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Abstract

In the first essay, I explore whether excess demand in commodity futures markets

affects the spot price of oil. I use a sign restricted vector autoregressive oil market

model that explicitly includes futures markets. This model allows for the detection

of futures demand effects which feedback into spot prices through a price signaling

channel, in contrast to previous studies relying solely on an inventory channel. I

find novel evidence that excess demand in futures markets drives over half of the

short run variation in the spot price of oil, and can explain puzzling incidents of oil

price behavior such as the 2008 boom and bust in oil prices and the 2014 oil price

crash. I find that this relationship is much stronger after 2003, the period commonly

associated with a rise in financialization and commodity index investment.

In the second essay, I test for the existence of excessive comovement amongst

stocks in the S&P 500. Using a fuzzy regression discontinuity approach, I show that

membership in the S&P 500 leads to significant positive excess comovement in the

long term. I evaluate a traditional, liquidity based explanation and a friction based

explanation, and find no evidence that liquidity drives excess comovement. I show

that the lack of evidence for excess comovement shown in Chen, Singal, Whitelaw

(2016) is due to heterogeneous effects on newly included firms versus established

members. One potential explanation is that investors take time to fully integrate the

new stock into the group immediately after inclusion, reducing observed increases in

comovement in the short term. Another is that firm inclusion is related to a change

in fundamentals. These results constitute new evidence of frictions when exposed

to large classes of traders with correlated, non-fundamental demands, such as those

populating the S&P 500.

In the third essay, I test for the existence of excess coskewness amongst stocks in

the S&P 500. Using a combination of event study and fuzzy regression discontinuity
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approaches, I show that membership in the S&P 500 leads to significant negative

excess coskewness in the long term, but positive excess coskewness in the short term,

pointing to important transitory effects of inclusion that differ from persistent long

term effects. These coskewness results point to price distortions caused by index

membership, with implications for both market and allocative efficiency, and diversi-

fication benefits.
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Chapter 1

Introduction

The bundling of assets into indices encourages investors to trade the entire basket

instead of evaluating the investment merits of individual constituents within that bas-

ket, effectively “financializing” the index of assets itself. This can create investment

demand not linked to an asset’s economic fundamentals, putting pressure on asset

prices. In this thesis, I explore the effects of this index financialization on commod-

ity spot prices (Chapter 2), equity comovement (Chapter 3), and equity coskewness

(Chapter 4).

In the first essay, I explore the influence of commodity index trading in futures

markets on commodity spot prices. Any influence is important because a commodity

spot price distortion can constitute a distortion in the real economy by affecting

firms’ production decisions. This also has implications for the affordability of essential

resources like food and energy for individual households.

To conduct my study, I utilize a sign restricted structural vector autoregressive

model adapted from the workhorse model of Kilian and Murphy (2014). I use this

model to separate the effects of excess futures market demand from changing economic

fundamentals. Specifically, this model lets me capture excess demand transmitted

from futures markets to spot markets through a price signaling channel that has

not been explored before. This contrasts previous models relying on a detectable

inventory response that may not exist when observable information about economic

fundamentals is imperfect.

I find that excess futures market demand drives the largest portion of short-run

oil price variation. This effect is primarily concentrated after 2003, during the period

of rising commodity index trading, directly linking it with increasing financialization.
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I also analyze the evolution of oil prices and show that futures market shocks explain

major price swings, most notably during 2008 and 2014. These results constitute

evidence of large impacts of financialization on commodity spot markets, empirically

linking trading pressure in futures markets to spot prices through a price signaling

channel.

My second essay studies the influence of financialization of equity indices on the

return process of equities. I evaluate whether membership in the S&P 500 can lead to

long-term changes in a stock’s comovement with the index. This is important because

a change in comovement for members indicates a distortion to the firm’s fundamental

return process, since a change in index status on its own should not change the firm’s

business fundamentals or returns. Any distortion of the firm’s return process has

implications for the informational efficiency of prices and the efficiency of capital

allocation in the economy.

To conduct my study, I use a fuzzy regression discontinuity design. This quasi-

experimental design allows me to effectively control inevitable differences between

index and non-index firms and isolate the causal effect of index membership on co-

movement. I find that S&P 500 member firms indeed experience positive excess

comovement with each other due to index membership. This is a new long-run find-

ing and complements literature that debates the short-run change in comovement

upon index inclusion.

In the third essay, I evaluate the effect S&P 500 membership has on coskewness

with the index. As this is an unexplored area of research, I examine both the long-run

and the short-run impact of index membership using a combination of an inclusion

event study and a regression discontinuity design. Assets with higher coskewness have

a higher likelihood of moving with the market during market upswings but a lower

likelihood of moving with the market during market downswings, which is generally

2



seen as beneficial to investors. I find that transitory effects increase coskewness when

firms are first added to the index, but the long-run effect is negative. This points to a

novel impact of S&P 500 membership inducing undesirable decreases in coskewness,

with potential implications for prices, investor portfolio choice, and diversification

benefits.
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Chapter 2

Does excess futures market demand affect the spot price of
oil?

2.1 Introduction

Can excess demand in commodity futures markets distort spot prices? This criti-

cal question has been at the center of a long, contentious debate since the dramatic

boom and bust of commodities in 2008.1 Traditional economic theory implies that

the answer to this question is no. Yet, puzzling price swings in commodities after

2003 (Figure 2.1),2 coinciding with the rise of index investing and historic increases in

the comovement of commodities with broader financial markets, provide fuel for the

argument that financialization could adversely affect the ability of prices to incorpo-

rate information accurately. My examination supports this argument; I find that not

only is excess futures market demand a key determinant of commodity prices, it is

also increasingly important in the recent period linked to financialization.

My research question is motivated by the theoretical work of Sockin and Xiong

(2015), who show how upward pressure placed on futures prices by commodity index

investors can be mistaken as a positive economic signal by goods producers.3 These

goods producers subsequently increase their demand for oil as an input in production.4

1Cheng and Xiong (2014) and Fattouh, Kilian, and Mahadeva (2013) take two different perspec-
tives on the likelihood of futures market demand being problematic. Both critically review previous
studies and agree that there is no definitive evidence either way.

2The beginning of the financialization of commodities markets is generally placed around 2003-
2004. Cheng and Xiong (2014) associate this period with rapidly increasing capital investment
from commodity index traders and growing gross and net positions in commodity futures contracts.
Bouchouev (2020) associates the period with increasing liquidity to hedgers as futures markets
outstrip the size of physical markets and a related shift towards Contango.

3Not to be confused with oil producers, goods producers consume oil as an input into their
production of intermediate and final goods

4There is empirical evidence that firm managers use asset prices as signals in decision making,
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This serves as a novel mechanism whereby pressure on futures prices from uninformed

investors can feedback into spot market prices through a price signaling channel.

To study the influence of financialization on commodity prices, I examine the oil

market, primarily for the richness of data available. Specifically, given the global

nature of oil markets, I examine the price of Brent oil. I utilize a structural vector

autoregressive oil market model based on Kilian and Murphy (2014) to deal with

the highly endogenous nature of observable global oil market variables. I extend

the model from the traditional fundamental shocks of oil supply, oil demand, and

inventory demand, to include a non-fundamental futures demand shock. I utilize

data on ICE Brent Futures contracts to incorporate this new shock.

The model relies primarily on a set of impact sign restrictions on economic re-

sponses derived from economic theory to identify and disentangle the largely unob-

servable shocks from the observable data. The fundamental shocks are relatively

straightforward: a negative supply shock is a production disruption increasing the

spot price of oil, a positive demand shock directly pressures the spot price upwards,

while a positive inventory demand shock similarly pushes oil prices upwards, but on

the back of increased inventories instead of increased oil consumption. A key novelty

lies in the modeling of the futures demand shock to disentangle it from the funda-

mental demand shock. To do this, I combine the theory of Sockin and Xiong (2015)

with the implications of the theory of storage. I show that, while a demand shock

results in a decrease in the futures-spot spread, a futures demand shock is accompa-

nied by an increase in spread. I also supplement the model with additional dynamic

sign restrictions, realistic restrictions on the elasticity of oil demand in use, and a set

of narrative restrictions to ensure the model can credibly explain several observable

and that using asset prices as signals can lead to poor decisions and be damage firms, in Dessaint,
Foucault, Fresard and Matray (2019) and Brogaard, Ringgenberg and Sovich (2019).
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exogenous events.

My results show that futures demand shocks, independent of fundamental infor-

mation, explain over half of the short run variation in Brent oil prices. Furthermore,

the importance of these shocks has increased over time, explaining just 6% of short

run variation before 2003 but over half of short run variation after. I argue that this

is consistent with an observed increase in financialization, specifically, rising levels of

index investment. In contrast to the short run results, demand shocks are the most

important driver of long run oil prices, with futures demand playing a much weaker

long run role.

My analysis also reveals significant contributions of excess futures demand to

dramatic oil price swings during my sample. Specifically, I find that excess demand

in futures markets drove the largest portion of the run up and collapse in oil prices

in 2008. Additionally, I find that the oil price crash in 2014, while triggered by

supply shocks, was heavily exacerbated by futures trading. My results also point

to earlier contributions to oil price behavior during the bond market crisis of 1994

and the Asian financial crisis of 1997. My model captures fundamental oil market

behavior throughout the sample as well. Specifically, I capture supply shocks during

the Venezuelan oil strike of 2002, the US invasion of Iraq in 2003, the Libyan Civil

War in 2011, the Abqaiq-Khurais drone attacks on Saudi oil facilities in 2019, and the

Saudi-Russia oil price war in 2020. I also capture a major demand shock depressing

oil prices around the onset of the global Covid-19 pandemic.

Finally, I evaluate other possible explanations for my results. I show that it is

unlikely that my futures demand shock is driven by changing interest rates, changing

storage costs, or by differences in the speed of information diffusion to spot and

futures markets. I also confirm that my futures demand shock captures financial

market pressure, not hedging pressure.
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For emphasis, the contributions of my study are not limited solely to oil markets.

Financialization has changed the relationship of many indexed commodities with

financial markets, and many commodities share similarly puzzling price behavior,

most notably during 2008. Furthermore, the implications of my study are not limited

to commodities and instead indicate the propensity of financialization to affect both

financial markets and the real economy more generally.

The remainder of the paper is organized as follows: Section 2 provides a brief

background to my study and elaborates on its contributions, while section 3 presents

my structural vector autoregressive model, and section 4 describes the data I use.

Section 5 presents my main results on the financialization of commodities, including

the drivers of oil spot prices, the importance of futures demand, how this has changed

over time with financialization, and how futures trading has affected real world oil

prices throughout the sample period. Section 6 concludes.

2.2 Background and Contribution

My results contribute to several lines of literature. First, my evidence directly relates

to the aforementioned debate on the causes of the 2008 commodity price boom and

the extended debate on the financialization of commodities generally. Masters (2008)

attributes the price boom to a bubble caused by increased demand for commodity

exposure by commodity index traders, while Hamilton (2009) instead argues that

emerging market demand justified increasing prices. Cheng and Xiong (2014) point

out that growth in emerging market demand had already begun to slow as early

as late 2007, while prices continued to rise another 40% through mid-2008 before

collapsing, posing a puzzle to fundamental demand based explanations. 5 Early

5China’s GDP growth peaked in mid-2007, world equity indices peaked in the fall of 2007, the
US entered a recession in Dec 2007, Bear Stearns collapsed in the spring of 2008, and so on.
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studies relying on granger causality tests do not detect speculative effects leading up

to 2008, but have been criticized as suffering from simultaneity bias.678 However, Tang

and Xiong (2012) point to increasing correlations of index commodities with wider

financial markets, and Henderson, Pearson, and Wang (2015) point to the results of a

natural experiment linking uninformed investor flows to price changes. These papers

suggest that financialization is indeed an essential determinant of commodity prices.

Second, my results add to a wider body of evidence linking the demand of index

investors to asset prices generally. Shleifer (1986) and Jain (1987) link equity index

inclusion to non-fundamental changes in equity prices, while Barberis, Shleifer, and

Wurgler (2005) link equity index inclusion to increasing asset correlations. Chen,

Singal, and Whitelaw (2016) point to changing fundamentals upon index inclusion to

cast doubt upon inclusion studies, while chapter 3 of this thesis confirms increased

return comovement for index members using a regression discontinuity design instead.

Harford and Kaul (2005) show that correlated order flow drives strong common effects

in the returns of S&P 500 index firms.9

Third, my results contribute to the literature on the effects of financial markets

on the real economy. Bond, Edmans, and Goldstein (2012) argue the importance of

accounting for the feedback effect of market prices on the real economy and show

that doing so can help explain a number of puzzling phenomena. Along this line,

6See Cheng and Xiong (2014) for a comprehensive review of the identification problems in this
area of research.

7Early studies by Irwin, Sanders and Mirrin (2009), Stoll and Whaley (2010), Irwin and Sanders
(2012), and Hamilton and Wu (2015), among others, find no predictive link between investor flows
and futures prices, while Singleton (2014) uses a similar approach with a different measurement of
investor changes and finds that investor position changes do predict future price changes.

8I verify that there is no predictive link in my sample and present the results of my granger
causality test, linking net changes in swap dealer flows from the CFTC’s DCOT report, in Table
A.5.

9See Kaul, Mehrotra, and Morck (2000), Chen, Noronha, Singal (2004), and Froot and Dabora
(1999) for additional evidence
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Dessaint, Foucault, Fresard, and Matray (2019) link firms’ investment decisions to

non-fundamental drops in the stock price of their product-market peers. Brogaard,

Ringgenberg, and Sovich (2019) show that firms make worse decisions and exhibit

lower performance when the index commodities they use in production experience

higher degrees of financialization, implying that they reference commodity prices in

decision making. My work complements these studies by providing evidence support-

ing a feedback loop of futures prices into economic decision making, consistent with

the theory of Sockin and Xiong (2015).

Finally, my study builds upon an existing literature searching for speculative ef-

fects in oil prices through changes in inventories. Kilian and Murphy (2014) and

Knittel and Pindyck (2016) measure the effect that speculative trading has on oil

prices through an inventory response channel, capturing the extent to which chang-

ing expectations of future economic fundamentals affect commodity prices through

changing demand for inventories. My model adds the flexibility to study how excess

demand for long positions in futures contracts, unrelated to economic information, can

affect spot prices. These shocks affect spot prices through a price signaling channel

that induces a demand response instead of an inventory demand channel.

2.3 Empirical Design

My analysis aims to establish the relationship between excess demand in futures

markets and the spot price for oil. However, a simple regression of the spot price of

oil on measures of trading activity will suffer from severe endogeneity. First, there

is an omitted variable problem, as additional variables, such as economic strength,

could simultaneously drive the price of oil and trading.10 Second, if the price of oil

10For example, if the economy is strong, people may have more money to invest in long only index
funds, and oil demand may be higher.
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rises for some other reason, it may attract speculators who observe the price increase

and wish to trade on momentum, leading to a reverse causality problem. Thus, a

change in the level of trading does not represent an independent or exogenous shock.

To deal with these issues, I use a structural vector autoregressive (SVAR) model,

adapted from Kilian and Murphy (2014), to integrate a futures demand shock into a

model of global oil prices.

2.3.1 Structural Vector Autoregressive Model

To model global oil markets and analyze the drivers of global oil prices, I posit the

following set of structural relationships:

B0yt = β0 +
24∑
i=1

βiyt−i + ut (2.1)

Where yt represents a vector of endogenous variables, including percent change in

global crude oil production, global real activity, the real price of crude oil, changes in

inventories of crude oil, and the real price of crude oil futures. The model includes

five independent structural shocks, represented by ut, which drive observed changes

in these variables. The shocks include flow supply and demand shocks, an inventory

demand shock, my futures demand shock capturing pressure from excess demand on

prices independent of economic fundamentals, and a residual. B0 is an invertible

matrix containing estimates which capture the contemporaneous relationship of the

shocks with the variables and maps the structural shocks simultaneously to all of the

observable reduced form variables yt at the time they occur. For example, B0 can

map an independent demand shock at time t to immediate and simultaneous effects

on observable economic activity and the oil price. Since the independent shocks are

not directly observable, we must disentangle their influence from the relationships
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between observable variables. To do so, I run the following monthly, reduced form

regressions with 24 lags (seasonal dummies are suppressed):11

yt = A0 +
24∑
i=1

Aiyt−i + ϵt (2.2)

Since this regression fails to capture the contemporaneous relationship between

the regressors, the ϵt are correlated across variables and do not reflect independent,

exogenous shocks. Hence, an underlying shock could cause innovations to the real

price of oil to be related to innovations in inventory levels, real activity, production,

and so on. Specifically, the reduced form innovations and the structural shocks are

linearly related as ut = B−1
0 ϵt. The structural shocks, ut, are then disentangled and

recovered from the reduced form innovations, ϵt, from (2.2), by estimating and im-

posing theoretically sound restrictions on B0. I utilize the reduced form estimates

from (2.2) and a suitably identified B0 to recover the structural shocks, structural

impulse response functions, and conduct a variance decomposition and historical de-

composition of oil prices. Appendix B contains additional details on this process for

the interested reader.

2.3.2 Identification

In this section, I define the observable effects of the structural shocks that I estimate

and detail how the structural model, specifically B0, is restricted to identify them. I

use a combination of static and dynamic sign, elasticity, and narrative restrictions to

identify the model. The shocks include fundamental shifts in oil supply, oil demand,

and inventory demand, along with non-fundamental pressure from futures demand

trading. I normalize all shocks to positively affect oil prices, as is the convention in

11Kilian (2009) illustrates the importance of including long lags to accommodate cycles within the
market.
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the literature, and summarize the impact sign restrictions in Table 2.1.

Flow Supply and Flow Demand Shocks

The first two shocks in the model are standard supply and demand shocks, which

have traditionally been the focus of the oil market literature. A flow supply shock in

the model shifts the supply curve to the left along the demand curve, resulting in a

lower quantity of oil produced and a higher oil price. With less oil consumed in goods

production, real activity decreases. I also restrict the response to a negative supply

shock to be positive for the price of oil and negative for production and real activity

for at least 12 months, in line with Kilian and Murphy (2014).

In a similar vein, a flow demand shock shifts the oil demand curve to the right

along the oil supply curve, increasing the equilibrium level of production and the

price of oil. In this shock, oil is consumed by final goods producers, so real activity

increases. Contrary to earlier research, recent work by Kilian and Murphy (2014)

points to demand factors playing a more prominent role than supply.

Inventory Demand Shock

Since oil is storable, an increase in demand for oil can occur without an increase

in real activity. This gives rise to an inventory demand shock, visible by a similar

shift in the demand curve for oil to the right along the supply curve, with increased

production and a higher price, but accompanied instead by an increase in inventories

and a decrease in real activity. Inventory demand can capture changing expectations

about future supply and demand conditions for oil. Market participants may decide

to hold their oil for future sale if an expected future oil shortfall indicates a rising

price. Similarly, during times of increased uncertainty, producers may choose to hold

more inventory to protect against expensive production disruptions.
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Futures Demand Shock

I now define the futures demand shock, which is the primary interest of this

paper. In short, this shock first increases futures prices but is misconstrued as a flow

demand shock and exhibits all of the characteristics therein. It is disentangled from

a flow demand shock by a spread response implying a non-fundamental increase in

the futures price.

This shock is meant to capture the effect of excess demand for long positions in

commodity futures unrelated to fundamental information. The most typical example

would be a flow into a commodity index investment, driven by an exogenous desire

for diversification or an exogenous change in wealth. Such index investors typically

generate exposure to the underlying commodities, directly or indirectly, via futures

markets (or OTC swap dealers, who ultimately pass the exposure along to futures

markets), and these flows put upward pressure on futures prices. Conversely, a neg-

ative futures demand shock reflects downwards pressure on prices due to an excess

decrease in demand for long positions. In the context of index trading, this could

reflect a change in financial market demand for commodity exposure within a wider

portfolio allocation strategy, or redemptions to meet liquidity needs.

Beyond the impact on futures prices, I follow the definition provided by Sockin and

Xiong (2015) for a futures demand shock which can affect the demand for, and price of,

oil in the spot market. In their model, goods producers view a rising futures price as a

signal of higher economic strength, and thus, higher demand for their finished goods.

They then purchase more oil to input into production, effectively increasing demand

for oil, and putting upward pressure on spot market prices. Without incorporating

information on futures prices, a futures demand shock is therefore observationally

equivalent to a flow demand shock.
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To disentangle the two shocks, I use information on futures market prices to

impose restrictions on the futures-spot spread implied by the theory of storage.

To illustrate, consider the characterization of the futures-spot spread of Pindyck

(1994):

ft,t+τ − pt = −ψ(pt, Nt, E[Qt,t+τ ]) + τrt (2.3)

Which simply states that the spread between the log futures price and the log spot

price is a function of the convenience yield ψ and the relatively stable interest rate rt.

Focusing on ψ, Pindyck (1994) shows that the convenience yield is increasing in price,

since higher prices imply higher convenience, decreasing in inventories Nt, as higher

inventories are subject to decreasing marginal benefit, and increasing with expectation

of future tightness in the supply of oil, here represented by demand E[Qt,t+τ ].
12 While

Kilian and Murphy (2014) do not use the spread in their model, this same theory

underpins it.13 Lombardi and Van Robays (2011) also use the spread to identify their

“destabilizing” shock.

The relationship above implies that if there is a negative supply shock, both

futures and spot prices will increase. However, the convenience yield will also increase,

resulting in a decrease in the futures-spot spread in Eq(3). The same rationale holds

for a positive flow demand shock. Applying the same logic to the inventory demand

shock, we would expect a decrease in the futures-spot spread since an increase in

the convenience yield defines an inventory demand shock. In contrast, if a futures

12To show this, Pindyck (1994) estimates a model for ψ, due to Brennan (1991), and finds that
the model, with the above properties, is a good match to the data. Specifically, he estimates the
model ψ = βPt(

Nt

Qt+1
)−ϕ where Nt is inventory, and Qt+1 represents quantity of the commodity of

interest. He estimates that β and ϕ are positive, which means ψ is increasing in Pt and Qt and
decreasing in Qt+1.

13For additional empirical support for the theory of storage, see Fama and French (1988), Brennan
(1991), Ng and Pirrong (1994), and Gorton, Hayashi and Rouwenhurt (2013).
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demand shock moves the futures price away from its fundamental value, the futures

price will be higher than it would otherwise, increasing the futures-spot spread.

Elasticity Restrictions

It is important that my model yield credible elasticity estimates. A key innovation

in Kilian and Murphy (2014) is the introduction of elasticity restrictions. They con-

clude that such restrictions are necessary to appropriately identify oil market models,

playing a key role in invalidating models that overestimate the importance of supply

shocks. Specifically, I impose bounds on the impact price elasticity of oil supply (be-

tween 0 and 0.10) and the impact price elasticity of oil demand in use (between -0.80

and 0).

Narrative Restrictions

I further sharpen the inference in my sign restricted model by utilizing a set of

narrative restrictions on the structural shocks and historical decompositions to verify

that the model agrees with several plausibly exogenous events established in the oil

market literature. These exogenous events are rare and usually surround unexpected

disasters, wars, or other political events. Following Antolin-Diaz and Rubio-Ramirez

(2018), I remove any models which do not capture the major supply disruptions

caused by the Venezuelan Oil Strike of 2002, the Invasion of Iraq in March 2003,

and the Libyan Civil War in February 2011. All of these events caused significant

production disruptions in major oil producing nations, and were arguably exogenous

to oil supply and demand fundamentals. 14 Specifically, a model with no negative

14Antolin-Diaz and Rubio-Ramirez (2018) identify additional exogenous events which occur either
before, or too early in our sample period to utilize. Notably, the Gulf War in 1990 has been
beneficial. This event happens too early in my sample, where transition dynamics cannot be fully
modeled (since my model has 24 months of lags), so it is left out.
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structural supply shock during the event month, or where supply shocks are not the

primary driver of unexpected changes in production, is considered incredible.

I also introduce a new narrative restriction related to the global Covid-19 pan-

demic, which arose in early 2020. This is a rare example of a visible exogenous shock

affecting demand. Unlike the above supply shocks, the extent of the pandemic was

revealed over several months; however, the period of March and April 2020 is when

major international travel closures and widespread business disruptions occurred in

much of the world. 15 Therefore, models in which demand shocks do not play an

important, primary role in the determination of oil prices during March-April 2020

in particular, are considered incredible.16

Why investor flow is not included in the model

I intentionally omit an investor flow variable for several reasons. First, and most

significant, is that including an investor flow variable is insufficient to identify a

futures demand shock within a sign restricted SVAR model because the theoretical

response of both the futures demand shock and the flow demand shock are the same—

an increase in investor flow. Second, the sample size is insufficient to support an

additional variable, and all other variables serve important identification purposes.

Third, even for secondary analysis, there is insufficient data to include investor flow

in a global oil market study. The best investor flow data is specific to the US oil

market and WTI Crude futures, instead of Brent Crude futures, and covers a very

limited period, making it inappropriate for a global oil market study.17

15The WHO declared the Covid-19 outbreak a pandemic on March 11th, 2020.

16Results are qualitatively similar, including credibly capturing most of these events, even when
narrative restrictions are omitted, as presented in Appendix A, Figures A.1-A.5, and Table A.2.

17Kilian and Zhou (2020) outline the issues of sample size, discuss the maximum number of
variables, and point to the use of US local market variables as a fundamental mistake in oil market
SVARs.
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Finally, the desirability of using investor flow data is unclear. Findings relying on

available investor flow data are subject to criticism, as the data depends on trader

classifications which may not align with the actual trading motives of participants.

Cheng and Xiong (2014) argue that the trading activity of traditional commercial

hedgers is consistent with significant amounts of speculative trading, and that all

trader groups appear to trade speculatively at the margin. Additionally, they argue

that no trader group can be treated as plausibly exogenous.

Omitted Variable Bias

The points made above allude to one of the potential limitations of the SVAR

methodology generally. Since the sample size in an SVAR can only accommodate a

limited number of variables, there is a possibility of an omitted variable related to the

real price of oil, which biases the results. However, Kilian and Zhou (2020) review

several studies and conclude that the standard oil market framework I build upon is

remarkably robust to omitted variables.

2.4 Data

I utilize monthly measures of global oil production, global real economic activity,

global real price of oil, global oil inventories, and oil futures prices that are standard

to the oil market literature.18 Specifically, my measure of global oil production is log

global production including lease condensates available from the Energy Information

Administration. I use the Dry Cargo Shipping Rate Index to measure real economic

activity, developed in Kilian (2009) and Kilian and Zhou (2018), and maintained by

the Federal Reserve Bank of Dallas. To compute the global real price of oil, I deflate

18See Kilian and Murphy (2014) and Kilian and Zhou (2020) for a more comprehensive discussion
of variable selection in oil market SVAR models

17



the Brent oil spot price, available from the EIA, by the US consumer price index,

available from the Bureau of Labor Statistics, and take the log. I proxy changes in

global crude oil inventories by scaling US oil stocks by the ratio of OECD oil stocks to

US oil stocks, both reported by the EIA. Finally, I include the 3-month ICE futures

contract on Brent oil,19 similarly deflated by CPI and log transformed, consistent with

the use of Brent as the global spot price of oil.

The scope of my study is global, reflecting the global nature of oil markets. This

explains my choice of variables; and the use of Brent oil instead of WTI in particular.20

Kilian and Zhou (2020) outline the importance of using global variables in oil market

modeling to avoid omitted variable bias and warn against using local US market

measures, particularly the WTI price. My period of study is July 1989 to September

2020, the period during which all necessary data is available.

2.5 Empirical Results

2.5.1 Main Results

I begin my analysis by establishing whether futures demand shocks impact spot prices.

The answer, evident in Figure 2.2, is yes. Specifically, in the bottom row, the futures

demand shock is characterized by a positive short-run spot price response peaking

at around 5%-10% between months 1 and 5 before gradually diminishing over time.

19Results are similar using 6-month futures instead, as shown in Appendix A, Figures A.12-A.14
and Table A.3.

20Refiners acquisition cost for imported crude oil from the EIA is often used as the spot price
variable in oil market studies because it captures the global nature of oil markets, and data is
available much earlier than the Brent Spot price. Using Brent as the spot price instead is necessary
to accurately calculate the spread as it is the basis for futures contracts. The desire to study futures
markets already precludes using earlier data in the analysis.
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21 The error bands show that, while there is some variation in the magnitude of the

responses, a positive spot price response to excess futures market demand is evident

across admissible models, even when uncertainty in the reduced form parameters is

accounted for. Further, the futures demand shock is associated with a short run

increase in real activity. This response implies that excess trading in futures markets

feeds back into spot prices by affecting the real economy, and demand in particular,

consistent with Sockin and Xiong (2015).

Next, I conduct a forecast error variance decomposition of the spot price of oil to

evaluate the relative importance of the shocks, and determine how substantial futures

demand shocks are as a driver of spot prices. Strikingly, Table 2.3 shows that futures

demand trading is responsible for around half of the variation in the spot price of oil

over the short run. It also contributes, albeit much more weakly, to long run variation

in oil prices. Specifically, futures market shocks account for 65.4% of explained short

run variation in oil prices, compared to the 16.8% explained by demand shocks, which

are the next strongest contributor to 1 to 15 months’ oil price variation. This reverses

in the long run, with demand shocks accounting for 50.70% of oil price variation and

supply shocks explaining 22.60%, versus 16.60% explained by futures demand shocks.

Inventory demand shocks explain 9-10% across horizons. These results indicate that

financial market shocks, transmitted through futures market trading, have significant

effects on real oil prices, which are relatively persistent, but eventually resolve them-

selves and yield to supply and demand fundamentals in the long run determination

of prices. These results are in stark contrast to traditional models, which do not

account for the effects of financial market trading and subsequently assign virtually

all oil price changes to supply and demand fundamentals.

21The size of the shock is standardized to one standard deviation for evaluating impulse response
functions.
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Finally, I examine the influence of each shock through time by conducting a his-

torical decomposition of the spot price of oil. This entails recovering the time series

of structural shocks, applying the impulse response functions to each shock, and cu-

mulating their effect over time. Figure 2.3 shows the analysis; the magnitude and

variation in the futures demand shock through time qualitatively reinforces the im-

portance of excessive futures trading on prices.

Collectively, these results imply that excessive trading in futures markets can

influence the real economy and significantly distort spot market prices, particularly

in the short run.

2.5.2 Financialization and Futures Demand Shocks

I now turn my focus to the link between futures demand shocks and the rise of

financialization. Given the documented rise in the popularity of index investment in

commodities after 2003, a natural question is whether these futures demand shocks

have become more influential over time.

To answer this question, I split the sample and estimate the SVAR separately

before and after 2003. I then conduct a forecast error variance decomposition of the

spot price during each period to compare the relative importance of each shock over

time. To accommodate the reduced sample size, I reduce the number of lags in the

model from 24 to 12. This likely truncates some dynamics and risks introducing bias.

However, the comparative nature of this particular analysis serves to mitigate this,

and full sample results with reduced lags provide qualitatively similar results to the

longer lag model.22

Table 2.3 shows the results of this variance decomposition for each sub-period

22Using 12 months lags instead of 24 for the full sample analysis yields qualitatively similar results
in Table A.1, suggesting that any bias introduced here is not severe.
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and suggests that futures demand shocks have become increasingly important over

time. Specifically, during the period Jan. 2003- Sept. 2020, 57.7% of short run, and

15.3% of long run variation in the oil price is explained by futures demand shocks.

In contrast, before 2003, only 6.72% of short run, and 6.1% of long-run variation

is due to futures demand. This is a dramatic increase in the influence of futures

market trading over time, consistent with the observed rise of index investment and

suggesting its rising influence on both futures and spot market prices.

2.5.3 Subperiod Results

Next, I extract what insights this model can provide about the drivers of oil prices

during different historical periods throughout the sample. I utilize historical decom-

positions of the spot price of oil to show the evolution of oil prices surrounding each

event and evaluate the cumulative percentage change in the oil price associated with

each shock.

The 2008 boom and bust of oil prices

I first explore the drivers of oil prices during the 2008 global financial crisis. Figure

2.4 provides a clear picture of the dynamics during this time. There is a clear slow-

down and slight reversal in the demand effect in early 2008, around the time of Bear

Sterns’ collapse. Meanwhile, oil prices continued to rise through to mid-2008, clearly

driven in the model by futures demand shocks. Specifically, futures demands shocks

are responsible for pushing spot oil prices up by almost 50% from the fall of 2007 to

their peak in mid-2008, while price changes due to demand are relatively flat through

to spring, before declining. These results reconcile the previously puzzling finding of

spot oil prices being driven by demand shocks, despite signs of economic slowdown in

late 2007 and early 2008, as pointed out by Cheng and Xiong (2014). These futures
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demand shocks coincide with the large inflows into commodity index funds pointed

out by Cabellero, Farhi, and Gourinchas (2008), as investors reallocated out of real

estate.

Futures Demand shocks during other periods

The literature so far focuses extensively on 2008; however, I find new evidence

that futures demand shocks are influential during other major oil price events as well.

Specifically, I find that futures demand shocks exacerbated the oil price crash of 2014.

Figure 2.5 shows that, while the crash was initially triggered by a glut of supply con-

sistent with contemporary belief and subsequent literature, the puzzling continuation

in decline is primarily due to futures demand shocks. This result contrasts with ex-

planations from previous models that attribute the extended decline, and indeed the

largest part of the overall decline, to demand shocks. Similar to 2008, such demand

based explanations are puzzling; both US and Chinese GDP were stable during the

period, making such a historic, demand driven price drop questionable.

I also find signs of futures demand shocks contributing to oil prices during the bond

market crisis of 1994. Specifically, Figure 2.6 shows futures demand driving increases

in the oil price beginning in the spring of 1994 and continuing through to the end

of the year, consistent with a shift in financial markets away from bonds and into

other assets. Additionally, in Figure 2.7, I find signs of excess futures demand during

the 1997 Asian financial crisis. Specifically, there is apparent upward pressure on oil

prices around the beginning of the period, consistent with an outflow of investment

from Asian equity, debt, and currency markets into other asset classes; this reverses

as the period resolves. During this time, the primary downward pressure on prices

comes from flow demand shocks, capturing the real economic effect of the crisis. One

caution here is that, since futures demand shocks are much more important after 2003,

22



the magnitude of the responses before 2003 may be overestimated. Nevertheless, it

is interesting, but perhaps not surprising, that futures demand shocks play a more

prominent role during financial turmoil, transmitting large financial market shocks to

the real economy.

Exogenous events

Next, I illustrate the ability of the model to capture more general oil market be-

havior by presenting the estimated responses of oil prices during the set of exogenous

oil market events.23 Figure 2.8 illustrates the historical decomposition of changes in

oil production during the 2002-2003 and 2011 events. The model captures the sig-

nificant supply shocks of the Venezuelan oil strike in December 2002, the Invasion of

Iraq in the spring of 2003, and the Libyan Civil War in February 2011, and attributes

these supply shocks as the primary drivers of production changes during that time.

Figure 2.9 shows the decline in oil prices due to demand shocks starting in Jan.

2020, when Covid-19 was revealed in China. This decline continued throughout early

2020 as the pandemic worsened, with a particularly large shock throughout March

and April, when the WHO declared a global pandemic and more countries began

imposing restrictions. While other shocks have transitory effects, the demand shock

accounts for a sizeable permanent drop in the oil price and is the primary determinant

of oil prices during the period.

23While these events are used to restrict the model, the model manages to capture them quite
well even when the restriction is relaxed, while other key results remain similar. Specifically, Figures
A.1-A.5 in Appendix A show similar IRFs and historical decompositions, while Table A.2 shows a
qualitatively similar variance decomposition. Thus, narrative restrictions in the model do not drive
the results but instead serve to validate them.
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Other periods of interest

Finally, I examine oil price behavior around selected recent events that may in-

terest the reader and present the results in Appendix A. When analyzing oil market

events like this, it is essential to remember the large size of global oil markets and the

resulting difficulty in directly attributing any observed behavior if an event is small,

no matter how visible such an event might be in the news. Nevertheless, starting

with Figure A.6, I find the assassination of Jamal Khashoggi on October 2nd, 2018,

to be associated primarily with a small demand shock to oil prices, and a very weak

futures demand shock. The event occurs during the beginning of the month, so much

of the volatility surrounding it is likely resolved within the month. Next, I show in

Figure A.7, that the September 14th, 2019 Abqaiq-Khurais drone attacks on Saudi

oil facilities is captured as a supply shock, temporarily decreasing oil production dur-

ing the month. Finally, sharing Figure 2.9 with the onset of Covid-19, I capture the

Saudi-Russian oil standoff, with a large supply shock putting downwards pressure on

the price of oil when Saudi Arabia flooded the market with oil in response to Russian

refusal to cut production. The supply shock reverses in April after Saudi Arabia and

Russia reached an agreement.24 25

24Another notable oil market incident during this period is the negative price of the front month
WTI futures contract which dropped from $17.85 to -$37.63 on April 20th, 2020 due to limited US
storage and a liquidity squeeze at expiry. This event occurred and was resolved in a very short
period, and only on the front month WTI contract. This event does not show up at a monthly level
and is unrelated to Brent oil, which was stable during this period. Brent Oil also does not share the
same storage issues as WTI, and is cash-settled.

25The assassination of Qasem Soleimani on January 3rd, 2020, also falls within this period, but its
contribution, if any, to global oil prices is impossible to disentangle from the early onset of Covid-19
in China, also occurring in January of 2020.
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2.5.4 Comparison with previous models

In this section, I outline the differences between my results, obtained with the inclu-

sion of a futures demand shock, and the results obtained by a similar model without

it.26 To enhance comparability, I replicate the results of Kilian and Murphy (2014)

in two ways: the first covers their original period using their original data, and the

second covers my sample period and uses my data, but follows their restrictions to

obtain their original set of shocks. I present these results in Appendix A. Compared

with the historical decomposition in Figures A.8 (original) and A.10 (current sample),

the first novelty of my results is that, when I include a futures demand shock in the

model, it supplants the importance of demand shocks in the short run. This is not

surprising because they are observationally equivalent to and could be captured by

traditional demand shocks in the absence of identifying restrictions for the futures

market shock.

The second novelty of my results is the ability to credibly explain the 2008 run

up and collapse of oil prices. Models that do not include a futures demand shock

fail to explain oil price behavior during 2008, as shown in Figure A.9 (original) and

Figure A.11 (current sample). While these models conclude that demand is largely

responsible for a prolonged increase in oil prices after 2003, the estimated contribution

of demand during early 2008 is relatively flat, and the oil price boom and bust during

this period remains a puzzle. In contrast, I capture credible pressure from futures

market trading, consistent with the observed shift of flows into commodity index

funds during that time, and a flat and reversing trend of demand, consistent with

observed signs of economic reversal.

26Kilian and Murphy (2014) name their inventory demand shock a speculative demand shock, not
to be confused with my futures demand shock. In later papers, the authors call it an inventory
demand shock.
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2.5.5 Alternative Explanations

One might worry that my futures demand shock captures something other than trad-

ing pressure from financial markets. This concern is especially poignant since shocks

are defined solely by the restrictions imposed on the model and the economic theory

behind those restrictions. Here, I consider alternative explanations that potentially

fit the restrictions outlined in Table 2.1, and rule out alternative mechanisms.

Interest Rates and Storage Cost

First, I evaluate interest rate changes as a potential driver of the futures demand

shock. One of the critical identifying assumptions behind the shock is an increase

in the futures-spot spread. Aside from changing fundamentals outlined previously,

the futures-spot spread also increases whenever interest rates increase, reflecting the

changing value of future cash flows. While changing interest rates may match the

spread restrictions of the futures market shock, whether rate changes should lead

to positive responses for production, real activity, and spot prices is ambiguous at

best. As increases are usually implemented to cool an economy, it is more likely that

the contemporaneous impact on the economy is negative, even if they are generally

implemented in response to economic strength. Nevertheless, I show in Table 2.4

that changes in both Fed fund futures and Euribor futures are uncorrelated with

the futures demand shock. Furthermore, during the most dramatic period of oil

price rises in early 2008, interest rates were actually declining, providing additional

evidence against interest rate changes driving the shock.27

Next, while increasing storage costs could also increase the futures-spot spread, the

remaining responses of the futures demand shock are likely incompatible. A shock to

27Additionally, interest rates were essentially flat from 2009-2015, but the futures demand shock
in Figure 2.3 is not.
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storage cost is more credibly captured as a negative inventory demand shock, directly

increasing the cost and thus decreasing the demand to store inventories. Testing this,

I find in Table 2.4 that the LOOP Futures Contract, a proxy of oil storage cost in

the US, is unrelated to the futures demand shock.

Information Diffusion

The next question I examine is whether my shock is simply capturing faster infor-

mation diffusion in futures market prices relative to spot market prices, which could

cause futures prices to lead spot prices, temporarily increase the spread on positive

news, and decrease the spread on negative news.

There are two clear reasons to discount this explanation. First, recent studies do

not support futures markets consistently leading spot markets.28 Second, studies of

information diffusion to futures and spot markets generally focus on the possibility

of daily or intraday differences, not differences at the monthly level of my analysis.

For example, Silvapulle and Moosa (1999) use daily data to show that spot and

futures prices react simultaneously to new information but point out that using daily

data may conceal any relationship at higher frequencies. They argue that intraday

data, when available, may be better suited to finding speed differences. Even early

research favoring a strong lead in futures markets, by Schwarz and Szakmary (1994),

finds that the relationship weakens beyond a day, and disappears at a monthly level.

These arguments suggest that a consistent lead from futures markets, driven by speed

differences in information diffusion, is not a likely driver of my futures demand shock

at the monthly level.

28Among the more recent papers finding that both markets play an important and temporally
varying role in price discovery are Silvapulle and Moosa (1999), Kaufmann and Ullman (2009),
Figuerola-Ferretti, and Gonzalo (2010), Peri, Baldi, and Vandone (2013), Dolatabadi, Nielsen, and
Xu (2014).

27



In Figure 2.10, I confirm that there is no significant difference in the speed of

diffusion of news into spot and futures prices, even at a daily level, by looking at the

reaction of both prices to surprise announcements of changes in the fed funds rate

by the FOMC. This alleviates concerns that my results are driven by increases in the

spread upon impact due to information being diffused differently across markets.

Hedging Pressure

I have so far focused on investor demand driving the futures-spot spread away

from the fundamental relation in equation (2.3). I now evaluate the other side of

the futures market, and ask whether futures demand shocks are driven by changes

in hedger demand instead of investor demand, both of which can affect the spread.

Specifically, I consider whether an increase in the futures-spot spread associated with

my futures demand shock could arise because hedgers decrease their demand for short

positions in futures contracts, which would provide similar upward pressure on futures

prices if futures demand stays the same.29

To test this, I check the correlation of the futures demand shock with changes

in the net futures position of producers and merchants, obtained from the CFTC

Commitment of Traders (COT) report. 30 In Table 2.4, I show no relationship be-

tween changes in the net futures position of producers and merchants and the futures

demand shock, indicating that hedging activities do not drive the shock.

Theoretically, hedging demand is most likely to be captured as an inventory de-

mand shock. Acharya, Lochstoer, and Ramadorai (2013) show that producers hedge

their current inventories and part of their future production. Hedging demand should

then be related to changing demand for inventories or changing expectations of fu-

29Note, the academic and industry narratives after 2003 have focused on explaining clear increases
in demand for long positions, not decreases in short positions, so this exercise may be academic.

30Results are the same when using the shorter series of Disagreggated COT data from the CFTC.
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ture production. Kilian and Murphy (2014) show the latter is incorporated into oil

prices through inventory demand as well, since expected future tightness in supply

implies a higher future spot price, making storage profitable.31 This line of reasoning

suggests that my inventory demand shock should be able to capture hedging demand.

Therefore, hedging demand is theoretically unlikely to drive my future shock.

Stepping back, none of the competing explanations which could explain the spread

response of the futures demand shock are particularly credible. For the most part,

they are not consistent with the other economic responses associated with the shock,

and empirical tests do not suggest that they are related.

2.6 Conclusion

I find consistent evidence that excess demand for commodity futures contracts is

an important determinant of spot market oil prices and has increased in importance

over time alongside increased financialization. My analysis shows that excess demand

strongly influences short-run oil prices but yields in the long run to traditional eco-

nomic mechanisms, particularly demand. The new evidence I provide demonstrates

that excessive futures market demand was not only a major driving force behind the

2008 rise and fall of oil prices, but also during the dramatic fall of oil prices in 2014

and, potentially with weaker effect, during earlier financial crises in 1994 and 1997.

These results also reconcile previously puzzling results, which identified demand as a

driver of stronger oil prices in early 2008, despite a weakening economy, and as one

driver of weaker prices in late 2014, despite a relatively stable global economy.

31Both hedging demand and demand for inventories have been linked to economic uncertainty. For
example, Hamilton and Wu (2014) show that hedging demand is higher during times of economic
uncertainty. Likewise, Alquist and Kilian (2010) observe an increase in demand for inventories
during times of uncertainty. This further supports an inventory demand response capturing hedging
demand.
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Finally, my study provides empirical support for the theory of Sockin and Xiong

(2015), whereby futures market prices feedback to the real economy as signals in

managerial decision making, with potentially distortive effects. This indicates the

importance of accounting for financial market shocks in oil market models, and models

of the real economy in general. It also points to the need for caution in interpreting

the informational content of financial prices when making economic decisions.
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Figure 2.1: Real Price of Brent Oil

Displays the real spot price of brent oil reported by the Energy Information Administration
(EIA) between Jul. 1991 and Sept. 2020. Price in US Dollars. The horizontal line coincides
with the year 2003 and marks a common start point of the period of financialization in
commodity markets defined by the popularity of commodity futures market investment.
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Figure 2.2: Structural IRFs

Structural Impulse Response Functions showing the response of each variable to a one
standard deviation innovation to each structural shock. Responses are the cumulative %
change for production, real activity, and the spot price, and cumulative level change for
inventories. The Spread response is the difference in the futures and spot responses. The red
band illustrates the 68% error band from the posterior distribution of the IRF’s. Obtained
following the methodology described in section 3, and in Appendix B.
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Figure 2.3: Historical Decomposition

Historical decomposition of the real spot price of brent oil from July 1991 to September 2020
showing the cumulative percentage change in spot price due to flow supply, flow demand,
inventory demand, and futures demand shocks, respectively.
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Figure 2.4: Historical Decomposition-2008 Financial Crisis

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to flow demand and futures demand shocks, respectively, between
Jan. 2007 and Jan. 2009.
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Figure 2.5: Historical decomposition 2014

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock during 2014.
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Figure 2.6: Historical decomposition 1994

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock during the Bond Market Crisis of 1994.
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Figure 2.7: Historical decomposition 1997-1998

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock during the Asian Financial Crisis of 1997.
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Figure 2.8: Historical decomposition of exogenous supply shocks

Historical decomposition of global oil production, showing cumulative percentage change in
global production due to each shock during the period of the Venezualan Oil Strike (Dec.
2002), Invasion of Iraq (Mar.-Apr. 2003), and Libyan Civil War (Feb. 2011).
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Figure 2.9: Historical decomposition Covid-19 Outbreak

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock during the onset of the Global Covid-19 Pandemic
and the Saudi-Russian Oil price war.

39



Figure 2.10: Response to unexpected Fed Fund rate changes

Displays point estimates and 95% confidence intervals for the price reaction of Brent spot
and 3mo Brent futures to surprise FOMC announcements about federal funds rate changes
on the announcement date and over the post-announcement window. Calculation of surprise
FOMC announcements follows Bernanke and Kuttner (2005). Sample period for announce-
ments is June 1993-April 2020.
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Table 2.1: Identifying Sign Restrictions

Impact sign restrictions on the structural impulse responses of each structural shock. Following standard
practice in the literature, all shocks are normalized to have a positive effect on the price of oil. Hence,
the supply shock of interest is a negative supply shock.

Negative
Flow Supply

Flow Demand
Inventory
Demand

Futures
Demand

Production - + + +
Real Activity - + - +
Real Price Oil + + + +
Inventory +
Futures Price + + + +
Spread - - - +
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Table 2.2: Forecast Error Variance Decomposition of the Real Spot Price of Oil

Variance decomposition of the real spot price of oil reflecting the percentage of variation at each monthly
horizon attributable to each respective shock. Estimated using main model with restrictions from Table
2.1 with 24 lags estimated over July 1991-Sept 2020.

Horizon Supply Demand Inv. Spec. Resid.

1 19.23 26.05 20.03 30.62 4.07
2 16.25 21.72 17.44 41.16 3.44
3 12.62 16.22 12.88 55.33 2.95
4 11.13 12.57 9.96 62.67 3.68
5 11.17 10.35 8.27 65.58 4.63
6 9.82 9.18 7.19 65.88 7.93
7 8.75 8.68 6.37 65.97 10.22
8 8.25 8.24 6.28 66.86 10.37
9 8.01 8.24 6.47 66.95 10.34
10 7.99 8.61 6.78 65.85 10.77
11 8.28 8.84 6.85 64.19 11.84
12 8.5 9.85 6.68 61.96 13.01
13 8.03 11.43 7.17 59.1 14.27
14 7.55 12.33 7.49 56.15 16.48
15 7.11 13.46 7.25 52.6 19.58

% of Explained 8.84% 16.79% 9.01% 65.4%

600 9.21 20.66 4.1 6.78 59.24

% of Explained 22.60% 50.70% 10.10% 16.60%
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Table 2.3: Subperiod Forecast Error Variance Decomposition of the Real Spot Price
of Oil

Variance decomposition of the real spot price of oil reflecting the percentage of variation at
each monthly horizon attributable to each respective shock. Estimated using main model with
restrictions from Table 2.1 with 12 lags estimated over the respective subperiods.

Jul. 1990-Dec. 2002

Horizon Supply Demand Inven. Spec. Resid.

1 1.22 11.60 50.65 21.24 15.29
2 1.28 13.87 43.87 26.85 14.12
3 0.93 29.93 32.17 22.74 14.24
4 1.19 35.35 29.53 21.07 12.86
5 0.94 43.67 26.50 18.72 10.17
6 0.75 54.19 23.54 13.87 7.65
7 0.88 58.68 22.16 11.26 7.02
8 1.42 56.03 24.50 9.73 8.32
9 2.30 49.81 27.78 8.19 11.93
10 3.26 46.21 27.84 7.17 15.52
11 3.34 43.33 29.28 6.51 17.54
12 3.19 41.12 29.47 6.03 20.18
13 3.05 41.60 28.82 5.75 20.78
14 3.03 42.01 28.48 5.50 20.97
15 3.22 41.78 28.43 5.29 21.29

% of Explained 4.09% 53.07% 36.11% 6.72%

600 6.69 40.92 27.07 4.82 20.50

% of Explained 8.4% 51.5% 34.1% 6.1%

Jan. 2003-Sept. 2020

Horizon Supply Demand Inven. Spec. Resid.

1 19.19 22.44 15.41 36.28 6.68
2 15.37 18.85 12.43 47.56 5.79
3 14.80 12.68 8.55 60.15 3.82
4 17.10 9.14 7.29 63.00 3.47
5 17.77 7.50 7.71 62.91 4.11
6 15.63 6.42 8.75 61.55 7.65
7 14.99 6.00 9.59 60.11 9.32
8 14.45 5.64 9.83 61.05 9.04
9 13.88 5.44 9.96 62.01 8.72
10 13.60 5.77 10.22 62.14 8.27
11 12.94 5.99 10.60 62.02 8.46
12 11.96 7.77 11.39 60.11 8.78
13 11.75 10.14 11.45 58.09 8.57
14 12.09 12.91 11.20 55.38 8.42
15 12.70 15.17 10.92 53.00 8.20

% of Explained 13.8% 16.5% 11.9% 57.7%

600 46.87 10.94 10.24 12.27 19.68

% of Explained 58.4% 13.6% 12.7% 15.3%
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Table 2.4: Futures Demand Shock Correlation with other Variables

This table presents pearson and kendall correlations of the estimated futures demand shocks and the
30-day fed fund futures price (July 1991-Sept. 2020), Euribor futures price (Dec. 2012-Sept. 2020),
LOOP Storage Futures price (Nov. 2015-Sept. 2020), and DCOT net flow of producers/merchants
into WTI futures contracts(Jan. 2012-Sept. 2020). Also reported is the t-stat under the null
hypothesis that the variables are uncorrelated.

Pearson Correlations

Fed Fund Euribor LOOP Prod/Merc
Spec. Futures Shock 0.006 -0.032 0.031 0.051

(0.112) (-0.312) (0.233) (0.523)

Kendall Correlations

Fed Fund Euribor LOOP Prod/Merc
Spec. Futures Shock 0.043 -0.041 0.038 0.035

(1.202) (-0.579) (0.411) (0.523)
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Chapter 3

Comovement and S&P 500 Membership

3.1 Introduction

The theory of Barberis, Shleifer, and Wurgler (2005) predicts that membership in a

popular group of assets, such as the S&P 500, can expose firms to correlated exoge-

nous demands from certain classes of investors that primarily inhabit the index, and

introduce a non-fundamental group factor to asset returns. They support their theory

with evidence of an increase in comovement with the S&P 500 (the index) in a short

period after firms are added to the group. However, Chen, Singal, and Whitelaw

(2016) show that this “excess” comovement can be explained as a manifestation of

momentum in stocks at the time of inclusion. Consequently, these studies provide

insight on the effect of inclusion on return dynamics in the short run, but they do

not address the important long run effect that membership entails for comovement.

The study of comovement is of interest to researchers because it has direct impli-

cations for asset pricing. For prices to be informationally efficient, they should reflect

all available information about a firm’s expected future discounted cash flows, with

returns and comovement reflecting changes in these fundamental expectations. How-

ever, the potential existence of excess comovement directly violates this efficiency,

which stands as a pillar of traditional asset pricing theories and is essential to the

efficient allocation of capital within the economy. This paper aims to identify whether

such excess comovement exists by estimating the average effect of S&P 500 member-

ship on comovement over the long term.

To identify the causal effect of S&P 500 membership on comovement, I utilize

a fuzzy regression discontinuity design to exploit locally exogenous variation in the
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probability of inclusion arising from meeting the size criteria for index membership

in a narrow window around the inclusion threshold. Intuitively, firms that are very

close in size should not be systematically different given the stochastic nature of firm

size, yet meeting the size requirement leads to a discrete change in the probability of

inclusion, which can be used to measure the treatment effect of such inclusion.

The advantage of using my design is the ability to recover long term estimates

by using all firm-month observations in the sampling period. In contrast, short term

estimates generated using event studies are limited to measuring effects on a sub-

sample of firms during a short window around inclusion. Such estimates may be

unable to identify a group component in returns driving excess comovement if there

are temporary confounding effects on the return process while the stock integrates

into the index.1 Time-based identification strategies may also be challenged by selec-

tion on characteristics associated with time variation in betas, as Chen et al. (2016)

document with momentum. My fuzzy RD design allows estimation of the long term

effect of membership, unconfounded by potential short run dynamics and time-based

identification challenges.

I find that members of the S&P 500 experience an increase in comovement with

the index, as measured by beta, of around 0.20. This indicates a significant group

component in the return process for S&P 500 stocks which could create a disconnect

between prices and fundamental values. I find no evidence of a short term increase

in beta when I limit my sample to firms within one year of inclusion or deletion,

consistent with previous short term studies, pointing to potential confounding effects

during the short term integration process and the inherent differences in the long

1For example, persistent exogenous demand to buy the stock as part of the rebalancing process
could introduce a temporary component to returns that is uncorrelated with firm fundamentals and
overall group demand. Madhavan (2003) outlines the price pressure that rebalancing can have on
stock prices after index inclusion.
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term and short term estimates.

To ensure the robustness of my results, I estimate the effect using multiple window

sizes, control specifications, and subsamples. Results are similar in all cases, with only

minor differences in magnitudes. I specifically rule out a confounding effect from faster

information diffusion due to liquidity gains from membership, both by controlling for

liquidity differences and directly evaluating the reaction of index and non-index stock

prices around surprise FOMC announcements. Finally, I show that the probability of

inclusion that I isolate appears to be exogenous and is unrelated to various observable

firm characteristics around the size threshold.

The rest of the paper is organized as follows: Section 2 reviews relevant literature

and compares my findings with previous results, section 3 describes the data, section 4

provides details on the fuzzy RDD methodology I use, section 5 presents and discusses

results and section 6 concludes.

3.2 Literature Review

The belief that index membership can generate returns unrelated to firm fundamentals

can be traced back to the work of Shleifer (1987) and Jain (1986), which document an

effect of index inclusion on prices even though inclusion should contain no fundamen-

tal information about a firm.2 Several theories have arisen to explain such potential

asset class effects, including that of Barberis et al. (2005), which claims that habi-

tat investors (who limit attention to a certain set of stocks) and category investors

(who view the index as a single entity to trade) introduce correlated demand. Re-

inforcing this, Harford and Kaul (2005) link correlated order flow to strong common

effects in the returns of S&P 500 stocks. Despite these theories and evident patterns

2More recent evidence is given by Kaul, Mehrotra, and Morck (2000) and Chen, Noronha, and
Singal (2004).
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of comovement in asset returns, direct evidence of long term excess comovement is

limited. 3

My study is most comparable to that of Chen et al. (2016). Using a sample

of firms added to the index from 1976 to 2012, they measure the simple change in

a firm’s beta with the index in the periods before and after inclusion. While they

show that comovement increases on inclusion, they also find that a control sample

matched on momentum experiences a similar increase, and conclude that increases

in beta at inclusion are simply a manifestation of a relationship between momentum

and increasing beta.

In contrast, my finding of significant excess comovement is generated using the

previously described fuzzy RD design. This makes my sample significantly different,

as it uses all S&P 1500 firm-month observations, not just those around inclusion, from

1995-2017. To directly compare time periods, I study a sample from 2001-2012 which

overlaps one of their sub periods, and my results hold, indicating that study period

differences do not drive the difference in results. When I limit my sample to firms

within one year of addition or deletion from the index to more closely mimic the short

term nature of their sample, the difference in our results is reconciled, pointing to

short term heterogeneity and potential problems using a limited sample to estimate

long term membership effects, as previously outlined.

My results also contribute to a larger debate on whether increased financializa-

tion, in general, leads to frictions that can negatively impact the efficient pricing of

assets. One notable example is the literature surrounding the effects of indexing in

commodity markets.4 The creation of commodity indexes, and the rising popularity

3See Pindyck and Rotemberg (1990) and Tang and Xiong (2012) for signs of increasing correla-
tions in grouped commodities and Pindyck and Rotemberg (1993), and Froot and Dabora (1999)
for signs of increasing correlations amongst grouped equities.

4Some of the important papers in this debate include Hamilton (2009), Irwin and Sanders (2012),
Sanders and Irwin (2010), Tang and Xiong (2012), Singleton (2013), Kilian and Murphy (2014),
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of commodity index funds to track them, has been accused of creating frictions re-

sulting in speculative bubbles in important commodities in 2007-2008. Speculation,

arising after this precipitous price drop, blames the rise of commodity index funds for

exposing commodities to large correlated exogenous demand from category investors.

Sockin and Xiong (2015) build a model illustrating how such deviations from funda-

mental value can arise, particularly at times of high economic uncertainty. Various

methods have been used in the literature to empirically test this and fundamental

supply/demand explanations, with conflicting results. By studying comovement ef-

fects in the S&P, this paper sheds light on potentially more general consequences of

financialization in other markets.

3.3 Data

To conduct my analysis, I construct monthly index constituency data from the Com-

pustat S&P index file. This data includes all time periods for all firms included in

an S&P index since 1964, along with the specific index identifier. I limit my sample

to S&P 1500 stocks, as they form the pool of stocks that meet the specific minimum

liquidity and ownership characteristics required for S&P 500 inclusion. For example,

dual class, foreign headquartered firms, low liquidity firms, or firms with concen-

trated or otherwise unusual ownership structures are ineligible. Specific requirements

are listed on the S&P website. The S&P 1500 has only existed since the introduction

of the S&P 600 small cap index in 1994. Therefore, the period I study is January

1995 to Dec 2017.

Security level data and industries are merged from the monthly CRSP file to make

a sample of firm-month observations. Comovement calculations rely on index return

Henderson, Pearson, and Wang (2014), and Sockin and Xiong (2015). There are many more.
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data from CRSP daily index files, and I obtain daily stock returns and volume data

from the CRSP daily and monthly stock files. To measure monthly exposures of stocks

to Fama-French factors (Fama and French, 2015) and Carhart’s momentum factor

(Carhart, 1997), I use data from Ken French’s data library and WRDS, respectively.

I retrieve recession data from NBER and classify industries according to the standard

Fama-French 12 industry definitions available from Ken French’s data library.

The measure of comovement I use follows the standard beta calculation used in

the literature:

Returnid = ω + βimIndexkd + ϵid (3.1)

This is the regression of daily excess returns of stock i on the daily excess returns

for index k for each month m, estimated monthly using a rolling 12 month regression

period. I capture comovement as the parameter βim, and this βim is the month

m beta for firm i with index k, which I use as the monthly comovement outcome

variable. The index of interest is the S&P 500 due to its unique exposure to large

classes of investors. In all cases, I remove the contribution of the individual stock

being regressed to the index return to avoid spurious results, though, given the size

of the firms around the discontinuity and the fact that the index is value-weighted,

this makes no practical difference to the comovement measure or later results.

Table 3.1 shows descriptive statistics for the full sample. In the entire sample

of firms, a few differences are evident. As expected, S&P 500 firms are on average

larger in scale. They also have lower lagged returns, consistent with generally lower

levels of risk for larger firms. Non-S&P 500 firms in the full sample are also less

liquid, as indicated by the Amihud (2002) measure of illiquidity. While this is a price

impact measure, Chordia, Goyal, Sadka, Sadka, and Shivakumar (2009) show it has
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a strong link to speed of information diffusion in their study of the post-earnings

announcement drift. S&P 500 firms also have lower direct trading costs as measured

using effective tick, calculated following Goyenko, Holden, and Trzcinka (2009), which

is a monthly proxy for effective spread. Factor exposures show slight differences, with

the SMB exposure of non-SP500 firms predictably larger.

3.4 Fuzzy Regression Discontinuity Design

I conduct my analysis using a fuzzy regression discontinuity design. This quasi-

experimental design relies on the sample being similar on both sides of a given treat-

ment threshold, effectively making treatment randomly assigned in a window around

it. To illustrate the methodology, consider the following regression on the full sample

of firms in the S&P 1500.

Yit = α + τSP500it + ϵit (3.2)

Here, τ captures the inclusion in the S&P 500 on comovement or another outcome

variable of interest. Such a specification is plagued by endogeneity, as the full sample

of firms included in the S&P 500 is likely much different than firms not in the index.

To the extent that firm characteristics differ for the two groups, and those differing

characteristics are associated with comovement, such a specification has the risk of

biasing the estimate of τ . This is because inclusion would not be independent of ϵit,

violating the condition for unbiased OLS estimators.

The challenge is to ensure that SP500it and ϵit are independent. Previous studies

attempt to solve this by comparing the same firm within a very narrow window

around the time treatment occurs. In contrast, the RDD design I use in this paper

exploits the differences around the size-based inclusion point, allowing my sample to
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include all months in the time period for all firms. If the window is narrow enough,

and if there is sufficient randomness in the variable determining the assignment to

the treatment group- in this case, size rank- then treatment is likely due to these

random shocks to the firm’s size around the discontinuity, rather than to systematic

differences between the groups.5 This similarity of firms around the inclusion point

can be exploited by limiting the sample window in regression (5) to a sufficiently

narrow threshold.

Further refinement of the specification can be achieved by controlling for any

remaining differences in the assignment variable around the threshold, allowing a

better approximation of the conditional mean at the discontinuity on each side of

the threshold. The standard way to do this is to specify an appropriate polynomial

spline for the assignment variable around the discontinuity point, to act as a control

function (Gelman and Imbens, 2019). The specification then becomes:

Yit = α + τSP500it + λf(Sit) + ϵit (3.3)

Where f(S) can be a polynomial spline of any order. For example, the specification

for a simple linear spline would be:

λf(S) = λ1Sit + λ2SP500 ∗ Sit

Controlling for this polynomial within the regression specification allows the coeffi-

cient τ to capture the discontinuous effect of being in or out of the S&P 500 index

at the discontinuity point. This control function approach also allows for wider win-

dows by flexibly controlling any small differences in characteristics related to the

5To clearly illustrate, it is hard to imagine why over time the firm ranked 501 based on size would
be systematically different than the firm ranked 500, given the stochastic nature of firm size.

52



assignment variable that arise between firms.

The above specification can act as a baseline for RDD on an index if the inclusion

criteria are perfectly known and observable, as outlined by Appel, Gormley, and

Keim (2019). However, the S&P 500 index has particular challenges which must be

overcome. While inclusion in the S&P 500 is determined primarily by size rank, as the

index represents the largest 500 firms in the US, there are two potential caveats. First,

the S&P 500 has a stated goal to minimize turnover. Firms will not be automatically

removed or added for small changes in size even if the rankings change. The second

caveat is that the S&P 500 can make exceptions to the size ranking methodology on

the basis of promoting a representative index inclusive of all industries. Thus, being

ranked in the top 500 does not immediately guarantee inclusion, and treatment is no

longer random around the discontinuity point.

To deal with this complication, I use a fuzzy discontinuity design. One can view

the treatment in the previous sharp RDD case to be an increase in the probability of

inclusion in the SP500 index, from 0 to 1, when a firm meets the size rank criteria.

While treatment status may no longer be exogenous when other criteria are intro-

duced, being above the size threshold still is, and so too is the resulting increase in

the probability of inclusion from meeting the size criteria. Being above the threshold

increases the probability of inclusion by less than one if other criteria are used. The

purpose of fuzzy RDD is to isolate this exogenous variation in probabilities and use

it to estimate the effect of SP500 membership on comovement.

The fuzzy RDD can be implemented in two stages. In the first stage, we can

estimate the following regression for the probability of a firm being included in the

SP500 index:

SP500it = α + λf(Sit) + τ1[Sit ≥ St] + ϵit (3.4)
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Here 1[Sit ≥ St] is an indicator variable, equal to 1 if security i sizerank in time

t is greater than the cutoff for inclusion, and τ captures the discontinuous increase

in probability at the sizerank threshold. The fitted values from this regression reflect

variation in the probability of inclusion due to meeting the size criteria and any

explained variation due to sizerank differences captured by the control function, f(S).

These fitted values can then be used in regression (3) in place of the endogenous SP500

status. This fuzzy regression discontinuity design specification can be used to estimate

the effect of membership when an index’s inclusion criteria are less transparent, as

outlined by Appel, Gormley, and Keim (2019).

To increase the efficiency of my estimates, I follow Lee and Lemieux (2010), Cellini,

Ferreira, and Rothstein (2010), and Cunat, Gine, Guadalupe (2012) and supplement

the polynomial control function with additional controls to capture several sources of

variation directly. First, I include industry fixed effects to control industry-level het-

erogeneity, which may arise due to S&P’s selection procedure. I also include year and

industry by year fixed effects in case comovement within industries varies over time.

Next, the turnover minimization objectives of the firm imply a potential difference in

returns, size, and momentum across firms in and out of the index.6 I therefore include

additional controls to capture lag return, size, operating performance, and factor ex-

posure differences. The primary benefit of including such controls is efficiency, and I

conduct robustness checks to ensure that results are not driven by specification.

With the inclusion of controls and fixed effects, the main specification that I

estimate is the following:

6Consistent with this intuitive prediction in the face of turnover minimization by index makers,
Chen et al. (2016) show that additions are generally winners with high momentum relative to
deletions.
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Yit = α + τP (SP500it) + λf(Sit) + δTOit + ψI + ϕY + ψI ∗ ϕY + ϵit (3.5)

Where Yit is the outcome variable, ψI , and ϕY are industry and year fixed effects,

respectively. Turnover control variables such as lagged returns, firmsize, tobinq, and

assets are included within TOit. The polynomial spline f(Sit) is over the forcing

variable, size rank. P (SP500) is the estimated probability that firm i will be in the

S&P 500 at time t, which is estimated using the first stage:

SP500it = α + λf(Sit) + τ1[Sit ≥ St] + δTOit + ψI + ϕY + ψI ∗ ϕY + ϵit (3.6)

Estimation of the first stage is conducted as a logit regression, with SP500it being

a binary response variable. An apparent discontinuity in probability of S&P 500

membership can be seen in Table 3.2, with firms above the sizerank threshold more

likely to be S&P 500 members. The second stage is conducted using OLS. To ensure

consistent estimation while using a non-linear first stage with a linear second stage,

I follow the procedure outlined by Wooldridge (2002) and run an intermediate OLS

regression where SP500 is regressed against the fitted values from the first stage,

using the same controls. The fitted values from this intermediate regression are the

probability estimates used in the second stage. 7 The standard errors for inference

are the standard 2SLS errors adjusted for heteroscedasticity and clustered at the firm

level to account for within-firm correlation.

This is applied to the discontinuity sample, constructed by ranking firms by market

capitalization each month, and selecting firms within a set range above or below the

7Adams, Almeida, and Ferreira (2009) use the same approach to 2SLS with a probit first stage
in their study of founder-CEO effects on firm performance.
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size rank inclusion threshold, depending on the width of the window studied.

I run results over different window sizes and specifications for turnover controls

(including no turnover controls). I also use multiple specifications for the polynomial

spline in the analysis to allow flexibility in slope and functional form and ensure

results are robust to misspecification of the control function.

3.5 Results

I run specification (5) across several window sizes and the full sample of firms, and

present the results in Table 3.3. In all cases, there is a clear increase in comovement

for firms more likely to be included in the S&P 500. Estimates are also economically

meaningful, with the estimate on the primary +/-50 discontinuity sample being 0.20.

This means that a firm experiences excess comovement with the S&P 500 of 0.20 by

being a member of the group and becoming exposed to group returns. The effect is

robust across window sizes, which attenuates concern that it is driven by an abnormal

group of firms around the discontinuity.

Such an increase in comovement in the absence of differing fundamentals has clear

implications for asset pricing because the increase points to a group component in

asset returns, consistent with Barberis et al. (2005). The result supports their theory

that membership in the S&P 500 exposes firms to correlated exogenous demands

from certain classes of investors who primarily inhabit the index. The pressure of

such demands seems to give rise to simultaneous price movements in stock prices,

which are reflected in comovement.

The delinking of prices and firm fundamentals suggested by such an increase in

comovement points to important violations in several traditional asset pricing rela-

tionships. Informational efficiency relies on prices acting as an unbiased predictor of a
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firm’s fundamental value, which is no longer the case if they reflect non-fundamental

information. Efficient allocation of resources in the economy relies on prices reflecting

the fundamental merits of the projects being invested in as well.

Feedback effects are also possible if exposure to a group component in returns

introduces additional uncertainty about a stock’s future return distribution unrelated

to fundamentals, as future returns become linked to a distribution of exogenous group

demand. If the market prices this uncertainty, it could increase expected returns

on the security, increasing the firms cost of capital and influencing financing and

investment decisions of firms, further affecting allocational efficiency.

3.5.1 Liquidity

The results in Table 3.4 control for liquidity differences to alleviate concerns within

the comovement literature, raised by Barberis et al. (2005), that inclusion in the S&P

500 index may increase daily measures of comovement, mechanically, through an in-

crease in liquidity. The traditional concern is that S&P 500 membership increases

liquidity and increases the speed with which prices incorporate macroeconomic news,

magnifying comovement on the day of the announcement relative to low liquidity

firms, who realize some of the return on subsequent days instead. However, as Table

3.4 shows, results are very similar when we remove liquidity controls. The specifica-

tions differ in the inclusion of liquidity controls and the calculation of beta. Dimson

(1979) adjusted betas, which sum comovement coefficients in a three-day window cen-

tered on the day of interest, are used in columns (3) and (4) to more directly capture

any comovement due to liquidity related return persistence.

To better understand why index membership does not lead to liquidity driven

comovement, I directly test for an increase in the speed of information diffusion after

macroeconomic news is released, for S&P 500 firms, at a daily level. To do so, I
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follow Bernanke and Kuttner (2005) and estimate the reaction of S&P 500 and Non-

S&P 500 stocks to surprise changes in interest rates announced by the FOMC, using

the same sample of S&P 1500 stocks that I use in the rest of the paper. I use fed

fund futures contracts to differentiate expected and surprise changes in interest rates

around the FOMC event dates. I then regress index returns against those surprise

changes in a window on and after the event date. The resulting point estimates

and confidence intervals are presented in Figure 3.1a for the full sample of firms and

Figure 3.1b for the discontinuity sample of firms with qualitatively similar insights.

Both index groups experience a similar negative and significant return on the day of

the news announcement, consistent with the results of Bernanke and Kuttner (2005),

but returns on days after the announcement show no return spillover, with returns

insignificant from zero and insignificantly different across groups.

This points to a similar average speed of information diffusion for stocks in and

out of the index when measured daily, where it might affect our daily comovement

measure. This is in line with research on intraday reaction to FOMC announcements

by Zebedee, Bentzen, Hansen, and Lunde (2008) and FOMC minutes by Jubinski and

Tomljanovich (2013), which find that the S&P 500 index and the full CRSP sample

of stocks, respectively, seem to fully incorporate new macro news within 15 minutes

of an announcement. Thus, any average benefits of increased liquidity on information

diffusion coming from index membership are likely realized on the same trading day,

at least for stocks within the S&P 1500.8 This more directly rules out liquidity as a

likely driver of excess comovement for S&P 500 stocks.

8It is worth a reminder here that the same minimum liquidity is required for firms to be included
in the S&P 1500 and S&P 500, so we are not studying highly illiquid stocks.
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3.5.2 Subsample results

My finding of significant excess comovement in S&P 500 member firms contrasts

with insignificant short term inclusion effects documented by Chen et al. (2016).

The difference points to important heterogeneous effects across time or the specific

sample of firms studied. Therefore, I analyze several subsamples to better understand

potential heterogeneity in the average effect and make comparisons to the findings of

Chen et al. (2016) more direct.

The study of inclusion effects by Chen et al. (2016) covers a period spanning

from 1971 to 2012, which differs from the sample period in my analysis. However,

a period from 2001-2012 overlaps both studies and allows direct comparison. While

they find no increase in comovement at inclusion, my RDD findings yield a significant

increase, similar to my full sample, ruling out differing time periods as a driver of

differing results. The congruency of the subsample results with my full period result

also indicates robustness to the time period studied and some homogeneity in the

effect across time.

I then focus on sampling differences inherent in each methodology. Using an

event study methodology, Chen et al. (2016) focus only on new additions in a short

window around inclusion in the index. They effectively study the transitory impact

of index inclusion on comovement instead of the long term average treatment effect.

To replicate this, I split my sample into observations for firms that have been added

or deleted from the index within one year, and those which have not been added or

deleted within one year. The RDD estimates in column (3) of Table 3.5 show no sign

of an increase in comovement for firms within one year of inclusion, consistent with

Chen et al. (2016). On its own, this estimate should be interpreted with caution

given the large reduction in sample size for this narrow subsample, and the fact that
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fuzzy RDD’s generally require large samples. However, combined with findings by

Chen et al. (2016), this does point to heterogeneity in the average effect for new

versus established members.

One possible explanation for a difference in the short term effect of inclusion versus

the long term effect of membership is a delay in integration into the group when

firms are added, as new investors drawn to the stock take time to rebalance their

holdings. This could reduce short term comovement for two reasons. If integration

is slow, newly added firms are initially not part of the group portfolio and thus do

not co-move. Comovement would increase slowly as investor holdings increase and

firms become exposed to the group component of returns over time. The delay could

also cause a competing decrease in comovement during the rebalancing period, as the

rebalancing itself creates an unconditional increase in demand for the stock over time,

which is otherwise uncorrelated to both fundamentals and the group return. 9

Whatever the reason, it does appear that the treatment effect is different for

newly added firms and established members. Further research into the difference,

perhaps exploring the role of passive investor flows directly after inclusion, may shed

additional light on the difference. However, the interest in this paper is understanding

the average effect on member firms, not the dynamics of adjustment that take place

to integrate the stock into the group, and the RDD estimation contributes direct

evidence that the average S&P 500 firm experiences excess comovement.

The final column of Table 3.5 explores the potential for differences driven by the

business cycle. The sample used includes only observations during recessions, as

defined by the NBER. The smaller sample size limits power, but point estimates are

consistent, if smaller in magnitude than the full sample, indicating no clear sign of

9Investors may reduce demand for the index as a whole, but simultaneously increase demand on
the stock as they add it to their portfolio.
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heterogeneous effects across the business cycle.

3.5.3 Robustness

I next conduct several standard robustness checks to ensure misspecification of my

control function is not driving my results. Table 3.6 shows results across several

different polynomial spline specifications, with similar results across each. In fact,

for the fairly narrow +/- 50 sample, a simple linear spline seems sufficient to capture

any minor relationship between the assignment and outcome variables. This is not

surprising, given that the narrow window itself should control most differences. The

control function will likely have more work to capture differences for wider windows.

Next, I present results for several different control specifications in Table 3.7.

Results are similar, showing that the choice of controls does not drive my findings.

Finally, I present a standard covariate balance test in Table 3.8, which follows Lee

and Lemieux (2010) and repeats the fuzzy RDD using a variety of firm characteristics

as the outcome variable. There is no sign of uncontrolled differences in observables

for S&P and non-S&P firms which could influence results.

3.6 Conclusion

In this paper, I use a fuzzy regression discontinuity design to estimate the long term

causal effect of membership in the S&P 500 on comovement. I find that, in contrast

to the previously studied short term effect at inclusion, S&P 500 members experi-

ence significant excess comovement with the S&P 500 that cannot be explained by

differences in fundamentals.

My findings support the theory of Barberis et al. (2005), which states that mem-

bership in a popular group of assets such as the S&P 500 can expose firms to correlated
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exogenous demands of certain classes of investors which primarily inhabit the index,

and introduce a non-fundamental group factor to asset returns. Such a finding points

to a violation of informational efficiency, which has important implications for asset

pricing theory.

The concept of group based comovement that I study focuses on the S&P 500

but implies the potential for similar frictions in other groups of assets. Further in-

vestigations into the comovement effects of other groupings could provide additional

insights. The difference in the short- and long-term estimates points to potential

delays in integration into the group after inclusion, which suggests another exciting

avenue for future research.
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Table 3.1: Full Sample Description

This table provides descriptive statistics for the main outcome variables, controls used in later analysis, and additional
characteristics of interest for firms included and not-included in the S&P 500 between Jan. 1, 1995 and Dec. 31, 2017. The
unit of observation is at the firm-month level. S&P 500 comovement is calculated using regression specification (1) with
the influence of the firm in the regression removed from the S&P 500 return. Dimson adjusted comovement sums the S&P
500 betas on a 3-day window centered on the day of interest to account for non-synchronous trading and delayed reaction
due to liquidity. Illiquidity is the monthly measure from Amihud (2002). Eff. Tick is the effective spread proxy from
Holden (2009). Factors umd, hml, smb, cma, rmw represent firms comovement over a given month with the respective
factor portfolio listed. Lagged return variables are holding period returns. FinLiq is the ratio of cash and short term
investments to current liabilities. Current is the ratio of current assets to current liabilities. Leverage is the ratio of
liabilities to shareholder’s equity. Non-ratio financial characteristics are in $millions.

Non-S&P 500 S&P 500

Variable N Mean Std Dev N Mean Std Dev

SP500 Beta 264057 1.03 0.51 136302 1.01 0.44
Dimson Beta 263746 1.104 0.608 136203 1.053 0.528
Illiquidity 275167 0.219 0.830 137803 0.020 0.543
Eff. Tick 275174 0.187 0.412 137807 0.089 0.185
1mo return 275028 0.009 0.148 137776 0.007 0.12
1yr return 270001 0.092 0.492 135866 0.078 0.481
3yr return 262395 0.286 1.313 133325 0.21 0.806
5yr return 246517 0.556 3.171 130137 0.374 1.472
Firmsize 275242 1550691 1596633 137890 23383822 43335298
Umd 275167 -0.078 2.038 137803 -0.085 1.534
Hml 275167 0.158 2.567 137803 0.084 1.957
Smb 275167 0.978 2.023 137803 0.176 1.427
Cma 275167 -0.028 3.219 137803 0.107 2.44
Rmw 275167 -0.001 0.029 137803 -0.001 0.022
Assets 274965 2828 5706 137785 57207 202123
Acquisitions 244407 61.75 254.79 112863 419.61 1407.9
Capx 251316 85.975 174.134 124897 1157.399 2733.404
Roa 256363 0.029 0.137 127004 0.051 0.084
Roe 256092 -0.022 0.401 126924 2.765 132.816
Roi 256078 0.046 0.344 127004 0.094 0.222
TobinQ 256104 1.878 1.305 126924 2.081 1.326
Sales 256576 1662 2754 127109 18740 38332
R&D 275242 21.143 51.775 137890 401.887 1405.468
FinLiq 230258 1.014 2.05 113376 0.596 0.918
Current 231721 2.557 2.337 113150 1.689 1.116
Leverage 255755 1.24 3.233 126647 476.317 22995.43
Div. Yield 273290 0.954 3.464 136869 12.422 31.845
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Table 3.2: Logistic Regression: Probability a firm is in the S&P 500

This table reports the results of the logistic regression outlined in equation (3.6), where the outcome
variable is equal to 1 if a firm is in the S&P 500 and 0 if it is not. Above is the indicator variable
of interest τ1[Sit ≥ St] representing whether the firm sizerank is greater than the threshold for
inclusion. The coefficient captures the discontinuous change in probability of treatment (S&P 500
membership) around the inclusion threshold. Unreported controls include a cubic polynomial spline
on sizerank plus Year, Industry and Year X Industry fixed effects. Significance at the 10%, 5%,
and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively.

Variable Estimate Chi Square

Above 0.1269∗∗∗ 9.9270
1mo Return -0.4173∗∗∗ 44.3132
1yr Return -0.5548∗∗∗ 636.4334
3yr Return -0.4815∗∗∗ 1391.4599
5yr Return -0.0767∗∗∗ 248.2343
UMD -0.0628∗∗∗ 240.9485
HML 0.0421∗∗∗ 139.5779
SMB -0.0722∗∗∗ 276.4700
RMW 1.3203∗∗∗ 20.8034
CMA 0.0445∗∗∗ 271.4598
Firmsize 1.1722∗∗∗ 216.1258
Assets 0.000086∗∗∗ 3795.0173
TobinQ -0.1144∗∗∗ 321.0367
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Table 3.3: Fuzzy RD Effect Estimates across Window Size

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (3.5). P(500) is a firms propensity score estimated from the first stage in equation (3.6) as
described in the text. The dependent variable is the estimated beta between the stock and the SP500 index from equation
(3.1). Specifications differ in window size around the SP500 size based cutoff point. Controls include 1mo, 1yr, 3yr, 5yr
lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and effective tick.
Two stage least squares standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance at the
10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Beta Beta Beta Beta
Window 25 50 100 Full
Spline Cubic Cubic Cubic Cubic

P(SP500) 0.149∗∗ 0.200∗∗∗ 0.197∗∗∗ 0.129∗∗∗

(0.024) (0.002) (< 0.001) (< 0.001)

Controls Y Y Y Y
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y Y Y

Obs 11983 23687 46623 342915
R-Square 0.47 0.46 0.45 0.40
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Table 3.4: Fuzzy RD Effect Estimates across Liquidity Controls

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification equation (3.5). P(500) is a firms propensity score estimated from the first stage in equation (3.6) as
described in the text. The dependent variable is the estimated beta between the stock and the SP500 index from equation
(3.1). The specification differs on dependent variable and liquidity controls. Specification (1) excludes liquidity controls.
Specification (2) is the same as reported in table (5) with liquidity controls. Specification (3) uses a dimson adjusted beta
without liquidity controls. Specification (4) uses dimson adjusted beta with liquidity controls. Controls include 1mo, 1yr,
3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq. Two stage least squares
standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and 1% levels
is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Beta Beta Dimson Dimson
Window 50 50 50 50
Spline Cubic Cubic Cubic Cubic

P(SP500) 0.200∗∗∗ 0.188∗∗∗ 0.214∗∗ 0.206∗∗

(0.002) (0.005) (0.011) (0.018)
Illiquidity −0.276∗∗∗ −0.303∗∗∗

(< 0.001) (0.002)
Eff. Tick 0.259∗∗∗ 0.282∗∗∗

(< 0.001) (< 0.001)

Controls Y Y Y Y
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y Y Y

Obs 23687 23687 23671 23671
R-Square 0.46 0.45 0.41 0.40
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Table 3.5: Heterogenous Effects across Subsamples

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (3.5). P(500) is a firms propensity score estimated from the first stage in equation (3.6) as
described in the text. The dependent variable is the estimated beta between the stock and the SP500 index from equation
(3.1). The specification differs in sample. Specification (1) is 1995-2017. Specification (2) is 2001-2012. Specification (3)
includes observations within 1 year of being included or removed from the SP500 index. Specification (4) includes obser-
vations not within 1 year of being included or removed from the SP500 index. Specification (5) only includes observations
during an NBER defined recession period. Controls include 1mo, 1yr, 3yr, 5yr lagged returns, factor exposures to hml,
smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and effective tick. Two stage least squares standard errors
are heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and 1% levels is indicated by
∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4) (4)

Sample Full 2001-2012 Within 1 Yr Out 1 Yr Recession
Dep. Var Beta Beta Beta Beta Beta
Window 50 50 50 50 50
Spline Cubic Cubic Cubic Cubic Cubic

P(SP500) 0.200∗∗∗ 0.227∗∗∗ 0.015 0.205∗∗∗ 0.101
(0.002) (0.006) (0.909) (0.001) (0.367)

Controls Y Y Y Y Y
Year FE Y Y Y Y Y
Industry FE Y Y Y Y Y
Year ×
Industry FE

Y Y Y Y Y

Obs 23687 12405 1334 22367 2207
R-Square 0.46 0.42 0.68 0.46 0.55
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Table 3.6: Fuzzy RD Effect Estimate across Spline

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (3.5). P(500) is a firms propensity score estimated from the first stage in equation (3.6) as
described in the text. The dependent variable is the estimated beta between the stock and the SP500 index from equation
(3.1). The specifications differ by the order of the polynomial spline used as a control function. Controls include 1mo, 1yr,
3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and effective
tick. Two stage least squares standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance
at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Beta Beta Beta Beta
Window 50 50 50 50
Spline Linear Quadratic Cubic Quartic

P(SP500) 0.198∗∗∗ 0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗

(0.002) (0.002) (0.002) (0.002)

Controls Y Y Y Y
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y Y Y

Obs 23687 23687 23687 23687
R-Square 0.46 0.46 0.46 0.46
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Table 3.7: Fuzzy RD Effect Estimates over Control Specification

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (3.5). P(500) is a firms propensity score estimated from the first stage in equation (3.6) as
described in the text. The dependent variable is the estimated beta between the stock and the SP500 index from equation
(3.1). The specifications differ in included turnover controls. Controls include 1mo, 1yr, 3yr, 5yr lagged returns, factor
exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and effective tick. Two stage least squares
standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and 1% levels
is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Beta Beta Beta Beta
Window 50 50 50 50
Spline Cubic Cubic Cubic Cubic

P(SP500) 0.200∗∗∗ 0.412∗∗∗ 0.250∗∗∗ 0.160∗∗∗

(0.002) (0.009) (< 0.001) (0.005)

Controls Y N Y Ret & Size
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y N Y

Obs 23687 27227 23687 25637
R-Square 0.46 0.41 0.31 0.44
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Table 3.8: Fuzzy RD Covariate Balance Test

This table reports the results of a covariate balance test which includes various firm characteristics
as the outcome variable in the same fuzzy RD specification used to generate main results from
equation (3.5). Estimates represent the difference in the listed variable for S&P 500 and non-
S&P 500 firms in the +/- 50 discontinuity sample. The polynomial spline is cubic and controls
include 1mo, 1yr, 3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize,
assets, and tobinsq, illiquidity, and effective tick. Two stage least squares standard errors are
heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and 1%
levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Variable Estimate p-value

ROE 0.020 (0.550)

ROI -0.019 (0.509)

Sales 244.258 (0.958)

Capx 40.496 (0.871)

R&D 30.893 (0.322)

Acquisitions 269.820 (0.125)

Dividend Yield 2.347 (0.264)

Fin. Liquidity -0.072 (0.768)

Current -0.299 (0.312)

Leverage 1.087 (0.255)
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(a)

(b)

Figure 3.1: Stock reaction to FOMC rate changes

Displays point estimates and 95% confidence intervals for the stock price reaction of S&P
500 and non-S&P 500 stocks to surprise FOMC announcements about federal funds rate
changes on the announcement date and over the post-announcement window. Index returns
are calculated as a value weighted average of (a) the full sample of S&P 1500 firms (b) the
+/- 50 sample of firms around the S&P 500 size rank cutoff.
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Chapter 4

Excess Coskewness and Financialization

4.1 Introduction

Increased investment flows into passively managed investment vehicles, such as ETFs, have

raised questions over how well the market can price securities when so many participants

are not investing based on a fundamental evaluation of the investment characteristics of the

assets they are buying. Generally, ETFs and other passive investments track a large basket

of securities, and the demand for the assets within the basket becomes a function of the

demand for the basket as a whole, regardless of its specific investment qualities. This leads

to the obvious question of whether such flows can add non-fundamental characteristics to

the assets’ return process and distort its price.

A few signs of this potential distortion include the documented increase in return when

firms enter the S&P 500 (Jain, 1986; Shleifer, 1987), excess comovement of stocks within an

index with each other (Barberis, Shleifer, and Wurgler, 2005), and the trend of increased

comovement of commodities with broader financial markets over time, particularly when

those commodities are added to commodity indices (Tang and Xiong, 2012). In this paper,

I move away from the previous focus on expected returns and comovement and, for the first

time, look at how financialization affects asset skewness and coskewness.

Coskewness, or systematic skewness, refers to the portion of an asset’s return skewness

that cannot be diversified away. Assets with positive coskewness increase the skewness of a

portfolio when added, resulting in a higher likelihood that assets move together during up-

swings in their price and a lower likelihood that assets move together during downswings.

This means that, with relatively higher coskewness, a portfolio will be better diversified

against downturns without diversifying away upside. For this reason, positive coskewness

is generally viewed as beneficial to investors, while negative coskewness is viewed as detri-
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mental.

While my primary goal is exploration rather than isolation of the exact mechanism by

which financialization might induce excess coskewness, there are some potential explana-

tions. If excess coskewness arises due to large passive investment flows, it is plausible that

it is more difficult during fast moving market downturns for active market participants to

identify and trade away mispricing. If so, we would expect more correlated losses during

market downturns and less correlated gains during upturns.

Loss aversion is another explanation, with a relatively stronger correlated response to

losses than to gains of a similar size amongst less sophisticated index or habitat traders

that trade in a particular group of securities. Even if the trading is handled by a more

sophisticated investor, like a managed mutual fund that trades a certain group of assets,

they ultimately represent the wealth of less sophisticated individuals. If those individuals

are loss averse, they can put pressure through redemptions on mutual funds, causing them

to liquidate a broad basket of assets within the group, regardless of fundamentals.

I utilize two methodologies to explore how financialization affects asset coskewness with

a given market. The first is an event study methodology that evaluates the change in

an asset’s coskewness with the S&P 500 market before and after inclusion in the index.

This method primarily captures relatively short-term dynamics of S&P 500 inclusion. I

find that, over the short run, there is excess positive coskewness. This could partially

be explained by changes in fundamentals or short-run transitory pressures that arise from

inclusion. 1 One example could be the documented increase in momentum upon

index inclusion in Chen, Singal, and Whitelaw (2016), which could cause stocks to

experience generally positive returns after inclusion, naturally leading to positive

coskewness. This example does not preclude others and simply illustrates one of the

weaknesses of this type of analysis.

1Indeed, significant positive coskewness is weak if we remove the first year after inclusion, sug-
gesting that it is driven by short-run dynamics.
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To more accurately explore the effects of financialization, I estimate the average

effect of S&P 500 membership on long-term comovement. Membership in the S&P 500

is largely based on the ranked size of a firm. I exploit this by using a fuzzy regression

discontinuity design to isolate exogenous variation in the probability of S&P 500

membership which arises between firms that just meet the size criteria and those

that just miss the size criteria. Since firm size has an idiosyncratic component, firms

which are very close in size should not be systematically different from each other, yet

meeting the membership criteria leads to a discrete increase in the probability of being

selected into the S&P 500. This can be used to measure the effect of membership

itself.

I find that, relative to a firm excluded from the S&P 500 due to a minor, random

size difference, firms included in the S&P 500 have more undesirable, negative coskew-

ness with the S&P 500. This has several interesting implications. First, due to the

fuzzy RDD control scheme, the differences in fundamentals across firms are random-

ized. This implies that the excess negative coskewness is a result of a non-fundamental

factor driving asset returns and that this factor is directly tied to exposure to the

attentions of S&P 500 investors, supporting the idea that grouping assets together

into widely traded habitats, or baskets, can attract flows that ignore individual asset

level fundamentals and induce mispricing.

Second, since negative coskewness is generally viewed as undesirable, it could

have a feedback effect on the expected returns of S&P 500 firms, increasing expected

returns and the cost of capital for S&P 500 firms. Such non-fundamental increases in

the cost of capital could have implications for allocative efficiency.

Finally, negative coskewness implies that the diversification benefit of passively

holding a market portfolio, like the S&P 500, which is common among unsophisticated

investors, may be reduced exactly when diversification is most needed. This could
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have widespread welfare implications for those flocking into such passive strategies,

given the growth of passive investing.

To ensure the robustness of the results, I estimate a plethora of specifications

across multiple window sizes and control specifications. I show that estimates of a

firm’s probability of S&P 500 membership are unrelated to observable firm character-

istics and specifically rule out liquidity differences between indexes as a confounding

effect.

The remainder of the paper is organized as follows: Section 2 reviews the literature

and provides more context for my contributions, while section 3 describes my data.

Section 4 provides details and short-run results for my event studies, while section 5

provides details and long run results for my regression discontinuity analysis. Section

6 discusses the robustness of my regression discontinuity results. Section 7 concludes.

4.2 Literature Review

4.2.1 Financialization

One of the defining trends within financial markets in the last two decades has been

the increasing popularity of passive investments across a wide range of assets. This

has the well-known benefit of increasing trade and liquidity in these assets, theoreti-

cally reducing transaction costs for financial market participants, and increasing the

flow of speculative funds to meet hedging demand, particularly in commodity mar-

kets. However, there are some interesting documented side effects. Amongst equities,

several studies show that stocks added to popular indices experience higher returns, 2

while Barberis, Shleifer, and Wurgler (2005) show that inclusion in the S&P 500

2Studies include Shleifer (1986) and Wurgler and Zhuravskaya (2002) for S&P 500 inclusions,
Kaul, Mehrotra, and Morck (2000) for the TSE 300, and Greenwood (2008) for the Nikkei 225.
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leads to excess comovement amongst stocks. Additionally, Harford and Kaul (2005)

are able to trace correlated order flow to strong common effects in the returns of S&P

500 stocks. Amongst commodities, Tang and Xiong (2012) show that commodities

included in popular broad-based commodity indices experience increased correlations

between themselves and wider financial markets.

There is a contentious literature going back to 2008 debating whether passive

investment was to blame for a dramatic bubble in commodity prices, which is sum-

marized neatly in Cheng and Xiong (2014). Meanwhile, Henderson, Pearson, and

Wang (2016) show that trading in futures contracts unrelated to asset fundamentals

impacts both futures and spot prices of underlying commodities, and chapter 2 of

this thesis links rising financialization to speculation driving distortions in commod-

ity futures and spot prices.

The literature so far has focused on finding the direct effects of financialization

on firms’ returns or their correlation and comovement with each other. The effect of

financialization on asset skewness is an important, but largely ignored question, and

is the focus of my study.

4.2.2 Investor Skewness Preferences

Preference for positive skewness is an accepted characteristic of rational investors,

alongside preference for higher returns and aversion to variance within an expected

utility framework. The theoretical underpinnings for such a preference simply rely

on investors’ utility functions having decreasing marginal utility of wealth, and non-

increasing absolute risk aversion, which are two of the desirable properties outlined

in Arrow (1971). Further, asset returns are generally non-normal and often non-

symmetric, so skewness preferences are a relevant feature in asset pricing. These

characteristics motivate the work of Kraus and Litzenburger (1976) and Harvey and
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Siddique (2000), both of which include coskewness in a three-moment CAPM model.

It is this strand of literature regarding coskewness that I build upon by evaluating

the impact that financialization can have on firms’ coskewness.

4.2.3 Benefits of Diversification

My research is also potentially related to observed asymmetries in the benefits of

diversification. Several studies have shown that correlations between assets seem

to increase during market downturns, reducing the effectiveness of diversification

to reduce risk, precisely when needed most. The most famous example is the well

documented increase in correlation between international equity markets during bear

markets. (Longin and Solnik, 2001) However, increased correlations are not limited

to international markets, as Ang and Chen (2002) show that correlations between US

stocks and the aggregate US market increase during market downturns. This could

be explained if excess coskewness arises due to asymmetric effects of financialization.

For example, if comovement increases during economic downswings when limits to

arbitrage may be binding, or if the correlated flows of passive investors are more

extreme in market downturns, this could manifest as both negative coskewness in

asset returns and a reduction in benefits of diversification during downturns.

4.3 Data

To conduct my analysis, I follow the same procedure as chapter 3, and utilize monthly

index constituency data and a sample of inclusion dates from the Compustat S&P

index file. I limit the sample to S&P 1500 stocks, as they form the pool of stocks that

meet the specific minimum liquidity and ownership characteristics required for S&P

500 inclusion. Since the S&P 1500 was created with the introduction of the S&P 600
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small cap index in 1994, the study period is January 1995 to Dec 2017.

Security level data and industries are merged from the monthly CRSP file to make

a sample of firm-month observations. Coskewness calculations rely on index return

data from CRSP daily index files, and I obtain daily stock returns and volume data

from the CRSP daily and monthly stock files. To measure monthly exposures of stocks

to Fama-French factors (Fama and French, 2015) and Carhart’s momentum factor

(Carhart, 1997), I use data from Ken French’s data library and WRDS, respectively,

and classify industries according to the standard Fama-French 12 industry definitions

available from Ken French’s data library.

The measure of coskewness I use in the fuzzy RDD follows the standard systematic

skewness calculation introduced by Kraus and Litzenberger (1976):

Returnid = ω + βimIndexkd + γimIndex
2
kd + ϵid (4.1)

Which is the quadratic regression of excess daily returns of stock i on the daily

excess returns for index k for each month m, estimated monthly using a rolling 12

month regression period. Coskewness is captured as the parameter γim, and this γim

is the month m gamma for firm i with index k, which I use as the monthly coskewness

outcome variable. The index of interest is the S&P 500 due to its unique exposure to

large classes of investors. In all cases, I remove the contribution of the individual stock

being regressed to the index return to avoid spurious results, though given the size of

the firms around the discontinuity and the fact that the index is value-weighted, this

makes no practical difference to the skewness measure or later results. The short-run

event study results use the same measure of coskewness but are calculated differently,

as outlined in section 3.

Table 4.1 shows descriptive statistics for all variables over the full sample period.
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Notably, coskewness is negative for both groups of stocks, but more so for non-

S&P 500 firms. These simple means capture coskewness from all sources, including

coskewness that arises naturally from firm fundamentals. Unsurprisingly, coskewness

is also relatively noisy compared to comovement.

4.4 Short Term S&P 500 Inclusion Effect

In line with the traditional literature measuring inclusion effects on the moments of

the CAPM, I start by analyzing the change in coskewness for firms after they are

added to the index. I run a simple, univariate test of the return of stock i against

the return on the S&P 500 index, excluding the influence of stock i from the index

whenever it is a member:

Ri,t = αi+βi1POSTt+βi2SP500t+βi3POSTt×SP500t+γi1SP5002t+γi2POSTt×SP5002t+ϵit

(4.2)

The coefficient γi1 captures the baseline coskewness of stock i during the 12 month

estimation period prior to the start of the month in which stock i is added to the

index. The coefficient γi2 captures the additional coskewness estimate for the 12

month post-estimation period starting at the beginning of the month following stock

i’s inclusion, since POST is a dummy variable representing whether stock i is in the

S&P 500 index at time t. I can then interpret γi2 as the change in coskewness for stock

i when it is added to the S&P 500 index. This estimate of coskewness is consistent

with Kraus and Litzenburger (1976), and is noted by Harvey and Siddique (2001) as

a valid measure of a stock’s coskewness with an index.

Table 4.2 provides the average OLS coefficients across all stocks in the sample.

Consistent with similar tests in Barberis, Shleifer, and Wurgler (2005), there is a

significant increase in comovement upon inclusion. Surprisingly, there is a significant
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increase in the coskewness of a stock with the S&P 500 in the year following inclusion.

This implies that firms added to the index are more correlated with large positive

moves of the index, but less closely correlated with large negative moves.

There are at least two possible explanations for this increase in coskewness. First,

I could be capturing a permanent increase in coskewness related to membership in the

S&P 500. However, later long term regression discontinuity results do not corroborate

this. Second, there could be a violation of the assumption that firm fundamentals

remain constant after inclusion. For example, momentum changes on inclusion could

lead to positive returns in the short-run afterward, creating a mechanical correlation

with the market when it is going up, and no correlation when it is going down. Chen et

al. (2016) find effects from momentum partially driving increased comovement when

firms are added to the index, pointing to a violation of the event study’s assumptions.

In this case, the captured increase in coskewness is real, but is not representative of

the permanent change we are interested in capturing.3

Next, I conduct a bivariate regression to compare the coskewness response of a

stock to both the S&P 500 index, which it enters, and the non-S&P 500 group of

stocks, which it leaves:

Ri,t = αi+βi1POST+βi2SP500+βi3POST×SP500+βi4NonSP500+βi5POST×NonSP500

+γi1SP500
2+γi2POST ×SP5002+γi3NonSP5002+γi4POST ×NonSP5002+ϵit

(4.3)

In the absence of any frictions or distortions to the stocks return process or any

change to fundamentals around inclusion, we would expect coskewness to be un-

3I find positive coskewness even when the first full month after inclusion is dropped. However,
when I drop the first year, positive coskewness largely disappears. This may suggest that positive
coskewness is a short-run phenomenon and is not permanent.
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changed with both groups. If there is a distortion, or a change in fundamentals, then

we would expect additions to the S&P 500 to result in significant changes in coskew-

ness with the new index, and potentially an opposite effect on the old non-S&P 500

index. Table 4.3 shows that this is roughly the case; there is a positive and significant

increase upon inclusion with the S&P 500 and a negative, albeit insignificant effect on

coskewness with the old non-S&P 500 group of stocks. The positive sign on inclusion

remains consistent with the results of the univariate test.

Chen et al. (2016) argue that this bivariate regression is highly sensitive to small

changes in parameters, and instead recommend using separate univariate regressions

to estimate the change in coskewness with each group before and after the event. I,

therefore, repeat the univariate test for non-SP500 returns. Results in panel A of

Table 4.4 are slightly changed. There is still a positive and significant increase in

coskewness of returns with the SP500 upon inclusion, but the change in coskewness

with the non-SP500 group changes sign to positive as well, albeit still insignificant. I

then test the difference and find that the increase in coskewness with the SP500 is still

significantly more than the increase in coskewness with the non-SP500 group, which

is consistent with excess positive coskewness upon inclusion. Results comparing two

bivariate regressions run separately before and after inclusion, presented in Panel B

of Table 4.4, are materially similar to the full bivariate regression above.

4.4.1 Subperiod Results

I address whether coskewness effects of S&P 500 inclusion have changed over time by

splitting the sample before and after the start of 2003 and repeating all of the tests.

The post 2002 period is generally associated with a rapid rise in passive investing,

during which distortive asset class effects driven by passive investment should be

stronger. However, I find mixed results for differences across subperiods in the tests.
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The univariate test of Table 4.2 yields a more positive coskewness effect upon

inclusion for the pre-2003 period relative to the post-2003 period, while the bivariate

results in Table 4.3 are the exact opposite. Given the critique of Chen et al. (2016),

this may point to sensitivity in the bivariate results. When I compare univariate

estimates between the non-SP500 group and the SP500 index, I find that changes

to coskewness with the SP500 upon inclusion are more positive in the earlier period,

and the same is true of coskewness with the non-SP500 group. When I evaluate the

difference in the change in coskewness between the two groups for each time period,

I find that the increase in coskewness with the SP500 upon index inclusion relative

to the increase in coskewness with the non-SP500 group, is virtually unchanged.

Once again, these mixed results may point to the event study methodology cap-

turing short term, transitory, confounding effects upon inclusion. For example, short

term momentum after inclusion like that documented in Chen et al. (2016), leading

the stock to rise regardless of market conditions, and mechanically increasing coskew-

ness with both SP500 and non-SP500 markets. Even though passive investment has

risen in the more recent period, as Barberis, Shleifer, and Wurgler (2005) point out,

the S&P 500 has long been a popular investment habitat, and even without passive

investment, addition to the S&P 500 attracts significant attention and access to a

large group of investors who populate that specific group of stocks.4

4.5 Regression Discontinuity Analysis

While the above event study methodology captures the short-term response of coskew-

ness upon inclusion, potentially confounded by transitory effects, our actual interest

4Appendix A, Tables A.6-A.7, contains an analysis of deletions and supports a generally reversed,
but much weaker effect of deletion on comovement and coskewness. This is consistent with past
evidence of weaker deletion effects for S&P 500 stocks, and may point to residual attention that a
stock maintains after S&P 500 membership.
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lies in estimating the effect of S&P 500 membership, not addition to the S&P 500,

on coskewness. This is a subtle but important difference, as what we are truly inter-

ested in is isolating the persistent, long term effect of S&P 500 membership in driving

excess coskewness and distorting asset returns.

To estimate this long term treatment effect of S&P 500 membership I use a fuzzy

regression discontinuity framework. Unlike the event study, this method does not rely

on a discontinuous effect before and after the event time period, or an assumption that

the firm is exactly the same before and after that time period, to achieve identification.

Instead, the regression discontinuity relies on a sample being similar on either side of

a treatment threshold based on treatment criteria. In my case, this treatment criteria

is the ranked size of a firm, and I isolate variation in outcomes due to a discontinuous

probability of being included in the S&P 500, arising from meeting the S&P 500’s

size criteria. Since firm size has a random component, very small differences in firm

size and size rank are likely to be random, and not due to systematic differences,

making treatment effectively random within a small window around the inclusion

criteria threshold.

I use a fuzzy, instead of a sharp, RDD, because meeting the size rank criteria alone

does not guarantee immediate membership in the S&P 500, which would be required

to use a sharp RDD. In addition to choosing the largest firms for membership, S&P

also has a stated goal of minimizing excessive turnover in the index, and promoting

industry representativeness. This can result in a lag before firms are added or deleted

after meeting the inclusion criteria, and firms in some industries may be more likely

to be added than firms in others. Therefore, instead of isolating variation in S&P 500

membership due to a guaranteed treatment, I isolate variation in the probability of

being treated, making this a fuzzy RDD.

I implement the fuzzy RDD in two stages. In the first stage I estimate the logistic
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regression to isolate the discontinuous probability of being included in the index based

on size rank:

SP500it = α + λf(Sit) + τ1[Sit ≥ St] + δTOit + ψi + ϕY + ψi ∗ ϕY ϵit (4.4)

Here SP500it is an indicator variable equal to 1 if a firm is in the S&P 500, St is

an indicator variable equal to 1 if a firm meets the stated size criteria of the S&P 500,

f(Sit) is a polynomial spline controlling for continuous differences in probability of

inclusion due to sizerank. The coefficient τ then captures the discontinuous difference

in probability of inclusion due to meeting the inclusion criteria. I also include ψi and

ϕY as industry and year fixed effects, alongside turnover controls TOit such as lagged

returns, firmsize, tobinsq, and assets. These controls are included to increase the effi-

ciency of estimates by controlling other sources of variation in treatment probability

across firms, in line with Lee and Lemieux (2010), Cellini, Ferreria, and Rothstein

(2010) and Cunat, Gine, and Guadalupe (2012). Estimation of this logistic regres-

sion in Table 4.5 reveals a clear discontinuity, with firms above the sizerank threshold

more likely to be S&P 500 members.

The fitted values of SP500it represent firm i’s estimated probability of being in-

cluded in the S&P 500 conditional on sizerank and controls. I then run the following

second stage regression, using the fitted values from the first stage P (SP500it):

Yit = α + τP (SP500it) + λf(Sit) + δTOit + ψI + ϕY + ψI ∗ ϕY + ϵit (4.5)

Here, Yit is the outcome variable of interest, which is the coskewness measure from

equation (4.1). I also include all control variables from the first stage regression, in-

cluding the polynomial spline f(Sit). The primary regressor of interest is P (SP500it),
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and the coefficient τ in this case captures the change in coskewness if the probability

of inclusion in the index increases by 1. It has the interpretation of being the esti-

mated treatment effect on coskewness, of being in the S&P 500 vs not being in the

S&P 500. When this regression is applied to a narrow window around the size rank

threshold, P (SP500it) will be unrelated to any variables outside of the model, since

it is obtained from a narrow sample where the differences in size rank are effectively

random. While technically the fitted values P (SP500it) may vary because they cap-

ture variation from the controls included in the first stage, this variation is controlled

since I include those controls in the second stage, and effectively isolate variation in

the outcome variable, coskewness, related to the random, discontinuous probability

of meeting the size rank criteria.

Since I use a non-linear logit first stage regression with a linear OLS second stage

regression, I also run an intermediate OLS regression where SP500it is regressed

against the fitted values from the first stage P (SP500it) plus controls, and use the fit-

ted probability values from this intermediate stage regression in the second stage. This

ensures consistent estimates as outlined in Wooldridge (2002) and Adams, Almeida,

and Ferreira (2009). The 2SLS standard errors are heteroskedasticity adjusted and

clustered at the firm level.

4.5.1 Main Results

I start by analyzing the fuzzy RDD in Table 4.6, and varying the window size for

the sample between +/- 25 to +/- 100 on either size of the S&P 500 size rank in-

clusion threshold. I find a negative and significant effect of S&P 500 membership on

coskewness with the S&P 500 index, which is robust across windows. This indicates

that firms in the S&P 500 experience undesirable excess negative coskewness as a

result of being in the index. This is counter to the previous event study results, but
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it is important to note that these samples are not limited to observations for firms

within a short period after inclusion, instead, they are measuring differences amongst

firms around the inclusion threshold regardless of their tenure within the index. They

therefore capture long term effects of membership instead of simple short-term, po-

tentially transitory effects like an event study. The difference in results indicates the

importance of using alternative methods to measure index membership effects.

The existence of excess negative coskewness has several important implications.

The first is that it provides further evidence of financialization impacting and dis-

torting the return process of firms, particularly those included in popular indices. If

there is no non-fundamental component introduced into the return process of S&P 500

firms, then we should see no excess coskewness. The fact that we do adds to growing

evidence of such non-fundamental effects. This is in line with observed excess returns

and comovement of firms in the S&P 500. It is also consistent with observations from

other markets, such as increasing correlations amongst commodities and increasing

correlations of commodities with other financial markets.

The next implication is that, if coskewness is priced, excess coskewness in a stock

may represent a distortion to a stock’s risk characteristics, which could feedback into

expected returns and its cost of capital. While I do not directly analyze expected

returns, such an indirect risk effect on expected returns could also help explain pre-

viously observed excess returns for S&P 500 firms, even without a first order effect of

membership on expected returns directly.

Finally, there are implications for diversification. Results point to increased fi-

nancialization as a driver of excess coskewness, and excess coskewness implies that

assets decrease the coskewness of portfolios they are added to. Broadly speaking,

as financialization decreases the coskewness of portfolios, those portfolios will offer

less diversification during downswings, which is exactly when diversification is most
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needed. There is a long literature, particularly amongst international markets, look-

ing into increased asset correlations during market downturns. The implication of

excess negative coskewness, is that this trend of increased asset correlations during

market downturns will worsen as financialization increases, and it also points to fi-

nancialization being one of the reasons downside correlation has decreased. I do not

evaluate this in the current paper, but it is an interesting area for further exploration.

4.6 Robustness of regression discontinuity

4.6.1 Liquidity

While I focus on a potential and unintended negative consequence of financialization

on asset returns, it is important to remember that inclusion in a popular index and

exposure to the investment flows of its investor can also bring beneficial increases in

liquidity. To rule out results being driven by beneficial increases in liquidity, I repeat

the analysis with several specifications designed to control for liquidity, and present

the results in Table 4.7.

First, I introduce additional liquidity controls, specifically the Amihud (2002) illiq-

uidity measure and the effective tick measure of Goyenko, Holden, Trzcinka (2009),

which is a monthly proxy for effective spread. Results when including these liquidity

measures are virtually unchanged from the main results.

Next, I use dimson adjusted coefficients (Dimson, 1979) for the coskewness mea-

sure to capture the impact of liquidity on the differential speed of information diffusion

for firms within the S&P500, and once against the results are unchanged. In Figure

4.1, I also present the results of an event study on unexpected federal funds rate

changes, tracking the return response of S&P 500 and non-S&P 500 firms during and

after an announcement. I find the daily response is almost identical, ruling out sig-
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nificant effects of inclusion on the speed of information diffusion which could impact

coskewness results.5

Finally, I combine both control methods with dimson adjusted coefficients for

coskewness, plus liquidity controls, and find that results are robust. I conclude that

results are not due to liquidity differences for S&P 500 firms.

4.6.2 Control Specification

I also evaluate the sensitivity of results to the specification of the regressions equations

in the fuzzy RDD, and check to see if it successfully eliminates observable differences

in firms on either size of the treatment threshold.

Results in Table 4.8 show that results are insensitive to the choice of the order

of polynomial used in the polynomial spline I use to control any size rank differences

between firms. I utilize 1st to 4th order polynomials and find unchanged coefficients.

I ignore higher order polynomials as they have been criticized as being inappropriate

(Gelman and Imbens, 2019). The insensitivity of these estimates point to the narrow

window being fairly effective at controlling important differences in firms related to

sizerank.

In Table 4.9, I present different control specifications to show how control choice

affects the results. Results are generally the same, except for a regression removing

all turnover controls, in which efficiency drops drastically, and the coefficient becomes

insignificant from zero. If I include lagged return and size controls, efficiency improves

somewhat. This points to the importance of controlling other sources of variation in

firms around the threshold to improve efficiency of estimation, particularly when using

coskewness, which is quite noisy relative to comovement, as an outcome variable.

5This is in line with research by Zebedee, Bentzen, Hansen, and Lunde (2008) and by Jubinkski
and Tomljanovich (2013), which find that S&P 500 stocks, and CRSP stocks generally, seem to fully
incorporate macro news within 15 minutes.
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Finally, Table 4.10 shows the results of a covariate balance test, which tests for

differences in the treated vs. untreated firms on either side of the treatment threshold.

If, as intended, the regression discontinuity approach is successful and firms are not

systematically different on either side of the threshold in ways that could drive results,

then observable characteristics of the firms should be similar. I find that to be the

case across a variety of firm characteristics. Thus, the firms analyzed do not seem

to be systematically different, and my analysis captures the effect of being randomly

treated.

4.6.3 Self-selection

A common concern in regression discontinuity designs is whether the subject being

treated can control whether they are treated or not by manipulating the assignment

variable, and therefore self-select into the treated or untreated groups leading to

differences between the two. This is a concern if subjects can precisely control the

variable used for assignment. A typical example of this, as outlined in McCrary

(2008) is the study of outcomes of income-based support programs, where subjects

can easily manipulate their earnings to qualify for treatment.

There are a few reasons this is not a concern in my setting. First, the assignment

variable is size rank, and size rank is generated from market capitalization, which

is determined by an evaluation of the firm by the market, which the firm cannot

precisely control. Second, the explicit goal of all firms is to maximize their market

capitalization, so to the extent that firms could manipulate their size rank, they

should all be trying to maximize it, meaning a firms size rank is not only controlled

by their actions and the evaluation of the market, but by other firms and the markets

evaluation of them. Finally, treatment in the model is fuzzy, so simply meeting the

size criteria does not guarantee treatment and vice versa, making it highly unlikely
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that firm managers would be motivated to, let alone be able to, precisely manipulate

their size rank in a small window around the threshold for purposes of seeking or

avoiding treatment.6

4.7 Conclusion

I present the first results showing the impact of S&P 500 membership on firm coskew-

ness and find that the short-run transitory effect of being added to the S&P 500 is

very different from the long-term effect experienced by member firms. In the short-run

after inclusion, there appears to be a significant positive excess coskewness between

the firm and the S&P 500. This is not surprising if we consider transitory pressures,

like momentum, surrounding firms when added to the index. In the long run, S&P

500 member firms experience undesirable excess negative coskewness with the S&P

500, indicating that they move together more closely during market downturns than

during market upswings. This negative excess coskewness points to price distortions

caused by index membership and exposure to the large flows of passive investment,

and habitat traders, that membership entails.

Additional implications of this distortion could include feedback into expected re-

turns, firms’ cost of capital, and reduced benefits to diversification. These implications

point to avenues for future research. One is to look at how much inclusion directly

affects S&P 500 returns versus any indirect effects it may have through changing risk

characteristics. Another avenue to explore is whether financialization has contributed

to changing downside correlations across assets, and therefore impacted benefits to

diversification.

6Commonly used density tests such as McCrary (2008) are not useful given the design, as the
size rank assignment variable is uniformly distributed.
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Table 4.1: Full Sample Description

This table provides descriptive statistics for the main outcome variables, controls used in later analysis, and additional
characteristics of interest for firms included and not-included in the S&P 500 between Jan. 1, 1995 and Dec. 31, 2017.
The unit of observation is at the firm-month level. S&P 500 comovement is calculated using regression specification (1)
with the influence of the firm in the regression removed from the S&P 500 return. Dimson adjusted coefficients sums the
S&P 500 betas and gammas on a 3-day window centered on the day of interest to account for non-synchronous trading and
delayed reaction due to liquidity. Illiquidity is the monthly measure from Amihud (2002). Eff. Tick is the effective spread
proxy from Goyenko, Holden, and Trzcinka (2009). Factors umd, hml, smb, cma, rmw represent firms comovement over a
given month with the respective factor portfolio listed. Lagged return variables are holding period returns. FinLiq is the
ratio of cash and short term investments to current liabilities. Current is the ratio of current assets to current liabilities.
Leverage is the ratio of liabilities to shareholder’s equity. Non-ratio financial characteristics are in $millions.

Non-S&P 500 S&P 500

Variable N Mean Std Dev N Mean Std Dev

SP500 Beta 264057 1.03 0.51 136302 1.01 0.44
Dimson Beta 263746 1.104 0.608 136203 1.053 0.528
Coskew 264073 -2.092 15.179 136245 -0.677 10.659
Dimson Coskew 262921 -3.331 24.126 136169 -1.226 17.328
Illiquidity 275167 0.219 0.830 137803 0.020 0.543
Eff. Tick 275174 0.187 0.412 137807 0.089 0.185
1mo return 275028 0.009 0.148 137776 0.007 0.12
1yr return 270001 0.092 0.492 135866 0.078 0.481
3yr return 262395 0.286 1.313 133325 0.21 0.806
5yr return 246517 0.556 3.171 130137 0.374 1.472
Firmsize 275242 1550691 1596633 137890 23383822 43335298
Umd 275167 -0.078 2.038 137803 -0.085 1.534
Hml 275167 0.158 2.567 137803 0.084 1.957
Smb 275167 0.978 2.023 137803 0.176 1.427
Cma 275167 -0.028 3.219 137803 0.107 2.44
Rmw 275167 -0.001 0.029 137803 -0.001 0.022
Assets 274965 2828 5706 137785 57207 202123
Acquisitions 244407 61.75 254.79 112863 419.61 1407.9
Capx 251316 85.975 174.134 124897 1157.399 2733.404
Roa 256363 0.029 0.137 127004 0.051 0.084
Roe 256092 -0.022 0.401 126924 2.765 132.816
Roi 256078 0.046 0.344 127004 0.094 0.222
TobinQ 256104 1.878 1.305 126924 2.081 1.326
Sales 256576 1662 2754 127109 18740 38332
R&D 275242 21.143 51.775 137890 401.887 1405.468
FinLiq 230258 1.014 2.05 113376 0.596 0.918
Current 231721 2.557 2.337 113150 1.689 1.116
Leverage 255755 1.24 3.233 126647 476.317 22995.43
Div. Yield 273290 0.954 3.464 136869 12.422 31.845
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Table 4.2: Average Coefficients for Univariate Inclusion Event Study

This table reports the average coefficients and the standard error of the coefficient estimates across regressions for stocks i

Ri,t = αi + βi1POSTt + βi2SP500t + βi3POSTt × SP500t + γi1SP500
2
t + γi2POSTt × SP5002t + ϵit

POST is a dummy variable equal to 1 if a return is in a 12 month window after stock i is added to the S&P 500 index,
and 0 if the return is in the 12 months window before stock i is added to the index.SP500 is the return on the S&P 500
excluding the influence of stock i during the period it is within the index. Standard errors are in parentheses.

Univariate Regression

Sample Period (1995-2017) (1995-2002) (2003-2017)

Constant 0.0014 0.0017 0.0012
(0.0001) (0.0002) (0.0001)

POST −0.0015 −0.0020 −0.0012
(0.0001) (0.0003) (0.0001)

SP500 1.0613 1.0387 1.0784
(0.0236) (0.0451) (0.0238)

SP5002 −2.2277 −1.5355 −2.7485
(0.5784) (0.9579) (0.7126)

POST × SP500 0.1227 0.1926 0.0702
(0.0193) (0.0357) (0.0201)

POST × SP5002 3.0259 4.0186 2.2790
(0.7406) (1.2709) (0.8770)

Obs 531 228 303
R-Square 0.27 0.21 0.32

(0.0064) (0.0076) (0.0085)
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Table 4.3: Average Coefficients for Bivariate Inclusion Event Study

This table reports the average coefficients and the standard error of the coefficient estimates across regressions for stocks i

Ri,t = αi + βi1POST + βi2SP500 + βi3POST × SP500 + βi4NonSP500 + βi5POST ×NonSP500

+γi1SP500
2 + γi2POST × SP5002 + γi3NonSP500

2 + γi4POST ×NonSP5002 + ϵit

POST is a dummy variable equal to 1 if a return is in a 12 month window after stock i is added to the S&P 500 index,
and 0 if the return is in the 12 months window before stock i is added to the index. SP500 and NonSP500 are the returns
on the S&P 500 and those non-SP500 firms in the SP1500 excluding the influence of stock i during the period it is within
the respective index at time t. Standard errors are in parentheses.

Bivariate Regression

Sample Period (1995-2017) (1995-2002) (2003-2017)

Constant 0.0006 0.0003 0.0008
(0.0001) (0.0002) (0.0001)

POST −0.0012 −0.0016 −0.0009
(0.0001) (0.0003) (0.0001)

SP500 0.1742 0.1380 0.2015
(0.0259) (0.0363) (0.0362)

SP5002 0.1425 1.7103 −1.0373
(0.9696) (1.1590) (1.4563)

POST × SP500 0.4505 0.4839 0.4254
(0.0309) (0.0457) (0.0418)

POST × SP5002 3.3155 1.7613 4.4850
(1.3878) (1.5353) (2.1399)

NonSP500 0.9163 1.0926 0.7836
(0.0337) (0.0571) (0.0389)

NonSP5002 −1.0601 −0.9663 −1.1307
(0.7625) (1.1088) (1.0454)

POST ×NonSP500 −0.3488 −0.4006 −0.3098
(0.0280) (0.0443) (0.0359)

POST ×NonSP5002 −1.2417 0.7935 −2.7732
(1.0470) (1.5051) (1.4394)

Obs 531 228 303
R-Square 0.30 0.25 0.34

(0.0064) (0.0078) (0.0088)
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Table 4.4: Pre vs Post S&P 500 inclusion coskewness estimates

This table reports the average coskewness coefficients and across the univariate regressions of each individual stock against
the returns of S&P 500 and Non-S&P 500 stocks in Panel A:

Ri,t = αi + βi1indexjt + γi1index
2
jt + ϵit

and the bivariate regressions in Panel B:

Ri,t = αi + βi1SP500t + βi2NonSP500t + γi1SP500
2
t ++γi2NonSP500

2
t + ϵit

The regressions are run seperately on the pre-period including the 12 full calendar months before the month of inclusion,
and the post-period including the full 12 calendar months after the month of inclusion. Significance of the difference
estimates at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. Standard errors are in parenthesis.

Univariate Regression

S&P500 Non-S&P500 Diff

Sample Period Obs γ1,pre γ1,post ∆γ1,sp γ1,pre γ1,post ∆γ1,nsp
∆γ1,sp−
∆γ1,nsp

1995-2017 531 −2.2276 0.7983 3.0259∗∗∗ −1.3275 −0.3474 0.9801 2.0458∗∗∗

(0.5784) (0.4840) (0.7406) (0.5299) (0.5920) (0.6435) (0.5392)

1995-2002 228 −1.5354 2.4831 4.0185∗∗∗ −0.0725 1.5447 1.6172 2.4013∗∗∗

(0.9579) (0.8593) (1.2709) (0.8479) (0.8648) (1.1325) (0.8910)

2003-2017 303 −2.7485 −0.4695 2.279∗ −2.2720 −1.7950 0.4770 2.2313∗∗

(0.7126) (0.5389) (0.8770) (0.5299) (0.5920) (0.7342) (0.6654)

Bivariate Regression

S&P500 Non-S&P500 Diff

Sample Period Obs γ1,pre γ1,post ∆γ1 γ2,pre γ2,post ∆γ2
∆γ1 −
∆γ2

1995-2017 531 0.1425 3.7274∗∗ 3.5849 −1.0601 −2.2826 −1.2225 4.8074∗

(0.9696) (0.7714) (1.401) (0.7625) (0.7714) (1.0569) (2.3133)

1995-2002 228 1.7103 3.4717 1.7614 −0.9663 −0.1728 0.7935 0.9679
(1.1590) (1.0918) (1.5353) (1.1087) (1.0469) (1.5051) (2.7449)

2003-2017 303 −1.0373 3.9231 4.9604∗∗ −1.1307 −3.8968 −2.7661 7.7265∗∗

(1.4563) (1.6624) (2.1756) (1.0454) (1.0934) (1.4635) (3.4973)
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Table 4.5: Logistic Regression: Probability a firm is in the S&P 500

This table reports the results of the logistic regression outlined in equation (4.4), where the outcome
variable is equal to 1 if a firm is in the S&P 500 and 0 if it is not. Above is the indicator variable
of interest τ1[Sit ≥ St] representing whether the firm sizerank is greater than the threshold for
inclusion. The coefficient captures the discontinuous change in probability of treatment (S&P 500
membership) around the inclusion threshold. Unreported controls include a cubic polynomial spline
on sizerank plus Year, Industry and Year X Industry fixed effects. Significance at the 10%, 5%,
and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively.

Variable Estimate Chi Square

Above 0.1152∗∗∗ 8.1658
1mo Return -0.4122∗∗∗ 43.1455
1yr Return -0.5421∗∗∗ 608.3394
3yr Return -0.4710∗∗∗ 1327.4953
5yr Return -0.0746∗∗∗ 232.6802
UMD -0.0609∗∗∗ 227.0554
HML 0.0427∗∗∗ 144.0431
SMB -0.0718∗∗∗ 275.5307
RMW 1.2986∗∗∗ 20.2192
CMA 0.0441∗∗∗ 266.9084
Firmsize 1.3293∗∗∗ 274.6296
Assets 0.000085∗∗∗ 3721.1112
TobinQ -0.1140∗∗∗ 317.3258
Illiquidity -6.1599∗∗∗ 69.8409
Eff.Tick 81.5374∗∗∗ 654.7065
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Table 4.6: Fuzzy RD Effect Estimates across Window Size

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (4.5). P(500) is a firms propensity score estimated from the first stage in equation (4.4)
as described in the text. The dependent variable is the estimated coskewness between the stock and the SP500 index
from equation (4.1). Specifications differ in window size around the SP500 size based cutoff point. Controls include 1mo,
1yr, 3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and
effective tick. Two stage least squares standard errors are heteroskedasticity adjusted and clustered at the firm level.
Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3)

Dep. Var Coskew. Coskew. Coskew.
Window 25 50 100
Spline Cubic Cubic Cubic

P(SP500) −2.846∗∗ −2.361∗∗ −2.720∗∗∗

(0.027) (0.026) (0.004)

Controls Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Year ×
Industry FE

Y Y Y

Obs 11980 23681 46610
R-Square 0.15 0.13 0.13
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Table 4.7: Fuzzy RD Effect Estimates across Liquidity Controls

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (4.5). P(500) is a firms propensity score estimated from the first stage in equation (4.4)
as described in the text. The dependent variable is the estimated coskewness between the stock and the SP500 index from
equation (4.1). The specification differs on dependent variable and liquidity controls. Specification (1) excludes liquidity
controls. Specification (2) is the same as reported in table (5) with liquidity controls. Specification (3) uses a dimson adjusted
skewness without liquidity controls. Specification (4) uses dimson adjusted skewness with liquidity controls. Controls include
1mo, 1yr, 3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, mom, firmsize, assets, and tobinsq. Two stage
least squares standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and
1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Coskew. Coskew. Dimson Dimson
Window 50 50 50 50
Spline Cubic Cubic Cubic Cubic

P(SP500) −2.267∗∗ −2.992∗∗∗ −3.078∗ −3.702∗∗

(0.026) (0.005) (0.065) (0.044)
Illiquidity 3.641 −0.559

(0.358) (0.307)
Eff. Tick −286.514 −275.517

(0.143) (0.307)

Controls Y Y Y Y
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y Y Y

Obs 23681 23681 23664 23664
R-Square 0.13 0.13 0.11 0.11
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Table 4.8: Fuzzy RD Effect Estimate across Spline

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (4.5). P(500) is a firms propensity score estimated from the first stage in equation (4.4)
as described in the text. The dependent variable is the estimated coskewness between the stock and the SP500 index from
equation (4.1). The specifications differ by the order of the polynomial spline used as a control function. Controls include
1mo, 1yr, 3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity,
and effective tick. Two stage least squares standard errors are heteroskedasticity adjusted and clustered at the firm level.
Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Coskew. Coskew. Coskew. Coskew.
Window 50 50 50 50
Spline Linear Quadratic Cubic Quartic

P(SP500) −2.325∗∗ −2.370∗∗ −2.361∗∗ −2.356∗∗

(0.028) (0.025) (0.026) (0.026)

Controls Y Y Y Y
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y Y Y

Obs 23687 23681 23687 23687
R-Square 0.13 0.13 0.13 0.13
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Table 4.9: Fuzzy RD Effect Estimates over Control Specification

This table reports the estimated treatment effect of SP500 membership based on the fuzzy regression discontinuity design
(RDD) specification in equation (4.5). P(500) is a firms propensity score estimated from the first stage in equation (4.4)
as described in the text. The dependent variable is the estimated coskewness between the stock and the SP500 index from
equation (4.1). The specifications differ in included turnover controls. Controls include 1mo, 1yr, 3yr, 5yr lagged returns,
factor exposures to hml, smb, cma, rmw, umd, firmsize, assets, and tobinsq, illiquidity, and effective tick. Two stage least
squares standard errors are heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and
1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. P-values are in parentheses.

Specification (1) (2) (3) (4)

Dep. Var Coskew. Coskew. Coskew. Coskew.
Window 50 50 50 50
Spline Cubic Cubic Cubic Cubic

P(SP500) −2.361∗∗ 0.655 −2.850∗∗∗ −1.768
(0.026) (0.925) (0.021) (0.275)

Controls Y N Y Ret & Size
Year FE Y Y Y Y
Industry FE Y Y Y Y
Year ×
Industry FE

Y Y N Y

Obs 23681 27229 23681 25631
R-Square 0.13 0.12 0.05 0.13
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Table 4.10: Fuzzy RD Covariate Balance Test

This table reports the results of a covariate balance test which includes various firm characteristics
as the outcome variable in the same fuzzy RD specification used to generate main results from
equation (4.5). Estimates represent the difference in the listed variable for S&P 500 and non-
S&P 500 firms in the +/- 50 discontinuity sample. The polynomial spline is cubic and controls
include 1mo, 1yr, 3yr, 5yr lagged returns, factor exposures to hml, smb, cma, rmw, umd, firmsize,
assets, and tobinsq, illiquidity, and effective tick. Two stage least squares standard errors are
heteroskedasticity adjusted and clustered at the firm level. Significance at the 10%, 5%, and 1%
levels is indicated by ∗, ∗∗, and ∗∗∗, respectively.

Variable Estimate P-Value

ROE 0.024 (0.497)

ROI -0.026 (0.359)

Sales 438.675 (0.928)

Capx 56.488 (0.828)

R&D 24.107 (0.460)

Acquisitions 285.957 (0.121)

Dividend Yield 2.511 (0.243)

Fin. Liquidity -0.099 (0.695)

Current -0.327 (0.287)

Leverage 1.209 (0.209)
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(a)

(b)

Figure 4.1: Stock price reaction to FOMC announcements

Displays point estimates and 95% confidence intervals for the stock price reaction of S&P
500 and non-S&P 500 stocks to surprise FOMC announcements about federal funds rate
changes on the announcement date and over the post-announcement window. Index returns
are calculated as a value weighted average of (a) the full sample of S&P 1500 firms (b) the
+/- 50 sample of firms around the S&P 500 size rank cutoff.

101



REFERENCES

Acharya, V. V., Lochstoer, L. A., Ramadorai, T., 2013. Limits to arbitrage and

hedging: Evidence from commodity markets. Journal of Financial Economics 109,

441–465.

Adams, R., Almeida, H., Ferreira, D., 2009. Understanding the relationship between

founder-ceos and firm performance. Journal of Empirical Finance 16(1), 136–150.

Alquist, R., Kilian, L., 2010. What do we learn from the price of crude oil futures?

Journal of Applied Econometrics 25, 539–573.

Amihud, Y., 2002. Illiquidity and stock returns: cross-section and time-series effects.

Journal of Financial Markets 5(1), 31–56.

Ang, A., Chen, J., 2002. Asymmetric correlations of equity portfolios. Journal of

Financial Economics 63, 443–494.

Antolin-Diaz, J., Rubio-Ramirez, J., 2018. Narrative sign restrictions for svars. Amer-

ican Economic Review 108, 2802–29.

Appel, I., Gormley, T., Keim, D., 2019. Identification using russell 1000/2000 index

assignments: A discussion of methodologies. Available at SSRN 2641548 .

Arrow, K. J., 1971. Essays in the theory of risk-bearing. Markham Publishing Com-

pany, Chicago.

Barberis, N., Shleifer, A., Wurgler, J., 2005. Comovement. Journal of Financial Eco-

nomics 75(2), 283–317.

Bernanke, B. S., Kuttner, K. N., 2005. What explains the stock market’s reaction to

federal reserve policy? The Journal of Finance 60(3), 1221–1257.

102



Bond, P., Edmans, A., Goldstein, I., 2012. The real effects of financial markets.

Annual Review of Financial Economics 4, 339–360.

Bouchouev, I., 2020. From risk bearing to propheteering. Quantitative Finance 20(6),

887–894.

Brennan, M., 1991. The cost of convenience and the pricing of commodity contingent

claims. In: Lund, D. Oksendal, B. (ed.), Stochastic models and option values :

applications to resources, environment, and investment problems , Elsevier Science

Pub., North Holland, NY.

Brogaard, J., Ringgenberg, M. C., Sovich, D., 2019. The economic impact of index

investing. The Review of Financial Studies 32, 3461–3499.

Cabellero, R., Farhi, E., Gourinchas, P., 2008. Financial crash, commodity prices,

and global imbalances. Brookings Papers on Economic Activity pp. 1–55.

Carhart, M., 1997. On persistence in mutual fund performance. The Journal of Fi-

nance 52(1), 57–82.

Cellini, S. R., Ferreira, F., Rothstein, J., 2010. The value of school facility investments:

Evidence from a dynamic regression discontinuity design. The Quarterly Journal

of Economics 125(1), 215–261.

Chen, H., Noronha, G., Singal, V., 2004. The price response to s&p 500 index addi-

tions and deletions: Evidence of asymmetry and a new explanation. The Journal

of Finance 59(4), 1901–1930.

Chen, H., Singal, V., Whitelaw, R. F., 2016. Comovement revisited. Journal of Fi-

nancial Economics 121(3), 624–644.

103



Cheng, H., Xiong, W., 2014. Financialization of commodity markets. Annual Review

of Financial Economics 6, 419–41.

Chordia, T., Goyal, A., Sadka, G., Sadka, R., Shivakumar, L., 2009. Liquidity and

the post-earnings-announcement drift. Financial Analysts Journal 65(4), 18–32.

Cunat, V., Gine, M., Guadalupe, M., 2012. The vote is cast: The effect of corporate

governance on shareholder value. The Journal of Finance 67(5), 1943–1977.

Dessaint, O., Foucault, T., Frésard, L., Matray, A., 2019. Noisy stock prices and

corporate investment. The Review of Financial Studies 32, 2625–2672.

Dimson, E., 1979. Risk measurement when shares are subject to infrequent trading.

Journal of Financial Economics 7(2), 197–226.

Dolatabadi, S., Nielsen, M. Ø., Xu, K., 2015. A fractionally cointegrated var analysis

of price discovery in commodity futures markets. Journal of Futures Markets 35,

339–356.

Fama, E. F., French, K. R., 1988. Business cycles and the behavior of metals prices.

The Journal of Finance 43, 1075–1093.

Fama, E. F., French, K. R., 2015. A five-factor asset pricing model. Journal of Finan-

cial Economics 116(1), 1–22.

Fattouh, B., Kilian, L., Mahadeva, L., 2013. The role of speculation in oil markets:

What have we learned so far? Energy Journal 34, 7–33.

Figuerola-Ferretti, I., Gonzalo, J., 2010. Modelling and measuring price discovery in

commodity markets. Journal of Econometrics 158, 95–107.

104



Froot, K. A., Dabora, E. M., 1999. How are stock prices affected by the location of

trade? Journal of Financial Economics 53(2), 189–216.

Gelman, A., Imbens, G., 2019. Why high-order polynomials should not be used in

regression discontinuity designs. Journal of Business Economic Statistics 37(3),

447–456.

Gorton, G. B., Hayashi, F., Rouwenhorst, K. G., 2013. The fundamentals of com-

modity futures returns. Review of Finance 17, 35–105.

Goyenko, R. Y., Holden, C. W., Trzcinka, C. A., 2009. Do liquidity measures measure

liquidity? Journal of Financial Economics 92(2), 153–181.

Greenwood, R., 2008. Excess comovement of stock returns: Evidence from cross-

sectional variation in nikkei 225 weights. The Review of Financial Studies 21, 1153–

1186.

Hamilton, J. D., 2009. Causes and Consequences of the Oil Shock of 2007-08 (No.

w15002). National Bureau of Economic Research.

Hamilton, J. D., Wu, J. C., 2014. Risk premia in crude oil futures prices. Journal of

International Money and Finance 42, 9–37.

Hamilton, J. D., Wu, J. C., 2015. Effects of index-fund investing on commodity futures

prices. International Economic Review 56, 187–205.

Harford, J., Kaul, A., 2005. Correlated order flow: Pervasiveness, sources, and pricing

effects. Journal of Financial and Quantitative Analysis 40, 29–55.

Harvey, C. R., Siddique, A., 2000. Conditional skewness in asset pricing tests. The

Journal of Finance 55, 1263–1295.

105



Henderson, B. J., Pearson, N. D., Wang, L., 2015. New evidence on the financializa-

tion of commodity markets. Review of Financial Studies 28, 1285–1311.

Inoue, A., Kilian, L., 2013. Inference on impulse response functions in structural var

models. Journal of Econometrics 177, 1–13.

Irwin, S. H., Sanders, D. R., 2012. Testing the masters hypothesis in commodity

futures markets. Energy Economics 34(1), 256–269.

Irwin, S. H., Sanders, D. R., Merrin, R. P., 2009. Devil or angel? the role of specula-

tion in the recent commodity price boom (and bust). Journal of Agricultural and

Applied Economics 41, 377–391.

Jain, P., 1987. The effect on stock price of inclusion in or exclusion from the s&p 500.

Financial Analysts Journal 43(1), 58–65.
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Appendix A

Additional Tables and Figures

Figure A.1: Structural IRFs: No narrative restrictions

Structural Impulse Response Functions showing the response of each variable to a one
standard deviation innovation to each structural shock. Responses are the cumulative %
change for production, real activity, and the spot price, and cumulative level change for
inventories. The Spread response is the difference in the futures and spot responses. The red
band illustrates the 68% error band from the posterior distribution of the IRF’s. Obtained
as described in section 3, and in Appendix B. Narrative restrictions as described in section
3 are relaxed.
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Figure A.2: Historical Decomposition: No narrative restrictions

Historical decomposition of the real spot price of brent oil from July 1991 to September
2020 showing the cumulative percentage change in spot price due to flow supply, flow
demand, inventory demand, and futures demand shocks, respectively. Narrative restrictions
as described in section 3 are relaxed.
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Figure A.3: Historical Decomposition-2008 Financial Crisis: No narrative
restrictions

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to flow demand and futures demand shocks, respectively, between
Jan. 2007 and Jan. 2009. Narrative restrictions as described in section 3 are relaxed.
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Figure A.4: Historical decomposition of supply shocks: No narrative restric-
tions

Historical decomposition of global oil production, showing cumulative percentage change in
global production due to each shock during the period of the Venezualan Oil Strike (Dec.
2002), Invasion of Iraq (Mar.-Apr. 2003), and Libyan Civil War (Feb. 2011). Narrative
restrictions as described in section 3 are relaxed.
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Figure A.5: Historical decomposition Covid-19 Outbreak: No narrative re-
strictions

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock during the onset of the Global Covid-19 Pandemic
and the Saudi-Russian Oil price war. Narrative restrictions as described in section 3 are
relaxed.
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Figure A.6: Historical decomposition Aug. 2018-Apr. 2019

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to each shock around the assassination of Jamal Khashoggi on Oct
2nd, 2018.
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Figure A.7: Historical decomposition Jun. 2019-Feb. 2020

Historical decomposition of the global oil production, showing the cumulative percentage
change in global production due to each shock around the Sept. 14 2019 Abqaiq–Khurais
drone attacks on Saudi oil facilities.
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Figure A.8: Kilian and Murphy Replication

Historical decomposition of the real spot price of brent oil from February 1978 to August
2009 showing the cumulative percentage change in spot price due to flow supply, flow
demand shocks, and inventory demand shocks respectively. Estimated by replicating Kilian
and Murphy (2014) using their original variables, sample period, and restrictions.
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Figure A.9: Kilian and Murphy Replication-2008 Financial Crisis

Historical decomposition of the real spot price of brent oil from Jan. 2007 to Dec. 2008
showing the cumulative percentage change in spot price due to flow demand shocks, and
inventory demand shocks respectively. Estimated using the original Kilian and Murphy
(2014) model. Estimated by replicating Kilian and Murphy (2014) using their original
variables, sample period, and restrictions.
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Figure A.10: Kilian and Murphy Method

Historical decomposition of the real spot price of brent oil from July 1991 to September 2020
showing the cumulative percentage change in spot price due to flow supply, flow demand,
inventory demand, and futures demand shocks, respectively. Estimated using the original
Kilian and Murphy (2014) model with my data and sample period.
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Figure A.11: Kilian and Murphy Method- 2008 Financial Crisis

Historical decomposition of the real spot price of brent oil from Jan. 2007 to Dec. 2008
showing the cumulative percentage change in spot price due to flow demand shocks, and
inventory demand shocks respectively. Estimated using the original Kilian and Murphy
(2014) model with my data and sample period.
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Figure A.12: Structural IRFs: 6mo Brent Futures

Structural Impulse Response Functions showing the response of each variable to a one
standard deviation innovation to each structural shock. Responses are the cumulative %
change for production, real activity, and the spot price, and cumulative level change for
inventories. The Spread response is the difference in the futures and spot responses. The red
band illustrates the 68% error band from the posterior distribution of the IRF’s.Obtained as
described in section 3, and in Appendix B. The 3mo Brent Oil Futures contract is replaced
with the 6mo contract.
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Figure A.13: Historical Decomposition: 6mo Brent Futures

Historical decomposition of the real spot price of brent oil from July 1991 to September 2020
showing the cumulative percentage change in spot price due to flow supply, flow demand,
inventory demand, and futures demand shocks, respectively. The 3mo Brent Oil Futures
contract is replaced with the 6mo contract.
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Figure A.14: Historical Decomposition-2008 Financial Crisis: 6mo Futures
Contract

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to flow demand and futures demand shocks, respectively, between
Jan. 2007 and Jan. 2009. The 3mo Brent Oil Futures contract is replaced with the 6mo
contract.
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Figure A.15: Structural IRFs: Jorda

Structural Impulse Response Functions showing the response of each variable to a one
standard deviation innovation to each structural shock. Responses are the cumulative
% change for production, real activity, and the spot price, and cumulative level change
for inventories. The Spread response is the difference in the futures and spot responses.
The red band illustrates the 68% error band from the posterior distribution of the IRF’s.
Obtained as described in section 3, and in Appendix B, using Jorda (2005) linear projection
methodology.
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Figure A.16: Historical Decomposition: Jorda

Historical decomposition of the real spot price of brent oil from July 1991 to September 2020
showing the cumulative percentage change in spot price due to flow supply, flow demand,
inventory demand, and futures demand shocks, respectively.

125



Figure A.17: Historical Decomposition-2008 Financial Crisis: Jorda

Historical decomposition of the real spot price of brent oil showing cumulative percentage
change in spot price due to flow demand and futures demand shocks, respectively, between
Jan. 2007 and Jan. 2009.
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Table A.1: Subperiod Forecast Error Variance Decomposition of the Real Spot
Price of Oil

Variance decomposition of the real spot price of oil reflecting the percentage of variation at
each monthly horizon attributable to each respective shock. Estimated using main model with
restrictions from Table 1 with 12 lags estimated over July 1990-Sept. 2020

Full Sample

Horizon Supply Demand Inven. Spec. Resid.

1 24.78 24.11 25.20 23.72 2.19
2 20.77 22.52 20.45 33.10 3.16
3 13.69 26.25 14.42 43.45 2.20
4 11.84 27.03 11.75 47.88 1.50
5 12.17 27.28 10.50 48.88 1.17
6 11.57 28.64 9.25 49.39 1.15
7 11.31 30.29 8.43 48.88 1.08
8 11.08 30.64 8.20 49.06 1.02
9 10.69 30.69 7.86 49.81 0.96
10 10.29 31.24 7.54 50.00 0.93
11 9.90 31.83 7.23 50.13 0.92
12 9.32 33.74 7.11 48.95 0.88
13 9.98 35.93 6.88 46.42 0.78
14 11.33 37.88 6.72 43.33 0.74
15 12.68 39.42 6.63 40.56 0.72

% of Explained 12.8% 39.7% 6.7% 40.8%

600 27.72 37.63 10.26 19.08 5.32

% of Explained 29.3% 39.7% 10.8% 20.1%
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Table A.2: Forecast Error Variance Decomposition: No narrative restrictions

Variance decomposition of the real spot price of oil reflecting the percentage of variation at each monthly
horizon attributable to each respective shock. Estimated using main model with restrictions from Table
1 with 24 lags estimated over July 1991-Sept 2020.

Horizon Supply Demand Inv. Spec. Resid.

1 24.07 36.62 10.30 28.82 0.19
2 20.31 30.51 8.88 40.14 0.16
3 15.44 21.85 7.53 53.96 1.22
4 13.24 16.66 6.96 60.18 2.97
5 12.77 13.70 7.02 62.18 4.33
6 11.14 11.82 7.27 61.69 8.07
7 9.91 10.44 7.15 61.35 11.15
8 9.38 9.81 7.27 62.25 11.29
9 9.21 9.39 7.55 62.58 11.28
10 9.41 9.17 8.05 61.68 11.69
11 9.93 8.81 8.36 60.15 12.75
12 10.34 8.70 8.43 58.15 14.38
13 10.06 9.01 9.79 55.57 15.58
14 9.46 8.93 11.46 52.75 17.40
15 8.77 8.91 12.55 49.31 20.46

% of Explained 11.03% 11.20% 15.78% 61.99%

600 9.21 20.66 4.1 6.78 59.24

% of Explained 16.20% 11.21% 26.29% 10.09%
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Table A.3: Forecast Error Variance Decomposition: 6month Brent Oil Futures Contract

Variance decomposition of the real spot price of oil reflecting the percentage of variation at each monthly
horizon attributable to each respective shock. Estimated using main model with restrictions from Table
1 with 24 lags estimated over July 1991-Sept 2020, and replacing the 3mo Brent Oil Futures contract
with the 6mo contract.

Horizon Supply Demand Inv. Spec. Resid.

1 4.49 35.58 9.46 30.70 19.76
2 3.91 31.89 8.27 38.49 17.45
3 4.63 27.21 8.51 45.71 13.95
4 5.92 22.90 9.89 48.94 12.35
5 7.80 19.88 11.02 49.68 11.61
6 7.35 17.86 12.34 48.31 14.14
7 6.78 16.81 13.59 46.95 15.86
8 6.42 16.18 13.16 47.67 16.59
9 6.17 16.15 12.68 47.72 17.29
10 6.02 16.24 12.24 46.70 18.79
11 6.07 15.93 11.77 45.19 21.04
12 6.16 16.23 11.35 43.04 23.23
13 5.78 17.19 10.68 40.52 25.83
14 5.63 17.36 10.22 38.03 28.76
15 5.51 17.52 10.25 35.17 31.54

% of Explained 8.05% 25.60% 14.97% 51.38%

600 9.13 16.96 12.42 6.31 55.18

% of Explained 20.38% 37.84% 27.70% 14.08%
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Table A.4: Forecast Error Variance Decomposition: Jorda

Variance decomposition of the real spot price of oil reflecting the percentage of variation at each monthly
horizon attributable to each respective shock. Estimated using main model with restrictions from Table
1 with 24 lags estimated over July 1991-Sept 2020, and IRFs calculated using Jorda (2005) linear
projection methodology.

Horizon Supply Demand Inv. Spec. Resid.

1 10.16 19.71 17.16 41.49 11.48
2 7.59 14.87 12.71 56.00 8.83
3 5.91 10.83 8.16 67.99 7.10
4 5.96 8.73 6.10 71.68 7.52
5 6.85 7.57 5.01 72.39 8.19
6 6.40 7.37 4.32 71.20 10.71
7 5.90 7.59 3.84 70.29 12.38
8 5.47 7.38 3.58 71.06 12.50
9 5.18 7.57 3.44 71.52 12.29
10 5.04 8.21 3.44 70.97 12.34
11 5.03 8.79 3.42 69.87 12.89
12 4.98 10.14 3.25 68.30 13.34
13 4.66 12.16 3.38 66.37 13.43
14 4.49 13.66 3.58 64.16 14.10
15 4.44 15.49 3.55 61.31 15.21

% of Explained 5.24% 18.27% 4.19% 72.31%

600 10.15 34.15 5.93 12.48 37.29

% of Explained 16.19% 54.45% 9.46% 19.90%
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Table A.5: Granger Causality Test of Futures Returns on DCOT Swap Dealer Oil
Futures Position Changes

This table presents the results of the bivariate causality test obtained by estimating the regression:

Rt = α+
m∑
i=1

γiRt−i +
n∑

j=1

βj∆Nett−j + ϵt

and then running a partial F-test on the restriction
∑n

j=1 βj = 0. Durbin-Watson (DW) statistic of
2 indicates no remaining serial correlation in returns in the unrestricted model. ∆Nett−j represents
the net weekly change in swap dealer positions in oil futures on week (t−j) from the CFTC’s DCOT
report, while Rt−i is the lagged oil futures return on week t − i. Sample period Jan. 31, 2012 to
Dec. 31, 2019.

Market m,n Estimate
∑
βj partial F p-value DW

Brent 4,2 1.428 0.62 0.63 2.01

WTI 4,2 3.256 0.965 0.43 2.01
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Table A.6: Average Coefficients for Deletions Event Study

This table reports the average coefficients and the standard error of the coefficient estimates across univariate regressions
and bivariate regressions for stock i. POST is a dummy variable equal to 1 if a return is in a 12 month window after stock
i is added to the S&P 500 index, and 0 if the return is in the 12 months window before stock i is added to the index.
SP500 and NonSP500 are the returns on the S&P 500 and those non-SP500 firms in the SP1500 excluding the influence
of stock i during the period it is within the respective index at time t. Standard errors are in parentheses.

Sample Period Univariate Bivariate

Constant −0.0011 −0.0017
(0.0002) (0.0002)

POST 0.0018 0.0014
(0.0004) (0.0004)

SP500 1.1951 0.4359
(0.0445) (0.0483)

SP5002 −2.8879 −7.9543
(0.9559) (1.7175)

POST × SP500 −0.0569 −0.5094
(0.0363) (0.0684)

POST × SP5002 −0.7735 1.6324
(1.7191) (4.4823)

NonSP500 1.1951 0.7097
(0.0445) (0.0532)

NonSP5002 −2.8879 4.3320
(0.9559) (1.5091)

POST ×NonSP500 −0.0569 0.4342
(0.0363) (0.0726)

POST ×NonSP5002 −0.7735 −1.4283
(1.7191) (3.3210)

Obs 215 215
R-Square 0.20 0.23

(0.0155) (0.0109)
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Table A.7: Pre vs Post S&P 500 deletion coskewness estimates

This table reports the average coskewness coefficients and across the univariate regressions of each individual stock against
the returns of S&P 500 and Non-S&P 500 stocks in Panel A:

Ri,t = αi + βi1indexjt + γi1index
2
jt + ϵit

and the bivariate regressions in Panel B:

Ri,t = αi + βi1SP500t + βi2NonSP500t + γi1SP500
2
t ++γi2NonSP500

2
t + ϵit

The regressions are run seperately on the pre-period including the 12 full calendar months before the month of deletion,
and the post-period including the full 12 calendar months after the month of deletion. Significance of the difference
estimates at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, and ∗∗∗, respectively. Standard errors are in parenthesis.

Univariate Regression

S&P500 Non-S&P500 Diff

Sample Period Obs γ1,pre γ1,post ∆γ1,sp γ1,pre γ1,post ∆γ1,nsp
∆γ1,sp −
∆γ1,nsp

1995-2017 215 −2.8879 −3.5396 −0.6517 −0.8361 −1.0137 −0.1776 −0.4741
(0.9552) (1.4437) (1.7354) (0.8366) (1.1302) (1.4625) (1.5927)

Bivariate Regression

S&P500 Non-S&P500 Diff
Sample Period Obs γ1,pre γ1,post ∆γ1 γ2,pre γ2,post ∆γ2 ∆γ1−∆γ2

1995-2017 215 −7.9543 −5.5407 2.4136 4.3320 2.6948 −1.6372 3.7856
(1.7175) (4.1603) (4.5893) (1.5091) (2.9102) (3.4006) (7.7781)
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Appendix B

Econometric Appendix

This appendix provides additional details on the estimation of my structural vector

autoregressive model, including a derivation of the relationship between the reduced form

estimates and the structural impulse response functions, the historical decomposition of oil

prices into its component structural shocks, and practical details on implementation and

model selection.

Computing Structural Impulse Response Functions

First, Rearranging equation 2.1 as follows:

yt = B−1
0 β0 +B−1

0

24∑
i=1

βiyt−i +B−1
0 ut (B.1)

allows us to equate equation 2.1 and 2.2, and see that the innovations in the reduced form

model ϵt actually represent a linear combination of all the contemporaneous structural

shocks in the system, such that ϵt = B−1
0 ut.

To compute structural impulse response functions, we can then rewrite equation B.1

using lag operator notation as1:

A(L)yt = α + ϵt, A(L) = In −
24∑
i=1

AiL
i (B.2)

Bringing A(L) to the RHS and substituting ϵt = B−1
0 ut allows us to rewrite this

as:

yt = A(1)−1B−1
o ut (B.3)

1The following assumes that yt is covariance stationary.
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Defining µ = A0 = A(1)−1α and ψ(L) = A(L)−1 then gives us:

yt = µ+ ψ(L)B−1
0 ut (B.4)

Finally, to recover the structural moving average representation we can expand

out the lag operator as:

yt = µ+
∞∑
k=0

ψkB
−1
0 ut−k (B.5)

And then define θk = ψkB
−1
0 :

yt = µ+
∞∑
k=0

θkut−k (B.6)

This form expresses the level of yt as the cumulative evolution of all responses

to past shocks. Here, the square matrices θk contain information on the effect of

each structural shock on each reduced form variable through time. To illustrate more

clearly, the matrix form for a simpler, 4 variable system, would be:



yQt

yRt

yPt

yIt


=



µQ

µR

µP

µI


+



θ011 θ012 θ013 θ014

θ021 θ022 θ023 θ024

θ031 θ032 θ033 θ034

θ041 θ042 θ043 θ044





u1t

u2t

u3t

u4t


+



θ111 θ112 θ113 θ114

θ121 θ122 θ123 θ124

θ131 θ132 θ133 θ134

θ141 θ142 θ143 θ144





u1,t−1

u2,t−1

u3,t−1

u4,t−1


+ ...

(B.7)

The elements θksj are scalars representing the effect of a given shock at time t−k to

uj on ys, and can be recovered from the reduced form coefficients Ai and errors ϵt and

the identified impact response matrix B−1
0 . The scalar time series (θ0sj, θ

1
sj, . . . ., θ

h
sj)
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defines the impulse response functions.2

Forecast Error Variance Decomposition

The contribution of shock j to the forecast error variance, or mean squared prediction

error, MSPEs(k) at horizon k for variable ys is decomposed as follows:

1 =
J∑

j=1

MSPEs
j (k)

MSPEs(k)
(B.8)

where

MSPEs
j (k) =

k−1∑
i=0

(θksj)
2 (B.9)

As an example, the ratio above will provide a percentage of forecast variance of

oil prices explained by supply, demand, inventory demand, futures demand shocks,

and residual shocks. The total contribution of all of these shocks sum to one.

Historical Decomposition

I also decompose the cumulative contribution of a shock uj to a variable ys as the

sum of the impacts of all past shock through time:

yjst =
t−1∑
i=1

θisjuj,t−i (B.10)

This allows me to highlight the important drivers of any variable throughout

different points in time. For example, Kilian and Murphy (2014) use this to highlight

flow demand shocks as being much more important in determining oil prices than

2In addition to the standard SVAR methodology described above, I also confirm the robustness
of all key results using IRF’s obtained following the linear projection methodology of Jorda (2005).
Results are in Appendix A, Tables A.15-A.17 and Figure A.4.
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flow supply and inventory demand shocks throughout recent history.

Implementation

To estimate my structural model, I use the restrictions outlined in section 3 to gen-

erate a set of allowable models, or allowable iterations of B−1
0 , from the set of all

models or B−1
0 that satisfy the reduced form estimates. In practice, the set of all

models is very large, so I limit myself to sampling a smaller set of the models which

satisfy the reduced form, and evaluate that set against the restrictions. As long as

the models are sampled randomly and a sufficient number are sampled, the collection

of allowable models is free from bias.

To randomly generate models which satisfy the reduced form estimates, I follow

the algorithm introduced by Rubio-Ramirez, Waggoner, and Zha (2010) and subse-

quently used by Kilian and Murphy (2014). The algorithm works as follows:

1. Decompose the reduced form variance-covariance matrix Σϵ = PΛP ′ and let

B−1
0 = PΛ0.5 so that B−1

0 B−1
0

′ = Σϵ

2. Randomly generate an NxN matrix K, where each element is generated from a

standard normal distribution

3. Apply QR decomposition to matrixK, resulting in a orthogonal rotation matrix

Q satisfying QQ′ = I

4. Generate B̃−1
0 = PΛ0.5Q.

5. The resulting B̃−1
0 B̃−1

0
′ = PΛ0.5QQ′Λ0.5′P ′ = PΛP ′ = Σϵ thus by randomly

generating Q using step 3 we can repeatedly generate new B̃−1
0 which satisfy

the initial reduced form model

6. Repeat steps 2-5 for each random draw of K

I use this algorithm with 800 million draws of the rotation matrix to obtain a
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large number of candidate models, and then check each model against sign, elasticity,

and narrative restrictions, keeping only those models which satisfy all credibility

conditions in the allowable set.

Inference

Since the model uses sign and elasticity restrictions for set identification instead of

exact identification, there are multiple models which are equally valid. Furthermore,

the structural parameters are recovered from the reduced form parameters, which are

point estimates, and are themselves uncertain. To make the analysis more robust, I

take a Bayesian approach to model selection, and create confidence bands for impulse

response functions.

I use the standard approach outlined in Inoue and Kilian (2013), and randomly

draw reduced form parameters Ai and Σϵ from their posterior distribution assuming

a Gaussian-inverse Wishart prior, and run them through the Rubio-Ramirez et al

(2010) algorithm to generate impulse response functions. I utilize 100 draws from the

posterior distribution, and 800,000 draws of the rotation matrix. I then follow a sim-

ilar approach as Kilian and Murphy (2014), and select the model which most closely

matches posterior median price elasticity of oil demand in use in response to supply

shocks and posterior median price elasticity of demand in use due to futures demand

shocks. Importantly, key results are highly robust to selection of other admissible

models. I also use the posterior distribution of impulse responses to generate error

bands for the point estimates of the impulse responses.
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