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ABSTRACT

This thesis is concerned with populations diffusion through annular patchy
environments. Firstly, perfect annular patchy environments are considered. The
global stability of a unique positive radially symmetric steady state is obtained.
Secondly, the models with periodically changing annular patchy environment are
investigated, a threshold condition is obtained that population either goes to ex-
tinction or evolutes to a unique periodic solution. Thirdly, various annular patchy

environments are analizied. Finally some numeric explanations are appended.
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Chapter 1

INTRODUCTION

§ 1.1 What’s a Patchy Environment?

Differential equations have been employed in the analysis of biological mod-
els for decades. At the early stages, mainly ordinary diﬁ:erentia.l equations were
used to analyze ecological models, e.g. the Volterra system describing fish ecol-
ogy in the Mediteranean Sea, etc. ([F] and references therein). In these kinds
of models, populations were assumed to be distributed homogeneously over the
entire environment and the environment therefore was homogeneous. However,
in a natural setting, neither the carrying capacity of the environment nor the
spatial distribution of the population is constant. The spatial effects quite often
need to be considered[AC], for example, in a model of various species growth and
diffusion in a forest area with changing carrying capacities caused by changing
soil conditions, elevations, and foliage cover, etc. In order to study the effect of
environmental heterogeneity on the habitat, [PR] and [SR] suggested an efficient
method to divide the habitat into homogeneous patches where the growth and
diffusion coefficients for the several species may be different in different patches,
but in each patch, the growth rate and diffusion coefficient is constant. This case
can be modeled by a system of partial differential equations or ordinary differential
equations with interface conditions between patches([AC],[CC1-9],[CCH],[CF] and
[FK], etc). In some situations, the environment is viewed as a collection of discrete
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patches and within each patch the population is distributed homogeneously. This
case is described by a system of ordinary differential equations where each equa-
tion describes the population in a single patch. These equations then are coupled
through noflux interface conditions of population immigration between patches(

[FST], [FT], [FWu], [T1-3], [TL], [TOM] and references therein).

Here we mainly discuss population diffusion in a patchy environment such
that within each patch the population diffuses at same rate. The main mathemat-
ical tools in this aspect are the theory of eigen-problems of PDEs, semigroups, and
monotone dynamical systems. By skillfully exploiting the techniques of the eigen-
value problem of the elliptic equation, [AC] and [CCx] studied various aspects of
models of populations in patchy environments, including persistence, permanence,
effects of environmental size and asymptotic behavior, etc. The global stability
of the steady state was also discussed by making use of semigroup techniques in

Some excellent applications of diffusion in patchy environments were con-
ducted by [FF] and [LLC], where growths of organism tissues and cancers in
different oxygen media can be controlled to a certain scale or to extinction by
changing the carrying capacity of a particular part of the oxygen medium which

forms a specific patch.

§ 1.2 Models and Results

The models we will consider are concerned with population diffusion through

2
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various kinds of annular patchy environments, such as perfect annular patchy envi-
ronment and radially changing environments with holes or without holes, general
annular patchy environments with holes or without holes. The environment may
be constantly or periodically changing. We list the models and main results in the
following.

(A) Population Diffusion Through a Perfect Annular Patchy En-
vironment

In this case, the patchy environment consists of perfect annular patches with
each except the last surrounded by an outer one.

We denote the patches by

U ={zeR||z]<n}

Q={zeR|rim1<|z|<mr}, i1=2,3,---,n;

where ); is the i-th patch respectively and 0 < r; < r; < --- < r, are constants.
Population diffusion through patchy environment(A) is modeled by a system

of parabolic equation,

Ou;
7;;— =d;Au; +uigi(ui), z€Q;,1=1,2,---,n (A.1)

with continuous flux matching conditions

uilr:r.- = ui+1|r=r.-
8ui 6u,~+1
di -a—— = di.{..] (.‘Xg)
ni r=r; ani T=T}
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Patchy Environment (A)

Figure - 1
where u; = u;(z,t), t > 0, z € §2; denotes the population in patch Q;, d; > 0 is the
diffusive coefficient of population in patch Q;, 7 = 12,--- ,n; n; is the unit outer
norm from ; to ;41,7 =1,2,--- ;n—1, A is the Lapalacian, and g; satisfies the

Kolmogorov assumption(F],
gi(0) >0
gi(s) <0 for s>0

gi(K;)=0 for some K;>0. (A.3)



K is the capacity of the population in ;,:=1,2,--- ,n.

We assume that the boundary condition is of the form
= K, (A4)
and the initial condition is given by

ui(z,0) = ni(z) >0, z € Q. (A.5)

We write (A.1)-(A.2) in a concise form

Ou
5 = dAu + ug(u) (A.6)

with u(z,t) = ui(z,t), d(z,t) = di, g(u(z,t)) = gi(ui(z,t)) for z € Q; and t > 0.
and u satisfies (A.2). Throughout this, whenever we consider system (A.6), the
matching condition (A.2) is automatically implied. This is why we call (A.6)
a patchy parabolic equation. For the same reason, we can have patchy elliptic
equations. For convenience, we write u = (u1,u2,--* ,un), 7= (M1,02," "+ ,Nn)-

The main result for this case is that there exists a unique positive radially
symmetric steady state of (A.1)-(A.2) and (A.4), which is globally attractive for
those solutions of (A.1)-(A.2) and (A.4)-(A.5) with radially symmetric initial data
n. Further, under certain conditions, it is globally attractive for all solutions with
positive initial data . Here a steady state solution of (A.1)-(A.2) and (A.4) is a
solution of a system of elliptic equations

Av; +vigi(vi)=0,z€Q;,t>0,1=1,2,--- ,n (A7)

b
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with matching conditions

Vilpmr; = Vittlmr
8v,- 6v,-+1
di 5 = dit1 3
ni r=r; ng r=r;
and boundary conditions
Vnler, = Ka

We can also write (A.7)-(A.8) in a patchy elliptic form

Av +vg(v) =0

where v = (v1,v2,--* ,Vn).

(A.8)

(A.9)

(A.10)

An example of patchy environment (A) is the polluted area surrounding an

industrial chimney with the pollution changing dramatically with distance.

(Ao) Population Diffusion in a Radially Varying Environment

The model considered in this part is the continuous version of (A). We con-

sider population diffusion in Q = {z € R? | |z| < Ro}, Ro > 0 is a constant. This

model can be described by a parabolic equation

Ju
= = V(d(r)7u) +ug(u,7)

where z € Q, r = |z| and g satisfies the Kolmogorov assumptions|F],

g(0,r) >0

gu(s,7) <0 for s2>0.

6
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There exists a positive continuous function K(r) such that
g(K(r),r) =0

where 0 < r < Ry.

The boundary condition is assumed to be of the form

ul,_g, = K(Ro), (40.3)

and the initial condition is
u(z,0) =n(z), €. (Ao.4)

The main result is similar to that in (A), i.e. there exists a unique positive ra-
dially symmetric steady state which is globally attractive for those solutions of
(Ag.1), (Ag-3) and (Ag.4) with radially symmetric initial data, and under certain
conditions, it is globally attractive for all solutions with positive initial data 7.

A steady state solution of (Ag.1) and (Ag.3) is a solution of the corresponding
elliptic equation

v (d(r)Vv) + vg(v,r) =0 (Ag.3)

with boundary condition

ol e gy = K(Ro) (4o.6)

An example of a patchy environment (Ag) is a polluted lake surrounded by chem-

ical factories.

~1
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Patchy Environment (B)

Figure - 2

(B) Population Diffusion Through a Perfectly Annular Patchy En-

vironment With a Hole
This patchy environment is the patchy environment (A) with a hole inside.

where patch iis @; = {z € R?|ri_1 < |z <rm},i=1,2,--- ,n; 0 < rpg <

ry < --- < rp are constants.

Except for the boundary conditions, the model assumptions are the same as

8



those in (A), i.e.

Oui _

3 dilAu; + uigi(ui), z€Q;,i=12,---,n (B.1)

with continuous flux matching conditions

"i|r=r,- = ui+llr=r,-
d; g%:} = 6‘5:‘ . i=1,2--- ,n~1 (B.2)
the initial condition is
ui(z,0) =ni(z), 2 € Q4,1 =1,2,--- | n (B.3)
and the boundary conditions are
ul[,:,_0 = K;
Unlo—y, = Kn. (B.4)

The main result is same as that in (A), and so we don’t repeat it here, but
the precise statement will be given later. A steady state solution of (B.1)-(B.2)

and (B.4) is a solution of the corresponding elliptic equations

diA‘Ui + 'Uigi(vi) = 01 1= 1:?" ERRERL (B5)

with matching conditions

vilr:r.' = vi+1|r=r;
a‘U,' avi+1
di z— =d; .6)
ani r=r i On; r=r; (B 6)
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and boundary conditions

vllr:ro = K]_

=K (B.7)

vnlr:rn - n-

In (A), we wrote (A.1)-(A.2) in a concise form (A.6) by defining u(r.t) =
ui(z,t), d(z,t) = di, g(u(z,t)) = gi(ui(z,t)) for z € Q; and ¢t > 0, where u satisfies
(A.2). In the same manner, we can give the concise form of (B.1)-(B.4) and (B.3)-
(B.7), they are a patchy parabolic equation and a patchy elliptic equation.

An example of a patchy environment (B) is a polluted area surrounding a

huge industrial chimney.

(Bo) Population Diffusion in a Radially Varying Environment With
Hole

(Bo) compared to (B) is the same as (Ag) compared to (A). We consider
population diffusion in Q = {z € R?|rg < |z] < Rop}, where 0 < ry < R are

constants. This population can be described by

%;f = V- (d(r)Vu) + ug(u,r) (Bo-1)

where z € Q, r = |z]|, g is the same as that in (A4¢.2). The boundary conditions

are

ulr__:ro = K(T‘o)

ul,— g, = K(Ro) (Bo.2)

10
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and the initial condition is
u(z,0) =n(z), z €. (Bqg.3)

A steady state solution of (By.1) — (By.2) is a solution of the corresponding

elliptic equation

d(r)Av + vg(v,r) =0 (Bo.4)
ey = K(ro)
Wy = K(Ra). (Bo-5)

The same conclusions as those in (4g) can be obtained, and they will be

precisely stated later.

(C) Population Diffusion Through a General Annular Patchy En-
vironment

In this situation, the patchy environment consists of annular patches which
can have holes inside and which may not be perfectly annular.

Patch i, denoted by Q;,7 = 1,2,--- ,n, is an annular patch which can have
holes inside of it. Except for the boundary conditions, we adopt the equations of

model (A), i.e.

Ou;
%:diaui+uigi(ui), z€Q,i=1,2,,n (C.1)

with matching conditions

Ui |ﬁ.‘n§;+1 = Uit I§¢ﬁ§;+1
6ui 6u,-+1

di Tl - = dig1
LB ke ptato O

1=1,2,--- \n—-1 (C.2)
ani 5,—nﬁ;+1

11



Patchy Environment (C)

Figure - 3

and initial conditions
ui(z,0) =ni(z) >0, ze€Q,i=1,2,---,n (C.3)
The boundary condition is assumed to be of Dirichlet type, i.e.
ulaq =0 (C.4)

where Q = U, Q;, u = (u1.uz, -+ ,un) is the concise form rather than a vector.
The main result is that there exists a switch condition giving that either 0

12



is globally stable or there exists a positive steady state which is globally asymp-
totic stable. A steady state solution of (C.1)-(C.2) and (C.4) is a solution of the

corresponding patchy elliptic equation,
d;iAvi +vigi(v;)) =0, z€Q,1=1,2,---,n (C.5)
with matching conditions

Vi lﬁ;nﬁﬂ.; = vi+1|§;ﬁ§.‘+1

Ov; Ov;
d; 2 =d;y, 2ol i=1,2-,n—1 (C.6)
ani s_z',-n—,-“ ani ﬁ-inﬁi-i-l
and boundary condition
v{gq =0, (C.7)
where v = (v;,v2,-+- ,Vn) is a concise form.

An example of patchy environment (C) is a polluted lake containing many

islands inside.

(Co) population Diffusion Through General Periodically Changing
Annular Patchy Environments
We asume the patchy environment (C) is valid here, i.e. the model is basically

generalized from model (C),

du; :
—b—ut— = diAUi +uigi(uiyt)7 T € in = 112’“ AL (Col)

with matching conditions

uilﬁ;ﬁﬁi“ = ui’(‘l!ﬁ;ﬁﬁ.‘.{.].

d; Oui = diy1 Ouity

n: |l= = R .
0 LR g (YIS an‘ Q:iNQigy (Co.'))

13
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and boundary condition

the initial condition is

ui(:L‘, 0) = nt(z) > O: zE Qix 1= 1727 R (] (C04)

where g; is a T-periodic function for some positive constant T', and gi(-, t) satisfies
the Kolmogorov assumption, i.e. there exists a positive continuous T-periodic
function K;(t) on [0, T], which is the carrying capacity in §; at time ¢, ¢t € [0,t], 1 =

1,2,--- ,n, such that

gi(t+T) = gi(-,t), VE>O0

gi(0,¢) >0

dgi

37;(51 t) < 0: Vf 2 0

gi(Api(t)at) = 01 te [03 T]1 1= 17 21 TN (C05)

The main result is that there exists a switch condition such that either 0 is globally

stable or there exists a T-periodic solution which is globally asymptotic stable.

14
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Chapter 2

Maximum Principle in Patchy PDEs

Maximum Principles play central roles in the theory of parabolic partial
differential equations. They provide the fundamental tools for establishing the
existence of positively invariant sets, comparisons between solutions of different
parabolic equations and monotonicity of the solution operator. The classic refer-
ence is [PW].

The aim of this chapter is to develop various maximum principles for patchy
partial differential equations. These maximum principles will be useful for obtain-
ing results of the kind just mensioned.We will show that the classical maximum
principles still hold in patchy PDEs. Actually the maximum principles in patchy

PDEs have already been widely used without being proved, such as (4.8) in [FK]

where the boundedness of the solution of a patchy parabolic equation is obtained.
§2.1 Elliptic Cases

Before developing the maximum principles in patchy elliptic equations, we

introduce the classical maximum principles in elliptic equations[PW].

Theorem 2.1.1. Let Q@ C RN be a domain, h(z) < 0 be bounded in Q, d > 0 be
a constant and dAu + h(z)u > 0 in Q. If u attains its nonnegative mazimum M
at a point of 2, then u = M in ). Furthermore if M =0, the restriction on h(z)

can be removed.

The strong version of the maximum principle in elliptic equations is:

15



Theorem 2.1.2. Under the conditions of Theorem 2.1.1, if u attains its nonneg-
ative mazimum M at a boundary point P, assuming P lies on the boundary of a
ball in Q, and u is continuous in QU P, then g% >0 unlessu=M in Q. Herev
15 the unit outer normal at P. Furthermore, if M = 0, the nonnegative restriction

on h(z) can be removed.

Now we consider the patchy elliptic inequality system,

diAu;i +hi(z)u; >0 for z€Q;,i=1,2,..,n

where (Q1,92,...,Q,) could be a patchy environment of type (4), (B) or (C).
di >0 (¢ =1,2,...,n) is constant, hi(z) <0 (i =1,2,...,n) is bounded in Q;,
and u; (¢ = 1,2,...,n) satisfies the matching conditions in (A), (B) or (C). We

can write the system as

dAu+h(z)u >0, z€Q

where d(z) = di(z), h(z) = hi(z) and u(z) = ui(z) for z € Q;, i = 1,2,...,n,

Q=UL, Q.

Theorem 2.1.3. If u attains its nonnegative mazimum M at a point of Q, then
u =M in Q. Furthermore if M = 0, the nonpositive restriction on h(zr) can be
removed.

16



Proof. If u attains M in Q;, then by Theorem 2.1.2, u; = M in ;. Con-
sidering u;4+; in §2;4+1 and u;—; in ©;_;, we have that u;4; and u;_; attain their
maximums on the boundaries of ;+; and Q;_;, and the outer norm derivatives of
u;+; and u;—; will be zero by the matching conditions and u; = M; in ;. Thus
by Theorem 2.1.2, uj4+; = M, u;—; = M. Hence u = M in Q.

If u attains M on Q; N Qir1, ¢ = 1,2,...,n — 1, the outward directional
derivatives of u; in §2; and u;4; in §;4; must be nonnegative. By the matching
conditions, both of them must be zero. Hence by Theorem 2.1.2, u; = M, u;y; =
M. Thusu = M.

The strong version of the maximum principle for patchy elliptic PDEs is a

direct corollary of the classical strong maximum principle.

Theorem 2.1.4. If u attains its nonnegative mazimum M at a boundary point
P, assume P lies on the boundary of a ball in Q and u is continuous in QU P.
Then 5;—'; > 0 unless u = M in Q. Here v is the outward unit normal vector at P.

Furthermore if M = 0, the nonpositive restriction on h(z) can be removed.

§2.2 Parabolic Cases

We can develop the maximum principle for patchy parabolic equations in a
manner similar to patchy elliptic equations. Similarly as in the previous section,

we introduce the classical version first in order to compare them [PW].

Theorem 2.2.1. Let @ C RN be a domain, h(z,t) <0 be bounded in Q x [0, T)
for some T > 0, d > 0 is a constant, and —u; + dAu + h(z,t)u > 0 in Q x

17
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[0,T). Suppose u attains a nonnegative mazimum M at an interior point (T,1),
ie. (Z,f) € 2x(0,T]. Denote by E(%) the connected component of the intersection
of the hyperplane t = t with Q x [0, T] which contains (Z,f). Then u = M in E(?).
Furthermore, if Q is a point of E which can be connected to P by a path in Qx[0,T)
consisting only of horizontal segments and upward vertical segments, then u = M

’

at Q. Finally, if M=0, the nonpositive restriction on h(z,t) can be removed.
The strong classical maximum principle for parabolic equations is:

Theorem 2.2.2. Under the assumptions of Theorem 2.2.1, suppose the nonneg-
ative mazimum M is attained at a point P on the boundary O x [0,T]. Assume
that a sphere through P can be constructed whose interior lies entirely in Q x [0, T
and in which u < M. Also suppose that the radial direction from the center of
the sphere to P is not parallel to the t-azis. Then g—'; > 0, where v 1s any out-

ward norm. Furthermore, if M = 0, then nonpositive restriction on h(z,t) can be

removed.

The patchy parabolic system is

_%‘?‘ +didu; +hi(z,t)ui 20, (z,8) € U x[0,T], i=12..n

d; > 0 is a constant, hi(z,t) < 0 is bounded, (Q;,2,..., ) could be a patchy
environment of type (A4), (B) or (C), and u;, i = 1,2, ..., n satisfies the correspond-
ing matching conditions. Similarly to the treatment of the patchy elliptic system,
we write the patchy parabolic system in a compact form

—~u¢ +dAu + h(z,t)u >0, (z,t) e Qx[0,T],

18



LR A,

where d(z) = di(z), h(z.t) = hi(z,t), u(z,t) = ui(z,t), for (z,t) € Q; x [0, T,
i=1,2,...,n,and Q = UL Q;. The following theorems are the maximum principle

and its strong version in patchy parabolic systems. The arguments basically follow

analogously to those in patchy elliptic systems, and so we omit them here.

Theorem 2.2.3. The conclusions of Theorem 2.2.1 hold for the patchy parabolic

system above in 1.

Theorem 2.2.4. The conclusions of Theorem 2.2.2 hold for the patchy parabolic

system above in Q.
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Chapter 3

Population Diffusion Through Perfect Annular Patches

Models (A), (Ao), (B) and (Bg) are analized in this chapter. Section 3.1 -
3.4 are concerned with (A), whereas Section 3.5, 3.6, and 3.7 deal with (Ap), (B)

and (Bjy) respectively.
§3.1 Notations

In Section 3.1 - 3.4, we discuss population diffusion through perfect annular
patches. Model (A), i.e. (A.1) — (A.10) is utilizied. For convenience, we repeat

them here and relabel them as following:

Ou; .
_;T = diAu; + uigi(wi), i=1,2,...n (3.1.1)
matching conditions
uilr:r.- = ui+1|r=r;
au.- an+1
di 3— = d; 3.1.2
On; r=r; s On; r=ry ( )
and boundary condition
Unleyr, = Kn (3.1.3)
and initial condition
u(z,0) = n(z). (3.1.4)

The concise form of (3.1.1) is

us = dAu + ug(u). (3.1.5)
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A solution of (3.1.1) — (3.1.4) in the classical sense is a function u € C(Q™ x
R* R*) such that
(1) the partial derivatives a%u,-, -E%yu,-, 1 =1,2,...,n, k =1,2, of the re-
striction u; of u are continuous on Q; x R,
(i1) the restriction u;, ¢ =1,2,...,n satisfies (3.1.1) — (3.1.4).
The steady state equations of (3.1.1) — (3.1.3) is given by th:e corresponding

elliptic equations

diDv; +vigi(vi) =0, i=1,2,...,n (3.1.6)

with matching conditions

Vil per, = Vit1ler,
d; -gfl—i T dis1 a;;:l . (3.1.7)
and boundary condition
Valp=y, = Kn- (3.1.8)

In Section 3.2, the existence and uniqueness of a positive radially symmetric steady
state solution will be obtained. In Section 3.3, the Cauchy problem for (3.1.1) —
(3.1.4) will be investigated. The global stability of the radially symmetric steady

state is considered in Section 3.4.

§3.2 Positive Radially Symmetric Steady State Solution
Because of the symmetry of the environment, we try for a radially symmet-

ric steady state solution which is the solution of the radially symmetric form of

21



(3.1.6) — (3.1.8),

d; )
divgl(r) + ?‘U:(T) + vi(r)g,-(v,-(r)) = O,T € (ri—I: T'i), 1= 1727 AL
vn(rn) = Kn
vi(ri) = viga(ri)

d,"v;(r,') ='di+1v£+1(r,-), t1=12,...,.n-1 (3.2.1)

Before discussing the radially symmetric steady state solution of (3.2.1), two pre-
liminary lemmas are given concerning the radially symmetric steady state solution
of a parabolic equation in two typical domains ; and €2;, i > 1. The equation is
of the form

us = dAu + h(u) (3.2.2)

where d > 0 is a constant,

ug(u) u>0
h(u) = {

0 otherwise
g(0)>0

g(0)<0 for u>0

g(K)=0 for some K >O0. (3.2.3)

Here d, K, h(u) and g(u) in (3.2.2) — (3.2.3) have slightly different meanings from
those in (3.1.5). In (3.1.5), g(u) is a concise form of all g;,7 = 1,2,--- ,n, more
precisely g(u) = gi(u) for z € Q;. In these two lemmas, we may treat g(u) as
one of the g;(u),7 = 1,2,--- ,n, depending on which patch Q; is considered. We
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also may treat d and K as certain d; and K; in the same way. In the rest of this

section, d, h(u) and g(u) follow the sense given in (3.1.5).

Lemma 3.2.1. In Q;, 1 > 1, there ezists a radial symmetric steady state solution

v(r) of (3.2.2) for the boundary value problem

where K is a constant, and ni_, is the outward normal unit vector from Q;_; to
Q;. Furthermore, if K>Kanda> 0, then v will be strictly increasing; if K <K

and a < 0, then v will be strictly decreasing.

Proof. The existence of a radially symnetric steady state v(r) of (3.2.2) is

implied by the radially symmetric form of (3.2.2) which is a second order ODE
" d !
dv''(r) + v (r} + h(v(r)) =0, r € (ric1, ri). (3.2.4)

The monotonicity of v can be easily derived from the integral form of (3.2.4)

)y = Tzl v _ L [T
v'(r) = —v (ri-1) ~ s - h(v(s))ds
Ti—1Q& 1 T
= —_—— . 2
- ). s - h(u(s))ds (3.2.5)

and the property of g and h, i.e. h(v) > 0 while v < K and A(v) < 0 while v < A

Lemma 3.2.2. In Qq, there ezists a radially symmetric steady state solution v(r)
of (3.2.2) satisfying the central condition v(0) = K, where K > 0 is a constant.
Furthermore if K > K, v is strictly increasing; if K<K,vis strictly decreasing.
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Proof. It is not difficult to see that the precondition v’(0) = 0 must hold for
the existence of a radially symmetric steady state solution v(r) from the radially

symmetric form of (3.2.2)
" d !
dv"(r) + v (r) +h(v(r)) =0,0<r <ry. (3.2.6)
The monotonicity of v(r) is obvious by the integral form of (3.2.6) in
1 T
! = ——— . 9
v'(r) ~ ./c; s - h(v(s))ds (3.2.7)

and the properties of h.
For the existence, we will prove that the radially symmetric steady state
solution is a limit of {v(™} by the Ascoli-Arzela lemma, where v(™) is the radially

symmetric steady state of

dAv™ + h(v(™) =0in Q,, .,

Ulan,,m =K

ov

— et ‘)
ol 0 (3.2.8)

Tgm

where

QRemrl = {(Zay)l T‘?m <z +y*<r
Qrem ={($,y)l $2+y2 <T’3m
TL>Te DTy > =0

The radially symmetric integral form of (3.2.8) is

l r

(m)’ —_
v (r) rd Fem

s - h(v{™(s))ds, Ten, <T <1y (3.2.9)
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In order to use the Ascoli-Arzela Lemma, we only need to check the uniform
boundedness of {v(™}, since then its equi-continuity is implied by the uniform
boundedness which results from (3.2.9).

If K < K, then v™(r) < K by Lemma 3.2.1. By (3.2.9),

1 r2 —r2
< — Sm
rd 2 5 oM<

7\/.[11'1

9d ’r€m<r<r1

. Iv(m)’(r)

where M) = sup,<k |h(v)]| exists by the properties of h. Hence

[0 < o™ e+ [7) = 0™re)

~ Mir
SK+ 21d1r17

rsm <r<r1.

If K > K, then v{™(r) is strictly increasing by Lemma 3.2.1. Since h(0) < 0 and

g(v) < 0 for v > K, we have from (3.2.9),

1 r

(m)' () = _ (m) (m)ygq
W) =g [ s o elgtet s
<—u™(r)g(e™(r), 1o, <r<m
(3.2.10)
Let v(r) be the solution of

/ r1

v(r) = = Do(r)g(u(r))

v(0)=K 0<r<r. (3.2.11)

It is not difficult to compare (3.2.10) to (3.2.11), and we get

(™ (r) < (), Temn ST <11,



Thus in both cases, {v{™)(r)} is uniformly bounded. By the Ascoli-Arzela Lemma,

there exists a uniformly convergent subsequence of {v(™(r)} in [r¢, , r1], say {v('™)(r)}

Similarly there exists a uniformly convergent subsequence of {v(}'™)(r)}S_; in

[req> 1], say {v3™)(r)}_, . Extending this procedure, we get a uniformly conver-
gent subsequence of {v(!=1™)(r)}2_, in [re,,r1], say {o™(r)}2,, [=1,2,---.
It is obvious that {v(™™)(r)}2_, is uniformly convergent in any interval [a, 8] C
(0,r1]. Without loss of generality, we assume {v(™)(r)} is uniformly convergent to
v*(r) in (0,71]. It is easy to see that v*(r) is continuous and bounded in (0,r],
and so we can extend the definition of v* to r = 0. Actually from the construction
of {v(™)(r)}, we have v*(r) = K.

An immediate result of (3.2.9) is that {v(”‘)'(r)} is uniformly convergent in

[a, 8] € (0,71]. Actually (3.2.9) can be written in two parts

' 1 maz{r., r"} 1 r
(™M(r) = —= s - h(v{™(s))ds — = s - h(vI™)(s))ds
rd Tem ' maz{re, r*}

(3.2.12)
where r* < a doesn’t depend on m and is small enough to make the first part as
uniformly small as we want by the uniform boundedness of {v(™)(r)}. The second
part is uniformly convergent to

1 r

=/ h(v*(s))ds

in [@, 8] as m — oc by the uniformly convergence of {v{™(r)} in [r*,r;]. Further-

more by this argument and that

—}%/0 s-h(v*(s))ds
2

6

<

m=1
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could be as small as we want only if r* is small enough, we obtain that the right

side of (3.2.9) uniformly converges to

1 r
~rd J, s - h(v*(s))ds

in [a,8] as m — oo. Therefore {v("‘)l(r)} uniformly converges in [a, 3], and
hence v*(r) is differentiable and v("‘)l(r) — v*'(r) uniformly in [, 8], and (3.2.9)
becomes

v*'(r) = -—r—ld- /Ors - h(v*(s))ds

i.e. v*(r) satisfies (3.2.7) and thus is a radially symmetric steady state solution of
(3.2.2). This finishes the proof of Lemma 3.2.2. O
The next two theorems are concerned with the existence and uniqueness of

the positive radially symmetric steady state solution of (3.2.1).

Theorem3.2.1. (Existence) There ezists a positive radially symmetric steady

state solution of (3.2.1) which is located in [K, K|, where

K= g Uk K= gip (1)

Proof. We assume that the growth function is h;(u;) instead of u;gi(u;) by

u,-g,-(u,—) u; >0
hi(ui) = { (3.2.13)

0 otherwise

defining

This is in case that negative solutions appear. Now consider two special radially
symmetric steady state solutions, one being © = (¥;,72, - ,¥n) With component
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1(r) to be determined by the initial condition %;(0) = K and Lemma 3.2.1,
and component #;(r) to be determined consecutively by #;—;(r), i = 1,2,--- ,n
and Lemma 3.2.2. The other one is v = (y;,u,,-+- ,v,) with initial condition
v;(0) = K, and its components can be determined similarly. It is easy to see
that v,(rn) < K, < Up(rn) by the monotonicity shown in Lemmas 3.2.1 and
3.2.2. By the continuous dependence of solution on initial data (which is valid
since each solution continously depends on the data on the boundary of each patch
consectively), we will get a radially symmetric steady state solution (vy,vq,--- ,v,)
with v, (re) = K and K < v1(0) < K. This solution must be located in [K, K],
since once it leaves this interval, it will never return by the monotonicity in Lemmas

3.2.1 and 3.2.2.

Theorem 3.2.2. ( Uniqueness ) The positive radially symmetric steady state

solution of (3.2.1) is unique.

~
~

= (v1,02, -+ ,Un) are two posi-

-~

Proof. Suppose v = (v1,v2, -+ ,7,) and

<

tive radially symmetric steady state solutions. We basically adopt the technique
in [FK], defining the function w = (w1, ws, - ,w,) on [0, 7] by

divy(r)  divi(r)

= reirioy, vy 1=1,2,---.n.
51’(1') ‘U{(T) ) [l 1 t]y y %y

wi(r) =

If w(ra) = 0, then 3,(rs) = ¥,(rn) since 3a(ra) = Ta(rn) = K». Hence » =7 in
[0, 7] by considering the uniqueness of the solution of (3.2.1) in [e, rn] for arbitrary
€ > 0. If w(ra) # 0, then without loss of generality, we assume w(r,) < 0. Let
r* = SUPp<r<r, {w(r) = 0} which exists since w(0) = 0. It is easy to see that
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5(7‘) > y(r) for r € (r*, rn). We calculate by (3.2.1)

~f
_ ~ 1 v, v
wi(r) = gi(@:) ~ gi(%:) — (- + 2+ %) wi(r).
r Vg Vs

Since w(r*) = 0 and ¥ < 7 in (r*, rn) and g! < 0, we have w(r) > 0 in (r*, rp).

When the carrying capacities are monotone, the radially symmetric steady

state solution is also monotone. This is the content of the next theorem.

Theorem 3.2.3.. When the carrying capacities are decreasing, the positive radi-

ally symmetric steady state solution is decreasing, and vice versa.

Proof. Suppose K1 > K; > --- > Ky, and that (vy,va, - ,v,) is the
positive radially symmetric steady state solution. Because of v/(0) = 0, we can
pick

re =max{r<r,|] v <0 in [0,r]}.

If r. <rp,say re € [ri—1, ri), then v'(r,) = 0. Furthermore, by the monotonicity
in Lemmas 3.2.1 and 3.2.2, v(r,) > K; will result in v(r) > K; for r > r, which
contradicts v(r,) = Kn < Kj;; v(r.) < K; and v'(r.) = 0 will contradict the
definition of r,. Therefore r, = r,, i.e. v must be decreasing. The case K; <
K,; < --- < K, can be treated similarly. O

§3.3 Cauchy Problem

The existence of a unique, globally defined solution of (3.1.1) — (3.1.4) is

proved in this section. The regularity and boundedness of the solution are also
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given for the stability analysis in the next section. For convenience, we need to
introduce a suitable Sobolev space in which we can discuss our model by employ-
ing well developed tools in partial differential equations and ordinary differential

equations in Banach spaces. We define

and the Hilbert space

X = fILz(Q,-)

=1

or more precisely
X = {99 = (1,92, ,lpn)| Y = cp[Q'_ eL2(Qi)’ i=1,2,--- ,n}

with inner product

n
<@, Y >= Z < i, ¥i > -

i=1
Another Hilbert space Y is defined by

( vi=plg, € H' (), 1=1,2,---,n ]

Y = {992 (‘lalaﬂp?,"' ,Son) S‘oilr:r‘- = (Pi—llmr;’i:‘_L?'a"' sn—15%

\ ‘Plr:rn =0 J
with inner product
n
<p,Pp>= z < Vi, Vb; >r2q,) -
=1
Here ¢ = (¢1,92, "+ ,¢n), ¥ = (¥1,¥2, - ,¥n) are not vector forms, but rather

they are piecewise forms. H! is the standard Sobolev space [J].
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Let v*(r) = (v{(r),v3(r),--- ,vi(r)) be the positive radially symmetric steady

state solution of (3.1.6) — (3.1.8). Define w = (w;,w2, - ,w,) by

w(z,t) =u(z,t) —v*(r), t>0,z€Q,r=z[,0<r<r,.

For any solution u(z,t) of (3.1.1) — (3.1.4), w(z, t) satisfies

-a%-w,' =d;Aw; + hi(w; +v}) - hi(vi), t>0,z¢€ Qr= |z, (3.3.1)

the homogeneous boundary condition

wnlmrn = 07 (3'3'2)
the matching conditions
wilr:r,’ = wi+1|r=r; (333)
aw,- 8w,-+1
d; Bn: . =di+1 vl (3.3.4)
and the initial condition
w(z,0) = v(z) € Y. (3.3.5)

Here h; is defined in (3.2.13). It is time to indicate that the precise requirement
on n(z) in (3.1.4) is such that n(z) —v*(r) € Y. Checking with the definition of
Hj [J], we see that Y is a subspace of H}(f2). The gradient norm on H}(Q) is
eqivalent to the L?—norm( [J], 4.(5.19)). Therefore Y is complete and there exists

c1, ¢ > 0 such that

alely <lely <erlely, Yo €Y, (3.3.6)
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where o]y, l¢ly are the norms on X and Y induced by their inner products
respectively.

Now we interpret (3.3.1)-(3.3.5) in Hilbert space X in the distributional
sense, and employ abstract semigroup theory of the operator[H,P,M] in order to
obtain the existence of a distributional solution. We then utilize the regularity of
the solution with an embedding theorem[H] in order to prove this distributional
solution is also a classical solution. Here by a classical solution of (3.3.1)-(3.3.5)
we mean w(z,t) + v*(r) is a solution of (3.1.1)-(3.1.4) in the classical sense.

We define a linear operator A: X — X by

A(9017LP21"' 7‘!971) = (d1A<P11d2A9921"‘ adnA‘Pn)

where Ag; denotes the second distributional Laplacian derivative of ¢;, and with

domain

i
d, -a—nt—

3991'+1 .
=d; .1=1,2---.n—-1,.
+1 . r=r.-'1 ;T

D(A) = {gp = YﬂﬁHz(Qi)

=1

™=ry

Lemma 3.3.1. A will generate a compact, analytic, uniformly bounded semigroup

T(t), |T(t)] < Mo and 0 € p(A).

Proof. [[._; C*(Qi) N D(A) is dense in X, and therefore D(A) is dense in
X, i.e. Ais densely defined in X.
We prove that R(A) = X and 0 € p(A) by considering the weak form of

Ap =1 for any ¢ € X. i.e. V@ € C§°(R2)

/ ApGdQ = / »EdQ.
Q Q
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By the matching condition in D(A) and Green'’s formula, this is equivalent to
; /n.- diVip; - VipidQ = ; . Yip;dQQ.
By the theory of weak solutions of elliptic equations[A], A¢ = % has a unique
solution A~y in D(A) and A~! is compact, giving 0 € p(A).
For ¢, ¥ € D(A), < p, 4y >'x=< Ay, ¥ >x by integrating by parts, and
thus 4 is symmetric. R(A) = X and the symmetry of A imply that A is selfadjiont,

and hence A is closed. A is also negative definite, because of (3.3.6) and Vi € D(A)

< AQ.O, pox = Z/{; d,’A%,’ . (p,'dQ
=

=>4 [ |vpfan
=1 Qi

< — min d; - 2. 3.3.7
< - gin di c1lolx (3.3.7)

Now A is selfadjoint, closed, densely defined and bounded above, and therefore
A will generate an analytic semigroup T'(¢), ¢ > O[H, page 19]. Inequality (3.3.7)
implies [T'(t)] < M, for some My > 0. The compactness of T(t) comes from
the analiticity of T(¢) and the compactness of A~! ([P], Corollary2.3.4). This
completes the proof of Lemma 3.3.1. O

Considering the fractional power (—A)%( [Ft], [H],[P]), X * is the domain of

. Since —A4 is

(—A)%, which is a Banach space with norm ol 1 = i(—A)égo x

2
positive definite, < —Ayp, ¢ >x= l(—A)§¢‘X for ¢ € D(A), and by (3.3.7),

i . 1s]2 _ .. 2
lgggndx loly << —Ap, ¢ >$1?{2xnd‘ loly-
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The denseness of D(A) in both ¥ and X % implies ¥ = X 3.

Let f : X — X be the substitution operator induced by
hi(p(z) —v*(r)) — hi(v*(r)), z€Qlz|=r,i=12,--,n.

f is locally Lipschitzian by the definition of h;, and therefore (3.1.1)-(3.1.4) can

be written in the abstract form

w'(t) = Aw(t) + f(w(t)), t>0

w(O) = wWo (338)

where wg € Y. A function w : [0,T) — X is a solution of (3.3.8) on [0, T) if
w € C([0, T), X)NC*(0,T),X) and (3.3.8) holds for ¢t € [0, T). We write the
local existence, uniqueness, continuity and compactness results in next theorem.

The proof is routine ([P], Theorem 6.3.1; [H], Theorems 3.3.4, 3.3.6, 3.4.1).

Theorem 3.3.1. For any wo € Y, the Cauchy problem of (3.8.8) has a unique
solution on [0, T') for some T > 0 such that:
(i) weC([0,T),Y).
(11) If T < oo, then there ezists a sequence {t,} such that t, — T — 0 and
[w(tn)|ly — o0 as n — oo.
(i) If T = oo and {w(t) |t > 0} is bounded in Y, then {w(t) |t > 0} is precompact
in Y.
(iv) The mapping wo — w(t) is continuous from Y to Y uniformly on compact
subintervals of [0, T).
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By a standard way in ([H], Section3.5 & 3.6), we can prove that w(t) is

actually a classical solution. We write this result in the next lemma for later

purposes.

Lemma 3.3.2. Let w be the unigue solution of (3.9.8) on [0, T). Then 2w,

8 ,,.. & ...  _8 .. 3 .. _ b= -
Hw” b—;fw" azkatw" atazkwx, 1= 1’27"' 3 T k= 1,?" 0<t< T, e:z:zst and

are continuous in the corresponding patch ;.

Actually elements of X are equivalence classes of functions. A more exact
statement of Lemma 3.3.2 is that there is a function with the stated smoothness
properties in the equivalence class of the solution. Therefore we have the existence
and uniqueness of the solution u(z,t) of (3.1.1)-(3.1.4) in some interval t € [0, T).

According to the maximum principle in patchy parabolic equations, we claim

that for z € Q and t € [0, T),

min {Ki, %n,(z)} <u(z,t) < lrgia.sxn {K,’,Eéaéni(z)} . (3.3.9)

1<i<n
Actually if u(Z,?) reaches M* = max;<i<n {K;, max;eq, ni(z)} at some T €
Q,t > 0, then by [uigi(ui)]’ = gi(ui) + uigl(ui) < 0foru; > K;, there exists a
neighborhood U(Z) of T and (f—4, ) of  such that [ug(u)]’ < 0in U(F) x (£~4, 7).
Therefore applying the mean value theorem and from ——%% +dAu+ug(u) =0 and
M*g(M*) <0, we have

—%’7 + dAT + h(z,t)T > 0

for some h(z,t) < 0, where 7 = u — M*. Now utilizing Theorem 2.2.3, we get
T=0inUT) x (f—4,t) ie. u= M*in U(T) x (f - 4, t). Furthermore, this
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argument means v = M* in Q x [0, #]. therefore u < M*. The other direction of
(3.3.8) can be obtained in the same way. Hence |f(w(t)|x is bounded on [0, T').

By the variation of parameters formula

w(t) = T(t)we + /0 T(t — s)f(w(s))ds

L
2

and some results on fractional powers( [P], Theorem 2.6.13), i.e. (—A)Zwg €

X, [(~A)RT(¢)| < Myt™%, ¢ > 0 and |T(t)] < Mo, we have
Ol = e s < ITOuolyy + [ 1T~ fw(s)l4ds
< (=P T(Ewolx + [ [(~A)T(t = )fa(e))xds
< Mol(-4)buolx + My sup |fw)lx x [ (= sy Hds
s€fo,T) 0
<M<

for some M > 0 and all t € [0, T). Hence T = oo by Theorem 3.3.1(ii), and

consequently we get

Theorem 3.3.2. System (8.1.1)-(8.1.4) has a unique classical solution defined

on Q0 x Rt satisfying (3.5.9).

§3.4 Global Stability
In this section, we treat system (3.1.1)-(3.1.4) as a dynamical system S(t) in

a complete metric space
Z={p20fp—v" €Y}
with metric dz(p, ¥) = |p —¥|y, and then obtain global stability by the Liapunov

invariance principle. S(t) is defined by S(t)p = w(p — v*)(t) + v*, where v* is
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the positive radially symmetric steady state solution of (3.2.1), w(p —v*)(t) is the
solution of (3.3.8) with initial condition wy = ¢ — v*. Theorems 3.3.1 and 3.3.2
guarantee that S(t) is a dynamical system on Z( [H], Chapter 4).

Define the functional V : Z —+ R by

V(g) = i ( /ﬂ | 2|72 - /9 | /0 " h,-(s)dsdQ) .

1=1 '

V is continous by the continuity of the inclusion ¥ — C(2). We will show that V

is a Liapunov functional, i.e. its derivative is nonpositive,
. . 1
V(p) =limsup - [V(5(t)p) - V()] <0, v € Z. (3.4.1)
t—0+ ¢

For ¢ € Z, u(z,t) = (5(t)p)(z) satisfies (3.1.1)-(3.1.4) with n = ¢ and u(z,t) =
w(z,t) + v*(r), w(z,t) is the solution of (3.3.8) with wg = ¢ — v*. By Lemma
3.3.2, the mixed partial derivatives of u with respect to ¢t and r are continous. Thus

the order of differentiation can be exchanged. So by the matching and boundary

conditions
d n
‘—EV(u(- t)) = § (/ d;Vu; - VuipdQ) — / hi(u; u,tdQ>
= Ou;
= Z ( d u,t——dS / d; u,tAu dQ / h ;)u;ﬂiQ)
i=1
——Z/ Uit(di Aui + hi(u;))dQ
i=1
-3 | @i+ hatuoyias, (3.42)

i=1

Hence (3.4.1) holds because of

%[V(S(t)s9 -V(p)] = %V(“("t'))
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for some t* € (0, ¢) by the mean value theorem.

We define the w-limit set w(y) for ¥ € Z by
w() ={p € Z|3t, = cosuch that S(t,)yY — ¢}

By Theorem 3.3.1, {S(t)y; t > 0} is precompact in Z, and therefore w() is
nonempty, compact, invariant, connected and dist(S(¢)y,w(¥)) — 0 ast — oo(

[H], Theorem 4.3.3), see also ( [H], Theorem 4.3.4)
W) CE={pe€Z|V(p)=0}

We are going to prove that E consists of a positive steady state solution of (3.1.6)-
(3.1.8). By (3-4.2), V(y) = 0 implies that there exists a sequence ¢, — 0+ such
that Y, fﬂl_(d,-Au,' + hi(u;))?dQ — 0, where u = S(t)e. This implies that
Aw(tp) + f(w(tn)) = 0 in X as n — oo, where w(-,t) = u(-,t) — v*(:). By
Theorem 3.3.1, w(t,) — w(0) in ¥ as n — oo, thus w(t,) = w(0) also in X, and
furthermore f(w(t.)) — f(w(0)) in X by the continuity of f : Y — X. Therefore
Aw(tn) = —~f(w(0)). Because A is closed, w(0) € D(A) and Aw(0) = ~ f(w(0)),
ie. Aw(0) + f(w(0)) = 0. This means that w(0) is a steady state solution of
(3.1.6)-(3.1.8), and is positive by (3.3.9), i.e. E consists of a positive steady state
solution of (3.1.6)- (3.1.8).

By Theorems 3.2.1 and 3.2.2, we have:

Theoren 3.4.1. ||u(-,t) — v*|ly — 0 as t = oo for all the solutions u of (3.1.1)-
(8.1.4) with positive radially symmetric initial data.
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The next theorem is concerned with the uniqueness of the positive radially
symmetric steady state solution under certain conditions. Therefore E consists
of this unique positive steady state solution, i.e. it is globally stable. This is the

content of the second theorem below.

Theorem 3.4.2. If K* < K, then the positive steady state solution of (3.1.6)-

(3.1.8) is unique. Here K™ = maxi<i<a{K]}, K] = sup{€ > 0| [£g:(¢)]' > 0},

i=1,2,---,n, K =min<i<a{K;} is defined in Theorem 3.2.1.

Proof. Suppose ¥ = (03,72, - ,Un) and ¥ = (1,02, ,Vn) are two posi-

tive steady state solutions of
d;AT; + E'g,'(ﬁi) =0
d,'A%,'-{-i'gi(%i) =0 2=12,---,n. (3.4.3)

We claim that v > A. For otherwise let

m= gg‘r)ﬁ(z,y) =7i(z0,Y0), (o,%) €

H(z,y) = —gi(Ti(z,y))

~

4 =.TT—1—‘1_J.,'(.‘C,y), (xvy) eQi-
Then
d;AV; + H(z, YV = mg:(7:). (3.4.4)

Since m < K, there exists a neighborhood U(zg, yo) of (zo,v0) in Qi, in which

H(z,y) <0
mgi(v:) > 0.
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Therefore (3.4.4) satisfies the condition of Theorem 2.1.3. By boundary condition
(A.4), we know that (zo,y0) € intf;, and thus by Theorem 2.1.3. ¥ = 7 in
U(zo,y0). We can extend this conclusion to the entire Q(*). This contradicts the
boundary condition (A.4) and hence ¥ > K. Similarly 7 > K.

From (3.4.3), we have

diA(T; — ;) + /0 [vigi(vi)]

dé-(v; —0;) = 0. (4.3.3)

de <.

v =T +£(T: ~7;)

/ol[vig;(v,-)]’

By applying the boundary condition and Theorem 2.1.3 to (4.3.5) we get that

vU=ET.

From the above statement and Theorem 3.4.2, we have:

Theorem 3.4.3.. If K* < K, then the positive radially symmetric steady state is
globally asymptotically stable with ||u(-,t) — v*|ly — 0 as ¢t — oo for any solution

of (8.1.1)-(8.1.4) with positive initial data.

Corollary3.4.1. (Equi-capacities). If K1 = K, = --- = K, then u = K] is

globally asymptotic stable, i.e. |[u(-,t) — Ki|ly = 0 as t -+ co.

§3.5 Radially Continuously Varying Patchy Environments
This section concerns model (Ao), i.e. (Ag.1) — (Ag.4). We briefly repeat
them here and relabel them

%tg =V-(d(r)Vu) +ug(u,r), u=u(z,t), € t>0,r = lz], (3.5.1)
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with boundary condition

ulpq = K(Ro). (3.5.2)

The steady state equation is the corresponding elliptic equation
V- (d(r)vv) + vg(v,r) =0 (3.5.3)

v(Ro) = K(Ro). (3.5.4)

Theorem 3.5.1. There ezists a unique positive radially symmetric steady state
of (3.5.8)-(8.5.4). It is located in [K, K|, where K = min efo,r,] £ () and K =

max,¢fo,Ro) K(7)-

Proof. For each positive integer n, we devide the entire environment € into

n annular patches
Q(") = {xlr(n) <lz| < r( )} i=12---,n,

where r(") i L Ro. In each patch QE"), t=1,2,.-- ,n, we discretize (3.5.3)- (3.5.4)
into

v. (d(rg")w,f"’) + o{Mg™ (™) = o (3.5.5)

with matching and boundary conditions

(n) — (n)
Yi r=r{™) Vit r=r{™
u™ Gu'™
d(r (n)) v; — d(r(-_':_)l) Yit1
Bn, (n) ' In; (n)
=r; r=r;
USzn) Q =K(R0)7 1= 1,27"' s = 1. (356)
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Here

v = (v§"),v§") SRR/

2

g,(n) ( (")) =g (vgn),rf")) , 1=1,2,-

)

By Theorems 3.2.1 and 3.2.2, there exists a unique positive radially symmetric

steady state solution {v(®)(r)} of (3.5.5)- (3.5.6) satisfying
E<v™W<E and v™'(0)=0. (3.5.7)
The radially symmetric form of (3.5.5) is

dry™ () + (1) + o (g™ (M) =0, 7 e[ ri™),

d(ri™)
T 1
1=1,2,--- ,n. (3.5.8)

Thereafter we assume that the derivatives at partition points refer to the right

side derivatives where they exist. The matching and boundary conditions become

(n)(r(n)) - v(-:)l(r('n))
n n 4
d(ri™ )™ (1) = d(r{™ ol (r{™)

oMy = K(Ry), i=1,2,---,n—1. (3.5.9)

The integral form of (3.5.8) is

(n) r

! r;_ 4 1

o) = T () [ M (g s, 7 e [, r),
r rd(r;”’) Jriey

i=1,2-,n. (3.5.10)

42



ety i ot

It is easy to get the concise form of (3.5.10) from (3.5.9) and (3.5.10), namely

Wy = L [T () 1) ()
vt (r) rd(")(r)/o s ™ (8)g'"™ (v'™(s))ds

where
d™(r) = d(r{™)
oM(s) = v{™(s)
§P () = 6 (2"(s))
for s,r € [r‘(f_)l,rgn)), i=1,2,.--,n. Therefore
lv(n)'[ < M
- 2,
where

M1l = max |vg(v,r)]
vE[K, K]
r€[0,Rq]

d. = min d(r).
TG[O,ROI

(3.5.11)

There exists a uniformly convergent subsequence of {v(™} and without loss of gen-

erality, assume {v(™} convergences to v(r) by applying the Ascoli-Arzela Lemma.,

(3.5.7) and (3.5.12). Because of (3.5.11) and the Lemma 3.5.1 to follow, {v(™’(r)}

must be uniformly convergent to v’(r). Similarly by (3.5.8) and Lemma 3.5.1.

v(")”(r) uniformly convergences to v”(r). Hence v(r) is a positive radially sym-

metric steady state solution of (3.5.1)-(3.5.2). By (3.5.7), it is located in [K, K].

The uniqueness can be obtained by considering

UI

u(
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for two positive radially symmetric steady state solutions v(r) and 4%(r) in the

same way as that in the proof of Theorem 3.2.2.

Lemma 3.5.1.. Suppose {f,(£)}, n = 1,2,------ are absolutely continuous on
(a,8], {fn(€)} converges to f(€), their right derivatives {%fn(f)} uniformly con-

verges to a continuous function g(§). Then f(€) is differentiable in [a,b] and
f(€) = g(6)-

Proof. Because {%fn(f)} uniformly converges to g(&), ff %fn(f)dﬁ uni-
formly converges to ff g(€)d€. From the absolute continuity of {fr(£)}, we have

£ gt
fn(€) = fa(a) = Efn(f)df

a

Thus by the convergence of {f,(£)} to f(£), we get
§
76~ f(@) = [ a(©ce.

Hence f(€) is differentiable and f/(€) = ¢g(¢). O

We needn’t specially investigate the Cauchy problem of (3.5.1)-(3.5.2), since
it is a classical boundary value problem. For the global stability of the radially
symmetric steady state solution v*(r) of (3.5.3)-(3.5.4), we introduce the Liapunov

functional
vie) = [ (3amive = [ s,rias) a,

where

h(s, r) =
0 otherwise.

{ sg(s,r) s20
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Similar to the analysis in Section 3.4, results comparable to Theorems 3.4.1, 3.4.2

and 3.4.3 can be obtained.

Theorem 3.5.2. [[u(-,t) ~v*||g1q) — 0 as t — oo for all solutions u of (3.5.1)-

(8.5.2) with positive radially symmetric initial data.

Theorem 3.5.3. If K* < K, then the positive steady state of (3.5.8)-(58.5.4) 1s
unique, i.e. it is v*(r) which is globally asymtotic stable with ||u(-,t)~v* || g1) — 0

as t = oc for any solution u of (8.5.1)-(8.5.2) with positive initial data. Here

K* = sup {v >0 ' 2[vg(v,r)] > 0} .
ré[O,Ro] a'v

§3.6 Perfect Annular Patchy Environment With a Hole

This section is devoted to model (B) or (B.1)-(B.7) which is

%u_,-_ = d;Au; + uigi(ui), t=1,2,---,n (3.6.1)
with matching conditions
uil,-:r‘- = ui+1l,~=r;
d; % . =diy 3;:;1 . (3.6.2)

The boundary conditions are

un|,=,." = K,
uplpep, = K1 (3.6.3)
and the initial condition is
u(z,t) =n(z) >0, z€N (3.6.4)
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where Q = N2, Q;, and n is such that n — v*(r) € Y, where Y is slightly different

from that in Section 3.3,
(| ¢i=plo, € HNQ), i=1,2,,n

Yzé‘p Soilmri:(pi'*'l,r:—_r'-! i=1,27'..!n—lP'

\ (folr=ro = (r’"lr=r,, = 0 /

and v*(r) is the positive radially symmetric steady state solution of the correspond-
ing elliptic equations (B.5)-(B.7) whose existence is guaranteed by the following
theorem.

Theorem 3.6.1. There ezists a unique positive radially symmetric steady state

solution of (8.6.1)-(9.6.8), which is located in [K,K|. Here K,K are scme as

those in Theorem 8.2.1.

We don'’t give the proof, since it is analogous to that in Section 3.2. The
following theorems are the corresponding versions of those of the Cauchy problem
and stability problem in Section 3.3 and 3.4. We omit their proofs, since their

proofs are basically the same as those in Section 3.3 and 3.4.
Theorem 3.6.2. (3.6.1)-(5.6.4) has a unique solution defined on Q x R¥.

Theorem 3.6.3. |ju(-,t)—v*|ly — 0 ast — oo for all solution u of (3.6.10-(3.6.4)

with radially symmetric initial data.

Theorem 3.6.4. If K* < K, then the positive steady state is unique, and |ju(-,t)—
vily = 0 as t = oo for all solutions of (3.6.1)-(3.6.4) with positive initial data,

where K and K* are defined in Theorems $3.2.1 and 3.4.2.
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Corollary 3.6.1. If K; = K; = --- = K,, thenu = K, 1s globally asymptotically

stable.

§3.7 Radially Continuously Varying Environment With a Hole

This section deals with model (Bg) or (Bg.1) — (Bg.5), that is

—g—: = V- (d(r)Vu) + ug(u,r) (3.7.1)
with boundary conditions
ul,—,, = K(ro)
ul,_ g, = K(Ro)- (3.7.2)

By the same argument as those in Section 3.5, we have:

Theorem 3.7.1. There ezists a unique positive radially symmetric steady state
of (3.7.1)-(8.7.2), which globally attracts all the solutions with positive radially

symmetric initial data.

Theorem 3.7.2. If K* < K, the positive steady state is unique and radially
symmetric, and it is globally asymptotic stable, where K* and K are defined in

Theorems 8.5.8 and 8.5.1.
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Chapter 4

Population Diffusion Through a Periodically Changing Annular Patchy Environment

Models (C) and (Cy) are considered in this chapter. Note that Section (C)
is a special case of (Cy) by viewing (C) as periodic of any positive period. Section
4.1 - 4.3 consider the Cauchy problem, and uniqueness and global stability of the

periodic solution of model (Cp). In Section 4.4 the result for (C) are stated.

§4.1 Cauchy Problem for (Cjy)

We repeat model (Cp) here for convenience:

%tzﬁ =d;Au; +uigi(uist), z€Qi, 1=12,---.n (4.1.1)

with matching conditions

Uy |6.‘ﬂ§;+1 = Ui+1 |ﬁ;n§.~+l

di Gui = di41 uity

ani ?l_.'n—,q.l ani ﬁinh—ii-l ‘ (4.1'7)

boundary condition

ulgq =0 (4.1.3)
and initial condition
ui(z,0) =ni(z) >0, z€Q;, 1=12,---,n (4.1.4)

In order to parallel the analysis in Section 3.3, we define

uigi(ui,t) u; >0
h(u,t) = hi(u;,t) = { (4.1.5)

0 otherwise
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and introduce two Hilbert spaces

X = ﬁLz(Qi) (4.1.6)
=1

with inner product

n
<@, >x= Z < @i, i >L2q;)

=1
and
( (Pt':(xalﬂ.'eHl(Qi)a i=1727"'1n )
Y = { w= (801, P2, ,Sgn) Lpil‘ﬁ'.nﬁ”_l = wi-*-llﬁ‘.nﬁ-'._*_l 1= 17 27" c,n - 1 ?
y plag =0 )

with inner product

n
< (,9,114' >y= Z < ch,', V‘(/)i >L2(Q;) .
=1
We can define the operator A similarly to that in Section 3.3, and write (4.1.1)-

(4.1.4) in abstract concise form
W() = Au(t) + F(u(t),t)
(4.1.8)
u(0) = uo.
Here f is the substitution operator induced by h(u(t),t). We can repeat the
argument in the same way as that in Section 3.3 to obtain the same conclusions as

those in Theorems 3.3.1 and 3.3.2 and in (3.3.9). we write them in the following

manner

t

0 < u(z,t) < max {K,—(t), sup 17.(.1:)} . (4.1.9)
1<i<n r€N;
0<t<T
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Theorem 4.1.1. System (4.1.1) — (4.1.4) has a unique classical solution defined

on Q x R* satisfying (4.1.9).

§4.2 Uniqueness of the Positive Periodic Solution

In this section, we define a suitable solution space and introduce order in
this space to show that the Poincare map is strongly monotone and strictly sub-,
linear([H], [T]), and then apply Lemma 1 in [Zhao] to get the uniqueness of the
positive periodic solution.

According to Theorem 4.1.1, the solution of (4.1.1)-(4.1.4) is classical. Rather
than ¥, a natural choice for the solution space is the subspace of continuous func-

tions

Z = {(P € C(ﬁ) l ‘PIQ.’ € Cl(Qi)’ 9”!69 = 07 1= 1727”' 7n'} .

Let
Zt={p€eZ | ¢(z)>0, ze€Q}
and
u(z) >0, z€N
ntZt={ ezt
%u(z) oz e o0
an

We can define an ordering on Z for ¢,9¥ € Z by

p<¥ iff v—peZt but ¢#v,

<<tV iff v—ypecintZt,

PV iff v-peZ”,
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Let S; denote the solution map of (4.1.8), i.e. Sip = u(t, ), where u(¢, ) is the

solution of (4.1.8) with ug = ¢. Then we have:

Theorem 4.2.1. Z% is positively invariant in S;. S is strongly monotone in-

creasing, i.e. for any ¢, ¥ € Z with ¢ < 1, Si(p) << Si(¥), Vt>O0.

Proof. Z% is positively invariant for the abstract ordinary differential equa-

tion

because it satisfies the Nagumo condition

. _1 'Q + — N __1 - + —
’\1_1'151+z\ dist(ZF,0 + Mf(p,t)) ’\ligl_’—/\ dist(ZT, ¢ + Apg(p,t)) =0

forallop € Zt and ¢t > 0. Z7 is also positively invariant under the semigroup T'(t)
which is generated by A, since T'(t)y is the solution of u/(t) = Au(t) with ¢ € Z,
i.e. the solution u(¢) € Z* of 84 = d;Au;, i=1,2,---,n with initial condition
u(0) = ¢ > 0, and by the maximum principle in the patchy parabolic equation of
Theorem 2.2.3, T(t)¢ € Z¥. A conclusion of Theorem 7.3.1 of [Smith] is that Z+
is positively invariant for u'(t) = Au(t) + f(u(t),t). Therefore Z* is a positively
invariant set of S;.

Let

Q(z,t) = u(z,t,p) — u(z, t,¢)

where u(z,t,¢) and u(z,t,9) are two solutions of (4.1.8) with initial data < and
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¥, respectively. Thus

%Q = dAQ + h(u(z,t,9),t) — h(u(z,t,¥),t)

1
=dAQ + l:/(; g—:(su(z,t,cp) + (1= s)u(z, t,¥),t) ds] Q.

Since Q|i=0 < 0, Qlag = 0, and by the maximum principle for patchy partial
differential equations of Theorems 2.2.3 and 2.2.4, we have Q(z,t) < 0, z € Q.

t>0 and %% a0 > 0. This says that S; is strongly monotone increasing.

Theorem 4.2.2. S, is strictly sublinear, i.e. Si(ap) > aSi(¢) for all a € (0,1),

t >0 and ¢ >> 0. (see [H] [T] and [Zhao] for the definition).
Proof. Let
V(1) = ault,0)() — u(t, ap)(-).
Then

% —~ dAV = au(t, @)g(u(ts 99)7t) - u(t,cxc,o)g(u(t, a‘r’)zt)

< au(t, p)g(au(t,v),t) —u(t, ap)g(u(t, ap), t)

= /h’(sau(t,cp) + (1 = s)u(t,ap),t)ds -V

Applying the maximum principle to patchy parabolic equations of Theorem 2.2.3

and being aware of the strict inequality above, we get for ¢ > 0,
V<.

This finishes the proof of Theorem 4.2.2.
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Now define the Poincare map S = Sr. Then S is strongly monotone in-
creasing and strictly sublinear. It is evident that a fixed point of S is a 7-periodic

solution of (4.1.1)-(4.1.3). From Remark 5.2[H] and Lemma 1[Zhao], we have:

Theorem 4.2.3. S admits at most one positive fized point in Z ¥, i.e. there ezists

at most one positive T-periodic solution of (4.1.1) — (4.1.3).

’

§4.3 Global Stability of the Positive Periodic Solution
In this section, the techniques developed in [DH1] [DH2] [H] [ST][T] and
[Zhao] will be employed in order to obtain the switching conditions needed for the
existence and global stability of a positive periodic solution. The Krein-Rutman
Theorem plays a central role in these techniques, and so we write them out(

Theorems 7.2 and 7.3 [H]) for an ordered Banach space (Z,intZ%):

Theorem 4.3.1 (Krein-Rutman). Let K be a linear, compact, strongly positive
functional on Z. Then r = spr(K) > 0 and r is the unique eigenvalue of A
having a positive eigenfunction ¢. Further o >> 0, and r is an algebraically
simple eigenvalue. Furthermore, abs(\) < r for allX € o(K), A #r. K is called
strongly positive if K(Z*\{0}) C intZ*, o(K) is the spectrum of K, and spr(K)

ts the spectral radius of K.

Theorem 4.3.2 (Krein-Rutman). Consider the inhomogeneous equation

AMi—Ku=1vy i Z, v >0 (4.3.1)

under the assumptions of Theorem 4.3.1. We have:

53



TR T Vel Py TR N VIR T ¢ R s o TR

TR LEY

(1) (4.3.1) has a unigque solution u if A > r, and u >> 0; equation (4.3.1) has
no posttive solution if A < r,

(i1) for X =r, there ezists no solution of equation (4.3.1).

Lemma 1.1 in [H] will be used here frequently, and so we write it and related

terminology out for convenience:

Definition 4.3.1. K is called strictly order preserving in Z, if K(p) >> K(v)
whenever ¢ > ¥, ¢, € Z. ¢ i3 called a subequilibrium ( superequilibrium ) of the

equation Ku=1u, if o < Ko (p > Kp).

Theorem 4.3.3. Suppose K 1is strictly order preserving , K is compact, ¢ < ¢

are a subequilibrium and a superequilibrium of Ku = u respectively , and

Yn+1 = Kopn, @wo=¢

¢n+1 = K“pn’ 1.1’0 = w

Then {¢n} s an increasing sequence converging to the minimal fized point u in
[0, 0] ={u: ¢ < u< Y}, and {Yn} is a decreasing sequence converging to the

mazimal fized point T in [, ¥].

The next step is to set up a Poincare map and delineate some properties
of it which will be used to obtain the existence and global stability of a positive
periodic solution.

St is called a Poincare map and denoted by K. We will show that A has
the same properties as that in Theorem 4.3.1.

From Theorems 4.2.1 and 4.2.2 or a similar argument to that in (Prop.21.2
(H]) or [DH2], it follows that K is strongly order-preserving, compact and strictly
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sublinear. The same argument as that in (Prop.23.1 [H]) implies that A is Frechet
differentiable and DK (0) = U(T,0), where U(T, 0) is the evolution operator of the

linear variational equation of (4.1.1)-(4.1.3), or

ue = Au + g(0,%)u
(4.3.2)
u|aq = 0.

According to (Chapter II, [H]), the evolution operator U(t,7), 0<7 <t <Tis
compact and strongly positive, and thus DK (0) is strongly positive and compact.
Let r = spr(DK(0)) be the spectral radius of DK(0). By Theorem 4.3.1, r is the
principal eigenvalue of K. From (Prop.14.4, [H]), i is the eigenvalue with positive

eigenfunction of
(ue = Au + g(0,8)u + pu

q ulag =0 (4.3.3)

L u is T — periodic

where

1
Q= —Tlnr. (4.3.4)

Now we are ready to state main result of this chapter.

Theorem 4.3.4.
(i) If © = 0, then u = 0 is globally asymptotically stable with respect to those
solutions with nonnegative initial data in Z7+.
(1) If u < 0, and there ezists a positive supersolution ¥ of (4.1.8) (i.e. a T-
periodic function ¥(t) satisfying (4.1.2) and (4.1.3) but ¥'(¢t) > AY(¢) +
f(¥(t),t)), then there ezists a unique positive T -periodic solution which is
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globally asymptotically stable with respect to those solutions with positive

initial data in Z7.

Proof.
(1) Because DK (0) is strongly positive and compact, by Theorem 4.3.1,
DK (0) has a principal eigenfunction e >> 0 with a principal eignvalue r, such

that r <1 by (4.3.4).

We first show that for any u >> 0,
K(u) < DK(0)u. (4.3.3)

In fact by the strict sublinearity of K and K(Q) = 0, we have for any « € (0, 1),

K(au)

_ K(0) + DRK(0)(au) + o(|laul|)

K(u) <

(43

~ Do+ el g

Let a — 0. Then we obtain that K(u) < DK(0)u. If for someug >> 0, K(uo) =

DK (0)ug, then for any a € (0,1),
aK(ug) < K({aug) < DK (0)(auo) = aK(ug),
which is a contradiction. Thus

K(u) < DK(0)u, u>>0
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Now we show that there exists no periodic solution of (4.1.1)-(4.1.3). If there

is, call it u, then

u = K(u) < DK(0)

or

1. (—~u) - DK(0)(—u) > 0.

Letting ¥ = DK(0)u —u, A = 1, we get a contradiction by Theorem 4.3.1(i).
Hence there exists no periodic solution of (4.3.1)-(4.3.3).

Now for any initial data n > 0, there exists a constant 8 > 0 such that

0<n<be.

Because

K(Be) < DK(0)(8e) = DK (0)e = 6 - re < Be,

i.e. e is a strict superequilibrium, by Theorem 4.3.3, K™(fe) will approach a
fixed point of K as n — oc, which is zero by the nonexistence of positive periodic

solutions. Furthermore by the monotonicity of K, we have

0= K"(0) < K™(n) < K™(8e)

and thus u = 0 is stable with respect to all the solutions with nonnegative initial
data in Z%.
(i) f p < 0, then r > 1 by (4.3.4). We still use e >> 0 to denote the
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principal eigenfunction of DK (0). Ve > 0,

K(ee) = K(0) + DK(0)ee + o(e)

= ere + ofe€)
and therefore there exists g > 0 such that for € € (0, €],
K(ee) > ee

i.e. ee is a strict subequilibrium.
Because ¥ is a positive supersolution of (4.1.8), it is easy to see for any
m > 1, m¥(¢) is also a positive supersolution of (4.1.8). Comparing the solution

of (4.1.1)-(4.1.4) with initial data m¥(0) to the supersolution m¥(¢) at time T,
we get

Km¥(0) < m¥(0)
and therefore m¥(0) is a strict superequilibrium.
Now for any initial data n > 0, we can find 4, m > 0 such that

fe < n < m¥(h).

By Theorem 4.3.3 and the uniqueness of the positive periodic solution, we get (ii).

This completes the proof of Theorem 4.3.4. O

§4.4 Population Diffusion Through a General Annular Patchy En-

vironment
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We repeat (C.1)-(C.4) here for convenience,

Ou;

- =d;Au; +uigi(ui), z€Q;, 1=12,--

ot

with matching conditions

Uilg,ndiy, = Uitilgna,,

d; Gui = diq1

12 1
dn; Qi ani ;0041

Ou i+1

boundary condition

u‘aa =0

and initial conditions

ui(z,0) =ni(z) >0, z€8;, i=1,2,---

-,n (4.4.1)
,n—1

(4.4.2)

(4.4.3)

M. (4.4.4)

Here the patchy environment is assumed to be of type (C). Model (C) may be

thought as of a kind of model (Cp) with arbitrary period. For the main result,

Theorem 4.3.4 in Section 4.1-4.3 can be similarly adopted here, and the positive

periodic solution in Theorem 4.3.4 should become the positive steady state solution

of (C.5)-(C.7). The main results on model (C) can be stated as follows.

Theorem4.4.1.

(i) If u > 0, then u = 0 is globally asymptotically stable with respect to those

solutions of system (4.4.1) — (4.4.4) with nonnegative initial data in Z%.

(i) If p < 0, and there ezists a positive supersolution ¥ of (4.4.1) (ie. a ¥

satisfying (4.4.2) and (4.4.4) but ¥’ > AU + f(T)), then there ezists a unique
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positive steady state solution of (C.5) — (C.7) which is globally asymptotically
stable with respect to those solutions of (4.4.1) — (4.4.4) with positive initial

data in ZT.

where A 13 the same as in (4.1.8) and f is the substitution operator induced
ug(u) u>0

h(u) =

0 otherwsse,

and pu is the eigenvalue with a positive eigenfunction of

ur = Au + g(0)u + pu

u|ag = 0.
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Chapter 5

NUMERICAL ANALYSIS

In the previous chapters, the unique existence and global stability of the
radially symmetric steady state solution has been theoretically investigated. Here
we proceed to some numerical analysis in order to illustrate what the radially
symmetric steady state solution looks like in some typical biological models. By
comparing the contours of the radially symmetric steady state solutions, we can
discuss the effects on the radially symmetric steady state solution by varying the
sizes of patches, the diffusion rates, and other parameters. In Section 5.1, a numer-
ical algorithm is developed with easily extendable codes in programming language
C for the models from [F] and the references therein. In Section 5.2, by compar-
ing the contours of the radially symmetric steady state solutions, we can discuss
the effects on the radially symmetric steady state solution by varying the sizes of

patches, diffusion rates, carrying capacities, etc.
§ 5.1 Algorithm

The system for the radially symmetric steady state is indicated in (3.2.1),

namely

di , :
dv!'(r) + ?vi(r) +vi(r)gi(vi(r)) = 0,7 € (riz1, 1), =1,2,...,n
vi(ri) = vig1(ri)

divi(r;) = dit1vig,(ri),i=1,2,..,n—1 (5.1.1)
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with boundary conditions

vn(ra) = Kn

v1(0) = 0. (5.1.2)
We solve the system above by considering (5.1.1) with initial conditions

v11(0) =«

v;(0) = 0. (5.1.3)

We want to determine « such that the solution of the Cauchy problem (5.1.1) with

(5.1.3) satisfies the boundary condition (5.1.2), and therefore this solution is the

In the numerical computation to determine a, we use a binary partition.
We first consider interval [min K;, max A;]. Let o be the midpoint of the interval
[min K;,max K;]. If the solution v of (5.1.1) with (5.1.3) obtained in this way is
close to K, at r = r, with some accuracy, then a adopts this midpoint. Otherwise,
if v(r,) > Kn or v(rp) < K,, we will consider the right half interval or left
half interval of [min A7;, max K;]. and continue this procedure until the required
accuracy is attained.

For convenience, in order to solve numerically for the radially symmetric
steady state solution of (5.1.1) with (5.1.3), we write it as the system
dv
7 = |4
iv—r = G(r.v,V) (3.1.4)
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where

G(r,v,V) = —— — Zvg(v). (5.1.5)

Following the above idea, we try initial condition v(0) = a and V(0) = 0, where
a is the midpoint of a subinterval obtained by a series of binary partitions of
[min K;, max K;]. We make use of the Runge-Kutta fourth order iterative method
[PL] in each patch, and convert the corresponding values of v and V at the inter-
faces between patches by the interface condition, and then check if the solution
obtained in this way satisfies the accuracy requirement. This procedure may be
repeated until the accuracy is met. We may want to include the case r =0 in the

definition of G(r,v, V) by redefining

- %vg(v) r=0
G(r,v,V) = v o1

\ —-r——-ng(v) r > 0.

This binary partition algorithm is feasible according to the inequalities min K; <
v < max K; in Theorem 3.2.1 and the monotonicity of v about a in the following

Lemma 5.1.1.

Lemma 5.1.1. The solution v of (5.1.4) with initial condition (5.1.8) is increas-
ing with respect to a, i.e. if v(r,a;) and v(r,ay) are solutions of (5.1.4) with
initial conditions v(0,a1) = a1, V((0,a1) = 0 and v(0,a2) = a2, V((0,a;) = 0,

respectively, and a; < a, then v(r,a;) < v(r, asz).
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The algorithm developed above is realized in C code. The program is com-
posed of functional modules. We particularly add a module for the Volterra model,
since it is the most typical classical biological model. The main algorithm is re-
alized through a pointer to virtual functions. It is independent of the particular
model considered and feasible for general models. In the case of other types of
models, we only need to add a functional module for each of these models. This
C code is well documented and stands on its own for both usage and extension.

This program named "patch.c” is listed in the appendix.

§ 5.2 Analysis

In this section, we investigate the numerical solution of the radially symmet-
ric steady state of a Volterra population diffusion model in a patchy environment.
Particularly, we observe the monotonicity of the solution. We also discuss the

effect of patch sizes, carrying capacities and diffusion rates.

§ 5.2.1 Monotonicity

In this subsection, we demonstrate the monotonicity of the radially sym-
metric steady state solution in Theorem 3.2.3. The environment consists of three
patches with radii r; = 10, r = 20, and r3 = 30. The diffusion rates in these
patches are Dy = 10, D, = 20, D3 = 30. The population models in these patches
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are Volterra types with

v
g1(v) =4(1- z

v
g2(v) = 4(1 - 7
ga(v) =4(1 — I%s

In Figure-4, the diamond line is a increasing radially symmeric steady state solu-
tion of the above model with increasing capacities K; = 5, K3 = 15 and K3 = 30.
The crossed line is a decreasing one with decreasing capacities K; = 30, Ky = 20
and K3 = 15. The squared line is neither increasing nor decreasing with non

monotone capacities K; = 10, K = 30 and K3 = 15.
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§ 5.2.2 Effect of Diffusion

In this subsection, we discuss the effect of diffusion on the radially symmetric
steady state solution in (3.2.1). The patchy environment consists of three patches
with radii r; = 10, 2 = 20, and r; = 30. The population models in the three

patches are Volterra types with

g1(v) =0.4(1 - 1-0)

gg(v) = 08(1 - %)

v

ga(v) = 0.7(1 — =5).

In Figure-5, we compare two radially symmetric steady state solutions of the same
models above but different diffusion rates. The crossed line has higher diffusion
| with Dy = 10, D2 = 20, and D; = 30, the diamond line has lower diffusion with
D; =1, Dy =2, and D3 = 3. We can see the one with lower diffusion rates retains
‘ local properties such as remaining in their carrying capacities in some sense. The
l

other one with higher diffusion rates shows more of an immigration trend than

staying in their capacity levels.
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§ 5.2.3 Effect of Patch Sizes
Varying the sizes of patches can significantly affect the population dynamics
[AC]. In this subsection, we discuss population diffusion models in patchy envi-

ronments with

g1(v) =5(1 - 55)

a2(v) = 5(1 - 3)

and diffusion rates

D1 =D2 = 8.

In Figure-6, the diamond line is the numerical solution of the radially symmetric
steady state of this model in a patchy environment with smaller inner patch (r; =
5) and larger outer patch (r2 = 30). The crossed line is for an environment with
larger inner patch (r; = 25) and smaller outer patch (r; = 30). We can see the

population behavior is relatively stable in larger patches.
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§ 5.2.4 Effect of Boundary Carrying Capacities
In this subsection, we investigate the effects of boundary carrying capacities
on the radially symmetric steady state solution of the population model given by

v

g2(v) = 2(1 — _IE)

with diffusion rates

in a patchy environment with radii r; = 5, r, = 30.

In Figure-7, the diamond line is the numerical solution of the steady state
with larger boundary carrying capacity K2 = 30, the crossed line is that with
smaller boundary carrying capacity K2 = 3. The higher boundary carrying capac-
ity raised the distribution of the steady state in the inner patch, and vise versa,
the lower boundary carrying capacity caused a substantial drop.

An interesting example of the effects of the boundary carrying capacity can
be found in [FF]. [FF] considered a model of diffusion of oxygen to spheroids grow-
ing in a stationary medium. The spheroids are used as tumor models. Actually
we can treat spheroids and stationary media as a two-patch environment for the
oxygen diffusion. The lower oxygen concerntration in the vicinity of the medium
can cause a substantial depletion of the oxygen in the spheroid to recess the growth

of the tumors.
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/t*tf‘r**

*

* % b 4 * A A A 4 A A 4 4 A

L2 2 4 & X2

#include
#include
#include
#include
#include
#include

/*** err
#define
/*** pri
#define
/*** in
typedef

/*** typ
typedef

f*****t*********f******f*****t*f****t********t**f*f?*******t***7*

FILE: patch.c

PURPOSE: Generates numerical solution data for the
radially symmetric steady state solution
of (3.2.1) or (5.1.1) ~ (5.1.2).

¥*

*

*

*

*

*

*
EXPLANATION: patch.c consists of many modules. *
It is easily extendable to include *

any type of model by adding global *

variables for model parameters and *

designing functions for the model *

functions. There is a global function *

pointer which may point any models. *

*
*

***********************f**********************‘k*****************

/

<stdio.h>
<stdlib.h>
<ctype.h>
<malloc.h>
<string.h>
<math.h>

or function ***/

ERROR (x) { perror(x); exit(1l); }
nt function ***/

PRINT (x) { fprintf(stdout, x}; }
case of iterative overflow ***/

enum{ TooSml, Normal, TooBig } STATUS;

e of the function in population models ***/
double MODEL(int, dcuble);

extern double fabs( double );

/*******
*

TN EEREEREERE.

ThdwxRR

int

double
double
double
double
double

*hkkhhKh parameters Of PatCh enviroment (22 2 2 2 AR R RSl st Sl LSS

*
PatNum - number of patches *
R - array of the outer radius of each patch *
D -~ array of the diffusion rates in each patch *
Capa - array of the capacities in each patch *
MinCapa - minimum of carrying capacities *
MaxCapa - maximum of carrying capacities *
g - pointer to the function in population models *
index - index of the selected model *
*
**********************************t******************************/
PatNum;
*R;
*D;
*Capa;
MinCapa;
MaxCapa;
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MODEL *g;

int index;

[x*Ex*erxxcrrerx*c*  parameters of algorithm AR AL E LS EXE S 22 LR T L
* x
* Accuracy - accuracy of iteration *
* Steps - steps of iteration *
* H - array of length of iterative steps in each patches *
* BigNum - used to control overflow *
* status - indicate overflow or normal of iteration *
* MAXPARTITION *
* - max steps of binary partition *
* *
*'k*********'l't**********************************’l-************************

double Accuracy = 0.01;

double Steps = 10000;

double *H;

int BigNum = 1000;

int MAXPARTITION = 1000;

STATUS status;

/************************ proto types ******************************/

/*** input patch parameters ***/
void input_patch_parameters() ;

/*** input model parameters ***/
void input_model_parameters();

/*** output parameters ***/
void output_parameters(char *parameterfile);

/*** output data ***/
void output_data(char *datafile);

/*** function in steady state equation ***/
double G(int pat, double r, double v, double V):;

Vil Runge-Kutta iterative *TE*/

void RungeKutta(int pat, double *r, double h, double *v, double *V);

[x** Determine boundary value by central value ***/

void RungeKuttaBoundValue(double CVal, double *BVal);

/*** determine the central value xxxy

double CenterValue( );

/***f****t**** parameters ln Volterra model LA S A S A AR L R SRR LR R T RE TR
* *
> Volterra model: *
* X’ = rx(l-x/k) *
* volterra_r - array of parameter r *
* volterra_k - array of parameter k *
*

*
**1’7***************************************************f*k********f******
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double
double

/'k*t

*volterra_r;
*volterra_k;

function in Volterra model ***/

double volterra(int pat, double v);

/*** input parameters in Volterra model ***/
void input_volterra_ parameter();

void main( )

{
char parameterfile[30]; , /* to store parameters */
char datafile([30]; /* to store data *x/
/*** input parameters of patches *xx/
input_patch_parameters() ;
[*** input parameters of models *xx/
input_model_parameters();
/*** select file name to store parameters ***/
PRINT(" file name to store parameters, e.g. volterral.para? *);
scanf ("%s*, parameterfile);
/*** select file name to store data ***/
PRINT("file name to store data, e.g. volterral.dat? ")
scanf ("%$s®, datafile);
/*** output parameters ***/
output_parameters( parameterfile );
/*** output data ***/
output_data( datafile };

}

/***************** input—patch_parameters A S S 2RSSR RS AR S L SRS L R E LS E X XN
* *
* input number of patches *
* input outer radius of each patch *
* input diffusion rate in each patch *
* calculate the iterative length in each patch i: *
* H{i] = ( R[i]) - R[i-1] ) / Steps *
* *
(AR RS S AL 2222 RS2t Sl L s SRRt R sl sl idd XX Rt SRR RS R T EEE TR EEI

void input_patch_parameters( )

(

int pat;

PRINT( "\nNumber of patches? ");
scanf(*%d*, &PatNum);

i1f(PatNum <= 0)
ERROR( *"Invalid PatNum!" );

/
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Jxx* allocate spaces for global variables ***/

R = (double *) calloc( PatNum + 1, sizeof(double) );
D = (double *) calloc( PatNum + 1, sizeof(double) );
H = (double *) calloc( PatNum + 1, sizeof(double)} };
Capa = (double *) calloc( PatNum + 1, sizeof(double) );
/*** input outer radius of each patch ***/

for( pat = 1; pat <= PatNum; pat++)

{
fprintf(stdout, ®Outer radius of %d-th patch? ¢, pat);:
scanf( "%1f", R + pat );

}

/*** postulate R[0] = 0 ***/ i

R{0] = 0;

/*** input diffusion rate in each patch ***/
for( pat = 1; pat <= PatNum; pat++)

{
fprintf (stdout, "Diffusion rate in $d-th patch? @, pat);
scanf( "$1lf", D + pat );
}
}

/***************** input_model__paralneters Tkttt hkxhrdrkt®
x *
* input index of model *
* input the parameters for the selected model *

* *

***f****f**************************************************************t/

void input_model_parameters( )
{

/*** select model ***/

PRINT( "Select model:\n *®);

PRINT( "---> 1 for Volterra model? ");
scanf (*%d", &index);

/*** case Volterra ***/

if( index == 1 )

{
input_volterra_parameter();
g = volterra;

}

/*** case not considered yet ***/
else
ERROR("Invalid index of model *®);

/*****i*******t***t*** output-parameters (22222 2 A2 AR AR R R R X R R EX

* *

* open parameterfile *

[69)
w
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output number of patches
output radius and diffusion rate in each patch
output index of the selected model
output parameters of the model in each patch
for volterra model:
output growth rate and capacity in each patch

void output_parameters( char *parameterfile )

({

int pat; /* index of patches */
FILE *fptr; /* file pointer */

/*** store parameters ***/
fptr = fopen( parameterfile, *w®);

/*** output number of patches ***/
fprintf( fptr, "%d\n*, PatNum);

/*** output radius and diffusion rate in each patch ***/
for( pat = 1; pat <= PatNum; pat++ )
fprintf( fptr, " %f£ %£f\n", R(pat], D[pat] );

/*** output index of the selected model ***/
fprintf( fptr, *"%d\n", index);

/*** case Volterra ***/
if( index == 1)
{
for( pat = 1; pat <= PatNum; pat++ )
fprintf( fptr, * %f£f %£f\n®*, volterra_r[pat], volterra_k[pat]
}

fclose( fptr );

*
*
”*
-
x
*
*
*

/*****1*1*************** output data LA RS E LRSS A RSl LS R X 2

*

*
*
%*
*
*

open datafile to store iterative data
determine the central value: v(0)
iterate by Runge-Kutta method

22X X2 R X L 222222222222l a R R lss iRl lsr s 2 RS R

void output_data( char *datafile )

{

double CVal; /* central value */
double r; /* radius variable */
double v; /* steady state variable*/
double V; /* derivative of v */
int pat; /* index of patches */
FILE *fptr; /* file pointer */
int i;

/*** determine the Center Value ***/
CVal = CenterValue();

/*** output the numerical solution ***/

84
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}

r = R[(0]:;
v = CVal;
v =0;

/*** store
fptr = fope
fprintf( £p

for( pat = 1; pat <= PatNum; pat++)
{
for(i = 1; 1 <= Steps; i++)
{
’ RungeKutta({pat, &r, H[pat], &v,
/*** ocutput data ***/
fprintf( fptr, *“$£ %f\n®, r,
}
/*** at interface between patches ***/
if( pat < PatNum )
{
/*** go to next patch ***/
r = R[pat];
V = V * D[pat] / D[pat+l};
}
}

fclose( fpt

IAZ 2222 2SS R NS

*

*

*

G(r, v, V)

data ***/
n(datafile, °w");
tr, *"$f S$f\n', r, Vv);

r );

function in steady state equation

=-V/r - 1/4da=*v*g(v)

&V) ;

Tk xrhhkhkekirxx
*
x

*

***********************************f************************i***********/

double G(int pat,

double r, double v, double V)

{
if( r == 0 )
return - 1/Dipat] * v * g(pat, Vv);
return - V/r - 1/D[pat] * v * g(pat, Vv)};
}
/*******I******t******* RungeKutta (222 R XEZ 2 XS R 2RSSR X2 L 2 dl R B i
* *
* 4th order Runge-Kutta iterative method to solve system: *
* { dv/dxr = V *
* { dv/dr = G(r, v, V) *
* *
* PreCondition: *
* pat - patch index *
* r - radius variable *
* h - 1length of iteration *
* v - wvalue of current v *
* v - value of current V *
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*
PostCondition: *
r - wvalue of r after iteration *

v - value of v after iteration *

v - value of V after iteration *

*

*

P N T
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/

void RungeKutta(int pat, double *r, double h, double *v, double *V)
{

/*** auxilary variables ***/
double k1,k2,k3,k4,11,12,13,14;

/*** iterative ***/

k1 =h * (*V);

11 = h * G( pat, *r, *v, *V );

k2 =h * ( (*V) + 11/2 );

12 = h * G( pat, (*r) + h/2, (*v) + k1/2, (*V) + 11/2 );
k3 =h * ( (*V) + 12/2 );

13 = h * G( pat, (*r) + h/2, (*v}) + k2/2, (*V) + 12/2 );
ki = h * ((*V) + 13);

14 = h * G( pat, (*r) + h, (*v) + k3, (*V) + 13 );

/*** next step ***/

*r += h;

*v += ( k1 + 2*k2 + 2*k3 + k4 )/6;
*V += ( 11 + 2%*12 + 2*13 + 14 )/6;

return;

}

/********t********** RungeKuttaBoundvalue kxR hdehdhiddddiiidhdsin
* *
* PreCondition: *
* *
* dv/dr = V *
* dv/dr = G(r, v, V) *
* *
* with central condition v(0) = CVal *
* k4
* PostCondition: *
* *
* indicate whether underflow, overflow or normal. *
* if iteration is normal, the boundary value *
* of the steady state solution is stored in BVal. *
* *
t**********************************************************************t/

void RungeKuttaBoundValue (double CVal, double *BVal)
{

/*** initial values of the iteration ***/
double wv=CVal,

v=0,

r=R({0];
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/*** index of patches ***/
int pat;

/*** index of iteration ***/

int i;

/*** iterative ***/
for(pat = 1; pat <= PatNum; pat++)

{
/*** jterative in patch with index pat ***/
for(i = 1; 1 <= Steps; i++)
{
/*** values in next step ***/
RungeRutta (pat, &r, H[pat], &v, &V);
/*** case underflow ***/
if( v <= 4)
{
status = TooSml;
return;
}
/*** case overflow ***/
if (v > BigNum)
{
status = TooBig;
return;
}
}
/*** interface between patches ***/
if {pat < PatNum)
{
/*** go to next patch ***/
r = R[pat];
V = V * D[(pat]/D(pat+1];
}
}

/*** case normal ***/
*Bval = v;
status = Normal;

/*************t*********** Centervalue hkkkhrhrhrdhhrhdrhkoxrhhkirxhsk
* *
* determine the central value by binary partition *
* the interval [ MinCapa, Maxcapa ]. *
* *
* detemine length of iteration in each patch. *
* determine MinCapa and MaxCapa. *
* *
* iteration is terminated by the boundary condition, *
* or optimal case of the iteration, or maximum *
* *

partition step.

o
<



* *

1*??****************’k*************t*****************f*********f*****f*?t/

double CenterValue( )
{

/*** index of patch ***/
int pat;

/*** used in binary partition ***/
double CVall;
double CVal2;
double CVal;
double BVal;

/*** initial iterative error ***/
double olderr = BigNum;
double newerr;

int 1 = 0;

/*** calculate step length of iteration in each patch ***/
for( pat = 1; pat <= PatNum; pat++)
{

}

/*** decide the Mincapa and Maxcapa ***/
MinCapa = Capall];

MaxCapa Capalll];

for{ pat = 2; pat <= PatNum; pat++)

H(pat] = ( R[pat] - R[pat - 1] ) / Steps;

if( Capal[pat] > MaxCapa )
MaxCapa = Capa(pat];

if( Capal[pat] < MinCapa)
MinCapa = Capal(patl]:

}

/*** binary partition to determine Center Value ***/
Cvall = MinCapa;

Cval2 = MaxCapa;

do(

Cval = ( CVall + Cval2 ) / 2;

RungeKuttaBoundValue( CVal, &BVal };

if( status == TooBig)
{
Cval2 = Cval;
continue;
}
else if( status == TooSml)
{
CvVall = Cval;
continue;
}
else if( status == Normal)
{

if( BVal > Capa[PatNum])

88
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Cvall2 = CVal;

Cvall Cval;

/*** Error of Boundary Condition ***/
newerr = fabs( BVal - Capa[PatNum] );

/*** meet boundary condition ***/
if ( newerr < Accuracy )

{
break;
}
/*** almost reach the iterative optimal case ***/
/*
if ( fabs( olderr - newerr ) < Accuracy )
{
break;
}
*/
/*** reach the maximum partition ***/
if( ( i++ ) >= MAXPARTITION )
{
break;
}
/*** record the iterative error ***/
olderr = newerr;
} while( 1 );
return CVal;
}
[ERFEIEHEE LT EALN function in Velterra model ool loioholah el ook ookl
* *
* g(x) =r (1 -x/ k) in certain patch *

* *

**************f*********************************************************/

double volterra(int pat, double v)

{
return volterra_r(pat] * ( 1 - v / volterra_k([pat] );
}

/**********f**f*** lnput_volterra—-paraxneter EERTET AT TR L
* *
* input parameters of Volterra model: *
* x*"=rx (1-x/%k) *
* volterra_r ...... r *
* volterra_k ...... k *

[eV
0
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*

*

Calculate capacities of each patch i:
Capal[i] = volterra_k[i]

*

*

*

*t**’**t**'k**t**t**********f*****************t********************ft****/

void input_volterra_parameter ()

{

int pat;

/*** allocate spaces ***/

volterra_r = (double *) calloc( PatNum + 1, sizeof(double)
volterra_k = (double *) calloc( PatNum + 1, sizeof (double)

for( pat = 1; pat <= PatNum; pat++ )

fprintf(stdout, *volterra_r for %d-th patch?
scanf( "$1f*, volterra_r + pat);

fprintf(stdout, ®"volterra_k for %d-th patch?
scanf( "$1f", volterra_k + pat);

/*** capacities ***/
Capa(pat] = volterra_k[pat];

4
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