
University of Alberta

Application o f spectral mixture analysis to hyperspectral imagery for lithological mapping

by

Derek M. Rogge

A thesis submitted to the Faculty of Graduate Studies and Research 
in partial fulfillment of the requirements for the degree of

Doctor o f  Philosophy

Department o f  Earth and Atmospheric Sciences

Edmonton, Alberta 
Spring, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-29729-2 
Our file Notre reference 
ISBN: 978-0-494-29729-2

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Library Release Form

Name of Author: Derek Michael Rogge

Title of Thesis: Application of spectral mixture analysis to hyperspectral imagery 
for lithological mapping

Degree: Doctor of Philosophy

Year this Degree Granted: 2007

Permission is hereby granted to the University of Alberta Library to reproduce single 
copies of this thesis and to lend or sell such copies for private, scholarly or scientific 
research purposes only.

The author reserves all other publication and other rights in association with the 
copyright in the thesis, and except as herein before provided, neither the thesis nor any 
substantial portion thereof may be printed or otherwise reproduced in any material form 
whatsoever without the author's prior written permission.

Signature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Hyperspectral reconnaissance mapping methods have become attractive to 

geological surveys to address the time intensive process of producing regional geological 

maps for Arctic regions. These sensors can discriminate spectral features associated with 

common rock-forming and alteration minerals. Three topics relevant to the analysis of 

such data are addressed in this thesis: 1) image endmember extraction; 2) spectral 

mixture analysis (SMA); and, 3) generation of a predictive lithological map.

Most of the previous work that deals with image endmember extraction 

discriminates between pixels using spectral characteristics alone, ignoring their spatial 

characteristics. High contrast endmembers are easy to identify, whereas low contrast 

endmembers are more problematic. Improving the potential for identification of low 

contrast endmembers can be accomplished by analyzing a scene using spatial subsets, 

thus, taking advantage of the relative spectral contrast between endmembers within a 

given subset region. Spatial spectral endmember extraction (SSEE) was applied to 

hyperspectral data and successfully extracted physically significant low contrast 

endmembers that were not selected by other well known spectral-based methods.

Fractional abundances predicted for a given pixel using SMA are most accurate 

when only the endmembers that comprise it are used, with larger errors occurring if 

inappropriate endmembers are included in the mixing process. To address this problem 

an iterative implementation of SMA (ISMA) was developed to optimize per-pixel 

endmember sets. ISMA was tested using simulated data with results showing lower 

abundance errors compared with that of published unmixing methods. ISMA was also
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effective at obtaining abundance fractions that are physically realistic for a real 

hyperspectral data set.

A remote predictive lithological map was generated for an area in southern Baffin 

Island, which comprises a diverse selection of rock types and represents a typical arctic 

environment with extensive lichen cover. This was accomplished by applying SSEE and 

ISMA to generate fractional abundance maps, which were subsequently combined into a 

single map. The predictive map correlates well with the existing published map, 

including more extensive exposures of potentially economic peridotite and carbonate 

units. This work also showed that lichen-rock mixtures could be used to map 

quartzofeldspathic units that have thick lichen coatings.
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CHAPTER 1 
INTRODUCTION

1.1 Thesis goal and objectives
The main goal of my research is to advance the analysis of hyperspectral imaging 

data for lithological identification and mapping in the Canadian Arctic. The research 
objectives focus on methodological limitations relating to spectral unmixing and image 
endmember extraction; and, the process of generating a predictive lithological map. This 
research, although focusing on regional lithological mapping in the Arctic, should also be 
beneficial to mineral exploration, land cover surveys, environmental monitoring, and 
forestry.

1.2 Background
The use of remotely sensed data for lithological mapping is not new. Data types 

used include air photos, airborne electro-magnetic, synthetic aperture radar, radiometric, 
and reflectance and thermal imagery. With respect to reflectance imagery (~ 400 -  2500 
ran), multi-spectral systems have been in use since the early 1980’s (e.g. Podwysocki et 
al., 1983; Smith et al., 1985; Sultan et al., 1987; Griffiths et al., 1987; Kaufmann, 1988; 
and Loughlin, 1991). These systems comprise a limited number of broad spectral 
channels, which can only be used to distinguish between broad lithological units (e.g. fe- 
rich and fe-poor) using simple analysis methods, such as band ratios (Sabins, 1999). 
However, identifying specific minerals or rock types is not possible with the limited 
spectral information available with these types of sensors. Unlike multispectral sensors, 
such as the Landsat TM satellite which has 7 broad spectral bands, hyperspectral sensors 
collect data over hundreds of contiguous channels with spectral resolution on the order of 
10-20 ran. This allows for a greater ability to identify specific spectral features, such as 
absorption features associated with particular elements or molecules (e.g. Fe2+, Fe3+, Cr3+, 
Ti4+, H20 , OH, Al-OH, Mg-OH, Fe-OH, CO3 , HSO4) found in common rock-forming 
minerals (Figure 1.1) (e.g. Hunt, 1977; Clark et al., 1990; Vitorello and Galvao, 1996). 
Hyperspectral systems are becoming increasingly available for lithological mapping, 
where potential cost savings, large aerial coverage, and relatively quick map production, 
make the data particularly attractive.

Lithological mapping methods using hyperspectral data include unsupervised 
classification (e.g. ISO Data and K-means clustering), supervised classification (e.g. 
minimum distance, parallelepiped, maximum likelihood), neural networks, spectral angle, 
and spectral mixture analysis (SMA) (Richards, 1999). These mapping methods, 
excluding SMA, analyze each pixel and assign it to a single class based on a set of 
criteria. Such approaches are useful for determining the dominant per-pixel land cover 
type. However, from a lithological mapping perspective locating all pixels that contain 
rock, regardless o f  the amount, is critical to producing accurate lithological maps. For 
this reason the above methods can adversely result in large areas of a classified image 
showing no lithological information. To get around this problem the analysis must focus 
on obtaining information at a scale below that of a pixel footprint, which is possible with 
SMA.
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Figure 1.1 Examples of absorption features for common rock forming minerals in the 
500 -  2500 nm range of the electromagnetic spectrum. Mineral spectra taken from the 
USGS spectral library (Clark et al., 1993).

The ability of SMA (Adams et al., 1986; Adams et al., 1993) to obtain sub-pixel 
information is possible owing to the common characteristic of spectral mixing found in 
remote sensing data. Spectral mixing, which is caused by the combined measured 
reflectance of components within the sensors field of view, results in few image pixels 
containing "pure" spectra (Settle, 1993). SMA addresses the problem of spectral mixing 
by deconvolving each pixel spectra into abundance fractions of its surface constituent 
components, or end member spectra. This approach allows the user to obtain 
approximate proportions of certain surface components (e.g. rock units) for each pixel 
and generate a classified image for those surface components. Examples of SMA for 
lithological mapping can be found in studies by Mustard and Pieters (1987), Kruse et al 
(1990), Zmudio and Atkinson (1990), Blount et al (1990), Murphy (1995), Bierwirth et al 
(1999), Asner and Heidebrecht (2002), and Neville et al. (2003).

To obtain accurate sub-pixel fractional abundances, SMA requires a set of 
endmember spectra that are representative of the various surface components within the 
given scene. Endmembers can be taken from existing spectral libraries, acquired in the 
field, or extracted from the image itself. Image endmembers are commonly used because 
they have the advantage of being directly associated with surface components within the 
scene, whereas available field spectra are not necessarily acquired under the same 
conditions as airborne or satellite image data and important surface components may not 
be represented. For this reason much work has been presented in the literature with 
respect to extracting image endmembers (e.g. Boardman et al., 1995; Bateson and 
Curtiss, 1996; Winter, 1999; Bowles et al., 1995; Ifarraguerri and Chang, 1999; Neville et 
al., 1999; Plaza et al., 2002; Berman, et al., 2004; Nascimento and Dias, 2005; Chang and 
Plaza, 2006). Many of these approaches focus on convex geometry, where endmembers

2
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represent the vertices of a simplex in n-dimensional space. These endmember spectra 
may represent “pure” materials, or they may be spectra that represent a mixture at some 
more fundamental scale (Adams and Gillespie, 2006). This means that depending on the 
scale of the sensor endmembers for the same scene may vary. This has direct 
implications for lithological mapping, where the resulting fractional abundance maps 
may include endmembers that represent a mineral, a rock unit comprising several 
minerals, or a mixture of lithological and non-lithological materials such as a granite with 
partial lichen coating.

1.3 Key research avenues
The research presented in this thesis considers specific limitations of existing 

SMA algorithms and image endmember extraction tools. For SMA, the ways in which 
the algorithms use an image endmember set to unmix the pixels in an image is examined. 
For image endmember extraction, the tools presented in the literature primarily make use 
of traditional techniques in spectroscopy, which rely on the spectral domain. Thus, the 
tools ignore the inherent spatial information available within a given scene when 
searching for endmembers. Lastly, the fractional abundance maps resulting from SMA, 
although useful, are more practical for lithological mapping if they are presented in a 
format that is similar to existing lithological maps. The following gives a brief overview 
of the key research avenues identified in this thesis.

1.3.1 Spatial-spectral endmember extraction
The majority of image endmember extraction tools listed in section 1.2 search for 

endmembers independently of their spatial characteristics. For the spectral-based methods 
the ability to successfully extract endmembers hinges on the degree of spectral contrast 
between them. Thus, endmembers that are spectrally similar can be difficult to 
distinguish and may result in only one being selected, or the two being represented by a 
single averaged spectrum. This can have a negative impact on our ability to accurately 
map the distribution of geological units in a given region, specifically if the units differ 
only in small variations in mineralogy, but are significant with respect to obtaining an 
accurate geological interpretation of an area.

Chapter 2 explores how spatial information can be integrated into the search for 
endmembers. Spectral contrast can be considered variable depending on the spatial 
neighborhoods, where for each neighborhood the assemblage of endmembers may 
change. By focusing on image subsets we can take advantage of the spatial 
characteristics of each endmember, which may then result in a given endmember having 
higher spectral contrast in a specific image subset, thus facilitating its extraction. A 
spatial-spectral endmember extraction tool (SSEE) is presented in this chapter and is 
demonstrated using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene 
o f  Cuprite, Nevada, which is available free o f  charge through the United States Geologial 
Survey (USGS) website. SSEE is also demonstrated using Probe I hyperspectral data of 
an area in southern Baffin Island, which was made available by the Geological Survey of 
Canada (GSC). The resulting endmembers extracted from the Baffin cube are compared 
with two well known spectral-based extraction tools to test whether SSEE is capable of 
extracting similar endmembers, but also unique endmembers that show subtle spectral 
variability with physical significance.
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1.3.2 Iterative spectral mixture analysis
Spectral unmixing has been shown to be a useful tool for geological mapping. 

However, in many images the number of lithological and non- lithological endmembers 
can vary substantially (Gillespie, 1992) depending on the spectral complexity of a scene, 
the spatial scale, spectral resolution, and the number of bands in the image. Commonly 
this number is greater than the number of endmembers required to unmix any given pixel 
in the scene. Abundances predicted using linear SMA are most accurate when only the 
endmembers that comprise a given pixel are used, with larger abundance errors occurring 
when either too few or too many endmembers are used (Heinz and Chang, 2001; Sabol et 
al., 1992). Chapter 3 addresses this characteristic of spectral unmixing and develops a 
novel approach that optimizes per-pixel endmember sets using an iterative approach, such 
that abundance errors are reduced. The iterative spectral mixture analysis (ISMA) 
algorithm was tested on a simulated hyperspectral cube to verify the methods ability to 
improve unmixing errors compared with other published unmixing algorithms. ISMA 
was also run on the AVIRIS Cuprite data set to demonstrate that the method can also 
produce realistic abundance fractions using real hyperspectral data.

1.3.3 Predictive lithological mapping
The overall objective of this thesis is to demonstrate the usefulness of hyperspectral 

data for lithological mapping in the Arctic environment. This environment is known for 
extensive lichen cover, which presents a challenge for lithological remote mapping. 
Chapter 4 is a case study where a predictive geological map is generated for the Baffin 
Island hyperspectral cube. This study also makes use of the SSEE and ISMA algorithms 
developed in Chapters 2 and 3, to obtain an endmember set and produce fractional 
abundance maps, respectively. Combining the information from the fractional maps into 
a single map that is similar to traditional lithological maps is a more practical approach 
for predictive mapping. The focus of Chapter 4 is: 1) the development of a methodology 
to generate a predictive lithological map from fractional abundance maps; 2 ) the 
lithologic identification of the endmember spectra based on a comparison with field 
spectra and known mineral absorption features; and, 3) to showcase the economic 
potential of particular endmember distribution maps within the study area. This study is 
designed to demonstrate the useful application of hyperspectral data for lithological 
mapping in the Arctic environment, where the ability to capture the spectral diversity 
related to bedrock geology, even in the presence of lichen, can result in predictive maps 
that are comparable with the existing published maps.

1.4 Thesis outline
This thesis is presented in paper format, such that each of Chapters 2, 3, and 4 

represent stand-alone manuscripts. The titles and publication details of the three papers, 
as of the December 14th, 2006, are listed below. Chapter 2 has been submitted for 
publication and is undergoing review, but an extended abstract of this paper has been 
published and was presented at the International Association for Mathematical Geology, 
11th International Congress held in Liege, Belgium (Rogge et al., 2006). Chapter 3 has 
been published in the December, 2006, issue of IEEE Transactions on Geoscience and 
Remote Sensing. Chapter 4 has been submitted for publication and is undergoing review.
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An abstract of this work has been published and presented at the annual meeting of the 
Geological and Mineralogical Associations of Canada in Halifax, Nova Scotia (Rogge et 
al., 2005). All data processing, analysis and interpretation, and the writing of the 
chapters/papers, were my own work. The one exception was the help of Jinkai Zhang 
and Jilu Feng in writing some of the more complex parts of the IDL code necessary to 
run the algorithms. Co-authors provided critiques and editing of the manuscript drafts.

Chapter 2: Rogge, D.M., Rivard, B., Zhang, J., Harris, J., Feng, J., and A. Sanchez 
(submitted). Integration of spatial-spectral information for endmember extraction.

Chapter 3: Rogge, D.M., Rivard, B., Zhang, J., Feng, J (2006). Iterative spectral 
unmixing for optimizing per-pixel endmember sets. IEEE Transactions on Geoscience 
and Remote Sensing, 44, 3725-3736.

Chapter 4: Rogge, D.M., Rivard, B., Harris, J., and Zhang, J (submitted). Application of 
hyperspectral data for remote predictive mapping, Baffin Island, Canada, submitted to a 
special volume on Hyperspectral Remote Sensing for Economic Geology.

Chapter 5: This chapter includes a summary of the thesis, contributions and their 
significance, and suggestions for further work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5



REFERENCES

Adams, J.B., Smith, M.O., & Johnson, P.E. (1986). Spectral mixture modeling: a new 
analysis of rock and soil types at the Viking Lander 1 site. Journal o f Geophysical 
Research, 91, 8098-8112.

Adams, J.B., Smith, M.O., & Gillespie, A.R. (1993). Imaging spectroscopy: 
Interpretation based on spectral mixture analysis, In: C.M. Pieters & P.A. Englert (Eds.), 
Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge 
University Press, Cambridge, 145-166.

Adams, J.B., & Gillespie, A.R. (2006). Remote sensing o f landscapes with spectral 
images: A physical modeling approach. Cambridge University Press, New York, 362.

Asner G.P., & Heidebrecht, K.B. (2002). Spectral unmixing of vegetation, soil and dry 
carbon cover in arid regions: comparing multispectral and hyperspectral observations. 
International Journal o f Remote Sensing, 23, 3939-3958.

Bateson A., and Curtiss, B. (1996). A method for manual endmember selection and 
spectral unmixing. Remote Sensing o f Environment, 55, 229-243.

Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., & Huntington, J.F. (2004). 
ICE: A statistical approach to identifying endmembers in hyperspectral images. IEEE 
Transactions on Geoscience and Remote Sensing, 42, 2085-2095.

Bierwirth, P., Huston, D., & Blewett, R. (2002). Hyperspectral mapping of mineral 
assemblages associated with gold mineralization in the Central Pilbara, Western 
Australia. Economic Geology, 97, 819-826.

Blount, G., Smith, M.O., Adams, J.B., Greeley, R., & Christensen, P. R. (1990). Regional 
Aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat 
Thematic Mapper images. Journal o f Geophysical Research, 95, 15463-15482.

Boardman, J.W. (1993). Automating spectral unmixing of AVIRIS data using convex 
geometry concepts. Summaries o f the fourth Annual JPL airborne Geoscience Workshop, 
JPL Publication 93-26, 1, 11-14.

Bowles, J., Palmadesso, P.J., Antoniades, J.A., Baumback, M.M., & Rickard, L.J. (1995). 
Use of filter vectors in hyperspectral data analysis. Proceedings SPIE Infrared 
Spaceborne Rem ote Sensing III, 148-157.

Chang, C-I., & Plaza, A. (2006). A fast iterative algorithm for implementation of Pixel 
Purity Index. IEEE Transactions on Geoscience and Remote Sensing Letters, 3, 63-67.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Clark, R.N., King, T.V.V., Klejwa, M., & Swayze, G.A. (1990). High spectral resolution 
reflectance spectroscopy of minerals. Journal o f Geophysical Research, 95, 12653- 
12680.

Clark, R.N., Swayze, G.A., Gallagher, A.J., King, T.V.V., & Calvin, W.M. (1993). The 
U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns. U.S. 
Geological Survey, Open File Report 93-592.

Gillespie, A.R. (1992). Spectral mixture analysis of multispectral thermal infrared 
images. Remote Sensing o f Environment, 42, 137-145.

Griffiths, P.S., Curtis, P.A.S., Fadul, S.E.A., & Scholes P.D. (1987). Reconnaissance 
geological mapping and mineral exploration in northern Sudan using satellite remote 
sensing. Geology Journal, 22, 225-249.

Heinz, D.C., & Chang, C-I. (2001). Fully constrained least squares linear spectral mixture 
analysis method for material quantification in hyperspectral imagery. IEEE Transactions 
on Geoscience and Remote Sensing, 39, 529-545.

Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near 
infrared. Geophysics, 42, 501-513.

Ifarraguerri, A., & Chang, C-I. (1999). Multispectral and hyperspectral image analysis 
with convex cones. IEEE Transactions on Geoscience and Remote Sensing, 37, 756-770.

Kaufmann, H., (1988). Mineral exploration along the Aqaba-Levant structure by use of 
TM data; concepts, processing, and results. International Journal o f Remote Sensing, 9, 
1639-1658.

Kruse, F. A., Kierein-Young, K.S., & Boardman, J.W. (1990). Mineral mapping at 
Cuprite, Nevada with a 63 channel imaging spectrometer. Photogrammetric Engineering 
and Remote Sensing, 56, 83-92.

Loughlin, W.P. (1991). Principal component analysis for alteration mapping. 
Photogrammetric Engineering and Remote Sensing, 57, 1163-1169.

Murphy, R.J. (1995). Mapping of jasperiod in the Cedar Mountains, Utah, U.S.A., using 
imaging spectrometer data. International Journal o f Remote Sensing, 16, 1021-1041.

Mustard J.F., & Pieters, C.M. (1987). Abundance and distribution o f  ultramafic 
microbreccia in Moses Rock dike - Quantitative application of mapping spectroscopy. 
Journal o f Geophysical Research, 92, 10376-10390.

Nascimento, J.M.P., & Dias, J.M.B. (2005). Vertex component analysis: a fast algorithm 
to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 
898-910.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., & Hauff, P. (1999). Automatic 
Endmember Extraction from Hyperspectral Data for Mineral Exploration. Fourth 
International Airborne Remote Sensing Conference and Exhibition /  21st Canadian 
Symposium on Remote Sensing, Ottawa, Ontario, Canada, 21-24 June.

Neville, R.A., Levesque, J., Staenz, K., Nadeau, P., Hauff, P., & Borstad, G.A. (2003). 
Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of 
results from SFSI and AVIRIS. Canadian Journal o f Remote Sensing, 29, 99-110.

Plaza, A., Martinez, P., Perez, R., & Plaza, J. (2002). Spatial/spectral endmember 
extraction by multidimensional morphological operations”, IEEE Transactions on 
Geoscience and Remote Sensing, 40, 2025-2041.

Podwysocki, M.H., Segal, D.B., & Abrams, M.J. (1983). Use of Multispectral Scanner 
images for assessment of hydrothermal alteration in the Marysvale, Utah, Mining Area. 
Economic Geology, 78, 675-687.

Richards, J., & Jia, X. (1999). Remote Sensing Digital Image Analysis, third revised and 
enlarged edition Edition, Springer-Verlag, Berlin, Heidelberg, New York.

Rogge, D., Rivard, B., Zhang, J., Feng, J., & Harris, J. (2006). Integration of spatial- 
spectral information for endmember extraction. International Association for  
Mathematical Geology, 11th International Congress, University de Leige, Belgium, 
September 3-8.

Rogge, D., Rivard, B., Zhang, J., & Harris, J. (2005). Remote predictive geological 
mapping using airborne hyperspectral data, Baffin Island. Annual Meeting o f  Geological 
Association o f Canada. Halifax Nova Scotia, Mayl5-18.

Sabol, D.E., Adams, J.B., & Smith, M.O. (1992). Quantitative sub-pixel spectral 
detection of targets in multispectral images. Journal o f Geophysical Research, 97, 2659- 
2672.

Smith, M.O., Jonhson, P.E., & Adams, J.B. (1985). Quantitative determination of mineral 
types and abundances from reflectance spectra using principal component analysis. 
Proceedings o f the Fifteeth Lunar and Planetary Science Conference, Part 2, Journal o f  
Geophysical Research, 90, Supplement, C797-C804.

Sultan, M., Arvidson, R.E., Sturchio, N.C., & Guiness, E.A. (1987). Lithologic mapping 
in arid regions with Landsat Thematic Mapper data: Meatiq dome, Egypt. Geological 
Society o f  America Bulletin, 99, 748-762.

Sabins, F.F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 
157-183.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Settle, J.J., & Drake, N.A. (1993). Linear mixing and the estimation of ground cover 
proportions. Inernational Journal o f Remote Sensing, 14, 1159-1177.

Vitorello, I., & Galvao, L.S. (1996). Spectral properties of geologic materials in the 400- 
to 2500 nm range: Review for applications to mineral exploration and lithological 
mapping. Photo-Interpretation, 2, 77-96.

Winter, M.E. (1999) Fast autonomous spectral endmember determination in 
hyperspectral data. Proceedings o f  the Thirteenth International Conference on Applied 
Geologic Remote Sensing, Vancouver, B.C., Canada, II, 337-344.

Zamudio, J.A. and Atkinson, W.W. Jr. (1990). Analysis of AVIRIS data for spectral 
discrimination of geologic materials in the Dolly Varden Mountains, Nevada. JPL 
AVIRIS Workshop Proceedings, 162-166.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2
INTEGRATION OF SPATIAL-SPECTRAL INFORMATION FOR THE 

IMPROVED EXTRACTION OF ENDMEMBERS1

2.1 Introduction
Spectral mixing is a problem inherent to remote sensing data and results in few 

image pixel spectra representing "pure" targets (Settle and Drake, 1993). Linear spectral 
mixture analysis (SMA) (Adams et al., 1986; Adams et ah, 1993) is designed to address 
the problem of mixed pixels. It assumes that the pixel-to-pixel variability in a scene 
results from varying proportions of spectral endmembers. The spectrum of a mixed pixel 
can then be calculated as a linear combination of the endmember spectra weighted by the 
area coverage of each endmember within the pixel, if the scattering and absorption of 
electromagnetic radiation is derived from a single component on the surface (Keshava 
and Mustard, 2002).

Image endmembers (referred simply as endmembers hence forth) are pixel spectra 
that lie at the vertices of the image simplex in n-dimensional space (Figure 2.1 A). The 
extraction of endmembers from an image has benefits over the use of spectra measured in 
the field or laboratory. Library and field spectra are rarely acquired under the same 
conditions as airborne or satellite data; and they may not adequately represent all 
important endmembers. On the other hand field and laboratory spectra are usually 
collected from surfaces one wants to map, and thus, they have direct physical meaning 
for mapping purposes. Imagery may provide similarly meaningful endmembers that can 
be considered "pure", or relatively "pure" spectra, meaning that little or no mixing with 
other endmembers has occurred within a given pixel.

Figure 2.1 2-dimensional scatterplot of endmember assemblage A, B, and C (A); and, B, 
C, and D (B) located at the vertices of the simplex. In (A) all other pixels (black dots) 
can be represented as a linear mixture of the 3 endmembers with pixel M an equal 
mixture of A, B, and C. The relative spectral contrast for C changes for the 2 
assemblages, whereby C has an equivalent contrast with A and B in assemblage 1 and a 
lower contrast in assemblage 2.

1 An extended abstract of this chapter has been published. Rogge, D., Rivard, B., Zhang, J., Feng, J., & 
Harris. J. (2006). Intergration o f spatial-spectral information for endmember extraction. International 
Association for Mathematical Geology, 11th International Congress, University de Leige, Belgium, 
September 3-8.
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To obtain accurate unmixing results the endmembers selected must be 
representative of surface components that occur in relatively pure form (Adams and 
Gillespie, 2006). For this reason much literature has focused on the subject of 
endmember extraction and includes methods such as, the pixel purity index (PPI) 
(Boardman et al., 1995), the manual endmember selection tool (MEST) (Bateson and 
Curtiss, 1996), N-FINDR (Winter, 1999), the optical real-time adaptive spectral 
identification system (ORASIS) (Bowles et al., 1995), convex cone analysis (CCA) 
(Ifarraguerri and Chang, 1999), iterative error analysis (IEA) (Neville et al., 1999), the 
automated morphological endmember extraction (AMEE) (Plaza et al., 2002), the iterated 
constrained endmembers (ICE) (Berman, et al., 2004), and vertex component analysis 
(VCA) (Nascimento and Dias, 2005). With the exception of AMEE, the above methods 
select endmembers by discriminating between pixels using their spectral characteristics. 
This is done independent of neighboring pixels, the spatial distribution of endmembers, 
and the characteristic spatial mixing relationships between endmembers (e.g. do 
endmembers mix).

The selection of endmembers becomes more problematic as their spectral contrast 
approaches the detection limits of the given sensor (e.g. SNR). The “pixel-to-pixel” 
spectral contrast can be calculated using the Euclidean distance between two vectors 
(Adams and Gillespie, 2006). Image components such as snow, water, vegetation and 
sand have high contrast when compared to one another, whereas the spectral contrast 
between different species of vegetation can be considered low. Improving the spectral 
contrast between pixels in an image can be accomplished using spectral-based methods 
such as transforms (e.g. PCA, MNF)(Adams and Gillespie, 2006), derivative analysis 
(Tsai and Philpot, 1998), and normalization (Cudahy, 1999).

Masking can also be used to improve spectral contrast by removing spectrally 
dominant image components resulting in a relative increase in spectral contrast for the 
remaining image components. However, masking will only be effective in cases where 
spectral mixing is minimal, which is not commonly the case for natural environments. 
Masking does illustrate that spectral contrast is variable in an image depending on the 
spatial neighborhoods, where for each spatial neighborhood the assemblage of 
endmembers may change. Figure 2.1 provides such an illustration showcasing 
endmember C as observed in two different spatial neighborhoods, each with a distinct 
endmember assemblage. In case 1, C is equivalently distinct from both A and B and can 
be considered to have high spectral contrast relative to A and B. However, in case 2, C is 
spectrally similar to D, and thus has lower relative spectral contrast compared with case 
1. By conducting the image extraction on image subsets we can take advantage of the 
spatial characteristics of each endmember, which may result in a given endmember 
having higher spectral contrast in a specific image subset, thus facilitating its extraction. 
Figure 2.2 illustrates a geological example where two lithologic units are spectrally 
similar, but spatially independent. Obtaining endmembers for each lithologic unit can be 
improved by analysing image subsets.

Averaging pixels that lie near the vertices of a simplex is common practice to 
generate representative endmember spectra (e.g. in IEA). However, spectral-based 
endmember extraction methods do not take into account the spatial relationships between 
the pixels. Thus, spectrally similar pixels that are spatially independent can be averaged 
together (e.g. Figure 2.2 endmember i and j) to provide a representative endmember. By
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constraining the averaging process to include only spatially associated pixels it should be 
possible to reduce spectral contamination of spatially unrelated but spectrally similar 
endmembers.

This paper presents a spatial-spectral endmember extraction algorithm (SSEE) 
that makes use of the spectral and spatial characteristics of image pixels during the search 
for image endmembers. The spatial characteristics are used to increase the spectral 
contrast between spectrally similar, but spatially independent endmembers, thus 
improving the potential of findings these endmembers. We also impose spatial constraints 
when averaging spectrally similar pixels to preserve similar but distinct endmembers that 
occupy unique image regions. The output is an image endmember library, where the 
individual endmembers are defined based on spectral and spatial characteristics. Section 
2 gives a brief overview of three relevant endmember extraction methods. It is followed 
by a detailed description of the SSEE algorithm (section 3) and two demonstrations of 
SSEE for airborne hyperspectral data.

Spatial Group 1 All Candidate Pixels 
H

(A) "

Spatial Group 2

Ojt) O

Band X

Spatial Group 1

Band X

Spatial Group 2

q .6

Band X

Figure 2.2 (A) Image region showing three endmembers (i, j, and k), where mixing 
occurs between i and k, j and k, but not i and j. Spatial groups shown with dotted square 
in (A). (B) 2-dimensional scatter-plot where endmembers i and j are difficult to
discriminate. (C) and (D) show scatter-plots for the two spatial group allowing for better 
discrimination of endmembers i and j. Dotted lines in (B), (C), and (D) are the 
eigenvectors related to the largest eigenvalue for each distribution.

2.2 PPI, IEA, and AMEE algorithms
By far the most commonly used endmember extraction tool is PPI, which 

searches for vertices that define the data volume in n-dimensional space. Commonly the 
first step of PPI is to apply a principal component analysis (PCA) or minimum noise 
transform (MNF) to reduce the dimensionality o f  the data set. The assumption here is 
that the image endmembers lie within the first few principal component axes, whereas the 
remaining axes are related to noise. However, some image components have weak signals 
and contribute little energy to the eigenvalues, and thus, determining the cutoff threshold 
between the eigenvalues caused by signal and noise is problematic (Chang and Du, 
2004).
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PPI is semi-automated and obtains endmember candidate pixels by projecting the 
transformed data onto a high number of randomly oriented vectors (k) in n-dimensional 
space. Those pixels that lie at either end of a given random vector are assigned a “hit”. 
The total number of hits are tallied for each pixel, for all random vectors. Pixels that 
receive more hits than a set cutoff threshold (t) are considered candidate endmember 
pixels, or “pure” pixels. This cutoff threshold is commonly a fixed empirical value (e.g. 
2 or 10), or based on statistical parameters, such as the mean hits value (Plaza et al., 
2004). The candidate endmember pixels are then loaded into a n-dimension visualization 
tool, such that the user can visually identify the extreme pixels in the data cloud. This 
last step requires a significant degree of human intervention from an experienced 
operator. PPI is particularly sensitive to the input parameters k and t (Chang and Plaza, 
2006). Owing to the fact that the vectors are randomly generated, results may not be 
repeatable. In order to obtain results that are close to repeatable, PPI requires k to be 
sufficiently large (e.g 104), such that the number of endmember candidate pixels selected 
levels off asymptotically as a function of the number of vectors used.

IEA is implemented in the Imaging Spectrometer Data Analysis System (ISDAS) 
(Staenz et al., 1998), and is based on the residual error image generated when a data set is 
unmixed using a Weighted Nonnegative Least Squares approach (WNNLS) (Haskell et 
al., 1981). This method has been used in endmember comparative studies (e.g. Winter 
and Winter 2000; Plaza et al., 2004) and was shown to be a robust extraction tool. IEA 
works by performing a series of constrained unmixing operations on the image, such that 
the residual error is minimized. The mean spectrum of the scene is used as the starting 
endmember to initialize the unmixing process. The residual error image is essentially a 
distance measurement in n-dimensional space (n = number of bands) between the mean 
spectra and each pixel spectrum in the image. Pixels (within a predetermined solid angle 
0) that encompass the largest errors form a new endmember, with the initial mean spectra 
discarded. This process is repeated, where each new endmember is added to the existing 
endmember set until the number of endmembers specified by the user is reached or until 
a specified average error tolerance condition is met. The main drawback to IEA is that it 
is computationally intensive, specifically as the number of endmembers required 
increases.

AMEE is significantly different from spectral-based methods as it integrates 
spatial information in order to extract endmembers from an image. AMEE runs on the 
full data cube with no dimensionality reduction. The algorithm begins by searching 
spatial neighborhoods around each pixel in the image for the most spectrally pure and 
mostly highly mixed pixel. This task is accomplished using mathematical morphology 
operators dilation and erosion, respectively. Each spectrally pure pixel is assigned an 
“eccentricity” value, which is calculated as the distance between the most spectrally pure 
and mostly highly mixed pixel for the given spatial neighborhood. This process is
repeated iteratively for larger spatial neighborhoods up to a maximum size that is pre­
determined. At each iteration the “eccentricity” value of the selected pixels is updated. 
The final endmember set is obtained by applying a threshold to the resulting greyscale 
“eccentricity” image. There are some limitations to AMEE, particularly a significant 
increase in processing time as the maximum size of the spatial neighborhood becomes 
large; and, the algorithms ability to select only one pixel per spatial neighborhood (Plaza

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



et al., 2002). However, AMEE has been shown to produce results that are comparable to 
better with other endmember extraction methods (Plaza et al., 2002; Plaza et al., 2004).

2.3 Description of the spatial-spectral endmember extraction (SSEE) algorithm
The SSEE algorithm comprises four steps: 1) application of singular value 

decomposition (SVD) to determine a set of eigenvectors that describe most of the spectral 
variance of image subsets; 2) projection of the entire image data onto the eigenvectors to 
determine a set of candidate endmember pixels; 3) use of spatial constraints to combine 
and average spectrally similar candidate endmember pixels; and, 4) listing of candidate 
endmembers in order of spectral similarity.

2.3.1 SSEE Step 1
Step 1 makes use of SVD, which is very efficient in obtaining a set of 

eigenvectors that explain most of the spectral variability of a given scene (Healey and 
Slater, 1999; Thai et al., 1999). SVD, along with PCA and MNF, are projection 
techniques commonly used in remote sensing. SVD and PCA are equivalent in the case 
of zero-mean data, and PCA is equivalent to MNF in the case of white noise (Jolliffe, 
1986; Green et al., 1988; Scharf, 1991).

SSEE obtains a set of candidate endmember pixels by applying SVD to subsets of 
an image (Figure 2.3 B and C). The SVD is calculated using the SVDC routine in IDL™ 
6.1, which is based on the routine svdcmp described in Press et al (1992). Basis vectors 
that explain > 1% of the spectral variance, using a minimum SNR of 100:1, are retained 
from each subset and compiled into one vector fde. These vectors will likely be related 
to the local high contrast endmembers. For each subset the minimum number of vectors 
is set to 2, whereas the maximum is defined by the 1% cutoff threshold. The minimum 
size of the subset that can be used is defined by the square root of the number of bands, 
whereas the maximum size is that of the entire image. The SSEE algorithm in its present 
form makes use of subsets that are equal in size, are square, and do not overlap.

Figure 2.3 SSEE step 1: (A) Image region showing three image components (i, j, and k). 
(B) Four image subsets. (C) Compiled basis vectors from all subset shown in (B).

S ub set dataOriginal data 0 .2  • SVD vectors

100 
band no.
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2.3.2 SSEE Step 2
In step 2, the entire image data (Figure 2.4B) is projected onto the compiled 

vector set with the pixels that lie at either extreme of the vectors retained (Figure 2.4C). 
These pixels (Figure 2.4D) represent the candidate pixel endmember set, which is used in 
step 3.

2.3.3 SSEE Step 3
Step 3 analyzes the spatial and spectral characteristics of the candidate 

endmember set to average spectrally similar endmember candidates that are spatially 
related. Step 3 scans the image with a sliding window of size equal to the subset size 
used in step 1. Step 3 begins by updating the candidate pixel endmember set by 
comparing each candidate endmember to all other spatially associated pixels (defined by 
the window size). All pixels that are similar, based on a minimum spectral angle or root 
mean square error (RMS), are added to the candidate endmember set (Figure 2.5B). This 
process is similar to retaining more than 1 pixel at either extreme of the eigenvectors. 
However, using this approach we only retain spectrally similar pixels that are spatially 
related. RMS is primarily used for very low reflectance signatures such as water, because 
the minimum spectral angle is commonly exceeded when candidate water spectra are 
compared.

Step 3 continues by averaging each of the candidate endmember pixels with all 
other endmember candidates within the window (Figure 2.5 C-F). This averaging 
process is repeated for x number of iterations, with the objective to: 1) reduce the effects 
of noise; and, 2) find image pixels that are spectrally similar, but spatially related within 
the window (Figure 2.5). Multiple iterations allow the algorithm to compare and average 
pixels that are farther than the window size, but are related by other candidate pixels that 
lie spatially between them (Figure 2.5C-F). This iterative approach allows the user to 
compress endmember clusters, such that they have negligible variance (Figure 2.5F). 
The end product is a set of endmembers that are defined both spectrally and spatially, and 
take into account local spectral variance.

Original data

o 9 o
o o o

o o

Band X

Projection of data 
onto eigenvectors

Band X

Candidate pixels

Figure 2.4 SSEE step 2: (A) Image region showing three image components (i, j, and k). 
(B) Image data in 2-D space. (C) Projection of entire image data onto 1 of the 
eigenvectors derived from step 1. (D) Spatial distribution of candidate endmember pixels.
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Figure 2.5 SSEE step 3: (A) Candidate endmember pixels showing spatial distribution 
with respect to units i, j, and k. (B) Updated candidate endmember pixels. (C) Spatial 
averaging process using a sliding window centered on each updated candidate 
endmember pixel. (D) Spectral distribution in 2-D space for bands x and y. (E) First 
iteration of spatial-spectral averaging. Averaged pixels shown as solid lines, with 
original pixels shown as dashed circles. Pixel number 2 (see C) is averaged with 1 and 
3, but not 4, which is averaged with pixel 3. (F) Second iteration of spatial-spectral 
averaging of pixel 2, which now takes into account the influence of pixel 4 on 3, thus, 
condensing the spectral cluster further. Continued iterations will compress endmembers i 
and j into clusters with negligible variance, which now represent two distinct spectral 
endmembers. Note that for endmember k, only two pixels are average as the third pixel 
is outside the averaging window.

2.3.4 SSEE Step 4
The final endmember set derived from step 3 is reordered based on spectral angle. 

The first endmember in the existing library is assigned as the first spectra and compared 
to all other endmembers, with the most similar assigned the next position in the list. This 
process is repeated recursively until all spectra have been ordered. The finalized list 
allows the user to quickly view those endmembers that are spectrally similar, but spatially 
independent. Owing to the iterative spatial averaging process a number of the reordered 
spectra will be duplicates (e.g. Figure 2.5F). The endmembers retain their image 
coordinates.
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2.4 Data sets and evaluation methodology
Two evaluations of the SSEE algorithm were conducted with hyperspectral 

imagery. The first evaluation is for data from Cuprite Nevada, and is designed to 
demonstrate the characteristics of SSEE using different spatial subset and averaging 
window sizes. We examine the link between subset size, eigenvectors retained, and the 
resulting number of endmembers selected from the image. The second evaluation is for 
data of Baffin Island, northern Canada. We examine the endmembers related to bedrock 
geology obtained by SSEE, IEA and PPI in the context of field spectra and also examine 
unmixing results in the context of the spatial distribution of the endmembers. A 
comparison with AMEE was not conducted as the algorithm is not readily available.

2.4.1 Cuprite data set
The Cuprite imagery was acquired on June 19th, 1997 by the Airborne Visible 

InfraRed Imaging Spectrometer (AVIRIS) which has 224 channels covering the 0.37 to 
2.51 pm spectral range with an average spectral resolution of ~10 nm. Of the 224 
atmospherically corrected channels, we use 167 after removal of channels associated with 
H2O and OH absorption features near 1.4 and 1.9 pm. The Cuprite area is arid with 
limited vegetation cover, and has excellent rock exposure comprising alteration zones 
characterized by the occurrence of key indicator minerals. For this evaluation we use a 
200x200 pixel subset that is centered over the eastern hydrothermal alteration zone 
(Figure 2.6). Within this subset region the following minerals have been validated in the 
field as occurring in high abundance as documented in Swayze et al. (1992) and Clark et 
al. (2003): alunite (known variations), chalcedony (OH-quartz), kaolinite (known 
variations), Na-montmorillonite, and buddingtonite. Minerals that occur in lower 
abundances and as mixtures include: jarosite, hematite, goethite, and smectite/muscovite 
(Clark et al., 2003).

Figure 2.6 Subset region of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
hyperspectral data over Cuprite, Nevada.
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2.4.2 Cuprite evaluation methodology
We evaluate SSEE with subset sizes of 20, 50, 100 and the entire image size of 

200x200. For the entire image size SSEE becomes a spectral-based endmember 
extraction tool with no spatial constraints. At subset sizes of 20, 50, and 100, s (the SVD 
cutoff threshold) is set to 0.01. For the entire image s is also set to 0.01, but threshold 
values of 0.001 and 0.0001 are also used. This is done in order to demonstrate that 
including additional eigenvectors, by using a lower s value, is not equivalent to obtaining 
additional eigenvectors from multiple subsets. Spatial averaging is constrained to a 
window size equal to the subset size used to obtain the eigenvectors. For updating and 
averaging candidate pixels the spectral angle is set to 1.0 degree and the RMS is set to 
0.1% of absolute reflectance. The number of spatial-spectral averaging iterations is set to 
5.

2.4.3 Baffin Island data set
This region comprises surfaces with very disparate spectral properties such as 

snow-ice, water, vegetation, lichen and rock units. Within each class of surface material, 
the spectral contrast can be relatively low. The majority of geological spectral 
endmembers are defined by mineral assemblages that comprise the various rock types in 
the area, and not by the occurrence of a dominating mineral.

Airborne hyperspectral data (-3.5 x 7 km) were acquired with the Probe I sensor, 
which comprises 128 channels from 0.446 -  2.543 um with an average spectral resolution 
of -15 nm and a spatial resolution of -7  m. A vicarious atmospheric correction of the 
data was performed by the Canada Centre for Remote Sensing using field spectra 
acquired at the Iqaluit airport concurrently with the overflight. A number of the 128 
channels available were not used (874-991, 1082-1171, 1271-1537, 1755-2073, and 
2465-2543 nm) for this analysis owing to atmospheric water-absorption and excessive 
noise. No additional preprocessing (e.g. smoothing filter) was applied to the remaining 
86 bands.

Field sampling and collection of spectra took place along traverses oriented 
perpendicular to the dominant structural and stratigraphic trends (Fig. 2.7). The spectra 
were acquired with a portable ASD® field spectrometer that has 2151 bands covering the 
0.35 -2 .5 0  um spectral range. A total of 217 spectral measurements were acquired for 
56 of 188 sites visited, some of which lie outside, but proximal to the study area, and are 
representative of the geology shown in Figure 2.7. Multiple measurements were taken at 
each site for fresh, weathered, polished, and partial to fully lichen coated rock surfaces.

2.4.4 Baffin Island evaluation methodology
First we compared the endmembers extracted by SSEE and IEA to determine 

whether or not SSEE extracted equivalent endmembers and, unique endmembers of 
significance. N ext w e conduct a comparison of PPI with SSEE and IEA using the 
automated part of PPI because the final steps of PPI require a high degree of human 
intervention. Endmember candidates determined from PPI using different values of k 
and t are compared with those derived from IEA and SSEE to determine if PPI was 
initially successful at extracting all the endmembers found with the other two methods. It 
is noted here that an automated version of PPI, referred to as Fast Iterative Pixel Purity

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Index (FIPPI), has recently been presented by Chang and Plaza (2006). However, this 
method is not yet widely available to the community and was not implemented here.

The next test is a comparison with bedrock spectra acquired in the field and from 
samples returned to the laboratory. This comparison allows us to test if the unique SSEE 
endmembers are physically meaningful. Finally, linear unmixing is applied to the image 
using the endmembers derived from SSEE to determine if the unique endmembers 
extracted by SSEE show physically meaningful spatial distribution. In this paper we 
unmix the image using the iterative spectral unmixing analysis (ISMA) approach of 
Rogge et al. (2006), which is designed to unmix each pixel using an optimal per-pixel 
endmember set.

For this test the subset size was set to 25x25. Other parameters for this test 
include: 1) s = 0.01, based on a SNR of 100:1; 2) a spatial averaging window size equal 
to the subset size; 3) the spectral angle is set to 1.0 degree and the RMS is set to 0.1% of 
absolute reflectance; and, 4) the number of spatial-spectral averaging iterations is set to 
10.

For this study the PPI algorithm was written using IDL™, within the ENVI™ 
environment. Prior to endmember extraction a MNF transform was applied to the data, 
where MNF bands with an eigenvalue > 1 (% of loading) were retained (27 bands of a 
total of 84). The number of extreme pixels at the ends of the random vectors that are 
assigned a hit is set to 1. We followed the guidelines of Chang and Plaza (2006) who 
recommended the use of 10000 random vectors. For purposes discussed latter, PPI was 
also applied with k equal to the number of vectors generated by SSEE. Cutoff thresholds 
(t) of 1, 2, and 5 were tested. IEA was implemented using ISDAS, with the number of 
endmembers extracted from the imagery set to 30 (default value). The maximum number 
(n) of pixels that fall within a solid angle (0) that are subsequently averaged and assigned 
as an endmember was set to the default parameters (n=10 and 0=2.5 degrees).
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Cum berland batholith

Blandford Bay assem b lag e  

R am say River o rth o g n e iss  

| j Lake H arbour Group 

| | | 1| Narsajuaq arc

Lower Plate

A rchean S uperio r P rovince

Baffin Island Monzomte, tonalite, 
granodiorite, qtz-dioriteP roject Area
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Figure 2.7 Regional geology of south-western Baffin Island and enlargement of local 
geology of the study area (1:100 000) (modified from St-Onge et al., 1999). 
Hyperspectral data shown at far right with field locations shown as white circles. Note 
only the area above the dotted line was used in this study.
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2.5 Results
2.5.1 Cuprite
Table 2.1 shows that as the subset size decreases the total number of endmembers 

selected increases; the number of vectors increases; the number of candidate endmember 
pixels increases; and, the number of updated candidate pixels increases. However, with 
smaller subsets the processing time decreases significantly, which is primarily controlled 
by the SVD process. Table 2.1 also shows the effect of using different values of s for the 
entire image data (200x200). With a smaller s value the number of eigenvectors retained 
increases, which increases the number of endmembers selected. This, however, is at the 
expense of more candidate pixels to filter through and greater processing time. The 
SSEE algorithm was halted using an s value of 0.0001 as the number of candidate and 
updated candidate pixels made the process impractical.

Table 2.1 Result details for demonstration 1: Cuprite data.

subset size 200x200 200x200 200x200 100x100 50x50 20x20

S (SVD threshold) 0.0001 0.001 0.01 0.01 0.01 0.01

vectors 87 14 4 16 63 356

candidate pixels 144 23 8 13 26 55

updated candidate pixels 23145 299 82 231 390 732

unique candidate pixels (1) processing 18 7 11 20 32

processing time (2) halted 856sec 702sec 687sec 403sec 167sec

endmember (3) 8 7 8 10 12

alu (4) alu alu alu alu

cha cha cha cha cha

kao kao kao kao

mon

bud bud bud bud bud

kaoB kaoB

kao-hem kao-hem kao-hem kao-hem kao-hem

alu-hem alu-hem

alu-geo-jar alu-geo-jar alu-geo-jar

mus-hem mus-hem mus-hem

uknA uknA uknA uknA uknA

uknB uknB uknB uknB uknB

(1) No. o f unique candidate endmember pixels after iterative spatial averaging. Relates only to candidate 
pixels not updated candidate pixels.
(2) Spatial averaging window is = subset size used to compile top eigen vectors, excluding the full image 
(200x200) which uses no spatial constraints.
(3) Derived from the unique candidate endmember pixels.
(4) Mineral abbreviations: alu-alunite;cha-chalcadony;kao-kaolinite;mon-montmorillonite;bud- 
buddingtonite;kaoB-kaolinite B;hem-hematite;jar-jarosite;goe-goethite; mus-muscovite;uknA-unknown 
A;uknB-unknown B
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Examination of Table 2.1 shows that the number of candidate pixels is less than 
the number of vectors using subsets of 20, 50, and 100. This is because many of the 
vectors from adjacent subsets are redundant. However, if we use the entire image data 
and use a lower s value, the number of candidate pixels is much greater than the number 
of vectors. In this case each vector is orthogonal, and thus, the projected data returns 
more candidate pixels. When using spatial constraints more vectors are retained, many of 
which are redundant, but some are important vectors related to signal that improve the 
potential of obtaining additional endmembers. Unlike the orthogonal vectors obtained 
using the entire image many of the vectors retained using spatial constraints will not be 
orthogonal.

Figure 2.8 shows the twelve endmembers derived using a subset size of 20x20. 
Ten were labeled as pure minerals or mixtures of minerals based on known mineral 
absorption features. Two endmembers do not show diagnostic absorption features, but 
differ in their broad overall shape (continuum). The AVIRIS data set was unmixed using 
these endmembers as inputs to the ISMA approach of Rogge et al (2006). Figure 2.9 
shows the resulting fractional abundance maps. Each endmember defines distinctive 
spatial regions that are visually consistent with the maps presented by Clark et al (2003).
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Figure 2.8 Endmember spectra derived from SSEE using a subset size of 20x20 and an s 
value of 0.01. Refer to Table 1 for endmember abbreviations.
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Figure 2.9 Fractional abundance maps for the 12 endmembers derived from SSEE using 
a subset size of 20x20 and an s value of 0.01.
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2.5.2 Baffin Island
The total number of vectors compiled using a subset size of 25x25 was 2184. 

From these, 148 endmember candidate pixels were extracted, of which 7 were noisy and 
left out (e.g. 141 total no. of pixels in Table 2.2). Following the spatial averaging 
procedure 28 of the 148 candidate endmember pixels were exact duplicates. The 
averaging procedure also results in many of the remaining candidate pixels showing 
minimal spectral difference, further reducing the number of unique endmembers and 
allowing the user to quickly group the spectra into endmember classes. This task is made 
easier by observing the original coordinates of the reordered candidate endmembers 
based on spectral similarity.

From the reordered library 30 endmembers were determined (Table 2.2), 
including 2 water, 7 snow, 2 vegetation, 2 lichen, 4 lichen-rock mixtures, and 13 rocks 
(Figure 2.10). Also shown in Figure 10 are the equivalent IEA endmembers. Table 2.2 
lists the number of pixel spectra from SSEE and IEA that fit into each of the 
endmembers. Of the 30 endmembers, IEA obtained representative spectra for 18 (note 2 
IEA endmember spectra were noisy and removed). Thus, SSEE extracted 12 unique 
endmembers, some of which showed only subtle spectral differences, but are considered 
unique because they are spatially independent (e.g. endmembers 22 and 23; and, 29 and 
30). No unique IEA endmembers were found.

Using the 865 candidate endmember pixels derived from PPI with k = 10000 and 
t = 1, 29 of the 30 SSEE endmembers were accounted for (Table 2.2). However, this 
number falls to 24 if t = 5 (266 total candidate endmember pixels). When the equivalent 
number of random vectors derived by SSEE (2184) are used, 28 of the 30 endmembers 
were accounted for using t = 1. Fort  = 5 this number falls to 15. It is interesting to note 
that the majority of unique SSEE endmembers are part of the lichen, lichen-rock and rock 
endmembers, which have low overall spectral contrast. These results show that SSEE is 
effective at extracting a more extensive endmember list compared with IEA and PPI, 
especially as t increases. However, to assess whether or not the unique SSEE 
endmembers are physically realistic we conduct a comparison with field and laboratory 
spectra collected in the region.

Figure 2.11 shows 1 lichen, 2 lichen-rock, and 11 of the rock endmembers with 
the best matching field and laboratory spectra. Those in Table 2.2 not shown in Figure 
2.11 were left out because they are not related to bedrock geology (e.g. varnish) or did 
not have good spectral matches (lichen 2, lichen-rock 1 and 2). The lack of spectral 
matches for lichen 2, and lichen-rock 1 and 2, may be attributed to incomplete sampling. 
The endmembers are represented by a single averaged spectrum derived from those 
shown in Figure 10. The matching criteria are based first on spectral angle, which 
highlights similar spectra, followed by a visual inspection to determine the best matches. 
For a good match the focus was on a good correlation with the broad overall shape 
(continuum) and the location o f  diagnostic absorption features, rather than total 
amplitude.
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Table 2.2 Endmember classes derived from SSEE and IEA candidate endmember spectra 
and PPI representative spectra for different k and t.

Endmembers Name(1) IEA(2) SSEE(2) PPI t=1 (3) PPI t=2 PPI t=5 PPI t=1 PPI t=2 PPI t=5
25x25 k=10000

oooor
-11 J
C X II _)> o o o o k=2184 k=2184 k=2184

EM 1 W ater 1 1 2 * * * * * *

EM 2 W ater 2 2 * * * *

EM 3 Snow 1 2 10 * * * * it *

EM 4 Snow 2 3 4 * * * * it *

EM 5 Snow 3 1 5 * * * * * *

EM 6 Snow 4 2 12 * * * it it *

EM 7 Snow 5 2 4 * * * it * *

EM 8 Snow 6 1 13 * * * * * it

EM 9 Snow 7 2 14 * * it * * it

EM 10 Vegetation 1 2 11 * it * * * it

EM 11 Vegetation 2 3 16 * * * * * *

EM 12 Lichen 1 1 6 * * it it

EM 13 Lichen 2 6 * * * * it

EM 14 Lichen-rock 1 2 it it *

EM 15 Lichen-rock 2 2 4 * * * *

EM 16 Lichen-rock 3 1 2 * * *

EM 17 Lichen-rock 4 2 * * *

EM 18 (rock 1) Quartzite 1 * * * * it

EM 19 (rock 2) Metased(AI-OH) 1 * * it *

EM 20 (rock 3) Metased(Fe, AI-OH) 2 * * * * it

EM 21 (rock 4) Qtz-rich granite 1 * * it * *

EM 22 (rock 5) Carbonate 1 1 4 * * it * * *

EM 23 (rock 6) Carbonate 2 1 * * it

EM 24 (rock 7) Metased(Fe, AI-OH) 1 3 * * it * it *

EM 25 (rock 8) Metasediment 4 * * * *

EM 26 (rock 9) Varnish 1 2 * * it * it *

EM 27 (rock 10) Fe-oxide/hydroxide 1 1

EM 28 (rock 11) Vegetation mixture 1 * * * * it *

EM 29 (rock 12) Peridotite 1 1 2 * *
it it *

EM 30 (rock 13) Peridotite 2 3 * * * * * *

total no.

of classes 18 30 29 29 24 28 22 15

of pixels 141 865 623 266 489 209 88
(1) Rock name based on work by Rogge et al (submitted) which includes a more detailed discussion o f the 
spectral identification, spatial distribution, and economic significance of the rock units found in the entire 
hyperspectral data shown in Figure 7.
(2) Number represents the number o f spectra extracted that fit into the given class.
(3) * indicates that at least 1 PPI candidate endmember spectra includes a representative spectra o f the 
SSEE/IEA derived endmember class.
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Figure 2.10 Thirty endmember classes derived from the SSEE endmember candidate 
library spectra (solid line) and equivalent IEA endmember (dashed line), when available.
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Figure 2.10 cont’ Thirty endmember classes derived from the SSEE endmember 
candidate library spectra (solid line) and equivalent IEA endmember (dashed line), when 
available.
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Figure 2.11 SSEE rock and lichen-rock endmember classes (solid line) with best 
matching field spectra.
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Figure 2.12 Fractional abundance maps for rock 5, 6, 12, and 13; and, lichen-rocks 3 and 
4. For rocks 5, 6, and 13 boxes highlight occurrences. Note high abundance is given as 
black, whereas low abundance is white. This is necessary to visualize the sparse 
occurrences of certain rock endmembers.
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Examination of the spectral matches shown in Figure 2.11 show that lichen 
endmembers 1, and lichen-rock 3 and 4; and the rock endmembers 1,2,3,4,5,7,8,10, and
12 show good correlation with field spectra. Of these, rock endmembers 1,2,3,4,8, and
13 were not selected by IEA or PPI using t=5 and k=2184. The best spectral matches for 
rock 6 and 13 are the same as for rock 5 and 12 respectively, which may indicate that 
these differences are not significant, or that spectral representations of rocks 6 and 13 
were missed in the field. For this reason, the unmixing results were checked to see if 
these endmembers showed physically meaningful spatial distribution. Figure 2.12 shows 
the fractional abundance maps for rocks 5, 6, 12, and 13; and for lichen-rocks 3 and 4. 
Analysis of these maps show that rocks 5 and 6 occur locally together, but also in 
spatially distinctive regions. Where they do occur together locally they are spatially 
separated (see zoom windows in Figure 2.12). Rocks 12 and 13 define spatially 
distinctive regions, although the spatial extent of rock 13 is limited. The fractional 
abundance maps for lichen-rocks 3 and 4 are also included here as the endmembers are 
spectrally similar. These two endmembers have some overlap, but for the most part 
define large spatially continuous regions that are distinct. This indicates that although the 
two endmembers appear to be rock-lichen mixtures, they include enough unique spectral 
information that they map out unique spatial regions.

2.6 Discussion
2.6.1 SSEE parameters, processing speed and performance
For SSEE there are a number of input parameters, which affect both processing 

speed and performance. The 2 key parameters are subset size and s (SVD threshold 
value). The actual subset size used will depend on the characteristics of the image, 
particularly the spectral contrast of the endmembers and their spatial distribution. The 
degree of homogeneity in the scene is also a factor in determining subset size. Larger 
subsets can be used in cases where endmembers are distributed as large homogeneous 
regions. For more complex scenes, smaller subsets are required. It may be possible to 
apply methods such as semi-variograms to help determine the appropriate subset size. If 
a scene contains only high contrast endmembers there is likely minimal benefit to using 
SSEE. In addition, SSEE will not be useful in cases where low contrast endmembers are 
always spatially associated, with respect to the subset size. The real benefit of SSEE 
comes when spectrally similar endmembers are spatially independent. This is evident 
with rock endmembers 5 and 6, 12 and 13, and lichen-rocks 3 and 4 as shown in Figure 
2 . 12.

Choosing an appropriate subset size also effects processing speed. When using 
smaller subsets the number of basis vectors retained increases, such that projecting the 
data onto these vectors becomes the controlling factor with respect to processing speed. 
Subset sizes larger than 50x50 pixels significantly reduce processing speed because of the 
processing time necessary to obtain basis vectors via SVD. With larger subset sizes we 
also reduce our ability to obtain basis vectors that may be related to low contrast 
endmembers, therefore reducing performance. Thus, the user must balance information 
gained by reducing the subset size, knowing that many of the additional vectors are 
redundant. Based on work in this study we found that a subset size of 20 - 25 pixels was 
effective. For this analysis subsets did not overlap. However, it may be advantageous 
to use overlapping subsets, such that each pixel is compared equally to pixels in all
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directions. Subsets could also be of different sizes and shapes defined by the spatial 
complexity across the scene (e.g. quadtree decomposition). It may also be useful to 
preprocess the vectors to remove redundant vectors. However, this must done with care 
such that important vectors related to subtle spectral variations are not removed.

The second key parameter that affects performance is the parameter s. Values set 
lower than 0.01 resulted in additional basis vectors, many of which are related to noise 
and only increased computational time. Values that are set higher than 0.01 result in 
fewer vectors per subset (minimum of 2 in SSEE), which reduce our ability to select low 
contrast endmembers. Although more work is required to determine an s value that 
works best for all data sets, this analysis has shown that s can be determined based on the 
SNR.

The size of the spatial averaging window was set to be equal to the subset size. 
This was done originally for consistency. However, for larger subsets an equivalent 
spatial averaging window had a negative impact on the methodology, in that spatially 
independent endmembers that are spectrally similar may be averaged. In addition, a 
larger window can increase the number of updated candidate pixels, which can make 
spatial averaging impractical (see Table 2.1).

The last two parameters used in SSEE are spectral angle and RMS, which are 
used to update and average the candidate endmember pixels. For this project we used a 
spectral angle of 1 degree and an RMS value equal to 1% of absolute reflectance. Higher 
spectral angle and RMS values result in a larger updated candidate endmember list, but 
also may lead to the loss of the subtle spectral features that define a low contrast 
endmember. For this reason we chose to keep these two values to a minimum. Note that 
RMS is primarily used for dark pixels, such as water.

2.6.2 Comparison with PPI
Of the endmember extraction methods described in section 2, SSEE has most in 

common with PPI, even though AMEE also uses spatial information. The similarity 
between SSEE and PPI relates to the projection of the data onto vectors and retaining 
those pixels that lie at either end of the vectors. The primary benefit of SSEE compared 
with PPI is the use of non-random vectors. First and foremost is the fact that SSEE is 
repeatable. Secondly, fewer vectors are required. In addition, many of the vectors 
derived from adjacent subsets are redundant, so the actual number of important vectors is 
less than the total compiled and results in a smaller number of candidate pixels that the 
user must work with, compared with PPI. This is evident from the results, where for an 
equivalent number of random vectors a total of 489 candidate pixels were selected, as 
opposed to 148 for SSEE. For PPI, the use of random vectors results in more spectral 
variability among candidate pixels. For SSEE, basis vectors are only retained for each 
subset region if they explain a significant percentage of the spectral variance. This 
reduces the possibility o f  retaining basis vectors related to noise, and in turn, selecting 
pixels that are noisy.

Because of the high number and spectral variability of the PPI endmembers this 
requires a great deal of human intervention to derive a final endmember set. For SSEE 
human intervention is limited to grouping the non-duplicate endmember candidates. This 
step is simplified by reordering the list based on spectral similarity, and by using the 
spatial coordinates of each candidate endmember pixel.
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Step 1 and 2 of the SSEE methodology makes use of projecting the data volume 
onto vectors to derive a set of candidate endmember pixels, as used with PPI. However, 
the key difference is that for SSEE the vectors are not random, but eigenvectors derived 
from image subsets. In doing so, the SSEE methodology by-passes the difficulty of 
setting an adequate threshold of eigenvalues encountered when analyzing an entire image 
by retaining only the top few vectors related to signal for each subset region. This 
approach makes use of the fact that eigenvectors are dependent on the scene statistics, 
and are thus, spatially dependent.

2.6.3 Local vectors versus local candidate pixels
It is possible to use the local vectors to select a set of local candidate pixels for 

each subset region. However, the key drawback of this approach is the necessity to filter 
through a much larger number of candidate pixels to determine an endmember set for the 
full image. These local candidate pixels may also be partial mixtures, which complicate 
the selection of endmembers. To account for this problem we have chosen instead to use 
local vectors. Then, in turn, scale up to the full image by projecting the data onto the 
compiled vector set.

2.7 Conclusions
The spatial-spectral endmember extraction tool (SSEE) presented in this paper 

makes primary use of spatial information to: 1) select local eigenvectors that relate to 
both high and low contrast endmembers within the scene; and, 2) to average only 
spectrally similar endmembers that are also spatially related. This results in a higher 
number of candidate endmembers that are defined both spectrally and spatially. The 
evaluation of SSEE has shown that the method is capable of extracting unique 
endmembers with subtle spectral variability that are not selected by other well known 
spectral-based methods. These unique endmembers were shown to be spectrally 
significant owing to comparisons with field spectra and through physically realistic 
spatial distribution.

The two key parameters that affect the processing speed and performance of 
SSEE are subset size and s (SVD threshold value). For the two evaluations use in this 
paper a subset size of 20 to 25 pixels squared and a s value of 0.01 were shown to be 
effective at selecting both high and low contrast endmembers. The use of local 
eigenvectors, rather than local endmembers, allows SSEE to retain local information, but 
also apply that information at the scale of the full image. The use of spatial subsets to 
select eigenvectors also allows SSEE to by-pass the problems associated with selecting a 
cutoff threshold between eigenvectors caused by signal versus those related to noise. 
However, the usefulness of SSEE is dependent on the spectral contrast and spatial 
distribution of the endmembers within the scene. Thus, SSEE is particularly beneficial 
for extracting spectrally similar endmembers that are also spatially independent. Overall 
the SSEE method is quick, repeatable, and requires minimal user input.
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CHAPTER 3
ITERATIVE SPECTRAL UNMIXING FOR OPTIMIZING PER-PIXEL

ENDMEMBER SETS2

3.1 Introduction
In hyperspectral imagery, the spectral signature of each pixel commonly 

comprises the combined measured reflectance of components within the sensors field of 
view. Spectral mixing is a problem inherent to remote sensing data, and as a result, few 
image pixels are spectrally “pure” (Settle and Drake, 1993), which complicates spectral 
identification and classification. This problem can be addressed by linear spectral 
mixture analysis (SMA), which classifies mixed pixels (Adams et al., 1986; Adams et al., 
1993) by deconvolving (unmixing) each pixel spectrum into fractional abundances of its 
surface constituents, or endmember spectra. Applying linear SMA to a given mixture 
requires that endmembers occur as spatially segregated patterns (Keshava and Mustard,
2002), with multiple scattering involving several endmembers (non-linear mixing) being 
negligible. If this requirement is met, and the endmembers and their spectral signatures 
are known, linear SMA can be used to estimate fractional abundances for each pixel 
using approaches such as, the maximum-likelihood setup (Settle, 1996), constrained least 
squares (Heinz and Chang, 2001), using endmember bundles to address endmember 
spectral variability (Bateson et al., 2000), and using multiple endmember spectral mixture 
analysis (MESMA), which addresses per-pixel endmember variability (Roberts et al.,
1998). Examples of the application of linear SMA can be found in studies by Sabol et al 
(2002), Lu et al (2004), Small (2001), Bierwirth et al (1999), Asner and Heidebrecht 
(2002), and Neville et al (2003).

Commonly endmember spectra used for linear SMA are selected from image data 
because: 1) available library and field spectra were not necessarily acquired under the 
same conditions as airborne or satellite image data; 2) important surface components may 
not be adequately represented in spectral libraries; and, 3) image endmembers have the 
advantage of being directly associated with surface components detectable in the scene. 
Selection of image endmembers that are good representations of the surface components 
is necessary for accurate unmixing. As such, a number of image endmember extraction 
tools have been developed and include pixel purity index (PPI) (Boardman, 1993), 
manual endmember selection tool (MEST) (Bateson and Curtiss, 1996), N-FINDR 
(Winter, 1999), optical real-time adaptive spectral identification system (ORASIS) 
(Bowles et al., 1995), convex cone analysis (CCA) (Ifarraguerri and Chang, 1999), 
iterative error analysis (IEA) (Neville et al., 1999), automated morphological endmember 
extraction (AMEE) (Plaza et al., 2002), iterated constrained endmembers (ICE) (Berman 
et al., 2004), and vertex component analysis (VCA) (Nascimento and Dias, 2005).

Typically, linear SMA is applied to each pixel using the endmember set obtained 
from the full image. The number of endmembers in this set can vary substantially 
(Gillespie, 1992) depending on the spectral complexity of a scene, the spatial scale, 
spectral resolution, and the number of bands in the image. Commonly this number is 
greater than the number of endmembers required to unmix a single pixel in the scene.

2 A version o f this chapter has been published. Rogge D., Rivard, B., Zhang, J., & Feng, J. (2006). Iterative 
spectral unmixing for optimizing per-pixel endmember sets. IEEE Transactions on Geoscience and Remote 
Sensing, 44, 3725-3736.
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Abundances predicted using linear SMA are most accurate when only the endmembers 
that comprise a given pixel are used, with larger abundance errors occurring when either 
too few or too many endmembers are used (Heinz and Chang, 2001; Sabol et al., 1992). 
Fractional abundance errors owing to an excess of endmembers can be reduced if the 
image endmember set can be optimized on a per-pixel basis, where this optimized 
endmember subset, or pixel endmember set, is more representative for the given pixel. 
Adapting linear SMA to account for variability in the number of endmembers on a per- 
pixel basis is the focus of this study and should not be confused with endmember spectral 
variability, which is addressed in papers by (Bateson et al., 2000; Petrou and Foschi,
1999).

To account for variability in the number of endmembers on a per-pixel basis the 
method presented in this paper makes use of an iterative spectral mixture analysis 
(ISMA) to optimize the image endmember set on a per-pixel basis. We first apply the 
ISMA to a simulated image comprising randomly generated mineral mixtures generated 
with a known image endmember set and with a range of signal to noise ratios (SNR). The 
use of simulated data allows us to directly determine the accuracy of the per-pixel sets 
predicted. The results show that the ISMA can effectively select the most appropriate 
endmember set for each pixel. This, in turn, results in more accurate abundance 
estimations than achieved when the full image endmember set is used to unmix every 
pixel. Finally we apply the ISMA to a real hyperspectral data set collected by the AVIRIS 
sensor over Cuprite, Nevada.

3.2 Background
Linear spectral mixture analysis is based on the premise that a given mixture can 

be modeled using a set of linearly independent endmember spectra. To deconvolve a 
spectrum into fractional abundances of its constituent endmember spectra the following 
equation can be solved using a least squares approach,

R-b ~  ^  ^ i^ ib  +  E b ( 1)
i=l

where R b  is the reflectance of the pixel at band b, F j is the fractional abundance of the 
endmember i, Sib describes the reflectance of endmember i at band b, n equals the number 
of endmembers, and Eb is the error of the fit at band b. The least squares estimator used 
to solve equation 1 can generate fractional abundances that are positive or negative. In 
this case the linear unmixing solution is said to be unconstrained and is computationally 
simplistic. Unconstrained unmixing is particularly sensitive to the use of endmembers 
that are not part of the given mixture, resulting in solutions that are not physically 
realistic (e.g. negative fractions). If constraints are imposed, such that fractional 
abundances sum-to-one (ASC), and fractional abundances are non-negative (ANC), 
unmixing is computationally more complex. The simultaneous implementation of ASC 
and ANC is usually recommended to produce fractional abundances that are physically 
realistic (Heinz and Chang, 2001). The root-mean-square (RMS) error representing the 
“goodness of fit” for the modeled spectrum compared to the image spectrum can be 
calculated as:

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RM S = 1=1__________
(2)

where rb and pb are the modeled and image spectrum values at band b, respectively, k is 
the number of bands.

The concept of unmixing each pixel based on an optimal per-pixel endmember set 
has been presented in papers such as, (Adams et al., 1993; Roberts et al., 1998; Roessner 
et al., 2001; Gross, 1996; Ramsey and Christensen, 1998). In Adams et al (1993) and 
Roessner et al (2001) the authors made use of the spatial association of pixels to that of 
endmembers in the image and in Gross (1996) a hierarchial and stepwise spectral 
unmixing was presented. In Roberts et al (1998) and Ramsey and Christensen (1998), the 
unmixing process was used to determine which endmembers from a candidate 
endmember set are most appropriate to unmix a given mixture. The multiple endmember 
spectral mixture analysis (MESMA) described in Roberts et al (1998) made use of a 
candidate endmember set comprising spectra of vegetation and soils measured in the field 
and laboratory. For each pixel MESMA examined all possible combinations of models 
of 2 and 3 endmembers from the candidate endmember set. Endmember models were 
retained if  they met three criteria: 1) the RMS error was below a pre-set threshold, 2) the 
unmixing model had physically reasonable fractions between -0.01 and 1.01; and, 3) 
each band residual did not exceed a predetermined threshold. It is possible that more 
than one endmember model can meet the 3 criteria of MESMA. This warrants additional 
steps to determine which of the combinations is most appropriate. In Roberts et al (1998) 
a subset of models was selected, which provided an optimal areal coverage. A problem 
arising from this approach is that multiple fractional output maps can result from models 
with different numbers of endmembers. In Okin et al (1999) and Li and Mustard (2003) 
a different approach was suggested whereby the endmember model with the lowest RMS 
error would be retained. This approach is reasonable if the number of endmembers are 
fixed for each model (Okin et al., 1999). However, if the number of endmembers is to be 
variable then the minimum RMS error cannot be used. This is because as additional 
endmembers are added to the model the RMS error will decrease, even if the endmember 
is not in the mixture (Ramsey and Christensen, 1998; Okin et al., 1999; Li and Mustard, 
2003). To address this problem Li and Mustard (2003) suggested that the model with the 
fewest endmembers be used if the RMS error is lower than the noise. In (Roberts et al.,
2003) the higher order endmember model is retained if the RMS error is 0.8% lower for 
models with more endmembers. Evaluating all possible combinations, verifying if each 
model meets the 3 criteria, and determining which of the candidate endmember models is 
optimal, makes MESMA computationally intensive (Roberts et al., 1998; Okin et al., 
1999; Li and Mustard, 2003; Roberts et al., 2003; Okin et al., 2001; Painter et al., 2003; 
Dennison and Roberts, 2003).

In Ramsey and Christensen (1998) high resolution laboratory thermal emission 
spectra were used to test a number of factors that affect the applicability of SMA, notably 
blind endmember input. It was recognized that endmembers with negative fractional 
abundances are physically unrealistic, and likely not part of the mixture. Thus, their
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approach was to remove all endmembers with negative abundance fractions and repeat 
the unmixing process on the remaining endmember set until no negative abundances 
remain. This iterative approach is computationally less intensive than MESMA, but it 
cannot detect endmembers with positive fractions that are not part of the mixture. ISMA 
is an alternative approach that integrates the iterative concepts used in Ramsey and 
Christensen (1998) and the change in RMS as a function of the number of endmembers 
(Ramsey and Christensen, 1998; Okin et al., 1999; Li and Mustard, 2003; Roberts et al., 
2003). The method does not require an examination of all possible endmember 
combinations thereby reducing the computational complexity; and, it can remove 
endmembers with positive, as well as negative abundances that are not part of a mixture, 
thus obtaining the optimal per-pixel endmember set. The following section describes the 
ISMA.

3.3 Iterative spectral mixture analysis
Once an image endmember set has been determined using one of the endmember 

extraction methods listed in section 1, the ISMA can be implemented to determine the 
optimal per-pixel endmember set and produce fractional abundance images for each 
endmember. To account for changes in the geometry of incident light caused by 
topography, a shade endmember was used in papers by Adams et al (1986), Keshava and 
Mustard (2002), Roberts et al (1998), and, Lu et al (2004). In Roberts et al (1998) a 
uniform reflectance shade endmember was used, which can be considered a neutral 
multiplicative scaling factor (Keshava and Mustard, 2002). For the ISMA a shade 
endmember is also included with the image endmember set, as it is assumed that each 
mixture has some degree of shade. For each pixel in the image the implementation of the 
ISMA is in two parts: 1) iterative unmixing to remove endmembers one at a time; and, 2) 
determining the optimal endmember set by analyzing the change in RMS as a function of 
the number of endmembers (Figure 3.1). The first step of part 1 is to apply unconstrained 
linear unmixing using the pixel endmember set (step 2, Figure 3.1). From the 
unconstrained unmixing solution, the endmember with lowest abundance (positive or 
negative) is removed, excluding the shade endmember, which is retained for all iterations 
(step 3, Figure 3.1). If the number of pixel endmembers remaining is > 1, excluding the 
shade endmember, a new unmixing solution is calculated with the remaining 
endmembers. The process is repeated until one endmember and the shade endmember 
remain. Unconstrained unmixing is used instead of constrained unmixing because as the 
endmember set for a given mixture approaches the endmembers that actually comprise it, 
the predicted abundances should be similar to the actual abundances and should sum 
close to 1.

The second part of the ISMA involves an examination of the change in RMS error 
over all iterations to determine the critical iteration that uses too few endmembers (steps 
5 - 7 ,  Figure 3.1). The RMS error should be variable, but low, as long as the actual 
endmembers that comprise the mixture have not been discarded. However, once one of 
the actual endmembers is removed during the iterative process the RMS will increase 
substantially because too few endmembers are available to effectively model the mixture. 
This is the critical iteration and is determined automatically by calculating the change in 
the RMS error (ARMS) starting from the last iteration until ARMS is below a preset 
threshold. ARMS is calculated as,
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ARMS =  1 -  {RMSit_x /  RMSit) (3 )

where RMSlt is the nth iteration RMS value. The search process begins with the last 
iteration because: 1) the actual number of endmembers necessary to unmix each mixture 
is likely much smaller than the maximum available and can be reached quickly; and 2) 
minor RMS variability observed for the first few iterations may exceed the ARMS 
threshold and prematurely stop the process. ISMA also requires the ARMS value to be 
below the threshold for a predetermined number of successive iterations before the 
process is halted. The optimal endmember set is then determined to be the first of these 
successive iterations and is used to calculate the pixel fractional abundances (step 8, 
Figure 3.1). The final outputs are endmember fractional abundance images.

For the ISMA the maximum number of necessary unmixing iterations per-pixel is 
defined by the endmember set. For example, a set of 10 image endmembers would 
require 10 unmixing iterations per-pixel. In comparison, 375 unmixing calculations 
would be required for each pixel to test all possible 2, 3, and 4 endmember combinations 
using MESMA. If the candidate endmember set becomes larger, the number of unmixing 
calculations for ISMA increases linearly, whereas for MESMA the number increases 
significantly faster.

3.4 Testing methodology
To assess the applicability of the ISMA we first examine the accuracy of the 

selected optimal endmember set and the resulting fractional abundances for simulated 
data described in the next section. For this data set per-pixel endmember sets and 
fractional abundances are known since they are used to generate the mixed spectrum of 
each pixel, thus, enabling a direct comparison with estimated pixel endmember sets and 
abundances. The average fractional abundance error (favg) is calculated as:

where n is the number of endmembers, m is the number of mixtures in the image; and, aj 
and ej are the actual and estimated fractions for endmember j, respectively. The number 
of endmembers in equation (4) can be variable, such that favg can be calculated for a 
group, or a single endmember. Equation (4) can also be adjusted for m, such that favg can 
be calculated for simulated mixtures that comprise any number of mixtures. Errors in the 
fractional abundances estimated with the ISMA are then compared with those obtained 
from least squares unconstrained and constrained unmixing using all available image 
endmembers; and, using the approach of (Ramsey and Christensen, 1998). The fully 
constrained unmixing approach of (Haskell and Hanson, 1981) was implemented using 
the Imaging Spectrometer Data Analysis System (ISDAS) (Staenz et al., 1998). A direct 
comparison with MESMA is not warranted, as it will be demonstrated that ISMA can 
effectively select the correct per-pixel endmember sets and obtain accurate abundance 
fractions, without the computational complexity of MESMA.

m n

i=1 7=1
(4)avg m
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Figure 3.1 Schematic representation of the ISMA. Input data sets include the 
hyperspectral image and the derived image endmember set. Steps 1 through 8 are applied 
pixel by pixel. Part 1 (steps 1 through 4) of the ISMA iteratively removes endmembers 
from the pixel endmember set based on minimum abundance until only 1 endmember and 
shade remain. Part 2 (steps 5 through 8) of the ISMA determines the critical iteration 
from the RMS profde generated in Part 1. The optimal pixel endmember set is used to 
unmix the given pixel spectrum, with results for all pixels output as endmember 
fractional abundance images.

A  second test is presented using AVIRIS hyperspectral data for Cuprite, Nevada, 
an area where spectral endmembers have been reasonably well documented (e.g. Clark et 
al., 2003), but where fractional abundances are not known. To asses the fractional 
abundance maps generated using the ISMA, results should be physically realistic: 1) sum 
to 1 and 2) be non-negative. Histograms of the distribution of fractional abundances for 
individual endmembers, and for pairs of endmembers, are analyzed. These are compared 
with results from a fully constrained unmixing using all available endmembers.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5 Hyperspectral data sets
3.5.1 Simulated data set
The simulated data set comprises 10000 random linear mixtures generated from 

29 mineral spectra obtained from the USGS spectral library (Clark et al., 1993) and a 
shade spectrum (Table 3.1). The 420 bands of each spectrum span 0.4 to 2.56 pm with an 
average spectral resolution of 0.005 pm (-0.002 in the visible to -0.01 in the short-wave 
infrared). Spectra for common rock-forming minerals were chosen, including multiple 
spectra for actinolite, calcite, goethite, kaolinite, and muscovite (Table 3.1). The latter 
were used to test the robustness of the methodology to minor spectral variations of the 
same mineral.

For each mixture the combination of endmembers was randomly chosen. A shade 
endmember with uniform reflectance was included in all mixtures (1% of absolute 
reflectance). The simulated data has an average number of -3.5 endmembers for all 
mixtures. The minimum and maximum number of endmembers for the mixtures are 1 
and 12, respectively (excluding the shade endmember). The mixtures generated are 
mathematically correct, but are not necessarily geologically realistic (e.g. occurrence of 
magnesium rich olivine and quartz).

Noise was added to the random mixtures using a standard normal distribution of 
randomly generated numbers. SNR of 12:1, 25:1, 50:1, and 100:1 were used, assuming 
50% absolute reflectance. The outcome was four data sets, each containing 10000 
mixtures at a specific SNR. The noise was added using the following equation:

r t  = rb +
V I  SNR

(5)

where, r is reflectance, and q is a randomly generated number with a mean of 0 and a 
standard deviation of 1, and M is the assumed reflectance for the spectrum. For example, 
if reflectance is given as a value between 0 and 1, we can assign additive noise based on 
an assumed reflectance of 50%, or M = 0.5. The SNR values used in this paper are 
consistent with those used by Ifarraguerri and Chang (1999) and Harsanyi and Chang 
(1994), who used simulated data to test constrained unmixing methods with SNR ranging 
from 5:1 to 40:1; and, Plaza et al (2002) who used SNR of 10:1 to 110:1 to test 
endmember extraction algorithms. When we test the unmixing approaches with this data 
set, we use the same endmember set as used for the creation of the simulated mixtures 
(Table 3.1).

3.5.2 AVIRIS Cuprite hyperspectral data set
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor has 224 

channels over the 0.37 to 2.51 pm spectral range with an average spectral resolution of 
-10 nm. We use a 500 x 500 pixel subset of the June 19lh, 1997 Cuprite calibrated data 
set available from the USGS. This data set has an average SNR of 100:1 at most 
wavelengths (Kruse, 2002). Of the 224 atmospherically corrected channels, we use 167 
over the 0.4 to 2.42 pm spectral range. Channels not used are primarily associated with 
H2 O and OH absorption features near 1.4 and 1.9 pm.
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Table 3.1: List of endmember spectra (from USGS Spectral Library (Clark et al., 1993)) 
used to generate the simulated data set. Minerals with multiple endmembers (EM) 
spectra are in bold.

EM no. Library Name Mineral Name Library Details
1 actinoM .spc Actinolite HS116.3B
2actin ol3 .sp c Actinolite HS315.4B
3albite3.spc Albite HS66.3B
4almand1.spc Almandine HS114.3B
5alunite1.spc Alunite GDS84 Na03
6anorthi2.spc Anorthite HS201.3B
7budding1.spc Buddingtonite GDS85 D-206
8 ca lcite1 .sp c Calcite WS272
9ca lcite2 .sp c Calcite HS48.3B

10chlorit5.spc Chlorite SMR-13.d 30-45um
11 dickitel .spc Dickite NMNH106242
12epidote2.spc Epidote GDS26.b <75um
13goeth it3 .spc Goethite W S219 (limonite)
14goeth it4 .spc Goethite WS220
15hematit2.spc Hematite GDS27
16hornble1.spc Hornblende_Mg NMNH117329
17kaolini1.spc Kaolinite CM9
18kaolini8.spc Kaolinite CM7
19montmor1.spc Montmorillonite SWy-1
20m u scov i1 .sp c M uscovite GDS107
21 m uscovi2 .spc M uscovite GDS108
22olivine1.spc Olivine NMNH137044.a 160u
23opal2.spc Opal TM8896 (hyalite)
24quartz2.spc Quartz GDS31 0-74um fr
25sphaler4.spc Sphalerite S26-34
26sulfur.spc Sulfur GDS94 Reagent
27talc1.spc Talc GDS23 74-250um fr
28tremoli1.spc Tremolite HS18.3
29zoisite.spc Zoisite HS347.3B
30 dark 1% of absolute reflectance

3.6 Results
3.6.1 Example for one mixture
For the simulated data multiple ARMS values over successive iterations were 

tested, with a ARMS threshold of 5% over 2 successive iterations giving the best results. 
Figure 2 shows the spectrum of a single mixture and the spectra of the 5-endmember 
mineral spectra at a SNR of 500:1 (Figure 3.2A) that comprise it. The first unmixing 
iteration (iti) with the ISMA uses the 29 endmembers listed in Table 1 as image 
endmembers, plus shade. Fractional abundances for each endmember for iti are shown in 
Figure 2b. Although there is a reasonable estimation of the abundances for the actual 
endmembers comprising the mixture, the endmembers that are not part of the mixture, 
have positive and negative abundances. The RMS error is calculated for it] (Figure
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3.2C), followed by the removal of the endmember with the lowest abundance, in this case 
endmember 24 (refer to Figure 3.2B). The process continues until one endmember 
remains, excluding shade. Given the iterative nature of the ISMA, erroneous endmembers 
are removed first and those endmembers that comprise the mixture are retained. 
Examination of the change in RMS error through all iterations (Figure 3.2C) shows that 
RMS is relatively stable until it2 5- After it25 the endmembers that comprise the actual 
mixture begin to be removed and the RMS error increases substantially. Iteration 25 is 
labeled the critical point on Figure 3.2C and marks the critical iteration between having 
too many and too few endmembers, which defines the optimal endmember set for the 
mixture. Requiring ARMS to be below the given threshold for 2 successive iterations 
ensures that the critical point is not mistaken as it2 g, a local minimum. A comparison of 
the predicted abundances at iti (Figure 3.2B, 30 endmembers) and it25 (Figure 3.2D, 
critical point with optimal set of 5 endmembers plus shade) illustrates the impact of an 
appropriate selection of endmembers on the error in endmember fractional abundance. 
The fractional abundances at it25 are within 0.01 of the actual abundances and sum to 
0.98.

3.6.2 Results for simulated data
3.6.2.1 RM S profile characteristics
Figure 3.3 displays the average RMS error as a function of iteration for all 

mixtures at each SNR. This Figure illustrates the consistent characteristics (e.g. critical 
point) of the RMS profiles. The profiles show that the predicted average number of 
endmembers required to unmix each mixture is between 3 and 4, which is consistent with 
the actual average for the simulated data sets. The profiles for the individual mixtures 
have 3 principle characteristics: 1) minor RMS variability over the first few iterations; 2) 
stable RMS over the mid-range iterations until the critical point; and, 3) substantial 
increase in RMS after the critical point. We observe two exceptions to the characteristic 
RMS error profile: 1) instances with no substantial increase in RMS; and, 2) a local 
minimum after the RMS increases substantially (refer to Figure 3.2C). The first case is 
observed for mixtures that comprise only 1 endmember. The second may be attributed to 
the order of endmember removal and the actual abundance fraction of a given 
endmember to the mixture.

3.6.2.2 Proportion o f  correctly selected endmembers
For each mixture the endmembers selected by ISMA and the method of Ramsey 

and Christensen (1998) are compared with the actual endmembers used in the simulation, 
and a proportion of correctly selected endmembers calculated (proportion correct = 
#correct / #selected). At high SNR (100:1) the average proportion of correctly selected 
endmembers for all mixtures was 96% using ISMA (Table 3.2). This value drops to 
83.8% at a SNR of 12:1. The method of Ramsey and Christensen (1998) resulted in 
values ranging from 46.3 to 38.9% for these SNR values. On average, the number o f  
endmembers underestimated by the ISMA was 0.24 to 1.31 at SNR of 100:1 and 12:1, 
respectively. The method of Ramsey and Christensen (1998) fared more poorly and 
overestimated the actual number of endmembers by a factor of 2 at each SNR. For both 
methods the number of endmembers missed increases with decreasing SNR. 
Unconstrained and fully constrained unmixing methods are not included in Table 3.2, as 
each uses all 30 endmembers to process the data.
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Figure 3.2 Graphical representation of the RMS error as a function of the number of 
iterations for a mixture of 5 endmembers (A) showing critical point at iteration 25 (it2s) 
and local minima at it2 7-it2g (C). Note the RMS variability for the early iterations where 
an excess of endmembers are used to unmix the given mixture. (B) and (D) show a 
comparison between actual endmember abundance (solid line) and estimated abundance 
for iti (all endmembers) and it25 (critical point), respectively. Note negative and false 
positive abundances in (B) for the endmember set used in iti, which is equivalent to 
results from an unconstrained unmixing using the 29 available endmembers and shade 
listed in Table 1. Note that the abundances using the endmembers at it25 (D) are within 
<0.01 of the actual fractions and sum to 0.98.

Table 3.2: Average number of endmembers selected, proportion correctly selected, and 
average number of endmembers missed for ISMA and the method given in (Ramsey and 
Christensen, 1998). Values are reported as averages for all mixtures at a given SNR.

ISMA R&C, 1998
SNR #  selected proportion correct #  missed # selected proportion correct #  m issed

1 0 0 3.23 96.0 0.32 7.20 46.3 0.17
50 3.02 94.1 0.61 7.04 44.8 0.35
25 2.65 90.7 1.06 6.67 42.8 0.67
1 2 2.16 83.8 1.67 6.14 38.9 1.13

Actual average num ber o f endmembers = 3.47
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Figure 3.3 Average RMS profile for all mixtures at SNR of 100:1, 50:1, 25:1, and 12:1. 
On average each pixel can be effectively modeled with 3 to 4 endmembers.

3.6.2.3 Average fractional abundance errors
Equation (4) was used to calculate the average fractional abundance error (favg) 

for the simulated data at each SNR, where n = 29 (all endmembers excluding shade) and 
m = 10000 (all pixels). ISMA resulted in lower favg at all SNR compared with the 
method of Ramsey and Christensen (1998) and fully constrained unmixing, with the 
exception of constrained unmixing at a SNR of 12:1 (Figure 3.4). All three methods have 
average fractional abundance errors that are significantly less than that of the 
unconstrained unmixing method at all SNR (Figure 3.4 inset). The results demonstrate 
the impact of unmixing using the correct endmembers for each mixture.

When favg is calculated for each endmember (n = 1, m = 10000) the average 
fractional abundance error for all mixtures shows a dependency with respect to the given 
endmember (Figure 3.5). The largest error is observed for endmembers with few or no 
spectral features (#3 albite, # 6 anorthite, and # 24 quartz) (Figure 3.6). This is consistent 
with least squares theory in that in cases where endmembers are similar or featureless, the 
endmember matrix will be ill conditioned. For these three endmembers the results do 
not enable the selection of a better method amongst the constrained, ISMA or the method 
of Ramsey and Christensen (1998). Endmembers with numerous spectral features 
consistently display a low fractional abundance error (e.g. #4 almandine, #5 alunite, #29 
zoisite). These endmembers have a lower error for the ISMA than for the fully 
constrained approach and the method of Ramsey and Christensen (1998). Similar 
characteristics are observed for the three methods at all SNR investigated, with errors 
increasing as SNR decreases.

At a SNR of 100:1 the sum of fractional abundances obtained from the ISMA 
ranged from 0.95-1.05 for 89% of the mixtures and this value fell to 76%, 58% and 37% 
at a SNR of 50:1, 25:1, and 12:1 respectively (Figure 3.7). The number of mixtures that 
had negative fractional abundances was 9, 6, 7, and 7 for data sets with SNR of 100:1, 
50:1, 25:1, and 12:1, respectively. Of these, only one mixture showed a negative 
fractional abundance exceeding 0.01. These results show that ISMA can produce
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physically realistic abundance fractions for the majority of pixels by correctly selecting 
per-pixel endmember sets, particularly at higher SNR. This is accomplished without the 
need to impose abundance non-negative and sum to 1 constraints (ANC and ASC).

3.6.2.4 Dependency o f  the error on the number o f  endmembers in the mixture
Figure 3.8 shows the average fractional abundance error as a function of the

number of endmembers in the simulated mixtures. Pixels that comprise 10, 11, and 12 
endmembers were excluded from this analysis because they are represented by too few 
mixtures (7, 2, and 1 respectively). For the constrained unmixing method and the ISMA, 
favg increases as more endmembers are included in the mixture. For the unconstrained 
unmixing method the error remains stable (Figure 3.8A inset), but is significantly larger 
than for the other two methods. At higher SNR the ISMA performs better than the 
constrained unmixing method when fewer than 7 endmembers comprise a mixture, with 
half the error when mixtures comprise 3-5 endmembers. At a SNR of 12:1 the only 
improvement observed is for mixtures with fewer than 3 endmembers. For both methods 
the lowest error occurs if  a single endmember comprises the mixture regardless of the 
SNR. These results clearly demonstrate the direct influence of the number of 
endmembers on the predicted fractional abundances.

3.6.2.5 Dependency o f  the error on multiple endmembers fo r  the same mineral
The average fractional abundance errors obtained from the constrained and ISMA

methods were compared for mixtures that included multiple endmembers of the same 
mineral (e.g. muscovil.spc and muscovi2.spc). Overall, the constrained unmixing 
method resulted in lower fractional abundance errors than the ISMA method at low SNR 
(<50:1). At higher SNR the difference in the errors between both methods was small and 
on the order of 0-0.01 (Figure 3.9). For the ISMA method the highest errors occur when 
one or both of the similar endmembers have low fractional abundance (e.g < 0.05). For 
larger abundances (e.g. >0.1) the error decreases and approaches that of the constrained 
unmixing method. This change in error as a function of actual abundance is not observed 
in the constrained unmixing results.

♦ Unconstrained
\   •  Constrained
i - a -  R&C 1998 
v —■— ISMA

0 .5 -

0 .2 -

0 .1-
o>

100
SNR

Figure 3.4 Average fractional abundance error between actual and estimated abundances 
for all endmembers and pixels calculated for the method of [29] (R&C 1998); constrained 
and unconstrained (inset) unmixing using all 30 endmembers; and, the ISMA.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—  Unconstra ined j

 Constra ined i>

 R&C 1998 j ’,
 ISM A 11

0 .2 -

1.0 -

LL

0.0
25 2910 15 201 5

Endmember (number)

Figure 3.5 Average fractional abundance error at a SNR of 50:1 for each endmember for 
all mixtures for the method of [29] (R&C 1998); constrained and unconstrained unmixing 
using all endmembers; and the ISMA. The inset includes results for the unconstrained 
unmixing approach. Refer to Table 1 for the mineral corresponding to the endmember 
number.
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Figure 3.6 Selection of endmember spectra with differing spectral contrast. 
Endmembers with numerous spectral features (almandine, alunite, zoisite) result in low 
fractional abundance errors (Figure 5), whereas high fractional abundance error is 
associated with endmembers with few spectral features (albite, anorthite, quartz).
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mean std 

SNR 100:1 1.02 0.16
SNR 50:1 1.01 0.21
SNR 25:1 0.98 0.39
SNR 12:1 0.93 0.54

\  v

0.25
SNR 100:1

ID
CDOc
03T3e3

.Q<
COco
o
CO

0 .20 -

0 .15-

0 . 10 -

0.05-  U nconstrained
C onstrained 

ISMA (A)

0.60
SNR 50:1

0 .5 0 -

0 .4 0 -

0 .3 0 -

0 .2 0 -

0 . 1 0 -
Constrained

 ISMA

1 2 3 4  5 6 7 8 9

O 0.80

^°70 
Oc  0.60 
CO ■O
c  0.50 2
<  0.40 
ro
§ °'30 
b  0.20
CO

0-  0  .10 

o

Number of Endmembers

SNR 25:1

Constrained 
ISMA (

1 2 3 4 5 6 7 8 9

1.60
SNR 12:1

1 .4 0 -

1 .2 0 -

1 . 0 0 -

0 .8 0 -

0 .6 0 -

0 .4 0 -

0 .2 0 - C o n s tra in e d

(D) ISMA

2 5 9
Number of Endmembers
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Unconstrained unmixing included in inset of (a) for SNR of 100:1.
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Figure 3.9 Average fractional abundance error for mixtures containing multiple 
endmembers for the same mineral (refer to Table 1). Act=actinolite, cal=calcite, 
goe=goethite, kao=kaolinite, mus=muscovite.

3.6.3 Results for the AVIRIS Cuprite data set
A total of 30 endmembers were extracted from the AVIRIS Cuprite data set using 

the IEA (Neville et al., 1999) extraction tool available in ISDAS (Staenz et al., 1998). Of 
the 30 endmembers, two were noisy spectra and were removed from the list. A shade 
endmember with uniform reflectance of 1% absolute reflectance was used rather than the 
darkest pixel in the image because the later had an average reflectance of 14% and a 
notable spectral shape. The remaining endmembers were used to unmix the data, 
including spectra with similar overall shape, but with subtle variations over specific 
spectral regions. For the Cuprite data a number of ARMS threshold values were tested, 
including the 5% value used for the simulated data. However, a ARMS threshold of 15% 
over 2 successive iterations was found to be more appropriated for the real data set.

A visual comparison of the fractional abundance maps generated using ISMA and 
a fully constrained unmixing shows similarity in the broad spatial distribution of 
abundance fractions, with more noticeable differences occurring locally, or between 
endmembers with similar spectral features (Figure 3.10). The ISMA fractional 
abundance maps are also consistent with validated mineral maps produced using 
Tetracorder for the data set (Clark et al., 2003). For the ISMA fractional abundance 
maps, 98.9% of the pixels are non-negative and 93% sum to < 1.01 (excluding shade) 
(Figure 3.11). Of the pixels that sum > 1.01, only 1.4% (3565 pixels) sum to > 1.1. 
Histograms of the fractional abundances for each endmember show that low abundance 
values dominate the fully constrained unmixing solution (Figure 12a). These low
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abundances are attributed to endmembers being used to improve the goodness of fit of the 
model, but that are likely not part of a given mixture. This is based on knowledge of the 
spatial distribution and characteristics of the known minerals and mineral assemblages in 
the area derived from existing work, such as Clark et al (2003). For example, a number 
of known minerals in the region are spatially confined to alteration zones (e.g. 
buddingtonite and chalcedony), and not distributed evenly throughout the image. Yet 
analysis of the abundance histograms and abundance images, for fully constrained 
unmixing, indicate a large number of pixels with low abundance values (e.g. < 10%) that 
are distributed outside these alteration zones. For fully constrained unmixing 96% of the 
pixels are modeled by >5 endmembers, in contrast with 37% using IMS A. Figure 3.12 
also shows that the frequency distributions of endmember fractions is not truncated when 
calculated using ISMA. For ISMA multimodal distribution are observed and there is 
also a distinctive shift to higher mean fractional abundances. This may be attributed to 
fewer endmembers being used to model each mixture, where each endmember contains 
spectral information that is relevant to the given mixture.

Geological map units are defined in part based on characteristics of their 
mineralogy and mineral abundance. The fractional abundance maps show the nonrandom 
spatial distribution of minerals (Figure 3.10). Scatter plots of fractional abundances for 
the selected region are shown in Figure 3.13 and reveal useful information for mapping, 
particularly for results obtained from the ISMA. In the case of the ISMA results, the 
scatter plots reveal clusters of pixels with similar mineral abundances corresponding to 
mappable units (e.g. Figure 3.13C). The same scatter plots for the fully constrained 
results lack well-defined clusters and the abundances are predominantly low reducing 
their value as a mapping tool.

3.7 Discussion
The results of this study provide a comparison of per pixel endmember sets and 

abundance determination obtained from the ISMA and other unmixing approaches. For 
the simulated data, the variable of greatest impact on each of the unmixing methodologies 
is SNR, which is not unexpected. The ISMA outperformed the other methods at SNR > 
50:1, a value exceeded by current airborne systems (e.g. AVIRIS, HyMAP), which have 
published SNR averaging > 1000:1 in the visible and > 500:1 in the SWIR (Kruse, 2002; 
Cocks et al., 1998). SNR for the Hyperion satellite hyperspectral sensor is as high as 
100:1 in the visible, but ranging from 50:1 to 25:1 in the SWIR, depending on the date of 
acquisition (Kruse, 2002). With a SNR approximating 50:1 ISMA should still be 
effective for selecting the optimal endmember set and reducing errors in fractional 
abundances. The simulated data results also indicate the impact of the number of 
endmembers that comprise a given mixture on the errors in the estimated fractional 
abundances. At SNR > 50:1, the ISMA has lower errors in fractional abundances if 
fewer than 6  endmembers comprise the mixture, with the greatest improvement for 3 — 4 
endmembers. The number of image endmembers comprising a pixel will fluctuate as a 
function of the scene and the spatial resolution of the image. However, it is reasonable to 
assume that this number will typically be less than 7 endmembers (excluding shade), but 
likely closer to 3 or 4. As such, ISMA is particularly well suited to unmix the majority of 
pixels using existing hyperspectral sensors.
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Figure 3.10 Selected endmember fractional abundance maps for a subset of the image. 
Fully constrained unmixing (left column), ISMA (right column). (A) Chalcedony 1, (B) 
Kaolinite, (C) Alunite 1, (D) Buddingtonite, (E) Chalcedony 2, (F) Montmorillonite, (G) 
Alunite 2, (H) desert varnish. Images are linearly stretched from 0 -0 .5 .
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Figure 3.11 Histogram showing the distribution of total fractional abundance (excluding 
shade) for fully constrained and ISMA unmixing methods using the Cuprite hyperspectral 
data.
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Figure 3.12 Histograms of fractional abundance values for each endmember for fully 
constrained (A) and ISMA (B) unmixing results of the Cuprite data set. Note vertical and 
horizontal scales are different for the two plots.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K aolin ite K aolin ite

0.00 
0.00

1.0 0 -

0.73

>  c  
o ■o 0)o  0.50-j 
<0

049 0.73
Alunite 2

1.03
Alunite 2

(C)

&vT.V
0.00 

0M 024 0 48 0 71
Chalcedony 2

i .u-

0̂ 2-

0.31-

■ i ;v/>;

-0.13. 
093 -0.01

T"0̂49
Chalcedony 2
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Alunite 1 and 2; (C) Chalcedony 1 and 2 (refer to Figure 10). Note the vertical and 
horizontal scales in the left and right columns and ISMA results that include a few 
negative and > 1 values.
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The ISMA exploits the characteristic variation in RMS errors as a function of the 
numbers of endmembers utilized to solve a mixture. The RMS error profiles have 
consistent characteristics independent of SNR, specifically the critical point, which rarely 
corresponds to the lowest RMS error. The consistent pattern of the RMS error profiles 
allows for a high degree of confidence in using the ARMS for selecting the critical point, 
and in turn, the optimal endmember set. However, based on the analysis of simulated 
data, if endmembers have very low fractional abundances, the RMS error increase after 
the critical point may be minimal and may impact the search for the critical point. In 
such circumstances if the ARMS parameter is set too high the ISMA will underestimate 
the number of endmembers. On the other hand, decreasing the ARMS may cause an 
overestimation of the number of endmembers in other mixtures. The parameters used for 
the simulated data gave accurate results, though on average slightly underestimated the 
number of endmembers. For the real data set it was observed that a slightly higher 
ARMS performed best. Thus, further analysis is required to determine what parameters 
are optimal for most data sets. However, based on the design of ISMA, once an RMS 
profile has been generated, multiple fractional abundance maps can be created for various 
ARMS without the necessity of repeating the iterative unmixing process.

The RMS profiles also show that the RMS error is low for the midrange of 
iterations prior to the critical point suggesting that the corresponding endmembers do not 
have a great influence on the modeled mixture, but do minimize the RMS error by 
adjusting for subtle spectral detail and noise. This characteristic may explain why the 
method of Ramsey and Christensen (1998) consistently overestimates the number of 
endmembers, where for each mixture there exists a set of endmembers with positive 
fractional abundances that reduce the RMS error, but are not part of the mixture. If 
incorrect endmembers are retained, the error in fractional abundance increases for the 
correctly selected endmembers. Thus, we suggest that the critical point is a better 
representation of the optimal endmember set than just considering negative abundance 
fractions.

Determining the critical point from the RMS profiles is computationally 
insignificant compared to the unmixing process. For ISMA, the computational load is 
controlled by the number of unconstrained unmixing iterations required to build the RMS 
profile. Thus, the computational load is directly dependent on the number of 
endmembers in the given scene. This is also the case for MESMA but as the number of 
endmembers increases, the number of mixing combinations increases substantially, 
whereas for ISMA the increase is linear. In addition, MESMA is affected by the number 
of endmembers comprising a pixel, such that if  endmember combinations >4 (excluding 
shade) are required the computational complexity becomes a burden. For ISMA, the 
number of endmembers in each pixel has no effect on computational efficiency. ISMA 
represents an alternative to MESMA, in which ISMA has the capability of correctly 
selecting per-pixel endmember sets and produce accurate abundance fractions, while at 
the same time significantly increasing computational efficiency and operational 
simplicity. It is noted here that MESMA was originally designed to run using an 
appropriate endmember library derived from field and laboratory spectra (Roberts et al., 
1998), whereas ISMA is designed to run using image endmembers.

Endmember extraction algorithms commonly retrieve a larger number of 
endmembers that include noisy spectra and spectra with similar overall shape. Noisy

5 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



spectra are generally easy to identify and can be removed from the list. In the case of 
similar spectra, determining which endmembers should be retained for unmixing can be 
more problematic. Inherent to ISMA is its ability to complete this task automatically, but 
more importantly it is designed to do this on a per-pixel basis.

Depending on the image a complete endmember set may not be possible. Missing 
endmembers will have a similar effect on the ISMA RMS profile as the removal of actual 
endmembers through the iterative process. However, the increase in RMS attributed to 
the missing endmember will occur across the profile. Missing endmembers will likely 
reduce fractional abundance accuracy, regardless of the unmixing approach. Missing 
endmembers may in part explain the necessity in this study to increase ARMS for the real 
data. However, additional simulated tests are necessary to verify the full effects of 
missing endmembers.

In order to obtain physically realistic fractional abundances (non-negative and 
summing to 1) unmixing methodologies have focused on imposing ANC and ASC. 
However, using the ISMA no constraints were required to obtain physically realistic 
fractional abundances for both the simulated and real data sets. This is a result of 
effectively selecting the optimal per-pixel endmembers sets and demonstrates the 
importance of using the correct endmembers to unmix individual pixels.

The results for the Cuprite data set are interesting in that both fully constrained 
and ISMA result in physically realistic abundance fractions (sum to 1 and non-negative) 
and show similar map patterns of abundances, yet the two differ with respect to 
abundance values and their histogram distributions. Most notable are 2 interrelated 
differences: 1) the number of endmembers used to model each pixel; and, 2) a shift to 
higher mean abundances for ISMA results. The first difference is key, in that for fully 
constrained unmixing additional endmembers are used to reduce the residual error. This 
results in a high proportion of pixels with low abundance fractions. For ISMA, 
endmembers are only retained if their spectra contain information that can significantly 
reduce the RMS error, which results in each endmember comprising a reasonable fraction 
of the mixture. Although the fractional abundances cannot be verified without ground 
truth data, ISMA allows for a better discrimination of those endmembers that are likely to 
occur within a given pixel, as opposed to those that simply reduce the residual error. 
Selecting accurate per-pixel endmember sets is particularly important for minimizing 
errors in mapping. The abundance and presence of endmembers that comprise a large 
fraction of a given pixel are easily determined, but an endmember that comprises a small 
fraction of a pixel is more problematic and its presence may be missed. These cases are 
of particular interest to users as the accurate selection of per-pixel endmember sets can 
significantly impact the ability to map the spatial distribution of an endmember of 
interest.

One topic that was not addressed in this study, but should be briefly mentioned, is 
the issue o f  endmember uniqueness and variability in the context o f  multispectral 
systems. For hyperspectral and multispectral systems the number of possible unique 
endmembers is determined as the number of bands plus 1. For multispectral systems 
such as Landsat, which generally have less than 7 statistically independent dimensions, 
the number of unique endmembers is restricted, and will likely be fewer than what occurs 
in the scene. The forced restriction to a few spectral components does not allow for
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proper consideration of the spectral variability related to intraclass differences. Thus, the 
solution for ISMA, as with any other unmixing algorithms, will be under-determined.

3.8 Conclusions
The results of this study illustrate that the ISMA methodology developed in this 

paper is an effective tool to account for the per pixel variability in image endmembers 
necessary to unmix individual pixels. Based on analysis of simulated data the method 
correctly selects the optimal endmember set 96% and 83.8% of the time for SNR of 100:1 
and 12:1, respectively. The accurate selection of an optimal endmember set at high SNR 
(100:1) reduces errors in fractional abundances compared to that obtained from unmixing 
using the full endmember set. At SNR >50:1 the ISMA produced results with fractional 
abundances that sum close to 1 and are not negative. Compared with an unconstrained 
unmixing, the ISMA significantly reduces fractional errors. The ISMA produces lower 
abundance errors compared with a fully constrained unmixing for physically realistic 
mixtures (e.g. < 7 endmembers) at SNR lower than that of available airborne sensors and 
consistent with that of satellite hyperspectral sensors. Compared with the method of 
Ramsey and Christensen (1998), the ISMA removes endmembers with low positive 
abundance fractions that are not part of a given mixture, thus minimizing false detection.

The results for the Cuprite data set show that both fully constrained and ISMA 
result in physically realistic abundance fractions with similar map patterns, yet they differ 
with respect to the abundance values and their detailed distribution. This difference is a 
result of ISMA only retaining endmembers that contain spectral information that is 
relevant to the given mixture, and not noise. This impacts the ability to map the spatial 
distribution of an endmember of interest.

ISMA and MESMA are designed with the same objective in mind, with the key 
difference between the two being computational complexity. Although MESMA has 
been shown to produce good results, the computational complexity of the method 
(Roberts et al., 1998; Okin et al., 1999; Li and Mustard, 2003; Roberts et al., 2003; Okin 
et al., 2001; Painter et al., 2003; Dennison and Roberts, 2003) is a major drawback. The 
results from this study have demonstrated that selecting the correct per-pixel endmember 
set and produce accurate abundance fractions can be accomplished using the less 
computationally intensive ISMA method. It has also shown that imposing constraints on 
the unmixing process to obtain physically realistic solutions is not a necessity if an 
accurate per-pixel endmember set is used. The ISMA method is straightforward, easy to 
implement and has minimal user input.
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CHAPTER 4
APPLICATION OF HYPERSPECTRAL DATA FOR REMOTE PREDICTIVE 

MAPPING, BAFFIN ISLAND, CANADA3

4.1 Introduction
Regional geological mapping in the Arctic is time intensive and costly, primarily 

owing to poor accessibility, but is essential for subsequent geological investigations and 
mineral exploration. Extensive budget cuts in geological surveys have resulted in the 
necessity to pursue effective reconnaissance mapping methods. Air photos and airborne 
magnetic data (if available) are used to locate bedrock exposure and map structural trends 
related to the geology. These data sets are essential tools to assist the field geologist in 
producing accurate geological maps. Visible and near-infrared reflectance multi- and 
hyperspectral data have also been used to support geological mapping (e.g. Podwysocki 
et al., 1983; Smith et al., 1985; Sultan et al., 1987; Griffiths et ah, 1987; Kaufmann, 
1988; Loughlin, 1991; Crowley, 1993; Rowan et ah, 1995; Sabins, 1999; Yang et ah, 
1999; Bierwirth et ah, 2002; Clark et ah, 2003; Rowan et ah, 2004; and Harris et ah, 
2005). Unlike multispectral sensors, such as Landsat TM, hyperspectral sensors collect 
data over hundreds of contiguous channels with spectral resolution on the order of 10 - 20 
nm. This allows the identification of specific absorption features associated with 
common rock-forming and alteration minerals (e.g. Hunt, 1977; Clark et ah, 1990; 
Vitorello and Galvao, 1996). In arid regions such as Cuprite, Nevada, the lack of 
vegetation allows for detailed spatial mapping of mineral outcroppings and the dispersion 
of those minerals in alluvial fans (e.g. Clark et ah, 2003).

Bedrock mapping using hyperspectral data presents different challenges compared 
with target detection, which focuses on searching the image for specific spectral features 
related to minerals of interest. For example, target detection is particularly useful for 
locating specific minerals with diagnostic absorption features occurring within alteration 
zones (e.g. Yang et ah, 1999; Bierwirth et ah, 2002; Clark et ah, 2003). For bedrock 
mapping, the pixel spectra are compared to the reflectance of the mineral assemblages 
that make up individual rock units (e.g. Rowan et ah, 2004; Harris et ah, 2005). Units are 
mapped based on spatial continuity of surface composition, rather than occurrence of 
individual minerals. Bierwirth et ah (2002) showed that hyperspectral data could be used 
to effectively map mineral assemblages associated with gold mineralization in poorly 
exposed terrain in the Central Pilbara, as long as the surface material was dominantly in- 
situ soil and residual rock. In a study by Rowan et ah (2004) vegetation comprised about 
50 percent of the area complicating identification, but also allowed for mapping of 
bedrock units based on subtle differences in spectral shape owing to variations in 
vegetation cover. A similar relationship was observed by Harris et ah (2005) in an 
analysis of hyperspectral data in the Canadian Arctic, where vegetation was used as a 
proxy for gabbroic units in specific localities.

The objective of this study is to demonstrate the application of airborne 
hyperspectral data for the generation of accurate remote predictive lithological maps in

3 Portions o f this chapter have been published. Rogge, D., Rivard, B., Zhang, J. & Harris, J. (2005).
Remote predictive geological mapping using airborne hyperspectral data, Baffin Island. Annual Meeting o f  
Geological Association o f  Canada. Halifax, Nova Scotia, May 15-18.
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the Arctic setting. These maps can be used to: 1) assist regional mapping by giving 
detailed spatial and spectral information; 2) focus future mapping projects; or, 3) 
highlight areas of economic potential. The study area is located in southern Baffin 
Island, about 80 km south of Iqaluit, and is part of a larger hyperspectral survey 
undertaken by the Geological Survey of Canada to assess this technology for regional 
mapping in the Canadian Arctic. This particular area comprises a diverse assemblage of 
lithologies and is characterized by excellent bedrock exposure and in-situ boulder fields 
and regolith. From an economic stand point the region includes mafic and ultramafic 
rocks that are contemporaneous with rocks in Raglan, Quebec, and Thompson, Manitoba 
that host Cu-Ni and PGE mineralization, all of which are part of the larger Trans-Hudson 
Orogen (Dillon-Leitch et al., 1986; Lewry and Stauffer, 1990; St-Onge and Lucas, 1994). 
The carbonate rocks in the region are also known to contain gem-quality minerals in 
some localities.

Harris et al (2005) applied a minimum noise fraction transform and matched 
filtering to map lithology for a portion of the data set used in this study. This study 
expands on the work by Harris et al. (2005) to: 1) obtain a more complete representation 
of the lithological units present in the study area, specifically those that have economic 
potential (e.g. mafic-ultramafic rocks and carbonates); 2), generate a predictive 
lithological map that is similar in format to recent regional lithological maps; and 3) 
consider the impact of rock encrusting lichen for mapping.

4.2 Study Area
The study area (Figure 4.1) is part of the northeastern segment of the 

Paleoproterozoic Trans-Hudson Orogen (Lewry and Stauffer, 1990), which comprises 
tectonostratigraphic assemblages accreted to the northern margin of the Archean Superior 
Province. The tectonostratigraphic assemblages in southern Baffin Island are 
characterized by stacked tectonic elements comprising the lower Superior Province and 
Povungnituk Group, the Narsajuaq arc (1.83 Ga), and the upper Lake Harbour Group, 
Ramsay River orthogneiss, and Blanford Bay assemblage. The upper group is intruded 
by the Cumberland batholith (1.86 Ga) (St-Onge et al., 1999; St-Onge et al., 2002). The 
study area lies within the Lake Harbour Group and comprises upper amphibolite to 
granulite grade metamorphosed granodiorite, monzonite, tonalite, syenite, peridotite, 
gabbro, carbonate, and clastic sedimentary units (Figure 4.1). The mafic and ultramafic 
rocks within the Lake Harbour Group are considered sills, and are 10 -  100’s of meters 
thick and trend several kilometers along strike. These rocks have a potential for 
magmatic Cu-Ni sulfide mineralization. Trace disseminated graphite, pyrite and 
chalcopyrite characterize the weathered rusty gametiflerous psammite, pelite and semi- 
pelite rocks of the Lake Harbour Group. Calcareous rocks trend 5 to 25 km along strike, 
and are commonly interlayered with siliciclastic rocks. Within the metasedimentary rocks 
orthoquartzite occurs as discrete layers and garnet-rich monzogranite outcrops as tabular 
bodies 100’s of meters thick. The intruding Cumberland batholith is dominated by pink 
weathered orthopyroxene-biotite monzogranite that is massive to weakly foliated (St- 
Onge et al., 1999). Vegetation cover is limited (-25%), comprising primarily moss and 
grass, with dwarf shrub willows. Rock encrusting lichens covering a few percent to 
almost 100 percent of the rock are common to the majority of rock units. The region also 
includes numerous small lakes and year-round snow cover in gullies and shaded areas.
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Figure 4.1 Regional geology of south-western Baffin Island and zoom of local geology 
of the study area (1:100 000) (modified from St-Onge et al., 1999).

4.3 Hyperspectral Data Set
Airborne hyperspectral data (-3.5 x 7 km) were acquired with the Probe I sensor, 

which comprises 128 channels from 446 - 2543 nm with an average spectral resolution of 
-15 nm and a spatial resolution of -7  m (Figure 4.2). The spectral range of the Probe 
sensor allows for the discrimination of spectral features associated with transition 
elements (e.g. Fe2+, Fe3+, Ni, Cr, Co) and H2 0 , C 03, OH, Al-OH, Fe-OH, and Mg-OH 
vibrational absorption features (Hunt, 1977; Clark et al., 1990). A vicarious atmospheric 
correction of the data was performed by the Canadian Centre for Remote Sensing using 
field spectra acquired at the Iqaluit airport concurrently with the overflight. A number of 
the 128 channels available were not used (874-991, 1082-1171, 1271-1537, 1755-2073, 
and 2465-2543 nm) for this analysis owing to atmospheric water-absorption and 
excessive noise. No additional preprocessing (e.g. smoothing filter) was applied to the 
remaining 8 6  bands.

Field sampling and collection of spectra took place along traverses oriented 
perpendicular to the dominant structural and stratigraphic trends (Figure 4.2). The 
spectra were acquired with a portable ASD® field spectrometer that has 2151 bands 
covering the 350 -  2500 nm spectral range. A total of 217 spectral measurements were 
acquired for 56 of 188 sites visited, some of which lie outside, but proximal to the study 
area, and are representative of the geology shown in Figure 4.2. Multiple measurements 
were taken at each site for fresh, weathered, polished, and partial to fully lichen coated 
surfaces. Thin section, X-ray diffraction (XRD) and major- and trace-element 
geochemical analysis were performed on 24 rock samples that were considered to be 
representative of the regional geology.
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Figure 4.2 Probe I hyperspectral data of the study area. Circles represent ground 
locations for field spectra and sample collection.

4.4 Generating a Remote Predictive lithological Map
Two steps were required to generate the remote predictive lithological map from 

the Probe I hyperspectral image: 1) the extraction of image endmembers and the 
application of spectral mixture analysis (SMA) to generate fractional abundance maps 
(Step A); and, 2) converting the fractional abundance maps into predictive lithological 
maps (Step B). Figure 4.3 is a flow chart of the various steps involved in each of the two 
main parts.

4.4.1 Spectral mixture analysis
The spectrum of each image pixel is the combined reflectance of each of the 

surface components within the sensors field of view. The consequence of spectral mixing
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is that few image pixels display "pure" spectra (Settle and Drake, 1993), which makes 
identification and classification difficult. SMA was designed to address the problems 
associated with mixed pixels by deconvolving each pixel spectrum into fractional 
abundances of its surface components, or end member spectra (Adams et al., 1986; 
Adams et al., 1993). To produce accurate predictive lithologic maps we aim to locate 
pixels that contain rock, even in the presence of other materials (e.g. snow, vegetation). 
Examples of SMA for geological mapping can be found in studies by Mustard and Pieters 
(1987), Kruse et al. (1990), Zamudio and Atkinson (1990), Blount et al. (1990), Murphy 
(1995), Bierwirth et al. (1999), Asner and Heidebrecht (2002), and Neville et al. (2003).

For SMA the extraction of spectral endmembers from an image is commonly 
preferred over the use of field or laboratory spectra for two main reasons: 1 ) library and 
field spectra may not represent all relevant endmember spectra of the surface 
components, or are inadequate representations; and, 2 ) image endmembers have the 
advantage of directly sampling surfaces in the scene. Image endmembers are assumed to 
be "pure", or relatively "pure" spectra, meaning that little or no mixing with other 
endmembers has occurred within a given pixel and for this assumption to be met, a 
careful selection of endmembers is required.

Linear spectral mixture analysis is based on the premise that a given mixture can 
be modeled using a set of linearly independent endmember spectra. Applying linear 
SMA to a given mixture requires that endmembers occur as spatially segregated patterns 
(Keshava and Mustard, 2002), with multiple scattering involving several endmembers 
(non-linear mixing) being negligible. To deconvolve a spectrum into abundances of its 
constituent endmember spectra the following equation can be solved using a least squares 
approach,

R-b =  ^  F j S j t  +  E b ( l )
i = i

where Rb is the reflectance of the pixel at band b, Fj is the fractional abundance of the 
endmember i, Sib describes the reflectance of endmember i at band b, n equals the number 
of endmembers, and Eb is the error of the fit at band b. Equation 1 can produce 
endmember fractional abundances that are negative, which are mathematically correct, 
but physically unrealistic. Thus, equation 1 can be solved so that: 1) fractional 
abundances sum-to-one (ASC); and, 2) fractional abundances are non-negative (ANC). 
Simultaneous implementation of ASC and ANC (e.g. constrained unmixing) is usually 
recommended in order to produce fractional abundances that are physically realistic 
(Heinz and Chang, 2001). However, abundances predicted using linear SMA are most 
accurate when only the endmembers that comprise a given pixel are used, with larger 
abundance errors occurring when either too few or too many endmembers are used 
(Sabol et al., 1992; Heinz and Chang, 2001). In this paper we made use of the iterative 
spectral mixture analysis (ISMA) of Rogge et al. (2006), which is designed to unmix each 
pixel using an optimal per-pixel endmember set. The result is a fractional abundance 
map for each endmember, which can subsequently be used to generate a remote 
predictive geological map.
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Figure 4.3 Schematic representation of processing steps involved in generating fractional 
abundance maps using SMA (Step 1), and subsequent steps to generate a predictive 
geological map (Step 2).

4.4.2 Endmember extraction
For the extraction of image endmembers we examined the results from four image 

endmember extraction tools. The first two methods, iterative error analysis (IEA) 
(Neville et al., 1999) and SMACC, are available in the Imaging Spectrometer Data 
Analysis System (ISDAS) (Staenz et al., 1998) and ENVI™ software packages, 
respectively. The other two methods, spatial-spectral endmember extraction (SSEE) 
(Rogge et al., 2006) and sequential projection algorithm (SPA) (J. Zhang, unpublished, 
2005) have been developed at the Earth Observation Systems Laboratory, University of 
Alberta.

Multiple tools were used as each may result in slightly different endmember sets, 
specifically with respect to endmembers that are defined by more subtle absorption 
features. Image endmembers derived from the endmember extraction tools were 
combined into a single endmember set. The image endmembers were subsequently 
labeled based on the analysis of spectral features and comparison with field and 
laboratory spectra. A comparison of geological image endmembers with field and
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laboratory spectra was also used to test how well the endmember spectra, acquired at ~ 7 
m spatial resolution, represent field and laboratory spectra (of field samples) acquired at 
~ 25 cm and ~ 2 cm spatial resolution, respectively. Spectral similarity was determined 
visually and by measuring the spectral angle (Kruse et al., 1993) between the two spectra 
of interest.

4.4.3 Predictive map generation
Pixels in the original hyperspectral image that comprise <10% average reflectance 

were masked, as these low illumination pixels comprise limited spectral information 
causing errors in fractional abundance and should not be retained in the predictive map. 
The masked regions also included water, which has low overall reflectance and can easily 
be distinguished from other surface components. Snow was also masked as it has 
diagnostic high reflectance in the visible and occurs as spatially well-defined regions.

Combining the information from the fractional maps into a single map that is 
similar to traditional geological maps is a more practical approach for predictive 
mapping. A preliminary predictive map was generated by determining the endmember 
with the maximum fractional abundance for each pixel and assigning that pixel to the 
given endmember class. In order for a pixel to be assigned to a given endmember, the 
endmember must have a minimum fractional abundance (confidence level) otherwise the 
pixel was assigned a null class. The minimum fractional abundance set for this study was 
0.5. The preliminary map was then filtered to grow the assigned class regions into null 
class regions. This was done to extrapolate between clusters of pixels of the same class 
where non-geological classes dominate (e.g. snow, vegetation); and, to allow spatially 
limited geological pixel clusters to be viewed in the final predictive map. For each null 
class pixel the adjacent area (nxn window) is searched for the dominant endmember 
class. This endmember class must have a minimum of m pixels within the window 
region in order for the null class pixel to be assigned to that class. A second filter is then 
applied to remove single pixels of any given class that are not spatially associated (nxn 
window) with a minimum number (m) of nearby pixels of the same class. Both filters 
can be applied iteratively to fill more of the null class space. However, the number of 
growing iterations should be kept to a minimum, as the emerging map patterns will not 
necessarily conform to the natural trend of the rock units. The result is a predictive 
lithological map that is similar to a traditional geological map, but that contains regions 
that are not labeled (null class regions). For filter 1 and 2 a window size of n = 5 was 
used, with a minimum number of similar endmember class pixels (m) within the window 
set to 5. The number of iterations (it) for growing and removing single pixels was set to 
3.

4.5 Results
4.5.1 Im age endm em ber set and spectral identification
The final image endmember set comprises twenty endmembers, including three 

snow/ice, one water, three vegetation, one rock encrusting lichen, and twelve geological 
endmember spectra. The three snow/ice endmembers (Figure 4.4) are interpreted to 
represent different stages of melting of the snow on land and ice. The vegetation 
endmembers represent the limited vegetation cover in the study area, which comprises 
wet/dry grass, moss, and dwarf shrub willows.
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Figure 4.4 Reflectance spectra of snow, water, vegetation, and lichen endmembers. 
Blank areas represent bands excluded owing to noise or water absorption features.

The twelve geological endmembers can be grouped into: 1) peridotites, 2) iron 
oxide/hydroxide weathering, 3) clastic metasediments, 4) carbonate rocks, 5) lichen-rock 
mixtures, and 6 ) varnish; based on spectral features (e.g. Fe2+, Fe3+, Fe-OH, Mg-OH, Al- 
OH, CO3) and comparisons with field and laboratory spectra (Figure 4.5). Spectral 
measurements in the field were limited for some regions of the study area. Thus, some 
image endmembers do not include comparable field and laboratory spectra.

Two peridotite endmember spectra were found, but collection of samples and 
field spectra was limited to localities subsequently mapped as peridotite 1. Both 
peridotite endmembers show a broad ferrous-iron absorption feature at -1006 nm that is 
consistent with an iron absorption feature observed in spectra of clino-pyroxene and 
amphiboles (Clark et al., 1993). These two minerals are observed in the thin sections of 
samples (Table 4.1) whose spectra match well with the endmember spectra (Figure 4.5). 
Peridotite 1 differs from peridotite 2 with the occurrence of two diagnostic absorption 
features at -2320 and 2400 nm that can be attributed to Fe,Mg-OH vibrational features. 
These features may result from alteration of pyroxene to an amphibole (King and Clark,
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1989), a common mineral of metamorphosed ultramafic rocks occurring up to lower 
granulite facies. Alternatively serpentinization of olivine may also be associated with the 
2320 nm feature (King and Clark, 1989; Hunt and Evarts, 1981). Samples of peridotite 1 
show hornblende and serpentine in XRD and thin section. Similar ferrous-iron and Fe, 
Mg-OH features were observed in spectra of peridotites of the Morden ultramafic 
complex, Australia (Rowan et al., 2004). The absence of such features in the peridotite 2 
endmember may be attributed to limited alteration of pyroxene to hornblende. However, 
it is also possible that the two endmembers represent distinct primary mineral 
assemblages and thus, two distinct ultramafic units.

The iron oxide/hydroxide endmember displays iron absorption features at -650 
and 900 nm, consistent with the minerals hematite and goethite (Clark et al., 1993). 
These minerals are commonly a product of surface weathering of pyrite and magnetite, 
which are observed in thin section of samples with best corresponding spectra (Figure 
4.5). Iron absorption features are also seen in the metased 3 endmember, and to a lesser 
extent in the two other metasedimentary endmembers. The metased 2 and the metased 3 
endmembers show an absorption feature at -2215 nm commonly attributed to an Al-OH 
absorption feature associated with the presence of Fe-muscovite (Duke, 1994). However, 
muscovite is absent in samples collected and thin sections are rich in feldspar. Thus, the 
feature at -2215 nm may result from weathering of feldspars producing minerals such as 
kaolinite and sericite. Kaolinite has a doublet absorption feature at -2165 nm and -2200 
nm seen in the metased 2 endmember. This feature is not well defined in metased 3.

Interlayered with clastic metasediments is the unit labelled e.g. quartzite/granite, 
which forms one spectral endmember. There are no diagnostic spectral features 
associated with this endmember, except for a weak absorption feature at -2215 nm. 
Based on the mineralogy observed in thin section this feature is likely associated with the 
alteration of feldspar.

Both carbonate image endmember spectra are observed in the spectra acquired in 
the field for individual site locations (Figure 4.5), suggesting variability in the mineralogy 
at the scale of -10x10 m. The two carbonate endmembers display absorption features at 
2145 and -2330 nm, which are consistent with CO 3 vibrational absorption features 
present in carbonate rocks. The narrow absorption feature at -2330 nm is slightly shifted 
from 2319 to 2336 nm for carbonate 1 and 2, respectively. Such a shift in carbonate 
rocks has been attributed to the presence of dolomite (-2320 nm) and calcite (-2335 nm) 
(Crowley, 1986). Analysis of the thin section data and XRD results show that only 
remnant calcite and/or dolomite is present, with the samples consisting predominantly of 
diopside and phlogopite, both of which occur in metamorphosed carbonate rocks at 
amphibolite grade. Phlogopite has narrow absorption features at -2250, 2325 and 2380 
nm, whereas diopside shows a broad iron related feature at -1050 nm and 2 narrow 
features at -2315 and 2386 nm (Clark et al., 1993). The broad feature at -1050 nm of 
diopside can be correlated with a broad feature at 1036 nm observed in carbonate 2. In 
the short-wave infrared features observed in carbonate 2 at -2251 and 2336 nm can be 
attributed to phlogopite, with diopside likely also impacting the -2336 nm feature. The 
weak feature at -2380 nm characteristic of phlogopite and diopside is not well defined in 
our endmember spectra. However, the spectral resolution of the Probe sensor may limit 
our ability to detect this feature.
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Figure 4.5 Geological image endmember spectra (solid line in each graph) and best 
corresponding sample field/laboratory spectra. Refer to Table 1 for details about sample 
spectra. Blank areas represent bands excluded owing to noise or water absorption 
features.
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Table 4.1 Details of image endmembers with best corresponding field and laboratory spectra.

Endmember Spectrum (1) Sample details Rock type M ineralo lgy based on th in  section and XRD analysis

Peridotite 1 L sb01050_3 weathered, rusted altered peridotite 55% hbl (after cpx.opx), 40% srp (after ol), 5% srp/goe

L sb01052_4 weathered, mild rust < 10% lichen altered peridotite 60% hbl (after cpx.opx), 35% srp (after ol), tr. spl, py, hem

F sb010055 4 broken mafic intrusion 40% hbl (after cpx.opx), 5% cpx/opx, 40% srp (after ol), 5% spl, tr. mag, py

Peridotite 2 No sample available

Oxide/hydroxide L sb01064_7 broken, well rusted Seriate metagranite 7% bt, 7% grt, tr. py, mag, 15% crd, 20% plag, 25% kspar, 25% qtz

weathering L sb01053_1 cut granulite gneiss 3% bt, tr. grt, py, 8% crd, 3%plag, 15% kspar, 60% qtz

F sb010077 2 rusted clastic metasediment

Metased 1 F sb010074 6 insitu rubble < 20 cm, rusted garnet granulite gneiss 10% grt, 10% bt, 5% crd, 20% plag, 20% kspar, 30% qtz

Fsb010084_4 broken, rusty, sandstone clastic metasediment

F sb010078 4 10% lichen clastic metasediment

Metased 2 L sb01008_3 weathered < 10% lichen garnet granulite gneiss 7% bt, 10% grt, tr. py, 5% sil, 10% plag, 30% kspar, 30% qtz

(AI-OH) L sb01008_4 broken, < 10% lichen garnet granulite gneiss 7% bt, 10% grt, tr. py, 5% sil, 10% plag, 30% kspar, 30% qtz

F sb010068 6 banded, insitu fine material, rusted clastic metasediment

Metased 3 L sb01016_7 broken, rusted clastic metasediment

(Fe,AI-OH) F sb010068 4 banded, rusted zone clastic metasediment

F sb010071_3 rusted zone, < 10% lichen clastic metasediment

e.g. Quartzite L sb01004_1 cut, e.g. < 5% grt granular granite 1% bt, 3% grt, 20% plag, 60% kspar, 15% qtz

/granite L sb01017_2 cut, e.g. 1-2% grt qtz-rich granular granite 1% bt, 3% grt, 20% plag, 20% kspar, 50% qtz

F sb010093 1 glacial polish qtz-monzonite/quartzite

Carbonate 1 L sb010057_5 weathered Calc-silicate 10-15% phi, 0-20 plag (50% ser), 60% di, tr. scp

L sb010115_3 weathered Calc-silicate >95% di, tr. scp, cal remnants

Carbonate 2 L sb01057_4 weathered Calc-silicate 10-15% phi, 0-20 plag (50% ser), 60% di, tr. scp

Fsb01115_3 weathered < 10% lichen Calc-silicate >95% di, tr. scp, cal remnants

Lichen-rock F sb010054_1 minor lichen granite (mafic lenses) 10% plag, 40% kspar, 35% e.g. qtz (mafic lenses 5%hbl and cpx)

mixture 1 Fsb010064_4 insitu e.g. rubble seriate metagranite 7% bt, 7% grt, tr. py, mag, 20% plag, 25% kspar, 25% qtz

F sb010120_4 insitu e.g. rubble clastic metasediment

Lichen-rock L sb01001_3 weathered, 10-20% lichen garnet granulite gneiss 5% bt, 5% grt, tr. py, 2% crd, 1% sil, 25% plag, 30% kspar, 30% qtz

mixture 2 F sb010027 1 minor lichen quartz monzonite

F sb010075 2 glacial polish clastic metasediment

(1) L -  lab spectra, F -  field spectra; the file name relates to sample#_spectrum#
Minerals: hbl-homblende;cpx-clinopyroxene;opx-orthopyroxene;srp-serpentine;ol-olivine;goe-goethite;spl-spinel;py-pyrite;hem-hematite;mag-magnetite;bt- 
biotite;grt-gamet;crd-corderite;plag-plagioclase;kspar-potassium feldspar;qtz-quartz;sil-sillimanite;phl-phlogopite;di-diopside;scp-scapolite;cal-calcite



The next group of endmembers include two spectra interpreted as lichen-rock 
mixtures (Figure 4.5). These two endmembers show absorption features visible at 1730 
and 2100 nm also seen in the lichen endmember (Figure 4.6) and documented in spectra 
of foliose and crustose lichens (Bechtel et al., 2002; Rees et al., 2004). The two 
endmember spectra also show increased reflectance in the visible, which is likely 
attributed to a rock component. Lichen-rock mixture 1 displays a greater increase in 
reflectance between -1000 -  1270 nm, higher reflectance in the short wave infrared, and 
two subtle absorption features at -2286 and 2369 nm.

The last geological endmember is not represented by the field and laboratory 
spectra, and does not show diagnostic spectral features. This endmember has been 
tentatively labeled as vamish, or a surficial geological component, owing to its spatial 
distribution (see next section).

4.5.2 Fractional abundance and maps
Figure 4.7 show the abundance maps for the three vegetation endmembers and the 

lichen endmember. Vegetation 1 and 2 show limited spatial extent, whereas vegetation 3 
is widely distributed and conforms to lithologic trends visible in the original 
hyperspectral image (Figure 4.2). This characteristic is also observed for the distribution 
of lichen (Figure 4.7D), which follows predominantly the quartzofeldspathic units of the 
existing 1:100 000 geological map (Figure 4.1). However, the distribution of these 
endmembers cannot be used as a proxy for mapping specific units as each cross multiple 
lithological units, and in turn, are not included in the generation of the predictive maps.

Fractional abundance maps for the geological endmembers are shown in Figure 
4.8. The peridotite and carbonate endmember maps show occurrences with limited 
spatial extent (Figure 4.8 A,B,I,J) and relatively uniform abundances. Although the two 
carbonate endmember spectra appear to occur locally at the scale of site locations, spatial 
mapping of these endmembers show that they dominate spatially distinct carbonate 
outcrops in the study area. The distribution of the iron oxide/hydroxide weathering unit 
is also limited (Figure 4.8C), but shows more variable abundances. The remaining 
geological endmembers are spatially extensive and show a range of abundances, 
indicating variable sub-pixel mixing with other rock units, and/or vegetation and lichen. 
The vamish endmember (Figure 4.8D) display low abundances distributed throughout the 
study area, excluding areas occupied by vegetation.

40

s  20

500 1000 1500 2000
Wavelength (nm)

Figure 4.6 Lichen image endmember spectra (solid line) and best corresponding sample 
field/laboratory spectra. Blank areas represent bands excluded owing to noise or water 
absorption features.
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Figure 4.7 Fractional abundance maps for vegetation 1 (A), vegetation 2 (B), vegetation 
3 (C), and lichen (D) endmembers. Black -  low abundance; white -  high abundance. 
Images are linearly scaled to best show abundance variation and spatial distribution.

4.5.3 Predictive geological maps
Predictive geological maps (Figure 4.9) were generated using 11 of the geological 

endmember fractional abundance maps. The vamish endmember is interpreted to be a 
surficial material and thus was excluded from the bedrock geology compilation. The 
existing published map (Figure 4.9C) comprises seven units. Comparison with the 
predictive map (Figure 4.9D) shows good overall correlation, excluding unit 1 
(monzonite, tonalite, granodiorite, quartz diorite) and 4 (gabbro, amphibolite), which do 
not have equivalent image endmembers.

Lichen rock mixture 1 shows good spatial correlation with the curvilinear regions 
of unit 2 (monzonite-syenite) shown in Figure 9C. However, the larger regions of unit 2 
in the top-left and bottom-right comers are dominated by vegetation and lichen (refer to 
Figure 4.7C and D), and are thus, poorly mapped using imagery. Lichen rock mixture 2 
correlates with unit 3 (leucodiorite, tonalite) and shows additional regions to the centre- 
left and top right comer, indicating that this unit is more prominent within the 
metasediments. The predictive map also highlights the documented interlayered nature 
of units 3 and 5 (dominantly psammite) (St-Onge et al., 1999).

The predictive map shows small outcrops of peridotite in the bottom half of the 
study area, which mimics the distribution of unit 6 (peridotite, dunite). In the top part of 
the study area, the predicted distribution of peridotite is greater than that of the existing 
map. This is not to be confused with exposures of unit 4 (gabbro) in the same area.

Unit 7 (carbonate) occurs in only one location in the existing map, but is more 
spatially extensive in the predictive map, specifically in the bottom third of the study 
area. The iron oxide/hydroxide weathering is not part of the published map and occurs 
in spatial association with the metasediments and quartzofeldspathic intrusive rocks.
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Figure 4.8 Fractional abundance maps for peridotite 1 and 2 (A, B), Fe oxide/hydroxide 
(C), vamish (D), metased 1 - 3 (E - G), e.g. quartzite/granite (H), carbonate 1 and 2 (I, J), 
and lichen-rock mixtures 1 and 2 (K, L) endmembers. Black -  low abundance; white -  
high abundance. Images are linearly scaled to best show abundance variation and spatial 
distribution.
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Figure 4.9 Predictive geological map showing all eleven geological endmember units 
(A); units of economic interest shown separately (B); the existing 1:100 000 geological 
map (St-Onge et al., 1999) (C); and, (D) predictive map with units grouped for 
comparison with the existing 1:100 000 geological map (e.g. metased 1, 2, 3, and e.g. 
quartzite/granite grouped into 1 unit representing the psammite, semipelite, 
monzogranite-tonalite unit (yellow)).

4.6Discussion
4.6.1 Quality of geological endmembers
This study has expanded the list of geological endmembers presented by Harris et 

al., (2005) to include subtle spectral variability in the metasediments, lichen-rock 
mixtures that correlate with quartzofeldspathic units, and three endmembers of economic 
interest, namely the carbonates, peridotites and the iron-oxide/hydroxide endmembers. 
Overall, a good correlation was observed between the derived geological image 
endmembers and spectra of corresponding bedrock and samples measured in the field and 
laboratory. Absorption features associated with Fe, CO 3 , Fe-OH, AI-OH, and Mg-OH, 
allowed for ease in endmember extraction and identification. The good spectral matches 
indicate that the image endmembers are relatively pure and have geological relevance, 
increasing the mapping value of the predicted abundance maps. Rock units dominated by 
quartz and feldspar show little or no diagnostic features in the 500 -  2500 nm range
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(Hunt and Salisbury, 1971) and thus, their separation was not possible (e.g. coarse­
grained granite/quartzite endmember). It appears that, at least for this study area, one 
can obtain reasonable spectral representations of most rock units from imagery acquired 
at a spatial resolution of 7 m.

4.6.2 Lichen and mixtures as endmembers
It is perhaps surprising that one image endmember provided a good match with 

published spectra (Bechtel et al., 2002) and field spectra of rock encrusting lichens 
(Figure 4.6), implying that bedrock surfaces can be completely covered by lichen over 
surfaces exceeding 7x7 m. Having an image endmember for lichen removes the 
requirement to cross calibrate the image data with field or laboratory spectra of lichen in 
order to use such spectra for SMA.

The lichen-rock endmembers are partial mixtures with insufficient unique rock 
spectral information to allow for identification and unmixing of rock and lichen. 
However, the abundance maps of these endmembers define spatial distributions that are 
correlative with known rock units, and thus, they can have value for geological mapping. 
Gabbroic rocks in the study area are covered by thick vegetation and lichen. Harris et al. 
(2005) noted that vegetation (in this paper vegetation endmember 3) could be used 
locally as a proxy for the occurrence of gabbro. However, at regional scale vegetation 
cover crosses multiple lithologic units.

4.6.3 Mapping with abundance fractions
The spectral diversity of endmembers has a direct impact on the resulting 

endmember fractional abundance maps. Generally endmembers that include diagnostic 
spectral features results in well-defined abundances with minimal confusion with other 
endmembers. The minimum fractional abundance threshold that determines the dominant 
per-pixel geological endmember for the predictive map is a subjective process. The 
spatial extent of the endmember abundances varies with the threshold value used. This 
step is followed by an extrapolation of the mapped units to fill the gaps between clusters 
of labeled pixels. The later task has been automated and is designed to mimic 
extrapolation between field traverses during traditional mapping. However, the input 
parameters used to control the growth of the labeled pixels, particularly the number of 
growing iterations, are also somewhat subjective. Reducing the subjectivity of these 
decisions remains a topic of research aimed at improving the accuracy of the predictive 
maps. This study illustrates valuable and reliable predictive mapping information can be 
achieved despite these limitations.

4.6.4 Spectroscopic imaging
Predictive maps generated from spectroscopic imaging provide a continuous 

mapping coverage at a detailed spatial resolution. Consequently it is feasible to map 
outcrops that are of interest for exploration but sufficiently sparse and small to be missed 
during regional field mapping (e.g. 1-2 km traverse spacing). The improved detail is an 
outcome of the spatial resolution of the image and the sensitivity of the sensor to detect 
subtle variability in spectral information. The use of hyperspectral data has the advantage 
to allow the user to generalize the map information for regional mapping (e.g. Figure 
4.9D) as is shown in the published map (Figure 4.9C), but also easily revert to the level

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of detail available at the resolution of the sensor (Figure 4.9A and B). This is illustrated 
in the predictive map by the intricate interlayered nature of the clastic metasedimentary 
and tonalite units.

4.6.5 Economic context
The application of hyperspectral imaging to mineral exploration typically targets 

the detection of alteration indicator minerals. With the exception of the iron 
oxide/hydroxide endmember this study has focused on mapping bedrock geology 
revealing a more extensive distribution of peridotite and carbonate outcrops than shown 
on published maps. The successful extraction of quality endmembers has allowed the 
identification and mapping of these units. There are suggestions in the data that sub units 
of peridotites and carbonates can be defined on spatial and spectral grounds but whether 
these have geological or exploration significance has not yet been assessed by fieldwork. 
The occurrence of iron-alteration within the metasediments and in some cases within the 
quartzofeldspathic unit indicates that the iron-alteration is not randomly distributed, but 
constrained to specific horizons.

4.7 Conclusions
There exist a limited number of geological mapping studies using hyperspectral 

data in the Arctic environment. This study has demonstrated the useful application of 
hyperspectral data for generating accurate predictive geological maps in this type of 
environment. The ability to capture the spectral diversity related to the bedrock geology, 
and not just mineral mapping, is evident and consequently the resulting predictive maps 
are comparable with the published 1:100 000 geological maps. This work was 
particularly successful at mapping the potentially economic peridotite and carbonate 
units.

The Arctic environment is known for extensive lichen cover, which is a challenge 
for remote mapping. This study has shown that a lichen endmember can be extracted 
from the image and compares well with lichen spectra measured in the field and in the 
laboratory. This lichen image endmember can be successfully integrated into the 
unmixing process to produce abundance maps of lithologies that are the building blocks 
of the predictive map. Quartzofeldspathic rocks, which commonly have a high 
percentage of lichen cover, were successfully mapped using lichen-rock endmembers 
derived from the image.
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CHAPTER 5 
CONCLUSIONS

5.1 Summary and Contributions
This thesis has explored the feasibility of applying spectral mixture analysis 

(SMA) (Adams et al., 1986; Adams et al., 1993) to hyperspectral data for mapping 
geology in the Canadian Arctic. This work has been, in part, a collaboration with the 
Geological Survey of Canada, with the goal of developing methodologies that can 
improve and assist regional geological surveys in the Arctic. The application of SMA 
was chosen as it allows the user to obtain sub-pixel information which allows for a more 
accurate representation of the distribution of geological materials in areas where 
vegetation and particularly lichen, can dominate each pixel spectra.

Three key research themes were explored in this thesis. The first was the 
integration of spatial, as well as, spectral information in the search for image 
endmembers, where these endmembers can then be used to identify the rock types and 
map their distribution. Next was an analysis of the unmixing procedure, with the goal of 
improving the accuracy of the abundance fractions for each endmember by optimizing 
the endmember set on a per-pixel basis. The last part of this thesis addressed a more 
practical problem, namely the generation of a predictive lithological map from the 
abundance fractions and an assessment of image endmembers in relation to field and 
sample spectral, thin section and XRD data.

The research presented in Chapters 2 through 4 address 3 independent problems 
and together provides the necessary tools to transform imagery to a predictive lithological 
map. Thus, this thesis has advanced the analysis of hyperspectral imaging data for 
lithological identification and mapping in the Canadian Arctic. The principle 
contributions of this thesis are summarized below.

1) The first step of applying SMA to hyperspectral imagery is the selection of 
endmembers. The search for image endmembers has been primarily approached from a 
spectral standpoint (e.g. Boardman et al., 1995; Bateson and Curtiss, 1996; Winter, 
1999; Bowles et al., 1995; Ifarraguerri and Chang, 1999; Neville et al., 1999; Berman, et 
al., 2004; Nascimento and Dias, 2005; Chang and Plaza, 2006), ignoring the spatial 
characteristics of the endmembers. This has particular consequences for geological 
mapping, because spectrally similar endmembers may be treated as a single endmember, 
when in fact they represent spatially independent regions of the scene and possibly 
distinct lithological units. Limited studies have made use of both spectral and spatial 
information (e.g. Plaza et al., 2002) in the search for image endmembers. In Chapter 2 a 
new spatial-spectral endmember extraction tool (SSEE) was presented and evaluated 
using two real hyperspectral data sets. Unlike the approach developed by Plaza et al 
(2002), which uses a morphological approach, SSEE uses spatial neighborhoods to 
accomplish two key tasks: 1) selecting a set of eigenvectors that relate to both high 
(spectrally distinct) and low (spectrally similar) contrast endmembers; and, 2) average 
only spectrally similar endmembers that are also spatially related. The results from this 
work showed that SSEE was successful in extracting physically significant endmembers 
with subtle spectral distinctions that were not selected by other well known spectral- 
based methods. This has important consequences, for the search of endmembers
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representative of all geological materials within a given region and is critical for 
producing accurate geological maps, which in turn, allows for a better interpretation of 
the given area.

2) Once a set of endmembers has been selected for a region they can be used to 
unmixed each pixel and generate a set of fractional abundance maps. Common unmixing 
algorithms make use of the complete endmember set to unmix each pixel within the 
scene. However, this can cause errors in abundance fractions, because many of the 
endmembers do not occur within the given pixel (Heinz and Chang, 2001; Sabol et al., 
1992). For mapping purposes, incorrect fractions lead to errors in the spatial distribution 
of geological materials, complicating map genertation. Adapting linear SMA to account 
for variability in the number of endmembers on a per-pixel basis was the focus of the 
ISMA approach developed in Chapter 3. The ISMA integrates an iterative approach to 
unmixing discussed in Ramsey and Christensen (1998) and the change in residual error as 
a function of endmembers as noted in papers by Roberts et al (1998), Okin et al (1999), 
Li and Mustard (2003), Roberts et al (2003), Okin et al (2001), Painter et al (2003), and 
Dennison and Roberts, (2003). Tests using ISMA on simulated data showed that the 
approach reduced errors in fractional abundance compared with other published 
unmixing methodologies. ISMA was also shown to produce physically realistic 
abundance fractions for real hyperspectral data, where imposing constraints on the 
unmixing process (fractions sum to 1 and non-negative) to obtain physically realistic 
solutions is not a necessity if an accurate per-pixel endmember set is used. The end 
result is a novel approach to unmixing that produced more accurate abundance fractions, 
which in turn, can significantly impact the ability to map the spatial distribution of 
endmembers of geological interest.

3) The SSEE and ISMA methodologies developed in Chapters 2 and 3 were 
subsequently applied to hyperspectral data of an area in southern Baffin Island, with the 
resulting fractional abundance maps used to generate a predictive lithological map. The 
study area was chosen as it comprises a diverse selection of rock types and represents a 
typical Arctic environment with extensive lichen cover, which is a challenge for remote 
mapping. This work included the field sampling and collection of spectra that were 
considered representative of the regional geology. Comparison of the image endmembers 
with field and laboratory spectra showed that, at least for this study, one can obtain 
reasonable spectral representations of most rock units from the imagery, which was 
acquired at a spatial resolution of 7 m. This allowed for the identification of most 
endmembers from a comparison with field spectra and analysis of key absorptions 
features. However, quartzofeldspathic rocks, which show little or no diagnostic features 
in the 500 -  2500 nm range (Hunt and Salisbury, 1971), were more problematic as these 
rocks have extensive lichen-coatings. Image analysis identified a lichen endmember that 
compares well with lichen spectra measured in the field and the laboratory (e.g. Bechtel 
et al., 2002) and a set of endmembers that were termed lichen-rock mixtures. These 
endmember spectra had insufficient unique rock spectral information to allow for 
identification, but the abundance maps defined spatial distributions that are correlative 
with the known distribution of quartzofeldspathic units in the study area. The predictive 
lithological map generated from the fractional abundance maps was shown to
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successfully capture the spectral diversity related to the bedrock geology and map their 
spatial distribution in high detail. The resulting map also shows a more extensive 
distribution of potentially economic peridotite and carbonate rock units as compared with 
the published 1:100 000 geological maps of St-Onge et al (1999).

5.2 Avenues for future work
Opportunities for future research related to work conducted in this thesis include 

the optimization of ISMA and SSEE, and the application to other hyperspectral data sets. 
For optimization, the subset size in SSEE could be determined using methods such as 
semi-variograms or quadtree decomposition to reflect better the spatial complexity and 
homogeneity within a given scene. Quadtree decomposition would allow for subsets of 
different sizes and shapes, thus minimizing the total number of subsets and resulting 
eigenvectors. For ISMA, a spatial component that could be used to improve the 
optimization of the per-pixel endmember sets if one assumes that adjacent pixels will 
likely share common endmembers. Thus, for spectrally similar endmembers that are 
spatially independent, comparing the optimized endmember set with the local 
surrounding can reduce errors in the spatial distribution of those endmembers. There are 
also other opportunities to reduce the number of user defined input variables. In the case 
of SSEE the number of averaging iterations used to collapse spectrally and spatially 
similar candidate endmember spectra to a single spectrum could be controlled by the 
spectral variance between them, rather that a finite number. For ISMA the ARMS value 
that determines the critical point and the optimal per-pixel endmember set could also be 
linked to the statistical parameters of the RMS curves for all mixtures. This would allow 
the algorithm to define a ARMS value that takes into account such parameters as 
absolute change. Meaning that a percent ARMS for one mixture may not necessarily be 
effective for another.

Applying SSEE, ISMA, and the generation of predictive maps to other 
hyperspectral data sets presents an important opportunity to test the robustness of the 
methodologies under different scenarios. These algorithms have been applied to data sets 
that could be significantly smaller than that of a regional mapping project. Thus, there is 
subsequent work necessary to adapt SSEE and ISMA to run on these larger data sets 
effectively and efficiently. It would be particularly interesting to apply SSEE and ISMA 
to studies that are non geological in their focus, such as vegetation/canopy studies. For 
vegetation/canopy studies intra-species spectral variability caused by factors such as leaf 
maturation and senescence, and water and nutrient stresses could cause significant 
confusion for species recognition using hyperspectral data (Cochrane, 2000). If the 
influence of these factors is spatially controlled, SSEE may be particularly useful to 
identify endmembers for species with respect to local regions where the intra-species 
variability may be minimal. As for the application of ISMA the key problem is that 
mixing in these forest environments is likely non-linear. How ISMA will perform 
requires further tests.
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