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Abstract 

 

Hierarchical models constitute one of the most useful classes of statistical models with 

applications in a broad range of disciplines including, among others, social sciences, 

epidemiology and environmental sciences. The widely used linear mixed effects models, 

their extension to generalized linear mixed models (GLMMs), and state-space models all 

arise as special cases of general hierarchical models. These models provide a powerful 

framework for modeling the effects of latent processes, called random effects, whose 

variability is only manifested through the observed data. However, maximum likelihood 

estimation for these models poses significant challenges because the likelihood function 

involves intractable integrals whose dimension depends on the random effects structure.  

In this thesis, we use data cloning; a simple computational method that exploits 

advances in Bayesian computation, in particular the Markov Chain Monte Carlo 

(MCMC) method, to obtain maximum likelihood estimators of the parameters along with 

their asymptotic standard errors in general hierarchical models. We also suggest a 

frequentist method to obtain prediction intervals for random effects. Determining 

estimability of the parameters in a hierarchical model is a very difficult problem in 

general. This thesis also develops a simple data cloning based graphical test to not only 

check if the full set of parameters is estimable but also, and more importantly, if a 

specified function of the parameters is estimable. We exemplify our methodology by 

analyzing various GLMMs and state-space models. Using a focal population time series 

of song sparrow (Melospiza melodia) on Mandarte Island, British Columbia, Canada, we 



 

 

show that data cloning can be efficiently employed to fit nonlinear non-Gaussian state-

space models for conducting population viability analyses in the presence of observation 

error and missing values. 

The quality of MCMC based Bayesian inference, and for that matter, that of data 

cloning based estimates, is crucially dependent on appropriate diagnosis of MCMC 

chains’ convergence. This thesis also develops a diagnostic method for convergence of 

MCMC algorithms using a new empirical characteristic function (ECF) based 

nonparametric test for comparing k-multivariate distributions. We show that the ECF 

based convergence diagnostic is particularly useful in cases where the target distribution 

is multimodal. 
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Chapter 1 

Introduction 

 

A common thread to many statistical inference problems is the non-availability of data 

that should have ideally been observed to effectively model the phenomenon of interest. 

This constraint quite often leads to a hierarchical modeling framework involving two 

model components: a model for the unobserved data and a model linking the observed 

data to the unobserved data. Hierarchical models comprise one of the most useful classes 

of models in statistics such as Linear mixed effect (LME) models (Searle et al. 1992) and 

their extension to generalized linear mixed models (McCulloch et al. 2008), and state-

space models (de Valpine and Hastings 2002). They have widespread use in various 

fields, for example, longitudinal data analysis (Diggle et al. 1994), epidemiology (Clay-

ton and Kaldor 1987) and ecology and environmental sciences (Clark and Gelfand 2006; 

Royle and Dorazio 2008).  

The general two-stage hierarchical modeling framework (Hobert 2000) is defined 

as follows. Let    
    

   ,    
    

   , …,    
    

    be n independent random vectors 

whose joint distribution depends on an unknown parameter vector      
    

   . The 

observed data vector         
    

      
    is modeled conditionally on the unobserva-

ble random (also called latent) effects             . A separate model is assumed for 

the marginal distribution of the random effects. Complete specification of the hierarchical 

model then consists of the following two models: 

Hierarchy 1:                         (1.1 a) 

Hierarchy 2:             ,        (1.1 b) 

where    and    are some parametric densities with known forms. In general,    may de-

pend on covariates associated with   , but we have suppressed such a dependence in our 
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notation. The corresponding likelihood function is given as the marginal distribution of 

the observed data     , viewed as a function of unknown parameters  , 

  (      )  ∏ ∫                        
 
   . (1.2) 

We notate  ̂ as the maximum likelihood estimator (MLE); the value of   that maximizes 

 (      ). 

Generally, maximization of (1.2) is an intractable problem unless    and    have 

a conjugate relationship. A notable example is the normal linear model (Searle et al. 

1992) for which the likelihood function exists in closed form, that is, integrals in (1.2) 

can be computed analytically. On the other hand, the most important instance of a non-

conjugate relationship between the model components arises in the class of generalized 

linear mixed models (GLMMs) for which equation (1.2) does not exist in a closed form. 

This, together with a usually large dimension of random effects   , poses significant 

challenges in numerical computation of the integrals involved. Resultantly, likelihood 

based inference in GLMMs is generally based on various approximate methods (Breslow 

and Clayton 1993; McCulloch 1997; McCulloch et al. 2008; Pinheiro and Chao 2006). 

The most commonly used approaches to analyze hierarchical models are therefore Bayes-

ian, based on the Markov Chain Monte Carlo (MCMC) algorithm and noninformative 

priors (Gilks et al.1996; Spiegelhalter et al. 2004; Robert and Casella 2005). We present a 

review of both Bayesian and likelihood based methods for analyzing GLMMs in Chapter 

2. 

Recently Lele et al. (2007) introduced an alternative MCMC based method, 

called data cloning (DC), to obtain maximum likelihood estimates (MLEs) and their 

standard errors in state-space models, a particular class of hierarchical models (de Val-

pine and Hastings 2002). Data cloning is related to simulated annealing algorithm 

(Brooks and Morgan 1995) and is an adaptation of a computational maximum likelihood 

approach developed by Robert (1993). See also Doucet et al. (2002), Kuk (2003), and 

Jacquier et al. (2007) for methods similar to DC. The main advantage of DC is that it co-

axes the Bayesian computational machinery to obtain frequentist inference, thereby in-

heriting all the computational advantages of the Bayesian approach at the same time 

avoiding the pitfalls of having the inference depend on the choice of the prior distribu-

tion. 

In this work we extend the DC algorithm in several directions. We demonstrate 

that DC can be efficiently employed to obtain MLEs of model parameters and those of 
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the corresponding asymptotic standard errors in general hierarchical models. A common 

feature of hierarchical models arising in applied work is their complexity which, coupled 

with data limitations, casts doubts about the identifiability of the overall model (Gus-

tafson 2009; Lele 2010). Mathematical determination of model estimability is a very in-

tractable problem in general. In this thesis we develop a simple DC based diagnostic tool 

to establish model estimability in general hierarchical models.  

Another widely used class of hierarchical models consists of state-space time se-

ries models (de Valpine and Hastings 2002). These models are especially useful in popu-

lation dynamics modeling because population time series are often available only in the 

form of estimates that are subject to observation error. State-space models provide a flex-

ible tool to incorporate such errors and missing observations in estimating the underlying 

population growth model. Estimation of the growth model then allows one to forecast 

future population trajectories to estimate the extinction risk of a study population – a key 

component of population viability analysis (Mills 2008). In this thesis we develop an ef-

ficient DC based methodology to conduct population viability analysis (PVA) within a 

wide class of nonlinear growth models in the presence of observation error. To exemplify 

our methodology, we reanalyze the viability of a population previously studied by Sæther 

et al. (2000). While Sæther et al. (2000) simply assumed that abundance counts were er-

ror free; we use DC method to fit the state-space theta-logistic model (Gilpin and Ayala 

1973) to assess the presence of observation error. We then apply a DC based algorithm 

(Ponciano et al. 2009) to conduct information based model selection that strongly con-

firms the presence of observation error. The analyses also highlight the need for incorpo-

rating other key population processes into the PVA such as spatial distribution, dispersal 

and habitat attributes.  

The main attraction of the DC approach is its use of the well-known Bayesian 

MCMC methodology. The quality of the resulting statistical inference is therefore de-

pendent on appropriate diagnosis of the MCMC chains convergence. However, the poste-

rior distributions induced by hierarchical likelihoods are often multimodal, leading to 

poor MCMC mixing and thereby complicating convergence assessment. Towards this 

end, we introduce a new diagnostic method for assessing convergence of MCMC algo-

rithms based on our new empirical characteristic function (ECF) based nonparametric test 

for comparing k-multivariate distributions. We show that the new test is very sensitive in 

detecting shifts in different features of a multivariate density such as scale and multimo-

dality and, therefore, plays a key role in assessing convergence to multimodal posteriors. 
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The rest of the thesis is organized as follows. Chapter 2 provides an overview of 

the recent and commonly used techniques for analyzing general hierarchical models. In 

Chapter 3, we develop a DC based algorithm to conduct likelihood based inference in 

hierarchical models, including maximum likelihood estimation, random effects’ predic-

tion and estimability diagnostics. Chapter 4 demonstrates applicability of the DC algo-

rithm for analyzing general state-space models. We illustrate the methodology in the con-

text of PVA where we fit population growth models in the presence of observation error 

and missing data. We further illustrate how information theoretic model selection can be 

performed using data cloning. In chapter 5, we formulate an MCMC convergence diag-

nostic procedure using our new ECF based test for comparing k multivariate populations 

that we also develop in the same chapter. Finally, in Chapter 6, conclusions and avenues 

for future research are presented. 
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Chapter 2 

Overview 

 

This chapter provides an overview of the existing approaches to analyzing general hierar-

chical models within both Bayesian and frequentist frameworks. In particular, we focus 

on estimation techniques for GLMMs which we describe in Sections 2.1 to 2.5. In Sec-

tion 2.6 we briefly review more recent Monte Carlo based methods for estimation and 

prediction in hierarchical models, in particular, state-space models. Section 2.7 provides a 

summary of the chapter. 

The common building block in both Bayesian and frequentist paradigms is the 

likelihood function of the model parameters evaluated at the observed data. The funda-

mental feature differentiating the frequentist and Bayesian approaches to statistical infer-

ence is that the former assumes the model parameter vector   to be a fixed point in the 

parameter space, while the latter incorporates prior uncertainty about   via a prior prob-

ability distribution,     . A detailed commentary on various approaches to statistical 

inference is provided by Barnett (1999). Throughout this thesis, we refer to the fre-

quentist methods as ‘likelihood based methods’. 

Generalized linear mixed models are a part of a larger class of hierarchical linear 

models called multilevel models (Raudenbush and Bryk 2002). Observations in these 

models are arranged in clusters in a hierarchical structure. For instance, in educational 

research, observations on students are usually nested in classroom, school and county 

levels (Bryk and Raudenbush 1988). Another example is that of longitudinal studies 

where repeated observations are nested within subjects (Diggle et al.1994). Because ob-

servations in a given cluster or group tend to be similar, they are often positively correlat-

ed. Ignoring this group-induced correlation structure in data results in underestimation of 

standard errors and thereby leads to spuriously significant group effects (Raudenbush and 
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Bryk 2002). GLMMs attempt to incorporate the correlation structure by introducing a 

separate probability model for cluster level effects, also called latent or random effects. 

These models are derived from the well-known generalized linear model (GLM) by in-

corporating random effect terms in the linear predictor. We proceed with a brief introduc-

tion to GLMs. 

2.1 Generalized Linear Models 

At the heart of statistical modeling are the regression models defined in terms of explana-

tory variables,   
 . The simplest of these are the general linear regression models that as-

sume a linear functional relation between the mean of a continuous response    and the 

covariates   
 . However, the observed response is often a nominal or a count variable that 

does not relate to   
  in a straightforward linear fashion. For instance, when    is a bino-

mial response, interest lies in modeling the probability of success,   , in terms of   
 . 

Clearly, a linear regression model is implausible here as    is restricted in the interval 

(0,1). Generalized linear models form a flexible class of models that admit nonlinear re-

gression relations by transforming the conditional mean response,        
  , to a linear 

predictor   
    (Nelder and Wedderburn 1972). Formally, GLMs achieve this by assum-

ing the response distribution to be a member of the exponential family of distributions 

(Darmois 1935; Pitman 1936) whose natural parameter is related to covariates   
  via a 

smooth invertible link function     . That is, conditional on the realized vector   
 , the 

distribution of    is given as 

           
{
(      (  ))

    
        }

, 

where     ,      and      are known functions,   ’s are natural parameters, and   is the 

dispersion parameter. We can show that           
          and          

   

           , where        and         are the first and second derivatives of       re-

spectively. The model is then specified in terms of the link function      such that 

           
  , where   is the p-dimensional vector of regression coefficients and    

is the linear predictor. The link is said to be canonical when      . McCullagh and 

Nelder (1989) provide a comprehensive treatment of GLMs covering models for both 

nominal and count data. A detailed exposition of the applications of GLMs in categorical 

data analyses can be found in Agresti (2002). 



 7  

 

 Denoting                 and           to be the vectors of response 

values and model parameters, the GLM log-likelihood function is given as  

       ∑{
(          )

    
        }

 

  

The MLE of  , which we denote as  ̂, is then the solution of the score equations  

  

   
 ∑

          

            
     

 

             

In general, these equations must be solved numerically as no closed form solution exists. 

The dispersion parameter   can be estimated separately from regression residuals. There 

exist efficient algorithms for computing  ̂ based on iteratively reweighted least squares 

(IWLS) such as Gauss-Newton and Fisher’s scoring methods (McCullagh and Nelder 

1989; Lang 2004). Recently Wang (2007) has extended these algorithms to situations 

where model parameters are subject to constraints. Hypothesis testing for regression coef-

ficients can be performed using Wald’s or score tests (McCullagh and Nelder 1989). 

Likelihood ratio test (LRT) can be used to compare nested models. For further details on 

inferential tools in GLMs, the reader is referred to McCullagh and Nelder (1989). 

2.2 Generalized Linear Mixed Models 

These models are an extension over both GLMs and linear mixed effects (LME) models. 

The LME model attempts to relate the mean of a Gaussian response vector              

      
  , in cluster i, to observed covariates and random effects    via the linear predic-

tor             , where    and    are known design matrices of the fixed and ran-

dom effects respectively. Random effects are introduced in the model to incorporate the 

correlation structure in the components of    induced by the hierarchical structure of the 

data. The LME model then takes the form               , where    and    are 

independent, zero-mean and Gaussian random vectors with variance-covariance matrices 

  
    

 and      respectively;    
 is an identity matrix and   depends on unknown param-

eters  . The likelihood function exists in closed form and the MLE’s can be efficiently 

computed using the mixed model equations of Henderson (1950). Henderson et al. (1959) 

further showed that the resulting estimators of model parameters and those of random 

effects are best linear unbiased estimator (BLUE) and best linear unbiased predictor 
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(BLUP) respectively. Robinson (1991) provides a detailed account of BLUP in LME 

models and their relevance to other statistical estimation problems. 

A natural extension of the LME models is to allow     to be a categorical varia-

ble with distribution in the exponential family. This extension results in a class of models 

known as generalized linear mixed models (GLMMs). A single-level GLMM is defined 

as follows. Conditional on   ,     are independent and identically distributed (iid) so that 

the conditional joint distribution of    is given as  

          ∏  
{

(        (   ))

    
         }

  
    

               
{

(  
       (  ))

    
          }

, 

where     ,      and      are defined as before,    ’s are the natural parameters such that 

                  . As in GLMs, the model is then further specified using a smooth 

invertible link function      such that                  . The random effects    

are assumed to be Gaussian with mean   and variance-covariance     . The link func-

tion is typically the canonical link, i.e.      . Thus, the joint density of     and    takes 

the form 

                              
{

(  
               (        ))

    
           

  
         

 
}

,   (2.1) 

where   is the vector of model parameters and q is the length of   . The likelihood func-

tion for the observed data         
    

      
    is the following integrated likelihood: 

         (      )  ∏ ∫                       
       

                           ∏ ∫                      
  
      ,              (2.2) 

where           is the marginal density of   , i.e. a Normal distribution with mean   

and variance-covariance     . 

As indicated earlier, the above likelihood function exists in closed form for the 

LME model where response    is Gaussian with the identity link:               . 

However, in general, the integrals appearing in (2.2) have no closed form, resulting in an 

intractable maximum likelihood estimation problem. Direct maximization of (2.2) using 

numerical integration is infeasible as the integral dimension depends on q, the length of 

  , which is generally large. Common estimation techniques are, therefore, based either 

on approximations of the likelihood function (Breslow and Clayton 1993), or on its Mon-

te Carlo estimation (McCulloch 1997) or on numerical approximations (Pinheiro and 
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Chao 2006) of the integrals appearing in (2.2). This difficulty has led to widespread use 

of Bayesian estimation of GLMMs which circumvents high dimensional integration by 

invoking MCMC algorithms and noninformative priors (Gilks et al. 1996; Spigelhalter et 

al. 2004). We briefly review these inferential techniques in the sequel below. 

2.3 Direct Maximization of the Likelihood 

2.3.1 Expectation Maximization Algorithm 

The expectation maximization (EM) algorithm was introduced by Dempster et al. (1977) 

in their seminal work on maximum likelihood estimation in the presence of missing ob-

servations. The algorithm can also be coaxed to compute MLEs in GLMMs by treating 

latent variables as missing data. The key aspect of the algorithm is to break down the op-

timization problem into a series of simpler maximization problems whose solution con-

verges to the MLE. Assuming      to be the estimate of   at the i
th
 iteration, the EM al-

gorithm seeks to find an update estimate        such that                  , where      

denotes the log-likelihood function. Naturally, the objective is to maximize the difference 

 (      )   (    )      (      
     )      (      

   ). 

We can show using Jensen’s inequality (1906) that 

                      (      )   (    )  ∫ (           )     (
 (    

       ) (        )

 (    
     ) (      )

)                 

       (           ), 

which gives 

 (      )   (    )   (           )   (           ), 

and where      is concave and bounded above by     . Using these properties, Demp-

ster et al. (1977) showed that the choice of        producing maximum possible incre-

ment in      while moving from iteration i to i+1 is given as 

                     { (           )} 

              [            
{    (        )}],      (2.3) 

where  (        ) is the complete data likelihood, i.e. the joint distribution of observa-

bles and the random effects given in (2.1). Thus, the EM algorithm consists of iteratively 

applying the following two steps until convergence. 
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1. E-Step: Evaluate the expectation in (2.3) under the conditional distribution of the 

random effects,  (           ). 

2. M-Step: Maximize this expectation over   to obtain       . 

Under mild regularity conditions, Wu (1983) showed that the EM sequence of esti-

mates {      }
   

 
 converges to a local maximum of the likelihood surface. However, the 

E-Step of the EM algorithm is intractable in most GLMMs since the conditional density 

 (           ) does not exist in closed form. This is evident from noticing that 

 
 (        )  

 (        )

∫ (        )  
, 

(2.4) 

where the integral in the denominator is what we wish to avoid.  This leads us to a Monte 

Carlo version of the EM algorithm described below.  

2.3.2 Monte Carlo Expectation Maximization  

To avoid direct computation of the intractable expectation arising in the E-Step (2.3), 

Wei and Tanner (1990) suggested approximating it by a Monte Carlo estimate. McCul-

loch (1997) implemented this method by sampling from  (        ) using MCMC, re-

sulting in the so called Monte Carlo EM (MCEM) algorithm. To give a brief sketch of the 

algorithm, let us consider the expected complete log-data likelihood of a GLMM, i.e. 

 (    (        ))   (    (          ))   (    (      )). 

So, given an MCMC sample of size N from the conditional distribution in equation (2.4), 

Monte Carlo estimates of the expectations appearing in the right hand side of the equation 

above are respectively given as 

 ̂(    (          ))  
 

 
∑     (             ) 

   , 

and 

 ̂              
 

 
∑     (      ) 

   . 

The implementation of the M-Step is then facilitated by the fact that 

    (             ) is the standard GLM likelihood whose maximization is straight-

forward using the Fisher scoring algorithm. Similarly, the second empirical expectation is 

simple to maximize since  (      ) is a Gaussian density.  

 As an alternative version of MCEM, McCulloch (1997) also introduced a Monte 

Carlo version of a Newton-Raphson (Lang 2004) type algorithm (MCNR) for simultane-

ously solving the expected score equations 
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 [

     (          )

  
]   , 

(2.5 a) 

and 

  [
            

  
]   , (2.5 b) 

where          . Here, the second equation (2.5 b) is easy to solve since random ef-

fects are assumed Gaussian, while (2.5 a) can be handled using a scoring approach simi-

lar to that of in a standard GLM. McCulloch (1997), therefore, arrived at the following 

iteration equation  

             [   (      )      ]
  

  

 
  ( [  (      )

     

     
       (         ( 

     ))      ]), 
(2.6) 

where 

    ( 
     )   (      ), 

   (      )      {
   

   
}
 
   (      ), 

     

     
 {

   

   
}, 

and   is the overall design matrix associated with the fixed effects. This scoring approach 

then proceeds iteratively by solving (2.6) together with (2.5 b) and an equation for the 

dispersion parameter  . The expectations appearing in equation (2.6) can be estimated 

using Monte Carlo simulation, i.e. by generating samples from the conditional density 

 (        ) via the MCMC algorithm. The whole iterative procedure is run until rea-

sonable stabilization of the estimates is achieved. A computationally attractive feature of 

the MCNR approach is that it automates the M-Step of the EM algorithm. 

 Although Monte Carlo estimation of the expectations is quite appealing, the usual 

EM assurance that                  , no longer holds. Convergence of both MCEM 

and MCNR is also tricky because of Monte Carlo error. This results in requiring very 

high Monte Carlo sample sizes, making the algorithms computationally intractable. There 

exist methods to address this limitation. For instance, Booth and Hobert (1999) employed 

a rejection sampling scheme (Geweke 1996) to develop a rule that automatically deter-

mines sufficient sample size by using estimates of the Monte Carlo error. Zipunnikov and 

Booth (2006) replaced the MCMC step by randomized spherical-radial integration (Genz 

and Monahan, 1997). Their MCEM algorithm substantially reduces the computational 

burden as it involves Monte Carlo simulation from standard distributions. Furthermore, 
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the E-Step takes the form of a standard GLM leading to a simple IWLS procedure in the 

M-Step. 

 Nevertheless, both MCEM and MCNR can run into convergence issues when the 

likelihood surface is multimodal, e.g. in case of variance component problems (Searl et 

al. 1992). The EM algorithm in such cases may converge to a local maximum while 

MCNR may not converge at all due to the non-concavity of the likelihood surface 

(McCulloch 1997). A method that is designed to address this problem is presented below. 

2.3.3 Simulated Maximum Likelihood  

The method is related to Monte Carlo integration of definite integrals using importance 

sampling (IS) (Hammersley and Handscomb 1964) described as follows. Suppose we 

wish to evaluate an integral of the form    ∫      , for some       . The idea is to 

express the integral as 

                                                           ∫
    

    
       

      (
    

    
), 

where     is an easy to sample density function known as the IS distribution. Then, gen-

erating a large random sample {  }   

 
 from     , IS estimate of    is given as    

∑
 (  )

 (  )

 
   , where  (  )  (  ) are called importance weights. For application of IS in 

Bayesian inference, we refer the reader to Gelman et al. (2003). 

 Now, recall from equation (2.2) that 

 (      )  ∏ ∫                      
  
      , 

where, for observed data   , the i
th
 integral can be written as the expectation 

  (            )  ∫                         , 

suggesting that a Monte Carlo estimate can be obtained by sampling from the marginal 

distribution           . However, since      must be estimated in practice, an IS esti-

mate of (2.2) can be obtained as follows (Geyer and Thompson 1992; Gelfand and Carlin 

1993) 

 
 (      )  ∏ {

 

 
∑

 (           )            

  (    )

 
   } 

  
   , 

(2.7) 
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where {    }
   

 
 are simulated from the IS distribution      . The simulated likelihood is 

then maximized where either a single simulated importance sample is used or        is 

iteratively updated using multiple simulations.   

 The simulated maximum likelihood (SML) approach is attractive in that it pro-

vides an unbiased estimate of the likelihood function and the parameter estimates con-

verge to MLEs as the Monte Carlo sample size increases. However, Monte Carlo error 

remains very high in practice unless a good initial guess for  ̂ is available (Jank and 

Booth 2003; McCulloch 1997). McCulloch (1997), therefore, suggested a hybrid SML 

algorithm starting it with the initial estimates obtained either from MCEM or MCNR. His 

simulation study based on a logit-normal model showed superior performance of the hy-

brid approach. It helped overcome convergence problems in both MCEM and MCNR and 

yielded a reliable implementation of the SML approach. 

2.4 Approximations of the Likelihood 

2.4.1 Penalized Quasi-Likelihood 

Computational difficulties in maximizing the GLMM likelihood has resulted in various 

simpler approximations to the likelihood function itself. One such approximation is the 

penalized quasi-likelihood (PQL) initially proposed as an approximate Bayes procedure 

for certain common GLMMs by Laird (1978) and Stiratelli (1984). The PQL procedure 

leads to an approximate version of the Henderson et al.’s (1959) mixed-model equations 

arising from maximizing the joint distribution          with respect to both   and ran-

dom effects   (Schall 1991; Breslow and Clayton 1993; Wolfinger 1993). The method is 

more flexible than the full ML procedure as only the first two moments of the conditional 

density        need to be specified in terms of the GLMM model parameters. That is, we 

only assume that the conditional mean of the response vector                 given 

the random effects  , satisfies                  
     

   , where      is the link 

function as defined before; and that                     ;      is a known variance 

function and    is a known constant. 

The above parameterization leads to the following quasi-likelihood (Breslow and 

Clayton 1993), 

 
                   ∫  

 
 

  
∑    

 

 
          

     , 
(2.8) 
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where  

      ∫
    

         
  

  

  
 

is known as the quasi-deviance and is related to the GLM of   conditional on  , with 

      
 

  
;    are known weights. It can be shown, therefore, that  

    {                 }, 

where          is the likelihood of    given   . The PQL procedure then proceeds as fol-

lows. We rewrite equation (2.8) as 

                   ∫         , 

where  

     
 

 
[
 

 
∑              

   ]. 

The integral arising in the right hand side of the equation above is then amenable to ap-

plying Laplace approximation (Tierney and Kadane 1986), i.e.  

∫                    
         , 

where c is a constant and    minimizes      so that          and          . Thus, 

ignoring the constant c, we get 

          
 

 
          

 

 
               , (2.9) 

where    is the solution to  

       ∑
         

         
     

 
             , 

that minimizes     . Further differentiation with respect to   yields 

 
       ∑

  
   

          
      

 
 
             , 

(2.10) 

where   is the remainder term that is shown to have expectation zero. Therefore, in prob-

ability as a function of n, we can assume it to be of lower order than the two leading 

terms (Breslow and Clayton 1993). Thus, dropping   from (2.10) leads to the approxima-

tion 

                    , (2.11) 

where   is the design matrix with rows   
 , and       {  },  with GLM iterated 

weights     {          
      

 }
  

 (e.g., McCullagh and Nelder 1989, Section 2.5). 

Now combining equations (2.9) and (2.11) yields, 

          
 

 
{             

 

 
∑      

         
 
   }, (2.12) 
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 Breslow and Clayton (1993) further approximated equation (2.12) by assuming 

that the GLM iterative weights vary slowly as a function of the mean. Thus, as the first 

term in (2.12) depends on   only through  , ignoring it leads to the approximation, 

          
 

  
∑    

 

 
  

         
 
   . (2.13) 

This is the same as Green’s (1987) PQL which he developed for analyzing semiparamet-

ric regression models. We now maximize (2.13) to obtain estimates 

( ̂  ̂)  ( ̂     ̂   ), where  ̂      ( ̂   ). So, differentiation with respect to   

and   produces the following score equations, 

 ∑
         

         
     

 
     , (2.14) 

and 

 ∑
         

         
     

 
             , (2.15) 

 Breslow and Clayton (1993) developed an IWLS algorithm for solving these 

nonlinear equations by modifying a Fisher’s scoring algorithm proposed earlier by Green 

(1987). Their approach is attractive as it leads to BLUP of        by exploiting the close 

correspondence of the above score equations to mixed model equations of Henderson et 

al. (1959). More recently, Jiang (2000) has developed a nonlinear Gauss-Seidel algorithm 

for solving (2.14) and (2.15) that converges globally for virtually all typical GLMM 

problems. This method is particularly useful when there exist a large number of random 

effects that slow down the BLUP computations. Notice that, in solving (2.14) and (2.15), 

we assumed that   is known and fixed. This, of course, needs to be estimated in practice. 

Breslow and Clayton (1993) proposed a profile likelihood method by substituting the 

maximized value of (2.13) in equation (2.12) leading to a profile quasi-likelihood func-

tion in  . They further showed that the resulting estimator is similar in spirit to restricted 

maximum likelihood (REML) estimation in linear mixed models (Patterson and Thomp-

son 1971). 

 McCulloch (1997) points out that the PQL method is based on maximization of a 

quasi-likelihood and, therefore, should be regarded as a new estimation procedure in its 

own right. Not surprisingly, the series of approximations involved in PQL induce sub-

stantial bias in the resulting estimates. In fact, PQL estimates are known to be incon-

sistent and the bias cannot be corrected for even after applying higher order Laplace ap-

proximation (Lin and Breslow 1996). McCulloch (1997) conducted a simulation study to 

evaluate performance of PQL estimates by analyzing a binary-logistic GLMM with nor-
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mally distributed intercepts. The simulations confirmed that parameter estimates were 

heavily biased for both fixed effects and the variance component.  

2.4.2 Laplace Approximation 

Let us recall from equation (2.2) that the GLMM likelihood in the i
th
 data cluster is given 

by a high dimensional integral in random effects   ,i.e. 

    ∫                          

                                                                 ∫                 ,                 (2.16) 

where, from equation (2.1),  

  (         )  
(  

                         )

    
             

          

                                    
(  

           )

    
             

           . 

Rather than basing the inference on a quasi-likelihood function as in the PQL approach, 

Pinheiro and Bates (1995) considered approximating the integral in (2.16) using Laplace 

approximation to integrate out the random effects. The Laplace’s method has recently 

gained widespread use in various statistical inference problems ranging from approximat-

ing the likelihood (Pinheiro and Bates 1995; and Pinheiro and Chao 2006) to approximat-

ing Bayesian posterior moments (Tierney and Kadane 1986) and marginal posterior dis-

tributions (Rue and Martino 2009). Here we summarize Pinheiro and Chao’s (2006) ap-

proach to approximating the integral in (2.16). Further details of the Laplace approxima-

tion in the context of GLMMs can be found in McCulloch and Searle (2001), Demidenko 

(2004), Hedeker and Gibbons (2006) and in Lee et al. (2006). 

 We consider a second-order Taylor expansion of  (         ) around  ̂ , the 

maximizer of  (         ), i.e. 

 (         )   (        ̂ )  
  

   
       ̂   

 

 
      ̂  

    

       
       ̂  , 

where   ̂  is the solution to  

 
  

   
    

                                   

                                       
                        =0,                  (2.17) 

and 

 
   

       
     

                           

                                               (  
   

     
         ),      (2.18) 
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where        {           }. 

It is obvious from (2.18) that  
   

       
  is a negative-definite matrix, showing that 

     is a strictly concave function in   . Thus,  ̂  is a unique point of maximum of      

obtained by solving equation (2.17). The solution can be obtained by developing a simple 

recursion relation using the Newton-Raphson algorithm. A more computationally effi-

cient approach is also possible by translating the maximization problem into a least-

squares problem. Further details can be found in Pinheiro and Chao (2006).  

 Having  ̂  as the solution to (2.17), the approximate version of      is then given 

as, 

  (         )  
(  

           )

    
           

 ̂ 
        ̂ 

 
  

                                      
 

 
      ̂  

 (  
   

     
         )       ̂  . 

Substituting it into (2.16) yields the following approximate log-likelihood, 

           ̃                             
(  

           )

    
           

 ̂ 
        ̂ 

 
    (∫  

 
 

 
      ̂  

 [  
   

     
         ]      ̂     ) 

                                            
(  

           )

    
           

 ̂ 
        ̂ 

 
 

   (          
   

     
              ) 

 
             

 

 
                  

(  
           )

    
 

 ̂ 
        ̂ 

 
          , 

(2.19) 

where 

        
   

     
  . 

Thus, the Laplace approximation to the full data log-likelihood (see equation 2.2) is given 

as  

 (      )  ∑     ̃ 
 
  . 

Maximization of the approximated log-likelihood in parameters   involves a version of 

Fisher’s scoring algorithm leading to fast implementation of the method (McCulloch and 

Searle 2001; Pinheiro and Chao 2006). 

 This first-order Laplace approximation as obtained in (2.19) have been known to 

produce biased estimates in certain distributional settings (Breslow and Lin 1995; Noh 
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and Lee 2007), especially when number of observations in each cluster is small (Engel 

1998). A recent simulation study by Joe (2008) shows that the bias tends to be higher for 

binary and ordinal responses than count responses.  Although computationally intensive, 

higher order Laplace approximations have also been considered in the literature (Breslow 

and Lin 1995; Raudenbush et al. 2000; Noh and Lee 2007) that generally produce more 

accurate approximates.  

2.4.3 Adaptive Gaussian Quadrature 

Gaussian quadrature (GQ) rules are numerical integration methods to approximate defi-

nite integrals of a given function by using a weighted average of the function at specified 

integration points in the domain (Stoer and Bulirsch 2002). In particular, Gauss-Hermite 

quadrature uses a set of Q quadrature points and weights, {     }   

 
, to approximate an 

integral of the form 

∫           
 

  
 ∑   

 
        , 

where      denotes standard normal density with corresponding distribution function 

    . In order to exemplify how GQ can be used to approximate the likelihood in (2.2), 

we assume that we have a single random effect in cluster i, distributed as           . 

The likelihood in (2.2) then simplifies to  

  (      )  ∏ ∫                  
     

 
   , (2.20) 

where 

    ∫                   
      

                                                 ∫ {∏  (          )
  
   }       

      

                                                 
 

 
∫  

∑  (          )
  
     (

  

 
)     

                                                 ∑   
 
   [ 

∑  (           
  

 
)

  
   ].                  (2.21) 

Substituting (2.21) into equation (2.20) gives the approximated log-likelihood as  

 (      )  ∑       
 
   . 

In general, accuracy of the approximation increases with increasing number of quadrature 

points Q. Quadrature points and weights, {     }   

 
, are both selected with respect to 

random effects distribution,        , using a specific quadrature rule. These rules are 

available for Gaussian and other common kernels from the tables of Abramowitz and 

Stegun (1965). Although, these rules are complex for multiple integrals, the GLMM 
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structure allows approximating (2.2) by successive applications of single one-

dimensional rules as shown in the simple case above. However, GQ becomes computa-

tionally intensive when several random effect terms are present. This is because it re-

quires a large number of quadrature points per dimension to obtain accurate approxima-

tions. 

 Pinheiro and Bates (1995) and Pinheiro and Chao (2006) noticed that equation 

(2.21) can be viewed as a deterministic version of the Monte Carlo integration where, 

rather than generating      from        , we have used sample points    with corre-

sponding weights    that are fixed a priori. Pinheiro and Chao (2006) developed this idea 

to approximate GLMM likelihoods. Their idea is based on modifying GQ to obtain a de-

terminist equivalent of IS which they call adaptive Gaussian quadrature (AGQ). The key 

aspect of AGQ is, therefore, to generate {     }   

 
 from an importance distribution, 

rather than from the marginal distribution of the random effects. Keeping in view the La-

place approximation discussed in the previous section, their suggestion for the im-

portance distribution is to use the Gaussian density 

 ( ̂   [  
   

     
         ]

  
). 

Because IS tends to be much more accurate than simple Monte Carlo integration 

(Geweke 1989), the AGQ also produces an improved approximation over GQ. It can be 

shown that AGQ reduces to the Laplace approximation (2.19) when used with a single 

quadrature point. 

Pinheiro and Chao (2006) also developed a fast algorithm for implementation of 

AGQ that scales up efficiently to multilevel GLMMs. Their simulation results showed 

that AGQ performs favorably against PQL and the Laplace approximation. Simulation 

studies by Rabe-Hesketh et al. (2002, 2005) indicate that AGQ performs well as com-

pared to GQ when both cluster size and intra-cluster correlations are high in multilevel 

GLMMs. However, a recent study by Cagnone and Monari (2012) shows that AGQ can 

be computationally very intensive when response is ordinal with several categories.     

 Although AGQ tends to be more accurate than the Laplace approximation, the 

latter is far less computationally intensive, especially when there exist a large number of 

random effects. There are recent attempts to exploit the computational efficiency of La-

place approximation. For instance, Rizopoulos et al. (2009) employ fully exponential La-

place approximation (FLA) of Tierney et al. (1989) for the joint modeling of survival and 

longitudinal data, yielding an improved version of the existing Laplace method. Bian-
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concini and Cagnone (2012) further extend this approach to analyze GLMMs. Their sim-

ulations study shows that the FLA approach compares favorably against AGQ and effec-

tively handles the high dimensional latent structures without substantially increasing the 

computational burden. 

2.5 Bayesian Inference 

Bayesian philosophy of statistical inference is fundamentally different from the fre-

quentist (or classical) approach. In Bayesian statistics, probability statements are treated 

as representing degree of belief in the occurrence of an event, rather than the usual long-

run relative frequency of that event (Barnett 1999). This ‘degree of belief’ interpretation 

is further combined with the famous Bayes’ theorem to update prior belief about un-

known model quantities (parameters and latent effects) based on observed data. We de-

scribe the general framework as follows, starting with the Bayes’ Theorem.  

Theorem 1.1 (Bayes’ Theorem): Let {  }   

 
 be a collection of n mutually exclusive and 

exhaustive events and   be another event defined on the sample space. Then the condi-

tional (or inverse) probability of the observing an event    given that   has already oc-

curred is given as 

        
            

∑  (    )     
 
   

          . 

 We now assume that sample data are a realization of a random vector   whose 

probability distribution,       , has a known form, except for fixed but unknown param-

eter vector  . The degree of uncertainty about   before observing data   is quantified by 

a prior probability distribution,     . That is,      provides an objective means of quan-

tifying subjective, or a priori, information available about  , such as expert opinion or 

knowledge from previous studies. Our information about   is further increased after ob-

serving the sample  , resulting in the updated distribution       , called the posterior 

probability distribution. The posterior distribution can be obtained by applying the 

Bayes’ theorem as follows, 

       
          

∫            
. 

Thus,        embodies all the available information about   and, therefore, forms the 

basis of all inferences, including Bayesian point estimation, credible intervals and predic-

tive distributions. For a comprehensive treatment of Bayesian inferential methods includ-
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ing the use of various types of prior distributions, we refer the reader to Berger (1985) 

and Bernardo and Smith (2001). 

 In case of the general hierarchical model defined in (1.1), the posterior for the 

model parameters   is defined as 

 ( |    )  
{∫ (         )         }    

       
, 

 
    

 (      )    

       
, 

(2.22) 

where 

  (    )  ∫ (         )                

is the normalizing constant. Except for some simple model formulations, the posterior for 

  does not exist in a closed form. Its numerical computation is also intractable because of 

the high-dimensional integration involved in computing the normalizing constant. Fortu-

nately, one can generate random numbers from  ( |    ) by appealing to the standard 

MCMC algorithms (Gilks et al.1996; Spiegelhalter et al. 2004), such as Gibbs sampling 

(Gelfand and Smith 1990) and Metropolis-Hastings (Metropolis et al. 1953; Hastings 

1970) algorithms, without ever computing the normalizing constant in (22). These algo-

rithms are designed to generate random samples from intractable target probability distri-

butions.  

 In addition to obtaining the posterior for  , we can also obtain marginal posterior 

distribution for the latent effects  , i.e. 

 
 ( |    )  

∫ (         )             

       
. 

(2.23) 

This posterior distribution can then be used to obtain Bayesian prediction intervals for the 

latent effects. Notice that, MCMC algorithms are used to generate random numbers from 

(2.22) and (2.23) simultaneously by sampling from the following joint posterior distribu-

tion 

 
 (   |    )  

 (         )           

       
. 

(2.24) 

  

2.5.1 Bayesian Analysis of GLMMs 

Let us recall the GLMM defined in Section 2.2. Assuming     , to be prior distribution 

of model parameters, the marginal posterior distributions for   and the random effects    

are respectively given as 
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  ( |    )  

{∏ ∫                       
      }    

∫{∏ ∫                       
            }

, 
(2.25) 

  (  |    )  
∏ ∫                           

     

∫{∏ ∫                        
            }

. (2.26) 

The posterior distributions in (2.25) and (2.26) are generally numerically intractable as 

the dimension of   , q, is usually large. Therefore, these posteriors are estimated by 

drawing MCMC samples from the following joint posterior distribution 

 (    |    )  
                          

∫{∏ ∫                       
            }

. 

Zeger and Karim (1991, 1992) employed the Gibbs sampler to compute these 

posteriors. They suggested using noninformative priors with the understanding that the 

mean of the posterior distribution is a reasonable approximation to the maximum likeli-

hood estimator. The resulting estimators have become increasingly popular because of 

the advent of the MCMC methodology and availability of computer software such as the 

WinBUGS (Spiegelhalter et al. 2004). Rather than numerical maximization of a noisy 

function, these Bayesian methods have the advantage of requiring only the computation 

of the means and variances of the posterior distribution. However, the use of noninforma-

tive prior has its own difficulties, both in the context of the convergence of the MCMC 

algorithm and the true meaning of noninformativeness of a prior. Difficulties with the use 

of noninformative priors are thoroughly reviewed by Press (2003, Chapter 5), Barnett 

(1999, Chapter 6), Cox (2006) and Lele and Dennis (2009).  

Some researchers (e.g. Datta 1996) have tried to exploit the simplicity of the 

Bayesian computation to obtain valid frequentist answers to difficult problems by trying 

to construct priors, the probability-matching priors, such that the credible intervals ob-

tained from the posterior distributions are, in fact, the same as the confidence intervals. 

However, calculation of the appropriate probability-matching priors for a given model is 

a difficult task. Recently, extending some of the techniques from the Physics literature 

(Bennett 1976), various researchers have suggested using path sampling and bridge sam-

pling methods (Gelman and Meng 1998) for obtaining estimates of the likelihood ratios 

using MCMC method. These, in turn, can be used to obtain the maximum likelihood es-

timators for most hierarchical models including GLMM. A related method based on non-

parametric estimation of the likelihood surface was developed by deValpine (2008). 

However, these methods also face the difficult task of numerically maximizing a noisy 

function (Spall 2003) that can be very tricky and difficult. 
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2.6 Sequential Monte Carlo 

Sequential Monte Carlo (SMC) (Doucet et al. 2001) techniques are a set of simulation-

based methods designed to compute prediction distributions of the latent effects, i.e. 

        
          

∫            
. (2.27) 

As we have seen previously, models      and      may depend on unknown parameters 

   and    respectively. However, we suppress this dependence in the ongoing section to 

reduce notational burden. Although applicable in much more generality, the SMC meth-

ods can best be understood in the context of state-space time series models (deValpine 

2002). In a standard state-space formulation, the unobserved states {      } are mod-

eled as a Markov process with initial distribution       and the transition distribution 

          . The observations {      } are conditionally independent given the latent 

process {      } with marginal distributions         . Let us denote      

{          } and      {          } as the latent states and observations up to time t. 

Then, we wish to obtain recursively in time the prediction distribution (2.27), i.e. 

              
                   

∫                        
. (2.28) 

In particular, our goal is to estimate the filtering distributions,           , and the follow-

ing expectation recursively in time: 

                   
          ∫                        . (2.29) 

for some function of interest     ; for instance, conditional mean of (2.28). 

 The Markov assumption allows us to obtain a straightforward recursive formula 

for the joint predictive distribution (2.28), i.e. 

                              
                      

            
. (2.30) 

Similarly, we also obtain a recursive relation for the filtering distribution           , i.e. 

              ∫                             . (2.31) 

which can be updated as 

            
                    

∫                       
. (2.32) 

It is clear that the above predictive distributions cannot be computed in a straight-

forward fashion owing to the difficulty in computing the normalizing constants that in-

volve intractable integrals in latent states   . There, however, exist simpler cases where 

exact analytical solutions exist. A notable exception is that of the linear Gaussian state-

space model for which the well known Kalman filter (Harvey 1993) provides efficient 
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estimates of the predictive distributions. However, the problem remains highly intractable 

for nonlinear non-Gaussian state-space models. 

Importance sampling (see Section 2.3.3) plays a key role in SMC methodology. 

In the following we explain how IS can be used in a recursive manner to compute esti-

mates of the predictive distributions defined above. 

2.6.1 Sequential Importance Sampling 

As we have seen earlier, the main difficulty in computing              is due to the nor-

malizing constant appearing in (2.28). This normalizing constant is in fact the likelihood 

function for the observed data     , i.e. 

          ∫                        . 

Recalling from Section 2.3.3, a Monte Carlo estimate of           using IS is given as 

follows 

  ̂         
 

 
∑  (         

   
)    

    
   . (2.33) 

where     
   

       
   

   (    
   

) are the importance weights and      is the IS distribution 

whose support includes the support of     . For a given value of  , the above expression 

provides a consistent estimate of           that is independent of the dimension of the 

integrand (Geweke 1989). We can obtain similar estimates for the expectation defined in 

(2.29). However, this simple IS scheme is not suitable for the recursive estimation of the 

predictive distributions as described in (2.30-31). This is because we need to obtain all 

the data      before estimating             . Thus, we need to recompute the importance 

weights over      whenever we observe a new data     . Clearly, this scheme becomes 

computationally prohibitive with increasing time steps. 

 An alternative is to modify the above procedure as follows. Let us set     and 

assume          be the IS distribution corresponding to          yielding an IS esti-

mate  ̂       . That is, 

 ̂        
 

 
∑  (     

   
)  

    
   , 

where {  
   

} are N samples (or particles) sampled from         , and  {  
   

} are the as-

signed importance weights to account for the discrepancy between the two distributions. 

Now, for    , we notice from (2.30) that 

                     
                

        
 

                                              . 
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This suggests introducing an IS distribution             in order to generate samples 

from the joint distribution                     with corresponding weights {    
   

}. The 

trick here is to obtain the importance weights {  
   

} by updating the weights obtained at 

     This procedure is further augmented by a resampling step yielding samples ap-

proximately distributed as             . The procedure is repeated recursively until the 

last time step; say    . Further details and refinements of this simple SMC can be 

found in Doucet et al. (2001). 

2.6.2 Estimation and Prediction 

 Thus far we have assumed that the parameter vector   is known. However, in 

practice   must be estimated from the observed data     . Let us first consider the Bayes-

ian estimation in the state-space modeling context. As described in Andrieu et al. (2010), 

the most commonly used choice is to sample from                using MCMC methods 

(see equation 2.24) by alternately updating the latent states      conditional on   and vice 

versa. Sampling from           is usually feasible in general state-space models (An-

drieu et al. 2010). On the other hand, apart from simpler cases such as linear Gaussian 

models, sampling from              is intractable as one needs to design efficient pro-

posal densities. The problem is further aggravated when            cannot be expressed 

analytically but its simulation is feasible. However, Andrieu et al. (2010) have recently 

introduced an SMC based algorithm to construct efficient, potentially multidimensional, 

proposal distributions to improve upon the standard MCMC methods for simulating from 

            . The resulting particle MCMC (PMCMC) algorithm also overcomes the lim-

itations suffered by the stand-alone SMC algorithms. Another attractive feature of 

PMCMC is that it is generally applicable in a wide class of hierarchical models including 

the nonlinear mixed effects models. 

 Maximum likelihood estimation techniques involving SMC are now well devel-

oped (Kantas et al. 2009). It is obvious from (2.33) that for any    , it is possible to 

compute an unbiased estimate of          , numerically yielding a corresponding plug-in 

estimate for the log-likelihood, i.e.  ̂             ̂        . However, this latter esti-

mate is biased but the standard techniques exist to correct for the bias (Pitt 2002). This 

bias corrected estimate then serves as a basic ingredient in more sophisticated optimiza-

tion procedures such as gradient methods and the EM algorithm. For further details, we 

refer the reader to Kantas et al. 2009. A recent SMC based approach for likelihood based 
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inference in hierarchical models is developed by Johansen et al. (2008). They employ 

simulated annealing ideas (Brooks and Morgan 1995) to construct a sequence of artificial 

distributions whose limiting support is concentrated around the MLE. They then use 

SMC to sample from these artificial distributions. 

2.7 Summary 

Computation of the likelihood function arising in the context of GLMMs involves inte-

gration over the distribution of the random effects, which is generally high dimensional. 

Thus, exact maximization of the likelihood function is intractable, leading to various ap-

proximate methods for evaluating the high dimensional integrals. These can be broadly 

divided into two types: (i) Monte Carlo approximations such as MCEM and simulated 

maximum likelihood, and (ii) approximate numerical integration techniques such as La-

place approximation and AGQ. Although, PQL also falls in the latter category, it overly 

simplifies the maximization problem resulting in biased estimates of both fixed effects 

and variance components. On the other hand, AGQ have been shown to provide accurate 

results in various GLMM settings but it becomes computationally costly when response 

is ordinal or when there exist a large number of latent variables.  

Although simple Monte Carlo approximations, such as simulated maximum like-

lihood, suffer in terms of convergence and accuracy when the problem involves high-

dimensional integration, they can be adequately improved by adopting the SMC method-

ology. The PMCMC algorithm that integrates SMC with the standard MCMC routines, 

provides a promising framework for computing highly intractable predictive distribu-

tions. 

Bayesian paradigm offers a different approach to likelihood based inference by 

assuming prior distributions to account for parameter uncertainty before any data have 

been collected. Noninformative priors are commonly used to avoid subjectivity arising 

from the choice of prior distributions. However, it is still debatable whether the resulting 

inference is invariant to the choice of noninformative priors. This problem is especially 

important when fitting complex hierarchical models with scarce data and no guarantees 

on model identifiability (Lele 2010). 
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Chapter 3 

Analysis of GLMMs using Data  

Cloning
1
 

 

In this chapter we develop data cloning (DC) algorithm for computing maximum likeli-

hood estimates (MLEs) and their standard errors for general hierarchical models. Earlier, 

Lele et al. (2007) reviewed the difficulties associated with Bayesian and likelihood based 

inference in general hierarchical models and proposed data cloning as an alternative ap-

proach.  We refer the reader to Doucet et al. (2002), Kuk (2003), and Jacquier et al. 

(2007) for methods similar to data cloning. 

The organization of this chapter is as follows. We begin with a theoretical devel-

opment of the DC algorithm in Section 3.1. In Section 3.2 we present an algorithm in-

volving MCMC implementation of the DC approach for computing MLEs and their 

standard errors for general hierarchical models. Section 3.3 presents our algorithm for 

obtaining DC based prediction intervals for the latent effects. We exemplify the DC ap-

proach using various important subclasses of GLMMs in Section 3.4. In Section 3.5 we 

develop a DC based estimability diagnostic algorithm. The chapter concludes with a brief 

summary in Section 3.6. 

                                                 

 
1
 A version of this chapter has been published. Lele S R, Nadeem K, and Schmuland B. Journal of 

the American Statistical Association 2010, 105.492: 1617-1625. 
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3.1 Data Cloning Algorithm 

The key idea behind data cloning is to formulate the Bayes’ rule as an iterated map on the 

space of probability distributions. Let us recall from Chapter 1 the Bayesian formulation 

of the general hierarchical model:  

Hierarchy 1:         (         )                    (3.1 a) 

Hierarchy 2:          ,                                  (3.1 b) 

Prior Distribution:       ,                      (3.1 c) 

where      
    

    and we assume that      takes positive values on the p-

dimensional parameter space  . The marginal posterior distribution of   is then given as 

(see equation 2.22), 

  ( |    )  
 (      )    

       
, 

where  (      ) is the integrated likelihood function and  (    )  ∫ (      )       

is the normalizing constant. Now if we substitute this posterior distribution as prior back 

again, we obtain 

  ( |    )  
[ (      )]

 
    

       ∫
[ (      )]

 
    

       
  

, 

which reduces to 

  ( |    )  
[ (      )]

 
    

 (       )
. 

Then, by induction, it follows that the posterior distribution corresponding to the prior 

    ( |    ) is given as 

 
  ( |    )  

[ (      )]
 
    

          
. 

(3.2) 

 where  (       )  ∫[ (      )]
 
        is the normalizing constant. This posterior 

distribution can therefore be looked upon as an iterated map           ,                

           , …,              . Lele et al. (2007) showed that this iterated map 

has a fixed point: a probability distribution degenerate at the MLE which is independent 

of the initial prior distribution  . Here we present a sketch of their result whereas a more 

general result is obtained in the next section.  

 Let  ̂ be the MLE of  , i.e.  ( ̂     )   (      ) for all    . Since the ini-

tial prior distribution      is positive everywhere on the parameter space, it follows that 

as     
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  ( |    )

  ( ̂|    )
 

    [ (      )]
 

 ( ̂)[ ( ̂     )]
    if     ̂ 

and 

  ( |    )

  ( ̂|    )
 

    [ (      )]
 

 ( ̂)[ ( ̂     )]
    if     ̂. 

Thus, the fixed point for the aforementioned iterated map is a probability distribution that 

is degenerate at the MLE  ̂. Furthermore, the degenerate distribution is independent of 

the initial distribution     .  

In this thesis we further establish the following result whose proof is given in the 

next subsection. We denote the Fisher information matrix of   ̂ by     ̂ . 

Theorem 3.1: Let    be a random variable on   , the p-dimensional Euclidean space, 

with density function       and define the standardized variable     √    ̂ (   

 ̂), then under suitable regularity conditions   

 
  (    ), as    . 

Thus, for large   and regardless of the choice of the initial distribution  , the 

posterior distribution   ( |    )  [ (      )]
 
                is approximately 

Normal with mean  ̂ and variance-covariance matrix equal to 
 

 
     ̂ . This suggests 

that we can compute the MLE and the associated standard errors by computing the mean 

and variance of   ( |    ) for large K. 

3.1.1 Proof of Convergence 

In this section we present a proof of Theorem 3.1. The proof is similar to that of Walker 

(1969) where, under certain regularity conditions, he showed stochastic convergence of 

  ( |    ) to a degenerate distribution (degenerate at the MLE) as the sample size 

   . However, the proof given here involves deterministic convergences of a se-

quence of functions; not the probabilistic convergences used in Walker (1969). 

 Let us fix some notation first. Let  (      ) denote the joint probability density 

function of the data vector     . We assume that this is a bounded function as a function 

of  . Also define  

  ( |    )    (      )         , 

where      ∫  (      )      . We are suppressing the dependence of     , on 

     for notational simplicity. 
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Assumption 3.1: The function     , as a function of  , has a local maximum at    and 

         and        . The maximum likelihood estimator is, by definition, denoted 

by   . 

Assumption 3.2: The function      is continuous at   . The function      has continu-

ous second derivatives in a neighborhood of    and the Hessian matrix          is 

strictly negative definite. 

Assumption 3.3: For any    , we have         {       ‖    ‖   }  

       , where        denotes the Euclidean norm of a vector. 

Definition 3.1 (Neighborhood): Let   {         }     and for some     define 

        {   ‖         ‖   }. Because   is positive definite, this defines a sys-

tem of neighborhoods of   . 

Definition 3.2: Let    be a random variable on    with density function       and de-

fine the standardized variable    √    (    ̂) that has density function       

   

 
 
 

  (   
 

√ 
  ). 

Lemma 3.1 (Fatou’s lemma): Let         be a sequence of non-negative measurable 

functions defined on a measure space        . If           such that the following 

almost everywhere pointwise limit exists 

                            

then   is measurable and 

∫    
 

            ∫        
 

  

Lemma 3.2 (Scheffe’s lemma): Let           be a sequence of continuous random 

variables in a probability space        , whose probability density functions are 

         , respectively. If                   exists almost everywhere for all    , 

then    converges to   in distribution, i.e.   

 
  . 

 We now assume, without loss of generality, that         . This is simply a 

standardized likelihood function and computation of the posterior distribution   ( |    )  

is invariant to such standardizations. Thus,   {         }     corresponds to the 

square root of the inverse of the Fisher information matrix since 

                    . 

Lemma 3.3: Under Assumptions 3.1 and 3.2,   (   
 

√ 
  ) converges to   ‖ ‖     

uniformly on bounded sets of   as    . 
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Proof: Fix    so small that         is continuous on the neighborhood      . For every 

  in this neighborhood, Taylor’s theorem dictates that there is some    on the line seg-

ment joining   and    so that   

                            
 

 
       {        }       

                          
 

 
       {         }                                              (3.3) 

For any     , when   is large, the vector   
 

√ 
   is in       and we have 

 (   
 

√ 
  )    

    {         }  

  
, 

for some    on the line segment joining    
 

√ 
   and   . 

For    , choose         so small that for    (    ), we have         negative 

definite and ‖  {        }   ‖   . Now, for some     and    , the following 

inequalities hold 

 
|(  

 

 
)
 

 (  
 

 
)
 
|       , 

(3.4 a) 

and 

 
|(  

 

 
)
 

         |  
  

 
, 

(3.4 b) 

Let us fix    ,       and let      {(
 

    
)
 
   }. Then for ‖ ‖    we have 

    (    ), so using (3.4)  with   
 

 
    {         }   and   ‖ ‖    we get 

|  (   
 

√ 
  )   

( 
‖ ‖ 

 
)
|  

   

 
 

  

  
. 

As   is arbitrary, this gives the result. 

Corollaries to Lemma 3.3:  

(1) By the continuity of   at    and Lemma 3.3,  (   
 

√ 
  )   (   

 

√ 
  ) 

converges to             ‖ ‖     uniformly on bounded sets. 

(2) Lemma 3.3 and Fatou’s lemma give us                                   . 

In particular, there is a constant     so that 
 

    
      . 

Lemma 3.4: Under Assumptions 3.1 and 3.2, the following three statements are equiva-

lent. 

(a)   

 
  (    ) (convergence in distribution to a Normal random variable). 
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(b) The density    converges pointwise to a multivariate standard normal density 

function. That is,                          . 

(c)   

 
   , where    indicates a degenerate distribution at   . 

Proof: To show (a)   (b).  The density       can be written as  

      
    

         (   
 

√ 
  )  (   

 

√ 
  ). 

Let   be a bounded Borel set with positive Lebesgue measure. From the convergence in 

(a), we have 

 

       ∫  
( 

‖ ‖ 

 
)
  

 
     

    

        ∫  (   
 

√ 
  )   (   

 

√ 
  )  

 
. 

On the other hand, the uniform convergence from Lemma 3.3 gives 

    ∫  (   
 

√ 
  )   (   

 

√ 
  )  

 
      ∫  

( 
‖ ‖ 

 
)
  

 
. 

Hence we can conclude that                           as K converges to infinity. 

Combined with convergence in Lemma 3.3, this gives 

      
 

         
( 

‖ ‖ 

 
)
. 

Also, (b)   (a) follows from the Scheffe’s theorem, and, (a)   (c) is obvious. Now, we 

show (c)   (b). Because      and   are continuous at    and   is strictly positive def-

inite, from (3.3) we see that for any ε >0 we can find δ >0 so that        implies 

        
 

 
                     , (3.5 a) 

                . (3.5 b) 

Also, by assumption (c), we may assume that K is so large that     ∫        
    

. 

Multiplying this inequality by                 and using (3.5) gives 

                    ∫             
    

 

                      ∫ [  
 

 
                     ]

 
  

    
 

                               ∫  
[ 

 

 
                     ]

 

  
    

 

                                   
 

   

By letting     and then    , we get 

                                  . 

The other half comes from the inequality in Corollary 2 of Lemma 3.3. 
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Corollary to Lemma 3.4: Under Assumptions 3.1, 3.2, and 3.3,   

 
   . 

 Proof: Using Assumption 3.3 and the second corollary to Lemma 3.3, we see that 

for any δ >0, 

 

    
∫             
‖    ‖  

             . 

This implies that   

 
   . 

Hence, the main result of the convergence of the DC algorithm, that under Assumptions 

3.1, 3.2, and 3.3,   

 
  (    ), follows immediately. 

Remark 3.1:. The proof given in Jacquir et al. (2007) assumes only Assumptions 3.1 and 

3.2 The counter example below shows that they are not sufficient for convergence; As-

sumption 3.3 is necessary. Let    ,      
 

   
    (  

 

   ). Let the likelihood func-

tion be        
  

 
 when       and        

 

    
 when      . In this case, 

√        and we do not get the convergence to a Normal distribution. 

3.2 MCMC Implementation 

The key trick in operationalizing the result obtained in Theorem 3.1 is to pretend that 

several independent copies, or clones, of the originally observed data vector are available. 

Specifically, we suppose that the statistical experiment underlying the observed data is 

independently repeated K times and, purely by chance, each results in exactly the same 

dataset,     . We denote the resulting data set, consisting of K independent clones of the 

original data, as      (                ). It immediately follows that the likelihood 

function corresponding to this K-cloned dataset is given as [ (      )]
 

. We further note 

that (a) the location of the maximum of the K-cloned likelihood function is exactly same 

as that of  (      ), and (b) the Fisher information matrix based on this likelihood is 

equal to K times the Fisher information matrix corresponding to  (      ). Let us now 

consider a Bayesian formulation of the general hierarchical model in equation (3.1), 

where we replace the original likelihood  (      ) by the K-cloned likelihood 

[ (      )]
 

. Assuming      as a proper prior distribution on the parameter space, the 

posterior distribution of  , conditional on the K-cloned dataset,     , is given as 

   ( |    )  
[∫ (         )         ]
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[ (      )]
 
    

          
, 

(3.6) 

where  (       )  ∫[ (      )]
 
        is the normalizing constant. Interestingly, 

this posterior distribution is exactly the same as the one given by (3.1) via the iterated 

map formulation           ,            , …,              . 

 Thus, with sufficiently large K, Theorem 3.1 ensures that the MLE,  ̂, and the 

corresponding asymptotic standard errors can be obtained by computing the mean and 

variance of the posterior distribution in (3.6).  However, owing to the presence of high 

dimensional integrals in the likelihood function, these posterior quantities are highly in-

tractable to compute numerically. A way out is to resort to their Monte Carlo approxima-

tion by generating random variates            from   ( |    ) and use their mean 

and variance to obtain the MLE and its asymptotic variance. Fortunately, as outlined be-

low, such generation of random variates is quite straightforward using the MCMC tech-

nique. 

Recall that the K-cloned likelihood function [ (      )]
 

 corresponds to a 

thought experiment where K experimenters happen to obtain exactly the same data set 

     independently. We conduct this thought experiment using computers. We create the 

K-cloned dataset,      (                ), by repeating the observed data vector K 

times. We pretend as if these data were obtained from the K independent experiments and 

use the standard MCMC approach to generate random variates            from the 

posterior   ( |    ).  This can be easily implemented using the freely available software 

packages such as WinBUGS (Spiegelhalter al., 2004) and JAGS (Plummer, 2011a, 

2011b). Thus, if K is large, the MLE of the parameter   is simply the mean of these ran-

dom variates. Furthermore, if the parameter space is continuous, K times the variance (or, 

variance–covariance matrix for the multiparameter case) of these random variates is the 

estimated variance of the MLE, the inverse of the Fisher information,      ̂ , based on 

the original data.  

In addition, inference for transformations of the model parameters becomes read-

ily available. Let      be a transformation from    to   , where      . Then, by 

the invariance property of the MLE,    ̂  is the MLE of     . Also, we compute the var-

iates                     from the MCMC-generated random variates           . 

Then, K times the variance (or, variance–covariance matrix for the multiparameter case) 
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of these transformed random variates is the estimated variance of    ̂ , i.e. the inverse of 

the Fisher information        ̂  . 

Thus, quite remarkably, the DC procedure avoids: (i) analytical or numerical 

evaluation of the high-dimensional integral which is a major computational hurdle for 

maximum likelihood estimation for GLMM; (ii) numerical optimization of a function; 

and (iii) numerical computation of the curvature of the likelihood function. The number 

of clones to be used in the procedure is completely under the control of the analyst. It can 

be made as large as necessary to achieve the desired accuracy of the resultant estimates. 

3.2.1 Determining Adequate Number of Clones 

An important issue in implementing the DC algorithm is the practical convergence of the 

algorithm, i.e., determining adequate number of clones so that the posterior distribution 

  ( |    ) becomes nearly degenerate. We achieve this by plotting a standardized ver-

sion of the largest eigenvalues,   , of the variance-covariance matrix of the K-cloned 

posterior distribution as a function of K. We notice that the largest eigenvalue,   , con-

verges to zero at the same rate as 1/K, as do the marginal posterior variances. The stand-

ardized largest eigenvalues are computed as   
       , where    is the largest eigen-

value of the posterior variance with a single clone. Therefore, convergence of the algo-

rithm can be monitored by comparing   
  with the expected rate 1/K. We choose number 

of clones so that (a)   
  consistently decreases at rate 1/K with increasing values of K and 

(b) the posterior also becomes sufficiently close to normal distribution. We know that 

when (b) holds,     ̅     
      ̅   is a chi-square random variate, where  ̅  and 

   are mean and variance (covariance) of the K-cloned posterior distribution respective-

ly. In this case, the following statistics are expected to be close to zero (Johnson and 

Wichern 2007): (i)    
 

 
∑ (  

   
   )

 
 
    where   

   
     ̅     

      ̅  , 

and    are the quantiles for   
  random variable, and (ii)  ̃ 

         (  
   

   ). 

Thus, convergence is achieved at the value of K for which    and  ̃ 
  are below some 

specified threshold such as 0.001. The detailed implementation steps of the DC algorithm 

are outlined in Algorithm 3.1. 
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3.2.2 Choosing the Prior Distribution 

Theorem 3.1 holds for any choice of a proper prior distribution     . This, in principle, 

means that DC based likelihood estimates remain invariant to the choice of prior distribu-

tions.  However, substantially noninformative (or vague) priors can cause poor MCMC 

Algorithm 3.1 Data Cloning Algorithm with a Fixed Prior 

1. Let (            be a set of increasing positive integers and assume a proper prior 

distribution     . Set      and proceed to the next step. 

2. Set      and construct a K-cloned data set      (                ) by repeating 

the observed data vector K times. 

3. Pretend as if these data were K independent realizations from the data generating 

mechanism of     . Conditional on these data, generate random 

ates                    from the distribution   ( |    )  [ (      )]
 
     

           using any MCMC type algorithm.  

4. Use random variates generated in Step-3 to compute the posterior mean  ̅  and vari-

ance-covariance matrix   .  

5. Compute the largest eigenvalue,   , of the variance-covariance matrix   . Divide it 

by the largest eigenvalue when number of clones is    to obtain the standardized 

largest eigenvalue, i.e.   
        . 

6. Compute   
      . This is the standardized rate at which   

  is expected to drop 

with increasing clone size. 

7. Compute    
 

 
∑ (  

   
   )

 
 
   and  ̃ 

         (  
   

   ), where   
   

 

    ̅     
      ̅   and    are the quantiles for   

  random variable 

8. Plot the quantities   
 ,   

 ,    and  ̃ 
  verses the number of clones K. 

9. Jump to the next step if the following two conditions are satisfied: 

(a) The standardized largest eigenvalue   
  is dropping at the expected rate   

 . 

(b)  Both    and  ̃ 
  are below a small threshold, say 0.01. 

Otherwise, set next       and go back to Step-2. 

10. Compute  ̂   ̅  and  ̂ ̂  √   . These are, respectively, MLE of   and that of the 

inverse of the Fisher information matrix       . 
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mixing leading to slow convergence of the DC algorithm. On the other hand, using 

strongly disinformative (informative but wrong) priors can also slow down the conver-

gence as very high cloning size K might be required to fully eliminate the priors’ influ-

ence. Our experience dictates that using moderately vague priors usually results in faster 

implementation of the DC algorithm. 

Alternatively, we also suggest assuming a multivariate normal prior centered at 

the MLE’s obtained from fitting a fixed-effects GLM model, i.e. ignoring the presence of 

latent effects. For instance, consider fitting the following logistic GLMM, 

Hierarchy 1:                      , where 

                        (
  

    
)          , and   is a covariate. 

Hierarchy 2:          
  . 

The multivariate normal prior can be constructed using the following two-step procedure. 

Step-1: Use Algorithm 3.1 to fit the simpler model ignoring the random effects  . That is, 

we only fit the logistic GLM with    (
  

    
)       , assuming a moderately vague 

prior distribution     , where           This yields the MLE  ̂    and the corre-

sponding variance-covariance matrix      ̂    . 

Step-2. Construct the multivariate normal prior as follows. 

 

      (  [
  ̂   

 
]  [

     ̂     

   
]) 

where            
    and          indicates the Normal density with mean μ and 

variance   . 

We emphasize that Algorithm 3.1 assumes the same prior distribution for each it-

eration of the DC algorithm. We can further improve upon it by iteratively incorporating 

the information contained in      
( |    ) when computing the next posterior distribu-

tion    
( |    ).  We operationalize this idea in Algorithm 3.2. An advantage of Algo-

rithm 3.2 is that, apart from speeding up the DC computations, it can also help circum-

vent MCMC convergence issues. The dclone package in R (Sólymos 2010) provides an 

efficient and user friendly implementation of the DC algorithm. The package is available 

from the package section of the Comprehensive R Archive Network site (< http://cran.r-

project.org/>). 
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Algorithm 3.2 Data Cloning Algorithm with Prior Updating 

The algorithm is exactly the same as Algorithm 3.1, except for the following Step. 

9. Jump to the next step if the following two conditions are satisfied: 

(a) The standardized largest eigenvalue   
  is dropping at the expected rate   

 . 

(b)  Both    and  ̃ 
  are below a small threshold, say 0.01. 

Otherwise, set       and       ( ̅  √   ), and go back to Step-2. 

3.3 Prediction of Random Effects 

An important inferential component of many hierarchical models is prediction of random 

effects. One can use MCMC along with data cloning to obtain point prediction and pre-

diction intervals for the random effects. The method is based on the results of Harris 

(1989) where it is shown that if one uses the bootstrap distribution of the parameters as 

the ‘prior’, the posterior distribution of the random effects is the best approximation, in 

Kullback–Leibler divergence, to the true distribution. We suggest replacing the bootstrap 

distribution by the Normal approximation obtained by data cloning. This may also be 

looked upon as the prior invariant component of the posterior distribution. Thus, predic-

tion inference on random effects is obtained by using 

 (      )  
∫ (         )        (   ̂      ̂ )  

        
, 

where           indicates the Normal density with mean μ and variance   . The 

MCMC algorithm can be used to obtain the draws from this distribution without actually 

conducting the integration. We simply obtain the random numbers from 

  (        )  
 (         )        (   ̂      ̂ )

        
 

and utilize the   component only. 

3.4 Illustrative Examples 

In the following we apply data cloning to obtain maximum likelihood estimates and asso-

ciated asymptotic standard errors for three important subclasses of Generalized Linear 

Mixed Models with wide applications in medical statistics and epidemiology. The de-

tailed description of the scientific problems, statistical models, and the data is available in 
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Breslow and Clayton (1993). The following descriptions are borrowed from Breslow and 

Clayton (1993, section 6). 

3.4.1 Logistic–Normal Mixed Model 

Crowder (1978, Table 3) presented data on the proportion of seeds that germinated on 

each of 21 plates arranged according to a 2 × 2 factorial layout by seed variety and type 

of root extract. He noted that the within-group variation exceeded that predicted by bi-

nomial sampling theory. A natural way to account for extraneous plate-to-plate variability 

in this situation is by means of the following GLMM:  

Hierarchy 1:                      , where 

           (
  

    
)                                   

                                 

Hierarchy 2:          
  . 

Breslow and Clayton (1993) provide the exact ML estimates of the parameters 

along with their standard errors based on numerical integration. In Table 3.1, we provide 

the results based on the data-cloning algorithms with two different priors. The first set of 

DC estimates (Data Cloning 1) is obtained via Algorithm 3.1 using a noninformative pri-

or. The second set (Data Cloning 2) is computed using Algorithm 3.2 starting with a mul-

tivariate normal prior based on the GLM estimates. We compare these estimates with 

those based on noninformative Bayes estimates. The DC based MLEs and their SEs are 

nearly identical to the exact ML estimators and are invariant to the choice of the priors. 

Figure 3.1-a gives the DC convergence diagnostics and Figure 3.1-b shows the DC based 

point predictions and prediction intervals for the probability of germination along with 

those based on noninformative priors. These match reasonably well with the ones ob-

tained by using noninformative Bayes approach. 

3.4.2 Longitudinal Data 

Thall and Vail (1990, Table 2) presented data from a clinical trial of 59 epileptics who 

were randomized to a new drug (Trt = 1) or a placebo (Trt = 0) as an adjuvant to the 

standard chemotherapy. Baseline data available at entry into the trial included the number 

of epileptic seizures recorded in the preceding eight-week period and age in years. The 

logarithm of one fourth of number of baseline seizures (Base) and the logarithm of age 

(AGE) were treated as covariates in the analysis. A multivariate response variable 
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Table 3.1 Maximum likelihood estimates and standard errors (SEs) using data cloning 

under two different priors and comparison with the estimates and variances using the 

noninformative Bayesian analysis. 

Parameters Data Cloning 1 Data Cloning 2 Noninformative Bayes 

Example 1 

  -0.5484 (0.1693) -0.5491 (0.1623) -0.5488 (0.2129) 

1  0.0970 (0.2758) 0.0993 (0.2771) 0.0515 (0.3462) 

2  1.3372 (0.2403) 1.3378 (0.2357) 1.3583 (0.3076) 

12  -0.8113 (0.3837) -0.8133 (0.3879) -0.8181 (0.4762) 

  0.2376 (0.1069) 0.2361 (0.1061) 0.3546 (0.1469) 

Example 2 

  -0.4381 (0.1693) -0.4397 (0.1372) -0.5581 (0.1496) 

1  0.6078 (0.0901) 0.6084 (0.1181) 0.6560 (0.0893) 

  1.2888 (0.2112) 1.2890 (0.1992) 1.4468 (0.2214) 
  0.1770 (0.0111) 0.1770 (0.0101) 0.1429 (0.0388) 

Example 3 

  -1.3934 (1.1965) -1.4070 (1.2343) -1.4165 (1.2537) 

Base  0.8782 (0.1318) 0.8822 (0.1180) 0.8824 (0.1293) 

Trt  -0.9493 (0.3827) -0.9448 (0.3959) -0.9739 (0.3889) 

BT  0.3501 (0.1913) 0.3473 (0.1975) 0.3632 (0.1980) 

Age  
0.4852 (0.3519) 0.4872 (0.3715) 0.4883 (0.3700) 

V  -0.1019 (0.0861) -0.1016 (0.0872) -0.1026 (0.0877) 

b  0.3590 (0.0430) 0.3593 (0.0412) 0.3622 (0.0428) 

1b  0.4623 (0.0622) 0.4621 (0.0635) 0.4934 (0.0697) 

Table 1 

consisted of the counts of seizures during the two weeks before each of four clinic visits 

(Visit, coded −3, −1, 1, and 3). Preliminary analysis indicated that the counts were sub-

stantially lower during the fourth visit and a binary variable (V4 = 1 for fourth visit, 0 

otherwise) was constructed to model such effects. Breslow and Clayton (1993) use the 

following GLMM for modeling these data: 

Hierarchy 1:                      , where 

           (   )                                   

                      
           

Hierarchy 2:          
   and            

  .  

In Table 3.1, we present the MLEs obtained using data cloning procedure. The 

results again do not depend on the choice of the priors. In Figure 3.1-c, we show the con-

vergence diagnostic plots and Figure 3.1-d shows the DC based-point predictions and 
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Figure 1  

Figure 3.1 Data cloning convergence diagnostics and prediction of random effects for the three 

examples. The standardized eigenvalues converge to zero at the expected rate for all three cases. 

Data cloning based prediction intervals for random effects are quite similar to the ones obtained 

using noninformative priors. 

 

prediction intervals for subject effects. These match reasonably well with the ones ob-

tained using noninformative priors.  

3.4.3 Spatial Smoothing of Disease Maps  

One of the most common applications of GLMM is in the context of spatial smoothing of 

disease maps (Clayton and Kaldor 1987; Diggle, et al. 2002). We consider the data re-

ported in Clayton and Kaldor (1987) on the number of lip cancer cases in the 56 counties 

of Scotland. Clayton and Kaldor (1987) proposed an empirical Bayes estimation of the 

county specific standardized mortality rates (SMRs) using several alternative assump-
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tions about the distribution of the random effects. These data subsequently were analyzed 

by Breslow and Clayton (1993) using the PQL. In the following analysis, we use a prop-

er, conditionally specified autoregression (CAR) model. A full discussion of these differ-

ent analyses along with the Bayesian implementation is available inWinBUGS (Spiegel-

halter et al. 2004, maps section). The model we use is as follows: 

Hierarchy 1:                  . 

Hierarchy 2:                    
  

  
   , where     expected count and      

of work force employed in agriculture, fishing, and forestry. 

Hierarchy 3:            where              ,         , the inverse of the 

expected count in the i
th
 area, and           . The spatial association parameter 

    
   

  
   

 , where  
   
   and  

   
   are, max are the smallest and largest eigenvalues 

of             , respectively. 

This ensures that the distribution of the random effects is a proper distribution. The max-

imum likelihood estimates and standard errors of the parameters are provided in Table 

3.1. Convergence diagnostics are shown in Figure 3.1-e and predicted random effects and 

associated prediction intervals for counties are shown in Figure 3.1-f. They again match 

well with the ones based on noninformative priors. 

3.5 Model Estimability 

A desirable property in statistical model estimation is the ability to recover true parameter 

values given infinite amount of information available under the assumed model. Howev-

er, the structure of the particular model at hand, or that of available data, may lead to in-

estimability of the model parameters. The key relevant concepts in this regard are that of 

structural identifiability of the model and its statistical estimability. Following Paulino 

and Pereira (1994), we state some basic ideas concerning model identifiability and esti-

mability as follows. 

 A parametric statistical model is a probability triple         where   is the 

sample space with corresponding σ-algebra  , and   is a family of probability measures 

defined on      . The parametric structure of   is specified as   {      }, where 

  is a finite-dimensional parameter space. The following two definitions by Paulino and 

Pereira (1994) define the concepts of model identifiability. 
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Definition 3.3: Two points    and    of   are called observationally equivalent (notated 

as      ) if    
       

   ,      . 

In terms of the model likelihood function  (      ),       if and only if  

 (       )   (       )           

Thus, the likelihood function is constant over all observationally equivalent points. Pauli-

no and Pereira (1994) note that       induces a partition of   in equivalence classes, 

defined as      {        
    

}. This partition is a quotient set of   with respect 

to      , notated as    . 

Definition 3.4 (Model Identifiability): i) The point      is said identifiable if 

     {  }. ii) The parameter space   (or the statistical model   ) is said structurally 

identifiable if     { }      . That is, if     is the finest possible partition, 

    {{ }    }. 

 We now define the concept of parameter estimability under the regularity condi-

tions stated in Assumption 3.1, 3.2 and 3.3. 

Definition 3.5 (Parameter Estimability): The model    is said estimable if the set  

     {     (      )   ( ̂     )}  

is a single point set for all       . 

This definition essentially states that a model    is called estimable if existence and 

uniqueness of  ̂, the MLE, is ensured for all possible realizations from the sample space 

 . Furthermore, the regularity conditions guarantee the consistency and asymptotic nor-

mality of  ̂. Thus,    is estimable if (i)  ̂ exists and is unique for all       , and (ii)  ̂ 

is a consistent estimator of  . 

 Paulino and Pereira (1994), on the other hand, define parameter estimability as 

follows. 

Definition 3.6: A function      is said estimable if it admits an unbiased estimator. 

We, however, argue that model estimability is inherently linked to the existence of a con-

sistent, rather than unbiased, estimator of  . That is, for    to be estimable, the true value 

of   should be recoverable given infinite amount of information available under   . On 

the contrary, unbiasedness of an estimator is not a sufficient condition for its consistency. 

We therefore employ Definition 3.5 as the definition of model estimability in this thesis. 

 The following theorem by Paulino and Pereira (1994) claims that estimability of 

model parameters   is a sufficient condition for model identifiability. 

Theorem 3.2: If the model parameter vector   is estimable,    is identifiable. 
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It is important to note that model identifiability does not imply parameter estimability. 

Rather, model identifiability is a necessary condition for estimability. 

Many hierarchical models have nonidentifiable parameters. For example, in the 

standard measurement error model 



Yi |i ~ N(i,
2) and 



i ~ N(, 2)  for 



i 1,2,...,n , 

the parameters 



(, 2   2)are identifiable but parameters



(, 2, 2)  are not identifiable. It is 

known that (McCulloch and Searle 2001) for the Logistic–Normal model (Example 1, 

Section 4), if only one observation per stratum is available, the variance parameter 



 2 is 

confounded with the intercept parameter 



0. The analytical proof of this result, however, 

is difficult. In most practical applications, models are substantially more complex (Royle 

and Dorazio 2009; Clark and Gelfand 2006), making analytical proofs for identifiability 

of the parameters extremely difficult and are rarely attempted. Analysis is usually carried 

out as if the parameters are, in fact, identifiable (Lele 2010). 

Common methods of assessing lack of parameter estimability include examining 

the rank of the Fisher information matrix or computing profile likelihoods after model 

estimation. Model inestimability may lead to rank deficiencies in the Fisher information 

matrix or extreme parameter correlations (Rodriguez-Fernandez et al 2006; Schittowiski 

2007). However, if the likelihood attains its maximum at distinct modes, Fisher infor-

mation matrix may be of full rank at each mode. On the other hand, profile likelihood 

exploration can fail to detect lack of estimability due to user defined bounds over which 

the likelihood is explored (Campbell and Lele 2013). Here, we present a simple DC based 

estimability diagnostic procedure that circumvents these limitations. We first state and 

prove the following theorem.  

Theorem 3.3: Consider the set      {     (      )   ( ̂     )}. Suppose this 

set is not a single point set, that is, the likelihood function is identical over the set     . 

As 



K, the posterior distribution converges to a distribution with density 
    

∫     
    

 

for       . If the set      is not a single point set,   , the largest eigenvalue of the 

posterior variance matrix, does not converge to 0.  

Proof: Consider 
  (      )

  ( ̂     )
 

      (      )

 ( ̂)  (      )
. It is obvious that for       , 

  (      )

  ( ̂     )
 

      (      )

 ( ̂)  (      )
  . 

It is also equally obvious that for           , 

    
  (       )

  (       )
 

       (       )

       (       )
 

     

     
. 
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Hence the result follows. 

 

Corollaries to Theorem 3.3: 

1) Let      be a function of   such that it takes a unique value on the set     . 

Then      is estimable. 

2) Let       and       be two different prior distributions. Then, it follows that, as 



K, the posterior distributions converge to 
     

∫        
    

 and 
     

∫        
    

 re-

spectively. Hence the largest eigenvalue of the limiting posterior distribution de-

pends on the choice of the prior distribution. 

An immediate consequence of this result is that when the parameters are inesti-

mable, as we increase the number of clones, the posterior distribution converges to a 

truncated prior distribution, truncated over the space of nonestimable parameter values. 

Consequently, the largest eigenvalue of the posterior variance matrix does not converge 

to zero. This result can be used to study lack of identifiability of the parameters in a sta-

tistical model as a whole. In practice, one may be interested in finding out whether cer-

tain functions of parameters are estimable. For example, in linear regression if the covari-

ate matrix is singular, the regression parameters are nonestimable; however, the mean 

responses or differences in the treatment effects are estimable. Similarly in the applica-

tions of hierarchical models, a researcher might be interested in knowing if a specific pa-

rameter or a function of the parameters,     , is estimable or not. The above result can be 

used to establish the estimability of     . If the variance of the posterior distribution of 

the parameter of interest converges to zero, the parameter is estimable. Thus, data cloning 

not only alerts the researcher about nonestimability of the parameters in the model but 

also helps him/her in deciding if certain parameter(s) of interest are estimable or not. In 

the following, we illustrate the use of this technique in the context of hierarchical models. 

3.5.1 Estimability Diagnostics 

We start with a model where identifiability of various parameters is well established. Let 



Yi |i ~ N(i,
2) and 



i ~ N(, 2)  for 



i 1,2,...,n . We generated a single realization 

from this model, used the MCMC algorithm to generate random variates from the poste-

rior distribution for various number of clones and plotted   
  as a function of K. We also 

plotted the posterior variance for various parameters that might be of interest. In Figure 

3.2-a, it is clear that   
  does not converge to zero as the  number  of clones  is  increased,  
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Figure 2  

Figure 3.2 Estimability diagnostics using data cloning. In part (a), we consider Normal-Normal 

mixture. It is clear that   
  does not converge to zero as K increases indicating non-estimability. 

However, the variance for   does converge to zero indicating estimability. In part (b), we consider 

Kalman filter model. All parameters are estimable because   
  does converge to zero as K increas-

es. In part (c), we consider Binary-Normal mixture with complementary log-log link. It is clear 

that the model is non-estimable. Part (d) shows the posterior distribution is a truncated version of 

the prior distribution on a non-degenerate set supporting the non-estimability result further. 

 

indicating non-estimability for the full model. On the other hand, the posterior variance 

for 



 and 



  2   2 converges to zero as the number of clones increase, indicating their 

estimability. This shows that in the Normal–Normal model, 



 and 



 2   2
 are estimable 

whereas 



 2
 and 



 2
 individually are not. Now we consider the classic Kalman filter 

model (Harvey 1993),



Yi |i ~ N(i,
2) and 



i |i1 ~ N(a ci1,
2) for 



i 1,2,...,n . The 
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Normal–Normal model above is a particular case of this model. However, introduction of 

correlation makes the parameters 



(a,c,2,2) identifiable as long as 



c 0 . In Figure 

3.2-b, the plot of   
  for the Kalman filter model clearly shows that the parameters are 

estimable. 

Next we consider mixed Binary regression model. The analytical proof for the 

identifiability of various parameters in this model is difficult to establish (McCulloch and 

Searle 2001). Let 



Yi | pi ~ Bernoulli(pi), 



pi 1exp(exp(0 i))  and 



i ~ N(0, 2) for 



i 1,2,...,n . We considered n = 100 and the number of clones 1, 5, 10, . . . , 50. In Figure 

3.2-c, we plot   
  against K. It is obvious that the parameters in this model are nonesti-

mable. To check this result, we also plot in Figure 3.2-d the posterior distribution based 

on 5000 observations and uniform priors. It is quite clear that the posterior distribution is 

nondegenerate even for such a large sample size and informative priors of  Uniform(−5, 

5) and Uniform(0.8, 4). The marginal posterior distribution plot of 



0  as well as the data 

cloning plot for its variance as a function of the number of clones indicates that this pa-

rameter may be estimable. However, the rate at which the variance for 



0  converges to 

zero is not close to the theoretical rate of 1/K as was the case when the parameters are 

consistently estimable. Convergence may not necessarily indicate that the estimator is 

consistent for the true value. The posterior mean for 



0 was −1.82 (true value=−2) indi-

cating possible inconsistency of this estimator. 

3.5.2 Does Bayesian Learning Indicate Model Estimability?  

The Bayesian perspective on identifiability is discussed in various articles (see, e.g., Gel-

fand and Sahu 1999 or Eberly and Carlin 2000). Both these articles note that sometimes 

the identifiability problems are subtly apparent in the convergence diagnostics for the 

MCMC or in the sensitivity of the posterior to the choice of the prior. They also discuss 

the concept of Bayesian learning when posterior distribution is changed due to the data. 

They seem to indicate that existence of Bayesian learning implies there are likely to be no 

problems with estimability. In the Binary–Normal example discussed above, the posterior 

distribution for the precision parameter  τ = 1/σ 
2
 was different than the prior distribution 

indicating some ‘Bayesian learning’ but clearly the parameter is nonestimable. Thus, 

some Bayesian learning is feasible even when the parameter is nonestimable. See also 

Lele (2010) for another example. This is concurrent with our result in Theorem 3.3 that 

the posterior distribution in the nonestimable parameter case is a truncated version of the 
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prior distribution, not necessarily the prior distribution itself. Similarly, we obtained good 

mixing and convergence (Gelman–Rubin’s statistics of 1.06 and 1.12, respectively). The-

se results also indicate that good mixing and convergence of the MCMC or evidence of 

Bayesian learning, although necessary, is not sufficient for estimability of the parameters. 

Convergence problems with MCMC and sensitivity to the choice of the prior can arise for 

various reasons. Aside from the possibility of nonestimability, they can also arise when 

the likelihood is relatively, but not exactly, flat or has multiple but unequal modes. These 

problems do not necessarily imply that the parameters are nonestimable. In data cloning, 

the information content of the sample is increased through cloning. By doing so, we elim-

inate the possibility of small information content affecting the convergence of MCMC 

and sensitivity to the choice of the prior. Thus, data-cloning-based test is clear and unam-

biguous. Of course, we consider this test as an additional tool to check for possible prob-

lems with the model and not a replacement of the checks proposed by Eberly and Carlin 

(2000) and others. Furthermore, in practice, published articles based on MCMC method-

ology seldom provide information on whether such checks were, in fact, conducted. Da-

ta-cloning methodology forces researchers to think about estimability issue carefully and 

to conduct such checks.  

Hierarchical models are easy to construct and, thanks to MCMC, are easy to ana-

lyze. As a general principle, complexity of the model should not exceed the information 

content in the data (Lele 2010). Data cloning alerts the researcher to the potential pitfalls 

of the model such as nonestimability and points out any mismatch between the desired 

complexity of the model and what is feasible given the data. 

3.6 Summary 

In this chapter we refined the DC method introduced earlier by Lele et al. (2007). We 

obtained a general theoretical result that, for sufficiently large number of cloned data cop-

ies, the DC based posterior distribution is centered at the MLE with variance-covariance 

matrix equal to 1/K times the inverse of the Fisher information matrix. We implemented 

this result via a standard Bayesian formulation of the estimation problem, allowing the 

resulting DC algorithm to inherit the computational advantages offered by MCMC. We 

also developed a DC based algorithm for random effects’ prediction. The illustrative ex-

amples in this chapter showed that DC method provides an efficient approach to analyz-

ing GLMMs. We also obtained an important result related to the vexing problem of mod-
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el identifiability. We showed that the ensuing DC based estimability diagnostic tool is 

very promising in resolving lack of estimability in complex hierarchical models. 
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Chapter 4 

Population Viability Analysis:    

Incorporating Observation Error using 

State-Space Models
2

 

 

Since the pioneering work of Shaffer (1981), population viability analysis (PVA) has be-

come a key tool in wildlife management and conservation (Beissinger 2002). It is a pro-

cedure that uses population abundance data and population growth models to estimate the 

probability that a population will persist for a specified time into the future (Mills 2008). 

A typical PVA constitutes data collection, model formulation, model estimation and vali-

dation, and estimation of the extinction risk (Ralls et al. 2002). The last two decades have 

experienced a sea change in both the scale and complexity of PVA as population growth 

models have grown from modeling single population to spatially explicit metapopulations 

and beyond (Beissinger 2002). One of the major changes is the inclusion of environmen-

tal and demographic stochasticity (e.g. Dennis et al. 1991). 

In this chapter we use data cloning to fit a specified population growth model to 

observed population time series in the presence of process variation and observation error 

(also called measurement error). Different population growth models have different ex-

tinction properties (Pascual et al. 1997; Henle et al. 2004) and hence the next important 

step is model selection. Estimation of the extinction risk is then based on computing vari-

                                                 

 
2
 A version of this chapter has been published. Nadeem K, Lele S R. Oikos 2012, 121: 1656-1664. 
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ous extinction metrics by forecasting future population trajectories under the best fitting 

model. 

Propagation of uncertainty in parameter estimation in forecasting future trajecto-

ries is an important issue. Not accounting for this uncertainty leads to inappropriate esti-

mation of the extinction risk (Akçakaya and Raphael 1998; Ludwig 1999; Taylor et al. 

2002). To incorporate the estimation uncertainty in forecasting, Dennis and Otten (2000) 

and Sæther et al. (2000) integrate over the bootstrap distribution of the parameter estima-

tors. Here, we account for estimation uncertainty by integrating over the asymptotic nor-

mal distribution of the parameter estimates (see Section 3.3).  

 The chapter is organized as follows. In Section 4.1 we provide definitions of ex-

tinction metrics commonly used in PVA. In Section 4.2 we formulate the general state-

space modeling setup and briefly review the currently used estimation methods. We pre-

sent our model selection methodology for hierarchical models in Section 4.3. Section 4.4 

presents a prediction algorithm for generating future population trajectories. We then de-

velop algorithms for estimating the extinction metrics in Section 4.5. In Section 4.6 we 

analyze a focal population time series data to demonstrate the importance of incorporat-

ing observations error in PVAs. In Section 4.7 we extend our methodology to incorporate 

environmental covariates in PVA. The chapter concludes with a summary in Section 4.8. 

4.1 Extinction Metrics used in PVA  

Following is a detailed description of various extinction metrics used in the literature on 

PVA. Let    be the population abundance at t and           . Throughout,

),...,,,( 21 qo nnnnn
 

denotes an abundance time series up to time q, and 

),...,,,( 21 qo xxxxx
 
denotes corresponding log-abundances. Also, we represent random 

variables by capital letters and their realizations by small letters. For instance, 
tx  repre-

sents a realization of the random variable
tX . Vector valued random variables are denot-

ed by bold-faced letters.  

 Throughout this chapter, we assume that    is a continuous random variable. 

That is, the process    serves as a continuous approximation to a discrete process for 

modeling growth rate in a population of interest. 
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a) Population Prediction Interval (PPI) (Saether et al. 2000) 

Let )(rG  be the distribution function of the random variable rqX  , the future 

log-population abundance at time q+r. The lower )1(   prediction interval for the fu-

ture log-population abundance rqX   
is then given as 



[X
(r),), where 



X
(r) G(r)

1(). 

This means future log-population at time 



(q r) will be somewhere in this interval with 

probability )1(  .  

 

b) Conditional Time to Quasi-Extinction (Dennis et al. 1991, Grimm and Wissel 2004; 

Morris and Doak 2002) 

Quasi-extinction (sometimes simply called extinction) is defined to occur when 

population size reaches some threshold level, denoted on the logarithmic scale as 
ex .  

Conditional on the last observed log-population size eq xx   and all the subsequent 

sample paths of the population process that reach the threshold 
ex , conditional time to 

quasi-extinction (T) is defined as the first passage time of population abundance to reach

ex , i.e.  eRq xXRT  ;0min:  where R is a random variable defined as the time a 

trajectory takes to reach 
ex  starting from qx at time q. Probability distribution of this 

random variable is rarely known analytically. Monte Carlo estimation requires forecast-

ing large number of future sample paths until extinction is observed. This is a computa-

tionally difficult task. Furthermore, in conservation planning, a short-term time horizon is 

often more useful. A practical version of time to extinction is defined as the first passage 

time to reach the threshold 
ex  conditional on population trajectories that reach

ex within 

time t. That is,  tTxXTT eTq   |;0:
~

 . Some important metrics related to 

extinction times are mean, median and mode (also called most likely) time to extinction. 

We denote mean and median of T
~

by t
~

and )5(.

~
  respectively.  

 

c) Conditional Probability of Quasi-Extinction (Staples et al. 2005) 

This is defined as the proportion of all sample paths hitting 
ex  within time t 

 tTxXPtn eTqe   ,:),( . This probability is sometimes called the extinction risk. 
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 The unconditional probability of extinction, usually denoted by π, is the probabil-

ity that the population process will ever attain the extinction threshold (Dennis et al. 

1991). Here, we only consider the conditional probability of extinction. 

 

d) Probability of hitting a lower or upper threshold first 

Let 
ev xx  be an upper policy-set population threshold. Probability of reaching 

ex  

before 
vx is defined as  eqve xXP   :],[

*
, where  },{;0min: ve xxXR Rq   . 

The conditional version is defined as  txXP eqve     0,:],[ . 

Similary the conditional probability of reaching 
vx  before 

ex  is defined as 

 txXP vqev     0,:],[ , where  },{;0min: ve xxXR Rq   . 

 

e) Probability of recovering from Quasi-extinction 

Given that a population trejectory has crossed a ‘warning threshold’ of 



xs , it is of interest 

to know the probability that the population could recover within a specified time, before 

going extinct.  This is given by  tXtP tqs    0|0,0:]1,[ , where 

 ],0(;0min: sxXR Rq    and  sxXR Rq   ;0min: . 

4.1.1 Relationship between PPI’s and Extinction Times 

The population prediction intervals can be interpreted in terms of extinction times. 

Sæther et al. (2000), while discussing the concept of PPI, defined a relationship between 

PPI’s and the conditional time to extinction, T. In the following we make this relationship 

precise.  

Following Sæther et al. (2000), we consider a population to be functionally 

extinct when the surviving members of a sexually reproducing species are no longer able 

to reproduce. We therefore define      (equivalently     ) as the absorbing state. 

However, recalling that we are modeling population size as a continuous variable, the 

population is extinct by time t if         , or equivalently          . Therefore, the 

conditional probability of extinction, ),1( t , can be written as: 

   tTXPtTP Tq   ,0  

                                           0 tqXP
.
           (4.1) 
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Let us now define 
t  to be the smallest time in which the lower (1- α) PPI con-

tains the extinction barrier 0ex . Then, by the definition of PPIs, we have  

   


 10tqXP
.
 (4.2) 

For which,        {    }     ,          (4.3) 

or equivalently, 

   .1   tTP  (4.4) 

Equations 4.2 and 4.3 together state that a 1  PPI obtained at time 
t  also defines a 

corresponding lower 1  prediction interval, ),[ t , for time to extinction, T.  

Equation (4.4) says that extinction is predicted to occur after time t  with proba-

bility 1 . However, Sæther et al. (2000) interpreted it as saying that the probability of 

extinction after time t  is α. This perhaps is due to a typographic error because, if we 

accept this interpretation, we have   .  tTP    1αtTP
 

or 

 1)(tHT
, where (.)H T  is the cumulative distribution function of T. However, 

from Figure 4.2-a we have,        and      , which according to Sæther et al.'s 

(2000) interpretation, respectively yield            and          . This means 

that              But this cannot be true since )(tHT is a monotone non-decreasing 

function in t; hence a contradiction. 

4.2 Incorporating Observation Error: The State-Space 

Formulation 

State-space formulation provides a powerful modeling tool for accommodating observa-

tion error and missing values in ecological analyses (McGowan et al. 2011). These mod-

els provide a flexible framework for estimating parameters of the population growth 

models in the presence of process variation and observation error (de Valpine and Has-

tings 2002; Clark and Bjørnstad 2004; Staples et al. 2004; Dennis et al. 2006; Lele 2006; 

Newman et al. 2006, Sæther et al. 2007).  The basic nonlinear state-space model for pop-

ulation time series analysis (deValpine and Hastings 2002; Dennis et al. 2006; Lele 2006) 

is: 

Process model:                            (4.5 a) 
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Observation model:                    (4.5 b)  

Where            represents process variation and      denotes observation error dis-

tribution that depends on an unknown parameter  . Different forms of the growth func-

tion,        , lead to different density-dependent growth models. For instance, 

                     corresponds to the stochastic Gompertz model (Gompertz 

1825, Dennis and Taper 1994) and                      corresponds to the sto-

chastic Ricker model (Ricker 1954). The parameter vector is             . In the 

rest of this chapter, we denote                    as the process model density func-

tion, i.e. a Normal density with mean          and variance   . 

Maximum-likelihood estimation in linear Gaussian state-space models can be 

conveniently obtained by using the Kalman filter (Harvey 1993, Schnute 1994). Howev-

er, as we remarked in Chapter 2, likelihood based statistical inference for nonlinear non-

Gaussian state-space models is extremely difficult. Evaluation of the likelihood function 

involves computationally intensive high dimensional numerical integration (Kitagawa 

1987; deValpine 2002; deValpine and Hastings 2002). We refer the reader to Pedersen et 

al. (2011) for a review of methods of estimation for state-space population time series 

models. 

We employ DC algorithm for the likelihood analysis of general nonlinear state-

space population time series models. As we have seen in the previous chapter, data clon-

ing can be used to obtain maximum likelihood estimates and associated standard errors in 

general hierarchical model. The prediction algorithm outlined in Section 4.4 can be used 

to predict unobserved states in a state space model. Handling missing data, higher order 

Markov models or spatial data is difficult with most existing methods of inference for 

hierarchical models. For example, Kitagawa’s algorithm (deValpine and Hastings 2002) 

involves two or higher dimensional numerical integration if there are missing data or 

when the process model involves delayed density dependence, making it less practical for 

such cases. On the other hand, the Bayesian approach (Clark and Bjørnstad 2004) based 

on MCMC algorithms (Robert and Casella 2005) handles such situations without signifi-

cant computational problems. Because data cloning uses the Bayesian computational ma-

chinery, it inherits all the computational advantages of the Bayesian approach at the same 

time avoiding the pitfalls of having the inference depend on the choice of the prior distri-

bution. 
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4.3 Model Selection and Significance Testing 

A key ingredient in hypothesis testing and model selection using information criteria 

(Burnham and Anderson 1998) is the likelihood ratio (LR) statistic.  Likelihood ratios can 

also be used to compute the profile likelihood (PL) based confidence intervals that tend to 

have better statistical coverage properties than the Wald-type intervals (Meeker and Es-

cobar 1995, Pawitan 2001). Profile likelihood calculations can be used to examine mul-

timodality and likelihood ridges in the likelihood surface. Computation of LRs and PL is 

generally difficult in hierarchical models as one needs to calculate the maximized value 

of the likelihood surface. Recently, Ponciano et al. (2009) developed a DC based algo-

rithm, called the DCLR algorithm, for computing LRs in hierarchical models. This algo-

rithm is based on methods developed by Thompson and Guo (1991) and Thomson (1994) 

for Monte Carlo based estimation of LRs. Ponciano et al. (2009) implemented their algo-

rithm in the context of state-space population dynamic models. 

Here, in the context of state-space formulation (4.5), we further obtain Monte Carlo 

estimates of LR for the following two cases: (i) to compute LRs for comparing without 

observation models (4.5 a) versus with observation error models (4.5), and (ii) to com-

pute LRs in case (i) when missing observations exist. We first provide a brief description 

of the DCLR algorithm as follows. 

 Let us assume, in general, that   and   be the parameters associated with the 

process model (4.5 a) and observation error model (4.5 b) respectively. Suppose we wish 

to compare two models defined by points             and             in the parameter 

space. This comparison can be performed by computing the likelihood ratio 

                         .  When the points             and              are MLEs 

under a full and a nested model respectively, this ratio can be used to conduct a LR test 

between these models. The DCLR algorithm consists of the following two-step procedure 

(Ponciano et al. 2009). 

Step-1. Generate m random data samples                  from the conditional distribu-

tion 

  (             )   (        ) (      ) 

of the latent states. These samples can be obtained via a straightforward MCMC algo-

rithm using  (      ) as the prior distribution and  (        ) as the likelihood in a 

usual Bayesian formulation. 

Step-2. Estimate the desired LR using: 
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 (         )

            
 

 

 
∑

 (           ) (         )

 (           ) (         )

 
   . 

We emphasize that the same algorithm can be readily adopted to compute LRs be-

tween two without observation error models (4.5 a) when missing observation exist. Fur-

thermore, as implemented in Ponciano et al. (2009), it can be extended to the calculation 

of PLs. 

4.3.1 Comparing Without versus With Observation Error 

Models 

The above algorithm is only applicable when both the competing models are hierarchical 

models. Here we derive a Monte Carlo estimator of the LR between a without observa-

tion error model (4.5 a) and a with observation error state-space model (4.5) when no 

missing values are present. We begin by noticing that 

 (           )    ( (        )) 

                                          ∫ (        ) (      )  . 

This leads to the following Monte Carlo estimator  

  (           )  
 

 
∑  (           ) 

   , (4.6) 

where the random trajectories                   are generated from the process model 

 (      ). Also,  (      )   (      ), so the Monte Carlo estimate of the LR is given 

as 

         

              
  (      ) [

 

 
∑  (           ) 

   ]
  

. 

 

4.3.2 Comparing Without versus With Observation Error 

Models in the Presence of Missing Data 

We now obtain a Monte Carlo estimator of the LR between a without observation error 

model (4.5 a) and a with observation error state-space model (4.5) when abundance time 

series contain missing observations. The derivation of the LR involves separate Monte 

Carlo estimates of              and             . The estimator of              is giv-

en by (4.6).  The form of this estimator remains the same regardless of the presence or 

absence of missing abundances. To see this, when missing values exist, we simply set 
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 (           )  ∏        
   

         , where   is an index set of those years for which 

populations counts are available. 

 Let us now derive the estimate of  (      ) when missing abundances exist. For 

expositional simplicity, we consider a hypothetical time series of length six with two 

missing observations. However, the estimation procedure holds in general with arbitrary 

number of missing values. Let the time series be        ̇      ̇    , where  ̇  and  ̇  

denote missing log-abundances. Then, exploiting the Markovian structure of (4.5 a), we 

have 

       (      )  ∬                ̇           ̇     ̇           ̇    ̇   ̇  

                                     {∫      ̇     ̇       ̇ }{∫      ̇     ̇       ̇ } 

                                         ̇            ̇             ̇            ̇          

                                     {
 

 
∑  (  | ̇ 

   
) 

   } {
 

 
∑  (  | ̇ 

   
) 

   }       (4.7) 

where the random numbers  ̇ 
   

  ̇ 
   

    ̇ 
   

 and  ̇ 
   

  ̇ 
   

    ̇ 
   

 are generated from 

the conditional distribution  ( ̇   ̇         
   ) via a simple Monte Carlo algorithm. 

The estimate of the likelihood ratio                          is then simply obtained by 

taking ratio of (4.7) to (4.6). 

4.4 Estimation Error and Prediction of Future     

Trajectories 

Let  ̂    ̂   ̂   ̂   denote the MLEs. In the following, we describe how to predict fu-

ture population states given the model and the MLEs of the parameters. Different extinc-

tion metrics are functions of the predicted future states and are computed using the pre-

dicted future trajectories.  

If the true parameter values are known, prediction of the future states of the pro-

cess is based on the conditional distribution of the future states given the observed popu-

lation abundances. Let   (              ) and   (              ) represent vec-

tors of unobserved and estimated log population abundances respectively and let      

(                 ) be that of future abundances. If the growth process is a first order 

Markov process, the conditional distribution of          is 

 (      | )  
          ∏                   ∏           
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where           indicates the density function for         and     is the normalizing 

constant. Substitution of known parameter values by their estimates leads to prediction 

intervals that have lower than nominal coverage. To account for the uncertainty in the 

parameter estimates, we can integrate over the bootstrap distribution (Harris 1989; Den-

nis and Otten 2000; Sæther et al. 2000). Here, as illustrated in Section 3.3, we integrate 

over the asymptotic Normal distribution (Hamilton 1986) of the parameter estimates to 

predict random effects in general hierarchical models. Simulation results in Torabi and 

Shokoohi (2012) show that actual coverage of such prediction intervals is close to nomi-

nal in many cases. Thus, for predicting future states, we use the following prediction dis-

tribution:  

 (      | )  
∫          ∏                   ∏              ̂   ̂

 
   

   
   

    
 

(4.8) 

where    ̂  denotes the asymptotic normal distribution of the estimators  ̂    ̂   ̂   ̂  

We prefer DC algorithm because it gives MLE and the associated variance covariance 

matrix simultaneously. Although other computational algorithms (e.g. deValpine and 

Hastings 2002) may also be used to get the MLE, they require additional computation to 

estimate the variance-covariance matrix of the MLE. 

The MCMC algorithm can be used to generate random numbers from the distri-

bution in (4.8) without evaluating the high-dimensional integral. The full description of 

the algorithm is available in Section 4.5.1. Notice that missing data pose no special diffi-

culties in the state-space formulation (4.5). Let S be the index set of those years for which 

populations counts are available. Then, in (4.8) we simply replace ∏           
 
    by 

∏              . Otherwise, everything else including the computational effort remains 

exactly the same.  

The growth models considered in this chapter are first-order density-dependent 

models. However, some populations exhibit higher-order density regulation, that is, 

population growth at time t is a function of lagged abundances                   , 

    . For instance, population fluctuations in many insect populations are manifested 

through delayed density dependence (see, for instance, Bjørnstad et al. 1998; Turchin et 

al. 1999). As alluded to in Section 4.2, the methodology developed in this chapter can 

flexibly handle the higher-order density regulation models.  For example, for the second 

order Gompertz delayed density dependence model 

                                 , 
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in (4.8) we only need to replace the joint distribution of hidden states, 

          ∏                  

   

   

 

by  

                          ∏                        
   
   . 

Again, the rest of the algorithm remains exactly the same.   

4.5 Estimation of Extinction Metrics 

4.5.1 Generating Random Number from  (      | ) 

Recall that if    ̂ is the prior distribution of model parameters,             , the 

joint posterior distribution of unknowns            given the data is 

 (      | )  
          ∏                   ∏              ̂  

   
   
   

    
  

MCMC algorithms (Robert and Casella 2005) are computational tools that allow one to 

generate random number from the marginal posterior distribution  (    | )using only 

the numerator of the above equation which involves no integration. These algorithms are 

implemented in freely available software packages such as WinBUGS (Spiegelhalter 

et al., 2004) and JAGS (Plummer, 2011a, 2011b). Let us denote the MCMC-generated 

random numbers by (        )
 

, k = 1, 2,…, J. The random numbers from the marginal 

posterior distribution  (    | ) are obtained by simply discarding the      component 

of the random numbers (        )
 
, leaving(    )

 
, k = 1, 2,…, J. These random 

numbers, i.e. (    )
 
, k = 1, 2,…, J, then comprise J simulated future trajectories of the 

population process. 

4.5.2 Computation of PPIs 

We first recall the definition of a PPI. Assuming )(rG  be the distribution function of the 

random variable rqX  , the future population abundance at time q+r. The lower )1(   

prediction interval for the future log-population abundance rqX  is then given as 



[X
(r),)

, where 



X
(r) G(r)

1(). The estimates, )(
ˆ

rG , of the true distribution functions )(rG , r = 1, 
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2, … f, are available from the J future population trajectories simulated above. The PPIs 

plotted in Figure 4.2 are then simply computed from the estimated distribution functions 

)(
ˆ

rG .  

4.5.3 Computation of other Extinction Metrics 

4.5.3.1 Without Observation Error Models 

We start by simulating random numbers  ̂   ̂     ̂ , with B sufficiently large, from 

   ̂ , the asymptotic normal distribution of the MLEs. Then the following steps yield the 

extinction estimates. 

Step 1. Set m = 1. 

Step 2. Generate random future trajectories (    )
   

, k = 1, 2… J, from the posterior 

distribution  (         ̂ ) using a straightforward MCMC algorithm. Notice that for 

the present case, we do not have observation error and we condition on the last observed 

population abundance   . 

Step 3. Use the trajectories obtained in Step 2 to compute point estimates of the extinction 

metrics defined in Section 4.1. This yields, for instance, ),(ˆ tne  as an estimate of 

),( tne , which can be simply computed as the proportion of trajectories that reach the 

quasi-extinction threshold,   . The remaining metrics can be computed similarly.
 

Step 4. Set next m =m +1. Stop if Bm  , else go to Step-2. 

Step 5. The above procedure (Step 1-4) produces random numbers ),(ˆ )1( tne , ),(ˆ )2( tne

, ... , ),(ˆ )( tne

B  that provide an estimate of the bootstrap distribution of ),(ˆ tne . The 

point estimate of ),( tne
 
is then simply given by computing an appropriate central 

measure of this sampling distribution. The lower and upper 2.5 percentiles of this distri-

bution provide a 95% confidence interval for ),( tne . Point estimates and the associated 

confidence intervals for the remaining extinction metrics can be computed in a similar 

fashion. 

4.5.3.2 With Observation Error State-Space Models 

The algorithm steps are outlined as follows. 
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Step 1. Simulate B time series data                  under the estimated state-space 

model, each starting at the first observed population abundance    and is of length equal 

to that of the observed abundance time series.  

Step 2. Fit the state-space model to each of the simulated time series above using data 

cloning. This generates the bootstrap parameter estimates  ̂   ̂     ̂  and correspond-

ing variance-covariance estimates  ̂ ̂ 
  ̂ ̂ 

    ̂ ̂ 
, which together yield the prior distri-

butions    ̂      ̂        ̂  . 

The following steps use data           ̂             ̂               ̂    gen-

erated above to produce the extinction estimates. 

Step 3. Set m = 1. 

Step 4. Generate random future trajectories (    )
   

, k = 1, 2… J, from the posterior 

distribution  (         ) using the algorithm described in Section 4.5.1 where    ̂  is 

set equal to    ̂  . 

Step 5. Use the trajectories obtained in Step 4 to compute point estimates of the extinction 

metrics listed in Section 4.1. This is similar to step 3 in Section 4.5.3.1 above. 

Step 6. Set next m =m +1. Stop if Bm  , else go to Step-3. 

Step 7. Same as Step 5 in Section 4.5.3.1 above. 

4.6 Effect of observation error on PVA 

We now illustrate our methodology using time series of song sparrow (Melospiza 

melodia) population abundances on Mandarte Island, British Columbia, Canada (Figure 

4.1). The data were collected during 1975-1998 and is reported in Sæther et al. (2000). 

Population size is the number of territorial females alive each spring (around 30 April). 

For detailed field methods and population biology of the species, see Smith (1988), 

Hochachka et al. (1989), Smith and Arcese (1989) and Arcese et al. (1992). The original 

analysis by Sæther et al. (2000) considered theta-logistic and logistic growth models 

(Gilpin & Ayala 1973; Morris and Doak 2002). Based on the estimated parameters, they 

chose the logistic growth model to describe the data. Throughout their analysis, they as-

sumed that observation error was not present by arguing that virtually all birds were 

banded and low shrub vegetation on the island allowed them to be enumerated accurately. 

In our analysis, we test the assumption of no observation error based on Akaike infor-

mation criterion (AIC) comparisons of the various model fits. 
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Figure 3  

Figure 4.1. (a) Comparison of observed population counts (solid black line) of song sparrow from 

1975-1998, on Mandarte Island, British Columbia, Canada with filtered population abundances, 

  , from the theta-logistic state-space model (dashed line) and, (b) smooth population trajectories 

obtained under the logistic model without observation error (solid gray line) and under theta-

logistic model with observation error (dashed line). Theta-logistic model with observation error 

fits the data better than the logistic model without observation error. 

 

Following Sæther et al. (2000), we also model song sparrow population data us-

ing the theta-logistic model. We first consider the model without observation error. The 

theta-logistic model (see equation 4.5 a) is defined by 

                             , 

where           ,   is the specific growth rate,   is the carrying capacity and   

represents the theta-logistic type of density dependence. The process variance is        

     
    

       where   
  and   

  denote the environmental and demographic vari-

ances respectively (Engen et al. 1998). Following Saether et al. (2000), instead of esti-

mating demographic variance from the population data, we simply use the estimate of 

demographic variance    
        reported in Sæther et al. (1998). This estimate is 

based on individual fluctuations in reproduction and survival of breeding females. Sæther  
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Table 4.1 Maximum likelihood estimates and standard errors of the model parameters. 

The likelihood function in each case is conditional on the first observed population count. 

The abbreviations with and without stand for with observation error model and without 

observation error model respectively. 

Table 2 

et al. (2000) assume that fluctuations in    are small and use least square method to esti-

mate the parameters. Instead we compute maximum likelihood estimates using data clon-

ing. The point estimates (Table 4.1) are comparable with those of Sæther et al. (2000). 

Under the no observation error model, estimate of the density regulation parameter   is 

close to 1 suggesting that perhaps logistic model is sufficient to model the density de-

pendent growth. We use AICc, the small sample bias-corrected version of AIC (Burnham 

and Anderson 2004), to compare logistic and theta-logistic models. The AICc difference 

(ΔAICc) between the theta-logistic and the logistic model is -2.307. Thus, assuming no 

observation error, the logistic growth model is sufficient to describe the song sparrow 

population process. This agrees with the conclusion in Sæther et al. (2000). 

Next, instead of simply assuming no observation error, we test if it is present or 

not. We assume that observation errors are Lognormally distributed. That is, in (4.5), the 

observation error distribution            is Normal with mean zero and variance   
. The 

maximum likelihood estimates of the parameters               are given in Table 

4.1. Using the DCLR algorithm outlined in Section 4.3, we computed the ΔAICc values 

and ranked different models (Table 4.1). The ΔAICc values are calculated as the differ-

ence between the AICc value for a given model and the AICc value of the best-fitting 

model. The ΔAICc value for the best fitting model is, thus, 0. The theta-logistic model 

with observation error fits the data substantially better than both logistic model with ob-

servation error and the logistic model without observation error. Hence we conclude: (i) 

song sparrow population counts are subject to observation error, and, (ii) as compared to 

Model           ΔAICc 

Theta-logistic (with) 
0.4662 

(0.1527) 

51.1116 

(3.8268) 

5.3802   

(2.3421) 

0.1378  

(0.1040) 

0.2203 

(0.0549) 
0 

Logistic (without) 
1.1313 

(0.3566) 

41.5220 

(5.0735) 
- 

0.6440 

(0.1005) 
- 28.31 

Theta-logistic (without) 

1.1826   

(0.7673) 

41.6922 

(6.7235) 

1.0286 

(1.6660) 

0.6446 

(0.1003) 
- 30.62 

Logistic (with) 
1.4274 

(0.4376) 

40.6571 

(4.1627) 
- 

0.5080 

(0.1648) 

0.3732 

(0.0939) 
34.65 
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the logistic growth function, theta-logistic provides a better functional form to describe 

the song sparrow population process. 

Interestingly, had we fixed the logistic model as the correct functional form for 

population growth, we would have failed to detect the presence of observation error (Ta-

ble 4.1) possibly leading to erroneous conclusions. This illustrates the importance of fit-

ting and comparing various biologically plausible growth models both in the presence 

and absence of observation error. It has been pointed out to us (Mark Taper, personal 

communication) that for territorial species such as the song sparrows (Smith and Arcese 

1989), the Hassel model (Hassell et al. 1976) or the generalized Beverton-Holt model 

(Smith and Slatkin 1973) might be biologically more plausible than the theta-logistic 

model. It will be worthwhile to try these additional models along with the meta-

population approach. 

The density regulation parameter  , when observation error is taken into account 

(Table 4.1; Figure 4.6), is estimated to be much larger than 1   ̂        indicating 

strong density regulation near the carrying capacity K. The estimated process variance 

under the theta-logistic model with observation error is smaller   ̂         than that 

for the logistic model without observation error   ̂        . The large estimate of ob-

servation error variance   ̂         under the theta-logistic model indicates that sub- 

stantial component of variation in the population counts is probably due to observation 

error.  

Dennis et al. (2006) discuss two methods for state prediction in state-space mod-

els: 1) A filtered value of the log-population abundance
tX  defined as 

                              , 

the mean of the log-population abundance given the previous and the current observa-

tions only and, 2) A smoothed value of    which is the mean value of    given all the 

observations               , including those that follow time t. The filtered and the 

smooth population trajectories for song sparrow data are shown in Figure 4.1 along with 

the actual observations. The observed data seem to fluctuate around a constant in a sys-

tematic fashion. The smoothed population trajectory predicted under no observation error 

logistic model is virtually constant (Figure 4.1-b) whereas the smoothed population tra-

jectory of the best fitting theta-logistic model shows systematic cycles (Figure 4.1-b) and 

follows the observed fluctuations well. The filtered trajectory,   , from the theta-logistic 

state-space model also indicates that the model fits the data well (Figure 4.1-a). 
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Figure 4  

Figure 4.2 95% (solid line), 90% (dashed line), 75% (dotted line) and 50% (dotted-dashed line) 

lower bounds of prediction intervals for the future population abundance of song sparrows. PPI for 

theta-logistic model with observation error are mostly lower than for the logistic model without 

observation error. 

 

Extinction properties under logistic and theta-logistic models are substantially 

different. Logistic model without observation error underestimates extinction risk sub-

stantially. Population prediction intervals (PPIs) for the future abundance of song sparrow 

population are wider under the theta-logistic model with observation error (Figure 4.2). 
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Figure 5  

Figure 4.3 Profiles of probabilities of population going extinct before reaching a viable level, 

],[
ˆ

ve , and of probabilities of recovering from a lower threshold,



ˆ (s,1), under theta-logistic and 

logistic model for different thresholds along with 95% confidence intervals. 

 

For instance, the 90% prediction interval obtained from the theta-logistic model, as com-

pared to the one under the logistic model, predicts that the population will drop to much 

lower levels in the next fifteen years. In terms of time to extinction T, under the theta-

logistic model, the song sparrow population is predicted to go extinct after just 4 years     

( 41.0 t ) with probability 0.9 whereas under the logistic model it is after 18 years   

( 181.0 t ). Estimates of ]1,[ s , the probability of recovering from a lower abundance 

level, are also different under these two models, especially at the lower warning threshold 

levels (Figure 4.3-c, d). The logistic model gives higher probabilities of surviving from 
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Table 4.2 Estimates of extinction metrics based on the predicted future trajectories. 

Numbers in parentheses are 95% confidence limits. Estimation is based on population 

forecast up to 100 time points into the future. The estimates correspond to      , 

       and      . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lower abundance levels. In contrast, the theta-logistic model predicts that the odds of 

song sparrow population recovering from a lower abundance level are relatively small. 

At first, the extremely low estimates of ],[ ve  under the theta-logistic model seem 

inconsistent with those of other extinction metrics (Figure 4.2-a, Figure 4.3-a). However, 

note that corresponding to the threshold abundance 3en , estimates of the probability 

of quasi-extinction, )100,( en , and ],[ ev  are 0.577 and 0.999 respectively (Table 4.2). 

Thus, although the probability of quasi-extinction is large, the population is predicted to 

reach the carrying capacity before it crashes to extinction with high probability. This 

seemingly anomalous behavior is due to the large value of the density regulation parame-

ter   (Table 4.1; Figure 4.6) resulting in strong density regulation near the carrying ca-

pacity (Clark et al. 2010). The shape of the smoothed population trajectory (Figure 4.1-b) 

shows that the song sparrow population dynamics are intrinsically cyclical near its carry-

ing capacity, 1.51ˆ K . Thus, when the population exceeds the carrying capacity, the 

strong regulatory mechanism kicks in and leads to a catastrophic decline of the popula-

tion abundance. Uncertainty in the estimation of θ (Figure 4.6) further exacerbates this 

this. 

Extinction Metrics Theta-logistic Model Logistic Model 

)100,(ˆ en  0.5769 (0.0034, 0.9563) 0.6466 (0.0556, .9996) 

],[
ˆ

ve  0.0004 (0.00 , 0.2363) 0.0022 (0.00 , 0.0654) 

],[
ˆ

ev  0.9988 (0.7516, 1.00) 0.9977 (0.9346, 1.00) 

]1,[
ˆ

s  0.4322 (0.0868, 0.9019) 0.6243 (0.0058, 0.9386) 

t̂
~

 36.3225 (14.9095, 51.5767) 43.4200 (12.1322, 51.6010) 

)5(.

~̂
  13.4200 (1.1925, 41.1521) 5.1902 (3.1533, 13.4767) 

T

a

b

l

e

 

3
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Figure 6  

Figure 4.4 Approximate bootstrap distributions of the extinctions metrics. Figures (a), (c) and (e) 

in the left panel correspond to the theta-logistic model. Figures in the right panel correspond to the 

logistic model. The shape of these bootstrap distributions is also revealed by the corresponding 

extinction profiles plotted in Figure 4.5 and Figure 4.3. 

 

phenomenon. On the other hand, the logistic model yields higher estimates of ],[ ve  

(Figure 4.3-b). Fixing the value of θ at 1 results in stable population dynamics.  
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Figure 7  

Figure 4.5 Profiles for probabilities of quasi-extinction, )100,(ˆ en , under theta-logistic and lo-

gistic model for different thresholds along with 95% confidence intervals. 

 

The confidence bands shown in Figure 4.3 are based on the lower and upper 2.5 

percentiles of the approximate bootstrap distribution of the corresponding estimated ex-

tinction metrics. In the case of ]1,[
ˆ

s  (Figure 4.3-c and d), sampling distribution has large 

variance resulting in wide confidence bands. This indicates that observed data lack in-

formation for the reliable estimation of ]1,[ s . However, these confidence intervals 

should be interpreted in conjunction with the shape of the corresponding sampling distri-

butions. For instance, the distributions of ]1,[
ˆ

s  under the logistic model are left skewed 

(Figure 4.4-f). This shows that under the estimated model parameters, most of the future 

population trajectories that pass the warning thresholds would fail to recover to higher 

abundance levels. Despite the wide confidence bands, estimates of ]1,[ s  impart useful 

knowledge about the extinction risk. In comparison, the sampling distributions of ]1,[
ˆ

s  

under the best fitting theta-logistic model are only slightly left skewed and therefore indi-

cate a smaller chance of recovering from low abundance levels. Furthermore, confidence 

intervals for )100,( en are also wide (Table 4.2) but the corresponding sampling distri-

butions are left skewed both under the theta-logistic model and the logistic model (Figure 

4.4-a, b). 
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The warning threshold of five in Table 4.2 was chosen for two reasons: 1) Fol-

lowing the usual practice in PVA it is about 10% of the estimated carrying capacity and, 

2) it is close to the smallest abundance level of four observed during the years, 1975-

1998. We chose the quasi-extinction threshold, 
en , slightly smaller than 

sn . Of course, 

one can plot )100,( en against various 
en  values to get a better picture of the extinction 

risk. These plots for both logistic and theta-logistic models are shown in Figure 4.5. 

 We have implemented the R programs for model estimation, model selection and 

for the computation of extinction metrics in a user-friendly R package, PVAClone. The 

package is available to download from the packages section of the Comprehensive R Ar-

chive Network site (http://cran.r-project.org/). 

4.6.1 Discussion 

All population time series data contain observation error to some degree. It is well known 

that unaccounted for observation error leads to biased estimates of key model parameters 

(Freckleton et al. 2006; Barker and Sibly 2008). Barker and Sibly (2008) conducted a 

simulation study to investigate the effect of observation error in estimating the density 

regulation parameter theta of the theta-logistic model. Their results suggest that estima-

tion of theta is subject to large bias especially when environmental perturbation is small. 

Our analysis of the song sparrow population counts also illustrates that incorporating ob-

servation error can result in substantially different estimates than when it is not incorpo-

rated. As we show for the song sparrow example, large changes in parameter estimates in 

turn lead to entirely different assessment of the extinction risk. These results highlight the 

fact that ignoring observation error could be potentially dangerous for conservation deci-

sions. We therefore contend that the hypothesis of no observation error should always be 

rigorously tested against data.  

Although the presence of density regulation parameter theta in the theta-logistic 

model provides a flexible description of density dependence, a recent simulation study by 

Clark et al. (2010) suggests that population abundance data generally lack information for 

reliable estimation of r and θ, especially when the observed population series is station-

ary, that is, fluctuating around its carrying capacity. This lack of information (Polansky et 

al. 2009, Clark et al. 2010), leads to multimodality and likelihood ridges in the likelihood 

surface where the best fitted growth rate curves are frequently biased toward concave fits 

(θ < 1) but the likelihood ratio confidence regions include a wide range of models 
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Figure 8  

Figure 4.6 Profile likelihood (solid black line) for the density regulation parameter   in the theta-

logistic state-space model. 

 

corresponding to more biologically plausible convex fits (θ >1). Clark et al. (2010), in 

light of these results, conclude that estimation of extinction risk from fitting theta-logistic 

model is prone to imprecision. However, their analysis also shows that for recovering 

populations, i.e. when the populations are fluctuating away from the stationary equilibri-

um, model fitting is not difficult. Barker and Sibly (2008) also observe the same phenom-

enon even when the observation error is present. However, we agree with the dictum that 

study of likelihood ridges and multimodality should be a part and parcel of any statistical 

analysis. To detect possible multimodalities, we plotted the profile likelihood for θ using 

data cloning (Ponciano et al. 2009). The profile likelihood (Figure 4.6) shows no signs of 

multimodality or ridges in the likelihood surface. In fact, the likelihood vanishes virtual-

ly to zero over the entire region of concavity of the growth rate curves (i.e. for θ < 1). 

Thus, large fluctuations in the song sparrow population away from its carrying capacity 

(Figure 4.1) have helped reduce uncertainty in estimating θ.  If multimodality and likeli-

hood ridges are present, bootstrap distribution, instead of the multivariate normal distri-

bution used in this chapter, is probably a better way to incorporate uncertainty in parame-

ter estimates in forecasting future states. 
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The extinction properties of the song sparrow population highlight a few im-

portant points. Traditionally, assessment of the extinction risk of a population is based on 

extinction metrics corresponding to a single quasi-extinction threshold (such as those 

given in Table 4.2). A single value for such a threshold is seldom available because it is 

determined by multitude of factors such as demographic variability and the genetic struc-

ture of the population (Morris and Doak 2002). It is therefore better to evaluate the ex-

tinction risk based on extinction metrics estimated for a range of quasi-extinction thresh-

olds. The estimates for an extinction metric (such as ],[ ve ) and the associated confidence 

limits then can be plotted as a function of the threshold abundance levels (e.g. Figure 4.3-

a,b). These plots, called extinction profiles, also reveal the shape of the distribution of 

extinction estimates (Figure 4.3, 4.5). This is a more useful measure of the precision of 

the estimate than the associated confidence interval alone.  

Given several extinction metrics, which metrics should one use in practice? Per-

haps probability of extinction, if known, best describes the extinction risk of a population. 

PPIs are a convenient alternative way of looking at the extinction risk of a population. 

Both these metrics, however, lack information about the ability of a population to recover 

from low abundance levels, as quantified by ]1,[
ˆ

s . This metric can be potentially useful 

for conservation planning as it can be used to rank populations in terms of their ability to 

recover from low abundance levels. We also notice that risk assessment based on a single 

extinction metric alone can be misleading. For instance, the estimates of ],[ ve
 
for the 

song sparrow population under the theta-logistic model (Figure 4.3-a) seem to indicate 

that the population is highly likely to remain near the carrying capacity when, in fact, the 

probability of quasi-extinction, )100,(ˆ en , is quite large (Table 4.2). We therefore rec-

ommend that the assessment of the extinction risk of a population should not be limited 

to a single extinction metric. Perhaps a better approach is to gain an overall picture of the 

extinction risk by obtaining extinction profiles corresponding to various extinction met-

rics. 

The distribution of time to extinction is generally right skewed for most stochas-

tic population growth models (see, Dennis et al. 1991 and Grimm and Wissel 2004). Me-

dian time to extinction is a better measure of a population’s intrinsic ability to persist 

(Groom and Pascual 1998; Grimm and Wissel 2004) than mean time to extinction. The 

median extinction time (Table 4.2) is estimated to be higher (13.4 years) under the theta-

logistic model than under the logistic model (5.2 years) . However, the population predic-
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tion intervals (PPIs) indicate that extinction times are likely to be much shorter under the 

theta-logistic model (Figure 4.2). Following Sæther et al. (2000), we believe that PPIs are 

a better measure of extinction risk because they deal directly with extinction times. The 

conclusion based on the overall extinction profile is that extinction risk is predicted to be 

much greater under the theta-logistic model than the logistic model.  

The song sparrow population on the Mandarte Island was, presumably, surveyed 

very accurately. Field methods indicate that virtually every adult bird was captured and 

identified with a combination of a numbered metal leg-band and plastic colored leg-bands 

(Arcese et al. 1992). This left us to wonder about the source of observation error detected 

in our analysis. Freckleton et al. (2006) discuss dispersal and other possible sources of 

observation error in census data. The average number of sparrows immigrating to Man-

darte island during the study period was 1.6 whereas number of immigrants arriving after 

the 1980 and 1989 population crashes was 2 and 4 respectively (Smith et al. 2006). These 

immigrants were counted as part of the Mandarte island population and not accounted 

separately (Arcese et al. 1992), thus providing a possible source of observation error de-

tected in the population counts. Arcese and Marr (2006) employed a balance equation 

model (Walters 1986) to study the effect of such immigration on the probability of ex-

tinction. Their results revealed that even a few immigrants at low population densities can 

result in demographic rescue of the population without altering the expected population 

abundance and provide a buffer against the effect of environmental stochasticity (see al-

so, Stacey and Taper 1992). A better representation of the population process would, 

therefore, be achieved by explicitly incorporating a dispersal component into the theta-

logistic model.  

The song sparrow population dynamics provide a cautionary example of what 

might happen to PVA if one ignores key process components such as dispersal. We ob-

serve that contrary to a very high risk of local extinction, as predicted under the best fit-

ting theta-logistic model (Figure 4.2-a), the song sparrow population at the Mandarte Is-

land has not gone extinct after 1998 (Smith et al. 2006). Furthermore, despite the fact that 

the population did recover twice from very low abundances during the study period (Fig-

ure 4.1), the estimated recovery probabilities under the theta-logistic model are quite 

small (Figure 4.3-c). Clearly, the omission of dispersal process has substantially reduced 

the predictive power of the best fitting population growth model. Unfortunately we do not 

have enough information to decompose dispersal from observation error. Our conclusions 

are, therefore, two-fold: i) observation errors in PVA matter and ii) integrating these er-
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rors in PVA is not always enough and can still lead to important biases in parameter es-

timates if other processes such as dispersal are ignored. 

The song sparrow population at the Mandarte Island can be viewed as part of a 

large metapopulation consisting of other small neighbouring island populations (Smith et 

al. 1996). These small populations are constantly at risk of local extinction due to envi-

ronmental variation. In fact two of the populations on smaller islands (within 7km of the 

Mandarte Island) did go extinct and remained uninhabited for the next two years (Smith 

et al. 1996). Considering that these islands share similar environmental conditions and 

that dispersal is an important factor in preventing local extinctions via demographic and 

genetic rescue (Arcese and Marr 2006), a more realistic approach is to quantify the ex-

tinction risk at the metapopulation scale. 

4.7 Incorporating Environmental Covariates  

Population abundance counts often accompany data on environmental time series pro-

cesses such as climate conditions (Creel and Creel 2009; Luis et al. 2010; Hart and 

Gotelli 2011) or abundance of other species (Fryxell et al. 1998). Whenever available, 

these covariate processes should be added to the growth model to improve site and year-

specific population forecasts (Dennis and Otten 2000). Let    be the p-dimensional vec-

tor representing the covariates processes. Then, conditional on the realized values of the 

covariates, the state-space model (4.5) takes the form  

Process model:                        
           (4.9 a) 

Observation model:                       (4.9 b)  

where    is the normally distributed process noise as defined in (4.5). Also, the model 

parameter vector is given as                . 

Population viability analysis in the presence of covariates involves two additional 

steps: (i) testing the significance of the covariate effects, and, (ii) defining separate pro-

cess models for those covariates whose effects are found significant. The second step is 

critical in generating future trajectories as covariate information is required to obtain one-

step-ahead growth rate predictions. Significance of the covariate effects can be tested via 

LRT where the likelihood ratios can be computed using the algorithms outlined in Sec-

tion 4.3. 

We illustrate model estimation and model selection using population abundance 

estimates  of  San  Joaquin kit foxes (Vulpes macrotis mutica) inhibiting the  NPRS  from 
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Table 4.3 Maximum likelihood estimates and standard errors of model parameters. The 

likelihood function in each case is conditional on the first observed population count. 

Table 4 

1983 to 1996. Earlier, ignoring the presence of observation error, Dennis and Otten 

(2000) conducted a PVA for the same population to illustrate their methodology of incor-

porating environmental covariates. They found that the annual growing season rainfall at 

lag two significantly improved the model fit. Because kit fox time series consisted of 

abundance estimates; we extend their approach by incorporating observation error using 

the state-space formulation (4.9). The process model in this case is the following aug-

mented stochastic Ricker growth model:                         , where 

   denotes the annual growing season rainfall (cm) recorded at time t. We assume 

that observation errors are Lognormally distributed. We  emphasize that  estimation  of  

model parameters                   is conditional on the realized rainfall time series                        

                   .  

Following Dennis and Otten (2000), we consider the following four biologically 

interesting hypotheses.             (no density dependence, no rainfall effect); 

           (density dependence, no rainfall effect);            (no density 

dependence, rainfall effect); and,            (density dependence, rainfall effect). 

These models are fitted separately to obtain AICc values for model comparison using the 

methodology outlined in Section 4.3. The resulting MLEs and the AICc values are report-

ed in Table 4.3.  It is clear that assuming the presence of observation error, the model 

defined under    provides the most adequate description of the observed time series. 

Thus, both rainfall and population density are important in predicting future abundance of 

the San Joaquin kit fox population. We provide a comprehensive treatment of the hypoth-

esis of no observation error elsewhere. 

Model           ΔAICc 

   
-0.5605 

(0.1461) 

-0.0028 

(0.0007) 

0.0784 

(0.0089) 

0.0369 

(0.0767) 

0.2150 

(0.0472) 
0 

   
0.7493 

(0.3150) 

-0.0047 

(0.0019) 
- 

0.4352 

(0.1181) 

0.1321 

(0.2198) 
43.17 

   

-0.8843 

(0.1478)  

0.0711 

(0.0120) 

0.0116 

(0.0239) 

0.2816 

(0.0552) 
418.74 

   
0.0214 

(0.0228) 
- - 

0.02716 

(0.0525) 

0.5008 

(0.1039) 
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4.7.1 Prediction of Future Trajectories  

Analogous to distribution (4.8), we now develop a prediction distribution to forecast fu-

ture population trajectories while incorporating uncertainty in parameter estimation. For 

expositional simplicity, we assume that rainfall is the only covariate available in the con-

text of previously analysed kit fox abundance time series. Since the growth rate function 

is now conditional on the rainfall, we need to define a separate model to account for the 

variability in future rainfall values. For instance, this could be an autoregressive time se-

ries model of order one (AR1). Let us denote the rainfall model as       . Also, recall 

that   (              ),   (              ) and      (                 ) 

represent vectors of unobserved, estimated and future log population abundances respec-

tively. We similarly define      (                      ) to be the vector of future 

rainfall values. Then, for a known parameter vector                    , the condi-

tional prediction distribution for               is given as follows 

  (           |   )  
 (               )

      
 

                                     
 (        |      ) (      )

      
 

        
 ( |             ) (    |        ) ( |      ) (      )

      
, 

where        is the normalizing constant. The densities appearing in the numerator 

above are evaluated at  . However, we have suppressed this dependence to simplify no-

tation. We notice that the distribution of data vector  , conditional on the latent abun-

dances  , is independent of              . Furthermore,  ( |      )          and 

 (    |        )   (    |      ). So the above expression simplifies to 

 
 (           |   )  

             (    |      ) (      )

      
. 

(4.10) 

In practice, one needs to estimate the model parameters  . Furthermore, as dis-

cussed in Section 4.4, we also need to incorporate the estimation uncertainty to ensure 

proper converge properties of the resulting prediction intervals. Again, we integrate over 

the asymptotic normal distribution    ̂  of the MLE,  ̂, to account for the uncertainty in 

parameter estimates. Therefore, the prediction distribution given by (4.10) becomes 

  (           |   )  ∫ (             ̂    )  ̂ 

                                                               ∫ (                 ̂) (      )   ̂   ̂ 

                                           ∫
 (                 ̂) (      )   ̂   ̂
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∫             (    |      ) (      )   ̂        ̂

      
 

where the densities     ,     , and      are all conditional on  ̂. Analogous to scheme 

outlined in Section 4.5.1, random numbers from this posterior distribution can be gener-

ated by adapting a straightforward MCMC algorithm. That is, we generate random num-

bers (             )
 

, k = 1, 2,…, J, from the above conditional density 

 (                 ). The random numbers from the marginal posterior distribution 

)|( )(
YX

f
h  are obtained by simply discarding the (        )  component of the ran-

dom numbers (             )
 
, leaving (    )

 
, k = 1, 2,…, J. These random num-

bers, i.e. (    )
 
, k = 1, 2,…, J, then comprise J simulated future trajectories of the popu-

lation process. We will provide elsewhere a detailed exposition of the methodology de-

veloped in the current section by revisiting the Dennis and Otten’s (2000) PVA of the 

San Joaquin kit fox population. 

4.8 Summary  

State-space models provide a flexible framework to incorporate observation error when 

fitting stochastic population growth models. We demonstrated that DC is a powerful tool 

for computing MLEs of parameters in general state-space models with highly non-linear 

growth structure. In addition, the proposed estimation procedure elegantly handles the 

case when environmental covariates are available. We also showed that DC provides a 

unified computational framework for both model estimation and model selection. We 

also devised an efficient DC based algorithm to forecast future population trajectories 

while simultaneously accounting for observation error and estimation uncertainty. We 

illustrated the importance of incorporation of observation error in PVA by reanalyzing 

the population time series of song sparrow. Our analyses indicated that the extinction 

risks predicted by with and without observation error models are quite different. Further 

analysis of possible causes for observation error revealed that some component of the 

observation error might be due to unreported dispersal. A complete analysis of such data, 

thus, would require explicit spatial models and data on dispersal along with observation 

error. Our conclusions are, therefore, two-fold: 1) observation errors in PVA matter and 

2) integrating these errors in PVA is not always enough and can still lead to important 

biases in parameter estimates if other processes such as dispersal are ignored.  
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Chapter 5 

MCMC Convergence Assessment   

Using an Empirical Characteristic 

Function based Nonparametric Test
3
 

 

Markov Chain Monte Carlo methods, such as the Metropolis-Hastings algorithm (Me-

tropolis et al. 1953; Hastings 1970) and the Gibbs sampler (Gelfand and Smith 1990; 

Geman and Genman 1984), are a set of algorithms designed to simulate random numbers 

from a target probability distribution. The underlying feature of these algorithms is to 

generate a Markov chain that eventually converges to the target distribution.  Key appli-

cations of the MCMC methods arise in Bayesian inference where they are employed to 

obtain samples from intractable and, generally, multivariate posterior distributions to es-

timate quantities of interest such as posterior means and variances. The quality of these 

estimates, and hence the resulting inference, critically depends on convergence of the 

MCMC chain to the target posterior distribution. In most practical applications, some 

form of statistical diagnostics on the generated samples is used to assess convergence to a 

stationary distribution. The main objective of such diagnostic tools is, therefore, to de-

termine the point at which the Markov chain has fully escaped its initial transient phase 

and has settled down to a steady-state behavior. The posterior quantities are computed 

                                                 

 
3
 A version of this chapter is in preparation for a peer reviewed publication. Nadeem K and Lele S 

R. 
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based on the samples obtained after discarding the random numbers generated during the 

burn-in period.  

 One class of approaches to assess convergence exploits the theoretical properties 

of the Markov transition kernel to determine the appropriate length of the burn-in period 

(Schervish and Carlin 1992; Rosenthal 1993; Polson 1996). However, this is mathemati-

cally laborious and problem-specific (Cowles and Carlin 1996). As a result, most of the 

existing methods take on an empirical approach: applying diagnostics directly on the out-

put produced by the MCMC algorithms. Cowles and Carlin (1996) and Brooks and Rob-

erts (1998) provide a detailed review of diagnostic methods associated with this latter 

approach. In this thesis, we consider only the empirical approach.  

Most of the current diagnostic tools evaluate convergence of the Markov chain to 

a stationary distribution in terms of convergence of some functional of the chain. For ex-

ample, the widely used method of Gelman and Rubin (1992) consists of generating m 

parallel chains to conduct a simple analysis of variance of some functional,      , where 

   denotes the state of an arbitrary chain at time t. The method produces a variance ratio 

statistic of the form  ̂  (
   

   
)

 ̂

 
 where  ̂ is an estimator of the variance of      ,   , 

constructed as a weighted average of between and within chain variance estimators, while 

W is an estimator of   that is based on the within chain variances. The term (
   

   
)  is a 

correction term associated with the approximations inherent in the estimator  ̂, which is 

distributed as    
 . (see, for detail, Galman and Rubin (1992) and  Brooks and Gelman 

(1998)). Gelman and Rubin (1992) conclude that convergence of each of the m chains is 

ensured when the value of  ̂ is close to 1.  Brooks and Gelman (1998) further extend this 

method to monitor joint convergence of multidimensional MCMC chains. The other re-

lated variance ratio based methods include those from Brooks and Gelman (1998) and 

Brooks and Guidici (2000). Another example in a similar vein is that of the convergence 

diagnostic method by Giakoumatos et al. (1999). Their method employs subsampling 

methodology for time series (Politis and Romano 1994; Politis et al. 1997) to construct an 

estimator that is consistent for the functional    of the stationary distribution of the Mar-

kov chain. Convergence is concluded if, as the sample size N increases, the range of the 

resulting     )100% confidence interval for   drops at the expected rate    √ . The 

choice of the functional Giakoumatos et al. (1999) recommend is some large quantile 

(such as the 90
th
 percentile) on the grounds that stabilization of the quantile estimates in 

the tail is a reliable indicator of convergence to the stationary distribution. For more ex-



 81  

 

amples of such functional based diagnostic methods, we refer the reader to Brooks and 

Roberts (1998) review paper. 

 Instead of an arbitrarily chosen functional, Robert et al. (1999) use a formal hy-

pothesis test to compare distributions of MCMC output at two different time points. They 

use the two-sample Kolmogorov-Smirov test to detect convergence of univariate MCMC 

chains. For multidimensional chains, they compute p-value of the test for each parameter 

separately and use the minimum of the resulting p-values (henceforth named as min-p-

value) to construct the stopping rule. Their diagnostic, however, has two major shortcom-

ings. Firstly, as we show in Example1-2, min-p-value has significant downward bias in 

approximating the corresponding exact p-value. Thus, one may not be able to deduce 

convergence appropriately even when the sampler has fully converged. Secondly, be-

cause the diagnostic is based essentially on assessing convergence of the univariate mar-

ginals of the multidimensional chain, it does not take into account the multivariate fea-

tures of the target distribution, such as the variance-covariance structure. In fact, conver-

gence to the marginal distributions is only a necessary condition for convergence to the 

full target distribution. We rectify these limitations by replacing Robert et al.’s (1999) 

min-p-value based test with our new nonparametric test for comparing multivariate dis-

tributions.  

The difficulty in using classical procedures based on empirical distribution func-

tion or rank statistics for multivariate observations has led researchers to using empirical 

characteristic functions (ECF). For recent examples of ECF based test procedures, see 

Fan (1997), Alba-Fernandéz et al.(2006), Hušková and Meintanis (2008) and references 

therein. For examples of tests based on other nonparametric techniques, see Li and Liu 

(2004), Székely and Rizzo (2004) and Liu and Modarres (2011). Here, we introduce a 

new ECF based nonparametric test to compare several multivariate distributions. We 

show that the new test, henceforth called the ECF test, has excellent power as compared 

to other tests for comparing multivariate distributions. It is particularly useful for compar-

ing multimodal multivariate distributions that arise in many mixture models as well as in 

many practical situations where MCMC approaches are used. The test statistic is easy to 

compute and its null distribution is obtained easily using central limit theorem arguments. 

The main motivation of this chapter is to develop convergence diagnostics for MCMC 

algorithms when the target distribution is multimodal and multivariate. As we show, the 

ECF test is powerful in detecting differences in scale, skewness and multimodality, al-

lowing the diagnostic to pronounce stationarity only when all the key features of the mul-
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ti-dimensional distribution have converged. Hence, we evaluate the performance of our 

proposed diagnostic test by assessing the joint convergence of MCMC draws to known 

multivariate normal target distributions. We also illustrate the application of the diagnos-

tic using an interesting MCMC based statistical modeling problem.  

5.1 Comparing Multivariate Populations using ECF 

In this section we present the construction of ECF test statistic for comparing two multi-

variate populations. The section also includes a simulation study to assess the level and 

power of the proposed test. The complete derivation of the test statistic and an approxi-

mation to its sampling distribution for the multivariate k-sample testing problem are giv-

en in Appendix A.  

We first state the hypothesis of interest and its representation in terms of charac-

teristic functions. Let       denote the cumulative distribution function (CDF) of an abso-

lutely continuous p-dimensional random vector   . We are interested in testing the equali-

ty of k distributions        , j = 1, 2, …, k , i.e. we wish to test the following hypothesis: 

     
                                        vs.  

                    , for some                      (5.1) 

Let        ,     , represent the characteristic function (CF) corresponding to        , 

i.e. 

         [        
]  ∫         

     ,   √  , 

then using the bijection between CDFs and CFs, the above null hypothesis can be equiva-

lently written as 

     
                             ,                 (5.2) 

Since         is a complex function, using the Euler’s formula             

       ,    , we can write         in terms of its real and imaginary parts as follows: 

         [            ]    [            ]     

   
     

   
.  

Because 

                                     ,      

   
    

   
  and     

   
    

   
,       ,              (5.3) 

this allows us to write    in terms of real and imaginary parts of        ,  j = 1, 2, …, k. 

For this, let      be a     contrast matrix with elements            and      , 

     . Also, define   
   

       
  and    

   
       

 be vectors of linear contrasts, 
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where    
 and     

 notate the vectors of real and imaginary parts, respectively, of the k 

CFs. The following lemma, whose proof is given in Appendix A, represents    in terms 

of these contrast vectors.  

Lemma A1: The null hypothesis defined in (5.1) and (5.2) can be equivalently stated as 

      
   

   
   

  ,       .            (5.4) 

As in this section we are interested in the case with k = 2 only, the above equation simpli-

fies to 

       

   
    

   
   

   
    

   
  ,       .          (5.5) 

5.1.1 Empirical Characteristic Function 

The ECF, defined as follows, is a consistent estimator of the characteristic function of a 

random vector  . Suppose we have a random sample            available from a p-

dimensional distribution     , then the ECF corresponding to    ), the characteristic 

function of  , is defined as 

      
 

 
∑        

    
 

 
∑           

     
 

 
∑           

     ̂  
     ̂  

 , 

where  ̂  
 and   ̂  

 are consistent estimators of corresponding population quantities    
 

and     
, respectively. This leads us to define consistent estimators of the contrasts ap-

pearing in (5.5). Let       

   
    

   
  and       

   
    

   
, then consistent estimators of 

   and    are respectively given as   ̂   ̂  

   
  ̂  

   
  and   ̂   ̂  

   
  ̂  

   
. The follow-

ing results, which we prove in Appendix A for general k, state the asymptotic distribu-

tions of the statistics  ̂  and  ̂ . 

Theorem A2:  Assuming that    is true, for any     , as     

 √  ̂  
 
   (      

 ) 

 and 

√  ̂  
 
   (      

 ), 

where    

  and    

  are variances related to the real and imaginary parts of the ECF respec-

tively.  

Theorem A3: Regardless of the truth or falsity of   , we have 

   
‖ ‖  

    
      

√  ̂  
 
         

and  
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‖ ‖  

    
      

√  ̂  
 
        . 

where ‖  ‖ denotes the Euclidean norm of a vector. 

5.1.2 The ECF Test Statistic 

In order to motivate the construction of the test statistic, we first elucidate the asymptotic 

behavior of the statistics  ̂  and  ̂  as described in the theorems stated above. When    is 

true, the means are exactly equal to zero for all values of  . However, when    is false, 

the means oscillate away from zero until ‖ ‖ becomes sufficiently large. In fact, as we 

point out in Appendix A, the means    and    converge to zero exponentially fast as 

‖ ‖   . Thus, the asymptotic distribution of the statistics √  ̂  and √  ̂  are centered 

away from zero only for small values of ‖ ‖. This implies that, for small ‖ ‖, we expect 

the observed absolute values of  √  ̂  and √  ̂  to be significantly larger than what are 

expected under the standard normal distribution. Our Remark-2 in Appendix A further 

explains this point. 

Furthermore, the null hypothesis defined in (5.5) is essentially a union of hypoth-

eses indexed by     . Thus, the rejection of any one of these hypotheses leads to the 

rejection of   . In fact, as we show in Appendix A for general k, a necessary and suffi-

cient condition for the falsity of    is stated as follows. 

Theorem A4:   , as stated in (5.5), is false if and only if     
    

{          }   . 

Therefore, the above arguments suggest constructing a union-intersection type test in the 

following way. 

Let   be a grid containing   vectors in   . Construction of a suitable grid is ex-

plained in Appendix A. Notating the vectors in   as           , we obtain a collection 

of random variables { (  ̂     ̂  )          } all marginally asymptotically distributed 

according to Theorems A2 and A3. As we show in the appendix, these    random varia-

bles are asymptotically correlated; however, in order to approximate the sampling distri-

bution of our test statistic, we proceed as if they are mutually asymptotically independent. 

Our simulations show that this simplification still results in a         test.  

Let (  
   

   
   

          ) denote   independent observations from popula-

tions       and       respectively. Here, for simplicity of exposition, we assume equal 

sample sizes        .  The test is generally applicable for different sample sizes. 

The ECF test statistic is then defined as  
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   √     
   

 {  ̂      ̂  }], 

with the asymptotic         rejection region given as 

    {(  
   

   
   

          )     |     ̃ |}, 

where  ̃    ,   is the probability of observing at least one random number greater, in 

absolute value, than  |     ̃ | out of  ̃ numbers generated randomly under       , and 

   (   ̃)        , where      is the standard normal distribution function and   de-

pends on both         ̃. Using the definition of   above, we can obtain the critical value 

|     ̃ | as follows. We notice that            ̃, which yields   
       

 

 ̃

 
. So 

we can compute   for a given   and  ̃, and then  (   ̃ )         . Alternatively, the 

p-value of the test can be computed as                       ̃.  

5.1.3 Simulation Study 

We consider testing the equality of two trimodal distributions; each a mixture of three 

trivariate normal distributions, using our ECF test. We compare the performance of the 

ECF test, with another multivariate k-sample test introduced by Székely and Rizzo 

(2004). Their test statistic is based on energy distances (or e-distances) as defined by 

Székely and Móri (2001). We refer the reader to Székely and Rizzo (2004) for further 

details. Henceforth, we abbreviate their test as the ED test. The reason we preferred this 

test for comparison is its implementation in a user friendly software package, energy, 

available from the Comprehensive R Archive Network site (< http://cran.r-project.org/>). 

The null distribution we consider is defined as       ∑    
 
            , 

where the mixing probabilities     and the parameters of the component trivariate normal 

distributions are  

           ,             ,                ,         ,         ,         , 

   [
       

       
       

],     [
       

       
       

] and     [
        
        
        

]. 

 We consider the following three alternative mixture distributions that differ from 

the null distribution either in terms of a shift in the location or shape of the local modes. 

Location Shift (LC):                              ̃                       

Scale Shift-1 (SC1):         ∑    
 
             

Scale Shift-2 (SC2):                          (     ̃ )              .  
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The parameters in the alternative models that differ from those in the null are given as 

 ̃              ,      ,         ,         , 

and 

 ̃  [
          

          
          

]. 

 Figure 5.1 summarizes the results of a Monte Carlo study conducted at a nominal 

level          to assess the power of the ECF test against the alternatives described 

above. The percentage of rejection under the null hypothesis is generally less than the 

nominal level of 5% (Figure 5.1-a), i.e. it is a conservative test, showing that our approx-

imation of the sampling distribution of     results in a test with smaller than the nominal 

level  . The ED test is also seen to have the correct level. The ED test clearly has smaller 

power as compared to the ECF test in rejecting the location and scale alternatives LC and 

SC1 (Figure 5.1-b,c). The ECF test also appears to be far more sensitive than the ED test 

in detecting the scale shift alternative SC2. The rejection percentage under ECF exceeds 

80% at n = 300 whereas the ED test only has about 15% rejection rate at that sample size 

(Figure 5.1-d). Surprisingly, the power of the ED test remains very low in this case even 

at n = 500. This shows that our test is especially powerful in detecting shifts other than 

the location, such as shifts in scale, skewness and multimodality, which are generally dif-

ficult to detect in multivariate distributions. As we demonstrate in the next section, this 

feature of the ECF test is very promising in MCMC convergence diagnostics because the 

multivariate posterior distributions tend be multimodal in complex statistical modeling 

problems.  

5.2 The ECF based MCMC Diagnostics 

We now discuss the use of ECF test to assess convergence of an MCMC algorithm. We 

demonstrate the performance of the ECF diagnostic using Metropolis-Hastings MCMC 

output to sample from two known multivariate normal target distributions. We also apply 

the diagnostic to MCMC output for quadratic regression with errors in variables model. 

We compare the burn-in times decided under various diagnostic criteria.  

 The basic rationale of our diagnostic is as follows. Suppose we run r parallel 

MCMC chains with the initial multivariate output from the i
th
 chain denoted as       

            , where      is a p-dimensional observation. We then split the whole initial 

output into k successive samples each containing s observations from i
th

 chain so that 
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Figure 9  

Figure 5.1 Rejection rate comparisons for the ECF (solid line) and ED (dashed line) tests under 

(a) the null distribution, (b) the location shift (LC), (c) the scale shift-1 (SC1), and (d) the scale 

shift-1 (SC2) alternatives. 

 

N = sk. The number of observations in each sample is, therefore, n = rs. If the MCMC 

sampler has converged to the stationary distribution, all the k samples are drawn from 

that same distribution. Otherwise, if the sampler is still in the transient phase, at least one 

of these samples is observed from a different distribution.  In order to assess if these k 

samples are realized from some common stationary distribution     , our diagnostic em-

ploys the ECF test to formally test the convergence hypothesis: 

  

     
                        .            (5.6) 



 88  

 

 The idea of applying a statistical test to consecutive batches of MCMC output as 

a measure of stationarity is not new. For one-dimensional case, Robert et al. (1999) used 

the Kolmogorov-Smirnov test to test the convergence hypothesis (5.6) for two halves 

(k=2) of a given MCMC output.  For multi-dimensional chains, they proposed applying 

the Kolmogorov-Smirnov test to marginal components and using the minimum of com-

ponent-wise p-values as the total test p-value (the min-p-value). This procedure, when 

applied to consecutive batches of MCMC output, results in a series of p-values. Assum-

ing the validity of the convergence hypothesis, p-values are distributed as Uniform(0,1). 

Although min-p-value is not the exact p-value for the full hypothesis, they argue that the 

resulting p-value series can be considered as an approximate sample from Uniform (0,1) 

upon convergence. Their diagnostic is then based on a visual inspection of the min-p-

value series: Convergence is deduced from the point on where p-values start behaving 

more like a sample from uniform distribution (see Figure 3.4 in Robert et al. 1999). They 

exemplify their diagnostic by analyzing a normal mixture hidden Markov chain model. 

Here, we replace their min-p-value series by the p-values generated from applying the 

ECF test. Furthermore, we formally test the uniformity of the resulting p-values.  

 We now give a precise formulation of our convergence algorithm. In order to 

compare our diagnostic with that of Robert et al.’s (1999), in rest of the chapter we con-

sider k=2 samples within a given MCMC batch. Recall that                    is the ini-

tial multivariate MCMC output available from the i
th
 chain. To fix ideas, we notate the 

combined initial output from the r chains as       , which is split into m consecutive 

batches each containing 2n observations. All batches are further divided in two succes-

sive halves, each containing n observations. The whole splitting scheme is illustrated in 

Table 5.1. The rest of the algorithm is described as follows. 

Step-1. Set h=1. 

 Step-2: Generate MCMC output to construct        as described above. 

Step-3. Apply the ECF test to test the convergence hypothesis (5.6) for each batch in 

      , resulting in m p-values. 

Step-4. Apply the ECF test to test the hypothesis that resulting m p-values represent a 

random sample from Uniform(0,1).  

Step-5. Jump to Step-7 if the null hypothesis in Step-4 cannot be rejected, else continue 

running the sampler and go to the next step. 

Step-6. Set       and repeat Step-2 to Step-5. 
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Table 5.1 Construction of MCMC        for implementing the ECF convergence 

diagnostics: The block is split into m consecutive batches, each containing 2n 

observations. All batches are further divided in two successive halves, Sample-1 and 

Sample-2, containing n observations each. These n observations consist of s MCMC 

draws from each chain, i.e.     . The table entries under columns ‘Sample-i’, i =1, 2, 

denote number of MCMC draws. Construction of the subsequent blocks is similar. 

       

Chain 
       

. . . 
       

Sample-1 Sample-2 Sample-1 Sample-2 

1 s s 

. 

. 

. 

s s 

2 s s s s 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

r s s s s 

Total Draws (n=rs) rs rs rs rs 

Table 5 

Step-7. Conclude convergence and compute, for each generated chain, burn-in = 

 m(h-1)N, where N is the length of the chain in each block. 

Thus, upon convergence, the last mN observations from each chain can be used 

to estimate the posterior quantities of interest. If convergence is deduced within the first 

block, as insurance, we suggest discarding the first 1000 observations as burn-in. 

 An important issue in testing convergence hypothesis as described above is the 

presence of autocorrelation in MCMC draws (see Goldman et al. 2008 for one treatment 

of this problem). As suggested by Robert et al. (1999), we reduce autocorrelation by 

thinning a given MCMC batch. For instance, we select every qth observation from a giv-

en batch where q=4 or 5 seems a good choice. In the rest of this chapter, we consider 

samples of size at least 500 MCMC draws in each batch after thinning. This sample size 

is based on the simulation results in the previous section showing that the ECF test enjoys 

high power at this size. The overall computational burden is manageable in most MCMC 

setups given the currently available computational resources. 

 We now exemplify our ECF diagnostic by sampling from three different target 

distributions. For comparison, we also implement diagnostics based on Gelman and Ru-

bin’s (1992) potential scale reduction factor (PSRF, also called the shrink factor), Robert 

et’ al. (1999) min-p-value approach, and Giakoumatos et al.’s (1999) subsampling based 

algorithm. 
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5.2.1 Example 1 

We use the trivariate normal target distribution with high correlations initially described 

in Cowles and Carlin’s (1996) MCMC diagnostics review paper. Giakoumatos et al. 

(1999) also used the same to exemplify their subsampling diagnostic methodology. The 

target distribution has mean zero with large correlations of 0.90, 0.90 and 0.98; formally, 

[

  

  

  

]    ([
 
 
 
]  [

     
       
      

]).        

We employed the standard Metropolis-Hasting random walk algorithm (Tierney 1994) to 

sample from this target distribution using five independent chains. The starting values for 

the chains were drawn from a multivariate normal distribution dispersed with respect to 

the target distribution. The proposal distribution was centered at the origin with a rela-

tively weaker correlation structure than the target distribution. The resulting MCMC trace 

plot for the third parameter using first three chains appears to show good mixing and rap-

id overall convergence within the first 1000 iterations only (Figure 5.2-a). The trace plots 

of the other two parameters also show similar sample paths. Figure 5.2-b shows visual 

implementation of the ECF diagnostic described above where we use m = 50 batches per 

block. We also plot the corresponding Kolmogorov-Smirov min-p-values using the Rob-

ert et al.’s (1999) diagnostic (Figure 5.2-d).  

 Giakoumatos, et al.’s (1999) procedure involves calculation of successive confi-

dence regions based on subsampling statistics (Politis and Romano 1994; Politis et al. 

1997) whose range is proportional to 
 

√  
 upon convergence. The subsampling statistic 

they preferred was the empirical 90
th
 quantile arguing that stabilization of the estimated 

target distribution in the tails indicates satisfactory convergence of the MCMC chain. Let 

   denotes the range computed from a subsample of size    observations, then their diag-

nostic is based on a plot of coefficient of determination (R.square, Figure 5.2-c) comput-

ed from the linear model:     
 

√  
   , where    are distributed with mean zero. Con-

vergence is declared from point on where R.square > 0.999. For further details, we refer 

the reader to Giakoumatos, et al.’s (1999). Notice that this algorithm is essentially de-

signed for a single MCMC chain. However, as we consider running multiple chains in 

this chapter, we plot minimum of the R.square computed from all the chains as conver-

gence criterion. 

 The ECF and Robert et al.’s (1999) diagnostics generate a series of 50 p-values 
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Figure 10  

Figure 5.2 Convergence diagnostics for Example 1. (a) Trace plot of the first three chains for   , 

and, (b) p-value series generated under the ECF diagnostic. (c) Coefficient of determination under 

the subsampling algorithm. Dotted lines: R-squared values for individual chains; dark solid line: 

the minimum R-squared values over the five chains; dashed line: threshold R.square = 0.999; ver-

tical dotted line: burn-in=11700. (d) The min-p-value series generated under the Robert et al.’s 

(1999) diagnostic. 

 

(Figure 5.2-b,d). We applied the ECF test to see if these p-value series represent samples 

from the Uniform(0,1) distribution. The resulting p-values for ECF and Robert et al.’s 

(1999) diagnostics are 1 and 0.018 respectively. Thus, of the two, only ECF diagnostic 

declares convergence within the first block. It is further evident from Figure 5.2-b that 

ECF based p-value series seem to emerge from Uniform(0,1), while min-p-value series 

shows a positively skewed distribution (Figure 5.2-d). In fact, min-p-value series has a 
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mean of 0.262; far less than the true mean 0.5. Since ECF declares convergence within 

the first block, we discard the first 1000 draws as burn-in.  

 The R-square values computed from Giakoumatos et al.’s (1999) subsampling 

algorithm are plotted in Figure 5.2-c. We see that minimum R-square value computed 

over the five chains exceeds the 0.999 threshold at about 11700 iterations which is there-

fore the burn-in size using the subsampling algorithm. We also computed PSRF over the 

first 10000 iterations. Both Gelman and Rubin’s (1992) univariate and Brooks and Gel-

man’s (1998) multivariate PSRFs were less than 1.001, confirming strong mixing as seen 

in Figure 5.2-a. Thus, both ECF and PSRF based diagnostics indicate rapid convergence 

of the sampler. This is further evident from MCMC based model parameter estimates 

after burning first 1000 observations: mean vector                       and the vari-

ance-covariance [
             

          
      

]; these estimates are reasonably close to the 

corresponding true values. 

5.2.2 Example 2 

This example also appeared in both Cowles and Carlin’s (1996) review paper and in Gia-

koumatos et al. (1999). The target distribution here is a bimodal density comprising a 

mixture of two multivariate normals with equal mixing proportion. The component nor-

mals share the following common covariance structure producing high correlations, 

[
       

         
         

], with appreciably dispersed mean vectors                 and   

                   . The Metropolis-Hasting random walk algorithm (Tierney 1994) 

was used again to sample from the above distribution with five independent chains. The 

proposal density was centered at                    ) and was sufficiently dispersed 

with a strong correlation structure. The starting values were also drawn from a distribu-

tion sufficiently dispersed with respect to the target density. The resulting trace plot of 

the third parameter with the first three chains is depicted in Figure 5.3-a. The chains ap-

pear to converge quickly with frequent jumps between the modes. Similar pattern was 

observed for the remaining two parameters. 

 We implemented the ECF diagnostic with a block size of 100 batches. We further 

applied the ECF test on the generated p-value series (Figure 5.3-b) to see if they arise 

from the uniform model, yielding a p-value of 1.0. The corresponding p-value for the 
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Figure 11  

Figure 5.3 Convergence diagnostics for Example 2. (a) Trace plot of the first three chains for   , 

and, (b) p-value series generated under the ECF diagnostic. (c) Coefficient of determination under 

the subsampling algorithm. Dotted lines: R-squared values for individual chains; dark solid line: 

the minimum R-squared values over the five chains; dashed line: threshold R.square = 0.999; ver-

tical dotted line: burn-in=63500 (d) The min-p-value series generated under the Robert et al.’s 

(1999) diagnostic. 
 

Robert et al.’s (1999) min-p-value series (Figure 5.3-d) was 0.177. However, with a block 

size of 200 batches, it dropped to 0 for min-p-value series but remained unchanged for 

the ECF diagnostic. Notice that mean of the min-p-value series (Figure 5.3-d) is 0.358, 

which confirms the downward bias in approximating the exact p-value of the Robert et 

al.’s (1999) diagnostic. Thus, the ECF diagnostic concludes convergence within the first 

block with a burn-in size of 1000 iterations. The Gelman and Rubin’s (1992) diagnostic 
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also showed rapid convergence with the multivariate PSRF value of 1.01 computed from 

the first 1000  iterations. 

The subsampling algorithm, however, showed more delayed convergence. It is 

clear from Figure 5.3-c that minimum R-square value exceeds 0.999 after a burn-in size 

of 63500 iterations. To see if a large burn-in size as determined by the subsampling algo-

rithm is really necessary, we compared the empirical distributions based on the ECF and 

subsampling diagnostics. For this, we applied the ECF test on two samples consisting of 

5000 MCMC draws each, obtained after burning the first 1000 draws for the ECF diag-

nostic, and 63500 draws for the subsampling diagnostic. The resulting p-value of 0.556 

provides strong evidence that both samples arise from the same stationary distribution. 

Furthermore, the mean vector and covariance matrix of the ECF diagnostic based empiri-

cal distribution and those from target distribution (in parenthesis) are compared below. 

The estimate of the stationary distribution is based on 10000 iterations after burn-

in=1000. The resulting MCMC estimates are reasonably close to the corresponding true 

parameter values, indicating that the sampler has explored the target distribution suffi-

ciently well. This also shows that the subsampling diagnostic is very conservative in de-

claring convergence to the stationary distribution. 

Mean Vector:                                                   

 

Covariance Matrix: [

                                   

                        

            

]. 

5.2.3 Example 3 

Measurement error models play an important role in many scientific disciplines, such as 

epidemiology and environmental sciences, where predictor variables in a regression 

model often cannot be observed directly. For a comprehensive treatment of the related 

inferential methods, we refer the reader to Carroll et al. (2006). Here we consider Bayesi-

an inference for the structural polynomial measurement error model (Huang and Huwang 

2001). It is well known that the structural simple linear measurement error model is ines-

timable unless an estimate of the measurement error variance is available from additional 

data (Carroll et al. 2006). Interestingly, Huang and Huwang (2001) show that the poly-

nomial measurement error model is fully identifiable provided the degree is greater than 

1. They also derive consistent estimators of the model parameters.  
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The model is formalized as follows: i

p

ipiiiY  ...2

210 , 

where ~i ),0( 2

N , ),(~ 2

  Ni and ~iX ),( 2

iN , while we only observe 

(
ii XY , ),  i = 1, 2, … , n.  We simulated a random sample of size 50 observations under 

the quadratic model with the true parameter vector (
222

210 ,,,,,,   x ) = (5, 2, 3, 

0, 0.1, 1, 1). These parameters values are similar to those chosen by Huang and Huwang 

(2001). To draw samples from the posterior distribution of the parameter vector, we used 

the MCMC samplers implemented in JAGS 3.1.0 (Plummer 2003, 2011a) using the rjags 

package (Plummer 2011b) of the R computing software (Venables and Smith 2011). We 

generated 100 parallel chains each of length 10000 iterations. The reason we generate a 

large number of chains for this model is explored in the discussion section. All the pa-

rameters were given fairly noninformative proper priors except for 
x which was given

)01.0,ˆ( N , where X
ˆ , a consistent estimator of 

x . Visual inspection of the 

MCMC trace plots of regressions coefficients and variance parameters (on natural loga-

rithm scale) show reasonable mixing for ),( 2

0 
 
only, while the other parameters show 

poor mixing (Figure 5.4, 5.5). However, the individual chains seem to stabilize after a 

few hundred initial iterations. 

For this example we only focus on comparing the ECF diagnostic with Gelman 

and Rubin’s (1992) PSRF. Agreeing to the visual impression, the univariate shrink factor 

shows convergence for ),( 2

0   only (Figures 5.6). While the shrink factor for other pa-

rameters initially drops and then stabilizes at values higher than 1.1, it seem to increase 

for    
  within the first 10000 values iterations. Furthermore, Brooks and Gelman’s 

(1998) multivariate PSRF computed from the second half of the chain is 2.30, showing 

that the sampler is still running in the transient phase. 

Next we applied the ECF diagnostic with m=30 batches per block and s = 10, re-

sulting in sample size n = 1000 (see Table 5.1 for details). The thinning size was q=4 

draws. The resulting p-value series up to Block-4 is plotted in Figure 6-b. The hypothesis 

test for the uniformity of the p-values in Block-1 resulted in a p-value of 0.058, while the 

test p-value was higher than 0.30 in remaining blocks. Therefore, based on the ECF diag-

nostic, we discard output from the first 30 batches as burn-in (2400 draws per chain). No-

tice that the posterior estimates of the parameters match well with those obtained by 

Huang and Huwang (2001) in their simulation study. Thus, the sampler appears to have 
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Figure 12  

Figure 5.4. Left panel: Trace plots of the hundred parallel chains; Right panel: Corresponding 

Gelman and Rubin’s (1992) PSRF values (shrink factors). 

 

explored the posterior space sufficiently well after burn-in=2400. 

5.3 Discussion 

Ideally, we expect multiple chains to strongly mix as well as converge in terms of stabili-

zation of the full empirical distribution, as we saw in Example 1-2. However, in practice 

most samplers produce chains that are only quasi-ergodic, i.e. they mix poorly and get 

confined to local modes for a computationally intractable amount of time (Murray 2010). 

This can happen, for instance, when the target density is highly multimodal, making it 
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Figure 13  

Figure 5.5. Left panel: Trace plots of the hundred parallel chains; Right panel: Corresponding 

Gelman and Rubin’s (1992) PSRF values (shrink factors). 
 

virtually impossible for a single quasi-ergodic chain to traverse the entire state-space. It is 

therefore useful to run many parallel chains so that the sampler can effectively explore 

various local modes. There indeed exists much debate on the efficacy of using a single 

long chain in assessing stationarity. For a detailed theoretical treatment of the subject, we 

refer the reader to Galman and Rubin (1992), Chauveau and Debolt (1997) and Mengeren 

et al. (1999). Despite the fact that individual chains might explore only local basins of 

attraction, collectively they can still provide useful information about the shape of the 

target density. This, however, blows up the PSRF even though the ensemble of chains 

exhibit stationary behavior. Example3 reflects this phenomenon where, although the 
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Figure 14  

Figure 5.6. Convergence diagnosis for Example 3. (a) Density plots for )log( 2

 after burn-

in=2400 per chain; dotted lines: density plots based on the individual chains; solid line: density 

plot based on the 100 parallel chains. (b) p-value series generated under the ECF diagnostic. 

 

chains seem to mix poorly, individually they explore a relatively small region of the 

state-space. This is evident from the marginal density plots computed from individual 

chains and that of their ensemble (Figure 5.6-a). Presence of various connected basins of 

attraction is apparent but the ensemble produces a unimodal distribution that has become 

stable after a few hundred initial iterations. This explains why ECF test pronounces con-

vergence while PSRF requires further simulation because of insufficient mixing. 

 The stabilization of the full empirical posterior distribution, determined for in-

stance in Example 3 using ECF, does not guarantee that the sampler has actually con-

verged to the correct stationary distribution. Indeed, no diagnostic can achieve this be-

cause the stationary distribution will always be unknown to us in practice. Thus, design-

ing efficient MCMC algorithms is crucial to have credence in the observed stationary 

distribution. This is currently an active area of research aiming at efficiently exploring 

high dimensional and, potentially, multimodal spaces in a computationally feasible man-

ner. To get an overview of the recent developments, the reader is referred to Craiu et al.’s 

(2009) regional adaptive MCMC (AMCMC) and that of Andrieu et al.’s (2010) particle 

MCMC (PMCMC) methods. 

Existing ECF tests are based on a weighted L2 distance between the empirical 

characteristic functions where the weight is assigned through an even integrable weight 
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function       (Hušková and Meintanis 2008; Meintanis and Swanepoel 2007). The 

choice of a suitable weight function depends on two aspects i) when some a priori 

knowledge exists about the form of the densities,       is chosen to direct the power of 

the test towards frequencies where CF’s differ maximally and, ii) to render a closed form 

of the test statistic suitable for computer calculation (Hušková and Meintanis 2008). The-

se tests then rely on the permutation bootstrap approach for computing the test p-value. 

However, our ECF test avoids the arbitrariness introduced by       and the test p-values 

are easy to calculate since the asymptotic CDF of the test statistic is exactly computable 

from the standard normal CDF. Furthermore, when a priori knowledge about the form of 

the densities does exist, it can be incorporated in our ECF test as well by constructing a 

grid G that is dense around the frequencies where CF’s diverge maximally. 

 When the target distribution is high dimensional, computation of     can become 

computationally expensive because of the large size of the grid G (see Appendix A for 

the construction of G). A suitable approach in this case is to study the convergence of 

chains over a subset of parameters. We suggest monitoring convergence of various ran-

domly selected subsets and continue sampling until convergence is achieved on all the 

subsets. Again, the stopping rule can be based on the resulting p-value series from all the 

subsets combined and then reduced to a single p-value for testing their uniformity.  

5.4 Summary 

In this chapter we introduced a diagnostic procedure for assessing the convergence of an 

MCMC generated multidimensional empirical distribution. We also introduced a new 

ECF based nonparametric test for the multivariate k-sample testing problem. The test is 

very sensitive in detecting shifts in different features of a multivariate density such as 

scale and multimodality and, therefore, forms the building block of our diagnostic algo-

rithm. 
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Chapter 6 

Conclusions and Future Research 

 

This thesis sets out to develop a novel computational algorithm, data cloning, to conduct 

likelihood based analysis of one of the most useful classes of statistical models: the gen-

eral hierarchical models. We also develop an MCMC convergence diagnostic procedure 

based on a new nonparametric test for comparing several multivariate populations. In this 

chapter, we review these contributions and discuss future direction.  

 The overview in Chapter 2 provides a glimpse of the existing approaches to ana-

lyzing GLMMs, an important class of hierarchical models. A common thread to the exist-

ing likelihood based methods is that they all employ some sort of approximations to the 

high dimensional multiple integral defining the likelihood function to avoid its explicit 

evaluation. Although some of these methods such as AGQ and FLA show good perfor-

mance, they are more or less restricted to analyzing GLMMs only. On the other hand, 

Bayesian estimation of hierarchical models circumvents the aforementioned approxima-

tions by assuming prior distributions to integrate out the uncertainty concerning model 

parameters. The well developed MCMC methodology then allows sampling from the 

posterior distributions to conduct inference. A limitation of the Bayesian approach is that 

the inferences can be strongly dependent on the choice of prior distributions.  

The DC algorithm developed in this thesis also uses Bayesian formulation and 

computational techniques. However, the resulting inferences are based on the classical 

frequentist paradigm and are invariant to the choice of prior distributions. Our methodol-

ogy is applicable in most situations where the problem can be formulated as a Bayesian 

problem and where MCMC can be used to obtain random variates from the posterior dis-

tribution. Similar to the Bayesian methodology, data cloning avoids high-dimensional 

numerical integration and requires neither maximization nor differentiation of a function. 
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It is based only on the computation of the means and the variances. Application of the 

DC algorithm for estimating complex GLMMs and nonlinear state-space models in 

Chapter 3 and 4 respectively, shows that the method is viable for analysing a wide range 

of hierarchical models. Furthermore, as we described in Chapter 4, inference procedures 

such as model selection using information criteria, profile likelihood for inference in the 

presence of nuisance parameters etc. are also possible using data cloning.  

One of the promising features of data cloning is the test for estimability of parame-

ters in hierarchical models. Understanding estimability of the parameters is extremely 

important in practice, where models are complex and analytical results are sparse. Any 

valid scientific inference can only be based on identifiable parameters. Thus, checking for 

estimability is critical for good scientific practice. However crucial, analytical determina-

tion of identifiability is a very difficult problem in general. In this thesis we demonstrate 

that the DC algorithm provides a powerful numerical diagnostic tool to flag lack of model 

estimability in hierarchical models. However, there is further potential to improve upon 

the existing diagnostic. Theorem 3.3 shows that when some of the model parameters are 

nonidentifiable, the full posterior distribution is embedded in a lower dimensional mani-

fold of the parameter space. This suggests that the existing manifold estimation tech-

niques (Lin and Zha 2008) can be employed to devise a more general estimability diag-

nostic procedure. We plan to explore this possibility in a separate study. We also refer the 

reader to Campbell and Lele (2013) for an ANOVA based extension to the existing diag-

nostic approach.  

Recently Rue and Martino (2009) introduced their integrated nested Laplace algo-

rithm (INLA) for conducting approximate Bayesian inference in latent Gaussian models, 

an important subclass of hierarchical models that includes generalized linear mixed mod-

els, generalized additive models and state-space models as special cases. Their algorithm 

is based on Tierney and Kadane’s (1986) Laplace approximation of marginal posterior 

distributions. The key feature of INLA is that it yields direct numerical approximations of 

the marginal posterior distributions, completely circumventing MCMC calculations. 

Baghishani et al. (2012) introduced an interesting further extension by developing a hy-

brid of INLA and the DC algorithm (DCINLA). This hybrid algorithm produces direct 

approximations to the DC based marginal posterior distributions, yielding MLEs and 

their standard errors. However, DCINLA does not produce the asymptotic variance-

covariance matrix of the MLEs. Baghishani et al. (2012) illustrated the implementation of 

DCINLA by analyzing various standard GLMMs, producing estimates comparable with 
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those computed from other maximum likelihood estimation procedures. However, be-

cause data cloning induces a larger random effects structure than existing in the original 

data set, it is yet to be seen if DCINLA scales up to fitting complex models, such as the 

CAR model analyzed in Chapter 3. Extending DCINLA in this direction would be a use-

ful contribution to likelihood based inference in general hierarchical models.  

In Chapter 4, we present a flexible and computationally efficient methodology to 

include environmental covariates and delayed density dependence in PVAs while simul-

taneously accounting for observation error and parameter uncertainty. Analysis of song 

sparrow abundance counts implies a potential future extension to our approach: to incor-

porate observation error in spatially structured metapopulation models. These models 

have become a key tool for conservation and management of spatially fragmented popu-

lations (Dunning et al. 1995, Akçakaya 2000, Akçakaya et al. 2007). As accurate popula-

tion estimates are seldom available for such fragmented populations, estimation of these 

models ignoring observation error can seriously limit their predictive strength. Recent 

applications of these models have overlooked the issue of observation error mainly due to 

the computational difficulties in handling complex hierarchical models (Dennis et al. 

1998; Lele et al. 1998; Schtickzelle and Baguetti 2004; Jonzén et al. 2005). Extending the 

methods presented in this thesis to the spatially explicit PVA models would therefore be 

an important further contribution to the PVA tool kit. 

 As we pointed out at the onset of this thesis, quality of MCMC based Bayesian 

inference, and that of the DC algorithm for that matter, depends on satisfactory conver-

gence of the MCMC chains. Controlling MCMC convergence in the hierarchical model-

ing context can be especially tricky as the target posterior distributions tend to be multi-

modal. Although, there exist a number of diagnostic tools for assessing convergence of 

univariate chains, only few procedures exist for controlling convergence to multivariate 

target distributions. Furthermore, these tests are mostly based on monitoring convergence 

of a functional of the multidimensional chain, overlooking multivariate features of the 

target distribution, such as the variance-covariance structure. In this thesis, we introduce 

a new diagnostic method that ensures that the empirical distribution of the multidimen-

sional chain converges to a stationary distribution as a whole. 

 The diagnostic procedure we developed is based on a novel ECF based test for 

comparing k multivariate distributions. The simulation study in Chapter 5 shows that the 

test is quite powerful in detecting shifts in key features of multivariate distributions, such 

as skewness, variance-covariance and multimodality. Although not included in this the-
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sis, we plan to evaluate the performance of our ECF test for k univariate distributions in a 

separate simulation study. We also plan to extend the test to assessing goodness-of-fit 

between two or more distributions. A further contribution would be to develop the test for 

assessing independence of a collection of random variables. We report these extensions 

elsewhere. 

  



 104  

 

 

 

 

 

Appendix A  

Derivation of the ECF Test 

 

We shall assume throughout that the random vector X has absolutely continuous distribu-

tion function F(x).  Then, following the development in Section 5.1, we recall from (5.3) 

that                ,      

   
    

   
  and     

   
    

   
,       , where    

   
 

 [          ] and    

   
  [          ]. This allows us to write the null hypothesis in 

(5.2) in terms of real and imaginary parts of        ,  j = 1, 2, …, k. Recall that      is a 

    contrast matrix with elements            and      ,      , so that 

  
   

       
  and    

   
       

 define vectors of linear contrasts, where    
 and     

 

notate the vectors of real and imaginary parts, respectively, of the k CFs. The following 

lemma represents    in terms of these contrast vectors.  

Lemma A1: The null hypothesis defined in (5.1) and (5.2) can be equivalently stated as 

      
   

   
   

  ,       .            (A1) 

Proof: It is trivial to show that, for any     , the homogeneous system of linear equa-

tions defined by Eq. A1 is such that, 

   
   

        

   
    

   
      

   
 (A2) 

and 
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. (A3) 

Then, it follows from (5.3) that Eqs. A2-A3 hold true for        if and only if (5.2) 

holds for       . Hence the proof follows.   

The following theorem states some properties of the characteristic function, proof 

of which can be found in Ushakov (1999) and Rosenthal (2006). 

Theorem A1: For       : 

(i)      exists for any random vector X. 

(ii)                 

(iii)     ̅̅ ̅̅ ̅̅       , where     ̅̅ ̅̅ ̅̅  is the complex conjugate of      . 

(iv)      is uniformly continuous in  . 

(v) If X has absolutely continuous distribution,    ‖ ‖          . 

The following lemma states variance formulae of the random variables          and 

        . We refer the reader to Fan (1997) for details. 

Lemma A2: For any      

(i)    

                 
 

 
[      

     

 ], and,    (A4) 

(ii)    

                 
 

 
[      

     

 ].    (A5) 

In the following lemma we state a limiting result on Lemma A 2. 

Lemma A3: As ‖ ‖    ,    

  
 

 
 ,     

  
 

 
. 

Proof: From Theorem A1-v we have    ‖ ‖           . But            

     

    

    
    

  . Hence the proof follows immediately upon applying the limit in Eqs. 

A4-5.   

 Recall that the ECF for      is defined as 

      
 

 
∑        

    
 

 
 ∑           

     ∑           
      ̂  

     ̂  
 , 
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where  ̂  
 and   ̂  

 are consistent estimators of    
 and     

, respectively. We also define 

consistent estimators  ̂ 
   

     ̂  
 and   ̂ 

   
     ̂  

 of the contrast vectors appear-

ing in Eq. A1.  In the following theorem, assuming    is true, we state a result on the 

limiting marginal distribution of the components of   ̂ 
   

 and  ̂ 
   

. Let us first introduce 

some notation. We write  

  
   

    
   

    
   

     
   

   and    
   

    
   

    
   

     
   

  , where, all   
   

 and   
   

 

are linear combinations of the elements of    
 and    

, respectively, defined by the j
th
 

row vector of B. For instance,   
   

 and   
   

 are given as: 

   
   

          

   
    

   
      

   
   

    
  (A6 a) 

and 

   
   

          

   
    

   
      

   
   

    
. (A6 b) 

We also define  ̂ 
   

 and  ̂ 
   

 as the corresponding estimators. Before we state 

Theorem A2, we first present some results on the variance of   ̂ 
   

 and  ̂ 
   

 in the follow-

ing lemmas. 

Lemma A4:  

(i) Assuming    is true,   
   

   
   

  ,       ,          . 

(ii) Assuming    is false,    
‖ ‖  

  
   

    
‖ ‖  

  
   

   ,          . 

(iii) For any     , the statistics   ̂ 
   

 and  ̂ 
   

 are unbiased estimators of the 

contrasts   
   

 and   
   

 respectively,         . 

Proof:  

(i) The proof follows immediately by using Eqs. A2-3. 
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(ii) We only show for  ̂ 
   

 as the proof for  ̂ 
   

 is analogous. The proof follows by notic-

ing from Theorem A1-v that    ‖ ‖             
‖ ‖  

   

     

          
    

  , 

which implies    
‖ ‖  

  
   

            . 

(iii) We only show for  ̂ 
   

 as the proof for  ̂ 
   

 is analogous. From the definition of ECF 

we have  ̂  

   
 

 

 
∑    (    

   
) 

    where it is trivial to show that     ̂  

   
     

   
   

         [ ̂  
]     

. Thus,     ̂ 
   

    [  
  ̂  

]     
    

=  
   

.   

Lemma A5: Assuming    is true, for any     ,    (√  ̂ 
   

)           

   and 

   (√  ̂ 
   

)           

 , where    

  and    

  are defined in Eqs. A4-5, respectively. 

Proof:  

We begin by showing that √  ̂  
 and √  ̂  

 have diagonal variance-covariance 

matrices that are of the form      
    

    and      
    

   , respectively, where    is an 

identity matrix. We only present the proof for      
, whereas      

 can be derived simi-

larly. 

The off-diagonal elements of      
 are all zero since the elements of  ̂  

are func-

tions of independent random samples. The diagonal elements are given as: 

       (√  ̂  

   
)      (

 

 
∑         

   
  

   )  

 

 
∑    (        

   
 )   

      

 .(A7) 

Next, we derive the variance of  ̂ 
   

. Recalling from Eq. A6, we can write 

   ( ̂ 
   

) as 

   (√  ̂ 
   

)     (  
 √  ̂  

)    
    (√  ̂  

)     
    

               

     

(A8) 

The derivation of     (√  ̂ 
   

) is also similar. Hence, the proof is complete.   
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Corollary A1:    
‖ ‖  

    (√  ̂ 
   

)      
‖ ‖  

   (√  ̂ 
   

)  (
 
 
). 

Proof: The proof follows immediately from applying the result in Lemma A3.   

Remark 1: When    ,   
   

   in Eq. A1 results in two linear contrasts:   
   

 

    

   
    

   
 and   

   
    

   
    

   
, one of which is clearly redundant. The same is true 

for contrasts associated with   
   

  . Throughout the Appendix, for    , we define 

Eq. A1 in terms of   
   

 and   
   

 only and simply denote them as    and    respectively. 

Notice that all the results obtained herein remain valid for     as well.   

Lemma A6:  Regardless of the truth or falsity of   , 

   
‖ ‖  

   (√  ̂ 
   

)     (√  ̂ 
   

)  (
 
 
). 

Proof: The proof is very similar to that of Lemma A5, except for the fact that Eq. A7 is 

derived as follows: 

       (√  ̂  

   
) 

           (
 

 
∑         

   
 

 

   

) 

      
 

 
∑    (   (    

   
))

 

   

 

      
 

 
∑      

  
         

  .       (A9) 

However, it follows from Lemma A3 that ,    
‖ ‖  

     

  
 

 
 . Thus,     

‖ ‖  
    

 

 
  , and a 

reconstruction of (A8) yields    
‖ ‖  

    (√  ̂ 
   

)  
      

 
 (

 
 
), completing the 

proof.   

Theorem A2: Assuming    is true, for any     , and for    , as        

√  ̂ 
   

√(
 
 
)

 
  (      

 )  and  
√  ̂ 

   

√(
 
 
)

 
  (      

 ). 
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Proof: 

 We only present the proof for  ̂ 
   

 as the steps remain similar for  ̂ 
   

. We recall 

from Eq. A6 that  ̂ 
   

 is a linear combination sample averages  ̂  

   
,  ̂  

   
, …,  ̂  

   
 where  

 ̂  

   
 

 

 
∑         

   
  

    with     ̂  

   
     

   and      √  ̂  

   
     

    , since 

        is a bounded function and { ̂  

   
}
   

 
 is a sequence of independent and identically 

distributed (iid) random variables under   . Now by applying the strong central limit 

theorem on the sequence of iid random variables {        
   

 }
   

 
, for any     , 

√ ( ̂  

   
    

)
 
  (     

 ) as    . Thus, as    , √ ( ̂  
    

)
 
  (     

   ) 

where    
     

    
      

  . Notice that using Lemma A4-i, √  ̂ 
   

 can be represent-

ed as √  ̂ 
   

=   
 √ ( ̂  

    
) with  [√  ̂ 

   
]   , also    (√  ̂ 

   
)           

  

from Lemma A5. Hence, by using the properties of the multivariate normal distribution, 

we have    
      

√  ̂ 
    

  (           

 ), or equivalently,    
      

√  ̂ 
   

√(
 
 
)

 
  (      

 ).   

Corollary A2:    
‖ ‖  

    
      

√  ̂ 
   

√(
 
 
)

 
         and     

‖ ‖  
    
      

√  ̂ 
   

√(
 
 
)

 
       . 

Proof: The proof follows immediately from applying the result in Lemma A3.   

Theorem A3: Regardless of the truth or falsity of      

   
‖ ‖  

    
      

√  ̂ 
   

√(
 
 
)

 
         and     

‖ ‖  
    
      

√  ̂ 
   

√(
 
 
)

 
       .  

Proof: 

 Here also we only present the proof for  ̂ 
   

 as the steps remain similar for  ̂ 
   

. 

Assuming   , the proof is the same as for Corollary A2. To prove assuming the falsity of 

  , we proceed as follows.  
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Again, recall from Eq. A6 that  ̂ 
   

 is a linear combination of independent ran-

dom variables  ̂  

   
,  ̂  

   
, …,  ̂  

   
 where  ̂  

   
 

 

 
∑         

   
  

    with     ̂  

   
  

   

   
   and      √  ̂  

   
       

    , since         is a bounded function. Now by 

applying the strong central limit theorem on the sequence of iid random variables 

{        
   

 }
   

 
, we have, for any     , √ ( ̂  

   
    

   
)

 
  (       

 ) as    . 

Thus, as    , √ ( ̂  
    

)
 
  (      ) where    

     

   
    

   
      

   
   and 

     
 is a diagonal matrix as defined in the proof for Lemma A5. Notice that √  ̂ 

   
 can 

be represented as  

√ ( ̂ 
   

   
   

) =   
 √ ( ̂  

    
) with  [√ ( ̂ 

   
   

   
)]    and  

   (√ ( ̂ 
   

   
   

))       

  from Eq. A9. Hence, by using the properties of the multi-

variate normal distribution, we have    
      

√ ( ̂ 
   

   
   

)
 
  (   

 ̂ 
   

 ).  (A10) 

 Now by applying results in Lemma A4-ii and Lemma A6, we have 

   
‖ ‖  

    
      

√  ̂ 
    

  (  (
 
 
)), or equivalently,    

‖ ‖  
    
      

√  ̂ 
   

√(
 
 
)

 
       .   

 In the following theorem we state a necessary and sufficient condition for the 

falsity of    as defined in Eq. A1. 

Theorem A4:   , as stated in Eq. A1, is false if and only if     
    

 {{|  
   

|}
   

 
  

{|  
   

|}
   

 
}    . 

 

Proof:  

Let us first assume that    is false, then by the continuity of the characteris-

tic function, there exists a region      such that either 
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  or     

   
    

   
  (A11) 

for some     and all    . Now assume that    

   
    

   
 for some     and all    . 

Then it follows from Eq. A2 that   
   

       
   

   for some j, all    . Since   
   

 

and   
   

 are continuous and bounded function in  , we must either have   

   
    

 {|  
   

|}
   

 
   or      

    
 {|  

   
|}

   

 
   .  

Let us now assume that    
    

 {{|  
   

|}
   

 
  {|  

   
|}

   

 
}    . Specifically, sup-

pose    
    

 {|  
   

|}
   

 
   which implies that   

   
   for at least one j. Furthermore, as 

  
   

 is a continuous and bounded function in  , there must exist a region      such 

that   
   

   for all    . This necessitates that we must also have    

   
    

   
 for some 

    , all    , thereby proving the falsity of   . The proof is therefore complete.   

The Test Statistic 

The basic idea of the construction of our test is based on the results obtained in 

Theorems 3-4. First, recall from Lemma A4 that, for any     , the statistics 

{{ ̂ 
   

}
   

 
  { ̂ 

   
}
   

 
} have means {{  

   
}
   

 
  {  

   
}
   

 
}, respectively, that vanish for 

large values of ‖ ‖ when    is false. These parameters are exactly equal to zero for all 

     when    holds true. Thus, the asymptotic distribution of these statistics are cen-

tered away from zero for small values of ‖ ‖ when    is false. This implies that, for 

small ‖ ‖, we expect their observed absolute values to be significantly larger from what 

are expected under the standard normal distribution (see Remark 2 at the end). We use 

this basic rationale, together with the result in Theorem A4, to define our test statistic as 

follows. 
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Let   be a grid containing   vectors in    notated as            . Construction 

of a suitable grid is explained at end of this appendix. Using  , we define a collection of 

statistics { { ̂ 
   

}
   

 
  { ̂ 

   
}
   

 
 }

    

    

.         (A12) 

Notice that this collection consists of  ̃      random variables for    . Notice that 

for    , we have  ̃     (see  Remark 1). Let (  
   

   
   

     
   

           ) de-

note   independent observations from populations                    , respectively. For 

simplicity of exposition, we assume equal sample sizes               .  Our ECF 

test statistic is then defined as    
√ 

√(
 
 
)

 [   
   

 {{| ̂ 
   

|}
   

 
  {| ̂ 

   
|}

   

 
}] . 

We notice from Theorems 2-3 that the statistics in collection A12 are all margin-

ally asymptotically normal and, especially, are standard normal for large ‖ ‖. It can be 

shown that these statistics are asymptotically correlated. However, in order to obtain a 

simple approximation to the distribution   , we proceed as if they are mutually asymptot-

ically independent. Under this assumption, an asymptotic         rejection region giv-

en as 

     {(  
   

   
   

     
   

           )     |     ̃ |}, (A13) 

where the significance level   is the probability of observing at least one random number 

greater, in absolute value, than |     ̃ | out of  ̃ numbers generated randomly under 

      , and   (   ̃)        , where      is the standard normal distribution func-

tion and   depends on both         ̃. Using the definition of   above, we can obtain the 

critical value |     ̃ | as follows. We notice that            ̃, which yields 

  
       

 

 ̃

 
. So we can compute   for a given   and  ̃, and then  (   ̃ )         . 
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Alternatively, the p-value of the test can be computed as              

         ̃.   

The simulation study in Section 5.1.3 show that the ECF test given by A12 has 

correct level. We now show the consistency of our test as follows. 

Theorem A5: The test defined in A12 is consistent against any alternative             

        , for some      

Proof:  

 We first note from Theorem A4 that    
    

 {{|  
   

|}
   

 
  {|  

   
|}

   

 
}    . In 

particular, because   
   

 and   
   

 are continuous and bounded function of  , there exists a 

region      such that either   
   

   or   
   

   for some   and all    . We as-

sume that the grid   is constructed such that        { }. Furthermore, we suppose 

that   is such that either   
   

   or   
   

   for some   and all     . Let us also de-

fine  

|   
    

|     
    

 {|  
   

|}
   

 
 and | 

  
    

|     
    

 {|  
   

|}
   

 
, where the maxima occur re-

spectively at some    and     contained in   , for some    and   . From here on we as-

sume that |   
    

|  | 
  
    

|.  

Thus, we also have a statistic | ̂  
    

| in the collection A12 such that  

| ̂  
    

|  
  
→ |   

    
| and (   

√ 

√(
 
 
)

| ̂  
    

| )
  
→  . Also, by Eq. A10, 

√ 

√(
 
 
)

 ̂  
     

  (   
    

  
 

  
    

 )     

 
  (   

    
  

 
  
    

 ). Therefore, as      

    
(   | (   ̃)|)     

(
√ 

√(
 
 
)

 ̂  
    

      ̃ )     
(

√ 

√(
 
 
)

 ̂  
    

       ̃ ) 
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(

√ 

√(
 
 
)

 ̂
  
    

  
  
    

 

 
 

  
    

    (   ̃)  
√  

  
    

√(
 
 
) 

 
  
    

 
)   

   
(

√ 

√(
 
 
)

 ̂
  
    

  
  
    

 

 
 

  
    

     (   ̃)  
√  

  
    

√(
 
 
) 

 
  
    

 
)  

     (    
      

 (   ̃)  
√  

  
    

√(
 
 
) 

 
  
    

 
)   (    

      
  (   ̃)  

√  
  
    

√(
 
 
) 

 
  
    

 
) 

                =1 if    
    

  , and, 

                    =1 if    
    

  .    

We now state and prove the following theorem that we use in our concluding re-

mark to further explain the construction our ECF test.  

Theorem A6: Let   denote the class of all distribution functions, then  

   
      

                 
      

               , where the random vector X has distri-

bution function       . 

Proof:  

Seaman et al. (1992) have shown that for any real-valued, measurable and essentially 

bounded function f,    
 

                  , where           and   

       . Hence the proof follows by noticing that         and        also belong to the 

class of real-valued, measurable and essentially bounded functions with            

            and                       .   

Remark 2: The critical value  (   ̃) in our ECF test A13 is determined based on the 

standard normal distribution, the asymptotic distribution of  
√  ̂ 

   

√(
 
 
)

 for large t, regardless 

of the truth or falsity of    . However, under   , the asymptotic distribution is not stand-



 115  

 

ard normal, rather, it is  (      

 ). From Theorem A6 , we notice that the variance     

  

has an upper bound of 2. For many continuous distributions this variance remains either 

close to 1 or less than 1 when for small values of ‖ ‖. Therefore, we choose N(0,1) as an 

approximation to the asymptotic distribution of  
√  ̂ 

   

√(
 
 
)

 for small ‖ ‖. This approximation 

works for 
√  ̂ 

   

√(
 
 
)

 as well. Our simulation results in Section 5.1.3 show that the rejection 

region A13 still yields a level-alpha test. Furthermore, the test is omnibus, i.e. remains 

consistent against any alternative as shown in Theorem A5 and enjoys good statistical 

power as shown in Section 5.1.3. 

Construction of the Grid 

Here we explain the construction of a p-dimensional grid of vectors   such that ‖ ‖ re-

mains sufficiently small. Let          ⏞        
 

  be the grid, where  

                , and the scalars    are such that           ,        

         . Notice that   contains      vectors in   . Furthermore, all these vec-

tors lie within a p-dimensional sphere of radius   √   
  , i.e. ‖ ‖         . A 

suitable value of   , for which ‖ ‖ does not grow too large, can be chosen by plotting 

the real and imaginary parts of the k  ECFs as a function of ‖ ‖. That is, we choose    so 

that all the k estimated real and imaginary parts are substantially small beyond ‖ ‖  

√   
 . Although vectors in   lie in the positive orthant, the grid can be expanded in oth-

er orthants as well. We choose the positive orthant because (i) the characteristic function 

is Hermitian, and (ii) our simulations show that the test still enjoys good level and power 

properties with this choice. 
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