120.00 6.36 2.9 18.05

SPACMEAN = spatial mean for each year measured
SPACSTD = spatial standard deviation for each year measured
MOISTURE = Global Climate Model soil moisture value

See Section 5.2a for calculation procedure
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SPACSTD  MOISTURE

SPACMEAN

Table 16c
jal Mean and Standard Deviation of Measured Alberta Stubble

il Moisture for Spring and Fall (cm) for GFDL GCM Gridpoints
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Table 16c con't.
Sgagial Mean and Standard Deviation of Measured Alberta Stubble
oil Moisture for Spring and Fall (cm) for GFDL GCM Gridpoints

YEAR  MONTH LAT LONG  SPACMEAN  SPACSTD  MOISTURE
1982 10 55.55 120.00 3.46 2.27 11.73
1983 10 55.55 120.00 5.64 1.70 1.3
1984 10 55.55  120.00 15.00 0.00 11.73
1985 10 55.55 120.00 13.24 2.62 11.73
1986 10 55.55  120.00 8.00 4.29 11.73
1987 10 55.55  120.00 7.87 4.23 11.73
1988 10 §5.55 120.00 3.76 2.19 11.73
1989 10 55.55 120.00 12.27 2.82 1.73
1990 10 55. 120.00 4.48 2.57 11.73
1991 10 55.55 120.00 5.51 2.83 11.73
1982 10 59.99  120.00 2.25 0.00 11.98
1983 10 59.99 120.00 4.88 0.00 11.98
1984 10 59.99  120.00 13.64 2.45 11.98
1985 10 59.99  120.00 7.30 2.29 11.98
1986 10 59.99  120.00 7.76 2.20 11.98
1987 10 59.99  120.00 8.14 2.05 11.98
1988 10 59.9 120.00 9.38 0.00 11.98
1989 10 59.9 120.00 4.44 2.85 11.98
1990 10 59.9 120.00 4.25 1.15 11.98
1991 10 59.99 120.00 8.03 2.10 11.98

SPACMEAN = spatial mean for each year measured
SPACSTD = spatial standard deviation for each year measured
MOISTURE = Global Climate Model soil moisture value
See Section 5.2a for calculation procedure

117
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Table 16d con't
atial Mean and Standard Deviation of Measured Alberta Stubble

S
goil Moisture for Spring and Fall (cm) for Ul GCM Gridpoints
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See Section 5.2a for calculation proce

tial standard deviation

SPACMEAN
Ea
MOISTURE =

SPACSTD = s

119



SPACSTD  MOISTURE

SPACMEAN
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. Table 16e con't
Spatial Mean and Standard Deviation of Measured Alberta Stubble
Soil Moisture for Spring and Fall (cm) for OSU GCM Grids

MONTH LAT LONG  SPACMEAN  SPACSTD  MOISTURE
10 54,00 110.00 4.95 3.72 1.90
10 54.00 110.00 6.60 2.47 1.90
10 54.00 110.00 13.68 2.81 1.90
10 54.00 110.00 7.20 2.31 1.90
10 54.00 110.00 9.48 2.75 1.90
10 . 110.00 7.48 2.64 1.90
10 54.00 110.00 5.56 3.01 1.90
10 54.00 110.00 8.67 3.70 1.90
10 S4. 110.00 2.49 0.77 1.90
10 . 110.00 2.61 1.10 1.90
10 54.00 115.00 6.16 3.49 3.83
10 54.00 115.00 5.81 2.24 3.83
10 54,00 115.00 15.00 0.00 3.83
10 54,00 115.00 12.80 2.88 3.83
10 54.00 115.00 13.20 3.09 3.83
10 54.00 115.00 9.90 4.16 3.83
10 54.00 115.00 9.42 3.19 3.83
10 54.00 115.00 10.98 3.69 3.83
10 56.00 115.00 4.95 2.71 3.83
10 54.00 115.00 4.70 2.23 3.83
10 54.00 120.00 3.Nn 2.42 2.4
10 54.00 120.00 5.34 1.38 2.41
10 54.00 120.00 15.00 0.00 2.61
10 4.00 120.00 15.00 0.00 2.0
10 54.00 120.00 5.5 2.35 2.61
10 54.00 120.00 6.93 3.95 2.41
10 54.00 120.00 4.85 2.07 2.41
10 54.00 120.00 12.41 2.84 2.41
10 54.00 120.00 3.67 1.33 2.41
10 54.00 120.00 5.06 1.96 2.61
10 58.00 115.00 2.25 0.00 2.87
10 58.00 115.00 4.88 0.00 2.87
10 58.00 115.00 12.82 2.77 2.87
10 58.00 115.00 8.37 1.90 2.87
10 58.00 115.00 7.64 2.22 2.87
10 58.00 115.00 10.77 5.78 2.87
10 58.00 115.00 8.28 1.96 2.87
10 58.00 115.00 5.03 3.41 2.87
10 58.00 115.00 3.81 1.31 2.87
10 58.00 115.00 7.86 2.64 2.87
10 58.00 120.00 2.25 0.00 4.05
10 58.00 120.00 4.88 0.00 4.05
10 58,00 120.00 15.00 0.00 4.05
10 58.00 120.00 10.59 3.32 4.05
10 58.00 120.00 5.92 1.93 4.05
10 58.00 120.00 11.87 4.36 4.05
10 58.00 120.00 6.90 2.28 4.05
10 58.00 120.00 8.56 4,86 4.05
10 58.00 120.00 2.76 1.06 4.05
10 58.00 120.00 6.20 3.33 4.05

SPACMEAN = spatial mean for each year measured
SPACSTD = sEatlal standard deviation for each year measured
MOISTURE = Global Climate Model soil moisture vatue

See Section 5.2a for calculation procedure
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Table 16f
Spatial Mean and Standard Deviation of Measured Alberta Stu
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al standard deviation for each

ti

ga
A moisture value of 100 indicates a model surface type of 'SEA!

SPACMEAN = spatial mean for each year measured
See Section 5.2a for calculation procedure

MOISTUR

SPACSTD = s



Appendix D:
Annual Variation of GCM Soil Moisture vs.
Mean and Standard Deviation of Actual

Alberta Stubble Soil Moisture
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Appendix E:
Annual Variation of GCM 1XCO, and 2XCO, Soil Moisture for

Model Gridpoints in and Near Alberta
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Appendix F:
Percent Change in GCM 1XCO, Soil Moisture
Compared to 2XCO, Soil Moisture for Model

Gridpoints in and Near Alberta
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