Also, as it would be impossible to dilute ar'y mixture of gases from any point to the right
of the zone DCEF (such as point G) without the concentration of the mixture passing
through the explosive zone BCE, special dilution techniques and methods (which are
beyond the scope of this work) are required to safely deal with such atmospheres when
detected.

As most of the auxiliary ventilation sysiems studied in this work were the overlap
systems (predominantly the primary forcing system with secondary exk -ust overlap), most
of the mathematical relations developed in this section refer to ov ~'stems with a
main forcing fan . d a secondary exhaust overlap. As the secondary . . .1st overlap was
usualiy mounted on the heading machine, the intake end of the secondary exhaust fan was
constantly within 1 m from the face when the machine is cutting coal. The secondary
exhaust over'ap fan was only switched on when the heading machine was working.
However, when required, these equations may easily be modified to apply to the other
auxiliary ventilation methods.

The efficiency of any auxiliary ventilation system may be calculated from the

following relation:

Air quantity discharged at duct end

Efficiency of Forcing System =
y &5y () Quantity through primary auxiliary fan

x100%

Qi

E; = =L x 100% 4-1)
Qs
From Fig. 4 -1, Qf = o +0O 4-2)
Equation (4 -1) often takes the form:
E f = 9 x 100% (4-3)
O +Q
where Q¢ = Total quantity of air through the primary auxiliary fan at nearest
through cross-cut, m*/s
Q = Quantity of fresh air discharged at the end of the main forcing

ducting, m*/s
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Q = Leakage air quantity through main forcing ducting, m*/s.

When Q, is very small compared to Q;, as in a carefully installed line of new
ducting, the efficiency of the forcing system approaches 100% {Equation (4 - 3)}.

However, as the overlap system is a hybrid of the forcing and exhausting systems,
it is necessary to assess the overall efficiency of the overlap system. Equation (4 - 4) is the

mathematical relation for the Overall Efficiency (E,) of an overlap auxiliary ventilation

system:
Overall Efficiency of Auxiliary System (E,) =
- Quantity reacm?g the face e % 100%
Quantity through the primary av fan
E, = 2 .100% 4-4)
Or
where Q. = Quantity of intake air reaching the face of the working, m/s

One constraint imposed by law on the araount of fresh air that can be drawn by the
auxiliary ventilation system is that the intake quantity (Qr) must not exceed 40% of the
total main ventilating air quantity to the fan (Q,l ) at the last through cross-cut [21]. {i. e.

Qi< 04 xQ, } (See Fir -1},

The foregoing. equcticns were cmpioyed in calculating the efficiencies of the
auxiliary ventilation ~z*ems w: uevelc yment .eadings for the period November 1993 to
August 1994. The resuits are summarized in Appendices B - 1 to B - 11. Figs. 4 - 15 to
4 - 25 are plots of the efficiencies of the auxiliary ventilation systems as a function of time
at the development headings studied.

The mean efficiencies of the forcing systems varied from a low of 48.87% (in
Heading #11) to 96.81% in Heading #20. The mean efficiencies of the overall auxiliary
ventilation systems ranged from 6.04% in Heading #20 to 58.18% in Heading #1. It is
significant to note that while Heading #20 had the best forcing system (96.81%) it also
had the least efficient overall system (6.04%) due primarily to excessive distance of the
discharge end of the intake ducting from the face.
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In Fig. 4 - 15, there was a very good correlation between the efficiencies of the
forcing and overall systems over the period of evaluation as they were virtaally the same.
This meant that all the fresh air supplied by the forcing system reached the face resulting in
the values of the overall system efficiency being almost the same as t! sse of the forcing
system. The efficiencies of the forcing and overall systems improved from about 52% in
November 1993 to 71% in February 1994. The efficiencies of the auxiliary ventilation
system in the heading however deteriorated over the next two months to 45% in April
1994 but took an upward trend in the succeeding months.

The excellent agreement that existed between the efficiencies of the forcing and
overal! systems from December 1993 to May 1994 in Fig. 4 - 15 was broken after June
1994. From Appendix B - 1, the factors that accounted for these variations in the
efficiencies of the auxiliary system can be discemed. Between November 1993 and
January 1994, a 44.76 kW (60 HP) Engart fan was being employed with a new 1070 mm
(42 in.) diameter 590 m long ventilation ducting. The distance from the discharge end of
the intake ducting to the face was reduced from 5 m in November 1993 to 1 m between
December 1993 and March 1994. This meant that all the intake air reached the face and
resulted in the increases in both the forcing and overall efficiencies over the period.

However, between February 1994 and the end of April 1994, the main auxiliary
forcing fan capacity was reduced to 22.38 kW (30 HP). As a result the quantity of air
through the fan dropped to about 30% of the initial quantity supplied by the previous fan.
While the exact fan characteristics cannot be discemed from the data provided, it is
reasonable to assume that under the same operating conditions of the system, the change
in the capacity of the fan may have been largely responsible for the drops in the efficiencies
of the forcing and overlap systems during the period. Increased amounts of leakage
through the ventilation ducting as the ductings aged may have accounted for further drops
in the efficiencies of the systems in the heading over the period.

In May 1994, the capacity of the main auxiliary fan was increased to 55.95 kW (75
HP) and this led to an improvement in the efficiencies of both the forcing and the overall
systems, The overlap system was slightly more efficient than the forcing system between
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May and June 1994. While tte efficiency of the forcing system was improving betwee:
May and July 1994, the overall system efficiency began deteriorating after June 1994 dud
to the fact that the distance from the discharge end of the intake duct (which averaged
m over the previous months) had increased to 12 m and very little fresh air reached th
face.

Wide differences between the efficiencies of the forcing and overall systems, a
evidenced in Figs. 4 - 16 to 4 - 19, 4 - 21 to 4 - 25, were mainly attributable to the lon;
distances from the discharge end of the intake duct (which ranged from 12 to 35 m) to th
face. The worst scenarios were in Figs. 4 - 21 to 4 - 24 where distances from the discharg
end of the intake ductings to the face exceeded 20 m. While the forcing efficiencies i
those headings were generally high (>55%), the overall system efficiencies were lo
(<15%). This meant that the auxiliary ventilation systems in the headings failed to mak
use of the merits of both the main forcing system and that of the secondary exhaustin
system as each system was virtually operating in isolation. Much of the fresh air supplie
by the main auxiliary forcing system did not reach the face (and the intake of the exhau
fan) to effectively clear the contaminants. In Figs. 4 - 23 and 4 - 24, while the forcin
system efficiencies were greater than 58%, the overall system efficienci. » were negligib
(< 7%).

Interestingly, while the duct distance from the face in Heading #11 (Fig. 4 - 2(
was about 8 m over the 6 months’ period, the efficiencies of both the forcing and overs
systems were generally low (< 15%) between March and May 1994. A close examinatic
of the data in Appendix B - 5 indicates that this was apparently due to the change in tt
diameter of the ducting from 1070 mm to 300 mm as all the other variables that normal
affect the efficiency of an auxiliary ventilation system (such as fan capacity, length
ducting, etc.), remained the same over the period.

Significantly, the 22.38 kW fan that was employed in the Heading #11 (Fig. 4 - 2(
with a 1070 mm diameter ventilation ducting in June 1994 had almost the same forcir
and overall efficiencies as the 55.95 kW fan that was employed in July/August 1994 usit

the same diameter ducting. This was presumably due to the increased resistance ai
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possible leakages over the extra length of ducting (175 m) that was added after June 1994.
Increased distances from the discharge end of the man forcing ducting to the face (>11 m)
were principally responsible for the lower efficiencies of the overall system in Fig. 4 - 20
(compared to the forcing system) between June and July 1994.

Fig. 4 - 26 sho ws the distance from the discharge end of the intake ducting to the
face as function of the efficiencies of the forcing and overall systems from 76
measurements at different headings. While the forcing system efficiency is not affected by
distance from the discharge end of the intake ducting to the face, the overall system
efficiency is clearly (as expected) mversely proportional to the distance from the end of -he
ducting to the face. From the trendline, the overall system efficiency is found to be zero at
about 40 m from the face. This means that in auxiliary ventilation systems where the
distance from the end of the intake ducting to the face is in excess of 40 m, it is not likely
that any fresh air will reach the face to dilute and disperse the contaminants. For distances
not exceeding 10 m, the overall system efficiencies are above 45% while overall system
efficiencies above 30% can only be achieved if the distance from the intake ducting to the
face does not exceed 15 m. (See Fig. 4 - 26).

In brief, the foregoing analysis show how the efficiencies of the forcing and overall
systems in an auxiliary ventilation system are largely affected by drivers of the system such
as fan capacity, length, diameter and condition of the ventilation ducting, and especially
the distance of the discharge end of the intake ducting from the face. While it is difficult to
accurately assess all the system efficiencies from the limited data available, it is reasonable
to say that distances from the discharge end of the intake ducting to the face not exceeding
10 m wiil ensure that at least 45% of the intake air reaches the face and that will ensure
good to excellent methane dispersion, dilution and safe removal from the development
headings.

4.3 Methane Liberation and Concentration Buildup Rates
As discussed in Chapter 2, the equilibrium that exists between free methane gas in

the pore spaces and fissures and adsorbed gas on the surfaces of the same pores and
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fissures is disrupted when a mine opening is driven through the strata. The factors that
determine the rate of methane emission into mine openings were detailed.

As it is impossible to prevent the emission of methane and other strata gases into
mine openings, it is prudent 10 adopt ways of not only reducing the amount of methane
gas emitted but also cortolling the methane gas concentrations within safe levels.
Methane drainage in advarce of mining, sealing off mined out or very gassy sections and
areas and dilution by th¢ main or auxiliary ventilation systems are some of the common
methods u¢.d to control the rate of mothane emission into mine openings [4]. The latter is
the most common method employed in coal mines when the methane emission rate is small
to medium as it is more versatile, the least expensive and most effective of the three
options [1]. The other two options become feasible (economically) when the methane
emission rates are high (> 8 m*/t) [4, 13]

Under steady state conditions whers there is no compressibility in the system, the
following constraints are applicable in the calculation of methane buildup rate in a control

volume (G, m’) within a coal mine roadway: G>0; C¢y, 20.

Empioying the law of conservation of mass, mathematical relations can be derived
on the airflow through a region in a space which is defined as the control volume. The
properties of the air are analyzed as it enters and leaves this space called the control
volume.

The methane concentration is defined as the ratio of the rate of methane intake to
that of the fresh air intake into the opening. Assuming instantaneous and thorough mixing
of the gases, the concentration of methane under steady state conditions (assuming that

there is no methane in the normal intake air) may be expressed mathematically as [34]:

c = Metha'ne make .m hcadm.g < 100%
Fresh Air Intake into heading

QCH4

x 100% (4-5)

where C Methane concentration in the heading, percent
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OcH, = Quantity of methane emanating from the strats. m'/s

Q

Quantity of intake air discharged from the end {1 : v:::tilation
ducting, m’/s

It is clear from equation (4 - 5) that the concentration of methane in .- . - entilated
heading (or room) is governed by the methane emission rate and the rate of Jow: of fresh
air into the heading (room). Large fresh air flow rates will normaily result in low methane
concentrations in the heading.

From the continuity equation, the mass flow rate of gases entering the control
surface (Figs. 4 -1 and 4 - 27) must equal the mass flow rate that leaves the control
surface. This is expressed as follows:

M] + Mz = M3 (4 - 6)
ie. p1A1V1 + pzAsz = p3A3V3 (4 - 7)
where M, = Mass flow rate of the intake air, kg/s

M, = Mass flow rate of methane gas (from the strata), kg/s

M; = Mass flow rate of the return air, kg/s

A = Flow area measured normal to the direction of flow direction.

p1, = density of the intake air, kg/m’

p = density of methane gas, kg/m’

P3 = density of the return air, kg/m’

V1, Va,, Vs are the velocities of the intake air, methane gas and return air (nv/s)
respectively.

Applying these equations to the flow situation in Figs. 4 - 1, 4 - 27 and 4 - 28,
assuming that either the density of the air is constant or the density changes are minimal,

equation (4 - 7) may be written as:

P1(Qi+Q) + p2Q0cH, = p3 Q& 4-8)
where Q = Leakage quantity through main auxiliary forcing ducting, m*/s
Since Oy = @;+0; {Seeequation(4-2)}
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M:© AQaCa 4
(Not To Scale) Ml

Fig. 4 - 27 Schematic of the Control Volume where Methane Emissions and Dilution

with Intake Air Occur at the Face of a Heading.

sz’c'i
+ v
QI > Cl QI ’ Cl
.__l_.’ _.3—._>
v Q, C; (leakage) Q, C,
r
Q. G > A(QCH . +Q), C
-
.............................................. QCT
OcH, > CcH,

Ventilated Zone in Heading
Fig. 4 - 28 A Simplified Network Diagram of Flow System at the Face of the
Heading
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equation (4 - 8) simplifies to:

P1Q + p2 Och,

= P3 Qr (4 - 9)

The following equations may also be written'

where

Qr
Cr Qr

O
s

Qi
Qs
Q
Q
Cen,
G
C:

Qi +QcHy + Qi (4-10)
GO +0C +Ccy, Qcn, (4-11)
Or +0, (4-12)
0, +0 (4-13)

Total intake air quantity in main ventilation airstream, m"/s
Quantity of intake air in last through cross-cut wiich does not pass

through the heading, m*/s

Total quantity of air in immediate region on the downstream side of

the last through cross-cut, m’/s

Quantity of air discharged at end of ducting, m*/s

Air quantity through fan, m*/s

Leakage quantity through the main forcing ducting, m*/s
Return air quantity in the heading, m*/s

Concentration of methane emanating from strata

Methane concentration in normal intake air.

Methane concentration in return air, %.

(Cey 4> Ci and C, are expressed on a fractional basis).

From Equations (4 - 6) to (4 - 13) the following relations are obtained:
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Qr C; + CcH,9OCH,
C, (% = 100% (4-14)
(%) [ o +0cn, |
Y Cr"Ci
Ocr, - 1ofo[cc,, _C] @4-15)
4 r

There are several sources of methane emissions in the mine opening. The main
ones are from the walls of the airway (this inc... 2s the working face and the ribs and side
walls of the opening), and from the gc. areas (when the airway is close to worked out
areas). The mathematical model of the dynamics of methane emission from the walis of an
airway is based upon the mass conservation law, and the dilution requirements in a given
volume, G (m®), at the face of Fig. 4 - 1 (under unsteady state conditions) can be

expressed by the following ordinary differential equation [34]:

S - 0.6+06+0en, Con, ~[0cn, +0s +2]C

=QQ+%QO%%+&mF (4 -16)
where G = Volume of mine opening (the control volume), m’®

= Lx A

L = Distance from face to return air methane monitor position, m

A = Cross-sectional area of the roadway, m?

Q = Air quantity through main auxiliary forcing fan, m*/s

C = Concentration of methane within the zone expressed on a

fractional basis

dt = change in time, s.

ac = rate of change in methane concentration ( C) at time t.

Cen, = methane concentration at any time {expressed as fraction)

O, Qch, and Q; are as defined previously.

Rearranging equation (4 - 16) and integrating with respect to elapsed time (t), the

following relationship is obtained:
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Cebst - (ﬂlci +ﬁ2CCH4)x oBat

+1 “4-17)
B3
where 1 = a constant of integration
Or OcH, 9r +9cH,
= —_— , d = 4
B G B2 c = B3 G
Applying the initial conditions: at t, =0, C = C,, then
I =- _,B_ In (/31 G+ B2Cch, — B3 Co) and equation (4 - 17) simplifies to:
3

_ (9!...*.,.9(‘"4 'J,
c - QrC; +09cn,CcH, +lc, - (chi +0cH, CCIL,] ‘e G
Or +QcH, Or +Qcn,
(4-18)

from which 7 can be derived as:

) ) [ G }M[chi +QCH4CCH4"CO(Qf+QCH4):| @~ 19)

Or +dch, QrCi +Qcn, CcH, - C (Qf + Q(‘Ii4)
where t = time elapsed (time for dilution), s
C. = methane concentsation at time t = 0 (expressed as traction)

In the unsteady state, knowing the ventilating quantity, the gas inflow rate, the
initial and final gas concentrations, the time for dilution can be determined from the

following equation [1]:

Och, — 9r Co) (- 20)

= ln
T (Qm “g,C

Where the leakage quantity (Q,) through the ventilation ductings is very small (as in well-
installed ventilation ductings) compared to the inflow rate of fresh air (Q;) into the
heading (i. €. Q << Q;, ), Qi = Q¢ {refer to equation (4 - 2)}. Thus equation (4 - 20) often
assumes the familiar form:
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t = (4-21)

G h{QCH,, —@COJ
O \ ey, -GC

4.3.1 Rate of Purging

To determine the rate of decrease in the concentration of a contaminant (in this
case methane gas) over a period of time by some fixed rate of ventilation, {assuming that
the methane emission rate is very smail compared to the vi sme flow rate of the intake air
into the heading (Ocyy, << ()} equation (4 - 21) is often further simplified to [35]:

- ()

In the steady state condition, a prevalent condition in dilution [1], where thorough
mixing of the gases is assumed and time for dilution is very long, (t - ), equation
(4 - 18) simplifies to:

Cey,-C
_CH_"_J (4 -23)
c-G

As the concentration of methane emanating from the strata (Ccy, ) is assumed to be pure

Q = Qcm(

(100%), equation (4 - 23) becomes [36]:

o = O, (—é—}g—) (4-24)

where O, Ocy, . Ccn,,C, C; are as previously defined.
Equations (4 - 6) to (4 - 24) were employed in calculating the methane emission
rates in the headings studied. The results are given in Appendices C, D and E. The

concentration of methane emanating from strata (Cy, ) was assumed to be 100% in the

calculations. The methane concentration in the normal intake air (C; ), was taken as
0.15% for Mine No. 3 and 0.10% for Mine No. 8 (being the averages of the methane
concentrations in the general body of mine air calculated from previous ventilation

surveys).
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Figs. 4 - 29 to 4 -31 are graphs of methane emission rates as a function of time at
Heading Nos. 9, 10 and 11 respectively. In Fig. 4 - 30, there are some zones of negative
emission rates. These may be attributed to either the fact that some of the methane was
adsorbed or absorbed by the surrounding walls or that due to the movements and relative
positions of the heading machine, men and other equipment at the face, some of the fresh
air was deflected during times of the shift directly on to the methane monitor at the face
resulting in it recording far lower methane concentrations than outbye. Characteristically,
these graphs correlate very well in time with those of Figures 4 - 3 to 4 - 8. The average
methane emission rates from Headings 3, 5, 8, 9, 10 and 11 (discounting the negative
values) were calculated to be 0.0072, 0.0293, 0.0338, 0.00510, 0.00170 and 0.00150 m'/s
respectively (Figs. 4 - 29 to 4 - 31 and Appendix F - 1). These values are far lower than
the average emission rates of the top 25 coal mines in the U.S. (See Table 2 - 6) but abaut
the same as the emission rates of the civil engineering tunnels spread throughout five

states in the U. S. as stated on page 32.

4.3.2 Design of Auxiliary Ventilation Systems

As the response times of most methane measuring, monitoring and flammable gas
warning devices and instruments range from 10 to 15 seconds (when the shield is clean)
and up to 25 seconds or more (when the shield is either dirty or wet) [37], after which the
face equipment is de-energized almost instantaneously, it means that these instruments will
only be able to display a reading of the methane concentration in the ambient air or give an
audible warning sign and de-energize any electrical equipment at the face when a pre-set
concentration of methane (such as the lower legislative limit of methane) has been
exceeded for about one-half minute. It is highly probable that a higher methane
concentration level could occur before any warning sign is given by the monitor. As it is
safer to err on the generous side, it is necessary to design the auxiliary ventilation
system in any heading such that the methane concentrations can be purged to safe levels in

about one minute.
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The effectiveness of an auxiliary ventilation system in thi. work is understood to
mean the ability of the system to control and maintain the concentration of a contaminant
(such as methane) within acceptable levels in a heading atd how quickly it can dilute
(purge) the concentration of the contaminant from one level to another. Very effective
auxiliary ventilation systems in coal mines are those that can maintain the methane
concentration within acceptable limits and are able to cope with and purge high levels of
methane concentration to statutory levels within a very short time (< 1 min.) as well as
meet the requirements of exigencies (such as large and abnormal methsne emission rates).

In the determination of the dilution requirements for a heading or roadway, some
researchers [15] recommend that the peak values of the methane concentration reached
during cutting be used as the initial methane concentration [C, in equations (4 - 21) and
(4 -22)] which has to be diluted to the statutory levels. This often leads to the calculation
and design of auxiliary ventilation systems with excessive capacities culminating in
unwarranted ventilation costs (since cost of power is directly proportional to the cube of
the quantities of air supplied).

In this work, two different purging scenarios were considered in assessing the
efficiencies and effectiveness of the various auxiliary ventilation systems:

Condition 1: The methane gas emanating from the strata is considered to be pure (100%)
in concentration by volume and the concentration of methane in the return
air is taken as that registered by the methane monitor in the return (outbye).

Condition 2: The methane gas concentration at the face is taken as that registered by the
monitor at the face and the concentration of methane in the return air taken
as that recorded by the return air monitor.

The times to dilute the concentration of the methane in the headings from one
concentration to the other under the stated conditions were investigated. Also the
quantities of fresh air required to purge the methane concentrations under Conditions |
and 2 within 1 minute in the various headings studied were also calculated (Appendices
C.,DandE).
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The efficiencies of the auxiliary ventilation systems in the headings under the
foregoing conditions were then calculated by finding the ratio of the quantities of fresh air
supplied to the heading (under the present conditions) to that which would nave been
required to dilute the methane concentration to the set levels within one minute (assuming
thorrugh mixing of the gases). Details are contained in Appendices C to E.

Figs. 4 - 32 to 4 - 34 are graphs of purging times while Figs. 4 - 35 to 4 - 37 show
the required quantities to dilute the methane concentrations within the stated limits in
Conditions 1 and 2 at Heading Nos. 9 to 11 respectively. In Heading Nos. 9 and 11, the
actual purging quantities were about the same as that required under Condition 2 (See
Figs. 4 - 35 and Fig. 4 - 37). This means that in those headings the quantities of fresh air
supplied was adequate for purging methane concentrations to set levels in cases of
exigencies. In Heading #10 however, the actual quantity supplied was far below that
required under Conditions 1 and 2 (Fig. 4 - 36).

Figs 4 - 38 to 4 - 40 depict the variation of the purging efficiencies of the auxiliary
systems with time at Heading Nos. 9 to 11. The average purging times under the two
conditions at Heading Nos. 9 to 11 are given in Table 4 - 1 while the required quantities of
air to purge the mcthane concentration from onc level to the other within one minute

under Conditions | and 2 are summarized in Table 4 - 2.

Table4-1 Calculated Purging Times at Various Headings Under Conditions 1

and 2
Heading No. Condition 1 Condition 2
Average Average
(min.) (min.)
9 3.84 1.92
10 | 7.90 3.09
11 4.24 1.46
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From the results in Table 4 - 1, the average purging times in Condition 1 varied
from 3.84 minutes ip Heading #9 to 7.90 minutes in Heading #10. In Condition 2, the
average purging times in the headings ranged from 1.46 minutes in Heading #11 to 3.09
minutes in Heading #10.

Table 4-2 Required Purging Quantities to Dilute Methane Concentrations to

Various Levels in One Minute

Heading Conditior - Conditien 2 Actual
No. . Quantity
Average Average
(m%s) (m?s) (m’/s)
9 26.03 7.35 6.77
10 27.97 10.95 3.54
11 19.38 5.43 457

From Table 4 - 2, the required purging quantities are much higher in Condition 1 in
all headings because the methane gas is diluted over a much wider range in concentration
than in Condition 2.

4.4  Tracer Gas based Auxiliary Ventilation Surveys

In addition to the air quantity and air velocity measurements that were done by
mears of traditional anemometry, pitot tubes and smoke cloud methods, tracer gas based
techniques were also employed in the evaluation of the auxiliary ventilation sysiems in
selected development headings. Tracer gas based techniques have been used extensively in
the study and evaluation of mine ventilation systems ranging from leakages and
recirculation through gobs, pressure-volume surveys, fan testing, shaft and ventilation
raise surveys [38], air transit time through large-scale mine networks and air exchange

rates in indirectly ventilated headings [39] to mention a few. Tracer gas methods are
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superior to traditional methods in accuracy and versatility in application in irregular,
inaccessible or highly turbulent flow situations, geometricelly complicated and highly
obstructed mine openings {38].

Numerous organic or inorganic substances like nitrous oxide, helium, carbon
dioxide, the freons (freon-12 and freon-13B) and radioactive gases have been used as
tracer gases but the predominant one has been sulphur hexafluoride (SF¢) gas. The tracer
gas is usually mixed with the ventilation airstream in order to trace and study the progress
of the airstream through a mine network. The assumption is that there is thorough mixing
of the tracer gas and the airstream and they behave aerodynamically in an amalogous
manner.

Unlike most other chemical and radioactive tracers, which are readily absorbed on
the surfaces of the mine openings, are difficult to handle, are not easily detectable at low
concentrations and their use may be a health risk to workers, SF; is a colorless, odorless,
chemically and thermally stable compound which is easily transportable and detectable at
very low concentrations (a few parts per trillion range) but most importantly, does not

normally occur in the mine environment [38, 39].

4.4.1 Tracer Gas Techniques
All tracer gas techniques employ three basic operations [39]:
1. Trace: gas release.
2. Gas sampling,

3. Tracer gas analysis.

N Tracer Gas Release Methods

There are two main tracer gas release methods employed in mine ventilation
surveys [9, 39]:

a) Steady release methods and

b) Pulse-release methods.
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In the steady state release method, the tracer gas is released continuously at a
constant volume i.ow rate at the release point and individual air samples are taken at
various locations downstream where the tracer gas is believed to be uniformly mixed with
the airstream. The concentration of the tracer gas in the air samples is later determined by

gas analysis (described in a later section). The volume of air flow is determined from the

simple equation [9, 40]:
R .
0 = =x1000 (4 - 25)
C
where Q = volume flow rate of air at measuring point, m*/s
R = volume flow rate of tracer gas, cc/s
C = concentravion of tracer gas in the sample, in parts per billion (ppb)

The premise of equation (4 - 25) is that there are no losses of the tracer gas
between the point of release and the sampling points.

In the pulse-release method, a known mass of the tracer gas is released
instantaneously into the airstream at the release point and air samples are taken at frequent
intervals downstream at various measuring points over a period of time until the
concentration of the tracer gas in the airstream is negligible [9, 39]. Profiles of tie
concentration of tracer gas as a function of time at the various measuring points are then
plotted and the area under the curve is determined and used in calculating the ventilation
parameters. The quantity of air flowing through any point in the mine airway is given by:

M

0 = v (4 - 26)
where Q = volume flow rate of air through section, m*/s

M = Mass of tracer gas released into airstream, kg

o = the density of the tracer gas, kg/m’

A = Area under the curve (in seconds).

The difference in mass of the “lecture” bottie that contains the tracer gas before
and after it is released into the airstream gives the mass of tracer gas released into the

airstream in equation (4 -26).
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2 Tracer Gas Sampling Techniques

Mine air samples are routinely collected for analysis using a variety of metal, glass
and plastic containers [39, 40]. The most common containers employed in collecting grab
air samples in routine tracer gas measurements underground are 30 or 60 cc plastic
disposable syringes, Tedlar sampling bags and 10 cc vacuum tubes (similar to those used
to extract blood samples). Samples taken in these containers can be easily extracted and
laboratory tests have indicated that the tracer gas concentrations remain stable for periods
ranging from 24 hours in the plastic syringes to 10 days i1 the vacuum tubes [38, 39].

The number of tracer gas samples taken during any tracer gas test is determined
mainly by the type of test and the prevailing conditions in the section [39]. The sampling
intervals are chosen as to give a well-defined response profile in the plots of the tracer gas
concentration versus time at each location (particularly if the pulse-release method is being

employed).

3 Techniques in Tracer Gas Analysis

Several techniques have been employed by research and analytical laboratories in
the analysis of tracer gas samples. However tracer gas samples are mainly analyzed by gas
chromatography combined with electron capture detectors [39, 41]. These systems are

capable of analyzing SFs concentration from 50 parts per trillion to 5 parts per million
[38].

4.4.2 Application of Tracer Techniques in Present Study

Tracer gas techniques were employed in this work with the ordinary light bulb test
to determine the decay rate of the SFs gas in the face of the heading and interpreting this
to indicate the rate of dilution of methane produced at the face to set levels (assuming that
the SFs simulates the behavior of methane) and in the determination of air flow rates
through ventilation ductings, resistances, leakages and other auxiliary ventilation
parameters and system efficiencies (flume fests) in the auxiliary ventilation systems
studied.
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1 Airflow Measurements in Auxiliary Ventilation Systems

In order to assess the volumetric flow rates through certain portions of the
ventilation ducting in the development headings in this study, pitot tubes were employed
because traditional anemometric techniques were found to be either inapplicable or
unsuitable due to the high degree of imaccuracies resulting from the high level of
turbulence, complicated geometry or imaccessibility to the zones. Thus tracer gas
techniques, which have been used extensively with satisfactory results in many mines
under different veutilation conditions [38], were employed to study the auxiliary
ventilation systems in some of the headings covered in this work.

Volumetric flow rate measurements (also referred to as flume tests) were done by
injecting a steady stream of SF; into the center of the main auxiliary ventilation ducting at
selected distances [usually at 61 m (200 £t) intervals] along the length of the ducting in the
heading. The precisely regulated tracer gas streams were rapidly and thoroughly mixed
with the airstream within the ducting. The release rate during the survey was usually
measured at the ambient mine air conditions by means of a soap bubble flowmeter before
and cross-checked at the end of the volumetric flow tests [31]. Samples of the air
discharged at the end of the duciing were taken with 30 cc disposable syringes at suitable
intervals (15 to 30 seconds) over predetermined jatervals. Injections of the tracer gas into
the ducting proceeded from the discharge end of the ducting towards the main auxiliary
ventilation fan. Concentrations of the tracer gas iﬂ the airstream are assumed to be
uniform about 50 m downstream from the point of injection [38]. By means of a pitot tube
and either a water gauge or a magnehelic pressure gauge, the static pressure heads at the
points of the ducting (where SFs gas injections were done), were measured. The ambient
temperatures of the mine air were also measured and recorded.

At the end of the tests, the air samples were sent up to the laboratory and analyzed
within 24 hours by gas chromatography utilizing an electron capture detector. From the
chromatographically determined concentrations of the tracer gas samples (usually stated in
parts per billion) from the flume tests, the volumetric flow rates at the various points along

the auxiliary ventilation ductings were calculated using equation (4 - 25) [See Table 4 - 3].
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Table 4 -3 Auxiliary Ventilation Survey at Heading #9 (August 30, 1994)

No. Run Time SFs conc. Average SFs | Air Quantity
(hr:min:s) (ppb) conc. (C, ppb) (m’/s)
1 45 11:11:00 264
2 46 11:11:30 264 264.67 2.58
3 47 11:12:00 266
4 48 11:22:00 237
5 49 11:22:30 239 238.67 2.87
6 50 11:23:00 240
7 51 11:32:00 161
8 52 11:32:30 161 161.67 4.23
9 53 11:33:00 163
10 36 11:42:00 156
11 57 11:42:30 157 156.67 437
12 58 11:43:00 157
13 59 11:53:00 140
14 60 11:53:30 140 140.00 4.89
15 61 11:54:00 140
16 62 12:03:00 131
17 63 12:03:30 131 131.00 5.22
18 64 12:04:00 131
19 66 12:18:00 94
20 67 12:18:30 94 94.00 7.28
21 68 12:19:00 94
22 69 12:34.00 79
23 70 12:34.30 79 79.00 8.66
24 71 12:35:00 79
Rate of SFs release 0.684 (41.00
(R cc/s) cc/min)
Q (m’s) | R/C 684/SFs

Equipped with the volume flow rates, the pressure gauge readings as well as the
temperature of the ambient mine air, other auxiliary ventilation parameters such as the
static pressure losses, resistance of the ventilation ducting per given length, the amount of
leakages between the various points along the ducting, and the efficiency of the systems
were calculated using zvailable mine ventilation software such as AVSURVEY.BAS [31].
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Table 4 - 4 shows the type of measurements done during the flume tests at
Heading # 9 on August 30, 1994 while Table 4 - 5 gives the numerical output from the
auxiliary ventilation survey.

Tabled4 -4 Auiiliary Ventilation Flume Test at Heading #9

Distance | Distance Static Air Air
Sample | Location from from Fan | Pressure | Quantity | Quantity
Nos. Fan
(m) ®) (mWg) | () (cfm)
22-24 | 820" 0 0 15.2 8.66 18342
19 - 21 1020 200 656 10.7 7.28 15419
16 - 18 1220 400 1312 6.0 5.22 11056
13-15 1420 600 1969 43 4.89 10357
10-12 1620 800 2625 2.7 4.36 9234
7-9 1820 1000 328i 2.0 4,25 9002
4-6 2020 1200 . 3937 1.2 2.86 6057
1-3 2220 1400 4593 0.8 2.58 5464
2414* 1594 5229
* End of Duct # Fan location

From the flume tests the amount of leakage that occurs in the auxiliary ventilation
ductings can be quantified and the efficiencies of the overall systems calculated. The
overall efficiency of the system from the flume test was calculated to be about 29%, which
falls within the range of 20.63% to 73.45% in overall efficiencies calculated over the
period December 1993 to August 1994 for Heading #9 (See Appendix B - 7 and Fig.
4 - 18) and discussed in depth earlier on in Section 4.2.2. The values given in Appendix
B - 7 are however generally higher than that obtained from the flume test because the
amount of leakage ‘(Ql) in the ductings could not be quantified and was assumed to be
negligible in the calculations using equations (4 - 3) and (4 - 4).
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Figs. 4 - 41 to 4 - 46 are plots of air quantity, static pressure, leakages and
leakage resistance, etc., of auxiliary ventilation ducting with distance at Heading #9. A
number of observations on the system performance may be made from these plots.

In Figs. 4 - 41 and 4 - 42 the zones of maximum decrease in air flow rates and
static pressure gradients indicate areas of high air leakages. For example, in Fig. 4 - 41
the length of the ducting from the main auxiliary forcing fan to a distance of about 400 m
showed substantial drops in air quantity from about 8.66 to 5.22 m’/s and from
¥ig. 4 - 42, this led to a drop in static pressure from 3.78 kPa to 1.49 kPa (more than
50% drop in the original static pressure over a distance of only 400 m). This suggested
that there was quite a substantial amount of air leakage through the auxiliary ventilation
ducting within that zone. This suspicion is confirmed by the high values in the columns of
the histogram between 200 and 400 m in Fig. 4 - 43. Fig. 4 - 41 also indicates another
zone of high leakages at a distance of about 1000 to 1200 m from the fan. This is again
confirmed by the high column at the 1200 m mark in Fig. 4 - 43.

The fact that high amounts of leakages in any ventilation system lead to drastic
static pressure losses in the system is confirmed by the high columns in the histogram in
Fig. 4 - 44 within 400 m from the fan. Figs. 4 - 45 and 4 - 46 indicate that areas of high
leakages have little or no resistance to the flow of air and hence the leakage resistances of
the ducting in zones of profuse leakages are usually very low (points 200 to 400 m from
fan and also at 1200 m from the fan in Figs. 4 - 45 and 4 - 46).

The foregoing discussion on the graphs generatcd Som the results of the flume
tests in auxiliary ventilation ductings and the observations that can be made from them can
assist the ventilation engineer to easily lncate problem areas along the ventilation ducting
in headings (which are often very long) and take remedial action on them to improve the
efficiency of the air supply and distribution system in the heading and to improve the
safety and working conditions in such headings.
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Fig. 4 - 44 Variation of Pressure Loss along Auxiliary Ventilation
Ducting at Heading #9

L

LI

E"—]L

AR

' 1200.00

(8g) sso] danssaag

129

400 600 800 1000 1200 1400
Distance from Main Auxiliary Forcing Fan (m)

200

0



(w) uey Sunso] ArelIXny UIR W4} ddue)si(

00r1 0021 0001 008 009 oo¥ 007 0
I. .’ y q“ (lt&tll. 0
000$
w
00001 2.
&
000s1 5
S
00007 o
=
000S2 m
—1 oooos E
{1 1]
000s€
sz
ms
000sP
0000S

6# Suipeaq e dUESI YHM Suyong
UOBE[PUIA AIBI[IXNY JO DUL)SISIY JO UOHBLIBA Sp - ¥ “SIA

130



00r1

(w) uej FunI0) ALBIIXNY UIRJA] WO due)si(q

0071 0001 008 009 (1] 4 007 0

B

L Il 1 1
_ - K - . — . I

6# SuIpedy
jB U WoJj due)si(] pue uPON( UOHE[PUIA AIBI[IXNY

JO UE)SISIY IFeed| uIMIq digsuocyeR 9¢ - ¢ "1

(W/,SN) due)sisay ABeqed ]

AR EEEE RN

131



2 Methane Concentration Dilution Rate Test by means of Tracer Gas in

a Light Bulb

Tracer gas based techniques were also employed to determine the rate of dilution
of methane gas in development headings. This involved methods of measuring the rate of
decay in the concentration of SFs with time in the headings. This was done by injecting
pure (100%) SFs into a standard size light bulb (= 125 ml in volume) in the laboratory.
Before the tests were conducted two samples of the air in the development heading were
taken to give the background values. When cutting of coal was proceeding at the face
leading to an increase in concentration of the methane at the face, the light bulb was
thrown against the coal at the face. This action broke the light bulb and released a pocket
of SF; into the mine air at the face. Air sampling, by means of 30 cc plastic syringes, was
done at the end of the control volume (about 60 m from the face) at i5 seconds intervals
in the first two minutes and at 30 to 60 seconds intervals after that. Sampling of the mine
air was done until the concentration of the SF in the air is presumed to be negligible. The
temperature and pressure of the air in the heading were also taken. The air samples were
later sent up to the laboratory and analyzed by methods described earlier on.

In this test, it was assumed that under the ventilation conditions at the face of the
heading, the time to dilute and disperse a pocket of SF¢ at the face to negligible
concentrations closely represents the dilution of a pocket of methane at the face to certain
safe concentrations (assuming that the SFs simulates the behavior of methane in the
heading).

The following relation is used to determine the decay rate of the tracer gas (hence

the air exchange rate, A) in the heading [39]:

a2 = 1 m(ﬂ) (4-27)
t Cl
where C, = tracer concentrat ‘on at time t, , in ppb
C, = tracer concentration at time t;, seconds
t = time interval between t,and t, (i. e. t, - to), seconds

By making t in equation (4 - 27) the subject of the equation, we obtain:
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1 E.o_) )
- ln(cl (4 -28)

Equation (4 - 27) may also be expressed as:

InC, = InCy—~ At (4-29)
Equations (4 - 28) and (4 - 29) may then be employed to calculate the time required for
any concentration of gas to be Ailuted from one level to the other.

Figs. 4 - 47 to 4 - 49 are plots of the decay profiles of SFs at Headings $ to 11
(data given in Appendix G - 1). Figs. 4 - 50 to 4 - 52 show the natural logarithm profiles
of the tracer gas decay rates in Headings 9 to 11. In Fig. 4 - 47, the concentration of the
tracer gas was negligible after about 240 seconds (4 min.), while those in Figs. 4 - 48 and
4 - 49 were 480 seconds each.

For accurate determination of the purging times, two separate approaches may be
employed:

1. Where the methane concentrations are kmown, the first approach involves
determining the gradient of the log concentration-time graphs in Figs. 4 - 50 to
4 - 52, and inserting these together with the concentrations of methane at times t
and t, into equation (4 - 28) [39].

2. Where the methane concentrations are not known, it is required to find the
gradient of the log concentration-time graphs as well as the point of intersection on
the ordinate axis (log axis). By plugging these values into equation (4 - 29) and
solving for the time, t, when C; = 0 or equal to the background concentration of
SFs, the purging time for the SF¢ (hence that of methane gas in the heading) is
obtained.

As the methane concentrations were measured (known) in this study, the first approach

was used in the determination of the purging times of the methane in the headings studied.
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The gradients of the log concentration-time plots (A) in Figs. 4 - 50 to 4 - 52 were found
and plugged, together with the methane concentrations at the face and in the retumn air,

into equation (4 - 28) and the purging times of the methane gas within the control volumes
in the headings were determined. As an example, the gradient of the log concentration-

time plot in Fig. 4 - 50 is about 0.0138, the average concentration of the methane gas in
the retumm air (C,) in Heading #9 was 0.26% by volume (Appendix D - 11) and the
concentration of methane emanating from the strata (C,) assumed to be 100%. Putting

these values into equation (4 - 28) the following was obtained:

B 0.01133 ln(o.olzs)

= 264.33 s (4.4]1 minutes).
In the same way the purging times of the methare at Headings 10 and 11 were also
calculated to be 7.61 and 4.66 minutes respectively.

Assuming that the decay rate of the SFs simulates that of methane, the auxiliary
ventilation systems in Headings 9 to 11 effectively dispersed and diluted any pockets of
SFs concentration at the face to negligible levels in 4.41, 7.61 and 4.66 minutes
respectively. From Graham’s Law of Diffusion of gases (refer to equation 2 - 13),
methane gas (s. g. = 0.55), which is much lighter, is expected to diffuse at a faster rate
(about 3 times faster) than SF (specific gravity of 5.11 relative to air). Table 4 - 6 shows
the average purging times obtained from the empirical relations under Conditions 1 and 2
in Section 4.3.1 and those obtained from the tracer gas decay tests in Heading Nos. 9 to
11.

Comparing the purging times obtained from the tracer gas tests with those
obtained from the empirical calculations, it can be observed that the raw tracer gas test
values correlate much better 'with the values obtained under Condition 1 (which involved
the assumption that the metiane emanating from the strata is pure in concentration by
volume and it is diluted by the auxiliary ventilation system within the control volume to
the return air concentration which was taken as that registered by th: monitor in the

return air) than with those under Condition 2.
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Table 4 - 6 Comparison of Average Purging Times from Empirical Calculations

with those from Tracer Gas Tess.

Empirical Calculations Tracer Gas (SF) Test
Heading | Condition 1 Condition 2 Adjusted for
No. Time (min.) Time (min.) | Time (min.) | Methane Diffusion
rate (min.)
9 3.84 1.92 4.41 1.39
10 7.90 3.09 7.61 240
11 4.24 1.46 4.66 1.47

However when adjusted for the faster diffusion rate of methane relative to air, the adjusted
values correlate well with those in Condition 2 (See columms 3 and 5 in Table 4 - 6). Due
to the turbulence that usually exist in the airflow within the headings, the gases are

thoroughly mixed together and thus the specific gravity of the mine air varies from 0.55

to 1.53 (often close to 1.0) [32]. It is therefore reasonable to take the close correlation

between the raw values of purging times obtained from the SFs gas as more representative

of the actual purging situation than the adjusted values.

The following observations may be made from the results of the tests on the effects

of dilution on the decay rate of tracer gas in the three headings in this study:

L.

The tests on the decay rate of SFs in a heading may be safely and reliably
used to estimate the purging times of methane gas in development
headings.

The tests confirm the theory (assumption) that the methane emanating from
the strata is pure in concentration by volume.

The values from the tracer tests agree quite well with the results of purging
times obtained from calculations using empilical relations in Section 4.3.1.

This is so inspite of the ::amerous assumptions made in this work in the
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calculations using empirical equations and the possible (unavoidable)
experimental errors in the tests.

4, The auxiliary ventilation systems were quite effective in diluting and
dispersing the methane concentrations to safe levels in less than 8 minutes
within the control volumes in the three headings.

4.43 Methane Layering in Headings

In Section 2.3.6, the factors that determine methane layering in development
headings were discussed. Tests were conducted within the control volumes in the headings
during this work to determine whether there were any methane gas accumulations and
stratified layers in the development headings studied and the areas where they were likely
to occur.

The tests were conducted using handheld methanometers attached to probes. Small
suction pumps were attached to the methanometers to draw the ambient air through the
probe into the methanometers. Readings were taken within 1 cm from the roof and sides
every 10 m along the drive starting from the face. Test positions were the roof, the fioor
and mid-point samples (left hand side, right hand side and center) as well as the general
body sample. Fig. 4 - 53 shows the cross-section of a typical development heading in
which the numbers indicate the test positions. Table 4 - 7 shows sample readings made at
Heading # 10. The general body methane concentrations averaged 0.3%.

From volumetric flow measurements done in Heading #10, the air velocity at the
face and at 10 m from the face were 0.15 and 0.28 mV/s respectively. The heading was
4.8 m wide and 2.6 m high. The average methane emission rate calculated for Heading
#10 (See Appendix E) was 1.7 x 10° m®s. Substituting these values into equation
(2 - 14), the Methane Layering Number (N;) at the face and at 10 m from the face are 1.2
and 2.2 respectively. These iayering numbers in Heading #10 are far below the average
value of 5 required '+ indica‘« +..  ence of layering. This means that layering is likely to

oc N ":.w:'_) heading'
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Fig. 4 - 53 Cross-Section of a Typical Development Heading Showing Positions of

Measurements for Methane Layering.

Furthermore, froin Table 4 - 7, it is clear from the methane concentrations that
there was some likelihood of methane layering in Heading #10 as the average
concentrations of methane in the sections near the roof (positions 2 to 4) was 0.4%. While
this value is not appreciably higher than the general body methane concentration of 0.3%,
it does indicate the possibility of methane layering. However, it must be emphasized that
detection of methane layering requires more sophisticated instruments for probing areas
closer to the roofs than were available for use in this work. The tests done in this study
may be taken only as an indication and methane layering in the headings was not detected
by the available instrumentation. This area requires more detailed investigation in the
future.
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Table 4-7  Results of Tests On Methane Layering at Heading #10

Distance from Om 10 m 20m 30m 40m | SOm | 60m
Face.

Position # 1 0.4 0.3 0.4 04 0.3 0.2 0.2
Position # 2 0.5 0.4 04 0.5 0.4 0.3 0.2
Position # 3 0.4 0.5 0.4 04 0.4 0.5 0.3
Position # 4 0.4 0.3 0.5 0.4 0.3 0.3 0.3
Position # 5 0.3 0.3 0.4 0.2 0.3 0.4 0.2
Position # 6 0.3 0.2 0.3 0.3 9.3 0.4 0.2
Position # 7 0.6 0.4 0.5 65 | 64 | 03 | 0.2
Position # 8 0.3 04 0.4 03 0.3 0.2 0.2
Position # 9 0.2 0.3 0.3 0.2 0.3 0.2 0.2
Position # 10 0.3 0.2 0.2 0.3 0.3 0.2 0.2
Position # 11 0.3 0.3 0.2 0.3 0.2 0.2 0.2
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Chapter Five

OBSERVATIONS, CONCLUSIONS AND RECOMMENDATIONS
OBSERVATIONS

From the tests, analysis and discussions reported in preceding sections, the

following observations may be made:

1.

The predominant auxiliary ventilation method employed by the mines studied in
North America is primary forcing ystem with a secondary exhaust overlap.
Methan~ concentrations recorded by methane monitors at the face were about
80% higher than those recorded at about 60 m outbye in the return air in headings.
Face methane concentrations varied within wider limits than those in the return air.
The methane concentrations within the heading (particularly those at the face)
were either abnormally high or showed gradually increasing trends during the shift
when there was a problem with the auxiliary ventilation system in the heading
(such as a break in the intake ducting of the auxiliary ventilation system, duct
discharge end being too far from the face, etc.).

Differences between the methane concentrations at the face and in the return are a
function of the efficiencies of the auxiliary ventilation system and the methane
emission rates.

Average methane concentrations at the face and in the return air were less than
0.4% when the distance from the discharge end of the intake ducting to the face

was less than 12 m.
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10.

The dominant drivers of the system in auxiliary ventilation systems (arranged in
order of importance), were distance from discharge end of ducting to the face, fan
capacity, diameter and condition of the ventilation ducting. From the analysis, it
was observed that generally auxiliary ventilation systems in which the discharge
end of the intake ducting was in excess of 10 m had low system efficiencies and
longer purging times to disperse and dilute the methane concentration to safe
levels.

Tracer gas based techniques employed in assessing the performance parameters
(such as volume flow rates and static pressure losses through ductings, methane
concentration decay rates in headings, etc.), gave quick and reliable results in this
work and collaborated the results of traditional anemometric surveys as well as
those from empirical calculations. For example, the purging times for methane gas
in development roadways calculated from empirical relations correlated well with
those obtained from tracer gas tests within some selected headings. Purging times
were less than 8 minutes in all the headings studied.

Tracer gas tests show that the methane emanating from the coal seams and
mirrounding strata is pure (100%) in concentration by volume.

Tracer gas tests on auxiliary ventilation systems, such as the flume tests, are
superior to traditional methods of auxiliary ventilation surveys and it is possible to
quantify the amount of leakage, the volume flow rates through sections of the

auxiliary ventilation ducting, pressure losses, etc.
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12.

13.

14.

5.2

The efficiencies of the auxiliary ventilation systems studied had forcing system
efficiencies ranging from 48.87% to 96.61% while the overall system efficiencies
varied from 6.04% to 58.18%.

The average quantities of fresh air required to disperse, dilute and remove methane
concentrations within set levels under Conditions 1 and 2 within one minute varied
from a minimum of 7.35 m%s in Heading #9 (Condition 2) to 27.97 m’/s in
Heading #10 (Condition 1).

The efficiencies of the auxiliary ventilat.on systems under those conditions varied
from 12.83 to 138.75%.

Tests for methane layering in headings indicated the likelihood of layering. The

layering numbers calculated averaged 2.

CONCLUSIONS

From the analysis and observations made in this study it can be concluded that:

The substantially higher concentrations of methane gas recorded at the face
compared with the return (outbye) air confirm the theory that a larger portion of
the methane emitted from the coal seams and strata within the heading takes place
at the face cutting area alone.

The higher methane concentrations recorded during cutting periods of coal than in
roofbolting and other operations also confirms the theory that communition of coal

increases the liberation rate of methane gas into mine workings.
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Narrow differences between the methane concentrations at the face and retum air
and increasing trends in the methane concentration during a shift are indicators of a
general problem with the auxiliary ventilation systems.

Distances from the discharge end of the primary intake ducting to the face is a
stronger driver of auxiliary ventilation system performance than the other
parameters like fan capacity, ducting diameter, length and condition, etc. Distances
from the discharge end of the primary intake ducting to the face not exceeding 10
m, will generally ensure safe levels of methane concentration within the heading
(£ 0.4%), faster purging rates of the methane at the face (< 8 min.) and efficiencies
of the forcing and overall auxiliary ventilation systems in excess of 45%.

Tracer gas based techniques in auxiliary ventilation surveys gave quick, reliable,
accurate and collaborative results to other tests and calculations done in this study.
In empirical calculations on methane eriission rates, dilution requirements, purging
times of contaminants, etc., in auxiliary ventilation surveys, it is reasonable to
assume that the methane concentration emanating from the strata and coal seams
is pure (100%) in concentration by volume.

The forcing efficiencies of the auxiliary systems in the headings studied ranged
from good to excellent while the overall system efficiencies varied from poor to
good.

Required amounts of fresh air presently supplied to headings studied ranged from
12 to 26% of the quantities required to purge methane concentrations to safe

levels within one minute under Condition 1 and 32 to 139% under Condition 2.
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10.

5.3

Most of the auxiliary ventilation systems are capable of controlling the methane
concentratious within statutory levels but may not be able to cope with large and
unusual methane makes in the headings.

The low layering numbers calculated (~ 2) indicated that layering was likely to

occur in the headings studied.

RECOMMENDATIONS

From the foregoing analysis, observations and conclusions, the following

recommendations are made:

a)

b)

The primary forcing sys.em with a secondary exhaust auxiliary ventilation system
presently being employed in operating mines be maintsined 2s these meet the
ventilation requirements in the dispersal, dilution and safe remeval of methane gas
in the headings studied.

That the discharge end of the intake ductings be, as much as practicable, kept
within 10 m from the working face to ensure that at least 45% of the intake air
reaches the face for methane disp<rsal and dilution.

Tracer gas based techniques be employed in auxiliary ventilation surveys as they
give faster, more :ccurate and reliable results than traditional m - .ods of auxiliar)
ventilation surveys. Besides the results obtained from such surveys may easily be

used to quickly loc::= and rectify problem arcas in the auxiliary ventilation system.
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d)

Mine managements should strive to maintain the efficiencies of the overall auxiliary
ventilation systems above 45% to ensure safe methane concentrations in the
roadways.

Funding be provided for studies into methane gas layering in the headings as the
present instruments are not capable of detecting very thin layers of methane near
the roof and sides of the headings.

Finally, there is a great opportunity for co-operation between industry and research
institutions such as the Universities in researching into and finding solutions to
most of the ventilation, safety and health problems encountered in mine

environments underground.
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APPENDIX B

AUXILIARY VENTILATION SYSTEM EFFICIENCIES AT

DIFFERENT HEADINGS
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ABSTRACT

Mining at greater depths and the mechanization of most underground miuing operations
have led to the produ " igher concentrations of gases and other contaminants.
Potentially dangerous conditions often occur at distant development faces where coal 1s
being cut due to the inability of the main ventilation systems to dilute the methane
concentrations to safe levels. Auxiliary ventilation systems are employed in development
headings to control methane gas concentrations within safe limits.

The results of this study on auxiliary ventilation systems in selected coal mines in
North America, show that distances from the end of the primary intake ducting to the face
not exceeding 10 m will ensure safe methane concentration levels (< 0.4%) within
headings, faster purging times of the methane concentration at the face (< 8 min.) and
efficiencies of the auxiliary ventilation systens above 45%; measurements made in some

headings indicated the likelihood of methane layering.
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Chapter One

INTRODUCTION
1.1 BACKGROUND

Ventilation systems are employed .. .cate safe and acceptable working conditions for
men and equipment in underground mines. The problems in mine ventilation systems
continue to escalate with increasing mining depths and mechanization as well as with the
different types of strata encountered underground. As mining depletes near-surface
reserver, there is the need to go deeper to evaluate, develop and to open up new reserves
for mining. Consequently, most working places and faces are continually being advanced
away from the shafts and the air stream from the main ventilation systems reaching these
workings is often insufficient, ineffective or inadequate [1].

As most of the gas emissions and contaminant levels are higher in areas where new
coal or rock is being worked, gas concentrations and contaminant levels could easily reach
high, explosive and unacceptable levels within a very short time if not properly diluted and
dispersed by the mine ventilation systems.

Auxiliary ventilation methods are employed to supply fresh, uncontarzinated (and
in some cases conditioned) air in sufficient quantities to such dead-end working places to
control gas levels and create safe working environments there. In underground coal mines,
methane gas and coal dust are the main contaminants encountered. Methane gas, which is
very explosive at concentrations ranging from 5 to 15% by volume in air [2], has to be

closely monitored at all times in all active workings. Over 10% of all underground



fatalities in coal mines have been attributed to methane gas explosions alone [3]. As a
result of the huge losscs in lives, equipment and property in these explosions, mine
managements have employed various ventilation systems to control and maintain the
concentrations of methane gas at appreved levels well below the lower explosive limit of
59% in air and to create safe working conditions as required by Federal, State or Provincial
Government laws [1]. It was found necessary to study the mode of occurrence of methane
gas in large coal mine roadways and assess the effectiveness of auxiliary ventilation
systems in development drivages in the dispersion of methane gas. These workings were
chosen for study because they are often of considerable length and distance from the
existing main ventilation air streams; are advanced at faster rates giving rise to greater
methane emission rates and contain more mining equipment concentrated in workings
which have limited cross-sectional area. Consequently, methane concentrations in such
areas can easily reach high le. els within a very short time.

The term dispersion, as used in this study, refers to the control and dilution of
methane concentration within safe levels and its removal from mine workings. Also large
auxiliary ventilated mine roadways in this context refer to all mine development headings

with cross-sectional areas greater than 10 m’.

1.2 OBJECTIVES
The objectives of this study were to:
1) evaluate the types of auxiliary ventilation systems which are presently employed in

selected operating coal mines in North America.



2)

3)

4)

5)

6)

7

1.3

assess the methods employed by the mines in dealing with methane gas and other
noxious and explosive gases in mine roadways or devclopment headings.
investigate the mechanisms by which methane gas is stored in the coal and
surrounding strata, is emitted into the mine openings and how it collects in the roof
and other high elevations in mine development headings.

determine how the existing ventilation systems affect the layering
structure/mechanism of methane gas in development headings.

determine how methane gas accumulations and stratified layers can be safely
diluted and dispersed by the auxiliary ventilation systems.

identify how the existing auxiliary ventilation systems can be improved or modified
to prevent the possible accumulation and/oi layering of methane and to achieve its
dilution to safe levels and safe removal from the mine work.ngs.

conduct a detailed analysis of the various auxiliary ventilation systems to assess

their efficiencies and effectiveness in controlling methane gas in roadways.

METHODOLOGY

This study was primarily concerned with auxiliary ventilation methods employed in

coal mines in North America to create safe working environments and to meet various

Provincial, State and Federal laws on safety and health in the mines.

It covered all aspects of environmental monitoring in auxiliary ventilated mine

roadways and involved pressure, volume, temperature measurements of the mine air as

well as the monitoring of methane concentrations in some selected operating development



headings by means of continuous methane measuring instruments (CSEs) and handheld
methanometers. Studies were conducted purely on the existing setups of the auxiliary
ventilation systems of the mines. Due to the high costs that would result in interruptions to
the mine operations, no attempt was made to alter or modify any of the systems for
experimentation. Due to the limited number of adequate and reliable continuous methane
monitoring instruments available, it was not possible to monitor the concentrations of
methane at more than two stations simuii~:sously. Where necessary, handheld
methanometers were used to monitor methane concentrations at intermediate locations in
the headings.

All analysis and calculations were based solely on the information gathered from
either the questionnaires circulated to operating coal mines or from field measurements
conducted during mine visits.

Although very much related to methane as a main contaminant in coal mines, coal
dust is not treated in this study. Also, the work does not cover the main ventilation
methods employed in the mines, the methods employed in dealing with mine dust and
other atmospheric contaminants encountered underground or sudden outbursts of methane

gas.



Chapter Two
MINE GASES

2.1 ATMOSPHERIC AIR

Atmospheric air consists basically of Oxygen, Nitrogen, Carbon Dioxide, Argon
and other rare gases and some amount of water vapor (ranging from a fraction of 1% up
to 6%) [4]. These constitute the natural air on the surface of the earth. Table 2 - 1 gives

the chemical composition of atmospheric air at sea level.

Table2-1 Chemical Composition of Atmospheric Air (at sea level).

Gas % by Volume % by Weight
Oxygen (O.) 20.95 23.13

Carbon Dioxide (CO,) 0.03 00s
Nitrogen (N2) 78.09 7555 |
Argon & other Rare gases 0.93 1.27

Source: Hartman (1982)

22 MINE AIR

Mine air, which is the air found in underground workings, comprises three main
components which are atmospheric air, noxious or explosive gases and dead air. Mine
gases either occur naturally or artificially.

Fig. 2 - 1 is a schematic diagram of the main components of mine air and Table
2 - 2 gives the maximum allowable concentrations of mine gases [1, 5].

Toxic gases are those that are dangerous to the human body if breathed in
sufficient concentrations for a sufficient time. They may be asphyxiating, irritating or
poisonous to human or animal tissues. Asphyxiating gases may be simple or chemical [4].
Simple asphyxiating gases such as carbon dioxide, nitrogen and methane have no specific



toxic effect but tend to exclude oxygen from the lungs. High methane emissions involve
risks of suffocation and explosion.

Carbon monoxide is a typical chemical asphyxiating gas, =s its higher affinity for
the hemoglobin of ti.e blood (up . - .!50 times that of oxygen) makes it combine readily
with the hemoglobin thus suppressing the oxygen carrying capacity of the blood.

Irritating gases such as nitric oxide, nitrogen dioxide, hydrogen sulphide, partially
oxidized hydrocarbons (like aldehydes) and sulphur dioxide [4] induce inflammation in the
sensory organs or tissues of the body such as the skin, the eyes and membranes of the

respiratory tract when they coine into contact with them.

Oxygen

] Atmospheric Air |1 Carbon Dioxide
Nitrogen

Rare Gases

Carbon Monoxide
Hydrogen
Hydrogen Sulphide

Toxic, Noxious Methane
Mine Air  [[W™] or Explosive Gases | ___g,| Sulphur Dioxide
Oxides of Nitrogen

Radioactive gases
(e. g. radon) in
Uranium mines

Dead Air . Nitrogen (conc. > 78.09%)
> Carbon Dioxide (conc. > 0.03%)

Fig. 2-1 Schematic Diagram of Main Components of Mine Air



Gases like nitric oxide, hydrogen sulphide and sulphur dioxide are not only irritant
but also very poisonous and generally destroy the tissues with which they come into
contact.

Explosive gases are those which in suificient concentrations in air and under
favorable conditions can be easily ignited by sparks, flames or any source of heat.
Methane, carbon monoxide, hydrogen and hydrogen sulphide gases are explosive within

certain ranges of their concentrations in air (Table 2 - 2).

Table2-2 Maximum Allowable Concentrations of Xine Gases

Specific Maximum Allowable Fatal Point
Gas Gravity | Concentration (MAC) | (Explosive Limit)
(air=1) (%) (%)
Hydrogen (H;) 0.07 0.8 (4 - 74%)
Methane (CH,) 0.55 1.0 or 1.25 (5 - 15%)
Nitrogen (N,) 0.97 78.9 -
Carbon Monoxide (CO) 0.97 0.005 0.04
(50 ppm) (12.5 - 74.2%)
Oxygen (0) 1.11 19.5 (minimum) 6 (minimum)
Hydrogen Sulphide (H,S) 1.19 0.001 0.1
(10 ppm) (4 - 44%)
Carbon Dioxide (CO) 1.53 0.5 1.5
Nitrogen Oxides (NOy) 1.59 0.0025 - 0.0035 0.005
(25 - 35 ppm)
Sulphur Dioxide (SO-) 2.26 0.0005 0.1
(5 ppm)
Radon 7.67 1 WL* -
Ethane (C;Hs) 1.05 0.3 (3-125)
Propane (C-Hs) 1.55 0.4 (2.1-9.35)

Source: Anon. (1980)
{* 1 WL = Working Level (where 1 WL is defined as the concentration of radon-
daughter products in a liter of air that will yield 1.3 x 10’ million electron volts (MEV) of
alpha energy in decaying through radium C’)}

7



Toxic, poisonous or explosive gases originate from the strata being mined, from
the method of mining such as cutting, blasting and other mine machinery employed
underground or from unscheduled occurrences like mine fires [1, 6].

Dead air (sometimes referred to as blackdamp) comprises carbon dioxide and
nitrogen gases in quantities in excess of their normal concentrations in atmospheric air.

Of all the gases in mine air only oxygen supports life and combustion.

23 METHANE GAS

Methanc gas, the main contaminating gas found in coal mines, is a colorless,
odorless, tasteless gas which is highly explosive at concentrations ranging from 5 to 15%
in air. The maximum explosibility of methane occurs at 9.6% by volume concentration [2].
However, the explosive limits are generally altered if the mixture contains higher rank
hydrocarbons such as ethane, propane, etc., resulting in the widening of the range of
explosibility [7]. It has a specific gravity of 0.55 relative to air and is therefore commonly
found in the roofs and other high elevations of mine workings.

When mixed with other gases it is commonly referred to as firedamp. Firedamp
comprises methane gas (~95%) and small quantities of carbon dioxide, nitrogen, hydrogen
sulphide, carbon monoxide and some hydrogen. It may also contain traces of heavier
gases of the paraffin series (ethane, propane, butane, etc.) but in special deposits which
are close to natural gas fields, oil bearing shales or sands, the percentage of these paraffin
gases could be as high as 30% [71.

Methane is a product of the coalification of coal [8]. The very large quantities of
methane generally released during the working of coal seams are a pointer to the fact that
the gas is stored in coal and its associated strata over a very long time [9]. While generally
thought of in relationship to coal and other carbonaceous rocks, methane gas is also
associated with other minerals which include apatite, arsenic, copper, diamond, gold, iron,
trona, potash, limestone, oil shale and salt mines; with rocks types su.h as limestones,

granites, gneisses, mudstones, pegmatites, shales and quartzites [1,10] as these rocks or



the surrounding strata contain some carbonaceous material. The coalification process is

shown schematically in Figure 2 - 2.

Vegetation (Vegeial Material)

'

Peat

!

Lignite

!

Sub-bituminous Coal

!

Bituminous Coal

Y

Anthracite

v

Grapbhite

Fig.2-2 Coalification Process of Coal

The peat forming process involves biochemical reactions (diagenesis), bituminous
and higher rank coal pass through a geochemical (thermogenic or catagenic) stage (8].
The coalification process from peat through anthracite generates large volumes of methane

gas together with some small amounts of carbon dioxide and nitrogen. Up to 38 m’/tonne

9



(1350 f%ton) of biogenic methane could be generated from wood to low rank lignite
while from high volatile bituminous to anthracite rank could gemerate in excess of 283
m*/tonne (10,000 ft’/ton) of methane gas [11]. Depending on the conditions, nature of the
strata and depth below surface under which the methane is produced, large amounts may
be lost to the atmosphere. However, some of the methane generated is stored in the coal
beds by the process of sorption [2, 8].

The process of sorption is sub-divided into four classes [2] as Absorption,
Adsorption, Persorption and Chemisorption. Figure 2 - 3 is a schematic diagram of the

classes in the sorption process.

REVERSIBLE IRREVERSIBLE
ABSORPTION PERSORPTION
SORPTION
ADSORPTION CHEMISORPTION
Fig.2-3 Schematic Diagram of Classes in Sorption Process
(Source: Curl, 1978)

Absorption describes a uniform penetration of one substance into the molecular
structure of another. Adsorption is the surface effect whereby one substance is physically
held to the surface of another. Persorption, on the other hand, is an extremely effective
but irreversible absorption of a gas by a solid with the formation of an almost molecular
mixture of two substances. Chemisorption is an irreversible adsorption process where the
substance is held to a surface by chemical force. As methane gas is not re-generated from
the processes of chemisorption and persorption, they are not relevant when considering

methane and coal in the context of methane gas prediction in coal mines {2]. However the
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differences between adsorption and absorption are vital in the prediction of methane gas
from coal seams.

Methane is retained or stored in coal in two different ways [2, 12, 13, 14]:

1. As free gas compressed in the pores, fissures, cleats and fractures which

are almost always present in the coal.

2. As adsorbed gas on the microscopic surfaces of cos’ as well as in the

micropores.

At very high pressures, methane dissolves to a considerable extent in the free water
that may exist in the cleats and fractures of a coal seam [6]. When this water enters the
mine openings at lower pressures, the dissolved gas is released from the water into the
adjacent air.

Methane exists as free gas in the pore spaces and fissures in coal at equilibrium

with the adsorbed gas on the surfaces of the same pores and fissures. There is a constant

interchange of molecules between the free gas and the adsorbed gas phase [2].

2.3.1 Free Gas
The amount of free gas in the pores, fractures, cleats and joints of a coal seam may

be calculated with the equation [4, 7]:

P 273
C, = ¢Ex—'1"_ m/t @2-1
where C, = free gas in pores, m’/t
$ = rock porosity, m*/t
P = absolute prescure of gas, } ™1
P, = absolute atmospheric pressure (101.3 kPa)
T = absolute temperature, K

2.3.2 Adsorbed Gas
By the process of adsorption large volumes of methane gas are retained on the

surfaces of the coal [8]. The process of adsorption is a reversible, physical phenomenon
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(the reverse form of adsorption being desorption). At moderate pressures, the amount of

adsorbed gas may be described by Langmuir’s equation [4, 7] of the type:

KP
¢ =¢C ( (2-2)
1+ KP
where C, = Quantity of gas adsorbed at a pressure P, m’/t
P = absolute gas pressure, kPa
C = Langmuir’s constant representing the quantity of methane gas

adsorbed as pressure — oo, m’/tonne

K = Langmuir’s constant with dimensions of (1/P)

The Langmuir constants C and K are dependent upon the nature of the gas,
noisture content, temperature, the rank of the coal and the nature of the adsorbent surface
[4].

Fig. 2 - 4 shows that at the same equilibrium pressure, the quantity of gas adsorbed
decreases with increasing temperature and is dependent on the type of coal [2]. The nature
of the gas is known to play some role in the adsorption process. At a given partial pressure
and temperature, carbon dioxide is much more readily adsorbed than methane which in
tumn is more readily adsorbed than nitrogen. Fig. 2 - 5 shows the variation of methane
adsorption with coal rank while Fig. 2 - 6 shows that at the same equilibrium pressure, the
quantity of gas adsorbed decreases with increasing temperature depending on the type of
coal [7]. The adsorption capacity of coal is highly dependent on the moisture content as
expressed in the following equation [7, 12}

o _ 1

= —— 2-3)
O, 1+031y
where Q. = gas content of moist coal, ni’/tonne
Q = gas content of dry coal, m*/tonne
Y = moisture content, %

Fig. 2 - 7 shows the influence of moisture content on the adsorption of methane on coal.
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Fig,2 -5  Variation of Methane Isotherm with Coal Rank at 0°C
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Fig. 2-6  Variation of Adsorption Capacity with Temperature and rank at

10 Atmospheres. [Source: Curl, (1978)]
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It has been found that at a critic:l « alue of y (= 5%), saturation occurs and no further drop
in gas adsorption rate occurs. This may be due to the fact that the value of the moisture
content is related to the oxygen content of the coal and begins to play a key role in the
adsorption capacity of the coal above the critical value of about 5%. The critical moisture
content may be calculated from the following equation [12]:

(0.05 x, - 0.083)
025 (1- 05X, - 0.083)

2-4)

where X, = oxygen content of the coal, %

Absorption of methane by coal is not widely considered in the literature to play
any significant role in the flow of methane from coal during mining operations as it is very
small compared to that in the adsorbed state and can only be liberated into the mine
workings from heating or chemical treatment.

A larger proportion (up to 95%) of the methane in coal seams is considered to be
in the adsorbed state on the intemnal surface of the coal in a monomolecular layer [12, 13].
The high gas adsorption rate of methane is due to the very large intemal surface area of
coal {estimated to range between 20 and 200 m*/g) [2, 3].

The amount of gas contained in coal seams is related to a number of factors which
include {3, 12}

1) the porosity of the rock.

2) the permeability of the rock.

3} tir tocal geologic features in the area (presence or absence of cleats, faults,

folding, dip, etc.).

4} the cummive of the strata.

55 the dey. & below surface.

6) <he, mmsieve content of the coal or strata.

7) tice ¢:bient temperature.

The me s o as that i -ncountered during the mining process is partly made up
of desorbed 52 and th- 3¢ gas contained in the pores and fissures of the coal and
surrounding strasi.. The process of desorption may be expressed by the equation [4, 14):
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) = é’%—) ~ ‘Hl—ew(_4§Dt)} @2-5)

where Q(0) = Quantity of gas (m’) which can be liberated between pressure P,
and the atmospheric pressure P, (P, < P;), after an infinite time P,
being the prevailing pressure of gas at the particular depth.

e = the degree of desorption after time t

) = Quantity of gas (m®) which can be liberated between pressure P,
and atmospheric pressure Py, after time (t) when pressure changes
quickly from P, to P,

t = time in seconds

D = diffusion coefficient, cm?/s

d = Equivalent particle diameter (cm) = 6AV

where V = particle volume, m®
A, = Surface area, m’

For methane gas, D = 107"° cm%s

2

), equation (2 - 5) simplifies to:
nD

Whentissmall(ie ¢ <

_q(?) . 12 [Dt 12Dt

Ow) dVz 4 2-6)

where r = degree of methane desorption.
At start of desorption while r(t) in equation ( 2 - 5) remains below 25% and since
D and d are both constants for a given sample, equation (2 - 6) simpiifies to:

a0) ]
o) k, t 2-7

because Dt is much smaller than JE (D <1 and t is small)
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where k; = 2_4_@ .12 b
V n d \rn

Thus for very short periods of time, the rate of d<sorption is proportional to the
square root of the time. Equation (2 - 7) is widely used in Europe while in the United
Kingdom, desorption rates are calculated using the empirical relation [7]:

() = % = l—exp[—(ti)"] 2-8)

to = time for desorption of 63% of gas (in seconds)

n % for bituminous coal while n = }é for anthracites.

From equation (2 - 8), at start of desorption when 1(t) is less than 25% and for any

particle shape:

r(t)=g(~’7))= ey 2-9)

where k; is a constant which can be determined experimentally.
From equation (2 - 9), desorption initially follows a law in 3t for bituminous coal and

\Jt for anthracites [71.

In brief, the foregoing equations show that the amount of methane gas contained in
coal seams (in both the free and adsorbed states) is directly proportional to the porosity
of the rock and to the absolute pressure of the gas but inversely proportional to the

atmospheric pressure, the absolute tempera..+- and to the moisture content of the coal.

2.3.3 Estimation of Gas Content of Coal Seams

There are two general approaches that have been adopted in the determination of

gas emission into development headings [4] - direct and indirect methods.
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A Direct Methods
In the direct methods of gas content estimations, coal samples are taken from the seam
by coring and transferred quickly to a sealed vessel (bomb) to minimize the initial gas loss.
After measurement in the laboratory of the quantity of gas released into the vessel during
transit, the remaining gas is released for measurement by pulverizing the sample in a sealed
mill.
The total gas content (Q,) of the core is obtained from the following equation [4]:

Q = Q +Q:+ Qs (2-10)

where Q, = gas 105t between drilling of the core and transfer of the core from
e borehole to the sealed vessel (bomb).

Q = *ed from core after placing it in the boiwb.

Q = ' as (i.e. gas liberated when the coal sample :5 .rushed).

Corrections are . . for gas content loss prior to sealing the sample; ior the
quantity remaining sorbed by the coal at the final equilibrium in the mill (using the
isotherm relationship) and for the ash content of the coal sample in the calculations of the
total gas content [15].

2 Indirect Methods

In the indirect methods of estimation of gas content, the methane is measured in
the seam and the gas content found from the relationship between the pressure and gas
content, the “isotherm” being established from laboratory experiments [15]. This process
requires a near-perfect seal in an in-seam borehole the pressure measurement of which is
subject to problems of gas leakage and strata water pressure. The technique applied
consists of subjecting the sample to gas pressures and measuring the gas uptake of the
sample at a given pressure until equilibrium is established. The amount of gas adsorbed is
then calculated. The pressure is then varied and the volume of gas adsorbed until
equilibrium is reached is then recalculated. By varying the pressure, a complete gas
adsorption curve is obtained. The amount of adsorbed gas can be calculated using either

volumetric or gravimetric methods. The laboratory measurements usually require that the
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coal sample be at the same temperature and moisture content as the seam, which is
extremely difficult to obtain.

Table 2 - 3 gives the gas contents of Canadian coals [16]. Depending on the rank
of the coal and depth, Alberta coals contain 5 to 20 m*/tonne of methane. Using the direct
and indirect methods of gas estimation [2], the U. S. Bureau of Mines determined gas
content of various seams as shown in Table 2 - 4. Table 2 - 5 shows the gas contents of

some U. S., U. K., Australian and South African seams [17, 18].

Table2-3 Gas Content of Various Canadian Coals

Location Gas Content Remarks
(m’/tonne)
Alberta Mountains 15 At shallow depths (< 100 m)
Alberta Mountains 20 At moderate depths (up to 500 m)_
Alberta Foothills and Plains 0-10
Nova Scotia 6-10
Vancouver Island 1-12

Source: Proudlock (1990)

2.3.4 Methane Emission

Figs. 2 - 8 and 2 - 9 show the desorption processes and mode of gas flow and transport of
methane gas in a coal seam. The free gas first diffuses from the desorption site through the
micropore structure of the coal and then flows along the fissures and fractures in the coal
bed [8]. The flow of the methane gas along the fissures and fractures within the coal is

caused by the difference between the in-situ gas pressure and the pressure of the mine air

[2].
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Table2-4 Comparison of Direct and Indirect Methane Contents for Selected
Coalbeds in the U. S.

Location Coalbed Direct Method Indirect Method

m’/tonne (STP) m’/tonne (STP)
Vesta No. § Pittsburgh 2.6 3.4
Loveridge Pittsburgh 5.8 5.2
Howe Hartshorne 11.1 10.5
Beatrice Pacohontas No. 3 12.1 13.5
Inland Illinois No. 6 1.7 2.7
Inland Hlinois No. 5 0.9 0.5
Kepler Pocahontas No. 3 7.9 7.8

Price Castlegate (subseam 42 6.2,5.0
No. 3)

Source: Curl (1978)

Table2-5 Gas Contents of Various U. S., U. K., Australian and South African
Coal Seams
Source l Seam | Gas Content (m’/tonne)
united States of America
Miinois Mlinois Seam 9.70
Pittsburgh. PA Pittsburgh Seam 5.30
Virginia Pacohontas Seam 8.00
United Kingdom
Ramscroft Colliery Waterloo Seam 9.30
Cynheindre Colliery Big Vein Seam 18.1
Republic of South Africa
Tshikondeni R. O.M. 6.00
Hlobane Gus 5.20
Hlobane Dundas 5.10
Ermelo C Seam Lower 5.10
Umgala Gus 4.40
Greenside) 5 Seam 3.00
Matla 4 Seam 1.70
Australia

Bulli Seam 7-10
Balgownie Seam 9.6
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Gas Flow Fractures in Coal
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through fractures Step 1 - Flow

to mine opening from Sedd Lump
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Fig.2-8  Modes of Gas Flow threugh Coal

Source: Gunther (1965)
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Fig.2-9  Processes in the Transport of Methane Gas in a Coal Seam

Among the factors that determine the rate at which methane gas is emitted into the
mine openings are [2, 4]:
the gas content of the coal.
the permeability of the coal.
the depth of workings.
the local geologic conditions (presence or absence of joints, faults, cleats, etc.).
the thickness of the seam being worked.
the method and rate of mining.
the type of strata above and below the coal seam.

the effect of variations in barometric pressure.

D AR R D o

the type or method of ventilation.
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Fig. 2 - 10 shows the gas content as a function of depth for the Mary Lee Seam in
the U. S. The permeability of a coal seam has been found to depend strongly on the type
of coal and on the amount of water in the seam. Unfractured solid coal has low
permeability which limits the flow of gas into mine openings. Most bituminous coals are
highly fractured and therefore have high permeabilities [2, 13].

It has been found that the thicker the seam the higher the gas content per unit
surface area exposed and the wider the area of ground that is disturbed when the seam is
mined out. Similarly, iining methods that result in a lot of ground subsidence and/or
cause substantial amount of fracturing of the surrounding strata (e. g. caving methods)
give rise to higher gas emissions into the mine workings. This is because they create a
larger zone of disturbance around the mine excavations which allow gas to enter the
openings not only from the coal seams being vvorked but also from the overlying and

underlying strata.

Furthermore, the greater the rate of advance of the face, the less is the time
available for coal in-situ to desorb the methane it contains and the greater the remnant gas
in the coal when it is cut [12]. For a given face in the United Kingdom, the relationship

between the rate of gas emission and face advance is of the form [19]:

= kKR8 2-11)

where = Gas emission rate (m%/s)

E

E

k = a constant
R

= rate of advance of face (m/s)

Fig. 2 - 11 shows the degree of gas emission relative to the rate of advance of the face in
a typical bituminous coal face. It is estimated that almost half of the gas contained in coal
is emitted at the face and a quarter while it is being transported out of the mine on
conveyors and other mine transport systems while the remainder remains in the coal when

it leaves the mine [3].
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Equation (2 - 12) gives the relationship between the gas emission rate and the rate
of production of coal [12}:

E = aJP +§ (2-12)

where E = methane gas emission rate (m%s)
o and {3 are constants

P = production rate (tonnes/day)

Fig. 2 - 12 depicts the relationship between gas emission rate and the weekly coal
output in two U. K. longwall faces [2] while Fig. 2 - 13 shows the zones of relaxation

around a mine opening from which strata gases often emanate. These zones are:

1 Zone One which comprises the zones nearest to the excavation or mine
opening (labeled Z1 and Z'1 in Fig. 2 - 13). The beds in this zone fracture
into blocks and are displaced relative to each other. The fissures formed
and voids created in Zone One do not close completely when recompressed
(when the strata takes up load). Thus th's zone remains a very permeable
region around the working. Zone Z'1 is very small compared to Zl1(and can
not be shown on Fig. 2 - 13). Consequently, much of the methane emission
emanates from the roof in this zone. In areas where caving methods are
employed, the thickness of Zone One is about 3 to 8 times the height of
the excavation (face) depending on the strength of the fractured beds. In
times of falling barometric pressure or changes of ventilaticn, the voids in
Zone One (which act as a reservoir of methane) release the stored methane
into the mine openings leading to an increase in the concentration of
methane in the general body of the air and this could lead to layering of the
gas if the air velocities in such openings are low [7].

2, Zone Two (labeled Z2 and Z'2 in Fig. 2 -13), which is much larger,
completely envelopes Zone One. The rocks in this zone fracture and the
beds separate from each other. However, when the rocks in this zone are
recompressed, the natural microfissures are partially closed resulting in a
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reduction in the permeability of the rock zone. Zone Z'2 may be up to 50
m below the face while Z2, depending on the size of the working and
method of mining, could be over 100 m [7].
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Fig.2-12 Gas Emission from Two UK Longwall Faces
Source: Curl (1978)
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3. Zone three (Z3 and Z'3). This is the zone below Z'2 in the floor and above
Z2 in the roof (i.e. when the face of the excavation is in virgin ground).
The ground in this zone is also relaxed but the rocks are hardly fissured [7].
The degree of relaxation of the ground in this zone is however sufficient
for coal seams to become permeable and for gas to escape into nearby mine
openings, etc.

At a height of 200 m and a depth of 100 m from a worked seam the emission rate is

considered negligible.
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Fig. 2 - 13 Relaxed Zones Around a Working

Rapid drops in pressure over short periods (i. e. 0.4 to 0.8 kPa drop in 3 hr.) lead
to an increase in the rate of emission of methane gas from coal seams [20]. Falling
barometric pressure increases the gas flow due to the expansion of methane held in the
pore spaces of the coal. Conversely, a rising barometer will decrease the flow by
compressing the gas in the pores. However, the effect depends upon the rate of change of
the barometric pressure and the percentage of open voids in the coal [9]. A forcing
ventilation system, like a rising barometric pressure, suppresses the emission of methane

from the strata while an exhausting system tends to enhance the methane emission rate.
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The effects of barometric pressure on methane emission rate may occur when either the
atmospheric pressure falls rapidly over a long time or the ventilation system (when
forcing) is stopped for some time due to power failure.

2.3.5 Estimation of Methane Emission Rates into Development Headings

There are two basic approaches adopted in the estimation of gas emission into
development openings [4]. These are:

1. theoretical methods and

2. empirical methods

In the theoretical methods, the rate of gas emission into the excavations is
calculated assuming that the laws of flow of gas through a porous medium are applicable.
These estimations require field permeabilities of the coal seam and of the surrounding
strata, gas pressures and gas content estimations. It is often assumed in these calculations
that gas filtration laws (such as those of diffusion and Darcy’s flow) are applicable to the
flow of gas into the mine openings, that the gas is an ideal gas and its flow is isothermal,
the flow direction is linear and unidirectional and that the adjacent coal strata is relatively
impervious [18]). The empirical methods, on the other hand, are based upon on-site
measy yents in mines.

A number of organizations in Europe, Russia and North America have developed
methods and techniques vshich enable the flow of methane into mine workings in coal
mines to be predicted. The notable methane prediction techniques developed are [2, 7]:

1) Gunther’s method later called the Jeger method (developed in France).

2) Schukz’s method (Germany).

3) Winter’s method (Germany).

4) Fliigge’s method (Germany).

5) Koppe’s method (Germany).

6) Lidin’s method (Russia).

7 Airey’s method (United Kingdom).

8) the Institut National des Industries Extractives (INIEX) method (Belgium)
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9) the Barbara Experimental Mine method (Poland)

Notwithstanding the inherent differences in approach, all these methods consider
the same basic parameters [2]:

a) the nature of the strata above and below the worked seam.

b) the desorbable gas content of the seam being worked, and where possible,

of the adjacent seams and strata.

c) the zone of gas emission in both the roof and the floor.

d) the degree of sas emission from adjacent seam: 31d strata.

The literature is replete with the details of these methods [2, 4, 7). Basically, the
rate of emission of methane gas from the seam in all the msthods is considered to be
directly proportional to the thickness of the seam, to the rate of advance of the heading
and to the methane content of the seam. The use of the foregoing methods in estimation of
the methane emission rates in a roadway depends primarily on the preference of the
individual researcher and on the local geologic and mine operational conditions.

Typical average methane emission rates of the top 25 coal mines in the U. S. in
1987 are giver. in Table 2 - 6 [17]. For conparison, the average methane emission rates
measured in civil engineering tunmels driven through coal measure strata spread
throughout five state: ‘o the U . ranged between 0.00236 asd 0.0236 m*/s while the

peak em:ssion rates were as hrg a5 LG m’/s i~ one case [21].

2.3.6 Methane Diffusion and Layering
The rate of Diffusion of a Gas is related to its density in relation to air (Graham's
Law). The relationship is given by the equztion:

Rate of diffusion o« |2 o \/_T (2-13)
Pg Sg

where p = density of air
Pg = density of gas
S = specific gravity of the gas
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Table2-6 Average Methane Emission Rates of the Top Twenty-Five Coal Mines

in the U. S. in 1985.

No.]Company Name Mine Name Methane|Methane|State |Coalbed Mathane]
_ _ 10%ctd | 10° m¥d m/s
1_|Jim Walter Resources Inc|Biue Creek #7 Mine 17.2_| 486.76 |AL ﬁhq Les 5.63

2 |Jim Walter Resources Inc|Blue Creak #3 Mine 16.6 469.78 |AL [Mary Leo 544 |
3 lJim Walter Resources Inc{Oak Grove Mine 16.1 | 455.63 |AL _[Mary Lee 5.27
4 [Jim Walter Resources Inc|Blue Creek #4 Mine 14.6 . AL 4.78
5 |Jim Walter Resources Inc|Blue Creek #5 Mine 11.1 AL 3.64
6_|Consolidation Coal Co. |Loveridge # 22 Mine 10.7 WV 3.50
7_|Eastern Associated Coal |Federal #2 Mine 8.2 WV 3.01
8 ]Consolidation Coal Co. |Humprey #7 Mine 73 WV 2.39
9 VP 5 Mining Co VP No. 5 Mine 7.2 3. 2.38
10 |U. S. Steel Mining Co inc.{Cumberiand Mine 6.9 195.27 |PA__ [Pittsburgh 2.26
11 |Beatrice Pocahontas Co |Beatrice Mine 6.8 192.44 |VA |Pacohontas # 3] 2.23
12 |Garden Creek Pocahonta |Virginia Pocahontas #6 | 6.6 186.78 |VA _|Pacohontas#3| 2.16
13 {island Creek Coal Co Virginia Pocahontas #3 6.4 181.12 [VA [Pacohontas# 3| 2.10
14 |Consolidation Coal Co. |Buchanan No. 1 mine 6.0 169.80 [VA |Pacohontas# 3] 1.87
15 [island Creek Coal Co Virginia Pocahontas #1 55 155.65 |VA [Pacohontas#3| 1.80
16 |Clinchfield Coal Co Mcclure # 1 Mine 5.0 141.50 [VA |Jawbone 1.64
17 {Consolidation Coal Co. |Blacksville #2 Mine 4.9 138.67 |WV__|Pittsburgh 1.60
18 |Emirald Mines Co Emerald Mine 1.8 135.84 |[PA __[Pittsburgh 1.57
19 |Mid-Continent Resources |Dutch Creek #1 Mine 4.3 121.69 {CO [Coal Basin B 1.41
20 {Consolidation Coal Co. _[Osage #3 Mine 4.2 118.86 |WV |Pm.burgh 1.38
21 |Consolidation Coal Co. _ |Arkwright #1 Mine 38 110.37 |WV |Pittsburgh 1.28
22 |Beckley Coal Mining Co |Beckley Mine 3.7 104.71_|WV_|Beckiey 1.2
23 |Beckiey Lick Coal Co Bonny Mine 3.4 96.22 |WV [Beckiey 1.11
24 |Consolidation Coal Co. _ |Robingon Run #95 Mine} 3.4 96.22 |WV_ [Pittsburgh 1.11
25 |U. S. Steel Mining Co Somerset Mine 33 93.39 [CO |[B,C 1.08

Source: Grau III (1987)

From equation (2 -13) a lighter gas than air will diffu:.» faster than one heavier
than air. The smaller the specific gravity, the more rapid the r1*c of diffusion. It has been
observed that diffusion is aided by turbulence and temperature [1, 4].

Layering of methane occurs in coal mine openings where the ventilation airstream
generates insufficient turbulence. In such cases any methane gas present will stratify and
form a persistent layer which moves along the roof Among the factors that affect the
formation of methane layers are the degree of turbulence, the rate of methane emission
from the strata, the dip or inclination of the airway and the roughness of the airway.
Fig. 2 - 14 shows the variation of the length of the methane layer with respect to the
layering number (Nl) for a level airway while Fig. 2 - 15 depicts methane layering in
roadways of different inclinations [22].
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(b) A Descentionally Ventilated Airway

Fig. 2 - 15 Methane Layering in Roadways of Different Inclinations

The Layering Number (N;), which indicates the likely occurrence of methane
layering, is given by the following equation:

1

3
Noo= [ ° J (2-14)
18\ Qcy,
where V, = air velocity in upper half of airway, m/s
Ocy, =  methane inflow rate, m’/s
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b = airway width, m
Fig 2 - 16 is a graph of the recommended minimum Layering numbers as ¢ function of the
roadway inclination [23].

Tests show that irrespective of airway slope when N; > 5, methane layering is not
likely to occur [1, 4, 9]. In development headings, a tendency to methane layering
indicates the need to improve the auxiliary ventilation system [9]. In typical coal mine
openings (with moderate gas inflow), high air velocities ( 21 m/s) are required to cause

turbulence in the airflow and to prevent layering of methane gas.
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Chapter Three
MINE VENTILATION SYSTEMS

3.1 INTRODUCTION

Mine ventilation systems are generally grouped into main, booster and auxiliary
ventilation systems. Every ventilation system has a pressure source (fan), connecting ducts
(mine openings, ventilation ductings, etc.) and control devices (stoppings, doors,
regulators, airlocks, etc.) as essential components [1]. Some amount of natural ventilation
may co-exist alongside the fans. The main function of the ventilation system is quantity
and quality control which involves the control of the movement, direction and magnitude
of air through mine openings and the dilution of toxic and explosive contaminants to safe
levels. Effective air distribution is required to create the desired working climate
underground.

Ventilation systems in metal ar 1on-metal mines generally differ in the
characteristics of the mining system and  ne characteristics of the major atmospheric
contaminants generated during mining. These factors are taken into consideration when
designing ventilation systems so as to supply fresh air in sufficient quantities to dilute and
safely remove the contaminants from the workings [1].

The main contaminants found in underground coal mines are methane gas and
~ dust. Except in very dusty and radioactive mines or where diesel powered equipment are
in use, generally when the operating ventilation system meets the requirements of safely
diluting and removing methane from the workings, then all other ventilation requirements
are met. Due to the explosive nature of methane, ventilation requirements in coal mines
are more rigid than those in metal mines and are normally stipulated by Federal, State or
Provincial laws. Coal seams are generally flat-lying, of large aerial extent and of moderate
depths. As a result they often have longer mine openings through which a1 has to pass
(resulting in significant pressure losses) before getting to working places. Consegrently,
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coal mines require main fans with high static pressures to withstand the high pressure

losses inherent in long airways.

3.2 MAIN VENTILATION SYSTEMS

The main ventilation system in a mine comprises the entire setup of main fans,
mine openings, ventilation ductings and air control system devices that are employed to
take fresh air from the surface, supply it to workings and to remove contaminants from the
mine workings to the surface. In coal mining, main ventilation systems often have one or
more main fans (exhausting or forcing) located on the surface and connected in parallel.
Depending on the rates of methane emissions and the type of mining method employed in
the mine, very large quantities of fresh air {over 1000 m*/s (2 x 10° cfin) in some cases}
are often required to be supplied by the main ventilation system. As the air velocities
would be very high if single entries were used (> 4 m/s which would lead to the air picking
up settled dust in the roadways and creating a health hazard), most coal mines have

multiple intake and return entries in their main ventilation system.

3.3 BOOSTER VENTILATION SYSTEMS

Booster ventilation is actually a form of auxiliary ventilation where the pressure
loss through a high resistance split in a parallel circuit that the main fan must overcome is
reduced by the introduction of a booster fan in the affected split. Booster fans are usually
installed in the return airways to increase the total pressure head in the mine ventilation
circuit and to increase the total effective air at the furthest point away from the surface fan
and portals. When appropriately sited, a booster fan will increase the pressure gradient
between intake and return airways for a short distance on the intake side of the fan thereby
increasing possible leakages but will decrease the gradient on the discharge side for a
longer distance thereby decreasing leakages. The net result is a more effective use of an
increased mine air flow by the combined effects of a larger total pressure head and lower

leakage quantities. Booster fans are not treated in this work.
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3.4 AUXILIARY VENTILATION SYSTEMS

As most of the gas eiitted is usually at the fuce where new coal and rock is
worked and new face is being exposed, there is a need for the ventilation system to supply
adequate amounts of intake air to the face to maintain the ambieat air quality within the
standards of good occupational health and safety practices. However due to increasing
depths of mining and the greater distances of working faces from the shafts, the use of
new mining methods and equipment which allow faster advances in working areas
resulting in the liberation of large amounts of gases, dust and heat, the promulgation of
more stringent health and safety laws for workers working in the face, the main ventilation
air stream is often insufficient, ineffective or unavailable at distant workings and faces.
Under such circumstances it is necessary to supplement the main ventilation system in
order to create adequate working conditions at such places. The practice of augmeniing
the main ventilation system is terieed auxiliary ventilation [1].

In coal mines, auxiliary ventilation systems are required to be employed as scon as
the heading or working place is advanced beyond the last open cross-cut. The safety and
efficiency of any underground operation depends, to a large extent, on the auxiliary
ventilation system [19]. Ventilation of development ends (the main area of this work) is
the most frequent and important application of auxiliary ventilation. Depending on the
length of the heading, the auxiliary ventilation system is usually the primary means of
assuring that the air quantity and quality requirements are met at the face.

The following factors are considered in the selection of an appropriate auxiliary
ventilation system for a working place:

1) amount of air that will be required taking into consideration the number of
men required to work there, the rate of advance of the face, the type of
mining operations (whether blasting or cutting of the orz or cosl is to be
done); the type and capacity of tue mining equipment (i. e. whether diesel
powered equipment wili be employed) and the gas emission rates.

2) the size and type of fan zequired.

3) the size and type of duct.
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The determination of the quantity of air for any given mining area is govemed mainly by
Federal, State or Provincial laws which often state the minimum requirements.

Auxiliary ventilation systems in coal mines serve a number of purposes the most
significant of which are [1, 20] to provide conditioned and uncontaminated air in sufficient
quantities and qualities to working places; to remove firedamp and other noxious and
explosive gases from the workings and to remove particulate contaminants such as dust.

Depending on the components employed, there are two broad types of auxiliary
ventilation systems employed to ventilate development headings:

1. Static systems whose components have no moving parts. These include line

brattice and other systems which make use of the prevailing pressure head

of the main ventilation system to supply air to the faces [1, 24, 25}.

2. Dynamic systems which have components with moving parts. These

include:

a) Primary forcing (blowing) system.

b) Primary exhausting system.

c) Overlap systems.
In all dynamic systems the fans are interlocked with the heading machire such that power
to the heading machine is automatically cut off when the main auxiliary fan is not running.

3.4.1 Line Brattice

Brattice cloths are made of fire-resistant burlap material and are usually erected or
hung longitudinally from posts, crosspieces or spads or hangers in the roof in an entry
often starting from the last through cross-cut to within a few meters from the face and
effectively divide the opening into two. All the intake air stream is directed to the face
along one side of the brattice and the return air through the other side [24]. This means
that series ventilation system is being employed in workings with line brattice systems.
Fig. 3 - 1 shows a typical development face where line brattice is employed to direct fresh

air to the face.
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Fig. 3 - 1 Brattice Cloth Ventilation System for a Single Development Heading.

The efficiency of line brattice systems is a functior of four basic factors [26]:

1) The method of ventilation (whether forcing or exhausting). Forcing brattice
systems are more efficient than exhaust systems and exhau:st systems
require higher operating pressures than equivalent blowing systems.

2) The method of installation. Carefully installed brattice systems are more
efficient than poorly installed ones.

3) The quality of the fabric used. The efficiency of line brattice systems
increases with decreasing fabric porosity.

4) Narrow intake area. The efficicucy oi a line bsattice system is known to
increase with incseaze in cross-secticnal area of the imtake side of the
brattice.

The main disadvantages with line brattice are that it impedes or restricts the

movement of mobile mining equipment and also leaks air badly even with the best
installation. Line brattice is thus incapable of delivering the required air quantities to faces

requiring large quantities of fresh air (e. g. W)« re there are high methane emissios rates or
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a heading machine is cutting coal), and are often replaced by a fan and ducting. In spite of
its inherent drawbacks, brattice cloths are still widely employed in many coal mines in the
U. S. because of its low cost, ease of handling and installation. The system efficiencies for
well-installed brattice systems over 30 m (100 ft) in length have been estimated to range
between 30 and 70% [26].

3.4.2 Methods Employing Main Ventilation Pressure Head

Where the pressure head in the mine is high, it is possible to employ it for auxiliary
ventilation by carrying ductings through doors [25]. (Figs. 3 - 2 and 3 - 3). The
prevailing mine pressure head may also be employed in conjunction with either a forcing
or an exhausting fan (Figs. 3 - 4 and 3 - 5). In such situations the main pressure head

provides a backup in emergencies (power cut-offs) and at non-working times of the day.

A

T o—

Return Air
Intake AIr

Fig.3-2 Forcing Ventilation By Mine Pressure Head

3.4.3 Dynamic Systems

Dynamic systems are those that have components with moving parts in them.
These normally comprise either forcing or exhausting fans. Tables 3 - 1 and 3 - 2 show
how the velocities from the discharge end of ductings (for both a forcing and an
exhausting fan) and line brattice vary with distance.
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Table 3-1 Diminishing Air Velocity with Distance from End of Ventilation Pipe

300 mm (12 in.) in Diameter

Blower Exhaust
Distance Velocity (% of V at Distance Velocity (% of V at
(diameters) pipe) (diameters) pipe)
5 95 0.25 60
10 60 0.50 27
25 15 0.75 14
35 5 1 7

Source: McEiroy (1943), Dalla Valle (1952)

Table 3 - 2 Diminishing Air Velocity with Distance from End of a Blowing Brattice
with 1.016 m/s (200 fpm) Velocity.

Distance Velocity Velocity
m (ft) (% of V at brattice) m/s (fpm)
1.5 (5) 50 0.508 (100)

3.1(10) 25 0.254 (50)

7.6 (25) 10 0.102 (20)

Source: Anon. (1952)
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N | Primary Forcing Systems

This system employs either a rigid or flexible ducting in conjunction with a blowing
or forcing fan. A continuous positive pressure is developed by the fan in the duct which
forces the air through the ducting towards and across the face and out of the working
place. Fig. 3 - 8 shows a typical forcing system in a development heading. 'The ventilation
airstream emanating from the end of the duct scours the face, dilutes and removes any
methane and dust from the face of the heading. To prevent vitiated air which flows out of
the drive end from entering the duct and being recirculatcd to the face, the intake to the
duct is required to extend well (at least 5 m) into the upstream portion of the fresh air and
the discharge end should be within 10 m of the face [8].

}emm Air
RSPRN Y SR € D SR <
A
gl A w—-————-——v
0 i i
A Ventilation duct <10m
Main Ventilation Airstream (Not To Scale)

Fig. 3 -8 Primary Forcing System in a Development Heading

The exhaust ventilation sysiem has several advantages which include:
L the retumn air is passed through a ductin and does not come into contact
with electrical equipment in the heading;
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2. is more efficient in controlling dust at the face during cutting of the heading
machine and men enter and work in fresh air in the heading.

However, the main drawbacks in the exhaust system are that it can only be eniployed with
rigid or reinforced ductings which are costlier, more difficult to transport and install than
flexible ductings; it is ineffective in removing gases from faces that are two or more duct
diameters away from the intake of the ducting (Fig. 3 - 6); heat, methane and other
contaminants from outbye lengihis i the heading are taken to the face which is the area of
maximum activity; some of the fresh air along the heading tends to enter the exhaust
ventilation duct and only a small proportion of the intake air reaches the face; any air
leakage from the system is completely wasted and the fan motors have to be housed out of
the airstream.

Among the many advantages c € the system cited [20, 24] are:

L. it allows the use of flexible ducting (which has a lower cost and is easy to
transport and install).
2. intake sir takes up less heat and moisture from the surrounding strata and

ambient air before it reaches the face of the heading and thus provides a
cooler atmosphere.
3. has higher velocities at longer distances from the discharge end of the duct.

4. the fan handles fresh air (motor can be located in the air stream).

wr

any air leakage is not completely wasted.
However, the forcing system has the followin inherent disadvantages:

1. men working and traveling in the drive are exposed to all the dust and
gases produced during the shotfiring and when the heading machine is
cutting

2. the higher velocity air streams at the face tend to pick up and disperse dust

into the body of the return air.
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2 Exhausting Systems

This system employs either rigid or spiral wire reinforced ducting as it does not
collapse under the negative pressures inherent with the system. The exhausting system
provides a continuous negative pressure in the ducting system, takes its supply of air from
the mine opening and removes it from the face through a duct [22, 27]. In order to be
effective the inlet of the duct must be as close as possible to the face of the heading {< 2
m (6 ft)]. Fig. 3 - 9 shows a typical exhausting system in a development heading. The
discharge end of the exhaust ducting is required to extend at least 5 m (15 ft) beyond the

entrance of the drive end on the downstream side to prevent vitiated air from re-entering
the drive [4].

Main Ventilation Airstream (Not To Scale)

— —p Intakeair <00 p Return Air

Fig. 3-9 Primary Exhausting System in 8 Development Heading
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The exhaust ventilation system has several advantages which include:
1. the return air is passed through a ducting and does not come into contact
with electrical equipment in the heading;
2. is more efficient in controlling dust at the face during cutting of the heading
machine and men enter and work in fresh air in the heading.
However, the main drawbacks in the exhaust system are that it can only be employed with
rigid or reinforced ductings which are costlier, more difficult to transport and install than
flexible ductings; it is ineffective in removing gases from faces that are two or more duct
diameters away from the intake of the ducting (Fig. 3 - 6); heat, methane and other
contaminants from outbye Iengths of the heading are taken to the face which is the area of
maximum activity; some of the fre.h air along the heading tends to enter the exhaust
ventilation duct and only a small proportion of the intake air reaches the face; any air
leakage from the system is completely wasted and the fan motors have to be housed out of

the airstream.

3.4.4 Overlap Ventilation Systems in Development Headings

The overlap systems combine the inherent advantages of the forcing and
exhausting systems. The main overlap systems (discussed later in this section) are:

1. a primary forcing system with a secondary exhaust overlap.

2. aprimary exhausting system with a secondary forcing overlap.
The main advantage of the overlap systems is that they are generally more efficient m
controlling contaminants at the face. For example in a development heading where the
primary forcing with secondary exhaust overlap system is employed, the forcing system
effectively controls the gases emitted at the face while the respirable dust produced by the
cutting machine is conducted away from the face by the exhaust overlap ducting leading to
a fan and a dust filter.

The drawbacks associated with the overlap system include reductions in the air
velocity in the overlap zone; the overlap fan can only take a limited quantity of air (less
than the quantity of the primary fan) to avoid recirculation of air within the drive; requires
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close monitoring of the length of overlap in order to maintain good air velocity at the face
and to avoid possible recirculation of air; it is more costly since it requires two separate
columms of ductings each with one or more fans; require that the overlap fan(s) be
interlocked with main auxiliary fan to aveid the overlap fan(s) running after the main fan
has stopped (as this would cause recirculation of air in the heading which could be

dangerous).

.1 Primary Forcing System with Exhaust Overlap

Fig. 3 - 10 shows the system. It incerporates the advantages of the forcing and
exhaust systems. The forcing system is usually located on the same side of the drive as the
continuous miner (CM) or roadheader (RH) operator to supply fresh air to him and to
blow dust away from him. The end of the overlap is kept as clo.. as practicable to the face
of the heading for effective dust and gas extraction. The overlap fan is often mounted on
the heading machine [CM or tunnel boring machine (TBM)], suspended from a monorail
or mounted on a bogie and pulied forward by the heading machine. Systems with the
exhaust overlap mounted on the heading machine are preferable because the duct entry is

always at a fixed distance an close to the face [24).

2 Primary Exhaust System With Forcing Overlap

Fig. 3 - 11 shows the main exhaust system with forcing overlap duct. It combines
the advantages of the forcing system with the scouring action of the face by air projected
by the secondary forcing system and some of the recurn air can be pre-cleaned by a dust
collector in the overlap.

The use of auxiliary fans and ducting is the best way to ventilate a dead-end
working area. When properly installed and maintained, a fan and ducting will deliver more
air over a given distance with greater velocity. Compared to line brattice, a fan and
ducting combination is more compact allowing more room for production equipment to
pass. Compressed air (using venturis) may also be employed in auxiliary ventilation [24)
though this practice is not widely used because it is costly and has a very limited capacity.
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n-line axial flow fans or biturcated axial tiow fans |Z/]. In auXiNary VENIUAUON SySLwius
mvolving a fan and ducting, the auxiliary fan must provide sufficient head not only to
supply air to the face through the duct but also to return it to the main ventilation
pirstream through the mine opening. The head of the fan must therefore overcome the
pressure losses in both the duct and return mine opening [27]. However, as the quantity
of flow is usually small and the size of the opening in relation to the duct is very large, the
head required for the retumn airflow is usually very small and is often neglected in

calculations of fan head requirements

7 §

Forcing duct <10 m
E >
o) :
A 210m '
+ _ Fan
..... : Iri
)
Main Ventilation Airstream (Not To Scale)

Fig. 3-10 Primary orcing System with £xhaust Overlap
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Fig. 3-11 Primary Exhaust System with Forcing Overlap

In-line radial flow fans (Fig. 3 - 12) are essentially centrifugal fans in which the air
current that enters the fas is tumed through 90° with the impeller. The air is again turned
through another 90° to flow over the bifurcated fan casing before exiting the fan at the
discharge end. The motor is usually mounted out of the airstream in a pod.

Unlike, in-line radial fans, in-line axial flow fans (Fig. 3 - 13) have the motor
mounted in the airstream behind the impeller and employ guide vanes to impart a swirl or
counter-swirl to the air so that it flows axially through the fan.

A bifurcated axial flow fan (Fig. 3 - 14) has its motor mounted outside the
sir#ream within a pod and the air flows along the bifurcated trunking of the casing.
1245, cation essentially seals off the fan motor in an enclosure withii: the fan preventing the

air from Jowing over the electrical coils and connections All auxiliary fans are generally
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grounded to the earth to prevent any electrostatic charge from building up to unsafe
levels.

The volumetric capacities of auxiliary fans studied range from 2.36 to 14.16 m’/s
(5,000 to 30,000 cfin) at up to 3.75 kPa (15 in. w. g.).

3.5.1 Sizes of Axial Flow Fans.
The general types of axial flow fans used are [28]:
1. Model A20, 508 mm diameter, 4.0 kW in-line fan
Model A40, 610 mm diameter, 18 kW in-line fan
Model A70, 760 mm diameter, 37 kW in-line fan
Model B20, 508 mm diameter, 7.64 kW bifurcated fan
Model B40, 610 mm diameter, 18 kW bifurcated fan
6. Model B70, 760 mm. diameter, 37 kW bifurcated fan
The efficiency of the in-line fan is superior to the bifurcated fan, but in the exhausting

“wos W

systems the isolation of the bifurcated fan motor from the ducting air can be an overriding

consideration.

3.5.2 Sizes of Radial Flow Fans
Sizes employed include [28]:

¢ Model BC40, 610 mm diameter, 18 kW bifurcated fan
Model BC70, 760 mm diameter, 37 kW bifurcated fan

¢ Model BC90, 900 mm diameter, 90 kW bifurcated fan
3.6 Fan Laws

Fan characteristic curves {which are plots of the pressure heads (static or total),
fan efficiency and power as a function of air quantity flowing through the fan} can be
employed to predict the behavior of a fan under changing head-quantity conditions. In
order to calculste the ventilation requirements of a particular ventilation system in a mine

opening, it is necessary to calculate the fan capacities and efficiencies.
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This can be done using the fan laws. The fan laws for a range of geometrically similar fans
and for a particular point of operauon on the head-quantity characteristic are {1, 4]

Volume flow rate, Q «nD? (m’/s) G-1)
Fan pressure, P «n’D’e0 (Pa) 3-2)
Fan power, W «n’D’o (kW) (3-3)
where n = speed of rotation
D = impeller diameter, m
® = air density, kg/m’

3.7  Types of Ventilation Ductings

The efficiency of the auxiliary ventilation system also depends primarily on the
length of duct, the correct matching of the fan to duct diameters and on the quality of
installation. Underground auxiliary ductings have to be well-installed and maintained to
avoid excessive leakage of air (leading to high pressure losses) and inadequate quantities
of air delivered to the face of the heading. The effects of these on the efficiencies of the
various auxiliary ventilation systems are treated in depth in Chapter 4.

The main types of ventilation ducting employed in coal mines are rigid, flexible
and flexible wire reinforced ductings.

Rigid ductings are generally made of either metal or fiber glass. They have very
good resistance-pressure loss characteristics, last longer and have lower maintenance
costs. They are made in diameters ranging from 300 to 1219 mm (12 to 48 in) and in
lengths of 2 to 4 m. They are however bulky, difficult to handle and install; generally leak
at the joints except where adequate gaskets are employed at the joints and the steel ducts
easily rust in wet conditions. Fiberglass ducts are lighter in weight, have excellent air
resistance characteristics (about 12% less resistance to airflow than corrugated metal
ducts of same dimensions) and have excellent resistance to the corrosive effects of acid
and alkaline mine water but have the same leakage problems as the metallic ductings.

Flexible ventilation ductings are made from vinyl laminated or coated fabrics, are

low in cost and are easy to transport and install. They are made in the same diameters as
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rigid ductings. Common lengths are range from 4 to 15 m to allow the ducting to be
folded or collapsed and tied into small bundles to facilitate transportation [28]. When
properly installed they have low resistance characteristics but this is still higher than those
of rigid ductings. They are highly susceptible to damage from moving equipment, have
shorter lifespans than rigid ductings and cannot be used with exhaust ventilation systems.

Flexible wire reinforced ductings are made of the :xine .naterial as the flexible
ductings but have a spiral wire embedded in them. The varyiag i< diameter or pitch of
the spiral determine the amount of suction the duct can withstand before collapsing. These
are normally available in lengths up to % v+ They have similar advantages and drawbacks
as the flexible ductings except that they can be employed in both forcing and low-pressure
exhausting systems. Unless stretched tightly during iustallation [23] they have poor
resistance characteristics.

In some coal mines the material used in manufacturing ventilation ductings is

required to meet fire resistance and antistatic requirements.

3.7.1 Factors Affecting Delivery of Air through Ductings

Due to the nature of the ductings, their age, standard of istallation and the
numerous joints, it is practically impossible to completely eliminate the leakage of air from
and into the ducting. Therefore certain parameters that affect the delivery of air through
ductings are usually employed to assess the efficiency of the air delivery system through
the ductings. Some of these parameters are Leakage coefficient (LC), Pressure loss in

leakless ducting and Correction factor (CF).

1 Leakage Coefficient (LC)

This is a measure of the leakage of a ducting [28] and it is defined as the volume of
air in cubic meters per second (ft*/min.) which would leak from 30.3 m (100 ft) of ducting
under a uniform pressure of 2.54 cm (1 inch) of water. Leakage coefficients have been
allocated arbitrary values as Very good (0 - 50 LC); Good (50 - 100 LC) and Average
(100 - 200 LC).
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.2

Pressure Loss in a Leakless Ducting

This is the pressure loss involved in air flow through mine ductings and can either

be obtained from standard graphs or calculated.

3

where

Correction Factor (CF)
This relates to the actual length of ducting in the form:
cr = £ 3-1)
Qu
CF = Correction Factor
Q = Quantity of airflow at fan intake, m*/s
Q = Quantity of air discharged at the face, m’/s

For CF < 3, the CF approximates to the ratio of the pressure required to deliver a

quantity of air through the actual duct to the pressure required to deliver the same quantity
through a leakless duct [28].

3.8 Airflow Analysis in Leaky Ducts
Where leakages through a ducting are known to exist, three methods are employed
in analyzing the airflow problems through the leaky duct [4):

¢

¢

mathematical analysis of the airflow assuming that the leakage is uniformly
distributed.

analysis on the assumption that there exists a number of discrete leakage
points along the duct and treating these over the entire leaky duct as if it

were a ventilation network.

assuming a number of discrete leakage paths and treating the airflow
through the leakage duct as a series-parallel combination of airflows along
the duct and through the leakage paths.
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The pressure loss along a ventilation ducting varies with [29] the resistance per unit
length, R (Ns*/m®), the quantity of air flowing through the ducting, Q (m"s) and the length
of the ducting, L (m).

The pressure loss along a ventilation ducting may be calculated from the following
relation [29]:

dP = RxQ*xdlL (kPa) (3-2)
The amount of leakage occurring at any point in a ventilation ducting may be calculated

from the following expression:

d) = LCxPxyxdL (m*/s) (3-3)
where dQ = Leakage quantity through the ducting, m*/s
P = Pressure at point of leakage, (kPa)
LC = Leakage coefficient
dL = change in distance along ducting, m
4 = a constant whose value depends on the state of flow of the fluid (if

flow is turbulent, ¥ = 0.5; if flow is laminar, y = 1.0 [29].

Various empirical mathematical relations and models have been formulated and
computer programs and sofiware developed for quick amalysis of airflow problems
through leaky ductings [4, 29].

In the analysis of airflow through ductings, a number of assumptions are usually
made which include:

1) that the air density is constant throughout the flow system.

2) the leakage is independent of the velocity pressure.

3) losses in pressure at the end of the ducting are neglected.

4) that the diameter of the ductix is uniform throughout the full length and

5) that velocity pressure in the ai: }eaving the fan is very small compared with

the total pressure.

Mine ventilation software developed alov:* the lines of the foregoing equations are
employed later in Chapter Four in the calculaiion of leakages through ductings, static

pressure losses in the ducting, etc.
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Chapter Four

DATA ANALYSIS

4.1 Introduction

This section summarizes the results of the last two phases i this work: 2 survey of
the prevailing auxiliary ventilation systems being emgloyed in selected coal mines 1 North
America by means of questionnaires and on-site wmine visits. Chapters 1 to 3 covered the
literature search done in phase 1. The results obtained from the questionnaires, methane
concentration monitoring at the faces of devallopment headings and tracer gas based tests
conducted to assess the efficiencies and effecatveness of the auxiliary ventilation syst=ms in
the mine roadways are detailed and discussed s~ this chapter.

4.1.1 Results of Mine Survey from Questionnaires

As part of the study, 165 questionnaires were sent out lv S¢lected operating coal
mining companies in North America to survey the prevailing mining, ventilation methods
and techniques adopted in dealing with methane gas in mine headings. The outcome of this
survey was very poor as only 8 mines returned their completed questionnaires for analysis.
For the purpose of safeguarding the identity of the mines concemned in this report, the
mines are labeled as Mines 1 to 8. As is typical of all surveys from questionnaires, it is not
possible to cross-validate the figures and information received. Notwithstanding this fact,
the following useful information was obtained (Appendices A - 1to A - 4):

1. The predominant mining methods employed were room-and-pillar method
with or without pillar recovery and longwall or shortwall methods in either
advancing or retreating order.

2. Most mines employed continuous miners and roadheaders (of Joy, Jeffrey,
Alpine or Dosco manuficture) in combination with either belt conveyors or
2 or 3 shuttle cars at the development headings.
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3. The depths of the workings ranged from 45 to about 700 m below surface
with seam thicknesses of 1.2 to 3.5 m. (Appendix A - 1).

4. Production capacities at the headings varied from 30 to 1455 tonnes/shift
in main drivages with average advance rates in the range of 2 to $2 m/shift.

5. The methane concentration in the general body of the retum sir reaged
from trace to 0.6% by volume of air.

4.1.2 Mine Visits

On-site mine visits were made to all the operatmg underground coal mines in
Canada to conduct air quantity and methane concentration measurements. Tae mine
headings studied are labeled as Headings 1 to 22 for confidentiality.

In order to assess the efficiencies of any ventilation system, it was necessary to
measure the various parameters of the mine atmosphere. These parineters included
pressure, volume and temperature-humidity surveys as well as the mnitoring of methane
gas concentrations mainly in development headings and roadway: by means of either
continuous methane monitors or with handheld methanometers.

Air velocity and hence air guantity surveys were mainly done with vane
anemometers, pitot tubes, velometers or by tracer gas based techniques [31]. The results
of methane concentration monitoring at a number of development headings, evaluations of
the auxiliary ventilation systems through the ducting using sulphur hexafluoride (used as a
tracer gas) and face ventilation tests by means of a light bulb filled with tracer gas (point
release) are detailed later in this chapter.

4.2 Auzxiliary Ventilation System Performance
In evaluating and assessing the efficiencies o2 the existing auxiliary ventilation
systems in mine headings, the following assumptions were made in the calculz:ions:
1. The air flow within the headings and at the faces is fully turbulent and an
unsteady state condition exists at the start of the cutting operation (as
communition of the coal takes place and the free gas is released into the
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heading) but this stabilizes with time to a steady state (when no cutting is

taking place); the methane and other gases desorbed from the sirata are
thoroughly mixed with the air in the heading.

A certain portion of the heading close to the face, called the control
volume, (the excavated area enclosed by the broken line in Fig. 4 - 1), is
considered as the zone of mixing and dilution of gases in the analysis. This
control volume is defined as the volume of the heading between the face
and a point outbye (at least 60 m from the face) at the end of the overlap
system where steady state flow has been reached. The volume of the room

was taken as if there were no equipment in it.

Control Volume

M2 Qcu4, Cena

...................................................................................

T Qcs, Ceons Ml

0,.G Q.G It L $|

© M1 - Continuous Methane Monitor at Face
O M2 - Continuous Methane Monitor in Return
(NOT TO SCALE)

Fig. 4 - 1 Schematic of Air Flow Parameters in a Mine Development Roadway.
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3. The methane emitted from the seams and strata (although it is subjected to
some level of dilution once out of the pores and fissures of the coal) is
assumed to be pure (100%) in concentration by volume.

4, Most of the methane (at least 95%) emitted within a heading is from the
freshly cut face area alone. This introduces a small error as some of the
methane is also known to originate from the sides of headings and from
pillars long after the heading has advanced beyond those points (3, 21, 32].

5. There is no recirculation of air within the heading.

4.2.1 Methane Concentration Monitoring at Development Headings

Ideally, in order to effectively monitor the concentration of any gas at a working
face it is necessary to have as many gas detectors as possible at many positions along the
working. This is to take care of the differences in buoyancy and flow conditions of the
constituent gases in the mine air or the uneven mixing of the gases and hence the varying
concentrations of the gases along the working. This would not only be very costly from
the logistical point of view (high equipment costs, etc.) but would be practically difficult
to implement without interrupting and interfering with the normal production activities at

the workings.

Due to the limited number of continuous methane monitors available for use in this
work, it was possible to monitor the concentration of methane at only two stations
simultaneously. Handheld methanometers were used to monitor methane concentrations at
intermediate locations. Fig. 4 - 2 shows the pian view of a typical development heading
with a continuous miner as the heading machine. The common positions of the continuous
methane monitors (CSEs) in the drive are indicated. The face monitor was usually hung
near the roof but on the same side as the heading machine operator and as close as
possible to the face (< 1 m from the face) while the monitor in the retum air was hung in
the center of the hegding at about 60 m from the face.
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Strap #

Face advance during survey{ R EEEEERTEED #2731 (End of Survey)
(2 straps) BN, #2729 (Beginning of Survey)
@ 1 CSE at Face —
2 SIMPEDS (2.51mg/m’)
Operator’s position —— #2725 @.41mgm)
i SIMPEDS (1.81 mg/m3) -
1113A - (1.85 mg/m°) m} \ -— #2721
1 Hund 1.83 (cormr.)(mg/m>) \ 4217
#2713 - Anemometer 4.73 m3/s
1-4 - | SF; 3.59 ms
#2709 ~ (at Strap #2711)
#2705
E #2701 1 SIMPEDS (2.13 mg/m
:t-—-—-—-——" 1113A (2.04 mg/m3)
#2697  (at Strap #2699)
b # 2693
{SF6 3.74 m3/s}_.-fﬁ\ 4680
—— #2685
L #2681
#2677
—— #2673
—— #2669
CSE Outbye (return lla::ir)
1 SIMPEDS (.81 mg/m”) —|

{SIMPEDS, Huads and 113A are dust measuring instruments}

Fig. 4 -2 Plan View of a Typical Development Heading
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The battery powered intrinsically safe continuous methane monitors (CSE
Corporation, Model 180R which are connected to telog data loggers are capable of
measuring methane concentration to 0.05% accuracy) were usually set up as soon as
possible at the start of the shift and the methane concentrations recorded at one minute
intervals throughout the shift. Two readings were recorded every minute by the CSEs -
the first one being the average methane concentration within that minute and the second
being the maximum methane concentration reached during that minute. At the end of the
shift, the monitors were taken up to the surface and the data downloaded into a computer

and processed.

Figs. 4 - 3 to 4 - 13 show the variation of methane concentration with time during
shift as recorded by the face and return air monitors in six different headings ai various
times between December 1990 and September 1994. As expected, the methane
concentrations in the heading are higher when the coal is being cut (as indicated by the
high peak zones in the figures) than during roofbolting operations and other activities
which do not involve the co:nmunition of coal at the face. From Figs. 4 - 3 to 4 - 8, the
methane concentrations recorded by the monitor at the face are usually substantially higher
(about 80% higher) than those of the monitor in the return air (outbye) which gives
credence to the theory that most of the methane emission in a development heading (thar
is being worked) is from the freshly cut face area [3]. The differences in the average
concentrations of methane at the face and in the return is a function of the efficiency of the
auxiliary ventilation system and the level of methane emission into the heading. Under a
given methane inflow rate, narrow differences between the face and outbye methane
concentrations are signs of an imefficient or an ineffective auxiliary ventilation system. It is
also notable that while the methane concentrations at the face usually varied within wide
limits (as evidenced by the large standard deviations of the concentrations at the face in
Figs. 4 - 3 to 4 - 8), the methane cencentrations in the return air were almost virtually
constant throughout the shift. This shows that methane emitted at the face was effectively
dispersed and diluted to normal concentrations within the control volume (volume from
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Distance of discharge end of Intake ducting from face =12 m
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Fig. 4 - 9 Variation of Methane Concentration during Shift at Heading #4
(Dec. 13, 1990)
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Discharge end of Intake Ducting from face = 18 m

Face
concentratioh
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11:00 : " 14:00 15:00
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Fig. 4 - 10 Variation of Methane Concentration during Shift at Heading #4
(June 25, 1991)

72



2.00 4 Distance of discharge end of Intake ducting from face =20 m
— 1.80-] Retum Alr Methane Monitor @ 60 m outbye
e p
é 160 Intske fan off for 30 minutes
= - (Face concentration peaked at 1.30%)
e 1.40 (Retum air concentration peaked at
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Fig. 4 - 11 Variation of Methane Concentration during Shift at Heading #5
(March 18, 1992)

2.00 J  Shift Average
1.80 | CSE #2 at Face = 0.40 %
"\a 4 CSE #3 in Return Alr = 0.24 %
e, 1.60 7] Distance of discharge end of Intake duct from face = 10 m
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7:00 ' 8:00 ' 9:00 ' 10:00 11:00 12:00 13:00 14:00 15:00

Time (hr.)

Fig. 4 - 12 Variation of Methane Concentration during Shift at Heading #4
(December 5, 1990)
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2.00 Shift Average
l.SOj Average Methane concentration at Face (CSE #3)= 0.1 9%

§ 1.604 Average Methane conc. in Return Air(CSE#2) =0.12%
= {1 Distance from discharge end of Intake duct to face =19 m
e 1.40-
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2 1.00-

6 0.80: . Exhaust fan off
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0.00 - Return air cgn:enwm, (#69 m iafl

700 8.00 9:00 10:00 11:00 12:00 13:00 14:00 '15:00
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Fig. 4 - 13 Variation of Methane Concentration during Shift at Heading #4
(December 17, 1990)

face to about 60 m outbye) by the auxiliary ventilation systems in the headings under
consideration. Thus the average concentration of methane in the return was virtually
independent of the type of activity going on at the face and hence on the rate of emission
of the methane within the control volume. However the methane concentration at the face
is the determining factor since the electrical equipment at the face is not permitted to
operate in an atmosphere having more than 1.0% or 1.25% concentration of methane by
volume depending on the jurisdiction. Details on the efficiencies and effectiveness of the
auxiliary ventilation systems aie given in Sections 4.3.1 and 4.3.2.

A careful study of Figs. 4 - 3 to 4 - 13 and correlating them with the activities
taking place at various times often reveal how the methane concentration in the heading
can be easily affected by certain variables and changes that take place at the face during
the shift. In Figs 4 - 5, 4 - 9 to 4 - 12, the continuous miner at the face made an average
of four cuts during the shift while in Figs. 4 - 3,4 - 7 and 4 - 13 just about one cut was
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made during the shift. Cutting periods (in one pass) ranged from 10 to 35 minutes. The
average advance made per shift was 2 m in most headings studied.

Methane concentrations at the face were generally abnormally higher when there
was a problem such as the sudden stoppage of the exhaust fan or the breaking of the
forcing fan ducting, etc. (as depicted in Figs. 4 - 11 to 4 - 13). Cutting operations ceased
immediately while normal methane concentration levels were restored (as evidenced by the
drastic falls in methane concentrations in Figs. 4 - 11 to 4 - 13 immediately after the
peaks). Other changes in the general trend in the methane concentrations, such as a
gradual but steady rise in the methane concentration at the heading, can be easily
discerned from these graphs. From Figs. 4 - 9 and 4 - 10, there is a gradually increasing
trend in the level of methane concentration at the face with time which shows that the
auxiliary ventilation systems were not always efficient in diluting the methane
concentration to safe levels and effectively removing it from the face. As a result, in
Fig. 4 - 9 (Heading #4) the average methane concentration at the face gradually rose from
0.40% at the beginning of cutting (at 8:00 am) to around 1.1% at 2:00 p.m. This
represents an average rate of 0.14% per hour rise in the methane concentration at the face
inspite of the existence of the auxiliary ventilation system. Fig. 4 - 10, which shows the
methane concertrations recorded at the same heading about 6 months later, depicts the
same gradually 1'sing trend in methane concentration at the face as in Fig. 4 - 9. This was
either due to the fact that the distance from the discharge end of the intake ducting to the
face was gradually increasing as cutting of coal progressed or slightly increased emission
rates from the new vual face exposed by cutting. However, it is clear that there was an
inherent problem with th: efficiency and effectiveness of the auxiliary ventilation system at
the heading over the periou as the ventilation system was not able {0 stabilize the methane
concentration between cutting periods. In Fig. 4 - 9 the distance of the discharge end of
the intake ducting from the face averaged 12 m while that in Fig. 4 - 10 was 18 m. This
was probably one of the causes of the rising methane concentration at the face as most of
the fresh air discharged from the intake ducting did nct reach the face to dilute and clear

the methane emitted during cutting.
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Sudden and abnormal peaks or increasing trends in the methane concentration
during the shift are often pointers to a problem with the auxiliary ventilation system such
as stoppage of the intake air (the forcing fan as in Fig. 4 - 11) or of the exhaust fan (Figs.
4 - 12 and 4 - 13). It is also noteworthy that the average concentrations of methane as
registered by both monitors at the face and in the return air were usually less than 0.4%
when the duct distance to the face was less than 15 m (Figs. 4 - 3 to 4 - 8) whereas in
headings where the discharge end of the intake ducting was greater than 15 m, the average
concentrations of methane during the shift generally exceeded 0.5% (particularly at the
face) as evident in Figs. 4 - 9 to 4 - 13. This situation was often made worse when there
was a problem with either component of the overlap system. Further analysis of the data,
as was done in this study and discussed in depth in the next sections, often aid in
determining the critical elements of the system and in assessing the overall performance
parameters of the auxiliary systems. These observations can assist the Mine Ventilation
Engineer take the required corrective steps to ensure a better air supply and distribution

system in the heading for contaminant (methane) dispersion.

4.2.2 Determination of Dilution Requirements

In order to determine the dilution requirements in any mine opening to effectively
and safely dilute the concentration of any contaminant to statutory levels, it is necessary to
have some knowledge of the rate of emission of the contaminant into the opening (room),
the volume of the room, the nature, composition and concentrations of the mixtures of
gases in the room.

In addition, it is necessary to know the explosibility of the mixture of gases in the
crening. Fig. 4 - 14 (commonly referred to as the Coward triangle for methane gas) is the
relation between the composition and explosibility of Methane-Air mixtures [33].
Knowledge of whether a particular mixture of gases is explosive or not enables the
determination of not only the dilution requirements but also how to effectively and safely

dilute the concentrations to safe levels.
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The ultimate objective of any ventilation syster *: .+ -~ .:t..n the concentration of
oxygen in all workings above the minimum statutory requiements of 19.5%, to keep the
oxygen concentration in the mixture as close as possible to point A (Fig. 4 - 14) and never
to allow tue concentrations of the gases in the mixture to fall within the explosive region

defined by triangle BCE.
24
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Fig. 4 - 14 Relation Between the Composition and Explosibility of Mixtures of
Methane and Air
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RESULTS OF AUXILIARY VENTILATION SURVEY AT HEADING

NUMBER 9
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APPENDIX E

RESULTS OF AUXILIARY VENTILATION SURVEY AT HEADING

NUMBSER 10
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|## - Purging to the Methane concentration in the Return Air

APPENDIX F F-1
RESULTS OF PAST AUXILIARY VENTILATION SURVEYS
AT VARIOUS HEADINGS IN MINE #3
Date Nov. 22, 1990] Nov. 30, 1990 | Dec. 5, 1990|Dec. 13, 1990] Dec. 17, 1990
Working Place Heading #3 | Heading #3 | Heading #3 Heading #3 | Heading #3
Intake (cfm) 6611 n/a 6866 6908 7014
Face (cfm) 3917 n/a 4026 v/a n/a
Return (cfm) 4937 n/a 4429 4259 4238
Intake (m%s) 3.12 n/a 3.24 3.26 3.31
Return (m’/s) 2.33 n/a 2.09 2.01 2.00
Face Conc. (%) 0.24 0.31 0.40 0.74 0.19
Return Conc. (%) 0.17 0.25 0.24 0.25 0.12
Distsnce from Face (i 3.00 16.00 10.00 12.00 19.00
Distance Qutbye (1) 60 60 69 60 60
Intake @ Face (m¥s) | 3.0 na 217 1.76 1.09
Methane Emission (m*/s) 0.0087 n/a 0.0122 0.0036 -0.0047
Purging Time## (min.) 1.41 na 2.94 7.69 5.25
Date June 25, 1991[March 18, 199 |April 1; 1992 June2, 1994
Working Place Heading #3 Heading #5 Heading #5 | Heading #8
Intake (cfm) 4556 8050 8730 7605
Face (cfm) 5650 n/a 5890 n/a
Return (cfm) 4260 n/a 5980 7935
Intake (m’/s) 2.15 3.80 4.12 3.59
Return (m¥s) 2.01 na 2.82 3.74
Face Conc. (%) 0.56 0.28 0.23 0.44
Return Conc. (%) 0.27 0.24 0.12 0.37
Distance from Face (m) 18.00 20.00 12.00 20.00
Distance Qutbye {m) 60 60 60 60
Intake @ Face (m’/s) 1.03 1.14 2.35 1.08
Methane Emission (m¥s) | 0.0043 0.0293 -0.0064 0.0338
Purging Times# (min.) 8.82 1.49 3.46 2.01
n/a - Not available
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APPENDIX G G-1
LIGHT BULB TESTS AT HEADING Nos. 9 TO 11
HEADING #9 HEADING #10 HEADING #11
LIGHT BULB LIGHT BULB LIGHT BULB
Bkground1 0.02 Bkgroundl 0.35 Bkground1 0.00
Bkground2 0.00 Bkground2 0.50 Bkground2 0.00
Time (s) | SFs conc. (ppb) | Time (s) | SF conc. (ppb) | Time (s) | SF, conc. (ppb)
0 0.00 0 0.16 0 0.00
15 0.02 15 1108 15 0.25
30 11.02 30 285.84 30 381.60
45 6.06 45 184.29 45 305.30
60 4.34 60 160.27 60 265.20
90 2.40 75 112.59 75 265.90
120 1.04 90 90.29 90 183.20
150 0.55 105 79.41 105 176.70
180 0.30 120 66.77 120 145.60
210 0.17 135 63.4 135 115.30
240 0.12 150 57.79 150 102.10
270 0.68 165 53.51 165 88.20
300 0.05 180 47.39 180 84.80
195 44.11 195 73.80
210 39.61 210 62.40
225 37.39 225 54.20
240 33.94 240 52.50
255 32.16 255 44.30
270 31.84 270 40.50
285 29.62 285 35.70
300 26.64 300 31.80
330 23.31 330 24.10
360 19.67 360 20.30
390 16.94 390 16.00
420 14.49 420 14.30
. 450 12.72 450 10.90
480 12.34 48 8.79
510 10.01 510 6.95
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