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Abstract

The effectiveness of industrial process monitoring depends heavily on alarm

systems. If alarm configurations are not rationally designed, the problem of

excessive alarm messages would impact negatively the efficiency or even the

safety of plant operations due to distracted information provided to operators.

An alarm flood is an extreme case of this problem, during which the operator

efficiency of handling important alarms is usually reduced significantly because

of the overwhelming workload created by the numerous alarm messages. Con-

sequently, techniques are needed to reduce the number and severity of alarm

floods, as well as facilitate operators for proper operations during alarm floods.

Motivated by this, this thesis focuses on the development of the data-driven

techniques for alarm flood analysis.

Two research topics are considered. The first topic is pattern mining in

multiple alarm flood sequences. Incorporating time information into the eval-

uation of an alignment and dealing with large scale datasets are the main

challenges. Two methods have been developed. The first one conducts a

traversal search based on dynamic programming to obtain the optimal align-

ment of multiple alarm flood sequences. The second one achieves significant

improvement on computational efficiency by applying approximations, but at

the cost of a small amount of alignment accuracy.

The second topic is online pattern matching and prediction of incoming

alarm floods. The objective is to match the online alarm sequence with the
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patterns in the database and identify whether the online sequence is similar

to any of the patterns in the database; predict the oncoming alarm flood if a

matching is found. A method has been developed for this topic, which utilizes

a proposed incremental dynamic programming procedure to break the whole

computational burden of matching two sequences into small pieces that can

be finished quickly in each individual step.

The effectiveness of the proposed methods and their parameter robust-

ness are tested by case studies based on datasets from a real chemical plant.

Furthermore, a causality analysis for alarm floods is conducted. Process data

associated with the alarms raised during an alarm flood is acquired and causal-

ity analysis is applied on the process data to generate causal maps, which are

useful for root cause analysis and early predictions of future similar alarm

floods.
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Chapter 1

Introduction

1.1 Motivation and Background

As the scale of industrial plants grows, process monitoring becomes indispens-

able for ensuring the safety and efficiency of operation. Distributed Control

Systems (DCS) and Supervisory Control and Data Acquisition (SCADA) sys-

tems have gained more popularity along with the occurrence of new technolo-

gies on sensors, software, and communication networks. Alarms can be easily

configured on a DCS or SCADA system, which reduces the cost of alarm de-

sign and configuration, but on the other hand prolongs the life-cycle of alarm

rationalization, targeted to avoid poor alarm designs. Consequently, standards

and guidelines such as ISA-18.2 [46], EEMUA-191 [29], and IEC-62682 [20]

have been developed and research work on fault diagnosis, process monitoring,

and alarm management has received increasing attentions [22, 60, 61].

One consequence of poor alarm designs is an increase in both the number

and intensity of alarm floods. Alarm floods can interfere with operators and

may therefore cause or aggravate industrial accidents because even an experi-

enced operator can be overwhelmed by tens or hundreds of alarms raised in a

short period of time. Without enough time for analysis, an operator can only

handle the abnormal event based on his/her experience or even take no ac-

tions, likely leading to improper executions for important abnormalities. As a

result, based on operators’ normal response time [21], both EEMUA-191 and

ISA-18.2 standards [29, 46] recommend setting the upper limit of alarms an-

nounced to an operator to be 6 alarms per hour, and the alarm rate threshold

for alarm floods to be 10 alarms per 10 min per operator. Both standards also

suggest the time under alarm floods should be less than 1% of the reporting

1



period.

1.1.1 Alarm System and Data

Figure 1.1 [46] shows a typical schematic of alarm system dataflow. The basic

Process Control System (BPCS) and Safety Instrumented System (SIS) are the

two important components that control the process and generate alarms based

on sensor measurements and predefined logics. The panel and the Human

Machine Interface (HMI) allow the operator to intervene the control of the

process and view Alarm logs.

Figure 1.1: Alarm system dataflow [46].

In a DCS engaged plant, all monitored process variables and alarms are col-

lected onto the DCS server, where alarms are formatted and stored in Alarm

& Event (A&E) logs. Generally, in A&E logs, an alarm message contains

important information such as time stamp, tag name, alarm type (identifier),

priority, and acknowledgment state [47, 56]. An alarm message may also in-

clude descriptive information such as trip value, event, and description. “Time

stamp” indicates the occurrence time of an alarm. “Tag name” is an unique

code of a system variable that is being monitored. “Alarm type”, or “identi-

fier”, is the alarm type related to the monitored variable (e.g., PVLO when the

variable is under its low limit or BADPV when the variable is out of its nor-

2



Table 1.1: An example of a segment of an A&E log.

TIME TAG TRIP VAL TYPE PRIO DSCR UNIT EVENT ACK
2013-09-01 0:13 A 131 PVLO JOURNAL G1B:RCYCLPMP

CURRENT IND
ZD 130.989 ALM

2013-09-01 0:13 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 134.994 RTN

2013-09-01 0:15 B 3.9 PVLO JOURNAL D3: ABS AREA
SUMP LEVEL

Q1 3.899 ALM

2013-09-01 0:15 C CMDDIS HIGH G-5B Abs Area
Sump Pmp

Q1 CLOSED ALM

2013-09-01 0:15 D CMDDIS HIGH D1:ABS HOLD
TNK FLSH WTR

Q1 TRANSIT ALM

2013-09-01 0:15 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:15 D 2 CMDDIS HIGH D1:ABS HOLD
TNK FLSH WTR

Q1 OPENED RTN

2013-09-01 0:16 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 134.017 RTN

2013-09-01 0:16 C CMDDIS HIGH G-5B Abs Area
Sump Pmp

Q1 CLOSED RTN

2013-09-01 0:18 E 37.8 PVHI LOW V2: HYDR CON-
TROL UNIT

Q1 RTN

2013-09-01 0:19 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:20 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 136.02 RTN

2013-09-01 0:22 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:22 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 134.017 RTN

2013-09-01 0:25 B 3.9 PVLO JOURNAL D3: ABS AREA
SUMP LEVEL

Q1 RTN

2013-09-01 0:26 F 1.341 PVHI LOW G4: PRMRY UF-
PLT481/D1

Q1 1.341 ALM

2013-09-01 0:26 F 1.341 PVHI LOW G4: PRMRY UF-
PLT481/D1

Q1 1.341 ALM

2013-09-01 0:28 A 131 PVLO JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

mal range). “Acknowledgment state” shows the status of an alarm, namely,

Return to Normal (RTN) or Alarm (ALM). Table 1.1 gives an example of a

segment of an A&E log. In the example, a PVLO alarm was raised for tag A

at 2013-09-01 0:13 because its corresponding process variable went below the

trip value, which was set as 131. Then, this PVLO alarm for tag A returned

to normal at 2013-09-01 0:13 since the corresponding process variable went

back to its normal range. Normally, we connect the tag name and the tag

identifier of an alarm together with a dot in between while processing alarm

messages, e.g., A.PVLO, and replace ALM and RTN messages with 1 and 0

for computing purposes.

Process data are the measurements of process variables and they are nor-

mally stored in the DCS database. Depending on the model of a DCS server,

it could be possible to search on the DCS server for the corresponding process

variable based on the tag name of an alarm. An alarm tag can be associated

with one, multiple, or even none process variable. Table 1.2 shows an example

of a segment of extracted process data, where A10, A11, A12 and A14A are

the name of the process variables. One utility of process data for alarm flood
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Table 1.2: An example of a segment of extracted process variables.

TIME A10 A11 A12 A14A
14-08-2014 12:00:00 AM 95.99160004 83.85221863 0.136333764 3.821421623
14-08-2014 12:00:01 AM 95.99160004 83.85218811 0.136333764 3.818593025
14-08-2014 12:00:02 AM 95.99160004 83.85215759 0.136333764 3.815764427
14-08-2014 12:00:03 AM 95.99160004 83.85212708 0.136333764 3.812935829
14-08-2014 12:00:04 AM 95.99160004 83.85209656 0.136333764 3.810107231
14-08-2014 12:00:05 AM 95.99160004 83.85206604 0.136333764 3.807278633
14-08-2014 12:00:06 AM 95.99160004 83.85203552 0.136333764 3.804450274
14-08-2014 12:00:07 AM 95.99160004 83.852005 0.136333764 3.801621675
14-08-2014 12:00:08 AM 95.99160004 83.85196686 0.136333764 3.798793077

analysis is to be used in causality analysis for root cause identification.

1.1.2 Alarm Flood and Alarm Flood Analysis

In literature, there does not exist a strict quantitative definition for alarm

floods. In the ISA-18.2 standard [46], the descriptive definition for an alarm

flood is “a condition during which the alarm rate is greater than the oper-

ators can effectively manage”. Normally, alarm floods are tracked based on

the threshold suggested in the ISA-18.2 standard, 10 alarms per 10 min per

operator. Alarms raised during the period when the alarm rate is higher than

the suggested threshold are extracted as an alarm flood sequence.

Usually a large proportion of an alarm flood are univariate nuisance alarms,

of which chattering alarms form an important part. Methods such as high

density alarm plots, calculation of a chattering index, delay-timers, and dead-

bands can be used to visualize, quantify, and reduce such chattering alarms

[49, 55, 58]. However, by applying delay-timers and dead-bands, often one

cannot totally suppress alarms during alarm floods; the remaining alarms are

mainly consequence alarms (multivariate alarms), which can be caused by

three reasons: (1) process state changes such as start-up and shutdown, (2)

bad alarm configurations such as redundant measurements on a single process

and (3) causal relationships among measured variables. In this case, alarm

flood analysis is useful to reveal connection of alarm messages and discover

possible patterns in alarm flood sequences.

The discovered patterns are helpful in alarm management. For example,

the first alarm message in a pattern is usually more suspicion to be the root

cause of the following alarms in the sequence. The discovered patterns can

also help train the operators to handle corresponding series of alarm messages
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more efficiently in order to prevent the overwhelming situation during alarm

floods. Some badly configured parts in alarm systems can be revealed by

the alarm flood patterns as well. Moreover, if a pattern database can be set

up, it would become possible to match online alarm messages with the ex-

isting patterns, providing operators an early warning of incoming floods and

their corresponding management strategies. As suggested in the ISA stan-

dard [46], potential dynamic alarm management could be predictive alarming,

online alarm attribute modification, and online alarm suppression. Causality

analysis can also be applied once the patterns are obtained to help recover

the connections between the corresponding tags in the pattern sequences and

target the root cause.

Figure 1.2 shows the procedures of alarm flood analysis. The purposes of

the offline part is to set up a pattern database for offline analysis and the

use of online pattern matching. During the offline part, data preprocessing is

Figure 1.2: Flowchart of alarm flood analysis

carried out first to remove chattering alarms before the extraction of alarm

floods. Usually an off-delay timer is used since it will not introduce detection

delays when alarms are raised. After preprocessing, an alarm rate threshold of
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Table 1.3: An example of a segment of an extracted alarm flood sequence.

TIME ALARM TRIP VAL PRIO DSCR UNIT EVENT ACK
2013-09-01 0:13 A.PVLO 131 JOURNAL G1B:RCYCLPMP

CURRENT IND
ZD 130.989 ALM

2013-09-01 0:15 B.PVLO 3.9 JOURNAL D3: ABS AREA
SUMP LEVEL

Q1 3.899 ALM

2013-09-01 0:15 C.CMDDIS HIGH G-5B Abs Area
Sump Pmp

Q1 CLOSED ALM

2013-09-01 0:15 D.CMDDIS HIGH D1:ABS HOLD
TNK FLSH WTR

Q1 TRANSIT ALM

2013-09-01 0:15 A.PVLO 131 JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:19 A.PVLO 131 JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:22 A.PVLO 131 JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

2013-09-01 0:26 F.PVHI 1.341 LOW G4: PRMRY UF-
PLT481/D1

Q1 1.341 ALM

2013-09-01 0:26 F.PVHI 1.341 LOW G4: PRMRY UF-
PLT481/D1

Q1 1.341 ALM

2013-09-01 0:28 A.PVLO 131 JOURNAL G1B:RCYCLPMP
CURRENT IND

ZD 130.989 ALM

10 alarms per 10 min per operator, as suggested by EEMUA and ISA standards

[29, 46], is used to extract alarm floods. The periods during which the alarm

rate is higher than the threshold are extracted. The extracted alarm flood

sequences are then numbered and saved for further pattern analysis. Table

1.3 is an example of a segment of an extracted alarm flood sequence. The tag

names and the tag identifiers are connected together with a dot in between,

e.g., A.PVLO, and named as “ALARM”. All the RTN messages have been

removed because only the alarm annunciation information is used in alarm

flood analysis. Figure 1.3 shows an example of data preprocessing and alarm

flood extraction, in which an off-delay timer of 40 seconds has been applied to

remove chattering alarms and a threshold of 10 alarms per 10 min per operator

has been set for alarm flood extraction. The red and blue lines are the alarm

burst plots (alarm rate) with and without off-delay timers.

Then the algorithm in [18] is applied to obtain the pairwise similarity

scores of the 14 extracted alarm floods. Based on those scores, clustering can

be carried out to group the closely related alarm flood sequences together, as

shown in Figure 1.4. Inside the red box, alarm floods 6, 7, 8, 9, 10, and 13

have high similarity score with each other because they share a common alarm

sequence segment. In the next step, pattern mining algorithms can be applied

to automatically find the common pattern sequence for each of the clusters

and save the patterns into a database for offline and online analysis.
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Figure 1.3: Example of alarm flood extraction

1.2 Literature Survey

This section contains a detailed literature survey on recent techniques for

univariate alarm analysis, offline pattern mining of alarm floods, online alarm

flood pattern matching, and causality analysis.

Before going into the survey, we would like to clarify the difference between

pattern mining and pattern matching as they can be confusing. The biggest

differences are the input and output. For pattern mining, the input is two

or multiple sequences and the output is a pattern sequence that is shared

by all or at least most of the input sequences. On the contrary, in terms of

pattern matching, the input is a pair of sequences and the output is whether

the pair of two sequences are similar with each other. In addition, if pattern

matching is applied online, then the two inputs are (1) a full sequence to be

matched with and (2) an online sequence that only contains the current and

past alarm messages, as future alarms are unknown. The approaches for both

pattern mining and pattern matching may generate a similarity score alongside

their outputs. For pattern mining, the similarity score means how well the

pattern sequence represents the input sequences. As for pattern matching, the

similarity score shows how much the pair of sequences resemble each other.
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Figure 1.4: Example of clustering 14 alarm floods based on pairwise similarity
scores

1.2.1 Methods for Univariate Alarm Analysis

A general framework for univariate alarm analysis based on the three perfor-

mance metrics, false alarm rate (FAR), missed alarm rate (MAR), and average

detection delay (ADD), was proposed in [48, 49, 85]. In the framework, Re-

ceiver Operating Characteristic (ROC) curves were generated to reveal the

trade-off between FAR and MAR; the trip point was designed by selecting a

desired point on the ROC curve while maintaining ADD within an acceptable

range. The framework has been widely accepted to evaluate the methods for

univariate alarm analysis.

Four categories of tools were proposed to analyze univariate alarms: trip

point optimization techniques, delay timers, dead-bands, and filters. The

authors in [39, 85] reconfigured alarm limits using historical process data.

The design of delay timers based on performance metrics FAR, MAR, and

ADD was studied in [3, 57]. A generalized delay timer that uses n1 out of n

consecutive samples was proposed and analyzed in [1, 2]. In [4], the authors

proposed a multi-mode delay timer based on hidden Markov models (HMM).

The performance of dead-bands was evaluated by authors in [3, 57]. A method

to determine the optimal alarm dead-band by the measurement noise and

the trajectory of the process data before the annunciation of an alarm was
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proposed in [43].

Chattering alarms are the mostly-encountered univariate alarms. The au-

thors in [76] claimed that chattering alarm may account for 10-60% of alarm

occurrences. This claim was backed up by the analysis carried out on 75 alarm

systems [40], showing that chattering alarms account for more than 70% of

the alarm occurrences. Causes of chattering alarms can be noise/disturbance,

repeated control loop switches, and plant oscillations. The authors in [14]

showed examples of chattering alarms caused by noise when the value of the

process variables was close to their alarm limits. In [81], chattering alarms

were found to be caused by control loop on-off actions and oscillatory distur-

bances.

Methods were proposed to detect and reduce chattering alarms. The au-

thors in [90] proposed a way to detect chattering alarms based on alarm occur-

rences and operator actions. Rules based on chattering indices were proposed

in [67, 81, 82], where chattering indices were obtained via the calculation of

alarm run length distributions. To reduce the number of chattering alarms,

[14, 15, 65] introduced shelving mechanisms to automatically suppress repeat-

ing alarms when detected. In [7], the authors developed filters based on the

classification results of process variables to deal with chattering alarms more

efficiently. The authors in [44] designed a pre-alarm mechanism to reduce

chattering alarms. Delay timers, dead-bands, and filters were designed and

evaluated in [3, 57] for the reduction of chattering alarms.

1.2.2 State of Art Concerning Pattern Mining of Alarm
Floods

Expert consultation and operator’s experience, by far, are still the two ap-

proaches that have been used by most industrial companies when dealing

with consequence alarms in an alarm flood. Expert consultation provides

good and accurate results; however, without doubts, its efficiency is extremely

low because of the involvement of a relatively large amount of process knowl-

edge. The approach based on the operators’ experience is usually faster, but

its accuracy is not guaranteed since it depends heavily on human judgments.

Many pattern mining algorithms have been developed to facilitate the study

of consequence alarms in alarm floods.

Sequence pattern mining finds relevant parts in data examples that appear
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repeatedly. In the commerce area, frequent transactions are highly useful in-

formation for retailers to learn what to stock and how to arrange the layout

in their shops. The datasets are normally series of transactions made by

customers. In [5], an apriori-like algorithm was proposed to mine frequent

patterns by combining short sequences into longer ones. The authors in [38]

developed an algorithm to achieve patterns based on tree structures. In [91],

a vertical data format was utilized to generate patterns, which did not re-

quire multiple scans over the database. Algorithms based on projections were

proposed in [37, 72], which had improvements on efficiency.

In the biology area, a very large number of pattern mining algorithms

have been proposed, most of which were modifications of the pairwise se-

quence alignment methods [8, 69, 71, 79]. Mainly two types of modifications

exist: the exhaustive search approach, as in [51], which can guarantee global

optimality, and the progressive pairwise approach, such as [30] and [80], which

can approximate global optimal solutions. There is another type of algorithms

based on profile Hidden Markov Models (HMM), such as [28]. However, in

[27], the authors pointed out that: “a suitable HMM architecture (the number

of states, and how they are connected by state transactions) must usually be

designed manually.”

While a large amount of pattern mining algorithms exist in the literature,

most of them cannot be directly applied to find patterns in alarm event logs,

due to the special format of alarm data (every message comes with a time

stamp). A variety of pattern mining methods have been developed to analyze

alarm floods. The authors in [59] manually selected some alarm tags to be the

target tags at first, then applied a context-based segmentation using the target

tags to obtain the patterns. In [6], the authors proposed a way to capture the

relations of alarm messages in an alarm flood using first-order Markov chains;

then, the Euclidean distance between the transition probability matrices of two

alarm floods was used to cluster the alarm floods into groups. The authors

in [31] developed a pattern growth method to obtain patterns from alarm

floods. However, the authors pointed out “the proposed method was sensitive

to disturbances so that the pattern in sequences had to be exactly the same

in order to be recognized.” A dissimilarity based method was proposed in [17]

to extract alarm sequence templates of given faults and a Needleman-Wansch

based algorithm was developed to isolate alarm sequences caused by certain
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known faults in [16]. In [77], the authors proposed a method to re-order

alarms during alarm floods by assigning their priorities values and designed

an interface for a better operator support during flood scenarios.

Time information is also very important. Two sequences with the same

alarms and their ordering but different time intervals in between the alarms

can be caused by totally different faults. Because of this, methods have been

proposed to take time intervals between alarms into consideration when study-

ing the sequences. In [19], Generalized Sequential Patterns (GSP) were applied

to search for pattern alarm sequences in alarm floods; the algorithm was able

to blur the orders of alarms if they are raised in quick succession and thus

their order becomes less important. Algorithms for pattern matching of two

sequences were developed in [18] and [41], based on the Smith-Waterman [79]

and BLAST [8] algorithms, respectively. In both papers, a weighted time

distance and vector were used to take the relative time between alarms into

account during the alignment. In [62], the authors proposed a method for

pattern mining in multiple alarm flood sequences using a sequence alignment

approach. However, the computational cost of the algorithm does not scale

well with the number and length of sequences to be aligned.

1.2.3 Current Status of Online Alarm Flood Pattern
Matching

The algorithms introduced in the previous subsection are all offline methods,

as the full sequences need to be available before algorithms are carried out.

However, for the online matching of alarm floods, the online sequence only

contains the current and past alarm messages, as future alarms are unknown.

Moreover, each time when there is a new alarm raised and added to the online

alarm sequence, the matching between the online sequence and the patterns

in the database need to be re-conducted, which significantly increases the re-

quirement for computational efficiency. Segmentation of the online sequence is

another obstacle for online alarm flood matching since as new alarms continue

to be annunciated, the online sequence grows longer and longer; it should be

segmented before matchings are carried out. These are the three main reasons

why the offline pattern mining methods cannot be applied to online matching

directly.

Some online algorithms have already been developed to match text se-
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quences. In [64], the authors introduced a consecutive suffix alignment prob-

lem: given the matching result of the longest common subsequence (LCS) or

the edit distance between two sequences A and B, incrementally compute the

answer for A and bB, and the answer for A and Bb, where “b” is an added

item. In the same paper, the authors proposed an algorithm to handle this

problem that runs in O(kn) time and uses O(m+n+k2) memory space, where

m and n are the lengths of sequences A and B, k is the tolerated difference in

edit distance, by taking advantage of the properties of dynamic programming

matrices. The big O is the notation that characterizes the growth rates of the

occupied space and computational complexity. In [53], the authors simplified

the complicated properties of dynamic programming matrices and proposed

an algorithm that runs in O((m+ n)n) time and uses O(mn) memory space.

The authors in [45] proposed another algorithm that improved space occu-

pation to O(m + n). In [63], an algorithm with a preprocessing stage was

introduced that runs in O(nL + n log L) time and uses O(mn) space, where

L was the length of the LCS between A and B.

Unfortunately, since text data does not contain time information and the

LCS alignment problem is much simpler than the standard alignment problem

(with gap and mismatch penalties), the dynamic programming matrix used

for finding the LCS between text sequences has many essential monotonic-

ity properties with respect to diagonals [64] that are not compatible to the

problem of aligning alarm sequences. Thus, the algorithms introduced above

cannot be used for the online alarm sequence matching problem directly.

1.2.4 Causality Analysis for Alarm Floods

When a fault propagates through the physical connections of a plant, a series

of alarms may be generated and an alarm flood may occur due to mutual

dependencies of the process elements. Causality analysis has been introduced

in [35, 36, 78] and adapted for industrial processes in [11, 88] to localize root

causes and investigate fault propagation pathways.

Statistic measurements such as cross-correlation and coherence were uti-

lized in [10, 34] to measure correlation and causalities. In [25], a direct transfer

entropy was proposed to not only quantify the causality between process tags

but also tell if the causality is direct or indirect. A transfer zero-entropy based

causality analysis method was proposed in [26] on the basis of 0-entropy and
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Figure 1.5: Family tree of the causality analysis methods.

0-information, removing the assumption of data stationarity. In [24], meth-

ods for root cause diagnosis of plant-wide oscillations were summarized and

compared, of which data-driven causality analysis as an important branch was

reviewed. Approaches based on predictability improvement were proposed in

[12, 32] for root cause analysis of plant-wide disturbances and processing neural

interactions, respectively. In [54], authors proposed a generalized synchroniza-

tion method to detect interdependencies; the method was then utilized in [9]

for the interdependency detection of electroencephalography (EEG) signals.

Granger causality and conditional Granger causality [35] were proposed by

C.W.J Granger in 1969 for investigating causal relations of econometric mod-

els. Based on the framework of Granger causality, nonlinear Granger causality

was developed using radial basis functions (RBF) for nonlinear models. The

authors in [66] introduced a method for causality analysis from a system iden-

tification point of view. Model based causality analysis approaches based on

signed directed graphs (SDG) [86], adjacency matrices [50], model based rea-

soning [74], and multilevel flow modeling [73] were also proposed. In [84],
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the authors built a Bayesian network, which was trained using the observa-

tions following certain actions, for root cause analysis and decision support of

complex continuous processes. Fuzzy cognitive maps (FCM) based modeling

was conducted towards causal relation analysis in [52, 75], where the authors

investigated the implications from the FCM to find causal relationships.

Causality and correlation analysis based on alarm data were introduced

as well. In [13], a time delay estimation method was proposed to analyze

causality by taking the time delay between variables as an evidence of causal-

ity. Alarm correlation analysis methods were also proposed in [55, 70, 87, 89];

these methods could help restore the connections between alarm tags directly

without using process data. A modified Transfer Entropy was introduced in

[42], where the authors adapted the method in [25] to alarm data and used it

to build causal maps between alarm variables. Figure 1.5 lists and categorizes

the aforementioned causality analysis methods based on their characteristics.

In addition, the table drawn in Figure 1.6 compares the methods based the

utilized information, whether the method is parametric, whether the method

requires stationary data as input, the effective model type, and the ability to

detect direct/indirect causalities.

Figure 1.6: Comparison of the methods listed in Figure 1.5.
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1.3 Thesis Contributions

The major contributions in this thesis that distinguish it from other work are

summarized as follows:

1. Provided guidelines and recommended procedures for conducting alarm

flood analysis, which include: univariate alarm analysis, pattern mining

of alarm floods, online pattern matching of alarm floods, and causality

analysis for root cause detection in alarm floods.

2. Proposed an algorithm that extends the one in [18] to aligning multiple

alarm flood sequences by introducing: (1) new scoring functions that are

capable of describing the similarity of items in multiple time-stamped

sequences, (2) a dynamic programming equation for the iterative cal-

culation of similarity indices of multiple alarm flood sequences, and (3)

back tracking and alignment generation procedures that can be used for

multiple alarm flood sequences. With this proposed algorithm, we are

able to find the optimal alignment of multiple alarm flood sequences and

obtain the pattern for a selected alarm flood cluster, thus making up one

of the missing steps in alarm flood analysis.

3. Proposed an online algorithm to provide early prediction of an incom-

ing alarm flood by matching an online alarm sequence with a pattern

database and conducting similarity calculation. It overcomes three main

challenges in online time-stamped pattern matching: the partial infor-

mation (future events are unknown in the online sequence), the high

computational efficiency requirement, and the segmentation of the on-

line alarm sequence. New elements introduced in this algorithm include

chattering and sequence window filters, modified time distance and sim-

ilarity measurements, a modified gap penalty, and an incremental dy-

namic programming strategy. Potentially, the proposed algorithm could

serve as the state identification stage in applications of predictive alarm-

ing, online alarm attribute modification, and online alarm suppression.

4. Proposed an accelerated algorithm for pattern mining in multiple alarm

floods. Unlike traditional methods which either cannot deal with multi-

ple sequences with time stamps or suffer from high computational cost,

the computational complexity of this proposed algorithm is reduced
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significantly by introducing a generalized pairwise sequence alignment

method and a progressive multiple sequence alignment approach. Two

types of alignment refinement methods are developed to improve the

alignment accuracy.

5. Conducted industrial case studies to show the effectiveness of causality

analysis in terms of root cause analysis in alarm floods.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

We show the principal steps of the pattern mining algorithm for multiple

alarm flood sequences using the case of three alarm flood sequences in Section

2.2; pseudo code of the algorithm for the three-sequence case will be shown

in Section 2.2 as well. In Section 2.3, algorithms for aligning three and five

alarm flood sequences will be tested on datasets of an actual petrochemical

plant. Following that, some discussions concerning the algorithm and pattern

selection are provided in Section 2.4. Finally, a summary is given in Section

2.5.

Problem formulation and the principles of the proposed online alarm flood

pattern matching algorithm are introduced in Section 3.2. Efficiency and

accuracy tests of the algorithm will be carried out on an industrial case study in

Section 3.3. Then the computational complexity, advantages and drawbacks of

the algorithm will be discussed in Section 3.4, followed by concluding remarks

in Section 3.5.

Problem description and principle for the accelerated alarm flood pattern

mining algorithm are given in Section 4.2. In Section 4.3, an industrial case

study is provided to test both efficiency and accuracy of the proposed al-

gorithm and comparisons are made with the exhaustive search approach in

[62]. Detailed discussions on the accuracy, computational complexity, algo-

rithm convergence, and some potential problems are carried out in Section

4.4, followed by the conclusions in Section 4.5.

Parameter robustness tests and an extended accuracy test are conducted

using industrial data to reveal the insights on how the parameters affect the

results of the proposed algorithms in Section 5.2. An industrial case study on

the application of Granger causality towards the root cause analysis in alarm
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floods is carried out in Section 5.3.
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Chapter 2

A Method for Pattern Mining
in Multiple Alarm Flood
Sequences∗

2.1 Overview

As mentioned in Section 1.1, an alarm flood is a serious hazard for industrial

processes; alarm management techniques such as delay timers and dead-bands

often are incapable of suppressing alarm floods because of the existence of

consequence alarms. However, this problem could be handled by alarm flood

pattern analysis, which could help find the root cause, locate badly designed

part in alarm systems and predict incoming alarm floods.

In this chapter, we propose a method for pattern mining in multiple alarm

flood sequences by extending a time-stamp adapted Smith-Waterman algo-

rithm to the case with multiple sequences, making up one of the missing steps

in alarm flood analysis. The technique involves the following new elements:

similarity scoring functions, a dynamic programming equation, a back-tracking

procedure, and an alignment generation method. A dataset from an actual

petrochemical plant has been used to test the effectiveness of the proposed

algorithm.

The input data of the algorithm contains time stamp, tag name, and iden-

∗A version of this chapter has been published as: Shiqi Lai and Tongwen Chen. A method
for pattern mining in multiple alarm flood sequences. Chemical Engineering Research and
Design, 117: 831–839, 2017, and a short version has been published as: Shiqi Lai and
Tongwen Chen. Methodology and application of pattern mining in multiple alarm flood
sequences. Proceedings of 9th IFAC Symposium on Advanced Control of Chemical Processes
Whistler, Canada, pages 657–662, 2015.
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tifier information. Table 2.1 shows one example of the simplified A&E log used

in the algorithm. Since priority information is not considered in this study,

such information has been eliminated.

Table 2.1: An alarm message log example

Time stamp Tag name & identifier
2013-07-31 18:33 Tag1.PVLO
2013-07-31 18:33 Tag2.OFFNORM
2013-07-31 18:34 Tag8.BADPV
2013-07-31 18:38 Tag4.PVLO

2.2 Algorithm Principle

Our intended problem is to find the optimal alignment for a cluster of alarm

floods so that based on this alignment an alarm sequence pattern can be

easily found. However, the algorithm proposed in [18] is limited to pairwise

alignment of flood sequences. In the following part, we will introduce an

algorithm that extends the algorithm in [18] to the alignment of three alarm

flood sequences. The idea for aligning more sequences will be similar, but

more complex. Three new elements concerning similarity scoring functions,

calculation of a similarity index cuboid and a back-tracking procedure will be

introduced.

2.2.1 Problem Formulation

Consider the problem of searching for the optimal alignment of three se-

quences:

A = < (e11, t11), (e12, t12), ..., (e1m, t1m), ..., (e1M , t1M) >,

B = < (e21, t21), (e22, t22), ..., (e2n, t2n), ..., (e2N , t2N) >,

C = < (e31, t31), (e32, t32), ..., (e3o, t3o), ..., (e3O, t3O) >,

where e1m, e2n, e3o ∈ Λ, and Λ = {1, 2, ..., K} is the set of different alarm

types in the three sequences; t1m, t2n and t3o are corresponding time stamps.

The notation < · > is used to represent a sequence. The aim of the algorithm

is to find the optimal local alignment (with deletions and inserted gaps ‘[ ]’)
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of the three sequences that gives the highest alignment score, for example,

< (e16, t16), (e17, t17), (e18, t18), [ ] ,(e19, t19) >,

< (e22, t22), [ ] , (e23, t23), (e24, t24) ,(e25, t25) >,

< [ ] , (e31, t31), (e32, t32), [ ] ,(e33, t33) > .

2.2.2 Time Distance and Weight Vectors

The original Simith-Waterman algorithm can help find optimal alignment be-

tween two sequences without time stamps. In order to adjust it to our problem,

where time stamps are included in the sequences, a “time distance vector” and

a “time weight vector” are defined, same as in [18]. A time distance vector

for an alarm message (em, tm) is defined as:

dm = [d1m, d
2
m, ..., d

k
m, ..., d

K
m],

dkm =

{
min

1≤i≤M
{|tm − ti| : ei = k}, if the set is not empty

∞, otherwise.

(2.1)

It carries the information of the shortest time distance from each different

type of alarms in the sequence to alarm message (em, tm). This distance will

be set to infinity if the type of alarm does not appear in the sequence. A time

weight vector for (em, em) is defined as:

wm = [w1
m, w

2
m, ..., w

k
m, ..., w

K
m ]

= [f(d1m), f(d
2
m), ..., f(d

k
m), ..., f(d

K
m)],

(2.2)

where f(·) : R → R is a time weighting function. Two weighting functions are

chosen as follows:

f1(x) = e−x2/2σ2

, (2.3)

f2(x) =

{
1, if x = 0
0, if x �= 0,

(2.4)

where the first one is a scaled Gaussian function and the second is a simple

binary selection function. f1(·) helps convert the real-time distance to the

value between 0 and 1. The longer the time distance is, the smaller the output

value is. f2(·) simply makes the time weight of the current alarm type wem
m

to be 1, and set those of other alarm types to be 0. Both weighting functions

work together to give the time weight vectors for the use of similarity score
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calculation. For example, we want to calculate the time distance and weight

vectors of a sequence:

< (2, 2), (1, 3), (3, 3.5), (1, 5), (4, 5.2) > .

In this case, Λ = {1, 2, 3, 4}. For message (2, 2), time distance vector d1 is

calculated as: d11 = 3 − 2 = 1, d21 = 2 − 2 = 0, d31 = 3.5 − 2 = 1.5 and,

d41 = 5.2− 2 = 3.2. All the time distance vectors for this sequence are:

[dT
1 ,d

T
2 ,d

T
3 ,d

T
4 ,d

T
5 ] =

⎡
⎢⎢⎣

1 0 0.5 0 2.2
0 1 1.5 3 3.2
1.5 0.5 0 1.5 1.7
3.2 2.2 1.7 0.2 0

⎤
⎥⎥⎦ .

By applying the two weighting functions (σ = 1 for f1(·)) on time distance

vectors, two groups of time weight vectors can be obtained:

[wT
1 ,w

T
2 ,w

T
3 ,w

T
4 ,w

T
5 ]f1 =

⎡
⎢⎢⎣
0.61 1.00 0.88 1.00 0.09
1.00 0.61 0.32 0.01 0.01
0.32 0.88 1.00 0.32 0.24
0.01 0.09 0.24 0.98 1.00

⎤
⎥⎥⎦

[wT
1 ,w

T
2 ,w

T
3 ,w

T
4 ,w

T
5 ]f2 =

⎡
⎢⎢⎣
0 1 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎦ .

2.2.3 Calculation of Similarity Scores

The time distance and weight vectors help adjust the Smith-Waterman algo-

rithm to handle sequences with time stamps. In order to further extend it

to multiple sequence alignment to address our problem, two kinds of scoring

functions are defined (for the case of three sequences).

The 2-way similarity scoring function is

S((ea, ta), (eb, tb))
= max{S0((ea, ta), (eb, tb)),

S0((eb, tb), (ea, ta))} × (1− μ) + μ,

(2.5)

where,

S0((ea, ta), (eb, tb)) = max
1≤k≤K

[wk
a × wk

b ]. (2.6)

(ea, ta) and (eb, tb) are alarm messages from sequences A and B. Respectively,

f1(·) and f2(·) are used to calculate the time weight vectors of the alarm
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messages (ea, ta) and (eb, tb). Thus, the commutative laws do not hold for

the calculations of S0, which means S0((ea, ta), (eb, tb)) and S0((eb, tb), (ea, ta))

are not guaranteed to be equal. For this reason, we choose the larger one

of S0 during the calculation of S((ea, ta), (eb, tb)). Because the range of el-

ements in a time weight vector is [0, 1], thus S0((ea, ta), (eb, tb)) ∈ [0, 1],

and S((ea, ta), (eb, tb)) ∈ [μ, 1]. The negative parameter μ is the miss-match

penalty.

The 3-way similarity scoring function is

S((ea, ta), (eb, tb), (ec, tc))
= S0((ea, ta), (eb, tb), (ec, tc))× (1− 2μ) + 2μ,

(2.7)

where
S0((ea, ta), (eb, tb), (ec, tc))

= max

{
S0((eb, tb), (ea, ta)) + S0((ec, tc), (ea, ta))

2
,

S0((ea, ta), (eb, tb)) + S0((ec, tc), (eb, tb))

2
,

S0((ea, ta), (ec, tc)) + S0((eb, tb), (ec, tc))

2

}
.

(2.8)

(ea, ta), (eb, tb) and (ec, tc) are alarm messages from sequences A, B, and C.

The 3-way similarity score is approximated by the averages of 2-way similarity

scores. Commutative laws applies to S0((ea, ta), (eb, tb), (ec, tc)) since only the

maximum value of the averages of the 2-way scores is used for its calculation.

Note that S0((ea, ta), (eb, tb), (ec, tc)) ∈ [0, 1]; thus S((ea, ta), (eb, tb), (ec, tc))

∈ [2μ, 1].

2.2.4 Dynamic Programming

In the case of two alarm flood sequences, shown in Figure 2.1a, the score

(red dot) in each cell of the similarity index matrix is obtained from three

candidates (small blue dots). As each sequence holds one dimension in the

alignment space, there is a similarity index cuboid instead of a matrix if the

number of sequences to be aligned grows from two to three. Thus, for the

case of three alarm flood sequences, as shown in Figure 2.1b, in each step of

dynamic programming, the score (big red dot) is obtained from seven candi-

dates (small blue dots). Equation (2.9) gives the way to calculate similarity
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index during each step:

Hm+1,n+1,o+1

= max
1≤i≤M,1≤j≤N,1≤g≤O

(I(Ai:m, Bj:n, Cg:o), 0)

= max{Hm+1,n+1,o + 2δ,Hm+1,n,o+1 + 2δ,Hm,n+1,o+1 + 2δ,

Hm,n,o+1 + δ + S((em+1, tm+1), (en+1, tn+1)),

Hm,n+1,o + δ + S((em+1, tm+1), (eo+1, to+1)),

Hm+1,n,o + δ + S((en+1, tn+1), (eo+1, to+1)),

Hm,n,o + S((em+1, tm+1), (en+1, tn+1), (eo+1, to+1)),

0},

(2.9)

where I(Ai:m, Bj:n, Cg:o) is the similarity index for the ternary (Ai:m, Bj:n, Cg:o),

and δ is a negative parameter for gap penalty. Initial values such as H0,n,o,

Hm,0,0 and H0,0,0 are all set to be 0. The aim of the algorithm can also be

interpreted as to find the segment ternary that has the highest similarity index.

(a) Two sequences case (b) Three sequences case

Figure 2.1: Illustration of similarity score calculation for two and three se-
quences cases

Back tracking is carried out on the three-dimensional space as well, as

shown in Figure 2.2. First, the position of the largest similarity index is found

(noted by big red dot on Figure 2.2). Then it follows the arrow which points to

the ancestor from whom the current score is obtained, until the path reaches

the place with a zero similarity index.

Finally, one forward pass of the tracking path gives us the optimal align-

ment. Start from the beginning point, on each step, the dimension on which

there is an increase in subscript will keep the corresponding alarm message.

If the subscript on one dimension doesn’t grow, then fill this position with a

gap.
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Figure 2.2: An example of back tracking of a case with three alarm flood
sequences

2.2.5 An Illustration Example

Here we provide a simple example of aligning three alarm flood sequences to

demonstrate the calculation of similarity scores and the dynamic programming

procedures. Pseudo codes are presented in Algorithm 1. For cases with more

than three sequences, the idea will be the same. Note that the back tracking

and alignment generation procedures have been combined together, so the

description of alignment generation part is somewhat different from the one

that has been introduced.

Choose parameters of the algorithm to be σ = 0.5, δ = −0.4 and μ = −1.

Consider three alarm flood sequences

A = < (3, 1), (2, 1.3), (3, 3.5), (4, 5), (5, 5.1), (1, 10) >

B = < (3, 2), (5, 3), (4, 3.2), (1, 6) >

C = < (3, 4), (1, 9) >

with Σ = {1, 2, 3, 4, 5}. We first show the calculation of 2-way and 3-way

similarity scores for the ternary made up of the first messages in the three

sequences, namely, (3, 1), (3, 2) and (3, 4). Time weight vectors for (3, 1) in

sequence A are [0, 0.84, 1, 0, 0]f1 and [0, 0, 1, 0, 0]f2 ; similarly, those for (3, 2) in

sequence B are [0, 0, 1, 0.05, 0.14]f1 and [0, 0, 1, 0, 0]f2 , and those for (3, 4) in

sequence C are [0, 0, 1, 0, 0]f1 and [0, 0, 1, 0, 0]f2 . S0((3, 1), (3, 2)) = max{0 ×
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0, 0.84 × 0, 1 × 1, 0, 0 × 0} = 1 and S0((3, 2), (3, 1)) = max{0 × 0, 0 × 0, 1 ×
1, 0.05, 0.14 × 0} = 1, thus S((3, 1), (3, 2)) = max{1, 1} × (1 − μ) + μ = 1.

Similarly we can obtain S((3, 1), (3, 4)) = 1 and S((3, 2), (3, 4)) = 1. With

all the 2-way scores, the value of the 3-way score S((3, 1), (3, 2), (3, 4)) can be

calculated to be 1. We can also manually check this result. Since the alarm

types of the three messages are the same, they should get a matching score.

After similarity scores are obtained, dynamic programming can be carried out

based on equation (2.9). Two slices of the obtained similarity cuboid is shown

in Figure 2.3. Since the values in the slice H0:6,0:4,0 are all 0, they are not

shown in the figure in order to save space.

Algorithm 1: Aligning three alarm flood sequences

input : 3 alarm flood sequences, variance of Gaussian function σ, gap
penalty δ and miss-match penalty μ

output: Optimal local alignment of three alarm flood sequences

1 begin
2 Obtain a time distance vector dm for each alarm message in every

sequence.
3 Then apply time weighting functions f1(·) and f2(·) on each time

distance vector to get the corresponding time weight vectors wm.
4 for m ← 1 to M do
5 for n ← 1 to N do
6 for o ← 1 to O do
7 Calculate all the 2-way and 3-way similarity scores.
8 Then obtain the similarity index Hm,n,o.
9 Record the corresponding ancestor’s location into

Ptrm,n,o.

10 Find the maximum value in the cuboid of similarity index Hmax and
its indices mmax, nmax and omax.

11 m ←− mmax;
12 n ←− nmax;
13 o ←− omax;
14 repeat
15 m,n, o ←− Ptrm,n,o;
16 The dimension on which there is a decrease in subscript will

keep the corresponding alarm message on that alignment
sequence. If the subscript for that dimension remains the same,
then fill this position with a gap on that alignment sequence.

17 until Hm,n,o = 0;
18 return alignment result of the three sequences
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Figure 2.3: Similarity index cuboid and back tracking of the example

Next, we search for the maximum score and its position (doubly underlined

in Figure 2.3); then start backing tracking from there. Since H6,4,2, with score

3.12, is generated from H5,3,1 + S((1, 10), (1, 6), (1, 9)), score 2.12 in the first

table of Figure 2.3 is selected into the back tracking path. The rest of the

path (underlined in Figure 2.3) can be selected in the same way. Finally, we

obtain the full path: {H2,0,0, H3,1,1, H4,2,1, H5,3,1, H6,4,2}.
Based on the tracking path, start from the first transition from H2,0,0 to

H3,1,1, since there are increases on all three subscripts, we keep the corre-

sponding messages: (3, 3.5), (3, 2) and (3, 4) on the three sequences. During

the transition from H3,1,1 to H4,2,1: since the subscript for dimension 3 doesn’t

grow, we leave a gap on sequence C and keep alarm messages: (4,5) and (5,3)

on sequence A and B. Keeping on doing so, we obtain the alignment output:

< (3, 3.5), (4, 5), (5, 5.1), (1, 10) >

< (3, 2), (5, 3), (4, 3.2), (1, 6) >

< (3, 4), [], [], (1, 9) > .
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Even though the order of alarm message (4, 5) and (5, 5.1) in sequence A is

different from (5, 3) and (4, 3.2) in sequence B, they are still aligned together

because the two types of alarms are both raised closely in the two sequences.

2.3 Industrial Case Study

A dataset from an actual chemical process has been used to test the effective-

ness of the proposed algorithm. Equipment used in the process include pumps,

compressors, furnaces, and filters. 300 seconds’ off-delay timers were applied

to remove chattering alarms. The reason for using off-delay rather than on-

delay is because it does not introduce any delay when raising an alarm. Also,

such a long time was chosen for off-delay-timers in order to prevent obtain-

ing the patterns formed by repeating alarms. 359 alarm flood sequences were

extracted based on the ISA standard, which is 10 alarms per 10 minutes. Gen-

eral descriptions of the dataset with off-delay timers applied and the extracted

alarm floods can be found in Table 2.2.

Table 2.2: General descriptions of the dataset

Description Number
Total time period 336 days
Total number of tags 1502
Total number of alarms 109393
Average alarm rate 14/h
Highest peak alarm rate 334/10 min
Number of alarm floods 359
Average length of alarm floods 39

The pairwise pattern matching algorithm proposed in [18] was applied to

calculate pairwise similarity scores of the extracted alarm floods. Clustering

based on the obtained similarity scores was carried out thereafter; result is

shown in Figure 2.4. Both horizontal and vertical axes of the chessboard in

the figure are formed by the indices of alarm floods. Each dot in the figure

represents the similarity score between a corresponding pair of alarm flood

sequences; the darker the color of a dot is, the higher the similarity score is.

Based on the clustering result, pattern mining could be carried out manually

by comparing the corresponding sequences; but it would be time consuming

and the accuracy would not be guaranteed. In the following part, we will
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carry out the proposed algorithm respectively on two clusters of three and

five alarm flood sequences.

Figure 2.4: Clustering result of extracted alarm floods

2.3.1 Pattern Mining in Three Alarm Flood Sequences

Three alarm floods, of lengths 13, 16, and 12 respectively, in cluster A, shown

in Figure 4.8, were selected to be the testing sequences. The proposed algo-

rithm for pattern mining in three sequences was applied with parameters set

as: σ = 0.2, μ = −1, and δ = −1. On a 64-bit Windows PC with Intel(R)

Core(TM) i7-4770 3.40GHz CPU and 24.0 GB memory, the algorithm took

only 0.9 seconds to finish and the result is shown in Table 2.3.

Even though the cluster is formed by short alarm floods, manually com-

paring the three sequences would still be time consuming. However, using the

proposed algorithm, the alignments can be obtained accurately and almost

immediately. Moreover, by taking a closer look at the time stamps of the

alignments, one can notice that these three alarm floods were raised during

Oct, Dec, and Feb respectively, which means the pattern found from those

alignments could be a regular one. Moreover, priorities (not listed here in or-

der to save space) of many alarms in the three sequences had been configured
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as “High”. Thus, the pattern obtained from the alignments could be valuable

for predictive alarming and operator training.

Table 2.3: Alignment result of the three sequences in cluster A

Flood 142 Flood 143 Flood 320
Tag593.PVHH Tag662.PVHH Tag593.PVHH
27-Oct-2013 16:58:28 26-Feb-2014 00:18:12 16-Dec-2013

21:30:16

Tag662.PVHH Tag593.PVHH Tag662.PVHH
27-Oct-2013 16:58:29 26-Feb-2014 00:18:14 16-Dec-2013

21:30:18

Tag598.PVHH Tag598.PVHH Tag598.PVHH
27-Oct-2013 16:58:31 26-Feb-2014 00:18:18 16-Dec-2013

21:30:21

[] [] Tag163.OFFLINE
[] [] 16-Dec-2013

21:30:27

Tag71.PVLO Tag71.PVLO Tag71.PVLO
27-Oct-2013 16:58:45 26-Feb-2014 00:18:30 16-Dec-2013

21:30:33

Tag403.NORM [] Tag403.NORM
27-Oct-2013 16:58:56 [] 16-Dec-2013

21:30:36

Tag407.NORM Tag407.NORM Tag407.NORM
27-Oct-2013 16:59:00 26-Feb-2014 00:19:08 16-Dec-2013

21:30:42

Tag408.NORM [] Tag408.NORM
27-Oct-2013 16:59:02 [] 16-Dec-2013

21:30:49

Tag427.OFFLINE Tag427.OFFLINE Tag427.OFFLINE
27-Oct-2013 16:59:09 26-Feb-2014 00:19:17 16-Dec-2013

21:30:51

Tag1457.OFFNORM Tag1457.OFFNORM []
27-Oct-2013 17:01:09 26-Feb-2014 00:21:48 []

2.3.2 Pattern Mining in Five Alarm Flood Sequences

Setting the parameters to be: σ = 0.2, μ = −1, and δ = −1, the proposed

algorithm for pattern mining in five sequences was applied on cluster B, which

was formed by five alarm flood sequences. Lengths of the five sequences are

20, 49, 122, 25, and 56 respectively. On a 64-bit Windows PC with Intel(R)

Core(TM) i7-4770 3.40GHz CPU and 24.0 GB memory, the algorithm took

982 seconds to complete and the result is shown in Table 2.4.
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When the number of alarm floods increases, manual pattern mining be-

comes almost impossible. However, the proposed algorithm can still output

the alignment result in an acceptable short period of time, with guaranteed

accuracy. Moreover, notice the orders of those alarms in the three sequences

are not the same; this is because those alarms were raised closely, so the al-

gorithm made their orders vague and allowed swaps in alignments, in order

to reduce the influence of process delays on the alignment result. This kind

of alignment can hardly be achieved even by an expert. In addition, time

stamps of the five sequences reveal these alarm floods were raised only within

a few days. The priorities of the alarms contained in the alignments had been

configured as “High”; thus, the pattern could be caused by some ill-functional

parts occurred during those days, and the operators could be overwhelmed

during these periods since all the alarms in the floods were raised in almost

the same time. If this pattern could be detected online, more specific and

in-time operations regarding this type of ill-functionality could be carried out.

2.4 Discussions

The proposed algorithm has a computational complexity of O(2
∑n

k=1 Lk ×∏n
k=1 Lk) , where Lk are the lengths of the flood sequences to be aligned; the

second part
∏n

k=1 Lk comes from the total steps of dynamic programming;

and the first part 2
∑n

k=1 Lk is the complexity of similarity score calculation

during each step. Thus, the computational time of the algorithm increases

quickly with the number and lengths of the flood sequences to be aligned.

Fortunately, this part is to be done offline; the low computational efficiency

only influences user experiences (waiting time), but it does present a limitation

of the method.

One potential way to reduce computational burden is to first build a den-

drogram based on the pairwise similarity scores of the alarm flood sequences;

then, follow the dendrogram from the leaves to the root, align the alarm flood

sequences progressively. In this way, since not all the alignment combina-

tions are checked, the computational intensity could be reduced. However,

one possible drawback brought by this pruned alignment procedure could be

the relatively low alignment accuracy.

Another problem comes from implementation. As the number of sequences

to be aligned grows, there are be more types of similarity scores; and more
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cases to be considered during each step in dynamic programming as well.

Moreover, the three parameters used in the algorithm, the variance of the

scaled Gaussian function, the gap and miss-match penalties need to be tuned.

As mentioned in [18], users need to adjust those parameters based on their

requirements. The variance of the scaled Gaussian function will influence the

time span within which the algorithm treats the orders of the alarms to be

less important. The bigger this value is, the broader the time span is. For

example, if this value would go to infinity then the algorithm would treat all

the alarms to be raised simultaneously and ignore the time stamp information.

On the contrary, if it was set to be zero, the algorithm would require the orders

of alarm messages to be exactly the same for each aligned sequence. Gap and

miss-match penalties determine the tolerance of the algorithm to gaps and

mismatch terms. Usually the alignment would contain more alarm messages

if we increase these two parameters; but we would expect more gaps and

miss-match terms in the alignment. The flexibilities make the algorithm more

adjustable to meet different requirements, but at the same time make it hard

for users to tune the algorithm.

One advantage of the proposed algorithm is that it can provide exact opti-

mal solutions through dynamic programming, since there are not any approx-

imate steps, which have been adopted in progressively pairwise approaches in

the bioinformatics area, as described in the introduction section. This advan-

tage is quite valuable for our problem because alarms play a critical role in

industrial process monitoring and we want to keep this information as accu-

rate as possible. Moreover, since this part is done offline, accuracy should be

given the first priority.

Regarding to the pattern selection, our way is somewhat different from the

one used in the bioinformatics area, where the consensus part of the alignment

is usually selected as the pattern. However, in our case, we tolerant some

extent of order changes in alignment: some valuable patterns could be left out

if we only select the consensus part. For this reason, we usually choose the

alignment sequence that contains the least number of gaps as the pattern for

the whole cluster. Experts may be involved in this part to help the pattern

selection. Another difference is that for our case, time stamps should be

included in the selected patterns as well, since they carry the information that

describes relative positions of alarm messages in the time domain.
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2.5 Summary

Univariate and consequence alarms are two big components of industrial alarm

floods. While delay timers and dead-bands are effective for removing univari-

ate alarms such as chattering alarms and fleeting alarms, they are not as

powerful in front of consequence alarms, which are usually caused by correla-

tions and fault propagations in processes. However, consequence alarms can

be identified by applying pattern analysis on alarm floods.

In this chapter, an algorithm to find the optimal alignment of multiple

alarm flood sequences and obtained a common pattern of them thereafter is

proposed. The algorithm is an extension of the algorithm in [18] to the case of

multiple sequences. It makes up one of the missing steps in alarm flood anal-

ysis. A lot of analysis and management such as root cause analysis, dynamic

alarm suppression, and analysis on potential problems in alarm systems can

be carried out based on the results of this proposed algorithm.
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Chapter 3

Online Pattern Matching and
Prediction of Oncoming Alarm
Floods∗

3.1 Overview

There are two steps to reduce alarm floods. The first is to remove univariate

alarms by applying techniques such as delay timers and dead-bands. Design

techniques for delay timers and dead-bands have been introduced in [57], [58],

and [68]. The second step to reduce alarm floods is to study consequence

alarms (alarms that have correlation with each other) because they form an-

other important part of an alarm flood. For example, when the compressor

trips, alarms for low speed, low oil pressure, high suction pressure, low dis-

charge pressure, and low amps are usually raised successively as a pattern.

This type of consequence alarms are triggered by one or more faults and ap-

pear frequently in the alarm and event logs. Since the consequence alarms

are annunciated successively, they can easily increase the alarm rate and trig-

ger alarm floods. Pattern mining algorithms are commonly used among the

offline methods to find pattern sequences in alarm floods. Then the patterns

can be used in root cause analysis (the compressor trip as the root cause in the

example), locating bad configurations in alarm systems (e.g., redundant mea-

surement on the same process), and operator trainings (train operators to deal

with the consequence alarms triggered by frequent faults). Advanced methods

∗A version of this chapter has been published as: Shiqi Lai, Fan Yang, Tongwen Chen. Online
pattern matching and prediction of oncoming alarm floods. Journal of Process Control, 56:
69-78, 2017 (in press).
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include predictive alarming to warn the operator of oncoming alarms, online

alarm attribute modification, and online alarm suppression, as mentioned but

not fully developed in the EEMUA standard [29]. These techniques, however,

all depend on matching the online alarm sequence with patterns previously

found from historical alarm data.

In this chapter, we propose an algorithm that can monitor the online alarm

systems for certain alarm sequence patterns, which potentially can be used to

provide operator warnings of oncoming alarms and their root causes to give

operators more time to take actions (predictive alarming), to automatically

suppress oncoming alarms in the pattern sequence that do not provide valuable

information for operator decision making (online alarm suppression), and to

automatically modify alarm attributes when the pattern is operating mode

related (online alarm attributes modification). Our main contributions are:

1. proposed a chattering window filter to eliminate chattering alarms on-

line;

2. introduced a sequence window filter to segment the online alarm se-

quence, avoiding unnecessary matches between the online sequence and

the patterns;

3. modified the time distance measurements proposed in [18], enabling

them to be calculated incrementally;

4. modified the gap penalty calculation method proposed in [18] by relating

it with time distance measurements in order to reduce the influences of

disturbance alarms on the matching results;

5. introduced an incremental strategy to compute the time distance and

dynamic programming matrices while matching the sequences, thus di-

viding the whole computational burden into small pieces that can be

treated quickly on each individual step when a new alarm is raised in

the online sequence.

These techniques allow the computational cost of the algorithm to increase

linearly with the number of patterns in the database, the lengths of patterns,

and the length of the online sequence, making the algorithm applicable to

large scale plants.
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3.2 Algorithm Principle

Our intended problem is to match the online alarm sequence with the patterns

in the database and obtain their similarity scores; then, based on these scores,

identify whether the online sequence is similar to any of the patterns in the

database and thereafter predict the incoming alarm flood if a matching can

be found. Moreover, since the algorithm works online, efficiency becomes a

critical requirement. In the following part, we will introduce the proposed

algorithm that deals with this problem. The flowchart and the pseudo code

of the proposed algorithm will be given later.

3.2.1 Problem Formulation

Consider the pattern database with the following sequences:

P1 = < (e11, t11), (e12, t12), ..., (e1m, t1m), ..., (e1M , t1M) >,

P2 = < (e21, t21), (e22, t22), ..., (e2n, t2n), ..., (e2N , t2N) >,

.

.

PJ = < (eJ1, tJ1), (eJ2, tJ2), ..., (eJo, tJo), ..., (eJO, tJO) >,

where e1m, e2n,..., eJo ∈ Λ, the set of all alarm types; t1m, t2n,..., tJo are the

time stamps. Given an online sequence formed by a series of raised alarm

messages, the aim of the algorithm includes:

1. remove chattering alarms from the online sequence;

2. find the optimal alignment scores of the online sequence with each of the

patterns;

3. identify whether the online sequence is similar to any of the patterns

based on the alignment scores;

4. make the prediction of incoming alarms if the online sequence is identi-

fied as similar to a pattern.

The first functionality removes chattering alarms, which usually act as distur-

bances in an alignment, to increase the accuracy of the measured similarities

between the online sequence and the patterns. The similarities are measured
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by aligning the sequences and finding their optimal alignment scores, as the

second functionality does. The third and fourth functionalities work with the

results obtained from the first two.

3.2.2 Chattering Window Filter (CWF)

In order to eliminate chattering alarms from an online sequence, a chattering

window filter is applied. It is a filter based on the record of alarm types

that have been raised within the past time span γ. Whenever a new alarm

is raised, the record in the window will be updated first before it is used to

identify chattering alarms. During the update, old alarm types raised beyond

the time span γ will be deleted from the record. Then, the algorithm checks

whether the newly raised alarm is a chattering one by comparing its alarm

type with the record. If it is contained in the record, the new alarm will be

identified as a chattering alarm; if not, it will be included into the record for

the next iteration.

Figure 3.1: An illustrative example of chattering window filter

Figure 3.1 gives an illustrative example of how the chattering window filter

works. Different colors represent different alarm types. In this example, alarms

1-8 are raised in the online sequence. Alarm 8 is the latest one and is of the

same type as alarm 5. The previous record is {2, 3, 4, 5, 6, 7}. When alarm 8 is

raised, the record is firstly updated by deleting alarm 2 since it is beyond the

time span γ. Then, because the type of alarm 8 is contained in the updated

record, {3, 4, 5, 6, 7}, the algorithm identifies alarm 8 as a chattering alarm

and does not include its alarm type into the new record.
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3.2.3 Sequence Window Filter (SWF)

The sequence window filter is proposed to reduce the computational burden by

specifically segmenting the online sequence for the matching with each pattern.

The number of sequence window filters equals the number of patterns in the

database. Respectively, the start and end points of each segmentation are

based on the pre-matching and the dynamic programming matrix (details are

explained in the following paragraphs of this subsection). The matching of

the online sequence with each pattern will be approximated by the matching

between each segmentation (the record of corresponding sequence window

filter) and the corresponding pattern.

To determine the start point of a segmentation, pre-matching is carried

out. During the pre-matching, the algorithm checks whether the type of the

newly raised alarm is contained in the corresponding pattern sequence; if it

is (the new alarm passes pre-matching), then the segmentation begins (the

corresponding sequence window filter starts to include incoming alarms into

its record); if it is not (the new alarm fails pre-matching), no segmentation

will be carried out (the record of the corresponding sequence window filter

stays empty).

The end point of the segmentation is determined by the alignment result.

When the last row of the dynamic programming matrix, to be introduced

in the following subsection, are all 0, the algorithm clears the corresponding

record of the sequence window filter.

Figure 3.2: An illustration example of the sequence window filter

An example of sequence window filter is shown in Figure 3.2. In the exam-

ple, there are two patterns in the database, and the online sequence contains
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these two patterns. The gray part of the online sequence is formed by alarms

irrelevant to the two patterns. When the first alarm of pattern 1 is raised

in the online sequence, pre-matchings of this alarm with both pattern 1 and

pattern 2 are carried out. Since this alarm is contained in pattern 1 but not

in pattern 2, it passes the pre-matching with pattern 1 but fails to match with

pattern 2; so the sequence window 1 starts to include incoming alarms into

its record but the record of sequence window 2 stays empty. Matchings of

the online sequence with the two patterns are approximated by the matchings

between the two records of sequence window filters and the patterns. The

segmentation of the online sequence for the matching with pattern 1 will be

terminated and the record of sequence window 1 will be cleared when the

elements of the last row of the corresponding dynamic programming matrix

are all 0.

3.2.4 An Incremental Dynamic Programming Strategy

The algorithm proposed in [18] makes use of dynamic programming to search

for the optimal alignment of two alarm sequences. However, the whole dy-

namic programming matrix need to be calculated every time when a matching

is carried out, which is highly time consuming. Here we propose a new strategy

to calculate the dynamic programming matrix incrementally each time when

there is a new alarm annunciated and added to the online sequence. This

way, the total computational burden is divided into small pieces that can be

finished quickly in each individual step. In this subsection, we first introduce

the modified time distance and weight vectors and the modified similarity

score calculation, which are essential for the strategy of incremental dynamic

programming; then the ordinary dynamic programming will be introduced,

followed by the incremental strategy.

Modified Time Distance and Weight Vectors

In the proposed algorithm, the time distance vector for an alarm message

(em, tm) is defined as:

dm = [d1m, d
2
m, ..., d

k
m, ..., d

K
m]

dkm = |tm − tk|, (3.1)

where K is the total number of alarm messages in the sequence. It extracts

the absolute time distances from (em, tm) to all the other alarm messages in
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the sequence. The time weight vector for (em, tm) is defined as:

wm = [w1
m, w

2
m, ..., w

k
m, ..., w

K
m ]

= [f(d1m), f(d
2
m), ..., f(d

k
m), ..., f(d

K
m)],

(3.2)

where f(·) : R → R is the time weighting function. We choose it to be a scaled

Gaussian function:

f(x) = e−x2/2σ2

(3.3)

where σ is the variance. The function normalizes the time distances to [0, 1].

The larger the output value is, the shorter the time distance is. Here is

an example of calculating the time distance and weight vectors. Consider

sequence

< (2, 2), (1, 3), (3, 3.5), (1, 5), (4, 5.2) >,

where K = 5. The time distance vector d1 for message (2, 2) is calculated as:

d11 = 2 − 2 = 0, d21 = 3 − 2 = 1, d31 = 3.5 − 2 = 1.5, d41 = 5 − 2 = 3, and

d51 = 5.2 − 2 = 3.2. The time distance matrix formed by vectors d1, d2, d3,

d4, and d5 is

[dT
1 ,d

T
2 ,d

T
3 ,d

T
4 ,d

T
5 ] =

⎡
⎢⎢⎢⎢⎣
0.0 1.0 1.5 3.0 3.2
1.0 0.0 0.5 2.0 2.2
1.5 0.5 0.0 1.5 1.7
3.0 2.0 1.5 0.0 0.2
3.2 2.2 1.7 0.2 0.0

⎤
⎥⎥⎥⎥⎦ .

By applying the weighting function (set σ as 1) on the time distance matrix,

the time weight matrix is obtained:

[wT
1 ,w

T
2 ,w

T
3 ,w

T
4 ,w

T
5 ] =

⎡
⎢⎢⎢⎢⎣
1.00 0.61 0.32 0.01 0.01
0.61 1.00 0.88 0.14 0.09
0.32 0.88 1.00 0.32 0.24
0.01 0.14 0.32 1.00 0.98
0.01 0.09 0.24 0.98 1.00

⎤
⎥⎥⎥⎥⎦ .

Modified Similarity Scores

In the proposed algorithm, a similarity score is defined as:

S ((ea, ta), (eb, tb)) = max{S0((ea, ta), (eb, tb)),S0((eb, tb), (ea, ta))}×(1−μ)+μ,

(3.4)
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where (ea, ta) and (eb, tb) are alarm messages from two sequences of length

K1 and K2, respectively. The negative parameter μ is the miss-match penalty.

S0((ea, ta), (eb, tb)) and S0((eb, tb), (ea, ta)) are calculated in:

S0((ea, ta), (eb, tb)) =

{
max

1≤i≤K1

{wi
a : ei = eb}, if the set isn’t empty

0, otherwise,
(3.5)

S0((eb, tb), (ea, ta)) =

{
max

1≤i≤K2

{wi
b : ei = ea}, if the set isn’t empty

0, otherwise.
(3.6)

The value of S0((ea, ta), (eb, tb)) and S0((eb, tb), (ea, ta)) may not be the same

since commutative law does not hold for S0. For this reason, we choose the

larger value of S0 while calculating S ((ea, ta), (eb, tb)). For S0((ea, ta), (eb, tb)),

we first filter out the values in wa whose corresponding alarm type is not he

same as eb; then choose the maximum value in the remaining vector if the vec-

tor is not empty, otherwise S0((ea, ta), (eb, tb)) = 0. Since S0((ea, ta), (eb, tb)) ∈
[0, 1], S ((ea, ta), (eb, tb)) ∈ [μ, 1]. The highest value 1 can be reached when

the two alarm messages (ea, ta) and (eb, tb) are of the same alarm type, indi-

cating a match; the negative value μ is obtained if alarm type ea or eb does not

appear in the other sequence or the time distance between the alarm messages

that contain the same alarm type is too large.

Dynamic Programming with Modified Gap Penalty

Dynamic programming matrices are calculated for aligning the sequences.

Each cell of the matrix Hm,n is obtained in:

Hm+1,n+1 = max
1≤i≤m,1≤j≤n

(I(Ai:m, Bj:n), 0), (3.7)

where I(Ai:m, Bj:n) is the alignment score of the segment pair (Ai:m, Bj:n).

H1:K1,1 and H1,1:K2 are all set to be 0 during initialization. The other cells of

the matrix are iteratively filled in by

Hm+1,n+1 = max
1≤i≤m,1≤j≤n

(I(Ai:m, Bj:n), 0)

= max{Hm,n + S((em+1, tm+1), (en+1, tn+1)),

Hm,n+1 + δ1, Hm+1,n + δ2, 0},
(3.8)

where

δ1 = (1− wn+1
B,n ) ∗ δ, (3.9)

δ2 = (1− wm+1
A,m ) ∗ δ (3.10)
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are the gap penalties. The closer the time stamps of the two alarm messages

(en, tn) and (en+1, tn+1) in a sequence are, the higher the value of wn+1
B,n is, and

the lower the value of 1 − wn+1
B,n is; thus a smaller penalty will be put on the

gap caused by inserting alarm (en+1, tn+1) into the alignment. In this way, the

irrelevant alarms (disturbance alarms) that are raised closely in a sequence

will cause smaller reduction on the alignment score. The values of δ1 and δ2

are between [δ, 0] based on the range of time weight distances.

Once the dynamic programming matrix is obtained, the optimal alignment

score of the two sequences can be obtained easily by finding the maximum

value in the matrix.

Incremental Dynamic Programming

In this subsection, we will show how to incrementally obtained the optimal

alignment score when new alarms are raised and added into the online se-

quence.

We first provide an example of incrementally calculating the time weight

matrix. Consider a new alarm (4, 5.2) is raised and added into the online

sequence:

< (2, 2), (1, 3), (3, 3.5), (1, 5) > .

The time weight matrix can be updated by augmenting the old one with a

new row and column related to this alarm, as shown in Figure 3.3. Moreover,

notice the time weight matrix is symmetric, half of the computation can be

saved.

Figure 3.3: An illustrative example of updating the time weight matrix

Similar tricks can be used on updating the dynamic programming matrix

as well. Given the pattern sequence

< (1, 3), (2, 26), (3, 28), (4, 293) >
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and the online sequence

< (1, 4), (8, 26), (9, 105) >,

when a new alarm (2, 122) is raised and included into the online sequence,

the dynamic programming matrix can be updated by augmenting the old one

(Figure 4.5) with a new row and column, as shown in Figure 4.6. Parameters

were chosen as: δ = −0.2, σ = 2, and μ = −0.6 in this example.

(a) Old dynamic programming matrix

(b) Updated dynamic programming matrix

Figure 3.4: An illustrative example of updating the dynamic programming
matrix

Figure 3.5: An illustrative example of predicting incoming alarms

3.2.5 Prediction of Incoming Alarms

Whenever the online sequence is identified as similar to a pattern, the pre-

diction of incoming alarms will be provided based on the record of sequence
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window filter and the pattern in the database: the alarm messages contained

in the pattern but not included in the record of sequence window filter will be

given as predictions. Figure 3.5 shows an example of a prediction procedure.

3.2.6 Algorithm Flowchart and Pseudo Code

Figure 3.6 shows the flowchart of the algorithm. There are three main parts:

chattering alarm elimination, sequence window record updating, and sequence

matching based on incremental dynamic programming. Algorithm 2 is the

corresponding pseudo code.

3.3 Industrial Case Study

A dataset from a real chemical process was used to test the proposed algorithm.

Equipment used in the process include pumps, compressors, furnaces, and

filters. General descriptions of the dataset can be found in Table 3.1. Off-

delay timers of 300 seconds were applied uniformly to all the tags to remove

chattering alarms. 359 alarm flood sequences were extracted based on the

ISA standard, which is more than 10 alarms per 10 minutes. The extracted

alarm floods were then clustered based on pairwise similarity scores calculated

using the method in [18], given parameter values: σ = 2, μ = −0.6, and

δ = −0.2; the result is shown in Figure 3.7. The following tests were done

using MATLAB on a 64-bit Windows PC with Intel(R) Core(TM) i7-4770

3.40GHz CPU and 24.0 GB memory.

Table 3.1: Statistics of the dataset

Description Number
Total time period 336 days
Total number of tags 1502
Total number of alarms 109393
Average alarm rate 14/h
Highest peak alarm rate 334/10 min
Number of alarm floods 359
Average length of alarm floods 39
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Figure 3.6: Flowchart of the proposed algorithm
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Algorithm 2: Online pattern matching and prediction of incoming
alarms
input : Latest raised alarm message, pattern database D, variance of

Gaussian function σ, scalar of gap penalty δ, miss-match
penalty μ, prediction threshold α, delay-timer length γ

output: Identified pattern index and prediction of upcoming alarms

1 begin
2 Eliminate alarm messages raised beyond time span γ from

chattering window record;
3 if Chattering window CW is empty then
4 Include new alarm message to chattering window CW ;
5 Go to 11;

6 else
7 if Chattering window CW contains this new alarm message

then
8 Identify this alarm as a chattering alarm
9 else

10 Include new alarm message to chattering window CW ;
11 for j ← 1 to the number of patterns do
12 if Sequence window SWj is empty then
13 if New alarm passes the pre-matching with the

pattern then
14 Go to 16

15 else
16 Include new alarm into SWj. Augment jth time

distance and weight matrices and jth DP matrix
through incremental computation;

17 if The last row of dynamic programming matrix DPj

are all 0 then
18 Terminate matching of pattern j;
19 Reset matching records with pattern j;

20 else
21 if Maximum value in dynamic programming

matrix DPj larger than prediction threshold α
then

22 Identify temporal online sequence similar to
pattern j;

23 Predict incoming alarms by eliminating
identical alarm types in SWj from pattern j;

24 return Identified pattern number and prediction of upcoming alarms
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Figure 3.7: Clustering result of the alarm floods and the selected alarm floods
for the accuracy tests

3.3.1 Efficiency Tests

Efficiency of the algorithm can be evaluated by the response time, which is

defined as the time interval between the point when a new alarm is raised in

the online sequence and the point when the algorithm makes the judgment

(whether the temporal online sequence is similar to any of the patterns in the

database). In order to test the efficiency of the proposed algorithm, compari-

son with the modified Smith-Waterman algorithm [18] has been conducted.

Response Time with Respect to The Number of Patterns in The
Database

All the 359 alarm floods (chattering alarms included) were used as the online

sequences, and the pattern database for each test was formed by selecting

different number of sequences in the 359 alarm floods (chattering alarms ex-

cluded). The selection of alarm flood sequences was random, except for the

restriction that the average sequence length should be about the same in the

pattern database for each test.
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Five tests were carried out using the same batch of online sequences but

different pattern databases (with similar average pattern lengths but different

number of patterns). Table 3.2 gives the detailed information for the pattern

database in each test.

Table 3.2: Information of the pattern databases used in the tests to study
the efficiency of the algorithm with respect to the number of patterns in the
database

Test
No.

Number of patterns in
database

Average pattern
length

1 20 14.1
2 40 14.8
3 60 13.9
4 80 14.3
5 100 14.5

During the tests, alarms in the online alarm sequence were raised in order;

response times of the two algorithms were recorded when each of the alarms

in the online sequence was raised. Figure 3.8 shows the comparisons of the

response times of the two algorithms in the tests. Apparently, the worst

runtime (longest response time) of the modified Smith-Waterman algorithm

was almost 6 seconds when there were 100 patterns in the database, which is

not acceptable for online application. On the contrary, the proposed algorithm

always finished fast in all the tests, even when the pattern number reached 100.

The tests also confirmed the algorithm’s computational complexity analyzed in

the discussion section; the response time of the proposed algorithm increased

almost linearly with the number of patterns in the database.

Response Time with Respect to The Average Pattern Length

Similarly, all the 359 alarm floods (chattering alarms included) were used as

the online sequences to study the relationship between the algorithm response

time and the average pattern length. Each pattern database was formed by a

selection of 10 alarm flood sequences (chattering alarms excluded). The selec-

tion of alarm floods was random, except for the restriction that the average

pattern length should be different for each database. Five tests were carried

out and the detailed information of the pattern database used in each test can

be found in Table 3.3.
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Figure 3.8: Comparison of the response time of the two algorithms when the
number of patterns in the database increases

Table 3.3: Information of the pattern databases used in the tests to study the
efficiency of the algorithm with respect to the average pattern length in the
database

Test
No.

Number of patterns in
database

Average pattern
length

1 10 10.8
2 10 20.4
3 10 29.6
4 10 39.7
5 10 50.1

Figure 3.9 shows the results of both the average and worst response times

for the two tested algorithms. Notice that both the worst and average response

times of the proposed algorithm increased almost linearly with the average

pattern length, and that the worst response time was far under 0.1 second

even when the average pattern length reached 50. This encouraging result,

together with the previous one about the response time with respect to the

number of patterns, allows the proposed algorithm to be applicable to very

large scale plants.
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Figure 3.9: Comparison of the response times of the two algorithms when the
average pattern length increases

3.3.2 Accuracy Tests

The detection accuracy of the proposed algorithm has been tested from the

aspects of missed and false detection rates since there is a trade-off between

the two; by lowing the prediction threshold α, the algorithm becomes less

conservative on asserting the online sequence to be similar to the patterns in

the database.

In preparation of the accuracy tests, 3 clusters of similar alarm floods

(chattering alarms excluded) have been selected as the testing dataset, as

shown by the red boxes in Figure 3.7. Each dot on the figure represents the

similarity score between two alarm flood sequences. A darker color means a

stronger similarity. The reason for selecting these 3 clusters of alarm floods is

because they held a relatively long common pattern within each cluster and if

any other alarm flood is included into the cluster, the length of the common

pattern would drop significantly. In this way, we assume that the selected

alarm floods represent a common abnormality that is different from the ones

represented by the other alarm floods. Table 3.4 shows the information of the

alarm flood sequences in each selected cluster.
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Table 3.4: Information of the alarm sequences in each selected cluster

Cluster A B C
Number of alarm floods 19 12 9
Average sequence length 26.6 14.6 31.6
Longest sequence length 46 23 64
Shortest sequence length 15 10 14
Pattern length 14 4 11

Missed detection (missing to detect the online sequence to be similar to a

pattern when it indeed is) rates with respect to different prediction thresholds

α were obtained by applying cross validations. Given one prediction threshold

α, the procedures of cross validation are as follows:

1. Randomly select half of the sequences from each of the 3 clusters and

find their common patterns using the method in [62]. Form the pattern

database with the 3 obtained patterns;

2. Treat the other half of the alarm flood sequences in each cluster as the

online sequences and match them with the 3 pattern sequences in the

database; and

3. Record a missed detection if the algorithm fails to identify the alarm

flood to be similar to the corresponding pattern sequence.

False detection (detecting the online sequence to be similar to a pattern

when it is actually not) rates versus the prediction threshold were also ob-

tained. Given one prediction threshold α, the procedures of the tests for the

false detection rates are as follows:

1. Apply the method in [62] to all the alarm flood sequences in each of

the 3 selected clusters to find their common patterns. Form the pattern

database with the 3 obtained patterns;

2. Treat the rest of the 359 alarm flood sequences that are not included

in any of the 3 chosen clusters as the online sequences and match them

with the 3 pattern sequences in the database; and

3. Record a false detection if the algorithm identifies the alarm flood to be

similar to any of the pattern sequences.
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Table 3.5: Results of accuracy tests

Prediction threshold False detection rate missed detection rate
2 8.5% 2.5%
3 6.6% 2.5%
4 3.8% 5.0%
5 2.5% 32.5%
6 1.6% 37.5%
7 1.6% 42.5%

Table 3.5 shows the accuracy test results. Both the False Detection Rate

(FDR) and the Missed Detection Rate (MDR) are listed for different val-

ues of prediction threshold α. The table reveals clearly a trade-off between

the missed and false detection rates while changing the prediction threshold.

When the prediction threshold was set to be 4, both the missed and false

detection rate were below 5%. There is a significant increase on MDR when

the prediction threshold α becomes bigger than 4. The reason is because the

pattern length in cluster B is 4; when α is larger than 4, even though there

exists a match between the online sequence and the pattern from cluster B,

their matching score will still be smaller than the prediction threshold. The

changes of false and missed detection rates with respect to the different values

of prediction threshold are shown in the Receiver Operating Characteristic

(ROC) curve in Figure 3.10.

By further inspecting the cases where the algorithm made the false detec-

tions, we found the reason was because there was a short common sequence

between the pattern and the online sequence. Thus, when this subsequence

of alarms were raised, the algorithm identified the online alarm sequence to

be similar to the pattern. One way to reduce the false detection rate is to

increase the prediction threshold. However, it may deteriorate the missed de-

tection rate, due to the trade-off between the FDR and MDR. Moreover, the

missed detection rate is also related to the length of the pattern of the alarm

floods in the selected cluster since the longer the pattern is, the higher the

similarity score between the pattern and a similar alarm flood would be, and

the larger margin there would be between the obtained similarity score and

the prediction threshold.
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Figure 3.10: The ROC plot of the accuracy test results with different predic-
tion thresholds

3.4 Discussions

The computational complexity of the proposed algorithm isO(CW+
∑N

j=1(Pj+

SWj)), where CW is the length of the alarm record in the chattering window

filter, N is the number of non-empty sequence window filters, SWj is the length

of the alarm record in sequence window filter j, and Pj is the length of the cor-

responding pattern. The first part CW is the time occupied to check whether

the new alarm is a chattering alarm, and the second part
∑N

j=1(Pj + SWj)

is to update every sequence window filter and match their records with all

the patterns. Based on this analysis, the worst case computational complex-

ity O(CW +
∑M

j=1(Pj) +M × L) occurs when the online sequence is similar

to every pattern in the database, where M is the number of patterns in the

database and L is the length of the online sequence. Notice even for the worst

case, the computational complexity still increases linearly with the number of

patterns and the lengths of the patterns and the online sequence.

Regarding the algorithm’s detection accuracy, there is a trade-off between

the missed and false detection rates. Both of them depend on the value of

the prediction threshold and there exist a trade-off. Raising the prediction

threshold will reduce the false detection rate but it will worsen the missed
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detection rate. On the contrary, the missed detection rate could decrease if

we loosen the prediction threshold, but the false detection rate would increase

on the other hand. Notice the discussion is based on the condition when other

parameters: δ, μ, and σ are unchanged. It would be more complicated if we

consider the influence of all the parameters on the detection accuracy.

Compared with the method in [18], the proposed algorithm is much more

efficient in terms of online application, as shown clearly in the industrial case

study. The proposed incremental dynamic programming strategy allows the

matching between the online alarm sequence and the patterns to be updated

incrementally when every new alarm is raised instead of re-matching the whole

sequences repeatedly. Regarding the alignment accuracy, when applied of-

fline, the proposed method achieves exactly the same alignment result that

the method in [18] gives. Since the method in [18] guarantees the optimal

alignment result given parameters δ, μ, and σ, the proposed method can guar-

antee the optimal alignment result as well when applied offline. Here we need

to clarify the difference between alignment accuracy and detection accuracy.

Alignment accuracy measures how accurately an algorithm is able to align a

pair of sequences and find their best matching score given a set of parameters

δ, μ, and σ. It is an offline measurement because the inputs are two complete

sequences. While the detection accuracy measures the ability of an algorithm

to detect a matching between an online sequence and a pattern sequence. It

is an online measurement since the online sequence is not complete and keeps

updating. Thus, even though the proposed algorithm guarantees the optimal

alignment result, it cannot guarantee the optimal detection accuracy.

As mentioned in [18], the variance of Gaussian function σ, the gap penalty

δ, and the mismatch penalty μ all influence sequence alignments, so they have

to be adjusted based on users’ specifications. The variance of the Gaussian

function σ controls the size of the time span within which the algorithm blurs

the occurrence orders between the alarm messages. When the value of σ goes

to infinity, the algorithm totally ignores the orders of alarms in the alignment

and simply counts the alarm occurrences. On the contrary, if σ = 0, the

orders of alarms have to be exactly the same in the two sequences in order

to get a match. The gap and mismatch penalties, δ and μ, determine the

algorithm’s tolerance to including gaps and mismatch terms in alignments.

When these two parameters get larger, the algorithm places more tolerance
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on the irrelevant alarms raised within a pattern sequence when determining a

match, leading to a rise in FDR and a drop in MDR. γ is the length of the

delay timer used in the Chattering Window filter. It acts as a preprocessing

stage to remove chattering alarms from the online alarm sequence and does

not have big influence on the performance of the algorithm.

Apart from parameter tuning, which requires some process knowledge and

experience, another limitation of the algorithm is that it depends on the pat-

tern sequences to repeat in the online alarm sequence in order to be effective.

In other words, the proposed method can be effective in recognizing frequent

faults such as compressor trips and stuck valves, but not as effective for non-

repeatable problem such as an emergency plant shut-down.

3.5 Summary

In this chapter, we proposed an algorithm for online pattern matching and pre-

diction of incoming alarm floods. A chattering window filter was introduced

to eliminate chattering alarms online; a sequence window filter, a modified

calculation of time weight matrix, and an incremental dynamic programming

strategy were introduced to improve the efficiency of the algorithm. The

computational complexity analysis has shown that the proposed algorithm

is applicable to large scale plants since the computational cost increases lin-

early with the number of patterns and the lengths of patterns and the online

sequence. Accuracy tests revealed a trade-off between the missed and false

detection rates.
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Chapter 4

Accelerated Multiple Alarm
Flood Sequence Alignment for
Abnormality Pattern Mining∗

4.1 Overview

The authors in [83] summarized and categorized the existing studies on the

alarm overloading problem and formulated nine fundamental research prob-

lems to be solved. In this chapter, we propose an accelerated multiple sequence

alignment algorithm for pattern mining in multiple alarm floods, which poten-

tially can be used in solving the 5th and 6th listed problems, namely, “whether

there exist any nuisance alarms in the historical data, worthy of redesigning

alarm generation mechanisms” and “how to design mechanisms to generate

predictive alarms in order to predict upcoming critical abnormal events.” Un-

like traditional methods which either cannot deal with multiple sequences with

time stamps or suffer from high computational cost, the computational com-

plexity of this proposed algorithm is reduced significantly by introducing a

generalized pairwise sequence alignment method and a progressive multiple

sequence alignment approach. Two types of alignment refinement methods

are developed to improve the alignment accuracy. The effectiveness of the

proposed algorithm is tested using a dataset from a real chemical plant.

Low computational cost is one of the advantages of the proposed algorithm,

allowing it to find patterns effectively even in large scale datasets. The com-

∗A version of this chapter has been submitted for publication as: Shiqi Lai, Fan Yang, Tong-
wen Chen. Accelerated multiple alarm flood sequence alignment for abnormality pattern
mining. Journal of Process Control, 2017.
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putational cost function is of a quadratic form in terms of sequence lengths,

not like the exhaustive search approach as in [62], where the computational

cost would increase exponentially with the numbers of sequences and their

lengths. Being able to take time information (time intervals between alarms)

into consideration when aligning multiple sequences is another advantage of

the algorithm, allowing it to have some robustness on process delays that may

result in order shifts among successively raised alarms. Time information also

allows the algorithm to distinguish sequences with the same alarm occurrences

but difference time intervals between alarms. The third advantage of the al-

gorithm is the capability to find patterns in multiple sequences. New elements

introduced in the proposed algorithm are as follows:

1. A generalized pairwise sequence alignment method, which is composed

of a generalized similarity score calculation and a generalized dynamic

programming procedure;

2. A progressive multiple sequence alignment approach, which iteratively

applies the generalized pairwise sequence alignment method to approx-

imate the optimal alignment of alarm floods;

3. A leave-one-out and a random-division refinement method, to improve

the alignment result in an iterative manner.

There is a trade-off between efficiency and accuracy of the algorithm. The

proposed algorithm does not guarantee to find the optimal solution like the

method in [62]. However, based on our tests, the accuracy of the proposed

algorithm is still suitable for applications, averaging 5% difference when com-

pared to the results given by the method in [62]. The efficiency of the proposed

algorithm is higher than the method in [62] by several orders of magnitude.

Thus, given a large scale dataset, the proposed algorithm is able to complete

fast with usable results while the method in [62] may stuck for hours or even

days.
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4.2 Algorithm

4.2.1 Problem Formulation

The problem formulation is the same as the one described in Section 2.2.1.

Consider the following alarm sequences:

S1 = < (e11, t11), (e12, t12), ..., (e1m, t1m), ..., (e1M , t1M) >,

S2 = < (e21, t21), (e22, t22), ..., (e2n, t2n), ..., (e2N , t2N) >,

...

SJ = < (eJ1, tJ1), (eJ2, tJ2), ..., (eJo, tJo), ..., (eJO, tJO) >,

where e1m, e2n,..., eJo ∈ Λ (the set of alarm types) and t1m, t2n,..., tJo are the

corresponding time stamps, respectively. S1, S2,..., SJ are similar sequences

detected by running pairwise sequence matching algorithms such as [18]. The

objective is to obtain the optimal alignment of these sequences by adding gaps

(represented by “[]”) and deleting unrelated alarm messages, for example:

< (e16, t16), (e17, t17), (e18, t18), [ ] ,(e19, t19) >,

< (e22, t22), [ ] , (e23, t23), (e24, t24) ,(e25, t25) >,

...

< [ ] , (eJ1, tJ1), (eJ2, tJ2), [ ] ,(eJ3, tJ3) > .

4.2.2 Generalized Pairwise Sequence Alignment

Time Distance and Weight Vectors

Time stamps are important components of alarm messages; two alarm mes-

sages with different time intervals could indicate totally different problems in

the process. Thus, in order to incorporate time information into the evalua-

tion of an alarm sequence alignment, the time distance and weight vectors, as

defined in Section 3.2.4, are applied. The time distance vector for an alarm

message (em, tm) is defined as:

dm = [d1m, d
2
m, ..., d

k
m, ..., d

K
m]

dkm = |tm − tk|, (4.1)

where K is the total number of alarm messages in the sequence. Thus, dkm
gives the absolute time distance between (em, tm) and (ek, tk) in the sequence.
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The time weight vector for (em, tm) is defined as:

wm = [w1
m, w

2
m, ..., w

k
m, ..., w

K
m ]

= [f(d1m), f(d
2
m), ..., f(d

k
m), ..., f(d

K
m)],

(4.2)

where f(·) : R → R is the weighting function. A scaled Gaussian function is

selected in this paper:

f(x) = e−x2/2σ2

, (4.3)

where σ is the standard deviation, controlling how much weight to be put on

the close-by alarm messages to blur their orders in the alignment. The function

also normalizes the real-time distance to [0, 1]; a large output indicates a short

time distance.

Generalized Similarity Score

In [18], the authors proposed a way to calculate the similarity score between

two alarm messages in two alarm sequences. Here we generalize it to calculate

the similarity score between two tuples in two alarm sequence alignments. The

definition of a tuple is illustrated by the example in Figure 4.1. In the figure,

there are two alarm sequence alignments (A1, A2, . . . , AM and B1, B2, . . . , BN);

the tuples (TA1, TA2,. . . , TAP and TB1, TB2,. . . , TBQ) are formed by alarm

messages or gaps located at the same position of the corresponding alignment.

The lengths of the alignments are P and Q, respectively. Notice the lengths of

A1, A2, . . . , AM are always the same because they are from the same alignment,

while P and Q may not be the same value.

The formula for calculating the similarity score S(TAp, TBq) between the

tuples TAp and TBq is as follows:

S(TAp, TBq) = μ+
1− μ

MN
×

M∑
i=1

N∑
j=1

S((epAi, t
p
Ai), (e

q
Bj, t

q
Bj)), (4.4)

where S((epAi, t
p
Ai), (e

q
Bj, t

q
Bj)) is the similarity score between two alarm mes-

sages and is obtained by

S((epAi, t
p
Ai), (e

q
Bj, t

q
Bj))

= max{s((epAi, t
p
Ai), (e

q
Bj, t

q
Bj)),

s((eqBj, t
q
Bj), (e

p
Ai, t

p
Ai))},

(4.5)
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Figure 4.1: An example of tuples in two alarm sequence alignments

where

s((epAi, t
p
Ai), (e

q
Bj, t

q
Bj))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
1≤k≤P

{wk
Ai,p : e

k
Ai = eqBj}, if the set isn’t empty

and (eqBj, t
q
Bj) is not a gap

0, otherwise,

(4.6)

s((eqBj, t
q
Bj), (e

p
Ai, t

p
Ai))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
1≤k≤Q

{wk
Bj,q : e

k
Bj = epAi}, if the set isn’t empty

and (epAi, t
p
Ai) is not a gap

0, otherwise.

(4.7)

The negative parameter μ in equation (4.4) is the mismatch penalty. The

similarity score S(TAp, TBq) between the two tuples TAp and TBq is obtained

by averaging all the pairwise similarity scores of the alarms in the two tu-

ples. The value of S(TAp, TBq) is always within [μ, 1]; a larger value means

a stronger similarity. The similarity score S((epAi, t
p
Ai), (e

q
Bj, t

q
Bj)) between two

alarm messages (epAi, t
p
Ai) and (eqBj, t

q
Bj) is achieved by selecting the larger value

between s((epAi, t
p
Ai), (e

q
Bj, t

q
Bj)) and s((eqBj, t

q
Bj), (e

p
Ai, t

p
Ai)), as the commutative

law does not hold. When both (epAi, t
p
Ai) and (eqBj, t

q
Bj) are gaps, their score

will be assigned as 0. Note that the pairwise similarity score formula in [18] is

a special case of the generalized similarity score calculation proposed in this
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paper; when the two alignments are reduced to two alarm sequences (e.g.,

M = N = 1), the two formulae will give exactly the same output.

Figure 4.2: A numerical example for the calculation of the generalized simi-
larity scores

Consider the example of two alarm sequence alignments in Figure 4.2,

where M = N = 2 and the lengths of the two sequence alignments are both 5.

The time weight matrices of A1, A2, B1, and B2 are obtained as WA1 , WA2 ,

WB1 , and WB2 , given σ = 1. The fourth row and column of WB2 are empty

since the fourth element in B2 is a gap.

WA1 = [wT
A1,1

,wT
A1,2

,wT
A1,3

,wT
A1,4

,wT
A1,5

]

=

⎡
⎢⎢⎢⎢⎣
1.00 0.61 0.32 0.01 0.01
0.61 1.00 0.88 0.14 0.09
0.32 0.88 1.00 0.32 0.24
0.01 0.14 0.32 1.00 0.98
0.01 0.09 0.24 0.98 1.00

⎤
⎥⎥⎥⎥⎦

WA2 = [wT
A2,1

,wT
A2,2

,wT
A2,3

,wT
A2,4

,wT
A2,5

]

=

⎡
⎢⎢⎢⎢⎣
1.00 0.88 0.14 0.01 0
0.88 1.00 0.32 0.04 0
0.14 0.32 1.00 0.61 0.14
0.01 0.04 0.61 1.00 0.61
0 0 0.14 0.61 1.00

⎤
⎥⎥⎥⎥⎦

WB1 = [wT
B1,1

,wT
B1,2

,wT
B1,3

,wT
B1,4

,wT
B1,5

]

=

⎡
⎢⎢⎢⎢⎣
1.00 0.61 0.14 0.04 0.01
0.61 1.00 0.61 0.32 0.14
0.14 0.61 1.00 0.88 0.61
0.04 0.32 0.88 1.00 0.88
0.01 0.14 0.61 0.88 1.00

⎤
⎥⎥⎥⎥⎦
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WB2 = [wT
B2,1

,wT
B2,2

,wT
B2,3

,wT
B2,4

,wT
B2,5

]

=

⎡
⎢⎢⎢⎢⎣
1.00 0.88 0.14 [] 0.01
0.88 1.00 0.32 [] 0.04
0.14 0.32 1.00 [] 0.61
[] [] [] [] []

0.01 0.04 0.61 [] 1.00

⎤
⎥⎥⎥⎥⎦

Let μ = −1, the similarity score for the pair of tuples TA4 and TB4 is

calculated as

S(TA4, TB4) = −1 +
1 + 1

2× 2
×

2∑
i=1

2∑
j=1

S((e4Ai, t
4
Ai), (e

4
Bj, t

4
Bj)) = −0.12,

where

S((e4A1, t
4
A1), (e

4
B1, t

4
B1)) = max{w3

A1,4
, w3

B1,4
} = 0.88,

S((e4A2, t
4
A2), (e

4
B1, t

4
B1)) = max{w3

A2,4
, w3

B1,4
} = 0.88,

S((e4A1, t
4
A1), (e

4
B2, t

4
B2)) = max{0, 0} = 0,

and

S((e4A2, t
4
A2), (e

4
B2, t

4
B2)) = max{0, 0} = 0.

Intuitively, this negative similarity score also makes sense since there is a gap

in tuple TB4 and the type of the two alarm messages in tuple TA4 is “1”

while the type of the alarm message in tuple TB4 is “3”. The reason why this

similarity score is −0.12 instead of the minimum value −1 is because there

exists an alarm message (1, 14) in tuple TB3 that was raised slightly ahead of

(3, 14.5) and its alarm type matches the alarm messages in tuple TA4.

Generalized Dynamic Programming Procedure

Similarly, the dynamic programming procedure proposed in [18] for aligning

two alarm sequences is generalized to aligning two alarm sequence alignments.

Figure 4.3 illustrates the way to achieve the generalized dynamic program-

ming matrix from the tuples’ point of view. To begin with, the first row and

column of the matrix are filled in with zeros. Then, iteratively fill the rest of

cells of the matrix with Hx,y obtained from

Hx+1,y+1 = max
1≤i≤x,1≤j≤y

(I(TA,i:x, TB,j:y), 0)

= max{Hx,y + S(TA,x+1, TB,y+1),

Hx,y+1 + δ, Hx+1,y + δ, 0},
(4.8)
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where the negative parameter δ is the gap penalty, and the similarity index

I(TA,i:x, TB,j:y) is the alignment score of the segment pair (TA,i:x, TB,j:y).

Figure 4.3: An illustrative example on how to obtain the generalized dynamic
programming matrix

Once the whole dynamic programming matrix is achieved, the optimal

alignment of the two alignments can be generated based on back-tracking.

During back-tracking, the position of the maximum value in the dynamic

programming matrix is located at first. Then, the algorithm tracks backwards

to obtain the path along which the maximum score is generated. At last, one

forward pass through the back-tracking path gives the optimal alignment.

The difference between the generalized and the standard dynamic program-

ming procedures is that the former one treats the “sequence” from a “tuple”

point of view, which allows the “sequence” to be either an alarm sequence

or an alignment of multiple alarm sequences. Thus, the standard dynamic

programming procedure can be seen as a special case of the generalized one.

4.2.3 Progressive Multiple Sequence Alignment Method

The computational cost of the traversal search approach in [62] grows expo-

nentially with the number of sequences and their lengths, making the algo-

rithm easily overwhelmed by real data. To improve the efficiency, we propose

a progressive multiple sequence alignment method based on the generalized

dynamic programming to find the optimal sequence alignment.
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In the first step of the proposed method, the pairwise pattern matching al-

gorithm in [18] is applied to calculate all the pairwise similarity scores between

the alarm sequences. Then, a dendrogram is built based on these pairwise sim-

ilarity scores using UPGMA (Unweighted Pair Group Method with Arithmetic

Mean). Figure 4.4 shows an example of a dendrogram, in which there are 6

alarm sequences and the height of a link indicates the dissimilarity between

two connected sequences.

Figure 4.4: An example of dendrogram and the progressive multiple sequence
alignment procedure based on it

Next, guided by the dendrogram, the primitive alignment of the sequences

is obtained by progressively aligning all the sequences, from the most similar

pair to the most dissimilar ones. In the example shown in Figure 4.4, the link

connecting sequences 1 and 2 is the lowest one, indicating them to be the most

similar sequence pair. Thus, these two sequences are aligned first and thus

their alignment a is obtained. Similarly, sequences 4 and 5 are aligned and thus

alignment b is obtained. Then, since there is a connection between sequence

3 and alignment b, the generalized pairwise sequence alignment method is

conducted to get alignment c by aligning sequence 3 and alignment b. By

iteratively aligning the sequences based on the dendrogram, the primitive

alignment of all the 6 alarm sequences can be achieved.

Compared to the traversal search approach in [62], which conducts traver-

sal search search to find the exact optimal alignment, the proposed method ap-
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proximates the optimal alignment by progressively aligning all the sequences.

This new approach greatly improves the efficiency of the algorithm; as the

cost, however, the global optimum is no longer guaranteed.

4.2.4 Iterative Alignment Refinement Methods

Two iterative alignment refinement methods are developed to improve the

accuracy of the primitive alignment generated by the progressive sequence

alignment approach.

Leave-One-Out Alignment Refinement

Similar to the leave-one-out cross validation, which leaves one dataset out for

testing and use the rest for training, during each iteration of the leave-one-out

alignment refinement, one sequence in the alignment is replaced by its original

sequence and then be re-aligned with the rest of sequences in the alignment (if

any, common gaps in the rest of the alignment sequences should be removed)

using the generalized pairwise sequence alignment method. After re-aligned,

the new alignment score is compared with the old one before the current

refinement iteration, and the alignment with the higher score will be kept for

the next iteration. Iteratively repeat this procedure until the alignment score

converges.

Figure 4.5 shows an illustration of one iteration of the leave-one-out re-

finement; respectively, the solid lines and “[ ]” represent alarm sequences and

gaps in the alignments. In the example, alignment 1 is left out and replaced

by its original alarm sequence, as indicated by the red bold line. Then the

common gaps in the rest of the alignments (2, 3, 4, and 5) are removed before

they are re-aligned with the original alarm sequence 1.

Note the convergence is guaranteed by the leave-one-out refinement method.

However, it is not guaranteed to converge to the global optimum. Details of

convergence will be provided in the discussion section.

Random-division alignment refinement

The random-division alignment refinement can also improve the accuracy of an

alignment. Compared to the leave-one-out approach, it has a relatively lower

convergence speed, but in some cases, it could still improve the alignment
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Figure 4.5: Illustration of the Leave-one-out refinement method

result even when the leave-one-out alignment converges. The detailed reason

will be provided in the discussion section.

As illustrated in Figure 4.6, the primitive alignment is randomly divided

into two groups (1, 2, 4, and 3, 5). Then, if any, the common gaps in each of the

two groups of sequences should be removed, as shown in the example. Next,

the two groups of sequences are re-aligned using the proposed generalized

pairwise sequence alignment method. After re-aligned, the new alignment

score is compared with the old one before the current refinement iteration,

and the alignment with the higher score will be kept for the next iteration.

Iteratively repeat this procedure until the upper limit number of iterations is

reached.

Similar to the leave-one-out refinement, the convergence is guaranteed for

the random-division approach when no upper limit iteration number is set.

However, the convergence is hard to be identified without knowing the opti-

mal alignment score beforehand, also the convergence value is not guaranteed
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Figure 4.6: Illustration of the Random-division refinement method

to be global optimum. Moreover, since no sequence in the alignment will be re-

placed by its original sequence during the refinement, the primitive alignment

becomes much more critical; and the deleted alarm messages in the sequence

of an alignment will never be brought back.

4.3 Industrial Case Study

The proposed algorithm has been tested on an industrial dataset from Suncor

Energy Inc. The dataset comes from a plant that is already in production but

need rationalization to deal with chattering alarms and alarm floods. Off-

delay timers of 300 seconds have been applied as a preprocessing step at the

beginning of the analysis to remove chattering alarms. Alarm floods were

extracted based on the ISA standard: 10 alarms per 10 minutes per operator.

General descriptions of the dataset are shown in Table 4.1.
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Figure 4.7: Flowchart of the proposed algorithm
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The flowchart of the algorithm is shown in Figure 4.7. The parameters

were chosen as: σ = 0.2, μ = −1, δ = −1, and the upper limit iteration

number for random-division refinement is set as 50. All the tests were carried

out on a 64-bit Windows PC with Intel i7-4770 3.40GHz CPU and 24.0 GB

memory.

Table 4.1: Statistics of the dataset

Description Number
Total time period 336 days
Total number of tags 1502
Total number of alarms 109393
Average alarm rate 14/h
Highest peak alarm rate 334/10 min
Number of alarm floods 359
Average length of alarm floods 39

Pairwise similarity scores were calculated using the method in [18] and

the UPGMA clustering was conducted based on the obtained similarity scores

thereafter. Similar to the proposed approach, the method in [18] finds the

similarity score between a pair of sequences by searching for their best align-

ment. It is able to find the exact optimal alignment; however, it can only

be applied on a pair of sequences rather than multiple ones. The clustering

result is shown in Figure 4.8, where each pixel represents the similarity score

between two corresponding alarm flood sequences; darker color means a higher

similarity. Four groups of alarm floods were selected to be the test dataset,

denoted as clusters A, B, C, and D. The reason for choosing them as the test

datasets was because they each contains sufficient number of alarm floods for

testing, and a pattern of alarm sequence exists in each of the clusters. Detailed

information about the four selected clusters can be found in Table 4.2.
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Figure 4.8: Clustering result of the extracted alarm floods and the four selected
clusters

Table 4.2: Information of the alarm sequences in each selected cluster

Cluster A B C D
Number of alarm floods 19 12 9 17
Average sequence length 26.6 14.6 31.6 20.1
Longest sequence length 46 23 64 36
Shortest sequence length 15 10 14 10
Pattern length 14 4 11 2

Both accuracy and efficiency tests have been conducted to compare the

proposed algorithm with the traversal search approach in [62]. Same param-

eters were set for both algorithms.

4.3.1 Accuracy Tests

From each of the four clusters, 3 sequences were randomly selected, and the

two algorithms were applied respectively to find the best alignment. Since the

traversal search approach guarantees the global optimum, the accuracy of the

proposed algorithm can be evaluated by the alignment score difference between
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the two algorithms. Repeat the whole procedure for 50 times and obtain the

average alignment score difference for each cluster; the result is shown by

the green line in Figure 4.9. From the left to the right, the four points on

the green line indicates the average alignment score difference between the

two algorithms in clusters B, D, A, and C respectively (in the ascendant

order of the average sequence length in each cluster). Similarly, the average

alignment score difference between the two algorithms was obtained when

4 and 5 sequences were randomly selected from each of the four clusters,

presented by the red and blue lines respectively.

Figure 4.9: Percentage of alignment score difference between the proposed
algorithm and the traversal search approach

A very noticeable spike can be found in all the three lines in Figure 4.9,

showing that the average alignment score difference between the two algo-

rithms was large for the tests in cluster D. The reason for this is because the

pattern length in cluster D was too short (only 2). Thus, the alignment can be

easily influenced by the similar terms among the sequences that are not related

to the pattern. Also, since the pattern length is too short, the percentage of

alignment score difference caused by a small defect in the alignment would be

amplified. In addition to the big spike caused by cluster D, the accuracy of

the proposed algorithm is high, with no more than 10% difference compared

to the traversal search approach. Figure 4.9 also shows that there is no evi-
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dent relation between the accuracy of the proposed algorithm and number of

sequences to be aligned or the average sequence length.

4.3.2 Efficiency Tests

Execution times of both algorithms during the accuracy tests were recorded to

compare their efficiency. Figure 4.10 shows the efficiency of the two algorithms

as the number of sequences to be aligned grows. The execution times of both

algorithms increases when the number of sequences grows; however, the growth

rate of the proposed algorithm is much smaller than that of the traversal

search approach. When the number of sequences reached 5, the proposed

algorithm was almost 10,000 times faster than the traversal search approach.

Figure 4.11 indicates there is a positive relation between the computational

cost of the traversal search approach and the average sequence length, but

this trend is not evident for the proposed algorithm. The reason is because

the pattern length, as numbered on the figure, influences the execution time

of the proposed algorithm as well. Detailed explanation will be provided in

the discussion section.

Figure 4.10: Efficiency comparison of the two algorithms when the number of
sequences increases
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Figure 4.11: Efficiency comparison of the two algorithms when the average
sequence length increases

Figure 4.12: Execution time of the proposed algorithm when the number of
sequences grows
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More efficiency tests were conducted to cover the testing region that had

not been touched by the accuracy tests. Since the traversal search approach

could hardly finish in most of the tests, only the result of the proposed algo-

rithm is shown.

Figure 4.12 shows the execution time of the proposed algorithm when the

number of sequences to be aligned increases. The tests were conducted by

randomly selecting sequences from cluster A (average sequence length 26.6);

50 repeated tests were carried out for each number of sequences. The result

reveals a quadratic trend in the computational cost as the number of sequences

to be aligned grows. Even when the sequence number exceeds 250, as shown

in Figure 4.13, the execution time of the proposed algorithm was still within

1 minute.

Figure 4.13: Execution time of the proposed algorithm to align 10 sequences
as the average sequence length grows

Figure 4.13 reveals the relationship between execution time of the algo-

rithm and average sequence length. The tests were carried out by applying

the proposed algorithm to align 10 alarm sequences randomly selected from

cluster A. In order to increase the sequence length in each test, the sequences

were extended by duplicating and connecting themselves with their duplicates.

Each test was repeated 50 times and both the average and the longest execu-

tion time were recorded. The result shows the longest execution time grows

quite fast with the growth of average sequence length; however, the average
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execution time grows much slower and is always less than 50 seconds. The

reason is because the sequence length in cluster A varies from 15 to 46 and

thus the sequence growth rates were quite different when the sequences were

extended by duplicating themselves.

Figure 4.14: Execution time of the algorithm with respect to the upper limit
iteration number for the random-division refinement

Figure 4.14 shows the influence of the upper limit of iteration number for

the random-division refinement on the execution time of the algorithm. The

results were obtained by aligning 10 sequences randomly selected from cluster

A, with different upper limits of iteration numbers for the random-division

refinement in the algorithm. Each test was repeated 50 times and both the

average and the longest execution times were recorded. The result shows a

linear increasing trend of the execution time of the algorithm when the upper

limit increases, as is expected. The detailed reason will be explained in the

discussion section.

4.3.3 Convergence Tests

Tests for the convergence of the two refinement methods were conducted and

the results are shown in Figures 4.15 - 4.17.

Since the convergence speed of the random-division refinement is much

slower than the leave-one-out refinement and can hardly be identified, only
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the convergence speed of the leave-one-out refinement was tested. Figure

Figure 4.15: The number of refinement iterations needed before reaching the
convergence when the number of sequences to be aligned increases.

4.15 shows the refinement iteration number needed before the convergence

was reached by leave-one-out refinement when aligning different numbers of

sequences in each cluster. As the result shows, more iterations were needed

when the number of sequences to be aligned was large. However, there is no

clear relationship between the refinement iteration number needed for con-

vergence and the average sequence length, as the descending order of average

sequence length in each cluster is C > A > D > B.

The two refinement methods were also compared by evaluating the amount

of improvement they can make on a given primitive alignment. Since for

a certain primitive alignment, the leave-one-out refinement always has the

same convergence trail, while the random-division method doesn’t, the final

alignment score of the leave-one-out refinement was compared with the results

from 30 runs of the random-division refinement. Two cases where the two

methods achieved a higher alignment score compared with each other are

shown in Figure 4.16. The red bold lines represent the converging trails of

the leave-one-out method, while the blue lines show the trails of the random-
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(a) (b)

Figure 4.16: Examples of the optimums achieved by the two types of refine-
ment methods: (a) when the random-division refinement method was better;
(b) when the leave-one-out refinement method was better.

division method. In case (a), the leave-one-out refinement was stuck in a

local optimum and outperformed by most of the runs of the random-division

refinement. However, in case (b), the leave-one-out refinement was better than

all runs using the random-division refinement. The reason for this was because

the leave-one-out refinement method could recover from the incorrectly deleted

part for the primitive alignment, but the random-division refinement method

could not. Thus, during the procedure of forming the primitive alignment,

if a part of the sequence that should appear in the optimal alignment was

deleted incorrectly because of the approximation, then we should expect it to

be recovered by the leave-one-out refinement method rather than the random-

division refinement.

When applying the leave-one-out refinement method, for each iteration we

always select the sequence by their orders in the primitive alignment. How-

ever, will the order we select the sequences to be left out make a difference in

the final alignment given by the leave-one-out refinement method? The answer

is yes, as the result in Figure 4.17 shows, where 10 different orders were tried

to improve a certain primitive alignment using the leave-one-out refinement

method. The result shows the order we use to select the sequences will influ-

ence not only the convergence value but also the speed for the leave-one-out

refinement method.
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Figure 4.17: An example of convergence curves when the order of sequences
to be left out for the leave-one-out refinement method varies

4.4 Discussions

Compared to the traversal search approach in [62], the proposed algorithm

does not guarantee the global optimum. However, as shown in the indus-

trial case study section, the accuracy of the proposed algorithm is acceptable

(within 10% range) when the pattern length is not too small (larger than 3).

For the cases where the pattern sequence is too short, the algorithm may not

perform well since the alignment can be easily influenced by the similar terms

among the sequences that are not related to the pattern, and the improvement

on the primitive alignment that could be made by the two refinement methods

will be very limited as well.

The computational complexity of the proposed algorithm is composed of

five parts: (1) calculation of time weight matrices O(
∑N

i=1 L
2
i ), where N is

the sequence number and Li is the sequence length; (2) formation of the den-

drogram O(N3); (3) generation of the primitive alignment using progressive

multiple sequence alignment method O(
∑N−1

j=1 Aj1Aj2), where Aj1 and Aj2 are

the lengths of the two sequences (can be either a sequence or an alignment)

for the generalized pairwise sequence alignment; (4) leave-one-out refinement

O(
∑I1

k=1 Ak1Ak2), where I1 is the number of iterations before convergence is

reached, and Ak1 and Ak2 are the lengths of the two sequences (can be either

a sequence or an alignment) for the generalized pairwise sequence alignment;
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and (5) random-division refinement O(
∑I2

t=1 At1At2), where I2 is the upper

limit iteration number, and At1 and At2 are the lengths of the two sequences

(can be either a sequence or an alignment) for the generalized pairwise se-

quence alignment. Thus, the whole computational complexity is

O(
N∑
i=1

L2
i +N3 +

N−1∑
j=1

Aj1Aj2 +

I1∑
k=1

Ak1Ak2 +

I2∑
t=1

At1At2).

Based on the computational complexity analysis, the efficiency of the pro-

posed algorithm is determined by many factors, among which the number

of sequences, sequence length, and alignment length are the three main ele-

ments. The highest order of sequence or pattern length in the computational

complexity is only 2 for the proposed algorithm. Notice the computational

complexity of the traversal search approach in [62] is

O(2 · (
N∑
k=1

Lk)× (
N∏
k=1

Lk)),

which increases exponentially with the sequence number and length. Thus,

the proposed algorithm achieves a significant improvement in efficiency, which

has also been confirmed in the industrial case study section.

The convergence can be guaranteed by both refinement methods. The

proof is simple and does not require any mathematical derivations. Since in

every refinement iteration, the new alignment score will be compared with the

old one, and the alignment with a higher score will be fed to the next iteration.

Thus, the alignment score is monotonically increasing, while there must be an

upper bound for the alignment score of certain sequences. Therefore, the

convergence is guaranteed for both refinement methods. The leave-one-out

refinement method converges when no more improvement can be made to

the alignment for a full round of iterations (every sequence has been left out

once). However, the convergence of the random-division refinement can hardly

be identified, as there does not exist a full round of iterations. Thus, an

upper limit number of iterations should be configured for the random-division

refinement method.

Convergence speeds of the two refinement methods are worthy studying

too. The leave-one-out refinement method usually, but not always, converges

faster than the random-division method. The reason is because for both of

the refinement methods, there are two main steps: separate the alignment into
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two bunches of sequences, and re-align them. The leave-one-out refinement

method has a certain order to separate the alignment, and only one sequence

is separated from the rest during one iteration. While the random-division

refinement method does not; thus, there is a much bigger pool of ways of

separating the sequences in the alignment that the random-division refinement

method can select from.

Regarding the convergence value, both refinement methods cannot guar-

antee the global optimum, and neither of them can always achieve a better

alignment score than the other. However, by combining them together we

could have a better chance to reach the global optimum, because each method

improves the alignment from a different perspective. The leave-one-out refine-

ment method can recover the part of the sequence that has been incorrectly

deleted during the generation of the primitive alignment because in each it-

eration, one sequence in the alignment is replaced by its original sequence

and re-aligned with the rest of the sequences in the alignment. However,

the random-division refinement method cannot do so because no separated

sequences will be replaced by their original ones. Even though it cannot re-

cover the incorrectly deleted sequence part, it still has an advantage over the

leave-one-out refinement method — a much bigger pool of ways of separating

the sequences in the alignment to choose from, which means more chances

to improve the alignment by re-arranging the gaps and matchings. Thus, by

applying the leave-one-out refinement followed by the random-division refine-

ment method, we will be able to first recover the incorrectly deleted sequence

parts, and then modify the ways of placing gaps and matchings in the existing

alignment to achieve a better alignment score. Therefore, in the algorithm

flowchart shown in Figure 4.7, the leave-one-out refinement is applied before

the random-division refinement.

Parameter tuning can be an obstacle for applying the proposed algorithm.

As mentioned in [18], the variance of the Gaussian function σ, the gap and

mismatch penalties δ and μ need to be tuned to meet users’ requirements. The

variance of the Gaussian function σ controls the size of the time span within

which the algorithm blurs the occurrence orders between the alarm messages.

When the value of σ goes to infinity, the algorithm totally ignores the orders

of alarms in the alignment and simply counts the alarm occurrences. On the

contrary, if σ = 0, the orders of alarms must be exactly the same in the two
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sequences in order to get a match. The gap and mismatch penalties, σ and μ,

determine the algorithm’s tolerance to including gaps and mismatch terms in

alignments. When these two parameters get larger, the algorithm places more

tolerance on the irrelevant alarms raised within a pattern sequence. Besides

the ones in [18], a new parameter is introduced in the proposed algorithm: the

upper limit number of iterations I2 for the random-division refinement. With

a higher I2, there will be a greater chance that the global optimum is reached,

but at the cost of higher computational cost.

During the generation of the primitive alignment, the sequences are pro-

gressively aligned by the descending order of their pairwise similarity. The

reason for choosing this order is because once an alignment is obtained, the

gaps and the matchings between the two sequences are fixed and will be prop-

agated into the primitive alignment. Thus, by aligning the most similar se-

quence pair first and leaving the most divergent pair to the last would improve

the correctness of placing gaps and matchings in the alignment.

4.5 Summary

In this chapter, an accelerated multiple sequence alignment algorithm for pat-

tern mining in multiple alarm sequences has been proposed. A progressive

multiple sequence alignment mechanism has been introduced to accelerate

the generation of the primitive alignment. Two types of refinement methods

have been developed to improve the primitive alignment. A dataset from a

real chemical plant has been used to test the effectiveness of the proposed

algorithm and compare it with the traversal search approach in [62]. The

results has shown that the proposed algorithm has a significant improvement

in efficiency with a small accuracy cost.
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Chapter 5

Application of Pattern and
Causality Analysis on Alarm
Floods

5.1 Overview

As discussed in the previous chapters, the parameter selection and tuning for

the proposed pattern mining and pattern matching algorithms can be tough.

In this chapter, parameter robustness tests are conducted using industrial

data to reveal the insights on how those parameters affect the results of the

algorithms. Specifically, robustness tests for the influence of the parameters σ,

μ, and δ on the accelerated pattern mining algorithm proposed in Chapter 4

are carried out. Moreover, an extended accuracy test with both α and σ as the

manipulated variables is conducted for the online pattern matching algorithm

proposed in Chapter 3. Discussions on parameter selection and tuning are

also provided.

In addition to the robustness tests, an industrial case study on the appli-

cation of Granger causality towards the root cause analysis in alarm floods is

carried out. Datasets from two consoles in an operating utility plant are used

in the study. The causal maps generated from the frequency domain Granger

causality are confirmed by process diagrams from the plant manual.
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5.2 Robustness Test of Parameters in Pattern

Mining and Pattern Matching Algorithms

The computational complexity analysis in the previous chapters showed that

the efficiency of the three proposed algorithms did not depend on the value

of their parameters. Thus, the parameter robustness tests carried out in this

section are mainly focused on the influence of parameters on the alignment

result and accuracy. Datasets from a real chemical plant are used for param-

eter robustness test of the pattern mining and pattern matching algorithms

proposed in Chapters 3 and 4. At the end of the section, discussions on how

to select and tune the algorithm parameters are provided.

5.2.1 The Influence of Parameters σ, μ, and δ on the
Alignment Result

Parameter robustness tests were conducted on the same dataset used in the

industrial case study in Chapter 4 to show the influence of parameters σ, μ,

and δ on the alignment output of the accelerated pattern mining algorithm

proposed in Chapter 4. Since the three algorithms proposed in Chapters 2-4

are all based on the similar alignment technique, the results from the carried-

out robustness tests can represent the influence of parameters on all three

algorithms. Three alarm floods from cluster A in Figure 4.8 were used as the

input of the accelerated pattern mining algorithm.

Table 5.1: Alignment result with σ = 2, μ = −0.6, and δ = −0.4.

AF 1 Time AF 2 Time AF 3 Time
Tag355 00:03:04 Tag355 22:21:45 Tag355 19:16:11
Tag352 00:03:59 Tag356 22:21:49 Tag354 19:16:17
Tag360 00:04:00 [] [] [] []
Tag350 00:04:00 [] [] Tag357 19:16:17
Tag351 00:04:01 Tag357 22:21:56 Tag352 19:16:17
Tag357 00:04:02 [] [] Tag351 19:16:21
Tag356 00:04:04 Tag358 22:22:00 Tag358 19:16:24
[] [] [] [] Tag353 19:16:26
Tag359 00:04:05 [] [] Tag356 19:16:28
Tag358 00:04:05 Tag359 22:22:05 Tag359 19:16:31

For the first set of three tests, μ and δ were fixed as -0.6 and -0.4, and

the manipulated variable σ was set as 0.1, 2, and 10 in each test. Alignment

results are shown in Tables 5.1, 5.2, and 5.3. By comparing the alignments

in the three tables we can notice that as the value of σ grows from 0.1 to
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Table 5.2: Alignment result with σ = 10, μ = −0.6, and δ = −0.4.

AF 1 Time AF 2 Time AF 3 Time
Tag354 00:03:03 Tag350 22:21:20 Tag355 19:16:11
Tag355 00:03:04 Tag351 22:21:25 Tag354 19:16:17
Tag352 00:03:59 Tag352 22:21:28 Tag357 19:16:17
Tag360 00:04:00 Tag353 22:21:34 Tag352 19:16:17
Tag350 00:04:00 Tag354 22:21:38 [] []
Tag351 00:04:01 Tag355 22:21:45 [] []
Tag357 00:04:02 Tag356 22:21:49 Tag351 19:16:21
Tag356 00:04:04 Tag357 22:21:56 Tag358 19:16:24
Tag359 00:04:05 Tag358 22:22:00 Tag353 19:16:26
Tag358 00:04:05 Tag359 22:22:05 Tag356 19:16:28
Tag353 00:04:07 Tag360 22:22:09 Tag359 19:16:31

Table 5.3: Alignment result with σ = 0.1, μ = −0.6, and δ = −0.4.

AF 1 Time AF 2 Time AF 3 Time
Tag355 00:03:04 Tag355 22:21:45 Tag355 19:16:11
Tag352 00:03:59 Tag356 22:21:49 Tag354 19:16:17
Tag360 00:04:00 [] [] [] []
Tag350 00:04:00 [] [] [] []
Tag351 00:04:01 [] [] Tag357 19:16:17
Tag357 00:04:02 Tag357 22:21:56 Tag352 19:16:17
Tag356 00:04:04 [] [] [] []
[] [] [] [] Tag351 19:16:21
Tag359 00:04:05 Tag358 22:22:00 Tag358 19:16:24
[] [] [] [] Tag353 19:16:26
[] [] [] [] Tag356 19:16:28
Tag358 00:04:05 Tag359 22:22:05 Tag359 19:16:31

10, the number of tags included in the alignment increases and the amount

of gaps decreases. The reason of this result is very clear: the variance of

the Gaussian function σ controls the size of the time span within which the

algorithm blurs the occurrence orders between the alarm messages. When

σ = 0.1, the algorithm becomes very strict with the order of alarms in the

alignment, many alarm tags were eliminated from the alignment because their

appearance orders did not match. This is also the reason why there were more

gaps in the alignment results when σ = 0.1. On the contrary, when σ = 10,

the order of alarms becomes unimportant; this explains why more alarms were

included and the amount of gaps was reduced.

Table 5.4: Alignment result with σ = 2, μ = −1, and δ = −0.4.

AF 1 Time AF 2 Time AF 3 Time
Tag357 00:04:02 Tag357 22:21:56 Tag352 19:16:17
Tag356 00:04:04 Tag358 22:22:00 Tag351 19:16:21
[] [] [] [] Tag358 19:16:24
[] [] [] [] Tag353 19:16:26
Tag359 00:04:05 [] [] Tag356 19:16:28
Tag358 00:04:05 Tag359 22:22:05 Tag359 19:16:31

Parameter μ was chosen as the manipulated variable in the second set of
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Table 5.5: Alignment result with σ = 2, μ = −0.1, and δ = −0.4.

AF 1 Time AF 2 Time AF 3 Time
Tag352 00:03:59 Tag350 22:21:20 Tag350 19:16:10
Tag360 00:04:00 Tag351 22:21:25 Tag355 19:16:11
Tag350 00:04:00 Tag352 22:21:28 Tag354 19:16:17
Tag351 00:04:01 Tag353 22:21:34 Tag357 19:16:17
Tag357 00:04:02 Tag354 22:21:38 Tag352 19:16:17
[] [] Tag355 22:21:45 Tag351 19:16:21
[] [] Tag356 22:21:49 Tag358 19:16:24
Tag356 00:04:04 Tag357 22:21:56 Tag353 19:16:26
Tag359 00:04:05 Tag358 22:22:00 Tag356 19:16:28
Tag358 00:04:05 Tag359 22:22:05 Tag359 19:16:31
Tag353 00:04:07 Tag360 22:22:09 Tag360 19:16:33

tests, where the value of σ and δ were fixed to be 2 and -0.4, and μ was set

as -0.1, -0.6, and -1 in each of the three tests. Results are shown in Tables

5.1, 5.4, and 5.5. Comparing the three tables, we can see fewer alarm tags

and more gaps were included in the alignments when the value of mismatch

penalty μ went from -0.1 to -1. This is because a bigger value on μ puts less

penalties on mismatches in the alignments, allowing more alarm tags to be

included even if they do not match the alarms in the corresponding positions

of other aligned sequences.

Table 5.6: Alignment result with σ = 2, μ = −0.6, and δ = −0.8.

AF 1 Time AF 2 Time AF 3 Time
Tag359 00:04:05 Tag359 22:22:05 Tag359 19:16:31

Table 5.7: Alignment result with σ = 2, μ = −0.6, and δ = −0.1.

AF 1 Time AF 2 Time AF 3 Time
Tag360 00:04:00 Tag350 22:21:20 Tag350 19:16:10
Tag350 00:04:00 Tag351 22:21:25 Tag355 19:16:11
Tag351 00:04:01 Tag352 22:21:28 Tag354 19:16:17
[] [] Tag353 22:21:34 [] []
[] [] Tag354 22:21:38 Tag357 19:16:17
[] [] Tag355 22:21:45 [] []
[] [] Tag356 22:21:49 [] []
Tag357 00:04:02 Tag357 22:21:56 Tag352 19:16:17
Tag356 00:04:04 Tag358 22:22:00 Tag351 19:16:21
[] [] [] [] Tag358 19:16:24
[] [] [] [] Tag353 19:16:26
Tag359 00:04:05 [] [] Tag356 19:16:28
Tag358 00:04:05 Tag359 22:22:05 Tag359 19:16:31

Based on a similar procedure, the third set of tests was carried out with

σ and μ fixed at 2 and -0.6, and the manipulated variable δ set as -0.1, -

0.4, and -0.8, respectively. The alignment results are shown in Tables 5.1,

5.6, and 5.7. We can notice the manipulation of parameter δ has brought
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more drastic changes to the alignments, compared to the first two sets of

tests, where parameters σ and μ were changed. The explanation for this

phenomenon is that decreasing δ put bigger penalties on the gaps, which were

critical to extending the length of the alignment. If there are gaps in the

middle of an alignment, by increasing the gap penalty (decreasing the value

of δ) the alignment may be broken in half or into several segments. The effect

of changing gap penalty, however, can be minimum if an alignment does not

require any gaps.

5.2.2 An Extended Accuracy Test for the Online Pat-
tern Matching Algorithm with Respect to the
Variance of the Gaussian Function σ

The same dataset from the industrial case study in Chapter 3 was used in

the extended accuracy test. Most of the test procedures for false and missed

detection rates stayed the same, except more prediction threshold values α

were considered and the variance of the Gaussian function σ was set as a

manipulated variable. By changing the value of σ during the tests, insights

were revealed on the effect of parameters.

Table 5.8: Results of the extended accuracy test.

α
σ = 2 (default) σ = 0.5 σ = 8
FDR (%) MDR (%) FDR (%) MDR (%) FDR MDR

0.5 17.2 0 15.7 0 18.8 0
1 10.7 0 8.8 0 11.9 0
2 8.5 2.5 7.2 2.5 10.3 0
3 6.6 2.5 5.0 5.0 7.8 2.5
4 3.8 5.0 2.8 5.0 4.7 2.5
5 2.5 32.5 1.9 37.5 3.1 30.0
6 1.6 37.5 1.6 45.0 2.2 32.5
7 1.6 42.5 1.3 52.5 1.6 35.0
8 0 45.0 0 60.0 0 35.0

Table 5.8 shows the extended accuracy test results for the online pattern

matching algorithm proposed in Chapter 3. Both the false detection rate

(FDR) and the missed detection rate (MDR) are listed for different values

of the prediction threshold α and the variance of Gaussian function σ. The

table reveals clearly a trade-off between the missed and false detection rates
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while changing the prediction threshold. What the results also revealed is the

influence of σ on the detection rates: FDR increases and MDR decreases when

σ gets larger and vice versa. The data in Table 5.8 is visualized using ROC

curves, shown in Figure 5.1.

Figure 5.1: ROC curves of the data in Table 5.8.

5.2.3 Discussions on Parameter Selection and Tuning

Parameter selection and tuning can be a tough task for the proposed pattern

mining and matching algorithms. As discussed in the previous chapters, the

variance of the Gaussian function σ controls the size of the time span within

which the algorithm blurs the occurrence orders between the alarm messages.

When the value of σ increases, the algorithm tends to ignore the order of

alarms in the alignment and simply takes the alarm occurrences into consid-

eration. On the contrary, if σ is small, the algorithm becomes strict at the

appearance order of the alarms. The gap and mismatch penalties, δ and μ,

determine the algorithm’s tolerance to including gaps and mismatch terms in

alignments. When these two parameters become larger, the algorithm is more

tolerant to irrelevant alarms raised within a pattern sequence.
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In practice, the two parameters for the penalties, δ and μ, are normally

selected first based on user’s preferences on the amount of gaps they could

allow in the alignment. Based on our experience from analyzing alarm floods

in chemical plants, μ = −0.6 and δ = −0.4 is a good starting point. By

allowing a medium amount of gaps in the alignment, this set of values could

capture the existence of patterns. When the pattern is confirmed to exist, the

user can gradually increase the penalties (decrease the parameter values) to

reduce the amount of gaps in the alignment in order to get a better view of

the pattern.

Regarding the parameter tuning of σ, its value should be determined by

both the user preference and type of processes. If occurrence orders are not

important to the user or the process operates slowly, the value of σ can be

increased. Based on our experience, σ = 2 is a good starting point for oil

production related processes.

5.3 Causality Analysis for Root-Cause Detec-

tion in Alarm Floods

In this section, basics of Granger causality, conditional Granger causality, and

frequency domain conditional Granger causality are reviewed. Datasets from

two consoles in an operating utility plant are used in industrial case studies,

where frequency domain conditional Granger causality is applied to investigate

the root causes.

5.3.1 Basics of Granger Causality

Granger causality was first proposed in [35] by C.W.J Granger for investigat-

ing econometric models. It measures the causality by calculating the residue

variances from the autoregressive models with and without the signals. If a

causal relation exists, the autoregressive model with the corresponding signals

should provide better predictions, namely, smaller residue variances.
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Pairwise Granger Causality

Consider a pair of process signals Xt and Yt, with autoregressive representa-

tions
Xt =

∑∞
j=1 a1jXt−j + ε1t, var(ε1t) = Σ1

Yt =
∑∞

j=1 d1jYt−j + η1t, var(η1t) = Γ1,
(5.1)

where ε1t and η1t are noise terms. Jointly, the two signals can be described as

Xt =
∑∞

j=1 a2jXt−j +
∑∞

j=1 b2jYt−j + ε2t

Yt =
∑∞

j=1 c2jXt−j +
∑∞

j=1 d2jYt−j + η2t,
(5.2)

where ε2t and η2t, representing the noise terms, have a covariance matrix

Σ =

(
Σ2 Υ2

Υ2 Γ2

)
. (5.3)

The entries in the covariance matrix Σ are defined as Γ2 = var(η2t), Σ2 =

var(ε2t), and Υ2 = cov(ε2t, η2t). Based on the variances in Equations (5.1) and

(5.3), three metrics were proposed in [35] as

FX,Y = ln
Σ1Γ1

|Σ| (5.4)

FY→X = ln
Σ1

Σ2

(5.5)

FX→Y = ln
Γ1

Γ2

. (5.6)

FX,Y represents the total interdependency between Xt and Yt. If FX,Y = 0, Xt

and Yt are independent; otherwise FX,Y > 0. FX→Y and FY→X captures the

causality from Xt to Yt and from Yt to Xt, respectively. A causality influence

exists when FX→Y > 0 or FY→X > 0. If FX→Y = 0, there is no causality from

Xt to Yt; similarly, if FY→X = 0, there is no causality from Yt to Xt.

Conditional Granger Causality

The pairwise Granger causality described in the previous subsection can only

detect the causality and its direction. However, it cannot identify if the causal-

ity is direct or indirect. For example, in Figure 5.2, the causality from signal

Xt to Yt can be induced directly from Xt to Yt, it can also be induced via an

intermediate signal Zt.
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Figure 5.2: An example of direct and indirect causality.

A conditional Granger causality was introduced in [35] to distinguish whether

the causality between two time series is direct or intermediated by another sig-

nal. Here we describe the method using a case of tri-variate time series, it can

easily be extended to cases with more variables. Consider three process signals

Xt, Yt, and Zt. The joint autoregressive model of Xt and Zt can be presented

as
Xt =

∑∞
j=1 a3jXt−j +

∑∞
j=1 b3jZt−j + ε3t

Zt =
∑∞

j=1 c3jXt−j +
∑∞

j=1 d3jZt−j + γ3t,
(5.7)

where the noise terms ε3t and γ3t have a covariance matrix

Σ3 =

(
Σ3 Υ3

Υ3 Γ3

)
. (5.8)

The entries in the covariance matrix Σ3 are defined as Γ3 = var(γ3t), Σ3 =

var(ε3t), and Υ3 = cov(ε3t, γ3t). The autoregressive model for the three signals

Xt, Yt, and Zt is defined in

Xt =
∑∞

j=1 a4jXt−j +
∑∞

j=1 b4jYt−j +
∑∞

j=1 c4jZt−j + ε4t

Yt =
∑∞

j=1 d4jXt−j +
∑∞

j=1 e4jYt−j +
∑∞

j=1 g4jZt−j + η4t

Zt =
∑∞

j=1 u4jXt−j +
∑∞

j=1 v4jYt−j +
∑∞

j=1 w4jZt−j + γ4t,

(5.9)

of which the covariance matrix of ε4t, η4t, and γ4t is

Σ4 =

⎛
⎝Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

⎞
⎠ . (5.10)

Based on the covariance matrices in Equations (5.8) and (5.10), the Granger

causality from Yt to Xt conditioned on Zt can be measured by the metric

FY→X|Z = ln
Σ3

Σxx

. (5.11)
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If FY→X|Z > 0, it means there is direct causality from signal Yt to Xt; on

the contrary, if FY→X|Z = 0, there is no direct causality from Yt to Xt. The

interpretation of the metric is very clear. When Yt does not cause Xt directly,

b4j are all zeros in Equation (5.9), which leads to Σ3 = Σxx and FY→X|Z = 0.

On the other hand, if there is direct causality from Yt to Xt, b4j are not all

zeros and the autoregressive model for Xt in Equation (5.9) is a better fit of

signals Xt, Yt, and Zt compared to the one in Equation (5.7); thus, Σ3 > Σxx

and FY→X|Z > 0.

Frequency Domain Conditional Granger Causality

The derivation of frequency domain conditional Granger causality involves

a transformation procedure introduced by [33] for the purpose of frequency

decomposition and is very tedious. The full derivation can be found in [23];

we will not repeat it in this thesis. What is worth pointing out, equality exists

relating the spectral and time domain measurements as

FY→X|Z =
1

2π

∫ π

−π

fY→X|Z(w)dw (5.12)

under general conditions. As pointed out in [23], “this certainly holds true on

purely theoretical grounds, and it may very well be true for simple mathemat-

ical systems. For actual physical data, however, this condition may be very

hard to satisfy due to practical estimation errors.”

One advantage of spectral Granger causality over time domain is that the

result of frequency domain Granger causality shows the amount of causality

from one signal to the other across the whole frequency space, which can be

useful for determining the frequency band of signals that are interdependent.

5.3.2 Industrial Case Study

The frequency domain Granger causality analysis has been applied on datasets

from a real utility plant. Two alarm floods from the two consoles in the utility

plant have been selected for application.

Application on the first console

Figure 5.3 shows the two alarm burst plots from the first console. The blue line

shows the original alarm rate of the panel, the red line is the alarm rate with 60
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sec off-delay timers uniformly applied on all the tags, and the horizontal black

line is the alarm flood threshold suggested by the ISA standard (10 alarms per

10 min per operator). By comparing the blue and red lines in the figure we

can notice chattering alarms contributed a large amount to the alarm floods

in the first console. Moreover, even with off-delay timers, there is still a big

spike on the alarm burst plot around 8:00PM. The corresponding alarm flood

occurred during this period was extracted and studied in this example.

Figure 5.3: Comparison of alarm burst plots with and without off-delay timers
for the first console.

Alarm tags that were of high and emergency priorities raised during the

alarm flood are listed in Table 5.9. The alarm tags that were associated with

process variables have been highlighted in bold fonts. One-day data of the

corresponding four process variables were searched and obtained by typing

the alarm tag names into the DCS server. For convenience, we name the four

process variables after their corresponding alarm tag names. Table 5.10 shows

an example of a part of the extracted process data. It is easy to notice the

sampling times of the process data are not synchronized, as Tag9 started at

00:01:04 but Tag18 started at 00:01:01. The second problem is the changing

sampling time. The highlighted time stamps for the last two samples of Tag9

have 10 sec intervals in between, different from the 5 sec sampling time. These

two data problems are very common when the data is extracted from a DCS

server. Due to the two problems, a data padding procedure was applied to

up-sample the data to a sampling time of 1 sec based on a zero-order hold
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(ZOH) operation. Then, frequency domain Granger causality analysis was

applied on the four processed variables and the results are shown in Figure

5.4.

Table 5.9: High and emergency priority alarms raised during the alarm flood
from the first console.

Alarm tag Priority
Tag1.OFFNRM EMERGENCY
Tag2.OFFNRM EMERGENCY
Tag3.OFFNRM EMERGENCY
Tag4.UNCMD EMERGENCY
Tag5.OFFNRM HIGH
Tag6.OFFNRM HIGH
Tag7.ALARM HIGH
Tag8.OFFNRM HIGH
Tag9.PVHIGH HIGH
Tag10.PVLOLO HIGH
Tag11.OFFNRM HIGH
Tag12.OFFNRM HIGH
Tag13.OFFNRM HIGH
Tag14.OFFNRM HIGH
Tag15.PVLOW HIGH
Tag17.OFFNRM HIGH
Tag18.PVHIGH HIGH
Tag19.OFFNRM HIGH
Tag20.OFFNRM HIGH
Tag21.OFFNRM HIGH
Tag22.OFFNRM HIGH
Tag23.OFFNRM HIGH
Tag24.OFFNRM HIGH
Tag25.OFFNRM HIGH

Table 5.10: An example of a part of the extract process data.

Time Tag9.PVHIGH Time Tag18.PVHIGH
00:01:04 -26.03682327 00:01:01 615.0713501
00:01:09 -26.03117371 00:01:06 614.9962158
00:01:14 -26.04812431 00:01:11 614.8083496
00:01:19 -26.03682327 00:01:16 614.977417
00:01:24 -26.03682327 00:01:21 614.8646851
00:01:29 -26.02552223 00:01:26 614.9586182
00:01:34 -26.02552223 00:01:31 615.0337524
00:01:39 -26.01987267 00:01:36 614.9962158
00:01:49 -26.01987267 00:01:41 614.8459473

The horizontal axis in Figure 5.4 shows the cause tags, on the vertical axis

are the effect tags. If there is a big spike on the corresponding sub-figure, say

the sub-figure from Tag15 to Tag10, there is a causality from Tag15 to Tag10.

Notice the values in the vertical axis of the sub-figures are percentages, i.e.,

the real values can be obtained by multiplying 0.01. By setting a uniform

threshold of 1% on the frequency domain causality measurements, Figure 5.4

can be converted to a causal map in Figure 5.5.
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Figure 5.4: Result of frequency domain Granger causality for the first console.

Figure 5.5: Causal map of the four extracted process variables in the first
console.

In Figure 5.5, the black arrows represent cause and effect directions and

the red line represents a bi-directional causality. Descriptions are provided

alongside every tag. As shown in the figure, Tag9 and Tag18, which are the

condenser value and the 900# pressure value, are both the causes of Tag10,
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the bus voltage value. Since there is a red line between Tag10 and Tag15,

they are both the cause and effect tags of each other. Based on the causal

map, the relations between the tags are very clear, and this information can

be very useful in root cause analysis.

Figure 5.6: Diagram of the steam turbine generator process.

To confirm the causal map, two process diagrams from the plant manual

are used, shown in Figure 5.6 and Figure 5.7. Figure 5.6 describes a steam

turbine generator (STG) process, where the high-pressure steam goes in from

the left side of the turbine. When the steam passes through the turbine it

drives the rotors, which are connected to the generator; the spinning of the

rotors in the generator generates power, consisting of voltage and frequency.

Thus, the causality direction is steam pressure → spinning of the turbine →
voltage and frequency. In Figure 5.6, there is also a condenser taking in the

extra steam and cool it down. Since the flow in the condenser is related to the

high-pressure steam, it explains why Tag9 is the drive of Tag10 and Tag15.

The left-hand side of the causal map is confirmed.
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The right-hand side of the causal map can be confirmed in Figure 5.7,

which shows the pressure line connections around the steam turbine generator.

Notice the 900# pressure line is the input of the STG process. Thus, 900#

pressure value (Tag18) can be confirmed to be the drive of the Tag10.

Figure 5.7: Diagram of pressure lines in the first console.

The root cause of this alarm flood was suspected to be a turbine lock-out

trip. A series of high pressure alarms were raised because the turbine lock-

out permissive blocked the path of the high pressure steam. Also, due to the

turbine lock-out, the rotors in the generator stopped and alarms were raised

for low bus voltage and frequencies.

Application on the second console

Similar to the causality analysis application procedure for the first console, two

alarm burst plots for the alarm rate of the second console with and without 60

sec off-delay timers were generated, shown in Figure 5.8. The horizontal black

line is the alarm flood threshold suggested by the ISA standard, 10 alarms per

10 min per operator. We can notice chattering alarms contributed a lot to the

alarm floods in the second console by comparing the blue and red lines in the
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figure. The alarm flood occurred during the time period of the spike on the

red line was studied.

Figure 5.8: Comparison of alarm burst plots with and without off-delay timers
for the second console.

Table 5.11: High and emergency priority alarms raised during the alarm flood
from the second console.

Alarm tag Priority
TagA.PVHIGH EMERGENCY
TagB.OFFNRM EMERGENCY
TagC.OFFNRM EMERGENCY
TagD.PVLOW HIGH
TagE.OFFNRM HIGH
TagF.PVLOW HIGH
TagG.OFFNRM HIGH
TagH.OFFNRM HIGH
TagI.PVLOW HIGH
TagJ.UNCMD HIGH
TagK.UNCMD HIGH
TagL.ALARM HIGH
TagM.UNCMD HIGH
TagN.PVLO HIGH
TagO.OFFNRM HIGH
TagP.ALARM HIGH
TagQ.OFFNRM HIGH
TagR.OFFNRM HIGH
TagS.OFFNRM HIGH

Alarm tags that were of high and emergency priorities raised during the

alarm flood are listed in Table 5.11. The five alarm tags that were associated

with process variables have been highlighted in bold fonts. One day data of

the corresponding five process variables were extracted from the DCS server

and named after their corresponding alarm tags. The extracted process data

were up-sampled to 1 sec using a ZOH filter because of the two data prob-

lems mentioned in the previous subsection. Then, frequency domain Granger
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causality was applied on the five processed variables and the results are shown

in Figure 5.9.

Figure 5.9: Result of frequency domain Granger causality for the second con-
sole.

The horizontal and vertical axis in Figure 5.9 shows the cause and effect

tags, respectively. The values in the vertical axis of the sub-figures are per-

centages, i.e., the real values can be obtained by multiplying 0.01. By setting

a uniform threshold of 3% on the frequency domain causality measurements,

Figure 5.9 can be converted to a causal map in Figure 5.10.

Figure 5.10 shows a serious of causal relations: TagA → TagI → TagD

→ TagF → TagN and one parallel relation TagI → TagF. These relations

between the tags in the causal map can be used in root cause analysis.

The alarm flood occurred in a CO boiler process. Figure 5.11 shows a typ-

ical CO boiler process diagram, where the burner takes in the gas and oxygen

to heat up the fluid. This explains the causal relations between TagI, TagD,

TagF, and TagN. The circulate flow controller (TagI) determines the amount

of gas and oxygen fed into the burner (TagD), and the fan controller (TagF)

takes the signals from both circulate flow and flue gas oxygen controllers. The

burner pressure (TagN), as the result of the reaction, is at the bottom.

Figure 5.12 was found in the process manual for the downstream process.

As the input of the process, the boiler feed water passes through a series of
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Figure 5.10: Causal map of the five extracted process variables in the second
console.

desuperheaters and is eventually supplied to skid heat exchangers in other

plants. This confirms why the feed water controller (TagA) is on top of the

causal map in Figure 5.10; it controls the amount of water to be boiled in the

boiler process by controlling the circulate flow in the boiler.

Figure 5.11: Diagram of a typical CO boiler process.
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Figure 5.12: Diagram of desuperheater process.

The root cause of this alarm flood was suspected to be a circulate flow

pump trip. Because of the pump trip, a series of alarms were raised for the

fans and air flows in the boiler. Eventually, the insufficient amount of oxygen

and gas lead to burner trips.

5.4 Summary

In this chapter, robustness and accuracy tests were carried out for the pattern

mining and pattern matching algorithms proposed in previous chapters. The

influence of the parameters were discussed and a guideline for selecting the

parameters was given. In addition, applications of causality analysis for the

root cause detection of alarm floods have been conducted on a dataset from a

real utility plant. Results show the causal map generated from the causality

analysis can provide valuable information for root cause analysis of alarm

floods.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The purpose of the work reported in this thesis is to develop data-driven

techniques for industrial alarm flood analysis. The outcomes of the studies in

this thesis are summarized as follows:

1. An algorithm to find the optimal alignment of multiple alarm flood se-

quences and obtained a common pattern of them thereafter is proposed.

The algorithm is an extension of the algorithm in [18] to the case of

multiple sequences. It makes up one of the missing steps in alarm flood

analysis. A lot of analysis and management such as root cause analy-

sis, dynamic alarm suppression, and analysis on potential problems in

alarm systems can be carried out based on the results of this proposed

algorithm.

2. An algorithm for online pattern matching and prediction of incoming

alarm floods is proposed. A chattering window filter was introduced to

eliminate chattering alarms online; a sequence window filter, a modi-

fied calculation of the time weight matrix, and an incremental dynamic

programming strategy have been introduced to improve the efficiency of

the algorithm. The computational complexity analysis has shown that

the proposed algorithm is applicable to large scale plants since the com-

putational cost increases linearly with the number of patterns and the

lengths of patterns and the online sequence. Accuracy tests revealed a

trade-off between the missed and false detection rates.
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3. An accelerated multiple sequence alignment algorithm for pattern min-

ing in multiple alarm sequences has been proposed. A progressive multi-

ple sequence alignment mechanism has been introduced to accelerate the

generation of the primitive alignment. Two types of refinement meth-

ods have been developed to improve the primitive alignment. A dataset

from a real chemical plant has been used to test the effectiveness of

the proposed algorithm and compare it with the exhaustive search ap-

proach in [62]. The results show the proposed algorithm has a significant

improvement in efficiency with a small accuracy cost.

4. Parameter tuning and robustness tests of the parameters in pattern min-

ing and pattern matching algorithms are provided. The influence of the

parameters on the algorithms are discussed and a guideline for selecting

the parameters is given. In addition, applications of causality analysis

for the root cause detection of alarm floods are conducted on a dataset

from a real utility plant. Results show the causal map generated from

the causality analysis can provide valuable information for root cause

analysis of alarm floods.

6.2 Future Work

Alarm management is a relatively new research area in academia. Alarm

flood analysis, as one of the tools in alarm management and rationalization

framework, imposes a big challenge because of the severe outcome if not man-

aged properly. This thesis provides a guideline for alarm flood analysis, which

include: univariate alarm analysis, pattern mining of alarm floods, online pat-

tern matching of alarm floods, and causality analysis for root cause detection

in alarm floods. However, there still remain opportunities for further explo-

ration and improvements. The following promising directions deserve efforts

for future work.

Offline Analysis of Alarm Floods

There are four tasks in offline analysis of alarm floods: targeting important

alarm floods (classification and pattern mining), problem localization (root

cause analysis), preventing alarm floods from happening again (alarm system

rationalization), and finding proper actions against alarm floods (operator

102



action and workflow mining). The pattern mining methods proposed in this

thesis focus on the first task, targeting important alarm floods. The proposed

methods are very effective in finding the alarm floods occurred repeatedly in

the process. The methods, however, are unable to locate an important alarm

flood if it only happened once in the given dataset. To overcome this issue,

methods that take operator actions and alarm priorities into account are worth

study. In terms of root cause detection, causality analysis can be an effective

tool, as shown in the thesis. But in practice, a process may switch between

multiple modes and each mode may come with its unique causal map. Thus,

it is important to include operating mode information into causality analysis.

Alarm system rationalization for alarm floods can be divided into: univariate

alarm analysis and consequence (multivariate) alarm analysis. The output

(alarm flood patterns) of the proposed pattern mining methods can be used

as a valuable information for consequence alarm analysis. Causality analysis

and correlation analysis can be studied to rationalize consequence alarms more

efficiently. For the last task, to come up with proper actions against an alarm

flood, since alarm data and operator data are greatly related, methods that

consider both alarm events and operator actions are worth developing.

Online Management of Alarm Floods

Three types of methods can be valuable for online management of alarm floods:

the methods that can predict the whole or part of alarm floods, the methods

that can accurately suppress alarms of low criticality, and the methods that

can provide tips to the operators in addressing the alarm floods. The online

alarm flood pattern matching algorithm proposed in this thesis falls into the

first type of methods. The causal map generated in causality analysis has

potentials to be used in the alarm flood prediction as well. Operator action

analysis and alarm criticality ranking algorithms are worth study to provide

accurate alarm shelving (suppression) during alarm floods. For the last type

of methods, in order to provide tips to the operators during alarm floods,

process and workflow mining can be helpful to study the actions performed

by super operators and convert them into tips.
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Implementation of Alarm Management Techniques

Computational speed is important for improving user experience. However,

for techniques such as causality analysis, it is not very realistic to develop

new methods that can improve the computational efficiency by a great deal.

Cluster computing techniques and frameworks targeted at dealing with large

scale datasets can be incorporated into the existing methods to improve their

computation speed drastically. Another popular technique that evolves fast

nowadays is cloud computing. Rather than installing the toolbox or software

on a personal computer, cloud computing uses remote servers hosted on the

Internet to store and process data. The advantage of cloud computing is the

ability to reduce the requirements of installing and using the toolbox, such as

operating system and software requirements, providing better user experience.

In addition, due to the variety of DCS models, a lot of formats exist for alarm,

process, and operator action data. Moreover, sometimes a DCS server may

record errors (e.g., wrong characters) into the database. Algorithms need to be

developed to load data robustly from DCS database. Another important issue

is how to integrate the online methods into operating industrial processes. In

this case, DCS programming and friendly HMI design may be necessary.
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