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Abstract

Modern residential buildings are complex cyber-physical systems housing en-

ergy systems with numerous sensors and actuators. In recent years, the falling

costs of battery storage and photovoltaic systems have substantially increased

the number of “solar-plus-battery” installations in these buildings. The solar-

plus-battery system enables homeowners to protect their homes during a power

outage and save on their electricity bills by stacking multiple value streams

that battery storage can provide (e.g., energy arbitrage, and maximizing the

self-use of solar power). However, controlling a solar-plus-battery system is

quite challenging, mainly due to the wide range of variability and uncertainty

associated with the building energy demand, electricity price, and meteoro-

logical factors affecting solar generation. Physical constraints, such as energy

and power ratings of the lithium-ion battery and solar micro-inverter, only

exacerbate this problem.

This thesis aims to investigate how to model the solar-plus-battery system

and the stochastic environment, and how to design learning-based control poli-

cies for operating batteries in the smart grid to cut the monthly electricity bills

for customers. We seek to develop control policies that are adaptive, optimal,

and suitable for real-world applications.

We model different components of the solar-plus-battery system based

on first principles, and the surrounding environment utilizing historical data

about building energy demand, electricity price, and weather condition in

Chapter 3. In particular, we develop and evaluate various supervised learning

ii



models for predicting the available solar energy and household demand over

the next 24 hours. We propose four learning-based methods for the optimal

control of the solar-plus-battery system, under various operating conditions in

Chapter 4, and study their effectiveness in terms of maximizing the revenue

of homeowners. The control methods developed and discussed in this thesis

are Model Predictive Control (MPC), Advantage Actor-Critic (A2C), Prox-

imal Policy Optimization (PPO), and Direct Learning-based Control (DLC)

using a neural network. The battery control is optimal in the sense that it

minimizes the monthly electricity bills for customers. We implement these

algorithms and integrate them into EnergyBoost, a Python program that

runs on a Raspberry Pi and controls the battery. This allows us to compare

their performance with specific baselines under various pricing schemes.

Experiments presented in Chapter 5 are based on real traces of solar irra-

diance and power consumption of 70 homes located in the same jurisdiction.

We investigate how these sophisticated control policies compare with simple

policies that are being used today to control battery storage systems. We

further study whether it makes sense economically to install a battery con-

trolled by the proposed algorithms in different jurisdictions with distinct tariff

structures.
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Chapter 1

Introduction

Solar power is the fastest-growing source of renewable energy worldwide. The

installed cost of solar power has fallen dramatically over the past decade due

to the continuing decline in photovoltaic (PV) module and inverter prices,

improved module efficiency, and lower labor cost. A recent study reports a

61% reduction in the residential PV system cost (from US$7.24 to US$2.8 per

Watt DC) from 2010 to 2017 [53]. This along with renewable energy subsidies

has encouraged homeowners to install their own rooftop PV systems or lease

their roofs to companies that install and operate PV systems. Despite the rise

in residential rooftop solar installations, homeowners do not currently utilize

their PV system to the fullest extent. This is because solar generation usually

peaks around noon and does not always coincide with the peak demand period

when the aggregate household demand is the highest. Hence, solar power could

exceed the local electricity consumption at times. The excess production must

be exported back to the grid at a predetermined rate — as in net metering

and feed-in-tariff programs1 — if it cannot be stored locally. This export rate

does not currently reflect the varying value of solar power, which depends on

the time and location of its production.

With the rapid decline in the price of battery storage [54]2, homeowners

increasingly consider installing batteries as a secure and lucrative investment

opportunity. Combined with rooftop PV, home battery storage offers even

1These programs are introduced in Section 5.1.2.
2The cost per kilowatt-hour of battery storage is expected to fall between 50% and 60%

by 2030 [33].
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greater cost-reduction potential. In particular, the surplus solar power can

be stored in the battery to serve the home load during peak demand periods.

Moreover, the battery can be charged during off-peak times when electricity

is cheaper and discharged during peak times when it is most expensive. This

highlights the need for a control strategy to maximize the benefits offered by

the solar-plus-battery system to the homeowners.

1.1 Strategies for Controlling a Home Battery

As the number of residential solar-plus-battery installations increases in the

smart grid, the need for optimal and adaptive control strategies for the bat-

tery grows. Figure 1.1 shows a solar-plus-battery system installed in a home

which is mainly supplied by the power distribution grid. This system consists

of a PV system, a solar micro-inverter, a lithium-ion battery, and a battery

inverter. The arrows indicate the direction of power flow between different

power generators, consumers, and prosumers which can consume and produce

power. We consider two types of generators, namely the rooftop solar energy

system and the grid which collectively represent various types of conventional

power plants that are connected to the grid. The lithium-ion battery is a pro-

sumer because it can inject and consume power depending on its operation

mode. The domestic load is the only consumer we have in this figure.

The energy management system, which is the core of the solar-plus-battery

system and is depicted in the middle of Figure 1.1, decides on the charge or

discharge power of the battery based on the available data (i.e., real-time and

historical measurements). The battery can be charged with renewable power

from the rooftop solar system or with conventional power from the grid. The

conventional power is purchased from the grid at a predetermined rate which

varies over time in many jurisdictions. The battery can also be discharged to

meet the demand of the domestic load or export energy back to the grid at

another rate, determined the solar export tariff. The unmet demand of the

domestic load (which cannot be currently met by solar generation and battery)

is always supplied from the grid.
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The control algorithm is executed by the energy management system to

determine the charge or discharge power of the battery. The objective we con-

sider in this work is to minimize the monthly electricity bill of the homeowner.

Given that the demand and supply must in balance at all times:

HouseholdDemand +BatteryCharge = Grid+ Solar +BatteryDischarge

and that the household demand and solar generation are either observed or

predicted, determining the charge or discharge power of the battery yields

the amount of power that must be imported from the grid. Thus, a separate

control variable is not needed for the amount of power purchased from the

grid.

Figure 1.1: Power producers, consumers, and prosumers in the context of a
solar-powered home equipped with a battery.

The optimal control of a battery energy storage system to reduce the home-

owner’s monthly electricity bill is an example of a constrained and continu-

ous control problem which can be solved using several techniques we study

and benchmark in this thesis. Rule-based control is the most commonly used

method for operating a battery in this context. The main benefit of this control
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strategy is that the controller can instantly respond to changes in the environ-

ment since updating the control variable does not require any sophisticated

computation [30]. Nevertheless, rule-based control is typically sub-optimal be-

cause it utilizes simple rules to decide on the battery operation without taking

forecasts into account. Another control strategy is to cast the problem into

a linear optimization problem considering the system constraints [42]. The

optimal control strategy is then found by solving this optimization problem

given the day-ahead forecasts. Supervised leaning techniques, such as neu-

ral networks [35], have been recently employed to learn the optimal control

of the system. To train such a model, the idea is to use the optimal con-

trol found offline by solving an optimization problem. Thus, this model maps

input variables (e.g., home load and solar generation) to the optimal control.

Besides these techniques, some attempts have been made to apply a Reinforce-

ment Leaning technique to solve this continuous control problem [23], but they

don’t consider the diversity of buildings and pricing schemes.

1.2 Challenges

The optimal control of battery charge and discharge operations (to reduce

the homeowners’ electricity bill) in the presence of stochastic demands and

supply sources is a complex and difficult problem due to several reasons. First,

solar generation and household demand are highly variable and difficult to

predict with high accuracy in advance. For example, the amount of solar

power that can be generated depends on several factors, including the cloud

cover, wind speed, temperature, time of the day, and season. On a cloudy day,

the PV output might peak at a time other than the solar noon. This variability

introduces noise to predictions which are used by a receding horizon control

technique like model predictive control. It could also make the environment

non-stationary, making it difficult for reinforcement learning techniques to

converge to the optimal policy. Myopic control of this system would also

lead to sub-optimal operation. For example, the battery may get full (or

depleted), thus it cannot be charged (or discharged) further in the future.
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Solar energy may not be available during the day (for example due to the

effect of passing clouds) and the electricity price may also change over time,

especially in locations with an hourly pricing scheme.

Second, the lithium-ion battery has restricted capacity, and charge and

discharge power rates. These physical constraints together with battery im-

perfections, such as self-discharge and charge/discharge efficiency, complicate

the optimal operation of the battery. While in an ideal situation, the total

household demand over the peak hours would be stored in the battery during

off-peak hours, in reality the total amount of energy a home consumes during

the peak hours can exceed the effective capacity of the battery3.

Third, the charge or discharge power of a lithium-ion battery is a con-

tinuous variable restricted by a set of time-varying constraints. The time-

varying constraints are introduced because the remaining capacity of the bat-

tery changes over time and the battery cannot be charged or discharged past

certain limits. Moreover, the difference between the buy and sell prices, and

battery imperfections make the problem non-convex and difficult to solve

through model predictive control or reinforcement learning. The model pre-

dictive controller has to solve a convex relaxation of this problem and the

reinforcement learning agent may not converge to the optimal policy in a

polynomial number of episodes. Tackling this problem is much harder than a

convex optimal control problem with a finite set of actions.

Fourth, with time-of-use pricing and feed-in tariffs, there are multiple value

streams the battery can provide, such as promoting solar self-consumption and

taking advantage of time-of-use pricing. These value streams must be traded

off against one another to maximize the homeowner’s revenue. Due to the

intrinsic difficulty of modelling various sources of uncertainty and the physical

constraints of batteries and solar inverters in a computationally efficient way,

most home batteries are currently controlled using simple rule-based control

mechanisms [30], which are myopic and suboptimal. Existing rule-based con-

3The price of a Tesla Powerwall is around US$3,000 for the 7kWh battery [75], while
an average home consumes about 24kWh per day in North America, about half of which is
consumed during off-peak times as discussed in Chapter 2.
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trol strategies often lead to suboptimal battery operation. At higher penetra-

tion levels, such mechanisms can contribute to distribution network problems

(e.g., voltage sag and swell, and reverse power flow) and might even increase

the peak demand. Furthermore, customers and system operators often have

competing objectives which cannot be satisfied at the same time using simple

control strategies.

1.3 Objectives & Contributions

In this thesis, we explore how to model the stochastic environment (i.e.,

weather, household demand, electricity price) and different components of the

system depicted in Figure 1.1 by incorporating their operating limits and im-

perfections. We specifically adopt physical models that closely approximate

the output of a solar inverter [29] and the state of charge (SoC) of a lithium-ion

battery [36], where the SoC is defined as the ratio of the energy stored in the

battery to its capacity. The first objective of this thesis is to study how the

operation of a solar-plus-battery system can be controlled using learning-based

methods (which may utilize the developed models) to effectively reduce the

homeowner’s electricity bill and investigate whether these methods outperform

simple rule-based control methods that have been widely used in practice. The

second objective of this thesis is to explore whether it makes sense economically

to install this system in different jurisdictions, assuming that it is controlled

by a specific algorithm, and whether the payback period of this investment

can be further reduced by improving the control method. The contributions

of this thesis are as follows:

• Developing and evaluating various models obtained by supervised learn-

ing for the environment, which are trained using the available historical

data, in addition to physics-based models for the solar-plus-battery sys-

tem. The environment model is used to predict the available solar energy

and household demand in the future.

• Formulating the optimal control of the lithium-ion battery’s charge and

discharge operations as a mixed integer linear program (MILP) in CVXPY,
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which is a Python-based convex optimization framework [14], and solv-

ing it using a solver (Gurobi [24]). This problem is solved assuming that

there is an oracle, providing perfect information about the future (i.e.,

solar productions, household demands, and tariffs). This optimal control

is used to evaluate the learning-based control algorithms.

• Developing four learning-based control algorithms for operating the bat-

tery in order to leverage the physics-based and data-driven models of

the system and optimally control the solar-plus-battery system to save

more than rule-based controllers in eletricity bills . These algorithms

are Model Predictive Control (MPC) with a time horizon of 24 hours

that leverages the physics-based and data-driven models of the system

and the environment, Advantage Actor-Critic (A2C) and Proximal Pol-

icy Optimization (PPO) which try to learn the optimal control policy

by interacting with the system in a simulated environment, and Direct

Learning-based Control (DLC) which uses a neural network to learn the

mapping from the state variables to the control action directly.

• Implementing the proposed learned-based controllers and the two base-

line (rule-based) controllers in Python, and evaluating them on a Rasp-

berry Pi in terms of their ability to reduce the average monthly elec-

tricity bill of homeowners. A software package, called EnergyBoost,

is created for this purpose and is available at https://github.com/

sustainable-computing/EnergyBoost. The evaluation is carried out

using real electricity demand of 70 homes in the city of Austin in Texas,

and weather data from a nearby site.

• Analyzing the financial feasibility of a suitably sized solar-plus-battery

system when it is controlled using one of the proposed algorithms in

different jurisdictions which are characterized by their pricing schemes.

This analysis involves calculating the return on investment (ROI) and

finding the break-even period.
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1.4 Outline of the Thesis

Chapter 2 surveys related work on different methods for controlling a home

battery and control applications that have been considered in the literature.

Chapter 3 introduces the system model (i.e., the lithium-ion battery and solar

micro-inverter) derived from first principles and the environment model (i.e.,

the household demand and solar irradiance) developed using historical data.

Several supervised learning models are proposed for modelling how the envi-

ronment changes over time. Chapter 4 formulates the optimal battery control

problem as a non-convex constrained optimization problem, explains how it

can be solved assuming perfect information about the future, and proposes

four learning-based and two baseline rule-based methods for controlling the

charge and discharge operations. Chapter 5 describes our simulation scenarios

and a set of metrics that are used for evaluation. Furthermore, it presents the

performance evaluation results for different system sizes and tariff structures,

and discusses the economic feasibility of installing solar-plus-battery systems

in different jurisdictions. Chapter 6 explains limitations of this work, summa-

rizes the contribution of this thesis, and provides avenues for future work.
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Chapter 2

Related Work

The optimal control of energy storage has been extensively studied in the past

in the context of a residential building, a small neighbourhood, or the power

distribution system using various optimization and control techniques. This

chapter summarizes related work on controlling energy storage systems. Sec-

tion 2.1 introduces the objectives that are considered in previous work for

operating a battery. Section 2.2 discusses different methods that have been

employed to control energy storage, including convex programming, model pre-

dictive control, dynamic programming, reinforcement leaning, and supervised

learning.

2.1 Control Objectives

Related work on controlling an energy storage system falls into different cat-

egories based on the control objective. These objectives are (a) reducing the

customer’s electricity bill, (b) supporting the power distribution grid or micro-

grid operation, (c) shaving or shifting the peak demand, and (d) shaping the

aggregate demand of a neighbourhood comprised of a small number of homes.

Note that the first objective is the one considered in this thesis.

2.1.1 Cutting the Electricity Bill

Cutting the electricity bill is the most common objective when it comes to con-

trolling an energy storage system installed in a home as it enables the home-

owner to pay back the initial investment. Most related work assumes perfect
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information about the future when formulating an optimization problem which

is solved several hours in advance to identify the strategy that maximizes the

revenue generated by distributed energy storage co-located with PV systems.

Babacan, et at. [5] develop a scheduling algorithm based on convex opti-

mization for charging or discharging distributed energy storage co-located with

solar PV systems. The optimization-based scheduling algorithm incentivizes

self-consumption of solar generation using a new supply charge tariff. The

proposed algorithm minimizes the customer energy costs while providing an-

cillary services to the grid. Comparing this algorithm against two algorithms

proposed in the literature reveals that the proposed algorithm can success-

fully restrict the reverse power flow without increasing the customer energy

costs. Ratnam, et at. [65] formulate a quadratic program to maximize the

daily operational savings that accrue to customers, while penalizing voltage

swings in the power grid. The authors have shown through simulations that

their algorithm penalizes reverse power flow and peak demands.

Kazhamiaka et al. [34] study the profitability of residential solar-plus-

storage systems in three different jurisdictions in Germany, Canada, and United

States, considering various factors such as solar radiation and typical residen-

tial load profiles, the system’s installed cost, electricity pricing schemes, and

government incentives. The authors set up an integer linear program to de-

termine the battery operation policy that maximizes the 20-year return on

investment and explore how the choice of a jurisdiction can affect profitability

of solar-plus-storage systems.

These papers do not take the uncertainty of renewable generation and elec-

tricity consumption into account, assuming perfect information and accurate

forecasts. We address this shortcoming by building data-driven models to

predict the future household demand and solar generation.

Leveraging Predictions

Residential solar-plus-battery systems can fully utilize the renewable energy

produced, while reducing the household electricity bill, especially for customers

who have surplus solar production that can be exported back to the grid.
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In this respect, incorporating the predicted solar generation and household

demand can further increase the cost saving.

Solar generation and household demand are stochastic processes, and mod-

elling and predicting them has been the focus of several studies. In [23],

TD(λ)-learning is employed to minimize the homeowner’s electricity bill by

taking an action that yields the best expected reward. The proposed rein-

forcement learning algorithm is deemed model-free as it does not need models

to accurately predict the household demand and solar generation. Even then

the system model is required to estimate the remaining energy in the energy

storage system. Despite the novelty of this work, the authors ignore several

important system constraints which could make the learned policy infeasible.

Another shortcoming of this work is that the obtained results are not compared

with other control strategies.

In another line of work [15], a reinforcement learning algorithm that takes

advantage of neural network function approximators is used to minimize the

amount of energy (and therefore the bill) received from the grid. This work

relies on the data obtained from only a single home and develops a finite-

horizon Markov decision process to determine an optimal control policy for

cost minimization. However, it does not consider various pricing schemes nor

performs return-on-investment (ROI) calculations. Furthermore, their system

does not include a PV system.

Reference [30] uses dynamic programming to determine the optimal battery

operation schedule over a finite horizon, and converts this optimal schedule to

simple rule-based controllers, each representing a particular value stream that

battery storage can offer. Despite the novelty of this approach, the authors do

not thoroughly evaluate the performance of rule-based controllers on a large

number of homes with different system sizes and pricing schemes. Stochastic

dynamic programming is also employed in [1] to optimize battery operation in

a receding horizon while taking the battery lifetime into account. This work

complements the work presented in this thesis in that it mainly focuses on

optimizing the lifetime of the battery under a specific tariff structure, and

does not compare its proposed controller with the optimal controllers.
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SmartCharge [42] predicts the next day energy usage and determines the

energy storage control strategy for minimizing the bill given the next day elec-

tricity prices. The problem is formulated as a linear optimization problem

using the next day price and energy consumption forecasts, and is solved only

once a day. In contrast, the model predictive controller we present in this

thesis works with predictions that are updated at the beginning of each time

interval of 24 hours. Moreover, their model neither includes a PV system nor

considers the possibility of selling stored energy to the grid. Reference [43] is an

extension of [42] which incorporates distributed solar generation and predicts

the available solar energy and demand. The authors consider different elec-

tricity pricing schemes for solar generation and energy storage to incentivize

distributed generation.

Reference [58] uses the day-ahead pricing scheme for scheduling appliances

to reduce the electricity bills. It considers energy storage, solar generation,

and electric vehicles. Reference [40] studies the optimal control of energy

storage when there is local renewable generation and it is possible to buy/sell

electricity from/to the grid. It develops a real-time control strategy based on

Lyapunov optimization to determine a time-averaged solution over a 24-hour

time horizon. But simulation results are insufficient to show the value of this

controller in real-world scenarios.

Most of these studies are limited in that they explore the problem given a

specific tariff structure. Comparing to these approaches, in this thesis we take

a large number of factors into account, such as battery imperfections, rated

capacity and charge/discharge powers of the battery, the solar inverter model,

and consider different system sizes and multiple tariff structures. Specifically,

we evaluate our method using both time-of-use, hourly, and tiered pricing

schemes to determine the cost saving potential in each case.

2.1.2 Increasing the Battery Lifespan

A variety of operating factors could impact the battery lifespan, i.e., degrad-

ing its usable capacity over time. However, battery degradation is often not

considered when solving the optimal control problem. This is because bat-
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tery degradation is a highly nonlinear process governed by several factors, and

developing a closed-form cost function suitable for convex optimization is a

challenging task.

A battery cycle life estimation method would be beneficial for various appli-

cations. In [79], the cycle life of lithium-ion batteries is estimated using a com-

bination of infrared thermography and supervised learning techniques, includ-

ing artificial neural networks (ANNs) and support vector machines (SVMs).

It is found that the ANN can estimate the current cycle life with less than

10% error in less than 10 minutes.

Reference [37] defines a degradation cost function for optimal control of a

battery energy storage system. The battery degradation is parameterized by

the Depth of Discharge(DOD), which is the fraction of the capacity which has

been removed from the fully charged battery, the charge rate, and the state of

charge and is incorporated into the cost function. This model is suitable for

arbitrary battery load patterns and captures nonlinearities of the battery, mak-

ing it an appropriate cost function for mixed-integer quadratic programming

or model predictive control. Reference [49] presents a battery life prediction

methodology to optimally control a battery. The proposed methodology can

incorporate a multitude of dynamically changing cycling parameters consid-

ering the following factors: charging and discharging currents, minimum and

maximum cycling limits, and the operating temperature. The authors develop

four independent models which are customized using experimental battery

data. Finally they implement the methodology in different applications to

maximizing the benefits offered by lithium-ion batteries.

More dynamic models are introduced in [1]. This work proposes a stochas-

tic dynamic programming approach based on the rainflow counting algorithm,

which extracts closed cycles of battery operation, to approximate the bat-

tery degradation and optimally operate an energy storage system over some

time horizon. The proposed method utilizes energy storage to deliver maximal

lifetime value, taking into account the operational impacts and several other

factors. The authors find that an average residential customer operating the

battery using the proposed algorithm could increase the lifetime of the battery
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by 160%. Shi, et at. [69] compute battery degradation as a complex material

fatigue process based on different stress cycles. They prove that the rainflow

cycle-based cost is convex. This convexity result allows for the battery degra-

dation model to be incorporated in different optimization problems. Moreover,

the authors provide a subgradient algorithm minimizing a non-differentiable

convex function to study the effectiveness of the proposed degradation model

in maximizing the battery’s operating cost and its lifetime.

The above lines of work mainly focus on operating battery energy storage

systems so as to maximize the customer’s profit and the battery lifetime at the

same time. But they do not study the possibility of selling the stored energy

back to the grid and do not incorporate accurate models of the system and

the environment in the design of optimal controllers.

2.1.3 Supporting the Microgrid

Battery storage can offer many other benefits apart from cutting the elasticity

bill of customers in the smart grid. Several attempts have been made to study

energy sharing in a microgrid [32], [48], [76], [80]. Owing to the success of

solar-plus-battery systems, many studies focus on how to operate a battery

so that the home can disconnect from the grid and be supplied by the solar

power generated locally at all times. Reference [62] provides an assessment of

solar self-consumption with respect to solar PV and battery requirements in

different regions and provides a database of household profiles. It also develops

a simulation tool to predict self-consumption and optimally size such systems.

2.1.4 Peak Shaving

There is a growing body of work on demand side management strategies to

incentivize residential customers to consume less energy during peak hours.

This includes price-based methods [47], [63], and direct load control strategies

for operating energy storage systems [44], plug-in electric vehicles [4], and

thermostatically controlled loads [41].

In [31], the authors design a load control system called Smart Home Energy

Management System (SHEMS) to achieve dynamic price response considering
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both the interests of residential customers and the grid. They utilize sensor

data to predict activities which are then used to determine a strategy for

alleviating the peak demand. In [57] the optimal battery storage capacity for

peak load shaving is investigated.

2.1.5 Shaping the Demand of a Neighbourhood

Reference [19] studies load scheduling in a local neighborhood by formulat-

ing the problem as a distributed constraint optimization problem (DCOP). It

schedules the time of use of specific appliances from multiple smart homes so

as to minimize the energy use overlaps, thereby reducing the aggregate de-

mand during peak hours. The main limitation of this approach is that the

demand can only be shifted based on the number of elastic (i.e., controlled)

loads which can be rescheduled without having any impact on their operation

or user comfort. Our approach achieves the same goal of cutting the electricity

bill by controlling the battery charge and discharge operations.

2.2 Control Methods

In this section we introduce the methods that have been used to control solar-

plus-battery systems In particular, we focus on linear programming, model

predictive control, dynamic programming, reinforcement learning and deep

learning, and explain how each method can be applied to solve a control prob-

lem.

2.2.1 Linear Programming

Convex optimization is a type of mathematical optimization which concerns

minimizing (maximizing) a convex (concave) function over a convex set. Lin-

ear programming is a special case of convex optimization where the objective

function is linear and the constraints are of linear equality and inequality
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forms [66]. A standard linear program can be expressed as follows

min
x

c>x (2.1)

subject to a>x ≤ b, ∀i ∈ {1, ...,m} (2.2)

Here x ∈ Rn is the vector of decision variables, and c, a1, · · · , am ∈ Rn and

b1, · · · , bm ∈ R are constant parameters. A linear program can be solved quite

efficiently as it is a convex problem. Specifically, there are many polynomial-

time algorithms and solvers for tackling linear programming problems, e.g.,

simplex, ellipsoid [22] and interior point method [2].

Given the vast number of algorithms and solvers that exist for linear pro-

gramming, the key challenge is to cast an optimization problem into a linear

program. This involves identifying the decision variables of the problem, writ-

ing the objective function in the linear form, and defining the constraints.

Decision variables are the variables that will determine the objective, which

could be the electricity bill of a customer as in [42]. Constraints are restrict-

ing the decision variables. Often times multiple transformations have to be

performed to ensure that the problem is linear and convex.

Linear programming is widely used and appears in many problem areas,

such as telecommunications networks [55], cellular networks [18] and power

systems [61]. Controlling a solar-plus-battery system can also be formulated

as a linear program assuming perfect information about the future [42].

Integer linear programming is similar to linear programming but some or

all decision variables are constrained to take on integer values. This makes the

optimization problem non-convex. If only some of the decision variables are

integer, the problem is called a mixed integer program (MIP), and when the

objective function and constraints are also linear, it is called a mixed-integer

linear program (MILP). Since MILP is a non-convex problem, we often solve

a convex relaxation of it using the same algorithms and solvers that are built

for linear programming. We note that the integer variables can be used to

represent binary decisions, such as turning a system on or off.
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2.2.2 Model Predictive Control

Model predictive control (MPC) is a method to solve a multivariable con-

strained control problem over a finite horizon [78]. It determines an optimal

control action for the current time slot while taking future time slots into ac-

count. To this end, an optimization problem is solved repeatedly by predicting

how the control decisions change the state variables using a dynamic model

of the system. The first optimal control action is implemented and the same

optimization problem is then solved for the next time slot.

When the system model is linear and the cost function is convex, MPC

solves a convex optimization problem at every time slot. This optimization

problem can be a linear program if the cost function is linear and constraints

are affine.

MPC has become used extensively to control processes that appear in var-

ious applications, including the energy management. For example, MPC is

used to control battery operations to maximize the power generated in a wind

microgrid system [25].

2.2.3 Dynamic Programming

Dynamic programming is another polynomial-time method for solving opti-

mization problems using recursion. It divides the problem into overlapping

subproblems, and the results of these subproblems are combined to solve the

original problem. Since subproblems are encountered multiple times, their so-

lution is cached so that they do not need to be solved again. Reference [6]

introduces dynamic programming and explains how it can be used for optimal

control.

There are two approaches to understand and solve a dynamic programming

problem. The first approach is called the top-down approach as it starts from

the original problem and recursively solves smaller cases of the original prob-

lem until we have the results needed to solve the original problem. Another

approach is called the bottom-up approach, which solves the problem in the

opposite way: it solves the basic cases of the problem first and combines them

17



to solve bigger cases until the original problem is solved.

Dynamic programming could be used to solve a problem if it has two key

properties. First, the optimal solution of the original problem can be deter-

mined by finding the optimal solution of its subproblems. Second, the number

of unique subproblems is polynomial rather than exponential. A variant of

dynamic programming known as stochastic dynamic programming is used in

previous work to control battery storage under uncertainty. For example, it is

used in [1] to operate a battery considering its degradation cost and in [30] to

find the optimal control of a battery.

2.2.4 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning which involves

learning through trial-and-error interaction with the environment based on a

‘reward’ signal which is determined based on the observations from the en-

vironment [71]. The decision maker is called agent and everything else it

interacts with is called environment. An action of the agent takes it from the

current state to the next state, and it receives a reward from the environment

that corresponds to this action. The goal of the agent is to find a policy that

maximizes its expected total reward over some time horizon.

A reinforcement learning problem can be formulated as a Markov Decision

Process (MDP). The set of all states of the environment is denoted by S and

the set of all action at one state is denoted by A. The transition probability,

denoted by p(St+1 = s′|St = s, At = a), is the probability of going from state

s ∈ S to state s′ ∈ S after taking action a ∈ A. This transition results

in a reward denoted by r(s, a, s′). The agent takes an action At at state St,

which takes it to state St+1, and gains the reward Rt+1. A policy, π, is what

the agent learns; it is a function that maps states to actions. We denote the

expected discounted return of a policy as the sum of discounted rewards the

agent receives over time, that is:

Gt =
T∑

k=t+1

γk−t−1Rk,
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where 0 ≤ γ ≤ 1 is the discount rate, determining the present value of future

rewards. The agent becomes more farsighted as γ approaches 1. To evaluate

π, we define a value function which is the expected sum of discounted rewards

of that policy computed by the agent to determine which actions are best to

take in which states:

Vπ(s) = Eπ[Gt | St = s].

The optimal policy is the one with the highest expected sum of discounted

rewards:

V ∗(s) = max
π

Vπ(s).

When the number of states or actions is large, evaluating all state-action pairs

becomes computationally expensive. To address this, the value function is

estimated for each state based on a limited number of experiments in the

environment. One way to learn the value function is using the temporal differ-

ence (TD) method, which updates the value function based on the difference

between temporally successive predictions of the states. The simplest TD

method, TD(0) updates the value function as described below:

V t+1(s) = V t(s) + α
[
r + γV t(s

′
)− V t(s)

]
,

when the agent takes action a which causes a transition from state s to state

s
′

with reward r. In the above equation, α is the learning rate and γ is the

discount rate. One of the most popular TD methods is Q-learning, which is an

off-policy temporal difference learning algorithm. The agent learns the optimal

policy using an absolute greedy policy, and behaves using other policies such as

ε-greedy policy. Because the update policy is different from the behavior policy,

Q-learning is called off-policy. The action at each state is chosen based on the

state action value, and the value will be updated after a new reward is obtained.

However, this algorithm has several shortcomings, especially when the state

space or the action space is continuous. In particular, the value of each state-

action pair must to be recorded in a table, which will be scanned later to look

up or update a state-action value. It is impossible to store the values of all

state-action pairs when the state space or the action space is continuous. When
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the state space and action space are continuous, continuous state spaces may

be discretized into a set of binary features, using a coarse coding method, or

into a set of continuous-valued features by radial basis functions [71], and the

value function is approximated as a linear combination of these features. Non-

linear function approximation, for example, using artificial neural networks,

may also be employed. In [20] Q-learning has been extended to deal with

continuous states and continuous actions using a neural network coupled with

a novel interpolator. Unfortunately continuous Q-learning also exhibits poor

performance in a benchmark continuous control problem [39]. In general, a

continuous action space may be discretized and dealt with using temporal

difference methods such as Q-learning. It can also be dealt with directly

using a policy gradient method to determine the policy. However, the problem

with the policy gradient method is the noisy gradient and high variance, since

the policy parameters are updated through random samples, introducing high

variability in log probabilities (the logarithm of the policy distribution) and

cumulative reward values. The high variability leads to noisy gradient and

directs policy distribution to a non-optimal direction, thereby contributing to

instability and slow convergence.

Actor-critic methods can address this problem. They are TD methods

that represent the policy independent of the value function. As shown in

Figure 2.1, a policy is included to choose the action. The policy is the actor

part the algorithm; it selects an action based on the policy. Once the action

is chosen, the critic part gets the TD-error, which evaluates the improvement

compared to the average the action taken at that state, and updates the value

function and the policy accordingly.

Since the policy is already stored, choosing the best action does not require

going through the whole set of state-action values. This makes the actor-critic

method efficient, especially when dealing with problems with continuous state

and action spaces. In Chapter 4 we introduce two families of actor-critic

methods, namely basic Actor critic (A2C) and Proximal Policy Optimization

(PPO), and describe how these methods are applied to solve our continuous

control problem.

20



Environment

Critic

Actor

Reward

Action

State

Value

Figure 2.1: Interaction between the critic, the actor, and the environment [71]

Reinforcement learning can be applied to the problem of controlling a solar-

plus-battery system. It is a well-suited approach because it can handle the

uncertainty of the environment and can represent the customer’s electricity

bill as a cumulative reward. For instance, Reference [23] uses a reinforcement

learning algorithm to control the battery in the power system.

2.2.5 Supervised Learning

Deep learning is a popular supervised learning technique based on an artificial

neural network (ANN) which has several hidden layers. Reference [11] defines

a neural network as “a computing system made up of a number of simple,

highly interconnected processing elements, which process information by their

dynamic state response to external inputs”. Figure 2.2 shows the structure

of an example neural network. It is characterized with three kinds of layers,

i.e., input layer, hidden layer, and output layer, where each layer is made up

of interconnected nodes. The input layer takes in the input and sends it to

hidden layers through weighted connections. The hidden layers are then con-
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Figure 2.2: Structure of neural networks

nected to the output layer through weighted connections which produces the

output. Training an ANN involves learning the weight of theses connections.

There are several ways to learn these weights, one is called the Backpropaga-

tion rule [27] which helps to refine connections within networks, and modify

the connection weights between inputs and outputs with layers of neurons. In

a Backpropagation, when the network is given a new input, the connection

weights are randomly initialized. It then gets the output by a forward activa-

tion, and the errors are used to readjust the weight. Backpropagatin utilizes a

gradient descent towards a global minimum which is the solution with lowest

possible error.

Training neural networks requires a large number of individual training

runs to determine the best solution with the lowest error. The training rate is

the rate of convergence to the global minimum with the training runs. Once

a neural network is trained, it can be used as a model to perform prediction.

Thanks to the predictive power of deep neural network models, they have been

used in numerous applications, such as pattern recognition, playing game, and

nonlinear system identification [7]. They have also been applied to various

control problems, e.g., autonomous driving and process control. Reference [35]

uses neural networks to learn an optimal control strategy of a battery energy

storage system.
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Chapter 3

Modelling

In this chapter, we discuss how we build physics-based models of the system

and data-driven models of the stochastic environment. Section 3.1 presents

the overall system architecture according to [60]. Section 3.2 introduces the

models built for the lithium-ion battery and solar micro-inverter. Section 3.3

develops several supervised learning methods describing how the environment

changes over time.

We note that time-dependent variables are denoted with a subscript t

throughout this chapter.

3.1 System Architecture

Figure 3.1 depicts a grid-connected home with a rooftop PV system, a solar

micro-inverter, a lithium-ion battery, and an energy management unit (EMU)

which controls battery charge and discharge operations and monitors its state

of charge (SoC). The rooftop PV system and battery are connected behind the

home’s standard meter which measures the amount of energy consumed (or

exported to the grid). The micro-inverter converts the DC output of the PV

system to AC. The EMU also comprises an integrated internal inverter per-

forming AC/DC conversion for the battery. The home may have an additional

meter installed in front of the PV system measuring the amount of renewable

energy generated by the system. This meter is necessary for participating in

some renewable energy programs.

The system runs on a smart home gateway, i.e., a personal computer or a
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Figure 3.1: A grid-connected home with behind-the-meter rooftop PV and
battery storage controlled by a system called EnergyBoost. Solid arrow
represent the direction of power flow and dashed arrows represent the direction
of data/control flow.

Raspberry Pi, which is responsible for home automation and runs optimiza-

tion solvers and Python code. Additionally, the gateway logs generation and

consumption data, gathers current and historical electricity and solar export

prices from the utility’s website, and computes the policy for the home bat-

tery by running one of the optimal control algorithms proposed in this work.

Real-time solar generation and electricity consumption data can be pulled in

directly from the meters or measured at the distribution panel through an

energy monitor, e.g., an eGauge sub-metering device [17]. In the beginning of

each time slot, the home gateway communicates a feasible control point for

the time slot to the EMU system which adjusts the battery charge/discharge

power in the best interest of the homeowner, i.e., reducing their electricity

bill. We do not study the optimal control of the solar micro-inverter in this

paper and assume that it simply runs the Maximum Power Point Tracking

(MPPT) algorithm which extracts the maximum power from a PV module

under different conditions.
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3.2 System Models

3.2.1 Battery Model

We adopt the battery model introduced in [36] (Model 1∗), which is a tractable

and accurate linear approximation of the physical model of a lithium-ion bat-

tery1. Let Bcap be the capacity of the battery, Et = SoCt×Bcap be the energy

content of the battery, ACt be the battery charge power at time t, ADt be the

battery discharge power at time t, and T u be the unit of time, i.e., the length

of each time slot. According to this model, the energy content of the battery

evolves as follows:

Et+1 = Et(1− ηp leak) + ∆Et − T uηc leak, (3.1)

∆Et =

{
T uACtη

c, if charging,
−TuADt

ηd
, if discharging,

(3.2)

where ηc, ηd, ηp leak, ηc leak denote respectively the charge efficiency, the dis-

charge efficiency, the leakage rate per time unit as a fraction of the SoC, and

the constant leakage rate.

We also denote the charge and discharge power ratings (i.e., maximum rates

possible) of the battery by αc, αd (αc, αd > 0), and its minimum and maximum

capacity by Emin and Emax ≤ Bcap, respectively. The battery operations are

subject to the following constraints:

0 ≤ACt ≤ αc, (3.3)

0 ≤ADt ≤ αd, (3.4)

Emin ≤Et ≤ Emax. (3.5)

The first two constraints ensure that the battery operation is within the max-

imum charge and discharge rates supported by the battery, while the third

constraint ensures that the battery energy content cannot be outside a certain

range, preventing overflow and underflow. We assume Emin and Emax are linear

functions of the current, i.e., |At|
V nom where V nom is the nominal charge/discharge

1The control methods proposed in this work can be extended to lead-acid batteries or
other energy storage technologies by substituting (3.1) and (3.2) with an accurate model of
the corresponding technology.
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voltage and At is the battery charge or discharge power at t. The parameters

of the battery are set according to the lithium-ion battery specifications as

discussed in Section 5.1.1.

3.2.2 Solar Inverter Model

We use the PVLib Toolbox [29] to translate Global Horizontal Irradiance

(GHI) readings to the inverter’s AC output power on a particular day of the

year in Austin, Texas. The Sandia PV array performance model (SAPM) is

used to generate the PV module’s direct current (DC) I-V curve. The model

is built in [38] and is widely used in the PV industry. This model assumes the

temperature of the photovoltaic cells is 25°. We can compute the DC power by

applying Ohm’s law to the I-V curve. To convert DC I-V curve to AC power,

we adopt Sandia’s grid-connected PV inverter model [8].

The power output of a given PV system with a specific size in Austin at

time t, denoted by Gt, can be calculated as a function of global horizontal

irradiance GHIt, outdoor temperature Tempt, and time of day ToDt:

Gt = F I
(
GHIt, T empt, T oDt

)
, (3.6)

where F I is a known, non-linear function defined in PVLib. Other parameters

of the PV module are specified in Section 5.1.1.

3.3 Environment Models

Considering the stochasticity of the environment due to intermittent weather

conditions and fluctuations in household demand, the solar-plus-battery sys-

tem relies on predictions of the future home loads and solar productions to

determine a sequence of actions over some time horizon. These actions should

result in the lowest electricity bill. Since we do not have the knowledge of

the future at a decision-making epoch, we must develop models to predict the

future so that we can find the optimal control. These models are different

from the battery and the solar micro-inverter models which were closed-form,

physics-based expressions for the evolution of home electricity consumption
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and solar generation. We use historical data about electricity consumption of

a home to develop supervised learning models for predicting its future elec-

tricity consumption. Similarly, we use historical data about the output of a

PV inverter to predict its future output power.

In [42] the authors use different models to predict the future, including

Exponentially Weighted Moving Averages (EWMA), Linear Regression (LR),

and Support Vector Machines (SVMs) with various kernel functions, which

take data as input and transform it into the required form including Linear,

Polynomial, and Radial Basis Function (RBF) kernels. In addition to these

models, we develop other supervised learning and time-series models in the

following.

3.3.1 Data Sets

We use four public data sets to train and validate the models that are nec-

essary for developing learning-based battery control strategies. These data

sets contain real world traces of household electricity consumption, meteo-

rological factors (i.e., temperature, wind speed, cloud , and incoming solar

radiation), time-of-use (TOU) rates, and hourly electricity prices. All data

are collected hourly between Jan. 1 2016 and Dec. 31, 2017 (2 years) and

are cleaned properly to address data quality issues by removing outliers and

imputing the missing values. We train supervised learning models of electric-

ity consumption and solar generation using data from 2016 and utilize these

models to control the battery storage using real electricity consumption and

solar production data, and electricity prices in 2017. The electricity consump-

tion, outdoor temperature, and cloud data are pulled in from the Pecan Street

Dataport [59]. The overcast index is a real number between 0 and 1, where

0 and 1 indicate no cloud cover and full cloud cover, respectively. Although

this repository contains a large number of homes located across the United

States, the temperature and overcast index are only available from Colorado,

California, and Texas. Thus, in this paper we use data from Austin, Texas

which comprises the largest number of monitored homes. Precisely, we utilize

electricity consumption of 70 individual homes reported in 1-hour intervals
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Table 3.1: Time-of-use prices ($/kWh)

TOU price 7am-11am 11am-5pm 5pm-7pm 7pm-7am

Nov. to Apr. 0.101 0.072 0.101 0.05
May to Oct. 0.072 0.101 0.072 0.05

(15-minute consumption data is also available for some homes).

The second data set contains Global Horizontal Irradiance (GHI) data

from the NREL measurement and instrumentation data center [52]. GHI is

the total amount of solar radiation received by a surface horizontal to the

ground. We obtained irradiance measurements from the Solar Radiation Lab

at the University of Texas Pan American (UTPA), the nearest station to the

selected homes. The third data set contains TOU electricity prices. Since the

TOU pricing scheme is not implemented for residential customers in Austin,

we used TOU rates from Ontario [56] and converted them to US dollars using

0.77 for the exchange rate as shown in Table 3.1. The on-peak period is

11am-5pm in summer, and 7am-11am and 5pm-7pm in winter. The mid-peak

period is 11am-5pm in winter, and 7am-11am and 5pm-7pm in summer. The

off-peak period is 7pm-7am on weekdays and all day on weekends. The TOU

rates change every six months in Ontario. The last data set contains hourly

electricity prices implemented in several jurisdictions in the United States.

These prices are obtained for the same time period using an API [12]. We

used prices that correspond to the selected time window.

3.3.2 Data Prepossessing

Multiple data quality problems exist in smart metering and meteorological

data which must be detected and addressed before they can be used to train

supervised learning models. In particular, we found several instances of miss-

ing data, erroneous data, and timestamp issues. For example, the NREL data

set contains large negative values for GHI measurement in some time windows.

We identified these data points using a threshold and treated them similar to

the missing data. We found that they most frequently fell on the month of

November, and that on certain days there was no reading from some homes
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or meters reported zero throughout the day. We did not include these data

points since the electricity consumption of a home is expected to be non-zero

even if it is unoccupied (the baseload demand is usually higher than zero).

A total of 70 homes remained at the end of the preprocessing step and were

used in our study.After preprocessing, all data sets are merged based on their

timestamps and a boolean field is added to each record to distinguish between

weekend and weekday.

3.3.3 Feature Selection

Previous work has shown that electricity consumption (L) and solar generation

(G) are autoregressive time series, meaning that their values at a given time

slot depends on their previous time slot values [3]. Furthermore, there are

several exogenous variables that may affect electricity consumption and solar

generation of a home. These variables are outdoor temperature (Temp), wind

speed (WS), overcast index (O), hour of day (HoD), day of week (DoW ), and

month (MoY ). We favor parsimonious models as they are easier to interpret

and have lower variance. To build such models, we must select a subset of

these variables comprising the most discriminating ones from the original set

of variables. To this end, we use ANOVA F-score [77] to rank the features

that can be used for predicting the home load and PV output. We then select

the features with highest F-values (larger than a specific threshold) to develop

supervised learning models. These features are Lt−1, Lt−2, Lt−23, Lt−24, HoDt,

MoYt, DoWt and Tempt for predicting Lt, and Gt−1, Gt−24, Gt−168, Ot, WSt,

HoDt, MoYt, and Tempt for predicting Gt.

3.3.4 Overview of Supervised Learning Models

We develop and compare a large suite of supervised learning methods to predict

future values of household demand and solar generation. These models include

Ridge Regression, Lasso, Bayesian Ridge (BR), Lasso with Least Angle Re-

gression (LassoLars), Linear Regression (LR), Random Forest regression (RF),

Decision Tree Regression (DTR), MultiLayer Perceptron network (MLP), and

Gaussian Process Regression (GPR). Most of these models have been used
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previously to predict the household demand [42]. We describe these models in

the following.

Linear Regression

Linear regression is used to find the linear relationship between a target and

one or more predictors [50]. It fits a straight line to the relationship between

dependent variables, denoted by y, and one or more independent variables,

denoted by X:

y = α +Xβ + e

where α is an intercept term, β is the slope of the line (or hyperplane), and

e is the error term. Once α and β are determined, this equation can be used

to predict the target variable given the predictors. The best-fit line can be

obtained by the method of Least Squares, which minimizes the sum of the

squares of the vertical deviations of each data point from the line. Despite its

simplicity, linear regression yields accurate results when it is used to model

the relationship between the household demand and external variables, such

as temperature [42].

Ridge Regression

Ridge regression is a regression method that is used when independent vari-

ables are highly linearly correlated [28]. In the presence of such multicollinear-

ity, the least squares estimates may have high variance. Ridge regression ad-

dresses this problem by adding bias, i.e., it decreases the variance through a

shrinkage parameter λ:

β̂ = arg min
β∈RP

‖y −Xβ‖22 + λ ‖β‖22

The first term in the above equation is the least squares term, while the second

term is a regularization term which shrinks the value of coefficients, β, towards

zero.
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Lasso

Lasso stands for the Least Absolute Shrinkage and Selection Operator. This

method enforces sparsity by adding `1 norm of the regression coefficients to

least squares [74]:

β̂ = arg min
β∈RP

‖y −Xβ‖22 + λ ‖β‖1

The first term in the above equation is the loss and the second term is the

penalty. The lasso penalty will force some of the coefficients to be zero. This

means that some variables are removed from the model, hence the sparsity.

Unlike ridge regression, LASSO uses absolute values in the penalty function

instead of the squares of the penalty function. This may cause some of the

parameters to become exactly zero. The larger the penalty is, the more it

will be shrunk to zero. This way Lasso selects some features from the set of

correlated features. In general, if some variables are highly correlated, Lasso

picks only one of them and shrinks the others to zero.

Lasso LARS

Least-angle regression (LARS) is also an algorithm for fitting linear regres-

sion models to high-dimensional data [81]. When variables are correlated, the

LARS algorithm decides on which variables to include and calculates their

coefficients.

It is a particular method to fit a Lasso model and works better than solving

a quadratic programming problem [16]. The solution of LARS consists of a

curve including the `1 norm of each parameter vector instead of a vector result.

Bayesian Linear Regression

In Bayesian linear regression, we use probability distributions rather than point

estimates to formulate the linear regression. Hence, the response Y is not

estimated as a single value but is sampled from a probability distribution.

The Bayesian linear regression model with the response sampled from a normal

distribution is:

y ∼ N(βTX, σ2I)
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The output, y is generated from a normal distribution characterized by a mean

βTX and a variance σ2. The basic idea of Bayesian linear regression is to find

the distribution of the parameters instead of one single best value. Both the

response and model parameters are generated by a distribution:

P (β|y,X) =
P (y|β,X)× P (β|X)

P (y|X)

This distribution P (β|y,X) given by inputs and outputs is called the posterior

distribution. It is equal to the likelihood of the data, P (β|y,X), multiplied

by the prior probability of the parameters and divided by a normalization

constant (Bayes Theorem).

Decision Tree Regression

Decision tree models are another type of models which are commonly used for

classification and regression. Reference [9] introduces different tree regression

methods. Decision tree models offer several advantages over other supervised

learning models. First, they are easy to be understood, implemented, and

visualized. They run fast on large data sets. Second, they can handle both

numerical data and categorical data. This makes them suitable for our problem

because we deal with numerical data, e.g., temperature and humidity, and

categorical data, e.g., if it is cloudy or not and it is a weekend or a weekday.

A decision tree model can suffer from overfitting especially when it is deep.

It means that it gives highly accurate output on training data, but low accurate

output on test data.

Random Forest

To address the overfitting problem of the decision tree model, a random for-

est uses a collection of decision trees whose results are aggregated into one

final result to reduce the variance [9]. These decision trees can be trained on

different slices of data or using a random subset of features. For example, in

each tree we can utilize five random features. If we use many trees in a forest,

all the features will be considered eventually. A random forest is more robust
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than a single decision tree, and limits the error due to bias and the error due

to variance.

Multilayer Perceptron

Multilayer perceptron is a class of feed-forword artificial neural networks [26].

Perceptron is a feed-forward neuron that performs binary classification using

a weight and a bias:

y = f(W>x+ b)

where W is the weight vector, x is the input vector which could be the output

of the previous layer, b is the bias, and f is the activation function describing

the (nonlinear) input-output relation. Popular activation functions are sig-

moid, rectifier linear unit, hyperbolic tangent, etc. A multilayer perception

consists of multiple linear layers of such neurons, and approximates an arbi-

trary function that maps an input x to an output y. The neurons in one layer

are connected to all the neurons in the previous layer and possess a unique set

of weights. The layers can be the input layer, the output layer, and hidden lay-

ers. We feed data into the input linear and take the output from output layer.

The model becomes more complex as the number of hidden layers increases.

We use two hidden layers, 50 units (neurons) each, in our implementation.

To train the network, an optimization problem is solved to find W that

minimizes the loss function by matching the target (actual) value and predicted

value. Specifically, W is updated in the direction defined by the gradient of the

loss function, until convergence. A learning rate is used to adjust the amount

by which the algorithm changes W in every iteration.

Gaussian Process Regression

Gaussian process regression is a nonparametric, kernel-based probabilistic

model which takes a Bayesian approach to regression [64]. It calculates the

probability distribution of all functions that fit the data instead of calculating

the distribution of parameters of a specific function.

Gaussian process regression assumes a Gaussian process prior distribution,

which can be specified using a mean function, m(x), and a covariance function

33



k(x, x′)

f(x) ∼ GP (m(x), k(x, x′))

A Gaussian process is like an infinite-dimensional multivariate Gaussian dis-

tribution, where any collection of the labels of the data set are joint Gaus-

sian distributed. With this Gaussian process prior, we can incorporate prior

knowledge about the space of functions through the selection of the mean and

covariance functions.

3.3.5 Choosing the Best Model

We perform 10-fold cross validation, which is a re-sampling procedure used to

evaluate machine learning models on a limited data sample, to tune parameters

of each model described in the previous section to predict the home electric-

ity consumption and solar generation in the next time slot. The 10 results

expressed by normalized Root-Mean-Square Error (nRMSE), which measures

the differences between predicted values predicted and the observed values ob-

served. To compute nRMSE, we normalize RMSE values with respect to the

difference between the maximum and the minimum of the target value. are

then averaged to produce a single result. We compare these results and pick

the best parameter setting.

To build a model for the home electricity consumption and a model for the

solar generation, we use the most discriminating features identified previously.

We feed these futures into each model and predict the electricity consumption

and solar production of the next hour. Figure 3.2 depicts the prediction error

of different models over the next 24 hours, averaged over all days and homes

in our data set. Decision tree regression turns out to be the most accurate

model for both prediction tasks. Thus, we incorporate this model in model

predictive control to obtain future household demands and solar productions.

We use the same set of features used to predict the next value of home

electricity consumption and solar generation to predict their values multiple

hours in the future. Since some of these features are not observed at the

time we run these models, we have to use the predicted values of previous
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Figure 3.2: nRMSE of the next 24-hour home load and PV output predictions
using different models. Error bars represent one standard error.

Figure 3.3: nRMSE of PV output and home load predictions over the next 24
hours averaged over all homes.

time slots as features. This causes the prediction error to accumulate over

time. Figure 3.3 depicts the nRMSE of home electricity consumption and PV
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output over one day. Note that the nRMSE values shown for every hour are

averaged over 70 homes and 365 days. Taking the average of these nRMSE

values over 24 hours of the day, we get 15.0% and 14.8% error for home load

and PV output, respectively. In general, prediction errors are smaller when

the demand and solar production are less variable; for example, the PV output

can be accurately predicted after sunset and before sunrise next day as the PV

output is zero during this time. Furthermore, we observe that the prediction

error of home electricity consumption is accumulated over time since we use

predicted values instead of observed values as features when we predict the

demand multiple hours in advance.
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Chapter 4

Optimal Control Methods

In this chapter, we introduce different methods for solving the optimal control

problem. We cast the optimal control of the battery as a discrete-time opti-

mization problem, and present model-based and model-free control schemes

which can solve this problem. Each control decision represents the amount of

energy charged into or discharged from the battery in a given time slot. Once

the battery operation is fixed, the amount of conventional power that must be

bought from the grid or the amount of solar power that must be exported to

the grid can be easily determined. We consider 1 hour time slots because it

provides a good trade-off between complexity and optimality of the controller.

We also discuss how the optimal control changes as a result of taking control

actions at a faster time scale.

The optimal control methods described in this chapter are implemented in

Python and are released together with physics-based and data-driven models

of the system and the environment as open-source software, called Energy-

Boost.

4.1 Optimization Problem

The objective of the battery controller is to minimize the homeowner’s annual

electricity bill by regulating the charge or discharge power of their battery

within certain limits imposed by the battery and its charger. The electricity

bill is the net payment to the grid, i.e., the difference between the electricity

cost and the revenue generated by selling solar power to the grid. Thus, we
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can simply formulate it as an optimization problem over a finite time horizon

(for example one year), where the objective function is the total electricity bill

including the battery degradation over this horizon. Since homeowners can sell

their excess solar power to the grid, the bill would be the difference between

the price paid for buying electricity from the grid and the credit received for

selling electricity to the grid. Hence, the bill can be negative if they receive

more credits than what they pay. We define this optimization problem below.

4.1.1 Constraints

As discussed in Section 3.2.1, battery operations are subject to a set of con-

straints. In particular, the battery cannot be charged (or discharged) past

a certain limit to prevent overflow (or underflow), or at a rate higher than

the maximum supported charge (or discharge) power. In this section we dis-

cuss three additional constraints. First, the battery cannot be simultaneously

charged and discharged at any given point in time. Hence, if the charge rate,

ACt, is positive in a given time slot, the discharge rate, ADt, must be zero

in that time slot, and vice-versa. Second, electricity cannot be bought from

and sold to the grid at the same time. Hence, at most one of the two vari-

ables W s
t ,W

b
t ≥ 0, which respectively denote the power sold to the grid and

the power bought from the grid, can be positive at any point in time. Third,

the power exported to the grid, W s
t , cannot surpass the instantaneous solar

production, Gt. Note that the last two constraints are introduced to prevent

homeowners from creating a “money pump” under the feed-in-tariff program

introduced in Section 5.1.2, i.e., selling the conventional power which is bought

from the grid in the current or a previous time slot back to the grid at a higher

price!1

Finally, just as other power systems, we have to ensure that supply and

demand are in balance at all times:

W b
t −W s

t = Lt + ACt − ADt −Gt, (4.1)

1This can be enforced in different ways (e.g., using a separate generation meter) which
are outside the scope of this work.
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where Lt is the household demand and Gt is the solar generation. Observe that

in each time slot W s is upper bounded by the total power generated by the

solar panel, and W b is upper bounded by the sum of the household demand

and the maximum feasible charge power of the battery.

4.1.2 Mixed Integer Linear Program

Let the solar export tariff be Cs
t and the residential electricity tariff be Cb

t at

time t (Cs
t , C

b
t ≥ 0). The objective function can be written as:

J =

T+t0∑
t=t0

W p
t (4.2)

where t0 is the initial time slot, T is the length of the optimization horizon,

and

W p
t =

{
W b
t C

b
t if buying from grid,

−W s
t C

s
t if selling to grid,

(4.3)

Equation (4.2) can be reformulated by introducing a binary variable M1
t . This

binary variable is 0 when conventional power is bought from the grid to meet

the local demand, and is 1 when excess solar power is sold to the grid. Similarly,

since the battery is either in the charge or discharge mode at each time slot, we

use another binary variable M2
t to represent the battery’s operating mode in

that interval. Note that we have to separate the optimization variables for the

charge and discharge rates because they affect the battery SoC in different ways

(refer to Equation (3.2)). Putting it all together, the optimization problem
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can be formulated as:

minimize
W b,W s,AC,AD,M1,M2

J =

T+t0∑
t=t0

W b
t C

b
t −W s

t C
s
t (4.4a)

s.t. Et+1=Et(1−ηp leak)+∆Et−T uηc leak (4.4b)

∆Et = T u(ACtη
c − ADt/η

d) (4.4c)

0 ≤ W s
t ≤ GtM

1
t (4.4d)

0 ≤ W b
t ≤ (Lt + αc)(1−M1

t ) (4.4e)

W b
t −W s

t = Lt + ACt − ADt −Gt (4.4f)

0 ≤ ADt ≤ αdM2
t (4.4g)

0 ≤ ACt ≤ αc(1−M2
t ) (4.4h)

Emin ≤ Et+1 ≤ Emax (4.4i)

M1
t ,M

2
t ∈ {0, 1} (4.4j)

The first two equality constraints express how the battery’s SoC evolves over

time as described in Section 3.2.1. The third and fourth constraints limit the

maximum amount of power that can be possibly sold to or bought from the

grid, respectively, and ensure that power cannot be bought from and sold to

the grid simultaneously. The fifth constraint is the power balance equation,

and constraints 4.4g 4.4h ensure that battery charge and discharge rates are

bounded and the battery cannot be charged and discharged simultaneously.

Constraint 4.4i defines the upper and lower bounds on the state of the charge

of the battery, where the upper bound is the battery’s nominal capacity. Note

that all these constraints are convex except for the last one which defines the

binary decision variables.

Given the binary variables and linearity of the objective function, Problem

(4.4) is a mixed-integer linear program (MILP), which can be solved using the

branch-and-bound algorithm, after relaxing the integrality constraints. The

solution of the relaxed problem gives a lower bound on the solution of the

original problem2 The solution to this problem determines, in each interval,

2Based on our experiments for various parameter settings, the relaxation gap to the true
optimal solution is always less than 0.1% for homes in our data set. We defer the study of
finding a better relaxation to future work.
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the strategy to control battery operations and how much power it must sell to

or buy from the grid. We note that this problem cannot be solved in practice,

unless we assume the knowledge of Gt, Lt for every t in the planning horizon.

MILP with Oracle (Optimal)

To obtain a lower bound on the electricity bill, we implement a hypotheti-

cal controller which takes advantage of an oracle to obtain future household

demands and solar productions. we formulate the optimization problem as-

suming that future values for home load and solar generation are available.

We use actual data instead of the predicted data for one year period and solve

the optimization problem to find the best policy for battery operation in this

single snapshot. Indeed, this consideration contributes to obtaining the best

battery charge/discharge rates leading to the minimum energy received from

the grid during the whole year of 2017. The solution to this problem makes

a baseline to evaluate the results of the problem in the presence of predictive

models. After plugging in these predictions, this controller solves the MILP

problem presented in Section 4.1 over one year to find the minimum bill that

can be possibly achieved. We compare the bills of other controllers with this

bill to understand how far they are from the optimal.

4.2 Model Predictive Controller

In this section, we propose a model predictive controller with a horizon of 24

hours to minimize the electricity bill. The proposed control algorithm utilizes

a learned model of the system to predict the future control outputs given the

current control inputs and system states. An optimal control over the speci-

fied time horizon is then determined by solving Problem (4.4) based on these

predictions and is only implemented in the current time slot. This process

repeats in every time slot with a model that is updated in an online fashion

as described in Algorithm 1, below. The Model Predictive Control algorithm

solves an optimization problem similar to the one described in Section 4.1 by

using the predicted values of Gt and Lt in the optimization horizon. To pre-
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dict Gt and Lt during the optimization horizon, we utilize data-driven models

described in Section 3.3:

Lt=FL(Lt−1, Lt−2, Lt−23, Lt−24, HoDt,MoYt,DoWt, T empt), (4.5)

Gt=FG(Gt−1, Gt−24, Gt−168, T empt, Ot,WSt, HoDt,MoYt). (4.6)

where L,HoD,MoY ,DoW ,Temp,G,O,WS are homeload, home of a day, day

of week, external temperature, solar generation,cloud observation, and wind

speed respectively.

Remark. MPC uses the predicted values of Lt and Gt to calculate the optimal

decision variables, referred to as ACt, ADt,W
s

t ,W
b

t ,M
1

t ,M
2

t . We argue that

ACt and ADt are always feasible for the next time slot as they satisfy all

the constraints despite the prediction errors of Lt and Gt. This is simply

because the battery constraints for the next time slot do not depend on these

predictions. That said, the error of predicting Lt and Gt affects the actual

amount of electricity which must be bought from or sold to the grid at t. Hence,

before we can obtain the bill, W s
t ,W

b
t must be recalculated based on the observed

values of Lt and Gt, denoted by L̃t and G̃t, as follows:

W b
t = max(L̃t + ACt − ADt − G̃t, 0), (4.7)

W s
t = max(ADt + G̃t − L̃t − ACt, 0). (4.8)

Here W t∗

b and W t∗
s are the actual amount of electricity bought from or sold to

the grid at t, respectively. It should be noted that due to strict bounds of ACt

and ADt, they cannot be back calculated, otherwise, they may be recalculated

out of their feasibility region.

4.3 Sample-Based Predictive Controller

Reinforcement learning provides an alternative approach to solving the optimal

control problem. In this framework a decision making agent takes a sequence

of actions (i.e., charge and discharge operations) in a number of episodes in

a stochastic environment and learns from the outcome of these actions, i.e.,
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Algorithm 1: Model Predictive Control

Input: s0, α
c, αd, ηc, ηd, ηp leak, ηc leak

learn data-driven models to predict future values of L,G;
while True do

solve a relaxation of Optimal Control Problem (4.4);

apply ACt or ADt in [t, t+ 1) and update Et+1;

observe L̃t & G̃t and recalculate W s
t & W b

t from (4.7-4.8);
t← t+ 1;

rewards returned by the environment, to maximize the expected cumulative

reward [71]. In our problem, the system we built namely EnergyBoost is the

agent, each action is the battery charge/discharge power in a time slot, and the

cumulative reward is equivalent to negative of the homeowner’s electricity bill.

Unlike MPC which relies on a model describing dynamics of the environment,

the RL agent uses a policy to interact with the environment and learns from

these interactions to gradually converge to an optimal policy which determines

a sequence of actions maximizing the expected cumulative reward. We denote

the state space by S, the action space by A, and the reward function by

r : S ×A −→ R. Given the state s ∈ S, the action a ∈ A is selected according

to a policy π; this action causes a transition to the next state s′ ∈ S and earns

the agent a reward of r(s, a).

To model our optimal control problem, we must first define the state, the

policy function, and the reward function. We define the agent’s state at t,

which includes the agent’s observations of the environment, as a quadruple

consisting of these features:

s = (Lt, Gt, SoCt, ttindex), (4.9)

where tindex compactly represents all time-related features, i.e., time of the

day, day of the week, and month. Note that the first three state variables are

continuous-valued features and the action (i.e., the battery charge/discharge

power) is also continuous-valued. Thus, we need to adopt an appropriate

feature representation to incorporate low dimensional features [45].

The stochastic policy, denoted by πθ : S −→ P (A), is defined as the condi-
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tional probability density at a,

πθ(a|s) ∼ G(µθ(s, a), σ2
θ(s, a)) (4.10)

where G is the Gaussian distribution, P (A) is the set of probabilities on A,

µθ(s, a) = x>a θµ, σθ(s, a) = log(exp(x>a θσ) + 1), and parameters θµ, θσ ∈ Rn.

xa is a low dimensional feature of state and action which will be defined in the

following section.

4.3.1 Feature Representation

Appropriate representation of states in terms of features is needed for the im-

plementation of a reinforcement learning algorithm. State representation in-

volves characterizing raw data with particular features in low dimension. The

incorporation of informative low dimensional features are very helpful in rep-

resentation of continuous action space in RL problems. The learned features

evolve over time and capture aspects of states that are useful in learning in the

environment, leading to improved performance and speedup in policy learning

algorithms.Indeed, by using feature representation instead of raw data, rein-

forcement learning can incorporate informative low dimensional features which

can provide the ability to learn controllers directly from observations too [45].

Although the states can be sorted in various forms to represent the state

space, radial basis functions (RBF) provide a natural generalization to contin-

uous features [71]. With a large data set of n transitions (si, ai, s
′
i, and ri),

the implementation of RBF for d randomly selected transitions at each time

step results in the feature vectors

x(s) = [k(s, s1), . . . , k(s, sd)] (4.11a)

xa(s) = [k(s, s1)k(a, a1), . . . , k(s, sd)k(a, ad)] (4.11b)

where k(s, si) = exp(−‖s−si‖
2σ2
i

) and σi is the feature width. Now that a reduced

dimension of data is obtained through the RBF representation, we can produce

smooth and differentiable approximate functions.

44



4.3.2 Linear Function Approximation

In value-based reinforcement learning algorithms, the value function is rep-

resented using a parameterized function approximator with weight vectors

w,u ∈ Rd, especially when the state space is large. The approximation of true

value function under policy π given the weights w and u can be represented

as

V̂ (x; w) ≈ V π(x) (4.12)

Q̂(xa; u) ≈ Qπ(xa) (4.13)

where x and xa are the feature representation of state and action spaces as

defined in (4.11a) and (4.11b), respectively. The value function may be approx-

imated with linear or nonlinear function approximators. Nonlinear function

approximators such as neural networks may cause instability or even diver-

gence due to the correlation in the sequence of observations or the correlation

among the action values (Q(xa)) and their target values (r + γmax Q(x′a)),

where x′a is the successor of the feature xa [45]. Another problem with non-

linear function approximators is that it is difficult to identify the features.

Consequently, linear approximation of the value function would be a more re-

liable alternative to converge to the true value function. We define the linear

approximate value functions as

V̂ (x; w) = wTx =
d∑
i=1

wixi (4.14)

Q̂(xa; u) = uTxa =
d∑
i=1

uixai (4.15)

where the value function can be updated in each step when the new data is

stored. In order to find the best linear approximation, the weights must be

updated at each step in such a way that the overall error between the true and

approximated value functions following the policy π is minimized. This error

can be defined as a quadratic function of parameters w and u as follows:

J(w) = Eπ[(V π(x)−wTx)2] (4.16)

J(u) = Eπ[(Qπ(xa)− uTxa)
2] (4.17)
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where the optimal weight vector can be obtained using the solution of the least

square algorithm.

4.3.3 Simulator

A reinforcement learning agent can learn by interacting with the environment

in a number of episodes. The more the agent interacts with the environment,

the better the resulting policy could be. In our control problem, interacting

with the real environment in the form of charging and discharging the battery

at arbitrary rates could be detrimental for the battery lifetime and may even

cause overheating of the integrated inverter. To overcome this obstacle, we

develop a simulator which stores the current state of the real environment,

implements the action selected by the agent, updates the state using physics-

based models, and returns a reward in lieu of the real environment, thereby

enabling the agent to explore without worrying about the consequence of its

actions. For our implementation, an episode is defined by a time interval

of a certain length and once we reach the predefined maximum number of

interactions per episode, the simulator resets the state to the current state of

the system and starts over for the next episode.

Building the simulator requires updating the state every time an action

is taken. Among the elements of the state quadruple (4.9), SoCt is the only

element which depends on the action and can be updated based on Eq.(3.1-

3.2). tindext should be simply incremented every time a new action is simulated.

The other two elements of the state, i.e., Lt and Gt, must be simulated. To this

end, we exploit electricity consumption and solar generation data in 2016 to

simulate electricity consumption and solar generation on a given day in 2017.

Specifically, the simulator takes a random sample from a day in the same

month in 2016 and perturbs it with noise to increase exploration for policy

evaluation. We consider a white noise with the standard deviation equal to

5% of the average of the value we want to predict. The Lt and Gt samples are

then used to update the state. This process is repeated for every episode until

the maximum number of episodes, denoted by τ , is reached.
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4.3.4 Actor-Critic Algorithm

Policy gradient algorithms are promising approaches to solving reinforcement

learning problems with a continuous action space [70]. The basic idea is to

improve the performance of a policy by updating its parameter vector θ in the

direction of the performance gradient ∇θJ(πθ), which is given by [72]:

∇θJ(πθ) =
∑
a∈A
∇θπθ(a|φ(s)) Qπ(φ(s, a))

= Ea∼πθ [∇θlog πθ(a|φ(s)) Qπ(φ(s, a))]
(4.18)

We just need to learn the action-value function Qπ(φ(s, a)). We leverage a

linear approximation of the action-value function

Qπ(φ(s, a); u) = u>φ(s, a) (4.19)

and update its parameter vector u every time we update the policy. This

gives rise to the actor-critic algorithm [13] which is a policy gradient method.

The actor part of the algorithm uses gradient ascent algorithm to update

θ. The critic part uses an appropriate policy evaluation algorithm such as

temporal-difference (TD) learning [71] to update u. Algorithm 2 describes

the basic actor-critic (A2C) algorithm [46], which is an online, model-free

controller. This algorithm can effectively deal with problems with continuous

and constrained action spaces. It estimates the advantage of the state-action

pair, which is defined as

Aπ(φ(s, a); w) = Qπ(φ(s, a);wu)− V π(φ(s);wv) (4.20)

instead of the action-value function to reduce the variance. TD error is an

approximation of the advantage function. The parameter vector of the value

function, w, is then updated using the TD error. We use an episodic version

of the basic actor-critic algorithm and set the episode length to one day. We

also set τ = 500, γ = 1, λ = 0.001, and β = 0.1.

4.3.5 Proximal Policy Optimization Algorithm

The Actor-Critic algorithm presented in the previous section is empirically

finicky, and has poor data efficiency and robustness in many real-world con-

trol problems, including the control problem studied in this thesis. Thus, we
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Algorithm 2: One-step Actor-Critic

Input: a differentiable policy parameterization π (a|s, θ)
Input: a differentiable state-value function parameterization v̂(s,w)
for each episode do

Initialize S (first state of episode)
I ← 1
for each time step do

A ∼ π (·|S, θ)
Take action A, observe S ′, R
δ ← R+ γv̂(S ′,w)− v̂(S,w) (if S ′ is terminal, then v̂(S ′,w)

.
= 0)

w← w + αwδOv̂(S,w)
θ ← θ + αθIδOlnπ(A|S, θ)
I ← γI
S ← S ′

attempt to control battery operations using another policy gradient algorithm,

namely Proximal Policy Optimization (PPO) [68], which has shown superior

performance in several continuous control problems. This algorithm alter-

nates between sampling data through interaction with the environment and

optimizing a surrogate objective function with clipped probability ratios.

There are several approaches with neural network function approximators

that have been proposed for reinforcement learning. However, Q-learning with

function approximation [71] fails on continuous control benchmarks such as

those in OpenAI Gym [10], and the vanilla policy gradient method, which is

a generic Policy Gradient algorithm with a baseline, has poor data efficiency

and robustness. Trust region policy optimization (TRPO) [67] maximizes an

objective function subject to a constraint on the size of the policy update.

However the constraint in TRPO is relatively complicated and is not compat-

ible with noisy architecture and parameter sharing, meaning that a certain

parameter does not perform well across different problems.

PPO draws upon the idea of TRPO but is relatively simple and easy to

implement. It could scale to large models and parallel implementation, and

offers improved data efficiency and robustness in problems with continuous

action space. Algorithm 3 shows different steps of PPO. Ât is an estimator of

the advantage function at time step t and rt(θ) denotes the probability ratio
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Figure 4.1: Episode reward versus the number of episodes. 10 runs of PPO
are shown using different colors.

of policy:

rt(θ) =
πθ(at|st)
πθold(at|st)

(4.21)

where r(θold) = 1. Similar to TRPO, PPO maximizes an objective function

L(θ) = Êt
[
πθ(at|st)
πθold(at|st)

Ât

]
. (4.22)

Without a constraint, the maximization of L(θ) would lead to a large policy

update, hence the objective function needs to be modified (clipped) to prevent

rt(θ) from moving away from 1. Note that SGD stands for Stochastic Gradient

Descent in Algorithm 3. Instead of performing computations on the whole

dataset, it only computes on a small subset or a random selection of data

samples. Adam also stands for Adaptive Moment Estimation, an algorithm

for gradient-based optimization of stochastic objective functions [51].

Figure 4.1 illustrates how the episode reward changes as we increase the

number of episodes. We find that it is relatively easier for the agent to converge

to the optimal control policy using PPO compared to A2C. Considering 10

rounds of simulation each with 10,000 episodes, PPO exhibits a converging

pattern most of times, whereas A2C does not converge in most cases.
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Algorithm 3: PPO with Clipped Objective

Input: initial policy parameters θ0, clipping threshed ε
for k = 0,1,2,... do

Collect a set of partial trajectories Dk on policy πk = π(θk)
Estimate advantage Âπkt using any advantage estimation algorithm
Compute the policy update

θk+1 = argmax
θ
LCLIPθk

(θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIPθk
(θ) = Eτ∼πk

[
T∑
t=0

[min(rt(θ)Â
πk
t , clip(rt(θ), 1− ε, 1 + ε)Âπkt ]

]

4.4 Direct Learning-based Controller (DLC)

This controller utilizes a multi-layer perceptron model to directly learn the re-

lationship between a set of features and the optimal control without solving an

optimization problem in an online fashion. The features are Gt−1, Lt−1, Ot−1,

WSt−1, Tempt−1, HoDt−1, MoYt−1, and DoWt−1, and the output is ACt−ADt

which can be split into ACt and ADt based on its sign.

Figure 4.2 shows the structure of the neural network used by DLC. The

neural network model consists of one hidden layer with 100 neurons and ReLU

activation function. It is trained using the stochastic gradient descent algo-

rithm, given the features and the corresponding optimal policy obtained in the

previous year (i.e., the result of solving the MILP problem with an oracle in

2016). The output of the neural network model is projected onto the feasible

set before it is applied to control the battery.

4.5 Rule-based Controllers

We now explain two rule-based controllers which we use as baselines.
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Figure 4.2: Structure of DLC neural networks

4.5.1 Performing Tariff Optimization (RBC-T)

This rule-based controller simply adjusts the battery charge/discharge power

based on the retail electricity prices. In particular, it charges the battery at the

maximum charge rate when electricity is cheaper (during the off-peak period)

such that it gets full just before the electricity price starts to increase (this is

to minimize the energy loss due to self-discharge). Similarly, it discharges the

battery at the maximum feasible rate when electricity is most expensive (in

the beginning of the on-peak period) until the battery is depleted. During the

mid-peak period, it neither charges nor discharges the battery.

This strategy does not perform sophisticated forecasting of intermittent

solar generation or battery and inverter modelling; thus, it can be easily im-

plemented on a microcontroller. Nevertheless, this controller is myopic and

only benefits from energy arbitrage without utilizing the battery to support

self-use of solar power. Due to its sheer simplicity, it is widely adopted today

for operating grid-tied batteries, but it does not guarantee optimal operation

of the battery, especially when the solar export tariff is high.

4.5.2 Maximizing Self-use of Solar Energy (RBC-S)

Another rule-based controller is the one that maximizes self-consumption of

the generated solar power irrespective of electricity prices and export tariffs.
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Specifically, this controller uses all solar energy to meet the household demand,

storing the excess solar energy in the battery. When solar generation falls

short of the household demand, the battery discharges at the maximum rate,

unless it is either fully discharged or the household demand is smaller than its

maximum discharge rate.
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Chapter 5

Experimental Results

In this chapter, we evaluate the proposed learning-based control methods and

discuss the results. Section 5.1 describes our performance evaluation method-

ology and introduces different simulation scenarios and performance metrics.

Section 5.2 explains the performance evaluation results in terms of the monthly

electricity bills, and studies the effects of the system size and pricing scheme.

It also discusses the economic feasibility of the solar-plus-battery system when

the battery is controlled by one of the proposed learning-based methods and

concludes the discussion by presenting important practical considerations.

5.1 Evaluation

We evaluate the performance of the proposed optimal controllers through

extensive numerical simulations. Our code is written in Python. We use

OpenAI Gym and TensorFlow to implement the A2C, PPO and DLC algo-

rithm, and CVXPY and Gurobi Python API to solve the MILP problem re-

quired for MPC. We discuss simulation scenarios below and introduce two

baseline methods which help us better understand how close we can possi-

bly get to the true optimal and how the proposed controllers compare to the

widely used controllers.

5.1.1 Scenarios

We consider different system sizes, residential retail electricity prices, and solar

export tariffs to compare different control algorithms. In particular, we try

53



three battery sizes Bcap = 0, 6.4, and 13.5 kWh and three sizes of solar panel

with 0, 2, and 4 strings of PV module in parallel. We assume each string is

an array of 10 modules in series. Hence, the nameplate rating of PV systems

(i.e., the maximum amount of power they can produce) would be Gcap = 0,

4.4, 8.8 kWp, respectively. Hence kWp represents ‘peak power’ in kilowatt.

Moreover, to analyze the cost saving in various jurisdictions, we implement

TOU and hourly pricing schemes for residential customers and consider four

different solar export tariffs, namely 3, 6.1, 7.7, and 15.4¢/kWh. The solar

export rates are chosen such that we have at least one rate below and above

every TOU rate.

We set parameters of the battery according to the specifications of Tesla

Powerwall Li-ion battery. Hence, αc, αd are set to 2kW for a 6.4kWh battery,

and to 5kW for a 13.5kWh battery for Powerwall model 1 and model 2, re-

spectively. The roundtrip efficiency (i.e., the ratio of the energy put into and

later retrieved from the battery) of this battery is around 90% so we set ηc, ηd

to 95%, and its depth of discharge is reported as 100% so we set Emin = 0,

Emax = Bcap [73]. The other parameters of the battery are set as follows:

ηp leak = 0, ηc leak = Bcap × 10−4, T u = 1, and SoCt0 = 0.5× Bcap.

5.1.2 Renewable Energy Initiatives

Feed-in tariff (FIT) and net energy metering (NEM) are two methods by which

a utility company compensates homeowners for the renewable energy (solar,

wind, etc.) they generate and export to the grid. Net metering can be easily

implemented as it requires only one meter measuring the current flowing in

both directions. Under the NEM program, homeowners are billed for the

difference between their renewable energy production and demand. Unlike net

metering, homeowners may need to install an additional meter for measuring

their renewable generation separately under the FIT program. This allows for

using two different prices for power consumption and generation. Specifically,

homeowners pay for their electricity demand at one price and are paid for the

renewable energy they produce at a predefined price which gradually reduces

over the years.
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There is a variety of approaches to reimbursing customers who produce

more electricity than they use in the NEM and FIT programs. In some ju-

risdictions, they receive credits at full retail value, while in other jurisdictions

they are reimbursed at a predetermined rate. We compare different solar tariffs

and explore how they impact ROI calculations in Section 5.2.3.

5.1.3 Evaluation Metrics

Annual electricity bill and peak-to-average ratio (PAR) are two metrics used to

evaluate the performance of different controllers. We define PAR as the ratio of

the maximum grid power consumed by all homes in our data set to the average

grid power consumed by these homes over one year. These metrics reflect the

benefits the system offers to homeowners and to the grid, respectively. Since

PAR is not incorporated in the objective function of our optimal controller,

this metric merely indicates whether the EnergyBoost system exacerbates

the already high peak-to-average ratio if it is adopted by more than a certain

percentage of residential customers.

5.2 Results

We first compare the annual electricity bill of each home and the system’s PAR

under different control algorithms and TOU pricing scheme. To illustrate the

effect of control algorithm on the bill, we compare the cumulative electricity bill

computed by RBC-S, RBC-T, DLC, A2C, PPO, and MPC with the optimal

bill under various scenarios and plot them in Figure 5.5

Figure 5.1 shows the comparison of the bill obtained by different control

algorithms in a randomly sampled home under two different battery sizes and

solar tariffs. We assume that the installed solar system is 4.4kWp and the bill is

computed using TOU rates. Our results indicate that MPC outperforms RBC,

DLC, and A2C controllers in terms of the annual electricity bill on average by

88.6%, 62.2%, and 89.6%, respectively, and yields a bill that closely follows the

optimal bill (is only 7.6% higher). We attribute the poor performance of both

A2C and PPO to the small number of episodes we tried, low sample efficiency
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Figure 5.1: Comparing annual bills obtained by different controllers in an
example home with a 4.4kWp PV system and a Tesla Powerwall battery (left
column: Model 1; right column: Model 2). The solar tariff is 0.03$/kWh (top
row) and 0.154$/kWh (bottom row).
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of the on-policy actor-critic method, and the non-stationary environment. The

bill obtained by the two RL methods (i.e., A2C and PPO) improves gradually

as we increase the number of episodes since it allows for more exploration.

But in practice we cannot try as many episodes as it takes to converge to the

optimal policy due to the time constraint.

The policy curves of the four control algorithms are depicted for an example

home over one week in Figure 5.2. The y-axis shows the household demand,

solar production, and battery rate in kilowatts. A positive (negative) rate

implies that the battery is charged (discharged) at that rate. Observe that

the policy found by MPC is the most similar policy to the optimal policy,

supporting the conclusion drawn from Figure 5.1. Moreover, except for the

two RL methods, other policies do not lead to extreme changes in battery

charge/discharge rates in successive time slots, which could accelerate battery

degradation.

The MPC policy increases PAR of the aggregate load of all homes in our

data set by 37% on average compared to the case that there was no battery,

while RBC-T increases it by 65% on average. That said, PAR of the entire sys-

tem does not increase as long as the the penetration rate of batteries controlled

by EnergyBoost is moderate. This is because the peak introduced by si-

multaneous charging of batteries does not coincide with the existing demand

peak, and it does not also contribute to a new peak unless the penetration

rate of this system is really high.

5.2.1 Effect of the System Size

Figure 5.3 compares distributions of annual electricity bill for different sizes of

battery and PV systems, and four different solar export tariffs. In all cases,

TOU pricing scheme is used and the battery is controlled by MPC. It can be

readily seen that for all solar export tariffs, the size of the PV system has more

impact on the distributions compared to the size of the battery. This is mainly

because the difference between the energy produced by 4.4kWp and 8.8kWp

PV systems could be 20kWh on a sunny day, which is much higher than the

difference between the battery capacities we considered.
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Figure 5.2: Comparing different policies in an example home with a 4.4kWp
PV system and a Tesla Powerwall 1. The solar tariff is 0.03$/kWh. The on-
peak and mid-peak intervals are highlighted in red and yellow. The lower plot
shows polices during the same week. It is not overlaid on the upper figure for
legibility.
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(a) 0.03$/kWh (b) 0.061$/kWh

(c) 0.077$/kWh (d) 0.154$/kWh

Figure 5.3: Distribution of annual bills obtained by MPC for different sizes of
the PV system and battery. The caption shows the solar export tariff in each
case.
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It can also be seen that installing a larger battery reduces the median

of the annual bill distribution more drastically when the solar export tariff

is high. We attribute this to the fact that when the solar export tariff is

low, EnergyBoost mostly uses the battery for energy arbitrage rather than

shifting solar production to peak times. Thus, installing a larger battery makes

a smaller difference in the bill. Nevertheless, when the solar export tariff is

high (0.154$/kWh), EnergyBoost utilizes the battery to increase self-use

of solar energy, thereby taking advantage of the excess battery capacity. The

same observation can be made in Figure 5.1.

5.2.2 Pricing Schemes

With the growing adoption of smart meters measuring electricity consumption

at a fine granularity (e.g., once every 15 minutes), utilities have begun to imple-

ment dynamic and market-based pricing schemes for residential customers who

used to receive monthly (or bi-monthly) electricity bills. Time-of-use (TOU)

electricity pricing, hourly electricity pricing, and demand charges are examples

of such pricing schemes designed to reflect the costs of producing electricity at

different times of the day1. Time-of-use has been introduced in many jurisdic-

tions to date to encourage residential customers to shift their loads to off-peak

hours, thereby lowering the peak to average ratio of the system while reducing

their own electricity bill. There are typically three time-of-use periods that

vary across seasons: off-peak when the cost and demand are low; mid-peak

when the cost and demand are moderate; on-peak when the cost and demand

are high. Nighttimes, weekends, and holidays are considered off-peak as the

cost and demand for electricity are low during these times.

Hourly electricity pricing is another new pricing scheme. It is currently

offered by a small number of utilities (e.g., in Illinois[12]) and requires meters

capable of measuring and recording electricity consumption in hourly intervals.

The hourly rate is usually determined by taking the average of the twelve 5-

1While TOU pricing reflects the electricity production costs more accurately than con-
ventional fixed-rate pricing, it is different from real-time pricing in which the electricity price
varies continuously over the course of a day, tracking fluctuations in supply and demand.
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minute prices from that hour.

In contrast to TOU and hourly pricing schemes which adjust the volumet-

ric prices ($/kWh) that customers pay for electricity, with demand charges,

customers generally pay lower volumetric prices and are instead charged based

on their peak power usage (measured in kW) during a billing period. Demand

charges could represent a large fraction of a customer’s total electricity bill

and studies suggest that PV installations alone could even lead to more ex-

pensive bills overall. This is because the portion of the bill that can be cut

with solar production may be reduced with demand charges, while the peak

power usage does not change because it does not coincide with the peak solar

production. However, solar-plus-battery installations can significantly reduce

customer demand charges by reducing the peak power usage.

In demand charge pricing scheme, the utility bill is based on the customer’s

average peak power usage within a defined period (e.g. within 15 minutes

interval) during the billing period. If the customer uses much power in the

short time interval, then the demand charge will constitute large part of the

bill. The demand charge will be reduced for homes that are equipped with the

PV system when the peak power usage coincides with the peak PV output.

There are several methods by which a utility company can compensate

homeowners for the renewable energy they generate and export to the grid.

In some jurisdictions, customers receive credits at full retail value, while in

other jurisdictions they are reimbursed at a predetermined rate. We compare

different solar export tariffs and explore how they impact ROI calculations in

Section 5.2.3.

We compare the performance of MPC and optimal controller under the

hourly pricing scheme. In this case, the MPC controller utilizes an additional

data-driven model to predict the next day’s hourly prices given today’s hourly

prices. Figure 5.4 shows the annual bill distribution when the battery is con-

trolled following the MPC and optimal policies. We find that the average

annual electricity bill (over all homes and system sizes) by MPC is only 3.4%

and 4.5% higher than the optimal bill for Tesla Powerwall 1 and Powerwall 2

batteries, respectively. This is particularly interesting since the simple rule-
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Figure 5.4: Comparing distributions of the annual electricity bill of homes
equipped with a 8.8kWp PV system under hourly pricing scheme and solar
export tariff of 0.03$/kWh.

based controller performs poorly under the hourly pricing scheme as it cannot

figure out when to charge/discharge the battery without prediction. The DLC

policy performs well under the hourly pricing scheme but it does not outper-

form MPC.

5.2.3 Financial Analysis

We investigate whether it makes sense financially to adopt one of the proposed

optimal controllers by calculating ROI and break-even-period for a lithium-

ion battery controlled by EnergyBoost. Table 5.1 summarizes the total

installed cost (i.e., sum of the equipment price and installation costs) of each

component of this system. As discussed in Section 5.1.1, we consider 2 sizes

for the solar system and 2 sizes for the battery in addition to the scenario that

no battery or no solar system is installed. The smaller solar system (4.4kWp)

is comprised of 20 Canadian Solar CS5P-220M PV modules and the larger

one (8.8kWp) is comprised of 40 of these modules. The smaller battery is a

Tesla Powerwall 1 (6.4kWh/2kW ) and the larger one is a Tesla Powerwall 2

(13.5kWh/5kW ), both come with an integrated inverter. The total installed
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Table 5.1: EnergyBoost’s estimated cost breakdown

Component Size Installed Cost (USD)

Solar System 20 Modules $16,000
& Micro Inverter 40 Modules $30,000

Battery & Inverter
6.4kWh/2kW $6,500
13.5kWh/5kW $9,000

Controller — $65

cost of the PV system and inverter is estimated based on quotes from Google’s

Project Sunroof [21]. We assume a total of $6, 250 and $11, 500 in utility

incentives and federal tax credits for residential PV systems of size 4.4kWp

and 8.8kWp, respectively, in Austin, Texas.

Similar to [34], we calculate ROI over a 20-year period for all homes in our

data set. A positive ROI suggests that the initial investment is profitable over

20 years, whereas a negative ROI suggests the opposite. The ROI is defined as

BillNS−BillS−Cost
Cost

where Cost represents the capital expenditure for buying this

system, and Bill = Pay − Rev represents the difference between the amount

paid to grid to buy electricity and the credit received from the grid for selling

electricity. Subscripts NS and S represent the bill for the case with no system

and for the case with a system, respectively. The system refers to either a

solar system and a battery (Case A), or just a battery (Case B). In Case B,

we assume the solar system was already installed and is considered as part of

the no system case.

Both BillNS and BillS are calculated for the TOU pricing scheme, assum-

ing that the TOU rates will not increase over the 20 years as suggested by the

projection in [34]. We do the ROI calculation for different system sizes and

solar export tariffs. To this end, we assume that each home consumes nearly

the same amount of electricity each year and solar production is roughly the

same each year. Since the projected electricity price remains constant, it is

possible to calculate PayNS and PayS for the next 20 years in advance. This is

done by multiplying PayNS and PayS of the first year by 20. RevNS and RevS

are computed using Rev =
20∑
i=1

Revc
(1+f)i

where f denotes the annual inflation rate
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and Revc is the revenue of the first year. Clearly, RevNS is zero in Case A,

while it would take a non-zero value in Case B. Assuming an annual inflation

rate of 2%, we simply compute the ROI for each control method with and

without government subsidies in both cases.

We first examine Case A where we aim to understand whether installing a

battery and a solar system makes sense financially in a home which was not

previously equipped with any of these systems. Our ROI results indicate that

government incentives play a key role in making this installation profitable in

20 years since even assuming a solar export tariff as high as 15.4¢/kWh, only

82% of homes equipped with a 4.4kWp solar system and a Tesla Powerwall 2

controlled by MPC have a positive ROI without the incentives. Nevertheless,

all these homes will have a positive ROI with the same solar export tariff after

including incentives. Considering the setting where homes are equipped with

an 8.8kWp solar system and Tesla Powerwall 1 with the same solar export

tariff as before, 95% of homes have a positive ROI if their battery is controlled

by MPC; this reduces to 10% of homes if the battery is controlled by RBC-T.

For the same setting but this time with a Tesla Powerwall 2 battery, all homes

with the MPC controller and 32% of homes with the RBC-T controller have

a positive ROI. Interestingly, if the solar export tariff is 7.7¢/kWh, only five

homes have a positive ROI with incentives if the battery is controlled by MPC.

Turning our attention to Case B, since there is no government incentives in

Texas for installing home batteries, our results indicate that adding a battery

to an existing PV installation is not profitable in most cases. Specifically,

we witness that even with a solar export tariff as high as 15.4¢/kWh, almost

20% (25%) of homes with an existing PV installation and a Tesla Powerwall

1 (Powerwall 2) have a positive ROI if the MPC policy is adopted. This

implies that at current price points, installing a battery does not make sense

economically for most customers unless new incentives are put in place to

encourage integration of home battery.

In both cases, we observe that MPC always increases the profit made from

installing a battery compared to RBC-T. We also calculate the break-even-

period for different system sizes, tariff structures, and control policies. The
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break-even-period is defined as the number of years required to operate the

system to pay off the initial investment. Figures 5.6 and 5.7 this result.

Figure 5.5: Distributions of annual electricity bill of homes equipped with a
4.4kWp PV system and a Tesla Powerwall 1 under TOU pricing scheme. The
solar export tariff is 0.03$/kWh, 0.061$/kWh, 0.077$/kWh, and 0.154$/kWh
(in order).

5.2.4 Practical Considerations

Runtime

We run EnergyBoost on a Raspberry Pi 3 Model B and measure the runtime

of different controllers. We find that computing AC and AD for the next time

slot takes on average 53.8, 65.7, 0.87, and 0.02 seconds for MPC, A2C, DLC,

and RBC-T controllers, respectively2. Thus, actions can be taken at a faster

2We did not include the time it takes to train the neural network model for DLC.

65



timescale (up to around 1 minute) using any of these controllers, though in

practice this may not be necessary as we discuss below.

Timescale of Control

To understand whether it makes sense to take control actions at a faster

timescale we use 15-minute electricity consumption data which was available

for most homes in our data set and compute the annual bill under different

system sizes and solar export tariffs when the battery is controlled by MPC.

We find that the annual electricity bill is 2.5% lower on average if we take

control actions every 15 minutes compared to every 1 hour. We argue that

this is the fastest timescale we can control a home battery in practice because

weather and climate data are usually unavailable at a faster timescale, unless

homeowners install their own sensors which would be costly.
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Figure 5.6: Violin plot for the payback period (# years) of homes when the
solar export tariff is 0.154$/kWh.

Figure 5.7: Violin plot for the payback period (# years) of homes when the
solar export tariff is 0.077$/kWh.
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Chapter 6

Conclusion

Solar-plus-battery systems are becoming increasingly popular around the world.

And yet most of these systems are currently being controlled using simple rule-

based methods which appear to be suboptimal. In this thesis, we studied the

application of learning-based methods to determine the charge or discharge

power of the lithium-ion battery, which is part of the solar-plus-battery system,

to reduce the monthly electricity bill. In particular, we focused on model-based

and model-free control methods, and empirically evaluated their performance.

The proposed learning-based control methods utilize real-time measure-

ments and historical data about solar generation, home energy consumption,

and electricity and solar export tariffs to determine the optimal operation of

the battery. To evaluate the performance of different controllers in terms of

their ability to cut the monthly electricity bill, we solved the mixed integer

linear program assuming perfect information about future household demands

and solar energy productions, and implemented two baseline controllers which

rely on simple rules to operate the battery. We analyzed the economic feasi-

bility of the system by calculating the return on investment (ROI) and break-

even period for different system sizes and electricity prices with or without the

government subsidies. We packaged and integrated all developed models and

proposed control algorithms into EnergyBoost and ran this software on a

Raspberry Pi connected to the Internet to empirically validate our results.

Our results indicated strengths and weaknesses of different learning-based

methods when it comes to controlling a physical system with several con-
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straints and imperfections. We showed that the underlying optimization prob-

lem is non-convex and therefore inherently complex. The environment is also

non-stationary. Nevertheless, we showed that the best learning-based con-

troller (i.e., MPC) outperforms baseline controllers in terms of the annual

electricity bill, and closely tracks the minimum bill that can be theoretically

achieved. It also reduces the payback period by more than 44 months on aver-

age compared to the rule-based controller. We provided insight about the size

of battery storage that could generate revenue under various tariff structures

and discussed the impact of changing the control timescale on the homeowner’s

bill. We found that only in a certain scenario with a sizable battery and solar

panel, the system could be profitable for the homeowner in less than 20 years.

This is assuming that the battery will not reach its end of life in 20 years.

Our work has some limitations that warrant further investigation:

• We only studied how the system could benefit the homeowner without

considering how it could benefit the grid. Specifically, we did not study

how optimal controllers can be modified to lower the system’s peak-to-

average ratio or offer other services (such as voltage support) to the grid.

In future work, we will take these objectives into account and explore

how we can benefit the homeowner and grid at the same time.

• We did not compare the proposed controllers under the tiered pricing

scheme. Under tiered pricing, customers pay a flat rate for buying elec-

tricity from the grid as long as their demand is below a certain level

in some time period. If their demand exceeds this level, they will be

charged at a higher rate. Controlling the battery in a jurisdiction that

implements this pricing scheme is more challenging as it requires chang-

ing the objective function and setting the control horizon to 1 month.

This will significantly increase the running time of all algorithms and will

create a credit assignment issue for the reinforcement learning technique.

• We did not discuss how the solar micro-inverter can be jointly controlled

with the battery to stabilize the distribution voltage, while maximizing
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the revenue of homeowners. Considering the possibility of controlling

both systems, the problem can be solved for a neighbourhood. We also

intend to study what will happen if all homes in a neighbourhood decide

to control their system using one of the proposed methods.

• We found that the reinforcement learning methods are not performing

quite well in most cases. We attribute this to the non-stationary environ-

ment and the small number of episodes we considered when training the

reinforcement learning agent. The primary reason for the poor perfor-

mance of the policy gradient methods is that they did not get sufficient

time to gain enough experience. Increasing the number of episodes could

improve the result, but it comes at the cost of increasing the runtime of

the algorithm which is a concern for the real-world applications. More-

over, only online learning algorithms are considered in this thesis. We

will explore how the reinforcement learning methods can be improved in

terms of their execution time and performance.

Despite the above-mentioned limitations, this thesis describes one of the first

attempts to create a comprehensive framework for controlling battery energy

storage systems in the smart grid. We hope that this framework is useful

for other researchers in the community, and could facilitate developing and

evaluating new control methods.
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