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Abstract

With the improvements in the autonomy and capability of Unmanned Aerial Ve-

hicles (UAVs), there is an increased interest in their applications in infrastructure

inspection and maintenance. The focus of this thesis is to study new methods for im-

proved UAV autonomy. In this regard, the motion control of two UAV configurations

is studied. First, a novel visual servoing control is presented, intended for inspection

of linear structures e.g., power transmission lines and pipelines. Second, the motion

control of an Unmanned Aerial Manipulator (UAM) that attaches a robotic arm to

the UAV is proposed. This configuration makes a UAV capable of tasks involving

interaction with the environment e.g.,maintenance or disaster recovery.

The inspection of linear structures such as power transmission lines depends on

high-quality video used for managing maintenance and repair. A UAV with an on-

board camera is ideally suited to safely and efficiently collect this inspection data.

Accurate and robust motion control is key to obtaining quality line video. Tra-

ditionally, UAV position and linear velocity estimates are obtained using a Global

Positioning System (GPS). However, GPS lacks the accuracy needed for close inspec-

tion and its dependence on an external signal limits the vehicle’s autonomy. Also,

the infrastructure spans a vast area and is often inaccurately mapped. Image-Based

Visual Servoing (IBVS) is an appropriate framework for accurately controlling the

relative position between the UAV and a linear target. IBVS detects the line in the

image and describes its relative position and yaw using image features. The coordi-

nates of these features are used directly in the state feedback control for UAVs. We

present a new IBVS method with a number of features, including an output feed-

back design that removes the need for linear velocity measurements. The control
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adapts to change in sensor bias, vehicle thrust constant and external disturbances.

Also, the proposed approach is robust against variations in vehicle mass and camera

focal length. An inner-outer loop control structure is used. The feature and linear

velocity estimate errors are shown to be exponentially convergent using Lyapunov

stability analysis. The effectiveness of the approach is evaluated in simulation and

experiment.

The second part of the thesis considers the motion control of a UAM, which

is a UAV combined with a multiple degrees of freedom (DOF) robot arm. Unlike

traditional UAVs, a UAM is designed to interact with the environment and used in

maintenance and similar applications. Motion control of a UAM is a challenging

problem, given the system’s coupled dynamics. The effect of arm motion on the

UAV results in a highly nonlinear and complex system model. We present the dy-

namic model of the UAM and simplify it to obtain UAV dynamics which includes

uncertainty, to model the effect of the arm. We propose two motion controllers using

the adaptive backstepping approach based on this model. An inner-outer loop con-

trol structure, which treats translational and rotational dynamics of UAV subsystem

separately and designs respective outer and inner loop controllers, is employed. The

outer loop provides thrust input and roll and pitch references that serve as reference

trajectories for the inner loop control, providing torque inputs. Since the inner-outer

loop control approach lacks the stability analysis for the entire closed-loop, another

adaptive backstepping method that uses the entire UAV dynamics is presented. The

proposed approaches are rigorously tested in a multi-body simulation environment.
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Chapter 1

Introduction

1.1 Background

Multirotor Unmanned Aerial Vehicles (UAV) have several advantages over fixed-

wing UAVs. They have the benefits of vertical take-off and landing (VTOL) capa-

bility: no need for a runway, hover, and low-speed flight without the risk of stalling.

Their high thrust-to-weight ratio makes them highly manoeuvrable, and simple

electro-mechanical design makes them robust to failure and inexpensive. Due to

these characteristics, the UAVs are commonly employed in applications like infras-

tructure inspection, rescue, surveillance, and load transportation [2, 3]. The work

presented in this thesis is geared towards infrastructure inspection and maintenance.

In this regard, we deal with the motion control aspects of UAVs to improve their

autonomy and capability.

Among essential infrastructure requiring inspection or maintenance are Power

Transmission lines and Oil and Gas pipelines. These linear structures spread over

thousands of kilometres, require periodic inspections to determine maintenance

needs and ensure continuity of supply. Inspection and maintenance of these struc-

tures by humans from the ground or the air with manned helicopters is hazardous

and expensive. Therefore, UAVs have been employed recently to perform these tasks

[4–7]. A Camera-equipped UAV is flown along the length of the linear structure to

obtain an inspection video, which can be processed online or offline for abnormali-

ties. The accuracy of UAV pose relative to the infrastructure determines the quality

of the inspection data and the safety of the mission. Here pose refers to the position

and heading or yaw angle of the UAV relative to the infrastructure.

Motion control of UAVs requires accurate knowledge of the full UAV state, in-

cluding position, linear velocity, attitude, and angular velocity. The UAV position

and linear velocity are usually estimated using Global Positioning System (GPS) [8]

along with other onboard sensors such as ultrasonic rangefinders and barometers.

In contrast, UAV attitude and angular velocity are usually estimated by Attitude
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(a) A Visual Servoing UAV (b) A Flying hand [16] (c) A UAM [17]

Figure 1.1: Examples of UAVs.

and Heading Reference System (AHRS) using only the onboard Inertial Measure-

ment Unit (IMU) measurements. The position estimate from an average low-cost

GPS module has an accuracy of a few meters, which is not suitable for inspection.

Moreover, the target GPS coordinates of the linear structures may not be accurately

known. Also, a GPS position estimate, depending on an external signal from satel-

lites, limits the autonomy of a UAV since a GPS signal may be weak or unavailable

due to obstructions [9], such as near tall mountains or inside tunnels. Extending

the UAV’s ability to inspect GPS-denied environments is a difficult and practically

relevant challenge.

A camera image is a rich source of information about the environment. Modern

computer vision has developed high-performance algorithms for extracting features

such as lines or points from images. Hence, cameras are a good substitute for

GPS for UAVs. Other sensors can provide similar information to cameras but have

increased cost or weight, e.g., Light Detection and Ranging (LiDAR). A camera is

compact, light-weight, low-cost and often already found on a UAV for collecting

data or providing a first-person view [10]. Indeed, there exists significant research

on using computer vision for visual simultaneous localization and mapping (SLAM)

or visual odometry. The UAV pose estimate can be used for motion control [11, 12].

The use of visual information from a camera for the motion control of a mechanical

system is called visual servoing [13]. Visual servoing based kinematic estimation for

general robotic systems is studied in [14]. A recent survey on the use of vision for

sensing, flight control, navigation and guidance of UAVs is in [15].

We propose an Image-Based Visual Serving (IBVS) approach for motion control

of a camera-equipped quadrotor UAV that can be used for inspecting linear struc-

tures. Since the linear structures are detected as lines in a camera image, we use

line features and their dynamics coupled with the UAV dynamics to design control

inputs to the UAV. Line features in the case of IBVS are mathematical quantities

based on the parameters of a line measured from the projection of the target in the

camera image. The features provide meaningful information about the relative po-

sition of the target to the camera. Controlling these features allows us to control the

motion of the UAV directly with respect to the linear target due to the dependence

of line features on linear and angular velocities. Our design incorporates output
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feedback to estimate linear velocity. The effect of unknown external disturbances

such as wind and variations in UAV and camera parameters, including mass, thrust

constant, target distance and camera focal length, are also addressed. The proposed

method is robust to uncertainty in system parameters and adapts to the unknown

external disturbances.

Usually, when damage is found through an inspection, corrective maintenance

action is required. Providing the UAV with the capability to interact with the

environment would enable it to repair the infrastructure or perform an action to

mitigate damage. There are many useful scenarios where this capability to intervene

could be used. For example, if through inspection, it is determined that a system

needs to be shut down, a UAV can press a button or pull a lever while keeping

humans at a safe distance. Another example of environment-interaction is load

transportation. UAVs capable of interacting with the environment are known as

Unmanned Aerial Manipulators (UAMs). Several UAMs designs exist, with the

most common configuration being a multi-rotor UAV with some form of a robotic

arm. [18–21]

As in the case of the inspection example, traditionally, UAVs can only observe

or ‘see’ the environment. Their contact with external objects is avoided as it often

leads to a crash or damage due to the high-speed rotors extending at their periphery.

However, a UAM, thanks to its robot arm, can “touch” and physically interact with

the objects in its environment. Also, its arm can extend to reach confined spaces

where a UAV may not fit or fly due to its larger body and rotors.

The importance of aerial manipulation can be seen in several government-funded

projects around the world. The remote inspection of industrial structures by con-

tact is studied in the European project AIRobots (Innovative aerial service robots

for remote inspections by contact) [22]. More detail on the project is available in

[23–25]. The project’s focus was to develop aerial robots that can interact with the

environment in a safe manner. Therefore, ducted-fan UAVs were developed, which

allow the end-effector to be mounted on either side of the propeller. This configura-

tion ensured the UAV interacted with its environment safely. The ARCAS (Aerial

Robotics Cooperative Assembly System) project [26] dealt with cooperative manip-

ulation of aerial robots for construction and assembly applications. Another project

that specifically deals with the inspection and maintenance application of UAMs is

AEROARMS [27, 28]. It mainly focuses on the outdoor operation of UAMs for tak-

ing measurements, sensor installation and robotic crawler (a robot that moves within

pipes) deployment in the oil and gas industry. Further, the infrastructure inspec-

tion and maintenance using multiple cooperative UAMs is studied in AEROWORKS

[27]. These large-scale, international projects demonstrate governments, academia

and industry’s serious interest in aerial manipulation.
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The complexity and capability of a UAM are determined by its arm configura-

tion, which involves its degrees of freedom (DOF), types of joints, link parameters

and constraints. Also, the ability to perform specific tasks is determined by the last

link of the robotic arm, known as an end-effector. An end-effector is the part of

UAM that comes in contact with the environment and could be a gripper, a partic-

ular tool or a sensor. UAMs can have a fixed end-effector directly attached to the

UAV without any joints or links. However, it is the addition of a multi-DOF arm to

a UAV that significantly adds to the capability of UAM, allowing it to interact with

the environment. It also makes areas accessible that were otherwise inaccessible,

e.g., the arm can extend to reach confined spaces.

The most common tasks requiring physical interaction involve payload pick up,

transport and placement, e.g., in construction, and application of a force/torque,

e.g., to push an object. In these applications, a UAM is required to approach its

operational area, extend its robot arm to align its end-effector for the task at hand,

perform an interaction while maintaining a stable flight and safely disengage to

return. This process involves precise motion control of the UAM in order to per-

form the task successfully. However, the motion control of a UAM is a challenging

problem.

A UAV is already a highly nonlinear and underactuated system with bounded

inputs, which may also be affected by external disturbances and measurement noise

[29–32]. The addition of a robot arm significantly complicates its dynamics and

makes it difficult to control. The coupling between UAV and arm dynamics affects

UAV control. Our approach focuses on the motion control of the UAV subsystem,

considering the model parameters and states of the arm as unknown. We model

the effect of the arm as a disturbance and parameter uncertainty that appears in a

traditional UAV model. Adaptive backstepping is then used to compensate for the

model uncertainty.

Throughout this document, we refer to the UAV subsystem in a UAM as UAM-

vehicle (UAM-V) and the arm subsystem as UAM-Arm (UAM-A). For greater clar-

ity, UAM-V refers to a UAV affected by the coupling forces and toques due to

arm. Also, UAM-V mass includes the arm’s mass and any object held by the arm.

The UAM-V inertia includes the imbalances due to arm and usually a non-diagonal

matrix.

1.2 Literature Survey

1.2.1 Line following: Image-Based Visual Servoing

As discussed in the previous section, UAVs are well-suited for efficient inspection

of electric transmission lines and pipelines. Inspection of such infrastructure is an
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important and challenging problem and key to ensuring a high standard of service.

For example, regular detailed inspection reduces the potentially disastrous effects

of line failures. Since lines are spread over vast areas and inhospitable terrains,

manned vehicle inspections are not efficient. Hence, UAVs are an emerging solution,

e.g., [33–37].

Existing work has considered various aspects of using UAVs equipped with a

video camera for inspecting linear structures. Some of the work focuses on the au-

tomatic extraction of useful information from the video. For example, the authors

of [38] present a computer vision technique for estimating the 3D position of power

transmission lines from video obtained using a quadrotor UAV. The method moni-

tors transmission line sag to ensure safe ground clearance. In [4] UAV video is used

to extract the position of power lines and map vegetation along the transmission line

corridor. In [39] a multi-UAV system is proposed to improve the efficiency of col-

lecting transmission line inspection data. In [40] various remote sensing techniques

and data sources for monitoring transmission lines are compared, and the authors

eventually recommend a UAV-based approach. The problems of pipeline and trans-

mission line inspection are similar. Work on pipeline inspection using UAVs includes

[5, 34, 41].

The main requirement for any UAV-based infrastructure inspection is to auto-

matically control the relative pose of the onboard sensor to what is being inspected.

The automatic control of the relative pose ensures that consistent and accurate mea-

surements are obtained to perform the inspection while allowing the UAV operator

to focus on higher-level objectives. The camera image of a 3D linear structure,

e.g., pipeline, power transmission line, duct, corridor or road etc., has two or more

lines at the edges of the structure. Therefore, we can assume that our target consists

of two or more lines constrained to a horizontal plane. This assumption makes it

possible to control the relative pose (position and yaw angle) of the UAV to the

target using feedback from an onboard monocular computer vision system.

Visual servoing methods are typically categorized into two main techniques:

Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS)

[13, 42]. PBVS is a more traditional approach that involves estimating or recon-

structing the robot’s 3D pose using the appearance and pixel dimensions of the

target object in the image, together with the known Euclidean dimensions and a

3D model of the object. The reconstructed pose is then used in a motion control

algorithm [43, 44]. Reconstruction depends on an accurate 3D model of the target

and camera calibration parameters. On the other hand, IBVS associates certain

features to the target in the image plane called image features. Image features pro-

vide a measure of the error in UAV pose relative to the target [45]. These features

are directly controlled in the image plane and driven to the desired value, which in
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turn controls the relative pose between UAV and target. This approach is known to

be insensitive to camera calibration error and does not require a 3D target model

[46, 47]. An IBVS approach with an uncalibrated camera for fixed-base robots is

studied in [48, 49]. A comparison of IBVS and PBVS approaches is given in [50].

The IBVS approach has its challenges and limitations. The interaction matrix

that relates the translational and angular velocity of the camera to points’ motion in

the image depends upon the distance of the target from the camera along the prin-

cipal axis, known as depth. Since the depth information cannot be obtained directly

from the image measurements, it must be estimated or approximated [13]. Also, the

interaction matrix depends upon the intrinsic camera parameters e.g., focal length.

The classical IBVS that employs a set of points as features; requires a minimum of

three points for 6 degrees of freedom (DOF) control. Selecting minimum points may

lead to a singular Interaction matrix in some configurations [51] e.g., three collinear

points. Also, there exist four global minima for feature error i.e., four distinct cam-

era poses could lead to feature error being zero [52]. Therefore, more than three

points are usually needed.

Further, the estimate of the interaction matrix affects the transient performance

of the feature error e.g., for a pose with pure rotation around the optical axis, the

straight line convergence of feature points to the desired location involves rotation

and a retreating transnational motion the optical axis. The IBVS also requires an

image of the target at the desired pose. Furthermore, the classical IBVS suffers

from a local minima problem i.e., the feature errors converge to a non-zero value

that is locally minimum but could be far from the desired configuration. Due to

this reason, the traditional IBVS can only provide local asymptotic stability as

larger displacement could reach a local minimum or may cross a singularity in the

interaction matrix. Advanced IBVS approaches use rich and intuitive geometric

primitives instead of image point coordinates as features. This resolves some of the

issues described above. An example of such primitive is image moments [53, 54].

The IBVS approach also has some control design challenges associated with it.

Due to the perspective projection of the camera, the resulting image kinematics

are nonlinear and destroy a triangular structure in the dynamics due to angular

velocity dependence. Various methods have been employed in the literature to deal

with the perspective projection effects. The work which focuses on the closed-loop

stability of IBVS can be divided into four major categories based on the selection

and processing of image features used in the feedback law.

The first IBVS method projects image features onto a virtual spherical image

plane [55]. The spherical projection removes angular velocity dependence from the

image feature kinematics. The resulting kinematics have a triangular structure that

allows the backstepping design. This approach is further studied in [56–59]. Work
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[60] points out the difficulty in defining a feature for yaw control using spherical pro-

jection. A second IBVS technique employs the homography matrix to define feature

error between current and desired target view. A homography matrix between two

images provides the relative orientation and translation of the camera [61]. The

homography matrix can be used to control the pose of the UAV. Homography based

techniques are studied in [62–65]. This method assumes a planar target and a small

error range, particularly for yaw.

The third IBVS method uses a virtual spring approach for points features [66,

67]. Here, the translational velocity component of image feature kinematics takes

a simple form. The work assumes that the desired height is known, and the image

plane is parallel to the planar target. This assumption is restrictive for traditional

multi-rotor UAVs, as horizontal motion requires a non-zero roll or pitch. The fourth

IBVS approach is the virtual camera method, which uses attitude estimates from an

IMU to define a virtual image plane that remains parallel to the planar horizontal

target [45, 60, 68–74].

Image-based visual servoing mainly uses two feature definitions, depending upon

the application. These types are point features and line features. Point features are

based on a certain number of detectable points in the target and are usually suitable

for controlling position relative to a discrete target. On the other hand, line features

depend on detecting lines in the image plane and are suitable for linear targets that

extend to larger distances in the longitudinal sense. For example, line features are

used in [75] for autonomous landing of a fixed-wing UAV on a runway or landing

strip.

Most of the work mentioned above, discussed in the contexts of IBVS, focuses

on the point feature case, and less work has considered the line feature case. In

[76], line following is considered using Euclidean Plücker coordinates. In [77], the

work in [76] is extended using bi-normalized Euclidean Plücker coordinates while

considering uncertainty in the depth of the measured image feature. It employs the

point feature IBVS result in [55] and inherits its lack of sensitivity to UAV height.

Other aspects of IBVS have attracted the attention of researchers, such as improved

open-loop reference trajectory generation [78]. In our proposed method, the focus

is on the design of feedback control and a constant reference feature is used.

Since the UAV flights for the inspection of linear structures are mostly outdoors,

the UAV is often affected by wind. Strong wind gusts can displace the UAV away

from the target; therefore, it is crucial to consider the effects of wind disturbance

on system dynamics. When modelling an inspection UAV, it is also important to

consider the effects of mass variations. The UAV mass could change due to adding a

payload of unknown mass, e.g., an instrument or a sensor for inspection. Moreover,

the UAV thrust is proportional to the square of a motor speed, which is proportional
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to the square of to the normalized PWM signals provided at the input of Electronic

Speed controllers (ESCs) driving the motors. The square of the ratio of motor speed

to the normalized PWM signal defines a constant of proportionality called the thrust

constant. Contrary to what its name suggests, the thrust constant is a slowly varying

quantity and depends upon the battery voltage. During the flight, as the battery

discharges, the motor speed and hence the thrust produced by each motor slowly

reduces for the same input PWM. The thrust constant variation and its effects

are discussed in [45, 79]. It is important to consider the thrust constant variation

to achieve a stable flight. Although an IBVS approach is relatively insensitive to

camera calibration parameters, the camera focal length shows up in the interaction

matrix and could affect control performance. Determining camera focal length is

not complicated; however, modern cameras come with auto-focus and magnification

options, and a user may unknowingly alter focal length. Therefore, it is important

to consider variations in camera focal length. Most of the work mentioned above

does not consider these important parameter variations.

Among the literature on IBVS line following, the article [60] proposes a virtual

camera approach with a simple PID controller. A backstepping virtual camera-based

IBVS for line features was presented in [72]. However, these two articles assume the

UAV’s linear velocity measurements are available, which in turn depends on GPS or

a motion capture system external to the UAV for velocity estimation. These articles

also assume that UAV mass and thrust constant are known constant quantities.

Further, they do not include disturbance forces arising due to wind. We propose an

output feedback approach to avoid measuring linear velocity or using an optical flow

sensor. A few output feedback IBVS methods for point features have been proposed

in the past [80], [74]. However, the linear feature case has not been considered.

Some work on the use of machine learning-based IBVS found in the literature is

described below. In [81] an IBVS based on the Gaussian mixture model is developed

to improve the speed of image processing. In [82], a reinforcement learning-based

IBVS approach is employed that uses Q-learning and SARSA algorithms coupled

with neural networks to adapt to the change in conditions in the environment. The

method provides robustness to uncertainties due to the field of view constraints,

camera calibration, system model, and image noise. In [83] an IBVS method using

an Extreme Learning Machine combined with Q-learning is developed to provide ro-

bustness against uncertainties in the interaction matrix, camera calibration and im-

age noise. The approach provides self-tuning of gains to improve convergence. Work

in [84] proposes an IBVS method using gradient descent and Levenberg–Marquardt

algorithms along with neural networks. The approaches mentioned above are ap-

plied to fixed-base robot arms. Little work has been performed on the visual servoing

of UAVs using machine learning, with a few exceptions. In [85] employs deep neural
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networks using stereo triangulation to detect wind turbines and calculate relative

distance. Images are obtained from a stereo camera onboard the UAV. The pro-

posed framework is intended to be used with visual servoing. Work in [86] proposes

a visual servoing method based on deep learning for detecting and following of a

small UAV.

1.2.2 Unmanned Aerial Manipulators

A UAM is a special kind of UAV capable of interacting with its environment. The

interaction involves several different forms. It could involve close observation, such

as taking a sensor measurement that requires contact or extension of a sensor using

some mechanism attached to the UAV (e.g., sophisticated high DOF manipulator

arm or simple gripper) to a point otherwise unreachable. Pickup and placement of

a tool or component or application of force or toque are all forms of interactions

with the environment. This section discusses various UAM designs, applications,

and control challenges from literature.

A simple configuration that enables UAV to interact with the environment is the

attachment of a robotic tool rigidly or through a simple mechanism [87–90]. These

types of UAMs are sometimes referred to as flying hands in literature. A UAM

dedicated to driving a screw is considered in [91] where the UAV motion provides

the force required to operate the tool. A UAM for cleaning high-rise buildings is

considered in [87]. A UAM to apply force to push an object is considered in [92].

The quadrotor designs for a door opening UAV and surface scratching/aerial writing

are presented in [93], and [94], respectively. Other examples of flying hands involve

load transporting aerial vehicles divided into two categories: slung load through a

non-rigid cable and using a fixed gripper. Fixed grippers on helicopters are studied

in [95, 96]. The work in [18] and [97] considers different types of grippers on a

quadrotor UAV for load transport.

Flying hands apply a force through a rigid tool or surface or carry an object

through a cable or a gripper whose position cannot be controlled independently of

the UAV due to the motion constraints resulting from a passive attachment of the

end-effector. Also, the end-effector access may be limited by the dimensions of the

UAV frame and propellers. This configuration could be useful in some applications

when the payload must be precisely controlled [91] and the addition of a manipulator

arm is not feasible. However, the manipulation capability of such a UAM is limited

without additional DOF provided by movable links in an arm.

UAMs which integrate multi-DOF arms have increased capability for interaction

with the environment. They provide a broad range of motion configurations for the

task at hand and, in general, can be applied to perform manipulation tasks. Also,

they can compensate for the motion constraints of a UAV itself. For example, an
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object directly attached to a quadrotor UAV can not be positioned and oriented

arbitrarily because a quadrotor cannot hover and have a non-zero attitude at the

same time. However, if the object is held through a multi-DOF arm attached to the

quadrotor, it could orient an object attached to its end-effector in any position and

orientation. Given the UAV’s underactuated dynamics, this pose control would not

be possible without the additional DOFs provided by the arm.

Common design attributes of a UAM system involve the UAV platform type,

the number of arms, their type (i.e., , series or parallel), and their number of DOF.

A quadrotor, although traditionally underactuated, is the most commonly used

UAV platform. Most of the UAMs in literature are single series type robotic arms,

with a few exceptions [98–101]. The number of UAM DOF is an important design

specification. More DOFs improve the arm’s dexterity and increase its range of

motion and reach. However, each DOF increases the weight, power requirements,

and complexity of the system. The types of joints and their axis of motion also

contribute to the reachability of the arms. Most commonly used arms are mounted

under the UAV, use revolute joints, and operate in a hemispherical region. The

UAM design also has some technical challenges. The addition of an arm adds a

significant mass and inertia to the UAV [16, 18]. The range of operation of UAV

actuators is reduced since more thrust is required to compensate for UAV weight

and less actuation is available to generate torques for fast maneuvers. Therefore, a

UAM design requires a higher payload capacity UAV that requires higher ratings

for actuators and batteries.

A UAM system with a multi-DOF robotic arm has complicated dynamics due

to the UAV and arm interaction. It is necessary to account for the effects of both

subsystems on each other when performing position control or manipulation. For

example, the COM and the inertia matrix of the UAM vary with the arm motion.

Picking up unknown payloads leads to unknown COM, mass, and inertia. When

the UAM is in contact with the environment during an interaction, external forces

act on it. For example, when a UAV applies a torque to drive a screw in a fixture

attached to the navigation frame, the duration when the UAV is in contact with

the fixtures, the dynamics of UAV are coupled with the fixture and the side in

contact may shift its weight on the fixture, altering system parameters. Therefore,

it is crucial to consider the variation of unknown system parameters during control

design.

Three approaches are mainly used for modelling mechanical systems in the lit-

erature. These include the Euler-Lagrange formulation, Newton-Euler formulation

and Kane’s method. The Euler-Lagrange and Newton-Euler formulations are based

on the generalized coordinates that describe bodies’ configuration in a multi-body

system. The Euler-Lagrange formulation treats all links or bodies in a multi-body
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system by finding the Lagrangian, the difference between kinetic and potential en-

ergy. The derivatives of Lagrangian with respect to generalized coordinates and

their velocities are calculated for use in the Euler-Lagrange equation. This leads to

lengthy expressions in the process, starting with kinetic and potential energies to

the final equations of motion. In the Newton-Euler formulation, the equations for

linear and angular motion of each link are derived while considering coupling forces

and torques from only the neighbouring components. The resulting equations are

solved recursively to find the complete dynamics of the system. This method is less

complicated at the start, but complexity increases as the equations are solved to

find the system’s dynamics in compact form. Kane’s method is less used and based

on generalized speeds instead of generalized coordinates. It is more procedural and

non-intuitive. Although all three methods result in the same system dynamics, the

Euler-Lagrange method is the most elegant as it can be applied even when bodies

are not rigid. More detail on modelling approaches is included in Section 2.2.4.

Work in [102] uses an Euler-Lagrange modelling approach from [103] to derive the

system dynamics for UAM. A Newton-Euler formulation for the system modelling

is employed in [104, 105].

Most of the exiting models in literature do not provide expressions for all terms in

the equations of motion. Expressly, the matrix containing Coriolis and Centrifugal

terms is not provided even in the most recent models presented in the literature [106–

108]. Instead, an equation to obtain the entries of this matrix known as Christoffel

symbols is provided. This equation is based on the partial derivatives of the scalar

entries of the inertia matrix. The inertia matrix can be written as three-dimensional

sub-matrices specifying the inertial contributions of individual bodies of the UAM.

However, obtaining the Coriolis-Centrifugal matrix using Christoffel symbols result

in scalar expressions for its entries, which lacks the intuitive understanding of the

coupling between the arm and UAV. We revisit the UAM modelling using the Euler-

Lagrange equation and in contrast to the existing literature, provide the complete

model of the system with the Coriolis-Centrifugal matrix written in the form of

sub-matrices. This provides an intuitive understanding of the coupling between the

UAV and the arm dynamics.

Different control techniques to deal with various UAM challenges have been stud-

ied in the literature. The UAM motion control schemes can be categorized into two

methods based on their structure. One of them is a decentralized approach, where

the control is separately designed for the UAM-V and the UAM-A. The coupling

forces or torques due to UAM-A can be treated as a disturbance input on the UAM-

V [17, 104, 109–112]. Such a decoupled design for each subsystem is simpler given

the reduced model complexity of each subsystem. Also, the designer can benefit

from the rich literature on robust control of UAVs and arms. The other approach
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involves considering the entire UAM as a single system. This approach is challenging

theoretically due to the high-order nonlinear model where the order and complexity

increases with the number of arm DOF [102, 103, 113–115]. Using a decentralized

approach, the controllers for UAM-V and UAM-A can be made independent by us-

ing estimation techniques to capture the coupling effects. However, in a centralized

approach, the dynamic model, parameters and states of both the UAM-V and the

UAM-A are usually assumed to be known [116].

Among control schemes, a Lyapunov-based model reference adaptive control is

presented in [117] to control a quadrotor with a multi DOF arm. This work is further

extended in [118] with gain scheduling. A linearized system model is employed in

[119] to design a linear quadratic regulator (LQR) control for a UAM. The forces

during end-effector interaction for aerial manipulation are explored in [120], and an

impedance control scheme is proposed using a three-loop structure. A Cartesian

impedance control for a force control is presented in [103] and [102]. An inner-outer

loop control structure with two loops is employed in [121] where the outer-loop

obtains the reference trajectories for actuated variables through inverse kinematics.

At the same time, the inner-loop ensures the desired motion references generated

in the outer-loop are achieved. State and output feedback linearization for UAM

control is studied in [104] and [122], respectively.

The decentralized approach is taken in [17, 109, 110]. A hexrotor with a 4

DOF freedom robotic arm is considered in [17] to study the effects of arm motion

on UAV trajectory. A high gain observer is designed to estimate the uncertain

disturbances acting on the UAV body due to arm movement. It employs an inner-

outer loop control approach, where the inner-loop is a disturbance observer design

based on [123]. It does not have an outer-loop design; instead, it presents a control

augmentation scheme for attitude references. The augmentation scheme can be

applied to any outer-loop control design which is locally asymptotically stable. The

outer-loop controller used to test the augmentation scheme is taken from [124].

A bio-inspired UAM equipped with a single DOF arm is employed in [125] for

high-speed aerial grasping by trajectory planning using the differential flatness prop-

erty of the system. An end-effector trajectory control algorithm similar to backstep-

ping is proposed in [114] for a UAM system with a 2-DOF robotic arm. The scheme

employs a decoupled approach, where the kinematics of the UAV’s COM and rota-

tional dynamics together with the arm dynamics are treated as separate subsystems.

A moving battery counterweight system that compensates for shift in COM due to

the motion of the arm is in [126].

Depending upon its DOF, a UAM can be overactuated. The relative position-

ing of the end-effector can be achieved by the motion of both UAV and the arm;

therefore, a motion selection algorithm is needed to control the relative positioning.
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The paper [127] proposes a velocity weighting matrix as a function of feature error

to avoid arm joint limits. A similar idea for assigning weights to the UAV and the

arm velocities is used in [128]. However, the criterion for the selection of weight

matrix is described heuristically. No analytical expressions for weights as a function

of feature error are given.

Other UAM work studies the control of applied force without using a sensor.

Human-robot interaction has been studied in [129] where an admittance controller

defines the quadrotor trajectory using estimated force. A Kalman filter is used to

obtain a force estimate. A hybrid pose and wrench control is studied in [89] where a

quadrotor wrench is estimated using the measured pose and the inputs, avoiding the

use of a wrench sensor. Visual servoing of a UAM is studied in [98, 127, 128, 130].

The stability of switching controllers to deal with the model discontinuity arising

from environment interaction is discussed in [131]. Surveys on recent developments

in aerial manipulation are given in [132–138].

As discussed earlier, motion control of a UAM using a decentralized approach

leads to a simple design. It allows modifications in the arm configuration, e.g., using

different end-effectors for different applications, without the need to remodel the

complete UAM dynamics. This broad usage is possible because the arm is treated

as generic uncertainty acting on the UAV subsystem. Due to its benefits, we use a

decentralized approach in this thesis. We model the complete UAM system using

the Euler-Lagrange model and extract the dynamics for the UAV subsystem. We

show how the arm affects the UAV dynamics and approximately model its effect

as a disturbance and parametric uncertainty. Using this model, we design a robust

adaptive controller for output tracking.

UAV motion control normally uses two control structures. The first is an inner-

outer loop control structure where the closed-loop is divided into translational and

rotational subsystems [139, 140]. The second uses the entire UAV dynamics [141–

143]. The inner-outer loop control structure is usually simpler and easier to im-

plement. A user can either specify an attitude trajectory for low-level control or

a position trajectory for high-level control. Also, the controller can be designed

without dynamic extension [144]. However, this structure often lacks a closed-loop

stability analysis, which is challenging. It is more straightforward to prove closed-

loop stability for a design based on the entire UAV dynamics. However, it is harder

to implement and usually requires dynamic state feedback. We consider both control

structures in this thesis.

Since the UAV subsystem dynamics in the navigation frame can have a triangular

structure, we use the backstepping control design method. Backstepping recursively

solves the stability of the control error, cancelling indefinite terms in the derivative

of a Lyapunov function with the input [145]. In the perspective of the closed-loop
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UAV control design, backstepping is beneficial because it only requires one dynamic

state extension, i.e., representing thrust as a state [146–148], in contrast to the state

feedback linearization, which requires dynamic extension by two states, i.e., thrust

and its derivative [149]. Also, backstepping approaches show promising results in

experimental validation [150–152].

Since our control objective is time-varying trajectory tracking of the UAV sub-

system while the parameters and states of the arm subsystem are unknown, we must

consider the UAV subsystem parameters and the force and torque disturbances ex-

erted by the arm on a UAV as unknowns. Therefore, we use an adaptive control that

only assumes the UAV state is known while all other parameters and disturbances

are unknown. In [153] an adaptive controller only for the outer-loop of UAM is

considered where only the mass is considered unknown. In [153] a model reference

adaptive control for a UAM is proposed. This approach only considers the uncer-

tainty in mass and inertia, while the effect of coupling forces and torques due to

the UAM-A on UAM-V is not considered. In [154] a Luenberger observer is used

to estimate torque disturbance due to arm on the UAV. The estimate is used in

control based on the inner-outer loop structure for position stabilization. In [155],

the torque estimation using Leunberger observer has been compared to Kalman

filter-based estimation. These articles assume the effects of arm motion are lumped

in the torque coupling, and variation in inertia, mass and force coupling due to arm

is not considered. An adaptive scheme considering all parameters and disturbances

as unknowns is stated in [156]. However, the adaptive controller is only designed for

the outer-loop, and simple proportional derivative (PD) control for attitude control

is used. Similar to the above-mentioned approaches, we propose an inner-outer loop

control design where uncertainty in mass and inertia is considered. Also, the effect

of coupling forces and torques due to UAM-A is considered in the form of unknown

parameters. Asymptotic convergence of the tracking error for outer and inner-loops

is individually shown in the case of the inner-outer loop control approach, and all

the parameter estimates are shown to be bounded.

Existing work considering the entire UAV dynamics for control is discussed be-

low. An adaptive controller with thrust saturation is proposed in [32, 157] which

considers only a force disturbance and no yaw control. Unknown force and torque

disturbances are considered in [158]. An adaptive controller considering unknown

mass, inertia and force disturbances is considered in the [142]. This approach as-

sumes a diagonal inertia matrix, which is not suitable for a UAM since its arm

creates an asymmetric mass distribution. Also, the effect of torque disturbance is

not included in the model that is the main factor acting on the UAV due to the

arm even when the arm and the UAV are stationary. A brief survey on the control

of UAVs with disturbance compensation can be found in [159]. The design using
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entire UAM-V dynamics in a single loop presented in this thesis is based on the

backstepping approach used in [1] and [160]. These contributions only consider the

force and torque disturbances, while all the parameters are assumed known. Simi-

larly, in the case of the complete closed-loop control design, asymptotic convergence

of the tracking errors is shown while all the parameter estimates are bounded.

1.3 Outline

This document is organized as follows:

Chapter 2 starts with the presentation of the hardware and software components

of the quadrotor UAV platforms developed, upgraded and maintained by the author

for experimental research. It briefly explains the specifications and purpose of each

component and highlights the important interconnections between them. The chap-

ter includes modelling for a quadrotor UAV, pinhole camera, line feature kinematics

and image moments. The modelling of a UAM is presented using the Euler-Lagrange

method. We reformulate this model as a simpler UAV dynamics where the distur-

bance and parametric uncertainty are added to approximately account for the arm

subsystem.

Chapter 3 presents the image-based visual servoing of a quadrotor UAV for line-

following applications. Based on the inner-outer loop control structure, an outer-

loop controller for thrust input is presented along with a velocity observer and an

estimator for unknown parameters and disturbance. An inner-loop control based

on a PID design is provided. The exponential stability of the outer and both inner-

outer loop is proven. The experimental setup is explained, and both simulation and

experimental results are provided. Analysis of the results is provided that discusses

the effectiveness of the proposed approach.

Chapter 4 presents an inner-outer loop control approach for motion control of

UAM-V. It describes the simplifying assumptions used for the UAM model. A

backstepping-based inner-outer loop control is described. Simulation results are

presented for three scenarios: a UAM tracking a figure-8 trajectory with a fixed

arm, a moving arm, and a UAM performing a pick and place operation.

Chapter 5 presents a closed-loop design approach using backstepping where the

UAV thrust and torques inputs are directly designed to control the position trajec-

tory of the UAV. The closed-loop asymptotic stability is proven. Simulation results

for figure-8 trajectory tracking and pick and place application are provided. The

results in the case of tracking with moving arms are compared with other designs.

The document concludes with chapter 6 where it summarizes the whole thesis

and provides a conclusion. Also, the limitations of the work presented and future

directions for research are outlined.
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1.4 Contributions

The contributions made in this thesis are listed below:

• A dynamic IBVS method to control the relative pose of a quadrotor UAV to a

target consisting of two or more parallel lines is proposed in [161]. The design

is based on a single monocular camera that is downward facing. Line moment

features defined in the virtual camera frame preserve passivity property. The

primary contribution in contrast to existing literature [60, 72, 76, 77] is the

estimation of lateral and vertical velocities of the UAV relative to the line

target using the line features measured in the image plane. Further, the closed-

loop system is shown to be exponentially stable in contrast to [72], which shows

only asymptotic stability.

• In [162], a dynamic IBVS approach for lines target is presented similar to

[161]. In addition to the velocity estimation using output feedback, the control

design is robust against variation in UAV mass and thrust constant. Although

the IBVS approach has built-in robustness to camera calibration parameters,

the robustness is further strengthened by treating camera focal length in the

interaction matrix as an unknown parameter in control design. Also, the effect

of external disturbance such as wind is considered on the system. A robust

adaptive controller that controls the image features to the desired reference

and estimates velocity and disturbance is proposed. A stability proof for the

outer-loop, i.e., feature kinematics and linear velocity dynamics, and the inner-

loop dynamics, i.e., attitude and angular velocity dynamics, is given. The

Lyapunov theorem-based stability analysis shows the exponential convergence

of both inner and outer loops. Further, in contrast to [72, 76, 77], the approach

is experimentally tested using a quadrotor platform to track a target using

identifiable colour patches in a row, similar to lanes markings on the road.

• An inner-outer loop control design for the UAM-V is proposed. The effect of

the arm is considered in the form of unknown parameters and disturbances.

In contrast to existing literature [153, 155, 156], all parameters of the UAM-

V are considered unknown. In addition, the effects of the arm on the UAV

subsystem are considered in the form of the unknown force and torque distur-

bances acting on translational and angular velocity dynamics, respectively.

Unlike many existing approaches, we do not assume the inertia matrix to be

diagonal. Lyapunov-based proof for asymptotic stability of inner and outer

loop dynamics is provided. The approach is tested for trajectory tracking in

two cases: when the arm attached to the UAV is fixed and when it is moving.

Moreover, the proposed approach is applied to a practical case of pick and

place task.
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• A design based on entire UAM-V dynamics that eliminates the drawbacks

of inner-outer loop design is presented in Chapter 5. This approach directly

designs the UAV control inputs, i.e., thrust and torque, to control position. A

proof that shows the asymptotic stability of complete dynamics of the UAV

subsystem is given. This approach also considers the unknown mass, non-

diagonal unknown inertia, and forces and torques due to the arm acting on

the system. This should be compared with the works in [1, 157, 158] where

a similar control structure is used; however, all parameters and disturbances

are not considered unknown. The approach developed avoids the need to

compute numerical derivatives. The simulation results are provided and show

the effectiveness of the proposed approach for tracking a figure-8 trajectory for

a fixed and moving arm. Also, the control technique is tested for a pick and

place operation. A comparison of the proposed approach with other methods

is provided in the case of trajectory tracking with a moving arm.

• The quadrotor UAV platforms presented in Chapter 2 have been developed,

upgraded and maintained by the author. These have been employed in the

research by other group members in [151, 152].
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Chapter 2

Modelling and Experimental

Platforms

This chapter introduces the experimental platforms developed, upgraded and main-

tained by the author during this Ph.D. Also, the mathematical models of a quadrotor

UAV, the line features, and the UAM are presented. The mathematical notations

defined in this chapter are used throughout the thesis.

This chapter is organized as follows. Section 2.1 starts with the overview of

experimental setup. The key software and hardware components of a Quadrotor

UAV are outlined in Sections 2.1.1 and 2.1.2, respectively. Section 2.2 presents the

kinematic and dynamic models. Dynamic model of a Quadrotor UAV is given in

Section 2.2.1. Section 2.2.2 describes the model of a Pinhole camera, the camera

projection of a line and the kinematics of a line in image plane. Section 2.2.3

defines line moment features and presents their kinematics. Section 2.2.4 derives

the complete model of a UAM system. This chapter concludes by providing a

summary and conclusion in Section 2.3.

2.1 Experimental Platforms

Experimental validation is an essential step of the applied research on UAVs. It

evaluates the theoretical design and gauges the control performance and robustness

to unmodeled dynamic effects of a physical system. The indoor setup at the Applied

Nonlinear Control Laboratory (ANCL) consists of a motion capture system (MCS),

three battery-powered Quadrotor platforms, and multiple computers that serve as

ground stations during flight operations. The three UAV platforms namely ANCLQ

1.0, ANCLQ 2.0 and ANCLQ 3.0 are shown in Figures 2.1, 2.2 and 2.3, respectively.

Every Quadrotor UAV has a set of hardware components to perform various

functions. Some of the hardware components have a microprocessor on them that
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Figure 2.1: Quadrotor UAV ANCLQ 1.0

Figure 2.2: Quadrotor UAV ANCLQ 2.0

Figure 2.3: Quadrotor UAV ANCLQ 3.0
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Figure 2.4: 3DR Pixhawk and its peripherals on ANCLQ 2.0.

runs a software. The essential hardware and software components of a Quadrotor

UAV are described in the following sections.

2.1.1 Hardware Components

The common components of a Quadrotor UAV are shown in Figure 2.4 and their

interconnection is shown in Figure 2.5. The arrangement of hardware components

onboard a UAV is shown in Figure 2.6. The essential components of a quadrotor

UAV and the specifications of those used in the ANCL platforms are described

below.

Flight Controller

A flight controller is a mini-computer onboard a UAV with built-in sensors and

communication ports. The onboard CPU on a flight controller runs the autopilot

software that contains the estimation, control and safety-related decision-making

algorithms to fly the UAV. Built-in sensors provide various measurements that are

used by the estimation algorithms to determine system states. The communication

ports allow connection with external sensors, actuators, ground station computers,

and remote controllers. A list of flight controllers commonly used for small UAVs is

given in [163] and segregated into open-source and closed-source in [164]. ANCLQ

2.0 and ANCLQ 3.0 use the 3DR Pixhawk, while ANCLQ 1.0 uses the HKPilot32
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Figure 2.5: Hardware interconnections of ANCL quadrotor platforms.

flight controller. Both 3DR and HKpilot32 configurations are based on Pixhawk 1

Flight Management Unit version 2 (FMUv2) design [165]. Pixhawk 1 flight controller

has 2 CPUs; one serves as the main CPU while the other is a backup to ensure

safety. The main CPU is a 180 MHz ARM Cortex M4 CPU with 256 kB SRAM,

while the fail-safe CPU is a 24 MHz ARM Cortex M3 with 8 kB SRAM. Pixhawk 1’s

Inertial Measurement Unit (IMU) consists of multiple built-in sensors that include

ST Micro L3GD20H gyroscope, ST Micro LSM303D accelerometer/magnetometer,

and Invensense MPU 6000 3-axis gyroscope/accelerometer. It has a set of two

gyros and two accelerometers to provide redundancy to sensor failure. Complete

specifications of the Pixhawk 1 flight controller are given in [166]. Raw measurement

directly from IMU have the following issues:

• Gyroscopes measure the angular rates instead of angular displacements or

attitude.

• Accelerometers measurements for linear acceleration have effects due to grav-

itational acceleration and Coriolis-centrifugal forces.

• IMU measurements have sensor bias and measurement noise due to vibration.

Therefore, these measurements are processed by an estimator to estimate vehicle

states. IMU hardware and the estimator software are collectively referred to as

Attitude and Heading Reference System (AHRS).

21



Motion Capture System (MCS)

The UAVs can obtain a position estimate from a GPS during outdoor flights; how-

ever, GPS is unavailable for indoor flight operations. Therefore, ANCL has a Motion

Capture System in the lab that provides UAV pose estimates with an accuracy down

to 1 mm in translational and 1 degree in the rotational. When testing control algo-

rithms, this pose estimate is used either as a ground truth or a system state. ANCL

motion capture system consists of 8 Vicon Bonita B3 Cameras with a resolution of

0.3 megapixels and a frame rate of 240 frames per second (fps). The cameras emit

infrared light, which is reflected by the infrared markers in the room, and projected

on cameras to track the location of markers. The system can detect passive mark-

ers of diameter as low as 9 mm, which can be uniquely arranged in a 3D pattern

onboard a UAV for identification and tracking. For better reliability, we use 38 mm

markers onboard the ANCL quadrotor platforms. The cameras are connected to the

lab network using two switches which also provide power to the cameras i.e., Power

over Ethernet.

Radios

Communication radios are essential components of a UAV platform. They allow a

wireless connection between the UAV and its peripherals. On ANCL platforms, we

have three primary radios. First is a pair of LairdTech RM024-P125-M-30 radios

that allow communication between the MCS and the UAV. One radio is connected

to a Ground computer running the Vicon tracker software. This radio sends data

to its paired radio on the UAV side. The other radio on the UAV is connected to

the flight controller through a telemetry port.

The second radio is a Roving Networks Wifly RN-171 802.11b radio, which

essentially serves as a Wi-Fi Adapter for the flight controller computer, connecting

it to the Wi-Fi Network of the lab. This allows us to wirelessly control the UAV and

monitor the flight data online during a flight. This radio is only needed when the

UAV does not have a computer vision system. When the computer vision system

is connected to the UAV, its onboard companion computer has a built-in Wi-Fi

that allows connection to the Pixhawk. Both LairdTech and Wifly radios need a

base known as XBee Explorer that converts the 20 pin radio ports to a Universal

Asynchronous Receiver Transmitter (UART) port.

The third radio is a Spektrum receiver and transmitter pair. The transmitter

serves as the remote control for the quadrotor. Its channels are programmed in

the autopilot firmware to operate the quadrotor in specific modes and fly manually.

This is essential from a safety perspective and allows the user to intervene immedi-

ately if an accident is about to happen. In ANCL, we use Spektrum DX8 remote

transmitter. More detail on its functions can be found in [79]. This remote control
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has safety functions and therefore has the highest priory and uses the most sophisti-

cated equipment. Also, for indoor flight in a confined space, manual attitude control

is challenging. Therefore, a position estimate from the MCS is critical for indoor

flights. Due to this, UAV has a dedicated radio for this communication. The Wi-Fi

connection is at a low priority as it does not perform any safety-related functions.

Motors and Propellers

Electric-powered actuators have become favourable for UAVs due to their high

power-to-weight ratio compared to gas-powered internal combustion engines. These

electric actuators consist of a motor-propeller pair. In a quadrotor UAV, there are

four motor-propeller pairs. The motor is a brushless DC outrunner with three in-

puts. The motor speed and torque depend upon the voltage levels and phase shift

between the input pulses. The motor speeds are rated in revolutions per minute

(RPM) per volt at no load, often referred to as Kv rating. The motors used in

ANCL quadrotors are Turnigy D2836/8 with a Kv rating of 1100 RPM per volt.

Their rated voltage is 7.4 - 14.8V, and their maximum current specification is 18 A.

The propellers used in ANCL quadrotor UAVs have 11-inch diameters with a pitch

of 4.5 inches. A propeller pitch is defined as the measure of forward distance moved

through a soft solid due to one complete rotation of the propeller.

Electronic Speed Controllers

The Electronic Speed Controllers (ESCs) used in the quadrotor receive a Pulse

Width Modulated (PWM) signal from the flight controller and produce DC pulses

at its three outputs. The ESCs vary the magnitude and phase of these pulses with

the variation in the PWM input to control the speed of brushless DC motors. The

ESCs used in ANCL Quadrotor UAVs are Arfo 30 A ESCs based on Atmel AVR

8-bit Microcontroller ATmega8. These ESCs have a continuous current rating of

30 A and a voltage rating of 7.4 - 14.8 V.

Onboard Computer and Camera

The onboard computer, often called a companion computer, together with a camera,

makes the Computer Vision System (CVS) hardware. The image processing is a

computationally expensive task, and the flight controller has limited resources that

are focused on the control and safety of the UAV. Therefore, a companion computer

is often needed to implement image processing and computer vision algorithms.

The computer onboard ANCLQ 2.0 is an NVIDIA Jetson TX1 which has a 256-core

Maxwell GPU, Quad-Core ARM Cortex-A57 MPCore CPU and 4GB LP DDR4

64-bit Memory. Since the NVIDIA development board for Jetson TX1 has a large
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size for use on a UAV, we use Auvidea J100 as its carrier board that has the same

form factor and size as TX1 and provide several ports for connecting peripherals.

This board is connected to Pixhawk through a USB to UART cable. The camera

used on ANCLQ 2.0 is a Teledyne Flir Chameleon 3 USB 3.0 camera.

2.1.2 Software

Autopilot Firmware

The autopilot firmware runs on the flight controller and performs several functions.

It has drivers for various sensors, collects data from sensors, using estimation algo-

rithms estimates the states of a UAV, communicates with external sensors, accepts

user commands and allows the switching of flight modes. The control algorithms are

also implemented in the autopilot to generates inputs, which are converted to PWM

signals for ESCs to actuate the UAV through motors and propellers. The auto pilot

also performs a great deal of other safety and control related functions. The most

commonly used open-source autopilot firmwares are PX4 [167] and ArduPilot [168].

At ANCL, we use a customized version of the v1.5.5 release of PX4 [169]. PX4

is based on a publish-subscribe structure and has several built-in applications for

various UAV models. PX4’s primary programming language is C++. It also pro-

vides many libraries and tools for developers to implement their algorithms. PX4

uses a MAVLINK protocol [170] for its communication with onboard components

e.g., CVS as well as off-board components e.g., Ground station. The customizations

of PX4 used at ANCL include incorporating the position estimate from the Vicon

MCS and development of additional applications and topics to communicate with

the onboard computer for the Computer Vision experiments. More detail on PX4

used at ANCL can be found [79].

As mentioned earlier, the raw IMUmeasurements are erroneous and contain mea-

surement noise and sensor bias. An Attitude and Heading Reference System (AHRS)

is usually used to estimate the vehicle states by fusing the measurements from mul-

tiple sensors. For example, a roll angle estimate can be calculated by integrating

the roll rate measurement from the gyroscope, as well as from accelerometer mea-

surements using ϕ̂A = arctan( y√
A2

x+A
2
z

), where Ax, Ay and Az are the accelerometer

measurements along corresponding axes. The roll from accelerometer measurements

has high noise due to the calculation involving product and division of multiple noisy

measurements. On the other hand, the roll from the gyroscope has bias or drift due

to integration over time. The two measurements can be fused in a filter to better

estimate the roll. The AHRS in PX4 performs Extended Kalman Filter (EKF) to

fuse measurements from different sensors and obtain a better estimate for vehicle

states. This EKF has 24 states consisting of vehicle attitude (4 quaternion states),
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velocity (3 states), position (3 states), IMU and Magnetometer bias (9 states), Earth

Magnetic field (3 states) and wind velocity (2 states). The processing delay in the

EKF is 100 - 200 milliseconds which is a fairly large delay. Instead of directly using

the delayed EKF estimates, they are used to correct the current IMU measurements

in a Predictor algorithm, and the AHRS output available on vehicle_attitude or

vehicle_local_position has a delay of less than 100 microseconds.

For the IBVS line following implementation, a module named mc_ibvsline was

created on PX4, which subscribes to the img_moments topic containing the line mo-

ment features received from MAVROS and subsequently from CVS. This module

runs the outer loop control, and its output is normalized thrust and an attitude refer-

ence that serves as a reference signal for the inner loop. Since the main contribution

of the IBVS approach presented in Chapter 3 lies in the outer loop control design,

the inner loop control from the stock controller implementation in mc_att_control

application of v.1.5.5 is used.

PX4 computes the attitude using the attitude estimator q module, which is a

quaternion-based attitude estimator and fuses raw IMU measurements. This mod-

ule provides the estimates of attitude used in the visual servoing control. The IMU

sensors are initially calibrated using the QGroundControl software. Despite the

calibration, we remark that the attitude estimates include a small bias and mea-

surement noise and can be considered accurate to about 0.5° near hover. Attitude

estimates are provided at 93.9Hz. During IBVS experiments, the Vicon motion

capture system is used for ground truth UAV position. This allows us to evaluate

the control performance. We also use the position from MCS for emergency control

and safety in case the tested approach fails during the experiment.

Ground Station Software

Q-Ground Control (QGC) is a ground station software for MAVLINK enabled UAVs,

which provides graphical user interface (GUI) based user-friendly option for com-

plete setup and configuration of PX4 autopilot. It also provides in-flight support

and mission planning. The Q-Ground Control displays flight maps and UAV tra-

jectories. The QGC can be used to modify UAV parameters, switch flight modes,

download flight data, monitor instruments online during flight, calibrate UAV sen-

sors, configure control, and several other functions to support UAV flight. QGC

software is a valuable tool; however, it is not necessary for the UAV flight. At

ANCL, we use a customized QGroundControl v3.1.1, which has been modified to

include additional topics to monitor various states of the controller during flight.
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ESC Firmware

ESC firmware runs inside the ESC microcontroller and, depending upon the PWM

input, generates an output signal to provide electronic commutation to the brushless

DC motor. The most commonly used open-source firmwares for UAV ESCs are

SimonK [171] and BLHeli [172]. ESCs on ANCL quadrotors are programmed with

SimonK firmware Afro NFET Version 2013-09-20.

Computer Vision System

The software part of the computer vision system is based on Robot Operating Sys-

tem (ROS) running on a Ubuntu 16.04 operating system (OS) on Jetson TX1. ROS

is a flexible open-source robotic framework and a meta-operating system that runs

over an existing operating system. It is a set of tools, libraries, and conventions that

simplify the development of software programs for robots. ROS can be used on a

low level to implement sensor and actuator drivers of a robot and provide low-level

device control. It can be used to implement robot mapping, localization, control,

and estimation algorithms on a higher level.

ROS has a modular structure, where individual programs called nodes are writ-

ten to perform specific tasks. Nodes share data between them through message

passing. The message streams are called topics. Usually, a node subscribes to one

or more topics, processes the data received from those topics, and publishes the

result on another topic. For example, a robot control node in ROS would subscribe

to a topic containing system states or sensor data and use these states to generate

the control inputs and publish these control inputs on another topic. A driver node

will subscribe to the topic published by the control node to drive UAV actuators.

At ANCL, we have used Kinetic Kame release of the ROS.

In the case of computer vision processing, a camera image is the sensor data.

Image from camera is processed in ROS nodes to detect specific targets e.g., lines.

Based on the parameters of the target object certain meaningful state variables

e.g., line features, are calculated. These states based in the visual data are then

used in a control program to achieve visual servoing. In our case, we use functions

Open Source Computer Vision Library (OpenCV) for image processing and target

tracking. OpenCV provides efficient algorithms and functions for real-time image

processing. Since we use the UAV attitude to remove the perspective effects from

the image, and the UAV controller is implemented on PX4, two-way communica-

tion between ROS and PX4 is needed. This communication is established using

MAVLINK protocol. The CVS captures the image, performs several image process-

ing steps, computes the line feature in the virtual camera frame (defined later), and

sends it to the PX4 at a rate of 21.7Hz.

To simplify line detection, we use coloured patches positioned in a straight line
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Figure 2.6: Components of ANCLQ 2.0.

to construct the lines for use in IBVS experiments. Patches of Green and Magenta

colours are used to form two parallel lines. We detect the coloured patches as points

located at their centroids and then fit a line through these points. This allows us to

reuse the experimental test system for points target. However, it is discussed later

in the experimental results of IBVS in Chapter 3 that this approach introduces

additional noise and could be replaced by Hough transform for line detection for

practical applications.

2.2 Modelling

In this section, the mathematical modelling of various platform configurations is

given. We start by presenting the model of a quadrotor UAV. Standard notations

are used throughout this text, with only a few exceptions. An alphabetic superscript

above a variable represents the reference frame, except the superscript T , which

specifies a transpose.

2.2.1 Quadrotor Model

We use nominal rigid body dynamics in 3D to model the quadrotor UAV shown

in Figure 2.7. The model does not consider the effects of motor dynamics, aerody-

namics of the rotors and the gyroscopic effects. The detail on modelling the effects

of these factors can be found in [150, 173]. As shown in Figure 2.7, we consider

a navigation frame N with basis vectors {n1, n2, n3} pointing north, east, down,

respectively, and its origin is fixed to point on the earth. A body fixed frame B with

its origin at the Geometric Center (GC) of UAV is also defined. Assuming a sym-

metric quadrotor, its Center of Mass (COM) is also located at its GC. For greater

clarity, the origin of B, COM of the UAV and the GC of UAV refer to the same

point on a UAV. The basis vectors for B are {b1, b2, b3} that point forward, right,
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Figure 2.7: Diagram of a quadrotor showing frames, Euler angles and input forces
and toques.

and downward, relative to the UAV. The UAV position or the position of the origin

of B, relative to the origin of N is denoted, pn expressed in N , which is a vector

pointing from the origin of N to the origin of B. The linear velocity of kinematics

of the UAV in N expressed as vn = [vn1 , v
n
2 , v

n
3 ]
T is given by

ṗn = vn. (2.1)

The relative orientation of B and N is described by the rotation matrix Rnb =

[b1, b2, b3]
T [n1, n2, n3] ∈ SO(3). It is convenient to parameterize Rnb with Tait-Bryan

angles which is commonly referred to as Euler angles. These rotations are around

three unique axes x, y, and z and are called roll ϕ, pitch θ, and yaw ψ in contrast

to the Proper Euler angles which involve three rotations around two unique axis

only e.g., zxz. The Euler angle parameterization of rotation matrix consists of three

successive intrinsic rotations around axes of a mobile frame i.e., the body frame B
in our case. The order of these intrinsic rotations is ZYX i.e.,ψ around b3, θ around

b2 and then ϕ around b1, which is equivalent to three extrinsic rotations around

fixed frame N in the reverse order of xyz i.e.,ϕ around n1, θ around n2 and then ψ

around n3. Here capital ZYX and small xyz notations are used to specify the order

in case of intrinsic and extrinsic rotations, respectively. We use the intrinsic angle
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definitions of ψ − θ − ϕ in B as shown in Figure 2.7 and write Rnb as follows

Rnb = Rb3(ψ)Rb2(θ)Rb1(ϕ) =

cψ −sψ 0

sψ cψ 0

0 0 1


 cθ 0 sθ

0 1 0

−sθ 0 cθ


1 0 0

0 cϕ −sϕ

0 sϕ cϕ



=

cθcψ sϕsθcψ − cϕsψ cψsθcϕ + sψsϕ

cθsψ sψsθsϕ + cψcϕ cϕsθsψ − sϕcψ

−sθ cθsϕ cθcϕ

 , (2.2)

whereas cξ = cos ξ, sξ = sin ξ. The UAV attitude i.e., the angular displacement of B
with respect to N can be written in the vector form

η = [ϕ, θ, ψ]T .

For greater clarity, the order of angles written in the definition of UAV attitude

vector η does not conflict with the definition of ψ−θ−ϕ as intrinsic angles because the

resulting rotation matrix is the same if the angles are defined as extrinsic rotations

with reverse order ϕ − θ − ψ. The angular velocity ω = [ω1, ω2, ω3]
T of the UAV

with respect to the body-fixed frame B is related to the Rnb by

Ṙnb = Rnb S(ω), (2.3)

where

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , ∀x ∈ R3,

is a skew-symmetric matrix. Using (2.3) and the parameterization of Rnb in terms

of η in (2.2), the UAV attitude kinematics can be written as

ω =Wη̇, (2.4)

where

W =

1 0 − sin θ

0 cosϕ sinϕ cos θ

0 − sinϕ cosϕ cos θ

 .
The parameterization of 3D rotations using Euler angles results in a singularity at

θ = (2k + 1)π2 where k is an integer. This singularity is commonly referred to as

gimbal lock. Gimbal lock is not a concern in non-acrobatic flights, where UAV roll

and pitch angles are usually small. The complete dynamics of the system with linear

velocity dynamics defined in N and angular velocity dynamics defined in B are given
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by

mqv̇ =mqge3 − F + τext,p, (2.5a)

Jqω̇ = −S(ω)Jqω + τq + τext,η, (2.5b)

where F = uRnb e3, e3 = [0, 0, 1]T is a unit vector, g is the gravitational acceleration,

mq is the mass of the UAV, Jq ∈ R3×3 is inertia of the quadrotor UAV which is

a positive definite symmetric matrix by its definition, u is the scalar input thrust,

τq ∈ R3 is the input torque acting on the UAV, τext,p ∈ R3 represents an external

force disturbance acting on the UAV e.g., due to wind, and τext,η ∈ R3 represent

external torque disturbance acting on the vehicle. It should be noted that the

angular kinematics or dynamics are always defined in body frame B throughout this

thesis. However, the linear velocity dynamics in the body frame B are useful when

the relative position of the vehicle to a target whose coordinates are measured using

an onboard sensor, is desired. Therefore, the transnational dynamics of the vehicle

in B are given below.

ṗb = −S(ω)pb − vb, (2.6a)

mqv̇
b = −mqS(ω)v

b +mqgR
b
ne3 − F b +Rbnτext,p, (2.6b)

where pb and vb are the position and velocity of a rigid body in B, Rbn = (Rnb )
T and

F b = ue3. These dynamics are later used in obtaining a dynamic model for IBVS.

The thrust input u and the torque input τq are the inputs that act on the UAV

body at its COM and are not the actuator inputs. The quadrotor UAV has four

motor-driven propellers as actuators, out of which two propellers i = 1, 2 rotate in

a clockwise direction while the other two i = 3, 4 rotate in the counter-clockwise

direction. The actuator inputs and inputs in the rigid body model are related to

each other through the UAV’s geometry. We consider a symmetric quadrotor UAV

in a cross ’×’ configuration, whose geometry can be defined by two parameters ℓ

and Θi. Parameter ℓ is the distance of each propeller from the origin of B, while
Θi is the angle of ith arm with respect to b1 measured in the counter-clockwise

direction looking from the top of the UAV. We consider fixed propellers with the

axis of rotation parallel to b3 that generate thrust in the vertically upward direction

of the body frame i.e., along −b3. The thrust generated by the ith propeller is given

by ui = kuΩ
2
i , where ku is the aerodynamic coefficient and Ωi is the rotational speed

of ith propeller. The total thrust force due to all propellers is defined as u =
∑4

i=1 ui

in SI units N. The torque generated by individual propellers is τi = kτΩ
2
i for i = 1, 2

and τi = −kτΩ2
i for i = 3, 4 which is also measured in SI units Nm. The total input

torque acting on the UAV is denoted by τq, and can be calculated by projecting

the generated thrust forces and torques of each propeller along the direction of b1,
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b2 and b3. For a quadrotor in ’×’ configuration, if we consider Θ3 = Θ, we have

Θ1 = −Θ, Θ2 = π − Θ, Θ4 = π + Θ, the relation between the u and τq and the

rotational speed of each propeller can be written as

[
u

τq

]
=


ku ku ku ku

−kuℓ sinΘ kuℓ sinΘ kuℓ sinΘ −kuℓ sinΘ
kuℓ cosΘ −kuℓ cosΘ kuℓ cosΘ −kuℓ cosΘ

kτ kτ −kτ −kτ



Ω2
1

Ω2
2

Ω2
3

Ω2
4

 . (2.7)

Since the inputs provided to the UAV by the controller is a set of PWM signals given

to Electronic Speed Controller (ESC) which drive motor and propellers, denoted by

Wi, i = 1, 2, 3, 4. We rewrite the above equation in terms of PWM signals as

[
u

τq

]
= KT

[
fT

τ̄q

]
= KT


ku ku ku ku

−kuℓ sinΘ kuℓ sinΘ kuℓ sinΘ −kuℓ sinΘ
kuℓ cosΘ −kuℓ cosΘ kuℓ cosΘ −kuℓ cosΘ

kτ kτ −kτ −kτ



W̃ 2

1

W̃ 2
2

W̃ 2
3

W̃ 2
4

 .

where W̃i is a normalized PWM signal defined by W̃i = (Wi−Wmin)/(Wmax−Wmin),

and Wmin and Wmax are the minimum and maximum values of Wi, respectively.

Therefore, W̃i ∈ [0, 1] and is related to rotor speed by Ω2
i = KT W̃

2
i , where kT is a

normalizing thrust coefficient that depends upon battery voltage, ESC configuration

and motor parameters. ESC configuration and motor properties are relatively static

over time, however, battery voltage varies during flight. As the battery weakens and

its voltage drops, the motor receive less power and propeller speed is reduced for a

constant PWM signal. Therefore, the thrust constant proportional to the battery

voltage slowly varies over time and significantly affects vertical control performance

during flight. This variation in thrust coefficient is accommodated in the IBVS

control in Chapter 3. It should be noted that in (2.2.1), fT and τ̄q are bounded

in the interval [0, 1]. Since there is an algebraic relationship between PWM, and

forces/torques acting on the UAV frame in B without any dynamic involvement, we

take the later i.e., torque τq and thrust u as system inputs when designing control

for UAM UAVs.

2.2.2 IBVS Modelling

For image-based visual servoing of linear structures, we consider a quadrotor UAV

with a downward-facing camera that sees a planar horizontal target containing more

than one line. We assume that the camera’s optical center Oc i.e., the point where all

light rays forming the image intersect coincides with the UAV COM. We also assume

that the camera is perfectly aligned with the UAV body frame B so that the image
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Figure 2.8: Pinhole Camera model showing projection of a 3D point P and 3D line
L as a 2D point p and 2D line l in the image plane.

plane with basis {Y1, Y2} is parallel to the plane defined by {b1, b2}. While principal

axis, also known as the camera’s optical axis, is the line or axis connecting the optical

center Oc and image center OI , coincides with b3. This is shown in Figure 2.8 along

with the camera model. For greater clarity, in the following discussion, the terms

body frame, camera frame or real camera frame all refer to B. In the following

section, we describe the projection model of the camera.

Camera model

We use a pinhole camera model for modelling of the downward facing camera at-

tached to UAV as shown in Figure 2.8. Consider a static 3D point P located inside

the camera field of view with coordinates P = [X1, X2, X3]
T expressed in B. The

projection of P onto the image plane is denoted p = [y1, y2]
T and given by

p =

[
y1

y2

]
= λ

[
X1
X3
X2
X3

]
, (2.8)

where λ is the focal length of the camera whose value does not need to be known

exactly.

A line in 3D is represented by the intersection of two planes with a plane defined

by its normal vector n = [a, b, c]T and a point P0 = [X01, X02, X03]
T on the plane.

For any arbitrary point P = [X1, X2, X3]
T lying on the plane, the vector

−−→
P0P which

points from P0 to P must be orthogonal to n. That is, the dot product
−−→
P0P ·n must

be zero: −−→
P0P · n = a(X1 −X10) + b(X2 −X20) + c(X3 −X30)

= nTP + d = 0,

where d = −aX10 − bX20 − cX30. We consider a 3D line L represented by the

intersection of two planes

nT
i P + di = aiX1 + biX2 + ciX3 + di = 0, i = 1, 2, (2.9)
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with n1 × n2 ̸= 0, where ni = [ai, bi, ci]
T is the normal vector of ith plane expressed

in B. The representation of a 3D line as the intersection of two planes does not

½

OI

Y1

Y2

®

½

OI

Y1

Y2

®

90o

®

90o + ®

½

sin®

½

cos®

L

nT
1 P + d1 = 0

nT
2 P + d2 = 0

Figure 2.9: A line L represented as the intersection of two planes

define a unique pair of planes. A given 3D line can be represented by an infinite

number of pairs of planes. Without loss of generality and as shown in Figure 2.9

we choose one of the planes parallel to the horizontal target in order to simplify

the image kinematics below. We exclude the degenerate case d1 = d2 = 0, which

means L does not pass through the focal point or origin of B. For a downward-facing

camera, this case is impractical as it corresponds to the 3D line passing through the

camera or when the UAV has a 90° roll or pitch. As in [53] the projection of L for

a camera of unit focal length with principal point or image center at (0, 0) can be

parametrized as

lTu ph = Ay1 +By2 + C = 0, (2.10)

with

A =

∣∣∣∣∣a1 d1

a2 d2

∣∣∣∣∣ , B =

∣∣∣∣∣b1 d1

b2 d2

∣∣∣∣∣ , C =

∣∣∣∣∣b1 d1

b2 d2

∣∣∣∣∣ ,
and lu = [A,B,C]T = [n1, n2][−d2, d1]T being the vector representation of the 2D

line in homogeneous form and ph = [y1, y2, 1]
T is the representation of the 2D point

in homogeneous form. For a camera of focal length λ and image center at (y10, y20)

the projection of L is

lλ = Hlu, (2.11)

where H =
[

1 0 0
0 1 0

−y10 −y20 λ

]
. We remark that the representation of the projection of

a 3D line into the 2D image plane is non-minimal as any scalar multiple of lλ or lu

represents the same line, which is evident from (2.10).

As shown in Figure 2.10, a 2D line in the image plane can be parameterized by

two parameters α and ρ. The parameter α is the angle the line makes with the

Y1-axis, and ρ is the perpendicular distance between the line and the origin OI of
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the image frame. We have

lTλ ph = y1 sinα+ y2 cosα− ρ = 0, (2.12)

where lλ = [sinα, cosα,−ρ]T where α ∈
(
−π

2 ,
π
2

]
. This equation is often referred

as normal form of a 2D line. In what follows, we use vector l = [α, ρ]T to specify

a line. Our objective is to find the line kinematics so that we can couple it to the

UAV linear velocity dynamics in (2.6b) and design a controller.

½

OI

Y1

Y2

®

®

Figure 2.10: Projection of line parameterized by α and ρ

Line kinematics

To find the line kinematics in the image plane, we first need to find the kinematics

of a point in image plane because a line is made up of points. We can obtain the

kinematics of a point in 3D by substituting pb = P in (2.6a), we have

Ẋ1 = X2ω3 −X3ω2 − vb1,

Ẋ2 = X3ω1 −X1ω3 − vb2,

Ẋ3 = X1ω2 −X2ω1 − vb3.

From (2.8), we know X1 =
y1X3

λ , X2 =
y2X3

λ , substituting this in above equation, we

have

Ẋ1 =
y1X3

λ
ω3 −X3ω2 − vb1,

Ẋ2 = X3ω1 −
y1X3

λ
ω3 − vb2,

Ẋ3 =
y1X3

λ
ω2 −

y2X3

λ
ω1 − vb3.

(2.13)

Taking the derivative of X1 = y1X3

λ , X2 = y2X3

λ , which is Ẋ1 = ẏ1X3+y1Ẋ3

λ , Ẋ2 =
ẏ2X3+y2Ẋ3

λ , rearranging, we get

ẏ1 =
λẊ1 − y1Ẋ3

X3
,

ẏ2 =
λẊ2 − y2Ẋ3

X3
.

(2.14)
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Substituting (2.13) in above equation and simplifying, we have

ṗ =

[
− λ
X3

0 y1
X3

0 − λ
X3

y2
X3

]v
b
1

vb2
vb3

+

[
y1y2
λ −(λ+

y21
λ ) y2

(λ+
y22
λ ) −y1y2

λ −y1

]ω1

ω2

ω3

 . (2.15)

The above equation specifies the kinematics of a point p in the image plane in

relation to the camera velocity. Since we consider a downward facing camera rigidly

attached to the vehicle with image plane parallel to the body frame b1 − b2 axis,

the velocities in above equation are the velocities of the vehicle. To find the line

kinematics in the image plane, let us take the derivative of (2.12) on both sides, we

have

ẏ1 sinα+ α̇y1 cosα+ ẏ2 cosα− α̇y2 sinα− ρ̇ = 0.

Rearranging, we get

ρ̇+ α̇(y2 sinα− y1 cosα) =
[
sinα cosα

] [ẏ1
ẏ2

]
.

From (2.12), we know y2 =
ρ

cosα − y1 tanα. Substituting it into above equation and

simplifying, we have

− α̇y1 + cosα(ρ̇+ α̇ρ tanα) = cosα
[
sinα cosα

]
ṗ. (2.16)

Now again consider the point kinematics in (2.15), substituting y2 = ρ
cosα −

y1 tanα from (2.12), and then left multiply by row vector [sinα, cosα] to solve for

[sinα, cosα]ṗ, we have

[
sinα cosα

]
ṗ =

1

X3

[
−λ sinα −λ cosα ρ

]v
b
1

vb2
vb3



+

 −
( ρ
λ tanα

)
y1 + λ cosα+ ρ2

λ cosα

−
( ρ
λ

)
y1 − λ sinα

− (tanα sinα+ cosα) y1 + ρ tanα


T ω1

ω2

ω3

 . (2.17)

Recall the equation of a 3D line using two planes in (2.9), substituting X1 =

y1
X3
λ , X2 = ( ρ

cosα − y1 tanα)
X3
λ from (2.8) and (2.12), and solving for 1

X3
, we have

1

X3
= −(fαy1 + fρ), (2.18)
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where fα = ai−bi tanα
diλ

, fρ =
biρ

cosα
+ciλ

diλ
. Substituting it into (2.17) we have

[
sinα cosα

]
ṗ =



fαλ sinα

fαλ cosα

−fαρ
− ρ
λ tanα

− ρ
λ

− 1
cosα





vb1
vb2
vb3
ω1

ω2

ω3


y1 +



fρλ sinα

fρλ cosα

−fρρ
λ cosα+ ρ2

λ cosα

−λ sinα
ρ tanα





vb1
vb2
vb3
ω1

ω2

ω3


. (2.19)

Substituting this into (2.16), and collecting coefficients of y1 on both sides of the

equation, we have

− α̇y1 + cosα(ρ̇+ α̇ρ tanα)

= cosα



fαλ sinα

fαλ cosα

−fαρ
− ρ
λ tanα

− ρ
λ

− 1
cosα





vb1
vb2
vb3
ω1

ω2

ω3


y1 + cosα



fρλ sinα

fρλ cosα

−fρρ
λ cosα+ ρ2

λ cosα

−λ sinα
ρ tanα





vb1
vb2
vb3
ω1

ω2

ω3


. (2.20)

Equating coefficients of y1 and others on both sides of the above equation, solving

the resulting system of equations for α̇ and ρ̇, we can write

l̇ =

[
α̇

ρ̇

]
=

[
σαλ sinα σαλ cosα −σαρ
σρλ sinα σρλ cosα −σρρ

]
vb

+

[
ρ
λ sinα

ρ
λ cosα 1

(ρ
2

λ + λ) cosα −(ρ
2

λ + λ) sinα 0

]
ω, (2.21)

where l = [α, ρ]T , σα = −fα cosα , σρ = fαρ sinα + fρ, fα = ai−bi tanα
diλ

, and

fρ =
biρ

cosα
+ciλ

diλ
. If we combine above equation with (2.6b), we have a dynamic model

of the system where the force acting on the UAV directly affects the line parameters

l = [α, ρ]T , this is referred to as Dynamic Image Based Visual Servoing (DIBVS).

However, it is challenging and difficult to design a controller for this system due to

the coupling with angular velocity ω in both (2.21) and (2.6b). The appearance of

ω at this stage of dynamics destroys the triangular structure and passivity is not

preserved. This problem arises due to the fact that when the UAV has a nonzero

roll of pitch, the camera sees the target from a perspective, and projection of the

target on image plane has perspective effects.

Various methods have been employed in the literature to deal with the perspec-

tive projection effects. In [55] spherical projection is used to remove the angular
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velocity dependence from the image feature kinematics. However, [60] points out

the difficulty in defining a feature for yaw control using spherical projection. In

[62, 63] homography matrix is used to define feature error between current and de-

sired target view. This method assumes a planar target and a small range of error,

particularly for yaw. A virtual spring approach for points features is studied in

[66, 67] where the image plane is assumed parallel to the target, which is restrictive

because the image plane is not parallel to the target plane for nonzero roll and pitch.

We use a virtual camera method, which uses attitude estimates from the IMU of the

UAV to define a virtual image plane that remains parallel to the planar horizontal

target [45, 68, 69, 71, 74]. The line feature kinematics and the UAV linear velocity

dynamics in the virtual camera frame are independent of angular velocity ω, while

a strong connection between image feature and yaw is preserved.

Virtual Camera Frame

Here we introduce a virtual camera frame V that is employed to remove the effects of

perspective projection in the image feature kinematics and the translational velocity

dynamics. The virtual camera frame is defined by basis {ν1, ν2, ν3} whose origin

coincides with the origin of real camera frame B but has zero roll and pitch with

respect to fixed navigation N . This implies the n1 − n2 plane is parallel to ν1 − ν2

plane. Figure 2.11 shows the virtual camera frame and its virtual image plane with

respect to other frames. The rotation matrix describing the orientation of B and V
is

Rvb = Rb2(θ)Rb1(ϕ) = Rθϕ.

This rotation matrix allows us to convert any 3D point or vector from body frame

B to the virtual camera frame V, essentially removing the perspective effect from it.

Quadrotor UAV Dynamics in Virtual camera frame

In this Section we rewrite the dynamics of UAV in V so that they can be used in

the IBVS control design. We can obtain the translational velocity kinematics in V
by left multiplying Rvb on both sides of (2.6b) and using the fact that roll and pitch

angles between V and N are zero together with (2.4). The complete dynamics of

the UAV with translational dynamics defined in V are given below

v̇v =− S(ψ̇e3)v
v + ge3 −

F v

mq
+ δ, (2.22a)

η̇ =W−1ω, (2.22b)

ω̇ =− J−1
q S(ω)Jqω + J−1

q τq, (2.22c)
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Figure 2.11: Navigation frame N , real camera frame B, virtual camera frame V,
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where vv = [vv1 , v
v
2 , v

v
3 ]

T is linear velocity in V, F v = Rv
bF

b is the force input vector

in V,

W−1 =

⎡
⎢⎣
1 sφtθ cφtθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

⎤
⎥⎦ ,

where tξ = tan ξ, δ = RT
b3
(ψ)

τext,p
mq

is the disturbance term, F b = ue3, and u = KT fT

is the total thrust generated by the propellers, where the normalized thrust input

is denoted fT ∈ [0, 1].

As shown experimentally in [45, 79], the thrust constant KT slowly decreases

with battery voltage, and significantly affects the UAV’s vertical actuation. Over a

short time frame, we can effectively treat KT as an unknown constant parameter,

and its slow variation allows the use of adaptive control. The mass of the UAV mq

is also taken as an unknown parameter. This allows for components on the UAV

to be changed without affecting motion control performance (e.g., heavier batteries

could be used for longer flights). The UAV payload and its mass can vary depend-

ing on the application (e.g., additional sensors might be added to achieve obstacle

avoidance). In addition, we consider the disturbance term δ = [δ1, δ2, δ3]
T a slowly

varying quantity, acting as a disturbance to the linear velocity dynamics. In addi-

tion to constant external forces such as wind, it also accounts for other uncertainties

including attitude estimate bias [45] and rotor drag [173].

38



Transforming Line Features to the Virtual Camera Frame

As discussed above, any point or vector expressed in B can be transformed to V using

the rotation matrix Rvb = RθRϕ = Rθϕ. Therefore, P
v = RθϕP and nvi = Rθϕni. So

substituting P = RTθϕP
v in (2.9), we have

nTi (R
T
θϕP

v) + di = (Rθϕni)
TP v + di = nvi

TP v + dvi = 0, (2.23)

where i = 1, 2. Hence, from (2.10) and (2.23) we have

lvu =
[
nv1 nv2

] [−d2
d1

]
= Rθϕ

[
n1 n2

] [−d2
d1

]
= Rθϕlu.

Substituting lvλ = Hlvu from (2.11), we have

lvλ =

l
v
λ1

lvλ2
lvλ3

 =

sinα
v

cosαv

−ρv

 = HRθϕH
−1lλ = HRθϕH

−1

sinαcosα

−ρ

 . (2.24)

Therefore, the line features in the virtual camera frame are

lv =

[
αv

ρv

]
=

 arctan
lvλ1
lvλ2

−lvλ3√
lvλ1

2+lvλ2
2
.

 .
The line feature kinematics in virtual camera frame i.e., lv = [αv, ρv]T can be written

as follows

l̇v =

[
α̇v

ρ̇v

]
=

[
σαvλ sinαv σαvλ cosαv −σαvρv

σρvλ sinα
v σρvλ cosα

v −σρvρv

]v
v
1

vv2
vv3



+

[
ρv

λ sinαv ρv

λ cosαv 1

( (ρ
v)2

λ + λ) cosαv −( (ρ
v)2

λ + λ) sinαv 0

]ω
v
1

ωv2
ωv3

 . (2.25)

where σρv = ai
vρv sinαv+bi

vρv cosαv+ci
vλ

di
vλ and σαv = −ai

v cosαv−biv sinαv

di
vλ . Since ev-

ery point lying on the 2D line y1
v sinαv + y2

v cosαv − ρv = 0 satisfies 1
X3

v =

−ai
vy1v+bi

vy2v+ci
vλ

di
vλ and the point (y1

v, y2
v) = (ρv sinαv, ρv cosαv) lies on the line

because y1
v sinαv + y2

v cosαv − ρv = ρvsin2αv + ρvcos2αv − ρv = 0, therefore

σρv =
ai
vρv sinαv + bi

vρv cosαv + ci
vλ

di
vλ

=
−1

X3
v .
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Also, ai
v = bi

v = 0 as in an image plane parallel to the target plane containing lines,

the line angel would not be affected by linear motion, only the angular velocities

would affect the angel αv, therefore σαv = 0. Since the image plane of the virtual

camera frame is always parallel to the n1 − n2 plane in the navigation frame, the

roll, pitch angles between N and V are zero. It can be shown from (2.4) that the

respective angular velocities ωv1 = ωv2 = 0, while ωv3 is equal to the yaw rate ψ̇.

Substituting these in line kinematics in virtual camera frame we have,

l̇
v
=

[
α̇v

ρ̇v

]
=

−1

X3
v

[
0 0 0

λ sinαv λ cosαv −ρv

]v
v
1

vv2
vv3

+

[
1

0

]
ψ̇. (2.26)

Since we consider a horizontal target containing N > 1 parallel lines it can be shown

σαv
k
= 0, σρvk =

−1

X3
v ,

where αvk, ρ
v
k denote the line features of the kth line. In the experimental validation of

the control law in Section 3.4 we consider a linear target with a change in direction to

demonstrate the method’s robustness. Using (2.21) the kth line feature kinematics

is
α̇k

v = ψ̇,

ρ̇k
v =

−1

Xv
3

[
λ sinαvk λ cosαvk −ρvk

]
vv.

(2.27)

It is worth mentioning that using the virtual camera frame greatly simplifies the line

feature kinematics. The dynamics for αvk is only a function of yaw rate ψ̇. This is

to be expected because the line angle as seen in the virtual image plane parallel to

the target should not be affected by linear velocity or roll and pitch rate. Further,

the depth Xv
3 of all lines in the horizontal target in the virtual image plane is the

same.

2.2.3 Line Moment Features

In this subsection we define line moment features which further simplify the feature

kinematics (2.27). We start by defining

ρm =
1

N

N∑
k=1

ρvk, αm =
1

N

N∑
k=1

αvk.

Since the lines are parallel, the angle αvk is independent of k, therefore, αvk = αm.

Although all lines in the target have the same αk, in practice different values of αk are

obtained due to measurement error or when targets are not perfectly linear. Using

a mean value of αk helps reduces the effect of these nonidealities. The kinematics
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of αm, ρm are given by

α̇m = ψ̇,

ρ̇m =
−1

Xv
3

[
λ sinαm λ cosαm −ρm

]
vv.

(2.28)

The mean distance ρm measures the lateral position of the lines in the image and

the relative lateral displacement of the UAV to the target. Next, we define

µ =

N∑
k=1

(ρvk − ρm)
2, (2.29)

which is the variance line distances from origin in the virtual image plane. It is a

measure of the distance between lines and provides information about the height of

the UAV. This is because lines appear closer in the image as UAV height increases.

Its dynamics can be obtained by differentiating (2.29) and using (2.27) and (2.28),

µ̇ =
2µ

Xv
3

vv3 . (2.30)

As in [45] it can be shown that Xv
3
√
µ is a constant, and this leads to

Xv
3

√
µ = Xv∗

3

√
µ∗, (2.31)

where Xv∗
3 is desired depth or height above the target and µ∗ is the desired value

of µ at the UAV’s reference configuration. We remark that µ∗ is computed directly

from the image of the target when the UAV is in its desired configuration. However,

in order to improve the usability of the control law, we assume that no value of Xv∗
3

is available. Only an image of the desired goal configuration is needed. This image

does not provide a value of Xv∗
3 unless we assume knowledge of accurate camera

calibration parameters and target geometry. Since these last two assumptions are

impractical, we treat Xv∗
3 as an unknown parameter in the control design.

Next, we define three-line moment features related to height, lateral distance,

and the UAV’s yaw relative to the target. The height moment feature is

sh =

√
µ∗

µ
.

Taking its derivative and using (2.31) and (2.30) we have

ṡh = − 1

Xv∗
3

vv3 . (2.32)

As discussed earlier, ρm is a measure of the lateral position of the UAV. However, its
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sensitivity is inversely related to height. To obtain the moment feature kinematics

that depend linearly on lateral distance we define

sl = ρmsh. (2.33)

Taking the time derivative of sl and using (2.28), (2.32), and (2.31) we have

ṡl =
−λ
Xv∗

3

[
sinαvm cosαvm

] [vv1
vv2

]

=
−λ
Xv∗

3

(vv1 sinα
v
m + vv2 cosα

v
m). (2.34)

The quantity (vv1 sinα
v
m+ vv2 cosα

v
m) in (2.34) is the projection of the linear velocity

in V along the perpendicular direction to the lines.

The yaw angle moment feature is defined as

sψ =
1

N

N∑
k=1

αvk = αvm,

and its dynamics is

ṡψ = ψ̇. (2.35)

This modelling of the line feature kinematics will be used later in Chapter 3 for

IBVS line following.

2.2.4 Unmanned Aerial Manipulator model

In this section, we present the model of an Unmanned Aerial Manipulator (UAM).

A UAM is essentially a UAV with a manipulator arm attached to it. We consider

a quadrotor UAV with an na-DOF robot arm attached to its bottom. We consider

that the arm has same number of links as joints. An ith link is connected to ith-joint

on the UAV side and (i + 1)-joint on the end-effector side. The modelling treats

any external object temporarily attached to the arm as a link e.g., an object picked

by end-effector for a pick and place application can be treated as an additional

link attached to the end-effector. In modelling the UAM, we use the UAV and the

frame definitions presented in Section 2.2.1 along with other notations defined in

the previous sections. The term ∂
∂z (.) represents a gradient if its argument is a

scalar and a Jacobian if the argument is a vector, while the transpose superscript

above an operator signifies the transpose is evaluated after evaluating the operator,

e.g., ∂∂z
T
(.) =

(
∂
∂z (.)

)T
while ∂

∂z (x)
T = ∂

∂z (x
T ).
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Kinematics of an arm

In addition, to the navigation frameN and the body frame B defined in Section 2.2.1,

we consider a frame for each individual link of the robot arm. We consider that an

i-th link has a frame Li attached to its COM for all i = 1, 2, ..., na. A rotation

matrix describing the relative orientation of B and Li is RbLi
∈ SO(3) and composed

as below

RbLi
= RbL1

RL1
L2
, ..., R

Li−1

Li
,

where any Rkj specifies a rotation from a frame j to a frame k. The origin of Li or
the location of the COM of the ith link, in N is given by

pnLi
= pn +Rnb p

b
Li
, (2.36)

where pbLi
denote the position of the COM of the ith link in B and is a function of

the joint variables α1, α2, ..., αi. The velocity of the i-th link in B can be obtained

by taking the time-derivative of pbLi
, given by

ṗbLi
= Jv,Liα̇, (2.37)

where α ∈ Rna is the vector containing the joint variables of the arm. The matrix

Jv,Li ∈ R3×na is a linear velocity Jacobian matrix defined as Jv,Li =
∂pbLi
∂α . The total

angular velocity of the ith link in B is (ω + ωLi) where ωLi ∈ R3 is the angular

velocity of the ith link measured in B, in case of a static base (stationary UAV) and

given by

ωLi = Jω,Liα̇, (2.38)

where Jω,Li ∈ R3×na is the angular velocity Jacobian matrix given by

Jω,Li = [RbL1
ej , R

b
L2
ej , ..., R

b
Li
ej , 03, 03, ..., 03],

whereas ej is one of the three vectors e1 = [1, 0, 0]T , e2 = [0, 1, 0]T or e3 = [0, 0, 1]T

selected separately and appropriately for each vector entry of Jω,Li , depending upon

the axis of operation of each joint of the arm, and 03 = [0, 0, 0]T .

Modelling of UAM Dynamics

There are three commonly used methods to derive the equations of motion of a

mechanical system: Euler-Lagrange formulation, Newton-Euler formulation, and

Kane’s method. All three methods result in the same dynamics of the system.

However, they vary in approach, calculation structure and complexity. The Euler-

Lagrange formation is based on the calculation of the Lagrangian i.e., the difference

of kinetic and potential energy of the whole system and then applying the Euler-

43



Lagrange equations. On the other hand, the Newton-Euler formulation uses a recur-

sive method to derive the equations of motion. In contrast to the Euler-Lagrange,

which considers all components of a multi-body system together, the Newton-Euler

formulation considers the dynamics of the individual components with coupling

forces and toques from the neighbouring components. Since the same coupling

terms appear as reaction forces in the dynamics of the neighbouring components

along with the coupling forces of their neighbouring components, the coupling ef-

fects are propagated throughout the chain of components. All coupling terms are

evaluated using a so-called forward-backward recursion process to obtain the com-

plete dynamics of the whole system in terms of generalized coordinates.

The Newton-Euler formulation is a lengthy and recursive process but has simple

computations at each step, especially at the start, which become complex towards

the end. On the other hand, Euler-Lagrange only involves two steps, i.e., calculating

Lagrangian and then applying the Euler-Lagrange equations; however, because it

considers the system as a whole, each step is massive and involves complex and

lengthy expressions. Nevertheless, Euler-Lagrange is a well-established method that

can capture all aspects of the system and have more applications than others. For

example, Newton-Euler assumes the rigidity of the components and can not be

applied to bodies with elastic deformations.

Kane’s method is based on the principle of linear and angular momentum. It

uses Kane’s dynamical equations, which state that the sum of two quantities called

generalized active forces and generalized inertia forces for all bodies in a system

is zero. Instead of using position-based variables i.e., generalized coordinates as in

Euler-Lagrange or Newton Euler formulation, Kane’s method uses velocity-based

scalar variables called generalized speeds, which are selected to be equal or more

than the total number of degrees of the freedom of the system. After expressing the

translational and angular velocity of each body or component of the system in terms

of these generalized speeds, their partial derivative is taken with respect to the gen-

eralized speeds, called a partial velocity matrix. The generalized active force is the

sum of all external forces acting on a body projected through the translational par-

tial velocity matrix plus all external torques acting on the body projected through

the angular partial velocity matrix. Similarly, the generalized inertia force of a body

is its time rate of change of linear momentum projected through the translational

partial velocity matrix plus the time rate of change of angular momentum projected

through the angular partial velocity matrix. In Kane’s dynamical equations, gen-

eralized active forces and generalized inertia forces for all bodies in the system are

added and equated to zero to obtain the system dynamics. Kane’s formulation is

described in detail in [174] and [175] while a summary is given in [176].

Kane’s method is a step-by-step procedure to obtain the system dynamics. It is
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known to involve less complexity than the Newton-Euler due to the early cancellation

of unused force terms. Also, the partial derivatives involved to obtain partial velocity

matrices are far less complex than the partial derivative of Lagrangian required in the

Euler-Lagrange equations. Nevertheless, Kane’s method is generally non-intuitive

and complex to understand.

We use Euler-Lagrange formulation to model the UAM system, which is well-

established, reliable and most commonly used for modelling mechanical systems.

The Euler-Lagrange equations are given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi, i = 1, ..., ns, (2.39)

where L = K −P is Lagrangian written as a function of generalized coordinates qi,

K is the kinetic energy of the system, P is the potential energy of the system, τi

denote the generalized forces or torques which is the sum of external forces acting

along the axis of the coordinate qi, and ns is the number of generalized coordinates

of the system. More detail on Euler-Lagrange method can be found in [177]. In

case of a UAM consisting of quadrotor and an na degrees of freedom robot arm, the

generalized coordinates are

q = [pnT , ηT , αT ]T ∈ R6+na . (2.40)

The total potential energy P of the system is given by

P = −mqge
T
3 p

n −
na∑
i=1

mLige
T
3 p

n
Li
,

wheremLi is the mass of the i-th link. Since the vertical basis ofN points downward,

the height above the ground is negative of the third component of the position vector

defined in N , this is the reason for both terms being negitive in above equation.

Using (2.36) we can write

P = −eT3 g((mq +

na∑
i=1

mLi)p
n +Rnb

na∑
i=1

mLip
b
Li
). (2.41)

The total Kinetic energy of the system can be written as follows

K =
1

2
mqṗ

nT ṗn +
1

2
ωTJqω +

1

2

na∑
i=1

mLi ṗ
n
Li

T ṗnLi

+
1

2

na∑
i=1

(ω + ωLi)
TRbLi

JLiR
b
Li

T
(ω + ωLi). (2.42)

where JLi is the inertia of the i-th link with respect to its COM. The above equation

45



is not a function of generalized coordinates as specified in (2.40). To write it as a

function of generalized coordinates, we derive the following expressions. Taking

derivative of (2.36) and using (2.3), (2.4) and (2.37), we have

ṗnLi
= ṗn −Rnb

na∑
i=1

S(pbLi
)Wη̇ +Rnb

na∑
i=1

Jv,Liα̇. (2.43)

Using (2.4), (2.38) and (2.43) in (2.42), and simplifying, we get

K =
1

2
(mq +

na∑
i=1

mLi)ṗ
nT ṗn

+
1

2
η̇TW T (Jq +

na∑
i=1

(RbLi
JLiR

b
Li

T −mLiS(p
b
Li
)2)Wη̇

+
1

2
α̇T

na∑
i=1

(mLiJ
T
v,Li

Jv,Li + JTω,Li
RbLi

JLiR
b
Li

T
Jω,Li)α̇

− 1

2
η̇TW T

na∑
i=1

(mLiS
T (pbLi

))Rnb
T ṗn − 1

2
ṗnTRnb

na∑
i=1

(mLiS(p
b
Li
))Wη̇

+
1

2
α̇T

na∑
i=1

(mLiJ
T
v,Li

)Rnb
T ṗn +

1

2
ṗnTRnb

na∑
i=1

(mLiJv,Li)α̇

+
1

2
α̇T

na∑
i=1

(JTω,Li
RbLi

JLiR
b
Li

T −mLiJv,LiS(p
b
Li
))Wη̇

+
1

2
η̇TW T

na∑
i=1

(RbLi
JLiR

b
Li

T
Jω,Li −mLiS

T (pbLi
)Jv,Li)α̇. (2.44)

The Lagrangian function L = K−P can be obtained using (2.41) and (2.44). Since

we have found the Lagrangian, we can apply Euler-Lagrange equations in (2.39) on

it. The resulting system model has the following form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τext, (2.45)

where M(q) ∈ Rns×ns and C(q, q̇) ∈ Rns×ns are Inertial and Coriolis-Centrifugal

matrices respectively, while G(q) ∈ Rns is a gravitational vector, τ ∈ Rns is the

input vector defined as τ = [(−uRnb n3)T , (W T τq)
T , τTα ]

T with τα ∈ Rna being the

joint torques for the arm, τext = [τText,p, τ
T
ext,η, τ

T
ext,α]

T ∈ Rns is a vector consisting of

external disturbances acting on the system, and ns = 6 + na i.e., system order is 6

degrees of freedom from the UAV and na from the arm. Due to long and complicated

expressions for K in (2.44) it is difficult to apply (2.39) on L. Also, the scalar nature

of (2.39), results in loss of intuitive understanding of interaction between various

states in the resulting expressions associated with the vector representation. An

alternative is to directly obtain M(q) from K and obtain C(q, q̇) using the entries
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of M(q). Using this approach, the matrix M(q) can be obtained by rewriting (2.44)

in the quadratic form

K =
1

2
q̇TM(q)q̇,

where

M(q) =

(mq +
∑na

i=1mLi)I3 −Rnb
∑na

i=1(mLiS(p
b
Li
))W Rnb

∑na
i=1(mLiJv,Li)

∗ W TJηηW W TJηα

∗ ∗ Jαα

 ,
(2.46)

where Jηη = Jq+
∑na

i=1(R
b
Li
JLiR

b
Li

T −mLiS
2(pbLi

)), Jηα =
∑na

i=1(R
b
Li
JLiR

b
Li

T
Jω,Li −

mLiS(p
b
Li
)TJv,Li), and Jαα =

∑na
i=1(mLiJ

T
v,Li

Jv,Li +J
T
ω,Li

RbLi
JLiR

b
Li

T
Jω,Li) while an

∗ at ijth entry represents a transpose of jith entry. The matrix C(q, q̇) can be

obtained by using the elements of M(q)

ckj =
1

2

na∑
i=1

(
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

)
q̇ (2.47)

where ckj , is the kjth scalar entry of the C(q, q̇) and known as e Christoffel symbols

of the first kind, while mkj is the kjth scalar entry of M(q). Equation (2.47) can be

implemented using a symbolic tool on a computer to obtain C(q, q̇). Although the

vector or matrix representation of quantities involved is preserved in M(q), how-

ever, equation (2.47) operates on the individual scalar entries of M(q) and provides

individual scalar entries of C(q, q̇) the matrix, which once again destroys the matrix

structure. The C(q, q̇) consist of lengthy scalar expressions and do not provide in-

formation on the physics or the structure of coupling between the UAV and the arm

for an intuitive understanding. The exiting models in literature including the most

recent ones [106–108] do not provide the C(q, q̇) matrix. Instead, the equation (2.47)

is given. In contrast to the existing literature, we provide the complete model of

the system with the Coriolis-Centrifugal matrix written in the form of sub-matrices

that provides an intuitive understanding of the coupling between the UAV and arm

dynamics.

In obtaining, the matrix C(q, q̇), we have used MATLAB symbolic alongside

hand calculations of Euler-Lagrange equations. We have calculated (2.39) the in-

dividual i = 1, ..., ns and then combined the result into matrix form for each of

the sub-vectors of generalized coordinates i.e., pn, η, α. We analyzed the result from

hand calculation to write it as a vector or matrix differential that would result in the

same expression. We then verified the vector or matrix representation by comparing

it’s result with that obtained from MATLAB symbolic. The resulting C(q, q̇) matrix
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has the following structure

C(q, q̇) =

 03×3 C12 C13

03×3 C22 C23

0na×3 C32 C33


where

C12 = −Rnb
(
S(Wη̇)(

na∑
i=1

mLiS(p
b
Li
))W − (

na∑
i=1

mLiS(p
b
Li
))Ẇ

)
,

C13 = Rnb

(
2S(Wη̇)

na∑
i=1

(mLiJv,Li) +

na∑
i=1

(mLi J̇v,Li)
)
,

C22 = Ẇ TJηηW +W T J̇ηηW +W TJηηẆ − 1

2

∂

∂η

T

(W TJηηWη̇),

C23 = Ẇ TJηα +W T J̇ηα − ∂

∂η

T

(Wη̇)Jηα,

C32 = J̇ηα
T
W + Jηα

T Ẇ − ∂

∂α

T

(Jηαα̇)W,

C33 = J̇α − 1

2

∂

∂α

T

(Jαα̇).

It should be noted that the matrix C(q, q̇) representation is not unique, however,

the vector C(q, q̇)q̇ is unique. The gravitational vector G(q) is given by

G(q) =
∂P

∂q
=

 (mq +
∑na

i=1mLi)ge3

−g ∂
∂η

T
(eT3R

n
b )
T
∑na

i=1(mLip
b
Li
)

geT3R
n
b
∂
∂α

∑na
i=1(mLip

b
Li
)

 .
2.2.5 Changes in UAV model due to an arm

It is interesting and important to identify how a nominal UAV model (2.5) differs

from that of a UAM. It helps us identify how the addition of an arm to a UAV

affects its dynamic behavior. After evaluating the matrix-vector multiplication and

rearranging, the first two rows of (2.45) can be written as

(mq +

na∑
i=1

mLi)p̈
n =(mq +

na∑
i=1

mLi)ge3 − uRnb e3 + d̄f , (2.48a)

W TJηηWη̈ +W TJηηẆ η̇ =−W TS(Wη̇)JηηWη̇ +W T τq +W Tdτ , (2.48b)

Jααα̈ =− J̇ααα̇+
1

2

∂

∂α

T

(Jααα̇)α̇+ τα + dα, (2.48c)
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where

d̄f =τext,p +W−TRnb

na∑
i=1

(mLiS(p
b
Li
))Wη̈ −Rnb

na∑
i=1

(mLiJv,Li)α̈

+Rnb

(
S(Wη̇)(

na∑
i=1

mLiS(p
b
Li
))×W − (

na∑
i=1

mLiS(p
b
Li
))Ẇ

)
η̇

−Rnb

(
2S(Wη̇)

na∑
i=1

(mLiJv,Li) +

na∑
i=1

(mLi J̇v,Li)
)
α̇,

dτ =τext,η +

na∑
i=1

(mLiS
T (pbLi

))Rn
T

b p̈n −W−TRnb

na∑
i=1

(mLiJv,Li)α̈

−W−T Ẇ TJηηWη̇ − J̇ηηWη̇ +
1

2
W−T ∂

∂η

T

(W TJηηWη̇)η̇

+W−T Ẇ TJηαα̇+ J̇ηαα̇−W−T ∂

∂η

T

(Wη̇)Jηαα̇

+ g
∂

∂η

T

(eT3R
n
b )
T

na∑
i=1

(mLip
b
Li
),

dα =τext,α −
na∑
i=1

(mLiJ
T
v,Li

)Rnb
T − JTηαWη̈ − J̇ηα

T
Wη̇ − JTηαẆ η̇

+
∂

∂α

T

(Jηαα̇)Wη̇.

From (2.4), we have

ω̇ = Ẇ η̇ +Wη̈. (2.49)

In the UAM system model (2.48), (2.48a) and (2.48b) form the UAV subsystem

referred to as UAM-vehicle (UAM-V) and (2.48c) is the arm subsystem referred to

as UAM-Arm (UAM-A) in Chapter 1. These notations are used throughout this

text to refer to either of the individual subsystems of a UAM. Let us now re-notate

some of the terms in UAV subsystem to write it into a compact form. Defining

m = (mq +
∑na

i=1mLi) and df =
d̄f
m , and substituting (2.1), (2.4) and (2.49) in

(2.48a) and (2.48b), we have

v̇n =ge3 − auRnb e3 + df , (2.50a)

Jηηω̇ =− S(ω)Jηηω + τq + dτ . (2.50b)

where a = 1
m is the mass admittance. Here we have written the UAM-V dynamics

in the same structure as the UAV dynamics in (2.5). This helps us identify the

additional terms and factors introduced in the UAV model due to the addition of an

na DOF robot arm. The change in UAV translational dynamics is represented as

a change in the mass parameter and an additive time-varying force term df in the
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linear velocity dynamics of the UAV, that further consists of the coupling terms due

to the arm. Also, the change in UAV inertia matrix that varies with arm motion

and an additive time-varying vector term dτ containing the coupling terms in the

angular velocity dynamics of the UAV as shown in (2.50). This representation allows

us to look at the variations in the quantities in (2.50) and determine if any assump-

tions can be made about the UAM system under specific operational configurations.

These assumptions will be considered later in Chapter 4.

2.3 Conclusion

In this chapter, we have described various Quadrotor UAV platforms maintained

at ANCL. We looked at the essential hardware components of a quadrotor and

their functioning and purpose. We also described the different software programs

that run onboard the hardware components. We provided the detail on PX4, ROS

and the Computer Vision system onboard ANCLQ 2.0 used for IBVS experiments.

The modelling of different UAV configurations is also presented in this chapter.

We looked at different frame definitions, rotation matrices, kinematic and dynamic

modelling of a quadrotor UAV, camera model, image features definitions and their

kinematics. We introduced the virtual camera frame to solve the problem due to

perspective projection and defined image moment feature and their kinematics in

the virtual camera frame that will be used in the next chapter for visual servoing

of a quadrotor UAV. In the end, we looked at different modelling approaches used

to model a mechanical system and used the Euler-Lagrange formulation to derive

the dynamic model of a UAM. We analyzed this model and obtained the UAM

dynamics in the same structure as a usual UAV dynamics so that the effects of the

addition of a arm to a UAV can be identified. This modelling will be used in future

chapters to design control for UAM systems.
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Chapter 3

Image Based Visual Servoing:

Line Following

In the last chapter, we presented the model of a quadrotor UAV, derived image

features for lines, and presented line moment features in a virtual camera frame that

decoupled the angular velocity from the outer-loop dynamics. This chapter will use

that modelling to design a controller for motion control of a camera-equipped UAV

relative to a linear or lines target. We consider a quadrotor UAV with a downward-

facing camera that sees a planar horizontal target containing more than one line.

Our objective is to control the relative pose of the UAV using IBVS. The pose here

refers to the heading or yaw angle, lateral distance from the lines, and the UAV’s

height above the lines. The motion along the linear target is controlled manually

by the user, who assigns the reference value for the UAV’s pitch. It is challenging

to design a controller for the motion of UAV along the linear target since the linear

velocity along the line is not measurable for an unmarked line target on a plain

background.

We use an output feedback control method, which eliminates the need for a GPS

module, motion capture system or optical flow sensors. For estimation of lateral

and vertical velocity relative to the lines, a simple linear observer is employed.

The design is motivated by the output feedback approach in [178] and used in [71,

179] for points features. The proposed method considers uncertainty in UAV mass

and the thrust constant, which depends on battery voltage and significantly affects

vertical motion of the UAV as remarked experimentally in [45, 79]. Uncertainty also

includes the unknown desired depth, that appears in the moment feature kinematics.

Finally, we include a constant disturbance input to the transnational dynamics. This

disturbance models attitude estimate bias and disturbance forces. A robust adaptive

control law is proposed to compensate for the model uncertainty and disturbance.

Section 3.1 rearranges the system model and describes the control structure.
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The controller and observer design for the outer-loop and the stability analysis of

complete closed loop system is presented in Section 3.2. Simulation and experimen-

tal results are presented in Sections 3.3 and 3.4, respectively. Section 3.5 winds up

the chapter by providing a conclusion.

3.1 Control Structure

To achieve the line tracking objective, we use an inner-outer loop control structure,

as shown in Figure 3.1. The image feature kinematics and linear velocity dynamics

comprise the open-loop outer subsystem dynamics. The UAV roll and pitch angles,

and the input thrust are treated as inputs to the outer-loop. Hence, an outer-loop

control design provides thrust input and desired values for roll and pitch angles that

stabilize the feature error. These roll and pitch angles are then fed as a reference to

an inner-loop controller, that determines vehicle torques for attitude tracking. The

thrust computed by the outer-loop control i.e., the normalized thrust input, fT , is

sent directly to the UAV.

The outer-loop dynamics can be divided into three decoupled subsystems: yaw,

height, and lateral. We define moment feature errors as eψ = sψ, eh = sh − 1, and

el = sl. Using (2.35), (2.32), (2.34), (2.22a), and f̄T = fT cos θ cosϕ we have the

error dynamics for the outer-loop:

ėψ = ψ̇, (3.1a)

ėh = − 1

Xv∗
3

vv3 , (3.1b)

v̇v3 = g − KT f̄T
mq

+ δ3, (3.1c)

ėl =
−λ
Xv∗

3

(vv1 sin eψ + vv2 cos eψ), (3.1d)

v̇v2 = −ψ̇vv1 +
KT f̄T
mq cos θ

tanϕ+ δ2, (3.1e)

where (3.1a) forms the first order yaw subsystem, (3.1b)–(3.1c) is the height sub-

system, and (3.1d)–(3.1e) is the lateral subsystem. In the height and lateral sub-

systems, the linear velocities vvi , i = 1, 2, 3 are unmeasured. Therefore we design an

observer to estimate these states. Furthermore, adaptive control will account for

the unknown parameters KT , X
v∗
3 , mq and constant disturbance δ.
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Figure 3.1: Inner-outer loop control structure

3.2 Controller and Observer Design

3.2.1 Outer-loop Control

Defining the inner-loop error for yaw ψ̃ = ψ − ψ∗, if we use the yaw reference

ψ∗ = −Kψ

t∫
0

eψ(τ)dτ with Kψ > 0, the yaw subsystem in (3.1a) becomes

ėψ = −Kψeψ +
˙̃
ψ, (3.2)

which is exponentially stable assuming perfect inner-loop tracking (i.e., ψ̃ = 0). Be-

fore presenting the controller and observer design for the remaining two subsystems

we remark that it is not necessary to estimate vvi , i = 1, 2, 3 to ensure closed-loop

convergence. As shown below, the transformed velocities can be estimated and used

in the control with the transformation depending on unknown model parameters.

For example, for the height subsystem we estimate a scaled relative velocity defined

by vh = vv3/X
v∗
3 . Expressing (3.1b), (3.1c) in terms of vh, we rewrite the height

subsystem as

ėh = −vh,

v̇h = bh(Dh − f̄T ),
(3.3)

where bh = KT
mqXv∗

3
and Dh =

mq

KT
(g + δ3). We remark that Dh is the value of f̄T at

hover.

Subsystem (3.3) involves a measured output eh, an unmeasured state vh, an

unknown parameter bh and an unknown disturbance Dh. Our observer design based

on output feedback will estimate Dh and vh and the controller will be robust to error
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in parameter bh. Consider the following observer

˙̂eh = −v̂h + lh1(eh − êh),

˙̂vh = −lh1lh2(eh − êh),

D̂h = ξh − 2βheh,

ξ̇h = −βh((γh − lh2)eh + lh2êh + v̂h),

(3.4)

where êh, v̂h, D̂h denote estimated quantities, ξh is the internal state of the dis-

turbance observer and lh1, lh2, γh, βh are control gains to be determined. Let us

define the output estimation error as ẽh = eh − êh, the velocity estimation error

as ṽh = vh − v̂h and disturbance estimation error as D̃h = D̂h − Dh. The error

dynamics of (3.3), (3.4) is

˙̃eh = −vh + v̂h − lh1ẽh = −ṽh − lh1ẽh,

˙̃vh = bh(Dh − f̄T ) + lh1lh2ẽh,

˙̃Dh = −βh(γheh − lh2ẽh − vh − ṽh).

(3.5)

To stabilize the dynamics in (3.3) and (3.5) the control law is taken as

f̄T = kh (v̂h − (lh2 + γh)eh + lh2êh) + D̂h, (3.6)

where kh is a control gain to be determined.

In the lateral subsystem in (3.1d)–(3.1e), we have two unknown states vv1 , v
v
2 ,

three unknown parameters KT , mq, X
v∗
3 and a constant disturbance δ2. In order to

stabilize the lateral feature error el we define a scaled version of the component of

velocity along the shortest path connecting the origin of C and the lines:

vl =
λ

Xv∗
3

(vv1 sin eψ + vv2 cos eψ) =
λ

Xv∗
3

vv2 − ξ1(eψ),

where

ξ1(eψ) =
−λ
Xv∗

3

(vv1 sin eψ + vv2(cos eψ − 1)) ,

As with the height subsystem, we rewrite the lateral error dynamics (3.1d)-(3.1e)

as
ėl = −vl,

v̇l = bl

(
tan(ϕ∗ + eϕ)

cos θ
−Dl

)
+ ξ(t),

(3.7)

where bl =
λKTDh
mqXv∗

3
and Dl =

−m
KTDh

δ2 are unknown constants, vl is an unmeasured

state,

ξ(t) = ξ2(eψ, f̃T )− ξ̇1(eψ),
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with

ξ2(eψ, f̃T ) =
λ

Xv∗
3

(
KT tanϕ

mq cos θ
f̃T − ψ̇vv1

)
,

f̃T = f̄T −Dh, and eϕ = ϕ− ϕ∗. We note that the above equation depends on yaw

subsystem variable ψ̇ and height subsystem variable fT . Since the closed-loop height

and yaw subsystems will be proven exponentially stable, we treat this coupling as

an exponentially decaying disturbance. The exponential convergence of ψ̇ and f̃T

to origin with the exponential convergence of yaw and height subsystem errors can

be seen from (3.2) and (3.3), respectively. We propose the following observer for

estimation of lateral velocity vl, and disturbance Dl,

˙̂el = −v̂l + ll1(el − êl),

˙̂vl = −ll1ll2(el − êl),

D̂l = ξl + 2βlel,

ξ̇l = βl((γl − ll2)el + ll2êl + v̂l),

(3.8)

where êl, v̂l, D̂l denote estimated quantities, ll1, ll2, γl, βl are controller gains to be

determined, and ξl is the internal state of the disturbance observer. Defining the

estimation errors for output ẽl = el − êl, velocity ṽl = vl − v̂l and the disturbance

as D̃l = D̂l −Dl, the error dynamics can be written as

˙̃el = −vl + v̂l − ll1ẽl = −ṽl − ll1ẽl

˙̃vl = bl

(
tan(ϕ∗ + eϕ)

cos θ
−Dl

)
+ ll1ll2ẽl + ξ(t) + bleϕ

˙̃Dl = βl(γlel − ll2ẽl − vl − ṽl)

(3.9)

To stabilize the lateral subsystem dynamics (3.7) and (3.9), a control law is taken

as

ϕ∗ =arctan(cos θ(−kl (v̂l − (ll2 + γl)el + ll2êl) + D̂l)), (3.10)

where kl is a controller gain to be determined.

Theorem 3.2.1. Assuming perfect inner-loop tracking, i.e., [eϕ, eθ, ψ̃]
T = 0, and

consider the height and lateral subsystems (3.3) and (3.7), their respective observers

(3.4) and (3.8), the estimation error dynamics (3.5) and (3.9), and the control laws

(3.6) and (3.10). If the control gains satisfy

lh1 > lh2 > bhkh > γh > 0, (3.11)

and

ll1 > ll2 > blkl > γl > 0, (3.12)
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then the equilibrium [eh, vh, ẽh, ṽh, D̃h, el, vl, ẽl, ṽl, D̃l]
T = 0 is globally exponentially

stable.

Proof. Consider the change of state coordinates
zh1

zh2

zh3

zh4

zh5

 =


γh −1 0 0 0

0 0 −lh2 −1 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1




eh

vh

ẽh

ṽh

D̃h

 , (3.13)

which transforms the control (3.6) into

f̄T = kh(zh2 − zh1) + D̂h. (3.14)

Transforming the dynamics (3.3), (3.5) into the new state coordinates and substi-

tuting the control (3.14) gives the closed-loop

żh1 = −(bhkh − γh)zh1 + bhkhzh2 − γ2hzh3 + bhzh5, (3.15a)

żh2 = −bhkhzh1 − (lh2 − bhkh)zh2 − l2h2zh4 + bhzh5, (3.15b)

żh3 = zh1 − γhzh3, (3.15c)

żh4 = zh2 − (lh1 − lh2)zh4, (3.15d)

żh5 = −βh(zh1 + zh2). (3.15e)

Consider a Lyapunov function candidate

V =
1

2

(
z2h1 + z2h2 + γ2hz

2
h3 + l2h2z

2
h4 +

bh
βh
z2h5

)
,

which is radially unbounded. Taking derivative and substituting (3.15), we have

V̇ = −(bhkh − γh)z
2
h1 − (lh2 − bhkh)z

2
h2 − γ3hz

2
h3 − l2h2(lh1 − lh2)z

2
h4,

which is negative semi-definite if (3.11) are satisfied. This implies that the vector

consisting of [zh1, zh2, zh3, zh4]
T converges to the origin. Using LaSalle’s invariance

principle, (3.15a) and the fact that V is radially unbounded, implies the global

asymptotic stability (GAS) of [zh1, zh2, zh3, zh4, zh5]
T = 0. Since (3.15) is linear,

GAS implies global exponentially stability (GES). Since GAS is preserved under

the linear transformation (3.13), we have proven GES of [eh, vh, ẽh, ṽh, D̃h]
T = 0.
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Now consider a similar transformation for the lateral subsystem
zl1

zl2

zl3

zl4

zl5

 =


γl −1 0 0 0

0 0 −ll2 −1 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1




el

vl

ẽl

ṽl

D̃l

 ,

which transforms the control in (3.10) into

ϕ∗ = arctan(cos θ(−kl(zl2 − zl1) + D̂l)). (3.16)

Since we have assumed eϕ = 0, the closed loop dynamics in the new coordinates are

żl = Alzl +Bξξ(t), (3.17)

where

Al =


−(blkl − γl) blkl −γ2l 0 −bl

−blkl −(ll2 − blkl) 0 −l2l2 −bl
1 0 −γl 0 0

0 1 0 −(ll1 − ll2) 0

βl βl 0 0 0

 , Bξ =

−1

−1

0

0

0

 ,

and zl = [zl1, zl2, zl3, zl4, zl5]
T The unforced part of the dynamics (3.17) has the

same structure as (3.15) and is therefore Al is Hurwitz provided (3.12) holds. The

signal ξ(t) is exponentially convergent since ξ1(eψ), ξ2(eψ, f̃T ) are exponentially con-

vergent as the closed-loop yaw and height subsystems are are globally exponentially

stable. Therefore, the equilibrium [eh, vh, ẽh, ṽh, D̃h, el, vl, ẽl, ṽl, D̃l]
T = 0 of the en-

tire closed-lop is globally exponentially stable.

We remark that although conditions (3.11) and (3.12) depend on unknown pa-

rameters bh and bl, sufficiently small kh, kl, γh, γl and sufficiently large ll1, ll2, lh1, lh2

can always be chosen so that the conditions are satisfied. Estimates on the range

of the unknown parameters can determine worst case values for bl, bh and help in

selecting appropriate controller gains. Care must be taken in selecting gains as se-

lecting values for gains that are too large could lead to the saturation of the vehicle

actuators and could lead to lose of vehicle control and instability.

3.2.2 Inner-loop Control and Entire Closed-loop Stability

As discussed earlier, the thrust input for height control is algebraically related to

the motor inputs; however, in the case of lateral and yaw subsystems, we need to
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design control so that the reference set-points generated from the outer-loop can be

achieved.

Using small angle assumption i.e., tanϕ ≈ ϕ and cos θ ≈ 1, (3.16) can be written

as

ϕ∗ = −kl(zl2 − zl1) + D̂l = K̄ lzl + D̂l, (3.18)

where K̄ l = [kl,−kl, 0, 0, 0]. Also, the dynamics in (3.17) for eϕ ̸= 0 become

żl = Alzl +Bξξ(t) +Bleϕ, (3.19)

where Bl = [bl, bl, 0, 0, 0]
T . Taking derivative of (3.18) w.r.t time and substituting

values for żl from (3.19),
˙̂
Dl = βl(zl1 + zl2) = eT5AlZl where e5 = [0, 0, 0, 0, 1]T and

K̄lBl = K̄lBξ = 0, we have

ϕ̇∗ = (K̄ l + eT5 )Alzl = KlAlzl.

Using the small angle assumption, the inner-loop dynamics of a quadrotor (2.22b)-

(2.22c) can be approximated as

η̈ = J−1τ c.

The inner-loop dynamics for the lateral subsystem are therefore given by

ėϕ = ϕ̇− ϕ̇∗,

ϕ̈ =
1

J1
τ1.

(3.20)

Consider the controller

τ1 = −
k3,ϕ
k2,ϕ

ϕ̇−
k3,ϕ
k1,ϕ

eϕ − k3,ϕ

t∫
0

eϕ(τ)dτ, (3.21)

and a linear transformation

x1,ϕ =

t∫
0

eϕ(τ)dτ,

x2,ϕ =
1

k1,ϕ
eϕ + x1,ϕ,

x3,ϕ =
1

k2,ϕ
ϕ̇+ x2,ϕ,

(3.22)

which transforms the controller (3.21) into τ1 = −k3,ϕx3,ϕ and system in (3.20) with
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control substituted becomes

ẋϕ = Aϕxϕ −
1

k1,ϕ
Bϕlzl, (3.23)

where

Aϕ =


−k1,ϕ k1,ϕ 0

−k1,ϕ k1,ϕ −
k2,ϕ
k1,ϕ

k2,ϕ
k1,ϕ

−k1,ϕ k1,ϕ −
k2,ϕ
k1,ϕ

k2,ϕ
k1,ϕ

− k3,ϕ
J1k2,ϕ

 , Bϕl =
 0

KlAl

KlAl

 , xϕ =

x1,ϕx2,ϕ

x3,ϕ

 .
Again consider the outer-loop lateral subsystem (3.19) with eϕ ̸= 0 together with the

inner-loop dynamics (3.23), using eϕ = Bϕxϕ from (3.22) where Bϕ = [−k1,ϕ, k1,ϕ, 0].
The closed loop can be written as

żl = Alzl +Bdξ(t) +Blϕxϕ, (3.24a)

ẋϕ = Aϕxϕ −
1

k1,ϕ
Bϕlzl. (3.24b)

where Blϕ = BlBϕ. We remark that ξ(t) exponentially converges to zero due to the

exponential stability of the height and yaw subsystems. From the Theorem above,

since the system in (3.19) with eϕ = 0 is globally exponentially stable at origin.

Using the Converse Lyapunov Theorem [180, Thm. 4.14], there exists a Lyapunov

function V1,ϕ(zl, t) defined on R5 × R that satisfies the inequalities

c1∥zl∥2 ⩽ V1,ϕ(zl, t) ⩽ c2∥zl∥2,
∂V1,ϕ
∂t

+
∂V1,ϕ
∂zl

(Alzl +Bξξ(t)) ⩽− c3∥zl∥2,∥∥∥∥∂V1,ϕ∂zl

∥∥∥∥ ⩽ c4 ∥zl∥ ,

for all zl ∈ R5, t ≥ 0 for some positive constants c1, c2, c3 and c4. We consider the

following Lyapunov function candidate

Vϕ(t, xϕ, zl) = V1,ϕ(zl, t) +
1

2
xTϕxϕ,
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and its time derivative is given as

V̇ϕ =
∂V1,ϕ
∂t

+
∂V1,ϕ
∂zl

(Alzl +Blϕxϕ +Bξξ(t)) +
1

2
ẋTϕxϕ +

1

2
xTϕ ẋϕ

=
∂V1,ϕ
∂t

+
∂V1,ϕ
∂zl

(Alzl +Bξξ(t)) +
∂V1,ϕ
∂zl

Blϕxϕ +
1

2
(Aϕxϕ −

1

k1,ϕ
Bϕlzl)

Txϕ

+
1

2
xTϕ (Aϕxϕ −

1

k1,ϕ
Bϕlzl)

⩽ −c3∥zl∥2 +
∥∥∥∥∂V1,ϕ∂zl

Blϕxϕ

∥∥∥∥+ 1

2
xTϕA

T
ϕxϕ −

1

2k1,ϕ
zTl B

T
ϕlxϕ

+
1

2
xTϕAϕxϕ −

1

2k1,ϕ
xTϕBϕlzl

⩽ −c3∥zl∥2 +
∥∥∥∥∂V1,ϕ∂zl

∥∥∥∥ ∥Blϕ∥ ∥xϕ∥+ 1

2
xTϕ
(
ATϕ +Aϕ

)
xϕ −

1

k1,ϕ
zTl B

T
ϕlxϕ. (3.25)

Since we can choose Aϕ, we take

ATϕ +Aϕ = −Qϕ

where Qϕ satisfies

λmin(Qϕ)∥xϕ∥2 ⩽ xTϕQϕxϕ ⩽ λmax(Qϕ)∥xϕ∥2.

Also ,

− 1

k1,ϕ
zTl B

T
ϕlxϕ ⩽

∥∥∥∥ 1

k1,ϕ
zTl B

T
ϕlxϕ

∥∥∥∥ ⩽ ∥zl∥
∥∥∥∥ 1

k1,ϕ
BT
ϕl

∥∥∥∥ ∥xϕ∥ .
The last inequality in (3.25) becomes

V̇ϕ ⩽ −c3∥zl∥2 + c4 ∥zl∥ ∥Blϕ∥ ∥xϕ∥ −
1

2
xTϕQϕxϕ + ∥zl∥

∥∥∥∥ 1

k1,ϕ
BT
ϕl

∥∥∥∥ ∥xϕ∥
⩽ −c3∥zl∥2 −

1

2
λmin(Qϕ)∥xϕ∥2 + ∥zl∥ (c4 ∥Blϕ∥+

∥∥∥∥ 1

k1,ϕ
BT
ϕl

∥∥∥∥) ∥xϕ∥ . (3.26)

If the controller gains k1,ϕ, k2,ϕ, k3,ϕ in (3.21) are selected so that λmin(Qϕ) is large

enough such that
√
2c3λmin(Qϕ) > c4 ∥Blϕ∥+

∥∥∥ 1
k1,ϕ

BT
ϕl

∥∥∥ is satisfied then re-writing

(3.26) gives

V̇ϕ ⩽ −

(
√
c3∥zl∥ −

√
λmin(Qϕ)

2
∥xϕ∥

)2

−
(√

2c3λmin(Qϕ)

− c4 ∥Blϕ∥ −
∥∥∥ 1

k1,ϕ
BT
ϕl

∥∥∥) ∥zl∥ ∥xϕ∥
< 0.

This proves the closed-loop system is GAS at the origin. Given that system in
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(3.24) is linear, GAS implies GES. We remark that if we remove the small-angle

assumption in (3.24), only local exponential stability can be shown. It is important

to note that the small-angle assumption has been used to simplify the analysis, and

it does not necessarily mean that the system will diverge if the assumption is not

valid. Since inspection tasks do not require acrobatic maneuvers, the absolute value

of vehicle roll and pith references can be saturated at π
4 rad which is a reasonably

large angle and can provide sufficient actuation for translational motion. For roll

and pitch angles in the range [−π/4, π/4], there is a bounded difference between

the model’s original and approximated values of nonlinear terms. Since exponential

stability is known for its robustness to disturbances, the bounded effects of the

model approximation can be treated as a disturbance and would lead to a bounded

error in the worst case.

Similarly, the inner-outer closed loop yaw subsystem is

˙̃
ψ = ψ̇ − ψ̇∗,

ψ̈ =
1

J3
τ3.

which can be exponentially stabilized using

τ3 = −
k3,ψ
k2,ψ

ψ̇ −
k3,ψ
k1,ψ

ψ̃ − k3,ψ

t∫
0

ψ̃(τ)dτ. (3.27)

Evidently the velocity along the line can not be measured. Therefore, UAV pitch is

controlled from a pitch reference θ∗ given by the user. We define the pitch tracking

error eθ = θ − θ∗ and its dynamics

ėθ = θ̇,

θ̈ =
1

J2
τ2,

which can be controlled using a PID controller as in (3.21) and (3.27):

τ2 = −
k3,θ
k2,θ

θ̇ −
k3,θ
k1,θ

eθ − k3,θ

t∫
0

eθ(τ)dτ. (3.28)

3.3 Simulation Results

In this section, we present the simulation results for the inner-outer closed-loop con-

trol. The rigid body dynamics of the UAV are implemented in MATLAB Simulink

and the camera is modelled using Peter Corke’s Machine Vision Toolbox [181].
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Table 3.1: Outer-loop measurement noise

Signal Mean Standard Deviation Mean PSD [dB] Sampling Rate [Hz]

eh 7.85× 10−4 0.0051 -45.0 21.7
el -0.0498 0.1785 -36.3 21.7

eψ [rad] 7.14× 10−4 6.62× 10−4 -76.5 21.7
ϕ [rad] -0.0026 2.62× 10−4 -109 93.9
θ [rad] 0.0159 1.83× 10−4 -94.6 93.9

The proposed inner-outer loop control laws (3.2), (3.6), (3.10), (3.21), (3.28) and

(3.27) are implemented. The simulation uses quadrotor and camera parameters

given in Table 3.2 which correspond to the ANCLQ 2.0 experimental platform used

in Section 3.4. These parameters of the UAV and the camera are determined us-

ing system identification. The UAV mass is measured using a weight scale and

its inertia is obtained using a pendulum swing test. The camera parameters are

obtained from the camera’s specifications and using camera calibration. No im-

age processing is performed in the simulation. Rather, the pinhole model (2.8) is

used to project 3D points which comprise the linear target onto the image plane.

The controller gains are listed in Table 3.3. In the simulation, the lateral feature

in (2.33) is scaled by a factor of ε = 1/100 so that it has a similar range as the

other feature components. This helps with gain tuning since both lateral and height

controllers have a similar structure, and if the values of the feature errors have

the same order, the same gains can be used as a starting point when tuning. The

only effect this scaling has on controller design is that bl is replaced by εbl in the

conditions (3.12). The controller gains are appropriately selected to avoid a large

overshoot in lateral motion to ensure the target remains in the camera’s field of

view. The simulation employs two parallel lines in a horizontal plane and spaced

apart by 1/
√
3m. The initial conditions for the UAV are such that eψ = 0.35π rad

and ρm = 770 pixels. The initial position of the UAV in the navigation frame is

pn = [−0.3, 0,−5]T m. The initial conditions for vv, η, and ω are zero. This results in

initial conditions for [sψ0, sh0, sl0] = [0.35π, 0.82, 0.35]. We take KT = 37.6N/ms2,

Xv∗
3 = 6m, [δ1, δ2, δ3] = [0,−1,−1]m/s2 which results in Dh = 0.539, Dl = 0.0612,

bh = 2.725 and bl = 6.12. The desired moment features are [s∗ψ, s
∗
h, s

∗
l ] = [0, 1, 0].

The initial conditions for the observers are êh = 0, êl = 0, v̂h = 0, v̂l = 0. The

initial values of estimated disturbances depend on initial conditions for output and

velocity estimation errors and given as D̂h = 0.731, D̂l = 0.171. In order to simulate

the approximate measurement noise in the actual platform, Gaussian white noise

is added to the measurements of the outer-loop according to Table 3.1. The noise

powers and means were obtained by collecting measurement data on a fixed UAV.

A nominal value for focal length was chosen with a 20% error. Such a large error

could arise when no calibration is performed and a rough estimate for λ is chosen.
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(a) Feature error (b) Velocity estimation error

(c) Disturbance estimates (d) Outer loop control inputs

(e) Vehicle position
(f) Top view of vehicle trajectory
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Figure 3.2: Line following simulation results
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Table 3.2: UAV and Camera Parameters

Parameter Value

Inertial Matrix J diag([0.03, 0.03, 0.05]) kgm2

Mass mq 2.3 kg
Focal Length λ 415 pixels

Pixel size 4.8 µm
Image size [640, 480]

Image centre [y10, y20] [320, 240]

Table 3.3: Controller Gains

Gain Value

Kψ 4
lh1 16
lh2 5
kh 0.94
γh 1.25
βh 0.9
ll1 14
ll2 4.37
kl 0.36
γl 1.093
βl 0.15

Gain Value

k1,ψ 0.0008
k2,ψ 0.002
k3,ψ 0.1
k1,ϕ 0.0003
k2,ϕ 0.0078
k3,ϕ 0.1
k1,θ 0.0008
k2,θ 0.003
k3,θ 0.1

The trajectories of the system states, disturbance estimates, and control inputs

are shown in Figure 3.2. The line features in Figure 3.2 converge to a small neigh-

bourhood of the origin. When no noise in the attitude is present, convergence to

zero is obtained. As expected from the theory, the unknown disturbance estimates

D̂h and D̂l converge to their actual values in Figure 3.2c while the state estimation

errors ṽh and ṽl converge to zero in Figure 3.2b. The plots in Figure 3.2d show the

trajectories of ϕ∗, θ∗, ψ∗ and fT . The normalized thrust fT saturates at 1 initially

and eventually settles to the value of Dh once the desired height is achieved. The

plot for ϕ∗ shows more noise than other plots. This is because the lateral feature sl

is defined, involving the product of ρm and sh.

In steady-state the absolute values of feature errors remain bounded i.e., |eψ| <
0.003, |el| < 0.012 and |eh| < 0.02 after 10 seconds. Although the features and

the inputs are affected by noise, they remain bounded to practically useful levels.

Moreover, UAV position is relatively unaffected by noise as shown in Figure 3.2e.

Here we observe that pn3 converges to −6m. This satisfies the desired height re-

quirement X∗
3 = 6m. The 3D trajectory of the UAV is shown in Figure 3.2f. The

lateral position error at steady state is bounded to 0.035m while the height error

is bounded to 0.02m. The simulation results demonstrate accurate motion control

in the face of the unmodelled uncertainty in focal length and attitude measurement
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noise and bias.

3.4 Experimental Results

The experimental validation of the proposed algorithm is performed using the Ap-

plied Nonlinear Control Laboratory (ANCL) quadrotor UAV platform ANCLQ 2.0

described in Section 2.1. The Computer Vision System onboard ANCLQ 2.0 cap-

tures the image, performs several image processing steps, computes the moment fea-

ture in V, and sends it to the PX4, where they are used in the controller to generate

UAV inputs. To simplify line detection in the experiment and keep the implementa-

tion portable to other applications e.g., those involving point features, we construct

a target consisting of two lines by using two sets of different coloured patches po-

sitioned along the straight lines. We detect the coloured patches as points located

at their centroids and then fit a line through these points. However, the coloured

patches appear to be along two curves instead of two parallel straight lines due to

camera distortion. This introduces additional noise in the image feature measure-

ments. Direct line detection algorithms such as the Hough transform, and camera

distortion models as shown in [79] could also be used to reduce this noise. For each
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Figure 3.3: Block diagram of the controller showing implementation details

image two lines are determined, one for each colour. This determines α, ρ, and lλ.

Using lλ and the UAV attitude received from the PX4 through a MAVROS topic

in ROS, we use (2.24) to obtain lvλ. Using lvλ we can compute line moment features

which are then sent back to the PX4. The block diagram of this implementation is

shown in Figure 3.3.

On the PX4 side, mc_ibvsline module is implemented, which subscribes to the

img_moments topic containing the line moment features received from MAVROS.
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This module runs the outer-loop control, and its output is normalized thrust and

an attitude reference that serves as a reference signal for the inner-loop. These

reference values are obtained by implementing the control laws (3.6) and (3.10)

together with the estimators (3.4) and (3.8). Since the main contribution of the

paper lies in the outer-loop design, the inner-loop control is implemented using the

stock v.1.5.5 PX4 firmware module mc_att_control. During the experiment, we

employ a Vicon motion capture system for ground truth UAV position in N . This

allows us to evaluate the relative position error of the control. We set the desired

height above the target to 1m. For convenience, position along the line is controlled

using the built-in position controller of the PX4 so that the UAV changes direction

when it reaches 0.5m from the origin. Vicon data for pn1 is used to generate an

appropriate θ∗ to simulate a user manually controlling linear velocity along the line

via θ∗.

The experimental results are shown in Figures 3.4-3.7. The shaded area in

each plot represents the time during which IBVS is enabled. Figure 3.4 shows the

convergence of the image feature errors to a practically small region of the origin.

The lateral feature error el has a relatively large variation since the lateral feature is

generally more sensitive to change in position than the other two features. There are

two primary reasons that all feature errors exhibit some level of variation in steady-

state. First, due to the relatively small ratio between patch length (i.e., 10 cm) and

the spacing between patches (i.e., 25 cm). This leads to a low density of points

used to create a line, and any errors in the positions of these points lead to a large

error in feature. Secondly, since there is a change in the UAV direction along the

line every 160 cm, this leads to a disturbance torque which periodically disturbs

the feature errors away from the origin. Figure 3.5 shows the control input for the

outerloop. The plot for θ∗ includes periodic “spikes” corresponding to the change

in UAV direction while moving along the line. The inner-loop control error is in

Figure 3.6. Clearly, roll and pitch errors remain close to the origin. Yaw error

convergence is slower due to the relatively low bound of torque about the c3 axis.

The 3D UAV position is shown in Figure 3.7. The data shows that the UAV remains

within about ±10 cm of the desired position for both lateral and height control. This

is an acceptable accuracy for transmission line inspection as outlined in [182]. Also,

the performance is significantly better than a consumer or civilian GNSS with an

accuracy of a few meters. The statistics of the steady-state performance are given in

Table 3.4. Here, ep2 and ep3 denote lateral and height position errors, respectively.

The experiment described above tests the proposed method’s robustness to a

range of model uncertainties and measurement noises. For example, image features

include noise due to camera distortion, time delay for image processing, implemen-

tation requiring controller discretization, and many system variables are bounded in

66



Table 3.4: Statistics of experimental results

Parameter Mean Standard Deviation

eh 0.004 0.026
el 0.108 0.294

eψ [rad] 0.005 0.010
ep2 [m] 0.009 0.018
ep3 [m] 0.005 0.031

Figure 3.4: Image moment feature errors for line following experiment

Figure 3.5: Attitude and thrust reference inputs
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Figure 3.6: Attitude control errors

Figure 3.7: 3D position trajectory of the UAV during experiment
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practice. We remark that the indoor lab environment has good lighting conditions,

and the visual targets used are not necessarily representative of linear targets found

in the field. In real outdoor environments, image processing could introduce error,

leading to performance limitations in the motion control.

In the following experiment, we relax the assumption that the target consists of

straight lines. We also initialize the UAV away from the line to demonstrate the

convergence of the feature error. We consider a visual target that is piecewise linear,

including a 30o change of direction. We apply an initial lateral displacement error

of about 35 cm. The results for this case are in Figs. 3.8-3.10 and a video of the

experiment is available online 1. We observe from el in Figure 3.8 that the initial

lateral feature error when the IBVS is engaged is about el = 2 and convergence

to the origin is similar to that in simulation in Figure 3.2a. The plot of the yaw

feature in Figure 3.2a has intervals where the error is non-zero; this is when the

UAV performs a change of direction, and there are two non-parallel sets of lines

in the image. In this case, α is a weighted average with more weight given to the

line with more visible points. So as the UAV moves above the turn, α is constantly

changing. Once it is past the change of direction, the yaw feature error stabilizes to

zero. The attitude and thrust references are shown in Figure 3.9 and are similar to

Figure 3.5. The 3D position of UAV is shown in Figure 3.10.

Figure 3.8: Image moment feature errors for a piecewise linear target

3.5 Conclusion

In this chapter, we proposed an IBVS for a quadrotor UAV for line following. Output

feedback is used to eliminate the need for linear velocity measurements. We consider

1IBVS Experiment video: https://youtu.be/Nkaf59vUjKM
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Figure 3.9: Attitude and thrust reference inputs for a piecewise linear target

Figure 3.10: 3D position trajectory of the UAV for a piecewise linear target
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model uncertainty in thrust constant, mass, desired depth, and linear acceleration

disturbance. An inner-outer loop structure is used, and the global exponential sta-

bility of the outer-loop is proven. The inner-outer loop exponential stability is

proven. Simulation and experimental results demonstrate the effectiveness of the

method. Future work focuses on compensating for camera field of view constraints

and relaxing the small-angle assumption in the inner-outer loop stability proof. Fu-

ture work will improve experimental validation by considering outdoor environments

using real-world linear targets such as transmission lines. A possible limitation of

the work is that linear velocity along the lines must be controlled manually with a

user-supplied pitch set point. Manual control is required since the velocity cannot

be estimated if the lines have no distinctive features along their length and their

background is plain. However, in practice, the background will usually have texture

(e.g., due to vegetation and non-uniform terrain). Therefore, an optical flow mea-

surement could be used to estimate scaled linear velocity along the line. Alternately,

accelerometer measurements could be fused with known distances between features

that a camera can detect (e.g., joints between pipes of known length).
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Chapter 4

Inner-outer Loop UAM Motion

Control

In the previous chapter, we designed an IBVS control for line-following applications.

This chapter shifts topics to a traditional (i.e., where the full UAV state is assumed

measured) motion control problem for a UAM consisting of a UAV equipped with

a robot arm. This UAM was modelled in Section 2.2.4. An example of a UAM

which is used in our simulations below is given in Figure 4.1. UAMs increase the

capability of UAVs as they can be used for new applications such as load transport

as described in Chapter 1. In the interest of increased UAV capability, future work

could naturally combine UAM and visual servoing technologies.

Similar to the IBVS approach discussed in Chapter 3, we employ an inner-outer

loop control design in this chapter. The benefits of an inner-outer loop design are

described in Section 1.2.2. Such designs are simpler to implement and tune. They

usually have robust performance and are therefore used in the field e.g., in the PX4

firmware, an inner-outer loop motion control is used [169]. In some commercial

UAVs e.g., the DJI Matrice 100, [183] only the outer-loop can be modified and

an inner-loop design is not required. An inner-outer loop structure is modular

¡®1

®2

l1

b1

b2

b3

B b1

b2

b3

B

l2

Figure 4.1: Configuration of UAM arm.
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and different designs for each loop can generally be mixed. Evidently, closed-loop

analysis of the entire error dynamics is affected by the combination chosen.

In Section 4.1 we describe how a UAM model can be approximated by a tradi-

tional UAV dynamics with parametric uncertainty and disturbance inputs. Based

on this uncertain dynamics we describe an adaptive inner-outer motion controller in

Sections 4.2 and 4.3. In Section 4.4 we present a simulation of the proposed design

under various conditions including a pick and place operation.

4.1 UAM Model Approximation

In this section, we explain how the UAM model presented in Section 2.2.4 can be

approximated so that it can be used for motion control. The approach involves

lumping the effect of the arm subsystem (UAM-A) on the UAV subsystem (UAM-

V) into disturbances and parametric uncertainty. We do not consider the control of

the UAM-A and assume an independent controller is running which can accurately

track joint variable references.

To motivate the model approximation, we consider a general pick and place task

where the UAM picks an object from one location and moves it to another location

where it is placed. We divide the pick and place operation into three phases.

Phase 1: Stationary Arm and Moving Vehicle In the first phase, a UAM-V

takes off and moves to a location near the target object. The appropriate location

is selected through trajectory planning so that the target object is within reach of

the arm. During this phase, the arm remains retracted and stationary with respect

to the UAM-V.

Phase 2: Stationary Arm and Vehicle Hovering In the second phase, the

UAM-V has reached a desired location near the target object, and the arm has not

yet started moving. Therefore, both the UAM-V and the arm are stationary with

respect to the navigation frame.

Phase 3: Moving arm Vehicle Hovering In this phase, the arm slowly extends

to pick up an object of interest. Once the end-effector has reached the target object,

the arm stops moving. The end-effector picks up the object, which causes a change

in UAM mass and inertia. However, the mass remains constant before and after

this change. Once the object is picked up, the arm retracts close to the UAM-V.

Phase 1-3 are repeated after the UAM has picked the object in order to complete

a place operation.

Now we discuss the variations of UAM mass m, inertia Jηη, force df and torque

dτ from the model in (2.50) for all three phases. The mass m and the inertia Jηη
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of the UAM remain constant in both Phase 1 and Phase 2. In Phase 3, the value

of UAM mass m and inertia Jηη changes to a new constant value when an object

is picked or placed. The inertia Jηη also varies slowly with the slow arm movement

in Phase 3. To generalize it for all phases of a pick and place operation, we can

assume that both m and Jηη remain constant or vary slowly in all three phases. In

addition, to account for their slow variation and a shift at the moment of picking or

placing the object, we consider them as unknown parameters.

Let us now discuss the variation of the force coupling df = d̄f/m in the UAM-V

due to arm, for a pick and place application. Let us rewrite the equation for d̄f from

(2.48), we have

d̄f =τext,p +W−TRnb

na∑
i=1

(mLiS(p
b
Li
))Wη̈ −Rnb

na∑
i=1

(mLiJv,Li)α̈

+Rnb

(
S(Wη̇)(

na∑
i=1

mLiS(p
b
L1))W − (

na∑
i=1

mLiS(p
b
Li))Ẇ

)
η̇

−Rnb

(
2S(Wη̇)

na∑
i=1

(mLiJv,Li) +

na∑
i=1

(mLi J̇v,Li)
)
α̇.

(4.1)

In Phase 2, if we consider the external disturbance τext,p as constant e.g., due to

wind, UAM-V maintains a constant attitude η to compensate for constant external

forces to remain in hover. Also, since the arm is stationary in Phase 2, α is also

constant. The constant η and α result in η̈ = η̇ = α̈ = α̇ = 0 and (4.1) reduces to

df = τext,p/m. Therefore, we conclude df remains constant throughout Phase 2.

In Phase 1, the arm is stationary with respect to UAM-V, while the UAM-V

moves, therefore α̈ = α̇ = 0 and the (4.1) reduces to

d̄f =τext,p +W−TRnb

na∑
i=1

(mLiS(p
b
Li
))Wη̈ +Rnb

(
S(Wη̇)(

na∑
i=1

mLiS(p
b
L1))W

− (

na∑
i=1

mLiS(p
b
Li))Ẇ

)
η̇.

(4.2)

Although d̄f depends on UAV attitude, however, its effect is minimal. The actuation

for UAV yaw is known to be limited. Therefore, UAV yaw varies slowly, allowing us

to approximate ψ̈ = ψ̇ = 0. The changes in UAV roll ϕ and pitch θ are for a minimal

period. This is because in an aerial transport mission, a UAM-V flies the shortest

distance between the two points, which is usually a straight line when no obstacle

is present. If we ignore drag force and assume constant external force disturbance,

then UAM-V roll and pitch are constant except at the endpoints of the motion.

Therefore, we can assume that UAM-V attitude η remains constant in Phase 1. In

case when a UAM-V tracks a time-varying trajectory where roll or pitch angles are
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not constant, we have the ability to minimize their effects on df . This is because

the robot arm’s retracted state can be configured to minimize the effects of change

in roll and pitch. If the joint variables of the arm are selected as below

αh = argmin
α

∥∥∥∥∥
na∑
i=1

mLip
b
Li
(α)

∥∥∥∥∥ ,
which minimizes the first moment of mass

∑na
i=1mLip

b
Li
(α). This effectively reduces

the term
∑na

i=1mLiS(p
b
Li
) in (4.2) because for any vector δ ∈ R3,

∑na
i=1mLiS(p

b
Li
)δ =

−S(δ)
∑na

i=1mLip
b
Li
. For a sufficiently high DOF robot arm, if the arm angles can be

controlled arbitrarily, it is possible to reduce
∑na

i=1mLip
b
Li
(α) to null vector. Let us

combine the assumption of η mostly constant when moving on a straight line with

constant speed resulting in η̈ = η̇ = 0 and arm angles in αh configuration, when

moving along time-varying trajectory, we assume that df = τext,p/m and hence

constant in Phase 1.

In Phase 3, the UAM-V is stationary, while the arm moves, resulting

df = τext,p −Rnb

na∑
i=1

(mLiJv,Li)α̈−Rnb

(
2S(Wη̇)

na∑
i=1

(mLiJv,Li) +

na∑
i=1

(mLi J̇v,Li)
)
α̇.

If we assume that the arm moves slowly to extend or retract, we can approximate

α̈ = α̇ = 0, which again results in df = τext,p.

Following the above discussion, we conclude that it is reasonable to assume that

df is constant or slowly varying in all three phases of pick and place operation.

Using a similar logic, dτ can be approximated as constant as well, i.e., dτ = τext,η.

Even if we assume that the coupling force df and torque dτ due to arm slowly vary,

they can attain large values; therefore, in the following analysis, they are considered

unknown. This discussion leads to the following assumption.

Assumption 1. The parameter m, Jηη and the disturbance vectors df and dτ are

considered unknown, however, it is assumed that their values are either slowly vary-

ing or constant so that ȧ ≈ 0, J̇ηη ≈ 0, ḋf ≈ 0 and ḋτ ≈ 0, where a = 1
m .

The reason for the above discussion is to motivate this assumption, which allows

us to apply adaptive control techniques for the estimation of m, Jηη, df and dτ . In

the following section, we will see that this assumption gets used and allows us to

derive the control and estimation laws.

4.2 Control Design

In this section, we design a controller for the UAM-V considering the system pa-

rameters and coupling force and torque terms due to the arm as unknown constants.
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The motion control objective for a UAM-V is to track a time-varying pose (position

and heading) trajectory while compensating for the effects due to arm. As discussed

earlier, we use an inner-outer loop control structure, which is further explained in

the following section.

4.2.1 Control Structure

We use a cascade control structure known as inner-outer loop control, where the

model of a quadrotor UAM-V is further divided into two subsystems, translational

and rotational. The outer-loop control consists of UAM-V position kinematics and

UAM-V linear velocity dynamics. A UAM-V thrust along with roll and pitch angles

are considered inputs to the outer-loop dynamics. The thrust input goes to the

UAM-V, while roll and pitch, being virtual inputs, serve as reference trajectories

for the inner-loop dynamics.

The inner-loop dynamics consist of UAM-V attitude kinematics and angular

velocity dynamics controlled by the UAM-V torques. Therefore, in the inner-loop,

we design a controller for UAM-V torques. The UAM-V attitude tracks the reference

roll and pitch angle trajectories received from the outer-loop and the yaw reference

received from the user. In order to make the presentation simple, let us re-notate

some parameters and variables defined in the model of a UAM in Chapter 2. We

notate p = pn, R = Rnb , v = vn, J = Jηη, and write the complete system dynamics

as follows

ṗ =v, (4.3a)

v̇ =ge3 − aF + df , (4.3b)

η̇ =W−1(η)ω, (4.3c)

Jω̇ =− S(ω)Jω + τq + dτ , (4.3d)

where F = uRe3 = [F1, F2, F3]
T which gives F1 = u(cψsθcϕ+sψsϕ), F2 = u(cϕsθsψ−

sϕcψ), F3 = ucθcϕ. Here (4.3a) and (4.3b) form the outer-loop dynamics, where

as (4.3c) and (4.3d) are the inner-loop dynamics. The UAM-V thrust input u, roll

ϕ and pitch θ are treated as the inputs to the outer-loop subsystem and can be

calculated from components of the force vector F using following equations.

u =
√
F 2
1 + F 2

2 + F 2
3 ,

ϕ =arcsin
sψF1 − cψF2

u
,

θ =arctan
cψF1 + sψF2

F3
.

(4.4)

The inner-loop control inputs are UAM-V torques τq. It is reiterated that parameters
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Figure 4.2: Inner-outer loop control structure

a, df , J, dτ are treated as unknowns constants that are adapted in the control design

to accommodate the motion of robotic arm. The control structure is shown in

Figure 4.2. We use a simple PID control to control the arm position described by

its generalized coordinates α.

4.2.2 Outer-loop Control

Let us define the position error as z1 = p− pd, its time derivative is given by

ż1 = ṗ− ṗd = v − vd. (4.5)

Consider the Lyapunov function as V1 =
1
2z
T
1 z1, whose time-derivative after substi-

tution of (4.5) is given by

V̇1 = zT1 ż1 = zT1 (v − vd).

Adding and subtracting k1z
T
1 z1 in above equation, we have

V̇1 = −k1 ∥z1∥2 + zT1 (v − vd + k1z1). (4.6)

Let us define z2 = v − vd + k1z1 which allows us to rewrite (4.5) as follows

ż1 = v − vd = −k1z1 + z2, (4.7)

while the time-derivative of z2 after substituting (4.3b) is given by

ż2 = ge3 − aF + df − v̇d + k1(v − vd). (4.8)

Since the parameters a and disturbance df are unknown, let us consider â ∈ R > 0

and d̂f ∈ R3 as their respective estimate, that will be determined later. Consider

the estimation errors for a and df as ã = a− â and d̃f = df − d̂f , let us substitute
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the values a and df in terms of their estimate and estimation errors i.e., a = â + ã

and df = d̂f + d̃f along with expression for v− vd in terms on z1 and z2 from (4.7),

we have

ż2 = ge3 − âF + d̂f − v̇d − k21z1 + k1z2 − ãF + d̃f . (4.9)

Recall V̇1 from (4.6), after substitution of the definition of z2, it can be written as

follows

V̇1 = −k1 ∥z1∥2 + zT2 z1. (4.10)

Consider a second Lyapunov function as

V2 = V1 +
1

2
zT2 z2 +

1

2kdf
d̃Tf d̃f +

1

2λ
ã2. (4.11)

Taking its time-derivative, we have

V̇2 = V̇1 + zT2 ż2 +
1

kdf
d̃Tf

˙̃
df +

1

λ
ã ˙̃a. (4.12)

Substituting value of V̇1 from (4.10) and ż2 from (4.9), we have

V̇2 =− k1 ∥z1∥2 + zT1 z2 + zT2 (ge3 − âF + d̂f − v̇d − k21z1 + k1z2 − ãF + d̃f )

+
1

kdf
d̃Tf

˙̃
df +

1

λ
ã ˙̃a.

Collecting terms containing d̃f and ã, we have

V̇2 =− k1 ∥z1∥2 + zT2 (z1 + ge3 − âF + d̂f − v̇d − k21z1 + k1z2)

+ d̃Tf (
1

kdf

˙̃
df + z2) + ã(

1

λ
˙̃a− zT2 F ).

(4.13)

Consider the following adaptation laws

˙̂a =− λzT2 F,

˙̂
df =kdf z2.

(4.14)

Substituting these adaptation laws, along with assumption ȧ = 0 and ḋf = 0, in

(4.13), we have

V̇2 = −k1 ∥z1∥2 + zT2 (ge3 − âF + d̂f − v̇d + (1− k21)z1 + k1z2).

Adding and subtracting k2z
T
2 z2 in above equation, we have

V̇2 = −k1 ∥z1∥2−k2 ∥z2∥2+zT2 (ge3− âF + d̂f − v̇d+(1−k21)z1+(k1+k2)z2). (4.15)
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From this equation, we can design the force vector F as follows

F =
1

â
(ge3 + d̂f − v̇d + (1− k21)z1 + (k1 + k2)z2). (4.16)

Substituting this into V̇2 from (4.15), we have

V̇2 = −k1 ∥z1∥2 − k2 ∥z2∥2 ≤ 0, (4.17)

The expression for V̇2 is negative semi-definite because for ã ̸= 0 and d̃f ̸= 0, V̇2 = 0

when z1 = z2 = 0.

Theorem 4.2.1. Consider the outer-loop dynamics of UAM-V consisting of (4.3a)

and (4.3b) under the assumption that ḋf = 0 and ȧ = 0, with a smooth and bounded

time-varying trajectory consisting of {pd(t), vd(t), v̇d(t)}. Assuming a perfect inner-

loop tracking, if the UAM-V thrust u, and references for roll ϕ and pitch θ angles

are selected according to (4.4), where the vector F is given by (4.16) with gains

k1 > 0, k2 > 0, and estimates â and d̂f are given by the adaptive laws in (4.14) with

gains λ > 0, kdf > 0, then the tracking error z1 = p− pd is asymptotically stable at

origin while the estimates â and d̂f are bounded.

Proof. Consider the Lyapunov function V2 in (4.11) which is a positive definite

function under k1 > 0, k2 > 0, λ > 0, kdf > 0, and there exist two positive definite

functions that upper and lower bound V2. The derivative of V2 after substitution of

control and adaptation laws, given in (4.17) is negative semi-definite due to absence

d̃f and ã terms. However, using Barbalat’s lemma [184, Theorem 8.4], we can

conclude that the vector [zT1 , z
T
2 ]
T → 0 as t → ∞ and the estimates â and d̂f are

bounded.

Remark 1. It is worth mentioning that using this adaptive approach, [zT1 , z
T
2 ]
T → 0,

while â, d̂f estimate are not guaranteed to converge to their actual values. From a

control perspective, the values attained by â, d̂f are not important, as long as they are

bounded and the tracking error is convergent. Therefore, convergence of estimates

â, d̂f to their actual values is not a requirement.

Remark 2. If we compare the outer-loop control presented above with that presented

for IBVS in Chapter 2, we notice that the IBVS outer-loop provides exponential sta-

bility of feature errors together with the estimation of state and disturbance whereas

the approach in this chapter provides only an asymptotic stability of position track-

ing errors while all states are required to be known. This limitation arises due to the

tracking of a time-varying trajectory. In case of IBVS, only the stabilization of the

feature errors is required, that allow us to combine the unknown parameters with the

disturbance term and design a controller where gain can be selected sufficiently high
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to provide robustness to variation in unknown parameters. However, for tracking a

time-varying trajectory, the term v̇d in the error dynamics ż2 prevent us from comb-

ing the unknown mass with the disturbance df . If we consider k1 = k̄1a in (4.6) and

define ge3 + df = Df in (4.8) then we can write

ż2 =Df − aF − v̇d + k̄1a(v − vd)

=a(
1

a
Df − F − 1

a
v̇d + k̄1(v − vd)).

(4.18)

This equation shows that if we try to make the term F independent of the mass

parameter a and combine it with Df , it shows up with v̇d. If v̇d = 0, then the

mass parameter a only appears with Df which is already being estimated and we

can estimate 1
aDf instead of Df , while the control can be made robust to the mass

parameter a outside the parenthesis. Therefore, it is the time-varying trajectory

tracking prevents the robustness.

Also, it is worth mentioning that the outer-loop tracking result presented here

is stronger than that presented for the IBVS in case of a time-varying reference

trajectory. If IBVS outer-loop control is used for a time-varying trajectory, it would

only result in the bounded tracking error considering an input-to-state stability of an

exponentially stable linear system under a bounded input v̇d. However, the outer-

loop control presented here guarantees an asymptotic convergence of tracking errors

for a time-varying trajectory.

4.2.3 Exponential stability and parameter convergence

The traditional back-stepping design results in a state transformation that makes

the closed-loop dynamics of the system linear. In the adaptive backstepping design

above, the non-linearity is introduced by the parameter estimation required to com-

pensate for unknown parameters. Using (4.7), (4.9), (4.16) and (4.14) we can write

the closed loop dynamics of the system as follows

ż1 = −k1z1 + z2,

ż2 = −z1 − k2z2 − ãF + d̃f ,

˙̃
df = −kdf z2,
˙̃a = λz2

TF.

(4.19)

Here to keep the presentation concise the input F is substituted with the terms

containing â and left with the ã term. We know from Theorem 4.2.1 that the

tracking errors [zT1 , z
T
2 ] are asymptotically stable while the estimation errors [d̃Tf , ã]

are bounded. If we substitute z1 = z2 = 0 in (4.19), it results in ãF = d̃f . This

does not provide additional information except that if ã = 0, then d̃f = 0 as well.

80



To investigate parameter convergence, we write the first three equations of (4.19)

as a reduced order linear system

ẋr1 = Ar1xr1 +Br1ur1 , (4.20)

where xr1 = [zT1 , z
T
2 , d̃

T
f ]
T , ur1 = −ãF ,

Ar1 =

−k1I3 I3 03

−I3 −k2I3 I3

03 −kdf I3 03

 , Br1 =

03I3
03

 ,
while I3 is a 3× 3 identity matrix and 03 is matrix of zeros with size 3× 3. The

system matrix Ar1 is Hurwitz if k1 > 0, k2 > 0 and Kdf > 0.

If we consider UAM mass known, â = a can be substituted in the control result-

ing in ur1 = 0. This results in exponential convergence of d̃f and [zT1 , z
T
2 ] to zero.

This exponential stability is equivalent to the exponential convergence result in the

case of disturbance observer based backstepping control that assumes mass is known

[1]. If we consider a unknown, we expect the term ãF to restrict the convergence

of [zT1 , z
T
2 ] to a bound, considering it as a bounded input to a linear system that

results in bounded-input-bounded-state (BIBS). However, from Theorem 4.2.1, we

know that it does not effect the convergence of [zT1 , z
T
2 ] to the origin, but results in

a bounded d̃f . Hence, it is important to note that term ãF does not destabilize the

system.

From the above discussion we know that ã and d̃f may or may not converge to the

origin. In adaptive control the convergence is usually on a need-to-know basis as the

main goal is the convergence of tracking errors. Once the tracking errors are close

to the equilibrium, the adaptation or learning is negligibly small. However, when

the exponential convergence of the tracking errors is desired to achieve robustness

guarantees such as BIBS. This can be achieved with persistence of excitation (PE)

[185, Theorem 3.5.1]. PE provides exponential convergence of the tracking and

estimation errors. To derive the PE condition, we rewrite (4.19) as[
ż
˙̃
ζ

]
=

[
Az CµT (t)

−Kµ(t)CT 0

][
z

ζ̃

]
, (4.21)

where z = [zT1 , z
T
2 ]
T , µ(t) = [I3,−F ]T , ζ = [d̃Tf , ã]

T , C = [03, I3]
T ,

Az =

[
−k1I3 I3

−I3 −k2I3

]
, K =

[
kdf I3 0

0 λ

]
.

The function µ(t) is known as a regressor. From [186], the condition for PE of this
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system is ∫ t+t0

t0

µ(δ)µT (δ)dδ ≥ βI4, t > 0, β > 0. (4.22)

Intuitively, the PE condition ensures the only solution to µT (t)ζ̃ = [I3,−F ][d̃Tf , ã]T =

0 is ζ̃ = [d̃Tf , ã]
T = 0. This can be be seen from

∫ t+t0

t0

µ(δ)µT (δ)dδζ̃ = 0, (4.23)

whose only solution is ζ̃ = 0 due to (4.22). From the definition of µ(t) the PE

condition reduces to ∫ t+t0

t0

F (δ)F T (δ)dδ ≥ βI3, t > 0. (4.24)

Although, F is dependent on system states, parameter estimates, and the desired

trajectory, it is the desired or reference trajectory that is the ultimate driver of all

dynamical variables of the system. Intuitively, the persistent excitation condition

requires the reference trajectory to be of sufficient richness or complexity that it

can only be tracked by the controller when the system parameter estimates have

converged to their true values.

4.2.4 Effect of time-varying disturbance df and mass parameter a

Let us first consider the effect of time-varying force disturbance df . We write the

closed loop dynamics in case of ḋf ̸= 0 from (4.20) as

ẋr2 = Ar2xr2 +Br2ur2 (4.25)

where xr2 = [zT1 , z
T
2 , d̃

T
f ]
T , ur2 = [ḋTf ,−ãF T ]T ,

Ar2 =

−k1I3 I3 03

−I3 −k2I3 I3

03 −kdf I3 03

 , Br2 =

03 03

03 I3

I3 03

 ,
As discussed in the previous section in relation to (4.20), the input ãF does not

prevent the convergence of the tracking errors [zT1 , z
T
2 ] to the origin. The only

difference between (4.20) and (4.25) is that we have an additional input ḋf . The

system matrix Ar2 is Hurwitz if k1 > 0, k2 > 0 and Kdf > 0. Therefore, the system
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is BIBS and a bound on the system state is

∥xr2(t)∥ =xr2(t0)e
Ar2 (t−t0) +

∫ t

t0

eAr2 (t−t0)Br2ur2(δ)dδ

≤∥xr2(t0)∥ke−σ(t−t0) + k
∥Br2∥
σ

sup
t0≤δ≤t

∥ur2(δ)∥,
(4.26)

where −σ is the real part of the largest eigenvalue of Ar2 . If we assume ãF and

ḋf are bounded then xr2(t) is bounded. Further, the bound on the system can be

made smaller by selecting a larger σ with control gains k1, k2 and kdf .

Let us now consider the effect of time-varying mass parameter a and the time-

varying force disturbance df . If ḋf ̸= 0 and ȧ ̸= 0, the system in (4.21) can be

written as

ẋ = Ax+Bud, (4.27)

where x = [zT , ζ̃T ]T , ud = [ḋTf , ȧ]
T ,

A =

[
Az CµT (t)

−Kµ(t)CT 0

]
, B =


03 0

03 0

I3 0

0 1

 .

We know from previous section that the system in (4.27) is exponentially convergent

under the PE condition. Exponential convergence implies the existence of an expo-

nential rate of convergence. In the above equation we have an exponentially stable

system perturbed by input ud. Using the BIBS framework we obtain the bound

∥x(t)∥ ≤∥x(t0)∥ke−σpe(t−t0) + k
∥B∥
σpe

sup
t0≤δ≤t

∥ud(δ)∥, (4.28)

where σpe is a minimum rate of exponential convergence. If ḋf and ȧ are bounded,

the resulting x is bounded. Further, the bound can be decreased by increasing σpe

which depends on the controller gains. The effect of time-varying df and a is further

studied in simulation below.

Figure 4.3 shows the plots for the norm of position error. These plots are gener-

ated while the vehicle is tracking a figure-8 trajectory and a time-varying triangular

wave is applied in the form of force disturbance df , given by

df (t) = 2|(t− 2 floor(0.5t+ 0.5))| · [1, 1, 1]T + [0,−3,−2]T . (4.29)

The vehicle mass is kept constant during this simulation. The plots are generated

for different values of gains. It can be seen that the bound on the position error

decreases as the gains are increased.
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Figure 4.3: Bounded ∥p̃∥ in the presence of time-varying df .

Let us now consider the effect of both a and df time-varying. We consider same

triangular function for the disturbance df , while a sinusoidal variation in mass is

considered.

a(t) =
1

m(t)
=

1

1 + 0.5 sin(2πt6 )
. (4.30)

The resulting plots for the norm of position error are shown in Figure 4.4. A figure-8

trajectory is used as reference to obtain these simulation plots. The controller gains

are varied and it can be seen that the vehicle position error is bounded when both

mass and the force disturbance are considered time-varying. Further, the bound can

be made smaller by selecting appropriate values of gains in control and adaptation

laws.

4.3 Inner-loop Control

As mentioned earlier, the inner-loop receives a reference trajectory ηd = [ϕd, θd, ψd]
T

for UAM-V attitude whereas ϕd and θd are provided by outer-loop controller while

ψd is given by the user as a reference heading angle. The purpose of the inner-loop

control is to make the UAM-V attitude track the reference attitude trajectory. Let

us now start the inner-loop control design by defining the inner-loop tracking error

zη = η − ηd, taking its time-derivative and substituting (4.3c), we have

żη = η̇ − η̇d =W−1ω − η̇d. (4.31)
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Figure 4.4: Bounded ∥p̃∥ in the presence of time-varying df and a.

Consider the following Lyapunov function

Vη =
1

2
zTη zη.

Its time-derivative is given by

V̇η = zTη żη.

Adding and subtracting kηz
T
η zη, and substituting żη from (4.31), we have

V̇η = −kηzTη zη + zTη (W
−1ω − η̇d + kηzη).

Let us define zω = ω −W (η̇d − kηzη), substituting in above equation, we have

V̇η = −kηzTη zη + zTηW
−1zω, (4.32)

while we can rewrite żη in (4.31) as

żη =W−1zω − kηzη, (4.33)

whereas the derivative of zω is given by

żω = ω̇ − Ẇ (η̇d − kηzη)−W (η̈d − kη żη).

85



Substituting żη from (4.33) and simplifying, we have

żω = ω̇ − Ẇ (η̇d − kηzη)−W (η̈d + k2ηzη) + kηzω. (4.34)

Consider another Lynapunov function candidate

Vω = Vη +
1

2
zTω Jzω.

whose time-derivative after substitution of V̇η from (4.32) is given by

V̇ω = −kηzTη zη + zTηW
−1zω + zTω Jżω.

Adding and subtracting kωz
T
ω zω in above equation, we have

V̇ω = −kηzTη zη − kωz
T
ω zω + zTω (kωzω +W−T zη + Jżω).

Substituting expression for żω from (4.34), we have

V̇ω =− kηz
T
η zη − kωz

T
ω zω + zTω

(
kωzω +W−T zη

+ J
(
ω̇ − Ẇ (η̇d − kηzη)−W (η̈d + k2ηzη) + kηzω

))
.

Substituting dynamics for Jω̇ from (4.3d), we have

V̇ω =− kηz
T
η zη − kωz

T
ω zω + zTω

(
kωzω +W−T zη − S(ω)Jω + τq + dτ

− J
(
Ẇ (η̇d − kηzη) +W (η̈d + k2ηzη)− kηzω

))
.

Let us define ω̄d = Ẇ (η̇d − kηzη) +W (η̈d + k2ηzη) − kηzω, using this in above, we

have

V̇ω = −kηzTη zη − kωz
T
ω zω + zTω

(
kωzω +W−T zη − S(ω)Jω + τq + dτ − Jω̄d

)
(4.35)

The inertia matrix J is a positive definite symmetric matrix, and it has only six

unique entries. If we consider

J =

Jxx Jxy Jzx

Jxy Jyy Jyz

Jzx Jyx Jzz

 ,
then we can write

S(ω)Jω = Φ(ω)Jv,

Jω̄d = Ψ(ω̄d)Jv,
(4.36)
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where

Φ(ω) =

 0 −ω2ω3 ω2ω3 −ω1ω3 ω2
2 − ω2

3 ω1ω2

ω1ω3 0 −ω1ω3 ω2ω3 −ω1ω2 ω2
3 − ω2

1

−ω1ω2 ω1ω2 0 ω2
1 − ω2

2 ω1ω3 −ω2ω3

 ,

Ψ(ω̄d) =

ω̄d1 0 0 ω̄d2 0 ω̄d3

0 ω̄d2 0 ω̄d1 ω̄d3 0

0 0 ω̄d3 0 ω̄d2 ω̄d1

 ,
and Jv = [Jxx, Jyy, Jzz, Jxy, Jyz, Jzx]

T . Substituting (4.36) in V̇ω expression from

(4.35), we have

V̇ω = −kηzTη zη − kωz
T
ω zω + zTω (kωzω +W−T zη

−(Ψ(ω̄d) + Φ(ω))Jv + τq + dτ ).
(4.37)

Since Jv and dτ are unknown constants, we define Ĵv ∈ R6 and d̂τ ∈ R3 as their

respective estimates, to be determined later, and, J̃v = Jv − Ĵv and d̃τ = dτ − d̂τ as

their respective estimation errors. Let us substitute Jv = Ĵv + J̃v and dτ = d̂τ + d̃τ

in (4.37), we have

V̇ω =− kηz
T
η zη − kωz

T
ω zω + zTω

(
kωzω +W−T zη

−
(
Ψ(ω̄d) + Φ(ω)

)
(Ĵv + J̃v) + τq + d̂τ + d̃τ

)
.

Rearranging, we have

V̇ω =− kηz
T
η zη − kωz

T
ω zω + zTω

(
kωzω +W−T zη − (Ψ(ω̄d) + Φ(ω))Ĵv

+ d̂τ + τq

)
− zTω (Ψ(ω̄d) + Φ(ω))J̃v + zTω d̃τ .

(4.38)

Consider a new Lyapunov function,

Vω,2 = Vω +
1

2
J̃Tv Γ

−1J̃v +
1

2
d̃Tτ Υd̃τ . (4.39)

Its time derivative is given by

V̇ω,2 = V̇ω + J̃Tv Γ
−1 ˙̃Jv + d̃Tτ Υ

˙̃
dτ .

Substituting the expression for V̇ω from (4.38)

V̇ω,2 =− kηz
T
η zη − kωz

T
ω zω + zTω

(
kωzω +W−T zη − (Ψ(ω̄d) + Φ(ω))Ĵv

+ d̂τ + τq

)
− zTω (Ψ(ω̄d) + Φ(ω))J̃v + zTω d̃τ + J̃Tv Γ

−1 ˙̃Jv + d̃Tτ Υ
−1 ˙̃
dτ .

(4.40)
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Consider the following control input

τd = −kωzω −W−T zη + (Ψ(ω̄d) + Φ(ω))Ĵv − d̂τ . (4.41)

Substituting this in (4.40) and collecting coefficients of J̃Tv and d̃Tτ , we have

V̇ω,2 = −kηzTη zη−kωzTω zω−J̃Tv ((Ψ(ω̄d)+Φ(ω))zω−Γ−1 ˙̃Jv)+d̃
T
τ (zω+Υ−1 ˙̃

dτ ). (4.42)

Consider the following adaptation laws

˙̂
Jv = −Γ(Ψ(ω̄d) + Φ(ω))zω,

˙̂
dτ = Υzω.

(4.43)

Substituting these along with the assumption that Jv and dτ are constants, i.e., J̇v =

0 and ḋτ = 0, in (4.40) we have

V̇ω,2 = −kηzTη zη − kωz
T
ω zω, (4.44)

which is semi-negative definite because J̃v and d̃τ do not appear in above equation.

Theorem 4.3.1. Consider the inner-loop dynamics of a UAM-V consisting of

(4.3c) and (4.3d) under the assumption that ḋτ = 0 and J̇v = 0, with a smooth

time-varying trajectory consisting of {ηd(t), η̇d(t), η̈d(t)}. If the UAM-V torque in-

puts are selected according to (4.41) with gains kη > 0, kω > 0, while the estimates d̂τ

and Ĵv are given by the adaptive laws in (4.43) with gain matrices Γ > 0,Υ > 0, then

the tracking error zη = η − ηd is asymptotically stable at origin while the estimates

d̂τ and Ĵv are bounded.

Proof. Consider the Lyapunov function Vω,2 in (4.39) which is a positive definite

function under kη > 0, kω > 0,Γ > 0,Υ > 0, and its derivative after substitution of

control and adaptation laws, given in (4.44), is semi-negative definite due to absence

d̃τ and J̃v term. However, using Barbalat’s lemma in [184, Theorem 8.5] we can

conclude that the vector [zTη , z
T
ω ]
T → 0 as t→ ∞ while the parameter estimates d̂τ

and Ĵv are bounded.

It should be noted that the inner-loop control requires the first two derivatives of

the reference attitude trajectory. We will see in the next chapter that an algebraic

derivative leads to the appearance of unknown terms, which are difficult to manage

in the stability proof. Therefore, numerical derivatives are recommended. The noise

amplification effects due to these derivatives can be reduced using a low-pass filter.
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4.4 Simulation Results

Computer simulations provide important insight into the dynamic behaviour of a

system in response to a control algorithm. They are an essential tool in testing

new control designs and provide flexibility in generating ideal and non-ideal scenar-

ios. Although simulations do not replace the practical implementation and testing

on a physical platform, they allow performing theoretical analysis, which is other-

wise difficult in the case of physical experiments. Simulations are instrumental in

Aerial Robotics, where frequent crashes could lead to delays and reduce research

productivity.

Computer simulations of mechanical systems could be performed in two different

ways, depending upon how the physical system is modelled in the computer. One

way to represent is to implement the dynamic equations from the mathematical

model of the system. This approach is simplistic and does not provide a visual

insight into the behaviour of the mechanical system, which is important especially

in case of robotic systems. The other approach is the multi-body approach, where

the CAD model of the mechanical system is created, and multiple rigid bodies are

connected with various joints. The user provides the inputs at the specified joints

of the system. Here, the mathematical model of the system is not implemented;

instead, the physics engine of the simulation software automatically figures out

the dynamic behaviour of the whole system depending upon the properties of the

individual bodies in the system and their interconnection. The multi-body approach

is more elegant and closer to the actual physical system. It allows visualization of

system behavior through an animation.

There are various tools used in academia and industry for multi-body simulation.

The most commonly used simulation environment among the robotics community is

Gazebo, which is used in combination with ROS. In an earlier phase of this research,

a UAM model was implemented in Gazebo. However, due to its open-source nature,

less support is available for troubleshooting in Gazebo. In particular, Gazebo does

not provide an easy interface for measuring states and controlling the system’s joints.

Also, any change in the model requires a significant amount of development work.

Due to this, we moved to MATLAB’s Simscape multi-body and the result presented

below are implemented using this platform. Simscape multi-body allows modelling

3D mechanical systems using various blocks representing rigid bodies, joints, input

forces and torques, and sensor elements. Simscape generates a visual 3D animation

of the system that shows the UAM’s motion in its environment, much like in the

real world. Simscape models are user-friendly and easier to configure. Figure 4.5

shows a UAM i.e., Quadrotor with 2-DOF robotic arm having two revolute joints,

picking up a red coloured object from the table.

The quadrotor UAV design used in the UAM simulations is based on ANCLQ
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Figure 4.5: Implementation of a Quadrotor UAV with a 2-DOF robot arm in Sim-
scape Multibody

1.0 experimental platform, and its parameters are given in Table 4.1. The arm in

this UAM configuration is considered to be a 2-DOF arm with two revolute joints

as shown in Figure 4.1. The axis of rotation of each revolute joint is parallel to

b2, which is perpendicular to the plane of paper and points out of the paper, as

in Figure 4.1. The arm angles α1 and α2 are measured in the counterclockwise

direction. The negative sign with α1 in Figure 4.1 is due to clockwise rotation of the

Link 1. The parameters of the arm are given in Table 4.2. Here Link 1 and Link 2

describe the parameters of the two links of the arm, while Link 3 describes a mass

that is used in the simulations for a pick and place application. The external mass

is defined as a link to be consistent with the arm modelling in Section 2.2.4.

To test the performance of the UAM-V control for its ability to track a time-

varying trajectory in the presence of a robotic arm, we consider two scenarios. In

the first scenario, the arm is fixed to the UAM-V where the angles α1 = α2 = 0 and

locked. Although the disturbances on the UAM-V due to arm in this configuration

are not constant due to the roll and pitch of the UAM-V, they are minimal and slowly

varying and can be considered as constant. In addition, we add constant external

disturbances to the UAM-V i.e., τext,p = τext,η = [0.2, 0.2, 0.2]T . In the second

scenario, we consider the arm is tracking a trajectory and continuously moves.

In both scenarios, the desired UAM-V trajectory in the shape of figure-8 is

considered and is given by pd(t) = [A sin(2πtT ), B sin(4πtT ),−1] m. The parameter A

and B correspond to the length and width of the figure-8, respectively, whereas T is

the time-period of the trajectory i.e., time required to complete one cycle of figure-8.

The trajectory for yaw angle is ψd(t) = 3π
4 cos(2πT t) rad. We use choose A = 1.5

m, B = 0.75 m, and T = 10 s which results in a bounded, smooth and adequately
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dynamic trajectory to test the performance of the proposed controller.

The initial conditions of the quadrotor UAM-V are p(0) = [−2, 2, 0]T m, v(0) =

[0, 0, 0]Tms−1 , η(0) = [0, 0, 0]T rad and ω(0) = [0, 0, 0]T rad s−1. The initial con-

ditions for adaptive parameters are â(0) = 1
0.7m and Ĵv(0) = 0.6Jv i.e., considering

a 30% error in mass and a 40% error in inertia initially. The initial conditions for

disturbance estimates are considered d̂f (0) = d̂τ (0) = [0, 0, 0]T .

Table 4.1: Quadrotor UAM-V parameters.

Parameter Value Parameter Value

mq 1.6 kg Jq,xx 0.03 kgm2

Jq,yy 0.03 kgm2 Jq,zz 0.05 kgm2

Jq,xy 0.0 kgm2 Jq,yz 0.0 kgm2

Jq,zx 0.0 kgm2 ℓ 0.25 m
Θ π/4 rad

Table 4.2: Arm parameters.

Parameter Link 1 Link 2 Link 3

Joint Type Revolute Revolute Fixed
Mass mLi (kg) 0.1 0.1 0.1
Length li (m) 0.2 0.3 0.1

Inertia JLi (kgm
2) [7.508, 7.533, 0.0417]× 10−4 [7.508, 7.533, 0.0417]× 10−4 [1.667, 1.667, 1.667]× 10−4

Table 4.3: Control Gains

Parameter Value Parameter Value

k1 1.6 k2 2
λ 0.0055 kdf 1

kη 3.5 kω 5
Γ 2× 10−4 Υ 5

The simulation results for the fixed-arm case are given below. Figure 4.6 shows

the desired and the actual trajectory for UAM-V position and yaw. The outer-

loop tracking errors i.e., the errors in position tracking are shown in Figure 4.7.

Although the position errors appear to be convergent towards zero as time goes

to infinity, in fact they are reaching a small bound which is not noticeable in the

plots. The figure-8 trajectory results in a time-varying trajectory attitude as shown

in Figure 4.9 resulting in η̈ ̸= 0, η̇ ̸= 0 in (4.1). Therefore the df is time-varying

hence a bounded convergence. The bounded error result is adequate for practical

stability of the system. The estimates for force disturbance and mass parameter

a = 1
m are shown in Figure 4.8 which are bounded with minor oscillations. The
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first two components of d̂f are convergent towards their actual values while d̂f3 and

â converge to a constant bound. The inner-loop tracking errors i.e., the attitude

tracking errors shown in Figure 4.10 are bounded as well. The torque disturbance

estimates are shown in Figure 4.11, which are bounded and appear to oscillate

around their true value. The inertia estimates of the UAM are shown in Figure 4.12

and have a bounded error in relation to their true values. This is consistent with

the proposed adaptive control theory as the convergence of estimation errors is not

guaranteed. In practice, the convergence of estimation errors is not required if the

tracking errors are convergent. The thrust and torque inputs applied to the UAM-V

are shown in Figure 4.13. Figure 4.14 and 4.15 show 2D and 3D position plots for

the UAM-V that give an overall picture of the tracking performance of the adaptive

inner-outer loop control.
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Figure 4.6: UAM-V pose in case of fixed arm i.e.,α1 = α2 = 0

In the above discussion, the arm has been fixed, which shows the tracking per-

formance when the disturbance is small and slowly time-varying, while inertia is

constant. In what follows, we continuously move the arm to see the position tracking

performance of the UAM-V in case of a time-varying force and torque disturbance

and time-varying inertia of the UAM-V. Time-varying inertia is a consequence of its

dependence on arm configuration J = Jq +
∑na

i=1(R
b
Li
JLiR

b
Li

T −mLiS
2(pbLi

)) from

(2.46). The arm motion is selected so that Link 2 rotates in a circle while Link 1

oscillates. The trajectory of arm angles is selected to be α1(t) = π
3 sin(πt) and

α2(t) =
3π
2 t.

The resulting position and yaw plots are shown in Figure 4.16 while the position

errors are shown in Figure 4.17. The position errors exhibit small oscillations close
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Figure 4.7: Outer-loop tracking errors in case of fixed arm.
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Figure 4.8: Outer-loop estimates for df and a in case of fixed arm.
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Figure 4.9: Inner-loop attitude tracking errors in case of fixed arm.
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Figure 4.10: Inner-loop attitude tracking errors in case of fixed arm.
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Figure 4.11: Estimates for torque disturbance dτ in case of fixed arm.
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Figure 4.12: Estimate for Interia matrix J in case of fixed arm.
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Figure 4.13: UAM-V inputs in case of fixed arm.

Figure 4.14: 3D UAM-V position in case of fixed arm.
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Figure 4.15: 2D UAM-V position in case of fixed arm.

to zero and show the robustness of the controller in the presence of time-varying

disturbances due to arm motion. The plots for force disturbance and its estimate are

shown in Figure 4.18, which are bounded. The inner-loop tracking errors are shown

in Figure 4.20 which show convergence of attitude error to a bounded region around

the origin. The torque disturbance and its estimate are shown in Figures 4.21. Since

axis of rotation of arm joints is parallel to b2, a relatively larger variation can be

seen in dτ2 as compared to other two components. The disturbance estimate is less

oscillatory than its true value but have similar mean as the true value. The plots

for the inertia parameters are given in 4.22. There is a bounded difference between

the estimated and true values of inertia. The UAM-V inputs for the moving arm

case are shown in Figure 4.23. The 3D and 2D plots of the UAM-V are shown in

Figures 4.24 and 4.25, respectively, and provide a bigger picture on the tracking

performance for the two cases. It can be seen from these plots are that the UAM-V

position tracks the desired trajectory with the bounded error.

Now we present the results for a pick and place application where a Quadro-

tor flies to a target, extends its arm, picks up the mass and then flies to an-

other location and places a mass on the other location. This is done by creat-

ing a virtual environment in Simscape Multibody, consisting of two tables and

a small cube of mass 0.1 kg and dimension of 0.1 m on each side. The speci-

fications of this cubic object are listed under Link 3 in Table 4.2. The UAM-

V starts at its initial condition, p(0) = [−2, 2, 0]T and the desired pose of the

UAM-V at Table 1 is p1d = [1.4379, 2,−1.4121]T , ψ1
d = 0 rad, and at Table 2 is

p2d = [−2,−1.4379,−0.9121]T , ψ2
d = −π

2 rad. The superscripts with these symbols
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Figure 4.16: UAM-V pose in case of moving arm.
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Figure 4.17: Outer-loop tracking errors in case of moving arm.
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Figure 4.18: Outer-loop estimates for df and a in case of moving arm.
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Figure 4.19: UAM-V reference and measured attitude in case of moving arm.
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Figure 4.20: Inner-loop attitude tracking errors in case of moving arm.
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Figure 4.21: Actual and estimated torque disturbance dτ in case of a moving arm.
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Figure 4.22: Actual and estimated Interia matrix J in case of a moving arm.
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Figure 4.23: UAM-V inputs in case of moving arm.
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Figure 4.24: 3D UAM-V position in case of moving arm.
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Figure 4.25: 2D UAM-V position in case of moving arm.
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correspond to the table number. To avoid the collision of arm with the table during

extension or retraction, UAM-V altitude is kept higher than desired. The UAM-V

position is lowered to desired value using a function h(t0) = [0, 0, 0.1 sin(π(t0)/5))]
T ,

when the arm is fully extended. The UAM-V trajectory is designed in a way

that it tests the control performance for both trajectory tracking and reference

set point tracking. Table 4.4 shows the trajectory plan for the UAM-V and arms.

The home configuration in the table refers to the retracted state of the arm with

α1 = −π/4, α2 = 3π/4. The desired and reference values of UAM-V pose are shown

Table 4.4: Object pick and place sequence

Time t Desired Position pd Desired Yaw ψd Arm configuration Cube Location

0 p1d ψ1
d Home Table 1

20 p1d ψ1
d Extending Table 1

27 p1d + h(t− 27) ψ1
d Extended Table 1

29 p1d + h(t− 27) ψ1
d Extended UAM

32 p1d ψ1
d Retracting UAM

40 p1d +
p2d−p

1
d

1+exp (−(t−45))

ψ2
d

1+exp (−(t−45)) Home UAM

60 p2d ψ2
d Extending UAM

67 p2d + h(t− 67) ψ2
d Extending UAM

70 p2d + h(t− 67) ψ2
d Extended Table 2

73 p2d ψ2
d Retracting Table 2

80 [0, 0, 0]T 0 Home Table 2

in Figure 4.26 while the position errors are given in Figure 4.27 with labelling for

each phase. A video of the simulation is available online 1. It is evident that the

UAM-V closely tracks the desired references for position. There are discontinuities

in the plots. These discontinuities are due to shift in reference set point for the

UAM-V position. This tests the ability of control to respond to the changes in set

points after it has reached the steady state. Clearly, the system behavior remains

convergent and the large set point changes do not lead to instability.

4.5 Conclusion

In this chapter, a control scheme for the control of Unmanned Aerial Manipulator

is presented. A decentralized approach has been used for control, where the effect

of Arm motion has been considered in the form of unknown parameters and dis-

turbance on the UAM-V dynamics. A backstepping-based control design has been

presented for the position tracking of a time-varying trajectory. An inner-outer loop

control structure is used where the UAM-V dynamics are subdivided into inner and

outer loops. UAM-V outer-loop or translational dynamics are controlled by selecting

1Pick and place simulation video: https://youtu.be/GHHQEnf4kgE
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Figure 4.26: UAM-V pose for pick and place task.

Figure 4.27: UAM-V position errors for pick and place task.
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appropriate thrust, roll, and pitch references. The references from the outer-loop are

fed as reference trajectories to the inner-loop. The asymptotic convergence of both

inner and outer loop tracking errors is proved through Lyapunov stability analysis.

This is proved in the presence of unknown parameters and unknown disturbances

due to arm motion. The adaptive estimates in the controller adapt to the changes

in UAM-V parameters and disturbance due to arm motion. The approach has been

rigorously tested using a Multi-body simulation platform in Simscape. The simula-

tion results show fast convergence of both inner and outer loop tracking errors in the

presence of constant unknown parameters and disturbances, while a convergence to

a bounded region in the presence of time-varying disturbance. The effectiveness of

the proposed approach has also been tested for a proper UAM application, where

the proposed controller is tested for a pick and place operation.
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Chapter 5

UAM Motion Control using

entire UAM-V Dynamics

In the previous chapter, we looked at the variation of system parameters and cou-

pling terms in the dynamics of the UAV subsystem (UAM-V) in a UAM. The pa-

rameters include the mass and the inertia of the UAM-V, while the coupling terms

include the force and torque disturbances due to the arm. We made simplifying

assumptions of parameters and disturbances due to arm, and proposed an inner-

outer loop control approach. We analysed the stability of inner and outer loops

individually, and the stability of the complete closed loop was not considered. In

this chapter, we present a control approach that removes this limitation.

We develop a control approach that considers the entire UAM-V dynamics in

a single control loop. To be specific, instead of designing thrust and attitude ref-

erence as inputs for position control and then torque inputs for attitude control,

this approach directly provides UAM-V thrust and torque for position control. The

approach is later modified to avoid numerical derivatives in the presence of mea-

surement noise.

This chapter is organized as follows. Section 5.1 reiterates the assumptions on

UAM model and the objective of the control design. Section 5.1 presents the control

structure and controller design and the stability analysis. Section 5.4 discusses the

problems with numerical derivatives and provides a modified approach that does

not require numerical derivatives.

5.1 UAM Model and Control Structure

Similar to the previous chapter, we consider a decentralized control approach where

the UAV and the arm are treated as separate subsystems. Again, we use the mod-

elling assumptions discussed in Section 4.1 for UAM-V, treating the effects of arm
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Figure 5.1: Control Structure using complete UAM-V dynamics in one loop

in the form of unknown parameters and disturbances. We assume that the arm

attached to the UAV has its independent controller, which can control the joint

variables to any arbitrary value.

The aim of this control design is to propose an adaptive controller for torque

and thrust inputs of the UAM-V that can track a desired time-varying trajectory

for position and yaw. We use a single loop control structure, where the full UAM-

V dynamics are used to directly design a controller for UAM-V thrust and torque

that tracks a desired position and yaw trajectory. The control structure is shown in

Figure 5.1.

Similar to the last chapter, we re-notate some parameters in the UAM model

from Chapter 2, to make the presentation simple. We notate pn = p, Rnb = R,

vn = v and Jηη = J , in (2.1), (2.3) and (2.50), and write the complete system

dynamics as follows

ṗ =v, (5.1a)

v̇ =ge3 − auRe3 + df , (5.1b)

Ṙ =RS(ω), (5.1c)

Jω̇ =− S(ω)Jω + τq + dτ . (5.1d)

Here the inputs to the UAM-V are thrust u and torque τq. It is noticeable that the

UAM-V dynamics (5.1), in contrast to the UAM-V dynamics used in Chapter 4,

employ the full rotation matrix to represent attitude dynamics instead of the Euler

angle parameterization in (2.4). This allows us to avoid the singularity due to the

Gimbal lock and a global stability result can be proved.

We know that J in (5.1) is a symmetric positive definite matrix and consists of

only six unique entries. Similar to (4.36), we can collect all the unique entries of J

in a vector form called Jv ∈ R6. In this model we treat a, Jv, df and dτ as unknown

constants whereas â ∈ R > 0, Ĵv ∈ R6, d̂f ∈ R3, and d̂τ ∈ R3 are their estimates,

respectively. The estimation errors for these quantities are defined as ã = a − â,
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J̃v = Jv − Ĵv, d̃f = df − d̂f and d̃τ = dτ − d̂τ .

The objective of this control design is to make the UAM-V position p and yaw ψ

track a desired position pd ∈ R3 and ψd ∈ R trajectory in the presence of parameter

uncertainties and disturbances arising due to the robot arm attached to the UAM-

V. Similar to Chapter 4, we use a backstepping approach to design an adaptive

controller to achieve the control objective. We start with the position tracking first

and then move to both position and yaw tracking control.

5.2 Position Tracking Control

Let us start the backstepping procedure by defining a position error as z1 = p− pd.

Its time-derivative is given by

ż1 = ṗ− ṗd = v − vd. (5.2)

Consider the first Lyapunov function V1 = 1
2z
T
1 z1, taking its time-derivative and

adding and subtracting k1z
T
1 z1, we get

V̇1 = −k1∥z1∥2 + zT1 (v − vd + k1z1). (5.3)

We define the quantity in the parentheses in the above equation as z2 = v−vd+k1z1,
which allows us to rewrite (5.2) as

ż1 = −k1z1 + z2. (5.4)

After taking the time-derivative of z2, substituting the linear velocity dynamics from

(5.1b), a = â+ ã and df = d̂f + d̃f we get

ż2 = ge3 − âuRe3 + d̂f − v̇d − k21z1 + k1z2 − ãuRe3 + d̃f . (5.5)

Consider the 2nd Lyapunov function as V2 = V1+
1
2z
T
2 z2. Taking its time derivative,

substituting V̇1 from (5.3) and simplifying, we have

V̇2 = −k1∥z1∥2 + zT2 (ge3 − âuRe3 + d̂f − v̇d − k21z1 + k1z2 − ãuRe3 + d̃f ).

After adding and subtracting k2z
T
2 z2 in above equation and simplifying, we get

V̇2 =− k1∥z1∥2 − k2∥z2∥2 + zT2 (ge3 − âuRe3 + d̂f − v̇d + (1− k21)z1

+ (k1 + k2)z2)− ãzT2 uRe3 + d̃Tf z2. (5.6)
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Let us define the coefficient of zT2 in above equation as

z3 = ge3 − âuRe3 + d̂f − v̇d + (1− k21)z1 + (k1 + k2)z2. (5.7)

which can be rearranged as

z3 − z1 − k2z2 = ge3 − âuRe3 + d̂f − v̇d − k21z1 + k1z2,

and substituted into (5.5) to get

ż2 = z3 − z1 − k2z2 − ãuRe3 + d̃f . (5.8)

Taking the time-derivative of (5.7), we have

ż3 = − ˙̂auRe3 − âu̇Re3 − âuṘe3 +
˙̂
df − v̈d + (1− k21)ż1 + (k1 + k2)ż2.

Substituting (5.4) and (5.8), we have

ż3 =− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3 +
˙̂
df − v̈d + (1− k21)(−k1z1 + z2)

+ (k1 + k2)(z3 − z1 − k2z2 − ãuRe3 + d̃f ).

Simplifying and rearranging the above equation, we get

ż3 =− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3 +
˙̂
df − v̈d

+ (k1(k
2
1 − 1)− k2 − k1)z1 + (1− k2(k1 + k2)− k21)z2

+ (k1 + k2)z3 − (k1 + k2)ãuRe3 + (k1 + k2)d̃f . (5.9)

Consider the 3rd Lyapunov function V3 = V2+
1
2z
T
3 z3 whose time derivative is given

by

V̇3 = −k1∥z1∥2 − k2∥z2∥2 + zT2 z3 + zT3 ż3 − ãzT2 uRe3 + d̃Tf z2.

Substituting (5.9), we have

V̇3 =− k1∥z1∥2 − k2∥z2∥2 + zT3
(
z2 − ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3 +

˙̂
df − v̈d

+ (k1(k
2
1 − 1)− k2 − k1)z1 + (1− k2(k1 + k2)− k21)z2 + (k1 + k2)z3

− (k1 + k2)ãuRe3 + (k1 + k2)d̃f
)
− ãzT2 uRe3 + d̃Tf z2.
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Adding and subtracting k3z
T
3 z3 and simplifying

V̇3 =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3 +

˙̂
df

− v̈d + (k1(k
2
1 − 1)− k2 − k1)z1 + (2− k2(k1 + k2)− k21)z2 + (k1 + k2 + k3)z3

)
− ã(zT2 + (k1 + k2)z

T
3 )uRe3 + d̃Tf (z2 + (k1 + k2)z3).

Consider a modified Lyapunov function

V3b = V3 +
1

2λ
ã2 +

1

2kdf
d̃Tf d̃f , (5.10)

where kdf > 0, λ > 0, and the time-derivative of above equation is

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3 +

˙̂
df

− v̈d + (k1(k
2
1 − 1)− k2 − k1)z1 + (2− k2(k1 + k2)− k21)z2 + (k1 + k2 + k3)

× z3
)
− ã(zT2 + (k1 + k2)z

T
3 )uRe3 + d̃Tf (z2 + (k1 + k2)z3) +

1

λ
ã ˙̃a+

1

kdf
d̃Tf

˙̃
df .

Simplifying, we get

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3

+
˙̂
df − v̈d + (k1(k

2
1 − 1)− k2 − k1)z1 + (2− k2(k1 + k2)− k21)z2

+ (k1 + k2 + k3)z3
)
+ ã
(
λ ˙̃a− (zT2 + (k1 + k2)z

T
3 )uRe3

)
+ d̃Tf

( 1

kdf

˙̃
df + z2 + (k1 + k2)z3

)
. (5.11)

To reduce the lengthy expressions, let us define σ1 ∈ R3 and σ2 ∈ R3 as functions

of known quantities

σ1 =(k1(k
2
1 − 1)− k2 − k1)z1 + (2− k2(k1 + k2)− k21)z2

+ (k1 + k2 + k3)z3 − v̈d, (5.12)

σ2 =z2 + (k1 + k2)z3. (5.13)

Substituting these equations in (5.11) along with
˙̃
df = − ˙̂

df , which can be written

because df is approximated as constant rendering ḋf = 0, we have

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3

− âuRS(ω)e3 +
˙̂
df + σ1

)
+ ã(

1

λ
˙̃a− σT2 uRe3) + d̃Tf (−

1

kdf

˙̂
df + σ2).
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Adding and subtracting kdf z
T
3 σ2 in above equation

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3 − âuRS(ω)e3

+
˙̂
df − kdfσ2 + kdfσ2 − v̈d + σ1

)
+ ã(

1

λ
˙̃a− σT2 uRe3) + d̃Tf (−

1

kdf

˙̂
df + σ2),

and simplifying

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 (− ˙̂auRe3 − âu̇Re3

− âuRS(ω)e3 + σ1 + kdfσ2)− kdf z
T
3 (−

1

kdf

˙̂
df + σ2)

+ ã(
1

λ
˙̃a− σT2 uRe3) + d̃Tf (−

1

kdf

˙̂
df + σ2). (5.14)

We know that

σ1 + kdfσ2 =RR
T (σ1 + kdfσ2) = RIRT (σ1 + kdfσ2)

=R(I − e3e
T
3 + e3e

T
3 )R

T (σ1 + kdfσ2)

=
(
R(I − e3e

T
3 )R

T +Re3e
T
3R

T
)
(σ1 + kdfσ2).

Therefore,

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− ˙̂auRe3 − âu̇Re3

+Re3e
T
3R

T (σ1 + kdfσ2)− âuRS(ω)e3 +R(I − e3e
T
3 )R

T (σ1 + kdfσ2)
)

− kdf z
T
3 (−

1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3) + d̃Tf (−

1

kdf

˙̂
df + σ2).

By factoring out Re3 from first three terms inside the parentheses of zT3 coefficient

and equating them to zero, we have

âu̇+ ˙̂au = eT3R
T (σ1 + kdfσ2), (5.15)

while the remaining V̇3b is

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 R
(
− âuS(ω)e3

+ (I − e3e
T
3 )R

T (σ1 + kdfσ2)
)
+ (d̃Tf − kdf z

T
3 )(−

1

kdf

˙̂
df + σ2)

+ ã(
1

λ
˙̃a− σT2 uRe3). (5.16)

In this equation, we consider the term âuS(ωd)e3 as the virtual control, whose desired

value is defined as

âuS(ωd)e3 = (I − e3e
T
3 )R

T (σ1 + kdfσ2),
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which can be further written as

âuS(e3)ωd = −(I − e3e
T
3 )R

T (σ1 + kdfσ2). (5.17)

Extracting individual components of ωd, we have

ωd1 =− eT2
âu

(I − e3e
T
3 )R

T (σ1 + kdfσ2), (5.18)

ωd2 =
eT1
âu

(I − e3e
T
3 )R

T (σ1 + kdfσ2), (5.19)

while (5.16) becomes

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3
(
− âuRS(ω)e3 + âuRS(ωd)e3

)
+ (d̃Tf − kdf z

T
3 )(−

1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3).

Simplifying and rearranging above equation, we have

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 âuRS(e3)
(
ω − ωd

)
+ (d̃Tf − kdf z

T
3 )(−

1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3). (5.20)

Consider the following adaptive laws,

˙̂
df =kdfσ2,

˙̂a =− λσT2 uRe3,
(5.21)

Substituting them in (5.20), we have

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 âuRS(e3)
(
ω − ωd

)
. (5.22)

Let z4 = ω − ωd. Using (2.50b), we can write

Jż4 = Jω̇ − Jω̇d = −S(ω)Jω + τq + dτ − Jω̇d. (5.23)

From (4.36), we know that

S(ω)Jω = Φ(ω)Jv,

Jω̄d = Ψ(ω̄d)Jv,
(5.24)

where

Φ(ω) =

 0 −ω2ω3 ω2ω3 −ω1ω3 ω2
2 − ω2

3 ω1ω2

ω1ω3 0 −ω1ω3 ω2ω3 −ω1ω2 ω2
3 − ω2

1

−ω1ω2 ω1ω2 0 ω2
1 − ω2

2 ω1ω3 −ω2ω3

 ,
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Ψ(ω̄d) =

ω̄d1 0 0 ω̄d2 0 ω̄d3

0 ω̄d2 0 ω̄d1 ω̄d3 0

0 0 ω̄d3 0 ω̄d2 ω̄d1

 ,
and Jv = [Jxx, Jyy, Jzz, Jxy, Jyz, Jzx]

T . Therefore, we can rewrite (5.23) as follows

Jż4 = −(Φ(ω) + Ψ(ω̇d))Jv + τq + dτ . (5.25)

Let us substitute Jv = Ĵv + J̃v and dτ = d̂τ + d̃τ in (5.25), we have

Jż4 = −(Φ(ω) + Ψ(ω̇d))(Ĵv + J̃v) + τq + d̂τ + d̃τ . (5.26)

Consider the following Lyapunov function

V4 = V3b +
1

2
zT4 Jz4 +

1

2kdτ
d̃Tτ d̃τ +

1

2
J̃Tv Γ

−1J̃v, (5.27)

where kdτ > 0, Γ ∈ R6×6 > 0. Taking the time-derivative of above equation, we

have

V̇4 = V̇3b + zT4 Jż4 +
1

kdτ
d̃Tτ

˙̃
dτ + J̃Tv Γ

−1 ˙̃Jv. (5.28)

Substituting (5.22) and (5.26) in above equation, we get

V̇4 =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 âuRS(e3)z4

+ zT4 (−(Φ(ω) + Ψ(ω̇d))(Ĵv + J̃v) + τq + d̂τ + d̃τ )

+
1

kdτ
d̃Tτ

˙̃
dτ + J̃Tv Γ

−1 ˙̃Jv. (5.29)

Adding and subtracting k4z
T
4 z4 in above and rearranging, we have

V̇4 =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2 + zT4 âuR
nT

b ST (e3)z3

+ zT4 (k4z4 − (Φ(ω) + Ψ(ω̇d))Ĵv + τq + d̂τ ) +−J̃Tv (Φ(ω) + Ψ(ω̇d))
T z4

+ d̃Tτ z4 +
1

kdτ
d̃Tτ

˙̃
dτ + J̃Tv Γ

−1 ˙̃Jv. (5.30)

Rearranging, we get

V̇4 =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2 + zT4 (âuR
nT

b ST (e3)z3

+ k4z4 − (Φ(ω) + Ψ(ω̇d))Ĵv + τq + d̂τ )

+ J̃Tv (Γ
−1 ˙̃Jv − (Φ(ω) + Ψ(ω̇d))

T z4) + d̃Tτ (
1

kdτ

˙̃
dτ + z4). (5.31)
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Consider the following control law

τq = −âuRnT

b ST (e3)z3 − k4z4 + (Φ(ω) + Ψ(ω̇d))Ĵv − d̂τ , (5.32)

together with the adaptation laws

˙̂
Jv =− Γ(Φ(ω) + Ψ(ω̇d))

T z4,

˙̂
dτ =kdτ z4.

(5.33)

Substituting, the control law (5.32) and adaptation laws (5.33) along with the as-

sumption that Jv and dτ are constant or slowly varying to satisfy J̇v = 0, ḋτ = 0,

we have

V̇4 = −k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2, (5.34)

which is negative semi-definite.

Theorem 5.2.1. Consider the dynamics of a UAM-V under the assumption that

ȧ = 0, ḋf = 0, ḋτ = 0, J̇v = 0, and u > 0, â > 0, with a smooth time-varying

trajectory consisting of {pd(t), vd(t), v̇d(t), v̈d(t)}. If the UAM-V inputs consisting of

thrust and torques are selected according to (5.32) with k1 > 0, k2 > 0, k3 > 0, k4 > 0,

while the estimates â, d̂f , d̂τ and Ĵv are given by the adaptive laws in (5.21) and

(5.33), then the tracking errors [zT1 , z
T
2 , z

T
3 , z

T
4 ] are globally asymptotically stable at

origin while the estimates â, d̂f , d̂τ and Ĵv are bounded.

Proof. Consider the quadratic positive definite Lyapunov function V4 in (5.27). Ac-

cording to [184, Lemma 4.3], there exist two positive definite functions that lower and

upper bound V4. The time-derivative of V4 after substitution of input and control

laws, given in (5.34), is a negative semi-definite function. However, using Barbalat’s

lemma [184, Theorem 8.4], we can conclude that the vector zT = [zT1 , z
T
2 , z

T
3 , z

T
4 ]

→ 0 as t → ∞, and parameter and disturbance estimates â, d̂f , d̂τ and Ĵv are

bounded. Since, V4 is radially unbounded, we conclude that the equilibrium point

z = 0 is globally asymptotically stable.

5.3 Position and Yaw Tracking Control

The control design proposed above only deals with the tracking of a time-varying

position trajectory. The heading or yaw angle of a UAM-V provides an extra degree

of freedom in aerial manipulation and allows the end-effector to be aligned with the

target from different directions. Therefore, it is essential to design the controller for

yaw tracking. Consider the desired yaw trajectory of the UAM-V ψd ∈ (−π, π] and
the yaw tracking error zψ = ψ−ψd. We start with the following Lyapunov function
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for the stability yaw tracking error.

Vψ1 =
1

2
z2ψ1

(5.35)

Taking its time derivative, we have

V̇ψ1 = zψ1 żψ1 = zψ1(ψ̇ − ψ̇d)

From (2.4), we know ψ̇ = eT3W
−1ω, therefore, we can write

V̇ψ1 = zψ1 żψ1 = zψ1(e
T
3W

−1ω − ψ̇d)

Adding and subtracting kψ1z
2
ψ1
, we have

V̇ψ1 = −kψ1z
2
ψ1

+ zψ1(kψ1zψ1 + eT3W
−1ω − ψ̇d) (5.36)

Let us define

eT3W
−1ωd = −kψ1zψ1 + ψ̇d (5.37)

which results in

ωd3 =
cθ
cϕ

(−kψ1zψ1 + ψ̇d +
sϕ
cθ
ωd2) (5.38)

where ωd2 is given in (5.19). Substituting (5.37) in (5.36), we have

V̇ψ1 = −kψ1z
2
ψ1

+ zψ1(e
T
3W

−1(ω − ωd)) (5.39)

Since z4 = ω − ωd, we can write

V̇ψ1 = −kψ1z
2
ψ1

+ zT4 zψ1W
−1T e3 (5.40)

Theorem 5.3.1. Consider the dynamics of a UAM-V in (5.1) under the assumption

that ȧ = 0, ḋf = 0, ḋτ = 0 and J̇v = 0 and u > 0, â > 0, with a smooth time-varying

trajectory consisting of {pd(t), vd(t), v̇d(t), v̈d(t), ψd(t)ψ̇d(t)}. If the UAM-V input

thrust is selected according to (5.64), the input torque is selected as below

τq = −zψ1W
−T e3 − âuRn

T

b ST (e3)z3 − k4z4 + (Φ(ω) + Ψ(ω̇d))Ĵv − d̂τ (5.41)

with k1 > 0, k2 > 0, k3 > 0, k4 > 0, and the estimates â, d̂f , d̂τ and Ĵv are given by

the adaptive laws in (5.21) and (5.33), then the tracking error [zT1 , z
T
2 , z

T
3 , z

T
4 , zψ1 ]

is asymptotically stable at origin while the estimates â, d̂f , d̂τ and Ĵv are bounded.

Proof. Consider the following Lypunov function V4,ψ = V4+Vψ1 and its time deriva-
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tive is given by

V̇4,ψ = V̇4 + V̇ψ,1 (5.42)

Substituting, V̇4 from (5.31) together with adaptive estimation laws in (5.33) and

the V̇ψ1 from (5.40), we have

V̇4,ψ =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2 − kψ1z
2
ψ1

+ zT4 zψ1W
−1T e3

+ zT4 (âuR
nT

b ST (e3)z3 + k4z4 − (Φ(ω) + Ψ(ω̇d))Ĵv + τq + d̂τ )
(5.43)

Substituting the torque control input from (5.41), we have

V̇4,ψ =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2 − kψ1∥zψ1∥2 (5.44)

which is negitive semi-definite. Using the similar discussion as in the proof of Theo-

rem 5.2.1, we conclude that the tracking error [zT1 , z
T
2 , z

T
3 , z

T
4 , zψ1 ] → 0 as t→ ∞.

Remark 3. The controllers presented in (5.32) and (5.41) depend upon ω̇d, however,

the above derivation gives expression for ωd only. The ω̇d can be obtained numerically

or using a low-pass filter approximation. The algebraic differentiation of ωd results

in the reappearance of an unknown term d̃f , which couples with unknown inertia

vector Jv in the angular velocity dynamics of the UAM-V and results in a difficulty

in proving system stability. This is shown in the following discussion.

Algebraic differentiation of ωd

in this section, we try to take the algebraic derivative of ωd and discuss the diificuly

that arises due to the algebraic derivative of ωd. Taking the time-derivative of (5.17),

we have

âuS(e3)ω̇d =− ( ˙̂au+ âu̇)S(e3)ωd + (I − e3e
T
3 )S(ω)R

T (σ1 + kdfσ2)

− (I − e3e
T
3 )R

T (σ̇1 + kdf σ̇2). (5.45)

Above equation has σ̇1 and σ̇2. Let us evaluate σ̇1 by taking the time derivative of

(5.12), we get

σ̇1 = (k1(k
2
1 − 1)− k2 − k1)ż1 + (2− k2(k1 + k2)− k21)ż2 + (k1 + k2 + k3)ż3 −

...
vd.
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Substituting (5.4), (5.8) and (5.9), we have

σ̇1 =(k1(k
2
1 − 1)− k2 − k1)(−k1z1 + z2) + (2− k2(k1 + k2)− k21)

×
(
z3 − z1 − k2z2 − ãuRe3 + d̃f

)
+ (k1 + k2 + k3)

(
− ( ˙̂au+ âu̇)Re3

− âuRS(ω)e3 +
˙̂
df − v̈d + (k1(k

2
1 − 1)− k2 − k1)z1 + (k1 + k2)z3

+ (1− k2(k1 + k2)− k21)z2 − (k1 + k2)ãuRe3 + (k1 + k2)d̃f
)
− ...
vd. (5.46)

From (5.12) we have

(k1(k
2
1 −1)−k2−k1)z1+(1−k2(k1+k2)−k21)z2+(k1+k2)z3− v̈d = σ1− z2−k3z3.

Substituting above and (5.15) in (5.46), we get

σ̇1 =(k1(k
2
1 − 1)− k2 − k1)(−k1z1 + z2) + (2− k2(k1 + k2)− k21)

(
z3 − z1

− k2z2 − ãuRe3 + d̃f
)
+ (k1 + k2 + k3)

(
− ( ˙̂au+ âu̇)Re3 − âuRS(ω)e3

+
˙̂
df + σ1 − z2 − k3z3 − (k1 + k2)ãuRe3 + (k1 + k2)d̃f

)
− ...
vd

− (2− k2(k1 + k2)− k21)ãuRe3 + (2− k2(k1 + k2)− k21)d̃f . (5.47)

Collecting coefficients of d̃f and ã

σ̇1 =(k1(k
2
1 − 1)− k2 − k1)(−k1z1 + z2) + (2− k2(k1 + k2)− k21)(z3 − z1 − k2z2)

+ (k1 + k2 + k3)
(
− ( ˙̂au+ âu̇)Re3 − âuRS(ω)e3 +

˙̂
df + σ1 − z2 − k3z3

)
− ...
vd −

(
2− k2(k1 + k2)− k21 + (k1 + k2 + k3)(k1 + k2)

)
ãuRe3

+
(
2− k2(k1 + k2)− k21 + (k1 + k2 + k3)(k1 + k2)

)
d̃f .

Simplifying, we have

σ̇1 =(k21 + k1k2 + k22 − 2)(z1 − z3 + k2z2)− (−k31 + 2k1 + k2)(z2 − k1z1)

+ (k1 + k2 + k3)
(
− ( ˙̂au+ âu̇)Re3 − âuRS(ω)e3 +

˙̂
df + σ1 − z2 − k3z3

)
− ...
vd − (k1k2 + k2k3 + k3k1 + 2)ãuRe3 + (k1k2 + k2k3 + k3k1 + 2)d̃f .

(5.48)

Let us define known quantities in the above equation as

σ̄1 =(k21 + k1k2 + k22 − 2)(z1 − z3 + k2z2)− (−k31 + 2k1 + k2)

× (z2 − k1z1)−
...
vd + (k1 + k2 + k3)(−( ˙̂au+ âu̇)Re3

− âuRS(ω)e3 +
˙̂
df + σ1 − z2 − k3z3), (5.49)
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which reduces (5.48) as follows

σ̇1 = σ̄1 − (k1k2 + k2k3 + k3k1 + 2)ãuRe3 + (k1k2 + k2k3 + k3k1 + 2)d̃f . (5.50)

To obtain σ̇2, let us take the time-derivative of (5.13) and substitute (5.8) and (5.9),

we have

σ̇2 =z3 − z1 − k2z2 − ãuRe3 + d̃f + (k1 + k2)
(
− ( ˙̂au+ âu̇)Re3

− âuRS(ω)e3 +
˙̂
df + σ1 − z2 − k3z3 − (k1 + k2)ãuRe3 + (k1 + k2)d̃f

)
.

Simplifying and rearranging

σ̇2 =z3 − z1 − k2z2 + (k1 + k2)(−z2 − k3z3) + (k1 + k2)

×
(
− ( ˙̂au+ âu̇)Re3 − âuRS(ω)e3 +

˙̂
df + σ1

)
− (1 + (k1 + k2)

2)ãuRe3 + (1 + (k1 + k2)
2)d̃f . (5.51)

Let us define the known quantities in above equation as

σ̄2 =− z1 − (k1 + 2k2)z2 + (1− k1k3 − k2k3)z3 + (k1 + k2)

×
(
− ( ˙̂au+ âu̇)Re3 − âuRS(ω)e3 +

˙̂
df + σ1

)
, (5.52)

which reduces (5.51) to

σ̇2 = σ̄2 − (1 + (k1 + k2)
2)ãuRe3 + (1 + (k1 + k2)

2)2d̃f . (5.53)

Substituting (5.50) and (5.53) in (5.45), we have

âuS(e3)ω̇d =− ( ˙̂au+ âu̇)S(e3)ωd + (I − e3e
T
3 )S(ω)R

T (σ1 + kdfσ2)

− (I − e3e
T
3 )R

T
(
σ̄1 − (k1k2 + k2k3 + k3k1 + 2)ãuRe3

+ (k1k2 + k2k3 + k3k1 + 2)d̃f + kdf σ̄2 − kdf (1 + (k1 + k2)
2)ãuRe3

+ kdf (1 + (k1 + k2)
2)2d̃f

)
.

Let k̄ = k1k2 + k2k3 + k3k1 + 2 + kdf (1 + (k1 + k2)
2)2, then

âuS(e3)ω̇d =− ( ˙̂au+ âu̇)S(e3)ωd + (I − e3e
T
3 )S(ω)R

T (σ1 + kdfσ2)

− (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)− (I − e3e
T
3 )R

T (−k̄ãuRe3 + k̄d̃f ).
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Since S(e3) = [−e2, e1, 03]T , we can multiply both sides with ST (e3) to obtain ω̇d1

and ω̇d2 as follows

âu

ω̇d1ω̇d2

0

 =− ST (e3)( ˙̂au+ âu̇)S(e3)ωd + ST (e3)(I − e3e
T
3 )S(ω)

×RT (σ1 + kdfσ2)− ST (e3)(I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)

− ST (e3)(I − e3e
T
3 )R

T (−k̄ãuRe3 + k̄d̃f ).

Using ST (e3)(I − e3e
T
3 ) = ST (e3), above equation can further be simplified asω̇d1ω̇d2

0

 =− 1

âu
( ˙̂au+ âu̇)(I − e3e

T
3 )ωd +

1

âu
ST (e3)S(ω)R

T (σ1 + kdfσ2)

− 1

âu
ST (e3)R

T (σ̄1 + kdf σ̄2)−
1

âu
ST (e3)R

T (−k̄ãuRe3 + k̄d̃f ).

All terms in the above equation have their last row zero. Therefore we can combine

them together

ω̇d1ω̇d2

0

+

 0

0

ω̇d3

 =

ω̇d1ω̇d2

ω̇d3

 and write

ω̇d =− 1

âu
( ˙̂au+ âu̇)(I − e3e

T
3 )ωd +

1

âu
ST (e3)S(ω)R

T (σ1 + kdfσ2)

− 1

âu
ST (e3)R

T (σ̄1 + kdf σ̄2)−
1

âu
ST (e3)R

T (−k̄ãuRe3 + k̄d̃f

)
+ ω̇d3e3,

where ω̇d3 will be obtained later through yaw control. Let us define

ω̄d =− 1

âu
( ˙̂au+ âu̇)(I − e3e

T
3 )ωd +

1

âu
ST (e3)S(ω)R

T (σ1 + kdfσ2)

− 1

âu
ST (e3)R

T (σ̄1 + kdf σ̄2) + ω̇d3e3, (5.54)

consisting of all the known quantities then

ω̇d = ω̄d −
1

âu
ST (e3)R

T (−k̄ãuRe3 + k̄d̃f ).

Since ST (e3)R
TRe3 = 03, the ã term vanishes and we have

ω̇d = ω̄d −
k̄

âu
ST (e3)R

T d̃f . (5.55)

Now that we have ω̇d, let us substitute it in V̇4 from along with V̇3b from (5.20) and

Jż4 from (5.25) defined by
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V̇4 =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − k4∥z4∥2 + zT4 (k4z4 + âuST (e3)R
nT

b z3

− S(ω)Jω + τq + dτ − J(ω̄d −
k̄

âu
ST (e3)R

T d̃f ))− kdf z
T
3 (−

1

kdf

˙̂
df + σ2)

+ d̃Tf (−
1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3) +

1

kdτ
d̃Tτ

˙̃
dτ + J̃Tv Γ

−1 ˙̃Jv.

In the above equation, we see that d̃f appears with the inertia matrix J . If we

consider 1
2z
T
4 z4 to avoid multiplication with J , a J−1 would appear with input τq

and with S(ω)Jω preventing it from writing it into the affine form Φ(ω)Jv, making

adaptive control inapplicable for estimation of inertia matrix J . Also, if we avoid

multiplication of d̃f with J by using 1
2z
T
4 J

−1Jz4, and substituting Jż4 in V̇4, we

need to multiply âuST (e3)R
nT

b z3 with J to bring inside parenthesis i.e., coefficient of

zT4 to cancel with the control. This problem is unavoidable as one of the unknowns

J , Jv or J̃v keep appearing. Since J is unknown, it is not available for control design

or adaptive estimation law.

This issue arises if we try taking the algebraic derivative of ωd; therefore, using

a numerical derivative is suitable to avoid this difficulty. In what follows, we look at

another approach that does not define ωd at the third stage of backstepping. Instead,

we continue the backstepping a stage forward and then define ω̇d algebraically, after

segregating d̃f from its definition in the above analysis, and then use its integral

as ωd in the controller. This results in new adaptation laws for force disturbance,

inertia matrix, torque disturbance and the control law for torque.

5.4 Modified Control Approach

The control presented in the previous section requires the numerical derivative

of the expression used for virtual control of angular velocity. Numerical deriva-

tives usually result in amplification of high-frequency noise in the measurement,

e.g., ddt(sin(300t)) = 300 × cos(300t). The algebraic derivatives, on the other hand,

involve direct measurements instead of the derivative of measurements. Only the

derivatives of reference trajectories are required, which are noise-free and usually

smooth. Also, in the presence of a discontinuity in reference, such as a new ref-

erence set point in case of constant reference tracking, a derivative could lead to

singularity. In the case of algebraic derivatives, derivatives of constant references

are uniformly set to zero even when the reference changes to avoid discontinuity

propagation to the controller. This, however, is difficult to implement in the case of

numerical derivatives.

In this section, we propose another approach where the numerical derivative of
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ωd is avoided by continuing the backstepping procedure past the 3rd stage until ω̇

shows up. In this derivation, we do not extract the adaptation laws for d̂f at the

third stage of backstepping. This allows us to manage the reappearing unknown

d̃f terms by cancelling them with an adaptive law expression at a later stage. This

results in modified adaptation laws for force disturbance, inertia matrix, torque

disturbance and modified control law for torque input.

5.4.1 Position Control

To start, let us recall the definitions of z1, z2, z3, σ1, σ2 in Section 5.2, the Lyapunov

function V3b from (5.10) and the derivation up to its derivative after substitution of

the control law from (5.15), given in (5.16), which is re-written below

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 R
(
− âuS(ω)e3

+ (I − e3e
T
3 )R

T (σ1 + kdfσ2)
)
+ (d̃Tf − kdf z

T
3 )(−

1

kdf

˙̂
df + σ2)

+ ã(
1

λ
˙̃a− σT2 uRe3)

the remaining coefficient of zT3 R inside parenthesis in above equation is defined as

zω = −âuS(ω)e3 + (I − e3e
T
3 )R

T (σ1 + kdfσ2) (5.56)

Taking its time derivative, we have

żω =− ˙̂auS(ω)e3 − âu̇S(ω)e3 − âuS(ω̇)e3 + (I − e3e
T
3 )Ṙ

T
(σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T (σ̇1 + σ̇2)

Substituting (2.3) and (5.15), we have

żω =− ( ˙̂au+ âu̇)S(ω)e3 − âuS(ω̇)e3 + (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T (σ̇1 + σ̇2)
(5.57)

Substituting (5.50) and (5.53) in (5.57), we have

żω =− ( ˙̂au+ âu̇)S(ω)e3 − âuS(ω̇)e3 + (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T
(
σ̄1 − (k1k2 + k2k3 + k3k1 + 2)ãuRe3 + (k1k2 + k2k3

+ k3k1 + 2)d̃f + σ̄2 − kdf (1 + (k1 + k2)
2)ãuRe3 + kdf (1 + (k1 + k2)

2)d̃f
)

Let us define

k = k1k2 + k2k3 + k3k1 + 2 + kdf (1 + (k1 + k2)
2)
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Using this definition in żω and rearranging, we have

żω =− eT3R
T (σ1 + kdfσ2)S(ω)e3 − âuS(ω̇)e3 + (I − e3e

T
3 )S

T (ω)RT (σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2) + (I − e3e
T
3 )R

Tkd̃f − (I − e3e
T
3 )R

TkãuRe3
(5.58)

Recall (5.16) and substitute (5.56), we have

V̇3b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 Rzω + (d̃Tf − kdf z
T
3 )(−

1

kdf

˙̂
df + σ2)

+ ã(
1

λ
˙̃a− σT2 uRe3)

(5.59)

Let us define the 4th Lyapunov function

V4a = V3b +
1

2
zTω zω (5.60)

whose time derivative is given by

V̇4a = −k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zT3 Rzω + zTω żω + zT3 (
˙̂
df − σ2)

Substituting (5.58), we have

V̇4a =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zTω
(
RT z3 − ( ˙̂au+ âu̇)S(ω)e3 − âuS(ω̇)e3

+ (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)

+ k(I − e3e
T
3 )R

T d̃f − k(I − e3e
T
3 )R

T ãuRe3
)

+ (d̃Tf − kdf z
T
3 )(−

1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3)

Since

k(I − e3e
T
3 )R

T ãuRe3 = ãuk(I − e3e
T
3 )R

TRe3 = ãuk(I − e3e
T
3 )e3 = ãuk03 = 03

we have

V̇4a =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zTω
(
RT z3 − eT3R

T (σ1 + kdfσ2)S(ω)e3

− âuS(ω̇)e3 + (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)

+ k(I − e3e
T
3 )R

T d̃f
)
+ (d̃Tf − kdf z

T
3 )(−

1

kdf

˙̂
df + σ2) + ã(

1

λ
˙̃a− σT2 uRe3)
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Collecting coefficients of d̃Tf , we have

V̇4a =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zTω
(
RT z3 − eT3R

T (σ1 + kdfσ2)

× S(ω)e3 − âuS(ω̇)e3 + (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)
)
− kdf z

T
3 (−

1

kdf

˙̂
df + σ2)

+ ã(
1

λ
˙̃a− σT2 uRe3) + d̃Tf

(
− 1

kdf

˙̂
df + σ2 + kR(I − e3e

T
3 )zω

)
. (5.61)

We can extract the estimation laws from above equation as follows

˙̂a = −λσT2 uRe3 (5.62)

˙̂
df = kdf (σ2 + kR(I − e3e

T
3 )zω) (5.63)

Using (5.62) in (5.15), we get the control law for thrust input

u̇ =
1

â
eT3R

T (λu2σ2 + σ1 + kdfσ2) (5.64)

Substituting (5.62) and (5.63) into (5.61), we get

V̇4a =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 + zTω
(
RT z3 − eT3R

T (σ1 + kdfσ2)S(ω)e3

− âuS(ω̇)e3 + (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2)

+ (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)
)
+ kdf z

T
3 kR(I − e3e

T
3 )zω

Adding and subtracting kωz
T
ω zω and simplifying

V̇4a =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − kω∥zω∥2 + zTω
(
kωzω +RT z3

+ kdfk(I − e3e
T
3 )R

T z3 − eT3R
T (σ1 + kdfσ2)S(ω)e3 − âuS(ω̇)e3

+ (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)
)

(5.65)

Let us define ω̇d as follows

âuS(ω̇d)e3 =kωzω +RT z3 + kdfk(I − e3e
T
3 )R

T z3 − eT3R
T (σ1 + kdfσ2)S(ω)e3

+ (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)

(5.66)

It is worth noticing that the vector S(ω̇d)e3 = −S(e3)ω̇d = [ω̇d2,−ω̇d1, 0]T has its

third component zero. This shows that the position control is independent of ω̇d3.

Therefore, ω̇d3 will be designed separately for the yaw or ψ control. By left multi-
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plying (5.66) with 1
âuR

T followed by left multiplication of eT2 or eT1 , we can obtain

ω̇d1 =− eT2
âu

(kωzω +RT z3 + kdfk(I − e3e
T
3 )R

T z3 − eT3R
T (σ1 + kdfσ2)S(ω)e3

+ (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2))

(5.67)

ω̇d2 =
eT1
âu

(kωzω +RT z3 + kdfk(I − e3e
T
3 )R

T z3 − eT3R
T (σ1 + kdfσ2)S(ω)e3

+ (I − e3e
T
3 )S

T (ω)RT (σ1 + kdfσ2) + (I − e3e
T
3 )R

T (σ̄1 + kdf σ̄2)) (5.68)

Substituting (5.66) into (5.65)

V̇4a = −k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − kω∥zω∥2 + âuzTω S(e3)(ω̇ − ω̇d) (5.69)

In the above equation, yaw control is absent, therefore, we introduce it here.

5.4.2 Yaw Control

Lets us now find ω̇d3 for controlling the yaw angle of the UAM-V. Recall from

Section 5.3, the definitions of zψ1 and Vψ1 , their respective derivatives and the

derivation up to (5.36). The equation (5.36) is re-written below

V̇ψ1 = −kψ1z
2
ψ1

+ zψ1(kψ1zψ1 + eT3W
−1ω − ψ̇d) (5.70)

Let us define zψ2 = kψ1zψ1 + eT3W
−1ω − ψ̇d, which reduces (5.70) to

V̇ψ1 = −kψ1z
2
ψ1

+ zψ1zψ2 (5.71)

while the derivative of zψ2 is given by

żψ2 = kψ1 żψ1 + eT3 Ẇ
−1ω + eT3W

−1ω̇ − ψ̈d

since żψ1 = −kψ1zψ1 + zψ2 , we have

żψ2 = −k2ψ1
zψ1 + kψ1zψ2 + eT3 Ẇ

−1ω + eT3W
−1ω̇ − ψ̈d

Let us consider the following Lyapunov function

Vψ2 = Vψ1 +
1

2
z2ψ2

(5.72)

whose derivative is given by

V̇ψ2 = −kψ1z
2
ψ1

+ zψ2(zψ1 + żψ2)
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Adding and subtracting kψ2z
2
ψ2

and substituting żψ2 from above, we have

V̇ψ2 =− kψ1z
2
ψ1

− kψ2z
2
ψ2

+ zψ2((1− k2ψ1
)zψ1 + (kψ1 + kψ2)zψ2

+ eT3 Ẇ
−1ω + eT3W

−1ω̇ − ψ̈d)
(5.73)

Let us define

eT3W
−1ω̇d = −(1− k2ψ1

)zψ1 − (kψ1 + kψ2)zψ2 − eT3 Ẇ
−1ω + ψ̈d (5.74)

which results in

ω̇d3 =
cθ
cϕ

(−(1− k2ψ1
)zψ1 − (kψ1 + kψ2)zψ2 − eT3 Ẇ

−1ω + ψ̈d +
sϕ
cθ
ω̇d2) (5.75)

where ω̇d2 is given in (5.68). Substituting (5.75) in (5.73), we have

V̇ψ2 = −kψ1z
2
ψ1

− kψ2z
2
ψ2

+ zψ2e
T
3W

−1(ω̇ − ω̇d) (5.76)

5.4.3 Position and Yaw control

Recall (5.60) and (5.72), let us combine them to define

V4b = V4a + Vψ2 (5.77)

Taking derivative of above and substituting (5.69) and (5.76), we have

V̇4b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − kω∥zω∥2 − kψ1z
2
ψ1

− kψ2z
2
ψ2

+
(
âuzTω S(e3) + zψ2e

T
3W

−1
)
(ω̇ − ω̇d)

(5.78)

Introducing J−1J in above equation, we have

V̇4b =− k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − kω∥zω∥2 − kψ1z
2
ψ1

− kψ2z
2
ψ2

+
(
âuzTωS(e3) + zψ2e

T
3W

−1
)
J−1(Jω̇ − Jω̇d)

(5.79)

If the inertia matrix J was known, we could have algebraically cancelled the last term

of the above equation by using (2.50b) and designing the torque input τq as done in

[152]. However, due to J unknown, we are unable to design τq to algebraically cancel

the last term. Therefore, at this point, will assume that z4 = ω−ωd asymptotically

converges to zero.

Theorem 5.4.1. Consider the UAM system (2.50) and its approximation for the

UAM-V (5.1) under Assumption 1 that the effect of attached robot arm is considered

in the form of unknown constant parameter a and an unknown constant force df on
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the UAM-V, and assuming that ω, perfectly tracks ωd which is defined by (5.66),

then UAM-V position asymptotically converges to the desired position pd.

Proof. Since the theorem assumes that ω, perfectly tracks ωd, therefore z4 = 0 which

implies ż4 = ω̇ − ω̇d = 0. This reduces the (5.78) to

V̇4b = −k1∥z1∥2 − k2∥z2∥2 − k3∥z3∥2 − kω∥zω∥2 − kψ1z
2
ψ1

− kψ2z
2
ψ2

which is negative semi-definite. Using Barbalat’s lemma, we can find that â, df and

u are bounded and the vector [zT1 , z
T
2 , z

T
3 , z

T
ω ] is asymptotically stable at origin.

Let us now consider the convergence of z4 defined above. Let us recall the

definitions of Jv, J̃v, Ĵv and the derivation of (5.26) from Section 5.2, which is re-

written below

Jż4 = −(Φ(ω) + Ψ(ω̇d))(Ĵv + J̃v) + τq + d̂τ + d̃τ (5.80)

Let Ĵv ∈ R6 be the estimate of Jv, then estimation error is defined as J̃v = Jv − Ĵv.

Consider the following Lyapunov function

V4c =
1

2
zT4 Jz4 +

1

2
J̃Tv Γ

−1J̃v +
1

2kdτ
d̃Tτ d̃τ (5.81)

Its time-derivative is given by

V̇4c = zT4 Jż4 + J̃Tv Γ
−1 ˙̃Jv +

1

kdτ
d̃Tτ

˙̃
dτ

substituting (5.80) and using ˙̃Jv = − ˙̂
Jv and

˙̃
dτ = − ˙̂

dτ due to the constant assump-

tion on J and dη, we have

V̇4c = zT4
(
− (Φ(ω) + Ψ(ω̇d))(Ĵv + J̃v) + τq + d̂τ + d̃τ

)
− J̃Tv Γ

−1 ˙̂
Jv −

1

kdτ
d̃Tτ

˙̂
dτ

Adding and subtracting k4z
T
4 z4, and substituting Jv = Ĵv + J̃v

V̇4c =− k4∥z4∥2 + zT4
(
k4z4 − (Φ(ω) + Ψ(ω̇d))(Ĵv + J̃v) + τq + d̂τ + d̃τ

)
− J̃Tv Γ

−1 ˙̂
Jv −

1

kdτ
d̃Tτ

˙̂
dτ

(5.82)

Consider the following torque input

τq = −k4z4 + (Φ(ω) + Ψ(ω̇d))Ĵv − d̂τ (5.83)
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along with the adaptation laws for estimation of unknowns are given below

˙̂
Jv = −Γ(ΦT (ω) + ΨT (ω̇d))z4 (5.84a)

˙̂
dτ = −kdτ z4 (5.84b)

substituting them in (5.82), we get

V̇4c = −k4∥z4∥2 (5.85)

Theorem 5.4.2. Consider the angular velocity dynamics of a UAM-V (5.1d) under

the assumption that ḋτ = 0 and J̇v = 0, with a smooth time-varying trajectory

consisting of {ωd(t), ω̇d(t)} given by (5.67),(5.68) and (5.75). If the UAM-V torques

are selected according to (5.83), while the estimates d̂τ and Ĵv are given by the

adaptive laws in (5.84), then the tracking error z4 = ω− ωd is asymptotically stable

at origin while the estimates d̂τ and Ĵv and bounded.

Proof. Consider the Lyapunov function V4c in (5.81) which is a positive definite

function and its derivative after substitution of control and adaptation laws, given

in (5.85), is semi-negative definite due to absence d̃τ and J̃v term in V̇4c. However,

using Barbalat’s lemma, we conclude that z4 → 0 as t→ ∞ while the estimates d̂τ

and Ĵv are bounded.

Remark 4. It is worth noting that z4 has some level of redundancy with respect to

zω. However, they are both needed in this design. We saw in the previous control

design in this chapter that we can select ωd at z3 level in (5.16) to avoid zω, and

directly jump to z4. However, at z4 level of the backstepping, we need to know ω̇d,

which, if we want to avoid obtaining numerically, will again introduce unknown

terms d̃f as they show up in (5.58). Therefore, the solution is to obtain ω̇d after

going to the level of zω and cancelling unknown terms and then integrate ω̇d to get

ωd. Also, another consideration would be to substitute (5.1d) in (5.79) and design

for τq. This would significantly complicate the control design due to the introduction

of J−1 with input τq and S(ω)Jω which can no longer be written into the affine form

i.e.,Φ(ω)Jv, leaving adaptive control technique inapplicable.

Remark 5. We notice that this approach, somewhat similar to the inner-outer

loop design presented in the previous chapter, considers a perfect tracking for ω

i.e., z4 = 0 in Theorem 5.4.1, which is later shown to be asymptotically stable in

Theorem 5.4.2. Also, it assumes the angular velocity dynamics separately from the

linear dynamics. However, it eliminates the need to take numerical derivative of

UAM-V attitude reference trajectory ηd(t) which is needed up to second derivative

in case of inner-outer loop control design i.e., η̇d(t), η̈d(t) and the need to obtain

127



one numerical derivative ω̇d(t) as required in the approach used in Theorem 5.2.1,

presented earlier in this chapter.

5.5 Simulation Results

Similar to Chapter 4, we perform simulation to test the effectiveness of the proposed

methodologies. We again use the Simscape Multi-body environment with exact

same model and its governing parameters and a 2-DOF robotic arm as descried in

Section 4.4. We use exact same simulation scenarios as discussed in Section 4.4,

i.e., figure-8 trajectory tracking for with a fixed arm, moving arm and a pick and

place application. In addition to the coupling forces and torques due to the arm, we

consider constant external disturbances acting on the UAM-V i.e., τext,p = τext,η =

[0.3, 0.3, 0.3]T . The model parameters and initial conditions are given in Section 4.4.

The control gains used for this approach are lower and provided in Table 5.1.

Table 5.1: Control Gains

Parameter Value Parameter Value

k1 0.4 k2 0.5
k3 0.5 k4 7
kdf 1 λ 3

Γ 0.001 kdτ 5
kψ1 1 kψ2 1

We performed simulation, for each of the control approaches presented in Sec-

tion 5.1 and 5.4. However, for the same UAM-V and arm trajectory, model param-

eters, initial conditions, and control gains, there is no noticeable difference between

the simulation results of two approaches. This is because both the approaches have

a similar theory with the main difference in the method of obtaining ω̇d the term

used in the torque controller. To be precise, the simulation results presented below

are obtained using the Modified Control approach presented in Section 5.4.

The simulation results for the case where the arm is fixed are given in Fig-

ures 5.2-5.9. The position tracking errors shown in Figure 5.3 converge to a small

neighbourhood around origin as time goes to infinity. The estimates for UAM-V

mass admittance a, force disturbance df , inertia Jv and torque disturbance dτ shown

in Figures 5.4, 5.6 and 5.5, respectively, are bounded predicted by theory. The plot

of 3D position in Figure 5.8 gives an overall picture of the tracking performance of

the proposed control algorithm.

The detailed plots in case of figure-8 trajectory for UAM-V with moving arm

are given in Figures 5.10-5.17. The position errors shown in Figure 5.11 exhibit
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Figure 5.2: UAM-V pose in case of a fixed arm i.e.,α1 = α2 = 0
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Figure 5.3: Position tracking errors in case of a fixed arm.
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Figure 5.4: Estimates for force disturbance df and mass admittance a in case of a
fixed arm.
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Figure 5.5: Estimates for torque disturbance dτ in case of a fixed arm.
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Figure 5.6: Estimate for Inertia matrix J in case of a fixed arm.
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Figure 5.7: UAM-V inputs in case of a fixed arm.
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Figure 5.8: 3D UAM-V position in case of a fixed arm.
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Figure 5.9: 2D UAM-V position in case of a fixed arm.
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small oscillations close to origin. The plots in Figures 5.12, 5.13 and 5.14 show that

estimated parameters and disturbances are bounded.
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Figure 5.10: UAM-V pose in case of a moving arm.
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Figure 5.11: Position tracking errors in case of a moving arm.

Similar to the previous chapter, we now present the results for a practical ap-

plication where a Quadrotor flies to a target, extends its arm, picks up the mass

and then flies to another location and places a mass at the desired location. Pick

and place trajectory, parameters and initial conditions are given in Section 4.4. The

desired and reference values of UAM-V pose are shown in Figure 4.26 while the

position errors are given in Figure 4.27 with labelling for each phase. It is evident

that the tracking errors are convergent for the UAM-V tracking
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Figure 5.12: Estimates for df and a in case of a moving arm.
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Figure 5.13: Estimates for torque disturbance dτ in case of a moving arm.
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Figure 5.14: Estimate for Inertia matrix J in case of a moving arm.
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Figure 5.15: UAM-V inputs in case of a moving arm.
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Figure 5.16: 3D UAM-V position in case of a moving arm.
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Figure 5.17: 2D UAM-V position in case of a moving arm.
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Figure 5.18: UAM-V pose for a pick and place application.

Figure 5.19: Position errors for pick and place application.
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5.6 Simulation Comparison with Other Methods

This section compares different approaches by selecting similar controller gains for

each approach and testing their performance for a figure-8 as desired trajectory (DT)

with a continuously moving arm. This compares the performance of the proposed

Inner-outer loop Adaptive Backstepping Control (IOABSC) approach presented in

the previous chapter and the closed-loop Adaptive Backstepping Control (ABSC)

presented in this chapter with another approach from the literature. All these

approaches are backstepping based and test the control performance in the presence

of unknown time-varying forces and torques acting on the UAM-V due to the arm,

an unknown mass and unknown time-varying inertia of the UAM system.

First, we set a benchmark using a simple backstepping control approach where

all parameters and disturbances are perfectly known and included in the controller

for compensation. We call it All Known Backstepping Control (AKBSC). Its 2D

position plot is shown in Figure 5.20a. Next, we consider the same approach, but we

consider a time-varying disturbance applied to the system without compensating it

in the controller. We call this controller Unknown Disturbance Backstepping Control

(UDBSC). Its 2D plot is shown in Figure 5.20b which is unstable for any practical

use. From Figure 5.21, although its absolute position error remains in a bounded

region, the region is too large that it is even bigger than the whole flight envelope

of the desired trajectory. This shows what it could lead to if arm motion is not

compensated in the control design.

Next, we consider that the disturbance is observed and compensated in the con-

troller. However, the parameters are considered unknown. We use the Disturbance

observer-based backstepping control (DOBSC) approach from [1] without the con-

sideration that a robot arm is attached to the system. That means we use UAM-V

mass instead of the complete UAM in the controller, which has a 15% error with

respect to the actual mass of the UAM. Also, the inertia used in the controller has a

10% error from the nominal value of UAM inertia which is a time-varying quantity

when the arm is moving. The resulting 2D position plot is shown in Figure 5.20c.

We also compare the Inner-outer loop control approach presented in Chapter 4

and label it as Inner-outer loop adaptive Backstepping Control (IOABSC). The

non-cascade approach presented in this chapter, which considers the dynamics of

the UAM-V as a whole, is labelled as Adaptive Backstepping Control (ABSC) in

the following figures. As mentioned earlier, we use the same initial conditions and

controller gains for all these approaches, which are given in Table 3.3. For perfor-

mance comparison, we use 2D plots for all approaches are shown in Figure 5.20 as

well as the sum of the absolute values of tracking errors of the individual position

coordinates, which are plotted in Figure 5.21. It is clear that ABSC performs better

than the other approaches in the presence of parameter variation and time-varying
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forces and torques acting on the UAM-V due to arm motion.

5.7 Conclusion

In this chapter, we have presented a control approach for a time-varying trajec-

tory tracking of UAM-V position and yaw, which considers the entire dynamics of

the UAM-V and directly provides thrust and torque inputs. A Lyapunov stability

analysis guarantees the global asymptotic convergence of position errors at origin

and local asymptotic convergence for yaw tracking error. We analyzed the approach

and discussed the difficulty due to an algebraic derivative of a reference to a vir-

tual control term in the backstepping process. We modified the approach to obtain

the derivative algebraically, which results in a control design similar to the inner-

outer loop control approach presented in Chapter 4 i.e., it provides a reference to be

tracked by the angular velocity of the UAM-V and makes a perfect tracking assump-

tion for the stability of the UAM-V position. However, in contrast to the inner-outer

loop control approach, or the earlier approach presented in Section 5.1, it does not

require taking any of the numerical derivatives. Simulations test the proposed ap-

proach on a UAM system for three scenarios i.e., figure-8 trajectory tracking with

fixed arm, moving arm, and an object pick and place scenario. We also compare the

simulations for five backstepping control designs based on the accommodations for

unknown parameters and disturbances in control. We conclude that the approach

presented in this chapter performs well for tracking a time-varying trajectory with

a moving robot arm attached to the UAM-V.
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(b) Simple backstepping with known param-
eters but unknown time-varying disturbance
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(c) Backstepping with disturbance observer
[1] but unknown parameters
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(d) Inner-outer loop Adaptive for unknown
parameters and disturbances from Chapter 4
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Figure 5.20: 2D position plots for a figure-8 trajectory
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Chapter 6

Conclusion

6.1 Summary and Conclusion

In this text, nonlinear and adaptive control has been used to develop new motion

control algorithms for Unmanned Aerial Vehicles (UAVs). Specifically, a control

design for Visual Servoing of a Camera equipped UAV for line following and two

control designs for motion control of Unmanned Aerial Manipulators (UAMs) have

been presented. The proposed approaches have been tested in simulation or exper-

imentally to gauge their effectiveness.

This document opened with a thorough literature survey on Visual Servoing and

UAVs. The context, purpose and application of the research presented in this thesis

are outlined. After a detailed introduction, essential hardware and software aspects

of a Quadrotor UAV have been detailed. In particular, the ANCL Quadrotor plat-

forms that have been assembled, built and maintained during this Ph.D. have been

described. After describing the physical platforms, the model of the quadrotor UAV

was presented. Since the visual servoing approach uses a camera as a sensor, the

pinhole camera model is employed to model the relation between a 3D point in

space and its projection on a 2D image plane. A similar relationship for a 3D line

is stated. Since the relative motion between the camera and a 3D object in space

is reflected in the form of motion of its 2D projection in the image plane, the point

motion kinematics in the image plane are derived in terms of the camera velocity. A

line comprises points; therefore, the point motion kinematics are used to derive the

line motion kinematics in the image plane. Since the angular motion of the camera

results in a perspective projection of the target, the resulting line kinematics depend

upon angular velocity in addition to their evident dependence on the translational

velocity. This coupling of translational and rotational dynamics complicates control

design. The problem is decoupled using a virtual camera frame. The line kinematics

are re-derived in the virtual image plane, and the resulting line kinematics becomes

independent of angular velocity. The line parameters measured in the image plane
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are mathematically combined to define meaningful quantities related to the height,

lateral distance and angle with target lines. These mathematical expressions called

image moment features are expressed in the virtual camera frame. The image mo-

ment feature kinematics for lines (or simply line feature kinematics) depend on the

camera velocity. Since the camera is rigidly attached to the UAV, the camera’s

velocity is, in fact, the velocity of the UAV. The line feature kinematics are then

combined with the UAV dynamics to form the mathematical model used to derive

a dynamic image-based visual servoing control.

An output feedback visual servoing control is designed for a linear target using

the line feature kinematics. Due to the dynamic coupling of the line feature kine-

matics with the UAV through the camera velocity, UAV thrust and attitude are

designed to directly control the feature error defined in the image plane. A hori-

zontal target consisting of more than one line is considered, which is viewed by a

downward-facing camera on the UAV.

The proposed IBVS has a number of important features. First, to make the

UAV flyable in a GPS-denied environment, the UAV linear velocity is estimated

from the feature errors. Second, the effect of a constant sensor bias is considered

in the design and a constant external disturbance, such as wind, is also considered.

Third, the control design is made robust against the variation of mass, which could

change due to the addition of an unknown payload e.g., a sensor. Fourth, the design

is also robust against changes in the thrust constant that depends on the battery

voltage and results in reducing the vertical actuation of the UAV with the decrease

in battery voltage during the flight. Lastly, the proposed design is robust to the

changes in camera focal length.

The proposed controller for thrust and the references for UAV roll and pitch

exponentially stabilize the feature and estimation errors. The proof uses a Lyapunov

function analysis and LaSalle’s invariance principle. Since inspection applications do

not require acrobatic maneuvers, a small angle assumption simplifies the inner-loop

control design. Also, a symmetric UAV body is considered, resulting in the inertia

matrix that can be assumed diagonal. A controller similar to PID has been proposed

for the inner-loop to provide UAV torques. The closed-loop stability of the complete

system controlled by separate inner and outer loop controls is also considered. The

exponential stability of the system is shown using the converse Lyapunov theorem

in the stability analysis.

Both simulation and experiments have been performed to evaluate the effective-

ness of the proposed controller. Computer simulations verify the theory and show

exponential convergence of feature and estimation errors. Experiments have been

performed using the ANCLQ 2.0 platform, where image processing to obtain fea-

tures has been implemented in the onboard companion computer using ROS and
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OpenCV, while the inner and outer controls are implemented on the flight controller.

The performance of control is tested for a straight line as well as a line with a turn.

The experiments show satisfactory performance in both cases.

Work on motion control of UAMs has also been presented in this thesis. A model

of a UAM consisting of a multi-DOF robotic arm attached to a quadrotor UAV has

been derived using the Euler-Lagrange approach. Unlike other models presented in

the literature, the presented model preserves the vector or matrix representations

i.e., vectors for position, attitude and velocities, and matrices for rotation or Jaco-

bians in kinematic relationships are preserved. This provides a better understanding

of the UAM model and allows identifying the effects of arm motion on the UAV and

vice versa. The model is further analyzed and written in the structure of a nominal

UAV model. The changes in UAM parameters and the coupling forces and torques

exerted on the UAV due to the arm are identified. The forces and torques are also

segregated and written as additive terms.

The important problem of “pick and place” involving aerial manipulation is

considered in this thesis. Since a UAM system model is highly complicated and

harder to control, a decentralized approach is used where the UAM model is divided

into a UAV and an arm subsystem. The focus is kept on designing the controller

for motion control of the UAV subsystem. Therefore, the UAV subsystem from the

UAMmodel is further analyzed for the “pick and place” problem to make simplifying

assumptions. It is concluded that the inertia matrix, forces and torques acting on

the UAV subsystem model are either slowly varying or constant during most of the

“pick and plane” operation and can be considered as constants in the control design

process. This constant assumption allows the application of adaptive control in

estimating these parameters, forces and torques.

The goal of the control design is to make the UAV position and heading track a

time-varying trajectory in the presence of slowly varying parameters, disturbances

and torques. Therefore, an adaptive control approach is proposed, considering only

the states of the UAV subsystem are known while all system parameters, including

mass and inertia matrix and forces and torques acting on the UAV, are unknown.

Moreover, contrary to the common practice of taking inertia as a diagonal matrix

found in literature, the full inertia matrix with all diagonal terms is considered.

This is fundamentally important in the case of a UAM, where the attachment of a

robot arm results in a shift in the UAM centre of mass. A UAV’s inertia could be

diagonal due to a symmetrical frame; however, a UAM due to its arm is generally

not symmetric. Hence its inertia can not be generalized as a diagonal matrix.

Two adaptive nonlinear control approaches based on the backstepping design

method are proposed for motion control of the UAM using the simplified dynamics

of its UAV subsystem. The first approach considers an inner-outer loop structure
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for controlling the UAV, where translational and rotational dynamics are treated

separately. An outer-loop controller is designed to track a position trajectory, which

provides mass and force disturbance estimates and the UAV thrust input and the

reference values for roll and pitch angles. These references for roll and pitch, along

with the desired heading from the user, serve as desired reference trajectories for

UAV attitude. An inner-loop controller is designed for attitude tracking that pro-

vides estimates for the full inertia matrix and the torque disturbance along with the

torque inputs of the UAV.

The tracking errors for the individual inner and outer loops are shown to be

asymptotically stable at the origin using Lyapunov stability theory. Also, the pa-

rameter estimates are shown to be bounded. Simulation in the Simscape Multibody

simulation environment has been performed to test the effectiveness of the proposed

approach. Three different scenarios have been considered for simulation. First, a

UAM system with the arm hanging straight down with its joint locked to zero angles

is considered. Here the forces and torques acting on the UAV due to the arm, al-

though time-varying, are very small, and a fast asymptotic convergence can be seen.

In the second scenario, the arm continuously moves with its first link oscillating and

the second link revolving. This results in time-varying inertia, forces and torques

acting on the UAV and tests the control performance. In both these scenarios, the

UAV position tracks a figure-8 trajectory.

The third simulation scenario is a ‘pick and place’ operation, where the UAM

starts with a non-zero error in the initial condition. It controls its position to reach

the desired reference location and extends its arm to pick an object. After picking

the object, it retracts the arm and follows a time-varying trajectory to reach a new

location. At the new location, it places the object using the same arm extension and

retraction sequence and then returns to the origin. This tests the effectiveness of the

proposed pose tracking control approach for a practical application. The simulation

results show that tracking error is convergent in the case of figure-8 trajectory with

fixed arm and the pick and place application, while it is bounded in case of figure-8

trajectory with moving arm.

The inner-outer loop control does not analyze the complete close loop stability;

therefore, the second approach is geared towards removing this gap. Again, an

adaptive backstepping-based approach is considered. In contrast to the inner-outer

loop, this approach deals with the complete dynamics of the UAV subsystem at once

and designs the UAV thrust and torques to track a time-varying position trajectory.

In addition, it considers the full rotation matrix in the dynamics of the UAV instead

of Euler angles and prevents the gimbal lock singularity at least in the position

control. However, to complete the UAV’s pose tracking, a yaw tracking control is

introduced using Euler angles due to their intuitive understanding; the yaw itself is
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an Euler angle and simple design.

The stability of the proposed control is proved using the Lyapunov theory, and

the pose tracking errors are proved to be asymptotically stable at the origin. At

the same time, the parameter estimations are shown to be bounded. However, this

approach requires a derivative of a virtual control expression. The virtual control

expression originates from the third level of the backstepping procedure when the

UAV’s angular velocity is considered as virtual control. Taking its algebraic deriva-

tive results in the reappearance of unknown parameters in the stability analysis

and coupling between the unknown parameters that prevents deriving the adaptive

parameter estimation laws. Therefore, a numerical derivative is recommended.

A numerical derivative could lead to noise amplification or result in singular-

ity when a discontinuity is present in the reference variable. Therefore, the above

approach may not be suitable where position, velocity or rotation estimates have

significant noise or discontinuity in the reference. Another version of the approach is

presented to resolve this, where a backstepping process is continued until the deriva-

tive of angular velocity shows up. The derivative of angular velocity is selected as

a virtual control, and the expression of this virtual control is integrated to obtain

a virtual control expression for angular velocity. However, this approach makes

the design structure similar to inner-outer loop control and assumes perfect angu-

lar velocity tracking. Despite this structure, the approach is still better than the

inner-outer loop approach, requiring taking two derivatives of the attitude reference

trajectory. In contrast, this approach does not require taking any derivatives.

Similar to the inner-outer loop simulations, this approach is tested for three

scenarios, two involving figure-8 trajectory with a fixed arm and a moving arm, and

the third for a ‘pick and place application. The simulation results show asymptotic

stability of the tracking error in the case of a fixed arm, bounded error in the case

of a time-varying arm motion, and asymptotic stability in the case of pick and

place operation. Also, the simulation results in the case of a figure-8 trajectory and

moving arm are compared with those of the inner-outer loop approach and other

approaches in the literature. The results show that this approach performs better

than other approaches in the case of a time-varying trajectory for both the UAV

and the arm.

6.2 Limitations and Future Work

In the case of Visual Servoing for a line following case, a horizontal planar horizontal

target is assumed. However, in reality, the target may not be horizontal or planar,

e.g., a section of a pipeline at a 45-degree angle with respect to the ground. This

assumption could be removed in future work by taking into account the perspective
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projection of lines on the image, when the roll and pitch of the UAV are perfectly

zero. The camera field of view is an essential constraint of the proposed visual ser-

voing approach. The approach may fail when the target moves outside the camera’s

field of view because the vision system could only detect the target if it is present

in the image. This problem can be addressed in the future by using an artificial

intelligence-based supervisory of the control that could undo a control action that

resulted in a target location outside the camera’s field of view.

The proposed approach only estimates the lateral velocity with respect to a

line’s target, while the user manually adjusts the velocity along the lines by select-

ing the appropriate pitch of the UAV. This limitation could be removed using an

optical flow sensor to estimate the velocity along the line using the texture or vege-

tation in the background. An alternate approach could be to fuse the accelerometer

measurements with known distances between features of a target detectable by a

camera, e.g., , joints between pipes of known length in case of a pipeline or distances

between the transmission line towers. The visual servoing control makes a small

angle assumption in the inner-loop control design; this assumption guarantees only

the local exponential stability. This assumption could be removed, and a better

control could be designed with global stability. The experimental validation of this

approach is only done in a lab environment using lines made up of points. The

experimental evaluation can also be improved in future work, and it can be tested

on a real transmission line or a pipeline.

A fundamental limitation of the UAM control using the decentralized structure is

the assumption that time-varying forces and torques acting on the UAV due to arm

motion are considered constants. This assumption is required in adaptive control,

which results in bounded errors in the case of time-varying forces and torques. The

assumption is practically valid for a lighter load and a slowly moving arm. A fast-

moving arm with a heavy load could have large variations in disturbances and inertia,

which could make the practical stability of the system futile. However, a control

design resulting in asymptotic convergence for time-varying disturbances could be

explored in future work for acrobatic flight and fast manipulation tasks. The inner-

outer loop control approach presented only considers the stability of inner and outer

loops individually, while the outer-loop assumes perfect inner-loop tracking. This

assumption could be removed in future work, and the closed-loop stability of the

system when the inner and outer loops are acting together could be analyzed.

Another limitation of the inner-outer loop control design is that the inner-loop

control requires a second derivative of the reference attitude trajectory. Since the

outer-loop provides the attitude reference, the attitude reference depends upon the

measured UAV position and velocity. If the position or the velocity measurement is

noisy, the resulting attitude reference from the outer-loop has noise. The first and
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second derivatives of the attitude reference would amplify the noise. Therefore, a

low pass filter is used in series with each derivative to reduce the noise. However, it

is not considered in the control design. The dynamics of the low pass filter should

be included in the model in future work. Also, the inner-loop implementation is

based on attitude expressed in Euler angles, which involve the gimbal lock problem.

In future, this could be removed by using unit quaternions instead of Euler angles.

The closed-loop design that considers the full UAV subsystem dynamics at once

addresses some limitations of the inner-outer loop control. However, it still requires

one derivative of the reference of virtual angular velocity. This has been modified

to remove the derivative requirement. However, the resulting control approach is

similar to the inner-outer loop approach. This could be further addressed in future

work where complete closed-loop stability is proved without the need for numerical

derivatives. This control also assumes the UAV thrust and mass admittance are

greater than zero. Although it has been experimentally tested that these parameters

estimates remain positive even for aggressive trajectories, there is no theory to

support it. The stability dynamics should be analyzed to confirm their maximum

and minimum possible values. Although gimbal lock is prevented in the position

tracking control, the yaw control is based on Euler angles, which could again result in

gimbal lock. In future work, the yaw control could be replaced with unit quaternions.

The effects of UAV motion on the arm have not been addressed, and only a

simple PID controller is used to control the arm motion in simulations. This could

be replaced with a more sophisticated control, or a similar controller could be de-

signed for arm motion. The closed-loop stability of the decentralized control can

be evaluated in future work. Also, the contact dynamics of the UAM during an

interaction are neither considered in theory nor implemented in simulations. Future

work includes the study of contact dynamics and impedance-based force/torque con-

trol. Lastly, the UAM control has only been tested through simulations. The future

work involves its implementation on the ANCLQ 3.0 quadrotor platform using a 3D

printed robotic arm.
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