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Abstract

Industrial chemical plants are typically large-scale systems with a number of pro-

cessing units or subsystems, which are connected together via material, energy and

information flows. The decentralized control frameworks which in general gives sub-

optimal control performance is normally used for the control of these large-scale chem-

ical processes. With the increasing scales of industrial processes and the interactions

between subsystems, it is more challenging to design control systems to achieve the

optimal plant operation, as well as to satisfy the increasing requirements on process

safety and environmental regulations. In recent years, the distributed framework

has been recognized as a promising framework for the control of large-scale systems

with interactions. It is shown that the distributed framework has the potential to

achieve the centralized framework performance, while maintaining the flexibility of

the decentralized control scheme.

This thesis focuses on the development of coordinated distributed state estimation

schemes. Specially, we propose coordination algorithms for distributed moving hori-

zon state estimators (MHEs) for discrete-time linear systems. In particular, the class

of linear system is composed of several subsystems that interact with each other via

their states. Two coordination algorithms are studied: the price-driven coordination

algorithm and the prediction-driven coordination algorithm. In the proposed coordi-

nated distributed MHE (CDMHE) schemes, each subsystem is associated with a local

MHE. In the design of a local MHE, a coordinating term is incorporated into its cost

function which is determined by an upper-layer coordinator. It is shown that both

CDMHE schemes are able to achieve the estimation performance of the corresponding

centralized design if convergence at each sampling time is ensured.
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Chapter 1

Introduction

1.1 Motivation

Chemical plants are typically large-scale systems with a number of processing units

or subsystems, which are connected together via material, energy and information

flows. The increasing requirements in process safety and environmental regulations,

as well as the pursuit of profits and productivity have led to more and more compli-

cated and integrated process designs. Decentralized control frameworks are normally

used for the control of these large-scale chemical processes. In the decentralized con-

trol frameworks, interactions between subsystems are often ignored or treated in very

conservative ways which result in reduced closed-loop performance or even instability.

Although centralized control frameworks may give improved (or the optimal) perfor-

mance, they are not favorable in industries due to computational, organizational and

fault tolerance considerations (Bakule, 2008; Christofides et al., 2013).

In the past decade, distributed model predictive control (DMPC) has been recog-

nized as a promising scheme for the control of large-scale systems. Extensive results

have been developed for DMPC (e.g.Stewart et al., 2011, Liu et al., 2009, Sun and

El-Farra, 2008, Tippett and Bao, 2013, Al-Gherwi et al., 2013, Cheng et al., 2007).

A common feature of these DMPC schemes is that the local controllers communicate

with each other directly or via a coordinator to exchange information and coordi-

nate their control actions. It is shown that the DMPC has the potential to achieve

the centralized control performance, while maintains the flexibility of a decentralized

control scheme (Christofides et al., 2013). Reviews of the various existing DMPC

results can be found in Christofides et al., 2013, Scattolini, 2009. Pertaining to this
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work is the coordinated DMPC (CDMPC) framework. The CDMPC framework has

a two-layer hierarchical structure. The lower layer local model predictive controllers

communicate with an upper-layer coordinator to handle the interactions between the

subsystems. In Cheng et al., 2007, a price-driven coordination algorithm was proposed

for the optimal control of large-scale linear systems in which a coordinator is used

to adjust local controller’s behaviors by a price vector which approximates the La-

grange multiplier of the corresponding centralized control problem. In Marcos., 2011,

a prediction-driven coordination technique was developed. In this prediction-driven

coordination, interactions of subsystems are calculated by the coordinator and sent to

local systems. In Mohseni., 2013, the stability and convergence properties of different

coordination algorithms were analyzed. While there are extensive results on DMPC,

relatively less attention has been given to distributed state estimation within process

control.

Regarding distributed state estimation, there are results on decentralized or dis-

tributed state estimation which are mainly within two classes: distributed Kalman fil-

tering and distributed moving horizon estimation. The results of distributed Kalman

filtering are primarily developed for linear systems in sensor networks (e.g., Khan and

Moura, 2008, Mutambara and Durrant-Whyte, 2000, Stanković et al., 2009). One lim-

itation of distributed Kalman filtering schemes is that they cannot take into account

constraints. Distributed moving horizon estimation framework (DMHE) has been

developed for linear systems (Farina et al., 2010) and then nonlinear systems (Farina

et al., 2012, Zhang and Liu, 2013). These DMHE schemes can handle constraints in

a systematic way. However, in the design of the above distributed state estimation

schemes, no consideration is given to the existing (decentralized) implementation of

control/estimation schemes in a process. If a decentralized state estimation scheme

has already been implemented in a process, the above distributed schemes essentially

require a completely redesign of the existing implementation which means high capital

investment.

Inspired by the above considerations, in this thesis, we focus on developing co-

ordinated algorithms for distributed moving horizon state estimators (MHEs) for a

class of discrete-time linear systems. If a decentralized MHE scheme is already im-

plemented, the proposed coordination algorithm requires minor modifications to the

2



decentralized scheme and provides significantly improved performance.

1.2 Different Estimation Frameworks

This section provides a brief description of the three state estimation frameworks:

the centralized, decentralized and distributed state estimation frameworks.

1.2.1 The Centralized State Estimation Framework

In the centralized state estimation framework, the entire plant is modeled as a whole

and the entire plant state is estimated using a centralized observer or estimator, as

shown in Figure 1.1. The output measurements of different operating units are all

sent to the centralized estimator.

Figure 1.1: A schematic of the centralized state estimation framework

The centralized framework takes into account the interactions between subsys-

tems, and it can give the best possible estimation result. However, with the increas-

ing of the system scale, the computation burden increases significantly. Also, the

centralized framework lacks of flexibility and has poor fault tolerance.

1.2.2 The Decentralized State Estimation Framework

In the decentralized state estimation framework, an observer or estimator is designed

for each subsystem and is designed based on the corresponding subsystem model.

Figure 1.2 shows a schematic of a decentralized design with N subsystems. Since each

subsystem has its own estimator, the decentralized framework is easy to implement;

however, the interactions between subsystems are typically considered in conservative

ways, which lead to suboptimal results or even loss of stability.

3



Figure 1.2: A schematic of the decentralized state estimation framework

1.2.3 The Distributed State Estimation Framework

The above concerns for the centralized and decentralized state estimation motivate

the development of distributed state estimation schemes. As mentioned in Section 1.1,

there are results on distributed state estimation which are mainly within two classes:

distributed Kalman filtering and distributed moving horizon estimation. Distributed

moving horizon estimation framework (DMHE) has been developed for linear sys-

tem (Farina et al., 2010) and then nonlinear systems (Farina et al., 2012, Zhang and

Liu, 2013). Although existing DMHE schemes vary in the observer formulation and

communication structures, the common characteristic they have is that subsystems

exchange information with each other. From the information exchange, local estima-

tors get the state estimates of other subsystems and use these information to improve

local estimation performance. Figure 1.3 shows a schematic of a distributed state

estimation scheme with N estimators.

Figure 1.3: A schematic of the distributed state estimation framework
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1.3 Thesis Outline and Contributions

Inspired by the coordinated distributed MPC framework in Cheng et al., 2007; Mar-

cos., 2011; Mohseni., 2013, this thesis focuses on the development of coordinated

distributed state estimation algorithms. Specifically, the distributed state estimation

schemes will be developed in the context of moving horizon estimation. The outline

of the thesis and the contributions of each chapter are described below.

Chapter 2 provides a description of the notations, terms as well as the system

model and the centralized and decentralized MHE formulations used in this thesis. In

Chapter 3, a price-driven coordination algorithm is derived for the distributed moving

horizon estimation, where a local MHE estimates all the process states, noises and

interactions. It will be shown that the standard price-driven coordination method

cannot be used for state estimation purpose since it requires measurements of the full

state vector. A improved price-driven CDMHE is proposed to address the issue of

the standard version. Firstly, the improved price-driven CDMHE is proposed with-

out considering inequality constraints. Subsequently, a method to handle inequality

constraints by dividing the inequality constraints into active constraints and inac-

tive constraints is described. A chemical process example is given to illustrate the

effectiveness of the proposed price-driven scheme. In Chapter 4, a prediction-driven

CDMHE is presented first without considering inequality constraints. Then a method

to handle inequality constraints by using barrier functions is proposed. Two chemi-

cal process examples are given to illustrate the applicability and effectiveness of the

proposed scheme. In Chapter 5, the performance of the prediction-driven CDMHE

is further investigated under different conditions, including triggered communication,

communication failure and premature termination. The last chapter, Chapter 6 sum-

marizes the results of this thesis and discusses potential future research directions.

The contributions of this thesis can be summarized as:

• an analysis of the limitation of the standard price-driven coordination algorithm

in distributed state estimation;

• a new price-driven coordination algorithm for distributed state estimation;

• a prediction-driven CDMHE with a set of sufficient conditions that ensure the

5



convergence to the centralized MHE;

• methods to handle inequality constraints in CDMHE schemes;

• examples with extensive simulations illustrating the detailed implementations

and demonstrating the performance of the proposed approaches;

• a detailed investigation of the performance of the proposed prediction-driven

CDMHE under different conditions.
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Chapter 2

Preliminaries

2.1 Terms and Definitions

Some of the key terms used throughout the thesis are explained in this section.

In this thesis, the plant or whole system indicates the entire system, while

subsystem means the distributed units that have their own estimators. We use

local to emphasize the object belongs to subsystems, for example, local state, local

estimator.

MHE stands for moving horizon estimation/estimator. The term DMHE de-

notes distributed MHE, and CDMHE refers to coordinated distributed MHE in

which DMHEs are coordinated by a coordinator. Price-driven CDMHE and

prediction-driven CDMHE refer to the CDMHE network obtained by price-driven

coordination method and prediction-driven coordination method, respectively. In the

context of CDMHE, the communication stands for a two-way information ex-

change between local MHEs and the coordinator. Iteration also describes the pro-

cess of the information exchange and indicates that the information exchange progress

is an iterative process.

Centralized MHE means the whole system is estimated by one estimator. Cen-

tralized performance or optimal performance both refer to the optimal perfor-

mance of the centralized MHE. A local estimator refers to the local MHE in a

subsystem either in decentralized or distributed estimation network.
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2.2 System Description

In this work, the entire plant is assume to be observable and will be described by the

following linear, time-invariant, discrete-time system:

x(k + 1) = Ax(k) + w(k); (2.1a)

y(k) = Cx(k) + v(k) (2.1b)

where x(k) ∈ Rn is the state vector and y(k) ∈ Rq is the output vector, w and v

represent system and measurement noise terms which have zero means. It is con-

sidered that the entire system can be divided into N interconnected subsystems,

each with ni states and qi outputs, for i = 1, . . . , N . This implies that x(k) =[
x1(k)T , x2(k)T , · · · , xN(k)T

]T
, y(k) =

[
y1(k)T , y2(k)T , · · · , yN(k)T

]T
, where

xi ∈ Rni and yi ∈ Rqi are the state and output vectors of the ith subsystem, respec-

tively. The system matrix A and output matrix C can be partitioned in the following

block-wise fashion:

A =


A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN

 , (2.2)

C =


C11

C22

. . .

CNN

 (2.3)

where Aij ∈ Rni×nj , Cii ∈ Rni×qi , i, j = 1, . . . , N . The ith subsystem can be

represented by the state space model:

xi(k + 1) = Aiixi(k) + wi(k) +
∑
i6=j

Aijxj(k) (2.4a)

yi(k) = Ciixi(k) + vi(k) (2.4b)

where the part, Aiixi(k)+wi(k) in equation (2.4a) denotes the local dynamics of sub-

system i. Aijxj(k), j 6= i represents the coupling between subsystem i and subsystem

j.
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2.3 The Centralized MHE Formulation

For the system model defined in equation (2.1), we consider a centralized MHE for-

mulated as the following quadratic programming(QP) form:

min
X̃,W̃
J =

1

2

k∑
j=k−Hp+1

v̂(j)′R−1v̂(j) +
1

2

k−1∑
p=k−Hp+1

ŵ(p)′Q−1ŵ(p);

=
1

2

(
k∑

j=k−Hp+1

(y(j)− Cx̂)TR−1(y(j)− Cx̂) +
k−1∑

p=k−Hp+1

(ŵ(p)′Q−1ŵ(p))

)
;

(2.5a)

s.t.x̂(j + 1) = Ax̂(j) + ŵ(j) (2.5b)

ŷ(j) = Cx̂(j) + v̂(j) (2.5c)

x̂(j) ∈ X, ŵ(p) ∈W

j = k −Hp+ 1, ..., k; p = k −Hp+ 1, ..., k − 1
(2.5d)

where Hp is the estimation horizon. X̃ = [x̂(k − Hp + 1)T , · · · , x̂(k)T ]T , W̃ =

[ŵ(k − Hp + 1)T , · · · , ŵ(k − 1)T ]T are the estimated state and estimated process

noise respectively, X and W are constraints on x̂ and ŵ respectively, Q and R are

assumed to be block diagonal weighting matrices and symmetric positive definite.

Problem (2.5) can be also written in a compact form as follows:

min
X̂(k),Ŵ (k)

J =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C
Q−1

] [
X̂(k)

Ŵ (k)

]
+
[
−Y TR−1C 0

] [X̂(k)

Ŵ (k)

]
=

1

2
Z(k)TΥZ(k) + ΦTZ(k)

(2.6a)

s.t. GeqZ(k) = 0

GineqZ(k) ≤ gineq
(2.6b)

where Z(k) = [X̂(k)T , Ŵ (k)T ]T , X̂(k) = [X̂1(k)T , X̂2(k)T , · · · , X̂N(k)T ]T , Ŵ (k) =

[Ŵ1(k)T , Ŵ2(k)T , · · · , ŴN(k)T ]T , Y = [Y T
1 , Y

T
2 , · · · , Y T

N ]T with

X̂i(k) = [x̂i(k −Hp+ 1)T , · · · , x̂i(k)T ]T , (2.7)

Ŵi = [ŵi(k −Hp+ 1)T , · · · , ŵi(k − 1)T ]T . (2.8)

Yi = [yi(k −Hp + 1)T , · · · , yi(k)T ]T (2.9)

Note that the formulations of X̂(k) and Ŵ (k) are different from X̃ and W̃ in (2.5)

due to the organization of the subsystem state and process noise.
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In (2.6), the definitions of C and Cii are as follows:

C =


C11

C22

. . .

CNN

 , Cii =


Cii

Cii

. . .

Cii


Hp blocks

(2.10)

R and Q are weighting matrix with the following definitions:

R =


R1

R2

. . .

RN

 , Q =


Q1

Q2

. . .

QN

 (2.11)

with

Qi =


Qi

Qi

. . .

Qi


Hp blocks

, Ri =


Ri

Ri

. . .

Ri


(Hp−1) blocks

(2.12)

In equality equation (2.6b), Geq = [GA, GB], Geq is a (Hp − 1)n × (2Hp − 1)n

matrix, where n is the number of the states in the whole system. GA and GB are in

the following form:

GA =


GA11 GA12 · · · GA1N

GA21 GA22 · · · GA2N

...
...

. . .
...

GAN1
GAN2

· · · GANN

 , GB =


GB11 GB12 · · · GB1N

GB21 GB22 · · · GB2N

...
...

. . .
...

GBN1
GBN2

· · · GBNN

 (2.13)

with GAii
and GAij

, i 6= j in following forms:

GAii
=


−Aii Ini

−Aii Ini

. . . . . .

−Aii Ini


(Hp−1)ni×Hpni

(2.14)

GAij
=


−Aij 0

−Aij 0
. . .

...
−Aij 0


(Hp−1)ni×Hpni

(2.15)
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where GBii
and GBij

, i 6= j are in following forms:

GBii
=


−Ini

−Ini

. . .

−Ini


(Hp−1)ni×(Hp−1)ni

(2.16)

GBij
= 0(Hp−1)ni×(Hp−1)ni

(2.17)

where Gineq and gineq in (2.6b) are defined as the following forms:

Gineq =


IHpn 0
−IHpn 0

0 I(Hp−1)n
0 −I(Hp−1)n

 , gineq =


Xmax

−Xmin

Wmax

−Wmin

 (2.18)

with Xmax =
[
XT

1max
, . . . , XT

Nmax

]T
, Ximax = [xT

imax
, . . . , xT

imax
]THpni

, Xmin = [XT
1min

, . . . , XT
Nmin

]T ,

Ximin = [xT
imin

, . . . , xT
imin

]THpni
, Wmin = [W T

1min
, . . . , W T

Nmin
]T , Wimin = [wT

imin
, . . . , wT

imin
]T(Hp−1)ni

,

where n is the total number of states, ni is the state number of subsystem i, qi is the

output measurement number of subsystem i, I means identity matrix.

2.4 The Decentralized MHE Formulation

For the decentralized MHE, the interactions are not taken into account. For subsys-

tem i, we consider a local MHE is formulated as the following optimization problem:

min
x̂i,ŵi

Ji =
1

2

k∑
j=k−Hp+1

v̂i(j)
′R−1i v̂i(j) +

1

2

k−1∑
p=k−Hp+1

ŵi(p)
′Q−1i ŵi(p);

=
1

2

 k∑
j=k−Hp+1

(yi(j)−Ciix̂i(j))
TR−1(yi(j)−Ciix̂i(j)) +

k−1∑
p=k−Hp+1

(ŵi(p)
′Q−1i ŵi(p))

 ;

(2.19a)

s.t. x̂i(j + 1) = Aiix̂i(j) + ŵi(j) (2.19b)

ŷi(j) = Ciix̂i(j) + v̂i(j) (2.19c)

x̂i(j) ∈ Xi, ŵi(p) ∈Wi

j = k −Hp+ 1, ..., k; p = k −Hp+ 1, ..., k − 1
(2.19d)

where x̂i, ŵi, v̂i are the estimated state, estimated process noise and estimated mea-

surement noise for subsystem i, respectively, Ri and Qi are weighting matrices, yi is

the provided measurement of subsystem i.
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The problem (2.19) can be rearranged in the compact form as follows:

min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
=

1

2
Zi(k)TΥiZi(k) + ΦT

i Zi(k)

(2.20a)

s.t. Geq
i Zi(k) = 0

Gineq
i Zi(k) ≤ gineqi

(2.20b)

where Geq
i = [GAii

, GBii
] , GAii

and GBii
are defined in (2.14) and (2.16), respectively.

Gineq
i and gineqi are defined as follows:

Gineq
i =


IHpni

0
−IHpni

0
0 I(Hp−1)ni

0 I(Hp−1)ni

 , gineqi =


Ximax

−Ximin

Wimax

−Wimin

 (2.21)

where Ximax , Ximin
, Wimax , Wimin

are defined the same as in (2.18), ni is the state

number of subsystem i, I means identity matrix.

For the decentralized MHE formulation, the interactions that exists between sub-

systems are not considered. Therefore the estimated results that obtained from de-

centralized MHE formulation are always suboptimal.

2.5 Existence of Solution to the MHE

In Section 2.3 and Section 2.4, the arrival cost is not considered in the MHE formu-

lations. In this section, we will focus on the centralized MHE formulation and show

that if the estimation horizon satisfies Hp ≥ n, then the MHE optimization problem

is well-posed in the sense that it has a unique (optimal) solution each sampling time.

In order to simplify the analysis, let us focus on a specific case first. Let us

choose the estimation horizon Hp = 3, the number of states n = 2, and number of

measurements p = 1. Within the estimation horizon, the estimated states of (2.1)

satisfy the following recursive equations:
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x̂(0) =
[
I 0 0

]  x̂(0)
ŵ(0)
ŵ(1)


x̂(1) =

[
A I 0

]  x̂(0)
ŵ(0)
ŵ(1)


x̂(2) =

[
A2 A I

]  x̂(0)
ŵ(0)
ŵ(1)


(2.22)

Based on these equations and the objective function in (2.5), it can be obtained

that:

min
x̂(0),ŵ(0),ŵ(1)

J =
1

2
{

2∑
j=0

‖y(j)− Cx̂(j)‖2R−1 +
1∑

q=0

‖ŵ(q)‖2Q−1};

=
1

2
{x̂(0)TCTR−1Cx̂(0) + x̂(1)TCTR−1Cx̂(1) + x̂(2)TCTR−1Cx̂(2)}

+
1

2
{ŵ(0)TQ−1ŵ(0) + ŵ(1)TQ−1ŵ(1)}

+
1

2
{y(0)TR−1y(0) + y(1)TR−1y(1) + y(1)TR−1y(1)}

− {y(0)TR−1Cx̂(0) + y(1)TR−1Cx̂(1) + y(2)TR−1Cx̂(2)}
(2.23a)

s.t. x̂(0) ∈ X, ŵ(0), ŵ(1) ∈W (2.23b)

where X and W are constraints on x̂ and ŵ, respectively.

Substituting equation (2.22) into equation (2.23) and denoting r = CTR−1C,

l = R−1C, z = [x̂(0)T , ŵ(0)T , ŵ(1)T ]T and taking into account that 1
2
{y(0)TR−1y(0)+

y(1)TR−1y(1) + y(1)TR−1y(1)} is a constant, the above optimization problem can be

rewritten as follows:

min
z
J =

1

2
{zT{

I0
0

 r [I 0 0
]

+

AT

I
0

 r [A I 0
]

+

(A2)T

AT

I

 r [A2 A I
]
}z}

− {y(0)T l′
[
I 0 0

]
+ y(1)T l′

[
A I 0

]
+ y(2)T r′

[
A2 A I

]
}z

+
1

2
zT

0 0 0
0 Q−1 0
0 0 Q−1

 z
=

1

2
zTΥz − Φz

(2.24a)
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s.t. Gineq
exp z ≤ gineqexp (2.24b)

where in equation (2.24), Υ, Φ are as follows:

Υ =

r + AT rA+ (A2)T rA2 AT r + (A2)T rA (A2)T r
rA+ AT rA2 r + AT rA+Q−1 AT r

rA2 rA r +Q−1


Φ = {y(0)T l

[
I 0 0

]
+ y(1)T l

[
A I 0

]
+ y(2)T l

[
A2 A I

]
}

(2.25)

where Gineq
exp and gineqexp have the following definitions:

Gineq
exp =


In 0 0
−In 0 0

0 Iq 0
0 −Iq 0
0 0 Iq
0 0 −Iq

 , gineqexp =


xmax

−xmin

wmax

−wmin

wmax

−wmin

 (2.26)

where n is the number of states, q is the number of measurements, xmax, xmin, wmax, wmin

are upper and lower bounds on x̂ and ŵ, respectively.

Since ŵ(0)T [rA+AT rA2]x̂(0) is a scalar, the transpose operation does not change

the value. Therefore, ŵ(0)T [rA+AT rA2]x̂(0) = x̂(0)T [AT r+(A2)T rA]ŵ(0). Therefore

the equation (2.24) can be rewritten as the following form:

min
z
J =

1

2
zTΓz − Φz

s.t. Gineq
exp z ≤ gineqexp

(2.27)

where

Γ =

r + AT rA+ (A2)T rA2 0 0
2(rA+ AT rA2) r + AT rA+Q−1 0

2rA2 2rA r +Q−1

 (2.28)

The Karush-Kuhn-Tucker (KKT) conditions for a regular point z∗ to be an min-

imum in the quadratic problem (2.27) are:

Γz∗ − Φ +Gineq
exp

T
µ∗ = 0 (2.29a)

Gineq
exp z

∗ − gineqexp ≤ 0 (2.29b)

µ∗T (Gineq
exp z

∗ − gineqexp ) = 0 (2.29c)

µ∗ ≥ 0 (2.29d)
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where z∗ is the optimal solution, µ∗ is the Lagrange multiplier.

In order to get unique solution of equation (2.29), the invertibility of matrix Γ is

needed; that is det(Γ) 6= 0.

Lemma 2.5.1. (Silvester, 2000) Suppose A, B, C and D are matrices of dimension

n× n, n×m, m× n, and m×m, resepctively. Then

det{
[
A 0
C D

]
} = det(A)× det(D) = det{

[
A B
0 D

]
} (2.30)

Based on the above lemma, the determinant of Γ is:

det(Γ) = det(r + AT rA+ (A2)T rA2)det(r + AT rA+Q−1)det(r +Q−1) (2.31)

Because Q−1 is positive definite, r and AT rA are both semi-positive definite, the

determinant of the last two matrices are not zero. We just need to show that det(r+

AT rA+ (A2)T rA2) 6= 0. Let us use P to represent this matrix.

P = r + AT rA+ (A2)T rA2

=
[
CT ATCT

] [R−1
R−1

] [
C
CA

]
+ (A2)TCTR−1CA2

= oT
[
R−1

R−1

]
o+ (A2)TCTR−1CA2

(2.32)

where o =

[
C
CA

]
, is the observability matrix of the system.

Lemma 2.5.2. (Mirsky, 2012) For a real matrix A, rank(ATA) = rank(AAT ) =

rank(A) = rank(AT ).

Matrix

[
R−1

R−1

]
is the aggregated form of weighting matrix R−1. Since R−1

is a full rank and positive symmetric matrix, and usually be picked as a constant

multiple identity matrix, we can treat

[
R−1

R−1

]
as identity matrix. Then we only

need to consider the rank of oTo. Since system is observable, rank(o) = 2, thus

rank(oTo) = 2 which is full rank. Therefore, the determinant of P is not zero, thus P

is invertible. This implies that the MHE optimization problem has a unique solution.

Now, let us consider the general case with system matricesA with dimensions n×n,

C with dimension m × n, and moving horizon Hp. Following similar procedures, it

can be obtained that the corresponding P matrix can be obtained as follows:

15



P = r + AT rA+ (A2)T rA2 + · · ·+ (AHp−1)T rAHp−1 (2.33)

When estimation horizon Hp ≥ n, P can be rewritten as:

P =
[
CT ATCT · · · (A(n−1))TCT

]

R−1

R−1

. . .

R−1




C
CA

...
CA(n−1)


+

Hp−1∑
k=n

(Ak)TCTR−1C(Ak)

=ϑT


R−1

R−1

. . .

R−1


nm∗nm

ϑ+

Hp−1∑
k=n

(Ak)TCTR−1C(Ak)

(2.34)

where ϑ =


C
CA

...
CA(n−1)

, is the observability matrix of the system, rank(ϑ) = n, which

implies that determinant of P is not 0. Thus determinant of Γ is not zero and Γ is an

invertible matrix. This means that a unique solution exists for the MHE formulation

used in Section 2.3 and Section 2.4.

In summary, for an observable system consists of n states, if the window size of

the horizon Hp ≥ n, the MHE formulation used in in Section 2.3 and Section 2.4 has

the unique solution.

2.6 Conclusions

In this chapter, some terms and definitions used in this thesis are introduced, the

formulations of the centralized MHE and the decentralized MHE are given. It is also

shown that such MHE formulation has a unique solution when the estimation horizon

is greater than or equal to the number of states.

16



Chapter 3

Price-driven Coordinated
Distributed MHE

In this chapter, a coordination method directly adopted from price-driven CDMPC

(Cheng et al., 2007) is first developed for distributed MHE. We then show that this

conventional price-driven coordination algorithm cannot be used for state estimation

since it requires measurement of the entire system state. Subsequently, an improved

price-driven CDMHE is proposed to address this issue. The convergence analysis

of the improved price-driven CDMHE under both unconstrained and constrained

conditions are given.

3.1 Price-driven Coordination Algorithm

In the proposed price-driven CDMHE, we estimate not only the states x̂, process

noise ŵ but also the interaction ĥ. The proposed price-driven CDMHE has a two-layer

hierarchical structure, in which the local subsystems/estimators are in the lower layer

and the coordinator is in the upper layer. We first focus on the unconstrained case.

The objective function of the centralized MHE can be rewritten in the summation of

N subsystems as follows :

min
X̂i(k),Ŵi(k)

J =
N∑
i=1

{1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
}

(3.1a)

s.t. GAiiX̂i(k) +GBiiŴi(k) = Ĥi(k) (3.1b)

17



Ĥi(k) =

N∑
j=1,j 6=i

−GAijX̂j(k) (3.1c)

The Lagrange function of the problem (3.1) is written in the following form:

L =

N∑
i=1

{1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
}

+
N∑
i=1

µTi (GAiiX̂i(k) +GBiiŴi(k)− Ĥi(k)) +
N∑
i=1

λTi (Ĥi(k) +
N∑

j=1,j 6=i

GAijX̂j(k))

=

N∑
i=1

Fi(X̂i, Ŵi) +

N∑
i=1

µTi (GAiiX̂i +GBiiŴi − Ĥi) +

N∑
i=1

λTi (Ĥi +

N∑
j=1,j 6=i

GAijX̂j)

(3.2)

where the time instant index k is omitted in X̂i(k), Ŵi(k) and Ĥi(k) to simplify the

notation. µi and λi are Lagrange multiplier vectors which have been introduced to

take into account the equality constraints.

Since the equality constraints are from the system model, we assume the equality

constraints are independent from each other. The objective function Fi is a quadratic

function of X̂i and Ŵi, so it is continuous differentiable. Therefore, the optimal

solution must satisfy the following stationary conditions of the Lagrangian, i.e. i = 1

to N

∂L
∂X̂i

=
∂Fi

∂X̂i

+GT
Aii
µi +

N∑
j=1,j 6=i

GT
Aji
λj = 0 (3.3a)

∂L
∂Ŵi

=
∂Fi

∂Ŵi

+GT
Bii
µi = 0 (3.3b)

∂L
∂Ĥi

= −µi + λi = 0 (3.3c)

∂L
∂µi

= GAii
X̂i +GBii

Ŵi − Ĥi = 0 (3.3d)

∂L
∂λi

= Ĥi +
N∑

j=1,j 6=i

GAij
X̂j = 0 (3.3e)

In the following, we show how the above centralized optimization problem can be

decomposed into a few subproblems and be solved using a coordinated algorithm. A

decomposition method can be used to decompose the centralized problem (3.2) into
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N subproblems Ji(α) (i = 1, ..., N), where α denotes the variable in the subproblems.

The key steps of decomposition methods include:

• The definition and the design of corresponding subproblems Ji(α);

• Design of a coordination algorithm to ensure the solutions of the subproblems

converge to the centralized MHE.

The Lagrange equation of centralized MHE in (3.2) can be rewritten as:

L =
N∑
i=1

Li

=
N∑
i=1

{Fi(X̂i, Ŵi) + µT
i (GAii

X̂i +GBii
Ŵi − Ĥi) + λTi Ĥi +

N∑
j=1,j 6=i

λTj GAji
X̂i}

(3.4)

The Lagrange function in (3.4) takes a separable form and each subproblem can

be defined by the Lagrangian Li which is associated with it. The corresponding

subproblem i can be defined as:

min
X̂i,Ŵi,Ĥi

Ji = Fi(X̂i, Ŵi) + λTi Ĥi +
N∑

j=1,j 6=i

λTj GAji
X̂i

s.t. GAii
X̂i +GBii

Ŵi = Ĥi

(3.5)

where λi and λj will be determined by the coordinator. The part (λTi Ĥi+
∑N

j=1,j 6=i λ
T
j GAji

X̂i)

is called the coordinating term denoted by {CoT}i. {CoT}i links the local estimator

to the coordinator.

The subproblem (3.5) can be written in the following form:

min
X̂i,Ŵi,Ĥi

Ji =
1

2

[
X̂i(k)T Ŵi(k)T Ĥi(k)T

]T CT
iiR

−1
i Cii 0 0
0 Q−1i 0
0 0 0

X̂i(k)

Ŵi(k)

Ĥi(k)


+ {
[
−Y T

i R−1i Cii 0 0
]

+ pTϕi}

X̂i(k)

Ŵi(k)

Ĥi(k)


=

1

2
Zi(k)TΞiZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0

(3.6)
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where X̂i(k) = [x̂i(k−Hp+1)T , · · · , x̂i(k)T ]T , Ŵi(k) = [ŵi(k−Hp+1)T , · · · , ŵi(k−

1|k)T ]T , Ĥi(k) = [ĥi(k−Hp+1)T , · · · , ĥi(k)T ]T , Zi(k) = [X̂i(k)T , Ŵi(k)T , Ĥi(k)T ]T .

p(s) = [λT1 , λ
T
2 , · · · , λTN ]T is a vector with dimension (Hp − 1)n × 1 defined by the

coordinator and transmitted to the local estimators from the coordinator, and the su-

perscript ‘s’ indicates that the price vector is updated iteratively by the coordinator,

and n is the total number of states. The local variable Ĥi(k) contains the estimated

interactions and is determined by the local estimators. Ŵi(k) is estimated process

noise, as part of decision variables. The constant matrix ϕi involves the interaction

model. In the equality constraint, Fi is defined as:

Fi =


−Aii I 0 · · · 0 −I 0 · · · 0 −I 0 · · · 0

0 −Aii I · · · 0 0 −I · · · 0 0 −I · · · 0

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · −Aii I 0 0 · · · −I 0 0 · · · −I

 =
[
GAii

GBii
−I
]

(3.7)

where Fi is a (Hp−1)ni× (3Hp−2)ni matrix, ni is the number of states in subsystem

i.

In 3.6, ϕi has the following form:

ϕi =


GA1i

GB1i
0

...
...

...
0 0 I
...

...
...

GANi
GBNi

0

 ← ith block (3.8)

where GAij
and GBij

are defined in (2.15) and (2.17) respectively.

The measurement matrix Yi is defined as follows:

Yi =


yi(k −Hp + 1)
yi(k −Hp + 2)

...
yi(k − 1)
yi(k)


It should be noted that:

N∑
i=1

ϕi

X̂i(k)

Ŵi(k)

Ĥi(k)

 =


ĥ1(k)−

∑N
j=2A1jx̂j(k)

ĥ2(k)−
∑N

j=1,j 6=2A2jx̂j(k)
...

ĥN(k)−
∑N−1

j=1 ANjx̂j(k)

 =


e1
e2
...
eN

 = ∆E(k) (3.9)
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When ∆E(k) = 0, the summation of the subproblems defined in (3.6) equals to

the centralized MHE and the solution of the coordinated scheme converges to the

centralized solution. If ∆E(k) 6= 0, the interconnection constraints in the original

centralized MHE are not satisfied, and the coordinator needs to communicate with

local MHEs to continue the process until ∆E(k) = 0. The information flow for this

case is shown in the Figure 3.1. A local MHE sends estimated variables X̂i, Ŵi and

Ĥi to the coordinator. The coordinator checks the stopping criterion. If the stopping

criterion is satisfied, the iteration stops; otherwise the coordinator calculates the price

vector p and sends it to the local MHEs to repeat the iteration.

Figure 3.1: Information transfer in the price-driven CDMHE with N subsystems

In the coordinated structure, the lower layer’s task is to solve equations (3.3a),

(3.3b), (3.3c) and (3.3d) for a given p. At the upper coordinator layer, (3.3e) should

be used to update p. The basis of the approach is that it is possible to convert the

original minimization problem into a simpler maximization problem. The original

minimization problem is the centralized MHE problem (3.1). Therefore, let us define

the dual optimization problem.1

The aggregated price-driven CDMHE problem can be expressed as:

min
X̂,Ŵ ,Ĥ

J =
N∑
i

Ji(X̂i, Ŵi, Ĥi,p) (3.10a)

s.t : FiZi = 0, i = 1, ..., N. (3.10b)

1Details on duality can be found in many optimization textbooks, e.g. Boyd and Vandenberghe,
2004 and Chong and Zak, 2013.
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Base on (3.4) and (3.10), the Lagrange dual optimization problem (Boyd and

Vandenberghe, 2004) φ(p) is presented as:

φ(p) = inf
X̂,Ŵ ,Ĥ

{J (X̂, Ŵ , Ĥ,p)|s.t : FiZi = 0, i = 1, ..., N.} (3.11)

Let the optimal value of the centralized MHE(3.1) beR∗, which is also the optimal

value of the price-driven CDMHE(3.10) when the algorithm converges. In (3.11),

according to the property of duality in Boyd and Vandenberghe, 2004, for every p

the Lagrange dual function gives is a lower bound of on the optimal value R∗ of the

optimization problem (3.10). Thus we have a lower bound that depends on the value

of p:

φ(p) ≤ R∗ (3.12)

In order to get the best lower bound from the Lagrange dual function (3.11), the

following optimization problem is presented:

max
p

φ(p) (3.13)

where from (3.5) we can see that the price vector p in nature is the Lagrange multiplier

that associated with interaction equalities (3.1c), thus the dual optimization problem

(3.13) is an unconstrained optimization problem.

Denoting the optimal value of the dual optimization problem (3.13) as D∗, from

(3.12), the following conclusion can be made:

D∗ ≤ R∗ (3.14)

This property is called weak duality. The difference R∗ − D∗ is referred as the

optimal duality gap of the original problem, since it gives the gap between the optimal

value of the primal problem (3.1) and the best lower bound that can be obtained from

the Lagrange dual optimization problem (3.13) (Boyd and Vandenberghe, 2004).

If the equality

D∗ = R∗ (3.15)

holds, then the optimal duality gap is zero, which means that the optimal value of

the dual optimization problem equals to the optimal value of the primal problem. In
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this case, we say strong duality holds. The strong duality only holds when the primal

problem is convex and Slater’s condition holds. Slater’s condition requires the primal

problem has strictly feasible points.

In order to reach the optimal value of the primal optimization problem by solving

the dual optimization problem, the strong duality should hold. The primal problem

is the centralized MHE problem, which has quadratic function and linear constraints,

and also it is assumed to have at least one feasible point. Thus, the strong duality

holds which implies that the optimal value of the dual optimization problem equals

to the primal optimization problem. Therefore, we can solve the dual problem in the

coordinator to update the price vector p.

The Lagrangian function of subsystem i (3.6) is:

Li =
1

2
ZT

i ΞiZ
T
i + {χT

i + p(s)Tϕi}Zi + λTi FiZi (3.16)

The aggregated Lagrange function of the price-driven CDMHE becomes:

L(p, Z) =
1

2
ZTΞZT + {χT + p(s)Tϕ}Z + λTFZ (3.17)

where Z = [ZT
1 , Z

T
2 , · · · , ZT

N ]T , Ξ = diag(Ξ1, Ξ2, · · · , ΞN), χT = [χT
1 , χ

T
2 , · · · , χT

N ],

ϕ = [ϕ1, ϕ2, · · · , ϕN ], λT = [λT1 , λ
T
2 , · · · , λTN ] and F = [F1, F2, · · · , FN ].

When the lower level’s task is done(i.e., the subproblems are solved) , we have:

∂Li

∂Z∗i
= 0 for i = 1, 2, · · · , N (3.18)

∂Li

∂λ∗i
= 0 for i = 1, 2, · · · , N (3.19)

where Z∗i and λ∗i are the optimal solution of ith local MHE, therefore we can get:

∂L
∂Z∗

= ΞZ∗ + χ+ ϕTp + F Tλ∗ = 0 (3.20)

Local MHEs send the optimal Z∗i to the coordinator. In the coordinator, the first

order derivative of L with respect to the price vector p becomes:

dL
dp

= (ΞZ∗ + χ+ ϕTp + F Tλ∗)
dZ

dp
+ ϕZ∗ = ϕZ∗ (3.21)

The optimal solution Z∗ are sent to the coordinator as Z(s) to update the price

vector p.
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Let us denote that:

∆E(k)(s) =
dL
dp

= ϕZ(s) (3.22)

In the coordinator part, we can use gradient based methods 2 to update the price

vector p. One efficient method is Newton’s method. In this work, Newton’s method

is chosen to update the price vector p, and the update equation at sampling time k

is:

p(s+1)(k) = p(s)(k)− α(s)[H(s)(k)]−1∆E(k)(s) (3.23)

where α(s)3 is the step size of the Newton’s method at iteration s which is picked as

1 in usual if a full Newton step is taken. H(s)(k) is the Hessian matrix which need to

be calculated. Since the dual problem is maximization problem, the Hessian matrix

should be negative definite.

The Hessian matrix H(s)(k) is calculated as:

H(s) =
d∆E(k)(s)

dp
= ϕ

dZ(s)

dp
(3.24)

Since ϕZ(s) =
∑N

i=1 ϕiZ
(s)
i , equation (3.24) can be rewritten as:

H(s) =
N∑
i=1

ϕi
dZ

(s)
i

dp
=

N∑
i=1

ϕi∇pZ
(s)
i (3.25)

After solving the local problem (3.6), we can get solutions X̂∗i(s)(k), Ŵ ∗
i(s)(k) and

Ĥ∗i(s)(k), and send them to the coordinator. In the coordinator the states Z
(s)
i can

be obtained as: Z
(s)
i = Z∗i = [X̂∗i(s)(k)T , Ŵ ∗

i(s)(k)T , Ĥ∗i(s)(k)T ]T . The coordinator also

needs the sensitivity matrix, which is defined as:

5pZi =
dZi

dp
(3.26)

According to (Cheng, 2007) and (Marcos., 2011), the way to calculate the sensi-

tivity matrix is expressed in following procedure 4.

The condition for Z∗i to be the optimal solution of the ith local MHE can be

obtained as follows:

αi =
∂Li

∂Zi

= ΞiZ
∗
i + χi + ϕT

i p+ F T
i λ
∗
i = 0 (3.27a)

2Gradient method, conjugate gradient methods, Newton’s method and quasi-newton methods
can be used.

3α is picked as 1 for the unconstrained case
4The inequality conditions are not considered here.
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βi = FiZ
∗
i = 0 (3.27b)

The sensitivity matrix ∇pZ
(s)
i can be obtained by evaluating the gradient of Zi

with respect to p: 
∂αi

∂p
= Ξi∇pZ

∗
i + ϕT

i + F T
i ∇pλ

∗
i = 0

∂βi
∂p

= Fi∇pZ
∗
i = 0

(3.28)

Equations (3.28) can be written in matrix form as follows:


∂αi

∂p
∂βi
∂p

 =

[
Ξi Fi

T

Fi 0

] [
∇pZ

∗
i

∇pλ
∗
i

]
=

[
−ϕT

i

0

]
(3.29)

In order to have a unique solution to the above equation, the following matrix

should be invertible:

Λi =

[
Ξi Fi

T

Fi 0

]
(3.30)

If Λi is invertible, ∇pZ
∗
i can be picked as the first (3Hp − 1)ni rows of Λi.

In summary, for a given price vector p(s), each local MHE solves the local opti-

mization problem (3.6) to get Z∗i (for i = 1, 2, · · · , N), calculates sensitivity matrix

∇pZ
∗
i , and then sends them to the coordinator. The coordinator uses Z∗ as Z(s)

to check the stopping criterion. If the interaction error ‖ ∆E(k)(s) ‖≤ ε, the iter-

ation stops; otherwise, the Hessian matrix H(s) is calculated according to equation

(3.25). The coordinator updates price vector p according to (3.23). Iteration counter

increases by one (i.e., s ← s + 1) and repeats the process. The detail price-driven

CDMHE algorithm is described in the following table:

3.2 An Improved Price-driven CDMHE

In Section 3.1, we proposed a price-driven CDMHE algorithm without consideration of

inequality constraints. Since the problem is unconstrained, we can find the analytical

solution of the subsystem optimization problems. The first order optimality condition
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Algorithm 1 Implementation of Price-driven Coordinated Distributed MHE

Initialization
Coordinator: Set iteration counter s = 0. The price vector p(0) is arbitrarily
determined.
repeat

Coordinator: p(s) is sent to local MHE estimators.
Local Estimators: Local MHE problems (3.6) are solved, and the opti-

mal solutions X̂∗i(s)(k), Ŵ ∗i(s)(k) and Ĥ∗i(s)(k) are obtained. Construct Z∗i =

[X̂∗i(s)(k)T , Ŵ ∗i(s)(k)T , Ĥ∗i(s)(k)T ]T . ∇pZ
∗
i is calculated according to equation (3.29).

Z∗i (k) and ∇pZ
∗
i (for i = 1, 2, · · · , N) are sent to the coordinator.

Coordinator: s← s+1. Coordinator receives Z∗i (k) and∇pZ
∗
i , and treats Z∗i (k)

as Z
(s)
i (k). The Hessian matrix H(s) is calculated according to (3.25). Step-size α

is chosen/calculated. Price vector p is updated according to (3.23).
until stopping criterion ‖ ∆E(k)(s) ‖≤ ε is satisfied.

for a variable Z∗i to be the optimal solution of problem (3.6) is listed as following:

∂Li

∂Zi

= ΞiZ
∗
i + χi + ϕT

i p
(s) + F T

i λ
∗
i = 0 (3.31a)

∂Li

∂λi
= FiZ

∗
i = 0 (3.31b)

If a unique solution exists for the of the above equation (3.31):[
Z∗i
λ∗i

]
=

[
Ξi Fi

T

Fi 0

]−1 [−ϕi
Tp(s) − χi

0

]
(3.32)

In order to get the unique solution and use the Newton’s method to update the

price vector, we need to prove the invertibility of Λi. However, the invertibility of

Λi can only be guaranteed when the matrix Cii is full rank. A detail proof can be

found in the Appendix A.1. For the estimation problem, the Cii is not full rank in

usual. Due to this, we cannot get unique solutions from solving the local optimization

problem (3.6) and the Newton’s method can not be used to update the price vector

5.

One way to make the matrix Λi invertible is to add an additional term in the

cost function of subsystem i (3.6). In this work, we propose to add 1
2
‖ Ĥi(k) ‖D−1 .

5Other gradient based method like gradient method can be used to update the price vector by

p(s+1) = p(s) −KdL
dp

= p(s) −K
N∑
i=1

ϕiZ
(s)
i (3.33)

where K is the step size.
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Therefore the improved design of local DMHE i becomes:

min
X̂i,Ŵi,Ĥi

Ji =
1

2

[
X̂i(k)T Ŵi(k)T Ĥi(k)T

]T CT
iiR

−1
i Cii 0 0
0 Q−1i 0
0 0 D−1i

X̂i(k)

Ŵi(k)

Ĥi(k)


+ {
[
−Y T

i R−1i Cii 0 0
]

+ pTϕi}

X̂i(k)

Ŵi(k)

Ĥi(k)


=

1

2
Zi(k)TΞ∗iZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0
(3.34)

where Ξ∗i is used to differentiate from Ξi in (3.6), D−1i is the weighting matrix of

Ĥi(k). The addition of the term Ĥi(k)TD−1i Ĥi(k) ensures that problem (3.34) has

a unique solution. D−1i needs to satisfy certain conditions which can be found in

Appendix A.2.

We note that the improved design of the local MHE includes the interaction in

the cost function which is added purely to ensure the uniqueness of the solutions of

the local MHEs.

3.3 Convergence Properties of the Improved Price-

driven CDMHE

In this section, we show that the improved price-driven CDMHE can converge in two

iterations at each sampling time.

As shown in equation (3.31), the first order optimal condition for the modified

optimization problem of local MHE i at sth communication cycle can be written as:

∂Li
∂Zi

=

CT
iiR
−1
i Cii 0 0

0 Q−1i 0

0 0 D−1i

X̂∗i (k)

Ŵ ∗i (k)

Ĥ∗i (k)

+

−CT
iiR
−1
i Yi

0
0

+

ϕT
iA

ϕT
iB

ϕT
iC

p(s) +

GT
Aii

−I
−I

λ∗i = 0

(3.35a)

∂Li
∂λi

=
[
GAii −I −I

] X̂∗i (k)

Ŵ ∗i (k)

Ĥ∗i (k)

 = 0 (3.35b)

where ϕ = [ϕiA, ϕiB, ϕiC ].
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Equation (3.35) can be written into the following form:

CT
iiR

−1
i CiiX̂

∗
i (k) + ϕT

iAp
(s) +GT

Aii
λ∗i = CT

iiR
−1
i Yi

Q−1i Ŵ ∗
i (k) + ϕT

iBp
(s) − λ∗i = 0

D−1i Ĥ∗i (k) + ϕT
iCp

(s) − λ∗i = 0

GAii
X̂∗i (k)− Ŵ ∗

i (k)− Ĥ∗i (k) = 0

(3.36)

The optimality conditions (3.36) for subsystems can be aggregated from i = 1 to

N as: 

CTR−1CX̂MHE + ϕT
Ap

(s) + ḠT
AλMHE = CTR−1Y

Q−1ŴMHE + ϕT
Bp

(s) − λMHE = 0

D−1ĤMHE + ϕT
Cp

(s) − λMHE = 0

ḠAX̂MHE − ŴMHE − ĤMHE = 0

(3.37)

where D = diag(Q1, . . . ,QN) is the aggregated form of Qi, CT and R−1 are defined

in 2.10) and (2.11), ḠA = diag(GA11 , . . . , GANN
), ϕA = [ϕA1 , ϕA2 , . . . , ϕAN

],

ϕB = [ϕB1 , ϕB2 , . . . , ϕBN
] and ϕC = [ϕC1 , ϕC2 , . . . , ϕCN

]. In order to simplify

the notation, the sampling time k is not shown in the estimated variables. X̂MHE,

ŴMHE and ĤMHE are the aggregated forms of the optimal solution of subsystems.

From the definition of ϕi in (3.8) and the definition of GBij
in (2.17), it can be

concluded that ϕB = 0 and ϕC = −I. Substituting these into the equation (3.37)

and solve the equations. From the second equation in (3.37), we can get:

λMHE = Q−1ŴMHE (3.38)

By combining equation (3.38) with the third and fourth equations in (3.37), we

can get that:

ŴMHE = (DQ−1 + I)−1(ḠAX̂MHE −Dp(s)) (3.39)

Substituting equations (3.39) and (3.38) into the first equation in (3.37), X̂MHE

can be obtained as:

X̂MHE = (CTR−1C+ḠAQ
−1(DQ−1+I)−1ḠA)−1{[(DQ−1+I)−1D−ϕT

A]p(s)+CTR−1Y }
(3.40)

Therefore, at sth iteration, X̂MHE and ŴMHE can be expressed as a function of ps

as:

X̂MHE = c1p
(s) + c2 (3.41a)
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ŴMHE = c3p
(s) + c4 (3.41b)

with

c1 = (CTR−1C + ḠAQ
−1(DQ−1 + I)−1ḠA)−1[(DQ−1 + I)−1D − ϕT

A] (3.42a)

c2 = (CTR−1C + ḠAQ
−1(DQ−1 + I)−1ḠA)−1CTR−1Y (3.42b)

c3 = (DQ−1 + I)−1(ḠAc1 −D) (3.42c)

c4 = (DQ−1 + I)−1ḠAc2 (3.42d)

The expression of c1 shows that c1 is only dependent on system matrices A, B, C

and weighting matrices Q−1, R−1, D−1 and horizon Hp, while the matrix c2 is

dependent on A, B, C, Q−1, R−1, D−1, horizon Hp and output Y . A, B, C

are system matrices which represent system properties and remain unchanged for a

linear time-invariant system. Q−1, R−1, D−1 and Hp are from the local MHE design,

which are fixed for an existing decentralized network. Output Y remains unchanged

during the estimation interval. Therefore the linear coefficients c1 and c2 are constant

matrices during the kth estimation interval.

From equation (3.22), we can get:

∆E(k)(s) = ϕZ(s) = ϕAX̂MHE + ϕBŴMHE + ϕCĤMHE (3.43)

Since ϕB = 0 and ϕC = −I, equation (3.43) becomes:

∆E(k)(s) = ϕAX̂MHE − ĤMHE

= ϕAX̂MHE + ḠAX̂MHE − ŴMHE

= ((ϕA + ḠA)c1 − c3)p(s) + c2 − c4

(3.44)

From equation (3.24), the Hessian matrix is calculated as:

H(s) =
d∆E(k)(s)

dp(s)
= (ϕA + ḠA)c1 − c3 (3.45)

Therefore ∆E(k)(s) can be expressed as:

∆E(k)(s) = H(s)p(s) + c2 − c4 (3.46)
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Substituting equation (3.45) into equation (3.23), and picking α(s) to be 1, the

following equation can be obtained:

p(s+1)(k) = p(s)(k)− α(s)[H(s)(k)]−1∆E(k)(s)

= p(s)(k)− [H(s)(k)]−1(H(s)p(s) + c2 − c4)

= −[H(s)(k)]−1(c2 − c4)

= ς

(3.47)

For the unconstrained price-driven CDMHE, H(s)(k)−1, c2, c4 are constant ma-

trices as defined in equations (3.45), (3.42b) and (3.42d). When the iteration s ≥ 2,

p(s)(k) becomes a constant matrix ς. Therefore, when the iteration s ≥ 2, ∆E(k)(s)

becomes:
∆E(k)(s) = H(s)p(s) + c2 − c4

= −H(s)[H(s)(k)]−1(c2 − c4) + c2 − c4

= 0 (s ≥ 2)

(3.48)

From equation (3.48), it can be concluded that the improved price-driven CDMHE

algorithm converges in 2 iterations without consideration of inequality constraints.

3.4 Improved Price-driven CDMHE with Inequal-

ity Constraints

In this section, inequality constraints are added to the estimated state x̂i, process

noise ŵi and estimated interaction ĥi. The sensitivity matrices that used to calculate

the Hessian matrix are derived with inequality constraints. Inequality constraints are

divided into active inequality constraints and inactive inequality constraints in each

subsystem. Due to the change of the active inequality constraints, the Hessian matrix

needs to be calculated in each iteration.

3.4.1 Sensitivity Matrix Calculation

For subsystem i, the local MHE design becomes:

min
X̂i,Ŵi,Ĥi

Ji =
1

2
Zi(k)TΞ∗iZi(k)T + {χT

i + p(s)Tϕi}Zi(k)

s.t. FiZi(k) = 0

F ineq
i Zi(k) ≤ gineqi

(3.49)
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where F ineq
i Zi(k) ≤ gineq is used to denote the constraints that added to X̂i, Ŵi and

Ĥi(i.e., X̂i ∈ Xi, Ŵi ∈Wi, Ĥi ∈ Hi). F
ineq
i and gineq have the following expressions:

F ineq
i =


IHpni

0 0
−IHpni

0 0
0 I(Hp−1)ni

0
0 −I(Hp−1)ni

0
0 0 I(Hp−1)ni

0 0 −I(Hp−1)ni

 (3.50)

gineqi =


Ximax

−Ximin

Wimax

−Wimin

Himax

−Himin

 (3.51)

The Lagrange function Li can be formulated according to the optimization prob-

lem defined in equation (3.49) as:

Li =
1

2
ZT

i Ξ∗iZ
T
i + {χT

i + p(s)Tϕi}Zi + λTi FiZi + µT
i (F ineq

i Zi(k)− gineqi ) (3.52)

where the vectors λi and µi are the Lagrange multipliers that associated with the

equality constraints and inequality constraints in equation (3.49).

The first order optimality conditions are:

∂Li

∂Zi

= Ξ∗iZi + χi + ϕT
i p

(s) + F T
i λi + ACF

ineq
i

T
ACµi = 0 (3.53a)

∂Li

∂λi
= FiZi = 0 (3.53b)

ACF
ineq
i Zi − ACgineqi = 0 (3.53c)

INF
ineq
i Zi − IN gineqi + INσi = 0 (3.53d)

where the subscript AC stands for the active inequality constraints, IN stands for the

inactive inequality constraints. The vector σi represents the slack variable that asso-

ciated with inactive inequality constraints. The sensitivity analysis can be conducted

as follows:

Ξ∗i∇pZi + ϕT
i + F T

i ∇pλi + ACF
ineq
i

T∇pACµi = 0 (3.54a)

Fi∇pZi = 0 (3.54b)

ACF
ineq
i ∇pZi = 0 (3.54c)
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INF
ineq
i ∇pZi +∇pINσi = 0 (3.54d)

where ∇pZi denotes dZi/dp
s, ∇pλi denotes dλi/dp

s, ∇pACµi represents dACµi/dp
s,

and ∇pINσi represents dINσi/dp
s.

Therefore, the sensitivity matrix ∇pZi can be calculated by solving the equations

in (3.54). Equation (3.54) can be written into the matrix form as:

Πi


∇pZi

∇pλi
∇pACµi

∇pINσi

 =


−ϕT

i

0
0
0

 (3.55)

with

Πi =


Ξ∗i Fi

T
ACF

ineq
i

T
0

Fi 0 0 0

ACF
ineq
i 0 0 0

INF
ineq
i 0 0 I

 (3.56)

Hessian matrix is calculated as:

H(s) =
N∑
i=1

ϕi
dZ

(s)
i

dp
=

N∑
i=1

ϕi∇pZ
(s)
i (3.57)

Step size α in the price vector updating equation (3.23) is calculated using the

method in Cheng, 2007.

3.4.2 Convergence Analysis

In this section, the convergence of the constrained modified price-driven CDMHE

algorithm is proven by using the property of the gradient-based method.

Define the function W as following:

W(p) = D∗ − φ(p) (3.58)

where D∗ is the optimal value of the dual optimization problem (3.13), and φ(p) is

defined in (3.11). Therefore, W ≥ 0 and equals to zero if and only if p = p∗.

The derivative of W with respect to the iterations s is expressed by:

Ẇ =
dW
dp

T dp

ds

= (−dφ(p)

dp
)T
dp

ds

(3.59)
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The gradient
dφ(p)

dp
= ϕZ = J (3.60)

where J is used to represent the gradient.

As discussed in the coordinator design part, the gradient-based method is used

to update the price vector p. The dual problem (3.13) we solve to get p is a max-

imization problem. For the maximization problem, the rate of change of the price

vector is proportional to the gradient vector. Therefore, the following equation can

be obtained:
dp

ds
∝ J = νJ (3.61)

where ν is a positive constant.

Therefore, substituting (3.61) and (3.60) into (3.59), the following expression can

be obtained:

Ẇ = −νJTJ (3.62)

where ν is positive, we can get Ẇ ≤ 0. Therefore, the price-update scheme is stable

and convergent. This implies ∆E(k)(s) → 0 with the increase of iteration numbers s.

Thus, the proposed price-driven CDMHE algorithm converges to the optimal solution

of the centralized MHE.

3.5 Illustrative Example

In this section, a chemical process is used to illustrate the effectiveness and applica-

bility of the proposed price-driven CDMHE scheme.

3.5.1 Problem Description

In this section, the proposed coordinated state estimation approach is applied to a

simulated chemical process. The process contains two connected continuous stirred

tank reactors (CSTR) and one flash tank separator as shown in Figure 3.2 (Liu et

al., 2008). As shown in Figure 3.2, pure A is fed into the first CSTR at flow rate

F10 and temperature T10. The outlet stream of CSTR 1 is fed to CSTR 2 at flow

rate F1 and temperature T1. There is an additional stream containing pure A at flow
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Figure 3.2: Process flow diagram of two interconnected CSTR units and one separator.

rate F20 and temperature T20 which is also fed to CSTR 2. A part of the output of

CSTR 2 passes through a separator and recycled back to CSTR 1 at recycle flow rate

Fr and temperature T3. Two irreversible elementary exothermic reactions A → B,

B → C take place in the two reactors, where A is the reactant material, B is the

desired product, and C is the undesired byproducts. Because of the non-isothermal

nature of the reactions, each CSTR is equipped with a jacket to remove/provide heat.

Based on standard modeling assumptions, nine ordinary differential equations can be

obtained to describe the dynamics:

dxA1

dt
=
F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1 (3.63a)

dxB1

dt
=
F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1) + k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (3.63b)

dT1
dt

=
F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

cp
k1e

−E1
RT1 xA1 +

−∆H2

cp
k2e

−E2
RT1 xB1 +

Q1

ρcpV1
(3.63c)

dxA2

dt
=
F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2 (3.63d)

dxB2

dt
=
F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2) + k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (3.63e)

dT2
dt

=
F1

V2
(T1 − T2) +

F20

V2
(T20 − T2) +

Q2

ρcpV2
+
−∆H1

cp
k1e

−E1
RT2 xA2 +

−∆H2

cp
k2e

−E2
RT2 xB2

(3.63f)
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Table 3.1: Process variables for the reactors and separator

xA1, xA2, xA3 mass fractions of A in reactors 1,2,3
xB1, xB2, xB3 mass fractions of B in reactors 1,2,3
xC1, xC2, xC3 mass fractions of A in reactors 1,2,3
xAr, xBr, xCr mas fractions of A,B,C in the recycel stream
T1, T2, T3 temperatures in reactors 1,2,3
T10, T20 feed stream temperatures to reactors 1 and 2
F1, F2 effluent flow rates from reactors 1 and 2
F10, F20 steady-state feed stream flow rates to reactors 1 and 2
Fr, Fp flow rates of the recycle and purge streams

V1, V2, V3 volumes of reactors 1, 2, 3
E1,E2 activation energy for reactions A→ B and B → C
k1, k2 pre-exponential values for reactions A→ B and B → C

∆H1,∆H2 heats of reaction for reactions A→ B and B → C
∆Hvap1,∆Hvap2,∆Hvap3 evaporating enthalpies for A,B,C

αA, αB, αC relative volatilities of A,B,C
Q1, Q2, Q3 heat inputs/removals into/from reactors 1,2,3
ρ, cp, R solution density, heat capacity and gas constant

dxA3

dt
=
F2

V3
(xA2 − xA3)−

(Fr + Fp)

V3
(xAr − xA3) (3.63g)

dxB3

dt
=
F2

V3
(xB2 − xB3)−

(Fr + Fp)

V3
(xBr − xB3) (3.63h)

dT3
dt

=
F2

V3
(T2 − T3) +

Q3

ρcpV3
+

(Fr + Fp)

ρcpV3
(xAr∆Hvap1 + xBr∆Hvap2 + xCr∆Hvap3)

(3.63i)

where values of the parameters are given in the Table 1. It is assumed that in the

separator, the relative volatility for each of the components remains constant within

the operating temperature range. Under this assumption, the algebraic equations

modeling the composition of the overhead stream relative to composition of liquid in

the flash tank is described as follows:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3

(3.64)

The sytem is divided into three subsystems according to the three vessels in

the process, the states are expressed as xi = [xAi, xBi, Ti]
T , for i = 1, 2, 3.
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Table 3.2: Process parameters for the reactors and separator

F10 = 5.04m3/h k1 = 2.77× 103s−1

F20 = 5.04m3/h k2 = 2.6× 103s−1

Fr = 5.04m3/h E1 = 5.0× 104kJ/kmol
Fp = 5.04m3/h E2 = 6.0× 104kJ/kmol
V1 = 1.0m3 T10 = 300K
V2 = 0.5m3 T20 = 300K
V3 = 1.0m3 R = 8.314kJ/kmol K
αA = 3.5 ρ = 1000.0kg/m3

αB = 1.0 cp = 0.231kJ/kgK
αC = 0.5 xA10 = 1

T10 = 300.0K xB10 = 0
T20 = 300.0K xA20 = 0

∆Hvap1 = −3.53× 104kJ/kmol xB20 = 0
∆Hvap2 = −1.57× 104kJ/kmol ∆H1 = −6.0× 104kJ/kmol
∆Hvap3 = −4.068× 104kJ/kmol ∆H2 = −7.0× 104kJ/kmol

The corresponding external input to each vessels are Q1, Q2 and Q3. It is as-

sumed that the measurement states are temperatures. Choose the input heat Q =

[2.9× 106kJ/h, 1.0× 106kJ/h, 2.9× 106kJ/h]T , the corresponding steady state is

xs =
[
0.0313 0.2602 549.7686 0.1203 0.3499 499.4590 0.0348 0.2855 535.5199

]T
.

Linearize the nonlinear model at xs and discretize the continuous model into dis-

crete time model by sampling time 0.005 hr, we can get the linear discrete time model.

The random disturbances added to the dynamics of the temperatures’ differences are

generated as normally distributed values with zero mean and standard deviation 0.01,

bounded between [−0.05, 0.05]. The random disturbances added to the dynamics of

the concentrations are generated as normally distributed values with zero mean and

standard deviation 0.001, bounded between [−0.005, 0.005]. The concentrations are

bounded between[0, 1], the temperatures are bounded between [500, 600]. In this

case, we do not add constraints on the estimated interaction The parameters used in

the coordinated algorithm are in Table 4.3. For the price-driven CDMHE algorithm,

the termination threshold ε is 0.001. The actual initial condition is

xinit =
[
0.0443 0.3052 557.2686 0.1413 0.4129 508.7090 0.0578 0.3325 542.8199

]T
.
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Table 3.3: Parameters used in the price-driven CDMHE

Initial Guess Moving Horizon Weighting Matrix

MHE 1 x̂1(0) = [0.0508 0.3277 561.0186]T 10 Q1 =

0.0012 0
0 0.0012 0
0 0 0.12


R1 = 0.012

D1 =

12 0
0 12 0
0 0 12


MHE 2 x̂2(0) = [0.1518 0.4444 513.3340]T 10 Q2 =

0.0012 0
0 0.0012 0
0 0 0.12


R2 = 0.012

D2 =

12 0
0 12 0
0 0 12


MHE 3 x̂3(0) = [0.0693 0.3560 546.4699]T 10 Q3 =

0.0012 0
0 0.0012 0
0 0 0.12


R3 = 0.012

D3 =

12 0
0 12 0
0 0 12



3.5.2 Unconstrained Case Results

In this case, we simulate the process without consideration of the inequality con-

straints to verify the convergence efficiency. The simulation results are shown in

Figure 3.3 - Figure 3.6. Figure 3.3 shows the trajectories of the estimated states

given by the centralized MHE, the decentralized MHE, the price-driven CDMHE and

the actual state. It is shown that the estimated states given by the decentralized

MHE are far from the actual states. Figure 3.4 is used to give us a clearer view of

the estimated states given by the price-driven CDMHE and the centralized MHE. It

can seen that the trajectory of estimated states given by the price-driven CDMHE

is almost overlapped with the centralized trajectory, which means the price-driven

CDMHE reaches the centralized performance. Figure 3.5 shows the trajectory of

the error norm of the three estimated algorithms. It is shown that the performance

of the centralized MHE and the proposed prediction-driven CDMHE algorithm are

much better than the decentralized MHE. The summation of error term given by

the price-driven CDMHE is 14.0345 while the summation of error term given by the

decentralized MHE is 100.0387 which is around 7 times of the error norm provided

by the price-driven CDMHE. Figure 3.6 shows the number of iterations during the

sampling time intervals. It can be seen that the iterations are all 2, which verifies the
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theory in Section 3.3.
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Figure 3.3: Trajectories of the actual states (solid line), estimates given by the proposed
unconstrained price-driven CDMHE (dashed line), estimates given by the centralized MHE
(dotted line), and the decentralized MHE (dash-dotted line).
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Figure 3.4: Trajectories of the actual states (solid line), estimates given by the proposed
unconstrained price-driven CDMHE (dashed line), estimates given by the centralized MHE
(dash-dotted line).

38



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

T (h)

|e
|

Figure 3.5: Trajectories of the estimation error norm given by the proposed unconstrained
price-driven CDMHE (dash-dotted line), the centralized MHE (solid line), and the decen-
tralized MHE (dashed line).
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Figure 3.6: Numbers of iterations during each sampling time of the proposed uncon-
strained price-driven CDMHE.

3.5.3 Constrained Case Results

The constraints are taken into account by using the method described in Section 3.4.

The simulation results are shown in Figure 3.7 - Figure 3.10. Figure 3.7 shows the

trajectories of the estimated states given by the price-driven CDMHE, the central-

ized MHE, the decentralized MHE and the actual state. Because of the existence
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of constraints, the estimates given by the MHE formulations are different from the

unconstrained case. Figure 3.8 is used to show a clearer view of the estimated states

given by the constrained price-driven CDMHE and the constrained centralized MHE.

It can seen that constrained price-driven CDMHE reaches the constrained central-

ized performance. Figure 3.9 shows the trajectory of the error norm of the three

estimated algorithms. It is shown that the performance of the constrained central-

ized MHE and proposed constrained price-driven CDMHE algorithm are much better

than constrained decentralized MHE. The summation of error term given by the con-

strained price-driven CDMHE is 13.9983 while the summation of error term given by

the decentralized MHE is 142.0082 which around 10 times of the error norm provided

by constrained price-driven CDMHE. Figure 3.6 shows the number of iterations dur-

ing the sampling time intervals. It can be seen that the iterations are from 4 to 14

which verifies that the price-driven CDMHE algorithm with inequality constraints

needs more iterations to converge.
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Figure 3.7: Trajectories of the actual states(solid line), estimates given by the proposed
price-driven CDMHE (dashed line), estimates given by the centralized MHE (dotted line),
and the decentralized MHE (dash-dotted line), all with inequality constraints.
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Figure 3.8: Trajectories of the actual states(solid line), estimates given by the proposed
price-driven CDMHE (dashed line), estimates given by the centralized MHE (dash-dotted
line) all with inequality constraints.
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Figure 3.9: Trajectories of the estimation error norm given by the proposed price-driven
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE
(dashed line) all with inequality constraints.

3.6 Conclusions

In this chapter, a price-driven coordinated algorithm is derived for the distributed

moving horizon estimation, in which a local MHE estimates the process states, noises
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Figure 3.10: Number of iterations during each sampling time of the proposed constrained
price-driven CDMHE

and interactions. It is shown that the conventional price-driven coordinated dis-

tributed moving horizon estimation(CDMHE) cannot be used for state estimation

purpose since it requires measurement of the full state vector to ensure the existence

of unique solution in the local MHEs. An improved price-driven CDMHE is firstly

proposed to address the issue of the conventional version. An improved price-driven

CDMHE is proposed without considering inequality constraints first. The analy-

sis shows the unconstrained price-driven CDMHE converges to the performance of

centralized MHE in two iterations during each sampling time. The simulation of a

chemical process without inequality constraints verified this theory. The formulation

of the improved price-driven CDMHE with inequality constraints is also described

by dividing the inequality constraints into active constraints and inactive constraints.

The simulation of the chemical process with inequality constraints shows good con-

vergence to the centralized MHE.

The main strengths of the proposed improved price-driven CDMHE are:

• It is easier to solve than a global approach since only lower order subproblems

are solved.

• The performance of the price-driven CDMHE reaches the corresponding cen-

tralized MHE.
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• When Newton’s method is used to update the price vector in the coordina-

tor, the subsystems show fast convergence speed. Specially, without inequality

constraints, the algorithm converges in two iterations.

However, the method also has certain drawbacks. The main disadvantage is the

existence of the 1
2
‖ Ĥi(k) ‖D−1

i
in the cost function. This term is added purely to

ensure unique solutions can be obtained by local MHEs. Nevertheless, by properly

choosing the weighting matrix D−1i , the effect of the additional term can be reduced.

The proposed improved price-driven CDMHE is still an efficient distributed state

estimation method.
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Chapter 4

Prediction-driven Coordinated
Distributed MHE

In this chapter, a prediction-driven coordinated moving horizon estimation algorithm

is developed. The differences between the prediction-driven CDMHE and price-driven

CDMHE exist in the coordinator and the estimated variables. The formulation of the

unconstrained prediction-driven CDMHE is introduced first; then sufficient conver-

gence conditions that ensure its convergence are provided; and a method to handle

constraints is given at last.

4.1 Prediction-driven CDMHE Formulation

In this section, the prediction-driven CDMHE is presented. Figure 4.1 shows a

schematic of the proposed design. In the proposed design, the local MHEs send

subsystem state estimates to the coordinator; the coordinator calculates a price vec-

tor and the estimation of the interactions between subsystems and sends them to

local MHEs. The above steps are carried out iteratively each sampling time. First,

we introduce the subsystem MHE design. Subsequently, we present the coordinator

design. Finally, we summarize the prediction-driven coordinated distributed state

estimation algorithm.
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Figure 4.1: Information transfer in prediction-driven CDMHE with N subsystems

4.1.1 Subsystem MHE Design

In the coordinated distributed system, the model of the local subsystem i is as fol-

lowing:
x̂i(k + 1) = Aiix̂i(k) + ĥi(k) + ŵi(k);

ŷi(k) = Ciix̂i(k) + v̂i(k)
(4.1)

where ĥi(k) denotes the estimated interaction of subsystem i with other subsystems

which is calculated by the coordinator.

In this coordinated algorithm, a coordinating term is incorporated in the cost

function of each local MHE. The coordinating term of MHE i (i = 1, . . . , N) char-

acterizes the effects of other subsystems on subsystem i. The coordinating term is also

a link between the local estimator and the coordinator. For MHE i, the coordinating

term is defined as p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
where X̂i(k) = [x̂i(k − Hp + 1)T , . . . , x̂i(k)T ]T ,

Ŵi(k) = [ŵi(k − Hp + 1)T , . . . , ŵi(k − 1)T ]T , and (4.3), (4.9) define Θi and p(s),

respectively.

The local MHE for subsystem i at the sth iteration is formulated as the following

optimization problem:

min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR

−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
=

1

2
Zi(k)TΥiZi(k) + {ΦT

i + p(s)TΘi}Zi(k)

(4.2a)

s.t. Geq
i Zi(k) = Ĥ

(s)
i (k) (4.2b)
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where Yi = [yi(k−Hp+1)T , ...,yi(k)T ]T , Ĥ
(s)
i (k) is a variable determined by the coordi-

nator which approximates the interaction between subsystem i and other subsystems,

p(s) is a vector determined by the coordinator and connects the local subsystem with

the coordinator. The superscript ‘s’ of Ĥ
(s)
i (k) and p(s) indicates that they are coordi-

nating variables calculated by the coordinator at the sth iteration and communicated

back to the local estimator. Geq
i = [GAii

, GBii
] with GAii

and GBii
are defined in

(2.14) and (2.16). This coordinated design can guarantee the unique solution exists

in the subsystem, the proof can be found in Appendix A.3.

In (4.2), Θi is a (Hp − 1)n × (2Hp − 1)ni matrix built in the following block-wise

fashion:

Θi =


G1i

...
0
...

GNi


ith block is a

← (Hp − 1)ni × (2Hp − 1)ni
zero matrix.

(4.3)

Θi = [ΘAi
,ΘBi

] with

ΘAi
=


GA1i

...
0
...

GANi

 ΘBi
=


GB1i

...
0
...

GBNi

 (4.4)

4.1.2 Formulation of the Coordinator

Vector p(s) in the local MHE design is a (Hp − 1)n × 1 vector which is an approxi-

mation of the centralized MHE Lagrange multiplier, computed and updated by the

coordinator and will be referred to as the ‘price vector’. The price vector p(s) is same

for all subsystems, therefore, it does not have subscript i.

At the sth iteration of the sampling time k, the coordinator first sends p(s) and

Ĥ
(s)
i (k) to local MHE i. Based on p(s) and Ĥ

(s)
i (k), the ith local MHE problem (4.2) is

solved and optimal estimates for the local state and disturbance X̂∗i(s)(k) and Ŵ ∗
i(s)(k)

are obtained. The local MHE sends X̂∗i(s)(k) and Ŵ ∗
i(s)(k) to the coordinator. The ‘s’

in the subscripts is used to denote that these optimal values are calculated in the sth

iteration by the local estimators.
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The coordinator increases the iteration counter by one(i.e., s ← s + 1), collects

X̂∗i(s−1)(k), i = 1, . . . , N and Ŵ ∗
i(s−1)(k), i = 1, ..., N , and assigns

X̂
(s)
i (k) = X̂∗i(s−1)(k); X̂(s)(k) =

[
X̂

(s)
1 (k)T , · · · , X̂(s)

N (k)T
]T
. (4.5a)

Ŵ
(s)
i (k) = Ŵ ∗

i(s−1)(k); Ŵ (s)(k) =
[
Ŵ

(s)
1 (k)T , · · · , Ŵ (s)

N (k)T
]T
. (4.5b)

The coordinator uses X̂(s)(k) and Ŵ (s)(k) to update estimated interaction Ĥ
(s)
i (k)

and price vector p(s). Ĥ
(s)
i (k) in equation (4.2) is the estimated interaction be-

tween subsystem i and other subsystems. It is defined as Ĥ
(s)
i (k) = [ĥ

(s)
i (k − Hp +

1)T , . . . , ĥ
(s)
i (k)T ]T . In this prediction-driven CDMHE algorithm, Ĥi(k) is calculated

by the coordinator in the following equation:

Ĥ
(s)
i (k) = −

∑
j 6=i

Gij

[
X̂

(s)
j (k)

Ŵ
(s)
j (k)

]
(4.6)

where Gij =
[
GAij

, GBij

]
, and GAij

, GBij
are defined in (2.15) and (2.17).

The price vector is the approximation of the Lagrange multiplier in the centralized

MHE, it can be obtained from following equation:

GTp(s) = −
[
CTR−1C

Q−1

] [
X̂(s)(k)

Ŵ (s)(k)

]
+

[
CTR−1Y

0

]
(4.7)

where G = [GA, GB]. (4.7) can be rewritten in the following form:

GT
Ap

(s) = −CTR−1CX̂(s)(k) + CTR−1Y (4.8a)

GT
Bp

(s) = −Q−1Ŵ (s)(k) (4.8b)

Since the size of matrix G is (Hp − 1)n × (2Hp − 1)n, we can only get p(s) by

approximation. In this work, X̂(s)(k) and Ŵ (s)(k) are related through the equality

constraint (4.2b ). Since GB is invertible, we pick equation (4.8b) to approximate

p(s), thus p(s) can be calculated as:

p(s) = −GT
B

−1
Q−1Ŵ (s)(k) (4.9)

X̂(s)(k) is updated according to equation (4.5a). Ŵ (s)(k) is updated according

to equation (4.5b) and p(s) is updated according to (4.9). After updating these

variables, coordinator calculates interaction term Ĥ
(s)
i (k) for each subsystem i for
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i = 1, 2, . . . , N according to (4.6). After that, coordinator sends p(s) and Ĥ
(s)
i (k)

to local estimators. The ith local estimator receives p(s) and Ĥ
(s)
i (k), and then solves

the local optimization problem (4.2) to obtain the estimated state X̂∗i and Ŵ ∗
i .

The above iteration process is terminated when the coordinator determines that

‖ X̂(s)(k)− X̂(s−1)(k) ‖< ε, where ε is pre-defined accuracy threshold.

The proposed prediction-driven CDMHE algorithm is summarized in Algorithm

2.

Algorithm 2 Implementation of Prediction-driven Coordinated Distributed MHE

Initialization
Coordinator: Set iteration counter s = 0. When k = 1, X̂(0)(k) and Ŵ (0)(k) are
arbitrarily determined; when k > 1, X̂(0)(k) and Ŵ (0)(k) are picked as X̂(k − 1),

Ŵ (k− 1). p(0)(k) is calculated according to (4.9), Ĥ
(0)
i (k) is determined according

to (4.6).
repeat

Coordinator: p(s) and Ĥ
(s)
i (k) are sent to local MHE estimators.

Local Estimators: Problem (4.2) is solved. X̂∗i(s)(k) and Ŵ ∗
i(s)(k) are sent to the

coordinator.
Coordinator: s ← s + 1, X̂(s)(k) and Ŵ (s)(k) are updated according to (4.5a)

and (4.5b), p(s) and Ĥ
(s)
i (k) are calculated based on (4.9) and (4.6).

until stopping criterion ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε is satisfied.

4.2 Convergence Performance Analysis

In this section, we first show that if at each sampling time the coordinated algorithm

converges, the prediction-driven coordinated algorithm converges to the correspond-

ing centralized performance. Then based on the iterative nature of the prediction-

driven CDMHE, we derive a set of sufficient conditions under which the convergence

of the algorithm is ensured.

4.2.1 Performance of the Coordinated Algorithm

In this section, we show that if the prediction-driven coordinated algorithm 2 con-

verges every sampling time, the solution of the prediction-driven CDMHE converges

to the centralized MHE.
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Proposition 4.2.1. Consider that the entire system described by (2.1) is estimated

by N local coordinated DMHE estimators as given by solving (4.2). Suppose that the

coordinated distributed MHE estimators are coordinated using the propose prediction-

driven CDMHE algorithm 2 described in Section 4.1. When the CDMHE converges

every sampling time, that is the stop criteria ‖X̂(s) − X̂(s−1)‖ < ε is satisfied, the

solution obtained from CDMHE equals to the centralized optimal solutions.

Proof Proposition 4.2.1 can be proven by comparing the centralized optimal solu-

tion to the solutions obtained with the prediction-driven CDMHE estimators.

Centralized Estimation Problem

As shown in (2.6), the centralized problem without inequality constraints can be

written in terms of variable Z(k) as follows:

min
Z(k)
J =

1

2
Z(k)TΥZ(k) + ΦTZ(k) (4.10a)

subject to:

GeqZ(k) = 0
(4.10b)

where Υ and Φ are the same as defined in (2.6), Z(k) = [X̂(k)T , Ŵ (k)T ]T , X̂(k) =

[X̂1(k)T , . . . , X̂N(k)T ]T and Ŵ (k) = [Ŵ1(k)T , . . . , ŴN(k)T ]T , Geq = [GA, GB], GA

and GB are defined in (2.13).

The Lagrange function of (4.10) is expressed as:

Lcen =
1

2
Z(k)TΥZ(k) + ΦTZ(k) + λT (GeqZ(k)) (4.11)

The optimal condition for a regular point Z∗(k) to be a minimum in the quadratic

problem (4.10) are:

ΥZ∗(k) + Φ +GeqTλ∗ = 0 (4.12a)

GeqZ∗(k) = 0 (4.12b)

where Z∗(k) is the optimal solution, λ∗ is the Lagrange multiplier.

49



Coordinated Estimation Problem

Aggregating the subsystem optimization problem (4.2) from 1 to N , the aggregated
form is expressed as follows:

min
X̂(k),Ŵ (k)

J =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C 0
0 Q−1

] [
X̂(k)

Ŵ (k)

]
+ {
[
−Y TR−1C 0

]
+ p(s)T Θ̄}

[
X̂(k)

Ŵ (k)

]
=

1

2
Z(k)TΥZ(k) + {ΦT + p(s)T Θ̄}Z(k)

(4.13a)

subject to: ḠeqZ(k) = Ĥ(s)(k) (4.13b)

where X̂(k) and Ŵ (k) are in the same order as in the centralized problem, Y, C

and Φ are also same as in the centralized problem. Ḡeq is the aggregated form of Geq
i

and Ḡeq = [ḠA, ḠB]. Θ̄ is the aggregated form of Θi and Θ̄ = [Θ̄A, Θ̄B]. Ĥ(s)(k) is

the aggregated form of Ĥ
(s)
i (k) and Ĥ(s)(k) = [Ĥ

(s)
1 (k)T , Ĥ

(s)
2 (k)T , · · · , Ĥ(s)

N (k)T ]T .

ḠA, ḠB, Θ̄A, Θ̄B are respectively defined as:

ḠA = diag(GA11 , ..., GANN
), (4.14)

ḠB = diag(GB11 , ...,GBNN
), (4.15)

Θ̄A = GA − ḠA, (4.16)

Θ̄B = GB − ḠB, (4.17)

So we have:

Θ̄ + Ḡ = G (4.18)

Ĥ(s)(k) = −Θ̄Z(s)(k) (4.19)

The first order optimal condition for equation (4.13) can be written as:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
Ap

(s) + ḠT
AλMHE = ∅ (4.20a)

Q−1ŴMHE(k) + Θ̄T
Bp

(s) + ḠT
BλMHE = ∅ (4.20b)

ḠAX̂MHE(k) + ḠBŴMHE(k) = −(Θ̄AX̂
(s)(k) + Θ̄BŴ

(s)(k))
(4.20c)

where X̂MHE(k) = [X̂1(k)T , · · · , X̂N(k)T ]T , ŴMHE(k) = [Ŵ1(k)T , · · · , Ŵ T
N ]T and

λMHE = [λT1 , · · · , λTN ]T . The subscript ‘MHE’ means that the solutions are the

aggregation of the local MHE solutions.
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The equation (4.20c) can be rewritten as following:

Ḡeq
A X̂MHE(k) + Ḡeq

B ŴMHE(k) + Θ̄AX̂
(s)(k) + Θ̄BŴ

(s)(k) = 0 (4.21)

In our proposed coordinated algorithm, when the algorithm converges, X̂(s)(k)

almost equals to X̂(s−1)(k). This implies that in the last iteration, X̂(s)(k) = X̂MHE(k)

and Ŵ (s)(k) = ŴMHE(k). Based on this, equation (4.21) can be written as:

Ḡeq
A X̂MHE(k) + Ḡeq

B ŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.22)

So the first order optimal conditions of prediction-driven CDMHE (4.20) becomes:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
Ap

(s) + ḠT
AλMHE = 0 (4.23a)

Q−1ŴMHE(k) + Θ̄T
Bp

(s) + ḠT
BλMHE = 0 (4.23b)

ḠAX̂MHE(k) + ḠBŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.23c)

Given GBij
= 0 is defined in (2.17), GB and ḠB as defined in (2.13) and (4.15)

respectively, the following equation can be concluded:

GB = ḠB (4.24)

Given the definition of Θ̄B as in equation (4.17), we can get Θ̄B = 0. The equation

(4.23b) can be written as:

GT
BλMHE = −Q−1ŴMHE(k) (4.25)

The price vector p(s) is updated by:

p(s) = −GT
B

−1
Q−1Ŵ (s)(k) (4.26)

Since at the end of iteration, Ŵ (s)(k) = ŴMHE(k), comparing (4.25) and (4.26),

we can get that p(s) = λMHE. Therefore, at the end of iteration, equation (4.23) can

be rewritten as:

CTR−1CX̂MHE(k)− CTR−1Y + Θ̄T
AλMHE + ḠT

AλMHE = 0 (4.27a)

Q−1ŴMHE(k) + ḠT
BλMHE = 0 (4.27b)

51



ḠAX̂MHE(k) + ḠBŴMHE(k) + Θ̄AX̂MHE(k) + Θ̄BŴMHE(k) = 0 (4.27c)

Let us denote ZMHE(k) = [X̂T
MHE, Ŵ

T
MHE]T , and write the equation (4.27) into

terms of ZMHE. The following equation can be obtained:

ΥZMHE(k) + Φ +GeqTλMHE = 0 (4.28a)

GeqZMHE(k) = 0 (4.28b)

Comparing the first order optimal conditions of the centralized problem (4.12)

with the ones of the coordinated problem (4.28) at the end of iteration, we can see

that they are all same except the name of variables. The solution of (4.12) and (4.28)

must be same; this means that at the end of the iteration, the estimated states of the

proposed prediction-driven CDMHE ZMHE(k) converges to the centralized estimate

Z∗(k).

4.2.2 Convergence Conditions

In this section, we provide sufficient conditions to ensure convergence of the proposed

prediction-driven coordinated algorithm. The sufficient conditions given in this sec-

tion ensure the convergence of the proposed prediction-driven CDMHE algorithm to

the centralized MHE. The proof of the convergence is inspired by the convergence

analysis of coordinated continuous-time linear quadratic regulators in Cohen, 1977.

First, we define the aggregated cost function without coordinating terms of the

CDMHE JD as follows:

JD =
N∑
i=1

JDi (4.29)

where

JDi =
1

2

(
|Yi(k)− CiiX̂i(k)|2

R−1
i

+ |Ŵi(k)|2
Q−1

i

)
s.t. GAii

X̂i(k) +GBii
Ŵi(k) = Ĥi(k)

Ĥi(k) = −
∑
j 6=i

Gij

[
X̂j(k)

Ŵj(k)

] (4.30)

where JDi is the cost function in local MHE i of (4.2) without the coordinating term,

Ĥi(k) is the accurate interaction in subsystem i.
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Based on the subsystem model, we are able to express Ŵi at a specific time instant

k in terms of the subsystem state and interaction as:

Ŵi(k) = G−1Bii
(Ĥi(k)−GAii

X̂i(k)) = fi(X̂i(k), Ĥi(k))

for : i = 1, 2, · · · , N.
(4.31)

So the objective function JDi can be written as follows:

JDi(X̂i(k), Ĥi(k)) =
1

2

(
|Yi(k)− CiiX̂i(k)|2

R−1
i

+ |fi(X̂i(k), Ĥi(k))|2
Q−1

i

)
(4.32)

Therefore, the objective function JD defined in (4.29) can be rewritten as:

JD(X̂(k), Ĥ(k)) =
1

2

N∑
i=1

(
|Yi(k)−CiiX̂i(k)|2

R−1
i

+ |fi(X̂i(k), Ĥi(k))|2
Q−1

i

)
(4.33)

Define ŴDMHE as the vector that contains all the subsystem Ŵi(k), ŴDMHE(k) =

[Ŵ1(k)T , Ŵ2(k)T , ..., ŴN(k)T ]T . Then according to the relationship between Ŵi(k)

and X̂i(k), Ĥi(k) in (4.31), ŴDMHE(k) can be written as:

ŴDMHE(k) = Ḡ−1B (Ĥ(k)− ḠAX̂(k)) = f(X̂(k), Ĥ(k)) (4.34)

where X̂(k) = [X̂1(k)T , X̂2(k)T , ..., X̂N(k)T ]T and Ĥ(k) = [Ĥ1(k)T , Ĥ2(k)T , ..., ĤN(k)T ]T ,

ḠA and ḠB are defined in (4.14) and (4.15) respectively.

Let K be the mapping from state X̂(k) to the interaction Ĥ(k). Then ŴDMHE(k)

can be rewritten as: ŴDMHE(k) = f(X̂(k), K(X̂(k))). The objective equation JD

can be expressed as follows:

JD(X̂(k), Ĥ(k)) =
1

2

(
|Y (k)− CX̂(k)|2R−1 + |f(X̂(k), K(X̂(k)))|2Q−1

)
(4.35)

For the centralized MHE (2.6), the estimated noise Ŵ (k) can also be expressed

as a function of states:

Ŵ (k) = −G−1B GAX̂(k) = f̄(X̂(k)) (4.36)

where the vector Ŵ (k) is arranged in the same way as the vector ŴDMHE(k). The

relationship between Ŵ (k) and X̂(k) can be derived from (2.6b) which gives a linear

relationship.
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The centralized objective function (2.6) can be expressed in terms of the estimated

states as:

Jcen(X̂(k)) =
1

2

(
|Y (k)− CX̂(k)|2R−1 + |f̄(X̂(k))|2Q−1

)
(4.37)

The objective functions JD(X̂(k), Ĥ(k)) and Jcen(X̂(k)) are both quadratic func-

tions that can be differentiated to obtain:

Ψ =
d2Jcen
dX(k)2

(4.38a)

Ω = diag(Ωi) (4.38b)

where Ωi =
∂2JD

∂X̂2
i (k)

, for i = 1, 2, ..., N . The matrices Ψ and Ω will be used in the

following theorem in characterizing the convergence conditions.

Theorem 4.2.1. Consider system (2.1) with the proposed prediction-driven coordi-

nated distributed state estimation algorithm described in Section 4.1. If Λ = (Ω− Ψ
2

)

is positive definite, then the estimates given by the prediction-driven CDMHE algo-

rithm converge to the ones obtained by the centralized MHE of (2.6) at each sampling

time as the iteration number s increases.

Proof For any given estimated state X̂(k):

f̄(X̂(k)) = −G−1B GAX̂(k) (4.39)

According to (4.30), we can get the aggregated form Ĥ(k) as following form:

Ĥ(k) = −
[
Θ̄A Θ̄B

] [X̂(k)

Ŵ (k)

]
(4.40)

while Θi = [ΘiA, ΘiB], ΘiA and ΘiB are defined in (4.4), Θ̄A = [Θ1A, Θ2A, · · · , ΘNA],

Θ̄B = [Θ1B, Θ2B, · · · , ΘNB]. Since GBij
= 0 from (2.17), thus Θ̄B = 0, ḠB = GB.

From (4.14) and the definition of Θ̄A, it can be obtained that:

GA = ḠA + Θ̄A (4.41)

Thus for any given estimated state X̂(k):

f(X̂(k), Ĥ(k)) = Ḡ−1B (Ĥ(k)− ḠAX̂(k))

= Ḡ−1B (−Θ̄AX̂(k)− ḠAX̂(k))

= −G−1B GAX̂(k)

(4.42)
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So we get the following equation:

f̄(X̂(k)) = f(X̂(k), K(X̂(k))) (4.43)

which also implies that:

Jcen(X̂(k)) = JD(X̂(k), Ĥ(k)) (4.44)

Evaluating the first order derivative respect to state X̂(k) at both sides of the

above equation (4.44), the following equation can be obtained:

dJcen

dX̂(k)
=

∂JD

∂X̂(k)
+

∂JD

∂Ĥ(k)

dĤ(k)

dX̂(k)
(4.45)

It can be seen that the objective function of prediction-driven CDMHE (4.2) Ji

can be rewritten as:

Ji(X̂i(k)) = JDi(X̂i(k), Ĥ
(s)
i (k)) + p(s)TΘi

[
X̂i(k)

Ŵi(k)

]
(4.46)

For the subsystem optimization problem (4.2), it can be verified based on the

definitions of the matrices in the cost function and system description that

p(s)TΘi

[
X̂i(k)

Ŵi(k)

]
= Γi(X̂

(s)(k))X̂i(k) (4.47)

while

Γi(X̂
(s)(k)) =

∂JD

∂Ĥ(k)
|(X̂(s)(k),K(X̂(s)(k)))

dĤ(k)

dX̂i(k)
|X̂(s)(k) (4.48)

The proof of equation (4.47) requires somewhat lengthy calculations, which are

given in Appendix B. The equation (4.47) and equation (4.45) reveal the relation

between the centralized MHE and the proposed CDMHE design.

Now, Let us consider the actual cost function used in the CDMHE design and

denote JCDMHE as the aggregation of the subsystem cost function such that:

JCDMHE =
N∑
i=1

Ji (4.49)

It can be calculated that:

dJCDMHE

dX̂(k)
|X̂(s)(k) =

∂JD

∂X̂(k)
|X̂(s)(k) +

∂JD

∂Ĥ(k)

dĤ(k)

dX̂(k)
|X̂(s)(k) (4.50)
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According to (4.45) and (4.50),
dJcen

dX̂(k)
=

dJCDMHE

dX̂(k)
when they are evaluated at

X̂(s)(k). This result will be used in the next part of the proof.

Next, let us consider the Lagrangian functions of the centralized MHE and the

CDMHE problems. Note that the equality constraint in (2.6) has already been used

in the expression of Ŵ in terms of X̂, so the Lagrangian function is equal to the

objective function.

If we denote the optimal solution to the centralized MHE at time instant k as

X̂∗(k) and perform Taylor series expansion of
dJcen

dX̂(k)
around X̂∗(k), it can be obtained

that:

dJcen

dX̂(k)
=

dJcen

dX̂(k)
|X̂∗(k) +

d2Jcen

dX̂2(k)
|X̂∗(k)(X̂(k)− X̂∗(k)) (4.51)

Note that since the objective function Jcen is quadratic, so the higher terms in (4.51)

are zeros. Also, since X̂∗(k) is the optimal solution of the centralized MHE at time

k, we can get
dJcen

dX̂(k)
|X̂∗(k) = 0 (4.52)

Moreover, according to (4.38), (4.51) can be rewritten as:

dJcen

dX̂(k)
= Ψ(X̂(k)− X̂∗(k)) (4.53)

If we evaluate
dJcen

dX̂(k)
at X̂(s)(k), we can get:

dJcen

dX̂(k)
|X̂(s)(k) = Ψ(X̂(s)(k)− X̂∗(k)) (4.54)

Let us also perform a Taylor series expansion of
dJCDMHE

dX̂(k)
around X̂(s+1)(k) which

is the optimal solution of the CDMHE at the end of sth iteration, we have:

dJCDMHE

dX̂(k)
=
dJCDMHE

dX̂(k)
|X̂(s+1)(k) +

d2JCDMHE

dX̂2(k)
|X̂(s+1)(k)(X̂(k)− X̂(s+1)(k)) (4.55)

Because X̂(s+1)(k) is the optimal solution of the CDMHE at sth iteration, we can

get that
dJCDMHE

dX̂(k)
|X̂(s+1)(k) = 0 (4.56)
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Form equation (4.47), it can be observed that the coordinating term in Ji is a

linear function of X̂i(k), thus
d2JCDMHE

dX̂2(k)
=

d2JD

dX̂2(k)
= diag(

d2JD

dX̂2
i (k)

) = Ω. Equation

(4.55) can be further rewritten as:

dJCDMHE

dX̂(k)
= Ω(X̂(k)− X̂(s+1)(k)) (4.57)

If we evaluate
dJCDMHE

dX̂(k)
at X̂(s)(k), we can get:

dJCDMHE

dX̂(k)
|X̂(s)(k) = Ω(X̂(s)(k)− X̂(s+1)(k)) (4.58)

From (4.45), (4.50), (4.54) and (4.58), we get:

X̂(s)(k)− X̂(s+1)(k) = Ω−1Ψ(X̂(s)(k)− X̂∗(k)). (4.59)

Now, let us expand Jcen(X̂(k)) around X̂(s)(k); that is,

Jcen(X̂(k)) =Jcen(X̂(s)(k)) +
dJcen

dX̂(k)
|T
X̂(s)(k)

(X̂(k)− X̂(s)(k))

+ (X̂(k)− X̂(s)(k))T
1

2

d2Jcen

dX̂2(k)
|T
X̂(s)(k)

(X̂(k)− X̂(s)(k))

(4.60)

Evaluating (4.60) at X̂(s+1)(k), we can get:

Jcen(X̂s+1(k)) =Jcen(X̂s(k)) + (X̂s(k)− X̂s+1(k))TΩ(X̂s+1(k)− X̂s(k))

+ (X̂s+1(k)− X̂s(k))T
Ψ

2
(X̂s+1(k)− X̂s(k))

(4.61)

From equation (4.61) and (4.59), we can get the expression of Jcen(X̂s(k)) −
Jcen(X̂s+1(k)) as following:

Jcen(X̂(s)(k))− Jcen(X̂(s+1)(k)) =(X̂(s)(k)− X̂∗(k))TΨT (Ω−1)T (Ω − Ψ

2
)Ω−1Ψ(X̂(s)(k)− X̂∗(k))

(4.62)

We can make the following conclusions: If Ω− Ψ

2
> 0 is satisfied, we can get that

Jcen(X̂(s)(k)) > Jcen(X̂(s+1)(k)). This implies that with the increasing of iteration

s, the estimate obtained by the prediction-driven CDMHE X̂(s)(k) converges to the

centralized estimate X̂∗(k).
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4.3 Prediction-driven CDMHE Formulation with

Inequality Constraints

One main advantage of moving horizon estimation is the ability to handle constraints.

In Section 4.1, the prediction-driven coordinated distributed moving horizon estima-

tion algorithm is formulated without inequality constraints. In this section, we pro-

pose to use barrier functions to handle the inequality constraints. In this way, we

transfer the inequality constraints into the cost function. Specially, we consider the

constraints on the estimated state X̂ and the estimated process noise Ŵ .

The objective function of the prediction-driven CDMHE becomes:

min
X̂i(k),Ŵi(k)

Ji =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR

−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
(4.63a)

s.t. GAii
X̂i(k) +GBii

Ŵi(k) = Ĥ
(s)
i (k)

X̂i(k) ∈ X, Ŵi(k) ∈W
(4.63b)

First, we introduce the barrier function, ρ : R→ R as follows:

ρ(u) =

{
0 lb ≤ u ≤ ub

+∞ else
(4.64)

where lb is the lower bound of u and ub is the upper bound of u. From the definition

of the barrier function, it can be seen that the barrier function acts like a wall to

constrain the variable into the boundary.

Our goal is to approximately formulate the inequality constrained prediction-

driven CDMHE as an unconstrained problem. Using the barrier function introduced

in equation (4.64), the augmented objective function of local MHE i in the prediction-

driven CDMHE denoted as Jic can be rewritten as:
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min
X̂i(k),Ŵi(k)

Jic =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR

−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
+ ρix(X̂i(k)) + ρiw(Ŵi(k))

(4.65a)

s.t. GAii
X̂i(k) +GBii

Ŵi(k) = Ĥ
(s)
i (k) (4.65b)

where

ρix(X̂i(k)) =
K∑

l=K−Hp+1

ni∑
j=1

ρ(x̂ij(l)); (4.66a)

ρiw(Ŵi(k)) =
K−1∑

l=K−Hp+1

ni∑
j=1

ρ(ŵij(l)) (4.66b)

where X̂i(k) = [x̂i(k−Hp+1)T , x̂i(k−Hp+2)T , · · · , x̂i(k)T ]T for i = 1, 2, · · · , N .

x̂i(l) = [x̂i1(l)
T , x̂i2(l)

T , · · · , x̂ini
(l)T ]T and ni is the number of states in subsystem

i. Let us denote this kind prediction-driven CDMHE as augmented prediction-driven

CDMHE.

Therefore the aggregated augmented objective function of constrained prediction-

driven CDMHE denoted as JCDMHE can be obtained as:

JCDMHE =
N∑
i=1

Jic (4.67)

For the centralized MHE, the same method is applied to transfer the inequality

constraints on estimated states X̂ and estimated process noise Ŵ into the objec-

tive function. Let us denote this kind of centralized MHE as augmented centralized

MHE. Thus the objective function of augmented centralized MHE has the following

expression:

min
X̂(k),Ŵ (k)

Jcenc =
1

2

[
X̂(k)T Ŵ (k)T

] [CTR−1C
Q−1

] [
X̂(k)

Ŵ (k)

]
+
[
−Y TR−1C 0

] [X̂(k)

Ŵ (k)

]
+ ρx(X̂(k)) + ρw(Ŵ (k))

(4.68a)

s.t. GAX̂(k) +GBŴ (k) = 0 (4.68b)
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where

ρx(X̂(k)) =
N∑
i=1

{
K∑

l=K−Hp+1

ni∑
j=1

ρ(x̂ij(l))} (4.69a)

ρw(Ŵ (k)) =
N∑
i=1

{
K−1∑

l=K−Hp+1

ni∑
j=1

ρ(ŵij(l))} (4.69b)

(4.69c)

where X̂(k) = [X̂1(k)T , X̂2(k)T , · · · , X̂N(k)T ]T , X̂i(k) is arranged in the same way

as the subsystem i in the prediction-driven CDMHE.

The same barrier function is used to transfer the inequality constraints into the

cost function in the decentralized MHE. Let us denote this kind decentralized MHE

as augmented decentralized MHE. For subsystem i described in (2.19), the new aug-

mented objective function denoted as Jidc becomes:

min
X̂i(k),Ŵi(k)

Jidc =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR
−1
i Cii

Q−1i

] [
X̂i(k)

Ŵi(k)

]
+
[
−Y T

i R−1i Cii 0
] [X̂i(k)

Ŵi(k)

]
+ρix(X̂i(k)) + ρiw(Ŵi(k))

(4.70a)

s.t. GAiiX̂i(k) +GBiiŴi(k) = 0 (4.70b)

where ρix(X̂i(k)) and ρiw(Ŵi(k)) are defined in equation (4.66a) and equation (4.66b)

respectively.

The corresponding price vector in the augmented prediction-driven CDMHE is

calculated as:

p(s) = −GT
B

−1
Q−1Ŵ (s)(k)− dρw(Ŵ (s)(k))

dŴ (s)(k)
(4.71)

where

dρw(Ŵ (s)(k))

dŴ (s)(k)
= [

dρ1w(Ŵ
(s)
1 (k))

dŴ
(s)
1 (k)

T

,
dρ2w(Ŵ

(s)
2 (k))

dŴ
(s)
2 (k)

T

, · · · ,
dρNw(Ŵ

(s)
N (k))

dŴ
(s)
N (k)

T

]T (4.72a)

dρiw(Ŵ
(s)
i (k))

dŴ
(s)
i (k)

= [
dρ(ŵ

(s)
1 (k −Hp + 1))

dŵ
(s)
1 (k −Hp+ 1)

T

,
dρ(ŵ

(s)
2 (k −Hp + 2))

dŵ
(s)
2 (k −Hp + 2)

T

, · · · ,
dρ(ŵ

(s)
ni (k − 1))

dŵ
(s)
ni (k − 1)

T

]T

(4.72b)

dρ(ŵ
(s)
i (k −Hp + 1))

dŵ
(s)
i (k −Hp+ 1)

= [ρ′(ŵ
(s)
i1 ), ρ′(ŵ

(s)
i2 ), · · · , ρ′(ŵ(s)

ini
)]T (4.72c)
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Since the objective functions in all three schemes (centralized MHE, decentralized

MHE and prediction-driven CDMHE) are all minimization problems, after adding

the barrier function to the objective function, the barrier function assures that the

variables satisfy the constraints. Compared with the unconstrained case, the optimum

that the augmented centralized MHE find is inside the boundary and may be different

form the unconstrained case. For the augmented prediction-driven CDMHE , for every

iteration at each sampling time, there exists sequences of X̂(s) and Ŵ (s) inside the

boundary.

In the implementation of the CDMHE algorithm, the basic idea is to approximate

the barrier function defined in (4.64). Let us consider the case that we only have the

upper bound u ≤ 0. The barrier function denoted as ρ−(u) becomes:

ρ−(u) =

{
0 u ≤ 0

+∞ else
(4.73)

Logarithmic barrier function is one way to approximate the barrier function (4.64).

As shown in Figure 4.2, logarithmic barrier functions give good approximations. In

the implementation, the approximation of the barrier function always ensures the

variables are inside the boundary. The logarithmic function that used to approximate

the barrier function (4.64) is expressed as:

ρ̂−(u) = −(1/t)log(−u) (4.74)

where −(1/t)log(−u) is convex and increasing in u, and differentiable. t > 0 is a

parameter that sets the accuracy of the approximation. As t increases, the approxi-

mation becomes more accurate (Boyd and Vandenberghe, 2004).

4.3.1 Convergence Analysis

Using the logarithmic barrier function to approximate the prediction-driven CDMHE

inequality constraints (4.63). For the aggregated augmented prediction-driven CDMHE

and the augmented centralized MHE, denoting the logarithmic barrier function in the

cost function as (1/t)φ(X), it can be obtained that:

JCDMHEC = JCDMHE + (1/t)φ(X) (4.75a)
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Figure 4.2: The dashed lines show the function ρ−(u) and the solid lines show ρ̂−(u) =
−(1/t)log(−u).

Jcenc = Jcen + (1/t)φ(X) (4.75b)

Let us consider that the system has m inequality constraints that can be expressed

as Ti(X) ≤ 0, for i = 1, . . . , m; therefore, φ(X) = −
∑m

i=1 log(−Ti(X)). The first

order and second order derivatives of logarithmic barrier function φ can be expressed

as (Boyd and Vandenberghe, 2004):

∇φ(X) =
m∑
i=1

1

−Ti(X)
∇Ti(X) (4.76a)

∇2φ(X) =
m∑
i=1

1

Ti(X)2
∇Ti(X)∇Ti(X)T +

m∑
i=1

1

−Ti(X)
∇2Ti(X) (4.76b)

Therefore, for the augmented centralized MHE, equation (4.54) becomes:

dJcenc

dX̂(k)
|X̂(s)(k) = (Ψ +

1

t
∇2φ(X∗))(X̂(s)(k)− X̂∗(k)) (4.77)
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For the augmented prediction-driven CDMHE, equation (4.58) becomes:

dJCDMHEC

dX̂(k)
|X̂(s)(k) = (Ω +

1

t
∇2φ(X(s+1)))(X̂(s)(k)− X̂(s+1)(k)) (4.78)

For the derivatives of the logarithmic barrier function φ(X), we have the following

assumption:

• With the increasing of t to ∞, 1
t
∇φ(X) and 1

t
∇2φ(X) are going to zero.

Let us used the following symbols to represent the derivatives of logarithmic barrier

function as:

ε1 =
1

t
∇2φ(X∗)(X̂(s)(k)− X̂∗(k)), (4.79a)

ε2 =
1

t
∇2φ(X(s+1))(X̂(s)(k)− X̂(s+1)(k)) (4.79b)

ε3 =
1

t
∇2φ(X(s)) (4.79c)

A similar equality equation to (4.59) can be obtained as:

X̂(s)(k)− X̂(s+1)(k) = Ω−1(Ψ(X̂(s)(k)− X̂∗(k)) + ε1 − ε2)

= Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε4
(4.80)

where ε4 = Ω−1(ε1 − ε2).
Therefore, for the augmented cost functions, the similar expression to (4.62) can

be obtained as following:

Jcenc(X̂(s)(k))− Jcenc(X̂(s+1)(k)) =(Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε3)
T (Ω − Ψ

2
− ε4

2
)

(Ω−1Ψ(X̂(s)(k)− X̂∗(k)) + ε3)
(4.81)

The values of ε1, ε2, ε3 and ε4 are closely related to the value of t which can

be adjusted in the simulations. According to the assumption that when t goes to

∞, εi, i = 1, 2, 3, 4 are all close to zero. Therefore the similar conclusion can be

obtained as in Section 4.2.2 as t goes to ∞, with the increasing of iteration s, the

estimate obtained by the augmented prediction-driven CDMHE X̂(s)(k) converges to

the augmented centralized estimate X̂∗(k).
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4.4 Illustrative Examples

In this section, the proposed prediction-driven CDMHE algorithm is applied to two

chemical processes. In the first case, the process contains two connected continu-

ous stirred tank reactor. In the second case, the process consists of two connected

continuous stirred tank reactors and one flash tank separator which has been used

in Section 3.5. In this case, we consider constraints on the estimated variables X̂

and Ŵ and use the method proposed in Section 4.3 to transfer the inequality con-

straints into the objective function. The results of both cases show that the proposed

prediction-driven CDMHE reaches the centralized MHE performance.

4.4.1 Two-CSTR Case

In this section, the proposed coordinated state estimation approach is applied to a

simulated chemical process. The process contains two connected continuous stirred

tank reactor (CSTR) with a recycle stream as shown in Figure 4.3 (Sun and El-

Farra, 2008). As shown in Figure 4.3, pure A is fed into the first CSTR at flow rate

F0, molar concentration CA0 and temperature T0. A stream recycled from CSTR 2 is

also fed into CSTR 1 at flow rate Fr, molar concentration CA2 and temperature T2.

The outlet stream of CSTR 1 is fed to CSTR 2 and an additional stream containing

pure A at molar concentration CA03, flow rate F3 and temperature T03 is also fed

to CSTR 2. The output of CSTR 2 passes through a separator which is used to

remove the products and recycle unreactant A back to CSTR 1. Three irreversible

elementary exothermic reactions A → B, A → U and A → R take place in the

two reactors, where A is the reactant material, B is the desired product, and R

and U are the undesired byproducts. Because of the non-isothermal nature of the

reactions, each CSTR is equipped with a jacket to remove/provide heat. Based on

standard modeling assumptions, four ordinary differential equations can be obtained

to describe the dynamics:

dT1
dt

=
F0

V1
(T0 − T1) +

Fr

V1
(T2 − T1) +

3∑
i=1

Gi(T1)CA1 +
Q1

ρcpV 1
(4.82a)

dCA1

dt
=
F0

V1
(CA0 − CA1) +

Fr

V1
(CA2 − CA1)−

3∑
i=1

Ri(T1)CA1 (4.82b)
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Figure 4.3: Process flow diagram of two interconnected CSTR units.

dT2
dt

=
F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑
i=1

Gi(T2)CA2 +
Q2

ρcpV 2
(4.82c)

dCA2

dt
=
F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)−

3∑
i=1

Ri(T2)CA2 (4.82d)

where Ri(Tj) = ki0exp(−Ei/RTj), Gi(Tj) = ((−∆Hi)/ρcp)Ri(Tj), with j = 1, 2,

Tj, CAj, Vj and Qj represent the temperature of the reactor, the concentration of

A, the reactor volume and the rate of the heat input to the reactor, respectively,

∆Hi, ki, Ei, with i = 1, 2, 3, denote the enthalpies, pre-exponetial constants and ac-

tivation energies of three reactions, respectively, cp and ρ denote the heat capacity

and density of the fluid in the reactors. The parameters are given in Table 3.2.

When Q1 = Q2 = 0, CA0 = Cs
A0, CA03 = Cs

A03, the process has a steady state at

(T s
1 , C

s
A1, T

s
2 , C

s
A2) = (300.3878K, 2.4881kmol/m3, 300.3496K, 2.2840kmol/m3). Lineariz-

ing the nonlinear model at this steady state, a linear model of the process can be

obtained. We assume that temperatures T1, T2 are measurable and sampled syn-

chronously with sampling time ∆t = 0.005h = 18sec. The concentration in the two

CSTRs are unmeasurable and should be estimated. Note that an output feedback

controller is implemented to ensure the closed-loop stability. The entire process is

divided into two subsystems according to the two reactors.

For subsystem 1, x1(k) = [T1(k) − T s
1 , CA1(k) − Cs

A1]
T , for subsystem 2, x2(k) =
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Table 4.1: Process parameters of 2-CSTR process

F0 = 4.998m3/h k10 = 3.0× 106h−1

F1 = 39.996m3/h k20 = 3.0× 105h−1

F3 = 30.0m3/h k30 = 3.0× 105h−1

Fr = 34.998m3/h E1 = 5.0× 104kJ/kmol
V1 = 1.0m3 E1 = 7.53× 104kJ/kmol
V1 = 3.0m3 E1 = 7.53× 104kJ/kmol

R = 8.314kJ/kmolK ρ = 1000.0kg/m3

T0 = 300.0K cp = 0.231kJ/kgK
T03 = 300.0K Cs

A0 = 4.0kmol/m3

Cs
A03 = 2.0kmol/m3 ∆H1 = −5.0× 104kJ/kmol

∆H2 = −5.2× 104kJ/kmol ∆H3 = −5.4× 104kJ/kmol

Table 4.2: Parameters used in the prediction-driven CDMHE for the 2-CSTR process

MHE 1 MHE 2
Initial Guess x̂1(0) = [5; 3.5] x̂2(0) = [20; 4]

Moving Horizon 10 10

Weighting Matrix Q1 =

[
0.62 0

0 0.982

]
Q2 =

[
0.62 0

0 0.982

]
R1 = 0.82 R2 = 0.82

[T2(k) − T s
2 , CA2(k) − Cs

A2]
T . The actual initial condition for the whole system is

x(0) = [13, 2, 34, 1.5]T . The random disturbances added to the dynamics of the tem-

peratures are generated as normally distributed values with zero mean and standard

deviation 1. The random disturbances added to the dynamics of the concentrations

are generated as normally distributed values with zero mean and standard deviation

0.1. The initial guesses, horizon and weighting matrices used in the two local MHEs

are shown in Table 4.2. The termination threshold ε = 0.0001.

For this chemical process, there are two subsystems. According to (4.38), we can

get Ψ as follows:

Ψ = CTR−1C +GT
AG
−1
B

T
Q−1G−1B GA (4.83)

where C,R and Q are defined in (2.6), GA and GB are defined in (2.13).
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According to equation (4.38), we can get Ω as follows:

Ω1 = CT
11R

−1
1 C11 +GT

A11
G−1B11

T
Q−11 G−1B11

GA11

Ω2 = CT
22R

−1
2 C22 +GT

A22
G−1B22

T
Q−12 G−1B22

GA22

Ω =

[
Ω1

Ω2

] (4.84)

It can be verified that the eigenvalues of (Ω − Ψ/2) are all positive which means

(Ω−Ψ/2) is positive definite, so the convergence condition proposed in Proposition

4.2.1 is satisfied.

The coordinated scheme is implemented following Algorithm 2 to estimate the

entire system state in a distributed way. The proposed prediction-driven CDMHE

is compared with different estimation techniques to illustrate its performance. Spe-

cially, the proposed prediction-driven CDMHE is compared with the corresponding

centralized MHE and decentralized MHE. Note that in the decentralized MHE, the

interactions between subsystems are neglected.

The simulation results are given in Figure 4.4 - Figure 4.6. The trajectories of

the estimates given by the three estimation schemes are shown in Figure 4.4. In

order to see the estimated trajectories obtained by the prediction-driven CDMHE

algorithm and the centralized MHE clearly. Figure 4.5 shows the estimation given by

the centralized MHE and the prediction-driven CDMHE along with the actual state

trajectory. The trajectories of the estimation error are in Figure 4.6.

From Figure 4.5, it can be seen that the estimated state given by the proposed

prediction-driven CDMHE and the estimated states given by the centralized MHE are

very close (the two lines overlap with each other). This means the prediction-driven

CDMHE has reached the performance of the centralized MHE. From Figure 4.4 and

Figure 4.6, we can see that the estimation given by the decentralized MHE is poor

compared with the prediction-driven CDMHE. Note that both the centralized MHE

and the prediction-driven CDMHE give relatively poor estimates of the second state.

This is due to the characteristics of the process. In this work, we show that the

proposed prediction-driven CDMHE gives the same performance as the centralized

MHE. From Figure 4.9, it can be seen that the proposed prediction-driven CDMHE

and the centralized MHE give significantly improved performance over the decentral-

ized MHE. This is because the prediction-driven CDMHE and centralized MHE take
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Figure 4.4: Trajectories of the actual state (solid line), estimates given by the proposed
prediction-driven CDMHE (dashed line), estimates given by the centralized MHE (dotted
line), and the decentralized MHE (dash-dotted line).

into account the interactions between subsystem explicitly while in the decentralized

MHE the interaction between subsystems is ignored.

4.4.2 Two-CSTR and One Separator

The same chemical process used in Section 3.5 is used here to illustrate the effec-

tiveness of the prediction-driven CDMHE. The initial state remains same. We use

logarithmic barrier to approximate the barrier functions mentioned in (4.64). For

subsystem i in the prediction-driven CDMHE and decentralized MHE, the barrier

functions are chosen as:

ρix(X̂i(k)) = (−1/t)
K∑

l=K−Hp+1

ni∑
j=1

(log(x̂ij(l)− Xlbij) + log(Xubij − x̂ij(l)) (4.85a)

ρiw(Ŵi(k)) = (−1/t)
K−1∑

l=K−Hp+1

ni∑
j=1

(log(ŵij(l)−Wlbij) + log(Wubij − x̂ij(l)) (4.85b)

In the centralized MHE, the barrier function is the summation of the decentralized

68



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

0

5

10

15

20

X̂
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−5

0

5

X̂
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10

0

10

20

30

40

X̂
3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

−1

0

1

2

3

4

X̂
4

T (h)

Figure 4.5: Trajectories of the actual state (solid line), estimates given by the proposed
prediction-driven CDMHE (dashed line), estimates given by the centralized MHE (dotted
line).

ones, as following:

ρx(X̂(k)) =
N∑
i=1

ρix(X̂i(k)) (4.86a)

ρw(Ŵ (k)) =
N∑
i=1

ρiw(Ŵi(k)) (4.86b)

where t is a turning parameter, Xlb and Xub are the lower bound and upper bound

of the constraints on the estimated states X̂, respectively, and Wlb and Wub are

the lower bound and upper bound of the constraints on the estimated noises Ŵ ,

respectively.

The tuning parameter t is chosen as a large positive number and determines the

accuracy of the approximation. When x̂ij and ŵij are inside the boundary, the barrier

function terms will almost have no effects on the original cost function. When x̂ij or

ŵij approaches the boundary, the value of ρxi(X̂i(k)) or ρwi(Ŵi(k)) approaches +∞.

In this case, the tuning parameter t is chosen as 106. The weighting matrices and

initial guesses of subsystems are given in Table 4.3.
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Figure 4.6: Trajectories of the estimation error given by proposed prediction-driven
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE
(dashed line)

For this chemical process, there are three subsystems. According to (4.38), we

can get Ψ as follows:

Ψ = CTR−1C +GT
AG
−1
B

T
Q−1G−1B GA (4.87)

where C,R and Q are defined in (2.6), GA and GB are defined in (2.13).

Table 4.3: Parameters used in the prediction-driven CDMHE

Initial Guess Moving Horizon Weighting Matrix

MHE 1 x̂1(0) = [0.0508 0.3277 561.0186]T 10 Q1 =

0.822 0
0 0.12 0
0 0 0.82


R1 = 12

MHE 2 x̂2(0) = [0.1518 0.4444 513.3340]T 10 Q2 =

0.522 0 0
0 0.82 0
0 0 1.22


R2 = 12

MHE 3 x̂3(0) = [0.0693 0.3560 546.4699]T 10 Q3 =

0.22 0 0
0 0.12 0
0 0 0.32


R3 = 12
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According to equation (4.38), we can get Ω as follows:

Ω1 = CT
11R

−1
1 C11 +GT

A11
G−1B11

T
Q−11 G−1B11

GA11

Ω2 = CT
22R

−1
2 C22 +GT

A22
G−1B22

T
Q−12 G−1B22

GA22

Ω3 = CT
33R

−1
3 C33 +GT

A33
G−1B33

T
Q−13 G−1B33

GA33

Ω =

Ω1

Ω2

Ω3


(4.88)

It can be verified that the eigenvalues of (Ω − Ψ/2) are all positive which means

(Ω−Ψ/2) is positive definite, so the convergence condition proposed in Proposition

4.2.1 is satisfied.

The simulation results are shown in Figure 4.7 - Figure 4.10. Figure 4.7 shows the

trajectories of the estimated states given by the centralized MHE, the decentralized

MHE, the prediction-driven CDMHE and the actual states.Figure 4.8 is used to give

us a clearer view of the estimated states given by the prediction-driven CDMHE

and the centralized MHE. We can see that the prediction-driven CDMHE reaches

the centralized performance. Figure 4.9 shows the trajectories of the error norm

of the three estimated algorithms. We can see that the performance of centralized

MHE and proposed prediction-driven CDMHE algorithm are much better than the

decentralized MHE. The summation of error given by the prediction-driven CDMHE

is 14.0238 while the summation of error given by the decentralized MHE is 147.15

which is more than 10 times of the error norm provided by prediction-driven CDMHE.

Figure 4.10 shows the number of iterations during the sampling time intervals. It can

be seen that the iterations are between 8 and 22.

From the above two simulation cases, the performance of proposed prediction-

driven CDMHE agrees with what is suggested by the theoretical analysis, and reaches

the performance of the centralized MHE. Compared with the decentralized MHE, the

proposed prediction-driven CDMHE has significant improvement while still keeps the

flexibility in the structure.
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Figure 4.7: Trajectories of the actual state (solid line), estimates given by the proposed
CDMHE (dashed line), estimates given by the centralized MHE (dotted line), and the
decentralized MHE (dash-dotted line).
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Figure 4.8: Trajectories of the actual state (solid line), estimates given by the proposed
CDMHE (dashed line), estimates given by the centralized MHE (dash-dotted line).

4.5 Conclusions

In this chapter, a coordinated distributed moving horizon estimation scheme is pro-

posed for a class of discrete-time, linear systems. In particular, the class of linear
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Figure 4.9: Trajectories of the estimation error norm given by proposed CDMHE (dash-
dotted line), the centralized MHE (solid line), and the decentralized MHE (dashed line).
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Figure 4.10: Numbers of iterations during each sampling time.

systems we focus on is composed of several subsystems that interact with each other

via their states. It is seen from the formulations that the proposed prediction-driven

CDMHE estimators are obtained by modifying the decentralized MHE estimator. A

coordinating term is added to each local MHE to connect the local estimators with the

coordinator. After modifying the decentralized MHEs, the coordinator is designed

based on a method used to solve the the optimality conditions of the aggregated

CDMHE. This allows the prediction-driven CDMHE scheme to maintain the desired
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properties of the decentralized MHE estimators such as flexibility and robustness.

Convergence of the prediction-driven CDMHE algorithm is also studied in this

chapter and sufficient convergence conditions are given. In addition, a way to use

barrier function to handle inequality constraints in the proposed coordinated algo-

rithm is presented in Section 4.3 and the convergence is guaranteed. Furthermore, it

is shown that once the convergence condition is satisfied, the solution of the proposed

prediction-driven CDMHE algorithm converges to the centralized MHE solution. Two

chemical processes are used to illustrate the efficiency and applicability of the pro-

posed coordinated scheme.
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Chapter 5

Robustness of the
Prediction-driven CDMHE

In this chapter, the robustness of the prediction-driven CDMHE algorithm proposed

in Chapter 4 is investigated under different scenarios. These scenarios include: 1)

Triggered communication, between the subsystem estimators and the coordinator, 2)

Communication failure between a subsystem and the coordinator, and 3) Premature

termination of the coordination algorithm. The robustness investigation is carried

out based primarily on simulations with extensive discussion.

5.1 Triggered Communication

In this section, the proposed prediction-driven CDMHE with triggered communication

is discussed. The purpose of the triggered communication method is to minimize the

communication cost between the local estimators and the coordinator. A schematic of

the prediction-driven CDMHE with triggered communication is presented in Figure

5.1. In this algorithm, every local subsystem has a MHE estimator and a commu-

nication trigger which determines whether the information in the current iteration

should be sent to the coordinator. This implies that the information obtained in a

subsystem estimator at the current iteration is not necessarily sent to the coordinator.

In this way the communication load between the subsystems and the coordinator can

be reduced. In this algorithm, the difference between the current state estimate and

the last sent state estimate is the basis to design the triggering condition. The rest

of this section is organized as follows: first, the proposed prediction-driven CDMHE
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with triggered communication algorithm is presented; then a convergence analysis

is given; finally, the algorithm is applied to the chemical process that described in

Section 3.5.

Figure 5.1: A schematic of the proposed prediction-driven CDMHE design with triggered
communication.

The implementation algorithm of the prediction-driven CDMHE with triggered

communication is described in Algorithm 3.

It is shown in Algorithm 3 that the triggering condition for each subsystem i is

checked every iteration during each sampling interval after the latest estimated state

is calculated by the local MHE i. The triggering condition is designed based on the

difference between the current estimated states and last sent estimated states. For

subsystem i, the triggering condition at sth iteration during sampling time k is defined

specifically as follows:

U
(s)
i (k) =

{
1, if ‖X̂∗i(s)(k)− X̂(si)

i (k)‖ ≥ εi

0, if ‖X̂∗i(s)(k)− X̂(si)
i (k)‖ < εi

(5.1)

where si is the last iteration that MHE i sent its state to the coordinator. X̂∗i(s)(k)

and Ŵ ∗
i(s)(k) are the current estimated state and noise of MHE i at iteration s in the

time interval k, respectively. X̂
(si)
i (k) and Ŵ

(si)
i (k) are the last sent estimated state

and noise of MHE i at time interval k. εi is the threshold of subsystem i. When

U
(s)
i (k) = 1, that is, the triggering condition is satisfied, the MHE i set X̂

(s)
i (k) =

X̂∗i(s)(k), Ŵ
(s)
i (k) = Ŵ ∗

i(s)(k) and sends them to the coordinator. At the same time,

the local trigger updates si to s. When U
(s)
i (k) = 0, which implies the triggering
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Algorithm 3 Prediction-driven CDMHE with triggered communication

Initialization
Coordinator : Set iteration counter s = 0. When k = 1, X̂(0)(k) and Ŵ (0)(k)
are arbitrarily determined; else X̂(0)(k) and Ŵ (0)(k) are picked as X̂(k − 1) and

Ŵ (k − 1), and p(0)(k) and Ĥ
(s)
i (k) are calculated according to (4.9) and (4.6),

respectively.
Local Trigger : In local trigger i, X̂

(0)
i (k) is picked as the corresponding part in

X̂(0)(k) in the coordinator.
repeat

Coordinator : p(s) and Ĥ
(s)
i (k) are sent to local MHE estimators.

Local Estimators : Local problem (4.2) is solved based on the local measure-
ments Yi(k). X̂∗i(s)(k) is sent to the trigger that associated with the local MHE.

Local Trigger : The trigger checks the triggering condition. If the triggering
condition is satisfied, the trigger updates X̂

(s)
i (k) = X̂∗i(s)(k) and Ŵ

(s)
i (k) = Ŵ ∗

i(s)(k)

and sends X̂
(s)
i (k) and Ŵ

(s)
i (k) to the coordinator. Otherwise, no information is

transmitted between the trigger and the coordinator.
Coordinator : Coordinator uses X̂

(s)
i (k) and Ŵ

(s)
i (k) that received from triggers

to construct X̂(s)(k) and Ŵ (s)(k). Then, p(s) and Ĥ
(s)
i (k) are calculated based on

(4.9) and (4.6).
until stopping criterion ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε is satisfied.

condition is not satisfied, the MHE i does not send any estimated variables to the

coordinator. The coordinator continues using the estimated variables that received

previously. From the triggering condition in equation (5.1), it can be seen that the

condition is dependent on the local subsystem. Therefore, the triggering conditions

for different subsystems may be satisfied at different iterations.

From Algorithm 3, it can be seen that a local trigger uses the triggering con-

dition to decide whether to update the estimated state or not. In the prediction-

driven CDMHE with triggered communication, instead of using the current esti-

mated states from the subsystems, sometimes coordinator needs to use the last

sent estimated states to approximate the current estimated states. The stopping

criterion in the prediction-driven CDMHE with triggered communication requires

‖X̂(s)(k)− X̂(s−1)(k)‖ < ε in the coordinator which is the same as in the prediction-

driven CDMHE of Algorithm 2.
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5.1.1 Convergence Analysis

The convergence analysis is conducted under the assumption that the proposed prediction-

driven CDMHE with regular communication converges. Since the stopping criteria

used in the coordinator is ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε, which means the largest differ-

ence between two iterations is ε. For a system with N subsystems, when the stopping

criterion ‖X̂(s)(k)− X̂(s−1)(k)‖ < ε in the coordinator is satisfied at time k, there are

three cases need to be discussed:

1. The triggering conditions and the stopping criteria in the coordinator are all

satisfied at the same iteration, which means that all the current estimated states

are sent to the coordinator. This situation is exactly the same as the proposed

prediction-driven CDMHE with regular communication;

2. Some of the triggering conditions are satisfied. In this case, some of the es-

timated states X̂
(s)
i (k) are last sent estimated states which means they are

the approximation of the current actual states X̂∗i(s)(k). Without losing gen-

erality, we assume that from subsystem 1 to subsystem l, the triggering con-

ditions are satisfied when the stopping condition in the coordinator is satis-

fied. Therefore, ‖X̂∗i(s)(k) − X̂(s−1)
i (k)‖ < εi is satisfied in l subsystems. Since

‖X̂(s)(k) − X̂(s−1)(k)‖ < ε, the difference between the current estimated state

and last iteration estimated state ‖X̂∗(s)(k)− X̂(s−1)(k)‖ <
√
ε2 +

∑l
i=1 ε

2
i .

3. All the triggering conditions are not satisfied at the end of the iterations at

time constant k. In this case, X̂(s)(k) = X̂(s−1)(k) is obtained. Thus, the

difference between the current estimated state and last iteration estimated state

‖X̂∗(s)(k)− X̂(s−1)(k)‖ <
√∑N

i=1 ε
2
i .

From the above three cases, it can be seen that when the iteration ends, the

difference between the current estimated state and the last iteration estimated state

are bounded within certain threshold. If the proposed prediction-driven CDMHE

algorithm converges, the prediction-driven CDMHE with triggered communication

will converge as well. It can be seen that the proposed prediction-driven CDMHE with

triggered communication gives more relaxed stopping criterion compared with the

prediction-driven CDMHE with regular communication. Thus, the communication
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costs between the distributed MHEs can be reduced by following Algorithm 3 based on

the triggering condition in (5.1) with possible bounded loss of estimation performance.

Note that by carefully picking the triggering thresholds and the stopping criteria, it

is possible to achieve almost the same performance as the prediction-driven CDMHE

with regular communication while reducing the communication cost.

5.1.2 Simulation Results

In this section, the proposed prediction-driven CDMHE with triggered communica-

tion is compared with the prediction-driven CDMHE with regular communication to

illustrate its performance from the communication cost point of view. The chemical

process with two-CSTR and one seperator used in Section 4.4.2 is used in this sec-

tion. Since the stopping criterion used in Section 4.4.2 is ε = 0.001, the triggering

conditions are picked as εi = 0.001 ×
√

3/3, i = 1, 2, 3. The inequality constraints

are not considered. Other conditions are the same as the simulation case in Section

4.4.2.

The simulation results are shown in Figures 5.2 - Figures 5.4. Figure 5.2 shows the

state trajectories of the estimated sates given by the prediction-driven CDMHE with

triggered communication, the centralized MHE and the actual state. From Figure 5.2,

it can be seen that the estimated state trajectories given by the prediction-driven

CDMHE with triggered communication are almost overlapped with the centralized

trajectories. The summation of the absolute error between estimated state given by

the prediction-driven CDMHE with triggered communication and the actual state is

14.5753 which is almost same with the summation error term 14.5741 given by the

prediction-driven CDMHE with regular communication. Therefore, the prediction-

driven CDMHE with triggered communication described in Algorithm 3 keeps the

estimation performance of the prediction-driven CDMHE. Figure 5.3 shows the it-

eration number given by the regular prediction-driven CDMHE and the prediction-

driven CDMHE with triggered communication. The iteration number given by the

prediction-driven CDMHE with triggered communication is slightly less, which means

lower communication cost. Figure 5.4 shows the iteration number that the current

estimated state is not sent. From Figure 5.3 and Figure 5.4, it can be concluded that

communication cost between the subsystems and the coordinator is reduced.
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Figure 5.2: State trajectories of the actual states (solid line), the estimated state given
by the proposed CDMHE implemented following Algorithm 3 based on triggering condition
(5.1) (dashed line) and the estimated state given by the centralized MHE (dash-dotted line).
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Figure 5.3: Numbers of iterations given by prediction-driven CDMHE (right side) and
prediction-driven CDMHE with triggered communication (left side) during each sampling
time k.
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Figure 5.4: Numbers of iterations that subsystem i (i = 1, 2, 3) keeps the last sent esti-
mated state following Algorithm 3 based on triggering condition (5.1) during each sampling
time k.

5.2 Communication Failure

Compared with the centralized MHE, the proposed prediction-driven CDMHE main-

tains the resilience from the decentralized MHE. In the proposed prediction-driven

CDMHE, the communication between the coordinator and local MHEs is important

in achieving the centralized performance. In this section, the scenario that commu-

nication failure happens between subsystems and the coordinator is discussed.

Under the condition that the proposed prediction-driven CDMHE algorithm with

regular communication converges, we assume that communication failure happens be-

tween subsystem j and the coordinator, which means that coordinator cannot receive

any estimated state from subsystem j and subsystem j cannot receive any informa-

tion about price vector p and interaction Ĥj from the coordinator. There are two

cases that need to be discussed:

1. subsystem j loses connection with coordinator from the very beginning and no

information has been exchanged between them. Thus, for subsystem j, the price

vector p and interactions Ĥj are all zero during all the sampling time, which
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makes subsystem j act like the decentralized local MHE. In the coordinator,

the calculations of the price vector and interaction vectors will be affected.

Therefore, the estimated states of other subsystems, especially the subsystems

that strongly coupled with the subsystem j will be affected.

2. when the communication failure happens, subsystem j and the coordinator have

exchanged information. In this case, subsystem j keeps using the last received

price vector p and interaction vector Ĥj while the coordinator keeps using the

last received estimated state from subsystem j. For subsystem j, the price

vector p and interaction vector Ĥj are not accurate, the subsystem j will not

give good estimated state as before. For other subsystems, the estimation of the

price vector and interaction vectors will be affected. Therefore, the estimated

states will be affected, especially the subsystems that strongly coupled with the

subsystem j.

5.2.1 Simulation Results

In this section, the chemical process with two-CSTR and one seperator introduced

in Section 4.4.2 is used. Two cases are discussed. In the first case, subsystem 3 loses

connection with coordinator at k = 0; in the second case, subsystem 3 loses connection

with coordinator after sampling time k = 15. The other simulation settings are the

same as in Section 4.4.2.

Communication Failure Case 1

In this case, subsystem 3 loses connection with coordinator at k = 0. The estimated

states should provide by subsystem 3 are picked as zero in the coordinator. Results are

shown in Figure 5.5 - Figure 5.7. Figure 5.5 shows the trajectories of estimated states,

from which we can see that the estimated state given by subsystem 3 of prediction-

driven CDMHE is almost the same with the decentralized MHE. This is caused by the

disconnection between the coordinator and subsystem 3. Subsystem 3 cannot receive

coordinated variables, and it actually works in the decentralized way. Figure 5.6 gives

a clearer view of the trajectories of estimated states given by the prediction-driven

CDMHE and the centralized MHE. From Figure 5.6, it can be seen that the estimated

82



state given by the prediction-driven CDMHE is different from those of the centralized

MHE. Not only the estimated states of subsystem 3 are affected, the estimated states

of other subsystems are also affected. However, the performance of prediction-driven

CDMHE is still better than the decentralized MHE which can be seen from the state

trajectories in Figure 5.5 and the error norm trajectory in Figure 5.7.
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Figure 5.5: Communication Failure Case 1: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line), the centralized MHE
(dotted line), and the decentralized MHE (dash-dotted line).

Communication Failure Case 2

In this case, subsystem 3 loses connection with the coordinator after time interval

k = 15, i.e., t = 0.075h. Results are shown in Figure 5.8 - Figure 5.10. Figure 5.8

shows the trajectories of estimated states given by the prediction-driven CDMHE, the

centralized MHE and the decentralized MHE, respectively. From Figure 5.9, it can be

seen that after 0.075h, the states of subsystem 3 starts to deviate from the estimated

state given by the centralized MHE, other subsystems are also affected. Figure 5.10

shows the trajectories of the error norm of the three estimation algorithms, from

which we can see that the error trajectory given by the proposed prediction-driven

CDMHE is slightly different from the centralized MHE after 0.075h. The performance
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Figure 5.6: Communication Failure Case 1: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line) and the centralized
MHE (dash-dotted line).
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Figure 5.7: Communication Failure Case 1: Trajectories of the error norm given by pro-
posed CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized
MHE (dashed line).
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of the prediction-driven CDMHE is still much better than the performance of the

decentralized MHE which can be seen from Figure 5.8 and Figure 5.10.
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Figure 5.8: Communication Failure Case 2: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line), the centralized MHE
(dotted line), and the decentralized MHE (dash-dotted line).

From the above simulations in the two case studies, the proposed prediction-driven

CDMHE shows resiliency against communication failure. When the communication

failure happens, the subsystem that loses connection with the coordinator works in

a decentralized way while other subsystems that coupled with this subsystems are

affected. Therefore, the estimated states given by the prediction-driven CDMHE

cannot converge to the estimated states given by the centralized MHE.

5.3 Premature Termination of the Coordination

Algorithm

Premature termination of the coordination algorithm means that during sampling

time k, the coordination algorithm stops at iteration ‘s’ before the estimated state

given by the coordination algorithm converges to the estimated state given by the

centralized MHE. The premature termination of the coordination algorithm may hap-

pen for various reasons. For example, the time interval is not sufficient long to reach
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Figure 5.9: Communication Failure Case 2: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line) and the centralized
MHE (dash-dotted line).
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Figure 5.10: Communication Failure Case 2: Trajectories of the error norm given by pro-
posed CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized
MHE (dashed line).

86



the convergence or the stop criterion threshold ε is poorly chosen. In this section, we

consider that the iteration stops at ‘sk’ in time interval k. Under the assumption that

the proposed prediction-driven CDMHE converges, the estimated state X̂(s)(k) given

by the coordination algorithm converges to X̂∗(k) as iteration ‘s’ increases. Thus pre-

mature termination at iteration ‘sk’ will cause X̂(sk)(k) belongs to the neighborhood

of the centralized optimal solution.

5.3.1 Simulation Results

In this section, the chemical process with two-CSTR and one seperator introduced in

Section 4.4.2 is used. From the simulation case in Section 4.4.2, it can be obtained

from Figure 4.10 that the iteration numbers are between 8 to 22. So in this case, we

fixed the iterations as 7, which means the coordinated algorithm is terminated before

it reaches the termination threshold. The other simulation settings are the same as

that in Section 4.4.2. The results are shown in Figure 5.11 - Figure 5.13. Figure 5.11

shows the estimated state trajectories given by the prediction-driven CDMHE with

premature termination, the centralized MHE, the decentralized MHE and the actual

states. From Figure 5.12, we can see that the estimated states given by the prediction-

driven CDMHE with premature termination are different from the centralized ones,

but they are very close especially after 0.05h. The reason is that the actual iterations

after t = 0.05h are around 11 which is closer to 7. From Figure 5.11 and Figure 5.13,

we can see that the estimated states given by the prediction-driven CDMHE with

premature termination are still much better than the decentralized MHE.

5.4 Conclusions

In this chapter, three scenarios are studied based on the proposed prediction-driven

CDMHE algorithm in Chapter 4. A triggered communication algorithm for prediction-

driven CDMHE was presented in Section 5.1. The communications between sub-

systems and the coordinator were triggered by the difference between the current

estimated state and the last sent estimated state. The proposed prediction-driven

CDMHE with triggered communication reduced the communication cost between the

subsystems and the coordinator. The algorithm was applied to a chemical process in
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Figure 5.11: Premature termination case: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line), the centralized MHE
(dotted line), and the decentralized MHE (dash-dotted line).
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Figure 5.12: Premature termination case: State trajectories of the actual state (solid
line), estimated states given by the proposed CDMHE (dashed line), and the centralized
MHE (dash-dotted line).
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Figure 5.13: Premature termination case: Trajectories of the error norm given by proposed
CDMHE (dash-dotted line), the centralized MHE (solid line), and the decentralized MHE
(dashed line).

Section 5.1.2. The results were compared with the results with the prediction-driven

CDMHE with regular communication from a communication cost point of view. With

appropriate triggering thresholds, the proposed triggered communication algorithm

not only keeps the estimation performance but also reduces the communication cost

between subsystems and the coordinator. Subsequently, two cases of communication

failure were discussed in Section 5.2. The prediction-driven CDMHE showed auton-

omy and resiliency against communication failures. In the first case, a subsystem lost

connection with the coordinator before the communication began. In the other case,

the subsystem lost connection with the coordinator after information been exchanged.

The corresponding simulation results were given in Section 5.2.1. The results of both

cases showed that the proposed prediction-driven CDMHE algorithm can handle the

communication failure and provide better estimates than the decentralized MHE. Fi-

nally, premature termination of the coordination algorithm was studied in Section 5.3.

The premature termination of coordination algorithm rendered the estimated states

belongs to a neighborhood of the centralized optimal solution. The simulation results

showed that the proposed prediction-driven CDMHE could keep the performance

close to the centralized one.
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Chapter 6

Conclusions

6.1 Summary

The focus of this thesis was on the development of the coordinated distribution moving

horizon state estimation schemes for large-scale systems. Specially, the class of sys-

tems considered is a class of linear systems that composed of several subsystems that

interacts with each other via their states. The CDMHE algorithms proposed in this

work are intended to coordinate the local MHEs to achieve the optimal plant-wide

performance, that is, the centralized state estimation performance, while maintain

the flexibility of the decentralized estimation framework. Both the CDMHE schemes

proposed in this thesis give guaranteed convergence to the centralized optimal so-

lution when the convergence conditions are satisfied. The coordinated distributed

estimators can be constructed with minor modifications to the exsiting decentralized

estimators. The effectiveness of the coordinated distributed estimation schemes is

shown in this thesis by implementing the algorithms into chemical processes.

In Chapter 3, a price-driven coordinated algorithm was developed for the dis-

tributed moving horizon state estimation, where the local MHE estimates the process

states, noises and interactions. However, it was shown that the conventional price-

driven coordinated algorithm cannot be used for state estimation purpose since it

requires measurement of the full state vector. An improved price-driven CDMHE

was proposed to address the issue of the standard version. In the improved price-

driven coordinated algorithm, the local MHE recieves price vector from coordinator

and sends the estimated state, noise, interaction and sensitivity matrix to the coor-

dinator. Coordinator uses these information to calculate the price vector. Newton’s
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method is used to update the price vector. Without consideration of the inequality

constraints, the proposed price-driven CDMHE algorithm was shown to converge in

two iterations. For the system with inequality constraints, the sensitivity matrix is

divided into active set and inactive set, and changes with the active set. Due to

the existence of the inequality constraints, more iterations are needed to achieve the

convergence.

The drawback of the improved price-driven CDMHE is the additional term 1
2 ‖

Ĥi(k) ‖D−1
i

in the cost function. This term is added purely to ensure the singular solu-

tion does not arise in the local MHEs. Therefore, to avoid this drawback, in Chapter

4, a prediction-driven coordinated algorithm was developed for the distributed mov-

ing horizon state estimation, where the local MHE estimates the state and process

noise. In this coordinated scheme, the local MHE receives estimated interaction and

price vector from the coordinator and sends estimated state and noise to the coor-

dinator. The proposed prediction-driven algorithm was shown to converge to the

centralized optimal solution with the increasing of the iteration number. A barrier

function method was proposed to handle inequality constraints. In Chapter 5, the

robustness of the prediction-driven CDMHE is further investigated under different

scenarios, including triggered communication, communication failure and premature

termination. The proposed prediction-driven CDMHE algorithm showed robustness

and resilience to these cases.

It should be noted that both Chapter 3 and Chapter 4 focused on the devel-

opment of the coordination algorithms of the local MHEs. Different coordination

methods were used in these chapters. Without consideration of the inequality con-

straints, price-driven CDMHE algorithm shows fast convergence by using Newton’s

method to update the price vector, while the prediction-driven CDMHE algorithm

may need more iterations to achieve the centralized MHE performance. When these

two coordinated algorithms both converge, the corresponding price vector converges

to the Lagrange multiplier that associate with the system equality constraint of the

centralized MHE.

The key point of the coordination methods lies in the definition and coordination

of the subproblems. In this thesis, the two proposed coordination methods, price-

driven CDMHE and prediction-driven CDMHE both achieve the plant-wide optimal
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performance. There are still numerous challenges remain in the application of the

coordinated distributed state estimation schemes that need to be addressed.

6.2 Directions for Future Work

Based on the work presented in the previous chapters, some possible directions for

future work are listed as follows:

• Both coordination methods proposed in this thesis need information exchange

between subsystems and coordinator, and the iterations during each sampling

interval have great impact on the computation and communication load. There-

fore, the complexity study for both price-driven CDMHE and prediction-driven

CDMHE is recommended Knowing the computation load of different CDMHE

methods can give us a better understanding of the coordination algorithms and

help us to choose algorithm from the candidates;

• Although the two CDMHE algorithms both converge to the centralized optimal

performance, arrival cost is not considered in both cases. Arrival cost summa-

rizes the effect of previous data. A study that includes arrival cost in the cost

function is needed;

• In order to converge to the centralized MHE optimal solution, the prediction-

driven CDMHE needs to satisfy the convergence condition proposed in Chapter

4. The convergence condition is related to the system matrices, weighting ma-

trices and size of the horizon. The system matrices represent the interaction

strength in some way. The effects of the interaction strength, weighting matrices

and size of the horizon on the convergence condition are worth investigating;

• The focus of this thesis is linear systems. The work can be extended to nonlinear

systems by using the same coordination methods.

• The integration of CDMHE with distributed predictive control (e.g., DMPC)

needs investigation. DMPC has been widely applied to the control of large-scale

complex system, which requires the state measurement every sampling time.
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The CDMHE algorithms can provide state estimates to the control network

when the state measurements are not available.
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Appendix A

Invertibility of Matrices

Prior to the proof, the term Schur complement and some related lemmas are

introduced. Assume that a square matrix M ∈ R(l+m)×(l+m)is partitioned into the

following four blocks:

M =

[
S T
U V

]
(A.1)

where S ∈ Rl×l, T ∈ Rl×m, U ∈ Rm×l and V ∈ Rm×m. If the square matrix S is

nonsingular, then:

M/S , V −US−1T (A.2)

is defined to be the Schur complement of M relative in S. Similarly, if the square

matrix V is nonsingular, the Schur complement of M relative in V is defined as:

M/V , S − TV −1U (A.3)

The Schur complement is a very useful tool in matrix analysis. A commonly used

property of Schur complement is presented in Lemma A.0.1:

Lemma A.0.1. (Zhang, 2006) Let M ∈ R(l+m)×(l+m) be a square matrix partitioned

as in equation A.1. If S is nonsingular, then:

det(M) = det(S)det(M/S) (A.4)

Similarly, if V is nonsingular, there is:

det(M) = det(V )det(M/V ) (A.5)

where det(M ) means the determinant of matrix M .
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When S(V ) is nonsingular, that is det(S) 6= 0 (det(V ) 6= 0). Then in equation

(A.4) (equation (A.5)), det(M ) 6= 0 is equivalent to det(M/S) 6= 0 (det(M/V ) 6= 0),

which leads to the following Corollary:

Corollary A.0.1. For the partitioned matrix M as in (A.1), if the block S(V ) is

nonsingular, then M is invertible if and only if the Schur complement M/S(M/V )

is invertible.

A.1 The Invertibility Discussion of Λi

We use Schur complement to prove the invertibility of Λi.

Λi =


CT

iiR
−1
ii Cii 0 0 GT

Aii

0 Q−1ii 0 −I
0 0 0 −I

GAii
−I −I 0


So we can write the matrix as:

S =

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
, T =

[
0 GT

Aii

0 −I

]
, U =

[
0 0

GAii
−I

]
, V =

[
0 −I
−I 0

]
M/V = S − TV −1U

=

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
−
[
0 GT

Aii

0 −I

] [
0 −I
−I 0

]−1 [
0 0

GAii
−I

]
=

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
−
[
−GT

Aii
0

I 0

] [
0 0

GAii
−I

]
=

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
As det(M) = det(V )det(M/V ), we need to prove det(M/V ) 6= 0.

det(M/V ) = det{
[
CT

iiR
−1
i Cii 0
0 Q−1i

]
} = det{CT

iiR
−1
i Cii}det{CT

ii}

We need to prove det{CT
iiR
−1
i Cii} 6= 0.

det{CT
iiR
−1
i Cii} = det{CT

iiR
−1/2
i }det{R−1/2i Cii}

det{CT
iiR
−1/2
i } = det{R−1/2i Cii}

= det{Cii}det{Ri}−1/2

We need to prove det{Cii} 6= 0. However, only when Cii is full rank, det{Cii} 6= 0.

Thus Λi is invertible only when Cii is full rank.
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A.2 Invertibility Condition of Improved Price-driven

CDMHE

After adding term 1
2
Ĥi(k)TD−1i Ĥi(k) to the cost function in the price-driven coordi-

nated local MHE design, Λi defined in equation (3.30) becomes:

Λi =

[
Ξ∗i Fi

T

Fi 0

]
(A.6)

Substituting the Ξ∗i and Fi
T into Λi, the following equation can be obtained:

Λi =


CT

iiR
−1
i Cii 0 0 GT

Aii

0 Q−1i 0 −I
0 0 D−1i −I

GAii
−I −I 0

 (A.7)

Using Schur complement to discuss the invertibility condition that D−1i needs to

satisfy, we can write the matrix as:

S =

[
CT

iiR
−1
i Cii 0
0 Q−1i

]
, T =

[
0 GT

Aii

0 −I

]
, U =

[
0 0

GAii
−I

]
, V =

[
D−1i −I
−I 0

]
(A.8)

Therefore the inverse of the matrix V is:

V −1 =

[
0 −I
−I −D−1i

]
(A.9)

Therefore, the following expression can be obtained:

M/V = S − TV −1U

=

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
−
[
0 GT

Aii

0 −I

] [
0 −I
−I −D−1i

] [
0 0

GAii −I

]
=

[
CT
iiR
−1
i Cii 0

0 Q−1i

]
−
[
−GT

Aii
D−1i GAii GT

Aii
D−1i

D−1i GAii −D−1i

]
=

[
CT
iiR
−1
i Cii +GT

Aii
D−1i GAii GT

Aii
D−1i

D−1i GAii Q−1i +D−1i

]
(A.10)

As det(M) = det(V )det(M/V ) and V is invertible (det(V ) 6= 0), therefore we need

to find the condition that det(M/V ) 6= 0. By using Schur complement again, we can

get that:

det(M/V ) = det{
[
CT

iiR
−1
i Cii +GT

Aii
D−1

i GAii
GT

Aii
D−1

i

D−1
i GAii

Q−1
i +D−1

i

]
}

= det(Q−1
i +D−1

i )det{CT
iiR

−1
i Cii +GT

Aii
D−1

i GAii
−GT

Aii
D−1

i (Q−1
i +D−1

i )−1D−1
i GAii

}

= det(Q−1
i +D−1

i )det{CT
iiR

−1
i Cii +GT

Aii
(D−1

i −D−1
i (Q−1

i +D−1
i )−1D−1

i )GAii
}

(A.11)
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Since Q−1i and D−1i are the weighting matrices which are usually picked as sym-

metric positive definite matrices, the determinant of (Q−1i +D−1i ) cannot be zero. In

order to make the matrix Λi in (A.6) invertible, the weighting matrix D−1i needs to

make the determinant of {CT
iiR
−1
i Cii +GT

Aii
(D−1i −D−1i (Q−1i +D−1i )−1D−1i )GAii

} not

equal to zero.

Therefore when we pick the weighting matrix D−1i , the following condition should

be satisfied:

det{CT
iiR
−1
i Cii +GT

Aii
(D−1i −D−1i (Q−1i +D−1i )−1D−1i )GAii

} 6= 0 (A.12)

A.3 Uniqueness Solution of the Prediction-driven

CDMHE

For the unconstrained prediction-driven CDMHE, in the sth communication cycle,

the Lagrange equation for subsystem i can be expressed as following:

Li =
1

2

[
X̂i(k)T Ŵi(k)T

] [CT
iiR

−1
i Cii 0
0 Q−1i

] [
X̂i(k)

Ŵi(k)

]
+ {
[
−Y T

i R−1i Cii 0
]

+ p(s)TΘi}
[
X̂i(k)

Ŵi(k)

]
+ λTi (Geq

i

[
X̂i(k)

Ŵi(k)

]
− Ĥi(k))

(A.13)

The optimal solution of problem (4.2) at sth communication cycle is:



∂Li

∂X̂i(k)
= CT

iiR
−1
i CiiX̂i(k)−CT

iiR
−1
i Yi + ΘT

Ai
p(s) +GA

T
iiλi = ∅

∂Li

∂Ŵi(k)
= Q−1i Ŵi(k) +GT

Bii
λi = ∅

∂Li

∂λ̂i(k)
= GAii

X̂i(k) +GBii
Ŵi(k) = −

∑
j 6=i

GAij
X

(s)
j (k) +GBij

W
(s)
j (k)

(A.14)

where Θi can be divided into two parts, that is Θi = [ΘAi
,ΘBi

], Geq
i = [GA

eq
ii , GB

eq
ii ].

ΘAi
,ΘBi

are defined as:

To ensure the local MHE has unique solution, the matrix Mi must be invertible:

Mi =

 CT
iiR

−1
i Cii 0 GT

Aii

0 Q−1i GT
Bii

GAii
GBii

0

 (A.15)
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We will use Schur complement to prove the invertibility of Mi. From the definition

of GBii
, the matrix Mi can be expressed as:

Mi =

C
T
iiR

−1
i Cii 0 GT

Aii

0 Q−1i −I
GAii

−I 0

 (A.16)

So we can write the matrix as:

S = CT
iiR

−1
i Cii, T =

[
0 GT

Aii

]
, U =

[
0

GAii

]
, V =

[
Q−1i −I
−I 0

]
.

Therefore, the following equation can be obtained:

M/V = S − TV −1U

= CT
iiR

−1
i Cii −

[
0 GT

Aii

] [Q−1i −I
−I 0

]−1 [
0

GAii

]
= CT

iiR
−1
i Cii −

[
0 GT

Aii

] [ 0 −I
−I −Q−1i

]−1 [
0

GAii

]
= CT

iiR
−1
i Cii +GT

Aii
Q−1i GAii

(A.17)

Neither CT
iiR

−1
i Cii nor GT

Aii
Q−1i GAii

is full rank; however, their summation may

be full rank. From Section 2.5 in Chapter 2, it is shown that for an observable system

consists of n states, if the horizon Hp ≥ n, the MHE formulation used in Section 2.3

and Section 2.4 has a unique solution. The matrix Mi is the same with the one used

in decentralized MHE, thus the invertibility of Mi can be guaranteed.
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Appendix B

Coordinated Term Verification

Our purpose is to compute Γi(X̂
(s)(k))X̂i(k), or equivalently to proof p(s)

T
Θi

[
X̂i(k)

Ŵi(k)

]
=

Γi(X̂
(s)(k))X̂i(k). We have seen that

Γi(X̂
(s)(k)) =

∂JD

∂Ĥ(k)
|(X̂(s)(k),K(X̂(s)(k)))

dĤ(k)

dX̂i(k)
|X̂(s)(k) (B.1)

From (4.35), we can express
∂JD

∂Ĥ(k)
|(X̂(s)(k),Ĥ(s)(k)) as

∂JD

∂Ŵ (k)

dŴ (k)

dĤ(k)
|(X̂(s)(k),Ĥ(s)(k)).

According to (4.35) and (4.2b), we can get that

∂JD

∂Ŵ (k)

dŴ (k)

dĤ(k)
|(X̂(s)(k),Ĥ(s)(k)) = (Q−1Ŵ (s))T Ḡ−1B (B.2)

Since Gij = [GAij , GBij ], GBij = 0, from (4.3), we can express Θi = [ΘiA,ΘiB], while

ΘiB consists of GBij , so that ΘiB = 0. Then Ĥ(s)(k) = [Ĥ
(s)
1 (k)T , Ĥ

(s)
2 (k)T , ..., Ĥ

(s)
N (k)T ]T ,

Ĥ(s)(k) can be expressed as following:

Ĥ(s)(k) = −
[
Θ1A, Θ2A, · · · , ΘNA, Θ1B, Θ2B, · · · , ΘNB

] [X̂(s)(k)

Ŵ (s)(k)

]
= −

[
Θ̄A Θ̄B

] [X̂(s)(k)

Ŵ (s)(k)

]
= −Θ̄AX̂

(s)(k)

(B.3)

From the expression of Ĥ(s)(k), we can get the expression of
dĤ(k)

dX̂i(k)
|X̂(s)(k) as:

dĤ(k)

dX̂i(k)
|X̂(s)(k) = −ΘiA (B.4)

Thus we get Γi(X̂
(s)(k))X̂i(k) as following:

Γi(X̂
(s)(k))X̂i(k) = −(Q−1Ŵ (s))T Ḡ−1B ΘiAX̂i(k) (B.5)
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From (4.9), we can get the expression of p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
as:

p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
= −(Q−1Ŵ (s))TG−1B ΘiAX̂i(k) (B.6)

From the definition of GB, ḠB, Θ̄B, we can easily get that GB = ḠB + Θ̄B, since

Θ̄B = 0, we can get GB = ḠB. So we can get the conclusion that:

p(s)
T

Θi

[
X̂i(k)

Ŵi(k)

]
= Γi(X̂

(s)(k))X̂i(k) (B.7)
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