
Anomaly Detection Using Deep Learning

by

Mohammadhossein Reshadi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Mohammadhossein Reshadi, 2020



Abstract

Deep learning has revolutionized many fields that process large amounts of data such

as images, video, audio, speech, and text. Anomaly detection, however, is among the

areas that still require major advancements. Based on the key traits of deep learning,

which are the need for very little hand engineering, and the ability to effectively use

large amounts of data, its applications in anomaly detection could be very benefi-

cial. In this thesis, an anomaly detection architecture is proposed that consists of

two models: a normal model, which is a time series forecaster and predicts the next

expected behavior of the system under healthy conditions, and an anomaly detector

that identifies any failure by comparing the expected values with the actual observa-

tions. Deep architectures such as convolutional neural networks and recurrent neural

networks have been incorporated in the design of the normal model, and conventional

machine learning methods, including one-class SVM, isolation forests, multi-layer per-

ceptron, decision trees, and random forests are used for the anomaly detector. The

proposed architecture has been applied to two problems: pipeline leak detection and

condition monitoring and fault detection of small induction motors. The results of

both applications have proved very promising and indicate the capacity for further

improvements to come.

ii



Preface

Some of the research conducted in this thesis is intended to be published. Two journal

articles based on chapters 3, 4, and 5 are in the process of submission.

iii



Acknowledgements

I would like to extend my gratitude to my supervisor, Dr. Scott Dick, whose guidance

and support made this research possible.

I also wish to thank my family and friends for their endless love and support

throughout all my endeavors.

iv



Table of Contents

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . 5

2.1.2 Recurrent Neural Networks (RNN) . . . . . . . . . . . . . . . 9

2.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Time-series Delay Embedding . . . . . . . . . . . . . . . . . . . . . . 17

3 The Proposed Model 20

3.1 The Normal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The anomaly Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Feature Scaling/Normalization . . . . . . . . . . . . . . . . . . 26

3.3.3 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Delay Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Parameter Exploration and Evaluation . . . . . . . . . . . . . . . . . 29

v



4 Application in Pipeline Leak Detection 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Comparison with other novel architectures . . . . . . . . . . . 44

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Application in Condition Monitoring and Fault Detection of Small

Induction Motors 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Comparison with other novel architectures . . . . . . . . . . . 56

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions, Recommendations, & Future Work 59

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61

vi



List of Tables

4.1 Variable description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Normal model - Computer generated dataset . . . . . . . . . . . . . . 41

4.3 Normal model - Lab generated dataset . . . . . . . . . . . . . . . . . 41

4.4 Computer generated dataset - 30% leak . . . . . . . . . . . . . . . . . 42

4.5 Computer generated dataset - 5% leak . . . . . . . . . . . . . . . . . 42

4.6 Computer generated dataset - 2% leak . . . . . . . . . . . . . . . . . 43

4.7 Computer generated dataset - all leaks . . . . . . . . . . . . . . . . . 43

4.8 Lab generated dataset - 3mm leak . . . . . . . . . . . . . . . . . . . . 43

4.9 Lab generated dataset - 2mm leak . . . . . . . . . . . . . . . . . . . . 43

4.10 Lab generated dataset - all leak . . . . . . . . . . . . . . . . . . . . . 43

4.11 Computer generated dataset - comparison with other architectures . . 45

4.12 Lab generated dataset - comparison with other architectures . . . . . 45

5.1 Controlled variables - CM dataset . . . . . . . . . . . . . . . . . . . . 53

5.2 Normal model - Condition monitoring dataset . . . . . . . . . . . . . 54

5.3 Normal model - RBFN [31] . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Anomaly Detector - using the 1-D CNN normal model . . . . . . . . 55

5.5 Anomaly Detector - using the RBFN normal model [31] . . . . . . . . 56

5.6 comparison with other architectures . . . . . . . . . . . . . . . . . . . 57

vii



List of Figures

2.1 A common convolutional network . . . . . . . . . . . . . . . . . . . . 6

2.2 A 1-D convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A basic RNN and the unfolding in time . . . . . . . . . . . . . . . . . 10

2.4 A thorough diagram of an LSTM block [43]. . . . . . . . . . . . . . . 11

3.1 Architecture outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 An example of the normal model. . . . . . . . . . . . . . . . . . . . . 22

3.3 Data restrictions: the impact of an anomaly occurring half-way through

the time-series data, at 4:00:00. . . . . . . . . . . . . . . . . . . . . . 24

4.1 The test-bed: apparatus layout [6] . . . . . . . . . . . . . . . . . . . . 39

5.1 A simple diagram of an induction motor [134]. . . . . . . . . . . . . . 48

5.2 Types of faults in induction motors [133]. . . . . . . . . . . . . . . . . 48

5.3 The experimental Setup [31]. . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Validation and train errors of the normal model throughout the train-

ing process [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



Chapter 1

Introduction

Machine learning plays a major role in many aspects of the modern era: from web

searches and social media to language translation [1–3]. With the advancements in

deep learning, which allows for multiple processing layers to learn representations

of data with multiple levels of abstraction, many domains involving image, video,

audio, speech, and text processing have been revolutionized [1]. One of the fields that

demand substantial improvements, however, is anomaly detection. The key assets of

deep learning are the fact that it requires very little hand engineering and being able

to take advantage of the availability of increased amounts of data and computational

power [1]. Furthermore, studies indicate deep learning is superior to the traditional

techniques when it comes to time-series analysis [4, 5] and sequential data [1], which

is the nature of most anomaly detection problems. These key points are why deep

learning is a great candidate for anomaly detection applications.

An anomaly could be the occurrence of any type of failure or, more generally, any

slight deviation from the normal behavior. Consequently, the demand for an anomaly

detection system exists in many areas. These areas include, but are not limited to,

finance, sensor networks, fraud detection, medical errors, industrial plants, etc.. Two

of the applications of interest in this study are pipeline leak detection and condition

monitoring and fault detection of small induction motors.

In this research, an anomaly detection architecture is proposed that leverages the

1



power of deep learning. This anomaly detection system is a low-cost solution that

uses the data collected by the already available equipment. The architecture com-

prises of two models, a normal model which is a time series forecaster and predicts

the next expected behavior of the system under healthy conditions, and an anomaly

detector that identifies any failure by comparing the expected values with the actual

observations. It is a hybrid structure incorporating deep architectures such as con-

volutional neural networks and recurrent neural networks used in the design of the

normal model, and conventional machine learning methods employed to build the

anomaly detector.

1.1 Thesis Outline

This thesis is organized in 6 chapters as follows. Chapter 2 provides a thorough review

of the architectures, methods, and techniques implemented in the study, covering

all the backgrounds needed to follow the research. Chapter 3 presents a complete

explanation of the proposed model and all the steps required for the design. Chapters

4 and 5 study the applications of this model for two different problems, namely,

pipeline leak detection and condition monitoring and fault detection of small induction

motors. Each of these two chapters provides a literature review of the problem being

discussed, a description of the datasets used, the obtained results, and a conclusion

which suggests possible improvements. In the end, chapter 6 yields the final conclusion

of the thesis and provides directions for related future works.

1.2 Contribution

The main contribution of the thesis is the proposed architecture which is provided

in chapter 3, and it’s applications in pipeline leak detection and fault detection of

small induction motors which are discussed in chapters 4 and 5, respectively. The

Datasets used in the experiments of chapters 4 and 5 are collected and prepared

2



with the assistance of the following people. Jun Xiao helped with setting up the

computer-generated pipeline leak detection dataset mentioned in chapter 4, while the

lab-generated dataset is collected by Javier Barrios as part of his thesis [6]. The

required experiments for the collection of the induction motor dataset discussed in

chapter 5 are conducted by Nick Zarft, assisted by Albert Terheide. Abbas Sobhi and

Kelly Keenan contributed to the preprocessing and analysis of this dataset, as well.

3



Chapter 2

Background

In this chapter, we will review all model architectures, methods, and techniques used

though out this research. These include deep learning and architectures such as Con-

volutional Neural Networks (i.e. CNN), Recurrent Neural Networks (i.e. RNN), and

Long Short-Term Memory (i.e. LSTM), as well as classical machine learning meth-

ods. Additionally, a review of the recently proposed anomaly detection approaches

is provided. Finally, delay-embedding techniques are studied as they are required for

time-series analyses.

2.1 Deep Learning

The main major shortcoming of traditional machine learning methods shows itself

when dealing with raw natural data. To be able to train models using raw data,

significant knowledge of the area used to be mandatory to carefully extract suitable

features [1]. This is when deep learning comes into play. The main advantage of deep

learning is the ability to automatically learn features.

Deep learning methods have the ability to learn extremely complex tasks, through

several levels of representation which is acquired via simple non-linear modules. Mov-

ing deeper into the model, each representation is at a higher level of abstraction. For

instance, an image represented by pixels can first be transformed into information

about the location of edges, followed by the motifs based on these edges in the next

4



level and so on, until, entire objects are eventually detected. By eliminating the

need for designing the features by a human, deep learning could be applied to many

domains without extensive knowledge of the area [1].

Today, deep learning is solving crucial problems that have not been solved for years.

Owing to its versatility, deep learning is applicable to a wide variety of problems, espe-

cially with the existence of huge amounts of data. Among successful applications are

image recognition [7–10], speech recognition [11–13], natural language understanding

[2, 3, 14, 15], and various other areas.

2.1.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are a class of deep neural networks. CNNs

are able to capture the Spatial and Temporal dependencies in the input. Hence,

they are most suitable for data that is in the shape of many arrays, such as 1D

arrays of sequential data, 2D images, and 3D videos. CNNs are capable of using

the characteristics of sequential data thanks to the existence of lots of layers, shared

weights, and pooling layers [1].

Multiple studies of convolutional networks are linked back to 1989, beginning with

a 1D time-delay neural networks applied for speech recognition [16, 17] as well as

document reading [18]. Additionally, a few other works include object detection [19,

20], face detection [21], and handwriting recognition [22].

Convolutional networks were neglected by the machine-learning communities at

the beginning, in spite of a few early successes. The 2012 ImageNet competition,

however, was a starting point in their popularity where they achieved outstanding

results: about half of the error gained by the other competitors [7]. The main reasons

behind this success were the effective usage of GPUs, dropout which was a recent

regularization method [23], ReLUs (Rectified Linear Unit), and the generation of

extra training samples through manipulation of the existing ones. These days, CNNs

are the best technique for many tasks [10, 24–28], and compete in performance with

5



humans in some cases [1].

Figure 2.1 illustrates the architecture of a common convolutional network. The ini-

tial layers in the architecture are, typically, convolutional and pooling layers. Within

a convolutional layer, a group of weights known as a filter or kernel transform a win-

dow of units in the current layer to one unit in the succeeding layer of representations.

Subsequently, a non-linear function, for instance a ReLU, is usually applied to the

outputs. There are multiple filters in one convolutional layer, resulting in multiple

feature maps, each of which containing units that share one filter. This operation is

called a discrete convolution in mathematics [1].

The purpose of the pooling layer is to combine similar features in only one. A

common pooling unit uses the maximum of a window of units as the representative.

The process is shifted over the rows and columns, resulting in a dimension reduction

and robustness to minor alterations and noise in the input. Several combinations

of convolutional and pooling layers are then used together, as well as possible extra

convolutional layers and usually one or few fully connected layers at the end [1].

Figure 2.1: A common convolutional network: Each image represents a feature map
of one of the learned features. Lower-level features perform edge detection, and,
eventually, the output shows a score measured regarding each class [1].

To explain the learning process of the weights of a filter in one convolutional layer,

the mathematics of the forward pass should be examined first. For a two-dimensional

input I and a two-dimensional filter W , Equation (2.1) illustrates the convolution

operation [29]:

6



S(i, j) = (I ∗W )(i, j) =
∑︂
m

∑︂
n

I(m,n)W (i−m, j − n) (2.1)

Where * is the convolution operation symbol, S is the result of the convolution, and

i and j indicate the row and column in S.

The forward propagation consists of two steps. The first step is calculating the

intermediate value Z, which is the result of the convolution of the input data (from

the previous layer, denoted by A[l−1]) with the tensor W (which contains the filters),

and then adding bias b. The second step is to pass Z through a non-linear activation

function g (e.g. ReLU) [30].

Z
[l]
i,j =

∑︂
m

∑︂
n

A[l−1]
m,n W

[l]
i−m,j−n + b[l] (2.2)

A[l] = g[l](Z [l]) (2.3)

Where [l] indicates the layer and i,j determines the specific element of the array. The

objective function (mean squared error) for the last layer’s output is then given by

Equation (2.4) [30]:

E =
1

2

∑︂
p

(tp − yp)
2 (2.4)

Where yp and tp are the output and the target for the pth prediction.

In order to find the update rules for the weights, we now go over the back-

propagation process. The purpose of the backward pass is to calculate the derivatives

∂E

∂W
[l]

m′,n′
(which denotes the partial derivative of the objective function E with respect

to the weight Wm′,n′ in the layer [l]) and perform the updates using the gradient

descent method. Using the chain rule, the gradients are calculated in Equation (2.5)

[30]:

7



∂E

∂W
[l]
m′,n′

=
∑︂
i

∑︂
j

∂E

∂Z
[l]
i,j

∂Z
[l]
i,j

∂W
[l]
m′,n′

(2.5)

=
∑︂
i

∑︂
j

δ
[l]
i,j

∂Z
[l]
i,j

∂W
[l]
m′,n′

(2.6)

Where [l] indicates the layer and m′, n′ determine the specific weight of that layer.

Now, by substituting Z
[l]
i,j we get [30]:

∂Z
[l]
i,j

∂W
[l]
m′,n′

=
∂

∂W
[l]
m′,n′

(︄∑︂
m

∑︂
n

A[l−1]
m,n W

[l]
i−m,j−n + b[l]

)︄
(2.7)

By expanding the summations in Equation (2.7) and taking the partial derivatives

of the components, all of them result in zero, except for the component containing

W
[l]
m′,n′ [30]:

∂Z
[l]
i,j

∂W
[l]
m′,n′

=
∂

∂W
[l]
m′,n′

(︂
A

[l−1]
m′−i,n′−jW

[l]
m′,n′

)︂
(2.8)

= A
[l−1]
m′−i,n′−j (2.9)

By substituting Equation (2.9) in Equation (2.6) we finally get [30]:

∂E

∂W
[l]
m′,n′

=
∑︂
i

∑︂
j

δ
[l]
i,jA

[l−1]
m′−i,n′−j (2.10)

= δ
[l]
i,j ∗ A

[l−1]
m′,n′ (2.11)

Where * denotes the convolution operation. To calculate the δs, then, we use a similar

process leading to Equation (2.12), where g′ denotes the derivative of the activation

function g [30]:

δ
[l]
i,j =

∂E

∂Z
[l]
i,j

=

(︄∑︂
m

∑︂
n

δ[l+1]
m,n W

[l+1]
i−m,j−n

)︄
g′
(︂
Z

[l]
i,j

)︂
(2.12)

= δ
[l+1]
i,j ∗W [l+1]

m,n · g′
(︂
Z

[l]
i,j

)︂
(2.13)

8



In this research, as we work with 1-dimensional data (time-series), 1-dimensional

convolutional networks would be the suitable architecture to use. In 1-dimensional

CNN, the filter only shifts along one dimension, which would be the time, when

working with time-series data. As illustrated in Figure 2.2, a 1-D convolutional layer

employs a 1-dimensional filter for 1-dimensional inputs. When working with multiple

time-series, the height of the filter would match the number of time-series, so that

the filter still shifts along one dimension only. This means the convolution process

is equivalent to performing it individually on each of the time-series by shifting a

different filter over each row of the input separately. That being said, the equations

for 1-D CNN would be the same as the general equations discussed above, where there

could be no shifting over the second dimension as the height of the filter is exactly

the same as the height of the inputs.

Figure 2.2: A 1-D convolutional layer: a 1-d filter shifts over the input, covering only
a window at a time, performing element-wise multiplications in order to complete the
convolution operation [31].

2.1.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (i.e. RNNs) are another class of deep architectures, de-

signed to deal with data presented in sequences, e.g. speech and language. Figure 2.3

describes a basic RNN. RNNs process sequential elements one after another, and are

able to keep a history of previous elements in their “state vector” [1].

As useful as RNNs are, training them used to be very difficult due to exploding

and vanishing gradients [32]. Enhancements in their architecture [33, 34] and training

9



Figure 2.3: A basic RNN: If an RNN is extended in time, it could be regarded as
a very deep network with the same weights (U , V , and W ) being shared by all the
layers [1].

methods [35, 36], however, have enabled RNNs to be extremely potent at character

prediction [37], word prediction [38], and several other complex tasks [1, 3, 39–41].

LSTMs were designed to solve the exploding and vanishing gradient problems

experienced when training traditional RNNs [33] and are therefore more effective,

particularly with multiple layers [42] Currently, LSTM networks and other similar

architectures are very successful at machine translation [1, 3, 39, 40]. Figure 2.4

illustrates a common LSTM block, which includes a cell, an input gate, an output

gate, and a forget gate [42–44]. The cell is like a memory that keeps important

information from previous steps to be able to pass them through later steps as well.

The different gates then decide what information to keep, what gets added, and what

should be removed, by considering the new inputs, as well as the previous hidden

state (recurrent inputs). As the name suggests, the forget gate determines whether

the information that is already in the cell needs to be kept or forgotten. The input

gate decides what information in the input is important enough to get passed to the

cell. After the outputs of the forget gate and the input gate are determined, the cell

state will get updated with a pointwise addition of both of these outputs. Finally,

the output gate decides whether the new information in the cell should get carried to

the next hidden state (recurrent output) [43].

10



Figure 2.4: A thorough diagram of an LSTM block [43].

To explain the forward pass in an LSTM layer with N blocks and M inputs, we

go through the block section by section. According to the figure, z, i, f , c, and o

correspond to the activated block input, the output of the input gate, the output of

the forget gate, the cell value, and the output of the output gate, respectively. With xt

being the input vector for the time t, Wz,Wi,Wf ,Wo (∈ RN×M) being the weights for

the inputs, Rz, Ri, Rf , Ro(∈ RN×N) being the recurrent weights, pi, pf , po(∈ RN) being

the peephole weights, and bz, bi, bf , bo (∈ RN) being the biases, the vector formulas

for the forward pass are as follows [43].

11



z̄t = Wzx
t +Rzy

t−1 + bz (2.14)

zt = g
(︁
z̄t
)︁

block input (2.15)

ī
t
= Wix

t +Riy
t−1 + pi ⊙ ct−1 + bi (2.16)

it = σ
(︂
ī
t
)︂

input gate (2.17)

f̄
t
= Wfx

t +Rfy
t−1 + pf ⊙ ct−1 + bf (2.18)

f t = σ
(︂
f̄
t
)︂

forget gate (2.19)

ct = zt ⊙ it + ct−1 ⊙ f t cell (2.20)

ōt = Wox
t +Roy

t−1 + po ⊙ ct + bo (2.21)

ot = σ
(︁
ōt
)︁

output gate (2.22)

yt = h
(︁
ct
)︁
⊙ ot block output (2.23)

Where ⊙ represents point-wise multiplication and σ, g and h are activation functions.

The gate activation function is typically the logistic sigmoid (σ(x) = 1
1+e−x ), while the

hyperbolic tangent is the common choice for the block input and output activation

functions (g(x) = h(x) = tanh(x)) [43].

With backpropagation though time, then, we can compute the δs inside the block.

The presented formulas are generalized for all the layers [43]:

δyt = ∆t +RT
z δz

t+1 +RT
i δi

t+1 +RT
f δf

t+1 +RT
o δo

t+1 (2.24)

δōt = δyt ⊙ h
(︁
ct
)︁
⊙ σ′ (︁ōt)︁ (2.25)

δct = δyt ⊙ ot ⊙ h′ (︁ct)︁+ po ⊙ δōt + pi ⊙ δī
t+1

+ pf ⊙ δf̄
t+1

+ δct+1 ⊙ f t+1 (2.26)

δf̄
t
= δct ⊙ ct−1 ⊙ σ′

(︂
f̄
t
)︂

(2.27)

δī
t
= δct ⊙ zt ⊙ σ′

(︂
ī
t
)︂

(2.28)

δz̄t = δct ⊙ it ⊙ g′
(︁
z̄t
)︁

(2.29)

where ∆t would be the vector of deltas that will be transferred to the next layer

12



below. When applying the formulas to the last layer, it corresponds to ∂E
∂yt

. If there is

another trainable layer below, the deltas for the inputs should be calculated, as well

[43]:

δxt = W T
z δz̄

t +W T
i δī

t
+W T

f δf̄
t
+W T

o δō
t (2.30)

Now we have all the information needed to compute the gradients for all the

weights. In the following formulas, ⋆ is any of {z̄, ī, f̄ , ō}, and ⟨· , ·⟩ indicates the

outer product [43].

δW⋆ =
T∑︂
t=0

⟨δ⋆t, xt⟩ (2.31)

δR⋆ =
T−1∑︂
t=0

⟨δ⋆t+1, yt⟩ (2.32)

δb⋆ =
T∑︂
t=0

δ⋆t (2.33)

δpi =
T∑︂
t=0

ct ⊙ δī
t+1

(2.34)

δpf =
T∑︂
t=0

ct ⊙ δf̄
t+1

(2.35)

δpo =
T∑︂
t=0

ct ⊙ δōt (2.36)

2.2 Anomaly Detection

Anomaly detection, also called outlier detection, is the procedure of detecting slight

deviations in the data points compared to the majority of data [45]. Outliers, abnor-

malities, and deviants are all alternative terms for anomalies in the literature. Noise

and faults in the data acquisition process could result in anomalies in the dataset.

However, anomalies could, most importantly, indicate the occurrence of a new un-

known event. Hawkins [46] describes an anomaly as a data instance that differs

13



considerably from the rest as to strike the question of whether a different system was

the cause [47].

With early studies dating back to the 1960s, anomaly detection has been a pop-

ular research area for a long time [48]. Recently, deep learning has revolutionized

many domains with its superb capabilities in learning from high-dimensional spa-

tial and temporal data. A number of proposed deep anomaly detection approaches

have illustrated a considerable superiority over traditional methods in a wide range

of real-world problems [45, 47]. Even with the recent studies, however, there is still a

noticeable lack of deep anomaly detection methods [47].

A review of conventional anomaly detection methods is provided in [49–53]. How-

ever, these studies do not cover the recently proposed deep anomaly detection tech-

niques. In this section, we will present a summary of the different types of anomaly

detection methods, focusing mainly on modern approaches. Based on the training ap-

proach and the availability of data, deep anomaly detection models could be divided

into the following categories [47].

In supervised deep anomaly detection models, labeled samples of both normal and

anomaly data are used for training a deep classifier. These approaches generally con-

sist of two models, a feature extractor succeeded by a classification algorithm. Deep

supervised models need a large number of training samples. Supervised approaches

of deep anomaly detection are not as appealing as semi-supervised and unsupervised

approaches, the main reason for which is the lack of availability of properly labeled

data. Additionally, due to the class imbalance caused by the unequal number of data

samples for normal and anomaly classes, the performance of deep supervised classi-

fiers used as anomaly detectors is less than ideal. Moreover, high complexity in the

dataset causes deep supervised approaches to fail to isolate the normal data from

anomalies [47].

Semi-supervised methods, also referred to as one-class classification, only train on

the data belonging to one class, typically the normal class. [54, 55] provide an anal-

14



ysis of deep semi-supervised methods for anomaly detection. These models find the

boundary containing the normal data points and identify the outliers as anomalies

[56, 57]. The most important outcome of this method is the need for labeled data

for only one class, which can take advantage of the abundance of normal data in

most cases. This could lead to noticeable a performance increase in comparison to

unsupervised methods. Nonetheless, the shortcomings of semi-supervised approaches

also apply to deep anomaly detection [47]. Based on the research done in [58], un-

less certain evidence indicates the existence of a relationship between the labels and

the distribution of the unlabeled data, semi-supervised methods cannot outperform

supervised methods, if not the other way around. Among the investigated architec-

tures for semi-supervised deep anomaly detection are: convolutional neural networks

[56, 59], deep convolutional recurrent neural networks [60], and generative adversarial

networks [61].

The hybrid models are made up of two segments where deep learning models are

usually used as feature extractors. In deep hybrid methods, the features learned by

the deep models are then fed to conventional algorithms such as one-class Support

Vector Machine (SVM) classifiers [47]. Some studies have achieved very promising

results using various hybrid models [62, 63]. However, among its downsides is the

fact that the hidden layers of the deep model use generic loss functions as opposed to

anomaly detection specific functions, which could have a negative impact when the

deep model acts as a feature extractor [47]. A few deep hybrid architectures employed

for anomaly detection are: deep belief networks–support vector data description [62],

deep autoencoder (DAE)–K nearest neighbor [64], and autoencoder–one-class support

vector machine [65].

One-class neural networks integrate the representation learning capabilities of deep

networks with the one-class objective function, in order to develop boundaries that

isolate the normal data instances from the anomalies. Two of the main examples

of such models use a hypersphere (Deep Support Vector Data Description or Deep

15



SVDD [66]) and a hyperplane (OC-NN [67]) as their one-class objective. The research

findings indicate one-class neural networks are among the state-of-the-art methods

especially for complex datasets. However, possible lengthy training times especially

when working with high-dimensional data is one of their main downfalls [47].

One-class adversarial networks (OCAN) [68] is an end-to-end one-class anomaly

detector that exploits the concept of bad GANs introduced in [69] to produce bad

instances using normal data in the training set. Bad in this context means the

generator distribution should not match the true data distribution. Hence, the data

generated in bad GANs are supposed to be complementary to the training dataset

as opposed to matching, on the contrary to traditional generators. A bad generator

will thus help improve the generalization performance of a semi-supervised anomaly

detection algorithm.

Unsupervised anomaly detection approaches rely on the intrinsic properties within

the data such as distances or densities. Deep neural networks architectures are em-

ployed to identify these properties in the dataset [70]. A major advantage of unsu-

pervised learning is its cost-effectiveness since there is no need for labeled data for

the training process. Nevertheless, obtaining good performance in complex datasets

is often very difficult. Unsupervised methods are also quite vulnerable to noise and

faulty data and, thus, are generally outperformed by supervised or semi-supervised

models. Furthermore, with autoencoders as the main unsupervised deep method for

anomaly detection [71], there are critical hyper-parameters, such as dimensionality re-

duction, to be tuned [47]. Several deep unsupervised anomaly detection applications

are: autoencoders [72–74], LSTM [75], and GAN [76].

Other notable methods and techniques used for anomaly detection are as follows.

Transfer learning is a very useful approach in the absence of sufficient data and has

been researched for anomaly detection [77–79]. Zero Shot Learning (ZSL) identifies

classes that did not have any representative samples in the training set, using some

given knowledge about the class, usually in natural language descriptions. Some

16



implementations of ZSL in anomaly detection have been studied [80–82]. Deep Re-

inforcement Learning (DRL) is another novel approach that is starting to attract

attention in anomaly detection as well. Such models learn to detect new anomalies

via reward signals, without the need for prior assumptions about anomalies. A few

DRL based anomaly detection have been introduced [83, 84]. However, these methods

demand significantly more research and investigations [47].

2.3 Time-series Delay Embedding

Machine learning has been used for time series forecasting by various authors [85–89].

The assumption in all of these studies is the deterministic nature of time series. This

means the observations of the system through time follow a unique trajectory in the

state space. Therefore, the next state of the system could be uniquely determined

based on the knowledge of the current and previous states. Nevertheless, time-series

data only provides observations of the system, without information regarding the

state space. Therefore, time-series prediction requires a technique to rebuild the

state space based on the data points provided in the time-series [90].

Delay embedding is a conventional method for acquiring delay vectors of a time se-

ries. Delay vectors contain delayed observations of the time series with the dimension

and delay indicating the number of observations in the vector and the delay between

two consecutive observations in the delay vector, respectively. Based on Takens’ the-

orem [90, 91], on condition that the dimension is properly selected, the state space

represented by the delay vectors corresponds to the original state space of the sys-

tem, thus the delay vectors could be used for time-series forecasting. Equation (2.37)

illustrates the general format of delay vectors in a univariate time series [90]:

Sn⃗ = (Sn−(m−1)d, Sn−(m−2)d, ..., Sn) (2.37)

where Sn⃗ is a delay vector with the nth element of the time-series as its latest compo-

17



nent. The delay vector contains a total of m components, with delays of d in between.

Sn denotes the nth component of the time-series.

we will utilize two methods to determine proper values for these two parameters

separately. Delay-embeddings with the same dimension (i.e. m) but different delays

(i.e. d) are mathematically equivalent to each other. That said, in the real-world data

with the introduction of noise, the delay parameter has a major impact on the result.

In general, Smaller values of d cause higher correlations between consecutive elements

of the delay vector and, thereby, causing the delay vectors to be concentrated around

the diagonal of the embedding space. This could potentially result in important

features becoming incomprehensible. Larger values, on the opposite side, result in

the elements of the delay vector being almost independent, which will lead to unclear

structures. Common approaches for establishing the delay are the first minimum of

the time-delayed mutual information and the first zero in the auto-correlation function

[90, 92]. The former being the more refined concept is the choice for this research.

To compute the time delayed mutual information, a histogram with a resolution

of ϵ is used. pi would, then, indicate the probability that the time-series holds a

value within the ith bin of the histogram, and pij(τ) denotes the probability that s(t)

is within bin i and s(t + τ) is within bin j. Ultimately, Equation (2.38) is used to

compute the mutual information [90]:

Iϵ(τ) =
∑︂
i,j

pij(τ) ln pij(τ)− 2
∑︂
i

pi ln pi (2.38)

False nearest neighbors is a technique that is used to find the proper dimension

of the delay embedding [93, 94]. The fundamental concept is finding the number of

data instances that are wrongfully neighbors, only due to an improper projection to

a lower dimensionality. If points in the dataset are projected to a lower dimensional

embedding, some axes among the coordinates of the points are lost. consequently,

in the lower dimensional space, some points whose removed coordinates vary signifi-

18



cantly, might be closely located resulting in “false neighbors”. Therefore, to evaluate

false nearest neighbors, all pairs of nearest neighbors in the dataset when projected

to an m dimensional space are considered. For each pair, the ratio of their euclidean

distances in m+1 dimensions over m dimensions is calculated. The pair is considered

a false neighbor in the event that this ratio is greater than a predetermined threshold

r [90]. The fraction of false neighbors is then computed using Equation (2.39):

Xfnn(r) =

N−m−1∑︁
n=1

Θ(
|S(m+1)

n −S
(m+1)
k(n)

|

|S(m)
n −S

(m)
k(n)

|
− r)Θ(σ

r
− |S(m)

n − S
(m)
k(n)|)

N−m−1∑︁
n=1

Θ(σ
r
− |S(m)

n − S
(m)
k(n)|)

(2.39)

where S
(m)
k(n) represents the nearest neighbor for Sn when projected to the m dimen-

sional space, and Θ is a step function which outputs one for any input greater than

or equal to zero, and zero for all negative inputs. The initial step function Θ found in

the numerator would then indicate one for a false neighbor when the distance ratio

is greater than r. The second step function’s purpose is to ignore all pairs that are

initially farther than σ/r apart, with σ being the standard deviation of the data.

Since they are too far apart to be considered neighbors to begin with, and there is

not sufficient space to move farther away [90].

The proper dimensionality is, then, established by considering the plots of the

fraction of false nearest neighbors with respect to the number of dimensions, for

multiple selections of the threshold r. The point on the dimension axis where all of

the plots plateau is deemed the optimal dimension for the time-delay embedding of

the time-series.

The above methods and techniques are all applied to univariate time-series. When

working on a multivariate time-series, the delay vector is constructed by concatenating

the delay-embeddings of each variate in different rows [95–97]. The TISEAN software

package [94] includes all of the required implementations of the methods used in this

research, with regards to nonlinear time-series analysis.

19



Chapter 3

The Proposed Model

In this chapter the proposed model is introduced. In order to build an anomaly

detector, two separate models are deployed. The first one, “the normal model”,

is a one-step-ahead time-series forecasting algorithm. The normal model takes a

sequence of values in the time-series as inputs and predicts the next state of the

system. The second model, “the anomaly detector”, uses the output of the normal

model as the expected behavior for the system and detects anomalies by comparing

the observed actual values in the time-series with the expected behavior [49, 98].

Figure 3.1 illustrates the outline of the architecture.

Figure 3.1: Architecture outline. X⃗n−1 represents the window of previous values,
ˆ︁
X⃗n

contains the forecasted values for the next time-step (n), and X⃗n holds the actual
observations of the next time-step [31].

3.1 The Normal Model

The normal model is in charge of predicting the systems next behavior. The idea is

that if the system is working properly and no fault occurs, we should be able to predict

20



the next state and the system is still in a healthy condition. In order for the algorithm

to be able to predict the behavior, we need to have the system’s data in time-series

format. Each feature of the system (voltage, current, pressure, temperature, etc.)

will be collected as an independent time-series and the next state of the system will

be predicted in terms of the next value in each of these time-series. The data that

the algorithm needs at each run to predict the next state is not all previous values

in the time-series as this would be demanding and also unnecessary. As discussed

earlier in Section 2.3, according to Takens’ theorem [90, 91], given the parameters

(dimension and delay) are properly selected, the state space represented by the delay

vectors corresponds to the original state space of the system, thus the delay vectors

could be used for time-series forecasting. Hence, we can predict the next state using

just a small window of previous values in each time-series.

Taking a look back at Figure 3.1, the vector X⃗n−1 represents the window of previous

values and
ˆ︁
X⃗n is the predicted next state of the system. As we discussed, the concept

of the normal model is to tell us what we expect from the healthy system when

no anomalies occur. Therefore, this model is only trained on healthy data with no

introduction of any abnormal behavior.

3.1.1 Architecture

After the delay embedding is done on the time-series data, our datasets for train-

ing the normal model become pretty straight-forward. In each sample, there are m

inputs for each feature and one output. This means for a system described by n

numbers of features, each sample includes n by m inputs and n targets. With the

above explanations, there are numerous algorithms that could potentially be used for

such a model, however, given the nature of time-series and the capabilities of deep

learning, the following two architectures would be the most suitable for this model: 1.

Convolutional Neural Networks (CNN) especially 1-dimensional CNN (Section 2.1.1)

and 2. Recurrent Neural Networks (RNN) specially LSTMs (Section 2.1.2) [31].

21



Depending on the specific datasets used, the trained models would have a few

layers of 1-d CNNs or alternatively LSTMs, with ReLU activation, followed by a

last fully-connected (dense) layer for the outputs. Possible additions include Batch

Normalization, Max Pooling, and Dropout layers which will be determined while

performing hyper-parameter tuning. Figure 3.2 illustrates the overall structure of an

example of the normal model.

Figure 3.2: An example of the normal model.

Based on the experiments done with different datasets for different problems, both

1-dimensional convolutional neural networks and LSTMs seem very capable of pre-

dicting time-series data for the normal model. Therefore, determining the superiority

of one over the other is dependent on the particular problem and dataset. Nonethe-

less, it is worth mentioning that when comparing models of similar size and depth,

the 1-dimensional CNN based models are much more computationally efficient than

LSTM based models. This is particularly important if models are trained on large

amounts of data.

3.2 The anomaly Detector

With the output of the normal model giving us the expected measurements for the

next time-stamp, the anomaly detector is needed to compare what happens with what

is expected to happen to see if there are anomalies. To this end, the inputs of the

anomaly detector include the predicted expected values in all time-series (all features)

for the next time-stamp (the outputs of the normal model) as well as the actual

observations for the next time-stamp. Looking back at Figure 3.1, the vectors
ˆ︁
X⃗n

22



and X⃗n are the inputs of the anomaly detector which represent the predicted expected

measurements and the actual observations for the next time-stamp, respectively.

3.2.1 Architecture

According to the above description of the anomaly detector, this model needs two

values per each feature as its inputs. This means that if a dataset has n features

(temperature, pressure, flow, etc.) the anomaly detector needs 2 × n input values.

Based on previous experiments, adding the differences of the expected values and the

actual observations (
ˆ︁
X⃗n − X⃗n) can sometimes help the leaning process. Should we

choose to add these values as well, the model will have 3 × n inputs. At this point

in the research, the model is only predicting the occurrence of an anomaly which

requires only one output.

On the contrary to the normal model which is inherently trained only using the

healthy data, this model could be trained using unhealthy data in addition to the

healthy data. Whether or not to include the unhealthy data in the training process

is dependent on the data restrictions as well as the types of anomalies available in

the unhealthy data. The following explains how each of these factors will affect this

process:

• Data restrictions: to understand the restrictions we’ll have to talk about how

the data is provided and briefly go over the data preprocessing needed. The

data is available is multiple files each containing a few hours of time-series data.

Each file’s data is collected under specific conditions (e.g. type of sand, type

of leak if there is any, etc.). Each file could either include only one type of

healthy/unhealthy data or have a portion of each in the event that the anomaly

(e.g. a leak) occurs half-way through. Because of the nature of time-series anal-

ysis and anomaly detection, in order to divide all of the data into train and test

datasets, we have to perform a chronological single-split. In other words, a time-

stamp along the duration of the time-series data is selected (e.g. 3:00:00) and

23



all data before this time-stamp is dedicated to the training set and everything

else is for the testing set. The chronological split could be done twice to have

training, validation, and test sets. Given this explanation, on condition that

the data provided includes separate time-series for healthy and unhealthy data

(each containing only healthy or unhealthy data) for all available conditions, re-

gardless of what time-stamp selected, all separated datasets (train, validation,

and test) include both healthy and unhealthy data. The problem arises when all

files include time-series where an anomaly occurs half-way though. Therefore,

where ever the time-stamp is selected, only one data set among the three train,

validation, and test sets can contain both healthy and unhealthy data. As both

healthy and unhealthy data are needed in the out-of-sample test set in order to

have a reliable testing process, this data restriction will limit us in using only

healthy data to train the anomaly detector. Figure 3.3 illustrates this issue.

Figure 3.3: Data restrictions: the impact of an anomaly occurring half-way through
the time-series data, at 4:00:00.

• Types of anomalies available: Many types of anomalies are usually present

when applying anomaly detection systems. For instance, in the case of a leak

detection system, there are different sizes of leaks and ruptures, there could

be reading errors from the sensors, and etc.. When the anomaly detector is

trained on unhealthy data it would be more inclined to detect only the types

of anomalies provided to it. Hence, when the types of anomalies available or

the amount of data, in general, is not sufficient, it might be a better idea not

to train on unhealthy data at all. Nevertheless, Thanks to the main concept of

24



the proposed architecture that includes a normal model predicting the expected

healthy output for the next time-stamp, the impact of this issue on the overall

performance of the model is greatly minimized.

Based on the above descriptions, we have to choose whether or not we will be

training the anomaly detector on both healthy and unhealthy data. If the answer is

yes, this model turns into a common classifier that distinguishes between two classes

of data. Examples of architectures that were explored in this scenario are Multi-

layer Perceptron (MLP), Decision Tree, and Random Forest. On condition that the

anomaly detector is chosen to be trained only on healthy data, the required model is

a one-class classifier. One-class classifiers attempt to find the border that separates

the normal data from everything else, by only training on the normal (healthy) data.

Two of the most popular architecture used as one-class classifiers are Isolation Forests

[99, 100] and One-class Support Vector Machines [101, 102].

3.3 Data Preprocessing

To use the data in machine learning algorithms, Several steps of data preprocessing

are needed. The following explains all the steps required for the proposed model in

the desired order.

3.3.1 Missing Values

The first step of data preprocessing in all projects is to look for missing or wrong

values. Wrong values are particularly harder to find, that said, there’s a high chance

of these at the start and the end of time-series data. other ways of finding these would

be looking at possible ranges for all values and also finding values that suddenly change

without an anomaly occurring. There are several approaches to dealing with these

values: on condition that the total number of these values is insignificant compared

to the amount of data available, best practice is to simply disregard the samples

25



including even one missing/wrong value. Otherwise if losing all these samples would

mean losing a considerable amount of data, replacing the said values with the mean

or median of the same feature under the same conditions is another possibility.

3.3.2 Feature Scaling/Normalization

The next step is feature scaling/normalization. In this step, all independent features

will be transformed to have a similar desired range or distribution. The reason is dif-

ferent features’ ranges vary widely and machine learning algorithms will not perform

properly without scaling. For Instance, if a feature has a very broad range of values

compared to other features, this feature will dominate the decision-making process of

the algorithm. Hence, scaling/normalization should be done for all features so each

feature has a similar contribution to the final decision. Additionally, gradient descent

will converge extremely faster when feature scaling is performed.

Now that the concept and the motivation for this process are clear, the difference

between scaling and normalization must be discussed. Even though both terms are

often used interchangeably, they are not the same. Scaling changes the range of the

data. That is it changes the minimum, the maximum, and essentially the length

of the steps in between. Normalization, however, aims to change the shape of the

distribution of the data. There are several methods of scaling/normalization, the

following will examine a few of the popular methods.

• Min-Max Scaling:

This is a simple method which rescales the data to have the desired minimum

and maximum. To rescale the data to have the desired range [a b] Equation (3.1)

is utilized:

X ′ = a+
(X −min(X))(b− a)

max(X)−min(X)
(3.1)

where a and b are the new min and max values and X ′ is the scaled value.

26



the most popular version of min-max scaling is to scale the range between 0

and 1, which could be accomplished using Equation (3.2):

X ′ =
X −min(X)

max(X)−min(X)
(3.2)

• Standardization:

This is also a widely used method in which the data distribution is changed to

have zero mean and unit variance.

X ′ =
X − average(X)

σ(X)
(3.3)

where X ′ is the normalized value, average(X) is the mean of the feature vector

X, and σ is the standard deviation.

It is worth noting that one method is not always superior that the others and which

one to choose depends on the concept of the problem, the types of algorithms used,

and the data available. It’s always a good idea to test a few to compare. In this

research, Min-Max Scaling with a range of [0 1] seemed to produce the best results

so far.

3.3.3 Data Splitting

In machine learning when training and testing models it is mandatory to split the

data into different datasets. The reason is fairly simple: by testing on the data used

for training one can not obtain realistic results for comparing models’ performances.

Due to the nature of the problem which is time-series analysis, random splitting is not

recommended. Instead, we perform chronological splits in which data is split at some

time-stamp through the time-series, before any process that rearranges the order of

the values in the series. The data is first split into a training set and an out-of-sample

27



test set. In order to have a validation set used for tuning the parameters, we can then

repeat the splitting process on the training set and turn it into two datasets.

3.3.4 Delay Embedding

Only when we are done splitting the data can we perform delay embedding of the time-

series. This way we make sure there is no data overlap between the split datasets. The

concept of time-series delay embedding was thoroughly discussed earlier in Section 2.3

where we explained why this process is needed and how it is applied to time-series

data. In a nutshell, after finding the proper d (i.e. delay) andm (i.e. dimensionality),

a number of previous observations in the time-series are concatenated together with

the next value in the time-series as the targets. Equation (3.4) demonstrates the

format of the delay vectors:

Sn⃗ = (Sn−(m−1)d, Sn−(m−2)d, ..., Sn) (3.4)

It is worth emphasizing that the values m and d are very critical and proper tuning

is absolutely mandatory. The TISEAN package [94] includes the implementation

of mutual information and false nearest neighbors which are required to find these

parameters.

Delay embedding is the last step of data preprocessing needed for the proposed

model. In the end, the data sets should have samples with dimensions according

to what was described as suitable for the normal model. Regarding the anomaly

detector, the targets in these datasets concatenated with the outputs of the normal

model would be used as the inputs, and the targets are the states of the occurrence

of anomalies that are given with the time-series data.

28



3.4 Parameter Exploration and Evaluation

All hyper-parameters of both models are explored and tuned. Different architectures

have various hyperparameters, such as the number of layers, number of units for each

layer, size of filters, etc., which means a comprehensive tuning process must be done.

A reliable evaluation process is a necessity when it comes to hyper-parameter tuning.

Two factors are important for a reliable evaluation: data set aside for validation and

sufficient measures of evaluation.

Regarding the data needed for validation, an adequate approach is K-fold Cross-

Validation. In this approach, the training dataset is divided into K equal portions

and in K runs, the models are trained on K − 1 folds and the remaining is used for

evaluation. The averages of the measurements for all of the runs are then considered

for comparison. Although suitable for some scenarios, this method has shortcomings

which means we need to use other methods as well. The most important downfall

is having to do the training process K times which can be very demanding for deep

architectures. In addition, if the training dataset contains healthy data only, the

evaluation measurements would all be limited to healthy data as well. Thus, having

a separate validation dataset is essential. For the normal model, a portion of the

training data is put aside for validation, and therefore there is no need for using the

test set. For the anomaly detector, this depends on the data restrictions discussed

earlier in Section 3.2.1. Assuming there are separate time-series for healthy and

unhealthy states under all conditions, preparing another validation set including both

healthy and unhealthy data for the anomaly detector is also possible. However, If all

time series include the occurrence of an anomaly somewhere in the middle, only one

dataset could include both healthy and unhealthy data, using the chronological split

method, which would be the test set. In this case, we use a portion of the healthy

data to create the validation set, as well.

As for the evaluation measurements, multiple measures are obligatory, in order

29



to evaluate and compare the models’ performances in different aspects. The normal

model, on account of the nature of a time-series forecasting algorithm that has contin-

uous output values, is evaluated using the Root-Mean-Squared Error (RMSE). RMSE

is one of the most frequently used measures of difference between values predicted

by a model and the observed values. When evaluating the forecasts, RMSE is the

square root of the average of the residuals. Residuals are the differences between

the predicted or estimated values and the observed values or, in other words, the

prediction errors. Equation (3.5) demonstrates the exact formula:

RMSE =

√︄∑︁N
i=1(ˆ︁yi − yi)2

N
(3.5)

where N is the sample size, ˆ︁yi is the ith predicted value, and yi is the ith observed

value. As the formula suggests, RMSE is scale-dependent. This means that when

comparing different models on the same dataset there is no problem but when it

comes to comparison over different datasets if the datasets are not scaled to have the

same range, the RMSE results need scaling which can simply be done via dividing by

the amplitude of the models’ inputs (i.e. the amplitude of the time-series data).

The anomaly detector needs different evaluation methods, as it is a type of classi-

fication algorithm. Additionally, the outputs of the anomaly detector would be the

final outputs of the entire model which means several measurements are needed to

evaluate the performance of the model in different categories. The simplest form of

evaluation for a classification algorithm is accuracy. Even though it is the main eval-

uation measurement used for classifiers in many projects, accuracy alone would not

provide a sufficient analysis of the model’s performance, especially for an anomaly

detector. Nonetheless, accuracy does gauge the overall capability of the model and

therefore is included in the measurements. In binary classification, the accuracy is de-

fined as the ratio of the correct predictions (both true positives and true negatives) to

the total number of predicted samples. Equation (3.6) represents this measurement:

30



Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

where TP is the number of true positives (positive cases that are correctly predicted

as positive), TN is the number of true negatives (negative cases that are correctly

predicted as negative), FP is the number of false positives (negative cases falsely

predicted as positive), and FN is the number of false negatives (positive cases falsely

predicted as negative).

The other necessary performance measurements for an anomaly detector are TPR

(True Positive Rate), FPR (False Positive Rate), and FNR (False Negative Rate).

These measurements essentially analyze the falsely predicted portion of all examined

samples to determine whether they are mostly false positives or false negatives. A high

TPR (which results in a low FNR) generally means most anomalies are predicted

and the undetected cases (which are falsely predicted as negatives) are low in number.

A high FPR shows that the algorithm has produced many false alarms (predicted an

anomaly when there was none). This information is very beneficial for two reasons:

1. Figuring out whether the algorithm has problems with detecting the anomalies

or it produces too many false alarms is useful for tuning the models’ hyper-

parameters. By gaining insight into what the problem is, we can understand

which part of the architecture is flawed and therefore realize how to change it

to get better results.

2. In most scenarios, there is a trade-off between having a low number of false

alarms and a low number of undetected anomalies. This means the algorithm

could be tweaked for instance to have few false alarms at the expense of more

undetected anomalies. Which should be prioritized however differs case by case

and depends entirely on the problem that is being addressed. In the case of

a pipeline leak detection system, for example, having false alarms means the

pipeline would get shut down for no reason which in turn can be very expensive

31



for the company. Hence, a low false alarm rate is of more importance.

According to the above explanations, evaluating the models using TPR, FPR,

and FNR is deemed mandatory. Equations (3.7) to (3.9) provide details of how

these measures are calculated:

TPR =
TP

P
=

TP

TP + FN
= 1− FNR (3.7)

FPR =
FP

N
=

FP

FP + TN
(3.8)

FNR =
FN

P
=

FN

TP + FN
= 1− TPR (3.9)

where TP is the number of true positives, TN is the number of true negatives, FP

is the number of false positives, and FN is the number of false negatives.

All of the implementations in this research are done using an Intel® Core™ i7-

7800X CPU and an NVIDIA Titan Xp GPU, running a Ubuntu 18.04.4 LTS. All

codes are written in Python using libraries and frameworks such as Tensorflow [103],

Keras [104], Scikit-learn [105], pandas, NumPy, and Matplotlib [106].

32



Chapter 4

Application in Pipeline Leak
Detection

4.1 Introduction

The most economic, eco-friendly, and safest way to transport large amounts of gases,

oil, and other fluid products over long distances is through pipelines [107–109]. Nev-

ertheless, they must meet high standards in terms of efficiency, reliability, and safety.

On condition that they are maintained properly, they can last without leaks for an

unlimited time. Few factors that cause pipeline leak are corrosions, natural hazards,

mechanical damages, and, commonly, damage from a nearby evacuation[109]. Despite

the rare event of these factors occurring, they each are potent to cause significant en-

vironmental and financial costs [110].

Even though preventing leaks should be the main concern in pipelines, leak detec-

tion systems significantly decrease the impact and localize leaks as soon as they occur.

This will aid enhance system reliability and productivity by minimizing inspection

time, downtime, and environmental damages. Hydraulics model-based systems are

the most common implementing leak detection systems. Regardless of the low ob-

servability of the pipeline that these methods provide, they depend on the ongoing

calibration of the equipment and models’ parameters. We use machine learning-based

inferential sensing as an alternative in this study. Our solution is considerably more

cost-effective and less sensitive to models’ parameters.

33



This research focuses on inferential sensing for pipeline leak detection. Premised

on the results, we are confident that for designing a comparatively low-cost solu-

tion, machine learning approaches would be quite satisfactory. We believe that the

pipeline leak detection system must be categorized as an anomaly detection problem.

Accordingly, we created a model of normal behavior and an anomaly detector that

is able to detect any deviations from the normal behavior as anomalies. We chose to

experiment with 1-dimensional Convolutional Neural Networks and Recurrent Neural

Networks (specifically LSTM) for the normal model, given the observed capabilities

of deep learning for designing a time-series forecaster [31]. Regarding the anomaly

detector, Given that the number of the inputs for this model are not many, we fo-

cused solely on conventional ML algorithms. We concluded that the best combination

on our datasets is a 1-d convolutional neural network as the normal model and an

Isolation Forest for the anomaly detector.

The rest of this chapter is structured as follows: the next section provides a lit-

erature review of the leak detection systems. Next, the dataset used is described,

followed by the results and discussions. Finally, a conclusion is provided in the last

section.

4.2 Literature Review

A broad range of leak detection systems (LDS) are utilized in energy pipeline indus-

tries that are recognized by the American Petroleum Institute (API). These LDSs are

organized in four categories: non-continuous internally based, non-continuous exter-

nally based, continuous internally based, and continuous externally based. Based on

their specific approach and the different technologies used, each system has its pros

and cons.

Any system in which detection is conducted in the form of physical inspection

to find any leaked material falls under the category of non-continuous externally

based leak detection systems. Additionally, these systems are further categorized into

34



sensor-based monitoring and physical inspection. The first group consists of meth-

ods such as ground-penetrating radars, satellites, smart pigs, soil sampling, tracer

chemicals, and sniffer tubes [111]. The second category’s systems include satellites,

ground-based line surveillance, one call system/public awareness, and aerial surveil-

lance. Public awareness system/one-call system communicates any leak information

to stakeholders and addresses any leak detected and informed by laborers, operation

personnel, communities, and public units [112]. As a form of manual inspections,

ground-based surveillance involves workers visually inspecting the pipeline to find any

kind of damage or leaks. Such manual inspections are very expensive and hazardous,

and hence not at all cost-effective [113]. On the contrary, aerial surveillance, such as

the use of Unmanned Aerial Vehicles (UAVs), benefits from low costs, high saftey,

reliability, and usability in bad conditions. Thanks to these advantages and their

availability, they are becoming more and more popular. UAVs equipped with wire-

less sensors could also be incorporated in Wireless Sensor Networks (WSNs). WSNs

are capable of real-time monitoring which has been leveraged to increase their leak

detection functionality and reliability [114]. Underground Wireless Sensor Networks

(UWSN) also provide other suitable features such as concealment, easy installment,

redundancy, and low power sensors [115].

In the tracer chemicals method, a tracer compound, which is a non-hazardous

highly volatile gas, is distributed through pipelines, so that any leak could get iden-

tified by detecting the escaping gas. Probes located above the pipeline in the soil are

used to detect the leaks [116]. Even though this approach has some benefits, such as

high sensitivity and very low false alarm rates, it is highly expensive. Additionally, if

used in overland pipelines, the leaked gas will disperse in the environment with little

chance of detection.

“Smart Pigs” are devices that are placed in the pipeline to move along it by the

flow of the liquid while recording physical data about the pipeline [117]. Smart pigs

are usually equipped with specific tools, such as ultrasonic sensors, and are very

35



sensitive. Nonetheless, many of the pipelines, including about 30% of the pipelines in

the United States, are not suitable for the utilization of smart pigs [118]. Furthermore,

pigging pipelines is an extremely expensive process. Additionally, the ultrasonic pulse

velocity (UPV) test that is commonly performed in this approach [119] introduces a

lot of noise [120] which corrupts the information carried via the original signal [121].

The leak detection systems that use field sensors directly are categorized as contin-

uous externally based techniques. Examples of such sensors include acoustic sensors,

sensing cables, chemical analyzers, and video cameras. Considering that burying

sensing cables with new pipelines requires very low additional costs, the use of these

sensors such as fiber optic cables has been increasing in popularity [122]. Fiber optic

sensing cables detect changes in temperature once the leaked material reaches the ca-

ble. Other types of sensing cables detect measures such as acoustic emissions caused

by a leak, changes in electrical properties (capacitance, resistance, etc.), and vapor

or liquid. Nevertheless, since implementing such cable-based external systems for ex-

isting pipelines are could be very expensive, their are only applied to local high-risk

areas [123]. In addition, it should be emphasized that a segment of the cable could get

damaged and require replacement, which means the system becomes nonfunctional

[115].

Computational pipeline monitoring (CPM) is a continuous internally based leak de-

tection system. CPM systems obtain field measurements of pipeline parameters, use

a computational algorithm to estimate new values, and then indicate the status of the

leak based on those values [124]. The supervisory control and acquisition (SCADA)

system provides the information collected from the sensors to the CPM. Factors that

determine the performance of the system include the number, type, and accuracy

of the sensors, parameters of the SCADA system, and the computational algorithm.

The complexity of the CPM algorithm varies significantly from basic calculations and

hydraulic models, to artificial intelligence and machine learning techniques. Inferen-

tial Sensing, also called Soft Sensing, has been utilized in many different condition

36



monitoring problems. Soft sensing’s main concept is to estimate a complex system

state with the information provided by several simple sensors. Soft sensing has been

used for a long time, however, with the recent introduction of artificial intelligence

and machine learning, soft sensing has obtained the capability of estimating extremely

complex systems [125]. A machine learning-based leak detection system uses data col-

lected from the sensors. To create a reduced feature set, several tests are performed

on the features provided by the sensors data. Subsequently, an ML model is trained

on the data with the purpose of detecting leaks or failures in the pipeline [126].

At present, the incorporation of soft sensing in leak detection systems is gaining

popularity owing to the wealth of information that it presents, as well as the capabil-

ity of being used with the existing available equipment. Soft sensing is able to provide

valuable information such as the type of the leaked material (e.g. water, crude oil,

natural gas, gasoline, mineral oil, or diesel), and with the emerging methods like ma-

chine learning a lower sampling frequency is required for the sensor measurements,

compared to the continuous externally based LDSs [127]. Nevertheless, artificial in-

telligence has a few drawbacks. There is no specific machine learning algorithm that

is flawless and performs well in all cases, and each algorithm has its strengths and

weaknesses [107, 128]. Moreover, soft sensing systems are prone to over-complication.

Therefore, it is best that these methods are paired with a sensor-based and/or hy-

draulics model-based monitoring system.

4.3 Dataset

We have used two entirely different types of data: 1. computer-generated data and

2. lab generated data. The first dataset consists of computer-simulated data for

an idealized pipeline and contains 4 main features: upstream and downstream flows

and pressures of the pipeline. For each feature, time-series data is provided in the

lengths of 8 hours. This dataset is mainly used in the first phase of the research, as

it is relatively simple with few features and, thanks to the fact that it is simulated

37



for an idealized pipeline, it would not contain any noise or unwanted/inaccurate

measurements.

After several models have been tuned using the first dataset, we have a good un-

derstanding of the concept of the problem (i.e. pipeline leak detection) as well as the

models and how to tweak them to obtain the performance we are looking for. The

models’ strengths and weaknesses are clearer and we have information about what we

need for the next step. This is when the second dataset, the lab generated data [6],

comes into play. Including 14 features, This dataset is more likely to provide all the

information needed for the anomaly detection. These features include four tempera-

ture measurements, three pressure measurements, two flow measurements, one weight

measurement, 3-dimensional acceleration measurements, and the Re number. This

dataset was gathered using laboratory-scale equipment that imitates the pipeline’s

behavior. The following describes the utilized devices and the procedure in detail.

The experimental apparatus used to create the lab generated data is illustrated in

Figure 4.1. The laboratory-scale test-bed is designed and developed for a comparative

assessment of leak detection methods and techniques to generate data. The test-bed

needs to be a pipeline loop in order to recreate pipeline failures such as small leaks

and rupture, which are then evaluated by a sensor suite.

The operation of the pipeline loop starts by the pump recirculating the fluid with

its temperature and velocity being controlled. The pipeline consists of three sections,

each utilizing pipes of different diameters: 3
4
”, 1”, and 11

2
”. This configuration opti-

mizes the pump power by decreasing the fluid resistance by approximately 40%. The

11
2
”-pipe is equipped with one flow meter and one pressure transducer. The 3

4
”-section

of the pipeline includes two pressure transducers, one temperature transducer, and

one accelerometer. This segment replicates the real-life conditions of fluid behavior.

ultimately, the 1”-pipe is used for the connection to the reservoir and the centrifugal

pump.

The 3
4
”-pipe is the section that will encompass leaks, in order to produce the

38



Figure 4.1: The test-bed: apparatus layout [6]

failure modes. A pinhole in the pipe functions as a small leak and the integrated

electrovalve is capable of replicating a rupture. This section lies underneath the soil.

As a result, the leaked fluid affects the soil’s properties. The load cell measures the

mass transmitted to the soil box while two pressure sensors measure the differential

pressure between both ends of the leaky pipe. The soil impedance is calculated by two

dielectric permittivity probes and an accelerometer measures the pipe’s vibrations in

3 dimensions. Additionally, A third pressure transducer tests the transient-model-

based leak detection technique. The SCADA processes the responding variables in

real-time and data is acquired via LabView 2018.

The dataset generated for this research includes three leak states: 3mm leak, 2mm

leak, and no leak. Every state of the leak is evaluated using two types of soil: black

loam and sand, with two different levels of soil moisture: dry and saturated. Table 4.1

describes all variable ranges. For a more in-depth explanation of the apparatus and

the data acquisition process see [6].

39



Table 4.1: Variable description.

Type of variable Variable name Range Unit

Manipulated

Fluid temperature (37, 40) ◦C

Fluid velocity (3.5, 5.0) m/s

Pipe diameter (3
4
, 1, 11

2
) Inch

Pinhole diameter (0, 2, 3) mm

Controlled

Type of fluid Water -

Type of soil Black loam, Sand -

Depth of pip 3 Inch

Soil moisture (2, 47) %

Depth of soil (5, 6) Inch

Reynolds number (100000, 190000) -

Responding

Fluid pressure < 3.3 psi

Soil temperature (20, 40) ◦C

Soil dielectric permittivity (4, 80) F/m

Pipe vibration < 0.04 g

Volume of leakage (0.489, 2.138) lt/min

Response time (1, 20) -

40



4.4 Results and Discussion

As was explained in Chapter 3, the proposed architecture has two models. Accord-

ingly, separate results for each model are provided. the results of the first model,

the normal model, will be discussed first. The candidate architectures for the normal

model were ultimately narrowed down to 1-dimensional convolutional neural networks

(1-D CNN) and long short-term memories (LSTM). The 1-D CNN model includes 2

Conv1D layers with 32 and 64 filters, strides equal to 1, and same padding. BatchNor-

malization and Maxpooling1D are performed after each layer and one Dropout just

before the fully-connected output layer. Regarding the LSTM model, it includes 2

LSTM layers each containing 20 units and a fully-connected output layer. Tables 4.2

to 4.3 compare the performances of 1-dimensional CNN and LSTM models on the

computer-generated and lab-generated datasets, respectively. The validation set er-

ror is measured in terms of Root-Mean-Square-Error (RMSE), as discussed before

in Section 3.4.

Table 4.2: Normal model - Computer generated dataset

Model Training time RMSE

1-D CNN 30s 0.01

LSTM 600s 0.01

Table 4.3: Normal model - Lab generated dataset

Model Training time RMSE

1-D CNN 70s 0.09

LSTM 1200s 0.09

According to the numbers, both models demonstrated very similar performances,

with the exception of the training time. The time required for the LSTM model is

41



roughly 20 times the 1-D CNN model, which can be very significant depending on

the size of the dataset. The computational efficiency is a sufficient reason on its own

to decide the 1-D CNN model over the LSTM model for the next step. With either

of the architectures for the normal model, the results of the anomaly detector will

ultimately be the same, as both models achieved the same error rates.

Moving on to the anomaly detector, the results for this model is essentially the final

results of the proposed model. Therefore, all evaluations have been obtained using

the out-of-sample test set. The architectures selected for this model were narrowed

down to the Isolation Forest and the One-class SVM. Tables 4.4 to 4.10 illustrate the

results. In each dataset, each type of leak is initially examined, and then the entire

dataset is used for final evaluation. Using separate evaluations for each type of leak

can be very beneficial for the development and tuning stage of the research as well.

For instance, if the results on small leaks are not as good as the larger leaks, this

means that the boundary of the one-class classifier has to get closer to the healthy

data. This information points out which hyper-parameters to change and in which

direction.

Table 4.4: Computer generated dataset - 30% leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9968 0.9962 0.0011 0.0038

One-class SVM 0.9966 0.9966 0.0036 0.0034

Table 4.5: Computer generated dataset - 5% leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9997 0.9999 0.0006 0.0001

One-class SVM 0.9999 1.0 0.0006 0.0

42



Table 4.6: Computer generated dataset - 2% leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9956 0.9945 0.0003 0.0055

One-class SVM 0.9955 0.9946 0.0014 0.0054

Table 4.7: Computer generated dataset - all leaks

Model Accuracy TPR FPR FNR

Isolation Forest 0.9959 0.9949 0.0006 0.0051

One-class SVM 0.9927 0.9911 0.0012 0.0089

Table 4.8: Lab generated dataset - 3mm leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9994 1.0 0.0014 0.0

One-class SVM 0.9997 1.0 0.0007 0.0

Table 4.9: Lab generated dataset - 2mm leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9995 1.0 0.0014 0.0

One-class SVM 0.9984 0.9999 0.0042 0.0001

Table 4.10: Lab generated dataset - all leak

Model Accuracy TPR FPR FNR

Isolation Forest 0.9995 1.0 0.0014 0.0

One-class SVM 0.9990 0.9999 0.0040 0.0001

43



The results clearly indicate both models were able to reach very high accuracy. All

accuracy and TPR values are well above 0.99, and FPR and FNR measurements are

far below 0.01 and almost zero. Determining the superiority of the models is simple in

some cases when the differences in the evaluation measurements are very noticeable.

In this case, even though the Isolation Forest seems to outperform the One-class SVM

in most scenarios, it is preferred if we perform a statistical significance test to make

sure.

Demšar advises using non-parametric tests when comparing such algorithms. The

Wilcoxon signed ranks test is most suitable in this case, as two machine learning

algorithms are being compared [129]. Defining the null hypothesis as both algorithms

performing similarly with an insignificant difference, the Wilcoxon signed ranks test

will reject the null hypothesis if the p− value is less than a threshold, usually set to

0.05. The test achieved a p− value of 1.9381e− 18 which rejects the null hypothesis

with very high confidence. Therefore, this test indicates that the Isolation Forest

model’s superiority is, indeed, significant. Additionally, to evaluate the effect size,

Cliff’s delta has been used which indicates how often one algorithm would outperform

the other. The obtained d value was 0.4489, again showing that the difference is

noticeable.

4.4.1 Comparison with other novel architectures

Among the novel anomaly detection approaches presented and explained in Sec-

tion 2.2, we have chosen the soft-bound and one-class Deep SVDD [66], one-class

neural networks (OC-NN) [67], and one-class adversarial nets (OCAN) [68] to com-

pare the obtained results with. These were the most suitable approaches for our

intended application, with regards to the main concerns in this study. The architec-

tures were tweaked for optimal performance and trained and tested on our datasets.

Tables 4.11 to 4.12 demonstrate the comparison on the computer-generated and the

lab-generated datasets, respectively. According to the results, both of the proposed

44



models outperform all other methods on both datasets based on all of the measures.

Table 4.11: Computer generated dataset - comparison with other architectures

Model Accuracy TPR FPR FNR

Isolation Forest 0.9959 0.9949 0.0006 0.0051

One-class SVM 0.9927 0.9911 0.0012 0.0089

Soft-bound Deep SVDD [66] 0.9859 0.9885 0.0239 0.0115

One-class Deep SVDD [66] 0.9826 0.9843 0.0239 0.0157

OC-NN [67] 0.9923 0.9914 0.0047 0.0086

OCAN [68] 0.7826 0.6859 0.1208 0.3141

Table 4.12: Lab generated dataset - comparison with other architectures

Model Accuracy TPR FPR FNR

Isolation Forest 0.9995 1.0 0.0014 0.0

One-class SVM 0.9990 0.9999 0.0040 0.0001

Soft-bound Deep SVDD [66] 0.9981 1.0 0.0080 0.0

One-class Deep SVDD [66] 0.9989 1.0 0.0043 0.0

OC-NN [67] 0.9780 0.9780 0.0222 0.0220

OCAN [68] 0.9990 1.0 0.0041 0.0

4.5 Conclusion

A pipeline leak detection system is designed based on the proposed anomaly detection

architecture, which includes 2 models: the normal model, a time-series forecasting

algorithm using a deep architecture, and the anomaly detector, which is a one-class

classifier based on conventional ML algorithms. In addition to the normal model

which is trained only on healthy data by concept, the anomaly detector was trained

using only the healthy data, as well. This will help prevent the model from over-fitting

45



to very specific types of anomalies, especially pipeline leaks which are extremely

rare and there is virtually no available data collected under real leak conditions.

In summary, all compared models have achieved high performance in all aspects,

with the best combination being the 1-dimensional CNN followed by the Isolation

Forest, owing to CNN’s computational efficiency and the higher accuracy obtained

by the Isolation Forest. Comparison with other novel state-of-the-art methods on our

datasets also confirm the effectiveness and superiority of the proposed architecture.

Future research possibilities include enhancing the system by the addition of more

capabilities such as identification of the type of failure (e.g. distinction between a

sensor reading failure and an actual leak), leak localization, and detection of the

size of the leak. Naturally, these advancements require the availability of more data,

alongside the addition of possible extra models.

46



Chapter 5

Application in Condition
Monitoring and Fault Detection of
Small Induction Motors

5.1 Introduction

A crucial class of electrical machines is the induction motors which, in modern in-

dustry, carry out most of the energy transforming tasks [130]. Consequently, their

maintenance is of utmost importance. Figure 5.1 illustrates an induction motor, which

is mainly composed of a stator, the stationary part of the electromagnetic circuit, a

rotar, the moving part of the motor that turns the shaft, bearings that support the

rotor and enable it to turn, and a shaft which delivers the power and is where the

load connects to the motor. Simply put, the interactions of the rotor with the stator’s

magnetic field moves the rotor which causes the shaft to turn.

The most frequently occurring defects in induction motors are: stator inter-turn

faults, cracked rotor bars, and bearing faults [131]. Contamination, project errors,

overheating, etc., can all result in stator faults. Rotor misalignment and imbalance,

and broken bars or end rings often provoke rotor faults. Mechanical stresses, incorrect

assembling, incorrect lubrication, and misalignment could be the cause of bearing

faults [132]. As Figure 5.2 states, Bearing failures, stator faults, rotor faults, and

other defects account for approximately 40%, 38%, 10%, and 12%, of the total motor

47



failures, respectively [132, 133]. Research studies of over 40 years have confirmed

that these defect types can be detected in motor sensor data before motor failure.

Thereby there has always been a significant interest in utilizing the information so as

to minimize motor failures.

Figure 5.1: A simple diagram of an induction motor [134].

Figure 5.2: Types of faults in induction motors [133].

The use of non-destructive testing or sensed data to recognize changes within a

monitored system is called conditionMonitoring (CM). Unlike the previous ap-

proaches that could solely flag the occurrence of a change, modern approaches can

48



detect the causative fault, its location, and the damage occurred so far [135]. These

are substantially inferential sensing approaches (the estimation of a complex, time-

variant system state using the information available from simpler sensors [136–140]).

[141–144] are some examples of such approaches. Certain adaptive systems are even

capable of self-repair attempts using this information [135]. Today, CM is a well-

researched system which allows for predictive maintenance before a fault intensifies

or causes failure, and is well suited to maintaining large and expensive systems as an

economical approach [145, 146].

Productive sensing modalities for condition monitoring of electric motors consist of

current and voltage monitoring, chemical analysis of motor oil, thermal/infrared sen-

sors, axial electromagnetic flux monitoring, vibration sensors, and acoustic sensors

[147]. The most recent work has emphasized stator current assessment, especially

current harmonics which is an in-operation, non-invasive modality, and characteristic

frequency responses for various faults have been derived from machine physics [148].

Machine learning (ML) applications in fault detection and diagnosis of complex ma-

chines are covered in [130–149]. Deep Learning approaches have also been applied

to fault diagnosis in [150–153]. Nevertheless, small electrical motors (rated at 10 HP

or less) have not been studied to the same extent, since they can easily be replaced

and are not directly process-critical. Nonetheless, given large industrial locations

usually contain several hundreds of these motors for the operation of important sub-

components and protection systems for high-value systems, their failure is bound to

have severe negative impacts on the plant. Examples of their usage include operating

cooling, lubrication, and HVAC equipment that protects the larger systems. Cer-

tainly, the proposed CM solutions for these motors must be cost-effective, since these

motors have a low replacement cost.

This research focuses on several sensing modalities for detecting small motor faults.

We believe ML approaches would succeed in designing an economical solution. We

treat condition monitoring as an instance of the anomaly detection problem, where

49



a model of “normal” behavior is constructed, and an anomaly detector detects any

deviations from the expected normal behavior. Deep architectures (e.g. 1-dimensional

convolutional neural networks and LSTM) are explored for the normal model, whereas

conventional ML algorithms are preferred for the anomaly detector. Ultimately, a

design combination of a one-dimensional convolutional neural network as the normal

model and a random forest as the anomaly detector is proven best.

The rest of this chapter is organized as follows. The next section provides an

explanation of the data collection procedures. Next, we go over the results and

discussions. Finally, a conclusion is provided in the last section.

5.2 Dataset

There are no publicly accessible CM datasets for groups of electric motors as far as we

are aware. Additionally, there are no data available regarding condition monitoring of

small electric motors that satisfy the following conditions: 1. simultaneously record

temperature, current, and voltage, 2. at sampling rates up to 10kHz, and 3. include

multiple failure modes among several instances of a common motor type. The first

and second qualities provide the opportunity to examine both high-rate features such

as current harmonics, along with low-rate characteristics such as power profiles. The

third quality enables us to compare CM solution for both fault detection and fault

identification in a constant motor design. Hence, designing an experimental apparatus

and procedures to obtain a suitable dataset was a necessity for this study.

A motor manufacturer in Edmonton-area donated a group of 20 identical three-

phase motors, each rated at 1 HP. A mount was then built to hold a motor with the

rotor horizontal, and coupled to a dynamometer. Thermal and electrical sensors were

then attached, along with data loggers. The basic experimental design was to run the

motors, in an undamaged state, under full-load and no-load conditions. Ultimately,

after the collection of healthy (i.e. undamaged) data was complete, each motor was

damaged in a specific manner, and the tests were repeated. No catastrophic failure,

50



which results in termination of the test, occurred during the procedures [31].

The experimental apparatus used to collect the data is illustrated in Figure 5.3.

The used motors were stainless steel 3-phase 1 HP motors with 6205 sized drive and

fan bearings and were rated at both 208V and 480V line-to-line. In this study, 208V

was selected. The results demonstrated a maximum current of 3.8 A at full-load and

the full-load speed was rated at 1145 RPM.

Figure 5.3: The experimental Setup [31].

To measure the current for the line to line locked-rotor tests, a digital multi-meter

was used. The dSPACE tool was utilized for all the other tests. In this experiment, 6

of the 8 analog-to-digital converters (ADCs) were used (3 phase currents and 3 line to

line voltages) along with one UART (Universal Asynchronous Receiver-Transmitter)

input for the dynamometer, which is the device used to apply the load to the motor.

The dynamometer was sampled at 2Hz, and the ADC channels were sampled at

10kHz. The dynamometer controller was set to generate a maximum (full load)

torque of 5.624Nm and was used to measure the shaft’s rotational speed in RPM once

the motor was coupled to the dynamometer. In order to prevent the dynamometer

51



from overheating, the cool air supply was used. For the no-load uncoupled tests, the

tachometer was used to record the shaft speed. To measure the average RMS current,

RMS voltage, and real and apparent input electrical power, the power analyser is

used. The Variac which is an autotransformer was used to compute the decreased

impedance in the phase-to-phase locked rotor test for the stator-shorted motor. The

oscilloscope used for this project is capable of sampling at 100MHz but was used

to sample at 500kHz for each test except for the inrush test, where it was set to

sample at 12.5MHz. The thermal camera was connected via an Ethernet switch to a

computer where the video feed was saved. A thorough video was recorded throughout

each test, including the 2.5-hour warming period for each “hot” test (sensed data is

collected once the motor has reached steady-state heat). Lastly, a custom mount was

built out of aluminum to hold the dynamometer, rails for the mount to slide on, two

mounts to bolt the motors onto, and an adjustable rotor lock ensuring that locked

rotor test could be run.

Table 5.1 shows the controlled variables and their possible states in these experi-

ments. Motor alignment is either centered (default condition) or twisted (the drive

end bearings were under uneven lateral pressure). The motor temperature was either

hot (motor had run under full load for 2.5 hours, reaching steady-state temperature)

or cold (the motor had been stopped and allowed to cool to reach room temper-

ature; this length of time was empirically determined using the thermal imager).

Dynamometer coupling is binary, indicating whether the motor is coupled to the dy-

namometer or not. The applied load was either full (dynamometer set to 5.624 Nm)

or no load. Rotor lock is also a binary variable indicating whether the rotor lock

was applied, which means the rotor cannot rotate. Finally, each motor was either

undamaged (i.e. healthy), or was damaged in only one way. Thus, for each motor,

there are two possible values for this variable.

According to the design of the experiment, each motor experienced only one type

52



Table 5.1: Controlled variables - CM dataset

Variable name Possible values

Motor alignment Centered (default), Twisted

Motor temperature Hot (steady-state), Cold (room temperature)

Dynamometer coupling Coupled, Uncoupled

Load Full-load (5.624Nm), No-load

Rotor lock Locked, Unlocked

Motor damage No-damage (healthy), Damaged

of damage. After performing trial runs with undamaged motors to refine observa-

tion procedures and troubleshoot the data collection systems, the “no-damage” (i.e.

healthy) portion of the experiments was executed. Subsequently, the motors were

damaged, and then, the “damaged” segment of the experiment was implemented.

The types of damages induced in this experiment consist of stator short and bearing

faults, which include: 1. increased wear and pitting due to foreign materials entering

the bearing, 2. overheating using a torch, and 3. a 3mm hole in the outer track [31].

Ultimately, the condition monitoring dataset consists of 6 features (3-phase voltages

and currents) and 130, 000 records. Additionally, the tests were combined for 3 of

the motors (that were assigned to damaged-bearings treatment) together, to evaluate

the algorithms’ effectiveness on a population of motors, as well. In the end, the data

preprocessing steps including the delay-embedding were performed. The final dataset

includes 1, 800, 000 samples, each containing 109 elements which include one class

label indicating whether this data sample is healthy or damaged. This would be the

dataset used for training and testing the algorithms.

5.3 Results and Discussion

As discussed in Chapter 3, the proposed architecture consists of two models. Hence,

separate results for each model are provided. The candidate architectures for the

53



normal model were ultimately narrowed down to 1-dimensional convolutional neural

networks (1-D CNN) based models. The 1-D CNN model includes 3 Conv1D layers

with 32, 64, and 128 filters, strides equal to 1, and same padding. BatchNormaliza-

tion and Maxpooling1D are performed after each layer and one Dropout just before

the fully-connected output layer. Table 5.2 demonstrates the performance of the 1-

dimensional CNN normal model on the condition monitoring dataset. The validation

set error is measured in terms of Root-Mean-Square-Error (RMSE), as discussed

before in Section 3.4.

Table 5.2: Normal model - Condition monitoring dataset

Model No. of epochs RMSE

1-D CNN 200 0.001

Figure 5.4 illustrates the training process of the normal model by showing the

training and validation RMSE after each epoch.

Train

Test

Figure 5.4: Validation and train errors of the normal model throughout the training
process [31]

For the sake of comparison, Table 5.3 shows the train and test RMSE of an RBFN

54



network trained and tested on the same dataset [31]. As expected, the 1-dimensional

CNN model outperforms the RBFN model by a large margin, with the test RMSE of

approximately an order of magnitude less.

Table 5.3: Normal model - RBFN [31]

No. of clusters Train RMSE Test RMSE

100 0.0323 0.0766

Regarding the anomaly detector, the results for this model are essentially the final

results of the proposed model. Therefore, all evaluations have been obtained using

the out-of-sample test set. The architectures selected for this model were ultimately

narrowed down to the Multi-layer Perceptrons (MLP ) [154], Decision Trees [155],

and Random Forests [156]. Furthermore, the differences of the expected values and

the actual observations (
ˆ︁
X⃗n − X⃗n in Figure 3.1) were also added to the inputs of the

anomaly detector, as this helps increase the performance in some scenarios. Thus,

models have either 12 or 18 inputs. Table 5.4 illustrates the results of these models

when coupled with the 1-dimensional CNN normal model.

Table 5.4: Anomaly Detector - using the 1-D CNN normal model

Model No. of inputs TPR FPR Accuracy

MLP 12 0.732 0.166 0.824

MLP 18 0.795 0.129 0.861

Decision Tree 12 0.944 0.037 0.956

Decision Tree 18 0.748 0.162 0.811

Random Forest 12 0.948 0.033 0.968

Random Forest 18 0.841 0.101 0.859

According to the results, a Random forest (incorporating 100 estimators) with the

original 12 inputs is the best model in terms of accuracy, TPR, and FPR. As for the

55



impact of adding the differences of the inputs, that seems to only have helped the

MLP. For the other two models, redundant inputs had a negative influence.

Once more, let’s compare the deep learning’s capabilities with the conventional

models’. This time, the comparison is between the best anomaly detector using a

deep architecture for the normal model with the models using the RBFN normal

model. Table 5.5 shows the performance of these models [31]. According to the

results, even though the Decision Tree and Random Forest achieved slightly better

TPRs, their false alarm rate (FPR) is much higher, resulting in lower accuracies. In

addition, having a low false alarm rate is extremely essential in anomaly detection

applications in the industry, including condition monitoring. The reason why is the

unnecessary and drastic costs of shutting down the system when there is no need.

RBF is the best model here with an accuracy of 0.912, which is still much lower than

the Random Forest using the 1-dimensional CNN normal model. Therefore, the deep

model is superior in all aspects.

Table 5.5: Anomaly Detector - using the RBFN normal model [31]

Model TPR FPR Accuracy

MLP 0.947 0.366 0.791

RBF 0.918 0.085 0.912

Decision Tree 0.967 0.207 0.881

Random Forest 0.993 0.264 0.864

5.3.1 Comparison with other novel architectures

Once again we’ll be comparing our proposed model with some of the novel anomaly

detection approaches presented and explained in Section 2.2. We have chosen the soft-

bound and one-class Deep SVDD [66], one-class neural networks (OC-NN) [67], and

one-class adversarial nets (OCAN) [68] to compare the obtained results with. These

were the most suitable approaches for our intended application, with regards to the

56



main concerns in this study. The architectures were tweaked for optimal performance

and trained and tested on our datasets. Table 5.6 demonstrates the comparison.

According to the results, the proposed model using random forest outperforms all

other methods based on all of the measures.

Table 5.6: comparison with other architectures

Model TPR FPR Accuracy

Random Forest 0.948 0.033 0.968

Soft-bound Deep SVDD [66] 0.907 0.684 0.605

One-class Deep SVDD [66] 0.919 0.635 0.637

OC-NN [67] 0.861 0.697 0.581

OCAN [68] 0.273 0.260 0.506

5.4 Conclusion

A condition monitoring and leak detection system is designed based on the proposed

anomaly detection architecture, which consists of 2 models: the normal model, a

time-series forecasting algorithm using a deep architecture, and the anomaly detec-

tor, which is a conventional classifier. The normal model is trained only on healthy

data by concept, in order to predict healthy or normal behavior. The anomaly detec-

tor is then trained on both healthy and damaged data and, thus, will distinguish the

occurrence of any fault from normal behavior. In summary, using deep architectures

for the normal model has given the anomaly detector an evident superiority over

the conventional models, with the best combination being the 1-dimensional CNN

followed by a Random Forest. Comparison with other novel state-of-the-art meth-

ods on our datasets also confirm the effectiveness and superiority of the proposed

architecture.

Future research possibilities include applying the anomaly detection model to a

57



group of connected motors. A common layout in the industries is a group of small

motors sharing a common bus. The added challenge here is that the occurrence of any

anomalies and damage to one motor can easily cause further damage in the system,

due to possible surges in currents and voltages. Additionally, this anomaly detector

could be applied to a broad range of failure detection and prediction systems, as

results in condition monitoring and pipeline leak detection are very promising so far.

58



Chapter 6

Conclusions, Recommendations, &
Future Work

6.1 Conclusions

Machine learning and especially deep learning are dominating the modern world in

many aspects and they achieve more successes every day. An area that needs more

advancements, however, is anomaly detection. In this thesis, we applied both deep

learning and conventional machine learning to build an anomaly detection architec-

ture.

The proposed architecture consists of two models. The first one, the normal model,

is a time-series prediction algorithm that indicates the expected healthy behavior of

the system in the next time-step, without the occurrence of any anomalies. Thus,

the training dataset for this model includes only healthy data. The normal model

was designed using deep architectures, such as 1-dimensional convolutional neural

networks (1-D CNN) and long short-term memories (LSTM). The second model, the

anomaly detector, is essentially a classifier that identifies the existence of anomalies

by comparing the expected healthy behavior predicted by the normal model with

the actual observations. Conventional machine learning methods were used for this

model.

The designed model was then applied to pipeline leak detection and condition mon-

itoring and fault detection of small induction motors. A major difference between the

59



two applications was the design of the anomaly detector (the second model). Thanks

to the data available in the generated condition monitoring dataset, we were able to

train typical classifiers for the anomaly detector, using methods such as multi-layer

perceptron (MLP), decision trees, and random forests. The pipeline leak detection

dataset, however, had some restrictions. Additionally, pipeline leaks are extremely

rare and there is virtually no available data collected under real leak conditions. Con-

sequently, we chose to train the anomaly detector using healthy data only, as well,

by incorporating methods such as one-class SVM and isolation forests. All in all, the

hybrid deep/conventional architectures lead to excellent results in both applications.

6.2 Future Work

The anomaly detection model could certainly be improved. The addition of capa-

bilities such as identifying the type of anomaly (as there are many things that could

go wrong in a system) and localizing the problem to a small zone would be the next

step. These additions most likely require extra models to be added to the architec-

ture. Moreover, gathering real-world data is beneficial for improving the performance,

as well as evaluating the models for the implementation in the industry.

Furthermore, this hybrid anomaly detector has the potential for the application to

a broad range of anomaly detection and prevention problems. The promising results

achieved in this research demonstrate only a fraction of the capacity.

60



Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015 (cit. on pp. 1, 4–6, 9, 10).

[2] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very large target
vocabulary for neural machine translation,” arXiv preprint arXiv:1412.2007,
2014 (cit. on pp. 1, 5).

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems, 2014,
pp. 3104–3112 (cit. on pp. 1, 5, 10).

[4] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint
arXiv:1701.01887, 2017 (cit. on p. 1).

[5] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep
learning for time series classification: A review,” Data Mining and Knowledge
Discovery, vol. 33, no. 4, pp. 917–963, 2019 (cit. on p. 1).

[6] J. Barrios, “Pipeline leak detection techniques and systems: Comparative as-
sessment of pipeline leak detection methods,” Master’s thesis, Department of
Mechanical Engineering, University of Alberta, 2019 (cit. on pp. 3, 38, 39).

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105 (cit. on p. 5).

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-
tures for scene labeling,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1915–1929, 2012 (cit. on p. 5).

[9] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolu-
tional network and a graphical model for human pose estimation,” in Advances
in neural information processing systems, 2014, pp. 1799–1807 (cit. on p. 5).

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9 (cit. on p. 5).

61



[11] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černocký, “Strategies for
training large scale neural network language models,” in 2011 IEEE Workshop
on Automatic Speech Recognition & Understanding, IEEE, 2011, pp. 196–201
(cit. on p. 5).

[12] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012 (cit.
on p. 5).

[13] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep
convolutional neural networks for lvcsr,” in 2013 IEEE international confer-
ence on acoustics, speech and signal processing, IEEE, 2013, pp. 8614–8618
(cit. on p. 5).

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural language processing (almost) from scratch,” Journal of machine
learning research, vol. 12, no. ARTICLE, pp. 2493–2537, 2011 (cit. on p. 5).

[15] A. Bordes, S. Chopra, and J. Weston, “Question answering with subgraph
embeddings,” arXiv preprint arXiv:1406.3676, 2014 (cit. on p. 5).

[16] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
recognition using time-delay neural networks,” IEEE transactions on acous-
tics, speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989 (cit. on
p. 5).

[17] L. Bottou, F. F. Soulié, P. Blanchet, and J.-S. Lienard, “Experiments with time
delay networks and dynamic time warping for speaker independent isolated
digits recognition,” in First European Conference on Speech Communication
and Technology, 1989 (cit. on p. 5).

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998 (cit. on p. 5).

[19] R. Vaillant, C. Monrocq, and Y. Le Cun, “Original approach for the localisa-
tion of objects in images,” IEE Proceedings-Vision, Image and Signal Process-
ing, vol. 141, no. 4, pp. 245–250, 1994 (cit. on p. 5).

[20] S. J. Nowlan and J. C. Platt, “A convolutional neural network hand tracker,”
Advances in neural information processing systems, pp. 901–908, 1995 (cit. on
p. 5).

[21] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A con-
volutional neural-network approach,” IEEE transactions on neural networks,
vol. 8, no. 1, pp. 98–113, 1997 (cit. on p. 5).

[22] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for convolutional
neural networks applied to visual document analysis.,” in Icdar, vol. 3, 2003
(cit. on p. 5).

62



[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014 (cit.
on p. 5).

[24] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object
localization using convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2015, pp. 648–656 (cit. on
p. 5).

[25] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 1701–1708
(cit. on p. 5).

[26] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convolu-
tional networks,” arXiv preprint arXiv:1312.6229, 2013 (cit. on p. 5).

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–
587 (cit. on p. 5).

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014 (cit. on p. 5).

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016
(cit. on p. 6).

[30] Jefkine, Backpropagation in convolutional neural networks, 2016. [Online]. Avail-
able: https://www.jefkine.com/general/2016/09/05/backpropagation- in-
convolutional-neural-networks/ (cit. on pp. 7, 8).

[31] S. Sobhi, M. Reshadi, and S. Dick, “Condition monitoring and fault detection
of small induction motors using machine learning algorithms,” IEEE Trans-
actions on Systems, Man and Cybernetics: Systems, Submitted 2019 (cit. on
pp. 9, 20, 21, 34, 51, 53–56).

[32] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994 (cit. on p. 9).

[33] J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural Com-
put, vol. 9, no. 8, pp. 1735–1780, 1997 (cit. on pp. 9, 10).

[34] S. El Hihi and Y. Bengio, “Hierarchical recurrent neural networks for long-
term dependencies,” in Advances in neural information processing systems,
1996, pp. 493–499 (cit. on p. 9).

[35] I. Sutskever, Training recurrent neural networks. University of Toronto Toronto,
Canada, 2013 (cit. on p. 10).

63

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/


[36] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recur-
rent neural networks,” in International conference on machine learning, 2013,
pp. 1310–1318 (cit. on p. 10).

[37] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recurrent
neural networks,” in ICML, 2011 (cit. on p. 10).

[38] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp. 3111–3119 (cit. on p. 10).

[39] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078,
2014 (cit. on p. 10).

[40] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014 (cit. on
p. 10).

[41] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and
Y. Bengio, “Show, attend and tell: Neural image caption generation with visual
attention,” in International conference on machine learning, 2015, pp. 2048–
2057 (cit. on p. 10).

[42] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, IEEE, 2013, pp. 6645–6649 (cit. on p. 10).

[43] K. Greff, R. K. Srivastava, J. Koutnık, B. R. Steunebrink, and J. Schmidhuber,
“Lstm: A search space odyssey,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 10, pp. 2222–2232, 2016 (cit. on pp. 10–13).

[44] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999 (cit. on p. 10).

[45] G. Pang, C. Shen, L. Cao, and A. v. d. Hengel, “Deep learning for anomaly
detection: A review,” arXiv preprint arXiv:2007.02500, 2020 (cit. on pp. 13,
14).

[46] D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11 (cit. on p. 13).

[47] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A sur-
vey,” arXiv preprint arXiv:1901.03407, 2019 (cit. on pp. 14–17).

[48] F. E. Grubbs, “Procedures for detecting outlying observations in samples,”
Technometrics, vol. 11, no. 1, pp. 1–21, 1969 (cit. on p. 14).

[49] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009 (cit. on pp. 14,
20).

[50] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: A survey,” Data mining and knowledge discovery, vol. 29, no. 3,
pp. 626–688, 2015 (cit. on p. 14).

64



[51] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for tempo-
ral data: A survey,” IEEE Transactions on Knowledge and data Engineering,
vol. 26, no. 9, pp. 2250–2267, 2013 (cit. on p. 14).

[52] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Arti-
ficial intelligence review, vol. 22, no. 2, pp. 85–126, 2004 (cit. on p. 14).

[53] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsupervised outlier
detection in high-dimensional numerical data,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 5, no. 5, pp. 363–387, 2012 (cit.
on p. 14).

[54] B. R. Kiran, D. M. Thomas, and R. Parakkal, “An overview of deep learning
based methods for unsupervised and semi-supervised anomaly detection in
videos,” Journal of Imaging, vol. 4, no. 2, p. 36, 2018 (cit. on p. 14).

[55] E. Min, J. Long, Q. Liu, J. Cui, Z. Cai, and J. Ma, “Su-ids: A semi-supervised
and unsupervised framework for network intrusion detection,” in International
Conference on Cloud Computing and Security, Springer, 2018, pp. 322–334 (cit.
on p. 14).

[56] P. Perera and V. M. Patel, “Learning deep features for one-class classification,”
IEEE Transactions on Image Processing, vol. 28, no. 11, pp. 5450–5463, 2019
(cit. on p. 15).

[57] G. Blanchard, G. Lee, and C. Scott, “Semi-supervised novelty detection,” The
Journal of Machine Learning Research, vol. 11, pp. 2973–3009, 2010 (cit. on
p. 15).

[58] T. T. Lu, “Fundamental limitations of semi-supervised learning,” Master’s
thesis, University of Waterloo, 2009 (cit. on p. 15).

[59] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, M. Prabhat, and C. Pal,
“Extremeweather: A large-scale climate dataset for semi-supervised detection,
localization, and understanding of extreme weather events,” in Advances in
Neural Information Processing Systems, 2017, pp. 3402–3413 (cit. on p. 15).

[60] H. Wu and S. Prasad, “Semi-supervised deep learning using pseudo labels for
hyperspectral image classification,” IEEE Transactions on Image Processing,
vol. 27, no. 3, pp. 1259–1270, 2017 (cit. on p. 15).

[61] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-
supervised anomaly detection via adversarial training,” in Asian conference
on computer vision, Springer, 2018, pp. 622–637 (cit. on p. 15).

[62] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-dimensional
and large-scale anomaly detection using a linear one-class svm with deep learn-
ing,” Pattern Recognition, vol. 58, pp. 121–134, 2016 (cit. on p. 15).

[63] R. Wu, B. Wang, W. Wang, and Y. Yu, “Harvesting discriminative meta ob-
jects with deep cnn features for scene classification,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 1287–1295 (cit.
on p. 15).

65



[64] H. Song, Z. Jiang, A. Men, and B. Yang, “A hybrid semi-supervised anomaly
detection model for high-dimensional data,” Computational intelligence and
neuroscience, vol. 2017, 2017 (cit. on p. 15).

[65] J. T. Andrews, E. J. Morton, and L. D. Griffin, “Detecting anomalous data
using auto-encoders,” International Journal of Machine Learning and Com-
puting, vol. 6, no. 1, p. 21, 2016 (cit. on p. 15).

[66] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, and M. Kloft, “Deep one-class classification,” in International con-
ference on machine learning, 2018, pp. 4393–4402 (cit. on pp. 16, 44, 45, 56,
57).

[67] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using one-
class neural networks,” arXiv preprint arXiv:1802.06360, 2018 (cit. on pp. 16,
44, 45, 56, 57).

[68] P. Zheng, S. Yuan, X. Wu, J. Li, and A. Lu, “One-class adversarial nets for
fraud detection,” arXiv preprint arXiv:1803.01798, 2018 (cit. on pp. 16, 44,
45, 56, 57).

[69] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good
semi-supervised learning that requires a bad gan,” in Advances in neural in-
formation processing systems, 2017, pp. 6510–6520 (cit. on p. 16).

[70] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data,” PloS one, vol. 11, no. 4, e0152173,
2016 (cit. on p. 16).

[71] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in
Proceedings of ICML workshop on unsupervised and transfer learning, 2012,
pp. 37–49 (cit. on p. 16).

[72] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H.
Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly
detection,” in International Conference on Learning Representations, 2018 (cit.
on p. 16).

[73] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with non-
linear dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd Work-
shop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11 (cit. on
p. 16).

[74] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autore-
gression for novelty detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 481–490 (cit. on p. 16).

[75] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory
networks for anomaly detection in time series,” in Proceedings, Presses univer-
sitaires de Louvain, vol. 89, 2015, pp. 89–94 (cit. on p. 16).

66



[76] W. Lawson, E. Bekele, and K. Sullivan, “Finding anomalies with generative
adversarial networks for a patrolbot,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, pp. 12–13 (cit.
on p. 16).

[77] J. Andrews, T. Tanay, E. J. Morton, and L. D. Griffin, “Transfer representation-
learning for anomaly detection,” JMLR, 2016 (cit. on p. 16).

[78] V. Vercruyssen, W. Meert, and J. Davis, “Transfer learning for time series
anomaly detection,” in CEUR Workshop Proceedings, vol. 1924, 2017, pp. 27–
37 (cit. on p. 16).

[79] K. Li, N. Du, and A. Zhang, “Detecting ecg abnormalities via transductive
transfer learning,” in Proceedings of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, 2012, pp. 210–217 (cit. on p. 16).

[80] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning through
cross-modal transfer,” in Advances in neural information processing systems,
2013, pp. 935–943 (cit. on p. 17).

[81] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the bad and
the ugly,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 4582–4591 (cit. on p. 17).

[82] A. Mishra, S. Krishna Reddy, A. Mittal, and H. A. Murthy, “A generative
model for zero shot learning using conditional variational autoencoders,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, 2018, pp. 2188–2196 (cit. on p. 17).

[83] F. de La Bourdonnaye, C. Teuliere, T. Chateau, and J. Triesch, “Learning of
binocular fixations using anomaly detection with deep reinforcement learning,”
in 2017 International Joint Conference on Neural Networks (IJCNN), IEEE,
2017, pp. 760–767 (cit. on p. 17).

[84] C. Huang, Y. Wu, Y. Zuo, K. Pei, and G. Min, “Towards experienced anomaly
detector through reinforcement learning,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018 (cit. on p. 17).

[85] R. J. Frank, N. Davey, and S. P. Hunt, “Time series prediction and neural
networks,” Journal of intelligent and robotic systems, vol. 31, no. 1-3, pp. 91–
103, 2001 (cit. on p. 17).

[86] C. Wu and K.-W. Chau, “Data-driven models for monthly streamflow time
series prediction,” Engineering Applications of Artificial Intelligence, vol. 23,
no. 8, pp. 1350–1367, 2010 (cit. on p. 17).

[87] C. Wu, K. Chau, and C. Fan, “Prediction of rainfall time series using modular
artificial neural networks coupled with data-preprocessing techniques,” Journal
of Hydrology, vol. 389, no. 1-2, pp. 146–167, 2010 (cit. on p. 17).

[88] F. Zhao, J. Chen, L. Guo, and X. Li, “Neuro-fuzzy based condition prediction
of bearing health,” Journal of Vibration and Control, vol. 15, no. 7, pp. 1079–
1091, 2009 (cit. on p. 17).

67



[89] R. Jursa and K. Rohrig, “Short-term wind power forecasting using evolution-
ary algorithms for the automated specification of artificial intelligence models,”
International Journal of Forecasting, vol. 24, no. 4, pp. 694–709, 2008 (cit. on
p. 17).

[90] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge univer-
sity press, 2004, vol. 7 (cit. on pp. 17–19, 21).

[91] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems
and turbulence, Warwick 1980, Springer, 1981, pp. 366–381 (cit. on pp. 17, 21).

[92] O. Y. Poodeh, “Applications of complex fuzzy sets in time series prediction,”
PhD thesis, Department of Electrical and Computer Engineering, University
of Alberta, 2017 (cit. on p. 18).

[93] M. B. Kennel, R. Brown, and H. D. Abarbanel, “Determining embedding
dimension for phase-space reconstruction using a geometrical construction,”
Physical review A, vol. 45, no. 6, p. 3403, 1992 (cit. on p. 18).

[94] R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of nonlinear
time series methods: The tisean package,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 9, no. 2, pp. 413–435, 1999 (cit. on pp. 18, 19, 28).

[95] L. Cao, A. Mees, and K. Judd, “Dynamics from multivariate time series,”
Physica D: Nonlinear Phenomena, vol. 121, no. 1-2, pp. 75–88, 1998 (cit. on
p. 19).

[96] S. Boccaletti, D. Valladares, L. M. Pecora, H. P. Geffert, and T. Carroll, “Re-
constructing embedding spaces of coupled dynamical systems from multivari-
ate data,” Physical Review E, vol. 65, no. 3, p. 035 204, 2002 (cit. on p. 19).

[97] L.-y. Su, “Prediction of multivariate chaotic time series with local polynomial
fitting,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 737–
744, 2010 (cit. on p. 19).

[98] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming environmental
sensor data: A data-driven modeling approach,” Environmental Modelling &
Software, vol. 25, no. 9, pp. 1014–1022, 2010 (cit. on p. 20).

[99] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE
International Conference on Data Mining, IEEE, 2008, pp. 413–422 (cit. on
p. 25).

[100] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 6, no. 1,
pp. 1–39, 2012 (cit. on p. 25).

[101] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural compu-
tation, vol. 13, no. 7, pp. 1443–1471, 2001 (cit. on p. 25).

[102] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,”
ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,
pp. 1–27, 2011 (cit. on p. 25).

68



[103] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467,
2016 (cit. on p. 32).

[104] F. Chollet et al., Keras, https://keras.io, 2015 (cit. on p. 32).

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Ma-
chine learning in python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011 (cit. on p. 32).

[106] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E.
Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand
erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and S. 1. 0. Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. doi: https:
//doi.org/10.1038/s41592-019-0686-2 (cit. on p. 32).

[107] M. S. El-Abbasy, A. Senouci, T. Zayed, F. Mirahadi, and L. Parvizsedghy,
“Artificial neural network models for predicting condition of offshore oil and
gas pipelines,” Automation in Construction, vol. 45, pp. 50–65, 2014 (cit. on
pp. 33, 37).

[108] E. Karangwa, “Estimating the cost of pipeline transportation in canada,”
Transport Canada, Accessed on: March 23, 2020. [Online]. Available: http :
//ctrf.ca/wp-content/uploads/2014/07/Karangwa2008.pdf (cit. on p. 33).

[109] Interstate Natural Gas Association of America, Safety every step of the way,
Accessed on: March 23, 2020. [Online]. Available: http://www.ingaa.org/File.
aspx?id=12282 (cit. on p. 33).

[110] C. Belvederesi, M. S. Thompson, and P. E. Komers, “Statistical analysis of
environmental consequences of hazardous liquid pipeline accidents,” Heliyon,
vol. 4, no. 11, e00901, 2018 (cit. on p. 33).

[111] API, RP, “1175: Pipeline leak detection-program management, errata march
2017,” American Petroleum Institute, (cit. on p. 35).

[112] API, RP, “1162: Public awareness programs for pipeline operators (second
ed.), 2015,” American Petroleum Institute, (cit. on p. 35).

[113] A. Shukla and H. Karki, “Application of robotics in onshore oil and gas indus-
try—a review part i,” Robotics and Autonomous Systems, vol. 75, pp. 490–507,
2016 (cit. on p. 35).

[114] F. Karray, A. Garcia-Ortiz, M. W. Jmal, A. M. Obeid, and M. Abid, “Earn-
pipe: A testbed for smart water pipeline monitoring using wireless sensor net-
work,” Procedia Computer Science, vol. 96, pp. 285–294, 2016 (cit. on p. 35).

69

https://keras.io
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://ctrf.ca/wp-content/uploads/2014/07/Karangwa2008.pdf
http://ctrf.ca/wp-content/uploads/2014/07/Karangwa2008.pdf
http://www.ingaa.org/File.aspx?id=12282
http://www.ingaa.org/File.aspx?id=12282


[115] A. M. Sadeghioon, N. Metje, D. N. Chapman, and C. J. Anthony, “Smartpipes:
Smart wireless sensor networks for leak detection in water pipelines,” Journal
of sensor and Actuator Networks, vol. 3, no. 1, pp. 64–78, 2014 (cit. on pp. 35,
36).

[116] P.-S. Murvay and I. Silea, “A survey on gas leak detection and localization
techniques,” Journal of Loss Prevention in the Process Industries, vol. 25,
no. 6, pp. 966–973, 2012 (cit. on p. 35).

[117] H. A. Kishawy and H. A. Gabbar, “Review of pipeline integrity management
practices,” International Journal of Pressure Vessels and Piping, vol. 87, no. 7,
pp. 373–380, 2010 (cit. on p. 35).

[118] PHMSA, Enhancement of the long-range ultrasonic method for the detection
of degradation in buried, unpiggable pipelines, Accessed on: March 7, 2018.
[Online]. Available: https://primis.phmsa.dot.gov/rd/publicabstract12 3 02.
htm (cit. on p. 36).

[119] S. Saechai, W. Kongprawechnon, and R. Sahamitmongkol, “Test system for
defect detection in construction materials with ultrasonic waves by support
vector machine and neural network,” in The 6th International Conference on
Soft Computing and Intelligent Systems, and The 13th International Sympo-
sium on Advanced Intelligence Systems, IEEE, 2012, pp. 1034–1039 (cit. on
p. 36).

[120] J.-m. Zhao, S.-f. Yang, Y. Li, and X.-q. Wang, “Study on thickness detection
of industrial pipe network by high-frequency ultrasound,” in Proceedings of the
2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications,
IEEE, 2010, pp. 517–521 (cit. on p. 36).

[121] U. Murdika, G. Elan, T. Yulianti, et al., “Ultrasonic signal denoising based on
wavelet haar decomposition level,” in 2016 3rd International Conference on
Information Technology, Computer, and Electrical Engineering (ICITACEE),
IEEE, 2016, pp. 89–94 (cit. on p. 36).

[122] C. Baldwin, “Fiber optic sensors in the oil and gas industry: Current and
future applications,” in Opto-mechanical fiber optic sensors, Elsevier, 2018,
pp. 211–236 (cit. on p. 36).

[123] B. Arifin, Z. Li, S. L. Shah, G. A. Meyer, and A. Colin, “A novel data-
driven leak detection and localization algorithm using the kantorovich dis-
tance,” Computers & Chemical Engineering, vol. 108, pp. 300–313, 2018 (cit.
on p. 36).

[124] API, RP, “1130: Computational pipeline monitoring for liquids (first ed.),
reaffirmed april 2012,” American Petroleum Institute, (cit. on p. 36).

[125] P. Angelov and A. Kordon, “Adaptive inferential sensors based on evolving
fuzzy models,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 40, no. 2, pp. 529–539, 2009 (cit. on p. 37).

70

https://primis.phmsa.dot.gov/rd/publicabstract12_3_02.htm
https://primis.phmsa.dot.gov/rd/publicabstract12_3_02.htm


[126] S. Rashid, U. Akram, S. Qaisar, S. A. Khan, and E. Felemban, “Wireless
sensor network for distributed event detection based on machine learning,”
in 2014 IEEE International Conference on Internet of Things (iThings), and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom), IEEE, 2014, pp. 540–545 (cit. on
p. 37).

[127] M. Romano, K. Woodward, and Z. Kapelan, “Statistical process control based
system for approximate location of pipe bursts and leaks in water distribution
systems,” Procedia Engineering, vol. 186, pp. 236–243, 2017 (cit. on p. 37).

[128] O. E. Agwu, J. U. Akpabio, S. B. Alabi, and A. Dosunmu, “Artificial intelli-
gence techniques and their applications in drilling fluid engineering: A review,”
Journal of Petroleum Science and Engineering, vol. 167, pp. 300–315, 2018 (cit.
on p. 37).

[129] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Jour-
nal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006 (cit. on p. 44).

[130] K. Kim and A. G. Parlos, “Induction motor fault diagnosis based on neuropre-
dictors and wavelet signal processing,” IEEE/ASME Transactions on mecha-
tronics, vol. 7, no. 2, pp. 201–219, 2002 (cit. on pp. 47, 49).

[131] A. Jawadekar, S. Paraskar, S. Jadhav, and G. Dhole, “Artificial neural network-
based induction motor fault classifier using continuous wavelet transform,”
Systems Science & Control Engineering: An Open Access Journal, vol. 2, no. 1,
pp. 684–690, 2014 (cit. on pp. 47, 49).

[132] E. L. Bonaldi, L. E. d. L. de Oliveira, J. G. B. da Silva, G. Lambert-Torresm,
and L. E. B. da Silva, “Predictive maintenance by electrical signature analysis
to induction motors,” in Induction Motors-Modelling and Control, IntechOpen,
2012 (cit. on pp. 47–49).

[133] K. Guota and A. Kaut, “A review on fault diagnosis on induction motor using
artificial neural networks,” International journal of science and research, vol. 3,
no. 7, pp. 680–684, 2014 (cit. on pp. 48, 49).

[134] F. Lin, C. KT, C. CC, and C. Liu, “Fault diagnosis of power components in
electric vehicles,” Journal of Asian Electric Vehicles, vol. 11, no. 2, pp. 1659–
1666, 2013 (cit. on pp. 48, 49).

[135] E. P. Carden and P. Fanning, “Vibration based condition monitoring: A re-
view,” Structural health monitoring, vol. 3, no. 4, pp. 355–377, 2004 (cit. on
p. 49).

[136] B. Joseph and C. B. Brosilow, “Inferential control of processes: Part i. steady
state analysis and design,” AIChE Journal, vol. 24, no. 3, pp. 485–492, 1978
(cit. on p. 49).

[137] C. Brosilow and M. Tong, “Inferential control of processes: Part ii. the struc-
ture and dynamics of inferential control systems,” AIChE Journal, vol. 24,
no. 3, pp. 492–500, 1978 (cit. on p. 49).

71



[138] B. Joseph and C. Brosilow, “Inferential control of processes: Part iii. construc-
tion of optimal and suboptimal dynamic estimators,” AIChE Journal, vol. 24,
no. 3, pp. 500–509, 1978 (cit. on p. 49).

[139] A. Jutan, J. MacGregor, and J. Wright, “Multivariable computer control of
a butane hydrogenolysis reactor: Part ii. data collection, parameter estima-
tion, and stochastic disturbance identification,” AIChE Journal, vol. 23, no. 5,
pp. 742–750, 1977 (cit. on p. 49).

[140] S. J. Qin, H. Yue, and R. Dunia, “Self-validating inferential sensors with ap-
plication to air emission monitoring,” Industrial & engineering chemistry re-
search, vol. 36, no. 5, pp. 1675–1685, 1997 (cit. on p. 49).

[141] C. Booth and J. R. McDonald, “The use of artificial neural networks for con-
dition monitoring of electrical power transformers,” Neurocomputing, vol. 23,
no. 1-3, pp. 97–109, 1998 (cit. on p. 49).

[142] H. Kamohara, A. Takinami, M. Takeda, M. Kano, S. Hasebe, and I. Hashimoto,
“Product quality estimation and operating condition monitoring for industrial
ethylene fractionator,” Journal of chemical engineering of Japan, vol. 37, no. 3,
pp. 422–428, 2004 (cit. on p. 49).

[143] R. E. Lamberson, Apparatus and method for the remote monitoring of machine
condition, US Patent 5,845,230, Dec. 1998 (cit. on p. 49).

[144] N. Daroogheh, A. Baniamerian, N. Meskin, and K. Khorasani, “Prognosis
and health monitoring of nonlinear systems using a hybrid scheme through
integration of pfs and neural networks,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 47, no. 8, pp. 1990–2004, 2016 (cit. on p. 49).

[145] P. Henriquez, J. B. Alonso, M. A. Ferrer, and C. M. Travieso, “Review of auto-
matic fault diagnosis systems using audio and vibration signals,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 5, pp. 642–
652, 2013 (cit. on p. 49).

[146] S.-j. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, “A neural network inte-
grated decision support system for condition-based optimal predictive main-
tenance policy,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 37, no. 2, pp. 226–236, 2007 (cit. on p. 49).

[147] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagno-
sis of electrical motors—a review,” IEEE transactions on energy conversion,
vol. 20, no. 4, pp. 719–729, 2005 (cit. on p. 49).

[148] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Induction
machines fault detection based on subspace spectral estimation,” IEEE Trans-
actions on Industrial Electronics, vol. 63, no. 9, pp. 5641–5651, 2016 (cit. on
p. 49).

[149] J. Sun, Y. Chai, C. Su, Z. Zhu, and X. Luo, “Bldc motor speed control system
fault diagnosis based on lrgf neural network and adaptive lifting scheme,”
Applied Soft Computing, vol. 14, pp. 609–622, 2014 (cit. on p. 49).

72



[150] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time motor
fault detection by 1-d convolutional neural networks,” IEEE Transactions on
Industrial Electronics, vol. 63, no. 11, pp. 7067–7075, 2016 (cit. on p. 49).

[151] K. Li and Q. Wang, “Study on signal recognition and diagnosis for space-
craft based on deep learning method,” in 2015 Prognostics and System Health
Management Conference (PHM), IEEE, 2015, pp. 1–5 (cit. on p. 49).

[152] K. K. Reddy, S. Sarkar, V. Venugopalan, and M. Giering, “Anomaly detection
and fault disambiguation in large flight data: A multi-modal deep auto-encoder
approach,” in Annual Conference of the Prognostics and Health Management
Society, vol. 2016, 2016 (cit. on p. 49).

[153] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A sparse auto-
encoder-based deep neural network approach for induction motor faults clas-
sification,” Measurement, vol. 89, pp. 171–178, 2016 (cit. on p. 49).

[154] S. Haykin, Neural Networks and Learning Machines, 3/E. Pearson Education
India, 2010 (cit. on p. 55).

[155] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
regression trees. CRC press, 1984 (cit. on p. 55).

[156] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001
(cit. on p. 55).

73


	Introduction
	Thesis Outline
	Contribution

	Background
	Deep Learning
	Convolutional Neural Networks (CNN)
	Recurrent Neural Networks (RNN)

	Anomaly Detection
	Time-series Delay Embedding

	The Proposed Model
	The Normal Model
	Architecture

	The anomaly Detector
	Architecture

	Data Preprocessing
	Missing Values
	Feature Scaling/Normalization
	Data Splitting
	Delay Embedding

	Parameter Exploration and Evaluation

	Application in Pipeline Leak Detection
	Introduction
	Literature Review
	Dataset
	Results and Discussion
	Comparison with other novel architectures

	Conclusion

	Application in Condition Monitoring and Fault Detection of Small Induction Motors
	Introduction
	Dataset
	Results and Discussion
	Comparison with other novel architectures

	Conclusion

	Conclusions, Recommendations, & Future Work
	Conclusions
	Future Work

	Bibliography

