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Abstract. Rockfall is a complex natural process that can
present risks to the effective operation of infrastructure in
mountainous terrain. Remote sensing tools and techniques
are rapidly becoming the state of the practice in the charac-
terization, monitoring and management of these geohazards.
The aim of this study is to address the methods and impli-
cations of how the dimensions of three-dimensional rock-
fall objects, derived from sequential terrestrial laser scans
(TLSs), are measured. Previous approaches are reviewed,
and two new methods are introduced in an attempt to stan-
dardize the process. The approaches are applied to a set of
synthetic rockfall objects generated in the open-source soft-
ware package Blender. Fifty rockfall events derived from
sequential TLS monitoring in the White Canyon, British
Columbia, Canada, are used to demonstrate the application
of the proposed algorithms. This study illustrates that the
method used to calculate the rockfall dimensions has a sig-
nificant impact on how the shape of a rockfall object is classi-
fied. This has implications for rockfall modelling as the block
shape is known to influence rockfall runout.

1 Introduction

In steep mountainous regions around the world, infrastruc-
ture such as highways and railways may be subject to rock-
fall hazards. A rockfall can be defined as discrete fragments
of rock which have detached from a cliff and subsequently
fall, bounce and roll as the fragments move downslope by
gravity (Hungr et al., 2014). Rockfalls can triggered by sev-
eral factors such as freeze–thaw cycles, weathering, heavy
rainfall, root action, seismicity and others (Volkwein et al.,

2011). High energy and mobility are also characteristics of
rockfalls, making them a major cause of landslide fatalities
(Guzzetti et al., 2004). Moreover, these geohazards can result
in economic losses due to service interruptions and equip-
ment damage.

To assist in the management of these geohazards, a rock-
fall hazard analysis can be undertaken to qualitatively or
quantitatively define the rockfall hazard present along a sec-
tion of linear infrastructure. A typical rockfall hazard analy-
sis involves the compilation of known rockfall events over a
specific spatial scale and within a set period of time (Volk-
wein et al., 2011). Inventories aim to provide a better un-
derstanding about the spatio-temporal occurrence and mag-
nitude of events (Froude and Petley, 2018). Ultimately, tem-
poral trends can be identified from an inventory, which sup-
ports a more systematic mapping of hazards in the region to
help mitigate future losses. It may also be useful to discern
any long-term changes that are projected, as extreme weather
events are expected to increase in both frequency and magni-
tude within a changing climate (Cloutier et al., 2016).

Once an inventory has been assembled, power law distri-
butions have been suggested to characterize the frequency–
magnitude relationship for rockfall at the study slope (Hungr
et al., 1999). Using the rockfall frequency–magnitude rela-
tionship at the study slope, characterized by specific geo-
logical and geomorphological features, return periods for se-
lect volume ranges can be determined (Wieczorek and Jäger,
1996; Hungr et al., 1999; Dussauge et al., 2003; Malamud et
al., 2004).

Remote sensing techniques, such as terrestrial laser scan-
ning (TLS), have been used to characterize and monitor rock-
fall hazards (Abellán et al., 2014; Jaboyedoff et al., 2012;
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Telling et al., 2017). Single epoch TLS scans can be used for
structural characterization of discontinuity orientations (Lato
et al., 2009), the determination of the size and spatial distri-
bution of potentially unstable rock mass volumes (Sturzeneg-
ger et al., 2011), and the back calculation of rockfall vol-
umes based on discontinuity orientations of identified rock-
fall scars (Santana et al., 2012). Work by Lato et al. (2012),
demonstrates how TLS can be integrated into rockfall hazard
assessments along road cuts. Rockfall magnitude, block size
distribution and block shape distribution were measured us-
ing surface models derived from TLS scans. This information
can be directly integrated into rockfall modelling for rockfall
hazard evaluation.

With multi-temporal TLS datasets, change detection algo-
rithms, such as M3C2 (Lague et al., 2013), as an example,
can be used to identify areas of loss on slopes (i.e. rockfall)
between sequential TLS scans. The location, volume and di-
mensions of rockfall on the slope can be calculated and popu-
lated into a database, as demonstrated by Rosser et al. (2007),
Guerin et al. (2014), Tonini and Abellán (2014), van Veen et
al. (2017), Janeras et al. (2017) and Williams et al. (2018).
In several of these studies, smaller magnitude rockfalls have
been identified, which are generally not observed during field
inspections performed from the base of the slope. Further-
more, smaller rockfall events have been shown to bound the
area of larger deforming portions of the slope (Kromer et al.,
2015).

Recent work by Williams et al. (2018) makes use of a
fully automated terrestrial laser scanning system to near-
continuously monitor a section of coastal cliff in the United
Kingdom. With near-real-time processing capabilities, they
demonstrate the influence of temporal acquisition rate on the
calculated frequency–magnitude relationship for rockfall at
the study slope. They demonstrate that more frequent mon-
itoring captures a higher proportion of smaller magnitude
rockfall events, which represents a higher frequency magni-
tude scaling coefficient. However, due to the 2.5-D nature of
the volumetric analysis, smaller magnitude events resulted in
a higher degree of volumetric uncertainty, due to edge effects
compounded when 3-D change maps are converted to 2.5-D
raster datasets.

With the rapid automation of TLS acquisition and
change detection processing workflows (Kromer et al., 2017;
Williams et al., 2018), practitioners are able to evaluate po-
tential rockfall events and their characteristics quickly and
with substantial detail (Abellán et al., 2014). TLS systems are
portable and can be deployed on a tripod as soon as the site
is accessed. There is no need to establish a baseline dataset
as is the case with radar systems, for example (Teza et al.,
2008). In addition, TLS systems can achieve high spatial res-
olution of measurements (Pesci et al., 2011). These strengths
of TLS systems facilitate detailed back analysis of rockfall
events to assess characteristics which can then be used for
ongoing rockfall hazard analysis. With the recent advances
in rockfall modelling with rigid body physics, models can

utilize the exact shape and position of the block detachment
location (Harrap et al., 2019). These cases can be used for
both calibration of the model and development of more repre-
sentative hazard mapping. Preliminary studies of the rockfall
runout with respect to rockfall shape have been conducted
by Glover (2015) and Sala (2018). Both authors found that
the shape of the rockfall object has a pronounced effect on
runout behaviour. This behaviour has direct implications for
rockfall hazard zoning. Therefore, the ability to characterize
the shape of rockfall events is a key component which needs
to be considered in generating rockfall databases from se-
quential TLS scans. A variety of different formulations have
been proposed to measure the shape of rockfalls from point
cloud datasets, which record the before and after failure ge-
ometry. The authors highlight several methods which have
been used in other studies and present two new methodolo-
gies to determine the dimensions of a rockfall object.

1.1 Rockfall shape and dimensions

The quantification of the shape of a rockfall scar can provide
insight into the kinematics of failure and potential runout of
detached material fragments. The use of remote sensing tech-
niques and 3-D change detection algorithms permits extrac-
tion of true rockfall shape, yet limited work has been com-
pleted to quantify shape, despite its pronounced effect on
runout behaviour (Glover, 2015; Sala, 2018). Shape, as noted
by Blott and Pye (2008), is a function of four primary char-
acteristics which include form, roughness, irregularity and
sphericity. Readers are referred to Blott and Pye (2008) for
further details on these characteristics.

In 1958, Sneed and Folk (1958) introduced a ternary di-
agram (Fig. 1a) to describe the shape of pebbles based on
relations between the long (A), intermediate (B) and short
orthogonal axes (C). The three ratios are listed below.

C

A
(1)

A−B

A−C
(2)

B

A
(3)

Based on the three relations described above, particles can be
classified into 10 different shape classes. The end members
of the ternary diagram are compact (cubic), platy (tabular),
and elongated (rod shaped).

In addition to granular particle shape classification, the
Sneed and Folk ternary diagram has been used in rockfall
studies to characterize rockfall dimensions and shape (Ben-
jamin, 2018; van Veen et al., 2017; Williams, 2017). In the
aforementioned studies, the rockfall dimensions were com-
puted using a bounding box approach. A bounding box de-
fines the minimum extents of a cuboid which fully encloses
the set of points defining the object. In this study and the
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Figure 1. Overview of the Sneed and Folk ternary diagram adapted from Blott and Pye (2008). (a) Visual representation of the different
shape forms as defined by Sneed and Folk (1958). Inset diagrams display the divisions for each shape class. (b) Overview of the rounded
synthetic blocks generated using Blender. (c) Overview of the angular blocks generated using Blender.

aforementioned studies, the bounding box is oriented such
that the edges of the calculated box are parallel to Cartesian
coordinate axes.

Currently there is no standardized method to determine the
dimensions of a rockfall object extracted from remote sens-
ing data, such that the rockfall shape can be classified. There
is uncertainty in evaluating both the distance and orientation
of the axis lengths. This uncertainty is compounded by the
fact that there is ambiguity about whether the axis measure-
ments are to be mutually orthogonal or not. In this work, the
authors address these uncertainties and propose standardized
methods to evaluate the dimensions of a rockfall object.

1.2 Objectives

In this work, the authors address the process of extract-
ing information regarding rockfall dimensions from remotely
sensed datasets. The primary objectives of this work are sum-
marized below.

1. Review current approaches used to determine the di-
mensions of 3-D rockfall objects.

2. Present two new approaches for extracting the dimen-
sions from 3-D rockfall objects represented by point
clouds.

3. Apply all of the approaches to a dataset of synthetic 3-D
rockfall objects.

4. Implement the proposed approaches on a rockfall
database derived from terrestrial laser scanning (TLS)
at the White Canyon in the Thompson River valley in
Interior British Columbia, Canada (Fig. 2).

5. Determine which method(s) provide(s) the most accu-
rate measurements of the objects’ three mutually or-
thogonal principal axes.

A rockfall object in this context is defined as a three-
dimensional (3-D) point cloud or mesh that approximates the
geometry and volume of rock that detached from the slope.

www.nat-hazards-earth-syst-sci.net/19/2745/2019/ Nat. Hazards Earth Syst. Sci., 19, 2745–2765, 2019
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Figure 2. Location map of the White Canyon. (a) October 2015 orthophoto of the White Canyon. The White Canyon is delineated by the red
dashed line. (b) July 2016 panoramic photograph from track level looking northeast at the complex morphology of the study slope. (c) July
2016 photograph from track level of the Mt. Lytton batholith. (d) April 2017 photograph displaying the TLS system setup looking at the
study slope from across the Thompson River. (e) February 2018 photograph from track level looking at one of the rock sheds on the eastern
portion of the canyon. The rock shed is 20 m in width.

2 Methodology

The methodology involves applying six different approaches
to measure the geometry of irregularly shaped blocks and
evaluating the output using the range of shapes described
in the Sneed and Folk ternary diagram (Sect. 2.1). Both
synthetically generated (Sect. 2.1) and real rock shapes
were assessed. The methods by which data were collected
and processed for the real rock shapes using both terres-
trial laser scanning (TLS) and structure-from-motion multi-
view-stereo (SfM-MVS) photogrammetry are discussed in

Sect. 2.2. Section 2.3 presents the methodology used to ex-
tract rockfall information from 3-D change detection. Sec-
tion 2.4 describes the six approaches used to extract dimen-
sion information from 3-D point clouds of rockfall shapes.

2.1 Synthetic block dataset

A synthetic block dataset was generated in the open-source
software package Blender (Blender, 2018) using the pro-
cess described by Sala (2018) to generate synthetic blocks
for rockfall simulation. In general, the process involves the
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sculpting of cubic meshes that encompass 1 m3 of volume.
Mesh sculpting in Blender allows for the displacement of
mesh geometries into a variety of different shapes, taking
into consideration block form characteristics, such as angu-
larity. Once a shape has been created, its mesh is subdivided,
increasing the number of vertices on the shape’s surface to
better match the point density which can be achieved from
the TLS data described in the following sections. The mesh
vertices are then exported, creating a synthetic rockfall block
point cloud. Blocks corresponding to each major class in the
Sneed and Folk ternary diagram were created. For each class,
(i.e. platy, elongate, cubic, etc.) a rounded and an angular
version, as defined by Powers (1953), of the block was gen-
erated. Figure 1b displays examples of the blocks used in this
study.

2.2 Remote sensing data acquisition

The following subsections (Sect. 2.2.1 and 2.2.2) outline the
remote sensing techniques that are used in this study to col-
lect point cloud data to define the geometry of real rockfalls.

2.2.1 Terrestrial laser scanning (TLS)

Terrestrial laser scans were taken with an Optech Ilris 3D-
ER terrestrial laser scanner (Fig. 2d). The Optech Ilris has a
manufacturer-specified accuracy of 7 mm in range and 8 mm
in vertical and horizontal directions for data collected from a
distance of 100 m (Optech, 2014). The maximum range for
the Optech Ilris is approximately 800 m with 20 % target re-
flectivity (Pesci et al., 2011).

Due to the complex geometry of the rock slopes in the
White Canyon, several overlapping scans from different van-
tage points were captured to minimize occlusions and to de-
crease the lateral incidence angle in the scans of the slope.
Point spacing for each scan varied between 7 and 10 cm. The
scan site locations are displayed in Fig. 3, along with a time-
line of the scans used in the study. Scans were taken approx-
imately every 2–3 months starting in November 2014. The
last set of TLS scans used in the analysis were taken in De-
cember 2017.

To process the TLS scans, the scans were first parsed us-
ing Optech Parsing software. Once parsed, vegetation, mesh,
and railway infrastructure components such as slide detector
fences were manually removed from the raw point cloud us-
ing PolyWorks PIFEdit. After the point clouds were cleaned,
they were aligned using PolyWorks ImAlign to a common
baseline (November 2014). The alignment process consisted
of a coarse alignment using point picking and then a fine
alignment using an iterative closest point (ICP) algorithm
(Besl and McKay, 1992). Areas of known change on the
slope were excluded from the alignment process to help im-
prove the alignment between sequential scans (Lato et al.,
2015).

Figure 3. Overview of the scan site locations from across the
Thompson River. The timeline across the bottom of the figure in-
dicates the times when TLS scans were captured (green dots).

2.2.2 Structure-from-motion multi-view-stereo
(SfM-MVS) photogrammetry

Structure-from-motion multi-view-stereo (SfM-MVS) pho-
togrammetry models were generated of both White Canyon
East (WCE) and White Canyon West (WCW) (Fig. 4). The
Agisoft PhotoScan Professional V1.3.2 software package
(Agisoft LLC, 2018) was used to create the models. The
models were generated following a typical SfM-MVS pho-
togrammetry processing workflow (Smith et al., 2016; West-
oby et al., 2012).

A Nikon D750 DSLR camera with a Nikkor 50 mm f/1.8
prime lens was used for all image acquisitions. An external
global positioning system (GPS) was attached to the camera
to geotag each photograph. The 282 images used to gener-
ate the White Canyon West (WCW) model were captured
on 30 January 2018. The 452 images used to generate the
White Canyon East (WCE) model were captured on 7 April
2018. Images were captured with approximately 50 % to
60 % overlap.

Each of the SfM-MVS photogrammetry models were
mapped in PhotoScan to delineate the boundaries of bedrock
outcrops and channels to create masks (Fig. 4c). This pro-
cess is described in detail by Jolivet et al. (2015). The pho-
togrammetry models and masks were exported and aligned
to the TLS datasets in CloudCompare for further analysis.
The masks are used in the semi-automated rockfall extrac-
tion process that is described below.

2.3 Rockfall extraction process

In this study, a similar process as utilized by Tonini and Abel-
lán (2014), Carrea et al. (2015), Janeras et al. (2017) and van
Veen et al. (2017) to semi-automatically identify rockfall lo-
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Figure 4. Overview of the SfM-MVS photogrammetry models. (a) Model of White Canyon West (WCW) taken on 30 January 2017.
(b) Model of White Canyon East (WCE) taken on 4 April 2017. (c) Classified model of WCE. The model was remotely mapped in PhotoScan
using a combination of the RGB point cloud and visual inspection of the panoramic photography.

cations and extract information related to the dimensions of
each rockfall event is implemented. A generalized rockfall
extraction process is illustrated in the flow chart in Fig. 5.

The process can be summarized as follows: once the TLS
scans are cleaned and aligned, the process involves comput-
ing the change between sequential scans taken at times A and
B. Distances are computed from A to B and then B to A.
This process determines the front and back of each rockfall
event in each respective scan. A minimum change threshold
is then applied; this threshold is typically based on the cal-
culated limit of detection. The point clouds of the fronts and
backs of all rockfall events are then merged to generate rock-
fall objects. Variants of DBSCAN (Ester et al., 1996) are then
implemented to cluster individual rockfall events which have
occurred between time A and B. The dimensions, volume
and other parameters of each individual rockfall event can

be calculated and then populated into a database for further
analysis.

In this study, to compute the change between sequen-
tial TLS point clouds, the process outlined by Kromer et
al. (2015) is utilized. The distance calculation is very sim-
ilar to M3C2 (Lague et al., 2013), where distances are calcu-
lated along normal vectors defined by slope geometry within
a specified radius from the point. The change is then filtered
based on the limit of detection. The limit of detection (LOD)
can be defined based on the registration error (Abellán et al.,
2014). In this study, the authors take 2 times the standard de-
viation (95 % confidence interval) of the registration error to
define the limit of detection. The LOD equates to approx-
imately 5 cm in the summer months and 7 to 10 cm in the
winter months (i.e. October to February). The higher limit of
detection in the winter months corresponds to a higher stan-
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Figure 5. Structured flow chart of the semi-automated process of
extracting rockfall from sequential TLS scans.

dard deviation in the registration error (alignment). Higher
standard deviations correspond to the winter scans, where
there is generally more humidity in the air and possibly water
on the slope surface, which have been found to influence the
alignment process (Abellán et al., 2014).

Detectable change was then filtered based on the LOD,
to resolve clusters of points that represent the scars (backs)
of rockfall events. This process was repeated, conducting
the change detection in the opposite direction to resolve the
fronts of the rockfall objects. DBSCAN (Ester et al., 1996)
was then used to cluster areas of change. The same param-
eters as van Veen et al. (2017) are used for the DBSCAN
clustering (i.e. search radius of 30 cm and a minimum of 12
points to define a cluster).

To resolve rockfall events as opposed to debris move-
ments, we utilized the masks mapped on the SfM-MVS pho-
togrammetry models. The geometric centroids of each clus-
ter are used to search and find the 10 nearest neighbours
within the mask point cloud. Based on the classification of
the 10 nearest neighbours within the mask point cloud, a vote
is conducted to classify the centroid as either a debris move-

ment or rockfall depending on the mask classification (i.e.
bedrock vs. channel).

2.4 Model fitting

The following subsections present the background for each
of the models used to determine the dimensions of the rock-
fall objects. Each of the approaches were implemented in
MATLAB (Mathworks, 2018).

2.4.1 Bounding box

A bounding box or enclosing box defines the minimum ex-
tents of a box within which all points are contained. In
this study, the bounding box is oriented with the edges of
the calculated box parallel to the Cartesian coordinate axes
(Fig. 6a).

2.4.2 Adjusted bounding box

The adjusted bounding box approach differs from the bound-
ing box approach in that the orientation of the box is not sub-
jected to any constraints. In this study, singular value decom-
position (SVD) (Golub and Loan, 1996) is used to determine
the orientation of the object relative to the principal axes in
Cartesian space. SVD is used because this process can han-
dle any m×n matrix, whereas eigenvalue decomposition can
only be applied to certain classes of square matrices (Golub
and Loan, 1996). The direction of most variance using SVD
is determined and the point cloud is rotated to align with the
direction of maximum variance with the x axis in Cartesian
space. This results in the x axis of the box being aligned with
the longest dimension of the object. A bounding box can then
be calculated for the point cloud (Fig. 6b).

2.4.3 Least-squares ellipsoid

An ellipsoid can be defined as a closed quadric surface that
is the analogue of an ellipse. To fit an ellipsoid to the point
cloud defining a rockfall object, an algebraic form linear-
least-squares ellipsoid fit (Schneider and Eberly, 2003) is im-
plemented. An algebraic fitting model was selected as op-
posed to an orthogonal fitting ellipsoid to reduce computing
time and to benefit from the advantages of solving linear-
least-squares problems (Li and Griffiths, 2004). The algo-
rithm generates a least-squares ellipsoid fit of the input point
cloud (Fig. 6c). Further details on the algorithm and deriva-
tion can be found in Schneider and Eberly (2003).

2.4.4 Minimum bounding sphere

To fit a minimum bounding sphere to the point cloud, Welzl’s
1991 algorithm is implemented. The algorithm computes the
smallest sphere enclosing a set of points in 3-D space in lin-
ear time (Fig. 6d). For further details on the algorithm, read-
ers are referred to Welzl (1991).
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Figure 6. Visual representation of each of the model fitting methods used in the study. (a) Bounding box approach (e.g. van Veen et al., 2017;
Benjamin, 2018; Williams, 2017). (b) Adjusted bounding box approach. (c) Least-squares ellipsoid fit. (d) Minimum bounding sphere fit.
(e) RFSHAPZ approach. (f) RFCYLIN approach.

2.4.5 RFSHAPZ

In this study, the RFSHAPZ (rockfall shape) approach is in-
troduced. The approach can be broken into four main steps:
(1) point cloud preparation, (2) voxelation, (3) distance cal-
culations, and (4) curve fitting. Figure 7 outlines a flowchart
for the process used to determine the dimensions of each
rockfall object.

Point cloud preparation involves translating each rockfall
object so that the object’s geometric centroid is centered at
the origin of a locally defined Cartesian coordinate system.
Once the object is centered at the origin, SVD is used to ro-
tate the object so that the longest dimension is parallel with
the x axis in Cartesian space.

The next step involves generating a voxel grid of the point
cloud. A voxel is a 3-D volume element that represents a nu-
merical value. For this study, the default voxel cube size is
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Figure 7. Structured flow chart of the RFSHAPZ algorithm.

defined as a function of the point spacing. We calculate the
average point spacing of the surfaces that make up the rock-
fall object and then double the value to determine the voxel
size. The size of the voxel is therefore a function of the point
spacing and can be adjusted depending on the rockfall ob-
ject. The voxel grid is used to provide a spatial context for
the rockfall object and allows all points within each voxel to
be stored for further analysis. Once the voxel grid is estab-
lished, for each voxel grid line in the XY and XZ planes, we
calculate the maximum Euclidean distance between points
within populated voxels (Fig. 6e). The calculated distances
are plotted along each grid line. Curves are then fit to each
of the distributions, utilizing a Fourier series fit, a Gaussian
fit and a sum of sines fit. An overview of each of the fitting
methods is provided below.

The Fourier series is a sum of sine and cosine functions
that describes a periodic signal. In this study, we use the
trigonometric form of the series which can be expressed as

y = a0+

n∑
i=1

ai cos(iwx)+ bi sin(iwx), (4)

where a0 is a constant term and is associated with the i = 0
in the cosine term. w represents the fundamental frequency
of the signal, and n is the number of terms in the series. For
this study, n is fixed at a constant value of one.

The Gaussian model fits peaks in a data series and is given
by

y =

n∑
i=1

aie

[
−

(
x−bi

ci

)2
]
, (5)

where a is the amplitude, b is the centroid (location), c is
related to the peak width and n is the number of peaks to fit.
For this study, n is fixed at a value of one.

The last curve fitting function used is the sum of sines
model. This model fits periodic functions and is given by

y =

n∑
i=1

ai sin(bix+ ci) , (6)

where a is the amplitude, b is the frequency and c is the phase
constant for each sine wave term. n defines the number of
terms in the series. This equation is closely related to the
Fourier series described in Eq. (4). The main difference is
that the sum of sines equation includes the phase constant and
does not include a constant (intercept) term. For this study, n

is fixed at a value of one.

2.4.6 RFCYLIN

The last approach introduced and implemented in this study,
RFCYLIN (rockfall cylinders), draws inspiration from the
M3C2 methodology (Lague et al., 2013). The point cloud
preparation is the same as is described for the RFSHAPZ ap-
proach discussed in Sect. 2.4.5.

For all points in the cloud defining the rockfall object, we
calculate the vector and Euclidean distance from each point
to the geometric centroid. The vector is oriented towards the
calculated centroid. A cylinder is then projected from each
point through the geometric centroid of the rockfall object.
The length of the cylinder is set to be greater than the dis-
tance calculated between each point and the geometric cen-
troid. After the cylinder has been projected, points are found
to be within the cylinder. These points are projected on the
vector line, and the maximum distance between all points
through the centroid is determined. This process results in
determining the maximum (longest) dimension of the rock-
fall object.
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Once the maximum distance and vector orientation has
been calculated, orthogonal vectors to the vector of maxi-
mum distance are then calculated through SVD. To do this
step, a plane is projected perpendicular to the vector defining
the maximum dimension. Points defining the rockfall object
are projected onto the plane. SVD is then used to determine
the direction of maximum and minimum variance. These de-
fine the vector orientations of the other axes. Once the ori-
entations of the orthogonal vectors have been determined,
cylinders are projected along each vector to find points which
lie within the cylinder. If no points are found to be within
the cylinder, we incrementally increase the diameter of the
cylinder until points are found to be within the cylinder.
These points are then projected onto the vector line defining
the centerline of the cylinder. The distances between points
along each of the orthogonal vectors are calculated and de-
fine the intermediate and shortest dimensions of the rockfall
object (Fig. 6f). A flowchart outlining this algorithm is dis-
played in Fig. 8.

3 Results

The calculated dimensions of the rockfall objects, using each
of the techniques described in Sect. 2, are tabulated for anal-
ysis. Section 3.1 presents the results from the analysis of the
synthetic block dataset. Section 3.2 presents the results of the
analysis on the rockfall objects extracted from the TLS mon-
itoring in the White Canyon.

3.1 Synthetic block dataset

The dimensions of the 20 synthetic blocks described in
Sect. 2.1 were measured using the six methods outlined in
Sect. 2.4. In addition, independent sets of measurements
were made manually by two different members of the re-
search team.

The calculated dimensions were plotted on Sneed and Folk
ternary diagrams in order to examine the geometric results,
as shown in Fig. 9. The data for the smooth (rounded) and
angular synthetic objects are shown on separate diagrams to
highlight differences in the distribution of these datasets. The
observations made of these datasets include the following.

– The angular synthetic block dataset displayed the
largest spread in the geometry represented by the calcu-
lated dimensions, when compared to the smooth rock-
fall objects.

– The measured dimensions of the very bladed and very
elongate blocks, at the bottom left and right corners of
the ternary diagram respectively, were closely aligned
for all methods and manual measurements.

– The angular compact series (i.e. compact platy, com-
pact bladed and compact elongate) showed the great-
est divergence between the manual measurements and

the automated methods. A number of the methods, in-
cluding the manual measurements, classified the angu-
lar compact-platy block as platy. The methods which
did correctly categorize this shape include the bounding
box, the adjusted bounding box, the RFSHAPZ Gaus-
sian fit and the manual measurements. These measure-
ments, however, are not closely aligned and display sig-
nificant spread between the data points.

– With increasing compactness of the synthetic shapes,
there are challenges with assessing what is the short-
est axis with manual measurements. This effect is com-
pounded with increasing angularity of the rockfall ob-
ject.

– For the angular compact-elongate block, the two manual
measurements incorrectly classify the block as compact
bladed while all of the calculated dimensions classify
the block as compact elongate.

The results of the rounded synthetic block dataset displayed
significantly less spread in the calculated and measured block
dimensions relative to their angular counterparts. Only the
rounded compact-elongate block had classification issues
based on the measured or calculated dimensions. The RF-
CYLIN approach, RFSHAPZ and adjusted bounding box all
classified the block as compact bladed.

In order to analyze the results, the manual measurements
were selected as a basis of comparison with the synthetic
blocks. Figure 10 displays the results for the rounded syn-
thetic blocks, and Fig. 11 presents the results for the angu-
lar set. The bounding box and adjusted bounding box ap-
proaches were excluded from this analysis since they are a
component of the process of how the synthetic blocks were
generated within Blender (Sala, 2018).

Overall, the errors associated with the angular dataset
are an order of magnitude higher than the rounded dataset
(A axis). In addition, none of the calculated fits underesti-
mated the A-axis dimension for both the angular and rounded
datasets. Relative to the rest of the shapes, the platy series
(i.e. compact platy, platy, very platy) showed the highest de-
viations from the manual measurement. Within the angular
data series, errors on the order of 20 cm (∼ 20 %) were re-
ported for the A-axis measurement.

3.2 White Canyon rockfall dataset

The White Canyon (50.266261◦, −121.538943◦), located in
the Thompson Rail Corridor in Interior British Columbia,
Canada, is an operationally challenging rock slope (Fig. 2).
Rockfall and the movement of debris originating from the
steep slopes present hazards to the safe operation of the
Canadian National (CN) rail line, which runs at the base
of the slope adjacent to the Thompson River (Bonneau and
Hutchinson, 2017; Kromer et al., 2015; van Veen et al.,
2017).
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Figure 8. Structured flow chart of the RFCYLIN algorithm.
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Figure 9. Sneed and Folk ternary diagrams separated to highlight
shape classification results. (a) The results of each of the nine
fits for each of the rounded synthetic blocks. (b) The results of
each of the fits for the angular synthetic blocks. BB: bounding
box; BB_ADJ: adjusted bounding box; EL: least-squares ellipsoidal
fit; RFSHAPZ_FOR: RFSHAPZ Fourier fit; RFSHAPZ_GAU: RF-
SHPZ Gaussian fit; RFSHAPZ_SINS: RFSHAPZ sum of sines fit;
RFCYLIN: RFCYLIN fit.

The morphology of the White Canyon is highly complex;
differential erosion has formed a morphology which varies
across the canyon and consists of vertical spires and deeply
incised channels. The active portion of the canyon reaches up
to 500 m in height above the railway track. The canyon spans
approximately 2.2 km between mile 093.1 and 094.6 of the
CN Ashcroft subdivision. A series of short tunnels mark the
entrances to the canyon; a tunnel can be found on either side
of the canyon. A third short tunnel is located in the middle of
the canyon through a ridge which separates the eastern and
western portions of the site.

Two dominant geological units comprise the geology of
the White Canyon. The primary unit is the Lytton Gneiss.
The Lytton Gneiss is a quartzofeldspathic gneiss with am-
phibolite bands, containing massive quartzite, amphibolite
and gabbroic intrusions (Monger, 1985). In the most west-
ern extent of the canyon towards the west tunnel portal is the
other dominant unit, the Mt. Lytton batholith. The Mt. Lyt-
ton batholith is a distinctly red stained unit which is com-
posed of granodiorite with local diorite and gabbro. The red

staining of the rock mass is thought to be a direct result of flu-
ids originating from the weathering of hematite in overlying
mid-Cretaceous continental clastic rocks. Two sets of dykes
have intruded the Lytton Gneiss within the White Canyon.
The first dyke set consists of tonalitic intrusions which are
believed to be related to the emplacement of the Mt. Lyt-
ton batholith (Brown, 1981). The second dyke set is a series
of dioritic intrusions which cross-cut the Lytton Gneiss and
tonalitic dykes. These dioritic intrusions are believed to be
part of the Kingsvale andesites (Brown, 1981).

Analysis of the TLS data collected at the White Canyon
study slope between November 2014 and December 2017 us-
ing the semi-automated rockfall extraction process resulted
in a database of 4960 rockfall events: 2566 events in WCW
and 2394 events in WCE. The centroid of each of the de-
tected rockfalls is displayed in Fig. 12. The data plotted in
this figure display that the spatial distribution of rockfall is
quite varied across the entire canyon. Rockfalls were docu-
mented to occur in all lithologies present in the slope.

A subset of rockfall events were identified and selected
from the overall database for further analysis. The volumes
of the selected rockfalls ranged from 1 up to 130 m3, which
was the largest event recorded during this period. As a first
pass, only events larger than 1 m3 were selected from the full
database. This selection was based on a criterion in CN’s
Rockfall Hazard Rating System (RHRS: Abbott et al., 1998)
which focuses on the rockfall events that are greater than
1 m3. The resulting 160 rockfall events were considered large
enough that a reasonable estimate of their shape could be
made from the point cloud where the data points are spaced
at approximately 7 cm apart. A total of 110 rockfall events
were removed from the subset due to their shapes. It is prob-
able that numerous smaller failures have occurred from that
same location (van Veen et al., 2017; Williams et al., 2018)
during the 3 to 4 months elapsed time between scanning cam-
paigns. The change detection, therefore, will generate the ge-
ometry of an apparent single rockfall which is in fact likely to
be the result of several coalesced smaller events, resulting in
complex, multi-lobed shapes. With more frequent scanning
intervals, the authors would have more confidence that these
rockfalls are single events or multiple coalescing events. The
remaining 50 events were large enough to be of potential im-
pact on the railway infrastructure and were interpreted to be
the result of discrete individual events, based on fairly well
constrained shape, relative to rock mass structure present at
the rockfall source location. Using the six methods outlined
in Sect. 2.4, the dimensions of the 50 blocks were measured.
In addition to the automated measurements, two sets of inde-
pendent manual measurements were also made.

Figure 13 displays the Sneed and Folk ternary diagram for
each model fit applied to the 50 rockfall cases in the White
Canyon. The bounding box approach resulted in a distribu-
tion on the Sneed and Folk ternary diagram that is quite
scattered; however, the overall trend is towards a more cu-
bic shape for all of the measured rockfall objects. All possi-
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Figure 10. Error in dimension measurement for each fit compared to a set of manual measurements for the rounded synthetic blocks. EL:
least-squares ellipsoidal fit; FOUR: RFSHAPZ Fourier fit; GAUSS: RFSHPZ Gaussian fit; SINES: RFSHAPZ sum of sines fit; CYLIN:
RFCYLIN fit.

ble shapes in the Sneed and Folk classification (i.e. compact,
very elongate) are represented by rockfall object shapes as-
sessed using this method.

The results of the other fitting methods and the man-
ual measurements are in stark contrast to the results of the
bounding box approach. None of the other fitting methods or
manual measurements classify any of the 50 rockfall events
as cubic or in the compact series (i.e. compact platy, etc.). All
the other fitting methods and manual measurements trend to-
wards very bladed to very elongate shape classifications and
are distributed across the lower portion of the diagram.

Two rockfall events were isolated from the 50 events to il-
lustrate the complexities inherent in working with real rock-
fall shapes, as well as the variations in the calculated dimen-
sions (Sneed and Folk shape classification) using each of the
methods implemented in the study (Fig. 14). A notch in one
of the rockfalls (Fig. 14a) gives one of the objects more geo-
metric complexity than its counterpart (Fig. 14b). For the ge-
ometrically complex object, the results of the rockfall event
dimension measurements are displayed in Fig. 6. The rock-
fall occurred in the western portion of the White Canyon be-
tween June 2015 and August 2015. The rockfall fell from a
height of approximately 20 m above track level, and a num-
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Figure 11. Error in dimension measurement for each fit compared to a set of manual measurements for the angular synthetic blocks. SPH:
minimum-bounding sphere fit; EL: least-squares ellipsoidal fit; FOUR: RFSHAPZ Fourier fit; GAUSS: RFSHPZ Gaussian fit; SINES:
RFSHAPZ sum of sines fit; CYLIN: RFCYLIN fit.

ber of impact points along the rockfall trajectory were doc-
umented from the change detection analysis. The volume of
the rockfall event was estimated to be approximately 1.7 m3,
and the shape, although complex, is considered to be well
enough constrained that this could be the result of a sin-
gle event that occurred during that 3-month period between
scans. The other rockfall event analyzed (Fig. 14b) occurred
in the eastern portion of the White Canyon between October
2015 and February 2016. This 1 m3 rockfall occurred above
a debris channel in the quartzofeldspathic gneiss host unit.
Based on the orientation and spacing of the discontinuities
in the surrounding rock mass, it is thought that this event is
likely the result of a single event that occurred between the
scan dates.

Five different independent manual measurements of the
dimensions were conducted for both of these rockfall ob-
jects. For the first object (Fig. 14a), all of the manual mea-
surements indicated that the rockfall object is classified as
very bladed. The adjusted bounding box, least-squares ellip-
soid, RFSHAPZ fits and the RFCYLIN approach all resulted
in the rockfall object being classified as very elongate. The
bounding box classified the rockfall object as either compact
platy or platy. The spherical fit, as always, classified the rock-
fall object as compact. This is a direct result of the fact that
all calculated dimensions are equal when using the spherical
fit.

In comparison, the less complex object was classified as
very elongate with all manual measurements and the adjusted
bounding box, least-squares ellipsoid, RFSHAPZ fits and the
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Figure 12. The White Canyon rockfall database. The centroid of each rockfall event is displayed as a red dot on the photogrammetry model.
The blue dots correspond to the 50 rockfall events analyzed in detail. The light green dots correspond to the events analyzed in Fig. 14.
(a) White Canyon West results. (b) White Canyon East results.

RFCYLIN approach. The bounding box approach resulted in
the object being classified as compact bladed, and the spher-
ical fit classified the rockfall object as compact.

In general, when comparing the shape classifications of
the dataset of the 50 rockfall objects to the manual shape
classifications, there were significant differences. When the
automated shape classifications were compared to the Man-
ual 1 and Manual 2 shape classifications, the bounding box-
ing agreed with Manual 1 and Manual 2 in 3 of the 50 cases.
The adjusted bounding box, ellipsoid fit, each of the RF-
SHAPZ fits (Fourier, Gaussian and sum of sines) and RF-
CYLIN agreed with the Manual 1/2 shape classifications in
29/25, 25/29, 29/30, 29/29, 28/30 and 24/29 of the cases,
respectively.

Interestingly, there were only 34 cases where the shape
classifications of the two manual measurements agreed with
one another. Furthermore, there were only 8 cases of the
50 analyzed where both manual measurements matched all
of the automated approaches, excluding the bounding box
and spherical fits. Neither of the two manual classification
datasets aligned with any of the spherical fits.

4 Discussion

The shape or form of an object can be classified by assessing
aspect ratios of major axes. However, it has been noted that
there is no standardized method used to determine axis length
or if the axis measurements should be orthogonal or not. Ad-
ditionally, there is an inherent ambiguity in selecting the geo-
metric axes of a particle (Blott and Pye, 2008). The ambigu-
ity arises with increasing compactness of particles, where all
axes lengths are almost equal. In these situations, it is very
difficult as well as subjective as to how these dimensions are
measured since it is difficult to manually define an orthogo-
nal frame. In this study, the authors have presented and com-
pared six different methods for assessing a rockfall object’s
dimensions and resulting shape. All of the algorithms have
been presented, allowing these approaches to be replicated
for future works. In addition, the authors have created a syn-
thetic dataset of rockfall objects that can be used to assess
new algorithms aimed at determining a rockfall object’s di-
mensions. This synthetic dataset represents a step forward in
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Figure 13. Sneed and Folk ternary diagrams for each of the model fits for the 50 rockfall events that occurred in the White Canyon. The
bar chart at the bottom highlights the percentage of classes for each of the fits. BB: bounding box; BB_ADJ: adjusted bounding box; EL:
least-squares ellipsoidal fit; FOUR: RFSHAPZ Fourier fit; GAUSS: RFSHPZ Gaussian fit; SINES: RFSHAPZ sum of sines fit; RFCYLIN:
RFCYLIN fit.

standardizing methodologies for best practice in generating
remotely sensed rockfall inventories.

The results of this study confirm that the method in which
dimensions are measured results in significantly different
shape classifications. The authors have demonstrated that a
bounding box approach (e.g. van Veen et al., 2017; Ben-
jamin, 2018) can potentially bias the dimension measure-
ments toward a more cubic form, if the orientation of the
longest axis of the rockfall object is not parallel with one
of the major Cartesian axes. If opting for a bounding box

approach to determine the object’s dimensions, the adjusted
approach should be used instead.

A minimum bounding sphere was shown to be highly in-
appropriate for dimension extraction in the cases analyzed in
this work. The approach results in all dimensions of the ob-
ject being equal and every single object being classified as
compact or equant (i.e. A= B = C). This may be valid for
rockfall objects in some narrowly defined geological settings
where equant blocks are released by the slope rock mass. For
example, further work is required to assess the applicability
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Figure 14. Overview of the two rockfall events analyzed in more detail, with manual measurements made by five different people. (a) The
spatial location and shape of the rockfall event in White Canyon West. The red points correspond to the front of the object while the blue
points correspond to the back of the object. (b) The spatial location and shape of the rockfall event in White Canyon East. The red points
correspond to the front of the object while the blue points correspond to the back of the object. (c) The results of the different fitting methods
for the rockfall event shown in panel (a). (d) The results of the different fitting methods for the rockfall event shown in panel (b). BB:
bounding box; BB_ADJ: adjusted bounding box; EL: least-squares ellipsoidal fit.

of the minimum bounding sphere approach to determine the
dimensions of detached and rounded cobbles and boulders
from select horizons of postglacial river terraces (Bonneau
and Hutchinson, 2018, 2019).

In comparison to the other methods, the RFCYLIN ap-
proach introduced in the study is the most computationally
demanding algorithm. The method tries to standardize an
approach to measure dimensions, where each axis is mea-
sured orthogonally to one another after the longest dimen-
sion has been defined. However, occlusions and edge effects
in change detection analysis can result in inaccurate dis-
tance calculations that can compound when trying to quantify
the object’s dimensions. Therefore, while this method most
closely aligns with the definition of measuring three mutually
orthogonal axes, it is sensitive to data occlusions. In compar-
ison to the RFCYLIN, the adjusted bounding box approach
guarantees that the maximum dimensions will be measured.
Therefore, this method is sensitive to outlier points, whereby
the maximum extent of complex geometry is defined using
this approach. The RFSHAPZ approach attempts to bypass
these complications by utilizing curve fitting approaches to
assess the object dimensions when there is non-uniform dis-

tribution of point density. This approach will not result in the
maximum dimensions being selected but rather representa-
tive dimensions based on the input point cloud. In compar-
ison to the other methods, this method is the second most
computationally demanding algorithm. The bounding box
and adjusted bounding boxes are the least computationally
demanding of the presented approaches. The adjusted bound-
ing box is a robust approach that would work well in all envi-
ronments when the input point clouds do not contain outlier
points. When the input point clouds contain a uniform distri-
bution of points, at the cost of some increased computational
time, the RFCYLIN approach remains the closest to the def-
inition of three mutually orthogonal axes based on the input
point cloud.

Automated approaches have several advantages over man-
ually classifying the dimensions of rockfall objects for a
shape analysis. An automated approach removes the subjec-
tivity that could potentially be induced by manually measur-
ing an object. Increasing angularity or complex geometric
features in the shapes can make it increasingly difficult to
define orthogonal measurements for both manual and auto-
mated approaches. In comparison to manual measurements,
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however, an automated approach is repeatable because there
is inherent subjectivity in the manual measurements depend-
ing on the skill and experience of the person doing the work.
In this work, the two independent sets of manual measure-
ments for the White Canyon dataset differed depending on
the complexity of the object. The classification resulting
from the manual methods agreed in only 34 of the 50 ana-
lyzed cases.

In the interpretation of the results, it should be noted that
there are hard cut-offs between the different classes in the
Sneed–Folk diagram. This can lead to circumstances where
the object plots directly on the line between two classes yet
is assigned a single shape class.

Almost all the automated fits attempt to find the maximum
distance in order to define one of the dimensions, except the
RFSHAPZ approach. In comparison to the manual measure-
ments, the measured dimension could be reflective of the
overall dimension as opposed to the maximum. As illustrated
with the case study of the synthetic objects, with increas-
ing angularity and compactness, there is greater difficulty in
defining the shortest axis of the objects. Underestimation of
the shortest axis will result in the objects being classified as
flatter shapes, while overestimation leads to classification in
a more compact class.

Assessing the overall dataset of the 50 rockfall objects
from the White Canyon, the shape classes trend toward very
elongate to very bladed. This is the direct result of the ori-
entations of the joint sets and foliation within the rock mass
which promotes the generation of these shapes. This result
is in contrast to work previously done on this slope by van
Veen et al. (2017), where the rockfall shapes were mostly
cubic: this is a direct result of the bounding box approach
implemented in their study.

The differences in shape classification have direct impli-
cations for rockfall modelling. The size and shape of rock
blocks are vital components when considering and assess-
ing potential runout trajectories. Shape has been noted to af-
fect the degree to which rolling can be sustained for blocks
(Kobayashi et al., 1990). Furthermore, the degree of angular-
ity of a block also has implications for transitions between
translational and rotational motion (Pfeiffer and Bowen,
1989).

Industry standard rockfall modelling software packages
such as RockyFor3D (Dorren, 2016) still use relatively sim-
ple geometric shapes (rectangles, ellipsoids, spheres). There-
fore, if we consider the simulation of a cuboid or rectangular
prism, where the volume can be defined as a product of the
three axes, the measured dimensions directly influence the
volume of the rockfall being simulated. The volume then de-
fines the mass of the object and, as a result, the moment of
inertia.

5 Conclusions

In this study, the authors have demonstrated that the method
used to measure the dimensions of rockfall objects matters.
Depending on the method used, the object’s shape may be
misclassified into non-representative geometric categories.
The classification of shape has implications for the assess-
ment of rockfall hazards when using shape classifications as
input to rockfall modelling. Therefore, it is imperative to se-
lect a robust method that can accurately and efficiently deter-
mine the dimensions of a rockfall object.

As illustrated with the analysis of synthetic blocks, in-
creasing compactness and angularity results in the most dif-
ficulties in measuring the dimensions of a rockfall object. All
automated methods and manual measurements displayed less
scatter for the rounded dataset in comparison to their angu-
lar counterparts. Furthermore, there is a decrease in differ-
ences between the calculated dimensions as the object be-
comes less compact. This is best illustrated with the syn-
thetic very bladed and very elongate blocks. The dimensions
of both the angular and rounded version resulted in minimal
scatter in the calculated dimensions. The differences between
the lengths of the long, intermediate and short axes for these
blocks are quite apparent. Therefore, both the manual and
automated methods can converge on a dimension length and
are not subject to the uncertainties created when there are
similarities in the length of two or three of the axes.

The shapes of real rockfall objects are quite complex, as
displayed with the White Canyon dataset, where the results
of the different axis measuring methods were quite variable.
Angularity, non-uniform point spacing and occlusion in the
rockfall object point clouds results in complications for ex-
tracting dimensions with both manual and automated meth-
ods. From the analysis of 50 rockfall events in the White
Canyon, it appears that the RFSHAPZ method most closely
aligns with the manual measurements (Fig. 13). However, a
comparison between the manual measurements shows that
these measurements are different. The manual method relies
on the user consistently determining a representative length,
as opposed to automated methods which attempt to find the
length of the maximum dimension.

The adjusted bounding box is the most robust approach
presented in this study; however, the results can be sensitive
to outlier points, leading to a potentially significant over esti-
mation of the block volume, particularly for complex objects.
The bounding box approach should not be used in any future
studies. The two methods introduced in this study, RFCYLIN
and RFSHAPZ, were designed to standardize the way in
which the dimensions are measured and work around chal-
lenges such as non-uniform point density and increasing an-
gularity, while staying most closely aligned with the defini-
tion of measuring three mutually orthogonal axes. These two
methods are, however, the most computationally demanding
of all the presented approaches.
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