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Abstract

The intensification and consolidation of modern pig production is exposed to higher

risks of endemic or pandemic infections. The complexity of the polymicrobial challenge

and increasing concerns on antibiotics resistance make it pivotal to find an efficient way

of controlling infections besides using vaccines. Breeding for disease resilience

(maintaining productive performance during pathogen infections) could be a solution to

circumvent this problem. This study was focused on three types of biological information

in blood: serum acute phase proteins (APPs), whole blood transcriptome, and serum

metabolome, which were reported with the potential for disease diagnosis and livestock

production assessment. It is unknown whether they could be used to predict pig disease

resilience before exposure to pathogens. The feasibility was tested using those molecules

separately to identify biomarkers associated with disease resilience in a natural disease

challenge model which simulates the polymicrobial environments in commercial farms.

Identification of such biomarkers could help characterize disease resilience and provide a

theoretical guide for commercial pig breeding.

Plasma concentrations of alpha-1 acid glycoprotein (AGP), haptoglobin (HP), and

C-reactive protein (CRP) were determined in 60 pigs before and after challenge using

ELISA. The resilient pigs had a relatively low level of AGP in plasma before challenge.

The concentrations of HP and CRP, but not AGP, were induced dramatically upon

challenge in all the groups of pigs. Resilient pigs showed a slow response of both HP and

CRP at the early stage of the challenge but had a sharp increase of CRP at the later stage.

Correlation analysis between APPs and various performance traits suggested that they are
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more proper for assessing rather than predicting pig health and productivity under

challenge even though AGP concentration before challenge showed some trends to

correlate with productivity-related traits.

Fifty eight pigs were chosen from their phenotypes after challenge and the whole

blood transcriptome before challenge was determined by RNA-Seq. They were grouped

into 4 groups (Resistant, Resilient, Susceptible, and Early_dead) in response to the

natural disease challenge. Only two significant transcripts from the differential

expression (DE) analysis were found higher in the Susceptible group compared to the

others (q-value < 0.1). They were mapped to the IgC gene and the SLAMF9 gene,

respectively. A larger cohort of 209 pigs was utilized for validating the findings. Results

from both of the cohorts supported a hypothetical hierarchical model for the baseline

immunity: Resistant≧Resilient>Early_dead>Susceptible. The larger cohort with samples

post disease challenge revealed that all the pigs activated innate immune response early

after infection. Of note, the Resilient group exhibited a unique strategy of restricting the

potency and energy expenditure of the immune response, implying that the resilient pigs

maintain the productive performance under disease challenge via consuming less energy

from their immune system. However, the results suggest that it may not be feasible using

pre-challenge whole blood transcriptome to identify biomarkers for disease resilience in

the context of this study.

Plasma metabolomic profiles of 460 healthy pigs were determined by NMR

spectroscopy before the natural disease challenge, and the pigs were then divided into

four groups as in the RNA-Seq experiment, or groups defined by single or double trait

records. Succinate and dimethylglycine in unchallenged pigs were found with
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significantly higher concentrations in the Early_dead group compared to the others.

However, batch effect was found as the major causative factor for the metabolome

variations, and pyruvic acid was found as the only hit with significantly lower

concentration in the Early_dead group than the others. Machine learning was performed

to test whether an integrated metabolite profile could be used to predict the pig

phenotypes, but prediction accuracy was far from ideal. Together, a snapshot of the

plasma metabolome only provided a limited prediction value for pig resilience, probably

due to the prominent impact of the batch factor.

In summary, this thesis created a framework for investigating proxy traits to assess

or predict pig resilience, examined the viability of using various molecular information,

including APPs, transcriptome, and metabolome derived from peripheral blood to predict

pig disease resilience phenotype in a natural disease challenge model. Additionally, it

improved knowledge of potential molecular processes influencing how pigs differentially

respond to polymicrobial challenges, shedding light on how to use disease resilience as a

breeding objective to meet the rapidly expanding demand for healthy pork products.
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Chapter 1: Introduction
1.1 Overview of the pig industry and common disease

1.1.1 The global pig sector

Pork is one of the most popular and consumed types of livestock meat in the world.

Pig production is global except for some regions with cultural and religious reservations

regarding the consumption of pork. Global patterns of meat production have changed

over time since the 1960s (Figure 1.1). Pork production is constantly increasing as China,

the country with the largest population in the world, traditionally consumes pork as the

main type of meat. With the rapidly increasing demand for pork, the form of pork

production has gradually shifted from family farms to large corporations, China became

the largest pork-producing country after the 1970s and led to worldwide pork

consumption gradually surpassing beef (Figure 1.1) (Brown, 2012).

1.1.2 How pig production is impacted by disease

The economy of modern pig production farms is affected by numerous factors.

Some factors cannot be controlled by the farmers, such as market price fluctuations, and

strict policies regarding food safety and quality assurance (Agriculture and Agri-Food

Canada, AAFC). Nevertheless, many aspects can be controlled by the farmers’

https://paperpile.com/c/sp7FwR/e1Zb
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Figure 1.1World meat production of livestock from 1961-2020 (Ritchie et al., 2017).

https://paperpile.com/c/sp7FwR/ZWhc
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management strategy to improve productivity, such as disease control and treatment.

Currently, pig farming operations have been transformed into more intensive and

specialized industries to meet the requirement of efficient management and production

(Brisson, 2014). However, this economic scale will also lead to large-scale disease

outbreaks and potential infections. For example, by the Porcine Respiratory Disease

Complex (PRDC), which is caused by multi-factorial bacterial and viral pathogens

including Porcine Reproductive and Respiratory Syndrome virus (PRRSV), Swine

Influenza virus (SIV), and Mycoplasma hyopneumoniae among others (Martelli &

Segalés, 2021).

The occurrence of disease has a direct negative impact on the economy of pig farms.

For example, in 2005, the annual loss caused by PRRSV in the US was estimated at $561

million in the whole swine industry (Neumann et al., 2005). In 2013, these calculations

were updated when the current clinical effects of PRRSV, pig inventory, production

systems, and performance were taken into account, and the total annual loss due to

PRRSV in the US was increased to $664 million (X. Li et al., 2013). The direct negative

impacts caused by PRRSV outbreaks on pig farms consist of many components including

mortality, slow growth, abortion, etc. However, the most intuitive impact on consumers is

a sharp increase in pork market prices. For example, according to the information from

the US Department of Agriculture, the average price of Spiral ham was $3.08 in 2014

which increased by 17% from $2.63 in 2013 possibly induced by Listeria contamination.

Moreover, the outbreak of the Porcine Epidemic Diarrhea virus (PEDV) from 2013 to

2014 wiped out as many as seven million pigs in 32 states of the US and pushed the pork

price to a higher record although PEDV does not sicken humans or impact the food safety

https://paperpile.com/c/sp7FwR/s5HO
https://paperpile.com/c/sp7FwR/nqx4
https://paperpile.com/c/sp7FwR/nqx4
https://paperpile.com/c/sp7FwR/14r9
https://paperpile.com/c/sp7FwR/8UbZ
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of pork products (Schulz & Tonsor, 2015). While it may take some time to enhance the

treatment efficacy and cost of the commercial medications, strategies for prevention and

treatment of such viral infections are being explored, including vaccinations and antiviral

drugs (Kimman et al., 2009; Song & Park, 2012; Zuckermann et al., 2007). Given the fact

of exposure to multiple pathogens can be challenging for the swine industry, recent

studies were focused on characterizing a phenotype called “disease resilience”. Instead of

trying to reduce the infection rate and treat the infected pigs, it aims to minimize

economic loss by sustaining pigs' regular production performance per se when they are

confronted with those pathogens (Guy et al., 2012). This thesis tested the feasibility to

predict disease resilience phenotype using different types of biological information and

the detailed approaches are described in Chapter 2, 3, and 4.

1.1.3 Common pig pathogens

1.1.3.1 PRRSV

PRRSV is considered as a major pig pathogen with a worldwide distribution (Lunney

et al., 2016). It is a single-stranded RNA virus belonging to the Arteriviridae (Benfield et

al., 1992; Wensvoort et al., 1991). As indicated by its denomination, the pathogenesis of

PRRSV mainly involves respiratory disease in newborn and growing pigs while inducing

reproductive problems in pregnant sows, but this virus can cause a more complicated

disease when acting as a co-factor in PRDC (Lunney et al., 2016). Porcine reproductive

and respiratory syndrome (PRRS) caused by PRRSV has a very high economic impact on

the swine industry in North America by causing an increase in mortality, a decrease in

growth in growing pigs, and stillbirth and abortion in gestation sows (Zimmerman et al.,

https://paperpile.com/c/sp7FwR/dHJi
https://paperpile.com/c/sp7FwR/bmpR+SuaH+esAA
https://paperpile.com/c/sp7FwR/sarY
https://paperpile.com/c/sp7FwR/mNbl
https://paperpile.com/c/sp7FwR/mNbl
https://paperpile.com/c/sp7FwR/A3KD+nfuH
https://paperpile.com/c/sp7FwR/A3KD+nfuH
https://paperpile.com/c/sp7FwR/mNbl
https://paperpile.com/c/sp7FwR/tUGK
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1997). PRRS could reduce the pig's productive performance (e.g. growth rate) by not

only reducing the average daily intake but also the digestibility, feed efficiency, and

protein accretion rates in grower-finisher pigs (Schweer et al., 2017). There was evidence

that the reduced productive performance caused by PRRSV is various concerning the

interplay of the virus with the immune system of the hosts with different genetic

backgrounds (Boddicker et al., 2012). The vaccination of sows for PRRSV was effective

in improving reproductive performance in endemic PRRS farms (Jeong et al., 2017).

However, the vaccination of growing pigs did not confer complete protection against the

disease induced by the virus and failed to improve the poor productive performance of

the infected pigs (Savard et al., 2016). The rapid mutation and evolution of the PRRSV

genome, and the immune evasion mechanisms developed by the virus, make it difficult to

confer complete protection of the pigs by vaccination (Kimman et al., 2009).

1.1.3.2 Porcine Circovirus Type 2 viruses (PCV2)

In the late 1990s, PCV2 was first isolated from the pigs affected by the Postweaning

Multisystemic Wasting Syndrome (PMWS) and it was antigenically and genetically

distinct from the non-pathogenic Porcine Circovirus Type 1 virus (PCV1) (Allan et al.,

1998). The main infection site of PCV2 is lymphoid tissues and this causes lymphoid

depletion and immunosuppression of the infected pigs (Meng, 2013). PCV2 has also been

associated with PRDC and its impact is probably leading to the occurrence of PCV2-

systemic disease (PCV2-SD) which is a multifactorial disease caused by the PCV2

infection (Ticó et al., 2013). Transmission of PCV2 may happen by direct contact with

the infected pigs and the infection by PCV2 may persist in swine for several months

https://paperpile.com/c/sp7FwR/tUGK
https://paperpile.com/c/sp7FwR/xWfC
https://paperpile.com/c/sp7FwR/H45H
https://paperpile.com/c/sp7FwR/eD7q
https://paperpile.com/c/sp7FwR/h4I7
https://paperpile.com/c/sp7FwR/esAA
https://paperpile.com/c/sp7FwR/4uM2
https://paperpile.com/c/sp7FwR/4uM2
https://paperpile.com/c/sp7FwR/KAY0
https://paperpile.com/c/sp7FwR/BA2n
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under either experimental or field conditions (Opriessnig et al., 2004). PCV2 could cause

overt weight loss, late-term abortions, and stillbirths in pigs, and the infected pig is easy

to diagnose from a clinical point of view by checking for lesions of lymph nodes, thymus,

lung, and liver (Segalés, 2012). The most widely used control measures for PCV2 include

vaccination, using antibiotics to prevent concurrent bacterial infections, improvement of

biosecurity and sanitation, isolating affected pigs and disinfecting the pens after every use,

decreasing stressors (e.g. high stocking density, inadequate ventilation, inadequate

temperature control), and control of concomitant viral infections, especially PRRS. Other

prevention and control measures used on young pigs before the anticipated onset of the

disease include injection of vitamins and vaccination against common pathogens (Grau-

Roma et al., 2011). Some evidence supported that different breeds of pigs showed

differential susceptibility and disease severity in responding to PCV2, which implies the

genetic background may influence the pathogenesis of this virus (Allan et al., 1998).

1.1.3.3Mycoplasma hyopneumoniae (Mhyo)

Mycoplasma hyopneumoniae typically shortened to “Mhyo” is a species of bacteria

known to cause porcine enzootic pneumonia which is a highly contagious and chronic

disease (Robinson, 1966) and could cause a significant reduction in the growing weight

of pigs (Maes et al., 2021). Mhyo is also known as a major pathogen involved in PRDC

(Holko et al., 2004). Mhyo attaches to the cilia of epithelial cells in the lungs of swine,

which lead to the stop of beating, clumping, and even the loss of cilia, and eventually the

death of epithelial cells. Lesions can be found in the lungs of pigs with porcine enzootic

pneumonia (Desrosiers, 2001). This damage may increase the susceptibility of the

https://paperpile.com/c/sp7FwR/067T
https://paperpile.com/c/sp7FwR/MYmS
https://paperpile.com/c/sp7FwR/PGCQ
https://paperpile.com/c/sp7FwR/PGCQ
https://paperpile.com/c/sp7FwR/4uM2
https://paperpile.com/c/sp7FwR/62xv
https://paperpile.com/c/sp7FwR/5O9w
https://paperpile.com/c/sp7FwR/qALh
https://paperpile.com/c/sp7FwR/9NgK
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secondary infection in the respiratory system, by pathogens such as the Swine Influenza

Virus (SIV) (Thacker et al., 2001). The treatment of porcine pneumonia is limited to

antibiotics, but the efficacy is not sufficient to completely remove the infection. Vaccines

have been found to reduce the severity of the disease but could not prevent the disease

development in infected pigs (Maes et al., 2008).

1.1.3.4 Swine Influenza Virus (SIV)

Swine influenza (also known as “swine flu”) is an acute, highly contagious,

respiratory disease that results from the infection of SIV (Kothalawala et al., 2006). The

classic type A infection of SIV isolates with mild virulence may favor the replication of

Haemophilus parasuis (Mussá et al., 2012), Actinobacillus pleuropneumoniae (Tobias et

al., 2009), and Mhyo (Desrosiers, 2001), any of which may complicate the SIV outbreak.

In winter, it has been reported that low relative humidity produced by indoor heating and

cold temperatures would favor influenza virus spread (Lowen et al., 2007). Thus, in

North America, SIV outbreaks are most common in fall or winter and usually start from

the onset of particularly cold weather. An outbreak typically starts with one or two

individual cases and then spreads rapidly within a herd, mainly through aerosolization

and pig-to-pig contact (Tellier, 2009). The clinical symptoms of SIV infection contain

depression, fever (to 108°F [42°C]), anorexia, coughing, dyspnea, weakness, prostration,

and a mucous discharge from the eyes and nose (Vincent et al., 2008). Vaccination and

strict control of the pathogen could effectively prevent influenza outbreaks. Besides,

antimicrobials may reduce secondary bacterial infections and expectorants may help

relieve symptoms in severely affected herds (Parmar et al., 2011). Cross infection of SIV

https://paperpile.com/c/sp7FwR/fGmn
https://paperpile.com/c/sp7FwR/Pzku
https://paperpile.com/c/sp7FwR/ScYp
https://paperpile.com/c/sp7FwR/86Ac
https://paperpile.com/c/sp7FwR/pq4D
https://paperpile.com/c/sp7FwR/pq4D
https://paperpile.com/c/sp7FwR/9NgK
https://paperpile.com/c/sp7FwR/NrSO
https://paperpile.com/c/sp7FwR/89jj
https://paperpile.com/c/sp7FwR/PQ4j
https://paperpile.com/c/sp7FwR/aC9j
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is known to happen between pigs and humans and the response in most healthy people

are mild or sub-clinical, but genetic reassortment of the virus in the hosts may generate

novel strains that bring potential risk to human health and the pig industry (Krueger &

Gray, 2012). Nevertheless, the name of “swine flu” and the concerns on zoonosis have

changed people’s perception on pork and may reduce pork consumption (Goodwin et al.,

2009; Johnson, 2009).

1.1.3.5 Actinobacillus pleuropneumoniae (App)

Actinobacillus pleuropneumoniae or App is a Gram-negative, facultatively anaerobic,

respiratory pathogen found in pigs and causes pleuropneumoniae, a severe and

contagious respiratory disease (Cruijsen, 1995), which could bring big economic losses to

the swine industries in most countries. To date, 16 serotypes of App have been identified

based on the capsular polysaccharide composition (Bossé et al., 2017). Transmission of

App is mainly by nose-to-nose contact while the aerosol transmission is limited, and

many recovered pigs are carriers (Tobias, 2014). The clinical symptoms found in infected

herds include severe respiratory distress, thumps, fever, anorexia, reluctance to move, and

sometimes open-mouth breathing with a blood-stained, frothy nasal and oral discharge. It

is common for App that concurrent infection happens with mycoplasma (Caruso & Ross,

1990), pasteurellae (Pohl et al., 1983), PRRSV (Pol et al., 1997), or SIV (Mussá et al.,

2012). Although some vaccines showed promising effects on reducing clinical symptoms,

the control of the App is still difficult. Pigs are not fully protected from infection and

transmission after vaccination and survivors are frequently remaining to be carriers

(Ramjeet et al., 2008). Management strategies including segregated early weaning, “all-

https://paperpile.com/c/sp7FwR/Sz3X
https://paperpile.com/c/sp7FwR/Sz3X
https://paperpile.com/c/sp7FwR/gDfs+51cp/?suffix=2009,
https://paperpile.com/c/sp7FwR/gDfs+51cp/?suffix=2009,
https://paperpile.com/c/sp7FwR/BOG1
https://paperpile.com/c/sp7FwR/KjUL
https://paperpile.com/c/sp7FwR/EYUX
https://paperpile.com/c/sp7FwR/DVvA
https://paperpile.com/c/sp7FwR/DVvA
https://paperpile.com/c/sp7FwR/2lZp
https://paperpile.com/c/sp7FwR/r5lm
https://paperpile.com/c/sp7FwR/86Ac
https://paperpile.com/c/sp7FwR/86Ac
https://paperpile.com/c/sp7FwR/CxvE
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in/all-out” management, reduced stocking rates when possible, and improved ventilation

are recommended. The isolation of App from the upper respiratory tract can be useful for

the detection of carrier pigs and complements serological screening (Sidibé et al., 1993).

Future prevention strategies may be more focused on screening genetic markers in pigs

that are associated with resistance to App (Sassu et al., 2018).

1.1.4 Rationale for a multiple-pathogen challenge study

The goal of agricultural production, which includes the pig sector, is to feed

everyone on the planet, and demand for pork, both in terms of quantity and quality, is

steadily rising. Antibiotic resistance and swine disease outbreaks, however, restrict the

growth of pig production and raise consumer concerns about the safety of their food. The

overuse of antibiotics in disease control or prophylaxis increases the global emergence of

antibiotic-resistant bacteria and the problems of residues in animal products (Koch et al.,

2017; Nisha, 2008). The extensive use of antibiotics in pig farms dramatically increased

the selection pressure for resistant genes in bacterial pathogens, leading to more frequent

spread of antibiotic-resistant bacteria while limiting the efficacy of antibiotics in

combating disease outbreaks. This has become an One Health issue and should be tackled

carefully to prevent uncontrollable infections in swine industry and lower the risk for

evolution of strains pathogenic to humans (Monger et al., 2021). Meanwhile, the

increasing scale of swine farming makes management more challenging. In intensive pig

production, a series of measures are used to protect the health of pigs exemplified by

modifications of herd environment and population management. It worth noting that

despite of reducing the impact of some swine infections (e.g. Trichinella, Toxoplasma,

https://paperpile.com/c/sp7FwR/1y2P
https://paperpile.com/c/sp7FwR/b0oj
https://paperpile.com/c/sp7FwR/Llks+3RSc
https://paperpile.com/c/sp7FwR/Llks+3RSc
https://paperpile.com/c/sp7FwR/VfzQ
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Sarcoptic mange) by these strategies, there might be negative effect on the prevention of

some other diseases (e.g. PRRS, Influenza, PCV2 disease) (Davies, 2012).

Considering the diverse pathogen interactions and secondary infection described

above, infections in pigs are commonly complicated and the interplay of pathogens may

drive novel disease spread (new hosts and geographic distribution) and genetic mutations

of pathogens (Engering et al., 2013). Thus, the strategies of disease control in modern pig

farms should not only focus on the main infectious pathogen but also build interventions

against multiple pathogens that tend to be cross-infected exemplified by the well-known

multi-microorganisms (polygenic) disease PRDC as introduced above. However, it is

practically difficult to monitor multiple types of pathogens in farms and it seems

impossible to select pigs with resistance to multiple pathogens because of their

differential pathogenesis mechanisms. How to reduce the impact of diverse pathogens on

swine farming has become a new direction to increase production efficiency. Indeed, in

addition to the selecting traits associated with productivity, the worldwide pig breeding

objective has extended to also focus on pig robustness in the context of the burden from

multiple pathogens and complicated environmental factors (Hermesch et al., 2015). The

definition of resilience was introduced to describe the feature of robust pigs which exhibit

the potential to maintain reasonable productivity under the challenge of infections

(Albers et al., 1987; Knap, 2005). Therefore, to better assess the traits that represent

resilience, multiple infection patterns need to be sorted and designed in the common

disease study.

https://paperpile.com/c/sp7FwR/7yVv
https://paperpile.com/c/sp7FwR/4SIx
https://paperpile.com/c/sp7FwR/9eL0
https://paperpile.com/c/sp7FwR/uWcj+FMnR
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1.2 Pig disease study and experimental models

1.2.1 Commonly-used control and treatment of pig disease

Livestock diseases have big impacts on various aspects of livestock production

including reduced productivity, economic loss, the uncertainty of food security, and

concerns about animal welfare and human health (Reddy, 2015). Myers has

systematically summarized and discussed the important aspects of swine diseases

concerning disease recognition, prevention, and control, and the two key components for

the management of swine disease are: 1) prevention of disease prior to pig arrival and 2)

treatment for sick pigs (White, 2005). Pig care prior to pig arrival which includes barn set

up (clean, disinfected, dry, and warm) and health plan (vaccination and

feed/water/injectable medication) are extremely important. After the pigs’ arrival, it is

recommended to sort and settle down the pigs by size, particularly the 2~5% of the

smallest pigs. It is important to leave space for special treatment of pigs and it is

necessary to move and isolate the sick pigs to specific pens or barns from the healthy pigs.

To handle sick pigs more effectively, a pig-marking system needs to be put in place.

Different symptoms and sick time should be documented and identified. The sick pigs

should then receive targeted medical care, which should also be marked and recorded.

Additionally, sick pigs require extra nourishment and a temperature-controlled

environment. (e.g extra warmth for pigs with fever). Besides, an all-in-all-out production

system could be applied during the treatment and vaccination to prevent contaminating

the next batch (Davies, 2012).

Scientific farm management can largely control infections and reduce the risk of

https://paperpile.com/c/sp7FwR/5lVR
https://paperpile.com/c/sp7FwR/XSIo
https://paperpile.com/c/sp7FwR/7yVv
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disease outbreaks. However, the clinical symptoms of a specific disease could be affected

by not only the genetic viability of the pathogens themselves but also significantly

influenced by the farm management characteristics (Goldberg et al., 2000). On one hand,

combining the progress of studies on pig pathogens’ virulence and evolution and the

development of drugs and vaccines, it would be helpful to standardize the management

protocol of pig farms to efficiently control infections. On the other hand, studies

regarding the genetic level of pigs such as the genetic (or gene) editing of pigs

(Whitworth et al., 2016) and genetic selection (Henryon et al., 2001) with specific disease

resistance are undoubtedly beneficial for the control of pig diseases.

1.2.2 Swine immune system and disease response

1.2.2.1 Immune responses

The immune system in mammals has developed to protect them from a variety of

pathogenic microbes in the surrounding environment that can disrupt host homeostasis

(Chaplin, 2010). As with other mammals, the immune system of pigs can recognize the

invasion of external pathogens and induce immune responses by the combination of

innate and acquired immune responses. Once the pathogen invades pigs through the

respiratory tract, esophagus, or wound, it would initially induce the innate immune

response, which mainly includes but is not limited to the tissue physical barriers, the

activation of the innate immune cells, and extracellular functional molecules (e.g.

cytokines, chemokines, the complement system, and antimicrobial peptides) (Knap,

2005). The acquired immune response is induced later than the innate immune response

through the process of recognizing and presenting the pathogen-derived antigen to

https://paperpile.com/c/sp7FwR/fwIm
https://paperpile.com/c/sp7FwR/sNL3
https://paperpile.com/c/sp7FwR/a31c
https://paperpile.com/c/sp7FwR/3igN
https://paperpile.com/c/sp7FwR/FMnR
https://paperpile.com/c/sp7FwR/FMnR
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lymphocytes (Luster, 2002). The innate and acquired immune responses are strongly

connected by the broad interplays between the innate and adaptive immune cells.

Innate immunity is the first line to recognize and defend against invading pathogens.

The innate immune response is not specific to pathogen types and it is essential to

effectively activate the acquired immunity. The innate immune response is based on rapid

and short-term activation of tissue cells (epithelial cells and resident tissue cells), early

production of pro-inflammatory cytokines, and recruitment and activation of innate

immune cells (macrophages, natural killer (NK) cells, dendritic cells, etc.). Moreover,

besides cellular innate immunity, some soluble plasma components, such as complement,

antibodies, APPs, and antimicrobial peptides, play crucial roles in mediating humoral

innate immune responses (Mair et al., 2014).

Acquired or specific immunity is divided into humoral immunity and cell-mediated

immunity and is characterized by specific responses to particular antigens. As with innate

immunity, acquired immunity can also distinguish what the "self" is from the "non-self"

(foreign antigen) and which is tolerated, and which must be eliminated (Knap, 2005).

However, the latter takes a longer time for selective activation and expansion of the

adaptive immune cells that can recognize the specific pathogens, and thus are responding

more slowly but more potently and effectively than the innate immunity. Furthermore,

the effect of adaptive immunity lasts longer than innate immunity since partial antigen-

specific adaptive immune cells have "memorized" the antigen after the first exposure

(primary immune activation) and differentiated into long-lived memory cells. Those cells

persist in the bloodstream and can respond with the same antigen subsequently with

greater efficacy and rapidity (secondary immune activation) (Taylor et al., 2012).

https://paperpile.com/c/sp7FwR/gGtQ
https://paperpile.com/c/sp7FwR/9w2v
https://paperpile.com/c/sp7FwR/FMnR
https://paperpile.com/c/sp7FwR/avx5
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1.2.2.2 Immune cells

The response to pathogens is mediated by the complex interactions and activities of

a large number of different cell types involved in the immune response. Leukocytes,

frequently referred to as white blood cells, are one of the most crucial cell types involved.

They come in two main types that work together to identify and remove pathogens.

Those two basic types of leukocytes are phagocytes, which can engulf and destroy

invading cells, and lymphocytes, which can mediate cellular and humoral immune

responses against the invaders to recognize and clear them (Panawala, 2017).

Many different cells are thought to be phagocytes including macrophages,

monocytes, neutrophils, dendritic cells, and mast cells. One common type is neutrophils,

which phagocytose and destroys pathogens that are opsonized by the complement system.

The number of blood neutrophils increases usually as a result of bacterial infection

(Koenderman et al., 2014). Other types of phagocytes may use different mechanisms to

ensure that the body responds appropriately to certain types of invaders. Macrophages are

tissue-resident phagocytes and differentiate from blood monocytes. They are recruited to

the site of infection and are able to phagocytose the opsonized pathogens and apoptotic

infected cells, and produce cytokines that modulate the whole innate immune response.

Macrophages are also important effector cells of cellular immunity that function as

antigen-presenting cells (APC) (also dendritic cells) and initiate acquired immune

responses (Parkin & Cohen, 2001).

The two main types of lymphocytes are B cells and T cells. The development of

lymphocytes takes place in the bone marrow, where they remain to develop into B cells,

https://paperpile.com/c/sp7FwR/bESM
https://paperpile.com/c/sp7FwR/fm3K
https://paperpile.com/c/sp7FwR/jmn1
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or they move to the thymus to develop into T cells. B cells and T cells have different

functions, and they are the main effector cells in the humoral and cellular immune

response, respectively. B cells are stimulated through the surface antigen-specific

receptor (B cell receptor) and differentiated into plasma cells which are responsible for

producing specific antibodies. T cells are also activated through the surface antigen-

specific receptor (T cell receptor) while this process requires antigen presentation from

APCs. T cells are mainly classified into T helper cells and T cytotoxic cells dependent on

their surface molecules and primary functions. T helper cells play the central role in

mediating the activation and resolution of the humoral and cellular immune response

while T cytotoxic cells are killer cells that directly mediate the cellular immune response

to the infected cells. Both the T and B cells can form memory cells to maintain a long-

term specific immunity. NK cells are important innate lymphocytes and primarily

recognize and kill the cells infected by an intracellular pathogen (e.g. virus) that reduces

the major histocompatibility complex I (MHCI) expression or up-regulates stress

molecules on the surface of the target cells. They also participate in specific cellular

immunity through a process mediated by the antibody Fc receptors called antibody-

dependent cellular cytotoxicity (Gerner et al., 2009; Henryon et al., 2001; Whitworth et

al., 2016).

1.2.2.3 Acute phase response and proteins

Acute phase response (APR) is an important part of the host's early defense in the

innate immune system. APR induces a series of complex systemic reactions that help

eliminate infections, restore homeostasis and promote healing in the host under different

https://paperpile.com/c/sp7FwR/sNL3+a31c+9FZM
https://paperpile.com/c/sp7FwR/sNL3+a31c+9FZM
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situations including trauma, infection, stress, tumor formation, and inflammation. APR is

widely distributed across all mammals and its counterpart can also be found in

invertebrates but is more robust potentially to better adapt with a less-potent adaptive

immune system. APR can be triggered by numerous pro-inflammatory cytokines

generated in an innate immune response (Cray et al., 2009).

APPs are blood proteins synthesized mainly by liver cells and are characterized by

the immediate and rapid change of their serum concentrations during the APR. In pigs,

the inflammatory response from the pathogen infection leads to the release of acute phase

proteins from liver hepatocytes into the circulation (González-Ramón et al., 2000). It has

been shown that APP secretion is mediated by the pro-inflammatory cytokines including

interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)

(Baumann & Gauldie, 1990). APPs are classified as positive (increase) and negative

(decrease) based on their concentration change in response to the pro-inflammatory

cytokines in APR (Jain et al., 2011). Most APPs are known as positive APPs and

depending on the fold change when facing the challenge, they are categorized as major

(10-100 fold), moderate (2-10 fold), or minor (slight change) APPs (Ceron et al., 2005).

However, the pattern and classification of a specific APP are various in different species

(Murata et al., 2004).

APPs are the contributors to the APR to limit infections and maintain host

homeostasis in an antigen-non-specific manner (Gerner et al., 2009). APPs play various

roles in the innate immune response. For example, haptoglobin (HP) binds free

hemoglobin in the circulation and facilitates the hemoglobin endocytosis by macrophages

to protect from the toxicity of hemoglobin during intravascular hemolysis (Nielsen &

https://paperpile.com/c/sp7FwR/pma2
https://paperpile.com/c/sp7FwR/Wu2i
https://paperpile.com/c/sp7FwR/E7dP
https://paperpile.com/c/sp7FwR/plei
https://paperpile.com/c/sp7FwR/rTmT
https://paperpile.com/c/sp7FwR/C97y
https://paperpile.com/c/sp7FwR/9FZM
https://paperpile.com/c/sp7FwR/4qAq
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Moestrup, 2009); while the AGP works as a carrier of basic and neutrally charged

lipophilic compounds, and is implicated to play immune-modulatory or anti-

inflammatory roles (Taguchi, 2013). Most APPs are regarded as non-specific responders

in APR under different inflammatory conditions. However, some APPs appear to be

associated with specific types of pathogens. For example, the increased level of serum

haptoglobin but not AGP was observed after an experimental PRRS virus challenge (Asai

et al., 1999).

Although research on animal serum proteins was carried out in studies in the mid-

20th century, the broad use of APPs in veterinary medicine was not reported until the

early 1990s (Gerner et al., 2009). From then to nowadays, APPs are regarded as useful

biomarkers in disease diagnosis with their features of dramatic and rapid change after

infection or inflammation since APR happens at the relatively early stage of the immune

response. For instance, in pigs, the increased serum level of AGP was associated with

some infectious diseases including pneumonia or meningitis (Itoh et al., 1993). APPs

including HP, CRP, Pig-Major Acute Phase Protein (Pig-MAP), and Serum Amyloid A

(SAA) were strongly elevated in pigs challenged with acute infection of Actinobacillus

pleuropneumoniae under experimental condition (Heegaard et al., 1998). Transthyretin

and transferrin in serum were found as negative APPs in responding to Streptococcus suis

infection (Campbell et al., 2005) and acute experimental salmonellosis (Kramer et al.,

1985), respectively, and may be developed as markers to monitor those infections.

Summarized positive and negative APPs classified by induction level are listed in Table 1.

In dogs, CRP, HP, and SAA are regarded as important diagnostic markers of steroid-

responsive meningitis-arteritis (Lowrie et al., 2009). AGP was identified as a biomarker

https://paperpile.com/c/sp7FwR/4qAq
https://paperpile.com/c/sp7FwR/I5Zp
https://paperpile.com/c/sp7FwR/wcCK
https://paperpile.com/c/sp7FwR/wcCK
https://paperpile.com/c/sp7FwR/9FZM
https://paperpile.com/c/sp7FwR/CaKp
https://paperpile.com/c/sp7FwR/nndJ
https://paperpile.com/c/sp7FwR/vvY2
https://paperpile.com/c/sp7FwR/m1i3
https://paperpile.com/c/sp7FwR/m1i3
https://paperpile.com/c/sp7FwR/Fun3
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for feline infectious peritonitis (Duthie et al., 1997) and potentially for lymphoma

(Winkel et al., 2015) in cats. For ruminants such as cattle, HP is known as a major

responding APP in the APR and is broadly applied to diagnose and predict the

development of many inflammatory diseases including mastitis (Gultiken et al., 2012),

enteritis, peritonitis, pneumonia, and endometritis (Eckersall & Bell, 2010). In dairy cows

and sheep, a mammary-associated SAA3 isoform that can be produced by the infected

mammary gland and secreted to milk during mastitis, making it a potential biomarker for

this economically important disease (Campbell et al., 2005).

APPs are not only an early systemic sign of animal disease but also can indicate the

health status of animals. For example, HP is considered a promising marker of the herd

health status of pigs because researchers found that the pigs with a high concentration of

HP at the sub-clinical stage later showed some clinical signs of disease (e.g. depression or

gauntness, respiratory difficulties, and inflammatory lesions) (Chen et al., 2003; Harding

et al., 1997). Besides, the increased serum level of CRP is widely used to identify

inflammatory lesions in pigs (Eckersall et al., 1996) and is also used to assess the general

health status (Bürger et al., 1998). The levels of HP and SAA were found to be much

higher in dairy cows with acute disease compared to the healthy ones (Tourlomoussis et

al., 2004). Furthermore, APPs can also be used as an index to assess productive

performance. It has been reported that HP was negatively correlated with the growth rate

of pigs (Hiss & Sauerwein, 2003) and different plasma AGP levels have been discovered

among different pig lines (Clapperton et al., 2005) and breeds (Clapperton et al., 2007).

In recent years, experimental veterinary medicine has become more interested in

using APPs to assess animal health. Regarding animal models of diseases, animal health

https://paperpile.com/c/sp7FwR/v7O6
https://paperpile.com/c/sp7FwR/AxqB
https://paperpile.com/c/sp7FwR/ktey
https://paperpile.com/c/sp7FwR/9CYX
https://paperpile.com/c/sp7FwR/vvY2
https://paperpile.com/c/sp7FwR/4nnH+fkNC
https://paperpile.com/c/sp7FwR/4nnH+fkNC
https://paperpile.com/c/sp7FwR/xNlE
https://paperpile.com/c/sp7FwR/zXDH
https://paperpile.com/c/sp7FwR/CF9R
https://paperpile.com/c/sp7FwR/CF9R
https://paperpile.com/c/sp7FwR/47Bo
https://paperpile.com/c/sp7FwR/0LJd
https://paperpile.com/c/sp7FwR/3Hhm
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monitoring, and objective evaluation of animal health, the benefits of employing APP

detection are extensively supported in the human and veterinary medical literature.

Unfortunately, due to the actual limitations of the current detection technology, the

clinical application of APP analysis is not universal. Ongoing challenges include the need

for automated analysis and standardization of testing across laboratories.

Moreover, using APP as diagnostic and prognostic tools should be cautious and

needs consideration of the potential effects of the environment, handling process, and

other types of stress besides the diseases of interest. Continuous research aiming to

understand the exact role played by APPs in disease pathophysiology and during the

innate immune response to infections will accelerate and extend the applications of APPs

to benefit the health, welfare, and production of animals (Cray et al., 2009; Jain et al.,

2011; Murata et al., 2004). Therefore, APPs are promising potential biomarkers that

could be exploited in pig production to predict or assess pig disease response.

https://paperpile.com/c/sp7FwR/plei+C97y+pma2
https://paperpile.com/c/sp7FwR/plei+C97y+pma2
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Table 1.1 Summary of classified APPs in pigs (Carpintero et al., 2005; Eckersall et al.,
1996; Heegaard et al., 2013; Lampreave et al., 1994; Pomorska-Mól et al., 2013;
Skovgaard et al., 2009; Sorensen et al., 2006).

Positive APP Negative APP

Major (> 10-fold change) CRP, SAA ?

Moderate (2-10 fold change) HP, Pig-MAP
Albumin, Apolipoprotein,

Fetuin

Minor (<2 fold change)
Ceruloplasmin,

Transthyretin
AGP, Transferrin

https://paperpile.com/c/sp7FwR/MP3j+ARiS+xNlE+J6dZ+k5Bs+6LOL+oWTi
https://paperpile.com/c/sp7FwR/MP3j+ARiS+xNlE+J6dZ+k5Bs+6LOL+oWTi
https://paperpile.com/c/sp7FwR/MP3j+ARiS+xNlE+J6dZ+k5Bs+6LOL+oWTi
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1.2.3 Methods of pig disease study

Numerous studies on pig diseases are being conducted with the goal of improving

animal welfare and addressing the direct and indirect financial losses brought on by

diseases. These studies examine the pathophysiology and etiology of the diseases, as well

as their diagnosis and treatment options. Below is a basic introduction to current research

methodologies (together with their benefits and drawbacks).

1.2.3.1 Animal model

The first step in designing an experiment for disease research is to select an

appropriate animal model in line with the objectives of the study. The animal model of

pig disease research is mainly divided into three groups relating to different stages of pig

production: pregnant sows, weaned piglets (21-23 days old), and growing/finishing pigs.

Pregnant sows are mainly used to detect diseases that impact reproduction traits

(Papatsiros et al., 2006), including but not limited to days of pregnancy, birth weight, and

the number of stillbirths (Alexopoulos et al., 2005). The weaning period for modern pig

production is crucial. Pigs in this period are undergoing stress and adaptation to the

stressors including environment and diet change which may cause low or variable growth

rates and increased risk of infection by enteric pathogens (King et al., n.d.). The status of

the weaned pigs is subsequently influenced by daily feed intake and weight gain, and

especially by health status (Fano et al., 2007; Magar et al., 2000). The growing/finishing

pigs are the top priority for the intuitive observation of how the disease affected the pig

production (de Lange et al., 2001; Donovan, 2005). The performance of the pig during

the growing-finishing period has a significant impact on farm efficiency and profitability

https://paperpile.com/c/sp7FwR/hH6S
https://paperpile.com/c/sp7FwR/uktT
https://paperpile.com/c/sp7FwR/F0vT
https://paperpile.com/c/sp7FwR/Pj8d+OrBA
https://paperpile.com/c/sp7FwR/ZQ60+b0M5
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but they are at the risk to be infected or co-infected by some respiratory or digestive

pathogens including but not limited to PRRSV, PCV2, SIV, and Mhyo which were

introduced above (Fablet et al., 2018). Moreover, considering the complicated

environmental factors in swine herds, most experiments are often conducted under clean

and sterile or specific-pathogen-free (SPF) conditions to avoid the influence of

environmental factors on experimental results (Alexopoulos et al., 2005). Thus, animal

models should be carefully designed with well-considering the research questions and

experimental subjects.

1.2.3.2 Infection method

To study the host response to a specific pathogen associated with infectious disease,

researchers usually intentionally apply the infection (or pathogen challenge) to the animal

model. There are different choices to introduce pathogen effects to experimental subjects

depending on the purpose of the experiment, animal welfare, and pathogen characteristics.

Firstly, based on the impact on animal health, infection methods can be initially divided

into two categories: denatured and live pathogen infections. Introducing denatured

pathogens can elicit a degree of host immune response and form antigen-specific memory

cells. However, this method only has a slight impact on pig health because of the use of

attenuated or inactivated pathogens so it is hard to study the clinical symptoms of a

particular infectious disease (Fachinger et al., 2008). Genetic material cloned from

infectious pathogens and live pathogens can lead to both the apparent clinical symptom

for susceptible pigs and immune response (Fenaux et al., 2002; Shimizu et al., 1996).

There are different approaches to introducing the pathogen of interest to the host that

https://paperpile.com/c/sp7FwR/CAPf
https://paperpile.com/c/sp7FwR/uktT
https://paperpile.com/c/sp7FwR/7Z39
https://paperpile.com/c/sp7FwR/rXb5+Plk7
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requires careful consideration to avoid inducing potential adverse effects on the animal

model. The oral route is an economical and convenient way to directly introduce

infectious agents from the mouth or premixed into the diet. Lalla et.al inoculated a

periodontal pathogen to a mouse model by gavage to investigate its effect on

atherogenesis (Lalla et al., 2003). The limitation of the oral route may include the slower

onset of action, degradation of the introducing agents by the digestive tract, passive

reflux in the stomach, and particular requirements for technical skills (Turner et al., 2011).

The intranasal route is commonly-used to introduce pathogens that can cause respiratory

disease. Nelson and colleagues inoculated a virulent PRRSV to piglets and examined the

antibody response to the virus (Nelson et al., 1994). However, the dosage is hard to be

accurately controlled through the intranasal route because of the sneezing response of

animals (Cray et al., 2009). Another way to deliver the infectious agents is through

injection and this can be further detailed based on the location of the delivery such as

intravenous, subcutaneous, intraperitoneal, intramuscular, or intradermal route. Choosing

from those different injection routes is dependent on the experimental design, for

example, the induction of a local or systemic effect. Boddicker explored the genetic basis

of the different responses (resistant or susceptible) to PRRSV by conducting the

experimental infection of a virulent PRRSV intramuscularly and intranasally on pigs

aged between 18 and 28 days (Schweer et al., 2017). Associated common complications

of these delivery routes should be adequately considered, and a well-designed

administration plan, strong technical skills, and asepsis can minimize the adverse effects

derived from the infection approaches (Cray et al., 2009). The current study was

conducted utilizing a natural disease challenge model to simulate disease challenges for

https://paperpile.com/c/sp7FwR/a6AI
https://paperpile.com/c/sp7FwR/4T6J
https://paperpile.com/c/sp7FwR/uOnv
https://paperpile.com/c/sp7FwR/pma2
https://paperpile.com/c/sp7FwR/xWfC
https://paperpile.com/c/sp7FwR/pma2
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pigs in a natural environment from commercial farms, as opposed to the experimental

models mentioned above. Chapter 2 provides a detailed description of this paradigm.

1.2.3.3 Sampling method

Pig sampling is one of the most important stages in the design of the experiment and

may affect the results of subsequent tests. A number of aspects, including the goal of

experiment, the choice of animals, the type of sample, the sample size, the sampling

methods, whether the sample is fresh or fixed, and the transportation of sample must all

be taken into account. Other crucial factors include the cost (pigs and facility) and

simplicity of sample collection. Studies of immune responses during infectious diseases

can provide suitable conditions to understand pathogenic mechanisms and also how the

host immune system prevents disease. For the experiments assessing immune response,

blood and several common immune organs (liver, spleen, lymph node) are the primary

sample collection objects. The Sang-Myeong Lee group assessed the cellular and

humoral responses in pigs experimentally challenged with PRRSV by isolating blood,

lung, bronchoalveolar lavage, and bronchial lymph node samples (Nazki et al., 2020).

In addition, the clinical signs caused by pathogen infection and the replication of the

pathogen in the body is also essential for research purposes, the sampling methods in

some pig disease studies need to be properly designed to diagnose the disease accurately.

Selection of pigs based on observation, body temperature, and treatment history, is an

important step prior to sample collection (Bergland et al., 2005), which is also a major

consideration in this study to assess the pig response in our disease challenge model. Pig

selection can be straightforward in some cases to differentiate the pigs with infectious

https://paperpile.com/c/sp7FwR/h1LV
https://paperpile.com/c/sp7FwR/5qDL
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disease. For example, gray or purple lungs can help confirm the degree of infection of

Mhyo in pigs (Desrosiers, 2001). Pigs infected by Actinobacillus pleuropneumoniae have

fibrous ribs and lungs (Sanford & Josephson, 1981), and SIV will cause necrotizing

bronchiolitis (Desrosiers, 2001). Sampling from those specific tissues in necropsy will

help the diagnosis of a specific disease. However, different infectious agents may have

similar clinical signs. A good example is diarrhea which is a common sign of enteric

disease but may have various causative agents. PEDV is one of the agents that causes

diarrhea, and sampling for PEDV is usually gut tissue and fecal materials, then make a

definite diagnosis by detecting specific pathogen nucleotide or protein expression (Song

& Park, 2012). Serum sampling was also reported for PEDV diagnosis by detecting

serum antibodies (Carvajal et al., 1995). Interestingly, a study suggested that PEDV may

have airborne transmission and they detected viral-specific RNA from air samples from

the room with infected pigs (Alonso et al., 2014). Moreover, some situations such as

porcine respiratory disease may involve more than one causing agent. Thus, sampling

pigs at recurring intervals can help identify all the agents involved (Bergland et al., 2005).

1.2.3.4 Data acquisition from samples

As a general area of disease research, pathology involves four major components for

a particular disease: cause, the developing mechanism (pathogenesis), cellular structural

change (morphological change), and consequence of change (clinical presentation). In the

experiments aiming to investigate disease pathology and its effects, following pig

sampling, data acquisition we will adopt different methodologies based on these four

major disease components as experimental purposes and different measurement

https://paperpile.com/c/sp7FwR/9NgK
https://paperpile.com/c/sp7FwR/yXpU
https://paperpile.com/c/sp7FwR/9NgK
https://paperpile.com/c/sp7FwR/bmpR
https://paperpile.com/c/sp7FwR/bmpR
https://paperpile.com/c/sp7FwR/SQTm
https://paperpile.com/c/sp7FwR/8yQ0
https://paperpile.com/c/sp7FwR/5qDL
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objectives. Two important aspects that are necessary to be clearly defined are the

studying system (pigs at individual, group, or breed level) and the studying output (pig

behavior, production, reproduction, or health).

Blood or a localized lesion is typically obtained for testing for the presence of

potential pathogens in order to identify the causal agents. For the identification of

particular antigen or serum antibodies of PRRSV, PEDV, SIV, PCV2, and Myho, as

examples, the standard testing techniques include immunofluorescence (IF),

immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA).

Polymerase chain reaction (PCR) methods such as nested PCR, reverse transcriptase PCR

(RT-PCR), and real-time quantitative PCR (qPCR) are widely used to sensitively detect

gene fragments from those pathogens. Non-specific methods such as macroscopic and

microscopic examination can be used to support the diagnosis (Donovan, 2005; Fano et

al., 2007; Maes et al., 2008; Nodelijk, 2002; Opriessnig et al., 2004).

Pathogen entrance, replication, and latency, as well as the accompanying host

immune responses, all playing a role in disease etiology. For the development of antiviral

medications and vaccines, understanding the viral entrance and replication mechanisms is

essential. Researchers must first identify the viral and host proteins responsible for virus

life cycle, this usually requires data from experimental methods ranging from target

screening to functional validation in multiple disciplines including molecular biology,

biochemistry, genetics, virology, and immunology. For example, CD163 was known as

the main host receptor for PRRSV identified by complementary DNA (cDNA) library

screening of swine macrophages (Calvert et al., 2007), and the viral glycoprotein GP2a

and GP4 were determined to interact with CD163 for viral entry by a series of molecular

https://paperpile.com/c/sp7FwR/067T+Pzku+Pj8d+ZQ60+7Ri6
https://paperpile.com/c/sp7FwR/067T+Pzku+Pj8d+ZQ60+7Ri6
https://paperpile.com/c/sp7FwR/w8pX
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biological experiments including molecular cloning, expression, and co-

immunoprecipitation (Das et al., 2010). On the other hand, it is also meaningful to

characterize the host immune response and how the virus co-evolved to evade the host

immune surveillance. For instance, infected cells and immune cells secrete a variety of

cytokines that regulate inflammatory responses to the invading pathogens (Murtaugh et

al., 1996), and laboratory methods (ELISA, qPCR) to detect cytokines in pig tissues or

blood are essential tools for studying the pathogenesis of swine diseases (Suradhat &

Thanawongnuwech, 2003; Van Reeth et al., 1999). Many viruses develop immune

evasion mechanisms through co-evolution with their hosts. Researchers noticed that pigs

infected by PRRSV exhibited weak specific humoral immune responses, and by

combining molecular biology, biochemistry, and virology tests, they figured out that the

viral glycan shielding of the viral proteins GP3 and GP5 dramatically minimized the

immunogenicity (Vu et al., 2011).

Acute infection usually results in tissue damage and also the functional and

morphological change of some immune cells. For example, macrophages are the main

targets for PRRSV replication in the lung, and the viral infection induces alterations of

cellular functions including the phagocytic and microbicidal capacity which can be

assessed by phagocytosis assay (Jakab et al., 1980) and microbial killing assay (Lincoln,

1995), respectively. Besides, PRRSV infection causes morphological changes in alveolar

macrophages that are characterized by apoptosis-like phenotype (cell rounding, surface

blebbing, and membrane rupture), and this can be observed by scanning electron

microscopy (Chiou et al., 2000). Evidence of apoptosis is also featured by multiple

nucleosomal-sized DNA bands which can be displayed by agarose gel electrophoresis

https://paperpile.com/c/sp7FwR/FhyQ
https://paperpile.com/c/sp7FwR/BJ2c
https://paperpile.com/c/sp7FwR/BJ2c
https://paperpile.com/c/sp7FwR/gHhQ+mJOW
https://paperpile.com/c/sp7FwR/gHhQ+mJOW
https://paperpile.com/c/sp7FwR/QmKD
https://paperpile.com/c/sp7FwR/XLeG
https://paperpile.com/c/sp7FwR/AQNY
https://paperpile.com/c/sp7FwR/AQNY
https://paperpile.com/c/sp7FwR/LPyp
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(Elmore, 2007). A double-labeling experiment using terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) and in situ hybridization (ISH) can be used

to visually determine whether the apoptotic cells were primarily virus-infected or were

uninfected bystander cells (Sirinarumitr et al., 1998).

The consequence of a particular pig disease is mainly embodied in the resulting

clinical symptoms and altered productive performance. Taking PRRSV as an example, as

briefly introduced above, the main clinical presentations of PRRSV are reproductive

impairment or failure in gestating sows (abortions, weak and stillborn piglets, infertility)

and respiratory disease in weaned pigs (fever, pneumonia, lethargy, and failure to thrive).

Studies such as comparing viral strains and testing therapeutic strategies usually assess

the clinical score derived from the clinical presentations (Halbur et al., 1996). Meanwhile,

the increased mortality and decreased growth rates resulting from PRRSV infection are

the direct reasons for the economic loss in the pig industry. Thus, many studies focus on

screening biomarkers to identify the virus-resistant or resilient pigs, and the production

and health-related traits are the most important parameters to measure and define the

phenotypes of interest (Lunney & Chen, 2010). The project in this thesis is also focusing

on exploring the bio-markers derived from different biological aspects aiming to

differentiate pigs that are resilient to the experimental challenge from a mixture of swine

pathogens. The next section will introduce the definitions and studies of disease

resilience, tolerance, and resistance, and their emerging significance in the pig industry.

https://paperpile.com/c/sp7FwR/OnDX
https://paperpile.com/c/sp7FwR/mqbU
https://paperpile.com/c/sp7FwR/vlua
https://paperpile.com/c/sp7FwR/csQw
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1.3 Disease resistance, tolerance, and resilience

1.3.1 Definitions of resistance, tolerance, and resilience

Many factors, such as the negative effects (e.g. immunological imbalance) of

excessive selection on production traits, increased consideration of animal welfare,

environmental challenges (e.g. global climate change), and reducing the economic

spending on medications, are pushing animal breeding strategies to include animal’s

robustness which including disease resistance, tolerance, and resilience (König & May,

2019).

Initially, the concept of disease resistance which is the ability to limit the pathogen

burden was first proposed and generally used in plant disease control studies (Hammond-

Kosack & Jones, 1997). Resistance can be considered as an active host action to limit the

pathogen burden through mechanisms involving inhibition of pathogen infection and

proliferation. Host resistance is generally quantified by a measure of infection severity

such as within-host pathogen burden (e.g., viral or bacterial counts or parasite density)

(Doeschl-Wilson et al., 2012).

Tolerance was introduced as a new method of controlling the detrimental effect of a

disease (Fornoni et al., 2004; Restif & Koella, 2004), which refers to the ability to reduce

the impact of pathogens on host performance without necessarily affecting pathogen

burden. Tolerance can be quantitatively assessed by the change in production or

reproduction performance (e.g. growth rate, feed intake, or litter size) of livestock in

responding to the change in pathogen burden (Doeschl-Wilson et al., 2012).

https://paperpile.com/c/sp7FwR/aLY4
https://paperpile.com/c/sp7FwR/aLY4
https://paperpile.com/c/sp7FwR/DU79
https://paperpile.com/c/sp7FwR/DU79
https://paperpile.com/c/sp7FwR/hUWs
https://paperpile.com/c/sp7FwR/ApUO+TAdv
https://paperpile.com/c/sp7FwR/hUWs
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An early study of sheep parasites by Riffkin and Dobson pointed out that

immunocompetent sheep with better resistance to Haemonchus contortus did not need to

overcome the pathogenic effects of the parasites which survived from the host immune

response. Therefore, they suggested that the ability to withstand the pathogenic effect

without clearing the infection was better termed "resilience" (Riffkin & Dobson, 1979).

The definition of resilience was summarized by Knap and Bishop later (Knap & Bishop,

2000), which refers to the host's ability to maintain a reasonable level of productivity

during a “disease challenge" (Bisset & Morris, 1996), i.e. to maintain the situation where

those metabolic costs for disease control do not lead to a significant reduction of

production-related metabolic processes. In practice, it may be easier to assess resilience

using productive traits compared with assessing resistance or tolerance which require

determining pathogen burden (Gray, 1997; Lincoln, 1995). For example, pigs in the

PRRS Host Genetics Consortium (PHGC) model showed a wide variation in weight gain,

with some pigs gaining weight at a relatively normal rate while others failed to thrive

during the 42-day infection period. The pigs that gain weight normally can be considered

as “resilient” under viral infection (Rowland et al., 2012; Schweer et al., 2017). Morris

and his colleagues selected resilient sheep based on the post-weaning age to receive

necessary anthelmintic treatment to maintain acceptable growth in pastures with

nematode challenge, and the selected resilient lambs extended 23.6 days to receive the

drench treatment and gained 4.5 kg more live weight at 6-month age relative to the

control animals. This work shed light on the selection of both productivity and improved

health status in the context of pathogen challenge (Morris et al., 2010). Other parameters

to define resilience may include disease incidence, survival rates, and immune response

https://paperpile.com/c/sp7FwR/Jhrs
https://paperpile.com/c/sp7FwR/6VYz
https://paperpile.com/c/sp7FwR/6VYz
https://paperpile.com/c/sp7FwR/PPUI
https://paperpile.com/c/sp7FwR/PBSJ+AQNY
https://paperpile.com/c/sp7FwR/C40t+xWfC
https://paperpile.com/c/sp7FwR/6NYu
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(Sassu et al., 2018). Thus, besides disease resistance and tolerance, resilience is another

promising characteristic in livestock breeding.

1.3.2 Similarities and differences among the concepts of

resistance, tolerance, and resilience

The concepts of disease resistance, tolerance, and resilience show some similarities

and differences. They all represent the animal’s ability to adapt to and interact with

environmental stressors and pathogens (König & May, 2019). All of them have the same

ultimate goals in animal production, which are maintaining a high-level productive

performance for economic profitability and improving animal welfare by alleviating the

impact of disease challenges on animals (Chiou et al., 2000; Råberg et al., 2007).

The influence on host-pathogen interactions is where those three definitions diverge

most. The focus of resistance is on the host's capacity to prevent the establishment and/or

progression of pathogen infection. Contrary to resistance, tolerance emphasizes how the

host lessens the harm brought forth by the infection without directly affecting it.

Nevertheless, both resistance and tolerance are host defense mechanisms to maintain the

health status of animals and are sometimes hard to distinguish. Furthermore, the

mechanisms of resistance and tolerance may differentially influence the host-pathogen

co-evolution. The evolution of animals with resistance and tolerance has contrasting

effects on the epidemiology of infectious diseases (Miller et al., 2006; Roy & Kirchner,

2000). For resistance, hosts are selected for the ability to reduce pathogen burden and this

selective pressure may result in pathogen evolution for increased infectivity or virulence,

leading to open-ended non-equilibrium evolutionary dynamics (Woolhouse et al., 2002).

https://paperpile.com/c/sp7FwR/b0oj
https://paperpile.com/c/sp7FwR/aLY4
https://paperpile.com/c/sp7FwR/p2cH+LPyp
https://paperpile.com/c/sp7FwR/di1K+zgBF
https://paperpile.com/c/sp7FwR/di1K+zgBF
https://paperpile.com/c/sp7FwR/DCZG
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In comparison, tolerance does not have a negative effect on the fitness of the pathogen so

selecting the host genetic variation for tolerance may result in dampened antagonistic

coevolution (Rausher, 2001), which tends to induce commensal co-evolution between the

host and pathogen (Best et al., 2008; Guy et al., 2012). A study using the rodent malaria

model suggested the existence of genetic variation for both resistance and tolerance while

resistance and tolerance were negatively genetically correlated (Lunney & Chen, 2010),

which is consistent with the proposed different defensive mechanisms and influence on

host-pathogen co-evolution of resistance and tolerance.

Resilience reflects the host's ability to maintain relatively reasonable production

which cares more about the productive potential under the challenges of pathogens

(Bisset & Morris, 1996). It should be noted that resilience is usually considered to

conflate the host defense mechanisms of resistance and tolerance. However, more work is

necessary to characterize the individuals that are more resilient to disease than others. In

the context of animal breeding objectives, the meanings of those three concepts may be

roughly distinguished by the consequence of selection which is to control infection or to

maintain productive performance during infection (Guy et al., 2012).

In terms of evaluating those three concepts in a study of animal disease, it is very

intuitive and easy to distinguish whether animals are disease resistant or not by assessing

the pathogen burden. In the study of tolerance or resilience, the detrimental effect of

disease and animal performance are the main measurement objects, respectively, which

are closer to the ultimate goals in animal production (protection of economic benefits and

animal welfare) relative to the pathogen burden. The pathogen load is not the main

parameter for resilience, whereas the productive performance of animals under disease

https://paperpile.com/c/sp7FwR/VhmB
https://paperpile.com/c/sp7FwR/DzAd+sarY
https://paperpile.com/c/sp7FwR/csQw
https://paperpile.com/c/sp7FwR/PPUI
https://paperpile.com/c/sp7FwR/sarY
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challenges should be more considered. More tests need to be run such as serum antibody

levels for assessing tolerance.

In the genetic analysis of sheep resistance to the parasite by Albers (Albers et al.,

1987), they reported that the resistance represented by the measurement of pathogen

burden was highly heritable while the heritability of resilience based on depression of

productivity was too weak to obtain selection response by mass selection. They

concluded that selection on resistance was effective to improve this trait while also

potentially increasing the productivity of animals during infection (resilience). The

genetic variation of pig disease resistance trait involves multiple genes regulating aspects

of both innate and acquired immunity (Dawson et al., 2013; Groenen et al., 2012).

Disease tolerance and resistance have a weak genetic correlation and the heritability for

tolerance analyzed by host performance is influenced by pathogen burden (Kause et al.,

2012; Koch et al., 2017). Therefore, selection for tolerance is challenging in the absence

of pathogen burden records (Kause & Ødegård, 2012). However, a recent study in 2017

using estimating breeding values for resilience effectively acquired selection responses

for resistance and tolerance to infections predicted by Monte Carlo simulation (Mulder &

Rashidi, 2017). Considering that resilience may combine the mechanisms of resistance

and tolerance, this study suggests that selection on resilience might be favorable to

increase disease resistance and tolerance of animals, and selection on resilience is a more

practical approach since pathogen burden data is not always available and the recording

is laborious and costly over the time of infection.

Direct strategies target animal resistance/tolerance to specific pathogens may result

in increased susceptibility to other diseases (Wilkie & Mallard, 1999). Alternatively, the
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indirect and putatively more global approach focuses on resilience identification could

provide a measure of economic loss due to multiple disease challenges and hopefully

predict the responses to pathogens in general (Putz et al., 2018a). Clear understanding of

the differences in the concept of resistance, tolerance, and resilience is beneficial to

pinpoint the breeding objective and make corresponding breeding strategies.

1.3.3 Comparison of resistance, tolerance, and resilience in pig

disease studies

In early times, researchers used to focus only on disease resistance in pig breeding

when screening the genetic variations that benefit the pig's health (Warner et al., 1987),

while pig tolerance and resilience are being more considered in modern farms (Glass,

2012). As a result of accumulated information and technological advancement, trait

selections are no longer restricted to evaluating productive performance, health, or

pathogen burden (Vu et al., 2011), but also active immune response (Zhuge et al., 2012).

The studies of disease resistance were usually confined to certain pathogens, the

corresponding measurement of traits is relatively straightforward to determine the

infection severity such as the viral or bacterial counts and parasite density. However, the

case is more complicated for tolerance and resilience when determining the traits to be

selected or identifying the underlying associated genes (Medzhitov et al., 2012). To

define pigs with disease tolerance, besides assessing the pathogen burden, traits reflecting

host production or reproduction such as growth rate, feed intake, and litter size are

required to evaluate the impact of the pathogen. There are pieces of evidence that animals

exhibit genetic variation with regards to resistance and tolerance and screening those
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associated mutations could be a strategy to identify the associated functional genes or

develop genetic markers for breeding (Lunney & Chen, 2010; Mazé-Guilmo et al., 2014).

Common traits used in the research of swine disease are typically broken down into

a number of categories. The first is the characteristics that matter economically, such as

daily weight gain. Second, it involves testing for immunological responses, such as the

assessments of antibodies, immune cells, or changes in cytokines. Additional measuring

parameters, such as body temperature and necropsy score, could be applied to the health

state of animals in addition to these two key factors. It is challenging to characterize and

select a pig with disease resilience because of its complicated nature which involves

various dynamic biological processes ranging from nutrient metabolism, production,

immune response, and recovery from infection (Friggens et al., 2017). Indeed, some

heritable immune traits have been explored to be associated with pig performance (Bai et

al., 2020). However, there is still a lack of an experimental model to evaluate the

potential traits to qualify resilience and the correlation with heritable genetic variations.

Our collaborators recently reported using daily feed intake and feeding duration data as

measurements of disease resilience of finishing pigs in a natural challenge model that is

similar to what I used in this thesis study (Putz, et al., 2018b). They found the feed intake

and duration data was modestly heritable and showed a genetic correlation with mortality

and treatment rate, but those measurements are usually interfered by environmental and

social factors independent of diseases and thus suggested to be used to qualify resilience

to general farm stressors. This finding was further confirmed by their more recent study

which analyzed the genetic parameters of a series of resilience-related performance traits

including feed intake and duration on a bigger population of pigs (including the pigs
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which died during the experiment or challenge) in the natural challenging model (Cheng

et al., 2020). The recent work from our group using the natural disease challenge model

demonstrated that the complete blood count data from challenged weaned pigs were

heritable and genetically correlated with growth and treatment rates, and thus, it could be

a potential measurable phenotype to assess disease resilience (Best et al., 2008).

Although the three concepts all involve host-pathogen interaction and may share

biological pathways to be established, in contrast to disease resistance and tolerance

which are usually discussed based on a specific pathogen or disease, disease resilience

has a more broad meaning including health and productive performance in the context of

livestock production.

1.3.4 Applications of resistance, tolerance, and resilience in pig

disease control

The preceding paragraphs have introduced the definition and comparison of the

resistance, tolerance, and resilience in pig disease study. This section mainly gives some

examples of how disease-responding phenotypes are applied in pig disease control. For

disease resistance, many studies aimed to identify the responsible genes or variations that

reduce the pathogen invasion or confer a stronger defensive response for pathogen

clearance (Råberg et al., 2007). About 20 years ago, a study using genomic mapping and

genotyping identified that the FUT1 gene associated with the expression of the gut

receptor for E. coli F18 in pigs and that a single nucleotide polymorphism (SNP) within

this gene was associated with the resistance to the bacterial adhesion and colonization in

the small intestine (Meijerink et al., 1997, 2000), which provided a potential biomarker to
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breed pigs with adhesion resistance to E. coli F18. Similarly, another group focused on a

locus on pig chromosome 13 which contained the candidate gene encoding the intestine

receptor for E. coli F4ab/ac, and identified that a polymorphism within this region was

associated with the resistance to diarrhea in pigs (Jørgensen et al., 2003). Besides, some

researchers characterized the genetic variations that are associated with other porcine

pathogenic infections such as PPRSV (Lunney et al., 2011), PCV2 (Opriessnig et al.,

2006), and Haemophilus parasuis (Blanco et al., 2008), which provides possibilities for

genetic selection in breeding programs and the development of biomarkers based on these

genetic variations. However, infection of many pathogens may not be sufficiently

blocked based on selection of these genetic variations mentioned above to reach exact

resistance, especially for pathogens that are prone to mutation and evolve quickly.

Genome editing is a straightforward way to generate disease-resistant pigs on the

condition that the molecular pathway of pathogenesis is adequately understood. A study

reported in 2016 made efforts to establish PRRSV resistance in pigs by directly silencing

the expression of viral entry receptor CD163 using CRISPR-Cas9 technology, and this

successfully conferred protection of these pigs to an experimental virulent PRRSV strain

(Whitworth et al., 2016). The same group later generated genome-edited pigs that were

deficient for aminopeptidase N which is the receptor for transmissible gastroenteritis

virus (TGEV), and those pigs were resistant to TGEV infection (Whitworth et al., 2019).

African swine fever virus (ASFV) causes high mortality in domestic pigs that is resulted

from the cytokine storm during the late-stage infection, which is another big potential risk

to the world’s pig industry. Rel-like domain-containing protein A (RELA) was known to

be involved in the NF-κb cytokine signaling and showed a difference in the sequence
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between domestic pigs and warthog which is naturally resilient to the lethal infection of

ASFV (Palgrave et al., 2011). A promising attempt was reported to endow domestic pigs

with the ability of resilience by substitution of amino acids at the RELA locus to its

orthologue in the warthogs (Lillico et al., 2016). A more recent study tested the

effectiveness of those substitutions at the RELA locus on domestic in responding to

experimental ASFV intranasal challenge. However, even though the substitutions

slightly delayed the onset of clinical signs and viremia, it was still insufficient to confer

resilience to the domestic pigs like warthogs to prevent lethality or maintain weight gain

(McCleary et al., 2020) suggesting the resilience of warthogs requires other factors

besides the mutations at the RELA locus. Nevertheless, this genome editing trial provided

valuable insights to assist the intervention's development for the devastating impact of

ASFV on the pig industry.

Despite the advantage of breeding for disease tolerance in maintaining the high

performance of pigs, identification of key genes that are responsible for disease tolerance

is likely to be difficult (Råberg et al., 2007). Potential reasons may include the difficulty

to quantify the tolerance trait, the polygenic nature, and the poorly-understood biological

mechanisms to establish tolerance. Evidence for the observed different detrimental

effects of PRRSV infection in lines and breeds of pigs suggests that there might be

genetic variation related to disease tolerance that remains to be identified (Elmore, 2007).

Moreover, the experience from the studies of animals other than pigs indicates the

difficulty of selecting disease resistance and tolerance to multiple pathogens considering

the complexity of the infectious diseases in actual pig farming.

Resilience is likely to be an ideal breeding aim for both pig health and production in
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modern farms. Including the studies from our group and collaborators using the natural

disease challenge model to assess the resilience phenotypes and heritability as mentioned

above, selecting disease resilience in pigs is drawing more attention in recent years. A

study published in 2019 suggested that the routinely collected medication records in pig

herds such as the treatment of medications could be used to define disease resilience

(Guy et al., 2019), and the number of treatments was also included in my study to define

the phenotype of resilience. Another report in 2019 developed a potential phenotyping

criterion by using the outcome data of PRRSV vaccination to differentiate susceptible

and resilient female piglets to PRRSV before transferring to the PRRSV-positive farm,

and the reproductive data were recorded to evaluate the heritability (Abella Falcó et al.,

2019). Based on the genome-wide analysis of reproductive traits in response to a PRRSV

outbreak by our collaborators (Serão et al., 2014), this group found that the genotypes of

SGK1 and TAP1 genes influenced the reproductive performance and could be used in

breeding sows resilient to PRRSV (Laplana et al., 2020). Our collaborators recently

described that natural antibodies titers and total IgG levels in the blood of young healthy

pigs were genetically associated with disease resilience assessed in our natural disease

challenging model and could be used to predict disease resilience in commercial farms

(Dekkers et al., 2019). Nevertheless, further studies are necessary and other types of

biomarkers need to be screened to predict disease resilience under the high-health

conditions of modern pig farms.

With the progress of the knowledge on pig disease-causing pathogens and the

development of modern research techniques, selecting pigs with disease resistance,

tolerance, or resilience are crucial breeding aims to control disease, maintain pig
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production, and improve pig health and welfare. In particular, the development of high-

throughput omics (e.g. genomics, epigenomics, transcriptomics, proteomics, and

metabolomics) and the trend of integrating multi-omics approaches remarkably

spearheaded the research in terms of identifying disease-causing genes or biomarkers for

disease response (Suravajhala et al., 2016). In the following sections, I will primarily

introduce transcriptomics and metabolomics which I applied to explore biomarkers to

predict disease resilience in this thesis.

1.4 Transcriptomics

The work of mapping and sequencing the human genome started the study of

genomics which is the earliest omics discipline and focuses on the entire genome but not

on single genes. With the progress of new technologies, researchers were able to obtain a

large amount of information from a tissue or cell sample, and the term “omics” was

gradually introduced to generalize the studies to comprehensively and globally measure a

set of biological molecules in a high-throughput fashion (Micheel et al., 2012). As briefly

mentioned in the last section, omics is further classified as many disciplines regarding the

target type of molecules. This section is mainly reviewing the history of transcriptomics

and how researchers apply transcriptomics techniques to study health science including

the studies of diseases in livestock.

1.4.1 Concept and history of transcriptomics

The concept of the transcriptome is the complete set of RNA transcripts (species and

quantity) in a single or a population of cells at a specific developmental stage or under a
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specific condition. Transcriptomics is the subject to study the transcriptome aiming to

investigate and characterize different transcript species (e.g. mRNAs, non-coding RNAs,

and small RNAs), the transcriptional structure of genes, and the change of transcripts

expression levels in a biological process or response to certain conditions (Wang et al.,

2009).

The first study to look into a set of transcripts was reported in 1979 when

researchers characterized the abundance of transcripts associated with silk moth

development from a cDNA library (Sim et al., 1979). The advent of automated DNA

sequencing technology and bioinformatics made it more efficient to acquire and analyze

enormous sequence data which significantly led to the progress of transcriptome

characterization (Jiménez-Chillarón et al., 2014). The first investigation of a collection of

human transcripts was published in 1991 but only 609 mRNA sequences were captured

from the human brain (Adams, 1991). Milestone research was published in 1997 which

analyzed 60,633 transcripts from 4,665 genes of yeast using serial analysis of gene

expression, and this study opened the gate to genome-wide eukaryotic gene expression

(Velculescu et al., 1997). With the development of the two key techniques, DNA

microarray and RNA-sequencing (RNA-Seq), the transcriptomics studies entered a real

high-throughput stage. In the year of 2008, researchers were able to investigate the

transcripts from 16,000 genes and globally analyze the alternative splicing events in

human tissues (Pan et al., 2008). By the year 2015, the further advance in sequencing

technology made it feasible to accurately characterize the gene expression difference in

multiple human populations (Melé et al., 2015). Meanwhile, transcriptomics approaches

were widely used in different research areas including biology, medicine, and clinical and
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pharmaceutical studies (Qi et al., 2011). In the mid-2010s, the seminal application of

RNA-Seq in single cells brought transcriptomics studies to a new stage (Kolodziejczyk et

al., 2015).

1.4.2 Techniques to study transcriptomics

The development of transcriptomics has been characterized by the invention and

improvement of technologies, and the innovation of new techniques tended to make the

old techniques totally abandoned (Lowe et al., 2017). In the beginning, from the 1980s to

1990s, researchers used the low-throughput Sanger sequencing to determine the gene

transcription from the cDNA library using short specific transcript fragments called

expressed sequence tags (EST) (Marra et al., n.d.1998). Although EST sequencing was

regarded as the most efficient way to rapidly identify specific transcripts at that time, the

limit of the throughput and cost of Sanger sequencing made it difficult to acquire a

complete transcriptome. To quantify the amount of specific transcripts, hybridization

assays such as northern blot (Alwine et al., 1977), and RT-qPCR (Becker-André &

Hahlbrock, 1989) were widely used. Tag-based methods were the relatively high-

throughput techniques including serial analysis of gene expression (SAGE), cap analysis

of gene expression (CAGE), and massively parallel signature sequencing (MPSS), which

were able to quantify transcripts from specific genes but were not able to differentiate

transcript variants generated from alternative splicing events (Pertea, 2012). Similar to

the EST approach, those assays were also based on Sanger-sequencing which was not

feasible for large-scale analysis.

Hybridization-based microarray is one of the main contemporary techniques in
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transcriptomics which was developed around the mid-1990s (Schena et al., 1995).

Basically, a microarray contains a large-scale collection of short complementary

nucleotide probes attached to a solid surface to measure the abundance of specific

transcripts (cDNA) through hybridization (Pozhitkov et al., 2007). The quantification of

gene expression is determined by detecting the hybridized specific transcripts labeled

with fluorophore, silver, or chemiluminescence (Chaudhari, 2016).

Micro-array is the first cost-effective high-throughput assay that is able to measure

thousands of transcripts in a single assay and distinguish and quantify spliced isoforms of

transcripts. However, there are some disadvantages of microarray that limit its

development. Micro-array usually generates highly noisy signals because of different

target hybridization strengths and cross-hybridization, and microarray has an inherent

limit which is that it can only measure known genes (sequence and exon-intron

boundaries) but is not applicable to identify new gene transcripts (Suravajhala et al.,

2016).

The other major transcriptomics technique is RNA-Seq which was developed during

the 2000s (Jørgensen et al., 2003). As indicated by its literal meaning, RNA-Seq is a

technique to sequence all the transcripts in a cDNA library in a high-throughput manner

and quantify the number of counts for each transcript by following computational

analysis of the sequencing result. The high capability of RNA-Seq to resolve the

transcriptome is dependent on the innovation of high-throughput sequencing technologies.

RNA-Seq uses massive parallel sequencing, also known as next-generation sequencing

(NGS) relative to Sanger-sequencing, to sequence the cDNA library from one end or both

of each molecule. For example, the invention of Solexa/Illumina technologies is a
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milestone that makes RNA-Seq available to capture 109 transcripts which can cover the

entire human transcriptome (Abella Falcó et al., 2019; Jørgensen et al., 2003). The basic

protocol for an RNA-Seq assay includes RNA isolation, preparation of the cDNA library,

high-throughput sequencing, and computational analysis. The cDNA library is processed

by generating fragmented short sequences and undergoes clonal amplification. The

typical length of a cDNA fragment is around 150 bp, but different sequencing methods

may require various lengths ranging from 30 bp to over 10,000 bp. In general, RNA-Seq

is compatible with most NGS platforms that are based on spatially-segregated

complementary DNA synthesis and in massively parallel sequencing (Anderson &

Schrijver, 2010). The sequenced short sequences are then reconstructed by aligning to a

reference genome and counted using computational methods (Jørgensen et al., 2003). The

principles of RNA-Seq allow it to detect known and unknown transcript sequences in

base-pair resolution and determine the gene expression level in a much larger range but

with a much lower background noise compared with hybridization-based methods. Those

advantages of RNA-Seq make it available to not only precisely measure the transcript

expression level, but also widely be used to identify genetic variations such as gene

polymorphism and splicing variants. Traditional RNA-Seq uses the RNA purified from

tissues or a mixed population of cells, and this is not feasible to acquire the

transcriptional profiles from sub-populations or even individual cells. With the increasing

demands to understand the distinct roles of different types of cells or different cell clones,

the single-cell RNA-Seq method was developed in the last decade which makes it

possible to simultaneously determine the transcriptional profiles of hundreds to thousands

of individual cells (Kanter & Kalisky, 2015). To overcome the limit of short sequencing
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length from traditional RNA-Seq, long-read RNA Seq technologies were developed in

the past few years, making it possible to resolve full-length transcripts and directly

sequence the RNA molecules. Two companies (Pacific BioSciences and Oxford

Nanopore Technologies) are leading this field with their distinct platforms. These

evolutionary technologies are making great contributions to not only the improvement of

gene annotation but also studies related to gene isoforms, RNA modification and non-

coding RNAs. Researchers in this new-generation sequencing field are actively working

on improving the sequencing accuracy and experiment throughput to extend its

applications (Hu et al., 2021; L. Zhao et al., 2019).

1.4.3 Application of transcriptomics in pig health related

research

As briefly mentioned above, transcriptomic approaches are broadly applied to health

science studies. For disease diagnosis and profiling, for example, transcriptome

sequencing has been used to explore novel gene fusions in cancer for diagnosis and

screening purposes (Maher et al., 2009). Micro-arrays and RNA-seq are used to generate

mRNA profiling as a prognostic tool (Byron et al., 2016). In addition to detecting the

change in gene expression, RNA-Seq can be used as a diagnostic tool in conjunction with

genomic analysis to discover mutations and splice-altering variations that are linked to

the rare Mendelian diseases (Cummings et al., 2017). Allele-specific expression (ASE) is

known to associate with a predisposition to disease and RNA-seq can be used to analyze

ASE which is a potential biomarker to discover pathogenically relevant genetic variant

(Pan et al., 2008).
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In animal studies, many researchers were focusing on exploring transcriptome

differences for favorable production traits (Meijerink et al., 1997), such as the study of

muscle development in cattle (Cummings et al., 2017) and pigs (Huang et al., 2008), and

adiposity in broilers (Bourneuf et al., 2006). There is increasing attention on using

transcriptomic approaches as a tool to study health-related traits in livestock. For example,

McCabe and colleagues applied RNA-Seq to profile the liver transcriptome of lactating

dairy cows with different severity of negative energy balance (McCabe et al., 2012). A

study comparing the transcriptome of the fat, liver, and muscle tissues between Jeju

native pigs and Berkshire pigs revealed differentially expressed genes (DEGs) not only

related to body growth but also immune response pathways (Ghosh et al., 2015). In

addition, a whole blood transcriptomics study on growing pigs with divergent genetic

selection for residual food intake showed DEGs associated with immune capacity and

defense mechanisms (Jégou et al., 2016).

Transcriptomics strategies provide efficient ways to help understand host-pathogen

interaction which can be mainly divided into two categories: characterization of

pathogens with different virulence or response to the host defense; and hosts exhibiting

differential responses to invading pathogens. On the side of pathogens, Yonghou Jiang’s

group developed a microarray-based approach to identify and differentiate various PCV1

and PCV2 clinical strains (Jiang et al., 2010). Moreover, a pan viral DNA microarray

called Virochip was reported to be able to successfully detect multiple common pig

pathogens including PRRSV, PCV2, PRCV, and SIV in different types of clinical

samples (T. L. Nicholson et al., 2011). A study using the Dual RNA-Seq approach on

Salmonella enterica serovar Typhimurium and human cells identified a pathogen small
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RNA involved in regulating invasion-associated effectors and virulence genes, and some

infection-specific non-coding transcripts in the host cells (Westermann et al., 2016). On

the side of the host, Dirk Werling's lab generated the transcriptome profiles of myeloid

immune cells in pigs challenged by PCV2, which provides information to understand

PCV2 pathogenesis (Mavrommatis et al., 2014). Agnieszka Podolska and others profiled

the microRNAs in the lung tissue of pigs infected by Actinobacillus pleuropneumoniae

and identified some candidate microRNAs that are involved in the host response to this

pathogen (Podolska et al., 2012). There were batches of studies on livestock aiming to

characterize the different responses of the host to pathogens through transcriptomic

strategies, and those results combined with genetic analysis may provide a theoretical

basis for selective breeding focusing on disease resistance and tolerance. Kadarmideen

and his colleague reported using microarray to identify biomarkers for parasite resistance

in sheep using differential gene expression (DE) analysis (Kadarmideen et al., 2011).

Kapetanovic et al. applied micro-array to assess the response of macrophages to

lipopolysaccharide in different breeds of pigs and found some breed-specific DEGs

(Kapetanovic et al., 2013). Yunliang Jiang’s group investigated the cause of breed-

dependent different PCV2 susceptibilities between Yorkshire x Landrace pigs and Laiwu

pigs using RNA-Seq and suggested that the transcript level of SERPNA1 gene may play

an important role in the resistance to PCV2 of Laiwu pigs (Y. Li et al., 2016).

Aside from the rapid development of transcriptomics, other omics such as genomics,

epigenomics, proteomics, and metabolomics have also entered the high-throughput omics

era and have been applied to livestock production and health studies. These omics

technologies concentrated on various types of molecules and levels of regulation in the
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gene expression process. Researchers are always looking for the best biomarkers to

predict production performance and disease risk, and there is a growing trend to use

multi-omics approaches on the same sample to fully exploit this biological information

for a more holistic improvement of animal production and health (Suravajhala et al.,

2016). In the next part, I will introduce metabolomics which aims to acquire the global

metabolite profiles of a sample, and in this thesis, I also applied metabolomics

technology to explore potential blood metabolites to predict the disease resilience trait.

1.5 Metabolomics

The metabolome, like the transcriptome, is an important part of omics that focuses

on studying the components of all small-molecule metabolites in biological samples

under certain physiological conditions. By using this method, researchers can study the

correlation between the amount or type of metabolites and the biological phenotypes of

interest. It is also an important alternative method when transcriptome and proteome are

not enough to understand the related mechanism behind the research.

In biological processes, there is a big gap between genotype and phenotype, which

includes steps from DNA transcription, and protein translation, to product generation of

cell activities (metabolites) (Fiehn, 2002). However, the expression of a particular

phenotype from a genotype is not a simple linear pipeline. The existence of multiple

feedback loops, such as from metabolites to proteins or transcripts, makes the regulation

network more complicated for a specific phenotype. Furthermore, the cell activity

network can be extended to the interactions with neighboring metabolites (Johnson et al.,

2016). Nevertheless, metabolites are directly produced or involved in cell metabolic
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activities, and metabolites are considered the closest molecules contributing to

modulating the phenotype (Kasture et al., 2012). Thus, metabolomics is broadly applied

to discover particular metabolites as biomarkers in clinics and industries (Guijas et al.,

2018; Putri et al., 2013). Integrating the data from metabolomics with that from

transcriptomics and proteomics is a trend to understand the genotype-to-phenotype gap in

system biology.

1.5.1 Concept and history of metabolomics

Most metabolites are low-molecular-weight molecules (typically less than 1.5 kDa

in humans) that play roles as substrates, intermediates, or products in metabolic processes

(Wishart et al., 2007). And the function can be classified as “primary” or “secondary”

dependent on their direct participation in energy storage and metabolism, or involvement

in various biological pathways such as cell-to-cell communication, and antibiotic activity

(Vinayavekhin & Saghatelian, 2010). The complete profile of metabolites in a biological

sample constitutes its "metabolome". Analogous to the transcriptome and the proteome,

the metabolome is a dynamic profile of a single cell, a tissue, or even a whole organism.

As an omics of studying metabolites, metabolomics is previously defined as "the

systematic analysis of metabolites structure, concentration and pathways, and metabolite

interactions within and between organs under environmental influences" (German et al.,

2005). The aims of metabolomics studies are acquiring comprehensive information on the

metabolome in the context of a physiological and pathological state, and biological

interventions (e.g. drug treatment, gene manipulation) (Cummings et al., 2017).

The history of metabolomics follows the progress of analytic technologies. In the
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late 1940s, the research from Roger Williams firstly opened the gate of “metabolic

profile” and he revealed that the metabolic components of urine and saliva were

associated with schizophrenia using paper chromatography (Gates & Sweeley, 1978).

With more advanced analytic technologies applied, researchers were able to precisely

determine the metabolic profile in biological samples. In the late 1960s, Horning et al.

first used gas chromatography-mass spectrometry (GC-MS) to determine the steroid

hormones and their metabolites in human urine samples, and he introduced the term

“steroid profile” which is considered the prototype of metabolomics (Horning et al.,

1968). After a few years, Hoult and colleagues measured the concentrations of

metabolites from intact muscle tissue using phosphate nuclear magnetic resonance (NMR)

spectroscopy (Hoult et al., 1974). In 1984, a more sensitive NMR, proton NMR (1H

NMR), was applied to determine metabolites in serum, plasma, and urine samples of

patients with diabetes (Nicholson et al., 1984).
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Figure 1.2 The network of molecular factors affecting phenotype.

Solid black arrows indicate the trajectory of how genetic information is translated into

phenotype.
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In 1995, researchers used liquid chromatography-mass spectrometry (LC-MS) to

study lipid composition in the cerebrospinal fluid of sleep-deprived cats (Cravatt et al.,

1995). Afterward, several other combined methods and new techniques such as Fourier-

transform infrared spectroscopy (FT-IR) and capillary electrophoresis (CE) was gradually

applied in studies of metabolites (Lenz & Wilson, 2007). However, most of the studies

introduced were focusing on specific types of metabolites or specific conditions. In 2005,

Siuzdak’s group released an online database called “METLIN” which is the first

integrated tandem mass spectrometry (MS) database in human metabolomics that

includes structural information of the known endogenous metabolites, drugs, and drug

metabolites (Smith et al., 2005). The public source of METLIN is still updating and

growing, making it a useful tool for metabolite identification and largely facilitating the

progress of metabolomics. In 2007, three years after the Human Metabolome Project was

launched, the Human Metabolome Database (HMDB) was released. HMDB is currently

the largest comprehensive database for human metabolome that contains information on

metabolites acquired from both literature and experimental data of various techniques

(Wishart et al., 2007). As introduced above, most techniques aiming to measure

metabolites in biological samples require chromatography to pre-separate the ingredients.

The step makes metabolites profiling a high-throughput measurement is the application

of methods allowing real-time analysis of metabolic products without chromatographic

separation in advance. For example, Winkler et al. used highly sensitive proton-transfer-

reaction mass spectrometry to monitor the metabolic products in human breath gas after

ingestion of isotope-labeled ethanol (Winkler et al., 2013). Link et al. determined the

real-time metabolome change from starving to growing of Escherichia coli by direct

https://paperpile.com/c/sp7FwR/lr5e
https://paperpile.com/c/sp7FwR/lr5e
https://paperpile.com/c/sp7FwR/xS91
https://paperpile.com/c/sp7FwR/v3QE
https://paperpile.com/c/sp7FwR/weJ8
https://paperpile.com/c/sp7FwR/396s


53

injection of samples to a high-resolution time-of-flight MS (Link et al., 2015). The real-

time measurement of metabolome is big progress in metabolomics, which makes it

available to precisely monitor the change of metabolism since metabolite concentration is

dynamic and may change very quickly spontaneously or in response to a particular

stimulus.

1.5.2 Techniques to study metabolomics

Currently, the most broadly used techniques in metabolome profiling are NMR and

MS-based methods which have the potential for the detection, quantification, and

identification of metabolites in biofluids or tissues. Some NMR and MS-based methods

require chromatographic separations and are coupled with gas chromatography (GC) or

liquid chromatography (LC) platforms. Some NMR and MS platforms support the direct

loading of samples without pre-separation steps including 1H NMR spectroscopy, direct

infusion MS, and FT−IR which are considered relatively high-throughput assays.

However, it is currently impossible to use a single technique to identify all metabolites in

a sample because of the complexity of the metabolome (Cummings et al., 2017). I will

introduce NMR, particularly 1H NMR spectroscopy and frequently-used methods for

statistical analysis, in this section since they are the methods that I performed in my thesis

research.

NMR and MS are complementary technologies in metabolomics studies and are

used for different purposes due to fundamental methodological differences. NMR detects

specific molecules at relatively high concentrations while preventing instrument

contamination, resulting in high instrument reproducibility. MS detects, separates, and

https://paperpile.com/c/sp7FwR/lpPk
https://paperpile.com/c/sp7FwR/4HeB


54

enriches signals with mass differences from all analytes, producing a large amount of

spectroscopic data. Therefore, MS is widely used in studies focusing on detailed

characterization of physiology-relevant metabolic specificity of individuals while NMR

is tended to in large-scale studies related to epidemiology and genetics (Dunn et al.,

2011).

1H NMR spectroscopy is a prevalent technique used in research of biofluids such as

toxicity and drug efficacy tests, and biomarker identification for diseases or inherited

defects in metabolisms (Podolska et al., 2012). 1H NMR can provide the highest relative

sensitivity among naturally occurring spin-active nuclei since the proton is a component

of all organic molecules. Sample preparation is very simple for 1H NMR and it does not

require the preselection of analytic parameters or sample derivatization. However,

considering biofluid samples contain a large amount of water, a water suppression

procedure that attenuates the signal from the water proton is needed. The measurement of

1H NMR spectra is quick (a few minutes per sample) and maintains a low signal-to-noise

rate for milliliter–level biofluid samples (Podolska et al., 2012). All of these features

above make 1H NMR a relatively high-throughput technique in detecting metabolites for

broad purposes.

As mentioned at the beginning of this section, there is not an ideal technique that

possesses all the desired advantages because of the high complexity of metabolism.

However, combining multiple platforms is a possible way to maximize the content and

quality of the metabolite profile of interest. Continuing exploration and improvement of

analytic techniques will provide strong power for the development of metabolomics.
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There are many methods for analyzing the metabolite data obtained from the

measuring platform. Unsupervised learning analysis is usually used to classify or extract

characteristics only through metabolite data before supervised correlation analysis of

metabolite and performance traits or experimental grouping. The most commonly used

unsupervised learning methods include principal component analysis (PCA) which

effectively reduces the dimensionality of the data set to a few to account for the most

significant changes. The goal of the PCA algorithm is to reduce the dimensionality of the

data by transforming the original variables into a smaller number of independent

variables (called principal components) while retaining most of the information in the

original data set (Nyamundanda et al., 2010). For example, Wang's group determined the

time-dependent and tissue-specific metabolites change in the context of inflammatory

bowel disease using 1H NMR spectroscopy combined with PCA and orthogonal

projection to latent structure-discriminant analysis (OPLS-DA) (Dong et al., 2013). Aside

from PCA, the k-means clustering algorithm is another unsupervised learning method.

Different from decreasing the number of variables in PCA, the k-means clustering

algorithm is used to group multiple observations into a few clusters, which is a common

tool in analyzing metabolomics data. The basic principle of the k-means clustering is

randomly selecting one subject from the pre-defined K groups, respectively, as the

clustering centers, then assigning every other subject to each of the clusters based on the

nearest distance to each of the clustering centers, which is finally made up of K clusters

(MacQueen, 1967). The similarity of the subjects in a particular cluster can be assessed

by coefficients that reflect whether those metabolites are functionally-relevant and have

changed in the same manner. For example, Nikas et al. acquired the metabolome profile
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of the striatum area of the brain using 1H NMR and used the Cophenetic Correlation

coefficient to assess the similarity of mice in different models to diagnose Huntington's

disease (Nikas & Low, 2011).

Metabolomics data are commonly used in linear models but are affected by

multicollinearity. On the other hand, multivariate statistics is an emerging method for

high-dimensional related metabolomics data, the most popular method of which is the

Projection to Latent Structures (PLS) regression (Abdi, 2010) and its classification

version PLS-DA (Discriminant Analysis) (van Velzen et al., 2008). Other data mining

methods such as ANOVA-simultaneous component analysis (ASCA) (Smilde et al., 2005)

and k-nearest neighbors (KNN) (Shi et al., 2004) have received increasing attention in

untargeted metabolomics data analysis. In a univariate approach, variables are analyzed

one by one using classical statistical tools (such as Student's t-test, ANOVA, or mixed

models), and only those variables with sufficiently small p-values are considered relevant.

However, when making multiple comparisons, a correction strategy (such as adjusted p-

values or q-values) should be used to reduce false discovery (Kell & Oliver, 2004). For

multivariate analysis, the model should always be validated to ensure that the results are

universal. In most cases, these types of statistical analyses do not help researchers

understand the detailed biological mechanisms behind these associations. Therefore,

researchers often combine existing biological function analyses to help understand the

underlying logic of the biological process behind these associations. For example,

metabolite set enrichment analysis (Persicke et al., 2012) or metabolic pathway analysis

(Kankainen et al., 2011) can be used to achieve this point.

After the analysis using the methods introduced above, receiver operating

https://paperpile.com/c/sp7FwR/LTf4
https://paperpile.com/c/sp7FwR/7DD5
https://paperpile.com/c/sp7FwR/SBfi
https://paperpile.com/c/sp7FwR/iQ0E
https://paperpile.com/c/sp7FwR/Ko8v
https://paperpile.com/c/sp7FwR/lPmD
https://paperpile.com/c/sp7FwR/cY0X
https://paperpile.com/c/sp7FwR/YzWd


57

characteristic (ROC) analysis is a good choice for selecting biomarkers. When

determining biomarkers, ROC analysis can be objectively neutral without being

influenced by traits/biological mechanisms (Xia et al., 2013).

With the development of scientific technology, although metabolomics analysis

techniques are becoming faster, cheaper, more reliable, and more accurate, the

simultaneous and unambiguous identification of all metabolites in biological systems

remains a challenge. With the establishment of the metabolomics database, a secondary

analysis of the published metabolomics data sets in similar populations collected under

similar research conditions called “meta-analysis” is performed. “meta-analysis” can

improve the accuracy of pattern analysis and biomarker prediction by using the collective

power of multiple studies to overcome research bias and small-sizes effects (Tseng et al.,

2012).

1.5.3 Application of metabolomics in health science studies

The fast-growing knowledge of the importance of metabolites in biological activities

makes metabolomics a popular field in understanding the mechanisms of the host in

keeping healthy or developing disease. Meanwhile, because the metabolome is

considered the final level to influence phenotype and function in system biology, the

application-driven nature of metabolomics makes it more broadly applicable in

developing biomarkers in various fields to diagnose disease and predict risk in health

science and screen favored traits in agriculture (Ghosh et al., 2015). I will give some

examples of how researchers apply metabolomics in different fields including livestock

studies where my work belongs.
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One of the hottest research areas using metabolomics methods is how commensal

bacteria interact with the host to maintain homeostasis or influence disease development

and treatment (Ursell et al., 2014). Using MS-based techniques, Schultz and Siuzdak's

group revealed that gut microbiota has a big impact on the metabolite profile of the host

blood and possibly influences the capacity of drug metabolism (Wikoff et al., 2009).

Alessio and Ravel's group compared the fecal metabolites from infants having a diet with

or without gluten using 1H NMR. They provided a way to identify potential metabolome

biomarkers to predict the onset of celiac autoimmune disease in infants by combining

genomic, microbiome, and metabolomics analysis (Sellitto et al., 2012).

Metabolomics is also increasingly applied in medical research, especially the health

issues closely related to metabolism such as cardiovascular diseases and diabetes.

Barbas's group examined the metabolic state of stable carotid atherosclerosis by

analyzing the plasma metabolome using GC-MS and 1H NMR together. They observed

that several metabolites that are strongly associated with insulin resistance were

significantly changed in the patients compared with the healthy control, suggesting those

metabolites could be potential biomarkers for diagnosis purposes (Teul et al., 2009).

Suhre et al. applied multi-platform metabolomics techniques to compare the plasma

metabolome of individuals with or without diabetes, and they found metabolites in the

pathways related to kidney dysfunction, lipid metabolism, and interaction with the gut

microflora were perturbed in diabetic individuals. Their work sheds light on using

metabolic biomarkers to diagnose and predict the progression of diabetes and its

complications (Suhre et al., 2010). Cancer cells are transformed cells and behave

differentially in metabolism pathways compared to healthy cells (Muñoz-Pinedo et al.,
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2012). By analyzing the tissue and plasma samples tracked by 13C-isotopomer using 1H

NMR in combination with GC-MS, the study by Fan et al. on lung cancer demonstrated

the altered anabolic metabolism of cancer cells which improves the understanding of how

cancer cells fulfill a high energy demand (Fan et al., 2009). Metabolomics is also widely

applied to identify biomarkers to detect and diagnose cancers from various types of

samples such as serum, urine, and saliva (Armitage & Barbas, 2014).

Another big aspect that metabolomics has been applied in is livestock study and

industry. It appears to be a novel direction in livestock breeding that uses metabolites as a

special intermediate phenotype (metabotype) only or in combination with conventional

approaches (e.g. genetic background) to link with the preferred phenotypes of economic

relevance. One of the main aims of recent studies is to use the data acquired using

metabolomics approaches to evaluate and predict reproductive and productive traits (e.g.

fertility, growth rate, slaughter weight, milk quality) (Fontanesi, 2016; Goldansaz et al.,

2017). The San Cristobal group used 1H NMR to generate fingerprints of plasma

metabolome from three main European breeds of growing pigs with which to predict

production phenotypes. They found that some economic phenotypes including lean meat

percentage and average daily feed intake were well-predicted by the corresponding

metabolomics data (Rohart et al., 2012). Melzer et al. used GC-MS to analyze the

metabolites in milk samples from Holstein cows and found that milk traits were

correlated with and could be predicted by particular metabolites. They also reported that

the metabotype (metabolites) were less affected by the influencing factors such as farm

and sire compared with traditional milk traits, suggesting the metabolite patterns of milk

are more reliable phenotypes to predict milk performance (Melzer et al., 2013). With
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more and more attention on metabotype in livestock breeding, it is not surprising that

genome-wide association studies with metabotypes (mGWAS) emerged, which helps

researchers to better understand how genetic variation and environmental factors

influence metabolic pathways (Abdi, 2010). One of the typical studies was that

Buitenhuis et al. calculated a genomic relationship matrix combining the identified milk

metabolites by 1H NMR and the genotypes of Holstein cows. They found that some milk

metabolites have high heritability and they also detected quantitative trait locus (QTL) for

some milk metabolites (Buitenhuis et al., 2013). This study uncovered the relationships

between genetic background and milk metabolic profiles and provides a theoretical

foundation for using metabotypes in livestock breeding.

Aside from the applications in assessing and predicting favorable economic traits,

metabolomics is also a useful approach to assessing animal health status and diagnosing

diseases as it is applied to human health. The Gronwald group investigated the possibility

of using milk metabolites to predict the risk of ketosis which is a common metabolic

disease in dairy cows. They performed NMR on milk and plasma samples from Holstein

cows and observed that glycerophosphocholine level and glycerophosphocholine to

phosphocholine ratio in milk were correlated with a low ketosis incidence, implying

those factors could be a prognostic biomarker for ketosis (Klein et al., 2012). Saleem and

colleagues studied the effect of a high-grain diet on the rumen health of cows by

examining the compounds in rumen fluid using a combination of 1H NMR, GC-MS, and

direct flow injection MS/MS. They observed that some toxic and pro-inflammatory

metabolites were enriched in the cows from high-grain-diet groups and those cows also

exhibited perturbed amino acid components in the rumen (Saleem et al., 2012).
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Although metabolomics is gaining increasing attention in livestock studies, some

trends of imbalanced applications can be seen in different research categories. One of the

main gaps is that most of the metabolomics studies were related to bovine. In addition,

despite the mined data indicating animal health is one of the main research areas applying

metabolomics (van Velzen et al., 2008), there still lacks studies on some key health issues

that might benefit from metabolomics study, for example, the pathogenesis and

prediction of mastitis in dairy cows (Mudaliar et al., 2017) and PRRS in pigs (Schroyen

et al., 2016). It is expected to see more applications of metabolomics approaches in other

livestock species in the future to help answer fundamental and practical questions with

regard to livestock production, reproduction, nutrition, and health.

1.6 Research focus and objectives

As stated above, infectious disease outbreaks have caused the modern pig industry

to suffer significant financial losses, and the infection frequently consists of a complex of

pathogens like PRDC. There are a number of reasons why selective breeding for disease

resistance might not be the best way to protect animal health and welfare. First of all,

traditional breeding programs focusing on high productive performance have resulted in

greater susceptibility for pigs to pathogen challenge, as this selection index theory

permits improvement in traits that are negatively associated (Guy et al., 2012). In

addition, disease resistance is usually specific to one single type of pathogen, which

makes it difficult to effectively control the diseases caused by multiple types of

pathogens. Moreover, the currently known key genes and mechanisms that are involved

in establishing disease resistance are not enough to guide its application in animal
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breeding (Guy et al., 2012; S. Zhao et al., 2012). Matching the goal of modern pig

production to maintain high productivity and improve animal welfare, our lab and

collaborators are targeting disease resilience aiming to better manage the potential

threatening polymicrobial disease challenge while maintaining a sustainable production

rate. This is also beneficial to circumvent the disadvantage of current disease treatment

by reducing the treatment cost and lowering the risk of antimicrobial resistance (Best et

al., 2008; Dawson et al., 2013). We are focusing on testing new phenotypes that can be

used to easily and accurately differentiate pigs with disease resilience, and at the same

time, exploring potential molecular biomarkers by using multi-omics approaches to

predict disease resilience in advance to disease challenge. The overall hypothesis of this

study is that pig disease resilience can be predicted by bio-molecules expression level in

the peripheral blood before exposure to pathogens.

Based on the introduction about the three types of biomolecules (APPs, gene

transcripts, metabolites) above, this study included three main sections. Considering that

APPs are important components in the innate immune response and the blood level of

some APPs have a dramatic change in responding to infection, the first section of my

project is examining specific APPs in the blood in advance to pathogen challenge to test

their potential in predicting disease resilience. With the technology progress and the

commercial application of high-throughput methods in omics study, the second and third

sections of my study were testing whether there were potential biomarkers for disease

resilience by extracting the information from the transcriptome of whole blood and

plasma metabolome using RNA-Seq and NMR, respectively. The objective of my study

was to test whether it is feasible and what specific APPs, gene transcripts, and serum

https://paperpile.com/c/sp7FwR/esiO+sarY
https://paperpile.com/c/sp7FwR/DzAd+bWI4
https://paperpile.com/c/sp7FwR/DzAd+bWI4


63

metabolites can be used as biomarkers to predict pig disease resilience.
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CHAPTER 2: Investigation of using acute
phase proteins as biomarkers to predict pig
disease resilience
2.1 Background

Bishop and Woolliams summarized the modern concept of disease resilience as a

trait of an animal with an ongoing infection without diminishing productivity (Bishop &

Woolliams, 2014). Given that disease resilience is an immune-related trait that cannot be

detected until getting a disease, it is necessary to explore markers to identify higher

resilience potential for breeding purposes before pigs get infected. APPs are proteins

whose levels change immediately after infection or exposure to other stressors, and this

process with concentration change of APPs is called the acute phase reaction (APR).

Infection or inflammatory response can lead to the release of APPs from liver

hepatocytes into circulation (Baumann & Gauldie, 1994). It has been shown that the

secretion of APP is mediated by the pro-inflammatory cytokines including IL-1, IL,-6,

and TNF-α (Yoshizaki, 2011). After synthesis, APPs participate in the innate immune

response and play important roles in restoring homeostasis and facilitating healing. As

introduced above, because of the rapid responding concentration change of APPs (even

prior to the manifestation of some symptoms) and the conserved activation process of

APR in mammals, APPs are widely used as biomarkers in the diagnosis of infectious

disease and inflammation in different types of animals (Cray et al., 2009; Murata et al.,

2004). In addition, APPs have also been used to assess the productive performance and

herd health of pigs (Clapperton et al., 2005; Piñeiro et al., 2007; van den Berg et al.,
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2007). Considering that resilience is related to both health status and productive

performance, I hypothesized that APPs could be potential biomarkers to predict pig

disease resilience.

There have been studies suggesting that some APPs were associated with infection

or inflammatory lesions in pigs (Eckersall, n.d.; Saini & Webert, 1991). Haptoglobin (HP)

is one of the strongly reacting APPs in most mammals. It can bind free hemoglobin in

plasma generated from hemolysis to neutralize and limit the resulting oxidative damage

to organs, and it is also thought to exert a bacteriostatic effect by restricting iron for

bacterial growth (Petersen et al., 2004; Putnam, 1975). Besides, HP may play an

important role in supporting the proliferation and development of adaptive immune cells

(Huntoon et al., 2008). C-reactive protein (CRP) is another strongly reacting APP in

humans and pigs and it was reported to function as an opsonin to bind bacteria and free

DNA in the innate immune system (Ng et al., 2004; Steel & Whitehead, 1994). CRP was

also thought to differentially regulate the classical and the alternative pathway of

complement activation during the innate immune response (Suankratay et al., 1998). An

early study using turpentine stimulation (which induces a sterile inflammatory lesion) in

pigs revealed that the serum concentrations of HP and CRP peaked at 48 hours after

treatment and increased by 2.6 fold and 8 fold, respectively, which suggested HP and

CRP may be potential markers for the detection of infection or inflammation (Eckersall et

al., 1996). Consistently, a study using experimental infection of A. pleuropneumoniae in

pigs showed that HP and CRP were highly induced and peaked after 48 hours of

inoculation with an over 20-fold and around 6-fold increase, respectively (Heegaard et al.,

1998). Infection of Myho and PRRSV in pigs was also reported to elevate the serum

https://paperpile.com/c/kBjzFm/ob3E+Ak7g+IIUo
https://paperpile.com/c/kBjzFm/7Utw+50hn
https://paperpile.com/c/kBjzFm/KRDP+Cexr
https://paperpile.com/c/kBjzFm/C80q
https://paperpile.com/c/kBjzFm/XnFJ+jP50
https://paperpile.com/c/kBjzFm/06Uz
https://paperpile.com/c/kBjzFm/TDcH
https://paperpile.com/c/kBjzFm/TDcH
https://paperpile.com/c/kBjzFm/zReo
https://paperpile.com/c/kBjzFm/zReo
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concentration of HP (Asai et al., 1999; Magnusson et al., 1999). Considering the quick

inducible response and association with host immune response, HP and CRP may have

the potential to indicate pig health and immune fitness, and thereby reflect pig resilience.

α1-acid glycoprotein (AGP) is an APP found in all mammals which can bind and inhibit

the pro-inflammatory activity of lipopolysaccharide and may have broad functions in

regulating immune response and inflammation following bacterial infection (Cray et al.,

2009; Hochepied et al., 2003; Huang et al., 2012). Even though AGP can be induced by

infection and inflammation, its responsive increase in serum is species-dependent (Bteich,

2019). Studies on pigs suggested that the serum concentration of AGP is not remarkably

changed during a typical APR compared with other APPs (Eckersall et al., 1996; Petersen

et al., 2004). Thus, I included AGP as a non-inducible APP in the pathogen challenge

study.

In this chapter, I will focus on those three APPs (HP, CRP, and AGP) to explore

whether APP can function as biomarkers to predict disease resilience in pigs under the

stress of pathogens in a natural disease challenge model as stated below.

2.2 Methods

The University of Alberta Animal Care and Use Committee for Livestock approved

the experiments detailed in this thesis (AUP00002227). The pig handling and treatment

were in accordance with the guidelines from the Canadian Council on Animal Care

(CCAC) (Abul Abbas et al., 2019). All the animal experiments and sample collection

were carried out at the Centre for Research in Animal Science Deschambault (CRSAD)

for the quarantine and acclimatization unit and the Centre de développement du porc du

https://paperpile.com/c/kBjzFm/ToKW+f8XH
https://paperpile.com/c/kBjzFm/LEUC+eLIF+iANP
https://paperpile.com/c/kBjzFm/LEUC+eLIF+iANP
https://paperpile.com/c/kBjzFm/tL5w
https://paperpile.com/c/kBjzFm/tL5w
https://paperpile.com/c/kBjzFm/Cexr+TDcH
https://paperpile.com/c/kBjzFm/Cexr+TDcH
https://paperpile.com/c/kBjzFm/jkDu
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Québec inc. (CDPQ) for the test station in Deschambault in Quebec City, Canada. CDPQ

had full oversight on the project along with the herd veterinarians.

2.2.1 Natural Disease Challenge Model

This natural disease challenge model was designed to imitate a severe health

challenge as may be experienced in some commercial pig farms when infectious diseases

spread. Our natural disease challenge model recruited healthy, crossbred (Landrace x

Yorkshire) barrows (~21 days of age) from seven different multiplier farms which were

all enrolled by members of PigGen Canada. Each batch was supplied by a single breeding

company. All of these qualified farms were free of, or under the effective control of, the

diseases associated with infections including PEDV, TGEV, PRRSV, PCV2, SIV,

Pasteurella multocida, Haemophilus parasuis, Brachyspira hyodysenteriae, Mhyo, APP,

Staphylococcus hyicus, and Sarcoptes scabiei var suis, confirmed by the veterinarian for

at least six months. Until the work of this thesis, this model was established with fourteen

batches of pigs (n=893 in total) which were further denominated as cycle 1 for batches 1

– 7 and cycle 2 for batches 8 – 14. For the disease challenge, those healthy weaned pigs

(60-75pigs/batch) were transported from their multiplier herds every three weeks to the

Centre de developpement du porc du Quebec inc. (CDPQ) test station in Deschambault

(Quebec City, Canada).

For the batches in cycle 1, multiplier pigs were initially housed in a nursery unit of

the test station for 3 weeks after arriving at CDPQ for quarantine and acclimatization.

Then, multiplier pigs were transferred to the test unit for natural disease challenge by

introducing the different pathogens with seeder pigs from commercial farms
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demonstrating the diseases. The first 4 batches of healthy multiplier pigs were challenged

in this way with four groups of seeder pigs (67 pigs in total). Pathogens, including three

strains of PRRSV, two strains of SIV, Mhyo, Haemophilus parasuis, Brachyspira

hampsonii, Salmonella enterica Serovar typhimurium, and Streptococcus suis,

Cystoisospora suis, and Ascaris suum, were confirmed in the seeder pigs within the first

week of arrival. Among the 67 seeder pigs, the first three groups (37 pigs in total) of 42-

day old pigs were selected from the commercial farms where that had been confirmed

positive for PRRSV infection, while the rest were finisher stage pigs (28 in total) from

commercial farms with detection of enzootic pneumonia caused by Mhyo. Most healthy

multiplier pigs from the first 4 batches were housed with the seeder pigs in separate pens

next to each other allowing direct nose-to-nose contact. Only 7-8 multiplier pigs from

batch 4 were arranged with 2 seeder pigs in the same pen to induce cross-infection. After

confirming the establishment of diseases in the 4 batches of multiplier pigs, they worked

as “new seeder pigs” to challenge the next batches of newly arrived healthy multiplier

pigs in the grower-finisher unit, and this continuous challenging pattern applied to all the

following healthy multiplier pigs without introducing any more unhealthy commercial

pigs (Figure 2.1). After 6 weeks from arrival at CDPQ, the multiplier pigs were

transferred to the grower-finisher unit in the test station until slaughtering age or weight.

For the healthy quarantine unit, the test unit of the late nursery stage, and the test

unit of the grower-finisher stage, respectively, there were approximately 4, 7, and 13 pigs

per pen for each stage. It should be noted that the nursery and test units were located in

the same building during cycle 1, separated by a hallway and under tight biosecurity

supervision (Figure 2.1). However, biosecurity practices failed to prevent pathogen
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dissemination from the test unit to the newly arrived multiplier pigs. Thus, for the cycles

following cycle 1, a nursery unit (CRSAD) located 1 km away from the test unit was

established to keep it free of infection during the nursery stage. Besides, feed medication

during the grower-finisher phase was pulsed and vaccination for PCV2 (Ingelvac

CircoFLEX®) two weeks after entry was applied to the multiplier pigs to reduce

mortality and treatment frequency upon challenge.

This model allowed us to assess the defined phenotypes and genetic variations

associated with disease resilience in an environment simulating real commercial

situations including infections by multiple pathogens and cross-transmission among pigs.

The most important reason for using this model is that we aimed to use the animal data

and samples collected before the pathogen challenge to predict the health status and

productive performance of pigs under pathogen challenge. Thus, the samples used in this

experiment were collected within the first week of the pig’s arrival from the breeding

company at the healthy quarantine nursery to avoid contamination in pigs before the

challenging step.

Besides cycles 1 and 2 described above, another 4 cycles of multiplier pigs (1850

pigs in total) were introduced in this natural disease challenge model following the

protocol for Cycle 2. Seven batches (26-32) of pigs from Cycle 4 and Cycle 5 were

selected for the metabolome analysis experiment including a total of 460 individuals

(described in Chapter 4). Four batches (8, 9, 10, 12) of pigs in total of 209 pigs from

Cycle 7 were selected to validate the findings of transcriptome analysis (described in

Chapter 3).
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Figure 2.1 Schematic of pig arrangement in the test station of the natural disease
challenge model.

Multiplier pigs were challenged after three weeks of arrival at the test station by allowing
nose-to-nose contact with commercial seeder pigs (cycle 1) or the preceding batch of
challenged pigs (cycles 2-6) to predict the health status and performance (phenotypes) of
pigs under pathogen challenge. Thus, the samples used in this experiment were collected
within the first week of the pig’s arrival from the breeding company at the healthy
quarantine nursery to avoid contamination in pigs before the challenging step.
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2.2.2 Tracking of pig health status and performance traits

Random blood samples from multiplier pigs (16 to 20 in total, 4 pigs per pen) after 4

weeks and 6 weeks post challenging were collected to confirm infection of specific

pathogens including PRRSV, SIV, Mhyo, and Actinobacillus pleuropneumoniae, using

ELISA. The level of mortality, clinical symptoms, and treatments was carefully

monitored and recorded weekly by the veterinary advisory team during the whole

experiment. Pigs identified with disease exhibiting clinical symptoms were treated

individually by injectable medication directed and approved by the veterinarians. Group

medication treatment through watering (nursery stage) or feeding (grower-finisher stage),

and even amendment of challenging pattern (e.g. suspending nose-nose contact) was

applied for the consideration of animal welfare when an increased mortality rate was

observed (e.g. a cutoff of 8% for nursery stage). The phenotype data “treatment

frequency” indicates the number of treatments that an individual pig received during the

experiment and involves the injection of any drug. It does not take into account group

treatment through medicated water or feed.

Clinical indications, disease severity, and treatment response including those with

intolerable suffering from illness and non-response to treatment—were taken into

consideration while deciding whether to carry out euthanasia (defined as humane end

points for the model). Certain circumstances, such as a fractured or dislocated joint, non-

weight-bearing lameness that persisted after seven days of treatment, and acute peripheral

cyanosis coupled with stomach breathing, also warranted performing an emergency

euthanasia procedure without the consent of veterinarians. All the humane interventions

followed the regulations established by the Animal Protection Committee and an annual
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approval certificate with authorization number 15PO283 issued by Comité de Protection

des Animaux.

It should be pointed out that only the cases of death due to infectious disease were

counted for mortality in this study. However, the death that resulted indirectly from

infections, such as traumatic injuries, herniation, sarcoptic mange, and death caused by

blood sampling, was excluded from the data analysis.

Performance traits in this study include age, the weight at weaning, nursery, and

grower-finisher recorded every three weeks, slaughter age and weight, backfat and

muscle thickness at slaughter, carcass weight, and lean yield. The daily feed intake of

nursery pigs was recorded manually by pen while for each individual grower-finisher,

daily feed intake amount and frequency were automatically archived specifically to their

electronic ear tag using the Insentec IVOG system. Pigs without symptoms and reaching

the targeted off-test live weight (130 kg) or the age of 24 weeks were marketed. Death

age and weight of pigs including the euthanized ones were also recorded. As briefly

mentioned above, daily mortality and treatment rate and corresponding causes were

carefully recorded for assessment by the veterinary advisory team on a weekly basis.

2.2.3 Blood sample collection and preparation

The blood samples were collected from multiplier pigs in the natural disease

challenge model described above at around 26, 54, and 82 days of age (Table 2.1).

Bleeding was performed by the veterinarian to collect the blood in Vacutainer® blood

collection tubes (BD, New Jersey, USA) containing Ethylene Diamine Triacetic Acid

(EDTA). Blood samples were then processed to overnight shipping on ice to the
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University of Alberta for the following preparation within 24 to 48 h upon sampling.

To determine the complete blood count (CBC), the blood samples were

homogenized and then loaded on the ADVIA® 2120i Hematology System (Siemens

Healthineers, Erlangen, Germany). The CBC data used in this study include (1) the exact

cell number count (103/μL): white blood cells (WBC), red blood cells (RBC),

lymphocytes (Lym), monocytes (Mono), neutrophils (Neu), eosinophils (Eos), basophils

(Bas), platelets; and (2) the relative percentage of Lym, Mono, Neu, Eos, and Bas in total

WBCs. For plasma preparation, EDTA tubes were centrifuged at 1,500 rpm for 10

minutes at 4°C to separate the plasma from blood cells. The plasma samples were

selected to determine APP concentration from cycle1 batch3, due to its appropriate

morbidity and mortality which will be explained below. An ELISA kit (Life Diagnostics,

West Goshen, USA) was then used to measure the concentration of the three APPs (HP,

CRP, AGP). The 10X Diluent and 20X Wash Solutions from the ELISA kit were diluted

to the 1X working concentration using sterile distilled water. According to the

physiological concentration range of the APP proteins, plasma samples were diluted by

1600, 500, and 2000 fold for HP, CRP, and AGP testing, respectively, with 1x Diluent

solution before the ELISA assay which will be described below.

2.2.4 Pig sample selection for APP study

The plasma samples were chosen after the collection of all samples from cycle1 pigs.

According to the overall mortality record of the 7 batches in cycle 1 (Table 2.2) batches 4,

5, and 6 had a high death rate of around 50% compared to other batches, which indicates

an overwhelming response of those pigs to the disease possibly due to over-challenging.



74

In contrast, the mortality rate was less than 5% in batch 1, indicating the challenge was

too subtle. Both extreme cases are not appropriate to be used for APP determination.

From this point, batches 2, 3, and 7 were considered candidates.

Further inspection of the sickness and mortality rate of those 3 batches of pigs at the

times of each bleeding (Table 2.3), showed there were 70% sick pigs in batch 2 at the

first time of bleeding while batches 3 and 7 only had 1 and 5 sick pigs respectively. Batch

2 was excluded since the high sick rate was observed at first bleeding only after 1 week

of arrival in the test station even though the pigs were maintained in quarantine units. For

the two candidate batches left, batch 7 maintained low sick rate (≦ 10%) within the

whole experiment while batch 3 pigs with intermediate death (17.65%) and sick (1.69%-

39.22%) rate appeared to be more appropriate to assess different responses in the natural

disease challenge model. Batch 1 had continuous mild sick rates (≦10%) indicating

insufficient disease pressure. Therefore, to better differentiate pig responses to pathogens

based on their state of health, batch 3 from cycle 1 was selected for the APP analysis.
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Table 2.1 Blood sampling for each batch of test pigs in the natural disease challenge
model.

The pig age listed was approximate for the whole batch. Old and new quarantine unit was
described above that are differentiated by the distance from the test unit. EDTA indicates
tubes with EDTA (BD Vacutainer® blood collection tubes, New Jersey, USA) to prevent
blood coagulation for plasma APP measurement. Tempus indicates TempusTM Blood
RNA tube (Thermo Fisher Scientific Inc., Wilmington, USA) for RNA extraction which
will be described in the next chapter. N/A indicates sample collection was not applied in
this study.

Bleeding

Time
after

arrival
(days)

Pig age

(day±2)

Pig
location

(Cycle 1)

Pig location

(Cycle 2-6)
Pen
type Sample tube Sampled

pigs

1 6 26 Quarantine
unit

(old)

Quarantine
unit

(new) Nursery

EDTA,Tempus

Whole batch
2 20 40 N/A

3 34 54
Test unit Test unit

EDTA,Tempus

4 62 82 Grower-
finisher EDTA,Tempus
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Table 2.2Mortality rate of the 7 batches of test pigs at the end of cycle 1

Batch Total number Death Mortality rate %

1 56 2 3.57

2 69 16 23.19

3 60 18 30.00

4 76 40 52.63

5 60 32 53.33

6 59 29 49.15

7 55 9 16.36
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Table 2.3Mortality and sick rate of the 7 batches of test pigs from cycle 1 at each time of
bleeding

1st bleeding

Batch Date Health Sick Sick rate Death Mortality rate

1 15/11/19 55 0 0.00 0 0.00

2 15/12/7 40 28 70.00 1 1.47

3 15/12/29 59 1 1.69 0 0.00

4 16/1/19 73 3 4.11 0 0.00

5 16/2/9 59 1 1.69 0 0.00

6 16/3/1 36 23 63.89 0 0.00

7 16/3/22 50 5 10.00 0 0.00

2nd bleeding

1 15/12/15 49 5 9.26 1 1.85

2 16/1/5 37 31 45.59 0 0.00

3 16/1/26 47 13 21.67 0 0.00

4 16/2/16 58 14 19.44 3 4.17

5 16/3/8 49 8 14.04 3 5.26

6 16/3/29 18 34 65.38 7 13.46

7 16/4/19 48 3 5.88 4 7.84

3rd bleeding

1 16/1/12 47 7 12.96 0 0.00

2 16/2/2 34 26 43.33 8 13.33

3 16/2/23 31 20 39.22 9 17.65

4 16/3/5 20 26 56.52 27 58.70

5 16/4/5 22 10 31.25 25 78.13

6 16/4/26 15 18 54.55 19 57.58

7 16/5/7 45 5 10.00 1 2.00
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2.2.5 ELISA assay for pig HP, CRP, and AGP

The ELISA assay used in this chapter was performed following the manufacturer’s

instructions with minor modifications. Briefly, APP standard protein from the kit was

reconstituted by adding 1 ml of the 1x diluent and mixed gently until dissolved and

would be good to be used within 4 hours of reconstitution. Working concentrations of

standard APP proteins including 150, 75, 37.5, 18.75, 9.38, and 4.67 ng/ml were prepared

by serial dilution using the 1x diluent.

Standards or diluted samples (100 μl/well) in duplicate were added to the coated

strip wells (96 well plates) secured in the plate holder and then incubated on an orbital

micro-plate shaker at 150 rpm at room temperature for 45 minutes. The supernatant was

removed and the wells were washed for 5 times with 400μl 1x wash solution using a

plate washer and then struck sharply onto absorbent paper or paper towel to remove all

residual liquid. The entire wash procedure was performed as quickly as possible after

incubation. HRP-conjugated antibody was dispensed into each well (100 μl) and the plate

was incubated on an orbital micro-plate shaker at 150 rpm at room temperature for 45

minutes. After incubation, wells were washed as detailed above. Then, 100 μl of TMB

reagent was added into each well and further incubated on an orbital micro-plate shaker

at 150 rpm at room temperature for 20 minutes. The reaction was stopped by adding

100μl of Stop solution to each well and gently mixing the plate to make sure that the blue

color was totally changed into yellow. The ELISA result was determined by measuring

the absorbance at 450 nm with a microtiter plate reader within 15 minutes after the

reaction was stopped.
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The standard curve was constructed by plotting the absorbance values of the

standards versus the concentrations. The actual concentrations of plasma APPs were

calculated by plugging the absorbance into the standard curve and then multiplying the

dilution factor. The samples were re-diluted appropriately and the ELISA assay was

repeated when the A450 values of a tested sample fall out of the range of the standard

curve.

2.2.6 Statistical analysis

One-way ANOVA was used to compare the APP concentrations in different groups.

Significance is labeled in following plots for the comparison between two specific groups

where the P-value was less than 0.05 (*=P<0.05, **=P<0.01, ***=P<0.001,

****=P<0.0001). Spearman correlation analysis was performed to analyze the correlation

of APP concentrations or concentration changes with series of pig health and productive

traits.

2.3 Results

2.3.1 Comparison of APP plasma concentration among the

selected six groups of pigs in the natural disease challenge

model.

Among the 60 pigs from batch 3/cycle 1, the pigs were further selected to form 6

groups (Table 2.4) whose plasma samples were used in the APP study. Group 1 and

Group 2 pigs all stayed healthy during the whole experiment while having the lowest and
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highest body weight at the end of the experiment, respectively. The first two groups

represent the resistant phenotype with differential productive performance. Group 3 was

found sick at the early time of the disease challenge (week 4 of arrival) but recovered

quickly and stayed healthy during the following period of the experiment, which

represents a quick resolving phenotype. Group 4 were pigs found sick also at the early

point (week 4 of arrival) and still suffered the disease afterward till the end or even died

quickly. Group 4 was thus considered the susceptible phenotype. The rest of the pigs

from batch 3 were detected with clinical signs at a relatively later stage of the experiment,

and the ones that stayed alive and maintained relatively high productive performance

were assigned to Group 5 whereas the ones died and died at the late stage of the

experiment were designated as Group 6. Of note, Group 5 is more similar matching the

criteria of disease resilient but Group 6 was the worst type of pigs in actual farming cases

that develop disease and die at the relatively later stage of pig production and cause

dramatic economic loss.

Blood samples were collected from the multiplier pigs following the described plan

in Table 2.1, and the ELISA assay was performed to determine the plasma concentration

of AGP, HP, and CRP from the grouped pigs (groups 1-6) listed in Table 2.4. While there

was no significant difference among the six groups of pigs for HP and CRP plasma

concentration before challenging, AGP was found to present a significantly higher

concentration in Group 6 than most of the other groups except Group 1 (Figure 2.2A). In

contrast, the “resilient” Group 5 showed the lowest AGP level. No significant difference

between the three APPs was detected at the early stage (Blood 3) post-disease challenge

and for the later stage (Blood 4), a significant difference was only observed for HP
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Table 2.4 Grouping of the pigs from batch 3 of cycle 1 and the weight record during the
stay in the test station.

The record of grouped pigs is highlighted by a light grey background and the shadow
area indicates where the data is not applicable.

CDPQ
Tag

Weight
1 (lbs,
21d)

Weight
2 (lbs,
42d)

Weight
3 (lbs,
63d)

Weight
4 (lbs,
84d)

Weight
5 (lbs,
105d)

Weight
6 (lbs,
126d)

Weight
7 (lbs,
147d)

Weight
8 (lbs,
168d)

Premature
death date

Premature
death
weight
(lbs)

Grouping

171 7.3 12.5 19.5 21.5 31.5 47.5 58.5 75.5

Group 1
158 8.4 15 19.5 28 35 45.5 59 76

145 6.8 11 16.5 24 33.5 44.5 55 82.5

172 7.9 12 18.5 24 29.5 45.5 61.5 82.5

140 6.6 12.5 18 26.5 36.5 50 65.5 85.5
162 8.4 15.5 19 30 39 58 65.5 91.5
181 7.3 12.5 19.5 25 37 53 70.5 93
168 7.3 13.5 21 28.5 46 62 76 93
159 7.5 13 20 25.5 38.5 59 73 93.5
165 5.7 10.5 18 25.5 40 62 76 93.5
132 5.3 9.5 15 24 40 56 74 96.5
160 7.9 11 17 28 43.5 66.5 77 96.5
166 7.3 13 18.5 26 39 60 74.5 97
183 7.4 13.5 20 27.5 41 57.5 76 100
129 5.6 11.5 12.5 24.5 37.5 59 72.5 102
154 7.8 15.5 24.5 30 43 61.5 77.5 102
156 8.6 14.5 21.5 31.5 42.5 69 83 103

Group 2

176 7.7 14 20.5 28.5 46 63.5 81.5 103.5
157 7.8 14.5 22.5 32.5 47.5 66 80.5 103.5
142 6.8 12.5 19 30 45.5 60 81.5 104.5

185 7.5 11.5 20 30 48.5 68 82 104.5

128 4.7 9.5 14 22 34 51.5 63 85.5

Group 3
138 5.6 10 14 22 36 53.5 66 92
177 8.3 14 21 26 38.5 55.5 71.5 97.5
147 6.6 12 20.5 31.5 52 69.5 87.5 109

155 7.5 13 19.5 25.5 32 47 62 88.5
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141 5.8 10.5 14.5 18.5 27.5 43 55.5 74

Group 4

163 5.8 9 15.5 20.5 23.5 36.5 46 66

143 6.3 11 17.5 16.5 22-Feb-16 16

151 6.2 10.5 16.5 20 27-Feb-16 16

180 7 10.5 18 17-Feb-16 16

184 7.8 10.5 14.5 17.5 24.5 31.5 42.5 26-Apr-16 50

161 8.8 14 22.5 27 38 59 76 96.5

Group 5
135 5.2 10 16.5 24 40 56.5 72.5 94
174 6.8 11.5 18.5 25 36 55.5 70.5 93.5
150 7.3 11.5 21 26 38.5 57 65.5 88
175 7 12.5 18 20 32.5 52 65 85
144 6.3 11.5 19 24 31 41.5 55 84
170 7.6 16.5 20 18.5 31 46.5 55 74.5
179 7.8 13 21 22.5 30 40.5 51.5 72.5
131 5.7 10.5 20.5 28.5 29 34.5 40 62
178 8.6 14 21 20.5 22.5 34 39.5 60
136 5.7 12 16 16.5 21 31.5 39 51
146 7.7 14.5 17 4-Feb-16 13
149 7.6 12.5 15.5 4-Feb-16 13
130 6 12 18.5 16-Feb-16 16
173 6.6 12 16 17-Feb-16 12
137 6 12.5 18.5 17 21-Feb-16 16
153 6.3 12.5 17 13 21-Feb-16 15
148 7.9 13.5 18.5 17 24-Feb-16 15

Group 6
152 7.2 13.5 19.5 24 25-Feb-16 20.5
182 8.4 14.5 22.5 26 29-Feb-16 26
164 8 12.5 20 18 1-Mar-16 20
134 6.7 13 20 23 17.5 15-Mar-16 17.5
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between Groups 3 and 6. Therefore, the plasma concentration of HP and CRP before and

after the challenge seems hard to reflect the feature of any of the six groups of pigs in the

context of this natural disease challenge model. Interestingly, the AGP plasma level

stayed relatively lower in the “resilience” group compared to the rest of the groups across

the three measurements.

Heatmaps were generated and shown in Figure 2.2B to better describe the trend of

concentration change for each APP in the six groups. It is clear that all groups' plasma

levels of HP and CRP rose sharply in response to the disease challenge, which is

consistent with earlier research showing that these two proteins functioned as positive

APPs in pigs’ APR. In contrast, AGP was maintained reasonably stable in plasma with

little fluctuation compared to the other two APPs evaluated in this experiment. To further

look into the APP response in individual pigs instead of pooling results across the three

time points, curves were plotted depicting specific APP changes in each pig of the six

groups and are shown in Figure 2.2 C. Similar to showing the trend in the heatmaps that

CRP and HP increased dramatically as with the disease challenge, however, in contrast to

most pigs in each group, some pigs were detected with reducing concentration from the

early stage of challenging to the later stage. Interestingly, this rise-then-drop trend across

the three bleedings was not found in all the pigs from the “susceptible” group (Group 4),

implicating either a non-sustained immune response that cannot efficiently control

infection or an overwhelming immune response that largely impaired host homeostasis.

Nevertheless, it is still difficult to differentiate the two production-favoring groups

(Group 2 and Group 5) from the others.

Figure 2.2 illustrates the comparison of APP concentrations side-by-side among the
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three blood samples and the six groups of pigs, it is also worthwhile to compare the time

course fold change of each APP in different groups. For this purpose, three ratios of APP

concentration were calculated to show the change of APP from before-challenging to

early-challenged (B3/B1), before-challenging to late-challenged (B4/B1), and early-

challenged to late-challenged (B4/B3) as listed in Figure 2.3. The fold changes of AGP

were all around 1 in all the six groups, indicating its plasma concentration is independent

of our challenging impact. The two positive APPs, HP and CRP, responded rapidly to the

initial disease challenge with HP (~19.4 fold) showing a greater changing fold than CRP

(~5.2 fold). At a later stage after challenging, Groups 2 and 5 still showed an increase of

CRP for around 5 to 10 fold from the early challenging stage while HP concentration was

only raised slightly afterward. The resilience group was found to have the smallest

changing fold of HP responding to the initial challenge (B3/B1) but there was no

significance detected compared to the rest of the groups (Figure 2.3). It is interesting that

the Group 6 showed the most dramatic responding level of HP and reached significance

when compared with Group 3 for B4/B1, suggesting that HP level changed differently

between those two groups in responding to the disease challenge. This phenomenon was

similarly detected for the change of CRP. However, in contrast to other groups, the CRP

level in the resilience group did not strongly respond to the initial challenge but greatly

up-regulated at the later stage in our model. This exclusive changing pattern found in the

resilience group (Group 5) may indicate a relatively dull response of CRP to acute

infections. Therefore, I successfully recapitulated the response of AGP, HP, and CRP in

our disease model as in previous studies. There was a unique responding pattern of CRP

in the resilience group, making CRP a better potential marker to differentiate the
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economy-favorable pigs than HP and AGP.

2.3.2 Correlation of APP plasma concentration with pig health

and productive traits

In real farms, how livestock defend against a complex disease challenge is primarily

based on their immune system. To varying degrees, livestock genetic variations affect

their defensive responses to diseases such as resistant or susceptible. Meanwhile, the

host's ability to control the disease has an impact on livestock productivity, either directly

or indirectly. Thus, precise characterization of disease resilience relies on both health and

productive traits. As the results showed above that the three APPs did respond

differentially to our disease challenge model among the six groups of pigs, it is

meaningful to dissect the associated health and productive traits that we used to define

the pig groups to characterize how each of these traits correlates with the APP

concentration or its changing amplitude. For this purpose, the Spearman correlation test

was performed on the data of nine single measurements of APPs (3 bleeding for 3 APPs)

and a nine-fold change of APPs (B3/B1, B4/B1, B4/B3 for 3 APPs) collected from the

six groups of pigs with a series of health and productive records.
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Figure 2.2 Comparison of plasma AGP, HP, and CRP concentration determined by
ELISA among the defined six groups of pigs in batch 3 of cycle 1 (Table 2.4) in the
natural disease challenge model.

(A) Statistical comparison of the three APPs’ plasma concentrations in the six groups at
the time of each bleeding. Phenotypes of each pig group defined by the health and
production records are listed on the right (B) Heatmap showing time course change of the
plasma concentration for the three APPs before and after challenging. The numbers listed
inside of the plots are the mean values of APP concentrations pooled from each group of
pigs. (C) Tracking of APP concentration for each pig in the groups from the three times
of bleeding during the experiment.
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Figure 2.3 Fold change of plasma concentration between samples from each bleeding for
the three APPs.

The ratio of B3 (Blood 3)/B1 (Blood 1), B4 (Blood4)/B1, and B4/B3 were calculated for
each pig and then pooled based on the grouping shown in Table 2.4.
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Peripheral blood features are a critical readout of the host's health status in

responding to infections. We focused on the CBC data that were acquired from the three

times bleeding and represented the peripheral blood cell concentration and composition at

the same time when the APP concentrations were determined. As shown in Figure 2.4 A,

AGP plasma concentration was generally positively correlated with most blood cells

except eosinophils before challenging while switching to negatively correlated upon

disease challenge. In comparison, HP and CRP showed various and distinct correlations

with different types of blood cells. Of note, a strong positive correlation between HP and

Neu(%) was observed early after the disease challenge but faded afterward, indicating an

acute response of neutrophil proliferation in our model during early infection. This

correlation was not dramatic for CRP probably due to less abundant change of plasma

concentration in response to challenge compared with HP. Interestingly, CRP showed a

slower induction than HP in our model (Figure 2.3), this is reflected by its stronger

correlation with blood cell change from B4/B3 than that from B3/B1 whereas HP has the

reverse trend. Among the plots shown in Figure 2.4 B, a strong positive correlation

between HP and WBC from B3/B1 suggests a quick mobilization of the innate immune

system during early response while the positive correlation between CRP and Lym from

B4/B3 may indicate the proliferation of adaptive immune response which happens at a

relatively later stage of infection. The broad variations observed for these three APPs in

terms of their association with different types of blood cells indicate they play distinct

roles before and after infection is established.
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Figure 2.4 Spearman correlation analysis of CBC data with APP concentration from each
bleeding and fold change between blood sampling.
(A) Heatmap of correlation coefficient (denoted by “cor”) for all the groups of CBC/APP
tested. Abbreviations of cell types are listed in 2.2.3 (B) List of dot plots for the
correlation which has a P-value less than 0.1. P-value and cor value are shown inside of
each plot (see also Table 2.5).
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Table 2.5 List of correlation coefficient values from Figure 2.4A.

Statistically significant correlations are labeled (*=P<0.05, **=P<0.01).
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The first treatment age and treatment frequency are not only important health

indicators but also components of farm expenses that should not be neglected.

Correlation analysis with the APP concentrations across the time range of three blood

samples demonstrated generally complementary trends of correlation between the first

treatment age and treatment frequency, particularly after infection was established

(Figure 2.5A). At the early stage of the challenge, either absolute concentrations or fold

changes of all the three APPs showed a negative or positive correlation with the first

treatment age or treatment frequency, respectively. Considering it is more favorable for

pig health and farm economy with a higher age of first treatment but a lower treatment

frequency, these correlations provide great evidence that the elevation of three APPs in

plasma may work as sensitive markers indicating early infections. Intriguingly, a positive

correlation was observed for CRP B4/B3 but not HP with the first treatment age, and

correspondingly a negative correlation with the treatment frequency, implying CRP

concentration at the later stage of challenging may reflect a stronger adaptive immunity.

Although the concentration of AGP did not change markedly after challenging,

significant negative correlations were observed for both AGP B3 and AGP B3/B1 with

the first treatment age (Figure 2.5 B). Combined with the variable level of AGP in B3

among tested pigs (Figure 2.2C), the real-time concentration of AGP early after the

challenge may predict future pig health status under pathogen-challenging pressure.

Improving production performance is the key part of the ultimate goal for pig

selection and breeding. It would be attractive to look into whether APP concentration

could provide some evidence for selecting pig production-related traits. I started with the

correlation analysis between the APP concentrations with the pig weight trait here
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expressed by ADG. Although there was not a very strong correlation when looking at the

ADG around the three bleeding times with the corresponding concentrations of the three

APPs, pathogen challenging definitely changed the direction of the correlation trend from

global slight positive correlation to negative (Figure 2.6 A). This observation might be

explained by the increased APP concentration resulting from acute infections whereas the

challenging stress slowed down the weight gain. When the analysis was performed on

pigs classified as dead and alive during the experiment, it is intriguing that only the APP

concentration or concentration change in pigs that died before the end of the experiment

showed a strong correlation with their ADG. Among the three APPs tested, CRP is the

only one that showed a significant negative correlation with ADG before challenging in

the dead pig group (Figure 2.6 B), implying CRP concentration at the steady state could

be a valuable marker when analyzing in combination with pig growth. In addition, the

significant positive correlation between HP B3/B1 values and dead pig ADGs may point

to aberrant host response to the disease challenge, which then caused a sharp loss of

growth rate with disease going on as demonstrated by the reverse correlation of the ADG

with HP B4 or HP B4/B1.

Another critical aspect to evaluate pig production performance and health status is

pig feeding. I then analyzed the correlation between APP data and feed-related traits

including feed intake (FI), average feed intake (AFI), and feed conversion ratio (FCR)

(Figure 2.7). Similar to the trend with pig weight traits, the APP concentration did not

provide strong hints to assess pig appetite (FI or AFI) when analyzing all the tested pigs

together. A subtle trend for the relationship between FI and APP concentrations was an

overall negative correlation as shown in Figure 2.7 B. Of note, more apparent correlations
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were observed between FCR and APP data in the death pig group than in the live and

total, which is reminiscent of the results in Figure 2.6 when analyzing weight-related

traits. The three plots in Figure 2.7 B that show a significant correlation between APP

data and FCR_total might be resulting from the more number of live pigs in the

experiment which maintained a relatively stable FCR value. Unexpectedly, given that a

low FCR and a higher ADG would be more favorable for a farm regarding profitability,

the general correlation trends with APP data between FCR and ADG in dead pigs are not

in contrast to each other. This could be explained by the different recording times for pig

weight and FI with the latter one starting late in grower-finisher pigs whose weight might

have more fluctuation compared to that across the whole experiment time range.

Nevertheless, it is apparent that pigs that stayed alive across the experiment have

relatively stable FCR compared to the dead individuals, highlighting the importance of

monitoring FI and weight in the pig industry to assess pig health status.
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Figure 2.5 Spearman correlation analysis of treatment records with APP concentration
from each bleeding and fold change between blood sampling.

(A) Heatmap of the correlation coefficient for the first treatment age and treatment
frequency with the APP data. Note that only pigs who received clinical treatment are
included in the correlation analysis for the first treatment age. (B) List of dot plots for the
correlation which has a P-value less than 0.1. P-value and cor value are shown inside of
each plot.
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Table 2.6 List of correlation coefficient values from Figure 2.5A.

Statistically significant correlations are labeled (*=P<0.05, **=P<0.01).
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Figure 2.6 Spearman correlation analysis of pig weight records with APP concentration
from each bleeding and fold change between blood sampling.

(A) Heatmap of the correlation coefficient for the pig weight traits represented by the
average daily gain (ADG) with the APP data. ADG values were calculated using the
equation: (Weight on day B – (minus) Weight on day A)/(days from A to B). ADG total
indicates the ADG of all the tested pigs from the start of the experiment to the slaughter
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or death age, and the ADG alive and death separate the pigs based on whether they stayed
alive until the slaughter age. ADG B1, ADG B3, and ADG B4 means the ADG around
the three bleeding times (Time range for ADG B1, B3, and B4 are day 10 to 20, day 37 to
58, and day 58-79, respectively, from the start of the experiment). (B) List of dot plots for
the correlation which has a P-value less than 0.1. P-value and cor value are shown inside
of each plot.
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Table 2.7 List of correlation coefficient values from Figure 2.6A.

Statistically significant correlations are labeled (*=P<0.05, **=P<0.01).
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Figure 2.7 Spearman correlation analysis of pig feed records with APP concentration
from each bleeding and fold change between blood sampling.

(A) Heatmap of the correlation coefficient for the pig feed traits represented by the FI,
AFI, and FCR with the APP data. Note that all the feed records are only available for
grower-finisher pigs. FI_B4 indicates the FI for the day of bleeding 4. FI_total indicates
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the total FI before death or slaughter. AFI values were averaged FI within a specific time
range. AFI_B3_week and AFI_B4_week mean the AFI for the following week of
bleeding 3 and 4, respectively. FCR values were calculated using the equation: (Total FI
from day A to day B)/(weight of day B - weight of day A). FCR_total indicates the FCR
of all the tested pigs across the start of the experiment to the slaughter or death age,
and the FCR alive and death separate the pigs based on whether they stayed alive until
the slaughter age. (B) List of dot plots for the correlation which has a P-value less than
0.1. P-value and cor value are shown inside of each plot.
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Table 2.8 List of correlation coefficient values from Figure 2.7A.

Statistically significant correlations are labeled (*=P<0.05, **=P<0.01).
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2.4 Discussion

In this chapter, I measured the plasma concentration of AGP, HP, and CRP from 31

pigs which were further grouped into Group 1-resistant low production, Group 2-resistant

high production, Group 3-quick resolving, Group 4-susceptible, Group 5-resilience, and

Group 6-late death based on their health and production performance. In our natural

disease challenge model, a sharp increase in concentrations of HP and CRP was detected

while a change in concentrations of AGP was negligible in response to the stress of

complex pathogens. The resultant data is consistent with previous reports on the trend of

change in those three APPs in the context of other APRs. However, except for the

concentration of AGP in the Resilient group was significantly lower than others before

challenge, CRP and HP concentrations at steady state was inapplicable to identify

resilience pigs. This is unexpected as AGP was relatively inert to pathogen challenge in

our system and originally considered as a negative control in my experiment design. Even

though the plasma level is insensitive to pathogens, AGP was believed to play an

immune-modulatory role, especially in the immunosuppression activity to T cells (Chiu

et al., 1977) . This inhibitory role was presumably through the interaction of AGP with

membrane surface proteins of T cells that are associated with cell proliferation pathways

(Cheresh et al., 1984; Pos et al., 1990; J. Wu et al., 1999). In addition, AGP might

suppress lymphocyte proliferation in response to LPS, suggesting its inhibitory role in the

immune system during bacterial infection. The reported inhibitory role of AGP to

lymphocytes is consistent with our findings on the lowest AGP concentration in the

resilient group, which may result from faster lymphocyte proliferation in response to

pathogen challenge to better control infections. The low concentration of AGP was also

https://paperpile.com/c/kBjzFm/GyhX
https://paperpile.com/c/kBjzFm/GyhX
https://paperpile.com/c/kBjzFm/PeuO+sz0r+w2IG
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able to stimulate mononuclear cell proliferation (Cheresh et al., 1984), implying that

resilience pigs may have stronger pathogen sensing and antigen presentation. In the

context of an inhibitory activity to immune response, it remains unclear why the AGP

concentration in the susceptible pigs was only slightly higher than the resilience group

and comparable with that of Group 2 resistant pigs. The resilience pigs may arguably

have lower AGP plasma concentration at the steady state to maintain a highly sensitive

immunity, but the lower AGP alone might not be reliable to predict pig resilience. In

addition, a recent study demonstrated the role of AGP in potentiation of TLR-2 but

inhibition of the TLR-4 signaling pathway (activated by differential gram-negative

bacterial endotoxins) (Sumanth et al., 2019). Another recent study on bovine AGP

uncovered its antibacterial activity to disrupt the biofilm of Staphylococcus aureus in

milk. It is however unclear whether AGP functions analogously in plasma (Meroni et al.,

2019). All the progress not only facilitates our understanding of AGP activity in response

to pathogens but also complicates the role of AGP in a context-dependent manner. With

regards to the relationship of AGP with animal production other than its immuno-

modulatory functions, research by Sun et al. elaborated on the mechanism of AGP in

regulating energy intake (Sun et al., 2016). AGP was able to bind the hypothalamic leptin

receptor to induce satiety signals in mice. However, compelling results reported more

recently showed that AGP lacked activity to influence feed intake in ruminants (Gregg et

al., 2019; McGuckin et al., 2020). It seems that AGP may play species-specific roles in

influencing animal satiety signals. However, consistent with the mice study mentioned

above, a study published last year demonstrated a negative correlation between plasma

AGP concentration and feed intake in postpartum dairy cows (Brown et al., 2021). Thus,

https://paperpile.com/c/kBjzFm/sz0r
https://paperpile.com/c/kBjzFm/OgYU
https://paperpile.com/c/kBjzFm/Z6ez
https://paperpile.com/c/kBjzFm/Z6ez
https://paperpile.com/c/kBjzFm/Aopv
https://paperpile.com/c/kBjzFm/0ng6+oZ5f
https://paperpile.com/c/kBjzFm/0ng6+oZ5f
https://paperpile.com/c/kBjzFm/vx5n
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AGP is possibly playing a conserved role in influencing animal feeding in certain

contexts. In spite of the distinction from an infection-driven APR, these findings are

consistent with our data shown in Figure 2.6B that AGP concentrations before and after

the disease challenge both exhibited a strong negative correlation with feed intake.

In our model, the dramatic change in HP and CRP concentrations after the challenge

suggested that those two APPs can be applied to evaluate pig health status, and in turn to

select and exclude unhealthy pigs before integration into an uninfected herd. A previous

study using a co-infection model with SIV and Pasteurella multocida showed a ~ 3-fold

increase in HP and a ~ 10-fold increase in CRP 3 days and 2 days post-infection,

respectively (Pomorska-Mól et al., 2013). Data from the current study demonstrated a

sharper change in up-regulation of HP compared to that of CRP, which is reverse to the

SIV and Pasteurella multocida co-infection model. The co-infection model also revealed

a quick increase in APP concentration after experimental inoculation for two to three

days and a gradual reversion back to the original level within 10 days. The APP

concentration shown in that study, however, did not maintain at the high level for several

weeks as shown in this chapter (Figure 2.2). These different response patterns were

presumably due to the complexity of infection models. The co-infection model mentioned

above was an experimental intranasal inoculation of the pathogens which was artificial,

while the natural infection method in this thesis more closely represents practical

infection kinetics. In that co-infection model, the positive correlation was found between

serum concentration of HP and lung scores. It would be significant to include the clinical

score in our model in the future analysis to correlate APP with disease severity. APP

concentrations could be beneficially used as parameters to monitor ongoing infections

https://paperpile.com/c/kBjzFm/AuUZ
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and disease severity. Of note, a recent study, using attenuated Aujeszky vaccine in

growing pigs, measured serum HP levels in a challenging model and the resulting data

demonstrated that resilient pigs had a minor increment of HP (Laghouaouta et al., 2021).

The authors proposed the increment of HP in response to challenges as a novel indicator

of pig resilience. Importantly, combined with their other recent works, HP response in

their system was found to be genetically controlled and used to identify associated

genomic regions with substantial variability in the population (Laghouaouta et al., 2022).

This finding is in concordance with my data shown in Figure 2.3 that HP B3/B1 was the

lowest in the resilience group. Since in an independent work, another group also

proposed the potential of HP as a biomarker for pig resilience, HP appears to be a

promising potential biomarker in improving pig resilience through selective breeding for

the pigs with relatively small change of HP plasma concentration early after infection. It

would also be intriguing to adapt their methodology to quantify resilience in our model

which focuses on infectious disease to validate my findings and explore additional

indicators for pig resilience.

One notable finding in this Chapter is the different kinetics of APPs in our system.

In my hands, CRP revealed a stronger secondary increase post-disease challenge

compared to HP (Figure 2.3). This is even more noteworthy since the resilience group

exhibited the strongest up-regulation of CRP from the early to the later stage of the

disease challenge. CRP proteins have been known to exist at least two distinct

conformations, the native pentamers and the monomers. The two CRP forms may bind to

receptors and lipid rafts by two distinct modes. The two forms of CRP may thus perform

their biological function differently in the pro-inflammatory or anti-inflammatory

https://paperpile.com/c/kBjzFm/TfNT
https://paperpile.com/c/kBjzFm/UcaJ
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contexts (Sproston & Ashworth, 2018; Y. Wu et al., 2015). Even though many studies

support CRPs as a biomarker for acute-inflammation (Cardoso et al., 2015; Hu et al.,

2017; Memar et al., 2019), CRPs have also been shown to up-regulate chronic

inflammation (Luan & Yao, 2018; Pepys & Hirschfield, 2003). Thus, there might exist

two explanations for the notable secondary up-regulation, especially for the resilience

group, found in the current study: 1. Resilient pigs were initially resistant to some

specific pathogens but become infected by those pathogens at a later stage and stimulated

the secondary CRP increase; 2. Resilient pigs were initially invaded by some pathogens

but were not able to clear them. The Resilient pigs, due to the residual pathogens, then

developed chronic inflammation at a later stage. To investigate these assumptions, it

would be informative to keep tracking the particular pathogen infections in pigs during

the challenge experiment, and the resultant data will be beneficial to understand how

resilient pigs differentially interact with pathogens compared to resistant or susceptible

pigs. During the pandemic of COVID-19, several attempts have been made to study

whether CRP blood level was associated with SARS-Cov-2 response. CRP is known to

be synthesized by hepatocytes stimulated by IL-6 which is the main driver of cytokine

storm in COVID-19 patients (Zhang et al., 2020). Despite differential sampling time and

cohort, those studies independently reported a positive correlation of a high level of CRP

with the severity and mortality of COVID-19. These studies collectively suggested that

CRP blood level could be applicable to predict the disease severity and guide therapeutic

options (Ahnach et al., 2020; Potempa et al., 2020). Interestingly, one of these studies

found that the serum CRP determined on admission was positively correlated with

neutrophil count but negatively correlated with lymphocyte count. This data is consistent

https://paperpile.com/c/kBjzFm/4uEC+x2f4
https://paperpile.com/c/kBjzFm/Uu7I+6u7W+YCOG
https://paperpile.com/c/kBjzFm/Uu7I+6u7W+YCOG
https://paperpile.com/c/kBjzFm/2YZR+oHNj
https://paperpile.com/c/kBjzFm/xSii
https://paperpile.com/c/kBjzFm/L3NE+fXZf
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with my data shown in Figure 2.4 for the early CRP concentration after the disease

challenge. The work by myself and others provide insight into the potential use of CRP in

the pig industry as an early marker to predict disease development to prevent the onset of

severe pathology and specify healthcare strategies to improve animal welfare.

In summary, APPs have various biological functions and may play crucial roles in

pathogenesis or immune response to infectious diseases. The results in this Chapter shed

light on the potential of using plasma concentrations of specific APPs as parameters to

recognize resilient pigs. The APP levels or kinetics are closely correlated with health and

production traits to assess pig resilience. APPs can be readily and quickly measured, and

definitely have the potential as biomarkers to indicate and even predict pig health status

in the pig industry. However, pig resilience is a multi-factor-driven phenotype; it may be

difficult and inaccurate to use the readout from a single marker to predict or evaluate pig

resilience. In this regard, it would be necessary to use a larger cohort of pigs (this also

applies of course to my transcriptome and metabolome studies) and measure multiple pig

APPs including the ones not determined in this study such as Serum amyloid A (SAA)

and Pig major acute-phase protein (Pig-MAP) in our natural disease challenge model,

aiming to explore more candidates that are informative for selecting and breeding

resilient pigs. Meanwhile, the APP data in conjunction with other types of data including

genetic, epigenetic, and metabolites could provide a more powerful tool to precisely

define and predict pig resilience.
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2.5 Summary

Using the natural disease challenge model, I investigated the feasibility of APPs

serving as biomarkers to assess or predict pig resilience phenotype. I analyzed the plasma

concentration of HP, CRP, and AGP in 6 groups of pigs (Group 1-resistant low

production, Group 2-resistant high production, Group 3-quick resolving, Group 4-

susceptible, Group 5-resilience, Group 6-late death) that were classified based on their

health and production performance from our experiment model. Blood samples were

collected at three different stages (B1, B3, and B4) with the first sample two weeks

before challenging, the second and third were sampled two and five weeks post

challenging, respectively. Plasma samples were isolated and APP concentrations were

determined by ELISA. Consistent with the previous literature mentioned in the

background section, HP and CRP had generally quick and sharp responses to the

experimental disease challenge while AGP only showed slight fluctuations across the

whole experiment. When comparing the APP concentrations among the six groups of

pigs in steady state, the late-death group was found to have the highest AGP

concentration whereas the resilience group had the lowest. However, there was no

significant difference for HP or CRP before the disease challenge. For the blood samples

post challenging, there was no significant difference for concentrations of the AGP and

CRP among the six groups, only HP showed a significant difference between the quick

resolving and late death group in the third blood samples. Similarly in the calculations of

APP fold changes, the only significant difference observed was between the quick

resolving and the late-death group for the HP change from B1 to B4. As shown in Figure

2.3, even though each fold change of CRP concentration could not significantly
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differentiate the resilience group from others, there was a unique trend for the resilience

group that started with a subtle increase in the early infection but a sharp increase during

the later stage. Generating a larger cohort in the future would be helpful to validate this

unique kinetic of CRP in resilience pigs.

As it was difficult to predict resilience using concentration or concentration change

of a specific APP using a small cohort, also considering resilience is a multi-factors-

dependent trait, I did correlation analysis trying to explore some evidence using APP data

to assess pig health and production performance which are key factors for assessing

resilience. The strong positive correlation between HP with Neu and WBC during early

infection implies HP concentration is coupled with a quick mobilization of the innate

immune system while the positive correlation between the increase of CRP from early to

late stage of infection and Lym implies that CRP is more actively induced along with the

activation of adaptive immunity. This could suggest HP may work as more sensitive

indicator of innate immunity activation while CRP may more sensitively indicate

adaptive immunity. For the correlation analysis of APP data with the record of treatment,

weight, and feed intake, the results are highlighted and listed in Table 2.5. Although APP

data could not significantly predict pig health and production performance before disease

challenge, it is promising that both HP and CRP concentrations in response to early

infection are significantly correlated with multiple health and production traits.

To conclude the findings in this chapter, APPs have the potential to predict or assess

pig health and production status before or during disease challenge. Combinatory analysis

of APP plasma concentration in our natural disease model may provide more constructive

information to identify and select pigs that have resilience traits.
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Table 2.9 Summary of significant correlations found between APP data and trait pairs
(production/health) in this study.

Positive and negative correlations that have a P-value<0.1 are labeled in the table by “+”
or “-”, respectively. Corresponding correlation coefficient values are listed in Figure 2.5-
2.7.

Favored
Correlation +/+ or -/- +/- or -/+ +/+ or -/- +/- or -/+ +/- or -/+ +/+ or -/-

ADG/

1st treatment
age

ADG/

treatment
frequency

FI/

1st treatment
age

FI/

treatment
frequency

FCR/

1st treatment
age

FCR/

treatment
frequency

AGP B3 -/- -/- -/+

CRP B3 -/+ -/+

HP B4/B1 -/+ -/+

Traitss
s

APPs
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CHAPTER 3: Investigation of the whole
blood transcriptome of healthy pigs to screen
for biomarkers associated with disease
resilience

3.1 Background

In Chapter 2, I found that the concentrations of specific APPs in plasma were able to

provide valuable information on pig health status and were potentially applicable to

predict disease resilience in pigs. Interestingly, APP concentrations were also correlated

with CBC data in our challenge model: Haptoglobin (HP) was positively correlated with

white blood cells (WBC) early after infection while C-Reactive Protein (CRP) was

positively correlated with lymphocytes (Lym) during a later stage. Although I tested

several specific APPs for their potential to predict disease resilience, an untargeted

approach was needed to more broadly search for early indicators of disease resilience and

better understand how it is established. Given that the peripheral blood cells are crucial in

defending against pathogen infection and are common parameters used in disease

diagnosis to reflect host immune response, I hypothesized that the pig response to disease

challenge can be represented and even predicted by the variations found in the blood cells

during a healthy state. Thus, I undertook the task of extracting molecular information,

particularly the transcriptome data, from pig peripheral blood before disease challenge.

The underlying molecular information, in conjunction with our natural disease challenge

model, were exploited to examine whether a specific, or cluster of, gene expressions can

be used to predict disease resilience of pigs.
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Transcriptomic approaches have been used to characterize the host immune response

to some specific pathogen infections in pigs. By comparing the gene expression between

healthy and sick pigs, researchers were able to identify key genes that are indicators or

mediators of pathogenesis of the diseases. Examples include but are not limited to the

infection of Haemophilus parasuis (Melnikow et al., 2005), Salmonella enterica (Wang

et al., 2007), and PRRSV (Kommadath et al., 2017). Some studies have investigated the

variations in porcine gene expression in pigs with differential responses to infection.

Huang et al. identified distinct regulatory pathways in pigs, classified as ‘high’ or ‘low’

shedders of Salmonella (T.-H. Huang et al., 2011). Different gene expression profiles

have also been observed in the lung of pigs which showed different susceptibilities to

Glässer’s disease caused by Haemophilus parasuis (Wilkinson et al., 2010). Gene

expression profiles in the lung, lymph node, and blood of pigs were divided into more or

less susceptible to PRRSV infection (Arceo et al., 2012). Circulating immune cells in

peripheral blood are exposed to sites of injury, infectious agents, and stress hormones,

and play critical roles in immune surveillance and clearance of invading pathogens.

Mobilization and activation of immune cells in blood in responding to infectious diseases

can indeed induce differential gene expression. A study on Salmonella investigated the

peripheral blood transcriptome profiles of pigs before and after pathogen inoculation, and

identified co-expressed gene modules associated with fecal Salmonella shedding by

comparing low and persistent shedders. Intriguingly, the differential gene expression with

these modules were also significant before the Salmonella challenge (Kommadath et al.,

2014). It should be noted that some gene modules associated with Salmonella shedding

are related to innate immunity, suggesting the expression level of those genes in healthy

https://paperpile.com/c/1crECl/36Ma
https://paperpile.com/c/1crECl/orJi
https://paperpile.com/c/1crECl/orJi
https://paperpile.com/c/1crECl/7g6q
https://paperpile.com/c/1crECl/8GU3
https://paperpile.com/c/1crECl/Q4QX
https://paperpile.com/c/1crECl/dhVb
https://paperpile.com/c/1crECl/g5jp
https://paperpile.com/c/1crECl/g5jp


115

state are crucial to determine the host response to pathogen post infection. This study

provided the rationale that gene expression data before disease challenge could possibly

be used to predict pig response to diseases. There are also some human studies which

exploited the transcriptome of blood cells to identify gene expression markers to predict

development of infectious diseases, e.g. discrimination between pathogen species that

produce similar disease symptoms (Ramilo et al., 2007), latent or active disease states

(Berry et al., 2010), or individuals responsive or unresponsive to anti-microbial treatment

(Bloom et al., 2012).

Genetic variations influence immune-related traits and may further impact disease

status and animal production traits (Knap & Bishop, 2000) and many immune-related

traits have moderate to high heritability (Flori et al., 2011). Once marker genes are

identified to potentially predict pig disease response, it is also important to correlate

differential RNA expression to causative DNA polymorphisms for breeding purposes.

This is exemplified by much evidence suggesting that immune responses to infectious

diseases are associated with genetic variations in livestock. Boddicker identified a major

QTL in the pig genome that was responsible for variation in susceptibility to PRRSV

infection (Boddicker et al., 2012). Subsequently, a mutation in the GBP5 gene was found

to be associated with this phenotype (Schroyen et al., 2016). Another example that

combines transcriptomic and genetic variation study reported a QTL on the pig

chromosome 12 identified for PCV2 infection and a mutation in the SYNGR2 gene was

found to impact viral replication after infection (Walker et al., 2018). Therefore, with this

background, I hypothesized that profiling the blood transcriptome in pigs before disease

challenge would be an efficient way to identify marker genes to predict disease resilience

https://paperpile.com/c/1crECl/j9QW
https://paperpile.com/c/1crECl/V80Q
https://paperpile.com/c/1crECl/LQ9I
https://paperpile.com/c/1crECl/VIlj
https://paperpile.com/c/1crECl/8dBX
https://paperpile.com/c/1crECl/ztDz
https://paperpile.com/c/1crECl/emS4
https://paperpile.com/c/1crECl/Q0NQ
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in pigs. These efforts could not only contribute to practical breeding methods by coupling

with genetic variations but also facilitate the understanding of the molecular mechanism

of this complex phenotype.

In this chapter, I aimed to test whether transcriptomic profiles in healthy pigs can be

used to identify marker gene expression patterns for predicting pig response under

disease pressure. To this end, blood transcriptome in unchallenged animals was profiled

followed by tracking their post-challenge outcomes to disease using our natural disease

challenge model. This could provide insights into the potential of using blood

transcriptomes as biomarkers to predict disease resilience. I initially sequenced the whole

blood transcriptome of 58 pigs before disease challenge and then grouped those pigs into

Early_dead, Susceptible, Resistant, and Resilient based on their subsequent health and

productivity records in response to the diseases. To validate the finding from the initial

58 pigs and further investigate how gene expression changes in different groups of pigs

from before and after exposure to pathogens, another cohort of 209 pigs were

subsequently included but with three blood collections from either before or after disease

challenge to perform transcriptome analysis.

3.2 Methods

3.2.1 Grouping of pigs for transcriptome analysis

The pig grouping method for whole blood transcriptome analysis from the natural

disease model was elaborated in Chapter 2 and was based on pre-slaughter weight,

number of medical treatments, and mortality to assess pig health status and productivity.

Pre-slaughter weight was measured before pigs were sent to a slaughterhouse, and it was
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positively related to the economic value of pigs. For blood samples used for

transcriptome analysis, as illustrated in Table 2.1 from the Chapter 2, “Blood 1” was

collected from the initial cohort of 58 animals (cohort 1) from Cycle 2 (batch 8, 9, 10,

and 12), while the second cohort (cohort 2, Table 3.2) consisted of samples from “Blood

1, 3, and 4” of Cycle 7 (batches 46-50). Pigs were grouped into “Resistant”, “Resilient”,

“Early_dead”, and “Susceptible” using their records introduced above after the natural

disease challenge (Table 3.1 and 3.2). Resistant animals weighed 110-145 kg at the age

of 184 days, while a cutoff of 120 kg was used to differentiate sick but alive pigs which

were split into “Resilient” and “Susceptible” (Figure 3.1). The cutoff of 120 kg was

chosen based on two facts : 1. The market pigs in Canada weight around 280 pound

(~127 kg) at an age of approximately 5 to 6 months (The British Columbia Society for

the Prevention of Cruelty to Animals (BC SPCA) 2023); 2. The average pre-slaughter

weights of pigs in Cycle 2 and Cycle 7 are 122.9 kg and 119.6 kg, respectively, and the

cutoff of 120 kg nearly divided 50% of pigs above and below the average weight (Figure

3.1A). Resistant pigs did not receive any treatment while pigs in the other groups

received various numbers of treatments (Table 3.1, 3.2 and Figure 3.1B). More detailed

records for production performance and medication of the grouped pigs are listed in

Table 3.1 and 3.2. For the 58 pigs in cohort 1, total RNA was extracted and sequenced

from whole blood collected before the disease challenge (Blood 1) as shown in Table 2.1

of Chapter 2. Whereas, for cohort 2 there were 209 individual pigs with different

numbers across the three sampling time points: Blood 1 (193 pigs), Blood 3 (176 pigs),

and Blood 4 (131 pigs) with a total of 500 samples.
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Table 3.1 Grouping of 58 pigs (cohort 1) for transcriptome analysis according to
production index and medical treatment information.

Groups Resistant Resilient Early_dead Susceptible

Cycle 2 2 2 2

Batch 8,9,10,12 8,9,10,12 8,9,10,12 9,10,12

MTN(#) 0 2.79 2.5 3.1

RTN(#) 0 1-5 0-7 1-8

MPSW(kg) 128.44 136.89 NA 102.55

RPSW(kg) 107.5-142 124.5-148 NA 85.5-112.5

pig# 16 14 18 10

MSA(day) 184.25 183.79 NA 187.8

RSA(day) 162-205 181-185 NA 181-205

MDA(day) NA NA 115.28 NA

RDA(day) NA NA 51-194 NA

MDW(kg) NA NA 55.22 NA

RDW(kg) NA NA 15-110 NA

Abbr.

MTN Mean treatment#
RTN Range of treatment#
MPSW Mean pre-slaughter weight
RPSW Range of pre-slaughter weight
MSA Mean slaughter age
RSA Range of slaughter age
MDA Mean death age
RDA Range of death age
MDW Mean death weight
RDW Range of death weight
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Table 3.2 Grouping of 209 pigs (cohort 2) for transcriptome analysis according to
production index and medical treatment information. Detailed numbers of pigs in each
group from each blood collection was listed below.

Groups Resistant Resilient Early_dead Susceptible

Cycle 7 7 7 7

Batch 46,47,48,49,50 46,47,48,49,50 46,47,48,49,50 46,47,48,49,50

MTN(#) 0 1.15 1.36 1.81

RTN(#) 0 1-3 0-4 1-4

MPSW(kg) 122.71 129.37 NA 100.70

RPSW(kg) 94.5-144 120-147 NA 55.5-119.5

pig# 76 26 80 27

MSA(day) 177.43 185.88 NA 185.07

RSA(day) 148-190 169-203 NA 169-203

MDA(day) NA NA 79.82 NA

RDA(day) NA NA 28-179 NA

MDW(kg) NA NA 23.38 NA

RDW(kg) NA NA 6-115 NA

Blood1 Blood3 Blood4 Sum

Resistant 70 70 67 207

Resilient 24 25 22 71

Early_dead 75 56 20 151

Susceptible 24 25 22 71

sum 193 176 131 500
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Figure 3.1 Phenotypic grouping of pigs selected from Cycle 2 and Cycle 7 used for
transcriptome analysis.

(A) Pig pre-slaughter weight distribution in Cycle 2 and Cycle 7. (B) Schematic
illustrating the 4 phenotypic groups of pigs.
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3.2.2 Blood collection

Blood samples (3 mL per pig) were collected in Tempus Blood RNA tubes (Applied

Biosystems, Foster City, USA) following the standard procedures for drawing blood

from pigs into blood collection tubes containing liquid reagents. Immediately after the

Tempus tube was filled, blood was stabilized by shaking the tube vigorously or vortexing

the contents for 10 seconds to ensure that the stabilizing reagent makes uniform contact

with the sample. Failure to adequately mix the stabilizing reagent with the blood leads to

inadequate stabilization of the gene expression profile and the formation of micro clots,

which can potentially clog the purification filter. This was observed for some samples

which were excluded from this study. Tempus tubes were stored at -20°C until RNA

extraction.

3.2.3 Whole blood RNA purification

The total RNA was extracted and purified from the whole blood samples using a

commercial kit (Norgen Biotech, Thorold, Canada) following the manufacturer’s

instructions. Briefly, blood samples in Tempus tubes were first mixed using a shaker at

150 rpm for 10 minutes at room temperature. The samples were then directly poured into

a clean 50-mL tube. Diluent Solution was added into the 50-mL tube containing the

blood to bring the total volume to 12 mL. The cap was replaced on the tube, and the tubes

were vortexed vigorously for 30 seconds to ensure proper mixing of the contents and

prevent clogging at the purification step. The tubes were centrifuged at 4 °C at 3,000 x g

for 30 minutes. The supernatant was carefully decanted. The RNA pellet is transparent

and invisible and tubes must be handled carefully to prevent disturbing the RNA pellet.

The tubes were inverted on absorbent paper for 1 to 2 minutes. The remaining drops of
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liquid were blotted off the rim of the tube with clean absorbent paper. Lysis Solution (600

μL) provided in the kit was added to each tube, and the tubes were vortexed briefly to re-

suspend the RNA pellet. Ethanol (95%-100%, 300 μL) was pipetted to the bottom of each

tube and vortexed briefly. Re-suspended RNA (600 μL) was transferred into the

purification filter column with a collection tube and then centrifuged at 14,000 x g for 1

minute. The pass-through liquid in the collection tube was discarded. The centrifuge step

was repeated until all the re-suspended RNA went through the purification filter. Wash

Solution (400 μL) was added into the purification filter and then centrifuged at 14,000 x g

for 1 minute. The pass-through liquid in the collection tube was discarded. DNaseI

working solution (100 uL) was pipetted into the purification filter column and then

centrifuged at 14,000 x g for 1 minute. The liquid in the collection tube was re-added to

the purification filter column and then incubated at room temperature for 15 minutes.

Without any centrifugation, Wash Solution (400 μL) was directly added to the

purification filter column and then centrifuged at 14,000 x g for 1 minute. The liquid

waste was discarded from the collection tube and then the washing step was repeated one

more time with 400 μL Wash Solution. After discarding the liquid waste, another

centrifugation at 14,000 x g for 2 minutes was processed to dry the purification filter. To

elute captured RNA, the purification filter column was transferred to a new collection

tube and 50 μL Elution Solution was added and then centrifuged at 200 x g for 2 minutes

following 14,000 x g for 1 minute. The eluted RNA was transferred to a new 1.5 mL tube

and placed at −20 °C for short-term storage or −80 °C for long-term storage.
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3.2.4 Determination of RNA concentration and quality
The RNA concentration was measured using NanoDrop 1000. Agilent 2200

TapeStation was used to evaluate RNA quality. High-Sensitivity RNA ScreenTape and

RNA Sample Buffer (Agilent Technologies, Santa Clara, USA) were maintained at room

temperature for 30 minutes before use. The RNA samples were diluted if the

concentration was > 400 ng/μL based on the detection range of the RNA ScreenTape kit.

5μL Sample Buffer and 1μL RNA sample were added to an 8-strip tube, then vortexed at

2000 rpm for 1 minute. The samples were spun down and then denatured by heating to

72 °C for 3 minutes followed by placing them on ice for 2 minutes. Samples were loaded

into the Agilent 2200 TapeStation instrument and caps were carefully removed from the

tube strips. The analysis proceeded using the 4200 Tapestation Controller Software. RNA

integrity numbers were recorded to represent the RNA sample quality. Factors including

sample size, long-distance shipping and storage may decrease cell viability and RNA

integrity, the cutoff for the acceptable RNA integrity number for RNA-seq library

preparation was >5.0 based on previous studies (Choi et al., 2014; Jo et al., 2016;

Sarathkumara et al., 2022).

3.2.5 Globin Reduction and qPCR Confirmation
As the RNA samples were purified from the whole blood, globin RNA mainly

derived from red blood cells needs to be removed from all RNA samples to ensure

adequate sequencing depth of the rest of the transcriptome. The globin reduction (GR)

protocol was developed referring to a previous study (Choi et al. 2014) to specifically

remove alpha hemoglobin (HBA) and beta hemoglobin (HBB). The porcine-specific

oligonucleotides used are shown in Table 3.2:

https://paperpile.com/c/1crECl/WZBr+bEcE+puR0
https://paperpile.com/c/1crECl/WZBr+bEcE+puR0
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Table 3.3 Sequence of the oligos for GR and qPCR.

GR Oligos Sequence

SAG-13Re (HBA) 5’-CCATTTCGCCCACTCTTAGCATCCAC

SAG-14Re (HBA) 5’-GTGCAAGGGGGGGTGCGCAGAGAC

SBAH-37Re (HBB) 5’-AGGGGAACTTAGTGGTACTTGTGGGC

SBAH-38Re (HBB) 5’-GGTTCAGAGGAAAAAGGGCTCCTCCT

qPCR Primers Sequence

SAG-11FO (HBA primer Forward) 5’-CCCACCACCCCGATGATTTC

SAG-11RE (HBA primer Reverse) 5’-TCAGCGATCAGGAGGTCAGG

SBXS-42F (HBB primer Forward) 5’-CTCCTGGGCAACGTGATAGT

SBXS-38RE (HBB primer Reverse) 5’-GGTTCAGAGGAAAAAGGGCTCCTCCT

Su18S-34F (18S Forward) 5’-GACAAATCGCTCCACCAACT

Su18S-34R (18S Reverse) 5’-CCTGGGGCTTAATTTGACTC
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A 10X GR oligo mix was prepared by combining the four globin-specific oligos to

the final concentrations of 7.5μM (SAG-13Re), 7.5μM (SAG-14Re), 30μM (SBAH-

37Re), and 30μM (SBAH-38Re), respectively, listed in Table 3.2. Next, 2μL of the 10X

GR oligonucleotide mix was added to 3 μg (~7 μL) of total RNA (incubate RNA samples

at 70°C for 2 min and keep on ice before use) and 1μL of 10X oligonucleotide

hybridization buffer (100 mM Tris–HCl, pH 7.6; 200 mM KCl) to constitute the 10 uL of

hybridization mix. This mix was incubated in a thermal cycler at 70°C for 5 minutes and

then cooled to 4°C. The RNA-DNA hybrids were digested with 2 unit RNase H (Ambion,

Austin, USA) in the reaction buffer (100 mM Tris–HCl, pH 7.6, 20 mM MgCl2, 0.1 mM

DTT, SUPERase-in) at 37°C for 10 minutes and cooled to 4°C. The reaction was stopped

by the addition of 0.5 M EDTA. The globin-depleted RNA was immediately purified

with the RNeasy MinElute Cleanup Kit (Qiagen, Toronto, Canada) according to the

manufacturer’s instructions. RNA quality of the globin-depleted samples was assessed

using an Agilent Bioanalyzer 2100 (Agilent).

To validate the GR efficiency, the mRNA levels of the porcine HBA and HBB

transcripts from GR RNA samples were quantified by SYBR Green-based qPCR assay

using a StepOneTM Real-Time PCR System (Applied Biosystems). The first strand

cDNA reaction was prepared as follows: 250 ng (~6 μL) GR RNA, 5 μL Random

Hexamer (50 ng/μL), and 1 μL dNTP (10 mM), and then heated at 65°C for 5 minutes

following with adding 4 μL 5x First Strand Buffer, 2 μL DTT (0.1 M), 1μL RNaseOUT

(40 U/μL) and kept at 25°C for 2 minutes. Next, 1 μL SuperScript® II reverse

transcriptase (Thermo Fisher Scientific) was added and the reaction was incubated at

25°C for 10 minutes, 42°C for 50 minutes, then 70°C for 15 minutes. qPCR was
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performed in a total volume of 10 μL per reaction comprising 2 μL of the template (1:10

diluted cDNA), 1 μL of the assay-specific primer mix, 5 μL of the Fast SYBR® Green

Master Mix Bulk Pack (Applied Biosystems) and 2 μL of water. The PCR condition used

was 95°C for 3 minutes for initial denaturation, 23 cycles of 95°C for 30 seconds, and

60°C for 30 seconds. The primer sequences are listed in Table 3.2.

3.2.6 Strand-specific cDNA library construction and
sequencing

For the 58 RNA samples from cohort 1, 1 μg of GR RNA was used for strand-

specific cDNA library construction using the NEBNext® Ultra Directional RNA Library

Prep Kit (Illumina, San Diego, USA) according to the manufacturer’s protocol. Briefly,

mRNA was enriched using oligo(dT) beads from the NEBNext® Poly(A) mRNA

Magnetic Isolation Module (New England Biolabs, Ipswich, USA) followed by two

rounds of purification, and then fragmented randomly by adding fragmentation buffer.

The first strand of cDNA was synthesized using random hexamer primers. The second

strand of cDNA was generated by incorporating dUTP in place of dTTP to create blunt-

ended cDNA. After a series of terminal repairs, poly-acetylation, and sequencing adaptor

ligation, the double-stranded cDNA library was completed after size selection and PCR

enrichment. Library preparation for the 500 RNA samples of the 209 pigs from cohort 2

was performed by Novogene Inc (Sacramento, USA). GlobinClear kit (Thermo Fisher

Scientific) was used to remove globin RNA and Ribo-Zero kit (Illumina) was used to

remove rRNA. The library was prepared using the same kit introduced above from NEB.

The resulting 250-350bp insert libraries were quantified using the Qubit 2.0

fluorometer (Thermo Fisher Scientific) and quantitative PCR. Size distribution was
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analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies). Qualified libraries

were sequenced on an Illumina HiSeq 4000 Platform (Illumina) or NovaSeq 6000

(Illumina) using a paired-end 150 run (2×150 bases). 30 million raw reads were generated

from each library.

3.2.7 Data analysis
Raw single reads were subjected to sequence quality control using FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) in the context of reading

length, GC content, and repeated sequence to determine if the samples had adequate read

quality for downstream analyses.

RNAseq data analysis was performed following a previously published protocol

(Pertea et al., 2016) and the workflow is illustrated in Figure 3.2. In brief, filtered reads

were aligned to the swine reference genome (Sus_scrofa.Sscrofa11.1) using HISAT2

software (v2.1.0), then assembled and quantified for each sample with StringTie (v1.3.3).

After merging transcripts from all samples using StringTie, gffcompare was used to do

statistical analysis for the StringTie output with all the transcripts including novel exons,

introns, or genes. Meanwhile, after the merging step, StringTie was run one more time to

re-estimate the abundance of the merged transcripts and create table counts for the next

step. The re-estimation step used the same abundance estimation algorithm as that used in

the initial steps. Here, Ballgown (v2.6.0) was used to plot raw data, to do normalization

and downstream statistical modeling for differential expression analysis. Batch effect was

corrected using the function “removeBatchEffect” from the package limma. For pathway

enrichment analysis for the DE genes, the gseGO program from the package

clusterProfiler was used.
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Figure 3.2Workflow of RNA-Seq data analysis.
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One common issue with RNA-seq data is that some genes may have very few or

even zero counts. A common step before gene expression analysis is to filter out those

genes. Another approach that has been used for gene expression analysis is to apply a

variance filter. Here, all transcripts were removed with variance across samples less than

the count of one (rowVars(texpr(bg)>1). Then, for differential expression (DE) analysis

transcripts and genes that showed statistically significant differences between phenotype

groups (Resistant, Resilient, Early_dead, susceptible) were identified using the stattest

function from Ballgown, which is a statistical test using a standard linear model-based

comparison. At this point, the abundance estimates (expressed as FPKM values which

stand for fragments per kilobase of transcript per million mapped reads) have already

been normalized with respect to library size. I examined both genes and transcripts that

were differentially expressed between phenotype groups (Resistant, Resilient, Early_dead,

Susceptible) while correcting for any difference in expression due to the batch variable.

eQTL analysis was performed using the “MatrixEQTL” program on candidates with

Q-value<0.1 from the DE results. Genotyping results of experimental pigs were acquired

using Axiom Pig HD panel SNPs (Applied Biosystems, Waltham, USA) and the reads

were mapped to the porcine reference genome Sscrofa11.1. The cutoff used for the minor

allele frequency (MAF) was 0.05.
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3.3 Results

3.3.1 Summary of major traits of the four groups of pigs
regarding productive performance and medical treatment
from the natural disease challenge experiment.

To group the 58 pigs in cohort 1, mean death weight (MDW) or mean pre-slaughter

weight (MPSW) were used, respectively, for evaluating the productivity index for the

Early_dead group or the remaining three groups of survived pigs (Figure 3.3A). The pigs

from the Resilient and Resistant group had relatively higher production compared with

the other two groups. Of note, the pigs from the Resilient group maintained the highest

MPSW after the disease challenge nevertheless they got sick and received treatment

(Figure 3.3A), however, the frequency of medical treatments for pigs from the Resilient

group was lower than that from the Early_dead and Susceptible group (Figure 3.3B).

Our collaborators reported recently that the proportion of “off-feed” days during the

disease challenge classified from the quantile regression analysis for feed intake could be

used to define pig disease resilience phenotype (Putz et al., 2018). To test whether our

grouping method is consistent with using this novel trait to differentiate pigs for

their responses to disease challenge, I selected the 58 pigs described in Table 3.1 and

compared their proportion of “off-feed” days from the data. As shown in Figure 3.4, the

Resilience and Resistance groups display the lowest proportion of “off-feed” days among

the four groups, implying that the resistant and resilient pigs could maintain regular feed

intake when they were under disease challenge stress. This result indicates that our

grouping perfectly matches the notion using feed intake-derived “off-feed” days

proportion to define disease resilience phenotype.

https://paperpile.com/c/1crECl/HtXH
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Figure 3.3 Comparison of the two major grouping parameters including MPSW or MDW
(panel A) and treatment frequency (panel B) for the four groups of pigs denoted as
“Early_dead”, “Resilient”, “Resistant” and “Susceptible” in cohort 1.
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Figure 3.4 Comparison of “off-feed” days proportion among the “Early_dead”,
“Resilient”, “Resistant” and “Susceptible” groups in cohort 1 pigs.

The proportion values were derived from a 5% quantile regression analysis using the
overall feed intake data of the 58 pigs and then aggregating off-feed days within each
animal as a proportion.
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3.3.2 Quality control and mapping of the RNA-Seq data
Next-generation sequencing was conducted to determine the transcriptome of 58

pig whole blood samples collected around 28 days of age before the disease challenge. A

total of 305 gigabytes of raw reads in fastq format were obtained from 58 libraries.

FastQC tool was used to determine the read quality (Appendix 3.1). As illustrated in

Appendix 3.1 B and C, nearly 100% of the reads displayed a Phred score over 30 (Q30: a

probability of incorrect base calling of 1 in 1000) across the full length 150 bp, indicating

a superior per base quality of all the reads. The alert shown in the section of “Sequence

Duplication” (Appendix 3.1A) was not unexpected for RNA-Seq data while it was

reasonable that some genes were highly expressed and thus represented in multiple copies

from sequencing. The only concern was that some samples had a warning for GC content

presented. This was probably due to some highly expressed genes in those samples which

caused GC bias resulting from those overrepresented sequences. The alert of

overrepresented sequences (including sequencing adapters) was alleviated or eliminated

by using filtering and trimming tools. Overall, the RNA-Seq dataset was of good quality.

Based on the mean library size of ~32.4 million base pairs for all 58 samples, the

average overall mapping rate was 94.0% which includes 83.8% unique mapped reads

and 6.0% multi-mapped reads. The infer_experiment.py in SAMtools was used to check

the strandedness and it returned the results for the fraction of reads explained by “1++,1--

,2+-,2-+”, “1+-,1-+,2++,2--”, and “failed to determine” rate was 93.98%, 4.80%, and

1.22%, respectively, confirming a successful strand-specific library construction and read

mapping were properly conducted. Among the strand-specifically mapped reads,

approximately 50.43% of reads were from the positive strand while 49.57% were from
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the negative strand, indicating the genes in whole blood samples were nearly equally

expressed from the two DNA strands.

After mapping the reads to the pig reference genome, read counting was processed

using the StringTie tool. As shown in Appendix 3.2A and B, a total of 40,465 genes were

called with expression. More than half of genes (25,388) only expressed one specific

transcript whereas nearly one-third of genes (15,077) expressed more than one specific

transcript, indicating frequent alternative splicing activities. The maximum number of

transcripts from one gene was 492 (T cell receptor beta variable gene). For the

distribution of transcript length shown in Appendix 3.2B, the maximum, minimum, and

median lengths of detected transcripts are 25,893bp (PALB2 gene), 11bp

(ENSSSCT00000057789), and 2,486bp (MECP2 gene), respectively, while the mean

length of all transcripts is 3,019bp. In addition, 98% of transcripts were shorter than 10kb

and among them, 80.7% of transcripts were smaller than 5kb. The FPKM value accounts

for sequencing depth and all 58 RNA samples display similar patterns of log2(FPKM) as

shown in Appendix 3.2C, indicating comparable sequencing depth and diversity of

transcriptome. 99.1% log2(FPKM+1) values were less than 5, indicating that only a small

number of genes were expressed at very high levels. Genes with low expression levels

could reduce the sensitivity to detect real DE genes among samples (Sha et al., 2015).

Thus, the genes with very low expression were removed from DE analysis.

The “GFFcompare” program was used to determine how well the assembled

transcripts matched gene annotation information. For the query of 151,368 transcripts in

41,017 loci, there were 100%, 98.9%, and 100% matched exon, intron, and loci,

respectively, indicating a high coverage of the transcriptome. Of note, there were

https://paperpile.com/c/1crECl/JUDu
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130,317 novel exons, 68,574 novel introns, and 17,456 novel loci discovered as well.

However, in the absence of an experimental test of its effectiveness, it is difficult to

determine which transcripts are real and which are transcriptional "noise".

3.3.3 Global variance analysis for the 58 RNA samples from
cohort 1 pigs using principal component analysis (PCA)

To explore whether there was global difference in their transcriptional profiles

between each individual group or each blood collection, PCA analysis was performed

on the transcriptome counts (FPKM) of the 58 samples from cohort 1. As illustrated in

Figure 3.5 A, the distribution of pigs from the four groups was largely overlapping from

any blood collection; neither genes or transcript level revealed clear

compartmentalization from any specific group to the other three. Therefore, there was no

obvious global difference in the pre-challenge transcriptome of the 58 pigs even though

the four groups expressed differential phenotypes in the natural disease challenge model.

3.3.4 Differential gene expression analysis among the
“Early_dead”, “Resilient”, “Resistant” and “Susceptible”
groups.

It is difficult to differentiate the four groups of pigs based on their global

transcriptomic profile. DE analysis was therefore conducted, aiming to explore specific

genes that are distinctly expressed within each of the four groups. I first compared the

gene and transcript expression of one group with those of the other three groups (Figure

3.8). One, three, and one significant DE gene were observed respectively in the Resistant,

Resilient, and Early_dead groups, compared to the rest of the groups. Whereas, eight

significantly up-regulated genes (including several long-non-coding RNA genes) were
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Figure 3.5 PCA plot of transcriptomic profiles of the 58 pigs based on genes (A) and
transcripts level (B).

Each dot represents a pig. The different colors indicate pigs corresponding to the four
defined groups. Batch effect was removed.
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found in the Susceptible group, only two and three genes were found significantly down-

regulated specific for the Resilient and Susceptible groups, respectively.

Notably, there were more DE transcripts than genes identified in each of the four

groups specifically compared to the others. The names and numbers of DE genes and

transcripts (the 58 pigs and the second bigger cohort described below) are listed in

Appendix 3.3. Within the Resistant group, DE genes were found to be involved in

cytoskeleton remodeling (PFN1, TES, NISCH), cell signaling transduction (SMAP2,

AXIN1, MYL9, SLA5, SPPL2A, PTK2B), transcription factor (BCL11B, ATOH8), cell

metabolism (MGAT4B, PAFAH2, NDUFS7), cell survival and apoptosis (RFFL), and

chemotaxis (CCL5). The DE genes from the Resilient group were associated with

immune response (IL4R, IL6ST, TMEM106A), transcription factors (MXD1, PMF1), cell

metabolism (B3GNT3, B4GALT1, NDUFS1, SLC4A7), protein modification (UBE2L6,

BIRC3, NTAN1), cell signaling transduction (LYN, PRKAR1A, PRKACA), cell survival

and apoptosis (DNAJA3), and unclear function (TNRC18). The DE genes specific for the

Early_dead group were related to diverse cellular processes including cell signaling

transduction (CLTC, SNCG, SPPL2A, PLEK), mRNA splicing (SRRM2, CTNNBL1),

transcription regulation (NCOA4, RERE), protein translation (EIF3G), cell metabolism

(CKB), protein degradation (LAPTM5, CUL4B), cell survival and apoptosis (RNASEL),

cytoskeleton remodeling (PSTPIP2), protein transportation (COPG2, SNAP23), and

microRNA (ssc-mir-6782). The Susceptible group were significantly enriched with the

two undefined transcripts MSTRG.32803 (q-value=0.02) and MSTRG.21242 (q-

value=0.09) and those two transcripts were the only two hits in the DE analysis with a q-

value<0.1. The other DE genes found in the Susceptible group were suggested to be
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involved in protein modification (UBR4, RNF151), nucleic acid binding (ZCCHC2),

transcription regulation (KLF17, ILF2), mRNA splicing (RBM17), regulation of

secretion (SV2A), cell signaling transduction (ATL3, NFKBIZ, PTP4A1), structural

constituent of the cytoskeleton (CCDC6) and cell metabolism (AGK, GAPDH).

Interestingly, the Susceptible group may have some unique features in mRNA splicing as

there were two genes (KLF17, RNF151) found with both up-regulated and down-

regulated transcripts. So far, at the pig’s steady state, it seemed difficult to predict the

disease response using the transcription level of specific genes. Nevertheless, I detected

multiple DE of group-specific transcripts using a cut-off of P value<0.05 for all four

groups of pigs, and two significantly up-regulated transcripts (q-value<0.1) specific for

the Susceptible group.

To further characterize differential transcription profiles between each of the groups,

I did the DE analysis by comparing pairs of groups (Figure 3.7). As shown in Figure

3.7A, more DE genes were identified when this comparison was performed (rather than

one versus the other three) (Figure 3.6A). Some positive immune regulation genes

including CEBPD (Ko et al., 2015; Spek et al., 2021) and ATRN (Duke-Cohan et al.,

2000), were up-regulated in the Resistant group compared with the Resilient, Early_dead,

and Susceptible groups. Not so many DE genes directly involved in immune defense

were detected in the Resistant group which is presumed to have stronger “immunity”.

The identified genes with immune-priming roles might explain their better control of

infection of the Resistant group after being exposed to pathogen challenge. The higher

immune-sensing feature of resistant pigs could be supported by some DE transcripts e.g.

CCL5 (encodes a chemokine important in immune defensive and immune cell survival

https://paperpile.com/c/1crECl/Y5J6+YxLH
https://paperpile.com/c/1crECl/0efq
https://paperpile.com/c/1crECl/0efq
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(Silva et al., 2021; Tyner et al., 2004)) and LYN (encodes a kinase important in

immunoreceptor signaling of B cells and some other immune cells (Brian & Freedman,

2021)) enriched in the Resistant compared to the Resilient group (Figure 3.7B). In

comparison between the Resilient and the Early-dead pigs, the Resilient pigs had higher

expression of the CXCR5 gene which encodes an important chemokine receptor and is

regarded as a marker of T follicular cells (Moser, 2015), indicating a more sensitive

humoral response potential. The stronger immune response potential of the Resilient

group pigs (than the Early_dead ones) is also supported by the higher expression of IL4R

transcripts. In comparison between the Resilient and the Susceptible group, the Resilient

group up-regulated PPP3CA which encodes a unit of calcineurin and plays an important

role in T cell activation through dephosphorylating the NFAT dependent on calcium

(Kilka et al., 2009; Park et al., 2020), implying a higher sensitivity of T cell response. The

higher expression of a TNFSF8 transcript encoding a pro-inflammatory cytokine in

resilient pigs (compared with the susceptible ones) also provides a hint for a more active

immune response. Meanwhile, the Resilient group has more expression than the

Susceptible group for the BTG1 gene which encodes an anti-proliferative protein,

indicating slower proliferation of immune cells. This is consistent with a hypothesis that

the immune cells in resilient pigs consume less energy from excessive proliferation and

thus have higher productive performance than susceptible pigs. To this end, DE analysis

results are consistent with the superior performance of infection control from the

Resistant group pigs among all the pigs and the better pathogen control ability and

productivity of the Resilient group than the Early_dead group and the Susceptible group.

https://paperpile.com/c/1crECl/JfSn+QY6Y
https://paperpile.com/c/1crECl/3uiC
https://paperpile.com/c/1crECl/3uiC
https://paperpile.com/c/1crECl/WsPE
https://paperpile.com/c/1crECl/sRkN+GN9B
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3.3.5 Pathway enrichment analysis for the DE genes

In order to gain deeper insights into the biological implications of the identified

transcripts in the DE analysis, Gene Ontology (GO) term enrichment analysis was

conducted. It should be noted that this analysis excluded the genes showing both up-

regulated and down-regulated transcripts in the DE analysis. As shown in Figure 3.8,

three out of the four groups were successfully enriched with group-specific biological

pathways except for the Early_dead group. Unexpectedly, even though several pathways

associated with gene transcription were down-regulated in the Resistant group comparing

to the other groups, only one pathway (transmembrane transport) was up-regulated and

no immune-related pathway was enriched. Interestingly, specific for the Resilient

group, most of the top down-regulated pathways were involved in cytoskeleton

organization (Figure 3.8). During the immune surveillance and activation, the

cytoskeleton participates in various pivotal processes including cell migration,

phagocytosis, synapse formation, secretion and degranulation (Wickramarachchi et al.,

2010). Lower expression of cytoskeleton organization pathways in resilient pigs may

compromise their immune defense to some extent whereas decrease energy consumption

from immune activities such as cell migration which is dependent on cytoskeleton

remodeling and energetically demanding (Guak and Krawczyk, 2020). These findings

may shed the light of why resilient pigs cannot efficiently prevent pathogen invasion but

could maintain relatively high productivity during infections. Conversely, susceptible

pigs up-regulated those cytoskeleton organization pathways, leading to more energy

consumption. The Susceptible group also up-regulated pathways of negative regulation of

signal transduction and response to stimulus, indicating the immune cells in susceptible
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pigs may not respond well to pathogen infection and might be the key reason why they

are susceptible. Down-regulation of several metabolic pathways in susceptible pigs may

hinder their energy supply from nutrients. Therefore, the enriched specific pathways

provide evidence for a less potent function of immune cells in susceptible pigs compared

with resilient pigs.

Through comparing each pair of the four groups, I did not see any immune-related

pathway that is differentially enriched between resistant and resilient pigs, suggesting

there was not dramatic difference in the basal level immunity of pigs from these two

groups when they were healthy. However, some immune response pathways were found

to up-regulate in resistant pigs compared to the Early_dead or Susceptible groups. This

strongly supports the notion that the immune cells in resistant pigs are endogenously

more potent than that in the Early_dead or Susceptible group, but not in the Resilient

group. It is still difficult to get any insight to explain the higher productive performance

in resilient pigs than the others as they up-regulated many proteins in the biosynthesis-

related pathways which are also ATP-dependent. Thus, it remains unclear whether the

relatively higher productive performance of the resilient pigs resulted from their energy-

saving immune response. Last but not least, compared to the Susceptible group, the

Early_dead group was found to down-regulate pathways associated with immune cell

activation and cell-cell interaction, suggesting the pigs might die from the inefficient

control of pathogen infection by the immune system. Taken together, the pathway

enrichment analysis suggests a hierarchical baseline immunity in all four groups of pigs

tested in their healthy state, ranked by Resistant>Resilient>Susceptible>Early_dead.

It is difficult to identify one or several marker genes’ expression patterns to predict a
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specific phenotype such as resistant or resilient while it seems feasible to use marker gene

expression to exclude some pigs that may have unfavorable phenotypes and thus narrow

down the scale of the breeding population. To explore whether it was possible to use gene

set information to predict specific pig response to disease challenge, a machine learning

approach was used but no favorable model was found to provide high confidence

prediction (See discussion in Chapter 5). The large individual variations and small cohort

size may cause the failure of identifying promising hits from the RNA-Seq. A larger

cohort with fewer batches of pigs is needed to validate our findings.
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Figure 3.6 Differential expression of genes (A) and transcripts (B) level comparing one
group with the rest of the other groups in cohort 1.

Genes or transcripts with differential expression were highlighted in red (up-regulated)
and blue (down-regulated) using a cut-off value of 2 for fold change and 0.05 for P-value.
The names of the top 10 genes and transcripts with the lowest P-values were labeled
inside each plot.
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Figure 3.7 Differential expression of genes (A) and transcripts (B) level comparing two
specific groups in cohort 1 pre-challenge samples.
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Genes or transcripts with differential expression were highlighted in red (up-regulated)
and blue (down-regulated) using a cut-off value of 2 for fold change and 0.05 for P-value.
The names of the top 10 genes and transcripts with the lowest P-values were labeled
inside each plot.
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Figure 3.8 GO term enrichment analysis for comparisons between one specific group and
the others, and between two specific groups in cohort 1.

The top 10 (if applicable) up-regulated (left panel) and down-regulated (right panel) GO
term groups are listed for each comparison ordered by normalized enrichment scores.
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3.3.6 eQTL analysis for the transcript MSTRG.32803.53 and
MSTRG.21242.14

Only two DE transcripts MSTRG.32803.53 and MSTRG.21242.14 with q-value<0.1

were identified specifically between the Susceptible group with the other groups (Figure

3.8B), and both transcripts were significantly up-regulated in the Susceptible group as

shown by the box-and-whiskers plot (Figure 3.9). To better understand these two unique

transcripts, I further characterized the genome locations where they were transcribed

from (Table 3.4). MSTRG.32803.53 had three exons and the Exon 1 was perfectly

aligned to an IgC gene which encoded the constant chain of immunoglobulin.

MSTRG.21242.14 contained 9 exons and Exon 3 to 8 could be aligned to the signaling

lymphocytic activation molecule family member 9 gene (SLAMF9).

eQTL analysis was performed for the two aforementioned transcripts in the last

paragraph using the genotyping data from 57 pigs (one pig was excluded because of no

genotype information) (Figure 3.10). The SNP Affx-114651911 and Affx-115202865

associated with the expression of MSTRG.32803.53 and MSTRG.21242.14 are located

on chromosomes 12 and 13, respectively. In both cases, the pigs with higher expression

of the target transcripts (i.e. a plausibly “susceptible” phenotype) were heterozygous

genotypes at the corresponding SNP site and appeared rare in the tested population.

Further characterization of the two SNPs revealed that Affx-114651911 is located in the

intron of the gene ENSSSCG00000017712 and AP2B1, and Affx-115202865 is located in

the upstream region of the gene ENSSSCG00000022500.2 while downstream of the gene

ENSSSCG00000025701.2, NCK1, andMIR9850.
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3.3.7 Validation of RNA-Seq findings from the 58 cohort 1 pigs
using pre-challenge blood from another 209 pigs (cohort 2)

As mentioned above, to validate the results derived from the 58 pigs in cohort 1, I

repeated the RNA-Seq experiment using another 209 pigs from Cycle 7 (cohort 2).

Notably, not only pre-challenge blood samples (Blood 1) were collected, two collections

of post-challenge blood samples (Blood 3, 4) were also included in the RNA-Seq to

further understand the underlying molecular mechanisms contributing to the differential

phenotypic responses of the four groups of pigs.

Grouping of pigs in cohort 2 was totally following the rules for cohort 1 elaborated

above. Like the grouping of cohort 1 pigs (Figure 3.3), the Resilient pigs had the highest

Pre-slaughter weight representing the outstanding production performance while received

least treatment times among the sick pigs (Figure 3.11 A and B). The grouping rationality

was tested by plotting the proportion of “off-feed” days for each defined groups (Figure

3.11 C), and the Resilient and Resistant groups were the lowest for this parameter, which

was also consistent with what had been shown for cohort 1 (Figure 3.4).

Sequencing of the 500 samples generated 2.2 terabyte raw data which showed

comparable library size with cohort 1 for each sample. Likewise, quality check of the

new RNA-Seq dataset came with consistent and high quality compared to cohort 1

samples (data not shown). Processing of the data including reads trimming, filtering,

mapping, assembling, and counting was exactly following the methods described for the

cohort 1 samples.
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Figure 3.9 Transcript structure and comparison of FPKM values among the four
phenotype groups of pigs for MSTRG.32803.53 and MSTRG.21242.14.
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Table 3.4 Location of genomic loci encoding MSTRG.32803.53 and MSTRG.21242.14

Note: MSTRG.32803.53 transcript was not mapped on any annotated pig chromosome
but mapped on an unplaced assembly AEMK02000452.1.
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Figure 3.10 eQTL of transcript MSTRG.32803.53 and MSTRG.21242.14.

The upper panels display the SNPs with FDR<0.05 affiliated to each chromosome, the
outstanding SNP was highlighted in red with labeled SNP ID. The lower panels show the
expression (FPKM) of the tested transcripts in pigs grouped by their genotypes at the
outstanding SNPs. Null indicates the results of genotyping mismatching reference
annotation. All the data shown above was derived from 57 pigs used in Chapter 3 with
one pig’s data not available.
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Figure 3.11 Comparison of the two major grouping parameters (MPSW or MDW in
panel A; MTN in panel B) and the “off-feed” proportion (panel C) for the four groups of
pigs (“Early_dead”, “Resilient”, “Resistant” and “Susceptible”) in cohort 2.
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PCA analysis was performed to explore if there was any global difference in the

transcriptomic profile between each group of pigs or each blood collection (Figure 3.12).

It is not surprising that the blood transcriptomes of four groups were not well-separated

from Blood 1 samples in either gene or transcript level. The post-challenge samples were

not able to form unique cluster for any group either (Figure 3.12 A, B). However, more

obvious clustering of different blood collections are observed in all the four groups of

pigs, particularly in the resilient and resistant group while less clear in the susceptible and

Early_dead group (Figure 3.12 C, D). This confirms the efficacy of our natural disease

challenge model in inducing significant changes in the transcriptomes of experimental

pigs. Moreover, it implies that the Resilient and Resistant group may be more sensitive in

responding to pathogen challenge and reflected by gene expression change compared to

the Susceptible and Early-dead group. This is consistent with the findings from the cohort

1 pigs suggesting a more potent immune response in the Resilient and Resistant group

than the other two.

For DE analysis, the gene or transcript expression was initially compared between

one group and the other three groups (Figure 3.13). Surprisingly, no significant gene was

observed based on the cohort 1 cutoff (fold change>2, P<0.05) for any of the

comparisons (Figure 3.13A). The number of DE transcripts was also much fewer than

what was shown for cohort 1 (Figure 3.6B and 3.13B). Even though none of the top ten

DE transcripts found in cohort 1 shown in Figure 3.6B is recovered in Figure 3.13B,

several new interesting transcript hits were identified that were not mentioned above,

particularly when comparing the Resilient group with the others. These include some

genes involved in protein ubiquitylation (FBXL18), signaling transduction (PIK3C2A),
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transcriptional regulation (ELK4, CRTC1, RFC1), ribosome assembly (RPL32, RPS11),

and cell function and differentiation (SNCG, SRGN).

Comparisons between two specific groups did not identify any DE genes except an

up-regulated unannotated gene in the Resistant group compared to the Susceptible group

(Figure 3.14A). More DE transcripts were found in two-group comparisons (Figure

3.14B) including all the hits displayed in Figure 3.13 B but none overlapped with the top

hits from corresponding cohort 1 comparisons (Figure 3.7B). A possible explanation for

this inconsistency could be that the genetic and environmental factors may result in

variations in the pig cohorts, and most gene expressions are fluctuating except some

housekeeping genes in healthy state. Thus, the transcriptome of the cohort pigs contains

many “noises” that make it tricky to identify the responsible or correlated genes linked

with the post-challenge phenotypes. However, it is still possible that the gene or

transcript hits identified from cohort 1 are recovered in cohort 2 but are not ranked as the

top hits.

To clarify whether the hits from cohort 1 are “noises” or potential related genes to

the post-challenge phenotypes, I generated the up and down-regulated gene lists for all

the comparisons (one vs others and one vs one) from cohort 2 and ranked by P-values

displayed by heatmaps. Gene or transcript hits from cohort 1 (Figure 3.6 and Figure 3.7)

were localized in the corresponding lists if they showed the same changing trend with

that from cohort 2 (Figure 3.15 and Figure 3.16). Even though many cohort 1 hits were

recovered in cohort 2, most of them were either with high P-value or reverse trend (not

displayed). The ones localized close to the low P-value regions (dark color) had larger

confidence than those localized far away which could be the “noises” mentioned above.
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For example, SAMD9 was found up-regulated in the Early_dead group compared with the

Susceptible group in cohort 1 (Figure 3.7A), and it was also shown with relatively low P-

value in the same comparison in cohort 2 (Figure 3.16A), suggesting it could be a real hit.

Surprisingly, the SAMD9-encoded protein was known as a potent antiviral factor by

sensing double-strand nucleic acid and participating in the formation of cytoplasmic

granules (J. Liu & McFadden, 2015; Nounamo et al., 2017). This is contradictory to our

earlier hypothesis that the pigs from the Susceptible group have stronger immune

potential than that from the Early_dead group. Further evidence supporting a stronger

immunity of Early_dead pigs is the two up-regulated transcripts SRGN and GIMAP6

shown in Figure 3.14B. SRGN encodes a proteoglycan called “Serglycin” which is

broadly expressed in immune cells and as reported before, lacking of Serglycin in

neutrophils (Niemann et al., 2007), cytotoxic T, and NK cells (Sutton et al., 2016)

resulted in a dramatic defect in their target killing, suggesting a crucial role in both innate

and adaptive immunity. Increasing numbers of studies uncovered the importance of

GIMAP6 in maintaining immunocompetency. GIMAP6 is highly expressed in adaptive

immune cells and is thought to regulate autophagy and inflammation (Pascall et al., 2018;

Shadur et al., 2021; Yao et al., 2022). Based on these findings, it is reasonable to

speculate that one possible reason for the death of Early_dead pigs could be an overactive

immune response. One more evidence for this speculation is that SAMD9 was believed to

act downstream of the proinflammatory TNF-α signaling and contribute to associated

inflammation-induced tissue injury (Chefetz et al., 2008).

New DE transcripts resolved from the two-group comparisons include the ones

participating in cell metabolism (CAT, MAT2B, ACSL1), signaling transduction (WDR26,

https://paperpile.com/c/1crECl/AotV+1Gjb
https://paperpile.com/c/1crECl/wpXE
https://paperpile.com/c/1crECl/QzEB
https://paperpile.com/c/1crECl/EMIw+wMRj+9K3h
https://paperpile.com/c/1crECl/EMIw+wMRj+9K3h
https://paperpile.com/c/1crECl/uvJ7
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PTPRC, SMG1, GIMAP6), protein ubiquitylation (UBC), immune response (IFI44L),

transcription regulation (STAT6), and actin binding (SPTBN1, AVIL). Even though not as

many hits were found to be enriched as in cohort 1 pigs, the DE transcripts enriched from

cohort 2 pigs could also provide evidence to infer the differential post-challenge

responses of the four groups. For example, compared to the Resistant group, the Resilient

group up-regulated a transcript of CAT gene which encodes catalase and functions against

the oxidative stress by decomposing hydrogen peroxide. It is also notable that this protein

was found to promote the growth of many types of immune cells including T and B cells

(Takeuchi et al., 1995). Consistently, a WDR26 transcript was also increased in the

Resilient groups, and the protein from this gene also involves in promoting cell growth

(Ye et al., 2016) and suppressing the cell stress from hydrogen peroxide (Zhao et al.,

2009). This evidence suggests a potential advantage of resilient pigs when they are under

oxidative stress due to hydrogen peroxide production during activated immune response

to bacteria (Wake Forest University Baptist Medical Center, 2008). Up-regulation of

PTPRC and IFI44L in the Resilient group compared to the Early_dead and Susceptible

groups, respectively, further supported the hierarchical baseline immunity model that pigs

from the Resilient group outperform the pigs from the other two groups. Based on the

fact that no DE gene or transcript related to immune response was identified between the

Resilient and Resistant group, and up-regulated immune-related genes in Early_dead pigs

than the Susceptible ones from the last paragraph, the baseline immunity model is

modified to Resistant≧Resilient>Early_dead>Susceptible.

A SNCG transcript was up-regulated in the Resilient group compared to the rest of

groups. SNCG encodes a protein called γ-Synuclein which is known to inhibit lipid

https://paperpile.com/c/1crECl/jyXN
https://paperpile.com/c/1crECl/94yg
https://paperpile.com/c/1crECl/By48
https://paperpile.com/c/1crECl/By48
https://paperpile.com/c/1crECl/i1xK
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oxidation and energy consumption (Rodríguez-Barrueco et al., 2022). A CRTC1

transcript, encoded by a gene reported to limit animal appetite and energy consumption,

was down-regulated in the Resilient group (Altarejos et al., 2008). These observations

match our hypothesis that resilient pigs gain more weight than others may involve

consuming less energy.

A PIK3C2A transcript was specifically down-regulated in the Resilient group. This

gene encodes a class II phosphatidylinositol 3-phosphate kinase (PI3K), and intriguingly,

was reported to play an important role in promoting bacterial dissemination (Shigella

flexneri) (Dragoi & Agaisse, 2015). This change indicates a relatively stronger control of

bacterial infection in resilient pigs. Reversely in terms of bacterial and viral infection,

down-regulation of a SRGN transcript in the Susceptible group may reflect their

weakness in control and ability to clear those pathogens.

Comparison of two groups for the DE transcripts (Figure 3.14B) did help solidify

and improve the hypothetical baseline immunity model:

Resistant≧Resilient>Early_dead>Susceptible. It seemed controversial that STAT6 was

more highly expressed in the Susceptible group than that in the Resilient group, as

STAT6 is known to induce the transcriptional regulation downstream of IL-4/IL-13

during a type 2 response (Walford & Doherty, 2013). In addition, it was reported that

STAT6 activated by STING independent of Janus kinases plays an important role in

innate antiviral response (H. Chen et al., 2011). However, in the context of our poly-

pathogen natural disease challenging model, this may not be the case that pigs with

higher STAT6 expression in blood cells would perform better in controlling the infections.

First, the STING study only used two model viruses (a RNA virus-Sendai virus, and a

https://paperpile.com/c/1crECl/JZE0
https://paperpile.com/c/1crECl/pSJw
https://paperpile.com/c/1crECl/EpXt
https://paperpile.com/c/1crECl/z1mV
https://paperpile.com/c/1crECl/EM4Z
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DNA virus-Herpes simplex virus 1). Second, other studies demonstrated a negative role

of STAT6 in susceptibility to viruses and parasites (Dent et al., 1999; Mahalingam et al.,

2001; Tekkanat et al., 2001). Thus, it is necessary to be careful to discuss the meaning of

immune-related genes in terms of their role in pathogenesis especially in the context of

multiple pathogens. Another two interesting hits IFI44L and PTPRC up-regulated in the

Resilient group (Figure 3.14B) imply that both innate and adaptive immune potential of

resilient pigs may be superior. IFI44L is a Type I interferon-stimulated gene and

considered as a critical factor in restricting viral and bacterial infection (Busse et al., 2020;

Jiang et al., 2021). While PTPRC encodes the surface CD45 molecule known as a marker

of almost all hematopoietic cells, and its expression can not only lower the threshold for

antigen receptor activation of T and B cells, but also regulates the antigen-sensing

signaling in mast cells and dendritic cells (Saunders & Johnson, 2010). The higher

expression of those two molecules may result in a “primed” immune defending status in

resilient pigs making them faster to respond and take less effort to induce a certain level

of immune response to control the invading pathogens.

By using a larger cohort size (cohort 2), the observations from cohort 1 were

partially supported, but no DE genes or gene sets were validated to be used as potential

markers to differentiate post-challenge pig response in our natural disease challenge

model. This indicates that there was not enough difference in the whole blood

transcriptome among the four groups of pigs before pathogen challenge and appearance

of their defined phenotypes (“Resistant” or “Resilient” or “Early_dead” or “Susceptible”).

However, our efforts did provide hints to unveil the different baseline levels for their

immune defense potential or metabolic activity of the whole blood cells. Investigation of

https://paperpile.com/c/1crECl/PdWf+2myV+xQOT
https://paperpile.com/c/1crECl/PdWf+2myV+xQOT
https://paperpile.com/c/1crECl/Zufe+qiO0
https://paperpile.com/c/1crECl/Zufe+qiO0
https://paperpile.com/c/1crECl/M9Y4
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Figure 3.12 PCA of transcriptomic profiles for pigs from each blood collection by
displaying the four groups in each plot (A, B) and for pigs from each group by displaying
the three blood collections in each plot (C, D).

Panel A/C and panel B/D are based on the gene or transcripts level, respectively. Each
dot represents a pig. The different colors indicate pigs corresponding to the four defined
pig groups (A, B) or three blood collections (C, D).
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Figure 3.13 Differential expression of genes (A) and transcripts (B) level comparing one
group with the rest of the groups in cohort 2 pre-challenge samples.
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Figure 3.14 Differential expression of genes (A) and transcripts (B) level comparing two
specific groups in cohort 2 pre-challenge samples.
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Figure 3.15 Mapping of top DE_genes (panel A) or DE_transcripts (panel B) in cohort 1
to the list of genes or transcripts ranked by P-value of the corresponding group
comparisons (one vs the rest of three groups) from cohort 2.

Red or purple color indicate the up-regulated or down-regulated genes/transcripts,
respectively, in the group before “vs” than the group after.
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Figure 3.16 Mapping of top DE_genes (panel A) or DE_transcripts (panel B) in cohort 1
to the list of genes or transcripts ranked by P-value of the corresponding group
comparisons (one vs one group) from cohort 2.

Red or purple color indicate the up-regulated or down-regulated genes/transcripts,
respectively, in the group before “vs” than the group after.
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how the blood transcriptome is responding to disease challenges in different groups of

pigs could further help to understand how the mobilization of the immune system and cell

metabolism correlates with the pig's health and productive performance.

3.3.8 DE gene analysis comparing different blood sample
collections in cohort 2.

The major goal of this chapter was to test whether the pre-challenge whole blood

transcriptome (Blood 1) could be used to differentiate the defined four pig phenotypes

that appeared after disease challenge. The subtle differences shown above did not

strongly support this idea, but endogenous differences in terms of immunity and cell

metabolism appeared to be exhibited in the blood transcriptome of different groups of

pigs even before contacting pathogens. To further understand these biological differences

and potential molecular mechanisms that may result in the differential post-challenge

phenotypes, I processed the transcriptome data of the post-challenge blood samples from

cohort 2 pigs. To better reflect the dynamics of gene expression change and dissect the

activating and resolving of immune response, I included both Blood 3 and Blood 4

samples to represent the early and late phase of disease challenge.

Given that the dramatic change of transcriptome was observed in the PCA analysis

among Blood 1, 3, 4 shown in Figure 3.12 C and D, I first performed DE analysis for

Blood 3 vs Blood 1 and Blood 4 vs Blood 3 (Figure 3.17). In terms of common responses

reflected by gene expression change during early infection, all the four groups up-

regulated CXCL10 which encodes a pro-inflammatory chemokine in Blood 3 compared

to Blood 1. CXCL10 can be induced by viral and bacterial infections and stimulate the

recruitment of activated immune cells to the infection site (Elemam et al., 2022). This

https://paperpile.com/c/1crECl/VQaC


168

confirms that our natural disease challenge model efficiently spreads active infections to

the tested pigs and activates their immune system. Meanwhile, Blood 3 has higher

expression of VWF gene which is known to promote hemostasis (Kanaji et al., 2012) and

thus indicating tissue damage happened early after infection. Down-regulation of a gene

(IL1R2) encoding the decoy receptor for the infection-induced pro-inflammatory cytokine

IL-1β (Dinarello, 2018) is also consistent with the ongoing active defensive immune

response. All the groups except the Early_dead group up-regulated CXCL10 as a

common feature but each group displayed some specific top hits that may result in their

phenotype differences. For example, the Resistant group up-regulated additional immune

effector genes including GZMA and GBP5. This supported a strong immune response

was induced in the Resistant group and excludes the possibility that they were totally

tolerant to the infections. Up-regulation of CAMK1 gene encoding a calcium-dependent

kinase indicates the immune cells in resistant pigs were highly active to calcium-induced

metabolic activities. Other than additional immune defensive genes including FCGR1A

and DDX60 were increased in Blood 3 of the Resilient pigs, what needs to be noted are

the following several genes. IOD1 plays a crucial role in preventing autoimmunity from

the overstimulated immune response (van Baren & Van den Eynde, 2015). IL27 not only

participates in inducing Th1 cells but also suppresses some pro-inflammatory cytokines

including IL-6 known as a major driver of cytokine storm (Jones et al., 2018). Cytokine

storm is a systemic disorder of immune dysregulation characterized by elevated

circulating cytokine levels, acute systemic inflammatory symptoms, and multiorgan

dysfunction with the potential to lead to multiorgan failure (Fajgenbaum and June, 2020).

MANF plays a role in alleviating endoplasmic reticulum stress and cell toxicity from

https://paperpile.com/c/1crECl/d5YL
https://paperpile.com/c/1crECl/yM8F
https://paperpile.com/c/1crECl/1oOJ
https://paperpile.com/c/1crECl/7Cla
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hypoxia (Bai et al., 2018). The up-regulation of the above three genes in the Resilient

group provides examples indicating their better performance in immune tolerance

maintenance and anti-stress response. In contrast, the Early_dead group up-regulated the

CCL5 gene which encodes a chemokine in innate immune response to infection but also a

well-known factor inducing cytokine storm (Agresti et al., 2021; Patterson et al., 2020;

Teijaro et al., 2014). The Susceptible group also efficiently up-regulated some immune-

sensing and pro-inflammatory genes including CSF1 and UNC93B, but no cytotoxicity-

related genes were found that were increased in the other three groups (GZMA, NKG7,

FCGR1A). The gene expression changes during early infection particularly highlighted

the opposite performance in maintaining a well-controlled immune response in the

Resilient and Early_dead group pigs. The overwhelming activation of pro-inflammatory

cytokine cascade might be an important reason to cause the early death of the Early_dead

group pigs.

Comparison of Blood 4 vs Blood 3 revealed the gene expression change from early

infection to a later point of continuous disease challenge (Figure 3.17). All the four

groups down-regulated several innate effector genes including CXCL10, LTF, and

SERPING1 as the top hits, implying a transition already happened from innate to adaptive

immune response. Of note, the Resistant group up-regulated MS4A1 and SCIMP, two

genes involved in B cell activation, differentiation and signaling (Tedder et al., 1985),

indicating an ongoing humoral immune response. The expression of these two genes

were also found increased in the Resilient group, however, not in the Early_dead and

Susceptible groups. Additionally, the Resilient group up-regulated two more genes

(CD72 and CD79b) which also play a role in B cell differentiation and signaling

https://paperpile.com/c/1crECl/Qxbm
https://paperpile.com/c/1crECl/m1jk+e5PK+dBNs
https://paperpile.com/c/1crECl/m1jk+e5PK+dBNs
https://paperpile.com/c/1crECl/1JkW
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transduction. Interestingly, the Resilient group had increased expression for NPRL3 and

FBXO9, both function to restrain mTOR1 signaling which is crucial in cell proliferation

and metabolism (Fernández-Sáiz et al., 2013; Iffland et al., 2022). Moreover, SGK1, a

gene encoding a kinase playing a role in promoting cell survival under cell stress (Ghani,

2022), was also up-regulated in the Resilient group. In comparison, the Resistant group

down-regulated NRPL3 in Blood 3 vs Blood1. These facts suggest the different strategies

of organizing immune defense in pigs from the Resistant and Resilient group that the

former boosted the activity of immune cells quickly after infection while the later one

utilized a more economic way to maintain a reasonable but long lasting immune response.

3.3.9 Pathway enrichment analysis for the DE genes from
comparing different blood collections

The DE genes identified between blood collections revealed activation of the innate

immune system in all the groups of pigs early after disease challenge and then the

contraction of innate immune response when the infection lasted longer. Although some

key genes listed above could provide examples of how the four groups respond

differentially in our natural disease challenge mode during the early and late phase of

infection, a more integrated analysis was needed to clarify the biological meanings of

those gene expression changes. To this end, I did GO pathway enrichment analysis on the

DE genes shown in Figure 3.17. GO analysis was not able to enrich pathways for specific

comparison, such as Blood 3 vs Blood 1 for all the groups and the Resistant group due to

insufficient number of DE genes. As shown in Figure 3.18, both the Resilient and

Susceptible group enriched several pathways associated with innate immune response in

Blood 3 compared to Blood 1 (e.g. defense response to other organisms, innate immune

https://paperpile.com/c/1crECl/ijBP+VEJ9
https://paperpile.com/c/1crECl/Vroz
https://paperpile.com/c/1crECl/Vroz
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response, response to external biotic stimulus), suggesting those two groups of sick pigs

were more sensitive than the Resistant group in inducing innate defensive response in our

model. All the groups down-regulated those innate immune pathways in Blood 4, again

suggesting an ongoing contraction phase of innate immunity as inferred above from the

DE analysis. Notably, the Resilience group was the only group that down-regulated many

cell proliferation and metabolic-related pathways (e.g. cell population proliferation,

protein metabolic process, regulation of transport) in Blood 4 compared to Blood 3. This

is also consistent with the observations from DE analysis and further supports the energy

saving mode of resilient pigs during the immune response.
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Figure 3.17 DE genes between two blood collections in cohort 2 in all the pigs or a
specific group.
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Figure 3.18 GO term enrichment analysis for DE genes from Blood 3 vs Blood 1
(B3vsB1) and Blood 4 vs Blood 3 (B4vsB3) in each group (Resistant-R, Resilient-Re,
Early_dead-E, Susceptible-S, all groups-all).
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3.4 Discussion

3.4.1 Insights for differential pig disease responses from the
transcriptome of blood cells before challenging

The immune cells of pigs may differ endogenously and dictate the response once

pigs have become infected. I thus hypothesized that pig disease response could be

predicted using the transcriptome profiles of whole blood cells prior to the pathogen

challenge. Even at steady state, the innate immune cells are critical components to form

the first immune defensive barrier and express multiple pattern recognition receptors

(PRRs) for immune surveillance (Kumar et al., 2011). The response of innate immune

cells also plays an important role in the generation of the adaptive immune response

(Iwasaki & Medzhitov, 2010). To gain an insight into whether the gene expression in

immune cells at the homeostatic state reflected the pigs’ better control of the infectious

disease, I first did RNA-Seq on the whole blood cells from four groups of pigs (58 in

total) prior to the pathogen challenge. The grouping was determined based on their

differential response in our natural disease challenge model determined retrospectively

and used to select the samples.

Many effector genes of immune cells are largely induced upon activation after

recognizing antigens. Not surprisingly, PCA analysis was not able to differentiate those

four groups of pigs based on the global features of the transcriptome at their steady state

(Figure 3.7). However, this does not exclude the possibility that immune cells from a

different group of pigs are endogenously similar in their functional potential without the

pathogen challenge. In contrast, the immune cells from different pigs might already

https://paperpile.com/c/1crECl/uGqR
https://paperpile.com/c/1crECl/plq5
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exhibit differences in the epigenetic level, e.g. in their genome accessibility. This idea is

supported by a mouse CD8 T cell study that the researchers cannot differentiate the WT

group and IL2RA gene knockout group in the PCA analysis of RNA-Seq data whereas the

PCA on ATAC-Seq clearly separated each group (Chin et al., 2022).

Only a few group-specific genes were found in the DE genes analysis when one

group was compared to the other three. This finding suggests the difficulty in identifying

well-defined gene markers for each specific group but also might be due to the limited

size of the experiment cohort (58 pigs in total). The DE analysis on transcripts did enrich

many hits specifically for each group, including transcripts encoded by immune-related

genes, e.g. higher expression of chemokine gene CCL5 in the Resistant group, and higher

expression of cytokine signaling genes IL4R and IL6ST in the Resilient groups. CCL5 is

able to recruit leukocytes including T cells, NK cells, monocytes, dendritic cells,

eosinophils, and basophils to the site of inflammation (Appay & Rowland-Jones, 2001).

Coordinated with IL-2 and interferon (IFN) gamma, CCL5 can promote an activation and

expansion of NK cells, which is crucial for innate immune cells to control viral infection

(Maghazachi et al., 1996). Furthermore, through binding to its receptor CCR5, CCL5

plays a protective role in the induction of anti-apoptotic signals to macrophages during

viral infection, which maintains the survival of those scavengers to clear the infected cells

(Tyner et al., 2005). IL-4 plays a key role in the induction of Th2 response which is

important to induce specific humoral response against extracellular pathogens e.g.

helminths (Nakayama et al., 2017). Thus, T cells with higher IL4R gene expression are

expected to be more sensitive to IL-4 stimulation. IL-6 is a pleiotropic cytokine that

works on both innate and adaptive immune responses to protect the host from the

https://paperpile.com/c/1crECl/rVzi
https://paperpile.com/c/1crECl/Kk42
https://paperpile.com/c/1crECl/rEgy
https://paperpile.com/c/1crECl/Q4Kc
https://paperpile.com/c/1crECl/DLi0
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infection of a variety of pathogens (Rose-John et al., 2017). IL-6 also contributes to the

cytokine storm when its production is exaggerated in response to infection (Tanaka et al.,

2016). Notably, IL-6 is a mediator to induce the synthesis of APPs (Heinrich et al., 1990).

Up-regulation of IL6ST which encodes a transmembrane protein as the subunit of the IL-

6 receptor (Skiniotis et al., 2005) could probably sensitize the response to IL-6 and

initiation of APR. This up-regulation may endow a more potent immune response in the

resilient pigs and APR; however, I did not observe a stronger induction of the three APPs

illustrated in Chapter 2 in the Resilient group. Even though some other DE transcripts

might not be involved in the immune response directly, their immune-regulatory

functions can also contribute dramatically to the control of infection. For example, the

Resilient group specifically down-regulated the UBE2L6 gene which encodes a ubiquitin

ligase and was found to inhibit virus-induced IFN beta production (L. Huang et al., 2020),

suggesting a lower threshold for type I IFN induction upon virus infection. The Resistant

group up-regulated a transcription factor gene ATOH8 which is epigenetically regulated

and a target of Blimp-1, and was recently uncovered to be important in plasma cell

functions (Kong et al., 2022; Minnich et al., 2016). Besides the genes directly involved in

immune response or immune regulation discussed above, one transcript encoded by a

gene called ILF2 drew my attention and was down-regulated specifically in the

Susceptible groups (Figure 3.8B). ILF2 has been found to interact with two PRRSV viral

proteins nsp9 and nsp2 which are important for viral replication, and negatively regulate

PRRSV replication (Wen et al., 2017). Given that PRRSV was included in our natural

disease model, it is not surprising that the susceptible pigs had lower expression of this

antiviral protein. Moreover, ILF2 was also documented to inhibit the replication of

https://paperpile.com/c/1crECl/Uegp
https://paperpile.com/c/1crECl/dxHZ
https://paperpile.com/c/1crECl/dxHZ
https://paperpile.com/c/1crECl/nwy8
https://paperpile.com/c/1crECl/fni6
https://paperpile.com/c/1crECl/W7h6
https://paperpile.com/c/1crECl/Ur8o+ADz0
https://paperpile.com/c/1crECl/5jOV
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infectious bursal disease virus and Japanese encephalitis virus (Cui et al., 2019; Stricker

et al., 2010).

Among all the DE transcripts, only two, MSTRG.32803.53 and MSTRG.21242.14,

were found to be up-regulated specifically in the Susceptible group with q-value<0.1. To

gain more information about the potential function of these two transcripts, I found that

the first exon ofMSTRG.32803.53 matched the Ig C gene which encodes a constant chain

of immunoglobulin. Higher expression of antibodies (e.g. an auto-reactive antibody or

natural antibody in the healthy host) may not indicate a better immunity. However, early

studies proposed a plausibly defensive role of auto-reactive antibody in response to

pathogens because of its cross-reactivity with foreign antigens; but some evidence also

supported their anti-inflammatory properties (Lacroix-Desmazes et al., 1998). A recent

study using this model also supported a positive correlation between the level of natural

antibodies and pig resilience to polymicrobial disease (Y. Chen et al., 2020). A putative

reason for the controversial role of auto-reactive antibodies could be that the traits used to

define resilience in other studies were the higher survival rate and fewer treatments. Both

traits were not the focus of my “Resilient” group. Six out of nine exons of

MSTRG.21242.14 matched the SLAM9 gene which is a SLAM family receptor expressed

on the surface of leukocytes. Studies in mice demonstrated that SLAM9 was expressed

on phagocytes and dendritic cells, and played a role in the recognition and clearance of

bacteria (Wilson et al., 2020). However, the function of this molecule is largely unknown

since SLAM has only been discovered recently and its ligand has not yet been identified.

In addition, SLAMF9 could suppress the migration of macrophages presumably due to its

increased intercellular adhesion (Dollt et al., 2018). The function of SLAMF9 should be

https://paperpile.com/c/1crECl/914n+HZlU
https://paperpile.com/c/1crECl/914n+HZlU
https://paperpile.com/c/1crECl/jdLB
https://paperpile.com/c/1crECl/UX4n
https://paperpile.com/c/1crECl/igYe
https://paperpile.com/c/1crECl/zdR5
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verified in pigs in the context of pathogen challenge, and this could provide hints on

whether a higher expression of SLAMF9 is beneficial to pigs in the immune defense

against pathogen invasion. No matter what the actual function of these two transcripts in

pigs, their expression was exclusively high in the Susceptible group (Figure 3.11). eQTL

analysis for associated SNPs with the expression of these two transcripts led to two

outstanding candidate SNPs and the rare genotypes were correlated with higher

expression for either MSTRG.32803.53 or MSTRG.21242.14. The loci of the two SNPs

are either in gene introns or intergenic regions distant from the gene locus, indicating an

indirect association with the expression of MSTRG.32803.53 and MSTRG.21242.14.

Nevertheless, I observed more DE genes when comparing two specific groups.

Several key genes including CEBPD and ATRN were reported to have positive immune

regulation functions. These genes were identified for the Resistant group, which is

consistent with why those pigs outperformed the others in our natural disease challenge

model with regards to the control of disease development. Interestingly, CEBPD was

found to play a role in regulating the expression of APPs in the liver including AGP, CRP,

and HP (Cantwell et al., 1998). I did observe a significantly higher concentration of AGP

and a trend of higher HP in resistant pigs than that in resilient pigs under an unchallenged

condition (Figure 2.2). This effect however did not become more dramatic when the pigs

were under pathogen challenge. Another up-regulated gene ATRN in the Resistant group

(compared to the Early_dead and Susceptible group) was reported in an earlier study, and

in which its gene polymorphism was associated with pig ADG and live weight traits

(Kim et al., 2005). This is particularly interesting as, in Chapter 3, the selected pigs from

the Resistant group had much higher pre-slaughter weight than the ones from the

https://paperpile.com/c/1crECl/7IpU
https://paperpile.com/c/1crECl/kfP2


179

Early_dead and Susceptible group (Figure 3.3). This is consistent with the earlier finding

of the association of ATRN gene with pig growth. In addition, a negative immune

regulator IL1R2 was found more up-regulated in the Resistant group than in the

Susceptible group (Figure 3.9A). IL1R2 was a decoy receptor for IL-1 cytokines and thus

suppresses IL-1 signaling and its proinflammatory function (Schlüter et al., 2018).

Although IL-1 is one of the main pro-inflammatory cytokines during viral infection and

its signaling is protective to the host, dis-regulated IL-1 production may cause

immunopathology and even cytokine storm syndrome, which can be lethal to the host

(Conti et al., 2020; Q. Liu et al., 2016). Thus, a higher expression of a negative immune

regulator such as IL1R2 might be a protective mechanism of resistant pigs to prevent

excessive inflammatory response and not counteract with their superior immunity against

pathogens. In contrast, this could be a great example of how pigs successfully survived

from infectious diseases, and how well the pigs can balance between the pathogen

clearance and inflammation intensity may be more important in actual commercial farms

under the risk of complex pathogen challenge.

To gain more functional insight into the DE genes and transcripts, and better

understand the biological pathways involved, GO enrichment analysis was performed.

Even though the enriched pathways specific for each group (1 group vs 3) did not reveal

the relative strength of immunity, multiple cytoskeleton organization pathways were

down-regulated in the Resilient group compared to the others (Figure 3.8). Those down-

regulated genes (TPM3, ARPC2, DMTN, GMFG, PLEK) in cytoskeleton organization

pathways participate in cell protrusions, motility, and migration. For example, ARPC2

encodes a component protein of the Arp2/3 complex which mediates polymerization of

https://paperpile.com/c/1crECl/Dclw
https://paperpile.com/c/1crECl/yvqC+vGVZ
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actin upon stimulation that provides the force for cell motility (Welch et al., 1997).

Additionally, Arp2/3 complex is required for proper function of integrin in macrophages

and is critical for complement receptor 3-mediated phagocytosis (Rotty et al., 2017). The

down-regulated gene GMFG also interacts with Arp2/3 complex and regulates its

debranching (Boczkowska et al., 2013). Another down-regulated gene DMTN encoding a

protein called “Dematin” is implicated in the formation of cell protrusions and platelet

motility (Mohseni and Chishti, 2008). This finding is particularly interesting as

cytoskeleton organization plays pivotal roles in immune cell activities and is also

energetically demanding. especially as immune cell migration is largely dependent on

cytoskeletal remodelling and requiring sufficient metabolic activity (Guak and Krawczyk,

2020). Glycolysis play a pivotal role in the motility of both immune and non-immune

cells and many glycolytic enzymes were found localized at the cytoskeleton (Guak and

Krawczyk, 2020). Therefore, glucose consumption from immune cell migration may

have a competition with energy accumulation in terms of livestock productivity purposes.

A study in mice revealed that there is an energetic trade-off between active host defense

against pathogens and homeothermy resulting in hypometabolism and hypothermia

(Ganeshan et al., 2019), suggesting that energy consumption from immune defense of

pigs may also interfere with productive metabolism. Thus, it is suggested that less energy

consumption occurs in the immune response in resilient pigs which may spare energy for

use in productive metabolism. This is consistent with the higher pre-slaughter weights of

resilient pigs than those of susceptible pigs (Figure 3.3). Another intriguing point is that

the Susceptible group had suppressed many cell metabolism-related pathways. On one

hand this may result in inadequate energy production in the immune cells when they are
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activated for proliferation and effector functions, but on the other hand it might also

induce immune exhaustion (Delgoffe & Powell, 2015). Combining the enriched pathways

from the DE genes and transcripts, a hypothetical model depicting the immune defense

potential to complex pathogen challenge was

Resistant>Resilient>Susceptible>Early_dead.

Most of the findings discussed above were derived from a small cohort of 58 pigs.

Thus, I used a larger cohort of 209 pigs to validate these findings. Even though the DE

genes and transcripts found in cohort 1 were not found as top hits in cohort 2, most of the

newly identified DE hits were reasonable and basically matched the idea that the

Resistant and Resilient group have stronger immunity than the Susceptible and

Early_dead group when they are healthy. The DE transcripts (Figure 3.14B) particularly

for the comparisons of two specific groups did help solidify and improve the hypothetical

baseline immunity model as Resistant≧Resilient>Early_dead>Susceptible. It seemed

unexpected that STAT6 was more highly expressed in the Susceptible group than that in

the Resilient group, as STAT6 is known to induce the transcriptional regulation

downstream of IL-4/IL-13 during a type 2 response (Walford & Doherty, 2013). In

addition, it was reported that STAT6 activated by STING independent of Janus kinases

plays an important role in innate antiviral response (H. Chen et al., 2011). However, in

the context of our poly-pathogen natural disease challenging model, this may not be the

case that pigs with higher STAT6 expression in blood cells would perform better in

controlling the infections. First, the STING study only used two model viruses (a RNA

virus-Sendai virus, and a DNA virus-Herpes simplex virus 1). Second, other studies

demonstrated a negative role of STAT6 in susceptibility to viruses and parasites (Dent et

https://paperpile.com/c/1crECl/hLmd
https://paperpile.com/c/1crECl/z1mV
https://paperpile.com/c/1crECl/EM4Z
https://paperpile.com/c/1crECl/PdWf+2myV+xQOT
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al., 1999; Mahalingam et al., 2001; Tekkanat et al., 2001). Thus, we could not conclude

that the Susceptible group with higher STAT6 expression had stronger immunity than the

Resilience group. It should be careful to discuss the meaning of immune-related genes in

terms of their role in pathogenesis, especially in the context of multiple pathogens.

Another two interesting hits IFI44L and PTPRC up-regulated in the Resilient group

(Figure 3.14B) imply that the Resilient group is superior for both innate and adaptive

immune potential. IFI44L is a Type I interferon-stimulated gene and considered as a

critical factor in restricting viral and bacterial infection (Busse et al., 2020; Jiang et al.,

2021). While PTPRC encodes the surface CD45 molecule known as a marker of almost

all hematopoietic cells, and its expression can not only lower the threshold for antigen

receptor activation of T and B cells, but also regulates the antigen-sensing signaling in

mast cells and dendritic cells (Saunders & Johnson, 2010). The higher expression of

those two molecules may result in a “primed” immune defending status in resilient pigs

making them faster and take less effort to induce a certain level of immune response to

control the invading pathogens.

Besides the immune-related genes from cohort 2 discussed above, some genes

associated with cell metabolism were also notable. SNCG transcript encoding γ-

Synuclein was found with higher expression in the Resilient group compared to the rest

of pigs. γ-Synuclein was known as microtubule-associated protein and regulating

cytoskeleton rigidity (Zhang, Kouadio, et al., 2011). γ-Synuclein could support the

differentiation and expansion of fat tissue through inhibiting lipid oxidation and energy

consumption (Millership et al., 2013; Rodríguez-Barrueco et al., 2022). Interestingly, γ-

Synuclein was also reported to promote cell survival under ER stress, which is consistent

https://paperpile.com/c/1crECl/PdWf+2myV+xQOT
https://paperpile.com/c/1crECl/Zufe+qiO0
https://paperpile.com/c/1crECl/Zufe+qiO0
https://paperpile.com/c/1crECl/M9Y4
https://paperpile.com/c/1crECl/Hy3J
https://paperpile.com/c/1crECl/rgNh+JZE0
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with the role of MANF gene that was up-regulated early after disease challenge in the

Resilient group (Figure 3.16). This matches our speculation for the energy-saving mode

of the baseline immunity in resilient pigs. Consuming less energy from immune cells in

resilient pigs may contribute to their higher weight gain than others. Down-regulation of

a transcript from CRTC1 gene in the Resilient group may further support this idea.

CRTC1 encodes a transcriptional co-activator activated by cyclic AMP (cAMP) and

calcium signals, and mice deficient for this gene showed increased appetite but less

energy expending at young age (Altarejos et al., 2008). However, CRTC1 is known to be

expressed in the brain, more research is necessary to reveal whether its expression in the

haematopoietic system matters in maintaining energy balance.

The transcriptome study did come up with many interesting gene candidates that

may be involved in forming the unique disease resilience phenotype upon pathogen

challenge. Further studies such as loss-of-function experiments may reveal the important

role of those genes in an actual immune response induced by infections.

3.4.2 Implications of pig immune response and pathogenesis
from DE genes between pre- and post-challenge transcriptome

To understand how the whole blood transcriptome is modulated in our natural

disease challenge model, I did DE analysis comparing samples collected before (Blood 1)

and early after (Blood 3) disease challenge. It should be highlighted that all the pigs

tested up-regulated CXCL10 gene in Blood 3. This specific pro-inflammatory chemokine

gene was also reported previously by other researchers in different infection models.

These models include not only the pathogens that were verified in our experiment (i.e.

https://paperpile.com/c/1crECl/pSJw
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PRRSV (Xiao et al., 2010), PCV2 (Zhang, Lunney, et al., 2011), Mhyo (Ni et al., 2019)),

but also some other common pig pathogens such as African swine fever virus

(Fishbourne et al., 2013) and Mycobacterium tuberculosis (Rawat et al., 2013).

Intriguingly, all these pathogens mentioned above can cause pig respiratory disease in the

lung. This consistent finding indicates that CXCL10 coupled with its specific receptor

CXCR3 (Groom & Luster, 2011) is a common mechanism in pigs to induce pro-

inflammatory response to pulmonary infections.

After recognition of pathogens by pattern recognition receptors, innate immune cells

are recruited to the infection site by chemokines as exemplified by the CXCL10

mentioned above. The recruited immune cells including neutrophils, macrophages, and

NK cells are then activated to clear the pathogens by phagocytosis, cytotoxicity,

production of anti-microbial and pro-inflammatory molecules. One of the important

defensive mechanisms that is utilized by innate immune cells is the release of reactive

oxygen species (ROS) and reactive nitrogen species (RNS) which could generate

superoxide and nitric oxide (Nathan & Shiloh, 2000). This is a nonspecific response that

can efficiently kill invading pathogens but also induce dramatic tissue injury (Mittal et al.,

2014). Production of ROS and RNS also induce oxidative stress which could cause cell

apoptosis and impaired antigen presentation (Kannan & Jain, 2000; Preynat-Seauve et al.,

2003), and this may dampen the activation of adaptive immune response. Resolution of

inflammation once pathogens are controlled or cleared is thus extremely important to

maintain body homeostasis. Failure to resolve inflammation or induction of over-

activated inflammatory response could cause irreversible tissue damage and even death.

One popular example is the acute respiratory distress syndrome (ARDS) induced by the

https://paperpile.com/c/1crECl/uYMt
https://paperpile.com/c/1crECl/7CQj
https://paperpile.com/c/1crECl/dENQ
https://paperpile.com/c/1crECl/068m
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severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that is known

as the major cause of death in the coronavirus disease 2019 (COVID-19) patients.

Cytokine storm and oxidative stress are the main inducers of ARDS (Meftahi et al., 2021).

As mentioned in the result shown in Figure 3.17, the Early_dead group up-regulated a

major cytokine storm inducer CCL5 but down-regulated an anti-oxidative stress gene

SGK1, indicating a greater risk of those pigs than other survived pigs to develop cytokine

storm and severe respiratory syndrome. Endoplasmic reticulum (ER) stress during viral

infection can also induce production of ROS (Fung & Liu, 2014). A study from our

collaborators also implies pigs from the Early_dead group may die from over-activated

immune response during the natural disease challenge (Schmied et al., 2018). They

applied a pre-challenge test named “High Immune Response” which included assessment

of antibody and cell mediated immune response upon immunization of healthy pigs with

model antigens. Surprisingly, the pigs were high with both antibody and cell mediated

immune response all died after the natural disease challenge. In contrast, the Resilient

pigs up-regulated an anti-ER gene (MANF), an anti-oxidative stress gene (SGK1), and

some “immune braking” genes (e.g. IOD1, IL27) after disease challenge, making them

more adapted to balance the activation and resolution of inflammatory response.

Intriguingly, these gene expression changes seemed unique to the Resilient group,

highlighting the advantage of selecting disease resilience phenotypes.

3.5 Summary

To summarize this chapter, I started with using a small cohort of 58 pigs (cohort 1)

to test our hypothesis that the pre-challenge transcriptome of whole blood cells is able to

https://paperpile.com/c/1crECl/7Szp
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identify biomarker genes to predict post-challenge phenotypes, especially disease

resilience. DE and pathway enrichment analysis suggested a hierarchical model for the

baseline immunity in four groups of pigs that were separated to “Resistant”, “Resilient”,

“Early_dead”, and “Susceptible” based on their post-challenge health and productivity

records. In this model, the Resistant and Resilience group outperformed the other two by

expressing higher levels of immune defensive genes. Meanwhile, the Resilient group

expressed a relatively low level of genes associated with cell activities and thus

supporting a energy-saving feature of its baseline immunity. To validate the findings

from cohort 1, I did the same analysis on a larger cohort 2 with 209 pigs. Many DE genes

or transcripts identified in cohort 1 were more likely “noises” that were not recapitulated

in cohort 2. However, many newly identified DE genes and transcripts supported the

major idea that the Resistant and Resilient group had a strong baseline level of immune

defensive genes. Moreover, more DE hits were also revealed that suggested the

Early_dead group had even more active baseline immunity than the Susceptible group.

Besides the blood samples collected before disease challenge, cohort 2 samples also

included two additional collections of blood that were 4 and 8 weeks post-challenge. This

made it possible to track gene expression change upon time in different groups of pigs in

our natural disease challenge model. Through DE analysis between different collections

of blood, mobilization and contraction of immune response could be revealed at the early

and late blood collections, respectively, in all the pigs. Notably, DE and pathway

enrichment analysis suggested different features of dynamic immune regulation in

different groups. It should be highlighted that pigs from the Resilient group tended to

implement an “economical” strategy in response to pathogen challenge by restricting the
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energy consumption of immune cells and increase the expression of anti-stress genes to

maintain the homeostasis after pathogens are controlled, but not inducing sharp and

strong response trying to clear the infections. This unique feature for resilient pigs may

confer them a more modern farm-favored phenotype by well-balancing the health status

and productive performance.
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CHAPTER 4: Investigation of using plasma
metabolites to predict pig disease resilience

4.1 Background

Metabolites are organic and inorganic low-molecular-weight molecules that are

substrates, intermediates, or terminal products in biological activities or processes. Due to

their essential roles in broad biological pathways, these metabolites are typically regarded

as the outcome of gene expression in an organism. The metabolome is defined as a

collection of all metabolites in a specific biological sample (e.g. cells, tissues, organs, or

organisms). Metabolomics is the comprehensive assessment and systematic study of the

metabolome (Jordan et al., 2009). Metabolites not only participate in metabolic processes

but also functionally interact with and actively regulate other omics levels (Johnson et al.,

2016). For example, metabolites can regulate or mediate protein activity as co-factors of

enzymes or co-substrates that catalyze particular reactions (Jacob & Monod, 1961; Yang

et al., 2018). They can also modulate RNA metabolism and fate by binding to ribosomes

and regulating post-transcriptional modifications (Jones & Ferré-D’Amaré, 2017; Warth

et al., 2018). In addition, metabolites are actively involved in epigenetic regulation by

functioning as cofactors or co-substrates for chromatin-modifying proteins (Watanabe et

al., 2013). Metabolites are promising biomarker candidates, representing functional

phenotypes of a biological system because of the following two reasons. First,

metabolites are derived from various biological processes; and second, they broadly

participate or modulate gene expression. Notably, one can also reveal the mechanisms of

https://paperpile.com/c/KmPCdf/OIGP
https://paperpile.com/c/KmPCdf/TdTR
https://paperpile.com/c/KmPCdf/TdTR
https://paperpile.com/c/KmPCdf/q9g0+2FyQ
https://paperpile.com/c/KmPCdf/q9g0+2FyQ
https://paperpile.com/c/KmPCdf/F4i8+fel2
https://paperpile.com/c/KmPCdf/F4i8+fel2
https://paperpile.com/c/KmPCdf/rUQD
https://paperpile.com/c/KmPCdf/rUQD
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metabolites in phenotypic regulation through metabolic-based activity screening (Guijas

et al., 2018), thereby indicating the status or predicting the performance change of an

organism in certain contexts.

In previous studies, metabolomics was used to assess the progression of diseases,

and some metabolites related to disease development were used in the diagnosis and

prognosis of diseases, which provides guidance for subsequent treatment and to develop

personalized treatment plans. One example is that some key metabolic markers (e.g.

gamma glutamyl dipeptides) can be used to distinguish among nine types of liver

diseases (Soga et al., 2011). Other examples include use of metabolite profiles as

biomarkers of early onset of disease to help diagnose oral cancer (Tiziani et al., 2009),

ovarian cancer (Chen et al., 2011), and malignant pancreatic lesions (Bathe et al., 2011),

etc., which fulfills the purpose of early detection and early treatment to improve

successful treatment rates. However, for livestock, there were studies linking metabolites

concentration in blood with productive performance (Chapinal et al., 2012; Kim et al.,

2017; Moran et al., 2019), but not health conditions. Inspired by the applications of

metabolites in human disease, I thus hypothesized that metabolites may potentially

predict the response of livestock to pathogen infection. Since metabolites are substrates,

intermediates, or final components of livestock products, screening metabolites to predict

pig disease resilience may be another promising direction in addition to using specific

RNA and protein levels in the aforementioned chapters.

In this chapter, I investigated whether metabolomics is applicable to predict pig

disease resilience in our natural disease challenge model. I adopted metabolomics

approaches to determine the metabolome of pigs before the pathogens challenge and

https://paperpile.com/c/KmPCdf/tmuG
https://paperpile.com/c/KmPCdf/tmuG
https://paperpile.com/c/KmPCdf/Cci6
https://paperpile.com/c/KmPCdf/pJ2P
https://paperpile.com/c/KmPCdf/LqJH
https://paperpile.com/c/KmPCdf/Cvzm
https://paperpile.com/c/KmPCdf/Du9H+jBrO+qGkO
https://paperpile.com/c/KmPCdf/Du9H+jBrO+qGkO
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analyzed the correlation of this prior-challenging metabolome profile with different

health and productivity-related post-challenging phenotypes. Similar to what was

described in the previous two chapters, this study aimed to test whether there are specific

metabolic markers to predict the “resilience” phenotype of pigs.

4.2 Methods

4.2.1 Grouping of pigs for metabolome analysis

The rationale behind the selection of pigs was based on our natural disease challenge

model elaborated in Chapters 2 and 3. A total of 460 pigs divided into seven batches

(batches 26-32) from Cycle 4 and Cycle 5 were selected for the metabolome analysis

experiment. Those pigs were grouped into “Resistant”, “Resilient”, “Early_dead”, and

“Susceptible” classes as described in Chapter 3 based on their pre-slaughter weights,

health conditions, and survival during the experiment period. Detailed pig grouping

records and methods are elaborated in section 4.3.2 below.

4.2.2 Blood sample collection and plasma preparation

Blood samples were collected in the tubes containing EDTA and centrifuged at 3000

rpm for 10 minutes at 4°C. Next, plasma was collected from the top transparent layer and

aliquoted in 500 µL per Nunc tube and stored at -80°C before the NMR assay.

4.2.3 Sample preparation and NMR spectroscopy

Frozen plasma samples were thawed at room temperature and shaken well to

homogenize before use. Before the NMR spectroscopy, plasma proteins were removed

through a deproteinization step involving ultra-filtration as previously described
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(Psychogios et al., 2011). 3 KDa cut-off centrifugal filter units (Amicon Microcon YM-3)

were rinsed five times with each wash using 0.5 mL H2O and centrifuged (10,000 rpm for

10 minutes) to remove residual glycerol bound to the filter membrane. Each thawed

plasma sample was then transferred into the centrifuge filter devices, and spun (10,000

rpm for 20 minutes) to remove macromolecules (primarily protein and lipoproteins) from

the sample. The filtrates were checked visually to make sure that the membrane was

intact after filtering. The filtrates were subsequently collected and the volumes were

recorded. Subsequently, 50 mM potassium salt buffer (pH 7) was supplemented to the

filtrates to ensure the total volume of washed sample was a minimum of 200 µL. Any

sample supplemented with potassium salt buffer was annotated with the dilution factor

and metabolite concentrations were corrected accordingly in the subsequent analysis.

Next, 50 µL of the standard buffer solution (54% D2O: 46% 250 mM K2HPO4 +

KH2PO4 pH 7.0 v/v containing 5 mM 2, 2-dimethyl-2-silcepentane-5-sulphonate (DSS),

5.84 mM 2-chloropyrimidine-5 carboxylate, and 0.1% NaN3 in H2O) was added to the

sample.

A total of 250µL serum sample was then transferred to a 3 mm SampleJet NMR

tube for NMR analysis. All 1H-NMR spectra were recorded in the 700 MHz Avance III

(Bruker) spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field gradient (PFG)

cryoprobe. 1H-NMR spectra were detected at 25°C using the first transient of the NOESY

pre-saturation pulse sequence (noesypr1d) considering its high degree of quantitative

accuracy (Saude et al., 2006). All FID’s (free induction decays) were zero-filled to 250 K

data points. The singlet produced by the DSS methyl groups was used as an internal

standard for chemical shift referencing (set to 0 ppm). All 1H-NMR spectra were

https://paperpile.com/c/KmPCdf/OU2d
https://paperpile.com/c/KmPCdf/afJr
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processed and analyzed using the online Bayesil software package which can identify and

quantify the metabolites from the biological samples using de-convolution process

(Ravanbakhsh et al., 2015). The NMR assays were carried out by The Metabolomics

Innovation Centre at the University of Alberta.

4.2.4 Metabolomics statistical analysis

The effect of batch, sire, and dam on metabolites was tested using Fitting Linear

Models in R before metabolomics analysis. The cutoff for statistical significance was P-

value < 0.05. All metabolomics data were processed and analyzed using an integrated

web-based platform, MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) (Chong et al.,

2019). MetaboAnalyst offers a variety of methods commonly used in metabolomic data

analysis. In this study, we primarily focused on T-test, ANOVA, PCA, Partial least

squares-discriminant analysis (PLS-DA, a supervised method that uses multivariate

regression techniques to extract via the linear combination of original variables the

information that can predict the class membership), and Significance Analysis of

Microarray (SAM, addresses the false discovery rate when running multiple tests on

high-dimensional microarray data). The statistical procedures for metabolomics analysis

were performed according to previously published protocols (Chong et al., 2019). In this

study, we used logarithmic normalization to transfer the metabolite concentrations

acquired from the NMR experiment.

4.2.5 Machine learning-based phenotype prediction using
metabolites data

The data cleaning step was performed to remove the missing values in the NMR

https://paperpile.com/c/KmPCdf/G0Si
https://www.metaboanalyst.ca
https://paperpile.com/c/KmPCdf/MRCA
https://paperpile.com/c/KmPCdf/MRCA
https://paperpile.com/c/KmPCdf/MRCA
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dataset. Then, PCA was used to extract the principal components from the whole NMR

data. The input data for machine learning to predict pig performance classification

consisted of original (unadjusted) NMR data, batch-adjusted residuals of the original

NMR data, and PCA-processed NMR data. First, several popular supervised machine

learning prediction algorithms were used in this study including Random Forest (RF, a

supervised learning algorithm suitable for high dimensional class prediction). K Nearest

Neighbor (KNN, determines the category of the sample to be classified according to the

category of the nearest sample or samples), Decision Tree (DT, a tree-like model to

predict possible consequences), support vector machine (SVM, solving the separation

hyperplane that correctly divides the training data set and has the largest geometric

interval), and logistic regression (LR, to predict target values based on linear regression

model) (Riyaz et al., 2022). Optimal hyper-parameters used in each algorithm were

manually determined using the original concentrations of metabolites and detailed

command was listed as following: RF-RandomForestClassifier (n_estimators=500,

max_depth=6, random_state=0, bootstrap=True); KNN-KNeighborsClassifier

(n_neighbors=60); DT-DecisionTreeClassifier(random_state=0, max_depth=6,

criterion="entropy"); SVM-SVC(kernel='rbf'); LR-LogisticRegression(random_state=0,

solver = 'lbfgs', multi_class='multinomial') . The prediction results for each pig grouping

method and prediction algorithm were presented as predicting accuracies. To further

validate the prediction accuracies from each pig grouping method, a permutation test was

conducted. The function “random.permutation()” from the package “NumPy'' was used to

randomly shuffle the samples for a thousand rounds, and baseline predicting accuracy

was determined by cutting off the top 5% permuted rounds with highest predicting

https://paperpile.com/c/KmPCdf/oRne
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performance (If a specific machine model returns an accuracy higher than this baseline

accuracy, it means there is a 95% possibility for a convincible prediction, or statistically a

P<0.05).

Two independent publicly available datasets with clean human blood metabolome

were tested in order to validate the performance of the aforementioned supervised

machine learning algorithms and the analysis pipeline used. The first dataset (MTBLS90:

Large-scale non-targeted serum metabolomics in the Prospective Investigation of the

Vasculature in Uppsala Seniors) from the MetaboLights database (Haug et al., 2020)

contains the plasma concentrations of 189 metabolites determined by liquid

chromatography/mass spectrometry (LC/MS) from males (n=485) and females

(n=483) at age of 70. Machine learning was conducted to predict the sex of the subjects

using all the original metabolites concentrations. The second dataset (ST000369:

Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung

cancer (part II) within the Project PR000293) from the Metabolomics Workbench

database (https://www.metabolomicsworkbench.org) includes the serum concentrations

of 181 metabolites determined by gas chromatography/mass spectrometry (GC/MS) from

the patients of adenocarcinoma lung cancer (n=100) and healthy controls (n=63).

Machine learning was performed to predict the cancer/healthy state of the subjects using

all the original metabolites concentrations. Results of the prediction accuracies are listed

in Appendix 4.3 and 4.4.

Next, another unsupervised machine learning prediction algorithm called “K-means”

was applied as a comparison to the above-mentioned supervised algorithms. The samples

were divided into several clusters by K-means clusters based on metabolite concentration.

https://paperpile.com/c/KmPCdf/V31g
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In metabolites analysis, the K-means cluster was performed by calculating the Euclidean

distance measure on the correlation coefficients between the metabolite concentrations

(Nikas & Low, 2011). Basically, K-means clustering uses standardized metabolite

concentrations to generate several clusters of pigs and the cluster number equals the

number of groups under a certain grouping method. The correlation between the

generated clusters and groups was in turn assessed by Spearman's rank correlation

coefficient since the clusters are not in accordance with normal distribution. Machine

learning was programmed using sklearn and scipy on Python 3.6. Training (75%) and

testing (25%) samples were split according to the command train_test_split (X, Y,

random_state=0) without considering the pig phenotype grouping (Avuçlu & Elen, 2020;

Woillard et al., 2021).

4.3 Results

4.3.1 Determining the effect of the batch, dam, and sire on
metabolite concentrations using Fitting Linear Model

A total of 38 metabolites were resolved by NMR from the plasma samples of the

460 pigs. To determine whether the pig batch, dam, and sire had impacts on the animal

metabolome, I first generated a linear model using pig batch, dam, and sire information to

fit with single metabolite concentration. Then I applied ANOVA analysis (anova.lm in R)

and the results were listed in Table 4.1. There were 19 metabolites significantly related to

the dam with P-value < 0.001, and 14 metabolites were significantly related to the dam

with 0.05≧P-value >0.001, whereas 5 metabolites showed no relationship (P> 0.1). As

expected, most metabolites were remarkably influenced by the dam since it is a genetic

https://paperpile.com/c/KmPCdf/oITi
https://paperpile.com/c/KmPCdf/xzm1+tzyw
https://paperpile.com/c/KmPCdf/xzm1+tzyw
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factor. Surprisingly, I found that 36 out of 38 metabolites were significantly (P< 0.001)

related to the pig batch. L-Histidine was also significantly (P=0.007) related to the pig

batch whereas only acetic acid did not reach the threshold (P=0.12). Considering batch

factors showed such a big impact on metabolite concentration, I generated batch-adjusted

concentrations with a linear model for the metabolites detected in the NMR experiment to

exclude the batch effect in the following statistical analysis.

4.3.2 Classification of pigs using production and health-related
traits

To determine if there was an association between the specific metabolite

concentration and the pig performance after challenging, we grouped pigs according to

the traits as described previously (shown in Figure 3.1). These trait data for the Resistant,

Resilient, Susceptible, and Early_Dead groups are also listed in Table 4.2.

In addition to the classification listed in Table 4.2, I also applied several other ways

to group the pigs for statistical analysis based on the single trait or possible combination

of the two traits shown in Table 4.3:

1) Health status (Healthy or Sick): number of treatments was zero or non-zero for pigs

reaching slaughter;

2) Mortality (Dead or Alive): animals were dead or alive before slaughter age;

3) Productivity performance (Underweight, Normalweight, or Overweight): pre-slaughter

weight was under 115kg, between 115-125kg, or over 125kg, respectively.

4) Health status + Productive performance: healthy and overweight (HO), healthy and

normal weight (HN), healthy and underweight (HU), sick and overweight (SO), sick and

normal weight (SN), and sick and underweight (SU).
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Table 4.1 ANOVA for Linear Model Fits (F test)

Metabolite P (Batch) P (Dam)

2-Hydroxybutyrate 4.50E-05 4.47E-03

Acetic acid 1.24E-01 5.61E-01

Creatine 1.23E-22 5.48E-04

Dimethylglycine 2.41E-58 4.57E-16

Citric acid 1.48E-23 1.89E-04

Choline 9.98E-39 1.84E-01

D-Glucose 1.49E-21 2.04E-02

Glycine 1.44E-06 1.16E-03

Glycerol 1.89E-33 2.90E-01

Formate 1.16E-17 3.75E-02

L-Glutamic acid 1.98E-12 1.32E-03

Hypoxanthine 3.60E-50 5.38E-07

Tyrosine 9.91E-11 1.30E-04

L-Phenylalanine 2.14E-04 1.79E-02

L-Alanine 1.26E-10 2.69E-04

L-Proline 1.35E-08 5.55E-02

L-Threonine 3.21E-24 3.81E-09

L-Asparagine 1.11E-12 3.31E-04

Mannose 3.04E-25 1.28E-04

Isoleucine 3.23E-37 3.46E-07
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Metabolite P (Batch) P (Dam)

L-Histidine 7.94E-03 2.27E-01

L-Lysine 3.73E-08 1.82E-03

L-Serine 1.99E-20 4.39E-05

L-Lactic acid 1.93E-12 3.72E-05

Aspartate 4.52E-09 9.83E-01

Oxoglutarate 1.01E-07 9.41E-03

ornithine 8.75E-07 2.33E-03

Pyruvic acid 1.59E-50 3.94E-07

Succinate 1.19E-36 2.14E-10

Urea 6.23E-13 1.48E-03

L-Alpha-aminobutyric
acid 1.89E-23 2.40E-03

3-Methyl-2-oxovaleric
acid 3.39E-25 1.16E-07

Creatinine 1.02E-21 5.04E-13

L-Glutamine 1.78E-07 3.31E-02

L-Leucine 2.47E-06 1.30E-04

Methionine 1.59E-18 1.90E-03

Valine 2.40E-09 5.58E-07

Isobutyric acid 2.98E-14 1.07E-04
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Table 4.2 Summary of the performance traits and group classification for animals
analyzed for blood metabolites.

Resistant Resilient Susceptible Early_Dead

Total numbers 93 118 147 100

Mortality Alive Alive Alive Dead

Number of treatments 0 1-5 1-6 0-7

Pre-slaughter weight1 (kg) 87-139 120-142.5 63-119.5 5.6-95

Range for slaughter age2

(days)
160-191 159-206 161-191 32-183

1 Pre-slaughter weights: The Pre-slaughter weights under the Early_Dead group were
corpse weights.
2 Range for slaughter age: The Slaughter age under the Early_dead group was the death
age.
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Table 4.3 Summary of performance traits data for additional classifications.

Total
numbers

Morta-
-lity

Treatment
number

Pre-slaughter
weight1 (kg)

Slaughter
age2 (days)

Healthy 93 Alive 0 87-139 160-191

Sick 267 Alive 1-6 63-142.5 159-206

Alive 360 Alive 0-6 63-142.5 159-206

Dead 100 Dead 0-7 5.6-95 32-183

Over
weight 99 Alive 0-5 125.5-142.5 162-206

Normal
weight 120 Alive 0-5 115.5-125 159-191

Under
weight 139 Alive 0-6 63-115 161-186

HO 29 Alive 0 126.5-139 162-186

HN 39 Alive 0 116-125 160-191

HU 25 Alive 0 87-115 161-186

SO 70 Alive 1-5 125.5-142.5 162-206

SN 81 Alive 1-5 115-125 159-191

SU 114 Alive 1-6 63-115 162-186

1Pre-slaughter weight: The Pre-slaughter weight under the Death group was corpse
weight.
2Slaughter age: The Slaughter age under the Death group was death age.
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4.3.3 Statistical analysis for metabolic data with pig
phenotypes using MetaboAnalyst

Metabolite concentration data was standardized by Quantile normalization to

produce a Gaussian distribution prior to statistical analysis. In this study, I used

logarithmic transformation to transfer all the metabolite data for the analysis in

MetaboAnalyst. It is worth noting that the One-way ANOVA analysis for the batch effect

in MetaboAnalyst revealed significant (FDR < 0.05) differences for the concentrations of

35 metabolites among different batches (Appendix 4.1), which is consistent with the

ANOVA results from R shown above (Table 4.1). Therefore, without further clarification,

the batch-adjusted concentrations of metabolites were used as input data in the following

analysis including T-test, ANOVA, PCA, PLS-DA, and SAM. Only the results with the

FDR / P-value < 0.05 were shown.

Initially, to have a global view of the relationship between classified pig groups

defined in Table 4.2 and Table 4.3 regarding the metabolite concentrations, I first applied

PLS-DA and observed a separation of some Early_Dead individuals from others when

combining all three traits (Figure 4.1A). PLS-DA also revealed a separation of some

Early_Dead individuals from other individuals when mortality was the exclusive

classification parameter (Figure 4.1B). The ANOVA test for all the metabolites detected

was performed to compare the concentrations among groups, and the significant results

with either unadjusted or batch-adjusted data are listed below following the order of

group methods introduced above. Succinate was shown to have significantly (FDR < 0.05)

different concentrations between the Early_Dead and any of the remaining three groups,

respectively, and Dimethylglycine was significantly (FDR < 0.05) different between

Early_Dead and either Resilient or Resistant group (Table 4.4 and Figure 4.2). These
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results were consistent with the result of the SAM test. Only if unadjusted concentrations

were applied, was the Succinate level significantly (FDR = 0.0002) different between the

Alive and Dead group in the T-test (Figure 4.3). The resultant data was also supported by

the SAM test results. Of note, the T-test and SAM test based on batch-adjusted

metabolite concentration revealed significant (FDR = 0.03) difference in concentrations

of another metabolite, pyruvic acid, between the Alive and Dead group (Figure 4.4). This

result suggests that pyruvic acid plays important roles in circulating immune cells to

maintain efficient control of infection. Altogether, several metabolites in pigs from

Early_Dead (or Dead) group were found to exhibit different concentrations.

Dimethylglycine showed a trend to have lower plasma concentration in the Resistant and

Resilient group compared to that of the other two. Nevertheless, neither of these

aforementioned metabolites could be used to differentiate the favorable Resilient pigs

from the Susceptible group for animal selection purpose. In addition, the ANOVA test for

the grouping method (illustrated in Table 4.3) also revealed the unadjusted concentration

of Dimethylglycine was significantly different (FDR = 0.01) in the comparisons SO-HN,

HN-SU, HO-HU, SO-HU, SU-HU, SO-SN, SU-SN (Fisher's LSD) (Table 4.4 and Figure

4.5). Intriguingly, in healthy pigs Dimethylglycine has a higher plasma concentration in

the HO than the HU group (Healthy overweight and underweight respectively). In other

words, the pre-challenge concentration of Dimethylglycine is positively correlated with

subsequent body weight of disease-free pigs in response to natural disease challenge. In

contrast, the SO and SU groups (Sick overweight and underweight respectively) showed

a comparable level of Dimethylglycine, indicating Dimethylglycine is not correlated with

post-challenge body weight if the pigs were sick.
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Figure 4.1 PLS-DA analysis shows the separation of some individuals from the
Early_Dead group.

(A) The result based on the grouping method combining all three performance traits. (B)
The result based on the grouping method focusing on mortality.



205

Table 4.4 Summary of metabolite hits with significantly different levels in the four major
groups shown in Table 4.2 and six two-trait-defined groups shown in Table 4.3 from the
ANOVA analysis without batch adjustment.

Metabolites P-value FDR Fisher's LSD (significant comparisons)

Succinate 0.0001 0.0049
Early_Dead vs Resilient;
Early_Dead vs Resistant;
Early_Dead vs Susceptible

Dimethylglycine 0.0011 0.0212
Early_Dead vs Resilient;
Early_Dead vs Resistant;
Susceptible vs Resistant

Dimethylglycine 0.0005 0.01

SO vs HN;
SU vs HN;
HO vs HU;
SO vs HU;
SU vs HU;
SO vs SN;
SU vs SN
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Figure 4.2 The two metabolites that have significantly different concentrations between
the Early_Dead group and the other three groups identified from the ANOVA test using
the grouping method shown in Table 4.2 without batch adjustment. Result of statistical
analysis is listed in Table 4.4.
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Figure 4.3 Comparison of unadjusted concentration of Succinate between the pigs from
the Alive and Dead groups (FDR = 0.0002).
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Figure 4.4 Comparison of batch-adjusted concentration of Pyruvic acid between the pigs
from the Alive and Dead groups (FDR = 0.03).
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Figure 4.5 Unadjusted concentrations of Dimethylglycine in different groups defined in
Table 4.3.

Significant differences (P=0.0005, FDR=0.01) were found comparing SO vs HN, SU vs
HN, HO vs HU, SO vs HU, SU vs HU, SO vs SN, and SU vs SN. Result of statistical
analysis is also listed in Table 4.4.
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4.3.4 Machine Learning

The statistical analysis mentioned above did not identify any potential metabolic

biomarker to predict the pigs’ potential of resilience or resistance in response to pathogen

challenge. My alternative approach was then to use the integrated metabolic profile to

pinpoint the desired phenotypes. Machine learning has been used on metabolites data

derived from bio-fluid to advance the characterization and classification of disease

developing stage and subtypes (Kouznetsova et al., 2019; Machado-Fragua et al., 2022;

Reel et al., 2022). Thus, several commonly-used supervised machine learning algorithms

(KNN, DT, RF, SVM, and LR) were trained using unadjusted or batch-adjusted

metabolite concentrations to explore if any of those models could accurately predict the

group of pigs with desired phenotypes under particular grouping methods. Since the

metabolome contains dynamic systematic information of the metabolic status at a specific

time point, the determined metabolome would inevitably contain some metabolites that

have continuous fluctuations in concentration and may become noise or mislead the

prediction of machine learning algorithms. Meanwhile, PCA was applied on the

unadjusted or batch-adjusted metabolite concentrations to simplify the complexity of the

training data and trained the models mentioned above based on the input of those PCA-

processed data which could explain over 80% or 90% of the variance. The most

representative single component only covers about 20% of the total variation (Appendix

A4.2). This result from PCA analysis indicates that it is impractical to use a few PCA

components to represent most variables of the whole dataset. In addition, an unsupervised

machine learning algorithm called K-means clustering was performed to examine the

correlations between the modeled clusters and the corresponding defined groups from

https://paperpile.com/c/KmPCdf/j6OE+R9w4+dFXx
https://paperpile.com/c/KmPCdf/j6OE+R9w4+dFXx
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different grouping methods. The results of K-means clustering are listed below after the

results of supervised machine learning algorithms.

For the grouping method combining all the three traits (number of treatments,

mortality, and pre-slaughter weight), most supervised algorithms except LR returned an

accuracy higher than the permuted baseline accuracy (Figure 4.6) using either unadjusted

or batch-adjusted metabolite concentrations. Except for the DT model using batch-

adjusted data, PCA processing did not notably improve the prediction accuracy (Table

4.5). Even though the metabolites data did help to give significantly higher predicting

accuracy than random prediction, most actual accuracies were under 0.4 which is not

useful for practical pig selection purposes. Similarly, neither of those supervised

algorithms performed very well (most accuracies ~0.3 to 0.4) to predict the groups from

the grouping method focusing on production ability only or combining health status and

production ability, respectively (Table 4.8 and 4.9). Unexpectedly, all supervised

algorithms returned very high prediction accuracies around 0.8 when the grouping

method was based on survival statement or health status information (Table 4.6 and 4.7).

It should be noted that the group size has big variations when grouping the pigs as

indicated in Table 4.6 and 4.7, which may lead to biased decisions for the group that had

a much larger size during the training step. However, compared to the permuted baseline

accuracy (Figure 4.7 and 4.8), all the algorithms performed well with higher predicting

accuracies, again indicating the metabolites data did significantly improve the prediction.

Results of the prediction accuracies of public datasets are listed in Appendix 4.3 and

4.4. Of note, trait prediction by several algorithms using metabolomic data from both

datasets remarkably improved the permuted baseline accuracy to around 1.5 fold, and the
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SVM (0.83) and LR (0.83) algorithm performed the best for first and second public

dataset, respectively. These results validated the machine learning pipeline that was used

for predicting pig response using plasma metabolome, and also revealed big variations

among different algorithms in the performance to differentiate particular traits.

Furthermore, to reduce the effect of unrelated metabolites, the input data size was

compacted by only using the concentration of the three metabolites (Succinate,

Dimethylglycine, and Pyruvic acid) that showed significant differences among

particularly defined groups (Figure 4.2 to 4.5) would increase the prediction accuracy.

Even so with this modification only slight improvement was observed for particular

algorithms (Table 4.10 compared to Table 4.5 and 4.6). Overall, the algorithm DT

showed relatively better performance in prediction of the multi-factor-determined

phenotypes (Resistant, Resilient, Susceptible, and Early_Dead) with the highest accuracy

of 0.38 using resdPCA24. SVM was found more robust to predict the two-factor-

determined phenotypes (HO, HN, HU, SO, SN, and SU, highest accuracy= 0.36) and the

productivity trait (Underweight, Normalweight, and Overweight, highest accuracy=0.40).

RF and LR were outstanding in prediction of mortality (highest accuracy=0.81) whereas

KNN was more proper to predict health status (highest accuracy=0.79) (Table 4.5 to

4.10). It is promising that the tested supervised algorithms showed some potential for

utilizing plasma metabolites data to predict pig health and productive phenotypes. More

optimizations may be needed to improve the algorithms’ performance as the predicting

accuracy was still far-from-ideal to be used in practical pig selection.
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Table 4.5 Accumulated accuracy results of each different machine learning algorithm for
predicting the grouping of Resistant, Resilient, Susceptible, and Early_dead.

“con”, “conPCA12”, and “conPCA17” indicates all the unadjusted metabolite
concentrations, 12 components of the PCA explaining over 80% of the variance of the
unadjusted metabolite concentrations, and 17 components of the PCA explaining over
90% of the variance of the unadjusted metabolite concentrations, respectively. “resd”,
“resdPCA18”, and “resdPCA24” indicates all the batch-adjusted metabolite
concentrations, 18 components of the PCA explaining over 80% of the variance of the
batch-adjusted metabolite concentrations, and 24 components of the PCA explaining over
90% of the variance of the batch-adjusted metabolite concentrations, respectively. (this
description also applies to the following tables in this chapter)

con conPCA12 conPCA17 resd resdPCA18 resdPCA24

KNN 0.36 0.34 0.33 0.32 0.33 0.30

DT 0.34 0.28 0.24 0.30 0.37 0.38

RF 0.33 0.34 0.30 0.31 0.32 0.31

SVM 0.30 0.30 0.29 0.31 0.32 0.34

LR 0.26 0.32 0.30 0.25 0.26 0.28
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Figure 4.6 Permutation result for the grouping method used in Table 4.5. The red dotted
line represents the baseline accuracy for a convincible prediction (Also applies to Figure
4.7 to 4.10).
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Table 4.6 Accumulated accuracy results of each different machine learning algorithm for
predicting the grouping of Dead and Alive.

con conPCA12 conPCA17 resd resdPCA18 resdPCA24

KNN 0.80 0.80 0.80 0.80 0.80 0.80

DT 0.80 0.79 0.74 0.79 0.76 0.72

RF 0.80 0.78 0.80 0.80 0.81 0.80

SVM 0.81 0.81 0.81 0.80 0.81 0.80

LR 0.77 0.78 0.81 0.79 0.78 0.79



216

Figure 4.7 Permutation result for the grouping method used in Table 4.6.
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Table 4.7 Accumulated accuracy of each different machine learning algorithm for
predicting the grouping of Healthy or Sick.

con conPCA12 conPCA17 resd resdPCA18 resdPCA24

KNN 0.79 0.77 0.77 0.79 0.77 0.77

DT 0.68 0.71 0.73 0.69 0.71 0.72

RF 0.79 0.77 0.77 0.79 0.76 0.74

SVM 0.79 0.77 0.77 0.79 0.76 0.76

LR 0.76 0.74 0.76 0.69 0.72 0.69
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Figure 4.8 Permutation result for the grouping method used in Table 4.7.
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Table 4.8 Accumulated accuracy of each different machine learning algorithm for
predicting the grouping of Underweight, Normalweight, and Overweight.

con conPCA12 conPCA17 resd resdPCA18 resdPCA24

KNN 0.38 0.40 0.40 0.38 0.38 0.36

DT 0.27 0.43 0.38 0.32 0.32 0.36

RF 0.40 0.37 0.40 0.36 0.30 0.34

SVM 0.40 0.38 0.40 0.37 0.33 0.39

LR 0.31 0.34 0.30 0.29 0.37 0.37
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Figure 4.9 Permutation result for the grouping method used in Table 4.8.
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Table 4.9 Accumulated accuracy of each different machine learning algorithm for
predicting the grouping of HO, HN, HU, SO, SN, and SU.

con conPCA12 conPCA17 resd resdPCA18 resdPCA24

KNN 0.33 0.32 0.34 0.31 0.32 0.33

DT 0.30 0.32 0.27 0.26 0.23 0.27

RF 0.26 0.28 0.30 0.30 0.31 0.28

SVM 0.27 0.31 0.30 0.36 0.31 0.34

LR 0.16 0.26 0.23 0.20 0.27 0.27
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Figure 4.10 Permutation result for the grouping method used in Table 4.9.
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Table 4.10 Accumulated accuracy of each different machine learning algorithm for
predicting the groups of particular grouping method using the unadjusted or batch-
adjusted concentrations of correspondingly identified significantly related metabolites.

CGSD: unadjusted concentration of Succinate and Dimethylglycine for predicting groups
of Resistant, Resilient, Susceptible, and Early_Dead; CDS: unadjusted concentration of
Succinate for predicting groups of Death and Alive; BCDS: unadjusted concentration of
Succinate for predicting groups of Dead and Alive using balanced group size for each
group; RDP: batch-adjusted residuals of Pyruvic acid for predicting groups of Dead and
Alive; BRDP: batch-adjusted residuals of Pyruvic acid for predicting groups of Dead and
Alive using balanced group size for each group; CHWD: unadjusted concentration of
Dimethylglycine for predicting groups of HO, HN, HU, SO, SN, SU.

CGSD CDS BCDS RDP BRDP CHWD

KNN 0.36 0.80 0.64 0.80 0.48 0.32

DT 0.35 0.81 0.62 0.79 0.56 0.34

RF 0.37 0.80 0.64 0.79 0.52 0.29

SVM 0.34 0.80 0.64 0.80 0.48 0.32

LR 0.32 0.79 0.58 0.80 0.54 0.33
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Next, machine learning using an unsupervised algorithm called K-means clustering

was applied on the metabolome data. To verify the batch effect on metabolite

concentrations as determined by the Fitting Linear model, 7 clusters were generated to

match 7 batches of pigs using the K-means algorithm and found that the batch was

significantly correlated with metabolite concentrations (Figure 4.11A and Table 4.13). In

Figure 6B, a clear trend shows that most pigs in each batch have similar metabolomes.

The coefficient was even higher when the cluster number was set to 4 (Figure 4.11C, D,

and Table 4.11). However, the correlations between the clusters and the phenotype

groups from all the grouping methods were very weak (most were lower than 0.1, Table

4.11). Considering the correlation analysis with K-means clusters were groups of

phenotypes that had discrete variables, the Spearman correlation was assessed between

the 4 clusters and three continuous variables including pre-slaughter weight, number of

treatments, and growth rate. As shown in Figure 4.12, there is a negligible trend for the

distribution of clusters in terms of any trait tested. The Spearman coefficients were all

consistently very low (Table 4.12). Together, the machine learning results using the K-

means clustering algorithm revealed that the pre-challenge metabolome is strongly

dependent on and correlated with batch factor but only loosely correlated with the post-

challenge phenotypes of pigs related to health, survival, and productivity performances.
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A B

C D

Figure 4.11 K-means clustering of all the pigs tested based on the prior-challenge
metabolomes.

(A and C) Distribution of 7 (A) or 4(C) clusters plotted in two dimensions where the x
and y axis indicate the two main components from PCA analysis that represent most
variables of the dataset, respectively. (B and D) Distribution of 7 (B) or 4(D) clusters
plotted in two dimensions where the x and y axis indicate the batches and the pre-
slaughter weight, respectively.
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Table 4.11 Spearman correlation analysis of groups (phenotypes) under certain grouping
methods with the corresponding number of K-means clusters.

“Combined” indicates the groups of Resistance, Resilience, Susceptibility, and
Early_Dead.

Grouping Method Clusters
Number

Spearman Correlation Result

Correlation P-value

Batch 7 0.38 1.23E-17

Batch 4 -0.42 1.03E-20

Health status 2 0.11 0.04

Production ability 3 0.04 0.46

Survival
statement

2 -0.07 0.13

Health status +
Production ability

6 0.04 0.50

Combined 4 -0.05 0.29
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A

B

Figure 4.12 The 4 K-means clusters of tested pigs based on the pre-challenge
metabolomes.

(A) Distribution of the 4 clusters plotted in two dimensions where the x and y axis
indicates numbers of treatments and growth rate, respectively (B) Distribution of the 4
clusters plotted in two dimensions where the x and y axis indicates numbers of treatments
and growth rate pre-slaughter weight, respectively.
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Table 4.12 Spearman correlation analysis of pre-slaughter weight, number of treatments,
and growth rate with the 4 K-means clusters, respectively.

Spearman Correlation Result

Correlation P value

Pre-slaughter Weight 0.10 0.06

Number of Treatments 0.03 0.54

Growth Rate 0.08 0.13
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4.4 Discussion

One of our breeding aims is to select pigs with resistance or resilience to the

challenge of infectious agents. Those two concepts have distinct meanings but share one

common feature about the immune response to pathogens. Besides the narrow sense

examples of resistance derived from complete blockage of pathogen entry due to entry

receptor mutation or deficiency (Bao et al., 2012; Ren et al., 2012; Whitworth et al., 2016,

2019), successful defense of pathogens after the invasion largely depends on the immune

response to clear or suppress the infection. Maintenance and activation of the immune

system require energy consumption in high demand, and excessive activation of the

immune response may cause appetite loss and muscle wastage (Bird, 2019; Straub, 2017),

which is against the livestock production aim. The resilient pigs could maintain good

productivity performance with active control of pathogen infection by their immune

system, through two possible mechanisms: (1) accomplish relatively efficient immune

response in an energy-effective manner; (2) establish a more active and efficient way to

gain and save energy. To better understand how the resilient pigs balance the energy

distribution between productivity and immune system, and how they outperform other

pigs to maintain relatively high productivity performance under active infection, it is

important to carefully characterize their metabolic activities.

The metabolome is closely related to biological function (phenotype) in studies of

omics. Specific metabolites from biofluid have been used to diagnose or predict the

progression of human diseases with examples described in the background part. Plasma

metabolites were found to be potential predictive or diagnostic indicators for some

chronic diseases of livestock such as ketosis during the perinatal period of dairy cows

https://paperpile.com/c/KmPCdf/h4uh+W3SQ+t3jD+8dca
https://paperpile.com/c/KmPCdf/h4uh+W3SQ+t3jD+8dca
https://paperpile.com/c/KmPCdf/6pQS+0yPB
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(Cao et al., 2017; Lisuzzo et al., 2022; Shahzad et al., 2019). Although metabolites

associated with specific diseases obtained in understanding biological processes are

widely considered as biomarkers, they might not be applicable in clinical settings since

the research purposes and research methods in the clinical settings are not equivalent to

those in the laboratory settings. Biomarker identification is not aiming to understand the

underlying biological mechanisms but to identify the specificity or sensitivity of an

organism to a particular disease or external influence. Thus, a biomarker is an objective,

measurable biological feature used to diagnose, monitor, or predict disease risk. However,

mechanistic insights can not only direct better treatment, but also support the selection of

biomarkers (Zhang et al., 2017). Fundamentally, the goal of biomarkers in metabolomics

is to create a predictive model from a collection of metabolites that can be used to

classify targets into specific groups (e.g. health group and disease group). Notably, the

associated metabolome in most studies of biological processes is after the occurrence of

the event, while biological markers usually require the characteristics of metabolites to be

identified prior to the onset of the disease.

Thus, I hypothesized that the pigs with different responses to pathogen infection

have distinct plasma metabolomes before exposure to pathogens, and metabolome

differences could be used to predict the pig's health and productive performance after

infection. To test this hypothesis, I determined the metabolome of pigs in our natural

disease challenge model before pathogen exposure using the H1 NMR approach. The

metabolome is dynamically stable at the steady state, which possibly simplifies the

complex effect after infection derived from multiple types of pathogens on energy

consumption and production. Indeed, the NMR data revealed that acetic acid had similar

https://paperpile.com/c/KmPCdf/N6Tx+xwKh+oucG
https://paperpile.com/c/KmPCdf/lATO
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plasma concentrations in pigs from different batches or dams even though there were

many other metabolites with endogenously different levels.

The multiplier pigs used in this study were separated in different batches from

different breeding companies, they may have various genetic backgrounds which can

cause variegated metabolome (Swain-Lenz et al., 2017). The batch factor also involves

environments which can also dramatically influence metabolite concentrations

(Bermingham et al., 2021; Katz et al., 2021). For these reasons, I first examined the

correlation of batch factor with plasma metabolome and found that this complicated

factor did significantly impact the majority of plasma metabolites (~97%) in the pigs

tested. It was hard to avoid the influence of seasonal and geographic factors although we

have maximized the consistency of environmental factors such as temperature. In

addition, I also observed that about 87% of plasma metabolites were influenced by the

dam, presumably due to the higher sensitivity of the blood metabolite concentrations to

maternal inheritance including cytoplasmic inheritance (rather than paternal inheritance)

(Joseph et al., 2013). Thus, the batch and dam factors should not be overlooked when

analyzing the relationship between pig performance with plasma metabolome.

I used several statistical methods to compare the plasma metabolome with different

pig performance phenotypes that were determined after the pathogen challenge. For the

NMR-determined metabolites, Succinate (FDR=0.0049) and Dimethylglycine

(FDR=0.0212) had significantly higher concentration in the Early_Dead group than that

in the Resistant and Resilient groups. Succinate is an intermediate from the Kreb cycle.

Interestingly, it was also considered as an inflammation mediator in macrophages and

dendritic cells, and it was assumed that inhibiting its receptor on dendritic cells may

https://paperpile.com/c/KmPCdf/3I9X
https://paperpile.com/c/KmPCdf/ER4A+LfM8
https://paperpile.com/c/KmPCdf/HUf8
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prevent exacerbated inflammation (Mill and O’Neill, 2014). Dimethylglycine is a

derivative of glycine and was reported as an immune modulator many years ago with the

potential to increase both humoral and cellular immunity in humans (Graber et al., 1981).

Dimethylglycine was also used to boost immune response in animals including pigs (Bai

et al., 2022; Reap and Lawson, 1990). The higher concentrations of these two metabolites

in the Early_Dead group may imply a low threshold for immune activation, supporting

our hypothesis that the pigs from the Early_Dead group might die from an overactive

immune response. However, the different concentrations observed for these two

metabolites may be due to difference between the batch factors. Accordingly, I tried to

analyze pigs only from the same batch but failed to identify metabolites with significantly

different concentrations. Notably, when batch-adjusted metabolite concentrations were

applied, the aforementioned significant differences from Succinate and Dimethylglycine

were not found (FDR>0.05), and only Pyruvic acid was found (FDR = 0.03) different

between the Alive and Dead group. This difference, however, was very small and it is

impossible to distinguish most pigs from the Alive and Dead group. Nevertheless,

Pyruvic acid is the essential product of glycolysis and substrate of the Krebs cycle for

energy supply (Akram, 2014). Thus, the pigs from the Dead group were expected to have

a lower concentration of Pyruvic acid, critical to ensure an efficient immune response.

This implies that before challenge, the Dead group may not have as robust functionality

as the other groups. A recent study uncovered the important role of Pyruvic acid in

inflammatory macrophages during the infection of influenza A virus (Abusalamah et al.,

2020).

The subtle difference between groups and big group-internal variation of the

https://paperpile.com/c/KmPCdf/RjDB
https://paperpile.com/c/KmPCdf/lgvy
https://paperpile.com/c/KmPCdf/lgvy
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identified metabolites suggest that they are not ideal biomarkers to predict pig

performance post-pathogen challenge. This may plausibly be due to the complexity of

our model system which contains multiple pathogens and the pigs tested were from

different batches. The NMR assay (being the sole method used here to determine

metabolome) might also contribute to our unsuccessful outcomes. Incorporating data

from MS with NMR would provide a much higher resolution to achieve more convincing

hits of metabolites in a plasma sample. It should be pointed out that our group recently

used a cohort with about two-fold more pigs than I used to explore plasma metabolites

that had differential concentration in resilient pigs using the same NMR method and

natural disease challenge model (Dervishi et al., 2023). Consistently, batch effect was

found to be the most dramatic factor that influenced the concentrations of metabolites in

plasma. Intriguingly, only Creatinine was found to have significantly lower

concentrations in pigs classified as “dead” and “susceptible” than the “average” ones.

Creatinine was also detected in my NMR data but no difference was observed between

any groups based on my pig classifications. Possible reasons could be: (1) Different

grouping logic (e.g. whether pigs receive medical treatment are regarded as “resilient”);

(2) Different adjustment models (I only adjusted the metabolites concentrations from

batch effect, the other study generated a linear model considering environment

enrichment, age, pen, and litter besides batch); (3) Different cohort size; (4) Statistical

methods. I used multiple methods but the other study only used the least Square Means. It

is plausible that including as many factors as possible could better interpret the variations

for such a complex phenotype as “disease resilience”, however, each factor needs to be

carefully assessed to confirm their potential effect on plasma metabolite before

https://paperpile.com/c/KmPCdf/FXjx
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artificially they are included in a linear model to prevent inclusion of unrelated errors.

Intriguingly, our earlier study using the same combination of factors in the linear model

failed to identify significant correlation between any plasma metabolite with health-

related traits (Dervishi et al., 2021) which are important aspects in assessing resilient pigs.

Thus, in the context of a highly heterogeneous pig cohort, more solid testing of

mathematical models and statistical methods are needed in the future to precisely

interpret the differences observed in the metabolites and other measured biological

molecules.

It is worthwhile to examine the feasibility of predicting the performance and health

status in our challenge model based on the information of ensemble plasma metabolome

or a major population of metabolites as metabotypes of pigs. I thus applied machine

learning using different commonly-applied algorithms. However, none of these

algorithms could well predict defined phenotypes in response to pathogen challenge. It

appears that the pre-challenged (NMR) metabolome is not enough to characterize the

potential of pigs to defend against infection or maintain productivity performance in the

context of multiple disease challenges. Alternatively, the model system could be

simplified by reducing the number of pathogen types or even focus on a scenario of a

single pathogen. Another direction might be detecting the metabolome of relevant organs

that are mainly targeted by specific pathogens, e.g. lung and tonsil for PRRSV infection

(Beyer et al., 2000). However, this might not be useful for screening biomarkers to

predict performance since the sampling of lungs and tonsils is impracticable during the

breeding process. One solution to make use of plasma metabolome for pig response

prediction could be multi-omics analysis, as the study of metabolomics is usually

https://paperpile.com/c/KmPCdf/egpm
https://paperpile.com/c/KmPCdf/togz
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combined with other omics (Fan et al., 2006; Hirai et al., 2004; Verhoeckx et al., 2004;

Wang et al., n.d.2018) see Chapter 5.

4.5 Summary

To sum up for this chapter, a total of 460 pigs were included to test the feasibility of

using plasma metabolome analysis in healthy pigs to identify marker metabolites to

predict their post-challenge phenotypes particularly disease resilience. The pigs were

routinely grouped into Resistant, Resilient, Early_dead, and Susceptible as chapter 3, and

the one collection of blood samples were acquired before the start of pathogen challenge.

By utilizing NMR technique, 38 metabolites were successfully detected in the plasma

samples. Notably, Succinate and Dimethylglycine were found with significantly higher

concentrations in the Early_dead group than the other three groups (except

Dimethylglycine in Early_dead vs Susceptible). By further dissecting the health and

productivity traits, there was a positive correlation between the pre-slaughter weight and

Dimethylglycine concentration in healthy pigs but not the sick ones. However, the Fitting

Linear Model demonstrated that the concentrations of most detected metabolites were

influenced by batch factors including pig batch, dam, and sire. After batch adjustment on

the metabolites concentrations, only Pyruvic acid was found with significantly higher

concentration in surviving pigs than the dead one. A series of machine learning models

was also tested to explore the possibility of using global metabolome data to differentiate

pig groups, but prediction accuracy was far from ideal in all the models. These findings

suggested that plasma metabolites in healthy pigs are very sensitive to batch effects and

largely not able to differentiate between groups of animals. It may not be used to identify

https://paperpile.com/c/KmPCdf/qYKF+XQ6B+szke+SrQ8/?suffix=,,2018,
https://paperpile.com/c/KmPCdf/qYKF+XQ6B+szke+SrQ8/?suffix=,,2018,
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valuable markers to select pigs with potential favored phenotypes such as disease

resilience, but it may provide insights to understand the correlation with common traits

such as pig survival after disease challenge.
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CHAPTER 5:
General discussion and future directions

5.1 Summary of findings in this study

The overall aim of this study was to test different types of biomolecules as

biomarkers to predict pig disease resilience. Plasma acute phase proteins (APPs), whole

blood mRNAs, and plasma metabolites from healthy pigs were each interrogated for their

feasibility to predict pig health and productivity in response to multiple pathogens in our

natural disease challenge model.

The study in chapter 2 focused on three common APPs in pigs and their potential

applications as biomarkers in prediction of pig disease resilience. Haptoglobin (HP) and

C-reactive protein (CRP), but not α1-acid glycoprotein (AGP) showed dramatically up-

regulated concentration in plasma upon exposure to pathogens in the natural disease

challenge model (For Blood 3/Blood 1, HP~20 fold, CRP~5 fold), which validated them

as positive APPs. Even though AGP concentration was relatively stable in response to the

disease challenge, its concentration prior to the challenge was the lowest in resilient pigs

(P<0.01 compared to Group 1 and 6, although not significantly lower than group 2, 3, 4,

P>0.05), making it a putative marker for disease resilience. The CRP in resilient pigs

exhibited a different pattern of response upon disease challenge compared with the other

two APPs tested. Early after disease challenge, the concentration of CRP was found with

a slight up-regulation (~2 fold) but followed by a sharp increase (~10 fold) at the later

stage, which could potentially be used to assess resilience with ongoing infections. None

of the APPs tested showed a significant correlation with peripheral blood traits before
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challenge. In contrast, the early induction of HP was positively correlated with the

concentration of white blood cells (WBC) and the late induction of CRP was positively

correlated with the concentration of lymphocytes (Lym), implying these two APPs

respectively accompanied the mobilization of innate and adaptive immune response.

Similarly, no significant correlation was observed between the APPs prior to the

challenge whereas the concentrations of the three APPs at the post-challenge stage were

negatively correlated with 1st treatment age but positively correlated with treatment

frequency. AGP concentration before the challenge was negatively correlated with total

ADG and FI while the other two APPs showed a similar correlation only in the plasma

after challenge. Overall the results in Chapter 2 suggest that pre-challenge AGP has the

potential to predict disease resilience phenotype. HP and CRP also showed potential

value in terms of assessing pig health status and guiding disease management (See further

discussion in Section 5.3 below).

Chapter 3 examined whether specific gene expression information could be

exploited to predict pig disease resilience. Transcriptomic profiles from whole blood

were determined by RNA-Seq in healthy pigs before they were exposed to pathogens in

the natural disease challenge model. Pigs were subsequently grouped into “Resistant”,

“Resilient”, “Early_dead”, and “Susceptible” based on their performance after disease

challenge. Differential expression (DE) analysis was performed to identify candidate

genes or transcripts with predictive values for disease resilience. In the initial cohort of 58

pigs, two transcripts derived from the MSTRG.32803 (on unplaced chromosome

AEMK02000452.1) and MSTRG.21242 (on chromosome 4) genes mapped to IgC and

SLAMF9 genes, respectively, and were found to be significantly up-regulated in pigs
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from the Susceptible group (q-value<0.1) compared to the rest of the pigs. eQTL analysis

for those two transcripts (MSTRG.32803.53 and MSTRG.21242.14) identified

expression-correlated SNPs located on chromosomes 12 and 13, respectively. DE

analysis also revealed that some positive immune-regulatory genes or transcripts were

found with a higher level of expression (P<0.05) in the Resistant group (i.e. CCL5, ATRN,

LYN) and Resilient group (i.e. CXCR5, IL4R, PPP3CA, TNFSF8) compared to those in

other specific groups or the rest of all the pigs. Gene set enrichment analysis was

performed to better understand the biological contexts of the DE genes found in each

group. Consistent with the DE analysis, immune response-related pathways were up-

regulated in the Resistant group while those related to negative regulation of response to

stimulus were more enriched in the Susceptible group. Notably, the Resilient group was

found to down-regulate pathways associated with cytoskeleton organization and

suggested lower energy consumption in terms of the multiple functions (e.g. migration,

phagocytosis) of immune cells that the cytoskeleton is involved in. It is thus possible that

resilient pigs could spare more energy from immune defense to be used in productivity

purposes. This finding supports the hypothetic mechanism to explain why resilient pigs

could maintain optimal productivity in response to pathogen infection. To validate the

findings from the 58 pigs, a larger cohort of 209 pigs from an independent experiment

cycle were tested for the same analysis. Even though the DE genes and transcripts

enriched from the first cohort were not ranked as the top hits in the larger cohort, the

newly identified DE transcripts (i.e. PTPRC, IFI44L) also supported a superior baseline

immunity of the Resilient group compared to the “Early_dead” and “Susceptible” groups.

Some transcripts (i.e. CAT, WDR26) associated with anti-stress response were found up-
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regulated in the Resilient group. A proposed model arising from the results of the two

cohorts supported a hierarchical baseline immunity among the four groups of pigs which

were ranked as follows: Resistant≧Resilient>Early_dead>Susceptible. The RNA-Seq

analysis of the larger cohort included two additional sample collections (blood 3 and 4)

after disease challenge. When comparing DE genes before and after challenge, CXCL10

was up-regulated in all of the pigs two weeks after challenge. By comparing DE genes in

each group, it was suggested that the Resilient group tended to induce a more

“economical” response to pathogen challenge through limiting the energy consumption of

immune cells but increasing the expression of anti-stress genes to maintain homeostasis.

Moreover, there is evidence (elaborated below) supporting the possibility that the

Early_dead group may die from over-activation of immune response instead of

uncontrolled pathogen infections.

The last part of this study was the investigation of the plasma metabolome in pigs

before they were challenged, and the assessment of using these metabolites as predictive

biomarkers for disease resilience. Both the resilient and resistant pigs were observed with

a significantly lower plasma concentration of succinate and dimethylglycine compared to

that of the Early_dead group; a significantly lower concentration of dimethylglycine was

also found in the Resistant group compared with that of the Susceptible group. In addition,

dimethylglycine had a significantly higher plasma concentration (P<0.001) in the healthy

and overweight (HO) group than that in the healthy and underweight (HU) group whereas

no difference was observed between the sick and overweight (SO) and sick and

underweight (SU) groups. Both succinate and dimethylglycine are metabolites involved

in promoting the immune system (see Chapter 4 discussion) however, the concentration
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differences observed may likely be due to batch effects. Removal of the batch effect by

adjusting the concentration of the metabolites left only pyruvic acid as being significantly

different (FDR = 0.03). Lower concentration of pyruvic acid was observed in the Early-

dead group compared with the other groups. Supervised machine learning was applied,

aiming to use the integrated metabolomic profile to predict disease resilience; prediction

accuracy was however sub-optimal in all the algorithms tested. The unsupervised

algorithm did not perform well in clustering pigs correlated with single or combined traits.

Altogether, these methods highlighted the impact of the batch factor on the variations of

the metabolome in the experimental pig cohort and further research may be warranted in

terms of the utility of metabolites as biomarkers (See more discussion in Section 4.4).

To summarize the finding from the whole thesis, a hypothetical model was

generated to compare the differences observed in the defined pig groups in terms of the

different biomolecule types investigated (Figure 5.1).
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Figure 5.1 Hypothetical model summarizing the patterns of the three molecular
modalities determined in this thesis in different groups of pigs before and after the natural
disease challenge.
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5.2 Limitations of the experimental model and design

Pig resilience is a trait dependent on multiple factors, and as defined here mainly

involves the ability to control infection without compromising productivity. There is still

no standardized assessment or measurement of pig resilience in the pig farming field. In

most studies, the level of infection was determined or estimated by the load of pathogens

in the experiments, or alternatively by a health score provided by the veterinarian.

However, the production performance of pigs may vary even though they are exposed to

the same infection pressure, especially for their growth performance. Conversely, pigs

with similar production performance may have different pathogen loads. Since the core

feature of disease resilience is the maintenance of productive performance with exposure

to diseases, pre-slaughter weight, treatment frequency, and mortality were mainly used to

efficiently classify the pig phenotypes in response to disease challenge. More efforts have

been made by others to characterize and broaden the spectrum to assess the resilient

phenotype. Recent studies with the challenge model we used have started to include

health score, growth rate, feed efficiency, and various carcass traits (Bai & Plastow, 2022;

Lim et al., 2021). The health score tends to be limited for assessing disease response as it

is subjective. For pig production traits, it is helpful to also measure feed intake (FI)

besides pig weight since a recent study from our collaborators demonstrated an

association between pig resilience and FI (Putz et al., 2018). Furthermore, the economy

of a pig farm is usually determined by the cost of feeding, treatment of sick pigs, and the

profit of slaughter weight in the market. It would be beneficial to improve the pig farm

economy by taking into accounts these factors, e.g. FI to select resilient pigs. Therefore,

https://paperpile.com/c/7yekD1/JTID+gGAB
https://paperpile.com/c/7yekD1/JTID+gGAB
https://paperpile.com/c/7yekD1/fT0L
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to reasonably define pig resilience, it is optimal to include multiple production and

health-associated traits as proxy traits in future studies. These traits include but are not

limited to health score, pathogen load, FI, and ADG during pathogen challenge.

Meanwhile, the heritability of those known and candidate proxy traits should not be

overlooked, especially when disease resilience is represented based on multiple traits.

Caution on the selection of trait combinations needs to be taken care of to ensure the

breeding aims based on these traits will be desirable to both health and production

performance.

To simulate natural disease challenges for pigs in commercial farms, we established

a system called the natural disease challenge model. This model allowed us to assess the

defined phenotypes, reactive to pathogens in an environment, simulating the actual

situations including infections by multiple pathogens and cross-transmission among pigs.

Most importantly, we aimed to use the animal information collected from this model

prior to the pathogen challenge to predict the health status and performance (phenotypes)

of pigs under the pathogen challenge. Thus, the samples used in this experiment were

collected within the first week of the pig’s arrival from the breeding company at the

healthy quarantine nursery to avoid pre-existing contamination in pigs before the

following challenging step.

Commercial pig production typically takes place in areas with dense pig populations.

This as expected results in unsatisfactory health status as biosecurity is difficult to

maintain in areas that are densely populated with pig farms. Commercial pigs usually

face various types of pathogen infections resulting in disease syndromes or complexes,

e.g. PRDC. Thus, the overarching aim of this study was to identify biomarkers that can be
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used to screen pigs prior to the infection that will subsequently respond better to this

mixed pathogen challenge. Indeed, pigs’ differential responses to pathogen challenge

may involve many factors including but not limited to genetic or genomic variations,

environment, supplier company, animal’s physical traits (e.g. age, weight), and early-

stage stress (e.g. weaning, transportation) when they are exposed to pathogens. In the

actual pig industry, it is inevitable to introduce those variables. The leading aim of this

study was to explore bio-molecules as biomarkers to more efficiently differentiate

supplier pigs that are predicted to be disease resilient when they encounter pathogen

challenge. In particular, we aimed to explore the potential of APP as biomarkers for pig

health status. Research published in 2013 assessed the response of several main APPs

including HP and CRP of pigs in a model of H1N1 SIV and Pasteurella multocida co-

infection (Pomorska-Mól et al., 2013). In this study, they considered a secondary

bacterial pneumonia being a frequent complication during SIV infection (Pomorska-Mól

et al., 2013). Unfortunately, the authors inoculated SIV and Pasteurella multocida at the

same time by intranasal inoculation and so were not able to differentiate the main

infection and concomitant infection. In another APP response study, the group employed

a different experimental infection model to investigate HP and CRP response to

Trichinella species parasites (Gondek et al., 2020). However, they observed mild change

of those APPs to the infection and only HP significantly increased two months after the

infection had occurred. Conversely, our natural disease challenge model introduced

infections through pig-to-pig transmission, which provides natural and continuous

challenges to closely mimic the actual case of commercial farms. Specific APP may

presumably respond in various patterns and exhibit different kinetics to different types of

https://paperpile.com/c/7yekD1/TTjY
https://paperpile.com/c/7yekD1/TTjY
https://paperpile.com/c/7yekD1/TTjY
https://paperpile.com/c/7yekD1/T4hO
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pathogens. Our model included prevalent pathogens in pig farms including viruses,

bacteria and parasites to study pig APP response, to better reflect the complicated

infection case. The advantage of our model could analogously apply to the transcriptome

and metabolome experiments. Most of the studies focusing on investigating the

association of transcriptome profiles with pig response to pathogen infections were

conducted with artificial infection models. The pathogens in these studies include

PRRSV (Wilkinson et al., 2016), ASFV (Jaing et al., 2017), foot-and-mouth disease virus

(Lv et al., 2018), salmonella (Kommadath et al., 2014), and mycoplasma (do Nascimento

et al., 2018). The resulting data may uncover some important genes directly or indirectly

involved in infection onset or pathogenesis of a particular pathogen, but these data may

not represent the scenario of cross infections. A limitation of the natural disease model

used in this study is that it is very difficult to track all the pathogen loads owing to the

complexity of concurrent infections and pathogen/host interaction. Thus, it is improper to

use pathogen load to assess pig response when employing this system. It is also

impossible to ensure that all the pigs tested are exposed to the same level of pathogen

stress by using seeder pigs to spread infection naturally. This could potentially cause

large variations in disease initiation and development, and easily result in type I errors. It

would be optimal to find a way to synchronize the exposure to pathogens for the

experimental pigs in the natural disease challenge model, for example, raising the

possibility of the naive pigs in contact with the seeder pigs by increasing the percentage

of seeder pigs. However, the disadvantage due from this would be excessive pathogen

stress compared to practical origin of a disease outbreak. Another limitation of the natural

disease model is the complexity of infection transmission or pig infectivity. This may

https://paperpile.com/c/7yekD1/QB2p
https://paperpile.com/c/7yekD1/evCY
https://paperpile.com/c/7yekD1/3gGL
https://paperpile.com/c/7yekD1/qkQ9
https://paperpile.com/c/7yekD1/lQOE
https://paperpile.com/c/7yekD1/lQOE


247

cause variations of pathogen stress in different herds in terms of the transmission from

infected pigs by the initial seeder pigs. Even though there is no direct evidence that

whether resilient pigs have lower infectivity compared to suceptible pigs, a recent study

from Doeschl-Wilson group revealed no supportive evidence to limit PRRSV-2

transmission in pigs with the WUR0000125 PRRS resilience allele (Chase-Topping et al.,

2023). The improvement of the natural disease model would be achieved with better

understanding of the pathogen pathogenesis and interaction with pigs.

5.3 Future directions and challenges

With the progress of omics techniques and analytic methods, the main purpose of

this study was to examine the feasibility of using different types of biomolecules

information from blood to predict pig disease resilience. These biomolecules with the

potential to predict disease resilience phenotype can serve as "indicator" or “alternative”

traits (or biomarkers) and should be easily measured or assessed in pig production units.

Any biomarkers identified from the data generated from the natural disease challenge

model (see also Table 5.1) should be carefully validated for their correlation with pig

resilence traits using batches of pigs from different sources. eQTLs can be then

determined and those new biomarkers could be potentially integrated to improve the

genomic selection program. However, before implementing these newly-identified

biomarkers in pig genomic selection, it is also essential to ascertain their heritability and

correlation (both genetic and phenotypic) with the known, validated surrogate traits of

resilience. Once heritability and correlation with other resilience traits is determined and

validated, a large enough training dataset can be established using pigs with both
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genotypic and phenotypic (including the known surrogate traits and new biomarkers)

information to estimate the marker effect. Another training panel with SNP information

only collected in healthy animals can be used to predict the genomic breeding values of

each individual using the estimates (Samorè and Fontanesi, 2016), and these predicted

genomic breeding value can be validated with the resilience phenotypes acquired after

disease challenge. Thus, the resilient pigs can be quickly identified and selected at early

age based on their genomic selection index integrating the SNP allelle effects across the

whole genome.

Overall in this study, the omics data only included blood transcriptome and plasma

metabolome, and the analysis for different types of biomolecules were separated, except

for eQTL analysis which combined transcriptomic and genomic information. The recent

work from our collaborators made a great attempt to integrate whole blood transcriptome

and high-density genotyping to screen cis-eQTLs in the pig genome (Kramer et al., 2022).

This provided valuable resources to link the gene expression difference correlated with

economical phenotypes including the disease resilience with associated genomic

variations which are broadly used in livestock selection and improvement.

Recent work from our collaborators also reported promising results of using plasma

proteome of healthy pigs to predict subsequent response to disease challenge (Chen et al.,

2023). This provides important additional information for this study as only three APPs

were investigated in the plasma samples. With more and more multi-omics data collected

for the pigs in our natural disease challenge model, how to integrate these datasets and

extract meaningful information could be one of the major challenges. A very recent study

on a large healthy human cohort (Xu et al., 2023) could be a great example for the future

https://paperpile.com/c/7yekD1/6c3X
https://paperpile.com/c/7yekD1/UV3v
https://paperpile.com/c/7yekD1/UV3v
https://paperpile.com/c/7yekD1/PysF
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direction. This study performed machine learning to leverage the connection of genetic

variations with the multi-omics data. They trained the “genetic score” comprised of one

to thousands of genetic variants from a single to several linkage disequilibrium blocks,

and used these genetic scores to successfully predict more than ten thousand molecular

traits from the multi-omics data. In addition, they utilized the genetic score to evaluate

the genetic control and disease association of well-characterized biological pathways.

With the phenome-wide correlated molecular traits, they could implicate the association

of genetic variations with disease risk. Learning from this work, multi-omics data from

the same pig could be integrated, including genomic, transcriptomic, proteomic,

metabolomic, and microbiome data, and then use machine learning, even deep learning,

to build a network of bio-information with pig molecular and farm-measured phenotypic

traits to better understand the pig's health status and productive performance, which could

potentially aid in predicting their disease resilience prior to disease challenge and be used

in pig genomic selection. Meanwhile, several potential challenges must be addressed to

fulfill the objectives of this study. One such challenge, evident from the findings in this

thesis, is the limited sample size, which may impede the identification of disease

resilience-associated traits. To mitigate this limitation, our laboratory is proactively

obtaining new samples and generating multi-omics data, significantly expanding the

datasets of the natural disease challenge model. Currently, samples from more than 3,500

animals have been collected, all of which have been carefully stored for future analysis.

Another significant challenge would be the restricted genetic resources within the pig

industry because of highly directed breeding strategies. This has likely led to the loss of

potential genetic variations associated with disease resilience. However, advances in new
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molecular techniques such as CRISPR may offer promising avenues to address this issue.

By gaining a better understanding of the molecular mechanisms governing pig responses

to pathogens and extracting valuable natural variations from different pig populations and

even more distant wild animals, the limitations posed by the narrow genetic pool might

be circumvented. Another challenge arises from the lag between experimental and

analytical methods employed in pig studies as compared to human studies. It needs

considerable efforts to develop compatible methods tailored specifically for pigs. In order

to comprehensively elucidate our endeavors, which involve a series of omics and

molecular assays in our natural disease model to characterize the genetic and phenotypic

features of disease resilience, a table is compiled summarizing the relevant publications

and their key findings (Table 5.1)
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Table 5.1 Summary of the publications using the natural disease challenge model in
study of disease resilience. (The findings listed were based on the pigs upon exposure to
the polymicrobial challenge if there is no further indication.)

Publications/year
Biomolecules types/

Study approaches
Key findings

(Cheng, Fernando, et

al., 2022) DNA/ GWAS

Major histocompatibility complex and loci on some
immune-related genes are associated with disease
resilience-related traits including growth rates, treatment
and mortality rates

(Cheng et al., 2020;
Cheng, Lim, et al.,
2022; Putz et al., 2018)

DNA/reaction norm
analysis, GBLUP

Health scores and treatment rates, mortality, and
growth rates re genetically highly correlated with each
other and can be used to quantify disease challenge loads;
Day-to-day variation in feed intake duration has low to
moderate heritability but has strong genetic correlations
with mortality; Day-to-day variation in feed intake or
duration could be novel indicators for general resilience to
various types stressors including disease

(Cheng et al., 2021)
DNA/random
regression model

Water intake duration and number of visits have
moderate genetic correlations with treatment and mortality
rates

(Jeon, Cheng, et al.,
2021)

DNA/ASE analysis

A SNP which is associated with the host response to
PRRSV has high LD with GBP5 gene; This SNP is
significantly associated with average daily gain and
treatment rates

(Bai et al., 2020, 2021)
Peripheral blood
cells, DNA/GWAS,
GBLUP

Resilient pigs have higher increase of Lym
concentration early after challenge; Neu concentration and
two red blood cell traits are highly genetically correlated
with growth and treatment rates; Some immune-related
SNPs are significantly associated with Eos, Mono, red
blood cell and platelet traits before or after polymicrobial
challenge

https://paperpile.com/c/7yekD1/yhjW
https://paperpile.com/c/7yekD1/yhjW
https://paperpile.com/c/7yekD1/dEgh+enT4+fT0L
https://paperpile.com/c/7yekD1/dEgh+enT4+fT0L
https://paperpile.com/c/7yekD1/dEgh+enT4+fT0L
https://paperpile.com/c/7yekD1/PJUP
https://paperpile.com/c/7yekD1/1Q1i
https://paperpile.com/c/7yekD1/1Q1i
https://paperpile.com/c/7yekD1/PnNP+bp6J
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(Bai et al., 2022; Bhatia
et al., 2022)

Peripheral blood
cells,
immunoassays,
DNA/GBLUP

Before polymicrobial challenge, some complete
blood count and immunoassay traits have significant
genetic correlations with resilience performance traits;
Some phagocytosis traits of pigs before polymicrobial
challenge have moderate/high genetic correlations with
High Immune Response traits and some blood cell
percentage

(Jeon, Gilbert, et al.,
2021)

Peripheral blood
mononuclear cells
(PBMCs),
DNA/GBLUP

Before polymicrobial challenge, PBMC proliferation
in response to oncanavalin A, phytohemagglutinin, and
phorbol myristate acetate show favorable trends to be
genetically correlated with disease resilience-related traits
but are not statistically significant

(Chen et al., 2020)

Natural antibodies
and total IgG in
plasma,
DNA/GBLUP,
GWAS

Before polymicrobial challenge, titers between the
same natural antibody isotypes have moderate to high
phenotypic and genetic correlations. Higher levels of
natural antibodies are genetically correlated with lower
mortality and treatment rates. Only after polymicrobial
challenge, survived pigs had slightly higher levels of
natural antibodies and total IgG than the dead pigs.
Natural antibodies titers are associated with several
genomic variations that include immune-related genes

(Schmied et al., 2018)

Antibody and cell
mediated immune
response/general
linear model

Before polymicrobial challenge, pigs found with high
immune responses have low mortality and longer survival
post challenge than the low and average responders

(Kramer et al., 2022;
Lim et al., 2021, 2022)

Whole blood RNA,
DNA/eQTL
mapping, DE
analysis,Gene set
enrichment analyses

Before polymicrobial challenge, chromosome 12 was
enriched for cis-eQTL based on its relatively smaller size
compared to other chromosomes; Gene expression
involved in innate and adaptive immunity is genetically
correlated with resilience-related traits before and after
polymicrobial challenge

https://paperpile.com/c/7yekD1/SrTC+pNF8
https://paperpile.com/c/7yekD1/SrTC+pNF8
https://paperpile.com/c/7yekD1/lFs6
https://paperpile.com/c/7yekD1/lFs6
https://paperpile.com/c/7yekD1/UpZ0
https://paperpile.com/c/7yekD1/7B5P
https://paperpile.com/c/7yekD1/6c3X+zv8J+gGAB
https://paperpile.com/c/7yekD1/6c3X+zv8J+gGAB
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(Chen et al., 2023)

Plasma protein,
DNA/ GBLUP,
Gene set enrichment
analyses

Before polymicrobial challenge, some protein
abundance has phenotypic association with disease
resilience-related traits; Several proteins including IgG
heavy chain and Complement component C9 are
genetically correlated with disease resilience-related traits;
These associated proteins are enriched within many
immune-related pathways

(Dervishi, Bai, Cheng,
et al., 2023; Dervishi et
al., 2021)

Plasma metabolite,
DNA, Peripheral
blood cells/
Metabolite set
enrichment analysis,
GBLUP

Before polymicrobial challenge, pig batch and
environmental enrichment significantly impact plasma
concentrations of metabolites; Creatinine, L-α-
aminobutyric acid, oxoglutarate, dimethylglycine, betaine,
L-methionine and L-serine concentration is genetically
correlated with some resilience traits before or after
polymicrobial challenge.

(Dervishi, Bai, Dyck, et
al., 2023)

Plasma metabolite,
DNA, Peripheral
blood cells/
BLUPF90 analysis

Before polymicrobial challenge, proline
concentration was genetically positively correlated with
hemoglobin concentration and L-tyrosine was negatively
correlated with mean corpuscular hemoglobin; Genetic
variations of a metabolites concentration is polygenic but
not associated with a single region; PLA2G3, DMGDH,
BHMT, and BHMT2 are identified as the candidate genes
for L-serine, dimethylglycine, betaine, and L-methionine
(previously found to be positively correlated with pig
growth rate) concentration variations.

https://paperpile.com/c/7yekD1/UV3v
https://paperpile.com/c/7yekD1/2VOV+yeAe
https://paperpile.com/c/7yekD1/2VOV+yeAe
https://paperpile.com/c/7yekD1/2VOV+yeAe
https://paperpile.com/c/7yekD1/UM7J
https://paperpile.com/c/7yekD1/UM7J
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Many population-based studies from both human and livestock used bio-molecule

information extracted from the whole blood. This makes sense in the context of the global

assessment of host response, and blood sample collection is simple, fast, and cost-

effective. However, some specific bio-molecules are derived from intracellular

compartments and specific cell types, in such cases, the relevant biological information,

such as transcriptome, from whole blood may be diluted and hard to sort out. Disease

resilience is a complex phenotype that may involve coordination of multiple cells types,

and the responsible cell types contributing to induce or maintain this phenotype might be

changeable at different stages of infection or stress levels. Genes may have contrasting

levels of transcription in different cell types. This could be a possible explanation for

finding that not many DE genes were identified from the transcriptome of resilient pigs

compared with others before disease challenge. Single-cell RNA-Seq (scRNA-Seq) has

developed quickly in recent years and is able to efficiently dissect the transcriptomic

information from specific cell types. scRNA-Seq has also been quickly applied to pig

studies to power the characterization of cell components in different tissues (Cai et al.,

2023; Han et al., 2022; Herrera-Uribe et al., 2021; Zhang et al., 2021). For example,

scRNA-Seq was utilized recently to profile the macrophages in pigs infected by African

swine fever virus, which provided novel insights to viral pathogenesis and anti-viral

strategies (Zheng et al., 2022). Therefore, scRNA-Seq is a potentially useful tool that

could be performed with the samples from the natural disease challenge model to power

the characterization of cell types and genes associated with the disease resilience

phenotype in specific cell types. In Chapter 2, AGP, which showed relatively low

concentration in resilient pigs before natural disease challenge, was found to be inversely

https://paperpile.com/c/7yekD1/7pYy+ImpH+5HzD+q1pR
https://paperpile.com/c/7yekD1/7pYy+ImpH+5HzD+q1pR
https://paperpile.com/c/7yekD1/Vzsg
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correlated with monocyte concentration in the blood early after challenge (Figure 2.4).

The RNA-Seq result in Chapter 3 (Figure 3.6) showed that IL4R was up-regulated in the

resilient pigs before challenge. Coupled with the fact that IL-4 can polarize monocytes to

differentiate to anti-inflammatory M2 macrophages in tissues (Hao et al., 2017), this may

imply that monocyte migration from blood to tissues could be indicated by the level of

AGP concentration and IL4R expression in monocytes or macrophages could be used as

an indicator for tissue repair and immune resolution phase. However, IL4R is also

expressed in B cells and T cells and plays a crucial role in cellular immunity (Nelms et al.,

1999). In this case, single-cell RNA-Seq would potentially be a powerful tool to dissect

the gene expression in different types of immune cells to resolve whether a gene

expression change is cell type-specific.

The recent use of genomic tools has definitely made great contributions to livestock

improvement especially for difficult and expensive to measure traits. However, genomic

variation can only partially explain the observed phenotypic differences. One additional

source of variation is the epigenome. The epigenome contains heritable information in the

form of chemical modifications on genomic DNA that can modulate the expression of

specific genes without altering DNA sequence. The epigenome is sensitive to both

internal and external perturbation such as stress, nutrition level, pathogen infection, and

climate (Pértille et al., 2019; Corbett et al., 2021; Baker et al., 2020). In the past few

years, epigenomics is gaining more attention in livestock studies for exploring novel

strategies to enhance livestock improvement and welfare (Ibeagha-Awemu & Zhao, 2015;

Nery da Silva et al., 2021). Thus, besides genomic variations, epigenomic regulation may

be also involved in establishment of disease resilience and could play important roles in

https://paperpile.com/c/7yekD1/2fXh
https://paperpile.com/c/7yekD1/udQy+2rm1
https://paperpile.com/c/7yekD1/udQy+2rm1
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contributing to the endogenous variations of gene expression that lead to the phenotypic

differences in transcriptome, proteome, and metabolome of pigs before or after exposure

to pathogens. The epigenome information consists of various aspects such as DNA

methylation, histone modification, chromatin structure, and gene regulation by non-

coding RNA. Using the assay for transposase-accessible chromatin with sequencing

(ATAC-Seq) can help determine the landscape of the epigenome to help determine the

regions of the genome that are available for gene expression by determining the genome-

wide DNA accessibility information (Buenrostro et al., 2015). ATAC-seq does not need

specific antibodies for pigs and could be simply applied in future studies to gain insights

into the epigenomic variations in different groups of pigs, and also provide evidence for

the regulation of the DE genes observed from RNA-Seq.

5.4 Concluding remarks

Based on the efforts to test the potential of using acute phase proteins, whole blood

transcriptome, or plasma metabolome to identify biomarkers to predict pig disease

resilience, it seems impossible to use one technique or one molecular type to accurately

distinguish the pigs with favorable phenotypes. To circumvent the difficulty in

understanding and predicting the complicated phenotypes such as disease resilience and

resistance, multi-omics could potentially be the most powerful tool. Broader aspects of

omics data and more solid integrative analyzing pipelines are needed in the future to

better characterize and interpret the association between bio-molecules and disease

resilience phenotype. With identifying more biological traits associated with disease

resilience and the development of simple and fast detecting technologies, there are still

https://paperpile.com/c/7yekD1/nUqq
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opportunities to find easy-to-measure and sensitive biomarkers to predict this valuable

phenotype (Bai & Plastow, 2022). Various biomarkers assessed in each pig could be

integrated as the above mentioned “genetic score” to be used as routine evaluation of

resilience to guide genomic selection.

https://paperpile.com/c/7yekD1/JTID
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Appendices:

Appendix 3.1 Quality check of the RNA-Seq reads from the 58 pig whole blood samples.

(A) MultiQC report of aggregated FastQC results with all the indicated check terms from
the 558 samples. (B) Mean read quality scores (Phred score) of the 558 samples. (C)
Example of the “Per base sequence quality” plot from one sample (pig_672_Read_2)
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Appendix 3.2 Summary of counted reads across all 58 RNA samples from cohort 1 pigs.
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Appendix 3.3 List of names and numbers of the DE genes and transcripts from the
transcriptome of 58 pigs (cohort 1) and the 209 pigs (cohort 2).

Top 20 (lowest P-values) genes or transcripts are listed if more than 20 hits were found.
Change trends of DE genes or transcripts are indicated as in the first group relative to the
second group in each comparison.

Cohort Comparisons
Change

trend
DE types

Total

number
Gene Names

1
Blood1 Resistant vs

Others
Up Genes 0

1
Blood1 Resistant vs

Others
Down Genes 1 CCDC117

1
Blood1 Resilient vs

Others
Up Genes 1 MSTRG.564

1
Blood1 Resilient vs

Others
Down Genes 2 MSTRG.22405, CACNG8

1
Blood1 Early_dead vs

Others
Up Genes 1 MSTRG.11291

1
Blood1 Early_dead vs

Others
Down Genes 0

1
Blood1 Susceptible

vs Others
Up Genes 8

ZCCHC2, TGM2, CCDC117, THY1, MSTRG.10078, RF01977,

RF01978, RF01979

1
Blood1 Susceptible

vs Others
Down Genes 4 MSTRG.11828, ADAM19, TAF7, BCL2L1

1
Blood1 Resistant vs

Others
Up

Transcrip

ts
100

TES, PAFAH2, NDUFS7, NISCH, SLA-5, SPPL2A, RFFL,

CCL5, PTK2B, ATOH8

1
Blood1 Resistant vs

Others
Down

Transcrip

ts
61

MYL9, PFN1, MSTRG.29820, MGAT4B, SMAP2, BCL11B,

SRRM2, AXIN1, CCDC117, MSTRG.24962

1
Blood1 Resilient vs

Others
Up

Transcrip

ts
115

IL4R, MXD1, B4GALT1, NDUFS1, TNRC18, IL6ST, B3GNT3,

MSTRG.17360, SLC4A7, MSTRG.18656

1 Blood1 Resilient vs Down Transcrip 74 UBE2L6, BIRC3, NTAN1, DNAJA3, LYN, PRKAR1A,
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Others ts TMEM106A, MSTRG.27061, PRKACA, PMF1

1
Blood1 Early_dead vs

Others
Up

Transcrip

ts
86

CLTC, SRRM2, EIF3G, NCOA4, ssc-mir-6782, CKB, SNCG,

RNASEL, PSTPIP2, LAPTM5

1
Blood1 Early_dead vs

Others
Down

Transcrip

ts
50

COPG2, CTNNBL1, SPPL2A, CUL4B, MSTRG.17597, PLEK,

RF00139, SNAP23, MSTRG.18000, RERE

1
Blood1 Susceptible

vs Others
Up

Transcrip

ts
236

MSTRG.32803, MSTRG.21242, CCDC6, UBR4, RNF151,

RBM17, ZCCHC2, KLF17, MSTRG.21582, MSTRG.19215

1
Blood1 Susceptible

vs Others
Down

Transcrip

ts
83

KLF17, MSTRG.3999, SV2A, RNF151, AGK, ATL3, GAPDH,

NFKBIZ, ILF2, PTP4A1

1
Blood1 Resistant vs

Resilient
Up Genes 7

BRPF3, MSTRG.17793, MSTRG.32328, CACNG8, TGM3,

MSTRG.33819, CEBPD

1
Blood1 Resistant vs

Resilient
Down Genes 4 MANSC1, CSKMT, CCDC117, MSTRG.8886

1
Blood1 Resistant vs

Early_dead
Up Genes 1 ATRN

1
Blood1 Resistant vs

Early_dead
Down Genes 1 MSTRG.11291

1
Blood1 Resistant vs

Susceptible
Up Genes 7

CEP68, ATRN, IL1R2, GNA13, RGS2, MSTRG.983,

MSTRG.11828

1
Blood1 Resistant vs

Susceptible
Down Genes 7 CCDC117, BBX, PSTK, THY1, DHCR24, TGM2, PTPRO

1
Blood1 Resilient vs

Early_dead
Up Genes 3 M6PR, CXCR5, RF00017

1
Blood1 Resilient vs

Early_dead
Down Genes 2 MSTRG.29272, MSTRG.22405

1
Blood1 Resilient vs

Susceptible
Up Genes 17

PPP3CA, MSTRG.34160, ZNF572, RF00017, BTG1, KHK,

MSTRG.11828, MSTRG.15239, MSTRG.564, MAP3K14

1
Blood1 Resilient vs

Susceptible
Down Genes 11

CLTB, MSTRG.33819, CACNG8, MSTRG.29489,

MSTRG.33785, MSTRG.31561, AP4E1, MSTRG.29272,

ZCCHC2, TGM2



325

1
Blood1 Early_dead vs

Susceptible
Up Genes 10

RANBP10, INPP5E, MSTRG.9951, FCRL3, MSTRG.21823,

MSTRG.11291, ADAM19, SAMD9, TAF7, ZC3HAV1

1
Blood1 Early_dead vs

Susceptible
Down Genes 9

ZCCHC2, MTFR1, RF01978, RF01977, RF01979,

MSTRG.33819, MSTRG.14994, TGM2, MSTRG.14772

1
Blood1 Resistant vs

Resilient
Up

Transcrip

ts
152

NR2E1, TES, MGAT4A, CCL5, MBOAT7, NISCH, HECA,

PMF1, XPO7, LYN

1
Blood1 Resistant vs

Resilient
Down

Transcrip

ts
146

MXD1, B4GALT1, BCL11B, B3GNT3, PFN1, LRRC73, XPO1,

MSTRG.21158, NDUFS1, SMC4

1
Blood1 Resistant vs

Early_dead
Up

Transcrip

ts
125

SPPL2A, ZNF444, B4GALT1, TES, SLA-5, ILKAP,

MSTRG.18000, RF00571, RFFL, MSTRG.24007

1
Blood1 Resistant vs

Early_dead
Down

Transcrip

ts
98

SRRM2, MSTRG.21158, MSTRG.25464, MSTRG.24962,

SMAP2, MYL9, GSN, RNASEL, ECM1, KIAA1147

1
Blood1 Resistant vs

Susceptible
Up

Transcrip

ts
124

GAPDH, NISCH, MSTRG.3999, MRPS15, MSTRG.8068, AGK,

PCMTD1, USP1, CASP7, ARHGAP4

1
Blood1 Resistant vs

Susceptible
Down

Transcrip

ts
222

RUFY4, MISP3, CAMTA2, BBX, PSTK, INTS7, AXIN1, LARP4,

MSTRG.2870, ANKMY2

1
Blood1 Resilient vs

Early_dead
Up

Transcrip

ts
137

MXD1, IL4R, SRRM2, ZNF644, CSPG5, CSNK1A1, ZMYM2,

ATP2A3, DEGS1, M6PR

1
Blood1 Resilient vs

Early_dead
Down

Transcrip

ts
130

BIRC3, UBE2L6, CLTC, TCOF1, NTAN1, NIPSNAP3B,

DNAJA3, NASP, MSTRG.14953, PRKACA

1
Blood1 Resilient vs

Susceptible
Up

Transcrip

ts
205

TNFSF8, IWS1, POLR2G, MSTRG.18788, BUD13, B4GALT1,

UBXN4, MSTRG.8173, UBASH3A, CAMTA2

1
Blood1 Resilient vs

Susceptible
Down

Transcrip

ts
257

CNOT8, MBP, PARVG, MSTRG.5591, MSTRG.16177,

DNAJA3, GPAT3, TPM3, OARD1, CLTB

1
Blood1 Early_dead vs

Susceptible
Up

Transcrip

ts
129

REV1, ANKRD13A, KLF17, NFKBIZ, RNF151, TRAV26-2,

MSTRG.3999, PPP1R12A, CLTC, CNOT6

1
Blood1 Early_dead vs

Susceptible
Down

Transcrip

ts
211

ZCCHC2, RREB1, MSTRG.32803, ZC3H4, HIBADH, ABR,

CUTA, KLF17, ARHGAP4, FBXL5

2
Blood1 Resistant vs

Others
Up Genes 0
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2
Blood1 Resistant vs

Others
Down Genes 0

2
Blood1 Resilient vs

Others
Up Genes 0

2
Blood1 Resilient vs

Others
Down Genes 0

2
Blood1 Early_dead vs

Others
Up Genes 0

2
Blood1 Early_dead vs

Others
Down Genes 0

2
Blood1 Susceptible

vs Others
Up Genes 0

2
Blood1 Susceptible

vs Others
Down Genes 0

2
Blood1 Resistant vs

Others
Up

Transcrip

ts
2 HBM, ssc-mir-10390

2
Blood1 Resistant vs

Others
Down

Transcrip

ts
1 FBXL18

2
Blood1 Resilient vs

Others
Up

Transcrip

ts
6 RPL32, HBM, ssc-mir-10390, RFC1, HBM, SNCG

2
Blood1 Resilient vs

Others
Down

Transcrip

ts
3 CRTC1, PIK3C2A, MSTRG.24540

2
Blood1 Early_dead vs

Others
Up

Transcrip

ts
1 ssc-mir-10390

2
Blood1 Early_dead vs

Others
Down

Transcrip

ts
1 RPS11

2
Blood1 Susceptible

vs Others
Up

Transcrip

ts
3 HBM, HBM, ELK4

2
Blood1 Susceptible

vs Others
Down

Transcrip

ts
1 SRGN
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2
Blood1 Resistant vs

Resilient
Up Genes 0

2
Blood1 Resistant vs

Resilient
Down Genes 0

2
Blood1 Resistant vs

Early_dead
Up Genes 0

2
Blood1 Resistant vs

Early_dead
Down Genes 0

2
Blood1 Resistant vs

Susceptible
Up Genes 1 MSTRG.7375

2
Blood1 Resistant vs

Susceptible
Down Genes 0

2
Blood1 Resilient vs

Early_dead
Up Genes 0

2
Blood1 Resilient vs

Early_dead
Down Genes 0

2
Blood1 Resilient vs

Susceptible
Up Genes 0

2
Blood1 Resilient vs

Susceptible
Down Genes 0

2
Blood1 Early_dead vs

Susceptible
Up Genes 0

2
Blood1 Early_dead vs

Susceptible
Down Genes 0

2
Blood1 Resistant vs

Resilient
Up

Transcrip

ts
6

MSTRG.19529, PIK3C2A, CRTC1, MSTRG.24540, FBXL18,

ssc-mir-10390

2
Blood1 Resistant vs

Resilient
Down

Transcrip

ts
6 WDR26, ssc-mir-10390, CAT, HBM, HBM, CRTC1

2
Blood1 Resistant vs

Early_dead
Up

Transcrip

ts
1 RPS11
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2
Blood1 Resistant vs

Early_dead
Down

Transcrip

ts
1 HBM

2
Blood1 Resistant vs

Susceptible
Up

Transcrip

ts
2 MAT2B, SNORD38A

2
Blood1 Resistant vs

Susceptible
Down

Transcrip

ts
5 ACSL1, ELK4, HBM, HBM, RPL23

2
Blood1 Resilient vs

Early_dead
Up

Transcrip

ts
9

RPL32, PTPRC, HBM, MSTRG.44186, RFC1, PTPRC,

ssc-mir-10390, SMG1, SNCG

2
Blood1 Resilient vs

Early_dead
Down

Transcrip

ts
2 MSTRG.10907, CRTC1

2
Blood1 Resilient vs

Susceptible
Up

Transcrip

ts
8

TSGA13, RPL32, IFI44L, SPTBN1, GIMAP6, SRGN,

MSTRG.44187, HBM

2
Blood1 Resilient vs

Susceptible
Down

Transcrip

ts
9

PRXL2A, TSGA13, STAT6, MSTRG.41907, MSTRG.10073,

CRTC1, ssc-mir-10390, UBC, HBM,

2
Blood1 Early_dead vs

Susceptible
Up

Transcrip

ts
2 GIMAP6, SRGN

2
Blood1 Early_dead vs

Susceptible
Down

Transcrip

ts
6 AVIL, ELK4, RPS11, HBM, HBM, UBC

2
all groups Blood3 vs

Blood1
Up Genes 8

MSTRG.11698, VWF, CXCL10, Metazoa_SRP, SERPING1,

RPS29, Metazoa_SRP, MSTRG.22239

2
all groups Blood3 vs

Blood1
Down Genes 6

MSTRG.20956, IL1R2, MSTRG.33084, MPG, NPRL3,

MSTRG.49035

2
all groups Blood4 vs

Blood3
Up Genes 21

RNaseP_nuc, CST3, MSTRG.43791, MSTRG.43792,

MSTRG.43746, MSTRG.43733, MSTRG.43770,

MSTRG.34674, MSTRG.43709, MSTRG.19931

2
all groups Blood4 vs

Blood3
Down Genes 6 HSPB1, SERPING1, MSTRG.33488, VWF, LTF, CXCL10

2
Resistant Blood3 vs

Blood1
Up Genes 11

MRPL17, VWF, GZMA, CAMK1, CXCL10, GBP5,

MSTRG.11698, Metazoa_SRP, RPS29, Metazoa_SRP

2 Resistant Blood3 vs Down Genes 8 IL1R2, MSTRG.33084, MSTRG.20956, MPG, NPRL3,
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Blood1 MSTRG.30424, HBZ, MSTRG.30428

2
Resistant Blood4 vs

Blood3
Up Genes 26

SCIMP, CST3, RNaseP_nuc, MSTRG.43733, MSTRG.43770,

GZMK, MSTRG.43792, MSTRG.43791, MSTRG.43746,

MS4A1

2
Resistant Blood4 vs

Blood3
Down Genes 6 CALD1, VWF, MSTRG.33488, SERPING1, HSPB1, LTF

2
Resilient Blood3 vs

Blood1
Up Genes 32

DDX60, MRPL17, MANF, IDO1, MSTRG.11698,

MSTRG.34671, CXCL10, SERPING1, FCGR1A, IL27

2
Resilient Blood3 vs

Blood1
Down Genes 13

CXCR4, C19orf67, SGK1, MSTRG.50671, GALNT10, IL18,

MSTRG.35814, DCPS, MSTRG.40549, MSTRG.42312

2
Resilient Blood4 vs

Blood3
Up Genes 30

CST3, SCIMP, FBXO9, MS4A1, CD72, MPG, NPRL3,

MSTRG.44117, SGK1, CD79B

2
Resilient Blood4 vs

Blood3
Down Genes 19

MRPL17, LAP3, MSTRG.14749, BNIP5, MSTRG.35506,

SERPING1, CXCL10, IDO1, DDX60, FOXS1

2
Early_dead Blood3 vs

Blood1
Up Genes 15

NKG7, Metazoa_SRP, GZMA, MRPL57, CCL5, RPS29,

Metazoa_SRP, RBM38, VWF, ACTR10

2
Early_dead Blood3 vs

Blood1
Down Genes 14

RPS26, MSTRG.20956, KPNA4, MSTRG.16304, TEX14,

SGK1, SLC25A21, MSTRG.10759, IL1R2, MSTRG.30424

2
Early_dead Blood4 vs

Blood3
Up Genes 13

MSTRG.43733, RNaseP_nuc, CST3, MSTRG.43770, RPL28,

MSTRG.34674, MSTRG.19931, RPS29, Metazoa_SRP,

MSTRG.30424

2
Early_dead Blood4 vs

Blood3
Down Genes 5 MSTRG.33488, RHEX, TGFB1, RBM38, SRRM2

2
Susceptible Blood3

vs Blood1
Up Genes 30

SEPTIN5, MSTRG.12911, UNC93B1, MRPL17, CSF1,

CXCL10, RHPN2, SERPING1, MSTRG.22239, BNIP5

2
Susceptible Blood3

vs Blood1
Down Genes 5

MSTRG.33084, MSTRG.20956, MSTRG.50671, IL1R2,

MSTRG.49036

2
Susceptible Blood4

vs Blood3
Up Genes 47

MSTRG.43729, MSTRG.43733, MSTRG.34674,

MSTRG.43770, MSTRG.12581, H2AC4, MSTRG.43790,

MSTRG.43792, H2BC11, MSTRG.43748
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2
Susceptible Blood4

vs Blood3
Down Genes 38

CALD1, SEPTIN5, F13A1, UNC93B1, TREML1, LTF, TCIRG1,

SERPING1, EVL, MX2
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Appendix 4.1 Significance of ANOVA analysis for batch effect.
Metabolites p.value FDR Fisher's LSD

Hypoxanthine 7.37E-52 2.80E-50
27 - 26; 28 - 26; 30 - 26; 31 - 26; 32 - 26; 27 - 28; 27 -
29; 27 - 30; 31 - 27; 28 - 29; 30 - 28; 31 - 28; 32 - 28; 30
- 29; 31 - 29; 32 - 29; 31 - 30; 31 - 32

Dimethylglycine 1.48E-40 2.82E-39
27 - 26; 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 30 -
27; 32 - 27; 30 - 28; 32 - 28; 30 - 29; 32 - 29; 30 - 31; 30
- 32; 32 - 31

Choline 6.93E-34 8.77E-33
27 - 26; 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 30 -
27; 31 - 27; 32 - 27; 30 - 28; 31 - 28; 32 - 28; 30 - 29; 31
- 29; 32 - 29; 31 - 30; 32 - 30

Tyrosine 4.93E-29 4.68E-28 27 - 26; 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 27 -
28; 27 - 30; 29 - 28; 31 - 28; 29 - 30; 31 - 30

Succinate 3.42E-26 2.60E-25
27 - 26; 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 27 -
29; 32 - 27; 30 - 28; 31 - 28; 32 - 28; 30 - 29; 31 - 29; 32
- 29; 32 - 30; 32 - 31

Creatinine 1.27E-25 8.04E-25
27 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 27 - 28; 30 -
27; 29 - 28; 30 - 28; 31 - 28; 32 - 28; 30 - 29; 31 - 29; 30
- 31; 30 - 32; 31 - 32

Citric acid 7.56E-25 4.10E-24 27 - 26; 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 27 -
30; 28 - 30; 29 - 30; 32 - 29; 31 - 30; 32 - 30; 32 - 31

Pyruvic acid 2.85E-23 1.36E-22
27 - 26; 26 - 29; 31 - 26; 26 - 32; 27 - 28; 27 - 29; 27 -
30; 27 - 32; 28 - 29; 31 - 28; 28 - 32; 30 - 29; 31 - 29; 31
- 30; 30 - 32; 31 - 32

L-Threonine 3.34E-21 1.41E-20
26 - 28; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 29 - 27; 30 -
27; 31 - 27; 32 - 27; 29 - 28; 30 - 28; 31 - 28; 32 - 28; 29
- 30; 29 - 31; 29 - 32

L-Phenylalanine 5.79E-19 2.20E-18
27 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 27 - 28; 30 -
27; 32 - 27; 29 - 28; 30 - 28; 31 - 28; 32 - 28; 30 - 29; 32
- 29

Isoleucine 3.10E-18 1.07E-17 26 - 27; 26 - 28; 26 - 29; 26 - 30; 26 - 31; 26 - 32; 27 -
28; 31 - 28

3-Methyl-
2-oxovaleric acid 1.89E-17 5.98E-17

26 - 27; 26 - 28; 26 - 29; 26 - 30; 26 - 31; 26 - 32; 27 -
30; 27 - 32; 28 - 30; 28 - 32; 29 - 30; 29 - 32; 31 - 30; 31
- 32

Glycerol 1.73E-16 5.04E-16
26 - 27; 26 - 28; 26 - 30; 26 - 31; 26 - 32; 27 - 28; 27 -
31; 27 - 32; 29 - 28; 30 - 28; 28 - 32; 29 - 31; 29 - 32; 30
- 31; 30 - 32

Creatine 3.25E-16 8.81E-16 26 - 27; 26 - 28; 26 - 29; 26 - 30; 26 - 31; 26 - 32; 27 -
30; 27 - 32; 31 - 28; 29 - 32; 31 - 30; 31 - 32

L-Alpha-
aminobutyric acid 1.13E-12 2.87E-12

26 - 27; 26 - 29; 26 - 30; 26 - 31; 26 - 32; 27 - 29; 27 -
30; 27 - 31; 28 - 29; 28 - 30; 28 - 31; 28 - 32; 32 - 30; 32
- 31

L-Asparagine 1.84E-12 4.36E-12 28 - 26; 29 - 26; 30 - 26; 31 - 26; 32 - 26; 28 - 27; 29 -
27; 28 - 30; 28 - 31; 28 - 32; 29 - 30; 29 - 31; 29 - 32

Urea 2.26E-12 5.04E-12 26 - 27; 26 - 28; 26 - 29; 27 - 28; 27 - 29; 30 - 28; 31 -
28; 32 - 28; 30 - 29; 31 - 29; 32 - 29

L-Lysine 5.74E-12 1.21E-11
27 - 26; 29 - 26; 31 - 26; 32 - 26; 27 - 28; 27 - 30; 32 -
27; 29 - 28; 31 - 28; 32 - 28; 29 - 30; 32 - 29; 31 - 30; 32
- 30

L-Serine 1.18E-10 2.35E-10 26 - 27; 26 - 31; 28 - 27; 29 - 27; 30 - 27; 32 - 27; 28 -
31; 29 - 31; 30 - 31; 32 - 31
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Metabolites p.value FDR Fisher's LSD

Methionine 4.65E-10 8.83E-10
27 - 26; 28 - 26; 32 - 26; 27 - 29; 27 - 30; 27 - 31; 27 -
32; 28 - 29; 28 - 30; 28 - 31; 28 - 32; 32 - 29; 32 - 30

Isobutyric acid 4.77E-09 8.63E-09
26 - 28; 26 - 29; 26 - 30; 26 - 32; 27 - 28; 27 - 30; 27 -
32; 29 - 28; 30 - 28; 31 - 28; 29 - 32; 31 - 30; 31 - 32

Formate 2.73E-08 4.72E-08
26 - 27; 26 - 28; 26 - 29; 26 - 32; 30 - 27; 31 - 27; 28 -
32; 30 - 29; 31 - 29; 30 - 32; 31 - 32

L-Glutamic acid 1.12E-07 1.84E-07
28 - 26; 26 - 29; 26 - 30; 26 - 31; 28 - 27; 27 - 31; 28 -
29; 28 - 30; 28 - 31; 28 - 32; 32 - 29; 32 - 30; 32 - 31

Mannose 1.05E-06 1.66E-06
26 - 27; 29 - 26; 26 - 31; 29 - 27; 29 - 28; 29 - 30; 29 -
31; 29 - 32

Aspartate 1.76E-06 2.67E-06
29 - 26; 29 - 27; 30 - 27; 29 - 28; 29 - 31; 29 - 32; 30 -
31; 30 - 32

2-Hydroxybutyrate 2.99E-05 4.36E-05
26 - 27; 26 - 28; 26 - 29; 26 - 30; 26 - 31; 26 - 32; 27 -
29; 27 - 30; 32 - 29; 32 - 30

Oxoglutarate 6.84E-05 9.63E-05
28 - 26; 28 - 27; 30 - 27; 31 - 27; 28 - 29; 28 - 31; 28 -
32; 30 - 29; 30 - 32; 31 - 32

Acetic acid 7.51E-05 1.02E-04
27 - 26; 29 - 26; 30 - 26; 31 - 26; 27 - 28; 27 - 32; 31 -
28; 29 - 32; 30 - 32; 31 - 32

D-Glucose 1.63E-04 2.13E-04
29 - 26; 26 - 30; 28 - 27; 29 - 27; 28 - 30; 28 - 31; 29 -
30; 29 - 31; 29 - 32

ornithine 1.77E-04 2.24E-04 27 - 26; 28 - 26; 32 - 26; 27 - 31; 28 - 30; 28 - 31; 32 - 31

L-Glutamine 2.81E-04 3.45E-04
26 - 27; 28 - 27; 29 - 27; 32 - 27; 28 - 30; 28 - 31; 29 -
30; 29 - 31; 29 - 32

L-Alanine 2.17E-03 2.58E-03
27 - 26; 27 - 28; 27 - 29; 27 - 30; 31 - 29; 32 - 29; 31 -
30; 32 - 30

L-proline 6.22E-03 7.17E-03 28 - 26; 32 - 26; 28 - 30; 28 - 31; 32 - 30; 32 - 31
L-Lactic acid 7.25E-03 8.11E-03 26 - 29; 27 - 29; 28 - 29; 30 - 29; 31 - 29; 32 - 29
Valine 1.39E-02 1.51E-02 29 - 26; 29 - 28; 29 - 30; 29 - 31; 29 - 32
Glycine 1.95E-02 2.06E-02 30 - 26; 30 - 27; 30 - 28; 30 - 29; 30 - 31; 30 - 32
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Appendix 4.2 Plot of explained variance, PCA result for original metabolites
concentration(A), PCA results for batch adjusted metabolites concentration(B).

A

B
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Appendix 4.3 Results of machine learning for sex prediction of the dataset “MTBLS90:
Large-scale non-targeted serum metabolomics in the Prospective Investigation of the
Vasculature in Uppsala Seniors”.

(A) Accumulated accuracies of each different machine learning algorithm for predicting
the subject sex. (B) Plot of PCA components explained data variance. (C) Result of
permutation test.

A

Accuracy con conPCA26 conPCA44

KNN 0.75 0.74 0.74

DT 0.67 0.59 0.54

RF 0.79 0.69 0.72

SVM 0.83 0.77 0.81

LR 0.71 0.77 0.78

B
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C
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Appendix 4.4 Results of machine learning for sex prediction of the dataset “ST000369:
Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung
cancer (part II)”.

(A) Accumulated accuracies of each different machine learning algorithm for predicting
the subject sex. (B) Plot of PCA components explained data variance. (C) Result of
permutation test.

A

Accuracy con conPCA28 conPCA49

KNN 0.61 0.59 0.61

DT 0.49 0.66 0.61

RF 0.63 0.66 0.71

SVM 0.76 0.71 0.68

LR 0.83 0.68 0.76

B
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