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Abstract

In the framework of topological recursion (TR), the quantum curve conjecture

relates the initial spectral curve to a differential equation – the quantum curve

– satisfied by the TR wave-function. Several admissibility conditions have been

put forward to explain which input of spectral curve effectively produces a quan-

tum curve.

In this thesis we propose a new way to prove the existence of quantum

curves for genus zero spectral curves. This new approach is based on some early

calculations relating the quantum curve and Virasoro constraints, and on the

more recent Airy structure reformulation of TR in which Virasoro constraints

play a central role.

The Airy structure approach gives a relation between the quantum curve

wave function and the Airy structure partition function via the specialization

map. We explain how the specialization map extended to differential operators

could be the key to relate some generic combination of Virasoro constraints to

the quantum curve differential equation. In this context, admissibility condi-

tions arise when looking at which spectral curve produces a generic operator that

can be specialized. Interestingly, when specialization works we always recover

the expected quantum curve.

Although our method suggests a way to check the existence of any quan-

tum curve, in practice it remains limited because of the pedestrian approach

of specializing differential operators. For curves slightly more complicated than

the easier examples, our expressions quickly get too complicated to manipulate.

However we think that the connection which we outline here is interesting and

could probably be extended further with a more technical treatment.
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1 Introduction

1.1 La Physique Mathématique expliquée à ma

mère

Quantum mechanics is weird. When the theory was first established a little over
a century ago, it took the best physicists around three decades to come up with
the right mathematical tools for it, and certainly much longer still to accept it
conceptually. Yet as they slowly came to grip with it, they realized that it was
not just some rickety fix to make the theory match to the experiments. It had
a kind of necessity, a kind of inevitability to it. In his book “Dreams of a final
theory” [44], Physics Nobel laureate Steven Weinberg argues that, if there’s any
piece of a physical theory which we know today which ought to survive in a final
theory of nature, it would be quantum mechanics.

However there is still work ahead to find the appropriate language to talk
about quantum mechanics. One of the biggest challenges of modern physics is to
unify Einstein’s general relativity with quantum mechanics: although we have
a good description of both theories in their respective domains of application,
they seem incompatible when brought together. Mathematically incompatible.
What we are missing is the right language.

One of the ambitions of mathematical physics is to find that language, and
so far the journey has been a fascinating and fruitful one. Except that the fruits
have not always been the ones that we expected: Beautiful, unforeseen connec-
tions in various area of geometry, algebra and differential equations, sometimes
bringing together abstract mathematical theories known for 50 years. All that,
simply by taking different tools and trying to construct the same physical the-
ory. And again with this kind of inevitability, as if we could have discovered
quantum mechanics with a pen and paper, had we not been so unfortunate to
stumble upon it first in the labs.

In this thesis we will see an example of just that: Quantum curves, a funda-
mentally geometric object that somehow magically exhibits quantum features,
and that relates the most ancient of all fields of mathematics, that of “counting
stuff”, with some of the latest developments in algebraic geometry and infinite
systems of differential equations.

1



CHAPTER 1. INTRODUCTION 2

1.2 Topological recursion and Quantum curves

A little more than a decade ago, Eynard and Orantin introduced the formula of
topological recursion [32] as a universal formula for constructing different kinds
of quantum geometric invariants. This generalized a formula known in the
context of formal matrix models. In this formulation the input data is encoded
in the spectral curve (Σ, x, y, B), where Σ is a compact Riemann surface of
genus g with a choice of Bergman Kernel B, and x and y are two meromorphic
functions defined on Σ, such that the zeroes of dx do not coincide with the zeroes
of dy. The recursion produces a set of differential forms ωg,n(z1, . . . , zn) defined
on Σn and whose asymptotic expansion encodes algebro-geometric invariants of
some sort. Several enumerative geometry problems related to different areas of
algebraic geometry have been shown to fall within the formalism of topological
recursion, such as cohomological field theories[3], Hurwitz theory[26, 10, 21],
Gromov-Witten theory for CP 1[42] and toric Calabi-Yau threefolds [17, 34, 31],
quantum knot invariants[8], Weil-Peterson volumes [33] and many more1.

In the same spirit that topological recursion generalizes results known in
matrix models, quantum curves are believed to exist as a generalization of de-
terminental formulas [4]. The idea is the following. To the spectral curve we can
associate an algebraic plane curve, that is the irreducible polynomial equation
satisfied by x and y,

P (x, y) = 0. (1.2.1)

The statement is that the wave function ψ(x, ~),

ψ(x, ~) ∝ exp

∑
g≥0

∑
n≥1

~2g−2+n

n!

∫ z

α

. . .

∫ z

α

(
ωg,n − δg,0δn,2

dx1dx2
(x1 − x2)2

),
(1.2.2)

Produces the WKB asymptotic expansion of the solution of a quantization of
the algebraic equation,

P̂ (x̂, ŷ, ~)ψ(x, ~) = 0. (1.2.3)

Here x̂ = x and ŷ = ~ d
dx satisfy to the canonical commutation relations [ŷ, x̂] = ~

and P̂ is related to P in the classical limit ~→ 0 with the mapping x̂→ x and
1see [7] for an informal updated summary of results.
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ŷ → y. More precisely, one can write

P̂ (x̂, ŷ, ~) = P (x̂, ŷ) +
∑
n≥1

~nPn(x̂, ŷ). (1.2.4)

This statement has been verified for a large class of spectral curve of genus
g = 0 [12] under some admissibility, i.e. sufficient, condition. Moreover, a non-
perturbative generalization of the conjecture was shown to hold up to a certain
order for some specific examples of genus g = 1 spectral curves [9, 8, 30, 11]. In
this thesis we shall only be concerned with genus zero, and our main goal will
be to study admissibility using a different approach.

1.3 Airy structures

More recently, Topological recursion has been reformulated in terms of Airy
structures [38]. Airy structures are a generalization of the relations known as
Virasoro constraints in the context of matrix models [27]. An Airy structure is
a set of differential operators of the shape,

Li = ~∂i −
1

2
Aiabx

axb − ~Bbiax
a∂b −

~2

2
Cabi ∂a∂b − ~Di, (1.3.1)

where we use the repeated indices summation convention. Here ~∂i and its dual
xi are basis elements of some C-vector space V . We also impose that the Li
form a Lie algebra [Li, Lj ] = fkijLk. This condition guarantees existence and
uniqueness of a solution to the infinite set of equations

Li Z = 0. (1.3.2)

In particular the solution is constructed recursively, in a very similar manner
as the ωg,n of the topological recursion. In fact, given a spectral curve we can
construct a unique Airy structure that recovers the same enumerative informa-
tion as the Eynard-Orantin topological recursion. Furthermore the partition
function Z of the Airy structure then relates to the wave function ψ defined
earlier.

This observation is the starting point of the investigation presented in this
thesis: in the Airy structure formalism, we are by construction given a set of op-
erators that annihilate the wave function, and the quantum curve conjecture is
precisely a statement about the wave function being annihilated by some oper-
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ator. The question is then can we construct the quantum curve operator
P̂ directly, and in a general way, from the operators Li of the Airy
structure?
We must stress that this hypothesis is not just a wild guess. Several authors
[36, 23] have already related Virasoro constraints the quantum curve, however a
general treatment using the new formulation of Airy structure has not yet been
explored. This is what we hope to shed light on in this thesis.

1.4 Summary of results

Our method of proof consists in three main steps. First we write down the can-
didate Airy structure from the input data of the spectral curve, and we prove
that it indeed forms a Lie algebra. The second step is to construct an evolution
operator from the Airy structure, essentially a linear combination of the op-
erators Li, and using the Airy structure/topological recursion correspondence
to translate it into a differential operator acting on the wave function. This
translation is known as specialization in the literature, and amounts to send-
ing the infinite number of variables xi to set of meromorphic functions in the
single variable z living on the spectral curve. While specializing we find new
conditions for admissibility as the sufficient conditions for the specialization to
work out nicely, and to recover a differential operator in the z variable. The
third and last step is to check that the specialization of the evolution operator,
after suitable conjugations, identifies with a quantization of the original spectral
curve. We observe that all the curves which we considered that are passing step
two are also passing step three, although we do not have a clear understanding
of why this is true.

We first apply our method to genus zero spectral curves for which x =
1
2z

2. This is a simple generalization of the calculation done in [23] on the
Bessel curve. Moreover the existence of a corresponding Airy structure in those
cases is a classical result. Therefore, all we do which is new is to proceed
with the specialization step in all generality. Doing so we obtain a truncation
condition on the series expansion of θ(z) = −2

ω0,1(z)−ω0,1(−z) (proposition 4.1.3),
and we rederive the Bessel curve along with the Airy and Monotone Hurwitz
curve which all satisfy to that condition. We also point out the existence of 3
corresponding families of quantizable spectral curves that somehow don’t fall
into the admissibility condition stated in [12] in terms of interior points in the
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Newton polygon, but which are clear from our perspective. We find that these
are the only spectral curves of this type that are quantizable according to our
approach.

We then extend this to so called n−point functions which are relevant in
the context of integrable systems. This is done by considering a multivariable
specialization replacing ψ(z) by ψ(z1, z2, . . .). We show that the multi-variable
wave-function for the Airy curve satisfies to the Calogero-Moser Hamiltonian
equation (proposition 4.3.7). We do the analog calculation for the Bessel spectral
curve and find a similar result (proposition 4.3.12), which has yet to be compared
with other sources.

Finally we look are several spectral curves with two branch points. Here we
have to assume that we can set the branch points at 0 and ∞ while keeping the
involution to be ι(z) = −z. For these we have to define a new Airy structure
that has not been mentioned before in the literature (proposition 4.4.1). We
then apply successfully to reprove several results of [12]. This also gives us a new
notion of admissibility for these cases, again in terms of a truncation condition
(proposition 4.4.5).

1.5 Organization of the Thesis

The thesis is organized as follows:
In chapter 2 we summarize a classic application of topological recursion in

the context of formal Hermitian matrix models. Our goal in doing so is twofold.
Firstly historical, since topological recursion find its sources in random matrix
theory, and to familiarize the reader with the structure of topological recursion
in a concrete example instead of starting from the polished definition. Secondly,
we show how the quantum curve arises in this setup, simply as a property of
random matrix expectation values. This also helps us to explain the definition
of the quantum curve. Later we will rederive the same quantum curve using
Airy structures and only by looking at the corresponding algebraic curve.

In chapter 3 we introduce the new formulation of topological recursion in
terms of Airy structures [38], and revisit the statement of the equivalence. Doing
so we place some emphasis on the important points to make for our application.

Finally, in chapter 4 we focus our attention on a certain class of simpler
spectral curves and we prove the last bit of lemma needed in our reasoning.
Then we apply our construction and rederive some known quantum curves. In
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particular we revisit most of the examples done in [12]. In all these cases we find
matching results in terms of correspondence between the choice of integration
divisor and the choice of ordering in the canonical quantization of the spectral
curve.



2 Quantum Curves
in Random Matrices

2.1 Motivation

Like all good recipes, topological recursion is the product of a long history of
experimentation, successes, and failures, rooted in an ancient culture that takes
its root at the origin of civilization. But more concretely, without going back
as far as the Babylonians [24], let us give a brief account of the story, and doing
so describe in a bit more details one particular application of this universal for-
mula. Topological recursion originated as a solution for matrix models. Random
matrix theory is a very rich subject with applications in statistics, mathemati-
cal physics, engineering, finance and many more areas of both applied and pure
mathematics. Despite having been studied for almost a century now [46], it
continues to be an active field of research.
One typical problem in random matrices is the following: Consider a large ma-
trix whose entries are given by random variables with a given distribution. What
can we say about the distribution of its eigenvalues? This question first became
relevant in the 1950s when physicists became interested in the excitation levels
of heavy nuclei [45] . According to quantum mechanics, energy levels correspond
to the eigenvalues of a self-adjoint operator, the Hamiltonian of the system. The
inner structure of a large nuclei, although not well understood, is a system with
many degrees of freedom and so it is natural to model its properties with some
probabilistic law. More precisely we can represent its Hamiltonian as a matrix
with random entries with some assumptions on the statistics, and the problem
then becomes to compute the distribution of the eigenvalues of this matrix.

2.2 The Setup

Let us denote by HN the set of N ×N Hermitian matrices,

HN = {M ∈MN×N (C) | M† = M}. (2.2.1)

7
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We define a measure to integrate over this space,

dµ(M) = e−
N
t TrV (M)dM, (2.2.2)

for a choice of a least quadratic potential,

V (M) =
M2

2
−

d∑
j=3

tj
j
M j , (2.2.3)

and dM the U(N) invariant Lebesgue measure on HN ,

dM =
1

Z0

N∏
i=1

dMii

∏
i<j

dReMijd ImMij , (2.2.4)

where Z0 = 2N/2(πt/N)N
2/2. We are interested in calculating the partition

function
Z(t, t3, . . . , td;N) =

∫
HN

dµ(M), (2.2.5)

(from now on we omit to write the dependence in the formal variables for tidi-
ness) as well as expectation values,

〈f〉 =
1

Z

∫
HN

f(M) dµ(M). (2.2.6)

For example, the case of the characteristic polynomial f(M) = det(x −M)1,
which contains information about the eigenvalues, will be of prime interest. We
will refer to the special case t3, . . . , td = 0 as the Gaussian matrix model, as
the corresponding partition function is simply a product of N2 real Gaussian

1Here and from now on, one should read x −M as xI −M where I is the appropriately
sized identity matrix.
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integrals,

TrM2 =
∑
i,j

MijMji (2.2.7)

=
∑
i,j

MijM
∗
ij (2.2.8)

=
∑
i,j

(ReMij)
2 +

∑
i,j

(ImMij)
2 (2.2.9)

=
∑
i

M2
ii + 2

∑
i<j

[
(ReMij)

2 + (ImMij)
2
]
. (2.2.10)

Here we see the reason behind working with Hermitian matrices.
One can easily check, using the single variable case

∫∞
−∞ e−αx

2

dx =
√

π
α , that

the denominator in (2.2.4) is chosen precisely such that the Gaussian partition
function is normalized to 1.

Formal vs convergent matrix models

Before we move on, there is an important point to clarify about what we mean
by the integral sign in the expectation values and in the partition function.

When we expand the exponential in the measure we can write it as,

Z =

∫
HN

e
N
t

∑d
j=3

tj
j TrMj

e−
N
2tTrM

2

dM, (2.2.11)

=

∫
HN

d∏
k=3

∑
nk≥0

1

nk!
(
N

t

tk
k

TrMk)nke−
N
2tTrM

2

dM. (2.2.12)

We must therefore ask whether order matters between the integration and the
summation. The answer is it does, and this distinction draws the line between
convergent and formal matrix models. In convergent matrix models, where
we are essentially interested in numerical estimates of these expectation values,
we are working with the above definition, that is, with the integration on the
outside. The motivation given in the introduction, to calculate the distribution
of the eigenvalues of a random matrix, falls into this framework [39].
In this thesis however, we will be working only with formal matrix integrals,
where we first integrate each monomial before taking the sum,

Z :=
d∏
k=3

∑
nk≥0

∫
HN

1

nk!
(
N

t

tk
k

TrMk)nke−
N
2tTrM

2

dM. (2.2.13)
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In general this yields a divergent series, but as we shall see it will be meaningful
for us as a formal series, hence the name. For compactness we will keep the
same notation as the convergent matrix models, but it should be understood
that we first expand the integrand out, then commute integral and sum
and integrate each monomials individually .
It is important to distinguish between the two types of matrix models, as their
domain of application are diametrically opposite to one another. For example, it
is not hard to see that the convergent matrix model will only be valid for tj < 0,
while in the formal setting the interesting case is tj > 0, as we shall see from
combinatorial properties outlined below. For tj < 0 the formal integral can be
renormalized but even so it would not necessarily coincide with the convergent
integral.
Formal matrix models were first described by t’Hooft [43] as a formalism for the
strong interaction.

2.3 Resolvents

Another motivation for looking at matrix models is that they can be thought
of as the simplest example of a quantum gauge theory in 0 dimensions.
Here the “field” is a unique2 N ×N matrix , as opposed to actual quantum field
theories where fields are operators defined in a continuous space-time.
More concretely, the action given by the potential (2.2.3) is invariant under the
gauge symmetry

M → UMU †, (2.3.1)

where U is a unitary matrix, UU † = Id. We are therefore naturally looking at
expectation values of U(N) invariant functions ofM . Such functions can always
be decomposed as a linear combination of product of traces of some power of
M , and so we focus our attention on integrals of the form

T ∗l1,...,ln =

∫
HN

TrM l1 ...TrM lne−
N
t V (M)dM (2.3.2)

To calculate these we shall study their generating functions, so-called resolvents.
To define them however we need the notion of connected expectation value,
which makes sense thanks to the following result. Recall that a fatgraph (or

2There are also multi-matrix models, but in any case that is always a set, so in particular
discrete, set.
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ribbon graph) is a graph together with a choice of ordering of the edges at each
vertex. Fixing this ordering is like giving edges a certain width: each side of
the edge knows what side of another edge it continues to when meeting at a
vertex. Here are the 3 inequivalent (orientable) fatgraphs that we can obtain
from gluing two trivalent vertices:

We also have a notion of topology for a fatgraph: if we glue disks along each
side of the ribbon edges, we obtain a closed surface (possibly disconnected and
non-orientable), as in

→ (2.3.3)

Then we can talk about the Euler characteristic χ of a ribbon graph: simply
look at the Euler characteristic of the corresponding surface.
We have the following property:

Proposition 2.3.1. For the formal Hermitian matrix model, we have the fol-
lowing sum over graphs expansion,

Z =
∑

fatgraphs

1

|Aut(Γ)|

(
N

t

)χ
tF tk33 ...t

kd
d , (2.3.4)

where the sum is over all inequivalent fatgraphs, not necessarily connected, with
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F faces, and kj vertices of valence j, j = 3, . . . , d. Additionally we have,

T ∗l1,...,ln =
∑

fatgraphs
l1,...,ln

1

|Aut(Γ)|

(
N

t

)χ−n
tF tk33 ...t

kd
d , (2.3.5)

where the sum is over graphs, not necessarily connected, with n marked vertices
of valences l1, . . . , ln.

Proof. This follows from Wick’s theorem for Gaussian integrals and a brief anal-
ysis. Details can be found in [27].

This is where topology makes its entrée in our study. It is a prototypical
example of how mathematical tools inspired from physics can be reinterpreted in
terms of enumerative geometry, which opens a ramified and fruitful connection
between both fields.

Remark 2.3.2. From the above result, we see that Hermitian matrix models
are enumerating ways to draw a Ribbon graph on a Riemann surface, or, in a
way, to discretize the surface. In particular this has applications in so called
2D-quantum gravity, and the famous work of Witten and Kontsevitch [47, 37].

We would like to define generating functions for these expectation values,

Wn(x1, . . . , xn)
?
=

∑
l1,...,ln≥0

T ∗l1,...,ln
1

xl1+1
1

. . .
1

xln+1
n

. (2.3.6)

This would define power series in the variables t, t3, . . . , td, N and the xi ’s, which
we can then study analytically and hope to solve for its coefficients. However
there is an obstacle here, apparent from the above result, that for fixed Euler
characteristic χ and number of faces F , the number of not necessarily connected
fatgraph is infinite, and infinite sums are harder to deal with analytically.
For this reason we are going to restrict our attention to connected maps. Com-
pact connected orientable surfaces have their Euler characteristic given in terms
of their genus g, χ = 2− 2g. One can easily check the following proposition.

Proposition 2.3.3. The set of connected fatgraphs of genus g with unmarked
vertices of degree at least 3 and at most d, k marked vertices, and F faces, is
finite.

Now it is a basic result in combinatorics that by defining the free energy F
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as the log of the partition function

F = logZ, (2.3.7)

we are exactly reducing the sum in (2.3.4) to connected graphs,

F =
∑

fatgraphs
connected

1

|Aut(Γ)|

(
N

t

)χ
tF tk33 ...t

kd
d , (2.3.8)

=
∑
g≥0

(
N

t

)2−2g ∑
fatgraphs
connected

g

1

|Aut(Γ)|
tF tk33 ...t

kd
d , (2.3.9)

where the second sum is over all connected fatgraphs with fixed genus g. Sim-
ilarly, we can restrict expectation values to a sum over connected graphs by
looking at cumulants. Consider the connected expectation values 〈·〉c,

Tl1,...,ln =
〈
TrM l1 . . .TrM ln

〉
c
, (2.3.10)

which we can define recursively as,

Tl1 =
1

Z
T ∗l1 , (2.3.11)

Tl1,...,ln =
1

Z
T ∗l1,...,ln −

◦∑
µ`{l1,...,ln}

|µ|∏
j=1

Tµj , (2.3.12)

where the sum is over all partitions of {l1, . . . , ln} except for µ = {{l1, . . . , ln}}.
When k = 1, the factor 1/Z in the definition of the expectation value exactly
removes all non connected fatgraphs, while the recursion ensures that we dis-
card all ways to split marked faces among disconnected components. It follows
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immediately that,

〈
TrM l1 ...TrM ln

〉
c

=
∑

fatgraphs
connected
l1,...,ln

1

|Aut(Γ)|

(
N

t

)χ−n
tF tk33 ...t

kd
d , (2.3.13)

=
∑
g≥0

(
N

t

)2−2g−n ∑
fatgraphs
connected
g ; l1,...,ln

1

|Aut(Γ)|
tF tk33 ...t

kd
d , (2.3.14)

=
∑
g≥0

(
N

t

)2−2g−n

T (g)
l1,...,ln

, (2.3.15)

where we have defined the generating function for connected fatgraphs with
marked vertices of valence l1, . . . , ln, at fixed genus g. We are finally ready to
define the resolvents as the following generating functions

Wn(x1, . . . , xn) =
∑

l1,...,ln≥0

Tl1,...,ln
1

xl1+1
1

. . .
1

xln+1
n

. (2.3.16)

=
∑

l1,...,ln≥0

〈
Tr

M l1

xl1+1
1

...Tr
M ln

xln+1
n

〉
c

(2.3.17)

:=

〈
Tr

1

x1 −M
...Tr

1

xn −M

〉
c

. (2.3.18)

We dropped the dependence in t and t3, . . . , td and N for tidiness. Here the last
line (2.3.18) is only a notation for the series expansion (2.3.17). Note that the
variables x1, . . . , xn are not formal variables, they are complex variables, and we
are going to solve the matrix model by studying the Wk’s analytical properties.
In particular we can recover connected expectation values as residues at infinity,

Tl1,...,ln = (−1)n Res
x1,...,xn→∞

xl11 . . . x
ln
n Wn(x1, . . . , xn)dx1 . . . dxn. (2.3.19)

It follows immediately from proposition 2.3.1 and by transitioning to connected
maps that the F and Wn ’s have a genus expansion.

Corollary 2.3.4. The free energy has a genus expansion

F =
∑
g≥0

(
N

t

)2−2g

Fg, (2.3.20)

where the Fg are power series in t, with each coefficient being a polynomial in



CHAPTER 2. QUANTUM CURVES IN RANDOM MATRICES 15

the t3, . . . , td. Similarly, the resolvents can be expanded as

Wn(x1, . . . , xn) =
∑
g≥0

(
N

t

)2−2g−n

Wg,n(x1, . . . , xn), (2.3.21)

where the Wg,n are powers series in t which, order by order, give polynomials
in the variables 1/x1, . . . , 1/xn and t3, . . . , td.

Together, the Wg,n and Fg’s contain all the information about the two ques-
tions asked earlier, that is, to calculate the partition function and expectation
values of the formal matrix model. Leaving the Fg’s aside for now – readers
interested might refer to [27] – we will outline in the following section how an-
alytical properties of the Wg,n will allow us to derive a recursion relation to
effectively calculate their expansion for all values of g and n, also known as the
topological recursion [32].

2.4 Loop Equations

Divergence theorem. Our goal is now to find an effective way to calculate
Wg,n for all g and n. We start by deriving loop equations, which can be simply
thought of as the divergence theorem applied to matrix integrals. In general,
the divergence theorem tells us that the integral of a vector field in a region of
space is the flux on the boundary,∫

V

(∇ · F ) dV =

∫
∂V

F · dS. (2.4.1)

In the case that the vector field vanishes on the boundary, the integral of the
divergence must vanish as well. Applying this to our matrix model, we find, for
any polynomial function G(M),∫

HN

∑
i≤j

∂

∂Mij

(
G(M)ije

−Nt V (M)
)

= 0. (2.4.2)

Note that this equality holds both in the convergent and formal sense. In the
convergent case it is because the factor e−

N
t V (M), for t3, . . . , td < 0 , would damp

any polynomial when M becomes large; in the formal case it is because after
expanding the exponential, the remaining Gaussian weight e−

N
2t TrM

2

would still
damp any polynomial or product of traces when M becomes large.
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If we then set G(M) = M l1
∏n
j=2 TrM lj , and with elementary calculations,

we find,

∂(M l1)ij
∂Mij

=

l1−1∏
j=0

(M j)ii(M
l1−1−j)jj , (2.4.3)

∂ TrM lj

∂Mij
= lj(M

lj−1)ji, (2.4.4)

∂V (M)

∂Mij
= V ′(M)ji. (2.4.5)

Putting everything together, equation (2.4.2) yields,

l1−1∑
j=0

〈
TrM j TrM l1−1−j

n∏
i=2

TrM li

〉
+

n∑
j=2

lj

〈
TrM l1+lj−1

n∏
i=2
i6=j

TrM li

〉

=
N

t

〈
Tr
(
M l1V ′(M)

) n∏
i=2

TrM li

〉
. (2.4.6)

Or equivalently, denoting L = {l2, . . . , ln},

l1−1∑
j=0

T ∗j,l1−1−j,L +
n∑
j=2

ljT ∗lj+l1−1,L\{lj}

=
N

t

T ∗l1+1,L −
d∑
j=3

tjT ∗l1+j−1,L

 (2.4.7)

Upon passing to connected expectation values and plugging in the genus expan-
sion, then collecting powers of N/t,

l1−1∑
j=0

[
g∑

h=0

∑
J⊂L
T (h)
j,J T

(g−h)
l1−1−j,L\J + T (g−1)

j,l1−1−j,L

]

+
n∑
j=2

ljT (g)
lj+l1−1,L\{lj}

= T (g)
l1+1,L −

d∑
j=3

tjT (g)
l1+j−1,L. (2.4.8)

Re-expressing these relations in terms of the resolvents we finally obtain the
following theorem:
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Theorem 2.4.1 (Loop equations). For all g and n, and for L = {x2, . . . , xn},
the resolvents of the formal Hermitian matrix model satisfy:

g∑
h=0

∑
J⊂L

Wh,1+|J|(x1, J)Wg−h,n−|J|(x1, L \ J) +Wg−1,n+1(x1, x1, L)

+
n∑
j=2

∂

∂xj

Wg,n−1(x1, L \ {xj})−Wg,n−1(L)

x1 − xj

= V ′(x1)Wg,n(x1, L)− Pg,n(x1, L), (2.4.9)

where Pg,n(x1, L) is a polynomial in x1 of degree d− 3 + δg,0δn,1.

Proof. Take equation (2.4.8), multiply by
∏n
i=1 1/xli+1

i then sum over all li’s to
obtain (2.4.9) line by line. In particular in the last line, the polynomial is

Pg,n(x1, . . . , xn) = −
d−1∑
j=2

tj+1

j−1∑
i=0

xi1

∞∑
l2,...,ln

T (g)
j−1−i,L + tδg,0δn,1, (2.4.10)

and cancels exactly the positive part of V ′(x1)Wg,n(x1, L), while the negative
part gives the third line in (2.4.8).

Solving the loop equations: disk and cylinder amplitudes. The loop
equation (2.4.9) is not useful yet in helping us solve for the resolvents. However
we can work on it in order to make it a recursive relation on increasing values
of the pair of indices (g, n), more exactly on increasing values of 2g − 2 + n.
To do so we need two things. One is to re-order terms to obtain a recursion.
The other is to get rid of the polynomial Pg,n in the relation so as to only get
an expression of the Wg,n. Finally we have to solve separately for the base
cases (g, n) = (0, 1) and (g, n) = (0, 2), corresponding to the topologies of a
disk and cylinder respectively, which are the only ones with 2g − 2 + n ≤ 0.
We will also refer to them as the unstable topologies, because the corresponding
surfaces have an infinite automorphism group. Let us first look at the equation
for (g, n) = (0, 1), yielding

V ′(x)W0,1(x) = W0,1(x)2 + P0,1(x), (2.4.11)

which we can rewrite as

y(x)2 =
1

4
V ′(x)2 − P0,1(x). (2.4.12)
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where we’ve defined,

y(x) = W0,1(x)− 1

2
V ′(x). (2.4.13)

We have the following lemma.

Lemma 2.4.2 (1-cut Brown’s Lemma). [27, Lemma 3.1.1] The polynomial
1
4V
′(x) − P0,1(x), has only one pair of simple zeroes, and all the other zeroes

are even. More precisely, there exists a polynomial M(x) of degree d− 2 whose
roots are power series of t, and a, b power series in

√
t such that ab and a + b

are power series of t, and such that

1

4
V ′(x)− P0,1(x) = M(x)2(x− a)(x− b) (2.4.14)

This lemma allows us to define a new variable z,

x(z) =
a+ b

2
+
a− b

4

(
z +

1

z

)
, (2.4.15)

So that √
(x− a)(x− b) =

a− b
4

(
z − 1

z

)
(2.4.16)

and when taking the square root of equation (2.4.12),

y(z) = M(x(z))
a− b

4

(
z − 1

z

)
(2.4.17)

we find that y(z) must be a rational function of the z variables. In particular
one can show that

W0,1(x(z)) =

d−1∑
j=1

ujz
−j (2.4.18)

where coefficients uk are given by the expansion of the potential,

V ′(x(z)) =
d−1∑
k=0

uj(z
j − z−j). (2.4.19)

Moving on to the (g, k) = (0, 2) case, the loop equation yields,

2W0,1(x1)W0,2(x1, x2) +
∂

∂x2

W0,1(x1)−W0,1(x2)

x1 − x2
= V ′(x1)W0,2(x1, x2)− P0,2(x1, x2) (2.4.20)
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Grouping terms, then inserting the expression (2.4.13) for W0,1 ,

W0,2(x1, x2) =
1

2y(x1)

[
∂

∂x2

W0,1(x1)−W0,1(x2)

x1 − x2
− P0,2(x1, x2)

]
(2.4.21)

=
1

2y(x1)

[
∂

∂x2

y(x2)

x1 − x2
− 1

2

∂

∂x2

V ′(x1)− V ′(x2)

x1 − x2

− P0,2(x1, x2)

]
− 1

2

1

(x1 − x2)2
.

(2.4.22)

It turns out that by looking at W0,2 as a differential form, we can say the
following.

Lemma 2.4.3 (1-cut Lemma for Cylinders). [27, Lemma 3.2.1]
W0,2(x1, x2)dx1dx2 is a rational differential form of z1 and z2 which behaves as
O(z−21 ) at large z1 , and has only one pole at z1 = 1

z2
which is a double pole with

coefficients −z−22 . Furthermore, there is only one such rational bidifferential
which is

W0,2(x1, x2)dx1dx2 =
−z−22

(z1 − z−12 )2
dz1dz2 =

dz1dz2
(z1 − z2)2

− dx1dx2
(x1 − x2)2

. (2.4.23)

We make one important observation from this lemma: if we define,

ω0,2(z1, z2) = W
(0)
2 (x1, x2)dx1dx2 +

dx1dx2
(x1 − x2)2

=
dz1dz2

(z1 − z2)2
, (2.4.24)

we get something which is completely independent of the input data of our
matrix model, that is, the potential V (x). We will come back to this shortly
when generalizing the topological recursion.

Higher topologies. Finally, let us turn to the higher topology cases 2g −
2 + n > 0. The way we are going to get rid of the polynomial Pg,n in (2.4.9) is
by taking residues. To this end, let us define the differential forms ωg,n:

ωg,n(z1, . . . , zn) = Wg,n(x1, . . . , xn) dx1 . . . dxn. (2.4.25)

Remark 2.4.4. More precisely, in equation (2.4.25) we are defining differential
forms in the zi variables that recover the resolvents Wg,n(x1, . . . , xn) in their
expansion at infinity (large values for the xi’s). A careful analysis [27] shows
that the resolvents are not well defined functions of xi but are multi-valued,
while they become well defined when seen as differentials that depends on the
zi variables. This is the meaning behind the different variables on both sides of
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equation (2.4.25): the claim is that we have well defined differentials ωg,n that
recover the resolvents in the limit xi →∞.

Notice that doing so, we don’t lose sight of our original problem, since the
expectation values of the matrix model are related to the resolvents by tak-
ing residues at infinity (2.3.19). Let us multiply the loop equation (2.4.9) by
dx1 . . . dxn and re-arrange terms. We obtain

ωg,n(z, L)

=
1

2y(z)dx(1/z)

g∑
h=0

◦∑
J⊂L

ωh,|J|+1(z, J)ωg−h,n−|J|(1/z, L \ J)

+
1

2y(z)dx(1/z)
ωg−1,n+1(z, 1/z, L)

+

|L|∑
j=1

1

2y(z)

∂

∂zj

ωg,n(z, L \ {zj}) + ωg,n(L)dx(z)/dx(zj)

x(z)− x(zj)

− dx(z)

2y(z)
Pg,n(x(z), L)dx1 . . . dxn.

(2.4.26)

Several properties can be shown about these differentials:

Lemma 2.4.5. [27, Lemma 3.3.2, 3.3.3] For 2g− 2 + n we have the following,

• ωg,n is antisymmetric under z → 1/z,

ωg,n(z1, z2, . . . , zn) + ωg,n(1/z1, z2, . . . , zn) = 0 (2.4.27)

• ωg,n(z1, . . . , zn) is a rational function of the variables z1, . . . , zn, with poles
only at zi = ±1 and behaves as O(z−2i ) at large zi.

And we finally obtain the topological recursion formula,

Theorem 2.4.6 (TR, Hermitian matrix models). [27, Theorem 3.3.1] The cor-
relators of the formal Hermitian matrix model ωg,n , can be computed recursively
for 2g − 2 + n > 1 via

ωg,n(z1, L) =
1

2
Res
z→±1

(
dz1
z1 − z

− dz1
z1 − 1/z

)
1

2y(z)dx(z)

×

[
g∑

h=0

◦∑
J⊂L

ωh,1+|J|(z, J)ωg−h,n−|J|(1/z, L \ J) + ω
(g−1)
n+1 (z, 1/z, L)

]
(2.4.28)
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where the notation
∑◦ means that we excluded terms of the form ω0,1ωg,n.

Notice that all the ωg′,n′ appearing on the right hand side now have 2g′ −
2 + n′ < 2g− 2 + n, and so (2.4.28) is indeed a recursion relation on 2g− 2 + n.

Proof. By Cauchy’s formula we have

ωg,n(z1, L) = − Res
z→z1

dz1
z1 − z

ωg,n(z, L). (2.4.29)

By lemma 2.4.5, ωg,n has poles only at z = ±1, and we can therefore move the
contour such that

ωg,n(z1, L) = Res
z→±1

dz1
z1 − z

ωg,n(z, L), (2.4.30)

where Resz→±1 means we are summing the residues at ±1. Here the minus sign
is absorbed in the orientation of the contour. We can then symmetrize under
z → 1/z (the residue of a differential form is independent of the parametrization)
and use the second part of lemma 2.4.5 to obtain,

ωg,n(z1, L) = Res
z→±1

1

2

(
dz1
z1 − z

ωg,n(z, L) +
dz1

z1 − 1/z
ωg,n(1/z, L)

)
, (2.4.31)

= Res
z→±1

1

2

(
dz1
z1 − z

− dz1
z1 − 1/z

)
ωg,n(z, L). (2.4.32)

We can now insert the right hand side of (2.4.26) in (2.4.32). Since y(z) =

−y(1/z) as well as x(z) = x(1/z), the terms 1/y(z)ωg,n(L\{zj})/(x(z)−x(zj))

in the third line of (2.4.26) are even under the involution, and they vanish when
multiplied with the odd prefactor. Finally, all of dx(z)/y(z), Pg,n(x(z), L)) and
∂zjωg,n(z, L \ zj)/(dx(zj)(x(z) − x(zj))) have no pole at z = ±1 and therefore
they drop out of the residue.

This result theoretically solves the question posed in the introduction, to
calculate expectation values for a general formal Hermitian matrix model. In
practice, after solving for the initial caseW0,1(x) and inserting the corresponding
y(z) and x(z) into the recursion, the formula for topological recursion can easily
be implemented in a computer to obtain expectation values at all order.
In the next section we will see how, after observing similar recursive structures
in other problems of enumerative geometry, Eynard and Orantin [32] proposed
what the general formulation of this recursion should be beyond Hermitian
matrix models.
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The double cover x(z) = z + 1
z .

2.5 The Structure of TR

A first observation is that the initial data is equally given in terms of the poten-
tial V (x) or the two meromorphic functions x(z) and y(z) together with their
domain CP 1. Furthermore, recall that

x(z) =
a+ b

2
+
a− b

4

(
z +

1

z

)
(2.5.1)

and that this is a double branched covering of CP 1: it is a surjective map
CP 1 → CP 1, where each point has two preimages, x(1/z) = x(z), except for
the two branch points z = ±1. The involution which sends us between the two
sheets is ι(z) = 1/z.

The branched covering in homogeneous coordinates. To be more
precise, x(z) above represents the map on one of the charts in CP 1. In homoge-
neous coordinates we can write x(z1, z2) = (z21 + z22 , z1z2) ∈ CP 1. When z1, z2
are both non zero we recover the map above with x( z1z2 , 1) = ( z1z2 + z2

z1
, 1), and in

addition we see x(0, 1) = x(1, 0) = (1, 0) ∼ ∞. Notice that (0, 1) also has two
preimages (1, i) and (1,−i). The involution is ι(z1, z2) = (z2, z1), which leaves
invariant (1, 1) ∼ 1 and (1,−1) ∼ −1.

The set of branch points corresponds to the zeroes of dx(z) and we shall
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denote it by r. For formal Hermitian matrix models we have r = {−1, 1}. From
x and y we can then define,

ω0,1(z) =

(
W0,1(x(z))− 1

2
V ′(x(z))

)
dx(z) = y(z)dx(z) (2.5.2)

On the other hand, ω0,2, is defined as

ω0,2(z1, z2) = W0,2(x1, x2)dx1dx2 +
dx1dx2

(x1 − x2)2
=

dz1dz2
(z1 − z2)2

, (2.5.3)

Which is known as the fundamental second kind differential for the Riemann
sphere CP 1. On an arbitrary compact Riemann surface Σ, the fundamental
second kind differential B(z1, z2) is the unique bidifferential form which has a
double poles at z1 = z2 and no other pole, and that behaves near the poles as

B(z1, z2) =
dz1dz2

(z1 − z2)2
+O(1). (2.5.4)

For uniqueness, we require it to satisfy some vanishing cycle integral condition:
a genus g Riemann surface Σ can be equipped with a choice of symplectic basis
of cycles (A1, . . . , Ag, B1, . . . , Bg) ∈ H1(Σ,Z) with Ai ∩ Bj = δij , Ai ∩ Aj = 0

and Bi ∩Bj = 0. We then require∮
Ai

B = 0, (2.5.5)

which fixes the holomorphic part of B. For the Riemann sphere all cycles are
trivial and we get the unique (2.5.3).
The kernel B is a natural object in that it gives a map f → df for meromorphic
functions defined on Σ:

df(p) =Res
q→p

B(p, q)f(q) (2.5.6)

In this thesis we shall only consider the topological recursion for genus 0 spectral
curves, i.e. on CP 1, but it also has application when extended to higher genera
curves, such as the Weiestrass spectral curve [11].
Observe that,

1

2

∫ z

ι(z)

ω0,2(z1, ·) =
1

2

(
dz1
z1 − z

− dz1
z1 − 1/z

)
, (2.5.7)

which was exactly the prefactor in (2.4.28). Wrapping up, with the above no-
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tation, we can summarize topological recursion as follows. The input data is
given by a spectral curve.

Definition 2.5.1 (Spectral curve). A spectral curve (Σ, x, y, B) is the data of
choice of Riemann surface Σ together with a branched covering x : Σ → Σ′ ⊂
CP 1, a meromorphic function y on Σ such that the zeroes of dy are distinct
from the zeroes of dx, and a choice of fundamental second kind differential B
on Σ.

In our thesis we will only be looking at spectral curves for which x has
simple ramification points, but topological recursion has been generalized to
higher branched coverings [13]. With simple branched coverings, we can define
locally at each branch point a unique involution p→ ι(p) that sends us from one
sheet to another. We define the topological recursion for such spectral curves
as follows:

Definition 2.5.2 (Topological Recursion). [32]
Given a spectral curve (Σ, x, y, B) with x a simple branched covering , define
the base cases

ω0,1(z) = y(z)dx(z), (2.5.8)

ω0,2(z) = B(z1, z2). (2.5.9)

Then let r be the set of branch points of x. Near each branch point we have a
local involution ι. Define the recursion kernel as

K(z0, z) =

1
2

∫ z
ι(z)

ω0,2(z0, ·)
ω0,1(z)− ω0,1(ι(z))

, (2.5.10)

and for 2g − 2 + n > 0 let,

ωg,n(z0, L) =
∑
a∈r

Res
z→a

K(z0, z)

[
ωg−1,n+1(z, ι(z), L)

+

g∑
h=0

◦∑
J⊂L

ωh,1+|J|(z, J)ωg−h,n−|J|(ι(z), L \ J)

]
, (2.5.11)

where in the sum
∑◦ we omit terms with ω0,1ωg,n.

Notice that all ωg′,n′ on the right hand side of (2.5.11) have 2g′ − 2 + n′ <

2g − 2 + n, so that it effectively defines ωg,n recursively for all g and n.
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Remark 2.5.3. The assumptions on dy in definition 2.5.1 are required to gen-
eralize the property that the recursion defines differential forms that are totally
symmetric [32]. Although we won’t show why this is true at present, we will
return to it later in section 3.3.2 after reformulating the recursion in terms of
Airy structures.

Remark 2.5.4. The topological recursion defines differential forms in terms of
their principal parts, i.e. in terms of their behaviours at their poles. Here we see
the necessity to impose vanishing conditions of cycle integrals of B for higher
genus curves, which is carried over to the ωg,n and fixes the holomorphic part
to give a well defined object. For genus zero there are no holomorphic forms
globally defined on the Riemann sphere and so the prinpical parts determine
the ωg,n’s uniquely.

Going back to our example, the correlators of the Hermitian matrix model
are given by the topological recursion for the spectral curve (CP 1, x, y), wherex(z) = a+b

2 + a−b
4

(
z + 1

z

)
y(z) = − 1

2

∑d−1
j=1 uj(z

j − z−j)
(2.5.12)

This might just seem like a complicated way to rewrite our original result, but
the point is that this recursion was shown to apply to a larger class of problems
in algebraic geometry. The table below gives a summary of some applications
of topological recursion, from combinatorics, to the theory of integrable systems
and Gromov-Witten theory, together with the corresponding spectral curve.

Remark 2.5.5. Let us very briefly recall the definition of Hurwitz numbers
c) and monotone Hurwitz numbers d). For a more complete summary and
further references we refer to [21]. Hurwitz numbers are one of the most clas-
sical enumerative results in algebraic-geometry. The Simple Hurwitz number
Hg,n(µ1, . . . , µn) is the weighted count, up topological equivalence, of connected
genus g branched covers f : C → CP 1 of the Riemann sphere with simple ram-
ification except over ∞, where the ramification profile is given by the tuple
(µ1, . . . , µn). One can then show that simple Hurwitz numbers can be com-
puted by counting tuples of transpositions in the symmetric group S|µ|. Mono-
tone Hurwitz numbers are then the restriction of this count to some monotonic
condition on the tuples.

Remark 2.5.6. The cases e) and f) relate topological recursion to the theory
of integrable systems and intersection theory on the moduli space of Riemann
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APPLICATION SPECTRAL CURVE

a) Enumeration of ribbon graphs [27] see (2.5.12)

b) Enumeration of dessins d’enfants [26, 41]
x = z + 1/z

y = z

c) Simple/orbifold Hurwitz numbers [10, 26, 16, 22]
x = z exp(−za)

y = za

d) Monotone Hurwitz numbers [21]
x = (z − 1)/z2

y = −z

e) Kontsevitch-Witten KdV τ−function [32]
x = z2

y = z

f) BGW KdV τ−function [23]
x = z2

y = 1/z

g) Weil-Peterson volumes of moduli spaces [33]
x = z2

y = sin 2πz/2π

h) Stationary Gromov-Witten theory of CP 1 [42]
x = z + 1/z

y = log(z)

i) Gromov-Witten theory of toric CY3 [17, 34, 31] mirror curves

Table 2.1: Applications of topological recursion.

surfacesMg,n. This was initiated by Witten’s conjecture [47] proved by Kont-
sevitch [37]. More generally it has been shown that any ωg,n produced by
topological recursion can be expanded in a basis where coefficients are given by
some integral onMg,n [28]. In this context the “Airy” e) and “Bessel” f) curves
capture the asymptotic behaviour of any such expansion close to the poles of
ωg,n [18]. The Airy and Bessel curves are the simplest spectral curves to deal
with in the language of topological recursion and we shall get back to them
later.

Remark 2.5.7. Application i) is in the context of topological string theory.
Here topological recursion can be understood as a formalism to construct the
B-model mirror to A-model topological string theory on toric Calabi-Yau three-
folds. The mirror curve refers to the Hori-Vafa mirror [17].

Algebraic curve. Additionally when the spectral curve is the Riemann
sphere CP 1, we know that two meromorphic functions on CP 1 always satisfy
some algebraic equation. In the case of the Hermitian matrix model, we started
with,

y2 = M(x)(x− a)(x− b). (2.5.13)
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In particular, for the Gaussian case V (x) = x2

2 , [27] tells us M(x) = 1/4,
a = 2

√
t, b = −2

√
t and uj =

√
tδj,1. Then x and y reduce to

x(z) =
√
t

(
z +

1

z

)
(2.5.14)

y(z) = −1

2

√
t

(
z − 1

z

)
(2.5.15)

and the algebraic equation is

4y2 − x2 + 4t = 0. (2.5.16)

Note that by setting all of tj = 0 in the potential, we are losing the sum over
ribbon graphs interpretation. However one can show that the Gaussian curve
calculates Catalan numbers [27].

2.6 Quantum Curve

Let us now get back to the characteristic polynomial. First let us see how we
can express it in terms of the resolvents. The usual relationship between traces
and determinant detA = eTr lnA gives us

〈det (x−M)〉

=
〈
eTr ln (x−M)

〉
, (2.6.1)

= exp

(
Tr

∫ x

∞

〈
dx′

x′ −M

〉)
, (2.6.2)

=
∞∑
n=0

1

k!

∫ x

∞
...

∫ x

∞

〈
n∏
i=1

Tr
dxi

xi −M

〉
, (2.6.3)

= exp

( ∞∑
n=1

1

n!

∫ x

∞
...

∫ x

∞

〈
n∏
i=1

Tr
dxi

xi −M

〉
c

)
, (2.6.4)

= exp

( ∞∑
g=0

∞∑
n=1

(t/N)2g−2+n

n!

∫ z

α

...

∫ z

α

ωg,n

+
1

(t/N)

∫ z

α

1

2
V ′(x1)dx1 −

1

2

∫ z

α

∫ z

α

dx1dx2
(x1 − x2)2

)
,

(2.6.5)
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where in (2.6.4) we are using the fact that the exponential of connected expecta-
tion values can be written in terms of the non-connected ones, and in (2.6.5) we
inserted the genus expansion, and included extra terms according to definitions
(2.5.2) and (2.5.3). Note that (2.6.3) is an equality specifically because 1

x−M
is just a notation for the series expansion (2.3.17), for which integrating with
base point at ∞ gives vanishing constant terms. Therefore, when passing to
the differential forms ωg,n, we want to integrate with respect to some α being
a pole of x. Finally, there will be some renormalization issues with the extra
terms (2.6.5), which we shall discuss later in section 4.2.1 when doing actual
calculations.
Now let us consider the special case of the Gaussian matrix model where V (x) =
1
2x

2. In this case, it is known that the expectation value of the characteristic
polynomial,

〈det(x−M)〉 =

∫
HN

det(x−M)e−
N
2t TrM

2

(2.6.6)

is a monic orthogonal polynomial with respect to the measure e−
N
2tx

2

[39], and
so it is a Hermite polynomial of degree N in the variable x/

√
t/N . Let us

introduce the quantum parameter

~ =
t

N
. (2.6.7)

Notice that, for fixed t, N →∞ corresponds to ~→ 0. We have,

〈det(x−M)〉 = ~N/2HN (x/
√
~) = ~N/2HN (x̃). (2.6.8)

The Hermite polynomials satisfy the following differential equation,

H ′′N − x̃H ′N +NHN = 0. (2.6.9)

Now let us define the wave function

ψ(x) = e
−x2
4~ 〈det(x−M)〉 , (2.6.10)

where we have simply removed the factor associated to the potential in (2.6.5).
After substituting in (2.6.9), we find

4~2ψ(x)′′ − (x2 − 4t− 2~)ψ(x) = 0. (2.6.11)
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Therefore we have shown that the wave function is annihilated by the canonical
quantization of the spectral curve equation (2.5.16)

[4ŷ2 − x̂2 + 4t+ 2~]ψ(x) = 0, (2.6.12)

where ŷ = ~ d
dx and x̂ = x. In this case we obtain a “quantum correction term”,

+2~, which vanishes in the classical limit ~→ 0.
This fact – the existence of a wave function constructed from the correlators

and annihilated by a quantization of the spectral curve – is what is known as a
quantum curve for topological recursion. For us, the quantum appellation will
not have a rigorous physical meaning and we shall only use it as an analogy3.
But there is something very interesting happening: We started with a problem
related to quantum gravity, the enumeration of discrete graphs on a Riemann
surface, and we find a natural construction that exhibits a behaviour similar
to canonical quantization in quantum mechanics. Starting from a classical geo-
metric object that is the spectral curve, we obtain a Schrödinger-like equation
which, in the classical limit recovers the spectral curve.
This is perhaps simply a curiosity, or perhaps a hint that whatever we are ma-
nipulating here has in its mathematical core some ingredients of what a quantum
theory should contain. It is therefore very exciting to try and understand why
it is working in this way, and to see if for a general choice of spectral curve,
the wave function constructed by topological recursion is also annihilated by a
quantization of that spectral curve.

It has been observed in several cases, but the conditions for the existence of
a quantum curve have yet to be precisely formulated.

2.7 Summary

Let us finish this section by briefly summarizing our observations and formulate
the quantum curve conjecture.

The topological recursion produces a set of differential forms from the geo-
metric data of a spectral curve (definition 2.5.1). These differential forms ωg,n
, when expanded in a given basis of 1-forms, often produce the solution to
some enumerative geometry problem. In the case of Hermitian matrix models,
by construction we saw how we can obtain the enumeration of ribbon graphs

3Some authors have described quantum curves in a more physical language, in particular
in relation to string theory [35, 20].



CHAPTER 2. QUANTUM CURVES IN RANDOM MATRICES 30

T (g)
l1,...,ln

by expanding the ωg,n in the basis {dxj/x
lj+1
j }. However, there is more.

Seen as defined on the base curve Σ (with corresponding z coordinate) it follows
directly from the definition that such n-forms can only have poles are the zeroes
of dx, and so the principal part of ωg,n can be expanded in a basis of 1-forms
with poles at each branch points {ξk,r}k≥0,r∈r. We will return to that point in
section 3.2. Different choices of basis can produce different enumerative invari-
ants, for example there is a standard basis where the corresponding coefficients
are given by integrals on the moduli space of curves [28].

On the other hand, in many cases the spectral curve is naturally associated
to an algebraic equation

P (x, y) = 0. (2.7.1)

This is true whenever Σ is a compact Riemann surface. From the correlators
we can define a wave function,

ψ(x, ~) ∝ exp

∑
g≥0

∑
k≥1

~2g−2+n

n!

∫ z

α

. . .

∫ z

α

(
ωg,n − δg,0δn,2

dx1dx2
(x1 − x2)2

),
(2.7.2)

where ∝ indicates possible renormalization subtleties, and p is a point on the
curve that is a pole of x. The quantum curve conjecture is then the statement
that the wave function is annihilated by a quantization of the spectral curve

P̂ (x̂, ŷ, ~)ψ(x, ~) = 0, (2.7.3)

where x̂ = x , ŷ = ~ d
dx , and P̂ is such that in the classical limit, we have

P̂ (x̂, ŷ, ~) −→
~→0

P (x, y). (2.7.4)

As we shall see, we will be able to obtain different quantum curves (P̂α, ψα)

depending on the choice of base point α ∈ p.
There is a reason why the general statement of the quantum curve is still a

conjecture: there are currently no algorithms to construct the quantum curve
solely from the data of the spectral curve. As one can see in the baby example
of the Gaussian curve, we used a property specific to that problem – that it was
related to the Hermite differential equation – in order to find the quantization.
What we propose to do next is to see whether we can exploit a recent reformu-
lation of the topological recursion in terms of Airy structure, to produce such
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an algorithm.



3 Topological Recursion
and Airy Structures

The goal of this section is to reformulate the topological recursion in the lan-
guage of Airy structures, recently introduced by [38]. Airy structures are a
generalization of the notion of Virasoro constraints, which have been known to
exist for a long time in the context of matrix models, and can be thought of as
a reformulation of the loop equations. See [27] or [15] for a summary. The dif-
ference now is that the notion of differential system which we need for quantum
curves is no longer an emerging property but is taken as the starting point.

3.1 Airy Structures

About the name. Airy structures are named after George Airy who back in
1838 showed that the function,

Ai(x) =
1

2π

∫ ∞
−∞

eipxei
p3

3 dp, (3.1.1)

was giving the peaks of intensity of rainbows with respect to the angle between
the sun and the observer [1, 25]. When Kontsevitch solved Witten’s conjecture
on the equivalence between two approaches of 2D quantum gravity [47, 37], he
used the matrix Airy function, where variables x and p are replaced by Hermitian
matrices. This yields a partition function for enumerating maps similar to the
ones we outlined in section 2, which he managed to relate to the partition
function of intersection theory on the moduli space of curves [19]. The Airy
function satisfies the Airy differential equation,{

d2

dx2
− x
}
Ai(x) = 0, (3.1.2)

which we will encounter again in section 4.2.
Definition. Let V be a C-vector space. We denote its basis by ~∂i and the

dual basis by xi, i.e. [~∂i, xi] = ~. Here ~ is a formal parameter. We denote by
WV the Weyl algebra of V , i.e. the algebra of differential operator in xi with

32
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polynomial coefficients. We define a grading onWV with deg(xi) = deg(~∂i) = 1

and deg(~) = 2. We will refer to operators being quadratic if they are of degree
2 according to this grading. We also denote by WV (≤ 2) the sub-algebra of
operators of degree at most 2 in xi and ~∂i (but arbitrary in ~). One can check
that this forms a sub algebra of WV . A quantum Airy structure is given by a
set of at most quadratic differential operators of the shape

Li = ~∂i −
1

2
Aiabx

axb − ~Bbiax
a∂b −

~2

2
Cabi ∂a∂b − ~Di, (3.1.3)

together with the constraint that they form a Lie algebra

[Li, Lj ] = ~fkijLk. (3.1.4)

In particular it is a subalgebra of WV (≤ 2). Here we use the convention that we
are summing over repeated indices. The range of the indices i, a, b ∈ i could be
finite or infinite. In the infinite case and in the application that we will consider
the sums will always be finite so that there is no issues of convergence. The
condition (3.1.4) is equivalent to conditions on the coefficients ABCD [2]. In
particular, that the coefficients Aijk be fully symmetric

Aijk = Ajik, (3.1.5)

and that the following BB-CA, BC, BA and D relations hold

BaijB
l
ak + BaikBlja + Clai Ajak = (i↔ j), (3.1.6)

BaijC
kl
a + Ckai Blja + Clai Bkja = (i↔ j), (3.1.7)

BaijAakl + BaikAjal + BailAjak = (i↔ j), (3.1.8)

BaijDa + 1
2Cabi Ajab = (i↔ j), (3.1.9)

where by (i ↔ j) we mean the same expression as the left hand side but with
indices i and j exchanged. The structure constants are fully determined by the
Bkij coefficients

fkij = Bkij − Bkji. (3.1.10)
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Define the partition function to be the formal power series

Z = exp

∑
g≥0

◦◦∑
n≥1

~g−1

n!

∑
i1,...,in∈i

Fg,n[i1, ..., in]xi1 ...xin

 , (3.1.11)

where the sum
∑◦◦ omits the terms F0,1 and F0,2, and the Fg,n are assumed to

be symmetric coefficients of the i1, . . . , in. We have the following theorem:

Theorem 3.1.1. [38] Given an quantum Airy structure, there exists a unique
solution of the form (3.1.11) to the system of equations

Li · Z = 0, ∀i ∈ i. (3.1.12)

Proof. Uniqueness is based on the observation that the Fg,n are uniquely de-
termined by a recursion relation on 2g − 2 + n. Applying the Li to the right
hand side of (3.1.11), collecting powers of ~, and then imposing the vanishing
condition at all order yields the following base cases,

F0,3[i, j, k] = Aijk, F1,1[k] = Dk, (3.1.13)

and for 2g − 2 + n > 1, the recursive relation

Fg,n[i1, L] =

n∑
m=2

Bai1imFg,n−1[a, L \ {im}] +
1

2
Cabi1 Fg−1,n+1[a, b, J ]

+
1

2
Cabi1

g∑
h=0

◦◦∑
J⊂L

Fh,1+|J|[a, J ]Fg−h,n−|J|[b, L \ J ], (3.1.14)

where sums over a, b ∈ i are implied, and
∑◦◦ excludes terms that would contain

F0,1 or F0,2. Notice that each Fg′,n′ on the right hand side has 2g′ − 2 + n′ <

2g − 2 + n.
That would be it for existence as well if it weren’t for the condition that

the Fg,n be symmetric in the indices i1, . . . , in. This is a non trivial statement;
when looking at the recursive formula (3.1.14) it seems that the first index i1 is
playing a special role. However we can work by induction and assume that all
Fg′,n′ on the right hand side are fully symmetric. The base cases F1,1 and F0,3

are certainly true, the first being trivial while the second is due to (3.1.5). After
substituting formula (3.1.14) for all the Fg′,n′ on the right hand side one finds
that the (i1 ↔ i2) symmetry for Fg,n is exactly guaranteed by the 4 ABCD
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relations (3.1.6) - (3.1.9). Details are straightforward but tedious, readers may
refer to [2, 6], or check them themselves .

So far we have said nothing about the nature of the ABCD coefficients of
the Airy structure or about the coefficients Fg,n in the partition function, but
we observed that from this simple setup we already obtain a recursion similar
in structure to the topological recursion for spectral curves. In the next section
we will make this correspondence explicit and we will say what the ABCD
coefficients should be in order to recover the exact same recursion.

3.2 Relation with the Topological Recursion

We now want to rewrite the topological recursion for spectral curves (2.5.11) as
a special case of the quantum Airy structure recursion relation. To do so we
need to find a suitable vector space and basis. Following [2], suppose that there
exists a basis of meromorphic 1-forms dξk,r indexed by some integer k ∈ N, and
branch point label r ∈ r, together with a set of germs of holomorphic 1-forms
dξ∗k,r defined locally at each branch point and such that,

ω0,2(p0, p) ≈
∑
r∈r
k≥0

dξk,r(p0)dξ∗k,r(p). (3.2.1)

Here the equality is only valid as a formal sum of the local behaviours for p
around each r ∈ r. We also define germs of functions at each branch point,

ξ∗k,r(p) =

∫ p

r

dξ∗k,r(p
′). (3.2.2)

We will show the following lemma:

Lemma 3.2.1 (Residue formula). There is a decomposition of the ωg,n in the
dξk,r basis with a finite number of non-zero terms,

ωg,n(p1, . . . , pn) =
∑

r1,...,rn∈r
k1,...,kn≥0

Wg,n

[ r1 ··· rn
k1 ··· kn

] n∏
i=1

dξki,ri(pi). (3.2.3)

Furthermore the coefficients Wg,n are given in terms of the recursion of a quan-
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tum Airy structure (3.1.14) from the data,

A(k1,r1),(k2,r2),(k3,r3) = Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξ∗k2,r2(p) dξ∗k3,r3(ι(p)) θ̃(p),

B(k3,r3)(k1,r1),(k2,r2)
= Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξ∗k2,r2(p) dξk3,r3(ι(p)) θ̃(p),

C(k2,r2),(k3,r3)(k1,r1)
= Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξk2,r2(p) dξk3,r3(ι(p)) θ̃(p),

D(k,r) = Res
p→r1

[
ξ∗k,r(p)− ξ∗k,r(ι(p))

]
1
2 ω0,2(p, ι(p)) θ̃(p).

(3.2.4)
Here, ι(p) is the involution that sends between the two sheets of x at the corre-
sponding subscripted branch point, and we have defined for p in a neighbourhood
of r1,

θ̃(p) =
1

ω0,1(p)− ω0,1(ι(p))
. (3.2.5)

Proof. Let us rewrite the recursion kernel in terms of the dξ’s. Rewrite equation
(3.2.1) as

1

2

∑
r∈r
k≥0

dξk,r(p0)
[
ξ∗k,r(p)− ξ∗k,r(ι(p))

]
≈ 1

2

(∫ p

ι(p)

ω0,2(p0, ·)

)
. (3.2.6)

Then we can write the kernel as

K(p0, p) ≈
1

2

∑
k≥0
r∈r

dξk,r(p0)
[
ξ∗k,r(p)− ξ∗k1,r1(ι(p))

]
θ̃(p). (3.2.7)

This identity is, again, only true locally. However we can replace the recursion
kernel with the above when taking residues with respect to p→ r ∈ r, in which
case we drop the formal sum over r ∈ r.

All we have to do now is plug this expression in the formula for topological
recursion (3.2.3). For base case (g, n) = (0, 3), we find

ω0,3(p1, p2, p3) =
∑
r∈r

Res
p→r

K(p1, p)
{
ω0,2(p, p2)ω0,2(ι(p), p3)

+ ω0,2(p, p3)ω0,2(ι(p), p2)
}
.

(3.2.8)

Since K(p1, p) is invariant under p → ι(p) and taking the residue for p → r or
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ι(p)→ r is the same thing, we get two terms with equal contributions.

ω0,3(p1, p2, p3)

=
∑
r1∈r

Res
p→r1

K(p1, p)2ω0,2(p, p2)ω0,2(ι(p), p3), (3.2.9)

=
∑

k1,k2,k3≥0
r1,r2,r3∈r

3∏
i=1

dξki,ri(pi)

Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξ∗k2,r2(p)dξ∗k3,r3(ι(p))θ̃(p),

(3.2.10)

proving that (3.2.3) holds for ω0,3 with

W0,3

[ r1 r2 r3
k1 k2 k3

]
= A(k1,r1),(k2,r2),(k3,r3). (3.2.11)

Now turning to ω1,1,

ω1,1(p1),

=
∑
r∈r

Res
p→r

K(p1, p)ω0,2(p, ι(p)), (3.2.12)

=
∑
r∈r
k≥0

Res
p→r

[
ξ∗k,r(p)− ξ∗k,r(ι(p))

] 1

2
ω0,2(p, ι(p))θ̃(p)dξk,r(p1), (3.2.13)

proving that (3.2.3) holds for ω1,1 with

W1,1 [ rk ] = D(k,r). (3.2.14)

For higher topologies we proceed by induction. Consider 2g − 2 + n > 1 and
assume that (3.2.3) holds for all (g′, n′) such that 2g′− 2 +n′ < 2g− 2 +n. We
write I = {p1, ..., pn}. We first want to consider the terms from the sum

∑◦
that involve ω0,2ωg,n−1. Denote their contribution by ωBg,n,

ωBg,n(p1, I) =
n∑
j=2

∑
r∈r

Res
p→r

K(p1, p)
[
ω0,2(p, pj)ωg,n−1(ι(p), I \ {pj})

+ ω0,2(ι(p), pj)ωg,n−1(p, I \ {pj})
]
.

(3.2.15)
Again both terms give equal contributions, and we insert the decomposition
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(3.2.3) for ωg,n−1

ωBg,n(p1, I)

=
∑

r1,r2,...,rn∈r
k1,k2,...,kn≥0

n∏
i=1

dξki,ri(pi)

n∑
j=2

∑
r∈r
k≥0

Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξ∗kj ,rj (p)dξk,r(ι(p))θ̃(p)

Wg,n−1

[
r r2 : r̂j : rn

k k2 : k̂j : kn

]
.

(3.2.16)

Let us turn to the remaining terms,

ωCg,n(p1, I) =
∑
r1∈r

Res
p→r1

K(p1, p)
[
ωg−1,n+1(p, ι(p), I)

+

◦◦∑
g′+g′′=g
J′tJ′′=I

ωg′,1+|J ′|(p, J
′)ωg′′,1+|J ′′|(ι(p), J

′′)
]
.

(3.2.17)

This time the induction hypothesis applies to each ωg,n on the right hand side,
so we can insert the corresponding (3.2.3) expansion.

ωCg,n(p1, I)

=
1

2

∑
r1,r2;rn∈r
k1,k2;kn≥0

n∏
i=1

dξki,ri(pi)

∑
k′,k′′≥0
r′,r′′∈r

Res
p→r1

[
ξ∗k1,r1(p)− ξ∗k1,r1(ι(p))

]
dξk′,r′(p)dξk′′,r′′(ι(p))θ̃(p)

{
Wg−1,n+1

[
r′ r′′ r2 : rn
k′ k′′ k2 : kn

]
+

◦◦∑
g′+g′′=g
J′tJ′′=I

Wg′,1+|J ′|

[
r′ (rj)j∈J′

k′ (kj)j∈J′

]
Wg′′,1+|J ′′|

[
r′′ (rj)j∈J′′

k′′ (kj)j∈J′′

]}
.

(3.2.18)
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Summing both ωBg,n and ωCg,n contributions we get

Wg,n

[ r1 ··· rn
k1 ··· kn

]
=

n∑
i=2

∑
k′,r′

B(k
′,r′)

(k1,r1),(ki,ri)
Wg,n−1

[
r′ r2 ··· r̂i ··· rn
k′ k2 ··· k̂i ··· kn

]
+

1

2

∑
k′,k′′≥0
r′,r′′∈r

C(k
′,r′),(k′′,r′′)

(k1,r1)

(
Wg−1,n+1

[
r′ r′′ r2 ··· rn
k′ k′′ k2 ··· kn

]

+
◦◦∑

g′+g′′=g
J′tJ′′=I

Wg′,1+|J ′|

[
r′ (rj)j∈J′

k′ (kj)j∈J′

]
Wg′′,1+|J ′′|

[
r′′ (rj)j∈J′′

k′′ (kj)j∈J′′

])
.

(3.2.19)

We see that we recover the same recursive structure as the Fg,n from a quantum
Airy structure (3.1.14).
Finally the fact that there are only finitely many non-zero terms is a direct
consequence of the fact that the ωg,n’s are meromorphic, and that the poles
must have finite order.

Wave function from the partition function

As a consequence of this lemma we can now relate the partition function of the
quantum Airy structure with the wave function (2.7.2) of topological recursion.
First we separate contributions of unstable topologies,

ψ(x, ~)

= exp

∑
g≥0

∑
n≥1

~2g−2+k

n!

∫ z

α

. . .

∫ z

α

(
ωg,n − δg,0δn,2

dx1dx2
(x1 − x2)2

) (3.2.20)

= exp

[
1

~

∫ z

α

ω0,1

]
exp

[
1

2

∫ z

α

∫ z

α

(
ω0,2 −

dx1dx2
(x1 − x2)2

)]

exp

∑
g≥0

◦◦∑
n≥1

~2g−2+n

n!

∫ z

α

. . .

∫ z

α

ωg,n

. (3.2.21)

Now insert the expansion (3.2.3) in the last factor and get

exp

∑
g≥0

◦◦∑
n≥1

~2g−2

n!

∑
r’s,k’s

Wg,n

[ r1 ··· rn
k1 ··· kn

] n∏
i=1

∫ z

α

~dξki,ri

, (3.2.22)
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which, knowing the recursion relation on the Wg,n, we recognize as the partition
function Z of a quantum Airy structure (3.1.11), up to the change ~→ ~2, and
with the identification of variables xk,r =

∫ z
α
~dξk,r.

Now we would like to say that this partition function is annihilated by the
operators Lk,r to be defined from the coefficients ABCD (3.2.4) of the previous
lemma; with this in hand we would have a very good base for our quantum
curve equation soup. Before we make that step however we have to check that
the coefficients (3.2.4) satisfy the ABCD relations; only then will we know that
there exists a unique solution to Lk,r · Z = 0, being precisely given by (3.2.22).

Therefore the next step in our reasoning consists in two points: First, given
a spectral curve, can we show that the residue formulas (3.2.4) produces a
quantum Airy structure? Second, can we relate the quantum curve operator to
the Lk,r?

3.3 Choice of Polarization

We will now give an explicit basis of 1-forms which satisfies the hypotheses of
the residue lemma. This is known as a choice of polarization. We will first do
this in a special case of the Airy spectral curve. This is the spectral curve that
relates to the Kontsevitch matrix model in 2D topological gravity [32]. It is
also important because it captures the asymptotic behaviour of a large class of
double sheeted spectral curves, which we will treat in section 3.3.3.

3.3.1 Odd Basis of Differentials

In the residue formula of the previous section (3.2.4), we see that there is a sim-
plification to do when the dual germs ξ∗k,r have some parity under the involution.
On CP 1, we can expand the Bergman kernel at 0 as follows:

ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2
(3.3.1)

≈
∑
k≥0

kz−k−11 dz1 z
k−1
2 dz2, |z2| < |z1|, (3.3.2)

and so we can pick the basis to be

dξk(z) = kz−k−1dz, dξ∗k(z) = zk−1dz. (3.3.3)
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With this choice, and if the involution at 0 is given by ι(z) = −z, we see that

ξ∗k(p)− ξ∗k(ι(p)) = (1− (−1)k)ξ∗k(p) (3.3.4)

This means that whenever k1 is even, the corresponding ABCD coefficients are
all zero, and the Airy structure partition function is annihilated by the operators

L2i = ~∂2i (3.3.5)

L2i+1 = ~∂2i+1 − quadratic (3.3.6)

And so ∂2iZ = 0, meaning that the partition function does not depend on the
even indexed variables x2i. So even though the ABCD coefficients of (3.2.4)
with even k2, k3 indices may not vanish, we can safely ignore them and remove
the ABCD coefficients with even indices from the remaining odd Li’s (3.3.6).
Indeed, the even derivatives disappear and the remaining x2i’s can be set to
zero without changing Z and without changing L2i+1Z = 0. Therefore, it is
enough to consider only the odd indices in the basis, and redefine

dξk(z) =
(2k + 1)

z2k+2
dz, dξ∗k(z) = z2k+1dz, (3.3.7)

as well as redefine the residue formula,

A(k1,r1),(k2,r2),(k3,r3) = Res
p→r1

ξ∗k1,r1(p) dξ∗k2,r2(p) dξ∗k3,r3(p) θ(p),

B
(k3,r3)
(k1,r1),(k2,r2)

= Res
p→r1

ξ∗k1,r1(p) dξ∗k2,r2(p) dξk3,r3(p) θ(p),

C
(k2,r2),(k3,r3)
(k1,r1)

= Res
p→r1

ξ∗k1,r1(p) dξk2,r2(p) dξk3,r3(p) θ(p),

D(k,r) = Res
p→r1

ξ∗k,r(p)(− 1
2 )ω0,2(p, ι(p)) θ(p),

(3.3.8)

where we have absorbed a factor −2 in θ for convenience,

θ(p) =
−2

ω0,1(p)− ω0,1(ι(p))
. (3.3.9)

In the rest of this thesis we will only be working with the coefficients (3.3.8),
and leave as an open question to see if there exists other kind of involutions
which one can work with effectively in this setup. See section 4.2.5 for some
interesting curve with non "trivial" involution.
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3.3.2 Airy curve

The Airy spectral curve is a genus zero curve given by the following data

Σ = CP 1, x(z) =
1

2
z2, y(z) = z. (3.3.10)

The corresponding algebraic equation is,

P (x, y) =
1

2
y2 − x = 0. (3.3.11)

This curve has a simple ramification point at z = 0, with the involution locally
given by ι(z) = −z, and so we can use the dξ basis in (3.3.7).

The last thing we need is the expansion of θ(z). For the Airy curve we have
ω0,1 = ydx = z2dz and

θ(z) = − 1

z2
(dz)−1. (3.3.12)

However, we will be generalizing shortly and so we want to consider a full series
expansion,

θ(z) =
∑
m≥−1

θmz
2m(dz)−1 (3.3.13)

Remark 3.3.1. You can check that this particular expansion is the most general
given the assumptions we made on dy in the definition of TR. Indeed, suppose
that x = 1

2z
2 and that y(z) has a full series expansion. Since y(z) is meromorphic

the Laurent series is bounded from below,

y(z) =
∞∑
k=d

Akz
k (3.3.14)

However if y(z) has a pole of order greater than 1 at some ramification point,
then the kernel K(z0, z) will have no pole there, the corresponding residue in the
TR formula will vanish, and that branch point won’t contribute to the recursion.
Therefore we have

y(z) =
∞∑

k=−1

Akz
k, (3.3.15)

But since dy 6= 0 at z = 0, either A−1 or A1 is non zero, ensuring that the
expansion of θ is bounded from below as in (3.3.13).
To resonate with remark 2.5.3, we shall see that the ABCD relations hold here
precisely because the expansion is so bounded from below, so that the Wg,n’s,
and the ωg,n’s, are fully symmetric.
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Residue formula

All we have to do now is plug this data into the residue formula (3.3.8). Let us
proceed,

Aijk = Res
z=0

ξ∗i (z)dξ∗j (z)dξ∗k(z)θ(z)

=
1

(2i+ 1)
Res
z=0

∑
m≥−1

θmz
2i+2j+2k+2m+1dz

=
1

(2i+ 1)
δi,j,k,0θ−1,

Bkij = Res
z=0

ξ∗i (z)dξ∗j (z)dξk(z)θ(z)

=
(2k + 1)

(2i+ 1)
Res
z=0

∑
m≥−1

θmz
2i+2j−2k+2m−1dz

=
(2k + 1)

(2i+ 1)
θk−i−j ,

Cjki = Res
z=0

ξ∗i (z)dξj(z)dξk(z)θ(z)

=
(2j + 1)(2k + 1)

(2i+ 1)
Res
z=0

∑
m≥−1

θmz
2i−2j−2k+2m−3dz

=
(2j + 1)(2k + 1)

(2i+ 1)
θk+j−1+1,

and,

Di = Res
z=0

1

2
ξ∗k,r(p)ω0,2(p, ι(p))θ(p)

=
1

8(2i+ 1)
Res
z=0

∑
m≥−1

θmz
2i+2m−1dz

=δi,0
θ0
8

+ δi,1
1

24
θ−1.

We then show that these ABCD coefficients indeed satisfy the conditions for an
Airy Structure.

Proposition 3.3.2. The reduced ABCD coefficients obtained from the residue
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formula (3.3.8) with one branch point at r = 0 under the involution ι(z) = −z,

Aijk = δi,j,k,0θ−1,

Bkij =
(2k + 1)

(2i+ 1)
θk−i−j ,

Cjki =
(2j + 1)(2k + 1)

(2i+ 1)
θ1+j+k−i,

Dk = δk,0
θ0
8

+ δk,1
θ−1
24

,

(3.3.16)

where i, j, k ∈ N and θm = 0 for m < −1 , satisfy the ABCD relations (3.1.5)
– (3.1.9).

Proof. We shall check explicitly that each expression is symmetric under the
exchange i↔ j:

1 Aijk ∝ δi,j,k,0 is indeed fully symmetric.

2 The BA relation yields

∑
a

(
BaijAakl + BaikAjal + BailAjak

)
=

θ−1
(2i+ 1)

(δk,l,0θ−i−j + δj,l,0θ−i−k + δj,k,0θ−j−l) , (3.3.17)

which vanishes for almost all values of (i, j, k, l) except

(1, 0, 0, 0)

(
1

3
+

1

3
+

1

3

)
(θ−1)2 = (θ−1)2

(0, 1, 0, 0) (θ−1)2.

Of course, there is nothing to check when i = j.

3 The D relation yields∑
a

BaijDa + 1
2

∑
a,b

Cabi Ajab

=
1

8

1

(2i+ 1)
θ1−i−jθ−1 +

1

8

1

(2i+ 1)
θ0θ−i−j +

1

2
θ−1θ1−iδj,0

1

(2i+ 1)
.

(3.3.18)
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This will vanish for most (i, j) pairs and we only need to check the following:

(1, 0)

(
1

24
+

1

24
+

1

6

)
θ0θ−1 =

1

4
θ0θ−1,

(0, 1)

(
1

8
+

1

8

)
θ0θ−1 =

1

4
θ0θ−1,

(2, 0)

(
1

40
+

1

10

)
(θ−1)2 =

1

8
(θ−1)2,

(0, 2)
1

8
(θ−1)2.

4 The BB-AC relation gives∑
a

(
BaijB

l
ak + BaikBlja + Clai Ajak

)
=

(2l + 1)

(2i+ 1)(2j + 1)(∑
a=0

θa−i−jθl−a−k(2j + 1) +
∑
a=0

θa−i−kθl−j−a(2a+ 1)δj,k,0θ−1θl+1−i

)
.

(3.3.19)

First, we divide out by the symmetric factor (2l+1)
(2i+1)(2j+1) . Next we write down

explicitly the bounds on the sums, knowing that θk = 0 for k < −1 . Doing so
we also need extra terms to ensure the sums on the index a start at 0 and not
−1.

=
l−k+1∑
a=i+j−1

θa−i−jθl−a−k(2j + 1) +

l−j+1∑
a=i+k−1

θa−i−kθl−j−a(2a+ 1)

+ δj,k,0θ−1θ1+l−i − δi,j,0θ−1θl−k+1 + δi,k,0θ−1θ1+l−j

(3.3.20)
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The last three terms are symmetric, and after relabelling a → a− j + k in the
second sum we get

=
l−k+1∑
a=i+j−1

θa−i−jθl−a−k(2j + 1) +
l−k+1∑
a=i+j−1

θa−i−jθl−a−k(2a− 2j + 2k + 1)

(3.3.21)

=
l−k+1∑
a=i+j−1

θa−i−jθl−a−k(2a+ 2k + 2), (3.3.22)

which is now explicitly symmetric under (i↔ j).

5 The BC relation rewrites as∑
a

(
BaijC

kl
a + Ckai Blja + Clai Bkja

)
(3.3.23)

=
∑
a=0

(
(2a+ 1)

(2i+ 1)
θa−i−j

(2k + 1)(2l + 1)

(2a+ 1)
θ1+k+l−a

+
(2k + 1)(2a+ 1)

(2i+ 1)
θ1+k+a−i

(2l + 1)

(2j + 1)
θl−j−a

+
(2l + 1)(2a+ 1)

(2i+ 1)
θ1+l+a−i

(2k + 1)

(2j + 1)
θk−j−a

)
.

(3.3.24)

Again our first step is to divide by the symmetric factor (2k+1)(2l+1)
(2i+1)(2j+1) , then write

bounds on the sums,

=
k+l+2∑
a=i+j−1

(2j + 1)θa−i−jθ1+k+l−a − δi,j,0θ−1θ2+k+l (3.3.25)

+

l−j+1∑
a=i−k−2

(2a+ 1)θ1+k+a−iθl−j−a −
−1∑

a=i−k−2

(2a+ 1)θ1+k+a−iθl−j−a (3.3.26)

+

k−j+1∑
a=i−l−2

(2a+ 1)θ1+l+a−iθk−j−a −
−1∑

a=i−l−2

(2a+ 1)θ1+l+a−iθk−j−a. (3.3.27)
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The second term is symmetric. Focusing our attention on the three left terms,
relabelling a→ a− k − j − 1 in (3.3.26) and a→ i+ k − a in (3.3.27), we find,

k+l+2∑
a=i+j−1

(2j + 1)θa−i−jθ1+k+l−a

+
k+l+2∑
a=i+j−1

(2a− 2k − 2j − 1)θ1+k+a−iθ1+k+l−a

+
k+l+2∑
a=i+j−1

(2i+ 2k − 2a+ 1)θ1+l+a−iθ1+k+l−a

(3.3.28)

=
k+l+2∑
a=i+j−1

(2i+ 1)θa−i−jθ1+k+l−a, (3.3.29)

which is (i↔ j) of the first left term in (3.3.25). Now turning to the remaining
two bottom right terms in (3.3.26) and (3.3.27), relabelling a→ −a− 1 in both
while subtracting the original sums where (i↔ j),

k−i+1∑
a=0

(2a+ 1)θk−i−aθ1+a+l−j

l−i+1∑
a=0

(2a+ 1)θl−i−aθ1+a+k−j

+
−1∑

a=j−k−2

(2a+ 1)θ1+k+a−jθl−i−a +
−1∑

a=j−l−2

(2a+ 1)θ1+l+a−jθk−i−a

(3.3.30)

=
l−i+1∑

a=j−k−2

(2a+ 1)θ1+k+a−jθl−i−a +
k−i+1∑
a=j−l−2

(2a+ 1)θ1+l+a−jθk−i−a,

(3.3.31)

which is (i ↔ j) of the two bottom left terms in (3.3.26) and (3.3.27). More
concisely we have showed

Xi,j + Yi,j = Xj,i,

Zi,j − Zj,i = Yj,i,

⇒ Xi,j + Yi,j + Zi,j = Xj,i + Yj,i + Zj,i.

In the next section we will apply this result to quantize the Airy spectral
curve. First let us see how we can generalize it to an arbitrary spectral curve.
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3.3.3 Local basis

For completeness, in this section we shall outline an possible approach to dealing
with any spectral curve with simple ramification point, as a generalization of
the Airy curve.
While we show that we can construct an Airy structure for any spectral curve,
out of which we could also potentially build a quantum curve, in practice the
expression we would get are too complicated to use the same techniques, more
precisely the coefficients of the corresponding Airy structure, as well as the
specialization map, both introduce series expansions in the expressions we are
dealing with. We expect that these series should somehow compensate each
other, but it remains unclear how to proceed.

The starting point is the following: for an arbitrary spectral curve with
simple ramification points, we can always find local coordinates ζ such that in
a neighbourhood of the ramification points we can write,

x(ζ) = x(r) +
1

2
ζ2. (3.3.32)

With the involution again locally given as ι(ζ) = −ζ. By introducing this local
coordinate however we change the Bergman kernel to potentially have a full
series expansion

ω0,2(p1, p2) = δr1,r2
dζ1dζ2

(ζ1 − ζ2)
2 +

∑
l1,l2≥0

ϕ
[ r1 r2
l1 l2

]
ζl11 ζ

l2
2 dζ1dζ2. (3.3.33)

Following the same lines as before, we find the dξk,r basis in local coordinate to
be,

dξk,r(p0) =

 (2k + 1)

ζ2k+2
0

δr,r0 +
∑
l≥0

ϕ [ r r0
2k l ] ζl0

 dζ0, (3.3.34)

ξ∗k,r(p0) = δr,r0
ζ2k+1
0

2k + 1
. (3.3.35)

Here δr,r0 is equal to 1 if p0 is in the neighbourhood of r and 0 otherwise. Finally,
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after inserting this into the residue formula we find the ABCD coefficients,

A(k1,r1),(k2,r2),(k3,r3) = δr1,r2,r3δk1,k2,k3,0 θ−1,r,

B
(k3,r3)
(k1,r1),(k2,r2)

= (2k3+1)
(2k1+1) δr1,r2,r3θk3−k2−k1,r1

+ δr1,r2
1

(2k1+1)δk1,k2,0 ϕ
[ r3 r1
2k3 0

]
θ−1,r1 ,

C
(k2,r2),(k3,r3)
(k1,r1)

= (2k3+1)(2k2+1)
(2k1+1) δr1,r2,r3 θ1+k2+k3−k1,r1

+ (2k3+1)
(2k1+1)

1+k3−k1∑
m=0

δr1,r3 ϕ
[ r2 r1
2k2 2m

]
θk3−k1−m,r1

+ (2k2+1)
(2k1+1)

1+k2−k1∑
m=0

δr1,r2 ϕ
[ r3 r1
2k3 2m

]
θk2−k1−m,r1

+ δk1,0 ϕ
[ r2 r1
2k2 0

]
ϕ
[ r3 r1
2k3 0

]
θ−1,r1 ,

D(k,r) = δk,0

(
θ−1,r

2
ϕ [ r r0 0 ] +

θ0,r
8

)
+ δk,1

θ−1,r
24

.

(3.3.36)

Do the ABCD relations still hold for these coefficients? It would be a pain to
check them explicitly, as we already did in the previous section. Instead let us
appeal to some transformation properties of Airy structures.

Operations on Airy structures

Given an Airy structure which is a sub-algebra of the Lie algebra WV (≤ 2), we
can act on it by conjugation with some element U ∈ exp(WV (≤ 2)).

L̃i = ULiU
−1 Z̃ = UZ (3.3.37)

then the structure constants stay the same, and the L̃i annihilate the new
partition function Z̃. However only a few carefully chosen U will conserve the
shape (3.1.3) of an Airy structure. One such U is given by

U = exp(
~
2
ucd∂c∂d) (3.3.38)
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where u is a symmetric matrix. Upon conjugating we find,

L̃i = ~∂i −
1

2
Aiabx

axb − ~
(
B b
ia +Aiacu

cb
)
xa∂b

− ~2

2

(
C ab
i +Aicdu

acubd +B a
ic u

cb +B b
ic u

ca
)
∂a∂b − ~

(
Di +Aicdu

cd
)
.

(3.3.39)

In particular we preserve the single derivative in the linear term, and the rest
is still at most quadratic. In other words we get a new Airy structure with,

Ãijk = Aijk,

B̃kij = Bkij +Aijcu
ck,

C̃jki = Cjki +Bjicu
ck +Bkicu

cj +Aicdu
jcukd,

D̃i = Di +Aicdu
cd.

(3.3.40)

Since we know that the Lie algebra structure is conserved and hence that the
ABCD relations still hold, Z̃ = UZ should be precisely the partition function
given by the topological recursion of this new Airy structure.

If we look back at ABCD coefficients for the local coordinates (3.3.36), we
see that for each ramification point, they are related to those of the single branch
point (3.3.16) by conjugation with

U = e
− ~

2ϕ
[ r1 r2
k1 k2

]
∂k1,r1∂k2,r2 . (3.3.41)

More precisely, we can first introduce the extra indices (r1, r2, r3) to the coeffi-
cients in (3.3.16) by multiplying A,B and C by δr1,r2,r3 – adding a symmetric
factor will not change the (i↔ j) symmetry in the ABCD relations – and then
use the conjugation by U . This proves that the ABCD coefficients of (3.3.36)
satisfy the ABCD relations.

3.4 Summary

In this section we have seen how to reformulate the topological recursion of a
spectral curve in terms of Airy structures.

We also saw that we have a way to define, for any spectral curve, differential
operators operators that annihilate a partition function Z(x1, x2, ...) that is



CHAPTER 3. TR AND AIRY STRUCTURES 51

related to the quantum curve via

ψ(x, ~) = exp

[
1

~

∫ z

α

ω0,1

]
exp

[
1

2

∫ z

α

∫ z

α

ω0,2 −
dx1dx2

(x1 − x2)2

]
× Z(x1, x2, ...)

∣∣
xi=

∫ z
α

~dξi
. (3.4.1)

We will refer to the process of substituting xi →
∫ z
α
~dξi as specialization, and

denote it by
S[f(xi)](z) = f(xi)

∣∣
xi=

∫ z
α

~dξi
. (3.4.2)

Let us call A the contribution of unstable maps,

A = exp

[
1

~

∫ z

α

ω0,1

]
exp

[
1

2

∫ z

α

∫ z

α

ω0,2 −
dx1dx2

(x1 − x2)2

]
, (3.4.3)

We have that,
S[Z] = A−1ψ, (3.4.4)

and also
Li · Z = 0. (3.4.5)

We want to define the specialization of an element M ∈ WV . Suppose we can
find B an operator in the variable z such that for any monomial xµ1 . . . xµn ,

B S[xµ1 . . . xµn ] = S[M xµ1 . . . xµn ]. (3.4.6)

Then we say it is the specialization of M ,

B = S[M ]. (3.4.7)

If B and B′ are two specializations of M then B−B′ annihilates the specializa-
tion of any monomial, and in particular it annihilates any function of the shape

1
z2k+1 , therefore we expect B −B′ = 0 and the specialization is well defined.
Suppose we can find S[M ] for M that is some combination of the operators Li
so that MZ = 0. Then we would have a ready made operator which annihilates
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the wave function,

(
AS[M ]A−1

)
ψ

= AS[M ]S[Z]

= AS[M Z︸︷︷︸
0

]

= 0.

Where we used that Z is a formal sum of monomials and order by order in ~
there are only finitely many non zero Wg,n coefficients in its expansion (3.2.22).
The idea being that this could give us a way to find a quantization of the original
spectral curve associated with ψ:

P̂ = AS[M ]A−1. (3.4.8)

In the next section we will apply this strategy to the simplest cases of the Airy
and Bessel curves.



4 Quantum Curves from
Airy Structures

We now have all collected all the ingredients which we needed for our new
quantum curve recipe. The last piece of information we require is what should
we use as the operator M to be specialization. Kazarian and Zograf [36] and
Norbury and Do [23] noticed that by defining the following evolution operator
from the Virasoro constraints Li,

M =
∑
i

xiLi, (4.0.1)

one could recover the quantum curve after specializing and conjugating with
the contribution of unstable topologies. We can therefore wrap up our method
in the following.

Recipe 4.0.1. Here are our suggested steps to construct quantum curves:

1. Start with a spectral curve on CP 1 given by the tuple (x(z), y(z))

2. Grind x and y into the inverse 1-form θ(z).

3. Find a choice of polarization {dξk,r}, such that the residue formula (3.2.4)
are easy enough to work with.

4. Check that the ABCD coefficients obtained in this way satisfy to the
ABCD relations (3.1.5)-(3.1.9).

5. Construct the evolution operator M ∼
∑
k,r xk,rLk,r. Here some adjust-

ment might be needed (add spices of your choice for the desired result).

6. Specialize the evolution operator to obtain a global differential operator
on the spectral curve expressed in the z variable. Doing so we might find
out that not all inputs of θ(z) will work.

7. Conjugate the evolution operator with the left overs unstable topologies
of the A factor (3.4.3).

53
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8. (a) Substitute x(z) = x̂ and ~
(
dx
dz

)−1 d
dz = ŷ and check that you indeed

obtain a quantization of the original spectral curve.

(b) Alternatively, start with the canonical quantization of the spectral
curve, substitute x̂ = x(z) and ŷ = ~

(
dx
dz

)−1 d
dz and take the differ-

ence with what you obtained at step 7): what you get should be only
composed of quantum correction terms.

In this last chapter we will apply these steps to one and two branch point
spectral curves. We will also explore a multi-variable variant of the specialization
step.

4.1 One Branch Point

Let us apply our strategy first to the generalized Airy spectral curve given by
the ABCD coefficients in (3.3.16) which we substitute in equation (3.1.3). In
light of (3.2.22), we also do the change ~→ ~2. We get,

Li = ~2∂i −
1

2
θ−1δi,0(x0)2

− ~2
∑
a,b

(2b+ 1)

(2i+ 1)
θb−i−axa∂b

− ~4

2

∑
a,b

(2a+ 1)(2b+ 1)

(2i+ 1)
θa+b+1−i∂a∂b

− ~2δi,0
θ0
8
− ~2δi,1

θ−1
24

.

(4.1.1)

Our strategy to specializing will be pretty pedestrian, we shall look at how a
differential operator acts on a monomial of xi’s, then translate this ourselves as
an operator of the single z variable.

Recall that for a fixed choice of α a pole of x, the specialization map S acts
on functions of xi as

xi → S[xi] =

∫ z

α

~dξi. (4.1.2)

Here we are working with the odd basis in (3.3.7) where ξi = (2k+1)
z2k+2 dz and the

pole is at α =∞, therefore the map becomes:

S[xi] = −~z−2i−1. (4.1.3)
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By extension, for an arbitrary monomial of xi’s,

S [xµ1
. . . xµn ] = (−1)n~nz−

∑n
i=0(2µi+1). (4.1.4)

We must now combine the Li’s of (4.1.1) such that they can be specialized.
Let us illustrate with the simplest term, the linear term in Li (4.1.11). Note

that we can extend the basis ξi naturally to half integers using the same defini-
tion (3.3.7): these just correspond to basis of 1-form with odd order poles which
we didn’t need when decomposing the ωg,n. Multiplying by (2i + 1)xi+ 1

2
and

summing over i, its specialization is given by the following lemma.1

Lemma 4.1.1.

S

[
~
∞∑
i=0

(2i+ 1)xi+ 1
2
∂i(xµ1

· · ·xµn)

]
= −~ d

dz
S[xµ1

· · ·xµn ]. (4.1.5)

Proof.

S

[ ∞∑
i=0

(2i+ 1)xi+ 1
2
∂i(xµ1

· · ·xµn)

]

= S

[ ∞∑
i=0

(2i+ 1)
n∑
ρ=1

xi+ 1
2
δi,µρ

1

xµρ
(xµ1

· · ·xµn)

]
(4.1.6)

= S

[
n∑
ρ=1

(2µρ + 1)
xµρ+ 1

2

xµρ
xµ1
· · ·xµn

]
(4.1.7)

= −
n∑
ρ=1

(2µρ + 1)~z2µρ−2
S [xµ1

· · ·xµn ]

S
[
xµρ
] (4.1.8)

= − d

dz
S[xµ1 · · ·xµn ]. (4.1.9)

1The reason for this shift is only for tidiness here: this way we won’t have to multiply by
extra factors to recover the right quantum curve at the end. However in the multivariable
specialization in the next section it does seem to be necessary. More observations/examples
would be necessary to get a better understanding of why this is the right combination to
consider.
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Evolution operator

This motivates us to define the evolution operator M as the following linear
combination,

M = −1

~

∞∑
i=0

(2i+ 1)xi+ 1
2
Li. (4.1.10)

Inserting the above expression of Li,

M =− ~
∑
i

(2i+ 1)xi+ 1
2
∂i (4.1.11)

+
~−1

2
θ−1x 1

2
(x0)2 (4.1.12)

+ ~
∑
a,b,i

(2b+ 1)θb−i−axi+ 1
2
xa∂b (4.1.13)

+
~3

2

∑
a,b,i

(2a+ 1)(2b+ 1)θa+b+1−ixi+ 1
2
∂a∂b (4.1.14)

+ ~x 1
2

θ0
8

+ ~x 3
2

θ−1
8
. (4.1.15)

We will refer to (4.1.12), (4.1.13), (4.1.14) and (4.1.15) respectively as the A,B,C
and D terms. Continuing on , and trying to apply specialization to the B and
C terms, we observe that not all choices of θ will work out nicely.
We introduce some notation for convenience:

ϑ(z) = θ(z)dz, (4.1.16)

So ϑ(z) has the same expansion as θ(z) but removing the 1-form inverse factor
(dz)−1. We have the following lemma:

Lemma 4.1.2. If θ−1 and θ0 are the only non zero coefficients in the expansion
of θ, then the B and C terms specialize as,

S

~∑
a,b,i

(2b+ 1)θb−i−axi+ 1
2
xa∂b

+
~3

2

∑
a,b,i

(2a+ 1)(2b+ 1)θa+b+1−ixi+ 1
2
∂a∂b


= −~2

2
ϑ(z)′

d

dz
− ~2

2
ϑ(z)

d2

dz2
. (4.1.17)
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Proof. Multiply the left hand side by −2~−2 for convenience, we have,

S

−2

~−1
∑
a,b,i

(2b+ 1)θb−i−axi+ 1
2
xa∂b

+
~
2

∑
a,b,i

(2a+ 1)(2b+ 1)θa+b+1−ixi+ 1
2
∂a∂b

 (xµ1
. . . xµn)

 (4.1.18)

= S

−2

~−1
n∑
ρ=1

∑
a,b,i

(2b+ 1)θb−i−aδb,µρ
xi+ 1

2
xa

xb

+
~
2

n∑
ρ,η=1
ρ 6=η

∑
a,b,i

(2a+ 1)(2b+ 1)θa+b+1−iδa,µηδb,µρ
xi+ 1

2

xaxb

 (xµ1 . . . xµn)


(4.1.19)

=

2

n∑
ρ=1

∑
a,b,i

(2b+ 1)θb−i−aδb,µρz
−2i−2a+2b−2

+
n∑

ρ,η=1
ρ 6=η

∑
a,b,i

(2a+ 1)(2b+ 1)θa+b+1−iδa,µηδb,µρz
−2i+2a+2b

S[xµ1
. . . xµn ].

(4.1.20)

Let us do a bit of rewriting on the operator. Let j = b− i− a in the first sum,
which will range from −1 to b. In the second sum let j = a + b − i + 1, which
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will range from −1 to a+ b+ 1.

2z−2
n∑
ρ=1

∑
b

(2b+ 1)
b∑

j=−1

b−j∑
a=0

θjδb,µρz
2j

+ z−2
n∑

ρ,η=1
ρ 6=η

∑
a,b

(2a+ 1)(2b+ 1)δa,µηδb,µρ

a+b+1∑
j=−1

θjz
2j

(4.1.21)

= z−2
n∑
ρ=1

∑
b

(2b+ 1)δb,µρ

b∑
j=−1

(2b− 2j + 2)θjz
2j

+ z−2
n∑

ρ,η=1
ρ 6=η

∑
a,b

(2a+ 1)(2b+ 1)δa,µηδb,µρ

a+b+1∑
j=−1

θjz
2j

(4.1.22)

= z−2
n∑
ρ=1

(2µρ + 1)

µρ∑
j=−1

(2µρ − 2j + 2)θjz
2j

+ z−2
n∑

ρ,η=1
ρ 6=η

(2µη + 1)(2µρ + 1)

µη+µρ+1∑
j=−1

θjz
2j .

(4.1.23)

Here we see that the bounds on the sums will depend on the monomial which
we consider, since µi ≥ 0. Therefore if we want to reconstruct the series of θ
independently of the monomial considered, we have to assume θk = 0 for k > 0.
Doing so, we can rewrite (4.1.23) as,

z−2
n∑
ρ=1

(2µρ + 1)
∑
j≥−1

(2µρ − 2j + 2)θjz
2j

+ z−2
n∑

ρ,η=1
ρ 6=η

(2µη + 1)(2µρ + 1)
∑
j≥−1

θjz
2j

(4.1.24)

= −z−2
n∑
ρ=1

(2µρ + 1)
∑
j≥−1

(2j − 1)θjz
2j

+ z−2
n∑

ρ,η=1

(2µη + 1)(2µρ + 1)
∑
j≥−1

θjz
2j .

(4.1.25)

Since
∑n
ρ=1(2µρ + 1) ∼ −z d

dz on the specialized monomials, we can finally
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rewrite (4.1.20) as,

=

 ∞∑
j=−1

(2j − 1)θjz
2j−1 d

dz
+ z−1

∞∑
j=−1

θjz
2j d

dz
z
d

dz

S[xµ1 . . . xµn ] (4.1.26)

=

 ∞∑
j=−1

2jθjz
2j−1 d

dz
+

∞∑
j=−1

θjz
2j d

2

dz2

S[xµ1 . . . xµn ] (4.1.27)

=

(
ϑ′(z)

d

dz
+ ϑ(z)

d2

dz2

)
S[xµ1

. . . xµn ]. (4.1.28)

Multiply back by − 1
2~

2 to finish the proof.

The A and D terms don’t contain partial derivatives and specialize easily.
We can conclude with the following proposition.

Proposition 4.1.3. Let a spectral curve (x, y) on CP 1 be such that x(z) =

a+b z2, and such that θ−1, θ0 are the only non zero coefficients in the expansion
of θ(z) at z = 0. Then the specialization operator S[xi] =

∫ z
∞ ~dξi gives

S

−1

~
∑
i≥0

(2i+ 1)xi+ 1
2
Li


= ~

d

dz
− 1

2
~2ϑ′(z)

d

dz
− 1

2
~2ϑ(z)

d2

dz2
− 5

8
~2θ−1z−4 −

1

8
~2θ0z−2. (4.1.29)

Remark 4.1.4. The fact that the specialization only works with the base point
α chosen as the pole at infinity is only implicit here: the proof worked in part
because there are no extra constant terms to deal with. Why we need a pole of
x will be clearer when we extend the calculation to two branch points and the
poles will be at ±1.

As we can see, the admissibility condition in terms of the expansion of θ
greatly restricts the curves which we can quantize. However this proposition
gives us a fairly general result for curves with one branch point and a double-
cover that can be parametrized with the coordinate z in that way. In the next
section we review all such quantizable curves.
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4.2 Applications

It is difficult to proceed further with the same level of generality ; while we can
straightforwardly compute θ(z) from a general input of (x, y), we do not know
in general what algebraic equation these will correspond to and what quantum
curve operator P̂ to expect. However for specific cases where we know x and
y, it will be an effective technique to show that a quantum curve operator does
exist.
There are 3 interesting spectral curves which are of the form treated in the
previous section. One is the Airy curve, which we mentioned a few times already
and which is related to intersection theory on the moduli space of curves and
the Kontsevitch-Witten τ -function [32]. Another one is the Bessel curve that
governs asymptotic behaviour of so called irregular spectral curves, when y has
a simple pole at zeroes of dx, and which is also related to the BGW τ -function
for the KdV hierarchy [23]. Finally the monotone Hurwitz curve calculates
monotone Hurwitz numbers, that counts branched coverings of the Riemann
sphere with given ramification profile, modulo some monotonicity condition.
See remark 2.5.5 and [21] for more details. They are given by the following
(x, y) pairs:

x =
1

2
z2 y = z, (Airy)

x =
1

2
z2 y =

1

z
, (Bessel)

x =
1

4
− 1

4
z2 y = − 2

1− z
. (Monot. Hurwitz)

The corresponding algebraic curves are

1

2
y2 − x = 0, (Airy)

2xy2 − 1 = 0, (Bessel)

xy2 + y + 1 = 0, (Monot. Hurwitz)

and we get for θ(z),

ϑ(z) = z−2, (Airy)

ϑ(z) = 1, (Bessel)

ϑ(z) = −z−2 + 1. (Monot. Hurwitz)
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Note that they all satisfy θk = 0, k > 0. We will present the “algorithm” in
the case of the Airy curve. Extending these calculations to the other special
is better done with a computer algebra system, and we will simply state the
results.

Now that we have the specialization of the evolution operator, we need to
conjugate it with the A factor. Afterwards we can compare this to a guess
of the quantization of the algebraic curve equation via the canonical choice
x→ x̂ = x(z) and y → ŷ = ~ d

dx = ~
(
dx
dz

)−1 d
dz .

4.2.1 Airy curve

Computation of A. We need to conjugate the specialization operator by A,
which contains the contributions of ω0,1 and ω0,2. Recall that

A = exp

[
1

~

∫ z

α

ω0,1

]
exp

[
1

2

∫ z

α

∫ z

α

ω0,2 −
dx1dx2

(x1 − x2)2

]
, (4.2.1)

where α is a pole of x. For x = 1
2z

2 we have α =∞, and the second factor is

exp

[
1

2

(
log

z1 − z2
x1 − x2

) ∣∣∣z
z1=∞

∣∣∣z
z2=∞

]
=

√
z1 − z2
x1 − x2

∣∣∣z1=z
z2=z

(√
z1 − z2
x1 − x2

∣∣∣ z1=z
z2=∞

)−2√
z1 − z2
x1 − x2

∣∣∣z1=∞
z2=∞

. (4.2.2)

Furthermore, √
z1 − z2
x1 − x2

=

√
2

z1 + z2
. (4.2.3)

As one can see, substituting∞ in (4.2.2) can make some infinities or zero factors
appear in A. We can deal with this by realizing that when we write the quantum
curve equation P̂ ψ = 0 what we mean strictly speaking is that P̂ acting on
the argument of the exponential in ψ, which produces an element in C[x][[~]],
vanishes. Concisely, if ψ = exp[φ] then what we want to vanish is

P̂ ψ =
(
P̂ φ
)

︸ ︷︷ ︸
=0

ψ (4.2.4)

In other words what we ask is

ψ−1P̂ψ = ψ̃−1A−1P̂Aψ̃ = 0, (4.2.5)
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where ψ̃(z) is the specialization of the Airy structure partition function S[Z] as
in (3.2.22),

ψ̃(z) = exp

∑
g≥0

◦◦∑
k≥1

~2g−2

k!

∑
µ1,...,µn

Wg,n [ µ1 ··· µn ]
n∏
i=1

∫ z

∞
~dξµi

. (4.2.6)

So to deal with the infinities in A, we can integrate with respect to some different
base point α′ which cuts off infinities, conjugate to get rid of these constant
terms, and then take the limit α′ → α . In practice, this means that we can
just ignore any diverging constant factor when calculating A, and really only
keep the part which is a function of z. We indicate that with the symbol ∝. We
have,

exp

[
1

2

∫ z

∞

∫ z

∞

(
dz1dz2

(z1 − z2)2
− dx1dx2

(x1 − x2)2

)]
∝ z−1/2. (4.2.7)

For the Airy curve, ω0,1 = ydx = z2dz, one finds

exp

[
1

~

∫ z

∞
ω0,1

]
∝ exp

(
1

3~
z3
)
. (4.2.8)

So that
A ∝ exp

(
1

3~
z3
)
z−1/2. (4.2.9)

Constructing the Quantum curve. All we have left to do is input the
specific values of θ(z) into equation (4.1.29) to get the operator that annihilates
ψ̃(z) = S [Z]. For θ(z) = z−2(dz)−1, we have(

~
d

dz
+

~2

2z2
d2

dz2
− ~2

z3
d

dz
+

5~2

8z4

)
ψ̃(z) = 0. (4.2.10)

We then conjugate with the A factor (4.2.9) to get the operator which annihilates
the wave-function ψ = AS [Z]:

exp

(
1

3~
z3
)
z−1/2

(
~
d

dz
+

~2

2z2
d2

dz2
− ~2

z3
d

dz
+

5~2

8z4

)
exp

(
− 1

3~
z3
)
z1/2

=
~2

2z2
d2

dz2
− ~2

2z3
d

dz
− z2

2
, (4.2.11)
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and finally by identifying x̂ = 1
2z

2 and ŷ = ~ d
dx = ~

z
d
dz ,(

~2

2z2
d2

dz2
− ~2

2z3
d

dz
− 1

2
z2
)
ψ(z) = 0, (4.2.12)

⇐⇒
(

1

2

~
z

d

dz

~
z

d

dz
− 1

2
z2
)
ψ(z) = 0, (4.2.13)

⇐⇒
(

1

2
ŷ2 − x̂

)
ψ(z) = 0. (4.2.14)

So we have proved the quantum curve equation for the Airy spectral curve. In
other words, we showed that the wave-function ψ(z), constructed as in (3.4.1)
from the specialization of the Airy structure partition function, is annihilated
by the differential operator P̂ = 1

2~
2 d2

dx2 −x, which is the canonical quantization
of the Airy spectral curve 1

2y
2 − x = 0.

4.2.2 Bessel curve

Let us now repeat this process with the Bessel spectral curve. Feed the input
data of the Bessel curve θ(z) = (dz)−1 into the specialization of the evolution
operator (4.1.29), which gives(

~
d

dz
+

~2

2

d2

dz2
+

~2

8z2

)
ψ̃ = 0. (4.2.15)

Then conjugate by the A factor (4.2.1) corresponding to that curve:

exp

(
1

~
z

)
z−1/2

(
~
d

dz
+

~2

2

d2

dz2
+

~2

8z2

)
exp

(
−1

~
z

)
z1/2

=
~2

2

d2

dz2
+

~2

2z

d

dz
− 1

2
. (4.2.16)

Doing the substitution x̂ = 1
2z

2, ŷ = ~
z
d
dz , we get:(

~2

2

d2

dz2
+

~2

2z

d

dz
− 1

2

)
ψ(z) = 0, (4.2.17)

⇐⇒
(
~
z

d

dz

1

2
z2

~
z

d

dz
− 1

2

)
ψ(z) = 0, (4.2.18)

⇐⇒
(
ŷx̂ŷ − 1

2

)
ψ(z) = 0. (4.2.19)
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Therefore, the wave function (3.4.1) constructed from the Bessel spectral curve
is annihilated by the operator P̂ = ŷx̂ŷ − 1

2 , which is a quantization of the
spectral curve xy2 − 1

2 = 0. Here we have some non trivial choice of ordering
to do, and we see that what comes out of this construction is the ordering
xy2 → ŷx̂ŷ.

4.2.3 Monotone Hurwitz curve

Continue the exercise with the Monotone Hurwitz curve, inserting θ(z)dz =

−z−2 + 1 into (4.1.29)(
~
d

dz
− ~2

z3
d

dz
− ~2

2
(1− 1

z2
)
d2

dz2
+

5~2

8z4
− h2

8z2

)
ψ̃ = 0. (4.2.20)

Conjugate by the A factor (4.2.1) (omitting some constant factors in the ω0,2

contribution),

exp

(
−1

~
(z + log(z − 1))

)
z−1/2(

~
d

dz
− ~2

z3
d

dz
− ~2

2
(1− 1

z2
)
d2

dz2
+

5~2

8z4
− h2

8z2

)
exp

(
1

~
(z + log (z − 1))

)
z1/2

=
~2

2z2
d2

dz2
− ~

2z3
d

dz
− ~2

2

d2

dz2
− ~2

2z

d

dz
− ~
z

d

dz
+

1

2
. (4.2.21)

This time x̂ = 1
4 −

1
4z

2 and ŷ = − 2~
z

d
dz , so we can conclude,(

~2

2z2
d2

dz2
− ~

2z3
d

dz
− ~2

2

d2

dz2
− ~2

2z

d

dz
− ~
z

d

dz
+

1

2

)
ψ(z) = 0 (4.2.22)

⇐⇒
(

2
~
z

d

dz

(
1

4
− 1

4
z2
)

~
z

d

dz
− ~
z

d

dz
+

1

2

)
ψ(z) = 0 (4.2.23)

⇐⇒
(

1

2
ŷx̂ŷ +

1

2
ŷ +

1

2

)
ψ(z) = 0. (4.2.24)

The operator P̂ = 1
2 ŷx̂ŷ + 1

2 ŷ + 1
2 is again a quantization of the spectral curve

xy2 + y + 1 with the ordering xy2 → yxy for the first term, multiplied by an
overall factor of 1

2 .
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4.2.4 More single branch point curves

In the previous section we treated the 3 standard cases that are allowed by our
lemma, when θk = 0 for k > 0. However there is some information about the
curve that is not carried over to θ(z). Recall that, from the definition,

θ(z) =
−2

(y(z)− y(σ(z))) dx(z)
, (4.2.25)

so any contribution to y that would be even under the involution is ignored in
the topological recursion. In particular, we can modify our curves to be

x =
1

2
z2 y = z + f(x) (4.2.26)

x =
1

2
z2 y =

1

z
+ f(x) (4.2.27)

x =
1

4
− 1

4
z2 y = − 2

1− z
+ f(x) (4.2.28)

corresponding to some algebraic curves, respectively,

1

2
(y − f(x))2 − x = 0, (4.2.29)

2x(y − f(x))2 − 1 = 0, (4.2.30)

x(y − f(x))2 + y − f(x) + 1 = 0. (4.2.31)

The operators obtained from proposition 4.1.3 will be the same as the Airy,
Bessel and Monotone Hurwitz curves respectively. However the factor A changes
to,

A→ A exp

(
−1

~

∫
f(x)dx

)
, (4.2.32)

So we have to conjugate the quantum curve by the factor exp
(
− 1

~
∫
f(x)dx

)
,

but this is exactly the same as shifting ŷ → ŷ − f(x̂), and therefore we obtain
quantum curves for this whole family of spectral curves as well.

This gives rise to many spectral curves that are not in the class studied in our
paper of reference [12] since their Newton polygons may have interior points.
While this is nothing specific to our approach (this is already clear from the
formula of topological recursion (2.5.11) and the definition of the wave function
(2.7.2)), it provides a straightforward extension of the class of curves for which
quantum curves exist studied in [12].
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4.2.5 Shortcomings

Minimal models

Unfortunately, there are some known spectral curves which would be of a similar
shape as the ones treated above but that do not satisfy the conditions of the
Lemma to be quantized in this way. Let us mention the case of the (p, q) = (3, 2)

minimal model (for an introduction, see [27, 5]), also known as pure gravity. The
spectral curve is

Σ = CP 1, x = z2 − 2, y = z3 − 3z, (4.2.33)

corresponding to the algebraic curve

y2 = x3 − 3x+ 2. (4.2.34)

While this indeed has a single branch point curve with a branched covering of
the shape x = a+ bx2, it has a θ with higher degree terms and does not satisfy
to the hypothesis of proposition 4.1.3. We do not know if a quantum curve is
proved to exist by other techniques in this case, however the most general result
known for genus zero curves [12] also does not apply, since the corresponding
Newton polytope has interior points.

Simple Hurwitz numbers

Another limitation in our approach is the dependency on the existence of a
"nice" parametrization of the spectral curve: if the involution is anything dif-
ferent than the simple change of sign z → −z, we do not know how to deal with
the coefficients arising in our expressions. One interesting such example is the
simple Hurwitz numbers spectral curve. Simple Hurwitz numbers have been
shown to be generated by topological recursion [14, 26], on the spectral curve

ex − ye−y = 0. (4.2.35)

It is also a genus zero curve which can be parametrized by

x = ln z − z, y = z. (Simple Hurwitz)
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Here, dx has a single zero at z = 1, and the involution is defined by the equation

ze−z = T (z)e−T (z). (4.2.36)

It is related to the Lambert W function which gives the solution to

z = W (z)eW (z), (4.2.37)

via T (z) = −W (−ze−z). Hence the branch point at z = 1 coincides with the
branch point ofW at − 1

e , where it is locally a degree 2 cover. Here the quantum
curve is known to exist [48] and to be given by

P̂ = ŷ − ex̂eŷ (4.2.38)

with the usual ŷ = ~ d
dx and x̂ = x. How could we deal with this curve in

our setting? One way would be to use the Airy structure associated to local
coordinate in (3.3.36), working out the specialization lemma including the extra
coefficients ϕ

[ r1 r2
l1 l2

]
and using some relations with the coefficients θm to even-

tually simplify stuff out. Unfortunately we weren’t successful in this way.
Another possible choice of basis could be to move the branch point to 0 and
then use the simpler basis of (3.3.3) and the standard form of ω0,2, but then
one has to deal with coefficients of the expansion of the involution (4.2.36). We
were also unable to make this approach work.
One apparent difficulty is that from the specialization of a linear combination of
the Li we can only expect a quadratric differential operator. Hence a quantum
curve that is quadratic in ŷ and not a full series like (4.2.38).
Despite these difficulties, and because the existence of the quantum curve has
been proven already, we feel like one should be able to tackle the simple Hurwitz
case using the Airy structure approach, and we leave this problem for future
work.

4.3 Multivariable Case

In the previous section, we considered the specialization operator S which sends
the infinite basis {xi} of V to polynomials of z. This process is of course not
reversible and one can ask if there exists a similar process that would instead
be bijective.
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A natural way to address this question is to consider the specialization

P[xi] = ~
(∫ p1

∞
+

∫ p2

∞
+ . . .

)
dξi, (4.3.1)

where the integration divisor now includes an infinite set of points. We will write∫
D

has a short hand notation. In the special case that we have been considering
so far where dξi = (2i+1)

z2i+2 dz, this amounts to

P[xi] = −~
N∑
α=1

z−(2i+1)
α (4.3.2)

and then letting N →∞. We could write PN but we will drop the N to avoid
cluttered notation. Besides, the calculations are independent of N . The right
hand side here is a variant of power sum symmetric polynomials, and we shall
refer to P as the power-sum specialization.

The wave-function also changes to a multi-variable variant,

ψ(x1, x2, . . . ; ~)

∝ exp

∑
g≥0

∑
k≥1

~2g−2+n

n!

∫
D

. . .

∫
D

(
ωg,n − δg,0δn,2

dx′1dx
′
2

(x′1 − x′2)2

), (4.3.3)

where
∫
D

=
∫ z1
∞ +

∫ z2
∞ + . . .. This in turns has connections to the theory of

integrable systems [29].
If we are doing things correctly, what we get at the end should also allow us to
recover the wave function specialization of M ,

S(M)(z) = P(M)(zα)
∣∣∣
N=1

.
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4.3.1 Airy curve

Let us apply this to the Airy curve. Taking the evolution operator with the
input θk = δk,−1 yields

M = −~
∞∑
i=0

(2i+ 1)xi+ 1
2
∂i −

~−1

2
x 1

2
x20 −

~
8
x 3

2

− ~
∞∑
s=0

s+1∑
m=0

(2s+ 1)xs−m+ 3
2
xm∂s

− ~3

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 5
2
∂m∂k,

(4.3.4)

and we want to compute the power sum specialization P(M).
Starting with the linear term, we have a generalization of lemma 4.1.1.

Lemma 4.3.1.

P

[ ∞∑
i=0

(2i+ 1)xi+ 1
2
∂i(xµ1

· · ·xµn)

]
= −

∑
α

∂

∂zα
P[xµ1

· · ·xµn ]. (4.3.5)

Proof. As in the proof of lemma 4.1.1, we have:

P

[ ∞∑
i=0

(2i+ 1)xi+ 1
2
∂i(xµ1

· · ·xµn)

]
=

n∑
ρ=1

(2µρ + 1)
P[xµρ+ 1

2
]

P[xµρ ]
P [xµ1

· · ·xµn ] .

(4.3.6)
On the other hand,

∑
α

∂

∂zα
P[xµ1 · · ·xµn ] =~

∑
α

n∑
ρ=1

(2µρ + 1)z−2µρ−2α

1

P[xµρ ]
P[xµ1 · · ·xµn ]

(4.3.7)

=−
n∑
ρ=1

(2µρ + 1)
P[xµρ+ 1

2
]

P[xµρ ]
P [xµ1 · · ·xµn ] . (4.3.8)

The next lemma is for the B and C terms:
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Lemma 4.3.2.

P

[ ∞∑
s=0

s+1∑
m=0

(2s+ 1)xs−m+ 3
2
xm∂s+

~2

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 5
2
∂m∂k

] (4.3.9)

=

(
~
∑
α

z−3α
∂

∂zα
− ~

2

∑
α

z−2α
∂

∂z2α

)

+
∑
α 6=β

n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)
(−~z−2µρ+2m−4

α )(−~z−2m−1β )

P
[
xµρ
] .

(4.3.10)

Proof. First, we calculate:

P

[ ∞∑
s=0

s+1∑
m=0

(2s+ 1)xs−m+ 3
2
xm∂s(xµ1

· · ·xµn)

]

= P

[
n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)xµρ−m+ 3
2
xm

1

xµρ
(xµ1 · · ·xµn)

]
(4.3.11)

=
n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)
P[xµρ−m+ 3

2
]P[xm]

P[xµρ ]
P [xµ1

· · ·xµn ] (4.3.12)

=
∑
α,β

n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1
...xµn ]

P
[
xµρ
] . (4.3.13)

Now turn to the second term,

P

[
~2

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 5
2
∂m∂k(xµ1

· · ·xµn)

]

=P

~22
n∑

ρ,η=1
ρ 6=η

(2µρ + 1)(2µη + 1)xµρ+µη+ 5
2

1

xµρxµη
(xµ1 · · ·xµn)

 (4.3.14)

=
~2

2

n∑
ρ,η=1
ρ 6=η

(2µρ + 1)(2µη + 1)
P[xµρ+µη+ 5

2
]

P[xµρ ]P[xµη ]
P[xµ1 · · ·xµn ]. (4.3.15)
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For this second term notice that

− ~
2

∑
α

z−2α
∂2

∂z2α
P[xµ1

...xµn ]

= −~
2

∑
α

z−2α
∂

∂zα

n∑
ρ=1

(2µρ + 1)~z−2µρ−2α

P[xµ1 ...xµn ]

P[xµρ ]
(4.3.16)

=
~
2

∑
α

z−2α

n∑
ρ=1

(2µρ + 1)(2µρ + 2)~z−2µρ−3
P[xµ1...xµn ]

P[xµρ ]

− ~
2

∑
α

z−2α

n∑
ρ,η=1
ρ 6=η

~2z−2µρ−2µη−4(2µρ + 1)(2µη + 1)
P[xµ1

...xµn ]

P[xµρ ]P[xµη ]

(4.3.17)

=
∑
α

n∑
ρ=1

µρ∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1α )

P[xµ1 ...xµn ]

P[xµρ ]

+
~2

2

n∑
ρ,η=1
ρ 6=η

(2µρ + 1)(2µη + 1)
P[xµρ+µη+ 5

2
]

P[xµρ ]P[xµη ]
P[xµ1

...xµn ]

(4.3.18)

=
∑
α

n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1α )

P[xµ1
...xµn ]

P[xµρ ]

− ~
∑
α

z−3α
∂

∂zα
P[xµ1 ...xµn ]

+ P

[
~2

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 5
2
∂m∂k(xµ1

· · ·xµn)

]
,

(4.3.19)

where in (4.3.18) we introduced a sum with µρ+1 identical terms and in (4.3.19)
we used

~
∑
α

z−3α
∂

∂zα
P[xµ1

...xµn ]

=
∑
α

n∑
ρ=1

(2µρ + 1)(~z−2µρ−5α )
P[xµ1

...xµn ]

P[xµρ ]
(4.3.20)

=
∑
α

n∑
ρ=1

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1α )

P[xµ1 ...xµn ]

P[xµρ ]
. (4.3.21)
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Rearranging terms,

P

[
~2

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 5
2
∂m∂k(xµ1 · · ·xµn)

]

= −~
2

∑
α

z−2α
∂2

∂z2α
P[xµ1

...xµn ] + ~
∑
α

z−3α
∂

∂zα
P[xµ1

...xµn ]

−
∑
α=β

n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P[xµ1
...xµn ]

P[xµρ ]
.

(4.3.22)

Summing both contributions completes the proof.

Notice that we get a result similar to the one variable case , except for that
extra term. Now let’s rewrite it in terms of partials ∂

∂zα
.

Lemma 4.3.3.

∑
α 6=β

n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1 · · ·xµn ]

P
[
xµρ
]

= ~
∑
α 6=β

∞∑
m=0

(
zα
zβ

)2m(
z−2α z−1β

∂

∂zα
− z−3β

∂

∂zβ

)
P [xµ1 · · ·xµn ] .

(4.3.23)

Proof. We may write

~
∞∑
m=0

z2m−2α z−2m−1β

∂

∂zα
P [xµ1 ...xµn ]

=
n∑
ρ=1

∞∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1 ...xµn ]

P
[
xµρ
] (4.3.24)

=
n∑
ρ=1

µρ+1∑
m=0

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1
...xµn ]

P
[
xµρ
]

+
n∑
ρ=1

∞∑
m=µρ+2

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1
...xµn ]

P
[
xµρ
] .

(4.3.25)
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Let’s do a little bit of rewriting on the second term, by shifting the indices
m→ m+ µρ + 2 we get

n∑
ρ=1

∞∑
m=µρ+2

(2µρ + 1)(−~z−2µρ+2m−4
α )(−~z−2m−1β )

P [xµ1 ...xµn ]

P
[
xµρ
]

=
n∑
ρ=1

∞∑
m=0

(2µρ + 1)(−~z2mα )(−~z−2m−2µρ−5β )
P [xµ1

...xµn ]

P
[
xµρ
] (4.3.26)

= ~
∞∑
m=0

z2mα z−2m−3β

∂

∂zβ
P [xµ1

...xµn ] . (4.3.27)

Sending that term to the other side, factoring out
(
zα
zβ

)2m
, and summing over

α 6= β completes the proof.

Wrapping up, we managed to specialize the evolution operator according to
the following lemma.

Lemma 4.3.4. The power sum specialization of the evolution operator for the
Airy spectral curve (4.3.4) is

P[M ] = ~
∑
α

∂

∂zα
+

~2

2
(
∑
α

z−2α )(
∑
α

z−1α )2 +
~2

8

∑
α

z−4α

+
~2

2

∑
α

z−2α
∂

∂z2α
− ~2

∑
α

z−3α
∂

∂zα

− ~2
∑
α 6=β

∞∑
m=0

(
zα
zβ

)2m(
z−2α z−1β

∂

∂zα
− z−3β

∂

∂zβ

)
.

(4.3.28)

A factor

As in the one variable case, the next thing to do is to conjugate with the Afactor
(4.2.1) to obtain an operator that acts on the multi-variable analog of the wave
function (3.4.1). A straightforward calculation gives,

A = exp

(
1

~

∫
D

ω0,1

)
exp

(
1

2

∫∫
D

(
ω0,2 −

dx1dx2
(x1 − x2)2

))
, (4.3.29)

∝ exp

(
1

3~
∑
µ

z3µ

)∏
µ,η

(
zµ + zη

2

)−1/2
. (4.3.30)

We are going to need the following conjugation relation:
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Lemma 4.3.5.

A∂αA−1 = ∂α − ~−1z2α +
∑
γ

(zα + zγ)−1,

A∂2αA
−1 = ∂2α + ~−2z4α − 2~−1zα − 2~−1z2α∂α

+
∑
γ 6=δ

(zα + zγ)−1(zα + zδ)
−1 − 1

4
z−2α

+ 2
∑
γ

(zγ + zα)−1∂α

− 2~−1z2α
∑
γ

(zα + zγ)−1.

We omit the proof, since it is a simple and straightforward calculation. With
these we compute A (P[M ])A−1. We get a lot of cancellations happening and
we end up with:

A (P[M ])A−1 (4.3.31)

=
~2

2

∑
α

z−2α
∂2

∂z2α
−~2

2

∑
α

z−3α
∂

∂zα
(4.3.32)

+ ~2
∑
α 6=β

1

z2α − z2β

(
z−2α zβ

∂

∂zα
− z−1β

∂

∂zβ

)
(4.3.33)

+~2
∑
α 6=γ

z−2α (zγ + zα)−1
∂

∂zα
(4.3.34)

−1

2

∑
α

z2α (4.3.35)

+~2
∑
α 6=β

z−3α z−1β +
~2

2

∑
α 6=β

z−2α z−2β +
~2

2

∑
α 6=γ 6=β

z−2α z−1β z−1γ (4.3.36)

−~2
∑
α 6=β

z−3α (zα + zβ)−1 (4.3.37)

+
~2

2

∑
α

∑
γ 6=β

z−2α (zα + zγ)−1(zα + zβ)−1 (4.3.38)

+ ~2
∑
γ

∑
α 6=β

1

z2α − z2β

(
z−2α zβ(zα + zγ)−1 + z−1β (zβ + zγ)−1

)
. (4.3.39)
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Here we used the formal representation of the geometric series.

∞∑
m=0

(
zα
zβ

)2m

= −
z2β

z2α − z2β
. (4.3.40)

We now show that all the last four lines (4.3.36), (4.3.37), (4.3.38) and (4.3.39)
cancel out:

Lemma 4.3.6.∑
α 6=β

z−3α z−1β +
1

2

∑
α 6=β

z−2α z−2β +
1

2

∑
α 6=γ 6=β

z−2α z−1β z−1γ

−
∑
α 6=β

z−3α (zα + zβ)−1

+
1

2

∑
α

∑
γ 6=β

z−2α (zα + zγ)−1(zα + zβ)−1

+
∑
γ

∑
α 6=β

1

z2α − z2β

(
z−2α zβ(zα + zγ)−1 + z−1β (zβ + zγ)−1

)
= 0.

Proof. The first step is to express all the summations in a symmetric way. For
example, split sums

∑
γ

∑
α 6=β into γ = α, γ = β and γ 6= α 6= β,

∑
α 6=β

z−3α z−1β +
1

2

∑
α 6=β

z−2α z−2β +
1

2

∑
α 6=γ 6=β

z−2α z−1β z−1γ

−
∑
α 6=β

z−3α (zα + zβ)−1

+
1

2

∑
α 6=β

z−3α (zβ + zα)−1

+
1

2

∑
α 6=β 6=γ

z−2α (zα + zγ)−1(zα + zβ)−1

+
1

2

∑
α 6=β

1

zα − zβ
z−3α

+
∑
α 6=β

1

zα − zβ
z−2α (zα + zβ)−1

+
∑

α 6=β 6=γ

1

zα − zβ
z−2α (zα + zγ)−1.
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Now look at all the double sums∑
α 6=β

z−3α z−1β +
1

2

∑
α 6=β

z−2α z−2β

−
∑
α 6=β

z−3α (zα + zβ)−1

+
1

2

∑
α 6=β

z−3α (zβ + zα)−1

+
1

2

∑
α 6=β

1

zα − zβ
z−3α

+
∑
α 6=β

1

zα − zβ
z−2α (zα + zβ)−1

=
1

2

∑
α 6=β

z−2α

(
2

zαzβ
+

1

z2β
− 1

zα(zα + zβ)

+
1

zα(zα − zβ)
+

2

(zα − zβ)(zα + zβ)

)
=

1

2

∑
α 6=β

z−2α z−2β
(z2α − z2β)

(zα + zβ)2

= 0,

which vanishes as the summand and antisymmetric in α↔ β while the summa-
tion is symmetric. Next look at the triple sums

−~
2

∑
α 6=β 6=γ

z−2α z−1β z−1γ −
~
2

∑
α 6=β 6=γ

z−2α (zα + zγ)−1(zα + zβ)−1

− ~
∑

α 6=β 6=γ

z−2α (zα + zγ)−1(zα − zβ)−1

= −~
2

∑
α 6=β 6=γ

z−2α

(
1

zβzγ
+

1

(zα + zγ)(zα + zβ)
+

2

(zα + zγ)(zα − zβ)

)

= −~
2

∑
α 6=β 6=γ

z−1α z−1β z−1γ

(z2α − z2β)(zα + zγ)

(
z2α + zαzγ + 3zγzβ − z2β

)
.

To see that this sum vanishes, the most straight forward way is to complete the
denominator to

1

(z2α − z2β)(z2β − z2γ)(z2γ − z2α)
.
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This factor is totally anti-symmetric under permutations of (α, β, γ). What we
get is

~
2

∑
α 6=β 6=γ

z−1α z−1β z−1γ

(z2α − z2β)(z2β − z2γ)(z2γ − z2α)

×
(
z3αz

2
β−z3αz2γ−z2βz3γ−3z3βz

2
γ

+3zαz
3
βzγ−3zαzβz

3
γ

+z4βzγ−zαz4β+zαz
4
γ+3zβz

4
γ

)
= 0,

where each line cancels with the appropriate relabelling.

We also do a bit of rewriting on the terms (4.3.33) and (4.3.34) with

∑
α 6=β

1

z2α − z2β
zβ

∂

∂zα
+
∑
α 6=β

1

zα + zβ

∂

∂zβ
=
∑
α 6=β

1

z2α − z2β
zα

∂

∂zα
. (4.3.41)

To conclude, we just showed that:

Proposition 4.3.7. The multi-variable wave-function (4.3.3) for the Airy spec-
tral curve is annihilated by the following operator

A(P[M ])A−1

=
~2

2

∑
α

z−2α
∂2

∂zα2
− ~2

2

∑
α

z−3α
∂

∂zα

+ ~2
∑
α 6=β

(z2α − z2β)−1
(
z−1α

∂

∂zα
− z−1β

∂

∂zβ

)
− 1

2

∑
α

z2α.

(4.3.42)

Equivalently, in terms of xα = 1
2z

2
α,

A(P[M ])A−1

= ~2
∑
α

∂2

∂x2α
+
∑
α 6=β

(xα − xβ)−1
(

∂

∂xα
− ∂

∂xβ

)
−
∑
α

xα. (4.3.43)

We can recover S by setting N = 1. The sum over α 6= β disappears, and
what is left is

A(P[M ])A−1
∣∣∣
N=1

= ~2
d2

dx2
− x, (4.3.44)

which is the same as the Airy quantum curve (4.2.14).
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This is the expected result; the operator is given by

(H −
∑
α

xα),

where
H =

∑
α

∂2

∂x2α
+
∑
α 6=β

(xα − xβ)−1
(

∂

∂xα
− ∂

∂xβ

)
,

is the Calogero-Moser Hamiltonian. For more details on this and the connection
to integrable systems, we refer the reader to [29].

4.3.2 Bessel curve

We can repeat this process with the Bessel curve. Start from the evolution
operator with the input θk = δk,0

M =− ~
∞∑
i=0

(2i+ 1)xi+ 1
2
∂i −

~
8
x 1

2

− ~
∞∑
s=0

s∑
m=0

(2s+ 1)xs−m+ 1
2
xm∂s

− ~3

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 3
2
∂m∂k.

(4.3.45)

We need to update lemma 4.3.2.

Lemma 4.3.8.

P

[ ∞∑
s=0

s∑
m=0

(2s+ 1)xs−m+ 1
2
xm∂s

+
~2

2

∞∑
m=0

∞∑
k=0

(2m+ 1)(2k + 1)xm+k+ 3
2
∂m∂k

] (4.3.46)

= −~
2

∑
α

∂

∂z2α

+
∑
α 6=β

n∑
ρ=1

µρ∑
m=0

(2µρ + 1)
(−~z−2µρ+2m−2

α )(−~z−2m−1β )

P
[
xµρ
]
.

(4.3.47)

Proof. Follow the same steps as lemma 4.3.2, except that everything is multi-
plied by z2α, and the upper bound in the sum is s instead of s+1. Consequently
there is no need for the second term that was needed in the other lemma.
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Then we can easily specialize the rest of the terms in M . We obtain the
following.

Lemma 4.3.9.

P[M ] = ~
∑
α

∂

∂zα
+

~2

8

∑
α

z−2α

+
~2

2

∑
α

∂

∂z2α

− ~2
∑
α 6=β

∞∑
m=0

(
zα
zβ

)2m(
z−1β

∂

∂zα
− z−1β

∂

∂zβ

)
.

(4.3.48)

We need to update the conjugation relations, now with

A ∝ exp

(
1

~
∑
µ

zµ

)∏
µ,η

(
zµ + zη

2

)−1/2
. (4.3.49)

And lemma 4.3.5 becomes:

Lemma 4.3.10.

A∂αA−1 = ∂α − ~−1 +
∑
γ

(zα + zγ)−1,

A∂2αA
−1 = ∂2α + ~−2 − 2~−1∂α

+
∑
γ 6=δ

(zα + zγ)−1(zα + zδ)
−1 − 1

4
z−2α

+ 2
∑
γ

(zγ + zα)−1∂α

−2~−1
∑
γ

(zα + zγ)−1.
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Now let us apply these formulas and compute A (P[M ])A−1.

A (P[M ])A−1 =
~2

2

∑
α

∂2

∂z2α
+
~2

2

∑
α

z−1α
∂

∂zα
(4.3.50)

+ ~2
∑
α 6=β

1

z2α − z2β

(
zβ

∂

∂zα
− zβ

∂

∂zβ

)
(4.3.51)

+~2
∑
α 6=γ

(zγ + zα)−1
∂

∂zα
(4.3.52)

−1

2

∑
α

1 (4.3.53)

+
~2

2

∑
α

∑
γ 6=β

(zα + zγ)−1(zα + zβ)−1 (4.3.54)

+ ~2
∑
γ

∑
α 6=β

1

z2α − z2β

(
zβ(zα + zγ)−1 − zβ(zβ + zγ)−1

)
.

(4.3.55)

Once again the last two lines are vanishing,

Lemma 4.3.11.

1

2

∑
α

∑
γ 6=β

(zα + zγ)−1(zα + zβ)−1

+
∑
γ

∑
α 6=β

1

z2α − z2β

(
zβ(zα + zγ)−1 − zβ(zβ + zγ)−1

)
= 0.

Proof. First let’s rewrite

∑
γ

∑
α 6=β

1

z2α − z2β

(
zβ(zα + zγ)−1 − zβ(zβ + zγ)−1

)
=
∑
γ

∑
α 6=β

1

z2α − z2β

(
zβ(zα + zγ)−1 + zα(zα + zγ)−1

)
=
∑
γ

∑
α 6=β

1

zα − zβ
(zα + zγ)−1,
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then combine with the second term.

1

2

∑
α

∑
γ 6=β

1

zα + zβ
(zα + zγ)−1 +

∑
γ

∑
α 6=β

1

zα − zβ
(zα + zγ)−1

=
1

2

∑
γ

∑
α 6=β

1

zγ + zβ

1

zα + zγ
+
∑
γ

∑
α 6=β

1

zα − zβ
1

zα + zγ

=
1

2

∑
γ

∑
α 6=β

zα + zβ + 2zγ
(zα + zγ)(zα − zβ)(zβ + zγ)

= 0

Because the summation is symmetric under α↔ β while the summand is anti-
symmetric.

We can also combine lines (4.3.51) and (4.3.52) along the same lines as
(4.3.41). To conclude we have shown the following proposition,

Proposition 4.3.12. The multi-variable wave-function (4.3.3) for the Bessel
spectral curve is annihilated by the following operator,

A(P[M ])A−1

=
~2

2

∑
α

∂2

∂zα2
+

~2

2

∑
α

z−1α
∂

∂zα

+ ~2
∑
α 6=β

(z2α − z2β)−1
(
zα

∂

∂zα
− zβ

∂

∂zβ

)
− 1

2

∑
α

1.

(4.3.56)

Equivalently, in terms of xα = 1
2z

2
α,

A(P[M ])A−1

= ~2
∑
α

∂

∂xα
xα

∂

∂xα

+ ~2
∑
α 6=β

(xα − xβ)−1
(
xα

∂

∂xα
− xβ

∂

∂xβ

)
−
∑
α

1

2
.

Again, we recover the Bessel curve by setting N = 1.

A(P[
∑
i

xi+ 1
2
Λi])A−1

∣∣∣
N=1

= ŷx̂ŷ − 1

2
. (4.3.57)

It would be interesting to compare this result with what is expected from the
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theory of integrable systems, as in [29] for the Airy curve. We leave this for
future work.

4.4 Two Branch Points

The examples considered so far all had a unique branch point and a unique basis
of differential forms. The obvious next step is to apply this method to spectral
curves with more branch points, such as the spectral curve of Hermitian matrix
models which we studied in section 2.

4.4.1 A usable choice of basis

As we have described earlier in section 3.3.3 , we have a way of constructing an
Airy structure for an arbitrary spectral curve from a choice of local coordinates.
However it is hard to extend our pedestrian methods of proof to the complicated
ABCD coefficients of (3.3.36). So instead of doing it with the local basis, we
now define a new basis of differentials that naturally generalizes our method to
the case of two branch points.
Recall that our choice of polarization for ω0,2 was odd under the corresponding
local involution, and satisfied,

∑
r∈r
k≥0

dξk,r(p0)ξ∗k,r(p) =
1

2

(∫ p

ι(p)

ω0,2(p0, ·)

)
. (4.4.1)

In the two branch point case at genus zero, we can always use a Möbius trans-
formation to map any three points to 0, 1 and ∞. Recall that a Möbius trans-
formation is defined as

f(z) =
a z + b

c z + d
, (4.4.2)

for a, b, c, d ∈ C and ad − bc 6= 0. They satisfy to the nice property that they
leave the Bergman Kernel unchanged,

ω0,2(f(z1), f(z2)) = ω0,2(z1, z2). (4.4.3)

We can use a Möbius transformation to map our two branch points to 0 and∞.
Doing so we get two patches, one with coordinate z at 0 and one with coordinate
w at ∞, related via w = 1

z . If the involution of x is locally given by ι0(z) = −z
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and ι∞(w) = −w, we can define a dξ basis in the following way. For k ≥ 0 let

dξ0,k(z) =
(2k + 1)

z2k+2
dz, ξ∗0,k(z) = δr,0

z2k+1

(2k + 1)
, (4.4.4)

dξ∞,k(w) =
(2k + 1)

w2k+2
dw, ξ∗∞,k(w) = δr,∞

w2k+1

(2k + 1)
. (4.4.5)

Note that the Kronecker delta’s in ξ∗0,r and ξ∗∞,r are there to recall that these
are germs of functions, i.e. they are zero outside of a neighbourhood of 0 and∞
respectively. It is clear that (4.4.1) still holds since ω0,2(w1, w2) = dw1dw2/(w1−
w2)2 in the other patch. Furthermore we can merge the two basis to a single
basis indexed by k ∈ Z by mapping indices (0, k) to k, (∞, k) to (−1− k).

dξk(w) = dξ∞,−k−1(w) = −(2k + 1)w2kdw, k ≤ −1. (4.4.6)

ξ∗k(w) = ξ∗∞,−k−1(w) = − w
−2k−1

(2k + 1)
, k ≤ −1. (4.4.7)

So we get a single basis of differentials ξk defined as

dξk =
(2k + 1)

z2k+2
dz = −(2k + 1)w2kdw, k ∈ Z. (4.4.8a)

ξ∗k =

 z2k+1

(2k+1) , k ≥ 0,

−w
−2k−1

(2k+1) , k < 0.
(4.4.8b)

It is the sign of the first index in the ABCD coefficients which determines where
we take the residue in the residue formula.

Finally, recall that the conditions on x and y from the definition of a spectral
curve implied that θ(p) have an expansion of the shape

θ(z) =
∑
m≥−1

θ0,mz
2m(dz)−1 (4.4.9)

θ(w) =
∑
m≥−1

θ∞,mw
2m(dw)−1 (4.4.10)

at 0 and ∞ respectively. We expect some kind of relation between these two
expansions since they are related to the same globally defined object θ. This
can be very specific to the curve. However when θ has an infinite radius of
convergence at both points so that both expansions are equally valid at any
given point, and since w = 1/z, we have that θ0,m = −θ∞,1−m. In particular
θ0,m = 0 for m > 2. We will return to this constraint later. For now, we will
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write θm = θ0,m and θm = θ∞,m.

4.4.2 ABCD relations

We now need to check whether the ABCD coefficients constructed from this
basis form an Airy structure. Remark that this Airy structure not the same as
the local basis, and hence we have to verify that the ABCD relations also hold
in this basis.
It is straightforward to compute the ABCD coefficients; if the first index is
positive, express everything in terms of z and take the coefficient of z−1dz,
if the first index is negative, express everything in terms of w and take the
coefficient of w−1dw. We can then verify that the resulting coefficients satisfy
the ABCD relations.

Proposition 4.4.1. The ABCD coefficients obtained from the residue formula
(3.3.8) with the dξ basis given in (4.4.8),

Aijk = δi,j,k,0θ−1 + δi,j,k,−1θ−1, (4.4.11a)

Bkij =
(2k + 1)

(2i+ 1)


θk−i−j i, j ≥ 0

θ1+i+j−k i, j < 0

0 otherwise

, (4.4.11b)

Cjki =
(2k + 1)(2j + 1)

(2i+ 1)

θk+j+1−i i ≥ 0

−θi−j−k i < 0
, (4.4.11c)

Di =
1

8(2i+ 1)

[
θ0δi,0 − θ0δi,−1 + θ−1δi,1 − θ−1δi,−2

]
, (4.4.11d)

where i, j, k ∈ Z and θm, θm = 0 for m < −1 ,satisfy to the ABCD relations
(3.1.5) – (3.1.9).

Proof. Note that we recover the Airy structure from proposition 3.3.2 when
coefficients are either all positive or negative. Therefore we only need to check
that the ABCD symmetries still hold for the additional mixed coefficients. Also
note that the situation is symmetric between 0 and ∞, so if the relation holds
for i ≥ 0, j < 0, it is also true for i < 0, j ≥ 0, and similarly for i, j ≥ 0 and
i, j < 0. Let us proceed.

1 Aijk is still fully symmetric.
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2 The BA relation yields∑
a

(
BaijAakl + BaikAjal + BailAjak

)
= θ−1

(
B0
ijδk,l,0 + B0

ikδj,l,0 + B0
ilδj,k,0

)
+ θ−1

(
B−1ij δk,l,−1 + B−1ik δj,l,−1 + B−1il δj,k,−1

)
.

(4.4.12)

If i, j ≥ 0, the first brackets only have positive indices contributing, and the
second bracket only has B−10,0δi,j,0 contributing, which is symmetric.
If i ≥ 0, j < 0, the first bracket vanishes and the second bracket yields

− θ−1θ−1δj,l,−1δk,i,0 − θ−1θ−1δj,k,−1δl,i,0. (4.4.13)

If one now swaps (i, j)→ (j, i), then the second bracket vanishes, and the first
bracket will give the same as above.

3 Consider the D relation,∑
a

BaijDa + 1
2

∑
a,b

Cabi Ajab. (4.4.14)

If i, j ≥ 0, all the coefficients in the sums are positive except for B−10,0D−1 which
is symmetric.
If i ≥ 0, j < 0, the first term vanishes and the second term is

1

2
C−1,−1i δj,−1θ−1 =

1

2
θ−1θ−1δi,0δj,−1. (4.4.15)

If we swap (i, j)→ (j, i) we get

1

2
C0,0
j δi,0θ−1 =

1

2
θ−1θ−1δi,0δj,−1, (4.4.16)

which is the same.

4 For the BB-AC condition,∑
a

(
BaijB

l
ak + BaikBlja + Clai Ajak

)
, (4.4.17)
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for i ≥ 0, j < 0, the first term vanishes and we have

∑
a∈Z

(2a+ 1)

(2i+ 1)
δk≥0θa−i−k

(2l + 1)

(2j + 1)
δa<0θ1+j+a−l − δj,k,−1

(2l + 1)

(2i+ 1)
θl−iθ−1

= −θ−1δi,k,0
(2l + 1)

(2j + 1)
θj−l − δj,k,−1θ−1θl−i

(2l + 1)

(2j + 1)
.

(4.4.18)

If we swap (i, j)→ (j, i), we instead have

∑
a∈Z

(2a+ 1)

(2i+ 1)
δk<0θ1+j+k−a

(2l + 1)

(2j + 1)
δa≥0θl−i−a − δi,k,0

(2l + 1)

(2j + 1)
θj−lθ−1

= −δj,k,−1θ−1θl−i
(2l + 1)

(2j + 1)
− θ−1δi,k,0

(2l + 1)

(2j + 1)
θj−l,

(4.4.19)

hence it is symmetric. For i, j ≥ 0, it yields,

∑
a≥0

(2a+ 1)

(2i+ 1)
θa−i−j

(2l + 1)

(2a+ 1)
θl−a−kδk≥0

+
∑
a<0

(2a+ 1)

(2i+ 1)
θa−i−j

(2l + 1)

(2a+ 1)
θ1+a+k−lδk<0

+
∑
a≥0

(2a+ 1)

(2i+ 1)
θa−i−k

(2l + 1)

(2j + 1)
θl−j−aδk≥0 + δj,k,0

(2l + 1)

(2i+ 1)
θ1+l−iθ−1.

(4.4.20)

If k ≥ 0, this is the sum we did before (which works regardless if l ≥ 0 or l < 0).
If k < 0 the remaining sum only contributes with the symmetric term ∝ δi,j,0.

5 Finally let’s look at the BC condition,∑
a

(
BaijC

kl
a + Ckai Blja + Clai Bkja

)
. (4.4.21)

We see that if i, j ≥ 0, all first coefficients have a positive first index except
in B−10,0C

k,l
−1 in the first sum, which is symmetric. Hence the result from the

previous lemma applies with the same calculation.
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If i ≥ 0, j < 0 we have

=
∑
a∈Z

(2k + 1)(2a+ 1)

(2i+ 1)
θ1+k+a−i

(2l + 1)

(2j + 1)
θ1+j+a−lδa<0 + (k ↔ l). (4.4.22)

If we swap i↔ j we obtain

= −
∑
a∈Z

(2k + 1)(2a+ 1)

(2i+ 1)
θj−k−a

(2l + 1)

(2j + 1)
θl−i−aδa≥0 + (k ↔ l). (4.4.23)

These two sums are the same as can be seen after re-indexing a→ −a− 1.

With this proof, proceeding as in the previous sections, we know that the
resulting Airy structure Li with i ∈ Z annihilates the partition function Z, and
we also know that the specialization xi = ~

∫ z
α
dξi recovers the wave function

modulo ω0,1 and ω0,2 factors. The specialization naturally gives a function of a
single variable z globally defined on the Riemann sphere.

4.4.3 Specialization

Let us go ahead and specialize but now with the Airy structure from (4.4.11),
namely

Li = ~2∂i −
1

2
θ−1δi,0(x0)2 − 1

2
θ−1δi,−1(x−1)2 (4.4.24)

− δi≥0~2
∑
a≥0
b∈Z

(2b+ 1)

(2i+ 1)
θb−i−axa∂b (4.4.25)

− δi<0~2
∑
a<0
b∈Z

(2b+ 1)

(2i+ 1)
θ1+i+a−bxa∂b (4.4.26)

− δi≥0
~4

2

∑
a,b∈Z

(2a+ 1)(2b+ 1)

(2i+ 1)
θa+b+1−i∂a∂b (4.4.27)

− δi<0
~4

2

∑
a,b∈Z

(2a+ 1)(2b+ 1)

(2i+ 1)
(−θi−a−b)∂a∂b (4.4.28)

− ~2

8(2i+ 1)

[
θ0δi,0 − θ0δi,−1 + θ−1δi,1 − θ−1δi,−2

]
(4.4.29)
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Let us consider a slightly different definition of the evolution operator (4.1.10).
Instead let,

M = −1

~
∑
i∈Z

(2i+ 1)wiLi, (4.4.30)

with the short hand notation wi = xi+ 1
2
−xi− 1

2
. The reason for this choice is the

following: previously we were integrating with base point at ∞ which resulted
in no terms associated to the base point while specializing. However here ∞ is
already assumed to be a branch point, so we have to integrate with respect to
some α ∈ C instead. Upon specializing we will have

xi → −~(z−2i−1 − α−2i−1), (4.4.31)

wi → −~(1− z2)z−2i−2 + ~(1− α2)α−2i−2. (4.4.32)

The constant term in xi would be problematic when specializing, but by setting
α to be at ±1, which we can do with the remaining freedom in the Möbius
transformation, the constant term in wi vanishes and the specialization will
work out nicely. Furthermore we observed in practice that the extra factor
(1 − z2) was necessary to recover the expected quantum curve. Ultimately
it would be nice to get a better conceptual understanding of why (4.4.30) is
the right evolution operator to consider. After plugging in Li in the evolution
operator we have,

M = −
∑
i∈Z

~(2i+ 1)wi∂i +
~−1

2
θ−1w0(x0)2 − ~−1

2
θ−1w−1(x−1)2 (4.4.33)

+ ~
∑
i,a≥0
b∈Z

(2b+ 1)θb−i−awixa∂b (4.4.34)

+ ~
∑
i,a<0
b∈Z

(2b+ 1)θ1+i+a−bwixa∂b (4.4.35)

+
~3

2

∑
i≥0
a,b∈Z

(2a+ 1)(2b+ 1)θa+b+1−iwi∂a∂b (4.4.36)

+
~3

2

∑
i<0
a,b∈Z

(2a+ 1)(2b+ 1)(−θi−a−b)wi∂a∂b (4.4.37)

+
~
8

[
θ0w0 − θ0w−1 + θ−1w1 − θ−1w−2

]
. (4.4.38)
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Let us apply this operator to the monomials and specialize:

xµ1
· · ·xµn

S−→ (−1)n~n
n∏
γ=1

(z−2µγ−1 − α−2µγ−1). (4.4.39)

We start with the linear term.

Lemma 4.4.2.

S

[
−~
∑
i∈Z

(2i+ 1)wi∂i

]
= (1− z2)~

d

dz
. (4.4.40)

Proof.

S

[∑
i∈Z

(2i+ 1)wi∂i(xµ1
· · ·xµn)

]

= S

[
n∑
ρ=1

∑
i∈Z

(2i+ 1)wiδi,µρ
1

xµρ
(xµ1

· · ·xµn)

]
(4.4.41)

= S

[
n∑
ρ=1

(2µρ + 1)
wµρ
xµρ

(xµ1 · · ·xµn)

]
(4.4.42)

= (1− z2)
n∑
ρ=1

(2µρ + 1)
z2µρ−2

z−2µρ−1 − α−2µρ−1
S [xµ1

· · ·xµn ] (4.4.43)

= −(1− z2)
d

dz
S[xµ1

· · ·xµn ]. (4.4.44)

We also have the following lemma.
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Lemma 4.4.3. under θ1−k = −θk, the C terms specialize as

S

~32 ∑
i≥0
a,b∈Z

(2a+ 1)(2b+ 1)θa+b+1−iwi∂a∂b

~3

2

∑
i<0
a,b∈Z

(2a+ 1)(2b+ 1)(−θi−a−b)wi∂a∂b


= −~2

2
(1− z2)θ(z)

d2

dz2

+
~2

2
(1− z2)θ(z)

n∑
ρ=1

(2µρ + 1)(2µρ + 2)
z−2µρ−3

z−2µρ−1 − α−2µρ−1
.

(4.4.45)

Proof. Multiply by an overall −2~−2. Looking at the first term, after applying
the derivatives and specializing, we have

n∑
ρ,η=1
ρ 6=η

∑
i≥0
a,b∈Z

(2a+ 1)(2b+ 1)θ1+a+b−i
(1− z2)z−2i−2 δa,µρδb,µη

(z−2a−1 − α−2a−1)(z−2b−1 − α−2b−1)

(4.4.46)

=

n∑
ρ,η=1
ρ 6=η

µρ+µη+1∑
j≥−1

(2µρ + 1)(2µη + 1)
(1− z2)θjz

−2(µρ+µη−j)−4

(z−2µρ−1 − α−2µρ−1)(z−2µη−1 − α−2µη−1)
,

(4.4.47)

where in the second line we set j = 1 + a+ b− i so for fixed a, b, j will run from
−1 to 1+a+b. Now consider the second term. Using that −θi−a−b = θ1+a+b−i,
and with the same relabelling of summation index, it gives us the exact same
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thing but with j running from 2 + a+ b to ∞, so the sum becomes

= (1− z2)

×
n∑

ρ,η=1
ρ 6=η

∑
j≥−1

(2µρ + 1)(2µη + 1)
θjz
−2(µρ+µη−j)−4

(z−2µρ−1 − α−2µρ−1)(z−2µη−1 − α−2µη−1)

(4.4.48)

= (1− z2)θ(z)

×
n∑

ρ,η=1
ρ 6=η

(2µρ + 1)(2µη + 1)
z−2µρ−2

(z−2µρ−1 − α−2µρ−1)

z−2µη−2

(z−2µη−1 − α−2µη−1)
,

(4.4.49)

where we recognize a double derivative minus diagonal terms.

For the B terms we have the next lemma.

Lemma 4.4.4. Under θ1−k = −θk and θ(α) = 0 ,the B terms specialize as

S

~ ∑
i,a≥0
b∈Z

(2b+ 1)θb−i−awixa∂b + ~
∑
i,a<0
b∈Z

(2b+ 1)θ1+i+a−bwixa∂b


= −~2

2
(1− z2)θ(z)

n∑
ρ=1

(2µρ + 1)(2µρ + 2)
z−2µρ−3

z−2µρ−1 − α

+
~2

2
((1− z2)

(
θ′(z) + 2

α

α2 − z2
θ(z)

)
d

dz
.

(4.4.50)

Proof. Multiply by an overall −2~−2. Let us look at the first term,

2
n∑
ρ=1

∑
i,a≥0
b∈Z

(2b+ 1)θb−i−a(1− z2)
z−2i−2(z−2a−1 − α−2a−1)

(z−2b−1 − α−2b−1)
δb,µρ

= 2(1− z2)
n∑
ρ=1

µρ∑
j=−1

µρ−j∑
a=0

(2µρ + 1)θj
z−2(µρ−j−a)−2(z−2a−1 − α−2a−1)

(z−2µρ−1 − α−2µρ−1)
,

(4.4.51)

where we set j = b− i−a which runs from −1 to b, and for fixed b and j we have
a running from 0 to b− j. Upon evaluating the sum on a, we get two terms, one
sum independent on a that yields µρ− j + 1 identical terms, and one truncated
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geometric series
∑µρ−j
a=0 (z/α)2a = 1−(z/α)2(µρ−j+1)

1−(z/α)2 ,

= (1− z2)
n∑
ρ=1

µρ∑
j=−1

(2µρ + 1)(2µρ − 2j + 2)θjz
2j z−2µρ−3

(z−2µρ−1 − α−2µρ−1)

− 2α
1− z2

α2 − z2
n∑
ρ=1

µρ∑
j=−1

(2µρ + 1)θj
z−2(µρ−j)−2 − α−2(µρ−j)−2

(z−2µρ−1 − α−2µρ−1)
. (4.4.52)

We follow the same procedure with the second term, except now the sum on
i, a < 0 gives j = b − i − a running from b + 2 to ∞, and for fixed b and j,
a is going from b − j + 1 to −1. We work under θ1+i+a−b = −θb−i−a. The
constant sum yields j − µρ − 1 identical terms, and the geometric series here is∑−1
a=b−j+a(z/α)2a =

∑j−b−2
a=0 (z/α)−2a−2 = − 1−(z/α)2(b−j+1)

1−(z/α)2 , therefore equation
(4.4.52) becomes,

2(1− z2)

n∑
ρ=1

∞∑
j=µρ+2

−1∑
a=µρ−j+1

(2µρ + 1)θj
z−2(µρ−j−a)−2(z−2a−1 − α−2a−1)

(z−2µρ−1 − α−2µρ−1)

(4.4.53)

= (1− z2)

n∑
ρ=1

∞∑
j=µρ+2

(2µρ + 1)(2µρ − 2j + 2)θjz
2j z−2µρ−3

(z−2µρ−1 − α−2µρ−1)

− 2α
(1− z2)

α2 − z2
n∑
ρ=1

∞∑
j=µρ+2

(2µρ + 1)θj
z−2(µρ−j)−2 − α−2(µρ−j)−2

(z−2µρ−1 − α−2µρ−1)
. (4.4.54)

Notice how the missing j = µρ + 1 in the sum is identically zero, so the sums
nicely complete each other in

(1− z2)
n∑
ρ=1

∑
j≥−1

(2µρ + 1)(2µρ + 2)θjz
2j z−2µρ−3

(z−2µρ−1 − α−2µρ−1)

− (1− z2)
n∑
ρ=1

∑
j≥−1

(2µρ + 1)2jθjz
2j−1 z−2µρ−2

(z−2µρ−1 − α−2µρ−1)

− 2α
(1− z2)

(α2 − z2)

n∑
ρ=1

∑
j≥−1

(2µρ + 1)θj
z−2µρ+2j−2 −((((((

α−2µρ+2j−2

(z−2µρ−1 − α−2µρ−1)
(4.4.55)
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= (1− z2)ϑ(z)
n∑
ρ=1

(2µρ + 1)(2µρ + 2)
z−2µρ−3

(z−2µρ−1 − α−2µρ−1)

+ (1− z2)ϑ(z)′
d

dz
+ 2α

1− z2

α2 − z2
ϑ(z)

d

dz
. (4.4.56)

Where we again used the notation ϑ(z) = θ(z)dz. Here we assumed θ(α) = 0

while cancelling.

Hence we just showed that,

S [B term + C term]

= −~2

2
(1− z2)ϑ(z)

d2

dz2
− ~2

2
(1− z2)

(
ϑ′(z) + 2

α

α2 − z2
ϑ(z)

)
d

dz
. (4.4.57)

Continuing, the A term in (4.4.33) yields

S
[
~−1

2
θ−1w0(x0)2 − ~−1

2
θ−1w−1(x−1)2

]
= −~2

2
(1− z2)(θ−1z

−2(z−1 − α−1)2 + θ2(z − α)2).

(4.4.58)

Finally, the D term in (4.4.38), again under the assumption θ1−k = −θk and
θk = 0 , k > 2, gives

S

~
8

∑
i≥−1

θiw−i

 = −~2

8
(1− z2)

∑
i≥−1

θiz
2i−2 (4.4.59)

= −~2

8
(1− z2)z−2ϑ(z). (4.4.60)

The result is summarized in the next proposition.

Proposition 4.4.5. Let (x, y) be a spectral curve on CP 1 with two branch points
set at 0 and ∞ and the poles of x set at α = ±1. Furthermore assume that the
coefficients θk and θk of the local expansions of θ at 0 and∞ respectively, satisfy
to θ1−k = −θk and in particular θk = 0 for k > 2. Then the specialization of
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the evolution operator (4.4.30) is:

S [M ]

= (1− z2)

[
~
d

dz
− ~2

2
ϑ(z)

d2

dz2
− ~2

2

(
ϑ′(z) +

2

α2 − z2
ϑ(z)

)
d

dz

− ~2

2
θ−1z

−2(
1

z
− 1

α
)2 − ~2

2
θ2(z − α)2 − ~2

8
z−2ϑ(z)

]
,

(4.4.61)

where ϑ(z) = θ(z)dz.

4.4.4 Applications

Here are 3 spectral curves that can be treated with the above method and which
are found in [12]: the Gaussian curve which we talked about in the introduction,
the curve related to the enumeration of Grothendieck’s dessins d’enfants, which
is mentioned in table 2.1, and what we will call the generalized Catalan number
curve, which is related to ribbon graphs in [12], but differs to the latter by some
weights, as defined in [40]2.
We recall here the corresponding algebraic curves:

4y2 − x2 + 4 = 0, (Gaussian Curve)

y2 − xy + 1 = 0, (Gen. Catalan)

xy2 − xy + 1 = 0. (Dessins d’enfants)

We shall use the parametrizations:

x = 2
z2 + 1

z2 − 1
, y = 2

z

1− z2
, (Gaussian Curve)

x = 2
z2 + 1

z2 − 1
, y =

1 + z

1− z
, (Gen. Catalan)

x = 4
z2

z2 − 1
, y =

z − 1

2z
, (Dessins d’enfants)

These parametrizations all have the two branch points at 0 and ∞, as well as
the two poles of x at ±1. Therefore we have two choices for the value of α in
proposition 4.4.5, and two possible quantizations.

2In particular, the generalized Catalan numbers Cg,n are defined as Cg,n(µ1, . . . , µn) =

µ1 . . . µnT (g)
n (µ1, . . . , µn) where Tg,n is the generating function for connected fatgraphs de-

scribed in chapter 2.
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The corresponding θ(z) are globally defined, and read:

ϑ(z) = − 1

16z2
+

3

16
− 3

16
z2 +

1

16
z4 (Gaussian Curve)

ϑ(z) = − 1

16z2
+

3

16
− 3

16
z2 +

1

16
z4 (Gen. Catalan)

ϑ(z) = −1

4
+

1

2
z2 − 1

4
z4 (Dessins d’enfants)

Notice that they all satisfy to the truncation condition in proposition 4.4.5, that
θk = 0 for k > 2, and θ1−k = −θk. Moreover, for α = ±1, θ(α) = 0.

Computation of A

We now want to conjugate with the A factor as usual. Recall that A contains
the contribution of ω0,1 and ω0,2 in the wave-function (2.7.2),

A = exp

[
1

~

∫ z

α

ω0,1

]
exp

[
1

2

∫ z

α

∫ z

α

ω0,2 −
dx1dx2

(x1 − x2)2

]
, (4.4.62)

where α is a pole of x. Furthermore, after integration the ω0,2 contribution is
equal to,

exp

[
1

2

(
log

z1 − z2
x1 − x2

) ∣∣∣z
z1=α

∣∣∣z
z2=α

]
=

√
z1 − z2
x1 − x2

∣∣∣z1=z
z2=z

(√
z1 − z2
x1 − x2

∣∣∣z1=z
z2=α

)−2√
z1 − z2
x1 − x2

∣∣∣z1=α
z2=α

. (4.4.63)

Let us return to the problem of the normalization of this factor which we in-
troduced back the one branch point case 4.2.1. Recall that we can throw away
any infinite or zero constant factor, but we must keep the stuff that depends
on z. We are integrating a new function x(z) and the choices of poles are now
α = ±1. In all the cases above one can check,

√
z1 − z2
x1 − x2

∝

√
(z1 − 1) (z1 + 1) (z2 − 1) (z2 + 1)

z1 + z2
. (4.4.64)

Plugging this into the right hand side in (4.4.63) and substituting α = ±1, the
third factor yields 0 which we discard, and we are left with,

exp

[
1

2

(
log

z1 − z2
x1 − x2

) ∣∣∣z
z1=α

∣∣∣z
z2=α

]
∝
√
z1 − z2
x1 − x2

∣∣∣z1=z
z2=z

× 1

(z − α)
. (4.4.65)
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The ω0,1 factor is easily computed case by case.

Results

All we have to do is to plug the corresponding θ(z) in proposition 4.4.5, conjugate
with the A factor, and check whether it agrees with some quantization of P (x, y)

after substituting x̂ = x(z) and ŷ = ~
(
dx
dz

)−1 d
dz . This is the kind of thing that’s

easier done with a computer algebra system.
Gaussian curve. When α = 1, the output is

A(S[M ])A−1 =
1

64z3 (z4 − 2z2 + 1)

×
[
~2z

(
z12 − 6z10 + 15z8 − 20z6 + 15z4 − 6z2 + 1

) d2
dz2

+ ~2
(
3z12 − 14z10 + 25z8 − 20z6 + 5z4 + 2z2 − 1

) d
dz

− 32z3
(
~z4 − 2~z2 + ~ + 8z2

) ]
.

(4.4.66)

By comparison, we find that this is the same as

P̂ (x̂, ŷ) = 4ŷ2 − x̂2 + 4− 2~ (4.4.67)

but multiplied by an overall 1
4 . This is a quantization of the spectral curve

4y2 − x2 + 4 = 0 with a quantum correction term −2~.
When α = −1, the output of the lemma is

A(S[M ])A−1 =
1

64z3 (z4 − 2z2 + 1)

×
[
~2z

(
z12 − 6z10 + 15z8 − 20z6 + 15z4 − 6z2 + 1

) d2
dz2

+ ~2
(
3z12 − 14z10 + 25z8 − 20z6 + 5z4 + 2z2 − 1

) d
dz

− 32z3
(
−~z4 + 2~z2 − ~ + 8z2

) ]
(4.4.68)

Which corresponds to,

P̂ (x̂, ŷ) = 4ŷ2 − x̂2 + 4 + 2~ (4.4.69)

which is, again, multiplied by an overall 1
4 . This is again a quantization of

the spectral curve, this time with a quantum correction term +2~. This is in
agreement with the results in [12, 5].
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Generalized Catalan numbers. When α = 1, the output is

A(S[M ])A−1 =

(
~2z6

64
− ~2z4

16
+

3~2z2

32
− ~2

16
+

~2

64z2

)
d2

dz2

+

(
3~2z5

64
− ~2z3

8
+

3~2z
32
− ~2

64z3
+

~z3

4
− ~

4z

)
d

dz

+ 1− ~.

(4.4.70)

By comparison, we find that this is the same as

P̂ (x̂, ŷ) = ŷ2 − x̂ŷ + 1, (4.4.71)

This is the canonical quantization of the spectral curve y2 − xy + 1 = 0, with
the ordering xy → x̂ŷ.
When α = −1, the output of the lemma is

A(S[M ])A−1 =

(
~2z6

64
− ~2z4

16
+

3~2z2

32
− ~2

16
+

~2

64z2

)
d2

dz2

+

(
3~2z5

64
− ~2z3

8
+

3~2z
32
− ~2

64z3
+

~z3

4
− ~

4z

)
d

dz

+ 1,

(4.4.72)

which corresponds to,
P̂ (x̂, ŷ) = ŷ2 − ŷx̂+ 1, (4.4.73)

We now obtain a quantization of the same spectral curve but with a different
ordering xy → ŷx̂.

Dessins d’enfants. When α = 1, the output is

A(S[M ])A−1 = −
(
~2z6

16
− 3~2z4

16
+

3~2z2

16
− ~2

16

)
d2

dz2

−
(

3~2z5

16
− 7~2z3

16
+

5~2z
16
− ~2

16z
+

~z3

2
− ~z

2

)
d

dz

− 1.

(4.4.74)

By comparison, we find that this is the same as

P̂ (x̂, ŷ) = ŷx̂ŷ − x̂ŷ + 1 (4.4.75)

multiplied by an overall − sign, Which is a quantization of the spectral curve
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xy2 + xy + 1 = 0.
When α = −1, the output of the lemma is

A(S[M ])A−1 = −
(
~2z6

16
− 3~2z4

16
+

3~2z2

16
− ~2

16

)
d2

dz2

−
(

3~2z5

16
− 7~2z3

16
+

5~2z
16
− ~2

16z
+

~z3

2
− ~z

2

)
d

dz

− (1− ~),

(4.4.76)

which corresponds to,
P̂ (x̂, ŷ) = ŷx̂ŷ − ŷx̂+ 1, (4.4.77)

again multiplied by an overall − sign, a quantization of the spectral curve but
with a different ordering.

Comparison. All the cases above where already proved in [12]. The quantum
curves obtained agree with the known results for each choice of base point.

Remark 4.4.6. One notices that the curves for the generalized Catalan curve
and the Gaussian curve are in fact related by the transformation

yGauss(z) = yCat(z)−
1

2
x(z) (4.4.78)

We already commented on curves related in this way in section 4.2.4. In particu-
lar it is not a surprise that they have the same θ(z). Moreover, their quantization
are mutually related: if we take the quantum curve of the Gaussian curve for
the base point α = 1 and shift it with ŷ → ŷ − 1

2 x̂, we obtain:

4

(
ŷ − 1

2
x̂

)2

− x̂2 + 4 + 2~ = 4ŷ2 − 4x̂ŷ + 4 (4.4.79)

which is 4 times the canonical quantization associated to the base point α = 1

for the Catalan curve, ŷ − x̂ŷ + 1. The same correspondence holds for α = −1.
It is interesting to see that the perhaps unexpected quantum corrections ±2~
in the Gaussian curve are related to the fact that the Catalan curve has the
simpler looking quantization where we just substitute x→ x̂ and y → ŷ modulo
choice of ordering.
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