BIBLIOTHÈQUE NATIONALE

OTTAWA

CANADA

OTTAWA

NATIONAL LIBRARY

3+39

UNIVERSITY. THE UNIVERSITY OF AIBERTA DEGREE Ph.D. YEAR GRANTED 1968

> Permission is hereby granted to THE NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(Signed). KKtiwari

PERMANENT ADDRESS: Department of Chemical Technology University of Bombay Matunga, Bombay-19, India

DATED. April 15.....1969

NL-91

THE UNIVERSITY OF ALBERTA

VOLUMETRIC BEHAVIOR OF THE ETHANE-HYDROGEN SULFIDE SYSTEM

BY

KRISHNA KANT TIWARI

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

A DISSERTATION

DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING

EDMONTON, ALBERTA

JUNE, 1968

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled "VOLUMETRIC BEHAVIOR OF THE ETHANE-HYDROGEN SULFIDE SYSTEM" submitted by K.K. Tiwari, B.Ch.E., in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering.

Supervisor

Donald Que External Examiner

Date 11. June 68.

3

ABSTRACT

A Beattie type variable volume apparatus was constructed for experimental volumetric studies. The equipment was designed to be suitable for use with hydrogen sulfide and for an operating range of temperatures from -35° C to 325° C and for a range of pressures from atmospheric to 10,000 pounds per square inch. Temperatures were measured using a dead-weight gauge and a diaphragm type differential pressure indicator. Volumes were determined by means of a calibrated mercury displacement pump.

Volumetric measurements were made for ethane at 50° C and at pressures from about 200 to 5000 pounds per square inch. The volumetric behavior of hydrogen sulfide was studied for six isotherms at 50° , 71.11° , 75° , 100° , 104.44° , and 125° C. The range of pressures covered was from about 100 to 5000 pounds per square inch. Compressibility data were also obtained for four mixtures of ethane and hydrogen sulfide consisting of approximately 80, 60, 40, and 20 mole percent ethane. Pressures were varied from about 50 to 5000 pounds per square inch at temperatures of 50° , 75° , 100° , and 125° C.

A comparison between the reported literature values for the pure components and the experimental data obtained in this work was made at the same conditions of temperature.

- i -

The maximum deviation in the compressibility factor occurred near the two phase boundary and was less than 0.005. The experimental data for the mixtures were also compared with the values predicted by Pitzer's correlation. Agreement was reasonably good but deviations as high as 5 percent were encountered at higher pressures for mixtures with a high concentration of hydrogen sulfide.

The experimental data for the mixtures were used along with the reported literature data for pure components to obtain the constants for the Benedict-Webb-Rubin equation, the Redlich-Kwong equation, and the virial equation of state. The rules for combining constants to predict mixture behavior proposed by Benedict, Webb, and Rubin were inadequate for the system. A 23-constant BWR equation which incorporates the generalized mixing rules was found to give results with an average deviation of less than 0.65 percent. The maximum deviation in the compressibility factor observed over the entire range of temperatures, pressures and compositions studied was 5.61 percent.

- ii -

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to Dr. D.B. Robinson, Head of the Department of Chemical and Petroleum Engineering, University of Alberta, for his able guidance and assistance during the course of this project.

Sincere thanks are extended to all those friends and colleagues who contributed their time and thoughts to the solution of problems associated with this thesis.

The financial support provided by the National Research Council of Canada and the Pan American Petroleum Corporation is gratefully acknowledged.

Acknowledgement is also made to Mrs. H. Kinakin for typing the manuscript.

TABLE OF CONTENTS

.

LIS	T OF F	TIGURES	iv	-
LIS	LIST OF TABLES		viii	
I.	INT	RODUCTION	1	
	Α.	Scope of Experimental Work	1	
	в.	Pressure-Volume-Temperature Methods	2	
	c.	Representation of Pressure-Volume- Temperature Data	6	
II.	THE	CORY	8	
	Α.	Correlation of Pressure-Volume-Temperature Data	8	
		1. Equations of State	8	
		a. Early Semi-Empirical Equations of State	10	
		b. Later Semi-Empirical Equations of State	11	
		2. Graphical	18	
	в.	Treatment of Gas Mixtures	20	
	c.	Mathematical Techniques	25	
		1. Orthogonal Polynomials	28	
		2. The Benedict-Webb-Rubin Equation	29	
	`	3. The Redlich-Kwong Equation	31	
III	. LIT	ERATURE SURVEY	33	
	Α.	Ethane	33	
	в.	Hydrogen Sulfide	37	
	с.	Ethane-Hydrogen Sulfide System	39	
IV.	EXP	ERIMENTAL WORK	41	
	A.	Equipment	41	
		1. General Description	41	
		2. Sample Bomb Design	43	
		3. Charging Union	47	

		4.	Sample Bomb Thermostat	50
		5.	Pressure Measuring Apparatus	57
		6.	Volume Measuring Apparatus	59
		7.	Temperature Measurement and Control	68
		8.	Auxiliary Equipment	69
	в.		ibration of Equipment for the Effect Pressure and Temperature	73
		1.	Procedure	73
		2.	ΔV Values	75
		3.	Bomb Valume	76
	c.	San	mple Preparation	80
		1.	Source of Ethane and Hydrogen Sulfide	80
		2.	Mixture Preparation	81
		3.	Analysis of the Mixture	82
	D.	San	ple Charging Procedure	84
		1.	Weighings	84
		2.	Filling the Weighing Bomb	84
		3.	Charging the Sample Bomb	85
		4.	Mercury Introduction and Zero-Set Readings	86
	E.	Pre	essure-Volume-Temperature Measurements	
		1.	Procedure	87
		2.	Data Recorded	87
		3.	Range of Temperature, Pressure and Volume	88
	F.	Vol	ume Calculations	89
		1.	Approximate Volume Calculation	89
		2.	Volume Corrections	92
v.	EXP	ERIM	IENTAL RESULTS	94
	Α.	Ran	nge of Investigation	94
	в.	Est	imation of Accuracy	97
		1.	Temperature Measurement	97
		2.	Pressure Measurement	97

.

- ii -

		3. Measurement of Volume	98
		4. Measurement of Sample Mass	99
		5. Measurement of Composition	99
	с.	Reproducibility of Data	100
	D.	Data Smoothing Techniques	101
	E.	Comparison with Literature Values	115
VI.	DAT	A CORRELATION	124
	Α.	The Benedict-Webb-Rubin Equation of State	124
	в.	Redlich-Kwong Equation	138
	с.	Virial Equation of State	143
VII.	CON	CLUSIONS	152
NOMEN	CLAT	URE	155
REFER	ENCE	S	159
APPEN	DIX .	A - COMPRESSIBILITY DATA CORRELATION	A-1
APPEN	DIX	B - PRESSURE MEASUREMENT	B-1
APPEN	DIX	C - CALIBRATIONS	C-1
APPEN	DIX	D - SAMPLE BOMB VOLUME	D-1
APPEN	DIX	E - SAMPLE CALCULATIONS OF VOLUME	E-1
APPEN	DIX	F - EXPERIMENTAL DATA	F-1

- iv -

LIST OF FIGURES

Figure No.	Title	Page
1	Schematic Diagram of Apparatus	42
2	Sample Bomb Assembly	44
3	Sample Bomb Details	45
4	Sample Bomb Details	46
5	Union Assembly	48
6	Charging Union Assembly	49
7	Charging Union Details	51
8	Charging Union Details	52
9	Charging Union Details	53
10	Charging Union Details	54
11	Thermostat Vessel	55
12	Mercury Displacement Pump	60
13	Pump Cylinder Details	61
14	Mercury Pump Details	62
15	Mercury Pump Details	63
16	Mercury Pump Details	64
17	Mercury Pump Details	65
18	Schematic Diagram of the Charging Apparatus	70
19	Weighing Bomb	72
20	Calibration of the Equipment for the Effect of Pressure and Temperature	79
21	Compressibility Factors of Ethane at 50 ⁰ C	95

22	Compressibility Factors of Hydrogen Sulfide	96
23	Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane	102
24	Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane	103
25	Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane	104
26	Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane	105
27	Compressibility Factors of Ethane- Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane	107
28	Compressibility Factors of Ethane- Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane	108
29	Compressibility Factors of Ethane- Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane	109
30	Compressibility Factors of Ethane- Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane	110
31	Isobaric Effect of Composition on Compressibility Factor for Ethane- Hydrogen Sulfide System at 50 ⁰ C	111
32	Isobaric Effect of Composition on Compressibility Factor for Ethane- Hydrogen Sulfide System at 75 C	112
33	Isobaric Effect of Composition on Compressibility Factor for Ethane- Hydrogen Sulfide System at 100 ⁰ C	113
34	Isobaric Effect of Composition on Compressibility Factor for Ethane- Hydrogen Sulfide System at 125 ^o C	114

۰.

- v -

.

	- vi -	
35	Compressibility Factors of Hydrogen Sulfide at 160 ⁰ F	116
36	Compressibility Factors of Hydrogen Sulfide at 220°F	117
37	Comparison between Predicted and Experi- mental Compressibility Factors for Ethane- Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane	120
38	Comparison between Predicted and Experi- mental Compressibility Factors for Ethane- Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane	121
39	Comparison between Predicted and Experi- mental Compressibility Factors for Ethane- Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane	122
40	Comparison between Predicted and Experi- mental Compressibility Factors for Ethane- Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane	123
41	Coefficients of the BWR Equation for Ethane-Hydrogen Sulfide System - B_0 , b, α , γ	128
42 ;	Coefficients of the BWR Equation for Ethane-Hydrogen Sulfide System - A _o , a, C _o , c, aa	129
43	Comparison between Raczuk's Data and 23-Constant BWR Equation at 160 ⁰ F for Ethane-Hydrogen Sulfide System	137
44	Variation of Second Virial Coefficient with Mole Fraction of Ethane in Ethane- Hydrogen Sulfide System	147
45	Variation of Third Virial Coefficient with Mole Fraction of Ethane in Ethane- Hydrogen Sulfide System	148
46	Comparison between Predicted and Experi- mental Compressibility Factors for Ethane- Hydrogen Sulfide System - 50°C	150

47	Calibration of the Mercury Displacement Pump	C-3
48	Calibration of the Equipment for the Effect of Pressure and Temperature	C-6
49	Calibration of Chromatograph for Mixtures of Ethane and Hydrogen Sulfide	C-8

- viii -

LIST OF TABLES

Table No.	Title	Page
IV-1	Calibration of Equipment for the Effect of Pressure and Temperature	77
VI-1	Coefficients of BWR Equation for Ethane-Hydrogen Sulfide System (Using Smoothed Data)	127
VI-2	Coefficients of BWR Equation (23 Constants) for Ethane-Hydrogen Sulfide System	133
VI-3	Coefficients of BWR Equation (27 Constants) for Ethane-Hydrogen Sulfide System	135
VI-4	Redlich-Kwong Equation Constants for the Ethane-Hydrogen Sulfide System	139
VI-5	Redlich-Kwong Equation (Modified) Constants for the Ethane-Hydrogen Sulfide System	141
VI-6	Redlich-Kwong Equation (Modified) Constants for the Ethane-Hydrogen Sulfide System Using Rosenbrock's Method	140
VI-7	Second and Third Virial Coefficients for Ethane - Hydrogen Sulfide System	142 146
B-1	Weight Tabulation (psi), Serial No. 8338	B-4
C-1	Calibration of the Equipment for the Effect of Pressure and Tempera- ture	C-4
F-1	Volumetric Behavior of Ethane	F-3
F-2	Volumetric Behavior of Hydrogen Sulfide	F-4

F-3	Volumetric Behavior of Ethane-Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane	F-10
F-4	Volumetric Behavior of Ethane-Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane	·F-14
F-5	Volumetric Behavior of Ethane-Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane	F-18
F-6	Volumetric Behavior of Ethane-Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane	F-22
F-7	Compressibility Factors for Mixtures of Ethane and Hydrogen Sulfide	F-26

. •

. *

ning a start

I. INTRODUCTION

A. Scope of Experimental Work

In the design and operation of chemical manufacturing plants, many diverse types of fluids have to be dealt. with. Reliable and sufficient information on the physical and thermodynamic properties of these fluids is needed to determine the equipment sizes, energy requirements, equilibrium yields, or separation ratios. However, due to the enormous number of pure compounds and possible mixtures, experimental property data are sparse or nonexistent. The applicability of existing estimation and correlation methods which may be used to predict fluid properties in lieu of experimental data is subject to many restrictions, and the reliability of these methods ranges from very good to very poor. Thus, experimental programs are necessary to provide data for systems of industrial and academic interest, and to contribute to the development of better estimation and correlation methods.

Hydrogen sulfide occurs frequently in natural gas mixtures from petroleum reservoirs, particularly some of the reservoirs in Western Canada which may contain hydrogen sulfide in concentrations of 75 percent or more. In the processing of natural gas and crude oil containing hydrogen sulfide by distillation, the hydrogen sulfide collects

- 1 -

in the ethane and propane fractions. A study of the influence of hydrogen sulfide on the behavior of hydrocarbon systems is, therefore, of considerable interest.

Several extensive investigations of the methanehydrogen sulfide system have been made by Reamer, Sage, and Lacey⁽⁷⁷⁾ and by Kohn and Kurata⁽⁴⁷⁾. Gilliland and Scheeline⁽³²⁾, Steckel⁽⁹⁵⁾, Kay and Rambosek⁽⁴²⁾, Brewer, Rodewald, and Kurata⁽¹⁴⁾ have made measurements on the propane-hydrogen sulfide system. The phase behavior of n-butane-hydrogen sulfide system has been studied by Robinson, Hughes, and Sandercock⁽⁸²⁾. The volumetric and phase behavior of n-pentanehydrogen sulfide and n-decane-hydrogen sulfide has been investigated by Reamer et al^(78,79). The volumetric data reported in the literature on the system ethane-hydrogen sulfide are,however, limited to values along the liquid-vapor boundaries⁽⁴¹⁾. Therefore, it was decided to investigate experimentally the volumetric behavior of this system.

B. Pressure-Volume-Temperature Methods

The pressure-volume-temperature behavior of gases has been the object of extensive experimental and theoretical studies for many years. The literature on this subject includes descriptions of many equipment designs and experimental techniques. The main aim in most of the compressibility investigations is the simultaneous determination of the pressure

- 2 -

volume, and temperature of a given mass of gas. In the case of a gas mixture, the composition also has to be known.

The alternatives to pressure-volume-temperature measurements for gases are very limited, because the types of experimental measurement which provide entry into the network of equations relating the thermodynamic properties are few in number. The direct measurement of Joule-Thomson coefficients, heat-capacities, and other thermal quantities is a possibility, however, practical difficulties have worked against the use of such methods. It seems safe to say that calculations of thermodynamic properties of gases are usually based on experimental P-V-T data, although other measurements are sometimes used to test the accuracy of the results.

The experimental determination of pressure-volumetemperature data may be accomplished by various means,the most common of which have been reviewed by Rowlinson⁽⁸⁵⁾. The more important techniques for compressibility studies include the methods and equipment developed by Keyes⁽⁴³⁾ and by Beattie⁽⁴⁾, those used by Sage and Lacey⁽⁸⁷⁾ in their extensive work on hydrocarbons and mixtures, and the methods employed by Burnett⁽¹⁸⁾ and Schneider⁽⁹⁰⁾.

In the experimental investigation of compressibility of a pure fluid, Beattie⁽⁴⁾ used a weighed amount of gas in a sample bomb of known volume. The volume of gas in the sample bomb was controlled and measured by the introduction or

- 3 -

removal of mercury by means of a calibrated mercury displacement pump connected to the bomb by steel tubing. The temperature was measured with a platinum resistance thermometer and controlled by means of an optical galvanometer used in conjunction with a photoelectric relay. In the measurement of pressure, an Amagat-type dead-weight gauge, calibrated against the vapor pressure of carbon dioxide as given by Bridgeman⁽¹⁵⁾, was used. These methods gave results accurate to 0.03 percent in pressures up to 500 atmospheres, to 0.02°C in temperatures up to 325°C, to 0.1 percent in determining the volume, and to 0.2 milligrams in determining the mass of the gas sample. The overall estimated error for the compressibility data was within 0.03 percent at the lower pressures and temperatures and increased to 0.1 to 0.2 percent at the higher pressures and temperatures. The temperature range $(-35^{\circ} \text{ to } 325^{\circ}\text{C})$ that could be covered in this method is limited at the lower end by the freezing point of mercury under pressure and at the upper end by the uncertainties introduced by the presence of appreciable amounts of mercury vapor.

The methods and apparatus developed by Sage and Lacey (87) for determining the volumetric behavior of hydrocarbons are similar to those of Keyes (43) and Beattie (4). The equipment is suitable for measuring the total volume of the system and the volume of liquid phase at temperatures between

- 4 -

0° and 460°F and pressures up to 10,000 pounds per square inch.

In contrast to the foregoing methods, the Burnett⁽¹⁸⁾ method yields compressibility data from measurements of pressure under isothermal conditions. The compressibility factors. are calculated from the pressure ratios of successive expansions of an arbitrary mass of gas originally occupying an. accurately calibrated volume. One distinct advantage, therefore, is the elimination of the direct measurements of volumes and the mass of gas. Furthermore, a confining fluid is not required, making measurements possible at low temperatures. The main disadvantage of this method is that only a single. phase gaseous system may be studied in the equipment and for this reason systems for which phase equilibrium information is not available may be difficult to study at low temperatures. Owing to the wide spacing of data at high pressures and relatively close spacing at low pressures, this method necessitates several runs with different initial pressures for the same isotherm.

It was, therefore, decided to build equipment, utilizing the variable volume technique, in which the mass of the gas under study remains unchanged while the volume varies under the changing conditions of temperature and pressure.

- 5 -

C. Representation of Pressure-Volume-Temperature Data

Considering only a single component system or a system of fixed composition, the phase rule indicates that when only one phase is present there are two degrees of freedom. Any one of the three variables, pressure, volume, or temperature, can therefore be represented in terms of the reamining two variables. A relationship of this nature may be represented graphically, tabulated, or given by an equation. The relationship in the form of an equation is called the equation of state of the gas and contains a number of parameters known as the equation of state constants or simply the constants of the gas.

The earliest and simplet equation of state resulted from a combination of Boyle's and Charles' laws, and is known as the ideal-gas law. This law is strictly valid only in the limit of vanishing density and must be amended to attain high precision in the description of gaseous behavior at moderate and high pressures. Many attempts to find a more realistic relationship between pressure, volume, and temperature have been made since the pioneering work of van der Waals ⁽¹⁰²⁾. The object of all such efforts has been to develop an equation of state which is suitable in form for all materials but allows for the differences between materials in the assignment of values to the constants appearing in the equation. Hundreds of such equations have been proposed, but none has proved

- 6 -

entirely satisfactory (105).

In order to correlate the experimental volumetric data for the ethane-hydrogen sulfide system, it was decided to use some equations of state that are currently receiving considerable attention. These include the Benedict, Webb, and Rubin equation, the Redlich and Kwong equation, and the virial form of equation. The theoretical objective of this work was to evaluate the constants of these equations for the pure gases and the mixtures and to check the applicability of the mixing rules which are now available.

- 7 -

II. THEORY

A. Correlation of Pressure-Volume-Temperature Data

1. Equations of State

Since the classical work of van der Waals (102) in 1873, a very large number of equations of state of varying degree of complexity have appeared in the literature and many more will probably be introduced in the future. The history of the empirical development of equations to represent the volumetric behavior of gases is perhaps the most. disappointing part of this subject. Equation after equation has been proposed, has found some application to a limited range of substances or conditions, and has then been discarded when its limitations became apparent. Over 56 different equations are listed in "Handbuch der Experimental Physik, Vol. 8, p. 224" (100). A recent monograph on API Research Project 37 gives a bibliography on equations of state for hydrocarbons having 102 references. Several textbooks on Physical Chemistry^(64,98), and Chemical Engineering Thermodynamics⁽²⁷⁾ also give brief discussions on various equations of state. It is the purpose of this section to briefly review the more common equations of state and then to discuss in some detail three equations, namely the Benedict-Webb-Rubin equation, the Redlich-Kwong equation and the virial equation.

- 8 -

In general, an equation of state is an equation of the form

$$f(P,V,T) = 0 \qquad (II-1)$$

where P is the pressure, V the molar volume, and T the absolute temperature. Since pressure and temperature are the most commonly used independent variables, the most useful equation for practical purposes is the one that gives the volume explicity, as

$$V = V(P,T) \qquad (II-2)$$

Most equations, however, are based on kinetic considerations and this leads to an equation which gives the pressure explicity, viz.

$$P = P(V,T)$$
 (II-3)

When the PVT behavior is described in the form given by Equation (II-3), the number of terms required is much less as compared to the number needed for similar representation by Equation (II-2).

The PVT relationship of a fluid may be expressed in the form of a series of the following type

$$PV = RT + \frac{B(T)}{V} + \frac{C(T)}{V^2} + \frac{D(T)}{V^3} + \dots (II-4)$$

This equation is called the virial form of the equation of state since Clausius first derived it by equating the total kinetic energy of the system to the total virial of the system. Equation (II-4) reduces to the ideal-gas law in the case of infinite attenuation. The commonly used form of the equation is the Leiden expansion and was originally used as a means of fitting experimental data by Kamerlingh Onnes⁽³⁹⁾. It is written as

$$Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$
(II-5)

The coefficients B, C, D, ... are called the second, third, fourth, ... virial coefficients respectively and are dependent only on temperature for a pure gas.

Some workers prefer to express their data by expanding the compressibility factor, Z, in a power series in the pressure:

 $Z = 1 + B'P + C'P^{2} + D'P^{3} + \dots$ (II-6)

The coefficients of this expansion bear simple relationships $\binom{81}{4}$ with the coefficients in Equation (II-5).

a. Early Semi-Empirical Equations of State

Amongst the early semi-empirical equations, the two-constant equations that have received considerable attention are:

van der Waals⁽¹⁰³⁾,

$$P = \frac{RT}{V-b} - \frac{a}{V^2}$$
(II-7)

Dieterici⁽²⁵⁾,

$$P = \frac{RT}{V-b} \exp\left(-\frac{a}{RTV}\right)$$
(II-8)

Berthelot⁽¹²⁾,

$$P = \frac{RT}{V-b} - \frac{a}{TV^2}$$
(II-9)

None of these equations gives a good representation of the volumetric behavior of gases over a wide range of pressures and temperatures. These equations, however, have inspired much theoretical and experimental work, especially the van der Waals equation. Earlier workers evaluated the equation of state constants from critical data alone and not from the actual compressibility behavior of a gas. As a result the compilation of constants found in various handbooks may have little value for computing the volumetric behavior of gases.

b. Later Semi-Empirical Equations of State

The following equations of state have been found to be more successful in representing the compressibility of gases:

Beattie-Bridgeman⁽⁵⁾,

$$P = \frac{RT}{V^2} (1 - \frac{c}{VT^3}) \left[V + B_0 (1 - \frac{b}{V}) \right] - \frac{A_0}{V^2} (1 - \frac{a}{V})$$
(II-10)

Benedict-Webb-Rubin⁽⁹⁾,

$$P = \frac{RT}{V} + \frac{B_{0}RT - A_{0} - \frac{C_{0}}{T^{2}}}{V^{2}} + \frac{BRT - a}{V^{3}} + \frac{a\alpha}{V^{3}} + \frac{C(1 + \frac{\gamma}{V^{2}})}{V^{3}T^{2}} \exp(-\frac{\gamma}{V^{2}})$$
(II-11)

Redlich-Kwong⁽⁸⁰⁾,

$$P = \frac{RT}{V-b} - \frac{a}{T^{0.5} V(V+b)}$$
(II-12)

Martin-Hou⁽⁵⁶⁾,

$$P = \frac{RT}{V-b} + \frac{A_2 + B_2T + C_2 \exp(\frac{-5.475T}{T_c})}{(V - b)^2} + \frac{A_3 + B_3T + C_3 \exp(\frac{-5.475T}{T_c})}{(V - b)^3}$$

$$+ \frac{A_4}{(V-b)^4} + \frac{B_5T}{(V-b)^5}$$
 (II-13)

The availability of electronic computers for the calculation of equation of state constants has permitted an increase in the number of terms in the equation of state. The criterion of selection of an equation of state has shifted in favor of better representation of the volumetric behavior of gases over a wider range of pressures and temperatures as compared to the simplicity of form in which evaluation of the constants from experimental data can be readily accomplished and mathematical manipulation easily executed.

The Benedict-Webb-Rubin equation of state has been extensively used with considerable success for representing the PVT behavior of hydrocarbons, although its use has been limited to a very few non-hydrocarbons. Shah and Thodos ⁽⁹²⁾ have used a number of equations of state for the prediction of the volumetric behavior of argon and n-butane. They have reported that the two-constant Redlich-Kwong equation of state produced values which were comparable to those predicted by the eight-constant Benedict-Webb-Rubin equation. It is, therefore, considered desirable to analyze these two semiempirical equations in some detail.

Benedict-Webb-Rubin Equation of State: The Benedict-Webb-Rubin equation of state, hereafter referred to as the BWR equation, was developed in 1940 primarily to permit the description of the phase behavior of multicomponent hydrocarbon mixtures of relatively low molecular weight. To establish the most suitable form of the equation, the work of Ursell⁽¹⁰¹⁾ and Mayer⁽⁵⁸⁾ was utilized. The resulting equation was chosen as a compromise between the ease of application permitted by a simple equation and a reasonably good correspondence with the observed volumetric behavior. The eight constants of the BWR equation, A_o, B_o,

- 13 -

 C_{o} , a, b, c, α , and γ , characteristic of a given substance, are independent of temperature or of density.

It has been found $^{(61)}$ that a relatively large number of combinations of values of the coefficients may be employed to yield comparable accuracy in describing the volumetric behavior of hydrocarbons. The coefficients are interrelated, and a small variation in one without appropriate changes in the others introduces a surprisingly large variation in the results. Therefore, it is necessary to carry eight or more significant figures in all calculations associated with the BWR equation. This equation is fairly satisfactory to about twice the critical density and down to temperatures well below the critical. Application of the BWR equation to hydrocarbons has been extensively discussed $^{(10,11,61)}$ in the literature.

Redlich-Kwong Equation of State:

The two-constant equation, proposed by Redlich and Kwong in 1949, has found considerable use because of its simplicity. Written in implicit form, this equation becomes:

$$Z = \frac{1}{1 - h} - \frac{A^2}{B} \frac{h}{(1 + h)}$$
(II-14)

where

$$A^{2} = \frac{a}{R^{2}T^{2.5}}$$
$$B = \frac{b}{R^{T}}$$

- 15 -

anđ

$$h = \frac{b}{V} = \frac{BP}{Z}$$

From the critical properties of a pure substance the constants of the equation can be calculated by using the relationships

$$a = 0.4278 \frac{R^2 T_c^{2.5}}{P_c}$$
(II-15)

and

$$b = 0.0867 \frac{RT_{C}}{P_{C}}$$
 (II-16)

The constants a and b, used in the original Redlich-Kwong equation, have been found to be dependent on temperature. Robinson and Jacoby⁽⁸³⁾ found that the temperature dependence of the coefficients could be represented by a linear relationship of the type

$$\frac{a}{R^2} = \alpha + \beta(T - 311)$$
 (II-17)

$$\frac{D}{R} = \gamma + \delta(T - 311)$$
 (II-18)

where T is the temperature in degrees Kelvin.

Redlich and Kwong claim that their equation gives satisfactory results above the critical temperature at any pressure. The Redlich-Kwong equation has been used recently in many studies ^(19,71,83,104,107) for calculating thermodynamic properties and correlating vapor-liquid equilibrium data. Virial Equation of State:

The virial equation has attracted interest for two important reasons. The first is that many successful equations of state have had the form of the partial sums of a power series. The second is that statistical mechanical analysis of molecular models has resulted in prediction of second and third virial coefficients with reasonable accuracy. When the equation of state is expressed in the form of Equation (II-5), the coefficients B, C, D, ... indicate the deviation of a real gas from that of an ideal gas. It is possible to show that the successive coefficients B, C, D, ... represent contributions to the energy of interaction as the molecules are considered two at a time, three at a time, four at a time, and so forth.

From statistical mechanics, the potential energy, U, between two spherically symmetric molecules is a function only of the distance between the centers of molecules, r. In terms of r_{ij} , the distance between two molecules i and j, and by means of a function

$$f(r) = \exp(-\frac{U(r)}{kT}) - 1$$
 (II-19)

the expressions for the second and third virial coefficients are given as

$$B = -\frac{1}{2} \int f(r_{12}) d\dot{\tau}_{1}$$

= $-2\pi \int_{0}^{\infty} f(r) dr$ (II-20)

- 16 -

$$C = -\frac{1}{3} \iint f(r_{12}) \cdot f(r_{13}) \cdot f(r_{23}) d\tau_1 d\tau_2 \quad (II-21)$$

where

 $d\tau_i = dx_i dy_i dz_i$

 (x_i, y_i, z_i) being the position of the molecule i.

Lennard-Jones⁽⁵²⁾ evaluated the second virial coefficient given by Equation (II-20) in the form of a power series. The series expansion technique has also been used to evaluate the third virial coefficient⁽⁴⁴⁾. A highly accurate table for C, in the case of Lennard-Jones (6, 12) potential, is given by Bird and coworkers⁽¹³⁾. Kihara⁽⁴⁵⁾ has modified the Lennard-Jones model to one with an impenetrable core surrounded by a penetrable (soft)shell, and nonspherical shape. Relationships have been developed to calculate B and C for Kihara model. The fourth, fifth, and higher virial coefficients are much more difficult to evaluate⁽³⁵⁾. Fourth and fifth virial coefficients have been calculated for simple angle-independent potential with rigid sphere molecular models.

It would appear to be possible to predict volumetric behavior on the basis of statistical mechanics. There is some doubt⁽⁸⁶⁾, however, that this can be accomplished in the near future except in the case of pure substances with molecules of the simplest structure.

- 17 -

- 18 -

2. Graphical

In the case of a pure fluid for which there are at the most only two independent variables, it is a simple matter to represent the third variable by means of a table or a graph using only two coordinates. The discovery of the critical point by Andrews⁽²⁾ and the work of van der Waals which led to the law of corresponding states facilitated the representation of the state behavior of all gases. According to the law of corresponding states, all gases have the same value of the reduced pressure for the same reduced volume and reduced temperature. Thus, a single surface in reduced pressure-reduced volume-reduced temperature space would represent the state behavior of all gases. Cope, Lewis, and Weber⁽²¹⁾ and Brown, Souders, and Smith⁽¹⁷⁾ first developed generalized compressibility charts for hydrocarbons; these charts were later extended by Dodge⁽²⁶⁾ to include other sub-The compressibility functions given by such charts stances. give good results when used to predict the behavior of many common gases. In some cases, however, deviations from experimental values as high as 20 percent may be encountered. This gave impetus to improve upon these generalized treatments.

One method of improvement that has been suggested is to introduce another variable. Lydersen, Greenkorn, and Hougen⁽⁵⁵⁾ systematically analyzed the data for 82 different compounds. They found that if the compounds were separated into groups having the same value of the critical compressibility factor, Z_c, the gases within any one group showed much better agreement with one another.

Curl and Pitzer⁽²²⁾ reported that a more reliable correlation could be obtained by the use of the ω parameter, called the acentric factor, than for Z_c . Pitzer⁽⁶⁸⁾ has defined the acentric factor, ω , in terms of reduced saturation pressure at a reduced temperature of 0.7 by the relation

$$\omega = -\log P_r - 1.0 \qquad (II-22)$$

The ω parameter is designated as acentric factor since it measures the deviation of the intermolecular potential function of a substance from that of simple spherical molecules.

The actual compressibility factor Z is related to the apparent compressibility factor $Z^{(O)}$ in the following way

$$Z = Z^{(0)} + \omega Z^{(1)}$$
 (II-23)

Values of $z^{(0)}$ and $z^{(1)}$ have been recorded ⁽⁶⁸⁾ as a function of reduced pressure and temperature and values of ω for a number of substances have also been tabulated. Equation (II-23) along with the tabulated values of ω , $z^{(0)}$, and $z^{(1)}$ affords a means of calculating the compressibility factor with an accuracy higher than that obtained from the application of a seven coefficient equation of state to each individual substance ⁽⁶²⁾. Hougen, Watson, and Ragatz⁽³⁷⁾ have given a comprehensive treatment on the generalized properties of fluids using graphical techniques.

B. Treatment for Gas Mixtures

When the composition of a gas mixture is known, the ideal way to express its volumetric behavior is in terms of known behavior of the pure components. Thus, if an equation of state can be used to represent the volumetric behavior of each component in the mixture, the simplest way to describe the behavior of the mixture would be by means of some combination of constants of the equation for the components.

The earliest efforts directed towards the treatment for gas mixtures were by Dalton⁽²³⁾ and Amagat⁽¹⁾ who gave the laws of additive pressures and additive volumes respectively. Later Kay⁽⁴⁰⁾ proposed the concept of a pseudocritical point in which a fictitious value of the critical pressure and temperature is chosen so that the compressibility factor curves for the mixture in terms of the reduced coordinates will coincide with those for pure components. He showed that for mixtures of the lower hydrocarbons, the pseudocritical pressure and temperature could be calculated with fair accuracy from the critical pressures and temperatures of the pure components by the simple or linear combination rule using mole fractions. Several modified relationships to calculate the pseudocritical pressures and temperatures have been proposed ^(38,51,97).

Pitzer and Hultgren⁽⁶⁷⁾ have extended the application of the acentric factor approach to the prediction of the compressibility factor for binary gas mixtures. They found that simple quadratic formulas could be used to represent the composition dependence of the three pseudoproperties, T_c , P_c , and ω , for the mixtures. The equations are:

$$\mathbf{T}_{c} = \mathbf{x}_{1}^{2} \mathbf{T}_{c_{1}} + 2\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{T}_{c_{12}} + \mathbf{x}_{2}^{2} \mathbf{T}_{c_{2}}$$
(II-24)

$$P_{c} = x_{1}^{2}P_{c_{1}} + 2x_{1}x_{2}^{P}c_{12} + x_{2}^{2}P_{c_{2}}$$
(II-25)

$$\omega = x_1^2 \omega_1 + 2x_1 x_2 \omega_{12} + x_2^2 \omega_2 \qquad (II-26)$$

where T_c , P_c , and ω are, respectively, the pseudocritical temperature, pseudocritical pressure, and acentric factor of the mixture. Subscripts 1 and 2 refer to the properties of the pure components, and subscript 12 denotes an interaction constant found from experimental data on the mixture. The mole fractions of the two components are expressed by x_1 and x_2 .

Experimental investigations and theoretical considerations indicate that the equations of state used for pure gases can also be applied to gas mixtures. When the
experimental data on a given mixture are available, the constants can be easily determined in the same manner as for a pure gas. In the case of a binary mixture it has been assumed on the basis of kinetic theory that a constant, k_m , is related to the constants for the pure components, k_{ii} and k_{jj} , by the equation

$$k_{m} = \sum_{i j} k_{ij} x_{i} x_{j}$$

$$= k_{ii}x_{i}^{2} + 2k_{ij}x_{i}x_{j} + k_{jj}x_{j}^{2} \quad (II-27)$$

where k_{ij} is the interaction constant and x_i and x_j the mole fractions for components i and j respectively.

Several methods have been proposed for calculating the interaction constant, the two simplest being

$$k_{ij} = \frac{k_{ii} + k_{jj}}{2} \quad (linear) \quad (II-28)$$

and

$$k_{ij} = (k_{ii}k_{jj})^{\frac{1}{2}}$$
 (square root) (II-29)

One other method, known as the Lorentz combination, has also been used to a considerable extent. According to this method

$$k_{ij} = \frac{1}{8} (k_{ii}^{1/3} + k_{jj}^{1/3})^3$$
 (II-30)

Beattie and Ikehara⁽⁷⁾ have proposed that a combination of the type given by Equation (II-28) be used for all constants having the dimension of volume to the first power and that a combination of the type given by Equation (II-29) be used for all constants having the dimension of volume squared.

For the BWR equation, Benedict et al⁽¹¹⁾ have recommended the following combining rules to calculate the mixture coefficients for a mixture of N components

$$B_{o_{m}} = \sum_{i=1}^{N} x_{i}B_{o_{i}} \quad (\text{linear}) \quad (\text{II-31})$$

$$B_{o_{m}} = \frac{1}{8}\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i}x_{j} \left[(B_{o_{i}})^{1/3} + (B_{o_{j}})^{1/3} \right]^{3} \quad (\text{Lorentz}) \quad (\text{II-32})$$

$$A_{o_{m}} = \begin{bmatrix} \sum_{i=1}^{N} x_{i} & (A_{o_{i}})^{\frac{1}{2}} \end{bmatrix}^{2}$$
(II-33)

$$C_{o_{m}} = \left[\sum_{i=1}^{N} x_{i} (C_{o_{i}})^{\frac{1}{2}}\right]^{2}$$
(II-34)

$$b_{m} = \left[\sum_{i=1}^{N} x_{i} (b_{i})^{1/3}\right]^{3}$$
 (II-35)

$$a_{m} = \begin{bmatrix} N \\ \sum_{i=1}^{N} x_{i} & (a_{i})^{1/3} \end{bmatrix}^{3}$$
 (II-36)

$$\mathbf{c}_{\mathrm{m}} = \begin{bmatrix} \sum_{i=1}^{\mathrm{N}} \mathbf{x}_{i} (\mathbf{c}_{i})^{1/3} \end{bmatrix}^{3}$$
(II-37)

$$\gamma_{\rm m} = \left[\sum_{i=1}^{\rm N} x_i (\gamma_i)^{\frac{1}{2}}\right]^2$$
(II-38)

$$\alpha_{\rm m} = \left[\sum_{i=1}^{\rm N} \mathbf{x}_i (\alpha_i)^{1/3}\right]^3 \qquad (II-39)$$

For the Redlich-Kwong equation, the mixture coefficients may be calculated by using the following relationships (80)

$$\mathbf{a}_{\mathrm{m}} = \begin{bmatrix} \sum_{i=1}^{\mathrm{N}} \mathbf{x}_{i} (\mathbf{a}_{i}) \mathbf{x}_{i} \\ \mathbf{i} = 1 \end{bmatrix}^{2}$$
(II-40)

$$\mathbf{b}_{\mathrm{m}} = \sum_{i=1}^{\mathrm{N}} \mathbf{x}_{i} \mathbf{b}_{i} \qquad (\mathrm{II}-41)$$

Wilson⁽¹⁰⁷⁾ has modified the mixing rule for the coefficient a. He expressed the interaction coefficient for binary mixtures as

$$2a_{12} = k_{12}a_{11} + (1 - k_{12})a_{22}$$
 (II-42)

where k_{12} is a dimensionless empirical parameter determined from experimental data on the binary mixtures of components 1 and 2.

In the case of the virial equation of state, the interaction virial coefficients may be calculated by using the semi-empirical combining rules which relate the molecular or core parameters between unlike molecules to those between like molecules. The virial coefficients for the mixture are given by equations of the form

$$B_{m} = \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} x_{j} B_{ij} \qquad (II-43)$$

$$C_{m} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} x_{i}x_{j}x_{k}C_{ijk} \qquad (II-44)$$

Prausnitz^(70,72) has given methods for determining the second virial coefficient for mixtures from acentric factors and critical constants.

C. Mathematical Techniques

In the preceding discussion various equations of state have been used as approximating functions for the actual behavior of gases. It is the purpose of data correlation to use some criterion of best fit for the evaluation of the coefficients of these approximating functions. With experimental data having errors randomly distributed, the criterion normally used is the criterion of least squares.

For data representation, the data points are assumed to be free of error and the object is to find an approximating function. In such a case the Chebyshev criterion of minimizing the maximum error may be used. Leung⁽⁵³⁾ and Clare⁽²⁰⁾ have utilized this criterion in linear programming procedures for the BWR equation and the Martin-Hou equation respectively. Hadley⁽³³⁾ has described the simplex method, the revised simplex method and the duality algorithm used in such linear programming problems. The problem for data correlation may be stated mathematically as follows:

It is desired to approximate a real-valued function, Z_i , by a linear combination of a set of n+l specified functions $G_j(x_i, y_i, \ldots)$ at most of degree j for $0 \le j \le n$, at a set of points (x_i, y_i, \ldots) for $i = 1, 2, \ldots, m$, continuous on a closed region R. If the deviation at each point is defined as

$$\varepsilon_{i} = Z_{i} - \sum_{j=0}^{n} A_{j}G_{j}(x_{i}, y_{i}, \ldots) \quad (II-45)$$

then A are the n+l coefficients to be evaluated according to the criterion

$$\sum_{i=1}^{m} \varepsilon_{i}^{2} = a \min (II-46)$$

Considering first a simple case of curve fitting, the function G_j becomes a function of only one independent variable, x. Equation (II-46) then reduces to

$$\sum_{i=1}^{m} \varepsilon_{i}^{2} = \sum_{i=1}^{m} \left[z_{i} - \sum_{j=0}^{n} A_{j}G_{j}(x_{i}) \right]^{2} \quad (II-47)$$

Since the expression for $\sum_{i=1}^{m} \epsilon_i^2$ is a quadratic function of A_j , its minimum exists at

$$\frac{\partial}{\partial A_{j}} \begin{bmatrix} m \\ \sum_{i=1}^{m} \{z_{i} - \sum_{j=0}^{n} A_{j}G_{j}(x_{i})\}^{2} \end{bmatrix} = 0 \quad (II-48)$$

After expansion and differentiation it gives:

$$\sum_{j=0}^{n} A_{j} \sum_{i=1}^{m} G_{j}(x_{i})G_{k}(x_{i}) = \sum_{i=1}^{m} Z_{i}G_{k}(x_{i}) \quad (II-49)$$

$$k = 0, 1, 2, ..., n$$

Equation (II-49) can be written in the form

$$\underline{B} A = C \qquad (II-50)$$

where

$$\underline{\mathbf{B}} = \sum_{i=1}^{m} \mathbf{G}_{i}(\mathbf{x}_{i}) \mathbf{G}_{k}(\mathbf{x}_{i})$$

$$A = \sum_{j=0}^{n} A_{j}$$

and

$$C = \sum_{i=1}^{m} Z_{i}G_{k}(x_{i})$$

Equation (II-50) can be easily solved for A. When the matrix <u>B</u> is non-singular, the coefficients A_i are unique.

The closeness of fit may be expressed in terms of variance, σ^2 , which is defined as

$$\sigma^{2} = \sum_{i=1}^{m} \frac{\varepsilon_{i}^{2}}{(m-n)}$$
 (II-51)

In the case of a closed-form equation this shows whether the fit is good or poor, while in the case of open-ended equations like the virial equation it may be used as a means of choosing the degree of polynomial. There are two main disadvantages of the above procedure. First, and perhaps the most important, is that the matrix <u>B</u> becomes ill-conditioned with an increase in the degree of polynomial and this results in a loss of precision. The second disadvantage is that for each increase in the degree of polynomial a new set of calculations has to be performed and the new values of A_j bear no relationship to the previous values. These difficulties can be avoided by using orthogonal polynomials.

1. Orthogonal Polynomials

When a sequence of polynomials $\begin{bmatrix} G_j(x) \end{bmatrix}$ is orthogonal in the summation sense over a point set, it satisfies the following

$$\sum_{i=1}^{m} G_{j}(x_{i})G_{k}(x_{i}) = 0 \qquad j \neq k$$
$$= \sum_{i=1}^{m} G_{j}(x_{i}) \qquad j = k \quad (II-52)$$

Use of Equation (II-52) with Equation (II-49) simplifies the calculation of coefficients A_{i} . They are given as

$$A_{j} = \frac{\sum_{i=1}^{m} Z_{i}G_{j}(x_{i})}{\sum_{i=1}^{m} G_{j}^{2}(x_{i})}$$
(II-53)

Forsythe ⁽³⁰⁾ has constructed a set of orthogonal polynomials which do not require specified spacing of data points for data fitting. This method has been extended ⁽⁵³⁾ to surface fitting by two independent variables. The procedure requires the tabulation of the dependent variable as a function of the two independent variables in a rectangular grid of points. Interpolation may be required to form such a table. Lagrangian interpolation ⁽³¹⁾ can be employed for this purpose.

The polynomials can be converted to a power series form and thus the virial form of equation can be obtained after fitting the data in terms of orthogonal polynomials.

2. The Benedict-Webb-Rubin Equation

The BWR equation may be written in the form

$$(Z - 1) = A_{O}(-\frac{d}{RT}) + B_{O}(d) + C_{O}(-\frac{d}{RT^{3}}) + a(-\frac{d^{2}}{RT})$$
$$+ b(d^{2}) + a\alpha(\frac{d^{5}}{RT})$$
$$+ c\left[\frac{d^{2}(1+\gamma d^{2})}{RT^{3}} \exp(-\gamma d^{2})\right] \qquad (II-63)$$
$$= \sum_{i=1}^{7} k_{i}G_{i} \qquad (II-64)$$

where

^k 1	=	Ao	,	Gl	=	$-\frac{d}{RT}$
^k 2	=	Bo	,	^G 2	=	a
k ₃	=	co	,	G3	=	$-\frac{d}{RT^3}$
k4	=	a	,	G4	=	
k ₅	=	b	,	G5	=	d ²
k ₆	=	aα	,	G ₆	æ	d ⁵ RT
k ₇	=	с	,	^G 7	=	$\frac{d^2(1+\gamma d^2)}{RT^3} \exp(-\gamma d^2)$

For a given value of γ , Equation (II-64) becomes linear in k_i . The problem then can be easily solved as the set of linear equations for the least squares criterion reduces to the form represented by Equation (II-50). A program using the L-U matrix inversion method ⁽⁵⁰⁾ can be utilized and for each value of γ read in a set of constants can be calculated till the condition given by Equation (II-46) is satisfied. These are the optimum set of constants. The inversion of the matrix can be improved by using the method suggested by Hotelling ⁽³⁶⁾.

Similar methods for the determination of constants of the BWR equation have been used by Selleck, Opfell, and Sage $^{(91)}$ for propane, by Brough $^{(16)}$ for methane and propane, by Opfell, Pings and Sage $^{(61)}$ for hydrocarbons, and by Eakin and Ellington $^{(28)}$ for hydrocarbon-carbon dioxide mixtures. Simon and Briggs $^{(93)}$ have used the technique of steepest descent to determine the constants for hydrogen sulfide from data on the methane-hydrogen sulfide system.

3. The Redlich-Kwong Equation

The Redlich-Kwong equation given by Equation (II-12) may be written in the form

$$Z = \frac{V}{V - b} - \frac{a}{RT^{1.5}(V + b)}$$
(II-65)

If V and T are considered independent variables, the leastsquares criterion of best fit shows that

$$\sum_{k=1}^{u} \sum_{\ell=1}^{v} \varepsilon_{k,\ell}^{2} = \sum_{k=1}^{u} \sum_{\ell=1}^{v} (z_{k,\ell} - \frac{v_{k}}{v_{k}-b})$$

+
$$\frac{a}{RT_{l}^{1.5}(V_{k}+b)}^{2}$$
 = min. (II-66)

Utilizing Equations (II-15) and II-16) a first approximation for the constants a and b can be obtained, and

then a procedure can be developed which searches for a minimum

for the expression in Equation (II-66). Two methods are described in Appendix A to get the best fit constants. One method uses an iterative scheme coupled with a relationship between the constants obtained, for least squares criterion, by analytical differentiation for a minimum. The other method utilizes the Rosenbrock⁽⁸⁴⁾ method of rotating coordinates. It optimizes the convergence path by a combined rotation of the ridge tracking vector and the step size.

Brief descriptions of various data correlation methods used, sample computer programs and sample outputs are given in Appendix A.

III. LITERATURE SURVEY

A. Ethane

Few investigations of the volumetric behavior of ethane, one of the important constituents of industrial hydrocarbon gases, have been made at pressures and temperatures above the critical state values. Hainlen⁽³⁴⁾ and Kuenen, et al^(48,49) determined the vapor pressure of ethane from low temperatures through the critical region. Mass and McIntosh⁽⁵⁷⁾ measured the density of liquid ethane at low temperatures. Loomis and Walters⁽⁵⁴⁾ determined the vapor pressure of ethane in the vicinity of atmospheric boiling point, while Porter⁽⁶⁹⁾ determined the vapor pressure and the density of saturated gas from -150 to 60°F. Eucken and Parts⁽²⁹⁾ have reported the specific heat at atmospheric pressure for gaseous ethane in the temperature range 70°F to 220°F.

Beattie and coworkers have reported two separate studies of ethane (6,8). In the first study, they covered a temperature range of 25° to 250° C and a molal density range of 0.5 to 5.0 moles per liter. They claimed an accuracy of better than 0.2 percent. In the second study the critical constants of ethane and the compressibility of ethane in the high density region of 5.0 to 10.0 moles per liter and temperature range of 50° to 275° C were studied. In 1937, Sage, Webster, and Lacey ⁽⁸⁸⁾ reported the thermodynamic properties and volumetric behavior of ethane at temperatures from 70° to $250^{\circ}F$ and at pressures up to 3500 pounds per square inch. The accuracies claimed were as follows: temperature, $0.03^{\circ}F$; pressure, 0.2 pounds per square inch; specific volume, 0.1 percent. Though the accuracies claimed by Beattie and coworkers and those claimed by Sage et al are quite high, the discrepancies between the results by these two groups are as high as 2 percent. The latter group, therefore, studied the volumetric behavior of ethane again.

In 1944, Reamer,Sage and Lacey $^{(75)}$ extended the range of volumetric investigation of ethane. The temperature range covered was from 100° to 460° F and the pressures used were up to 10,000 pounds per square inch. Michels, et al $^{(60)}$ have reported the isotherms and thermodynamic functions of ethane at temperatures between 0° and 150° C and pressures up to 200 atmospheres. The equation fitted was of the form

$$PV = A + Bd + Cd2 + Zd3 + Dd4$$
(III-1)

Phillips and Thodos⁽⁶⁶⁾ have developed a reduced density correlation for the gaseous and liquid regions of ethane from all the available experimental data on the volumetric and phase behavior of ethane. The correlation covers the regions $0.65 < T_R < 6.0$ and $0 < P_R < 15$. It used the data of Yee⁽¹⁰⁹⁾ in addition to the data mentioned earlier in this survey.

The coefficients of the BWR equation for ethane were first given by Benedict, Webb, and Rubin⁽¹¹⁾ in 1942 and again in 1951. The constants have also been calculated by Opfell, Schlinger, and Sage⁽⁶³⁾. The values of the BWR equation constants for ethane from these two sources are given below.

Constants	By Benedict Webb and Rubin ⁽¹¹⁾	By Opfell Schlinger and Sage ⁽⁶³⁾
Bo	1.00554	0.237507
Ao	15,670.7	7,001.40
$C_{o} \times 10^{-6}$	2,194.27	3,334.26
b	2.85393	3.43107
a	20,850.2	26,547.9
Cx10 ⁻⁶	6,413.14	6,476.86
α	1.00044	0.742830
Ŷ	3.02790	2.50000

pressure in psi, temperature in ${}^{O}R$, and volume in cu.ft. per lb.mole.

It can be clearly seen from the large difference in the values of these BWR equation constants that a relatively large number of combinations of values of these coefficients may be found that would yield comparable accuracy in describing the volumetric behavior of ethane. The value of the acentric factor, ω , for ethane has been given by Pitzer, Lippmann, Curl, Huggins, and Petersen⁽⁶⁸⁾ as 0.105; while the value for ω obtained by Opfell, Sage and Pitzer⁽⁶²⁾ is 0.099.

The constants of the modified Redlich-Kwong equation for ethane have been reported by Robinson and Jacoby⁽⁸³⁾. The values given are:

> $\alpha = 13,870 \quad {}^{O}K^{2.5}/atm.$ $\beta = -3.11 \quad {}^{O}K^{1.5}/atm.$ $\gamma = 0.509 \quad {}^{O}K/atm.$ $\delta = 0$

David and Hamman⁽²⁴⁾ have determined the second and third virial coefficients for ethane by fitting a series of the type

 $Z = 1 + \frac{B}{V} + \frac{C}{V^2}$ (III-2)

The values of B and C in terms of reduced temperature, T_{R} , are given by

$$\frac{B}{V_{c}} = 1.612 - \frac{5.416}{T_{R}} + \frac{5.099}{T_{R}^{2}} - \frac{2.461}{T_{R}^{2}}$$
(III-3)

and

$$\frac{C}{v_c^2} = 0.5419 - \frac{1.1249}{T_R} + \frac{1.0973}{T_R^2}$$
(III-4)

Prausnitz and Myers⁽⁷³⁾ have determined the parameters for the ethane molecule with a triangular prism as the core model. Tee, Gotch, and Stewart⁽⁹⁹⁾ have also determined the force constants for the ethane molecule from second virial coefficient data and viscosity data using the Lennard-Jones^(6,12) rigid sphere model and also the Kihara model with a spherical core.

B. Hydrogen Sulfide

Only limited pressure-volume-temperature data are available for hydrogen sulfide (46,59,108). The specific volumes of the saturated liquid were measured by Baxter, Burrage, and Tanner⁽³⁾ and also by Steele, McIntosh, and Archibald (96). In 1948, West (106) used the Beattie-Bridgeman equation of state to correlate all the available data and calculated the thermodynamic properties of hydrogen sulfide using the constants of this equation. These values extend from a temperature of -76° to above 1300° F, but are limited to a maximum pressure of 1,030 pounds per square inch.

In 1950, Reamer, Sage, and Lacey $(^{76)}$ published the volumetric behavior of hydrogen sulfide at temperatures from 40° to 340° F and for pressures up to 10,000 pounds per square inch. Thermal decomposition was encountered at temperatures above 340° F. Even at 340° F there was some indication of decomposition. A comparison of values from this work with the

results tabulated by West shows that below a pressure of 500 pounds per square inch, the average deviation between the two sets of data is 0.7 percent, whereas at higher pressures the deviation is as high as 10 percent.

Simon and Briggs $^{(93)}$ have given a set of constants for the BWR equation to be used for hydrogen sulfide in hydrocarbon mixtures. When the pressure is in psia, temperature in ^OR, and volume in cu.ft. per lb.mole, the values are

$$B_{o} = 1.07286$$

$$A_{o} = 10,498.9$$

$$C_{o} = 2.70231 \times 10^{9}$$

$$b = 1.76919$$

$$a = 46791.8$$

$$c = 6.07236 \times 10^{9}$$

$$\alpha = 2.21446$$

$$\gamma = 4.89531$$

It is claimed that these constants can be used with the BWR equation to predict the behavior of gaseous hydrogen sulfide-hydrocarbon binary mixtures with an accuracy in the order of 5 percent. This accuracy, however, is possible only in the case of mixtures for which hydrogen sulfide concentration does not exceed 20 mole percent. For the hydrogen sulfide-propane system, deviations near the critical point were found to be in the order of 40 percent. The constants for the Redlich-Kwong equation to be used for hydrogen sulfide have been given by Robinson and Jacoby⁽⁸³⁾. These values are

$$\alpha = 13,803 \quad {}^{\circ}K^{2.5}/atm.$$

$$\beta = -16.1 \quad {}^{\circ}K^{1.5}/atm.$$

$$\gamma = 0.382 \quad {}^{\circ}K/atm.$$

$$\delta = -5.1 \times 10^{-4} \quad 1/atm.$$

The value of acentric factor, ω , has been given by Pitzer, et al⁽⁶⁸⁾ as 0.100.

C. Ethane-Hydrogen Sulfide System

Kay and Brice⁽⁴¹⁾ have reported the phase behavior of the ethane-hydrogen sulfide system. The highest pressure encountered in this work was the critical pressure of hydrogen sulfide. The only published data on the gas phase volumetric behavior of ethane-hydrogen sulfide system is that of Robinson and Jacoby⁽⁸³⁾, who studied the volumetric behavior of one mixture with a hydrogen sulfide content of 46.89 percent at 100° F in the pressure range of 210.3 to 1987.8 pounds per square inch. This work was done to assess the applicability of the Redlich-Kwong equation for the purpose of predicting compressibility factors.

Raczuk⁽⁷⁴⁾ has studied the volumetric behavior of six mixtures of ethane and hydrogen sulfide at three tempera-

tures of 40°, 100°, and 160°F at pressures up to 5,000 pounds per square inch. A Ruska-PVT cell was used in the experimental investigations, with Heise bourdon type gauges for pressure measurements and standard capillary thermometer for temperature measurements. The maximum error in the compressibility factor was estimated to be 2.5 percent.

The value of k_{12} , a dimensionless parameter suggested by Wilson⁽¹⁰⁷⁾ and defined by Equation (II-42) in Chapter II has been given by Robinson and Jacoby⁽⁸³⁾ for ethane-hydrogen sulfide system. The value is 21.2 when ethane is component 1 and hydrogen sulfide component 2.

IV. EXPERIMENTAL WORK

A. Equipment

1. General Description

The apparatus designed and used for the compressibility measurements was essentially that developed by Beattie⁽⁴⁾ and Keyes⁽⁴³⁾. A schematic diagram of the apparatus is shown in Figure 1. In general, the apparatus consisted of four main parts, namely:

- a sample bomb, B, placed in a thermostated oil bath, S, which is controlled by a thermotrol unit, R;
- a pressure measuring device which consisted of a Ruska dead-weight gauge, G, a diaphragm differential-pressure indicator, D, containing an electrical probe for the detection of the position of the diaphragm;
- a volume measuring device which consisted of a mercury displacement pump, L, thermostated in a bath, N;
- a temperature measuring device which consisted of a platinum resistance thermometer, T, Mueller bridge, galvanometer, and a lamp and scale arrangement.

A known quantity of fluid was confined by mercury in the sample bomb and the temperature controlled by a Thermotrol unit and measured by means of a platinum resistance thermometer. The pressure the fluid exerts was transmitted through mercury filled lines to the diaphragm of the diaphragm

differential-pressure indicator and balanced by the application of an equal pressure on the other side of the diaphragm by means of an oil displacement pump. The pressure on the oil side was measured with the help of a dead-weight gauge. The volume of the fluid in the sample bomb was the difference between the original bomb volume and the volume of mercury injected into the bomb.

2. Sample Bomb Design

The sample bomb assembly is shown in Figure 2, and the specifications follow in Figures 3 and 4. The main body, A, of the bomb was fabricated from stainless steel type 316. Closure between the main body of the bomb and the closure head, E, of 316 stainless steel was made on a teflon gasket, B. Pressure was exerted on this gasket by six 3/8-inch Allen-head cap screws, D, of high tensile steel, threaded through the bomb cap, C, of stainless steel type 304 and sitting on the pressure bearing, F. A torque of 30 footpound was applied to each of the Allen-head screws.

The sample bomb was designed for service up to a pressure of 10,000 pounds per square inch. It was pressure tested at successively higher pressures up to 10,000 pounds per square inch in the temperature range of 25° to 200° C.

The choice of a working volume for the sample bomb is important. A greater range of observations can be accom-

Figure 2. Sample Bomb Assembly

Figure 3. Sample Bomb Details

- 45 -

Detail 1/8 Autoclave Female Fitting

Figure 4. Sample Bomb Details

plished with one charge if a large sample volume is available. In this way, a large volume will reduce the number of charges needed. This in turn will lead to a reduction in the time required to obtain a given amount of data. This gain in time, however, is offset by the longer time required to establish equilibrium conditions for a larger sample. An important advantage of having a large volume for the sample bomb is that errors in the measurement of volumes are reduced, especially at higher pressures, when the initial low-pressure charge is of larger volume.

3. Charging Union

During the process of charging, the union M, shown in Figure 5, was replaced by the charging valve, Q, shown in Figure 6. The valve consisted of a stem, T, packed with Chevron type rings of teflon and a standard 1/8-inch Autoclave female fitting, P, for vacuum and sample lines. The end of the valve stem, T, was in the shape of a screwdriver which served to seat the center-bored screw, K, against the rupture disc, J, to confine the gas sample in the sample bomb. The closure of the union consisted of a viton O-ring seal between the union body, H, and the charging union, Y. Once the sample was charged, the charging valve was replaced by the union as shown in Figure 5. The closure of this union also consisted of a viton O-ring seal between the union body, H

Figure 5. Union Assembly

Figure 6. Charging Union Assembly

and the bonnet, M. Figures 7 through 10 show all parts of the charging union. The parts were fabricated from 304 stainless steel stock to minimize corrosion during the study of systems containing hydrogen sulfide.

The rupture discs were cut from sheets of silicon steel shim stock of 0.001 inch thickness. In making the discs, a circle just under 5/16 inch was marked on the steel sheet and the disc cut with a pair of sharp scissors. The rupture disc was bent a little and placed between the screw, K, and the union body, H, so that it could be seated by means of the screwdriver tip of stem, T. In this way, the disc was held in place between these two parts after the sample was charged.

4. Sample Bomb Thermostat

The thermostat was made quite large so that the bath would have a large heat capacity whereby the temperature variations during the heating and cooling periods proceed in a slow and regular manner and are not appreciably affected by sudden changes in the surroundings. Sketches of the thermostat are given in Figure 11.

The thermostat consisted of a galvanized iron cylindrical vessel, about 14 gallons in capacity, with a dished bottom. Four 24-ohm heaters made of No. 18 michrome-V wire, each about 60 feet long, were threaded through ceramic beads and wound in parallel around the surface of the vessel.

•

Charging Union Details Figure 7.

Figure 8. Charging Union Details

- 52 -

() P

Figure 10. Charging Union Details

K

Figure 11. Thermostat Vessel

.

Through lead wires, these were connected to a powerstat variable transformer and were used for rapidly raising the temperature of the bath to any desired value. The bath vessel was insulated with a 4-inch layer of asbestos and covered by a corrugated aluminum sheet. The bath fluid was stirred by a shaft carrying three propeller type stirrers and driven by an electric motor at about 1600 revolutions per minute.

Cooling for the thermostat was provided by an auxiliary bath which was connected to a 35 feet long 5/8-inch copper immersion coil in the main bath. The temperature of the auxiliary bath fluid was controlled by a bimetallic strip controller which, through a mechanical relay, switched on either the heaters or the refrigeration unit.

A value between the auxiliary bath and the immersion coils was used to control the flow rate of the coolant. Control at any given temperature was attained by first bringing the temperature of the bath near the desired value by means of the outside heaters. Then the outside heaters were disconnected and a balance between the heat input from a pencil heater immersed in the bath fluid and heat output through the immersion copper coils was attained by adjusting the flow rate of the coolant. The heater was connected through a Thermotrol unit and was controlled by it. The Thermotrol, a Shell Development design, is a general purpose laboratory temperature controller designed to control by any one of the three following methods: On-Off, Proportional, or Proportional with Reset. The sensitivity of the unit, specified in terms of dead zone or the temperature difference required between "ON" and "OFF" operation, is 0.001°C.

Mineralube 10W oil was used in the main bath. The auxiliary bath fluid was a glycol based anti-freeze. Viscosities of these fluids were found to be sufficiently low at temperatures under study so that a thorough agitation of the bath fluids could be maintained without excessive expenditures of energy.

5. Pressure Measuring Apparatus

All pressures were measured with a Ruska Dead Weight Gauge (DWG), Type 2400 HL of the Ruska Instrument Corporation. Two separate piston-cylinder assemblies were used in the experimental work as the pressure range was too extensive for the low range piston. The low range piston, with a diameter of 0.40705 inch, is capable of measuring pressures from 6 to 2,428 psig. For higher pressures, the high range piston 0.10200 inch in diameter has to be used. It is capable of measuring pressures from 30 to 12,140 psig. Since the piston-cylinder assemblies are interchangeable, this instrument becomes a dual range gauge.

The Ruska DWG consists of two separate units, the gauge assembly and the hand pump assembly, both of which were
mounted on two separate tables and interconnected with a flexible high pressure line. The gauge assembly has levelling screws and a reference level vial which could be used to maintain the gauging piston in a vertical position. A derive sleeve revolves about the housing of the piston assembly. It turns the weight table by means of rollers which are attached to spring fingers. This sleeve is belt driven by a reversible motor drive. By making pressure measurements with the weights rotating both clockwise and counterclockwise variations in the measurements which were caused by the so-called corkscrew effect on the piston-cylinder assembly, were cancelled out.

To balance the pressure or show any unbalance between the system under test and the pressure transmission fluid in the Dead Weight Gauge system, a Ruska Diaphragm Differential Pressure Indicator was used. It also sealed the confining fluid mercury on the test side and oil on the DWG side, thus preventing the contamination of either fluid.

A zero-center milliammeter was used to indicate whether the pressure on the gauge side was higher or lower, or equal to the pressure on the test side. The pump assembly, consisting of a hand operated plunger displacement pump was used to build up oil pressure on the DWG side. A reference manometer was installed on the pressure fluid line between the DWG assembly and the differential pressure indicator. It was used to zero adjust the fluid level to the reference

- 58 -

height of the DWG system so that there was no fluid load on the diaphragm. It was also used to determine the sensitivity of the differential pressure indicator.

The resolution of the diaphragm differential pressure indicator was adjusted to within 1 inch height of the oil column (<0.02 psi) for this work. The barometric pressures were read on a Fortin type barometer.

The corrections applied and the equations used in evaluating the pressure values are given in Appendix B.

6. Volume Measuring Apparatus

The volume of gas in the sample bomb was controlled and measured by the addition or removal of mercury by means of a calibrated mercury displacement pump, L, shown in Figure Figure 12 shows the mercury displacement pump assembly 1. with details following in Figures13 through 17. Briefly, it consisted of a stainless steel type 304 piston, having a diameter of 0.7375 inch with a tolerance limit of +0.0005 inch and -0.0002 inch, which moves inside a cylinder, also made of 304 stainless steel, filled with mercury. A smooth linear movement of the piston was accomplished by the conversion of the rotary motion of the handle by means of ball screws. The use of ball screws permitted accurate positioning of the piston and a small torque was sufficient for the linear movement of the piston even at high loads. The problem of backlash,

- 59 -

- 60 -

Pump Cylinder Details

- 62 -

Bearing Housing

Cylinder Support

Figure 14. Mercury Pump Details

Figure 15. Mercury Pump Details

Figure 16. Mercury Pump Details

<

- 64 -

ì

Figure 17. Mercury Pump Details

commonly associated with the methods using the angular movement of the handle as a means of determining the displacement of the piston, was eliminated by reading the movement of the piston directly on a vernier scale. It was possible to read the displacement of the piston to 0.001 inch. The total displacement volume of the pump was about 100 ml. A mercury reservoir with a cut-off valve, connected to the cylinder, was used to add or remove mercury.

An oil bath was used to keep the pump at 30° C. The temperature of this bath was controlled by means of a bimetallic strip controller working in conjunction with an electric relay which actuated a heater when the temperature fell below the set-point. Continuous cooling was provided by a constant flow of coolant, from the auxiliary bath described earlier, through one quarter inch diameter copper coils immersed in the bath fluid. A shaft carrying three propeller type stirrers and driven by an electric motor at about 1600 revolutions per minute was used for agitation of the bath fluid. The temperature of the bath was controlled to within $\pm 0.02^{\circ}$ C. Temperature in the bath was indicated by a mercury thermometer, calibrated at 30° C against a platinum resistance thermometer certified by NBS.

Because of the mechanical inaccuracies in the piston, the volume of mercury displaced by the pump per unit of linear movement of the piston was not constant throughout the entire

- 66 -

length of the piston. A calibration of the pump was therefore necessary. For this purpose a very fine glass capillary was connected to the outlet of the pump and the mercury forced out by each one-half inch of the movement of piston was collected in weighing bottles. The position of the mercury meniscus in the glass capillary was noted. After a wait of fifteen minutes, the piston was moved in another one-half inch, the merucy which was displaced was collected, and the position of mercury thread in the capillary was noted. Using the density $^{(65)}$ of mercury at 30° C and the amount of mercury required to fill the glass capillary, the volume of mercury displaced for each one-half inch movement of the piston was calculated from these observations. The cumulative volume, V, of mercury forced out at 30° C and 1 atmosphere pressure was fitted to a residual equation of the form

$$V = aN + \delta V \qquad (IV-1)$$

where

 a = 7.0139 ml./in.
N = pump scale reading, inches
δV = accumulative residual displacement, ml. Hg at 30^oc

A plot of residual volume V and the pump scale reading N was used along with Equation (IV-1) to determine the volume of mercury displaced at 30° C. This graph is shown in Appendix C.

7. Temperature Measurement and Control

Temperatures were measured by a Leeds and Northrup four lead resistance thermometer (Serial Number 1330889) encased in a glass tube. The thermometer was calibrated by the National Bureau of Standards and this calibration was checked periodically at the ice point and the triple point of water during the course of this work. The resistance remained essentially unchanged. Resistances were measured by a Leeds and Northrup Mueller bridge. The Mueller bridge was determined to be internally consistent by a method outlined in Leeds and Northrup Directions Manual 77-2-1-2.

With the help of a mercury commutator, a galvanometer, and a lamp and scale reading device, temperatures to 0.001°C could be measured. Since the bath temperature could not be controlled to this accuracy, readings were made to the closest 0.005°C. Temperatures were calculated by using the Callender equation

$$t = \frac{R_t - R_0}{\alpha R_0} + \delta \frac{t}{100} \frac{t}{100} - 1) \qquad (IV-2)$$

where

t = temperature in ^{O}C R_{t} = resistance at the temperature t,in abs. ohms R_{O} = resistance at 0 ^{O}C in abs. ohms = 25.498 abs.ohms α = 0.0039254 δ = 1.491

- 68 -

The Thermotrol unit used to control the temperature of the bath was described briefly in the section on the sample bomb thermostat. The Thermotrol proportioned the heat output of the heater connected to it by time cycle modulations. Proper operation was indicated when the pilot light on the Thermotrol unit panel went on and off about once per second in a steady manner. The steps followed to accomplish proper settings on the unit are given in the operating instructions manual for Thermotrol, supplied with the unit. An experimental investigation of the temperature control of the thermostat showed that the temperature control at higher temperatures (above 75^OC) was better than at lower temperatures. This was due to the change in temperature of the coolant, used for temperatures of the thermostat below 75°C, which resulted in an uneven on-off cycle for the heater. At higher temperatures, however, the heat losses to the room were sufficient for cooling purposes and no coolant was needed. The temperature control over the entire range of temperatures,50° to 125°C, studied in this work was found to be within 0.005°C of the set point.

8. Auxiliary Equipment

The auxiliary equipment used in this work was principally a sample charging apparatus with a high vacuum system. Apparatus used for charging a known mass of sample to the sample bomb is shown in Figure 18. Purified gas or gas mix-

- 69 -

Schematic Diagram of the Charging Apparatus Figure 18.

ture was stored in a reservoir, A, which was connected through valves B, C, D, E, and F to the weighing bomb, M, and through valves B, C, D, G, and H to the weighing bomb, N. The charging valve, Q, was also connected to these bombs as shown in Figure 18. The dimensions of the aluminum weighing bomb are presented in Figure 19. The body, S, of the bomb was machined in one piece from an aluminum rod and the closure between the cap, T, also of aluminum, was provided by a viton O-ring, R. Pressure on the O-ring, R, was exerted by tightening the cap, T, in the body, S. The outlet was provided through a needle valve, F, of 316 stainless steel which was threaded through the cap, T. The valve, F, was rated to perform without leakage from vacuum to 3,000 pounds per square inch. The weighing bombs were designed for service up to a pressure of 200 pounds per square inch and were pressure tested at successively higher pressures up to 400 pounds per square inch. The weight of the aluminum weighing bomb along with the valve was about 190 grams and the capacity about 75 ml. It could, therefore, be conveniently weighed on ordinary laboratory precision balances. Also, the material of construction of these weighing bombs permitted their use in the work on hydrogen sulfide.

The vacuum system consisted of a mechanical pump capable of producing a vacuum in the order of 0.5 micron. This vacuum was measured by a McLeod gauge. The tubing,

- 71 -

Figure 19. Weighing Bomb

1

values, and fittings were made of type 316 stainless steel and were rated for 15,000 pounds per square inch at 100° F. The tubing had an outside diameter of one-eighth inch with a bore of one-sixteenth inch.

B. Calibration of Equipment for the Effect of Pressure and Temperature

For an accurate determination of the pressure-volumetemperature data, a knowledge of the effect of pressure and temperature on the apparent volume of the apparatus, including the mercury, is necessary. The dilation of equipment and the compression of mercury with an increase in pressure and the expansion of both equipment and mercury with an increase in temperature can best be determined experimentally. A calibration run called the "blank run" was, therefore, made for this purpose.

1. Procedure

Before starting the blank run, the equipment was cleaned and assembled up to valve Z (excluding the sample bomb) as shown in Figure 1. Keeping valves Y and Z closed, the apparatus was filled with mercury on the test side of the diaphragm differential pressure indicator. On the deadweight gauge side, oil was filled much earlier and the sensitivity adjusted. The apparatus was then pressure tested at 10,000 pounds per square inch and any leaks detected were removed. The sample bomb and components of the charging union were cleaned and washed with acetone and carbon tetrachloride. These were baked in an oven at 200° C under a vacuum of 0.1 mm of mercury for six hours. Upon cooling, the charging valve assembly was connected to the sample bomb; with valves B, D, and K closed as shown in Figure 18, the assembly was evacuated to 0.5 micron for 24 hours. The rupture disc was then seated and the charging valve replaced by the charging union bonnet. The sample bomb and assembly were now connected at Z, as shown in Figure 1, and with valve X closed and valves Y and Z open, evacuated to 0.5 micron for 12 hours.

In the meantime, the temperature of the mercury pump bath was adjusted to 30°C and that of the sample bomb thermostat controlled at 50°C. After evacuation of the sample bomb for 12 hours, valve Y was closed and valves X and Z were opened to a fixed setting. Mercury from the pump was introduced to fill the lines up to the rupture disc. A series of mercury displacement pump readings called the zero-set readings were taken for gauge pressures from 30 to 2,000 pounds per square inch. After these readings were completed the pressure was reduced and the valve E leading to the diaphragm differential pressure indicator was closed and mercury injected until the rupture disc burst. The sample bomb was then filled with mercury from the displacement pump. After allowing about three hours for thermal equilibrium, blank run readings were taken for various gauge pressures from 30 to 5,000 pounds per square inch. Mercury displacement pump readings for each pressure were recorded when the pressure was being increased continuously and also when it was being decreased continuously. The average of these two values was used in the subsequent work. At each pressure one hour was allowed for equilibrium, although, in general, no change was noted after fifteen minutes.

Similar sets of readings were taken at sample bath temperatures of 75⁰, 100⁰, and 125⁰C.

2. ΔV Values

In treating the blank run data, ΔV was defined as the difference between the mercury pump reading at 50°C and zero gauge pressure and the reading at t°C and P gauge pressure

$$^{\Delta V}t, P_{G} = N_{500,0} - N_{t, P_{G}}$$
 (IV-3)

where

$$\Delta V_{t,P_{G}}$$
 = change in volume of equipment due to
change in temperature and pressure,
pump reading in inches

N_{500,0} = displacement pump reading at 50^oC and zero gauge pressure, pump reading in inches

Theoretically the ΔV values based on absolute zero pressure would have been more desirable, but the difference between the gauge pressure and absolute pressure was not sufficient to produce any detectable change in these calculations. $N_{500,0}$ was evaluated by extrapolating the 50°C isotherm to zero gauge pressure. ΔV values for each isotherm are presented in Table IV-1. These values were also plotted against pressure for each isotherm and smooth curves drawn. This graph was used in subsequent calculations and is given in Figure 20.

During the course of this work, the tubing between the sample bomb and the charging union bonnet had to be replaced. This required another blank run. Appendix C includes these ΔV values and a plot of these values against pressure for each isotherm studied. The values given in Appendix C were used for the calculations of volume for the mixtures.

3. Bomb Volume

The volume of the bomb up to the rupture disc was calculated from the 50°C blank run. The volume, as calculations in Appendix D show, was 153.98±0.01 ml.at 50°C and zero gauge pressure for the first part of this work and was

- 76' -

Table IV-1

Calibration of Equipment for the Effect of Pressure and Temperature

^{∆V} t,P _G	(pump scale	reading in ind	ches)
50 ⁰ C	75 ⁰ C	100°C	125 ⁰ C
-0.001	0.070 0.142		0.219
-0.002	0.069 0.141		0.2175
-0.003	0.068 0.140		0.216
-0.004	0.067 0.139		0.215
-0.005	0.066 0.1375		0.214
-0.006	0.065	0.065 0.136	
-0.007	0.064	0.135	0.212
-0.008	0.063	0.134	0.211
-0.009	0.062	0.133	0.210
-0.010	0.061 0.132		0.209
-0.013	0.059	0.130	0.207
-0.015	0.057	0.128	0.205
-0.017	0.055	0.126	0.203
-0.019	0.053 0.124		0.201
-0.021	0.051 0.122		0.199
-0.0235	0.049 0.120		0.197
-0.0255	0.047 0.1175		0.1945
-0.020	0.045 0.1155		0.1925
-0.030	0.043 0.1135		0.190
-0.032	0.041 0.111		0.188
-0.034	0.039	0.1085	0.186
-0.036	0.037	0.1065	0.184
-0.038	0.035	0.1045	0.182
-0.040	0.033	0.1025	0.180
-0.042	0.031	0.1005	0.178
	$\begin{array}{c} -0.001 \\ -0.002 \\ -0.003 \\ -0.004 \\ -0.005 \\ -0.006 \\ -0.007 \\ -0.008 \\ -0.009 \\ -0.010 \\ -0.013 \\ -0.015 \\ -0.015 \\ -0.017 \\ -0.017 \\ -0.019 \\ -0.021 \\ -0.0235 \\ -0.0255 \\ -0.0255 \\ -0.0255 \\ -0.020 \\ -0.030 \\ -0.032 \\ -0.034 \\ -0.036 \\ -0.038 \\ -0.040 \end{array}$	$50^{\circ}c$ $75^{\circ}c$ -0.001 0.070 -0.002 0.069 -0.003 0.068 -0.004 0.067 -0.005 0.066 -0.006 0.065 -0.007 0.064 -0.008 0.063 -0.009 0.062 -0.010 0.061 -0.015 0.057 -0.017 0.055 -0.017 0.055 -0.021 0.051 -0.0255 0.047 -0.020 0.045 -0.030 0.043 -0.034 0.039 -0.038 0.035 -0.040 0.033	$50^{\circ}C$ $75^{\circ}C$ $100^{\circ}C$ -0.001 0.070 0.142 -0.002 0.069 0.141 -0.003 0.068 0.140 -0.004 0.067 0.139 -0.005 0.066 0.1375 -0.006 0.065 0.136 -0.007 0.064 0.135 -0.008 0.063 0.134 -0.009 0.062 0.133 -0.010 0.061 0.132 -0.013 0.059 0.130 -0.015 0.057 0.128 -0.017 0.055 0.126 -0.019 0.053 0.124 -0.021 0.051 0.122 -0.0255 0.047 0.1175 -0.020 0.045 0.1135 -0.030 0.043 0.1135 -0.034 0.039 0.1085 -0.038 0.035 0.1045 -0.040 0.033 0.1025

Table IV-1 (continued)

 $\Delta V_{t,P_{G}}$ (pump scale reading in inches)

Pressure psig	50 ⁰ C	75 ⁰ C	100 ⁰ C	125 ⁰ C
2200	-0.046	0.027	0.0965	0.174
2400	-0.0505	0.023	0.0925	0.170
2600	-0.0545	0.019	0.088	0.166
2800	-0.059	0.015	0.084	0.162
3000	-0.063	0.011	0.080	0.158
3200	-0.067	0.007	0.076	0.154
3400	-0.071	0.003	0.072	0.150
3600	-0.075	-0.001	0.068	0.146
3800	-0.079	-0.005	0.064	0.142
4000	-0.083	-0.009	0.060	0.138
4200	-0.087	-0.013	0.056	0.134
4400	-0.091	-0.017	0.052	0.130
4600	-0.095	-0.021	0.048	0.126
2800	-0.099	-0.025	0.044	0.122
5000	-0.103	-0.029	0.040	0.118

- 79

153.84±0.01 ml. for work on the mixtures of ethane and hydrogen sulfide.

C. <u>Sample Preparation</u>

1. Source of Ethane and Hydrogen Sulfide

Research grade ethane was obtained from the Phillips Petroleum Corporation. Infrared and mass spectrometer determinations showed the purity of this gas to be 99.96 mole percent. This purity was considered to be sufficiently high and no attempt was made to purify the gas any further.

Hydrogen sulfide was procured from Matheson of Canada Limited. Purity of this C.P. grade hydrogen sulfide was stated to be 99.5 mole percent minimum. For further purification, this gas was passed through two driers, consisting of Jerguson liquid level gauges made from 316 stainless steel, one filled with anhydrous calcium chloride and the other with Drierite (calcium sulfate). The gas was then collected in evacuated aluminum weighing bombs. These bombs were cooled in a liquid air bath and then evacuated to less than 0.5 micron pressure to remove the non-condensibles. It was found that the vapor pressure at 50° C changed less than 0.5 atmosphere upon a change in the fraction vaporized from 0.05 to 0.85. A comparison with the work on hydrogen sulfide by Reamer, Sage and Lacey⁽⁷⁶⁾ indicated that the hydrogen sulfide content of the sample was at least 99.8 mole percent. Withdrawal of the sample yielded approximately 99.9 mole percent hydrogen sulfide on chromatographic analysis.

2. Mixture Preparation

Mixtures were prepared in a 500 ml. capacity stainless steel cylinder rated for 1800 psi working pressure. This cylinder was connected at its lower opening through a valve to a Heise gauge and a mercury displacement pump, having a volumetric capacity of 250 ml. At the upper opening it was connected through a valve and a cross to the sources of ethane and hydrogen sulfide, and also to the sample charging apparatus at the valve B as shown in Figure 18. A check valve of monel with viton O-ring was put in the line from the ethane cylinder so that ethane gas could not be contaminated by hydrogen sulfide.

To prepare the mixture, the cylinder was cleaned and evacuated and the level of mercury brought up to the valve on top of the cylinder by means of the mercury displacement pump. Hydrogen sulfide, being the least volatile of the two compounds, was introduced first and at the same time mercury withdrawn from the cylinder. Depending on the composition of the mixture required, a definite amount of mercury was withdrawn and after the valve from the hydrogen sulfide source was closed, the reading of pressure on the Heise gauge for the amount of mercury withdrawn was noted. Now the valve leading to the ethane cylinder was opened and ethane introduced into the cylinder at higher pressure than the pressure in the cylinder by withdrawing more mercury. After closing the valve on the line for ethane gas, the pressure in the cylinder was brought to the original valve and the total volume of the gas determined. Amagat's law of additive volumes was then used to estimate approximately the composition of the mixture. The composition of the mixture could be changed by introducing more ethane gas into the cylinder. After the desired composition of the mixture was achieved, mercury from the displacement pump was used to thoroughly mix the mixture. The analysis of the mixture was done on a gas chromatograph.

3. Analysis of the Mixture

A Burrell K-2 Kromo-tog was used for analyzing the composition of the mixture. A two meter long glass column of the hairpin type packed with 30 percent ansul ether on fire brick was used. A thermal conductivity detector was employed and helium was the carrier gas. Other variables were maintained at the following conditions:

Carrier gas flow rate	:	78.5 ml./min.
Column temperature	:	100 ⁰ F
Detector current	:	200 mA
Sample size	:	1.12 ml.

Excellent separation with sharp, well-defined peaks was obtained. Several mixtures containing both ethane and hydrogen sulfide were prepared by using the technique described in the last section. Pressure in each case was maintained at 1 pound per square inch gauge and the composition was calculated by using the law of additive volumes. Pure samples of ethane and hydrogen sulfides, and samples of these mixtures were analyzed on the chromatograph. Peak heights for ethane and hydrogen sulfide fractions were plotted against the mole percent of ethane in the samples. These calibration curves are presented in Appendix C.

The gas mixtures studied for the volumetric behavior were also analyzed on a Beckman GC2 chromatograph. The following conditions were maintained:

Columns (in series)	:	8' x ¼" S.S 20% di-2-
		ethyl hexylsebacate and
		10' x ¼" S.S 32.2%
		dimethylsulfolane on acid
		washed chromosorb P
Column Temperature	:	37 ⁰ C
Detector	:	Thermal conductivity cell

- 83 -

Filament current	:	250 mA
Carrier gas	:	Helium
Flow rate	:	70 ml/min.
Sample size	:	1.0 ml.

Agreement between the two analyses was within 0.3 percent.

D. Sample Charging Procedure

Weighings

The mass of the sample was determined by the difference in weights of the aluminum weighing bombs before and after the sample was charged to the sample bomb. All the weighings were made on a sensitive Fisher Gram-atic balance. All necessary precautions were taken in handling the weighing bombs. Before each weighing the bombs were cleaned thoroughly with ether and dried in a desicator for two hours. Each bomb was transferred to the weighing pan by using a pair of tongs and one-half hour was allowed for it to attain ambient temperature. The mass of the sample thus determined was within 0.2 milligram of the actual mass.

2. Filling the Weighing Bombs

The weighing bombs were connected to the vacuum system as shown in Figure 18. Valves C, D, E, F, G, and H were opened keeping B and J closed and system evacuated to

- 84 -

0.5 micron for 6 hours. Valve L was then closed and valve B from the reservoir A containing either the pure gas or mixture, was opened to transfer the sample into the weighing bombs. After the transfer of gas sample, the valves B, C, E, F, G, and H were closed, the weighing bombs were disconnected, cleaned and put into a desiccator. Two hours later, the weighing bombs were weighed and sample size adjusted either by purging excess gas out or by introducing more gas. The weighing bombs were again connected to the charging system and keeping valves F and H closed, and opening valves C, D, E, G, and L, evacuation was continued for one hour. After closing E and G, the weighing bombs were desiccated and weighed again. Constancy of weight indicated absence of any leaks.

3. Charging the Sample Bomb

The charging union and sample bomb were cleaned, baked at 200°C under vacuum for six hours, assembled and connected to the charging system as described in Section B-1 of this chapter. Keeping valves B, F, H, K closed and valves L, C, D, E, and G open, the system was evacuated for 24 hours under a vacuum of 0.5 micron. The sample bomb was cooled with liquid air for one hour and the vacuum system was shut off by closing valve F and then the weighing bomb valves F and H were opened. After 15 minutes the weighing bomb valves were closed and another 15 minutes were allowed 0.5 micron for 6 hours. Valve L was then closed and valve B from the reservoir A containing either the pure gas or mixture, was opened to transfer the sample into the weighing bombs. After the transfer of gas sample, the valves B, C, E, F, G, and H were closed, the weighing bombs were disconnected, cleaned and put into a desiccator. Two hours later, the weighing bombs were weighed and sample size adjusted either by purging excess gas out or by introducing more gas. The weighing bombs were again connected to the charging system and keeping valves F and H closed, and opening valves C, D, E, G, and L, evacuation was continued for one hour. After closing E and G, the weighing bombs were desiccated and weighed again. Constancy of weight indicated absence of any leaks.

3. Charging the Sample Bomb

The charging union and sample bomb were cleaned, baked at 200°C under vacuum for six hours, assembled and connected to the charging system as described in Section B-1 of this chapter. Keeping valves B, F, H, K closed and valves L, C, D, E, and G open, the system was evacuated for 24 hours under a vacuum of 0.5 micron. The sample bomb was cooled with liquid air for one hour and the vacuum system was shut off by closing valve F and then the weighing bomb valves F and H were opened. After 15 minutes the weighing bomb valves were closed and another 15 minutes were allowed for the sample in the lines to transfer into the sample bomb. The rupture disc was then seated and the liquid air bath removed. If the rupture disc was not seated properly, the sample leaked out of the sample bomb and the run was discarded.

4. Mercury Introduction and Zero-Set Readings

After the sample was confined into the sample bomb, the charging union was replaced by the union nut. The bomb was then mounted on its carriage and placed in the sample bomb thermostat. It was connected to the valve Z as shown in Figure 1 and lines up to the rupture disc and valve X were evacuated to 0.5 micron for 12 hours. With valve Y closed and valves X and Z opened to a fixed setting, fixed during calibration run, mercury was introduced from the displacement pump to fill the lines up to the rupture disc. The temperature of the sample bomb thermostat was adjusted at 50°C and that of the mercury pump thermostat at 30°C. The position of the piston of the mercury displacement pump was brought to the reading during the calibration run. After allowing two hours for thermal equilibrium, zero-set readings were taken and the disc ruptured as described previously.

E. Pressure-Volume-Temperature Measurements

1. Procedure

After rupturing the disc, another 2 ml. of mercury was injected to confine all the sample into the bomb. The reading of the mercury pump was never brought below this value in any run to avoid having the gas in the mercury lines. About one hour was allowed before any data points were taken. Weights were placed on the dead-weight gauge pan to balance the pressure of the gas in the sample bomb. The data for the point was recorded if the reading did not change for 10 minutes. The mercury pump reading was then increased for the next point and the pressure increase balanced by adding more weights on the pan. When the pressure increased to more than 2400 pounds per square inch, the low pressure range piston

On the completion of readings for increasing pressure, the readings for decreasing pressure were taken; mean values for these observations were calculated and used in the calculations for compressibility factors. Similar procedure was followed for other isotherms.

2. Data Recorded

For each isotherm, Mueller bridge setting and the Thermotrol unit setting were noted. For individual P-V-T

measurements the following data were recorded:

- 1) date
- 2) time
- 3) room temperature
- 4) barometric pressure
- 5) barometric temperature
- 6) mercury displacement pump reading
- 7) load on dead-weight gauge

3. Range of Temperature, Pressure and Volume

Measurements were made between 50° and 125°C while the pressure range covered was from 50 to 5000 pounds per square inch. At much lower pressures the change in volume with pressure was too high to permit coverage of a 'large pressure range with one sample charge. At higher pressures this change in volume was very small and also a very large mass of sample charge was needed. The volume a gas sample could occupy was limited to 150 mL because of the size of the sample bomb. The lower limit was determined by the uncertainties introduced in the measurement of volume of the gas sample in the bomb. The minimum total volume that could be measured without too large an uncertainty was 7 ml.

F. Volume Calculations

1. Approximate Volume Calculations

The only difference between the P-V-T measurements run and the blank run is that a certain quantity of mercury has been removed from the sample bomb at $t^{O}C$ and introduced into the mercury displacement pump at $30^{O}C$. The calculations, therefore, require a knowledge of the thermal expansion of mercury. Gas volumes are expressed in terms of the volume of mercury at 1 atmosphere pressure and the temperature under consideration.

The zero-set volume, V_z , is calculated from the zero-set readings and is given by the equation

$$V_z = aN_z + \delta V_z \qquad (IV-4)$$

where

- N_z = pump reading at 30^oC and zero gauge pressure, inches
- a = average volume displacement per inch of piston displacement, 7.0139 ml. Hg at $30^{\circ}C$ δV_{π} = pump calibration, ml. Hg at $30^{\circ}C$

The zero-set volume plus the volume of the sample bomb gives the bench volume V_{bench} .

$$V_{\text{bench}} = V_z + V_{\text{bomb}}$$
 (IV-5)

- 90 -

where

 $V'_{t,P}$, the volume of mercury at 30^oC required to fill the equipment at any given temperature, t, and pressure, P, is given by

$$V'_{t,P} = aN' + \delta V'$$

= $V_{bench} - a\Delta V$ (IV-6)

where

- N' = the displacement pump scale reading at temperature t and pressure P with the bomb. filled with mercury, inches
- $\delta V' =$ the displacement pump calibration at N', ml. Hg at 30^OC

When part of the sample bomb volume is occupied by the sample, the volume of mercury at 30° C in the system at temperature t and pressure P is given by

$$V_{t,P} = aN + \delta V \qquad (IV-7)$$

where

- N = pump scale reading at t and P with sample in the bomb
- δV = displacement pump calibration at N, ml. Hg at 30^OC

Let m be the number of grams (moles) of sample in the bomb, and let V be the specific (molal) volume at temperature t and pressure P. The volume occupied by the sample, mV, is then given by

$$mV = (V'_{t,P} - V_{t,P}) \frac{d_{30}}{d_{t}}$$
 (IV-8)

where

Combining these various equations,

$$mV = \begin{bmatrix} V_{\text{bench}} - a(N+\Delta V) - \delta V \end{bmatrix} \begin{pmatrix} \frac{d_{30}}{d_t} \end{pmatrix}$$
 (IV-9)

2. Volume Corrections

The three corrections, D_1 , D_2 , and D_3 , commonly made are individually described as follows:

a) D_1 is the correction for the change of the compressibility of mercury with temperature and for the compressibility of the steel piston withdrawn from the displacement pump. During the compressibility run, approximately mV ml. of mercury which was at t^o in the blank run has been withdrawn into the mercury displacement pump at 30°C. Also, a volume mV of steel piston has been withdrawn from the pump. The temperature coefficient of the compressibility of mercury ⁽⁹⁴⁾ ($\frac{1}{V} \frac{\partial}{\partial T} \frac{\partial V}{\partial P}$) is 5.5 x 10⁻⁹ per atmosphere-^oC and the coefficient of compressibility of steel ($\frac{1}{V} \frac{\partial V}{\partial P}$) is 5.8 x 10⁻⁷ per atmosphere. Integrating from t to 30°C at 1 atmosphere and from 1 to P' atmospheres, and combining gives

$$D_{1} = \left[5.8 \times 10^{-7} + 5.5 \times 10^{-9} (t-30)\right] (P'-1) (mV) (IV-10)$$

b) D₂ is the correction for the increase in sample volume due to vaporization of liquid mercury. It is given by

$$D_2 = \frac{(A) (P_{Hg}) (mV)}{RTd_+}$$
 (IV-11)

where
P_{Hg} = vapor pressure of mercury at T^OK and under total pressure P

This correction is negligible for temperatures below 200°C.

c) D₃ corrects for the changes in volumes of lines and valves with change in room temperature. It is given by the expression

$$D_{3} = \frac{(0.00235)(t_{rz} - t_{r})v}{d_{30}}$$
 (IV-12)

where

t_{rz} = room temperature during the zero set reading, ^OC

v = volume of mercury lines at room temperature in ml. Hg at $30^{\circ}C$

The final equation for the calculation of total volume occupied by the gas is expressed as

$$mV = \begin{bmatrix} V_{\text{bench}} - a(N + \Delta V) - \delta V \\ - D_1 + D_2 + D_3 \end{bmatrix} \frac{d_{30}}{d_t}$$
(IV-13)

An example illustrating the use of these equations to calculate the volume occupied by the gas is given in Appendix E.

V. EXPERIMENTAL RESULTS

A. Range of Investigation

The results of over eight hundred measurements performed in determining the volumetric behavior of ethane, hydrogen sulfide, and mixtures of ethane and hydrogen sulfide are included in Appendix F. Isotherms at 50° to 125°C were studied at pressures up to 5000 pounds per square inch.

Very accurate compressibility data for ethane are available in the literature. The volumetric behavior of ethane was investigated at a temperature of 50°C, and pressures up to 5000 pounds per square inch to assess the performance of the equipment. Specific volumes and compressibility factors for pressures from 226 to 5019 pounds per square inch are presented in Table F-1. A plot of compressibility factor versus pressure is given in Figure 21.

The pressure-volume-temperature data of hydrogen sulfide were measured at 50° , 71.11° , 75° , 100° , 104.44° , and 125° C from about 100 to 5000 pounds per square inch and are presented in Table F-2. Plots of compressibility factor versus pressure for these six temperatures are presented in Figure 22.

Tables F-3, F-4, F-5, and F-6 include the compressibility data for mixtures of ethane and hydrogen sulfide containing 77.55, 63.52, 39.95, and 21.42 mole percent ethane

- 94 -

Figure 21. Compressibility Factor of Ethane at 50°C

- 95 -

Figure 22. Compressibility Factor of Hydrogen Sulfide

respectively. Four isotherms at 50° , 75° , 100° , and $125^{\circ}C$ and pressures up to 5000 pounds per square inch were studied for each mixture.

B. Estimation of Accuracy

In order to estimate the overall accuracy of the experimental pressure-volume-temperature measurements, the systematic errors in the measurements of temperature, pressure, volume, mass, and composition of the sample are considered separately as follows:

1. Temperature Measurement

Although temperatures were controlled to $\pm 0.005^{\circ}$ C and measured with a precision in the order of $\pm 0.002^{\circ}$ C, the uncertainty in the temperature measurement was much higher owing to the low accuracy of the calibration for the platinum resistance thermometer and the Mueller bridge. The resistance coils in the temperature bridge were not maintained at a constant temperature by provisions in the instrument. Therefore, this caused some uncertainty in the resistance measurement. It was estimated that $\pm 0.02^{\circ}$ C was probably the limit of the accuracy in the temperature measurement.

2. Pressure Measurement

Errors in the determination of pressure arose from various causes, the resolution of the dead weight gauge-

differential pressure indicator system, the elastic distortions in the piston and cylinder due to pressure, the determination of the gauge temperature, the reading of the barometer, and the differential pressure indicator zero shift. Although the resolutions observed were in the order of ±0.01 pounds per square inch, the overall estimated error in the measurement of pressure was ±0.02 percent at pressures above 2400 pounds per square inch for the high pressure range pistoncylinder assembly and increased to ±0.05 percent for low pressures near empty weight of the low pressure range.

3. Measurement of Volume

In the compressibility determinations, the measurement of volume was the least reliable. Factors contributing to the volumetric uncertainties were: the displacement pump calibration; the determination of the sample bomb volume; the measurements of the blank run; and the readings of the pump. Since the possible error in any pump reading was ± 0.001 inch, the uncertainties in the sample bomb volume measurement, the blank run measurement, and the compressibility reading were ± 0.002 inch each. A total error of ± 0.006 inch, which corresponded to ± 0.042 ml., was estimated to be the error from these sources. As the pump calibration introduced an error of ± 0.011 ml., the overall error thus became ± 0.053 ml.

- 98 -

Measurements were generally made at sample volumes greater than 7 ml., thus keeping volume errors within 0.75 percent.

4. Measurement of Sample Mass

The mass of the sample was determined by difference between two independent weighings. As pointed out earlier, the mass of the sample was subject to an uncertainty of ± 0.2 milligram which corresponds to a maximum error of ± 0.03 percent for a sample mass of about 0.6 gram.

5. Measurement of Composition

The composition of the mixtures was determined by two independent analyses on two chromatographs as described earlier. The agreement between these values was within 0.3 percent. Although the composition of the mixtures does not come into the calculations for the compressibility factor, it is used in determining the dependence of the mixture properties on composition.

In summarizing, the following limits of the systematic errors for the pressure-volume-temperature measurements are considered realistic:

- 99 -

Temperature	±0.02 ⁰ C
Pressure	±0.05 percent
Volume	±0.75 percent
Sample Mass	±0.03 percent

Maximum Error

±0.3 percent

C. Reproducibility of Data

Composition

During the measurement of the pressure-volumetemperature data, several different sizes of sample were selected to provide enough overlap in the volume ranges covered by different samples. The agreement of the volume and compressibility factor measurements in the overlapping area indicated an excellent reproducibility of data. The compressibility factors thus obtained were consistent and reproducible to within 1 percent.

In the volumetric determinations for the mixture containing 78.58 percent hydrogen sulfide, an analysis of the sample withdrawn from the sample bomb after completion of the compressibility run indicated a slight decomposition of hydrogen sulfide. The amount decomposed was less than 0.3 percent by volume of the hydrogen sulfide in the mixture. Contact with mercury and high temperature over a sufficiently long period of time were the most likely reasons for this occurrence.

D. Data Smoothing Techniques

In a procedure used for extrapolation of P-V-T data to zero pressure and for smoothing the data, Equation (II-5) is particularly valuable when truncated to three terms and rearranged as follows:

$$(Z-1)(V) = B + \frac{C}{V}$$
 (V-1)

Experience ⁽¹⁰⁵⁾ with reliable data has shown that Equation (V-1) is in fact valid up to moderate pressures. The quantity (Z-1) (V) becomes very sensitive to small experimental errors as $\frac{1}{V}$ or P approaches zero. Hence data for low pressures can be expected to scatter, and this throws greater weight on the data at higher pressures.

The plots of (Z-1)(V) versus $(\frac{1}{V})$ were prepared for each of the four mixtures of ethane and hydrogen sulfide and a factor was determined which when multiplied by the experimentally observed compressibility factors gave plots of (Z-1)(V) versus $(\frac{1}{V})$ which were more nearly linear in the low and moderate pressure region for each isotherm studied. These plots are shown in Figures 23 through 26. The effect of this multiplying factor is shown in Figure 24 where the experimentally observed and revised compressibility factors are both used to prepare the (Z-1)(V) versus $(\frac{1}{V})$ plots. The multiplying factor varied from 0.993 to 1.006. These revised compressibility factors were used for data correlation

Figure 23. Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane

(1/V) 1b mole/cu ft.

Figure 24. Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane

Figure 25. Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane

Figure 26. Smoothing Plots for Ethane-Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane

and are presented in Tables F-3, F-4, F-5, and F-6 for mixtures of ethane and hydrogen sulfide containing 0.7755, 0.6352, 0.3995, and 0.2142 mole fraction ethane respectively.

The revised compressibility factor versus pressure plots for the four mixtures of ethane and hydrogen sulfide are presented in Figures 27 through 30. Interpolated values of the revised compressibility factors at even values of pressures for the four mixtures of ethane and hydrogen sulfide are tabulated in Table F-7. Plots of compressibility factor versus composition at temperatures of 50° , 75° , 100° , and 125° C, each at pressures of 100, 500, 1000, 2000, and 5000 pounds per square inch, showing the isobaric effect of composition on the compressibility factor, are given in Figures 31 through 34.

Figure 27. Compressibility Factors of Ethane-Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane

- 108 -

Pressure, psia

Figure 28. Compressibility Factors of Ethane-Hydrogen Sulfide System - 0.6352 Mole Fraction Ethane

Figure 29. Compressibility Factors of Ethane-Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane

- 109 --

Pressure, psia

Figure 30. Compressibility Factors of Ethane-Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane

- 110. --

- 111 -

Composition - Mole Fraction Ethane

Figure 31. Isobaric Effect of Composition on Compressibility Factor for Ethane-Hydrogen System at 50°C

Figure 32. Isobaric Effect of Compsotion on Compressibility Factor for Ethane-Hydrogen Sulfide System at 75°C

- 113 -

- 114 -

Figure 34. Isobaric Effect of Composition on Compressibility Factor for Ethane-Hydrogen Sulfide System at 125°C

E. Comparison with Literature Values

The value of the compressibility factor for ethane have been presented in Figure 21. Also shown in the same figure are values from the literature. As pointed out earlier, the volumetric behavior of ethane at 50°C was studied to assess the performance of the equipment. An excellent agreement between the experimental values obtained in this work and the results reported in the literature, as shown in Figure 21, indicated that the equipment was working satisfactorily.

Although volumetric behavior of hydrogen sulfide had been studied by Reamer, Sage, and Lacey⁽⁷⁶⁾, it was considered desirable to check the reported values before studying the compressibilities of the mixtures of ethane and hydrogen sulfide. During the work on hydrogen sulfide, leakeage problems were encountered. Most of the runs made during this stage of the work were discarded. However, the work was of some value since an indication of the purity of the hydrogen sulfide could be obtained from the change in vapor pressure with the fraction of liquid hydrogen sulfide vaporized.

Two isotherms, one at $160^{\circ}F$ and the other at $220^{\circ}F$, were studied so that a comparison of the compressibility factor versus pressure plots could be made at the desired temperature without interpolation. Figure 35 shows a comparison of the volumetric behavior of hydrogen sulfide at $160^{\circ}F$ between this work and the literature values. In Figure 36 a similar

- 115 -

- 116 -

Figure 36. Compressibility Factor of Hydrogen Sulfide at 220°F

- 117 -

comparison is presented at 220^oF. The values of compressibility factor compare closely to the ones reported by Reamer, Sage, and Lacey⁽⁷⁶⁾, while the scant values obtained from the work by West⁽¹⁰⁶⁾ do not compare favorably.

In investigating the compressibility properties of hydrogen sulfide, the sample size was quite small. This lead to an uncertainty of as high as 3.5 percent in the volumetric determinations. Since the agreement between the investigation reported by Reamer Sage, and Lacey and this work is good and the former covers a wider range of temperatures and pressures, those values were used in data correlation.

Because the volumetric data reported in the literature on the system ethane-hydrogen sulfide is limited to values along the vapor-liquid boundaries, it was considered desirable to test the consistency of the data by using an existing generalized correlation. The method proposed by Curl and Pitzer⁽²²⁾ was chosen on the basis of some of the arguments given in the section on theory, and also because values of ω are available for both ethane and hydrogen sulfide. It is possible to obtain an <u>a priori</u> estimate of the interaction term ω_{12} without using the data on mixtures by comparison with other systems studied and consideration of the various factors affecting intermolecular forces. However, the value of the acentric factor for both ethane and hydrogen sulfide are very close to 0.1 and an analogy

with either the square root mixing rule or linear combination rule indicates that a value of 0.1 can be used for the mixture as well. The work of Kay and Brice (41) was utilized to get the values of the critical constants for the mixtures. By using the tabulations of $Z^{(0)}$ and $Z^{(1)}$ and Equation (II-23), the compressibility factor versus pressure plots for the mixtures were calculated. Figures 37 through 40 show the comparison between the experimental values and the values obtained from Pitzer's correlation. The agreement between these two sets of compressibility factors is good for mixtures 1 and 2 over the entire range of temperatures and pressures. In the case of mixtures number 3 and 4, with higher hydrogen sulfide content, the agreement between the predicted and experimental values is good up to pressures where the minimum in the compressibility is encountered. At higher pressures the predicted compressibility factors are lower than the experimental values. The maximum deviations in the compressibility factor, however, does not exceed 5 percent.

- 119 -

Figure 37. Comparison between Predicted and Experimental Compressibility Factors for Ethane-Hydrogen Sulfide System - 0.7755 Mole Fraction Ethane

Figure 38. Comparisor between Predicted and Experimental Compressibility Factors for Ethane-Hydrogen Sulfide System - (.6352 Mole Fraction Etane

Figure 39. Comparison between Experimental and Predicted Compressibility Factors for Ethane-Hydrogen Sulfide System - 0.3995 Mole Fraction Ethane

Figure 40. Comparison between Predicted and Experimental Compressibility Factors for Ethane-Hydrogen Sulfide System - 0.2142 Mole Fraction Ethane

VI. DATA CORRELATION

Various equations of state were used for the purpose of data correlation. As was mentioned earlier, the procedure of fitting the data with Forsythe polynomials requires data at even increments of temperature and pres-The experimental data were collected at temperatures sure. which do not require interpolation for this purpose: the data, however, have to be generated at some fixed values of pressure at each temperature. A Lagrangian interpolation scheme which has been described in Appendix A was therefore used to evaluate compressibility factors at even increments of pressure. Each of the equations used for the correlation of data will now be discussed individually and comparisons between alternative methods of evaluating constants of these equations will be made. All calculations were made in double precision arithmetic so that values of the constants could be reported to eight significant figures.

A. The Benedict-Webb-Rubin Equation of State

The eight-constant BWR equation was fitted to the experimental data by using the procedure described in Appendix A. It was found that a check of inversion in which the matrix is multiplied by its inverse does not yield

- 124 -

a matrix which could be regarded as an identity matrix. This was an indication of ill-conditioning of the matrix and was most probably caused by the inordinately large differences in the order of magnitude of the elements, $\sum_{n=1}^{\Sigma} G_{in}G_{nj}$, of the matrix to be inverted. If the terms $G_1, G_4, and G_6$ in Equation (II-64) were multiplied by a factor of 10⁴, and the terms G_3 and G_7 multiplied by a factor of 10¹⁰, the resulting matrix could be inverted without encountering any ill-conditioning. This multiplication procedure acts as a sort of normalization of the equations. The new constants K_1 , K_4 , and K_6 obtained in this manner have to be multiplied by a factor of 10¹⁰ to get the constants of the BWR equation. When the check of inversion was done on the inverted matrix thus obtained the off-diagonal elements were in the order of magnitude of 10⁻¹⁰. An improvement of this matrix was therefore not considered necessary.

In Appendix A, it was mentioned that a search was first made for the region where a minimum for the sum of the squares of the residuals exists. After this range of γ was fixed, a loop in which a search for the minimum of the sum of the squares of the residuals with respect to γ is made was included in the program. This procedure was followed because the function to be minimized may have a few local minima and if a suitable initial guess and step size for γ is not chosen the constants obtained may not correspond to the values for the least squares criterion.

The value of the coefficients for the BWR equation for ethane, hydrogen sulfide, and four mixtures of these gases are presented in Table VI-1. Plots of these coefficients versus the composition of the mixtures of ethane and hydrogen sulfide are shown in Figures 41 and 42. The range of temperatures covered is from 50° to 125°C and the range of pressures is from 100 to 5000 pounds per square inch, the volume in cubic feet per pound mole, and the temperature in degrees Rankine.

Benedict, Webb, and Rubin⁽⁹⁾, applying their equation to represent the volumetric behavior of light hydrocarbons reported average deviations of 0.34, 0.31, 0.40, and 0.31 percent for methane, ethane, propane, and n-butane respectively. Opfell, Pings, and Sage⁽⁶¹⁾ have used the BWR equation for hydrocarbons and mixtures and reported deviations in the order of magnitude encountered in this work. It is, therefore, concluded that the BWR equation with the constants given in Table VI-1 may be considered to represent the volumetric behavior of ethane, hydrogen sulfide, and their mixtures reasonably well.

It is, however, to be noted that the constants may not follow the mixing rules represented by Equations (II-31) through (II-39) in Chapter II. In reviewing the results

	Coefficients of	1	t ion for Ethan	BWR Equation for Ethane Hydrogen Sulfide	lfide System	
		(Us	(Using Smoothed	Data)		
Mole Fraction Ethane	1	0.7755	0.6352	0.3995	0.2142	0
Coefficient:						
(A ₀) (10 ⁻⁴)	0.96866289	1.0347570	1.1625054	1.2436617	1.1228093	1.0639143
Bo	0.49349980	0.59999996	0.65548757	0.72293568	0.60753777	0.55487374
(c _o) (10 ⁻¹⁰)	0.29509824	0.26124247	0.23435085	0.22125978	0.24634821	0.29667988
(a) (10 ⁻⁴)	2.9342758	2.5550004	2.0433467	L.4708727	0.86129949	0.65547071
q	3.6102697	3.0000000	2.5790243	1.8940810	1.2386173	0.89121047
(c) (10 ⁻¹⁰)	0.70423470	0.62358774	0.54290265	0.46095114	0.34718644	0.33878594
8	0.72298276	0.51255685	0.53264576	0.42815620	0.42190993	0.34183848
٢	2.4715729	1.8643150	1.9858265	1.6125393	1.3182678	1.0151501
Average Deviation	0.00170	0.00225	0.00116	0.00122	0.00222	0.00210
Average % Deviation	0.28016	0.36903	0.19344	0.24460	0,46318	0.63732
Standard Error of Estimate	0.00625	0.00364	0.00157	0.00171	0.00340	0.00324

TABLE VI-1

Figure 41. Coefficients of the BWR Equation for Ethane-Hydrogen Sulfide System - B_0 , b, α , γ

Composition - Mole Fraction Ethane Coefficients of the BWR Equation for Figure 42. Ethane-Hydroge. Sulfide System - A_0 , a. C_0 , c. aa

8.0

7.0

6.0

5.0

obtained in describing the behavior of mixtures with the BWR equation of state, Opfell, et al⁽⁶¹⁾ have reported that although Benedict's combining rules have yielded results which have proven most useful, they were not aware that the square-root, cube-root or linear average of the coefficients for the components has any basis in theory. Although the equation was developed for use with hydrocarbons, it has been tested on other compounds and mixtures. However, the prediction of mixture properties based on Benedict's combining rules has given poor results when systems were not entirely composed of hydrocarbons.

Eakin and Ellington⁽²⁸⁾ studied the application of the BWR equation to hydrocarbon-carbon dioxide mixtures. Two sets of carbon dioxide constants for the BWR equation, one for mixtures containing less than 40 mole percent carbon dioxide and another for remaining mixtures, had to be developed to obtain desired accuracies. Even with these two sets of constants, the carbon dioxide rich mixtures had an average deviation between the observed pressures and those predicted by the use of the constants in the BWR equation of 2.76 percent. Sass, Dodge, and Bretton⁽⁸⁹⁾ in their study on the ethylene-carbon dioxide system have reported the inadequacy of the mixing rules to predict the apparent maxima and minima which occur for the constants From the work of Eakin and Ellington⁽²⁸⁾ it was concluded that two sets of carbon dioxide constants for the BWR equation were required because they forced the data to obey Benedict's mixing rules. It was, therefore, desirable to evaluate the constants for ethane, hydrogen sulfide, and each mixture of these gases to see if the constants did obey the mixing rules proposed by Benedict.

The plots in Figures 41 and 42 indicate the composition dependence of the coefficients of the BWR equa-Because of the apparent maxima and minima which tion. occur for the constants A_0 , B_0 , and C_0 and which cannot be obtained by using the linear, square root, cube root or the Lorentz mixing rules, the general mixing rule given by Equation (II-27) was used. The first step in determining the composition dependence of the BWR equation constants was to fit the mixture constants by least squares criterion to get a set of constants for the pure components and the interaction constants. The fit was not very good and deviations as high as 11 percent were encountered. Using the values of these 24 constants, the compressibility factors for the mixtures was calculated. The average percentage deviation for 639 points checked was 3.3 percent.

As pointed out earlier, a relatively large number of combinations of values of the coefficients may be employed to yield comparable accuracy in describing the

y . . .

volumetric behavior of gases. Because the coefficients are interrelated and a small variation in one without appropriate changes in the others introduces a large variation in the results, a poor prediction of the compressibility factors is to be expected when each coefficient is correlated separately. A better procedure would be to incorporate the mixing rule in the data correlation scheme and determine the constants directly. In this case twenty-four constants have to be deter-If the values of γ for the two pure components mined. are assumed and the linear square root combination rule is also assumed to apply, only twenty-one constants have to be evaluated as a solution of twenty-one simultaneous linear equations. In this correlation the data for pure The values of the components and four mixtures were used constants are given in Table VI-2. In performing the calculations a was considered as a constant and the mixing rule given in Equation (II-27) applied to it. The reported values of α are, therefore, the ratios of $a\alpha$ and a. The average percentage deviation for the 639 points used in the correlation was 0.645 and the maximum percentage deviation encountered was 5.61 percent.

The nature of the curves for the BWR equation shown in Figures 41 and 42 suggests that Equation (II-27) may be a good representation for the constants A_0 , B_0 and C_0 . but a cubic equation may be needed to represent the behavior

- 132 -

			1	
Coefficient	Ethane	Hydrogen Sulfide	Interaction	Mixing Rule
(A ₀) (10 ⁻⁴)	1.3078922	1.0113045	0.92241154	$A_{O_m} = x_1^2 A_{O_1} + x_2^2 A_{O_2} + 2 x_1 x_2 A_{O_12}$
в	0.74741433	0.47456235	0.53778391	$B_{0m} = x_1^2 B_{01} + x_2^2 B_{02} + 2 x_1 x_2 B_{012}$
(c _o) (10 ⁻¹⁰)	0.2083969	0.27197216	0.28362906	2 co ₁ + x ₂ ² co ₂ + 2 x ₁ x ₂
(a) (10 ⁻⁴)	2.4734128	0.56392666	2.3377858	$a_1 + x_2^2 a_2$
q	3.3393006	0.87065449	2.5084904	$b_{m} = x_{1}^{2}b_{1} + x_{2}^{2}b_{2} + 2 x_{1}x_{2}b_{12}$
(c) (10 ⁻¹⁰)	0.54193845	0.27043472	0.69438667	$c_{m} = x_{1}^{2}c_{1} + x_{2}^{2}c_{2} + 2 x_{1}x_{2}c_{12}$
aα(10 ⁻⁴)	1.8767683	0.20352946	0.59659823	$(a\alpha)_{m} = x_{1}^{2}(a\alpha)_{1} + x_{2}^{2}(a\alpha)_{2} + 2x_{1}x_{2}(a\alpha)_{12}$
ъ	0.75877678	0.36091477	0.25519794	
۲	2.5	1.0152		$\gamma_{\rm m} = (x_{\rm l} \gamma_{\rm l}^{\frac{1}{2}} + x_{\rm 2} \gamma_{\rm 2}^{\frac{1}{2}})^2$
Average Deviation	0.00353	353		
Average % Deviation	0.6447	47		
Standard Error of Estimate	0.0061	616		

Table V1-2

Coefficients of BWR Equation (23 Constants)

for Ethane-Hydrogen Sulfide System

133 --

exhibited by the constants a, b, c, and α . A comparison between the BWR equation and the virial equation explicit in pressure indicates that the constants a, b, α , and c for the mixtures may be represented by an equation similar to Equation (II-44). When the square root combining rule was used for γ , Equation (II-43) which is a combining rule for the second virial coefficient was used for the constants A_0 , B_0 , and C_0 and Equation (II-44) was used for the constants a, b, c, and a α , the average percentage deviation came down to 0.552. The maximum deviation, however, increased to 8.24 percent. The values of these constants are presented in Table VI-3.

It may, therefore, be concluded that the 23-constant equation which has only one interaction term for each constant is able to represent the volumetric behavior of ethane-hydrogen sulfide system satisfactorily. An increase in the number of constants to twenty-seven does not give an appreciably better representation of the compressibilities.

To check the applicability of the 23-constant BWR equation to predict the volumetric behavior of the ethanehydrogen sulfide system, calculations were made to compare the predicted values with Raczuk's ⁽⁷⁴⁾ data at 160[°]F.

	Coefficients	ts of BWR Eq.	guation (27 Constants)) for Ethane-Hydrogen Sulfide System
Coefficient	Ethane	Hydrogen Sulfide	Interaction 112 122	Mixing Rule
(A ₀) (10 ⁻⁴)	1.1362201	0.97825383	1.1100853	$A_{Om} = x_1^2 A_{O1} + x^2 A_{O2} + 2x_1 x_2 A_{O12}$
що	0.61565588	0.45522118	0.70221913	$B_{0m} = x_1^2 B_{01} + x_2^2 B_{02} + 2x_1 x_2 B_{012}$
(c ₀) (10 ⁻¹⁰)	0.25805776	0.29674759	0.22139444	$c_{om} = x_1^2 c_{o1} + x^2 c_{o2} + 2x_1 x_3 c_{o12}$
(a) (10 ⁻⁴)	2.6091827	0.86084491	2.6091827 0.63474191	am=x1 ³ a
ą	3.4001374	1.0808886	2.9412651 1.1308992	$b_{m} = x_{1}^{3}b_{1} + x_{2}^{3}b_{2} + 3x_{1}^{2} x_{2}^{2}b_{112} + 3x_{1}^{2} x_{2}b_{112} + 3x_{1}^{2} x_{2}^{2}b_{122} + 3x_{1}^{2} x_{2}^{2}b_{12} + 3x_{1}^{2} x_{2}^{2} + 3x_{1}^{2} x_{2}^{2} + 3x_{1}^{2} + 3x_{1$
(c)(10 ⁻¹⁰)	0.62118226	0.36312452	0.68199716 0.3017515	$0.30175151 c_{m} = x_{1}^{3}c_{1} + x_{2}^{3}c_{2} + 3x_{1}^{2}x_{2}c_{112}^{12} + 3x_{1}x_{2}^{2}c_{122}^{122}$
(aα)(10 ⁻⁴)	1.9748904	0.23571658	1.0101272 0.32840728	(aα) _m =x ₁ ³ (aα) ₁ +x ₂ ³ (aα) (aα
¥	2.5	1.0152		$\gamma_{\rm m} = (x_{\rm l}\gamma_{\rm l}^{3} + x_{\rm 2}\gamma_{\rm 2}^{3})^{2}$
Average Deviation			0.00284	
Average % Deviation			0.5522	
Standard Error of Estimate	OL		0.00476	

Table VI-3

- 135 -

The results are shown in Figure 43. The agreement between the predicted compressibility factor and the compressibility factor values from Raczuk's work is very good up to the point where a minimum in the compressibility factor for each isotherm is observed. Beyond this point, however, the predicted and experimental compressibility factors start to diverge with an increase in the pressure. The experimental data have higher values compared to the predicted results. A similar trend was observed when Raczuk's data were compared with Pitzer's correlation. His experimental compressibility results were always higher than the predicted values. The difference was as high as 40 percent.

When Raczuk's data for each mixture were correlated individually by using the BWR equation of state, the average deviations ranged from 1.2 to 4.6 percent. The maximum deviations ranging from 10 to 20 percent were encountered. This indicates that although the maximum error estimated by him was 2.5 percent, the uncertainties in the measurements of compressibility factor are much higher.

Figure 43. Comparison between Raczuk's Data and 23-Constant BWR Equation at 160°F for the Ethane-Hydrogen Sulfide System

B. Redlich-Kwong Equation

The Redlich-Kwong equation is essentially an empirical equation of state and its justification rests mainly on the degree of approximation obtained. Proposed originally as a two-constant equation, it is supposed to give satisfactory results above the critical temperature for any pressure. In the course of this work it was found that the equation is not suitable over a wide range of pressures if only one set of constants is used over the entire range. Consequently, in the correlation of data with the Redlich-Kwong equation, compressibility data for temperatures between 50° and 125°C and pressures up to about 2000 pounds per square inch were used for isotherms above the critical temperature. Only gas phase compressibility data were used for isotherms below the critical temperature. The values of the two constants of the Redlich-Kwong equation for the four mixtures of ethane and hydrogen sulfide calculated by using the Rosebrock's method (84) are presented in Table VI-4. The maximum error encountered in this correlation was 2.93 percent in the estimation of the compressibility factor.

Table VI-4

Redlich-Kwong Equation Constants for

the Ethane-Hydrogen Sulfide System

Mole Fraction Ethane	0.7755	0.6352	0.3995	0.2142
(a)(10 ⁻⁶) (psi.cu.ft. ² 0R ^{0.5} per 1b.mole ²)	0.43471267	0.43194417	0.42135703	0.42119142
b (cu.ft. per lb.mole)	0.60804930	0.58766592	0.53907299	0.50004404
Standard Error of Estimate	0.00403	0.00360	0.00325	0.00389

The constants a and b for the mixture are representend in terms of the constants and the mole fractions of the pure components by the relationships of the type represented by Equations (II-40) and (II-41). Because the critical temperature of mixture 3 is higher than 50° C and that of mixture 4 higher than 75° C, the number of points in the gas phase for these mixtures becomes small. This puts a greater weight on the points at low pressures and leads to a smaller value for the constants of the Redlich-Kwong equation signifying a tendency towards ideal gas behavior. This was amply illustrated by the results when the constants were evaluated at each temperature for the four mixtures. These calculations also indicated that the value of the constants a and b decreases when the temperature was increased from 50°C to 125°C. A similar trend was observed by Robinson and Jacoby⁽⁸³⁾.

A relationship between the constants a and b of the Redlich-Kwong equation and temperature T in degrees Kelvin given by Equations (II-17) and (II-18) was tried. Owing to the large difference in the values of the constants for temperatures below the critical as compared to the values for temperatures above the critical, the constants α , β , γ , and δ were calculated from the latter values alone. The constants α , β , γ , and δ were also evaluated by substituting the relationship represented by Equations (II-17) and (II-18) into Equation (II-12). In this case it was found that compressibility data up to a pressure of 5000 pounds per square inch could be correlated with an average deviation of less than 2 percent. The maximum deviation observed may be as high as 11 percent. The constants for the four mixtures of ethane and hydrogen sulfide are presented in Table VI-5.

Table VI-5

Redlich-Kwong Equation (Modified) Constants

for the Ethane-Hydrogen Sulfide System

Mole Fraction 0.7755 0.6352 0.3995 0.2142 Ethane $(\alpha) (10^{-4})$ $(^{O_R^{2.5}}/psi)$ 0.40970535 0.40545493 0.38661438 0.37970055 $(B)(10^{-1})$ $(^{O_{R}^{1.5}}/psi)$ -0.18322829 -0.15952771 -0.11688855 -0.08843052 (_Y)(10) (^OR/psi) 0.60486226 0.58120537 0.52346655 0.47749810 $(\delta) (10^4)$ (l/psi) -0.13943936 -0.09471110 -0.07490356 -0.05837778 Standard Error 0.01093 0.01191 0.00683 0.00541 of Estimate

On substituting relationships given by Eduations (II-17) and (II-18) into Eduation (II-12) and fitting the same experimental compressibility data used for calculating the constants given in Table IV-4 by Rosenbrock's method, the constants of the modified Redlich-Kwong equation given in Table VI-6 were obtained. The maximum deviation observed in the correlation was 6.1 percent in the compressibility factor.

0-IV	
Table	

Redlich-Kwong Equation (Modified) Constants for the

Ethane-Hydrogen Sulfide System Using Rosenbrock's Method⁽⁸⁴⁾

0.000	0.39963895	-0.20288568	0.44548372	-0.21069190	0.00170
0.2142	0.3838889	-0.18334668 -0.20288568	0.49150718	-0.26811186 -0.21069190	0.00173
0.3995	0.37589897	-0.10770610	0.51175847	-0.10261719	0.00165
0.6352	0.38323465	-0.11004136	0.55611251	-0.12169858	0.00214
0.7755	0.38803765	-0.16053928	0.57924749	-0.21880236	0.00216
1.0000	0.41579532	-0.13671944	0.63222942	-0.13386798	0.00509
Mole Fraction Ethane	$(\alpha) (10^{-4}) (0R^2.5/psi)$	(g)(10 ⁻¹) (^{orl.5} /psi)	(γ)(10) (^O R/psi)	(ô)(10 ⁴) (1/psi)	Standard Error of Estimate

- 142 -

C. Virial Equation of State

An infinite series in terms of reciprocal molar volume represented by the Equation (II-5) is the form of virial equation commonly used. If it is supposed that the series is truncated after n terms, the parameters in the resulting equation are to be evaluated from the experimental data, a least squares criterion may be used. The values of these parameters, then, become a function of the number of terms used. It is, therefore, necessary to evaluate the parameters as limiting values when the truncated series are fitted to the data in narrow regions. Depending on the range of pressures and the method of extrapolation, considerable difference in the values of these virial coefficients is obtained. Furthermore, the error in V(Z-1) due to a constant error in Z increases hyperbolically with decreasing reciprocal volume causing the problem of weighting the data at low pressures to be quite important.

The sample output program number 5 in Appendix A, for correlating the volumetric data of mixture 2 containing 0.6352 mole fraction ethane, indicates that an equation containing 13 terms can represent the compressibility with an average deviation of 1.177 percent and the maximum deviation not exceeding 6.3 percent. However, the same equation is not able to represent the volumetric behavior of other

- 143 -

mixtures. Therefore, it becomes necessary to increase the number of terms in the equation. An equation containing 15 parameters involves inverting a matrix with 256 elements. If the composition dependence of these constants is to be incorporated in the equation the matrix becomes too large for ease of mathematical computation and also is ill-conditioned.

Although the use of Forsythe polynomials avoids the problem of ill-conditioned matrices and these polynomials can be converted to a power series, the resulting equation possesses the same drawback as the truncated virial equation because the virial coefficients so obtained do not correspond to the values obtained in the limiting case of an infinite number of terms. In addition, each successively higher polynomial contributes to the terms obtained by converting the rest of the lower polynomials to a power series.

The values of the second and third virial coefficients were calculated for the ethane-hydrogen sulfide system by using Equation (V-1) and a method similar to the one described by Hoover et al (35A). In this method, the maximum pressure for which Equation (V-1) is valid within experimental error is determined from the experimental data and then an iterative scheme is used to determine the values of B and C. Because the (Z-1)(V) versus (1/V) plots are linear

- 144 -

in this region the problem reduces to fitting a best straight line when both ordinate and abscissa are subject to experimental errors. Such a study has been made by Madansky^(55A). He has shown that when the expected errors δy in an ordinate y and δx in an abscissa x are zero and are uncorrelated with n observed quantities then the best straight line, y = mx + b, will produce a minimum in:

$$\sum_{j=1}^{n} \left(\frac{k}{\left(\delta y_{j}\right)^{2} + m^{2}\left(\delta x_{j}\right)^{2}}\right) \left(y_{j} - b - m x_{j}\right)^{2}$$

where k is a proportionality constant which appears in a weighting factor coefficient of the square of the deviation of y_j from its prediction by $(mx_j + b)$. In the application here, k is taken as unity, the slope m is the third virial coefficient C, and the intercept b is the second virial B. The ordinate y_j is the equivalent of (Z-1)(V) and x_j is the equivalent of (1/V).

The values of the second and third virial coefficients are given in Table VI-7 and are plotted in Figures 44 and 45 against composition of the mixture to show the variation with mole fraction of ethane in ethane-hydrogen sulfide mixtures.

The plots in Figure 44 showing the isothermal variation of B with composition exhibit a maximum for each tem-

Table VI-7

Second and Third Virial Coefficients for

Ethane-Hydrogen Sulfide System

Second Virial Coefficient, B (cu ft/lb mole)

Mole Fraction Ethane	50 ⁰ C	75 ⁰ C	100 ⁰ C	125 ⁰ C
1.0000 ^(a)	-2.342	-1.994	-1.737	-1.486
0.7755	-2.301	-1.950	-1.702	-1.445
0.6352	-2.310	-1.969	-1.706	-1.444
0.3995	-2.332	-1.991	-1.700	-1.457
0.2142	-2.446	-2.074	-1.738	-1.486
0.0000 ^(b)	-2.658	-2.235	-1.902	-1.633

Third Virial Coefficient, C (cu ft/lb mole)²

Mole Fraction Ethane	50 ⁰ C	75 ⁰ C	100 [°] C	125 ⁰ C
1.0000 ^(a)	2.369	2.062	1.822	1.675
0.7755	1.902	1.679	1.535	1.405
0.6352	1.860	1.640	1.464	1.307
0.3995	1.883	1.596	1.342	1.175
0.2142	2.385	1.712	1.320	1.092
0.0000 ^(b)	3.588	2.270	1.492	1.081

(a) Calculated from David and Harman⁽²⁴⁾

(b) Calculated from data of Reamer, Sage, and Lacey (76)

igure 44. Variation of Second Virial Coefficient with Mole Fraction of Ethane in Ethane-Hydrogen Sulfide System

- 147 -

Figure 45. Variation of Third Virial Coefficient with Mole Fraction of Ethane in Ethane-Hydrogen Sulfide System

perature studied. The isothermal variation of C with composition of the mixture, presented in Figure 45, shows a minimum.

From the discussion in the last three sections of this chapter it is evident that the coefficients of any equation depend on several things such as the primary data used, the number of points used, the weight put on the points, the range of temperatures and pressures used, the criterion selected for fitting the data, and the dependent and independent variables chosen. A comparison between the predicted and experimental results for mixture number 2 is shown in Figure 46. The temperature at which the comparison is made is 50°C which corresponds to a reduced temperature of 1.0234. Because the predicted results are not much different from the experimental values and also not much different from each other, only a few combinations of the constants from various sources have been The constants of the BWR equation for ethane given shown. by Opfell, et al (63) were combined with the constants for hydrogen sulfide given by Simon and Briggs (93) using the Benedict's mixing rules. These mixing rules were also used to combine the constants for ethane and for hydrogen sulfide obtained in this work from the data of Reamer, Sage, and Lacey (75, 76) and presented in Table VI-1. The Redlich-Kwong equation constants for ethane and hydrogen sulfide given by Robinson and Jacoby⁽⁸³⁾ were combined by using the linear

- 149 -

Figure 46. Comparison between Predicted and Experimental Compressibility Factors for Ethane-Hydrogen Sulfide System

and linear square root mixing rules for the constants b and a. The compressibility was also predicted by using the same mixing rules and the values of the constants obtained in this work and presented in Table VI-6. The results indicate that although the constants for the mixtures of ethane and hydrogen sulfide do not follow these mixing rules, satisfactory results can be obtained by using these mixing rules and the constants for the pure components. This may be caused by the generation of a new set of constants which, although quite different from the mixture constants, produce the same overall effect.

VII. CONCLUSIONS

- Equipment similar to that designed by Beattie was built and shown to function properly by experiments on ethane at 50°C.
- 2. The volumetric behavior of hydrogen sulfide was studied at six temperatures: 50°, 71.11°, 75°, 100°, 104.44°, and 125°C. The results were compared with the reported values at temperatures of 71.11° and 104.44°C. The maximum deviation in the compressibility factor was observed near the two phase boundary at 71.11°C and was less than 0.005.
- 3. Compressibility investigations were made for four mixtures of ethane and hydrogen sulfide at four temperatures, 50°, 75°, 100°, and 125°C and at pressures from about 50 to 5000 pounds per square inch.
- 4. A comparison between Pitzer's correlation and the experimental data was made. The agreement was reasonably good, but for mixtures number 3 and 4 with a high hydrogen sulfide content deviations as high as 5 percent were observed.
- 5. Experimental data for each mixture of ethane and hydrogen sulfide and for the pure components were correlated with the Benedict-Webb-Rubin equation of state. It was found that this equation could represent the mixture data with an average percentage deviation of

less than 0.47 which is in the range of average percentage deviations of 0.28 and 0.64 observed for ethane and hydrogen sulfide respectively.

- Benedict's mixing rules for the constants in the BWR equation do not apply to the ethane-hydrogen sulfide system.
- 7. A modified form of the BWR equation which incorporates the dependence of the constants on the composition of the mixture was able to represent the experimental data with an average percentage deviation of less than 0.65 over the entire range of pressures, temperatures, and compositions studied in this work.
- 8. The Redlich-Kwong equation was used for the correlation of the gas phase data for pressures up to about 2000 pounds per square inch. The standard deviation for such a data-fit was in the order of magnitude of 0.01. The maximum deviation encountered was 6.1 percent.
- ⁹. The number of terms required in the virial equation to represent the entire range of experimental data was high compared to a closed form equation. The second and third virial coefficients for ethane, hydrogen sulfide and four mixtures were calculated at 50°, 75°, 100°, and 125°C. Variaton of B with composition of the

- 153 -

mixture at constant temperature exhibited a maximum and the isothermal variation of C with composition showed a minimum.

NOMENCLATURE

•

A _o , B _o , C _o , a, b, c, α, γ	Coefficients of the BWR equation of state
A, B, a, b, α, β, γ, δ	Coefficients of the Redlich- Kwong equation of state
B, C, D, B', C', D', B(T), C(T), D(T)	Coefficients of the virial equation of state
A	Area
<u>A</u>	Matrix
B	Matrix
C	Vector
<u>c</u>	Matrix
G _i	Defined in Equation (II-64)
I	Identity Matrix
K _i	Defined in Equation (II-64)
L	Lagrangian coefficient
L	Lower triangular matrix
N	Pump reading
P	Pressure or polynomial
Q	Polynomial
R	Universal gas constant or resistance
Ţ	Temperature
U	Potential energy function
<u>u</u>	Upper diagonal matrix
V	Molar volume
Z	Compressibility factor

z ⁽⁰⁾ , z ⁽¹⁾	Pitzer's universal functions
đ	Density
е	Step size
f	Fractional change or function
à	Acceleration due to gravity
h	Defined in Equation (II-14)
k	Boltzmann's constant or equation of state constant
m	Number of points or poly- nomial
n	Number of points of poly- nomial
r	Intermolecular distance
u	Number of points
v	Number of points or orthogo- nal vectors
x	Mole fraction or variable
y :	Variable

Greek Letters

Δ	Refers to a small increment or difference
٨	Parameters
Σ	Denotes summation over a variable
п	Denotes multiplication over a variable
a	Coefficient
β	Coefficient

Residual or variance

Error

Variance

Partial differential operator

Subscripts

δ

ε

_σ2

9

P	Refers to pressure or pressure is held constant
R	Refers to reduced state
с	Refers to critical state
i	Indicates the row of the matrix in which the ele- ment lies or refers to the state i
j	Indicates the column of the matrix in which the element lies or refers to the state j
k	Value of the property at the k th state in the set of experimental data
1	Value of the property at the l th state in the set of experimental data
m	Value of the property at the m th state in the set of experimental data or refers to mixture value
n	Value of the property at the n th state in the set of experimental data
t	Refers to temperature or temperature is held con- stant
ij	Interaction value

Superscripts

.

-1 Inverse of the indicated matrix o Refers to vapor phase

-

- 158 -

j.

•

- 159 -

REFERENCES

- 1. Amagat, E.H., Ann. Chim. phys., (5) <u>19</u>, 384 (1880); Compt. rend., <u>127</u>, 88 (1898).
- 2. Andrews, T., Phil. Trans. Roy. Soc. (London), <u>159</u>, 575 (1898).
- 3. Baxter, J.P., Burrage, L.J., and Tanner, C.C., J. Soc. Chem. Ind., <u>53</u>, 410T (1934).
- 4. Beattie, J.A., Proc. Am. Acad. Arts and Sci., <u>69</u>, 389 (1934).
- 5. Beattie, J.A. and Bridgeman, O.C., J. Am. Chem. Soc., <u>49</u>, 1665 (1927); Proc. Am. Acad. Arts and Sci., <u>53</u>, 229 (1928).
- Beattie, J.A., Hadlock, C., and Poffenberger, N., Jour. Chem. Phys. <u>3(2)</u>, 93 (1935).
- 7. Beattie, J.A. and Ikehara, S., Proc. Am. Acad. Arts and Sci., <u>64</u>, 127 (1930).
- 8. Beattie, J.A., Su, G.J., and Simard, G.L., J. Am. Chem. Soc., <u>61</u>, 924 (1939).
- 9. Benedict, M., Webb, G.B., and Rubin, L.C., J. Chem. Phys., <u>8</u>, 344 (1940).
- 10. Ibid., <u>10</u>, 747 (1942).
- 11. Benedict, M., Webb, G.B., and Rubin, L.C., Chem. Eng. Prog., <u>47</u>, 419 (1951).
- 12. Berthelot, D., Trav. Bur. Int. Poids Mes., <u>13</u>, 113 (1907).
- Bird, R.B., Spots, E.L., and Hirschfelder, J.O., J. Chem. Phys., <u>18</u>, 1395 (1950).
- 14. Brewer, J., Rodewald, N., and Kurata, F., A.I.Ch.E. Jour., <u>7</u>, 13 (1961).
- 15. Bridgeman, O.C., J. Am. Chem. Soc., <u>49</u>, 1174 (1927).
- 16. Brough, H.W., Ind. Eng. Chem., <u>43</u>, 2422 (1961).

- 17. Brown, G.G., Souders, M., and Smith, R.L., Ibid, <u>24</u>, 513 (1932).
- Burnett, E.S., J. Appl. Mech., Trans. ASME, <u>58</u>, A136 (1936).
- 19. Chao, K.C. and Seader, J.D., A.I.Ch.E. Jour., <u>7</u>, 598 (1961).
- 20. Clare, R.T., M.Sc. Thesis, University of Alberta, 1966.
- 21. Cope, J.Q., Lewis, W.K., and Weber, H.C., Ind. Eng. Chem., <u>23</u>, 887 (1931).
- 22. Curl, R.F. and Pitzer, K.S., Ibid., <u>50</u>, 265 (1958).
- 23. Dalton, J., Nicholson's J. of Natural Phil., <u>5</u>, 241 (1801); Gilbert's Ann. Phys., <u>12</u>, 385 (1802); Ibid., <u>15</u>, 1 (1803).
- 24. David, H.G. and Hamman, S.D., "Proceedings of the Joint Conference on Thermodynamic and Transport Properties of Fluids", p. 74, Institute of Mechanical Engineering, 1958.
- 25. Dieterici, C., Ann. Physik., <u>69</u>, 685 (1899).
- 26. Dodge, B.F., Ind. Eng. Chem., 24, 1353 (1932).
- 27. Dodge, B.F., "Chemical Engineering Thermodynamics", Chap. V, McGraw-Hill, New York, 1944.
- 28. Eakin, B.E., and Ellington, R.T., "Thermodynamic and Transport Properties of Gases, Liquids and Solids", p. 195, McGraw-Hill, New York, 1959.
- 29. Euken, A. and Parts, A., Z. physik, Chem., <u>B20</u>, 184 (1933).
- 30. Forsythe, G.E., J. Soc. Ind. Appl. Math., 5, 74 (1957).
- 31. Fröberg, C.E., "Introduction to Numerical Analysis", p. 142, Addison-Wesley, Reading, Mass., 1965.
- 32. Gilliland, E.R. and Scheeline, H.W., Ind. Eng. Chem., 32, 48 (1940).
- 33. Hadley, G., "Linear Programming", Addison-Wesley, Reading, Mass., 1962.

- 34. Hainleⁿ, A., Ann., <u>282</u>, 229 (1894).
- 35. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., "Molecular Theory of Gases and Liquids", p. 156, Wiley, New York, 1954.
- 35A. Hoover, A.E., Canfield, F.B., Kobayashi, R., and Leland, T.W., Jr., J. Chem. Eng. Data, <u>9</u>, 568 (1964).
- 36. Hotelling, H., Ann. Math. Statistics, 14, 1 (1943).
- 37. Hougen, O.A., Watson, R.A., and Ragatz, R.A., "Chemical Process Principles", Part II, Chap. 14, Wiley, New York, 1959.
- 38. Joffee, J., Ind. Eng. Chem. 39, 837 (1947).
- 39. Kamerlingh, Onnes, H., Comm. Phys. Lab. Leiden, No. 71 (1901).
- 40. Kay, W.B., Ind. Eng. Chem., 28, 1014 (1936).
- 41. Kay, W.B., and Brice, D.B., Ibid., 45, 615 (1953).
- 42. Kay, W.B., and Rambosek, G.M., Ibid., <u>45</u>, 221 (1953).
- 43. Keyes, F.G., Proc. Am. Acad. Arts and Sci., <u>68</u>, 505 (1933).
- 44. Kihara, T., J. Phys. Soc. Japan, <u>3</u>, 265 (1948); Ibid, <u>6</u>, 184 (1951).
- 45. Kihara, T., Revs. Modern Phys., 25, 831 (1953).
- 46. Klemenc, A. and Bankowski, O., Z. anorg. allgem. Chem., 208, 348 (1932).
- 47. Kohn, J.P. and Kurata, F., A.I.Ch.E. Jour., <u>4</u>, 211 (1958).
- 48. Kuenen, J.P., Phil. Mag., (5) 40, 229 (1895).
- 49. Kuenen, J.P. and Robson, W.G., Ibid., (6) <u>3</u>, 149 (1902).
- 50. Lapidus, L., "Digital Computation for Chemical Engineers", p. 241, McGraw-Hill, New York, 1962.

.

ç

51.	Leland, T.W. and Mueller, W.H., "Applications of the Theory of Corresponding States to Multi- component Systems", A.I.Ch.E. meeting, Atlantic City, Mar. 17, 1959.
52.	Lennard-Jones, J.E., Proc. Roy. Soc. (London), A <u>106</u> , 463 (1924).
53.	Leung, P.K., Ph.D. Thesis, University of Alberta, 1965.
54.	Loomis, A.G., and Walters, J.E., J. Am. Chem. Soc., <u>48</u> , 2051 (1926).
55.	Lydersen, A.L., Greenkorn, R.A., and Hougen, O.A., "Generalized Thermodynamic Properties of Pure Fluids", Univ. of Wisconsin Eng. Exp. Sta. Rept. <u>4</u> , Oct. 1955.
55A.	Madansky, A., J. Am. Stat. Assn., <u>54</u> , 173 (1959).
56.	Martin, J.J. and Hou, C.Y., A.I.Ch.E. Jour., <u>1</u> , 142 (1955).
57.	Mass, O. and McIntosh, D., J. Am. Chem. Soc., <u>36</u> , 737 (1914).
58.	Mayer, J.E., J. Chem. Phys., <u>5</u> , 67 (1937); Mayer, J.E. and Ackermann, P.G., Ibid., 74; Mayer, J.E. and Harrison, S.F., Ibid., <u>6</u> , 87, 101 (1938).
59.	Maverick, G., J. Chim. phys., <u>27</u> , 36 (1930).
60.	Michels, A., van Straaten, W., and Dawson, J., Physica, <u>20</u> , 17 (1954).
61.	Opfell, J.B., Pings, C.J., and Sage, B.H., "Equations of State for Hydrocarbons", American Petrol- eum Institute, New York, 1959.
62.	Opfell, J.B., Sage, B.H., and Pitzer, K.S., Ind. Eng. Chem., <u>48</u> , 2069 (1956).
63.	Opfell, J.B., Schlinger, W.G., and Sage, B.H., Ibid., <u>46</u> , 1286 (1954).

64. Partington, J.R., "An Advanced Treatise on Physical Chemistry", Vol. I. Sec. VII. Longamns Green & Co., London, 1949.

- 65. Perry, J.H., "Chemical Engineers' Handbook", 3rd ed., p. 176, McGraw-Hill, New York, 1950.
- 66. Phillips, E.M. and Thodos, G., Soc. Pet. Eng. Jour., <u>2</u>, 83 (1962).
- 67. Pitzer, K.S. and Hultgren, G.O., J. Am. Chem. Soc., <u>80</u>. 4793 (1958).
- 68. Pitzer, K.S., Lippman, D.Z., Curl, R.F., Huggins, C.M., and Petersen, D.E., Ibid., <u>77</u>, 3433 (1955).
- 69. Porter, F., Ibid., <u>48</u>, 2055 (1926).
- 70. Prausnitz, J.M., A.I.Ch.E. Jour., 5, 3 (1959).
- 71. Prausnitz, J.M., Edmister, W.C. and Chao, K.C., Ibid., 6, 214 (1960).
- 72. Prausnitz, J.M., and Gunn, R.D., Ibid, <u>4</u>, 430 (1958).
- 73. Prausnitz, J.M. and Myers, A.L., Ibid, 9, 5 (1963).
- 74. Raczuk, T.W.N., M.Sc. Thesis, University of Alberta, 1960.
- 75. Reamer, H.H., Sage, B.H., and Lacey, W.N., Ind. Eng. Chem., 36, 956 (1944).
- 76. Ibid., 42, 140 (1950).
- 77. Ibid., <u>43</u>, 976 (1951).
- 78. Ibid., <u>45</u>, 1805 (1953).
- 79. Reamer, H.H., Selleck, F.T., Sage, B.H., and Lacey, W.N., Ind. Eng. Chem., <u>45</u>, 1810 (1953).
- 80. Redlich, O. and Kwong, J.N.S., Chem. Rev., <u>44</u>, 223 (1949).
- 81. Reid, R.C. and Sherwood, T.K., "The Properties of Gases and Liquids", 2nd ed., p. 61, McGraw-Hill, New York, 1966.
- 82. Robinson, D.B., Hughes, R.E., and Sandercock, J.A.W., Can. J. Chem. Eng., 42, 143 (1964).

- 83. Robinson, R.L., Jr., and Jacoby, R.H., Hydrocarb. Process. Petrol. Refiner, <u>44</u>, (4), 141 (1965).
- 84. Rosenbrock, H.H. and Storey, C., "Computational Techniques for Chemical Engineers", p. 64, Pergamon, London 1966.
- 85. Rowlinson, J.S., "Encyclopedia of Physics", S. Flügge (ed.), Vol. XII, Springer-Verlag, Berlin, 1958.
- 86. Sage, B.H., "Thermodynamics of Multicomponent Systems", p. 18, Reinhold, New York, 1965.
- 87. Sage, B.H. and Lacey, W.N., Trans. Am. Inst. Min. Met. Engrs., <u>136</u>, 136 (1940).
- 88. Sage, B.H., Webster, D.C., and Lacey, W.N., Ind. Eng. Chem., 29, 658 (1937).
- 89. Sass, A., Dodge, B.F., and Bretton, R.H., J. Chem. Eng. Data, <u>12</u>, 168 (1967).
- 90. Schneider, W.G., Can. J. Research, 27B, 339 (1949).
- 91. Selleck, F.T., Opfell, J.B., and Sage, B.H., Ind. Eng. Chem., <u>45</u>, 1350 (1953).
- 92. Shah, K.K. and Thodos, G., Ibid., <u>57</u>, No. 3, 30 (1965).
- 93. Simon, R., and Briggs, J.E., A.I.Ch.E. Jour., <u>10</u>, 548 (1964).
- 94. Smith, L.B. and Keyes, F.G., Proc. Am. Acad. Arts and Sci., <u>69</u>, 313 (1934).
- 95. Steckel, F., Svensk. Kem. Tid., 57, 209 (1945).
- 96. Steele, B.D., McIntosh, D., and Archibald, E.H., Z. physik. Chem., <u>55</u>, 141 (1906).
- 97. Stewart, W.E., Burkhardt, S.F., and Voo, D., "Prediction of Pseudocritical Constants for Mixtures", presented at the A.I.Ch.E. meeting, Kansas City, Mo., May 18, 1959.
- 98. Taylor, H.S. and Glasstone, S., "Treatise on Physical Chemistry", Vol. 2, Chap. II, Van Nostrand, New York, 1951.
- 99. Tee, L.S., Gotoh, S., and Stewart, W.E., Ind. Eng. Chem. Fundamentals, <u>5</u>, 356 (1966); Ibid., <u>5</u>, 363 (1966).
- 100. Tribus, M., "Thermostatics and Thermodynamics", p. 234, Van Nostrand, Princeton, 1961.
- 101. Ursell, H.D., Proc. Cambridge Phil. Soc., <u>23</u>, 685 (1927).
- 102. van der Waals, J.D., Doctoral Dissertation, Leiden, 1873.
- 103. van der Waals, J.D., "Die Continuität des gasförmigen und flüssigen Zustandes, Barth, Leipzig, 1899 - 1900.
- 104. Van Ness, H.C., A.I.Ch.E. Jour., 1, 100 (1955).
- 105. Van Ness, H.C., "Classical Thermodynamics of Non-Electrolyte Solutions", Chap. 3, Pergamon, London, 1964.
- 106. West, J.R., Chem. Eng. Prog., 44, 287 (1948).
- 107. Wilson, G.M., "Vapor-Liquid Equilibria Correlation by Means of a Modified Redlich-Kwong Equation of State", presented at the Cryogenic Engineering Conference, Boulder, Colo. Aug. 19-21, 1963.
- 108. Wright, R.H. and Maass, O., Can. J. Research, <u>5</u>, 442 (1934).
- 109. Yee, E.G., Ph.D. thesis, University of Michigan, Ann Arbor, Mich., 1936.

APPENDIX A

•

.

COMPRESSIBILITY DATA CORRELATION

.*

This appendix includes a brief description of the development of computer programs, sample computer programs, and sample outputs for the following equations of state:

1. Benedict-Webb-Rubin Equation

2. Redlich-Kwong Equation

3. Virial Equation

1. Benedict-Webb-Rubin Equation

The BWR equation was linearized in K_i for any given value of γ in the form of Equation (II-64). Let the residual Δ_n at the nth data point be defined as:

$$\Delta_{n} = Z_{nC} - Z_{n} \qquad (A-1)$$

where

Then,

$$\Delta_{n} = (1 - Z_{n}) + \sum_{i=1}^{7} K_{i}G_{in}$$
 (A-2)

Summing over all N points yields:

$$\sum_{n=1}^{N} \Delta_{n} = \sum_{n=1}^{N} (1-Z_{n}) + \sum_{i=1}^{7} K_{i} \sum_{n=1}^{N} G_{in}$$
(A-3)

Using the method of least squares, Equation (A-3) gives a set of seven simultaneous linear equations in the general form as follows:

$$\sum_{i=1}^{7} \sum_{n=1}^{N} \kappa_{i} G_{in} G_{nj} = \sum_{n=1}^{N} (Z_{n}-1) G_{nj}$$
(A-4)

where j = 1, 2, ..., 7.

Equations (A-4) may be represented more concisely in the form

$$A x = c \qquad (A-5)$$

where

 $\underline{A} = 7 \times 7$ matrix x = the vector to be evaluated c = the known vector

The solution to Equation (A-5) is

$$\mathbf{x} = \underline{\mathbf{A}}^{-1}\mathbf{c} \tag{A-6}$$

The matrix \underline{A}^{-1} is the inverse of matrix \underline{A} ; the inversion may be accomplished by the direct L-U inversion method. If the matrix A is represented by the triangular matrices \underline{L} and \underline{U}

$$\underline{A} = \underline{L} \underline{U}$$
 (A-7)

Then

$$\underline{A}^{-1} = \underline{U}^{-1}\underline{L}^{-1}$$
 (A-8)

It is easier to invert a triangular matrix. Let P be the inverse of \underline{U} , then

$$\underline{U} \underline{P} = \underline{I} \tag{A-9}$$

Multiplying the \underline{U} and \underline{P} matrices, equating the results to the corresponding coefficients of the identity matrix \underline{I} , and solving this system for the p_{ij} 's leads to the simple set of rules for obtaining the elements of the inverse,

$$P_{ij} = -\frac{1}{u_{ii}} \sum_{r=1}^{j} u_{ir} P_{rj}$$
 j = 2,3, ... 7; j>i

The method of direct inversion is susceptible to the defect of excessive round-off error. Therefore, to get a better inversion an iterative method suggested by Hotelling⁽³⁶⁾ may be used. Let $\underline{B}^{(0)}$ be the initial approximation of \underline{A}^{-1} and $\underline{C}^{(0)} = \underline{I} - \underline{A} \underline{B}^{(0)}$, then

 $\underline{A} \underline{B}^{(0)} = \underline{I} - \underline{C}^{(0)}$

or

$$\underline{A}^{-1} = \underline{B}^{(0)} (\underline{I} - \underline{C}^{(0)})^{-1}$$
$$= \underline{B}^{(0)} (\underline{I} + \sum_{r=1}^{\infty} \underline{C}^{(0)^{r}})$$
$$= \underline{B}^{(0)} \xrightarrow{\infty}_{r=1} (\underline{I} + \underline{C}^{(0)^{2r-1}}) \quad (A-11)$$

Thus, the matrix inversion may be improved.

The constants K_1 , K_2 , ... and K_7 obtained from the set of Equations (A-6) only give a minimum sum of the squares of residuals for any given value of γ . Therefore, it is necessary to further minimize the sum of the squares of residuals with respect to γ .

Usually several trial values of γ covering a wide range are assumed; for each γ , the seven constants, K_i , determined from the set of simultaneous equations are substituted in Equation (A-3) to evaluate the sum of the squares of the residuals. After getting a rough estimate of the value of γ for which a minimum sum of the squares of the residuals exists, the program searches for a better value of γ till a difference in the value of two successive guesses of the value of γ is less than 10^{-8} . Program number 1 of this appendix evaluates the eight constants of the BWR equation. At the end of this program, the results of the correlation for the mixture containing 63.52 mole percent ethane are presented.

The main line program was modified to incorporate the composition dependence of the constants. Program number 2 includes the combination rule

$$K_{m} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_{i} x_{j} K_{ij} \qquad (A-12)$$

except for γ for which the combination rule used is

$$\gamma_{\rm m} = \left[\sum_{i=1}^{2} x_i (\gamma_i)^{\frac{1}{2}} \right]^2 \qquad (A-13)$$

Therefore, 21 constants are evaluated for the entire composition range from 0 to 100 mole percent ethane in the mixtures of ethane and hydrogen sulfide. The results of the data-fit are given at the end of the program.

2. Redlich-Kwong Equation

a. Rosenbrock's Method

A generalized program based on the method described by Rosenbrock and Storey ⁽⁸⁴⁾ is presented here. Let Z, the dependent variable, be a function of m independent variables $X(x_1, x_2, \ldots, x_m)$ and p parameters $\Lambda(\lambda_1, \lambda_2, \ldots, \lambda_p)$. A set of p orthogonal unit vectors v_1, v_2, \ldots, v_p and a set of step lengths e_1, e_2, \ldots, e_p are stored in the computer. Using the initial estimates of Λ , the variance $\delta(Z, f(x, \Lambda))$ is evaluated. After this evaluation Λ is modified to a new value Λ' by the equation

$$\Lambda' = \Lambda + e_1 v_1 \tag{A-14}$$

If the variance $\delta(Z,f(x,\Lambda'))$ is less than the previous value of variance, the parameters Λ are replaced by Λ' and step length e, is multiplied by 3. The new parameter is then calculated by using the equation

$$\Lambda' = \Lambda + e_2 v_2 \tag{A-15}$$

However, if the new value of variance is greater than the previous value, the step is considered as unsuccessful and the step length is multiplied by $-\frac{1}{2}$.

The successive changes in Λ then are e_1v_1 , e_2v_2 , ... e_pv_p , e_1v_1 , This process is continued till oscillations occur. That is, until for each parameter a successful step is followed by an unsuccessful step.

Let a_i be the sum of all the e_i since the axes were last rotated, then $v_i^{(2)}$, the unit vector parallel to a_i are computed in the following way

α ₁ =	$a_1v_1^{(1)} + a_2v_2^{(1)} +$	$\dots + a_p v_p^{(1)}$	
α ₂ =	a ₂ v ₂ ⁽¹⁾ +	$\dots + a_p v_p^{(1)}$	
• • •	• • • • • • •		
α _p =		apvp ⁽¹⁾	(A-16)
β ₁ =	°ı		
v ₁ ⁽²⁾ =	β <u>_</u>		
^β 2 =	$\alpha_2 v_1^{(2)} v_1^{(2)}$		
v ₂ ⁽²⁾ =	$\frac{\beta_2}{ \beta_2 }$		
• • • •	• • • • • • • •		

$$\beta_{p} = \alpha_{p} - \sum_{i=1}^{p-1} (\alpha_{p}^{1} v_{i}^{(2)}) v_{i}^{(2)}$$

$$v_{p}^{(2)} = \frac{\beta_{p}}{||\beta_{p}||}$$
(A-17)

Here $\beta = (\beta_i)$ etc.,

$$||\beta|| = \sqrt{\sum_{i=1}^{p} \beta_i^2}$$
 (A-18)

and

$$\alpha' v = \sum_{i=1}^{p} \alpha_{i} v_{i}$$
 (A-19)

In Equations (A-16), α , is the vector representing the total progress made since the axes were last rotated, and $v_i^{(2)}$ is a unit vector parallel to α_1 . If the current point is following a narrow ridge, both the initial and the final points will be on the spine of the ridge, so that α_1 (and $v_1^{(2)}$) will be parallel to the ridge. Thus, the direction of the first axis tends to align itself rapidly with the ridge. In the same way, the direction of the second axis tends to align itself in the best available direction normal to the first, and so on.

A normalization subroutine was added to the program so that parameter values which may be of different orders of magnitude are all brought in the same range of magnitude. Program number 3 utilizes the above method for estimating the parameters of the Redlich-Kwong equation written in the form

$$Z = \frac{V}{V - R \left[\gamma + \delta \left(T - 311.0 \right) \right]}$$
$$- \frac{R \left[\alpha + \beta \left(T - 311.0 \right) \right]}{T^{1 \cdot 5} \left[V + R \left\{ \gamma + \delta \left(T - 311.0 \right) \right\} \right]} \qquad (A-20)$$

(The sample output presented is for the mixture containing 63.52 percent ethane)

b. Iterative Method Coupled with Analytical Differentiation

Equation (II-14) may be written as

$$Z = \frac{V}{V - b} - \frac{a}{RT^{1.5}(V+b)}$$
(A-21)

If volume and temperature are considered as the independent variables then using subscripts i and j equation (A-21) may be written in a form similar to (A-2)

$$\Delta_{n} = \left(\frac{V_{n}}{V_{n}-b} - \frac{a}{RT_{n}^{1.5}(V_{n}+b)} - Z_{n}\right)$$
(A-22)

Summing over all points and differentiating with respect to the parameter a, the least squares theory gives

$$\frac{\partial \sum_{n=1}^{N} \Delta_n^2}{\partial a} = 0 = 2\left(\sum_{n=1}^{N} \frac{V_n}{V_n - b} - \sum_{n=1}^{N} \frac{a}{RT_n^{1.5}(V_n + b)} - \sum_{n=1}^{N} Z_n\right) \left(-\sum_{n=1}^{N} \frac{1}{RT_n^{1.5}(V_n + b)}\right)$$
(A-23)

Solving for a yields

$$a = \frac{\sum_{n=1}^{N} (\frac{v_n}{v_n - b} - z_n) \cdot \sum_{n=1}^{N} (\frac{1}{RT^{1.5}(v_n + b)})}{\sum_{n=1}^{N} (\frac{1}{RT^{1.5}(v_n + b)})^2}$$
(A-24)

Thus, assuming a value of b, the value of a can be calculated by using the realtionship given above. An iterative technique which assumes a value of b, calculates a from Equation (A-24), then calculates Δ_n from Equation (A-22), sums up the squares of all the residuals and compares this value to the previous value to look for a minimum is used. After evaluating a and b their dependence on the composition of the mixture is determined. In program number 4 such a method has been used for the Redlich-Kwong equation. The data used are for the mixture containing 63.52 mole percent ethane.

3. Virial Equation

The virial equation may be fitted directly by writing it in the form given by Equation (A-2). Depending on the number of constants fitted, Equation (A-2) could be modified. Program number 5 fits the equation in the form

$$(Z-1)V = \left(\frac{B_{0}+B_{1}}{T} + \frac{B_{2}}{T^{2}}\right) + \left(\frac{C_{0} + \frac{C_{1}}{T} + \frac{C_{2}}{T^{2}}}{V}\right) + \left(\frac{D_{0} + \frac{D_{1}}{T} + \frac{D_{2}}{T^{2}}}{V}\right) + \frac{E_{0} + \frac{E_{1}}{T} + \frac{E_{2}}{T^{2}}}{V^{3}}\right) \quad (A-25)$$

This could be written as

$$V_n(z_n-1) = \sum_{i=1}^{12} K_i G_{in}$$
 (A-26)

.

where

$K_1 = B_0$;	G _{ln} = 1
$K_2 = B_1$;	$G_{2n} = 1/T_n$
$K_3 = B_2$;	$G_{3n} = 1/T_n^2$
$K_4 = C_0$;	$G_{4n} = 1/V_n$
$K_5 = C_1$;	$G_{5n} = 1/T_n V_n$
$K_6 = C_2$;	$G_{6n} = 1/T_n^2 v_n$
$K_7 = D_0$;	$G_{7n} = 1/v_n^2$
$K_8 = D_1$;	$G_{8n} = 1/T_n v_n^2$
$K_9 = D_2$;	$G_{9n} = 1/T_n^2 v_n^2$
$K_{10} = E_0$;	$G_{10n} = 1/v_n^3$
$K_{11} = E_1$;	$G_{lln} = 1/TV_n^3$
$K_{12} = E_2$;	$G_{12n} = 1/T^2 v_n^3$

The sample output for this program is presented in program number 5. The data used for the correlation are for the correlation is for the mixture containing 63.52 mole percent ethane. The results of data fit when a similar 12-constant equation is used with pressure and temperature for the same data are presented in program number 6.

An alternative to a direct data correlation by a power series is the use of Forsythe (30) polynomials and then the conversion of these polynomials in a series of a form similar to the virial equation. These polynomials may be written as

where α_{i} and β_{i} are defined as

$$\alpha_{j} = \frac{\sum_{i=1}^{m} x_{i} P_{j-1}^{2}(x_{i})}{\sum_{i=1}^{m} P_{j-2}^{2}(x_{i})}$$

and

$$\beta_{j} = \frac{\sum_{i=1}^{m} x_{i} P_{j-1}(x_{i}) P_{j-2}(x_{i})}{\sum_{i=1}^{m} P_{j-2}^{2}(x_{i})}$$
(A-28)

Leung has extended this method to surface fitting by two independent variables. The approximating function may be written as

$$f(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} A_{ij} P_{i}(x) Q_{j}(y)$$
 (A-29)

where n and m are the highest degree of the polynomials in x and y respectively.

The orthogonal polynomials P(x) and Q(y) are generated from the given data through the relationships given below:

At y = constant

$$P_{o}(x) = 1$$

$$P_{1}(x) = (x - \alpha_{1}) P_{o}(x)$$

$$P_{2}(x) = (x - \alpha_{2}) P_{1}(x) - \beta_{2}P_{o}(x)$$

$$(A-30)$$

$$P_{i}(x) = (x - \alpha_{i}) P_{i-1}(x) - \beta_{i}P_{i-2}(x)$$

and at x = constant

$$Q_{0}(y) = 1$$

$$Q_{1}(y) = (y - \gamma_{1}) Q_{0}(y)$$

$$Q_{2}(y) = (y - \gamma_{2}) Q_{1}(y) - \delta_{2}Q_{0}(y)$$

$$(A-31)$$

$$Q_{j}(y) = (y - \gamma_{j}) Q_{j-1}(y) - \delta_{j}Q_{j-2}(y)$$

If the data point at (x_k, y_l) is z_{kl} , then the error of approximation is

$$\varepsilon_{k\ell} = z_{k\ell} - f(x_k, y_\ell) \qquad (A-32)$$

For a rectangular network with u and v number of points along the x and y axes respectively, the sum of the square of errors becomes

$$\sum_{k=1}^{u} \sum_{\ell=1}^{v} \varepsilon_{k\ell}^{2} = \sum_{k=1}^{u} \sum_{\ell=1}^{v} \left[z_{k\ell} - \sum_{i=0}^{n} \sum_{j=0}^{m} A_{ij} P_{i}(x_{k}) Q_{j}(y_{\ell}) \right]^{2}$$
(A-33)

Using the criterion of least squares and the property of orthogonality of the polynomials, the coefficients A_{ij} can be calculated to be

$$A_{ij} = \frac{\sum_{k=1}^{u} \sum_{\ell=1}^{v} z_{k} P_{i}(x_{k}) Q_{j}(y_{\ell})}{\sum_{k=1}^{u} \sum_{\ell=1}^{v} P_{i}^{2}(x_{k}) Q_{j}^{2}(y_{\ell})}$$
(A-34)

The constants α , β , γ , and δ are

$$\alpha_{i} = \frac{\sum_{k=1}^{u} x_{k} P_{i-1}^{2}(x_{k})}{\sum_{k=1}^{u} P_{i-2}^{2}(x_{k})}$$

$$\beta_{i} = \frac{\sum_{k=1}^{u} x_{k} P_{i-1}(x_{k}) P_{i-2}(x_{k})}{\sum_{k=1}^{u} P_{i-2}^{2}(x_{k})}$$

$$Y_{j} = \frac{\sum_{\ell=1}^{v} y_{\ell} Q_{j-1}^{2} (y_{\ell})}{\sum_{\ell=1}^{v} Q_{j-2}^{2} (y_{\ell})}$$
(A-35)

$$\delta_{j} = \frac{\sum_{\ell=1}^{v} y_{\ell} Q_{j-1}(y_{\ell}) Q_{j-2}(y_{\ell})}{\sum_{\ell=1}^{v} Q_{j-2}^{2}(y_{\ell})}$$

A rectangular grid of points is used in the program. The interpolated data for the mixture containing 63.52 mole percent ethane were used as the sample data. A sample program for data fitting using Forsythe polynomials is presented in program number 7. The procedure for converting these polynomials to a power series form is also included in the same program.

A scheme for the Lagrangian interpolation is presented in program number 8. This scheme utilizes a third degree polynomial fit to four successive points, the point at which the interpolation is being performed generally falls between the second and the third point. The formula used for evaluating the function value P(x) at point x is represented by the equation

$$P(x) = \sum_{k=1}^{4} L_k(x) Y_k$$
 (A-36)

where

$$L_{k}(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})}{(x_{k}-x_{1})(x_{k}-x_{2})(x_{k}-x_{3})(x_{k}-x_{4})}$$

.

•

.

	RAM	TITLE	PAGE
NC	•		NO.
1	BWR EQUATION (8 CC	INSTANTS)	A-17
2	BWR EQUATION (23 C	GNSTANTS)	A-31
3	REDLICH-KWCNG ECUA	TION (USING ROSENBROOM	K'S ATHOD) A-55
4	REDLICH-KWONG EQUA	TION (USING SEMI-ANAL	YTICAL IETHOD) A-65
5	VIRIAL EQUATION (I	N TERMS OF VOLUME)	A-71
6	VIRIAL EQUATION (I	N TERMS OF PRESSURE)	A-79
7	FORSYTHE POLYNOMIA	LS	A-83
8	LAGRANGIAN INTERPO	LATION	A-96
C C C C	RIGHT ON A COMPUTER	FERE WERE SHIFTED 15 CARD. THEREFORE, THE	COMMENT SYMBOL
C	RIGHT ON A COMPUTER	CARD. THEREFORE, THE UMN 16. ALSO THE CONT	COMMENT SYMBOL
с с с с	RIGHT ON A COMPUTER C' IS PLACED IN COL	CARD. THEREFORE, THE UMN 16. ALSO THE CONT	COMMENT SYMBOL
с с с с	RIGHT ON A COMPUTER C' IS PLACED IN COL	CARD. THEREFORE, THE UMN 16. ALSO THE CONT	COMMENT SYMBOL
с с с с	RIGHT ON A COMPUTER C' IS PLACED IN COL	CARD. THEREFORE, THE UMN 16. ALSO THE CONT	COMMENT SYMBOL

C	
C	SAMPLE PROGRAM NUMBER 1
С	
C	CONTROL CARDS
C	
C	THIS IS A PROGRAM FOR SOLVING A SET OF LINEAR ALGEBRAIC
C	COATIONS. THESE EQUATIONS ARE GENERATED FOR THE COLTE
C	TADIA DI LEAST SQUAKES. A MAIRIX IS EDDMED IN THE MAIN
C	LINE FRUGRAM. THIS MAIRIX IS PARTITIONED INTO UDDED AND
<u> </u>	CORCA MAINICES AND THE INVERSE DE THE MATDIN TAR TO
С	DETERMINED. THE VALUE UP THE UNKNOWN VADIAD FC TC CAL
C	COLATED AND A CHECK OF THE SOLUTION IS MADE BY RESUBCT.
<u>C</u>	- TOTING THE VALUE UP THESE VARIABLES INTO THE CONATIONS
C	AN IMPROVEMENT IN THE INVERSION OF THE MATRIX TO DE
C	QUIRED, THE SUBROUTINE FOR IMPROVED INVERSION IS USED.
C	
	REAL Z(700), PA(700), T(700), XCGMP(700), FCTWO(8)
	DOUDEE PREDISIUN A(7/.77), D(77.77) U(77.77) D(77.77)
	-27 g(2) (2) (1) UE((UU) (1) U(2) (1) (27) (1) (1)
	DOUBLE PRECISIUN XUNE, XTRE, XFOR, XSIX, XSEV
С	INTEGER N, NGUT, ITER, MM
с С	THIS IS THE MATALITYE OF OCCUPANT
C	THIS IS THE MAINLINE PROGRAM FOR EVALUATING THE CONST-
C	ANTS OF THE BENEDICT-WEBB-RUBIN EQUATION.
C	INPUT DATA READIN
c	IN OF BATA READIN
C	N = NG. CF CONSTANTS TO BE EVALUATED
C	NCUT = 1 (SUPPRESSES CERTAIN PRINTOUT)
С	ITER = 1 (SUBROUTINE FOR INVERSION IMPROVEMENT NOT USED)
C	MM = NO. CF POINTS USED FOR CORRELATION OF DATA
C	USED FOR CORRELATION OF DATA
	READ (5,501) N, NOUT, ITER, MM
50	1 FORMAT (414)
	R=10.7335
	AM=MM
	$\underline{\text{DC} \ 11 \ I=1, MM}$
C	
C	PRES AND PA(I) ARE PRESSURES IN PSI
<u>C</u>	<u>IEMP IS IEMPERATURE IN DEGREES CENTLEPADE</u>
C	IVIJ IS LEMPERATURE IN DEGREES RANKINE
C	CLMP IS CUMPRESSIBILITY FACTOR
<u>C</u>	DE(I) IS DENSITY CALCULATED AT POINT I
C	
50	READ (5,502) TEMP, PRES, COMP
502	2 FORMAT(8X, F7.2, 6X, F8.2, 31X, F8.5)
	I(I)=I.8#(IEMP+273.16)
	PA(I)=PRES
1 1	DE(1)=PRES/(COMP*10.7335*T(1))
11	CONTINUE
	SESIN=1000000.

ſ		
C		GAM = A CONSTANT OF THE BWR EQUATION
C		DGAM = AN INCREMENT IN GAM
C		
		READ (5,503) GAM, DGAM
	503	FORMAT(1X,F15.8, F12.9)
	400	GAM=GAM+DGAM
C		
C		GENERATE THE MATRIX "A"
C		
		DO 15 I=1,N
		B(I)=0.0
		DO 16 J=1.N
		A(I,J)=0.0
	16	CONTINUE
	15	CCNTINUE
		IF(GAM.LE.0.0) GG TO 100
		CO 20 I=1,MM
	<u> </u>	DD=DE(I)*DE(I)
		FY=Z(I)-1.0
		G(1) = -DE(I)/(R*T(I))*10.0**4
		G(2) = DE(1)
		$G(3) = -DE(I)/(R + T(I) + 3) + 10 \cdot 0 + 10$
		G(4) = -DD/(R + T(I)) + 10.0 + 4
		G(5)=DD
		$G(6) = CD \neq DD \neq DE(I) / (R \neq T(I)) \neq 10.0 \neq *4$
		EA=GAM*DD
		IF(EA.GT.50.0) EA=50.0
		G(7)=DD*(1.0+EA)*EXP(-EA)/(R*T(I)**3)*10.0**10
		DO 25 J=1,N
		B(J)=B(J)+FY+G(J)
	25	CONTINUE
		DO 27 K=1, N
		DC 28 L=1,N
	• •	A(K,L)=A(K,L)+G(K)*G(L)
		CONTINUE
~		CONTINUE
C		COLUTION BUILINEAD COUNTIONS ON MATRIX INVENTION
<u></u>		SOLUTION OF LINEAR EQUATIONS BY MATRIX INVERSION
C		WRITE (6,505)
	505	
	505	$\frac{\text{FGRMAT}(1HO_{2}5X_{1}14H \text{ MATRIX A}(I_{1}J))}{1-1}$
	604	WRITE(0,504) ((A(I,J), $J=1,N$), $I=1,N$)
r		FORMAT(1HC, (15X, 4E15.6))
C C		FAC IS A FACTOR INTRODUCED TO CONTROL OVERFLOW AND
C		UNDERFLOW
C C		UNDENTEUM
C		FAC=10.C**5
		DO 2 I=1,N
		DC 1 J=1, N

<u></u>		A(I,J)=A(I,J)*FAC
		CONTINUE
		CONTINUE
		CALL PARTN(A, D, U, N)
		IF(NOUT.EQ.1) GO TO 200
		WRITE (6,506)
• •		FORMAT(1HO, 25X, 14H MATRIX L(1,J))
		WRITE $(6,504)$ $((D(I,J), J=1,N), I=1,N)$
·		WRITE(6,507)
	507	FORMAT(1HO, 25X, 14H MATRIX U(I,J))
-		WRITE (6,504) ((U(I,J), $J=1,N$), $I=1,N$)
	200	CONTINUE
<u>C</u> C		DETERMINATION OF INVERSE MATRICES
C		DETERMINATION OF INVERSE MATRICES
C		
		CALL INVER(D, U, P, C, N, NOUT) CO 7C I=1,N
		DO = 69 J = 1.0 N
		D(1, J) = 0.0
		DC 68 K=1,N
		$D(I_{J})=D(I_{J})+P(I_{J})*Q(K_{J})*FAC$
		CONTINUE
		CCNTINUE
		CONTINUE
		WRITE(6,512)
5		FORMAT(1HO, 25X, 18H INVERSE OF A(I,J))
		WRITE (6,504) ((D(I,J),J=1,N), I=1,N)
C		
C		CHECK OF INVERSION
C		
		DC 73_I=1,N
		DO 72 J=1,N
		U(I,J)=0.0
		DG 71 K=1,N
		U(I,J)=U(I,J)+A(I,K)*D(K,J)/FAC
		CONTINUE
	72	CONTINUE
		CONTINUE
		kRITE(6,513)
		FORMAT(1HC, 25X, 19H CHECK OF INVERSION)
		WRITE (6,504) ((U(I,J),J=1,N), I=1,N)
		CALL IMPRO(A, D, U, P, Q, N, ITER)
		DO 91 I=1,N
		X(I)=0.0
		DD 90 J=1,N
		x(I) = x(I) + D(I, J) + B(J)
		CONTINUE
		CONTINUE
		WRITE(6,515)
5		FORMAT(1H0, 25X, 16H FINAL SOLUTIONS)
		XONE=X(1)*10.0**4
		XTRE=X(3)*10.0**10

	·
	XFCR=X(4)*10.0**4
	XSIX=X(6)*10.0**4
	XSEV=X(7)*10.0**10
	WRITE(6,6C1) XCNE
	WRITE(6,602) X(2)
	WRITE(6,603) XTRE
	WRITE(6,604) XFCR
	WRITE(6,605) X(5)
	WRITE(6,6C6) XSIX
	WRITE(6,6C7) XSEV
	601 FORMAT(1HO, 19X, *AO =* , E16.8)
	602 FCRMAT(1H , 19X, 'BO =' , E16.8)
	603 FORMAT(1H, 19X, CO = , E16.8)
<u> </u>	604 FORMAT(1H , 19X, *A1 =* , E16.8)
	6C5 FORMAT(1H , 19X, *B1 = *, E16.8)
	606 FORMAT(1H', 19X, *A1*ALPHA = *, E16.8)
	6C7 FORMAT(1H , 19X, *C1 = *, E16.8)
	ALPHA=X(6)/X(4)
	WRITE(6,518) ALPHA
	518 FORMAT(1H , 19X, 7HALPHA =, $E16.8$)
	WRITE (6,521) GAM
	521 FORMAT(1H , 19X, 7HGAMMA =, E16.8)
C C C	
	WRITE(6,531)
	531 FORMAT(1H0,18X,7HP(PSIA),3X,9HT(DEG.R.),5X,1HZ,7X,7HZ(C
	1AL.), 6X, 4HDEV., 5X, 1% DEV. 1)
	SE=C.0
	SP=0.0
	SES=0.0
	DC 92 I=1, MM
	$DD=DE(I) \neq DE(I)$
	EA=GAM*DD
	IF(EA.GT.50.) EA=5C.C
	W=1.0-X0NE*DE(I)/(R*T(I))+X(2)*DE(I)-XTRE*DE(I)/(R*T(I)
	$\frac{1 \times 3}{2 \times 2} - XFOR \times DD/(R \times T(I)) + X(5) \times DD + XSIX \times DD \times DE(I)/(R \times T(I))$
	2+XSEV*DD*(1.00+EA)*EXP(-EA)/(R*T(I)**3)
	ER=ABS(W-Z(I))
	DEV=ER/Z(I)*100.
	SE=SE+ER
·····	SP=SP+DEV
	SES=SES+ERSQ
	WRITE(6,535) PA(I), T(I), Z(I), W, ER, DEV
	535 FURMAT(1H , 15X, 2F10.2, 3F11.5, F10.4)
	92 CONTINUE
	SER=SE/AM
	SPR=SP/AM
	WRITE(6,537) SER, SPR
	537 FORMAT(1H0, 15X, 11HAVE. DEV. =, F10.5, 5X, 17HAVE. PER

	A-21
	NOTELA ESON SES
538	WRITE(6,538) SES FORMAT(1H , 15X, 14HERROR SQUARE =, E16.6)
	IF(SESIN.LT.SES) GO TO 105 SESIN=SES
105	GC TC 400 SESIN=SES
	DDGAM=ABS(DGAM)
	IF(DDGAM.LT.0.0000001) GO TO 100 DGAM=-DGAM/3.0
100	GD TD 400 CONTINUE
100	STOP
	END
·····	
	-
· · · · · ·	
understanden og skale skrive støre støre atte kale for er opprøder og skrive og skale som et se ser at skrive og	

Δ-	2	2
----	---	---

		SUBROUTINE PARTN(A, D, U, N)
	С	
	C	DETERMINATION OF L-U MATRICES
······································	Ç	
		DOUBLE PRECISION A(27,27), D(27,27), U(27,27)
		INTEGER N
		DO 31 I=1,N
		DG 30 J=1,N
		D(I, J) = 0.0
		U(I,J)=0.0
	30	CONTINUE
	31	CONTINUE
		D(1,1)=1.0
		U(1,1)=A(1,1)
		DO 32 J=2,N
		U(1,J)=A(1,J)
		D(J,1)=A(J,1)/U(1,1)
	32	CONTINUE
		DO 34 K=2,N
		KA=K-1
		KB=K+1
		$DO_{37} J = K N$
		U(K,J)=A(K,J)
		DO 36 I=1,KA
·		U(K,J) = U(K,J) - D(K,I) + U(I,J)
		CONTINUE
	37	CONTINUE
		D(K,K) = 1.0
		CO 38 I=KB,N
		D(I,K)=A(I,K)
·		DO 40 J=1,KA
		$\mathbb{D}(I,K) = \mathbb{D}(I,K) - \mathbb{U}(J,K) \neq \mathbb{D}(I,J)$
	40	CONTINUE
		D(I,K)=D(I,K)/U(K,K)
		CONTINUE
	34	CONTINUE
		RETURN
		END

	SUBROUTINE INVER(D, U, P, G, N, NOUT)
С	
С	INVERSION OF L-U MATRICES
C	
	DOUBLE PRECISION D(27,27), U(27,27), P(27,27), Q(27,27)
	INTEGER N. NOUT
	DG 46 I=1,N
	DO 45 J=1,N
	P(I,J)=0.0
	Q(I,J)=0.0
45	CONTINUE
46	CONTINUE
	DG 50 I=1.N
	P(I,I)=1.0/U(I,I)
50	CONTINUE
	DO 52 J=2,N
	JA=J-1
	DO 54 K=1,JA
	I=J-K
	IA=I+1
	DO 56 IR=IA,J
	P(I,J)=P(I,J)+U(I,IR)*P(IR,J)
56	CONTINUE
	P(I,J) = -P(I,J)/U(I,I)
54	CONTINUE
52	CONTINUE
	DD 60 I = 1, N
	Q(I,I)=1.0/D(I,I)
60	CONTINUE
	DD 66 I=2,N
	IA = I - 1
	DO 64 K=1, IA
	J=I-K
	DG 62 IR=J,IA
	Q(I,J)=Q(I,J)+D(I,IR)*Q(IR,J)
62	CONTINUE
	Q(I,J) = -Q(I,J)/D(I,I)
64	CONTINUE
	CONTINUE
	IF(NOUT.EQ.1) GO TO 201
······································	WRITE (6,510)
510	FCRMAT(1HC, 10X, 18H INVERSE OF U(I,J))
	WRITE (6,504) ((P(I,J),J=1,N), I=1,N)
504	FORMAT(1X, 4(2X, E15.8))
	WRITE(6,511)
511	FORMAT(1HO, 10X, 18H INVERSE OF L(I,J))
<u>_</u>	wRITE (6,504) ((Q(I,J),J=1,N), I=1,N)
201	CONTINUE
,	RETURN
· · · · · · · · · · · · · · · · · · ·	END

C C C C C DOUBLE PRECISION A(27,27), D(27,27), U(27,27), P(27,27) 1, C(27,27) INTEGER N. IIER If(ITEN.EQ.1) GO TC 99 FAC=10.0745 DO 73 J=1,N DO 73 J=1,N U(1,J)=-U(1,J) 73 CONTINUE DC 77 (=1,N CC 77 (=1,N CC 77 (=1,N CC 77 (=1,N CC 77 (=1,N CC 75 k=1,N P(1,J)=P(1,J)+U(1,K)*U(K,J) 75 CONTINUE 76 CONTINUE 77 CCNTINUE 76 CONTINUE 77 CCNTINUE 78 CONTINUE 78 CONTINUE 79 CCNTINUE 00 81 J=1,N U(1,J)=L0+U(1,K)*U(K,J) 79 CCNTINUE 20 CR S J=1,N U(1,J)=D(1,J)+D(1,K)*U(K,J) 79 CCNTINUE 20 CR S J=1,N U(1,J)=D(1,J)+D(1,K)*U(K,J) 79 CCNTINUE 20 CR S J=1,N U(1,J)=D(1,J)+D(1,K)*U(K,J) 79 CCNTINUE 20 CR S J=1,N 0 CR	SUBROUTINE IMPRO(A, D, U, P, Q, N, ITER)
C IMPROVEMENT OF INVERSION BY THE METHOD OF HOTELLING C DOUBLE PRECISION A(27,27), D(27,27), U(27,27), P(27,27) 1, (27,27 1, (27,27) 1, (27,27 1, (27,27 1, (27,27 1, (27,27 1,	
C DOUGLE PRECISIGN A(27,27), D(27,27), U(27,27), P(27,27) 1, Q(27,27) INTEGER N. ITER INTEGER N. ITER IF(ITER.EQ.1) GO TO 99 FAC=10.0**5 DC 74 J=1,N DC 73 J=1,N U(1,)=1.0*U(1,1) 74 CONTINUE DC 77 J=1,N CC 76 J=1,N P(1,J)=P(1,J)+U(1,K)*U(K,J) 75 K=1,N P(1,J)=P(1,J)+U(1,K)*U(K,J) 76 CONTINUE 77 CONTINUE 78 CONTINUE CC 78 I=1,N U(1,J)=1.0*U(1,1) 78 CONTINUE CC 78 I=1,N DC 83 I=1,N DC 84 J=1,N DC 83 J=1,N DC 83 J=1,N D(1,J)=D(1,J)+P(1,K)*U(K,J) 79 CONTINUE 80 CONTINUE 70 CONTINUE 71 CONTINUE 72 CONTINUE 73 CONTINUE 74 CONTINUE 75 CONTINUE 75 CONTINUE 76 CONTINUE 77 CONTINUE 78 CONTINUE 79 CONTINUE 79 CONTINUE 20 84 J=1,N D(1,J)=D(1,J)+P(1,K)*P(K,J) 21 CONTINUE 82 CONTINUE 84 CONTINUE 85 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 85 CONTINUE 86 CONTINUE 86 CONTINUE 87 CONTINUE 86 CONTINUE 87 CONTINUE 88 CONTINUE 89 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 81 CONTINUE 82 CONTINUE 83 CONTINUE 84 CONTINUE 85 CONTINUE 85 CONTINUE 86 CONTINUE 87 CONTINUE 86 CONTINUE 87 CONTINUE 88 CONTINUE 89 CONTINUE 80 CONTINU	
1, Q(27,27) INTEGER N, ITER IF(1TER.EG.1) GG TO 99 FAGE10.0##5 DO 74 I=1,N DO 73 J=1,N U(1,J)=-U(1,J) 73 CONTINUE 0 (1,J)=1.0+U(1,I) 74 CONTINUE DC 77 I=1.N P(1,J)=0.0 D0 75 K=1.N P(1,J)=P(1,J)+U(1,K)*U(K,J) 75 CONTINUE 16 CONTINUE CO 78 I=1,N U(1,I)=1.0+U(1,I) 78 CONTINUE CO 78 I=1,N U(1,I)=1.0+U(1,I) 78 CONTINUE CO 78 I=1,N D0 80 J=1.N Q0 81 J=1.N Q1 (J)=0.0 D0 75 K=1,N Q1 (J)=0.0 D0 75 K=1,N Q2 CONTINUE 81 CONTINUE 22 CONTINUE 23 CONTINUE 24 CONTINUE 25 CONTINUE 26 CONTINUE 27 CONTINUE 28 CONTINUE 29 CONTINUE 20 84 I=1,N D1 83 J=1.N D1 84 J=1.N D1 85 CONTINUE 84 CONTINUE 85 CONTINUE 86 CONTINUE 86 CONTINUE 86 CONTINUE 86 CONTINUE 86 C	С
INTEGER N. 1TER IF1TER.EQ.1) GO TO 99 FAC=10.0**5 DO 73 J=1.N DO 73 J=1.N U(1,J)=-U(1,J) 73 COMINUE U(1,J)=1.0+U(1,I) 74 J=1.N DO 77 J=1.N U(1,J)=0.0 DO 77 L=1.N DO 75 K=1.N P(1,J)=0.0 DP 75 K=1.N P(1,J)=0.0 DO 75 K=1.N P(1,J)=0.0 DO 75 K=1.N CONTINUE 77 CONTINUE 76 CONTINUE 77 CONTINUE 00 81 I=1.N D0 80 J=1.N 01 1.1=0.0+U(1,I) 78 CONTINUE 01 00 75 K=1.N D0 80 J=1.N 01 01 75 K=1.N 01 02 75 K=1.N 01 03 1=1.N 01 03 1=1.N 01 03 1=1.N 01 04 1=1.N 01 05 3 J=1.N 01 1.1.1=0.0 02 08 4 =1.N 01 1.1.1=0.0 01 1.1.1=0.0 02 08 2 K=1.N 01 1.1.1=0.0 02 08 2 K=1.N <t< td=""><td>DOUBLE PRECISION A(27,27), D(27,27), U(27,27), P(27,27)</td></t<>	DOUBLE PRECISION A(27,27), D(27,27), U(27,27), P(27,27)
<pre>IF (ITER.EQ.1) GG TO 99 FACE10.0*5 DG 74 I=1,N DG 73 J=1,N UIT,J]=-U(1,J) 73 CGNTINUE UIT,J]=-U(1,J) 74 CGNTINUE DC 77 I=1.N CC 76 J=1,N P(1,J)=0.0 DC 75 K=1,N P(1,J)=P(1,J)+U(1,K)*U(K,J) 75 CGNTINUE 76 CGNTINUE 77 CGNTINUE CC 78 I=1,N U(I,I)=1.0+U(I,I) 78 CGNTINUE DC 81 I=1,N U(I,I)=2.0 DC 95 K=1,N DC 84 I=1,N DC 85 I=1,N DC 84 I=1,N DC 85 I=1,N DC 86 I=1,N</pre>	1, Q(27,27)
FAC=10.04*5 $CC 74 i=1,N$ $U(1,J)=U(1,J)$ $U(1,J)=U(1,J)$ $T3 CONTINUE U(1,J)=1.0+U(1,J) T4 CONTINUE CC 76 j=1,N P(1,J)=0.0 DC 75 K=1.N P(1,J)=P(1,J)+U(1,K)+U(K,J) T5 CONTINUE T6 CONTINUE T6 CONTINUE T7 CONTINUE CC 78 i=1,N U(1,J)=1.0+U(1,K)+U(K,J) T8 CONTINUE CC 78 i=1,N U(1,J)=0.0 CC 75 K=1,N U(1,J)=0.0 CC T8 K=1,N U(1,J)=0.0 CC CONTINUE CC CO$	INTEGER N, ITER
DC 74 I=1,N D0 73 J=1,N U(I,j)=-U(I,j) 73 CONTINUE U(I,j)=1.0+U(I,I) 74 CONTINUE D0 75 J=1,N CC 76 J=1,N P(I,j)=0.0 D0 75 K=1,N P(I,j)=P(I,j)+U(I,K)*U(K,J) 75 CONTINUE 76 CONTINUE 77 CONTINUE 77 CONTINUE 77 CONTINUE 77 CONTINUE 77 CONTINUE 78 CONTINUE 79 CONTINUE 00 81 I=1,N U(I,j)=0.0 00 81 I=1,N 01 81 I=1.0 02 80 J=1.N Q(II,J)=0.0 02 83 J=1.N Q(II,J)=0.1 91 CONTINUE 82 CONTINUE 81 CONTINUE 82 CONTINUE </td <td>IF(ITER.EQ.1) GO TO 99</td>	IF(ITER.EQ.1) GO TO 99
$ \begin{array}{c} \begin{array}{c} 0 & 0 & 73 & J=1, N \\ & U(1, J)=-U(1, J) \\ \hline 73 & GNTINUE \\ \\ U(1, I)=1, 0+U(1, I) \\ \hline 74 & CANTINUE \\ \hline 0 & 77 & I=1, N \\ \hline 0 & 77 & I=1, N \\ \hline 0 & 75 & K=1, N \\ \hline 0 & 175 & K=1, N \\ \hline 0 & 175 & K=1, N \\ \hline 0 & 175 & CONTINUE \\ \hline 75 & CONTINUE \\ \hline 76 & CONTINUE \\ \hline 77 & CCNTINUE \\ \hline 78 & CONTINUE \\ \hline 0 & 78 & I=1, N \\ \hline 0 & 11 & I=1, 0+U(1, I) \\ \hline 78 & CONTINUE \\ \hline 0 & 81 & I=1, N \\ \hline 0 & 80 & J=1, N \\ \hline 0 & 10 & 75 & K=1, N \\ \hline 0 & 10 & 75 & K=1, N \\ \hline 0 & 11 & J=0, 0 \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 11, J=0, 0 \\ \hline 0 & 0 & 75 & K=1, N \\ \hline 0 & 0 & 11, J=0, 0 \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 11, J=0, 1, J) + P(1, K) + P(K, J) \\ \hline 2 & 2 & CONTINUE \\ \hline 8 & 2 & CONTINUE \\ \hline 8 & 2 & CONTINUE \\ \hline 8 & 2 & CONTINUE \\ \hline 0 & 0 & 84 & J=1, N \\ \hline 0 & 0 & 11, J=0, 1, J) + P(1, K) + P(K, J) \\ \hline 8 & 2 & CONTINUE \\ \hline 8 & 2 & CONTINUE \\ \hline 0 & 0 & 0 & 51 & J=1, N \\ \hline 0 & 0 & 11, J=0, 0 + (1, 1) \\ \hline 0 & 0 & 11, J=1, 0 + P(1, 1) \\ \hline 0 & 0 & 11, J=1, 0 + P(1, 1) \\ \hline 0 & 0 & 0 & 0 & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & C & 65 & K=1, N \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\$	FAC=10.0**5
$ \begin{array}{c} U(1, j) = - u(1, j) \\ \hline 73 \ CONTINUE \\ U(1, i) = 1.0 + U(1, i) \\ \hline 74 \ CONTINUE \\ \hline 00 \ 77 \ i = 1, N \\ \hline 00 \ 77 \ i = 1, N \\ \hline 00 \ 75 \ k = 1, N \\ \hline 01 \ j = 0 \ (1, j) = 0 \ (0 \\ \hline 01 \ 75 \ k = 1, N \\ \hline 01 \ 75 \ CONTINUE \\ \hline 76 \ CONTINUE \\ \hline 76 \ CONTINUE \\ \hline 77 \ CONTINUE \\ \hline 78 \ CONTINUE \\ \hline 00 \ 81 \ i = 1, N \\ \hline 00 \ 81 \ i = 1, N \\ \hline 00 \ 81 \ i = 1, N \\ \hline 00 \ 80 \ J = 1, N \\ \hline 00 \ 81 \ J = 1, N \\ \hline 00 \ 82 \ CONTINUE \\ \hline 00 \ 84 \ I = 1, N \\ \hline 01 \ 1, j = 0 \ (1, j) + P(1, j) \\ 01 \ 1, j = 1 \ (0 + P(1, 1)) \\ \hline 01 \ 1, j = 1 \ (0 + P(1, 1)) \\ \hline 01 \ 1, j = 1 \ (0 + P(1, 1)) \\ \hline 01 \ 85 \ CONTINUE \\ \hline 00 \ 86 \ I = 1, N \\ \hline 00 \ 00 \ 66 \ K = 1, N \\ \hline 00 \ 00 \ 66 \ K = 1, N \\ \hline 00 \ 00 \ 66 \ K = 1, N \\ \hline 00 \ 00 \ C6 \ K = 1, N \\ \hline 00 \ 00 \ C6 \ K = 1, N \\ \hline 00 \ 00 \ C6 \ K = 1, N \\ \hline 00 \ I \ K = 1, I \ K \ K \ K \ K \ K \ K \ K \ K$	DO 74 I=1,N
73 CONTINUE U(I,I)=1.0+U(I,I) 74 CONTINUE DC 77 I=1.N P(I,J)=0.0 D0 75 K=1.N P(I,J)=P(I,J)+U(I,K)*U(K,J) 75 CONTINUE 76 CONTINUE D0 78 i=1,N U(I,I)=1.0+U(I,I) 78 CONTINUE D0 81 I=1,N D0 80 J=1.N Q(I,J)=0.0 D0 79 K=1,N Q(I,J)=0.0 D0 79 K=1,N Q(I,J)=0.0 D0 84 I=1,N D0 84 I=1,N D1 83 J=1,N D1 (I,J)=0.0 D1 32 K=1,N D1 (I,J)=0.0 D1 35 CONTINUE 83 CONTINUE 84 CONTINUE 85 CONTINUE 05 K=1,N D1 85 CONTINUE 06 K=1=1,N D0 88 I=1,N D0 88 I=1	DO 73 J=1,N
$ \begin{array}{c} U(1,1)=1.0+U(1,1) \\ 74 \ CONTINUE \\ 02 \ 77 \ i=1,N \\ C0 \ 76 \ j=1,N \\ P(1,j)=0.0 \\ 00 \ 75 \ k=1,N \\ P(1,j)=P(1,j)+U(1,K)+U(k,j) \\ 75 \ CONTINUE \\ 76 \ CONTINUE \\ 77 \ CONTINUE \\ 77 \ CONTINUE \\ 77 \ CONTINUE \\ 00 \ 78 \ i=1,N \\ U(1,i)=1.0+U(1,i) \\ 78 \ CONTINUE \\ 00 \ 81 \ i=1,N \\ 00 \ 80 \ j=1,N \\ 00 \ 80 \ j=1,N \\ 00 \ 80 \ j=1,N \\ 01 \ j=0.0 \\ 00 \ 75 \ k=1,N \\ 01 \ j=0.1 \\ 01 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$	U(I,J) = -U(I,J)
74 CONTINUE 00 77 I=1.N CC 76 J=1,N P(I,J)=0.0 DC 75 K=1.N P(I,J)=P(I,J)+U(I,K)*U(K,J) 75 CONTINUE 76 CONTINUE 77 CCNTINUE 00 81 I=1.N U(I,I)=1.0+U(I,I) 78 CONTINUE 00 81 I=1.N 00 80 J=1.N 00 80 J=1.N 00 80 J=1.N 01 (J)=0.0 00 75 K=1.N U(I,J)=0.0 00 84 I=1.N 00 83 J=1.N 01 (J)=0.0 02 84 I=1.N 01 (J)=0.0 02 84 I=1.N 01 (J)=0.0 02 85 K=1.N 01 (J)=0 (J,J)+P(I,K)*P(K,J) 82 CONTINUE 82 CONTINUE 82 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 86 CONTINUE 87 CONTINUE 86 CONTINUE 87 CONTINUE 88 CONTINUE 89 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 81 CONTINUE 82 CONTINUE 83 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 86 CONTINUE 86 CONTINUE 87 CONTINUE 86 CONTINUE 87 CONTINUE 88 CONTINUE 89 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 81 CONTINUE 82 CONTINUE 84 CONTINUE 85 CONTINUE 85 CONTINUE 86 CONTINUE 86 CONTINUE 87 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 80 CONTINUE 81 CONTINUE 82 CONTINUE 84 CONTINUE 85 CONTINUE 85 CONTINUE 86 CONTINUE 87 CONTINUE 86 CONTINUE 87 CONTINUE 80 CONTINU	73 CONTINUE
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CG \ 77 \ I=1, N \\ CG \ 76 \ J=1, N \\ P(I, J)=0.0 \\ \hline \\ D0 \ 75 \ K=1, N \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} P(I, J)=P(I, J)+U(I, K) \neq U(K, J) \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} P(I, J)=P(I, J)=P(I, K) \neq U(K, J) \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \hline \\ 75 \ CONTINUE \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 76 \ CONTINUE \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 77 \ CONTINUE \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \hline \\ 77 \ CONTINUE \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \hline \\ 78 \ CONTINUE \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 00 \ 78 \ I=1, N \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 00 \ 81 \ I=1, N \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 00 \ 80 \ J=1, N \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 00 \ C0 \ 79 \ K=1, N \\ \end{array} \\ \begin{array}{c} \hline \\ \begin{array}{c} \hline \\ 1, J=Q(I+J)+D(I, K) \neq U(K, J) \\ \end{array} \end{array} \\ \begin{array}{c} \hline \\ 79 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 81 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 81 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 81 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 81 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 82 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 85 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 85 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 85 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 85 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 85 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \hline \\ 84 \ CONTINUE \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	U(I,I)=1.0+U(I,I)
$ \begin{array}{c} \mbox{CG 76 J=1,N} \\ \mbox{P(1,J)=0.0} \\ \mbox{DG 75 K=1,N} \\ \mbox{P(1,J)=P(1,J)+U(1,K)+U(K,J)} \\ \mbox{75 C0NTINUE} \\ \mbox{76 C0NTINUE} \\ \mbox{77 CCNTINUE} \\ \mbox{CONTINUE} \\ \mbo$	74 CONTINUE
<pre> P(I,J)=P(I,J)+U(I,K)*U(K,J) P(I,J)=P(I,J)+U(I,K)*U(K,J) 75 CGNTINUE 76 CGNTINUE 77 CCNTINUE 00 78 I=1,N U(I,J)=1.0+U(I,I) 78 CGNTINUE 00 81 I=1,N 00 80 J=1,N 00 80 J=1,N 00 00 75 K=1,N 00 75 K=1,N 00 75 K=1,N 00 81 I=1,N 00 84 I=1,N 00 84 I=1,N 00 83 J=1,N 00 84 J=1,N 00 84 J=1,N 00 83 J=1,N 00 (I,J)=0.0 20 82 K=1,N 00 (I,J)=0.1(I,J)+P(I,K)*P(K,J) 20 85 I=1,N P(I,I)=1.0+P(I,I) 21 0, P(I,I) 21 0, P(I,I) 22 CCNTINUE 23 CCNTINUE 24 CGNTINUE 25 CCNTINUE 26 85 I=1,N P(I,I)=1.0+P(I,I) 26 85 I=1,N 00 86 I=1,N 00 86 I=1,N 00 87 J=1,N 00 86 I=1,N 00 86 I=1,N 00 86 I=1,N 00 87 J=1,N 00 86 I=1,N 00 87 J=1,N 00 86 I=1,N 00 86 I</pre>	DC 77 I=1,N
D0.75 K=1.N P(1,J)=P(1,J)+U(1,K)*U(K,J) 75 CONTINUE 76 CONTINUE 77 CONTINUE 00 78 I=1,N U(1,J)=1.0+U(1,I) 78 CONTINUE D0 81 I=1,N D0 80 J=1,N 00 80 J=1,N 01 J=0(1,J)+D(1,K)*U(K,J) 79 CONTINUE 80 CONTINUE 81 CONTINUE 81 CONTINUE 00 84 I=1,N 01 S3 J=1,N 01 S3 J=1,N 01 S3 J=1,N 01 S2 K=1,N 01 S3 J=1,N 01 S2 K=1,N 01 S2 K=1,N 01 S3 J=1,N 01 S2 K=1,N 01 S2 CONTINUE 82 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) 01 S2	CG 76 J=1,N
<pre> P(I,J)=P(I,J)+U(I,K)+U(K,J) 75 CONTINUE 76 CONTINUE 77 CCNTINUE 77 CCNTINUE 78 CONTINUE 78 CONTINUE 78 CONTINUE 00 80 J=1,N 01(J,J)=0.0 C0 75 K=1,N 01(J,J)=0(I,J)+P(I,K)+U(K,J) 79 CONTINUE 20 84 I=1,N 01(J,J)=0(I,J)+P(I,K)+P(K,J) 21 CONTINUE 22 CONTINUE 23 CONTINUE 24 CONTINUE 25 CONTINUE 26 85 I=1,N 01(J,J)=0.0 17 (J)=1.0+P(I,I) 10(J,J)=0.0 20 85 I=1,N 21 CONTINUE 22 CONTINUE 23 CONTINUE 24 CONTINUE 25 CONTINUE 26 85 I=1,N 27 (I,J)=0.0 27 (I,J)+P(I,K)+P(K,J) 28 CONTINUE 29 (I,J)+P(I,I) 20 85 I=1,N 20 86 I=1,N 20 87 J=1,N 20 86 I=1,N 20 00 66 K=1,N 20 01(J,J)+P(I,K)+P(K,J) 20 00 66 K=1,N 20 01(J,J)+P(I,K)+P(K,J) 20 00 20 K=1,N 20 00 X=1,N 20 00 X=1,N 20 00 X=1,N 20 00</pre>	P(I, J) = 0.0
75 CONTINUE 76 CONTINUE 77 CCNTINUE CC 78 I=1,N U(I,I)=1.C+U(I,I) 78 CONTINUE CD 81 I=1,N DO 80 J=1,N Q(I,J)=0.0 Q(I,J)=0.0 Q(I,J)=0.0 CO 79 K=1,N U(I,J)=0(I,J)+D(I,K)*U(K,J) 79 CONTINUE 81 CONTINUE 81 CONTINUE CD 84 I=1,N DC 83 J=1,N D(I,J)=0.0 CD 82 K=1,N D(I,J)=0(I,J)+P(I,K)*P(K,J) 82 CONTINUE 83 CONTINUE 84 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 96 CONTINUE 97 J=1,N 00 R Z R Z R R R R R R R R R R R R R R R	DQ 75 K=1,N
76 CONTINUE 77 CCNTINUE 0 78 I=1,N U(I,J)=1.0+U(I,I) 78 CONTINUE 0 81 I=1,N 0 80 J=1,N 0 80 J=1,N 0 (I,J)=0.0 0 75 K=1,N 0 (I,J)=0(I,J)+D(I,K)+U(K,J) 79 CONTINUE 81 CONTINUE 81 CONTINUE 81 CONTINUE 10 84 I=1,N 0 G 83 J=1,N 0 (I,J)=0(I,J)+P(I,K)+P(K,J) 82 CONTINUE 82 CONTINUE 82 CONTINUE 83 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 85 CONTINUE 0 0 85 I=1,N 0 (I,I)=1.0+P(I,I) 0 (I,I)=1.0+D(I,I) 85 CONTINUE 0 0 87 J=1,N 0 (I,J)=0.0 0 0 66 K=1,N 0 (I,J)=0(K,J)+P(K,J)	P(I,J)=P(I,J)+U(I,K)+U(K,J)
77 CCNTINUE DC 78 I=1,N U(I,I)=1.0+U(I,I) 78 CONTINUE DC 81 I=1,N DC 80 J=1,N Q(I,J)=0.0 DC 79 K=1,N U(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CCNTINUE 80 CCNTINUE 81 CONTINUE 81 CONTINUE DC 84 I=1,N DG 83 J=1,N D(I,J)=0.0 CC 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE CD 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 CC 85 I=1,N D(I,J)=0.0 CC 85 I=1,N CC 85 I=1,N	75 CONTINUE
77 CCNTINUE DC 78 I=1,N U(I,I)=1.0+U(I,I) 78 CONTINUE DC 81 I=1,N DC 80 J=1,N Q(I,J)=0.0 DC 79 K=1,N U(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CCNTINUE 80 CCNTINUE 81 CONTINUE 81 CONTINUE DC 84 I=1,N DG 83 J=1,N D(I,J)=0.0 CC 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE CD 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 CC 85 I=1,N D(I,J)=0.0 CC 85 I=1,N CC 85 I=1,N	
CC 78 I=1,N U(I,I)=1.0+U(I,I) 78 CGNTINUE DO 81 I=1,N QC 80 J=1,N Q(I,J)=0.0 CC 75 K=1,N U(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CGNTINUE 81 CONTINUE 81 CONTINUE 81 CONTINUE CD 84 I=1,N DC 83 J=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CGNTINUE 83 CONTINUE 84 CGNTINUE 84 CGNTINUE 84 CGNTINUE 84 CGNTINUE 85 CGNTINUE 85 CGNTINUE 86 CGNTINUE 86 CGNTINUE 86 CGNTINUE 87 CONTINUE 88 CGNTINUE 89 CGNTINUE 80 CS I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 CO 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DO 66 K=1,N U(I,J)=P(I,K)*D(K,J)	
U(I,I)=1.0+U(I,I) 78 CONTINUE D0 81 I=1,N Q(I,J)=0.0 D0 79 K=1,N U(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CONTINUE 80 CONTINUE 81 CONTINUE D0 84 I=1,N D0 84 I=1,N D0 84 I=1,N D1 (J,J)=0.0 C0 82 K=1,N D(I,J)=0(I,J)+P(I,K)*P(K,J) 82 CONTINUE 82 CONTINUE 82 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 84 CONTINUE 85 CONTINUE 84 CONTINUE 85 CONTINUE 86 CONTINUE 86 CONTINUE 87 J=1,N D(I,J)=1.0+P(I,I) D(I,I)=1.0+P(I,I) D(I,I)=1.0+P(I,I) D(I,J)=0.0 D0 88 I=1,N U(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
78 CGNTINUE D0 81 I=1,N D0 80 J=1,N Q(I,J)=0.0 D0 79 K=1,N J(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CGNTINUE 80 CGNTINUE 81 CGNTINUE 81 CGNTINUE 00 84 I=1,N DG 83 J=1,N D(I,J)=0.0 C0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CGNTINUE 83 CGNTINUE 84 CGNTINUE 84 CGNTINUE 84 CGNTINUE 85 CGNTINUE 0 (I,I)=1.0+P(I,I) D(I,I)=1.0+P(I,I) D(I,J)=0.0 C0 88 I=1,N DC 87 J=1,N U(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
D0 81 I=1,N D0 80 J=1,N Q(I,J)=0.0 D0 75 K=1,N Q(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CONTINUE 81 CONTINUE C0 84 I=1,N D0 83 J=1,N D1 (J,J)=0.0 D0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CONTINUE 84 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 C0 88 I=1,N D(I,J)=0.0 C0 88 I=1,N D(I,J)=0.0 C0 86 I=1,N D(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
D0 80 J=1,N Q(I,J)=0.0 D0 79 K=1,N U(I,J)=Q(I,J)+Q(I,K)*U(K,J) 79 CONTINUE 80 CONTINUE 81 CONTINUE D0 84 I=1,N D0 83 J=1,N D(I,J)=0.0 D0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CONTINUE 82 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 D0 86 I=1,N D0 87 J=1,N U(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
Q(I,J)=0.0 DD 75 K=1,N Q(I,J)=Q(I,J)+D(I,K)*U(K,J) 79 CONTINUE 80 CONTINUE 81 CONTINUE DD 84 I=1,N DD 83 J=1,N DI 83 J=1,N D(I,J)=0.0 C0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CONTINUE 83 CONTINUE 84 CONTINUE 20 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0.0 D0 88 I=1,N DC 87 J=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J) 20 CONTINUE	
D0 79 K=1, N	
G(I,J)=G(I,J)+D(I,K)*U(K,J) 79 CONTINUE 80 CONTINUE 81 CONTINUE 00 84 I=1,N DC 83 J=1,N D(I,J)=0.0 CD 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CONTINUE 84 CONTINUE 84 CONTINUE CD 85 I=1,N P(I,I)=1.0+P(I,I) D(I,J)=0+D(I,I) 85 CONTINUE D0 88 I=1,N D0 88 I=1,N U(I,J)=0.0 D0 6 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
79 CGNTINUE 8C CGNTINUE 81 CONTINUE 00 84 I=1,N DC 83 J=1,N D(I,J)=0.0 CO 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CGNTINUE 82 CGNTINUE 84 CONTINUE CO 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CGNTINUE CO 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DD 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
8C CONTINUE 81 CONTINUE D0 84 I=1,N DC 83 J=1,N D(I,J)=0.0 C0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 82 CONTINUE 82 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) B5 CCNTINUE C0 88 I=1,N D0 87 J=1,N U(I,J)=0.0 D0 46 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
81 CONTINUE D0 84 I=1,N DC 83 J=1,N D(I,J)=0.0 C0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 83 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE C0 88 I=1,N DC 87 J=1,N U(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
CO 84 I=1,N DG 83 J=1,N D(I,J)=0.0 CO 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CONTINUE 82 CONTINUE 84 CONTINUE CO 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CONTINUE CO 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DO 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
DC 83 J=1,N D(I,J)=0.0 C0 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 83 CONTINUE 84 CONTINUE C0 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE C0 88 I=1,N DC 87 J=1,N U(I,J)=0.0 D0 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
D(I,J)=0.0 DC 82 K=1,N D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 83 CONTINUE 84 CONTINUE DC 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE DC 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DD 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
$ \begin{array}{c} \mbox{CG 82 K=1,N} \\ \mbox{D(I,J)=D(I,J)+P(I,K)*P(K,J)} \\ \mbox{82 CCNTINUE} \\ \mbox{83 CONTINUE} \\ \mbox{84 CONTINUE} \\ \mbox{CG 85 I=1,N} \\ \mbox{P(I,I)=1.0+P(I,I)} \\ \mbox{D(I,I)=1.0+D(I,I)} \\ \mbox{D(I,I)=1.0+D(I,I)} \\ \mbox{85 CCNTINUE} \\ \mbox{D0 88 I=1,N} \\ \mbox{D0 88 I=1,N} \\ \mbox{U(I,J)=0.0} \\ \mbox{D0 66 K=1,N} \\ \mbox{U(I,J)=U(I,J)+P(I,K)*D(K,J)} \end{array} $	
D(I,J)=D(I,J)+P(I,K)*P(K,J) 82 CCNTINUE 83 CONTINUE 84 CONTINUE CD 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE CD 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DD 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
82 CCNTINUE 83 CONTINUE 84 CONTINUE CG 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE CG 88 I=1,N DG 87 J=1,N U(I,J)=0.0 DG 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	•
83 CONTINUE 84 CONTINUE CO 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CONTINUE DO 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DO 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
84 CONTINUE CD 85 I=1,N P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE DD 88 I=1,N DC 87 J=1,N U(I,J)=0.0 DD 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
P(I,I)=1.0+P(I,I) D(I,I)=1.0+D(I,I) 85 CCNTINUE DO 88 I=1,N DG 87 J=1,N U(I,J)=0.0 DO 66 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
D(I,I)=1.0+D(I,I) 85 CCNTINUE DO 88 I=1,N DG 87 J=1,N U(I,J)=0.0 DO 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
85 CCNTINUE D0 88 I=1,N D0 87 J=1,N U(I,J)=0.0 D0 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
DC 87 J=1,N U(I,J)=0.0 DC 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
U(I,J)=0.0 DO 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
DO 86 K=1,N U(I,J)=U(I,J)+P(I,K)*D(K,J)	
U(1, j) = U(1, j) + P(1, K) + D(K, j)	

	CCNTINUE
88	CONTINUE
	DO 95 I=1,N
	DO 94 J=1,N
	D(I, J) = 0.0
	DU 93 K=1,N
	D(I,J)=D(I,J)+Q(I,K)+U(K,J)
93	CONTINUE
94	CONTINUE
95	CONTINUE
	WRITE(6,514)
514	FORMAT(1HC, 10X, 29H IMPROVED INVERSION OF A(I,J))
	WRITE (6,504) ((D(I,J), $J=1,N)$, $I=1,N$)
504	FORMAT(1X, 4(2X, E15.8))
	WRITE (6,513)
513	FORMAT(1HC, 10X, 19H CHECK OF INVERSION)
	DC 98 I=1,N
	DO 97 J=1,N
	U(I,J)=0.0
	DC 96 K=1, N
	U(I,J)=U(I,J)+A(I,K)*D(K,J)/FAC
96	CONTINUE
97	CONTINUE
98	CONTINUE
	WRITE(6,504) ((U(I,J), J=1,N), I=1,N)
99	CONTINUE
	RETURN
	END

.

A-26
C
C DATA CARDS FOR INPUT C
C FIRST CARD CONTAINS: N, NOUT, ITER, MM C THESE SHOULD BE PUNCHED IN A 414 FIELD (RIGHT HAND C JUSTIFIED) C SECOND CARD TO CARD NO. (MM+1). ENTER THE DATA IN THESE
C CARDS ACCORDING TO -FORMAT 502- C CARD NO.(MM+2) CONTAINS INITIAL GUESSES OF GAMMA AND C INITIAL STEP SIZE FOR GAMMA ACCORDING TO -FORMAT 503-

C SAMPLE OU	TPUT		
C			
MATR	IX A(I,J)		
0 5234340 0		0.1000000.00	
-C.282697D C2	<u>-C.357439D C2</u> -0.271646D C2		
	-0.9220220 02	-0.586831D 02	-0.357439D C2
		-0.282697D 02	0.188984D 02
C.369322D 03	0.112330D 03	C.139030D 03 -0.739975D 02	-C.922022D 02
-C.155126D 03	0.425073D 02	-0.282697D 02	-0.737845D 02
	<u>-0.2361910 C2</u>	<u>-0.242534D</u> 02	0.112330D 03
-C.282697D C2	C.188984D 02	-0.739975D 02	-0.476259D 02
C.156914D 02	0.158236D 02	0.314807D 02	-0.236191D 02
			-0.271646D 02 0.158236D 02
		-0.586831D 02	0.390191D 02
	-0.476259D C2	0.314807D 02	0.303053D 02
C.667106D 02			0.00000000000
INVER	SE OF A(I,J)		
Manager Manager and a standard water and an advance of the standard and standard and standard and a standard at the			
C.1013210 04		-0.141685D C3	-0.657347D 02
-C.201376D 02	-0.352271D C2	-0.233281D 02	0.963792D C3
	-C.128776D C3	-0.917044D 02	-0.770646D C2
-C.2695C3D C2	-C.165C47D C2	-0.141685D 03	-0.128776D 03
0.217960D 02	C.451398D C1	-0.112195D 02	0.823447D 01
C.014567D 01	-0.657347D 02	-0.917044D 02	0.451398D 01
C.606334D 03	0.55416CD 03	0.158255D 03	0.105783D C3
-0.201376D 02	-0.770646D 02	-0.112195D 02	C.554160D 03
<u> </u>		0.770600D 02	-C.352271D 02
-C.2695C3D 02 C.529833D 02	0.8234470 01	0.158255D 03	0.119327D 03
	0.365251D C2	-0.233281D 02	-0.165047D 02
<u>C.614567D 01</u> C.260022D 02	C.105783D 03	C.770600D 02	0.3652510 02
-			
	CF INVERSION		
C.100000 01		-0.6821210-12	-0.163709D-10
C.136424D-1C	0.7332800-11		-0.795808D-12
C.10000CD 01	0.8100190-12	0.727596D-11	0.511591D-12
-C.551381D-11	-0.255795D-11	-0.699174D-11	0.432010D-11
0.1000000 01	-0.209184D-10	0.281943D-10	0.218279D-10
0.1369930-10	-0.4661160-11	C.545697D-11	-0.568434D-12
C.1000CCD 01	0.4604320-11	0.6934900-11	0.3524290-11
C.108002D-11	-0.358114D-11	0.529354D-12	0.10516CD-10
C.1C0000D 01	-0.488853D-11	-0.358114D-11	0.511591D-12
0.153477D - 11	0.107292D-11		-0.8242300-11
C.100000 01		-0.194973D-10	-0.360387D-10
C.596856D-11 C.1COCCCD 01	-0.5456970-11	-0.2546590-10	-0.119371D-10
C.TCOCCOD OI			

F	INAL SCLUTI	ONS	··· _··· _·		· · · · · · · · · · · · · · · · · · ·
	4527629E 0			······································	
	3758663CE 0				
	L9134029E 1				
	<u>14196492E 0</u>				
	20828 7 93E 0				
	A = C.96042				
	6C79386E 1			·····	
	0.67652029			·	
GAMMA =	0.22107620	E 01			
P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	% DEV.
69.33	581.69	0.96699	0.97320	0.00621	0.6422
117.82	581.69	0.94839	0.95390	0.00551	0.5805
167.20	581.69	0.92850	0.93368	0.00518	0.5584
216.88	581.69	0.90840	0.91279	0.00439	0.4835
266.69	581.69	0.88758	0.89119	0.00362	0.4073
316.55	581.69	0.86538	0.86876	0.00338	0.3906
366.47	581.69	C.84228	0.84544	0.00316	0.3749
	581.69	C.83128	0.83248	0.00120	0.1441
419.22	581.69	0.81901	0.82017	0.00116	0.1421
468.79	581.69	0.79392	0.79493	0.00101	0.1271
518.44	581.69	0.76762	0.76837	0.00075	0.0981
568.17	581.69	0.73987	0.74027	0.00040	0.0542
617.94	581.69	0.71037	0.71033	0.00004	0.0054
717.57	581.69	0.64346	0.64268	0.00078	0.1217
817.27	581.69	0.56010	0.55821	0.00189	0.3380
916.95	581.69	0.43569	0.43182	0.00387	0.8888
1016.65	581.69	0.27988	0.27757	0.00231	0.8268
1216.71	581.69	0.27068	0.27324	0.00256	0.9456
1416.83	581.69	0.25382	0.29564	0.00182	0.6196
1616.95	581.69	0.32086	0.32177	0.00091	0.2845
1817.11	581.69	C.34937	0.34855	0.00082	0.2336
2017.24	581.69	0.37802	0.37662	0.00140	0.3703
2517.60	581.69	0.45035	0.44588	0.00447	0.9929
3018.01	581.69	0.52116	0.51873	0.00243	0.4666
3518.40	581.69	0.59149	0.58914	0.00235	0.3968
4018.87	581.69	0.66122	0.65704	0.00418	0.6327
4519.30 5C19.80	581.69	0.72804	0.73481	0.00677	0.9300
	581.69	0.79618	0.80038	0.00420	0.5279
93.81 118.21	626.69	0.96498	0.97134	0.00636	0.6586
118.21	626.69 626.69	0.95782	0.96373	0.00591	0.6173
217.20	626.69	0.94239 0.92691	0.94812 0.93213	0.00573	0.6081
267.00	626.69	0.91092	0.91575	0.00522	0.5628
316.90	626.69	0.89462	0.89901	0.00483	0.5306 0.4905
	626.69	0.87764	0.88185	0.00439	0.4799
416.75	626.69	0.86073	0.86435	0.00362	0.4202
469.20	626.69	0.84451	0.84585	0.00134	0.1584
				AAAAA AAA	UT TOT

	P(PSIA)	TIDEG.R.)	Z	Z(CAL.)	DEV	8 0 E V
	518.84	626.69	0.82641	0.82753	DEV. 0.00112	2 DEV.
	568.56	626.69	0.80798	0.80872		0.1354
	618.31	626.69	0.78897	0.78936	0.00074	0.0915
	717.93	626.69	0.74921	0.74881	0.00039	0.0488
	817.66	626.69	0.70685		0.00040	0.0537
	917.47	626.69		0.70553	0.00132	0.1866
	1017.30	626.69	0.66159	0.65918	0.00241	0.3649
	1217.04		0.61278	0.60937	0.00341	0.5571
	1416.95	626.69	0.50857	0.50379	0.00478	0.9407
	1616.98	626.69	0.42786	0.42589	0.00197	0.4599
		626.69	0.40278	0.40505	0.00227	0.5639
	1817.10	626.69	0.40741	0.41144	0.00403	0.9897
	2017.21	626.69	0.42329	0.42715	0.00386	0.9126
	2517.54	626.69	0.47798	0.48037	0.00239	0.5008
	3017.94	ć26.69	0.53992	0.53912	0.00080	0.1486
	3518.32	626.69	0.60250	0.60218	0.00032	0.0532
	4018.77	626.69	0.66587	0.66463	0.00124	0.1865
	4519.19	626.69	0.72845	0.72900	0.00055	0.0758
	5019.69	626.69	0.79126	0.79097	0.00029	0.0363
	93.86	671.69	0.97096	0.97711	0.00615	0.6337
	118.22	671.69	0.96553	0.97110	0.00557	0.5773
	167.44	671.69	0.95360	0.95884	0.00524	0.5491
	217.00	671.69	0.94128	0.94631	0.00503	0.5347
	266.84	671.69	0.92930	0.93363	0.00433	0.4657
	316.69	671.69	0.91689	0.92075	0.00386	0.4215
	366.60	671.69	0.90439	0.90771	0.00332	0.3675
	416.53	671.69	0.89172	0.89450	0.00278	0.3123
	466.46	671.69	0.87885	0.88112	0.00227	0.2588
	519.17	671.69	0.86541	0.86686	0.00145	0.1675
	568.87	671.69	0.85205	0.85316	0.00111	0.1303
	618.61	671.69	0.83844	0.83926	0.00082	0.0974
	718.25	671.69	0.81073	0.81086	0.00013	0.0164
	817.97	671.69	0.78229	0.78171	0.00058	0.0738
	917.76	671.69	0.75320	0.75187	0.00133	0.1768
	1017.60	671.69	0.72350	0.72144	0.00206	0.2847
	1217.36	671.69	0.66368	0.66013	0.00355	0.5343
	1417.27	671.69	C.60637	0.60215	0.00422	0.6966
	1617.23	671.69	C.55911	0.55570	0.00341	0.6091
	1817.30	671.69	0.52912	0.52790	0.00122	0.2297
	2017.45	671.69	0.51633	0.51801	0.00168	0.3248
	2517.72	671.69	0.53256	0.53693	0.00437	0.8207
	3018.15	671.69	0.57607	0.57927	0.00320	0.5552
	3518.48	671.69	0.62832	0.62904	0.00072	
	4018.93	671.69	0.68356	0.68238	0.00118	0.1140
	4519.36	671.69	0.74019	0.73708	0.00311	0.1723
	5019.88	671.69	0.79753	0.79188	0.00565	0.4208
	118.23	716.69	0.97121	0.97666	0.00545	0.7087
	167.48	716.69	0.96220	0.96685	0.00545	0.5614
	217.08	716.69	0.95275	0.95689		0.4830
·····	266.84	716.69	0.94323	0.94685	0.00414	0.4350
	316.68	716.69	0.93377	0.93673	0.00362	0.3836
	366.58	716.69	0.92404	0.92654	0.00296	0.3174
			0072704	V • 72074	0.00200	0.2701

P(PSIA) 416.51 466.45 516.41 569.31 619.04 718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87 NE. DEV. = RROR SQUARE	T(bEG.R.) 716.69 716.9 70 70 70 70 70 70 70 70	Z 0.91452 0.90489 0.89519 0.88300 0.87276 0.85230 0.83148 0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	Z(CAL.) 0.91630 0.90600 0.89564 0.88440 0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929 C. DEV. =	DEV. 0.00178 0.00111 0.00045 0.00140 0.00116 0.00050 0.00000 0.00067 0.00131 0.00241 0.00241 0.00323 0.00364 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157 0.037919	<pre>% DEV. 0.1941 0.1222 0.0503 0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746 0.1931</pre>
416.51 466.45 516.41 569.31 619.04 718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2C17.68 3C18.21 3518.55 4C18.98 4519.39 5C19.87 VE. DEV. =	716.69 716.69	Z 0.91452 0.90489 0.89519 0.88300 0.87276 0.85230 0.83148 0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.91630 0.90600 0.89564 0.88440 0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	$\begin{array}{c} 0.00178\\ 0.00111\\ 0.00045\\ 0.00140\\ 0.00116\\ 0.00050\\ 0.00000\\ 0.00067\\ 0.00131\\ 0.00241\\ 0.00241\\ 0.00323\\ 0.00364\\ 0.00310\\ 0.00167\\ 0.00198\\ 0.00401\\ 0.00328\\ 0.00059\\ 0.00057\\ 0.00157\\ \end{array}$	$\begin{array}{c} 0.1941 \\ 0.1222 \\ 0.0503 \\ 0.1587 \\ 0.1325 \\ 0.0584 \\ 0.0006 \\ 0.0821 \\ 0.1655 \\ 0.3216 \\ 0.4549 \\ 0.5389 \\ 0.4803 \\ 0.2680 \\ 0.3241 \\ 0.6368 \\ 0.4923 \\ 0.0824 \\ 0.0746 \end{array}$
416.51 466.45 516.41 569.31 619.04 718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2C17.68 3C18.21 3518.55 4C18.98 4519.39 5C19.87 VE. DEV. =	716.69 716.69	0.91452 0.90489 0.89519 0.88300 0.87276 0.85230 0.83148 0.81078 0.79006 0.74903 0.70991 0.67490 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.91630 0.90600 0.89564 0.88440 0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	$\begin{array}{c} 0.00178\\ 0.00111\\ 0.00045\\ 0.00140\\ 0.00116\\ 0.00050\\ 0.00000\\ 0.00067\\ 0.00131\\ 0.00241\\ 0.00241\\ 0.00323\\ 0.00364\\ 0.00310\\ 0.00167\\ 0.00198\\ 0.00401\\ 0.00328\\ 0.00059\\ 0.00057\\ 0.00157\\ \end{array}$	0.1941 0.1222 0.0503 0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
466.45 516.41 569.31 619.04 718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2C17.68 3C18.21 3518.55 4C18.98 4519.39 5C19.87 VE. DEV. =	$\begin{array}{r} 716.69 \\ 716.6$	0.90489 0.89519 0.88300 0.87276 0.85230 0.63148 0.79006 0.74903 0.70991 0.67490 0.64589 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.91630 0.90600 0.89564 0.88440 0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	$\begin{array}{c} 0.00178\\ 0.00111\\ 0.00045\\ 0.00140\\ 0.00116\\ 0.00050\\ 0.00000\\ 0.00067\\ 0.00131\\ 0.00241\\ 0.00241\\ 0.00323\\ 0.00364\\ 0.00310\\ 0.00167\\ 0.00198\\ 0.00401\\ 0.00328\\ 0.00059\\ 0.00057\\ 0.00157\\ \end{array}$	0.1941 0.1222 0.0503 0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
516.41 569.31 619.04 718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2C17.68 3C18.21 3518.55 4C18.98 4519.39 5C19.87 VE. DEV. =	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.89519 0.88300 0.87276 0.85230 0.63148 0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.89564 0.88440 0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	$\begin{array}{c} 0.00111\\ 0.00045\\ 0.00140\\ 0.00116\\ 0.00050\\ 0.00000\\ 0.00067\\ 0.00131\\ 0.00241\\ 0.00241\\ 0.00323\\ 0.00364\\ 0.00310\\ 0.00167\\ 0.00198\\ 0.00401\\ 0.00328\\ 0.00059\\ 0.00057\\ 0.00157\\ \end{array}$	0.1222 0.0503 0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
569.31 619.04 718.66 818.36 918.14 1017.98 1217.73 1417.63 1617.59 1817.63 2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.88300 0.87276 0.85230 0.83148 0.79006 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	C.88440 O.87392 C.85280 C.83148 C.81011 O.78875 O.74662 O.70668 O.67126 O.64279 O.62316 O.61147 O.63346 O.67010 O.71292 C.76074 O.80929	$\begin{array}{c} 0.00045\\ 0.00140\\ 0.00116\\ 0.00050\\ 0.00000\\ 0.00067\\ 0.00131\\ 0.00241\\ 0.00241\\ 0.00323\\ 0.00364\\ 0.00310\\ 0.00167\\ 0.00198\\ 0.00401\\ 0.00328\\ 0.00059\\ 0.00057\\ 0.00157\\ \end{array}$	0.0503 0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
619.04 718.66 818.36 918.14 1017.98 1217.73 1417.63 1617.59 1817.63 2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87 VE. DEV. =	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.87276 0.85230 0.83148 0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.87392 0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00116 0.00050 0.00067 0.00131 0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.1587 0.1325 0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
718.66 818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.85230 0.83148 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.85280 0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00050 0.00000 0.00067 0.00131 0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.0584 0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
818.36 918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.83148 0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.83148 0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00000 0.00067 0.00131 0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.0006 0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
918.14 1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87 VE. DEV. =	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.81078 0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.81011 0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00067 0.00131 0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.0821 0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
1C17.98 1217.73 1417.63 1617.59 1817.63 2C17.68 2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.79006 0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.78875 0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00131 0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.1655 0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
1217.73 1417.63 1617.59 1817.63 2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.74903 0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.74662 0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00241 0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.3216 0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
1417.63 1617.59 1817.63 2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.70991 0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.70668 0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00323 0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.4549 0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
1617.59 1817.63 2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.67490 0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.67126 0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00364 0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.5389 0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
2017.68 2517.88 3018.21 3518.55 4018.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69 716.69	0.64589 0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.64279 0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00310 0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.4803 0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
2517.88 3C18.21 3518.55 4C18.98 4519.39 5C19.87	716.69 716.69 716.69 716.69 716.69 716.69 716.65	0.62483 0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.62316 0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00167 0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.2680 0.3241 0.6368 0.4923 0.0824 0.0746
3C18.21 3518.55 4C18.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69 716.65	0.60949 0.62945 0.66682 0.71233 0.76017 0.81086 AVE. PER	0.61147 0.63346 0.67010 0.71292 0.76074 0.80929	0.00198 0.00401 0.00328 0.00059 0.00057 0.00157	0.3241 0.6368 0.4923 0.0824 0.0746
3518.55 4C18.98 4519.39 5019.87	716.69 716.69 716.69 716.69 716.69	0.66682 0.71233 0.76017 0.81086 AVE. PER	0.63346 0.67010 0.71292 0.76074 0.80929	0.00401 0.00328 0.00059 0.00057 0.00157	0.6368 0.4923 0.0824 0.0746
4C18.98 4519.39 5019.87 VE. DEV. =	716.69 716.69 716.69 0.00266	0.71233 0.76017 0.81086 AVE. PER	0.67010 0.71292 0.76074 0.80929	0.00328 0.00059 0.00057 0.00157	0.4923 0.0824 0.0746
4519.39 5019.87 .VE. DEV. =	716.69 716.69 0.00266	0.76017 0.81086 AVE. PER	0.76074	0.00059 0.00057 0.00157	0.0824 0.0746
5019.87 VE. DEV. =	716 <u>.69</u> 0.00266	0.81086 AVE. PER	0.80929	0.00157	0.0746
VE. DEV. =	0.00266	AVE. PER			
		AVE. PER 133E-02	C. DEV. =	0.037919	
 	·				
 	******				·
 ····	<u> </u>				
		the second s			

. -

C	
C SAMPLE PROGRAM NUMBER 2	
C	
C CONTROL CARDS	
C THIS PROGRAM IS SIMILAR TO PROGRAM NUMBER 1. THEREFORE,	
C ONLY THE MAINLINE PROGRAM IS GIVEN. THE SUBROUTINES	
C USED ARE THE SAME AS IN PROGRAM NUMBER 1. AN EQUATION C WITH 23 CONSTANTS IS TRIED FOR DATA CORRELATION. THE	
C WITH 23 CONSTANTS IS TRIED FOR DATA CORRELATION. THE C DATA READIN ARE IN DIFFERENT FORMATS. HERE THE OUTPUT	
C STATEMENTS ARE FOR COMPLETE OUTPUT. THE SAMPLE OUTPUT,	
C HOWEVER, DOES NOT INCLUDE ALL THE PRINTOUT.	
C	
C ALL DATA	
C	
REAL Z(700), PA(700), T(70C), XCOMP(700), FCTWO(8)	
DOUBLE PRECISION A(27,27), D(27,27), U(27,27), P(27,27)	
1, Q(27,27), DE(700), B(27), G(27), X(27), DD, EA	
DOUBLE PRECISION XCNE, XTWO, XTRE, XSEV, XEIT, XNIN, XTEN,	
1XELV,XTWL,XSXN,XSVN,XETN,XNTN,XTTY,XTON	
INTEGER N, NOUT, ITER, MM	
C DATA READIN	
C DATA READIN	
READ(5,591) N, NOUT, ITER	
591 FORMAT(314)	
C	
C FCTWG(K) IS THE MCLE FRACTION ETHANE IN THE MIXTURE K	
C	
READ(5,592)(FCTWO(K), K=1,6)	
592 FORMAT(6F10.4)	
R=10.7335	
MM=O	
DO 14 K=1,6 IJ=0	
C	
C KMM IS THE NUMBER OF DATA POINTS FOR EACH MIXTURE	
C	
READ(5,593) KMM	
593 FORMAT(14)	
7 IF(K.EQ.1) GC TO 8	
IF(K.EU.6) GU TO 9	
READ(5,594) TEMP, PRES, COMP	
594 FORMAT(8X, F7.2, 6X, F8.2, 31X, F8.5)	
T(I) = 1.8 * (TEMP + 273.16)	
GO TO 11 R READ(5.555) TEMP, PRES, COMP	
8 READ(5,595) TEMP, PRES, COMP 595 FORMAT(3F10.4)	
GC TO 10	
S REAR(5,596) TEMP. PRES. COMP	
9 READ(5,596) TEMP, PRES, CCMP 596 FORMAT(1X, 3F15.8)	

	10 T(I)=TEMP+459.69
	11 PA(I)=PRES
	XCOMP(I)=FCTWO(K)
	Z(I)=CGMP
	DE(I)=PA(I)/(Z(I)*10.7335*T(I))
	I J = I J + 1
	I=I+1
	IF(IJ.EQ.KMM) GO TO 12
	GO TO 7
	12 MM=MM+KMM
	14 CONTINUE
	AM=MM
C	
C	GENERATE THE MATRIX "A"
С	
-	DO 15 I=1,N
	B(I)=C.C
	DG 16 J=1,N
	A(I,J)=0.0
	16 CONTINUE
	15 CONTINUE
	GAM1=2.5
	GAM2=1.0152
	DO 20 I=1,MM
	$D = DE(I) \neq DE(I)$
	FY=Z(I)-1.0
	XSQ=XCOMP(I)*XCOMP(I)
	XRE=(1.0-XCGMP(I))**2
	XSR=(1.0-XCCMP(I))*XCOMP(I)*2.0
С	
С	LINEAR SQUARE ROOT MIXING RULE FOR THE CONSTANT GAMMA
C	THIS LINEARIZES THE EQUATIONS
Ċ	
	GAM=(XCCMP(I)*SQRT(GAM1)+(1.0-XCOMP(I))*SQRT(GAM2))**2
	EA=GAM*DD
	IF(EA.GT.50.0) EA=50.0
	G(1) = -xSC + DE(1) + 10.0 + + 4/(R + T(1))
	G(2)=-XRE*DE(I)*1C.O**4/(R*T(I))
	G(3)=-XSR*DE(I)*10.0**4/(R*T(I))
	$G(4) = XSQ \neq DE(I)$
	G(5)=XRE*DE(I)
	G(6) = XSR * DE(I)
	G(7)=-XSQ*DE(I)*10.0**10/(R*T(I)**3)
· · · · · · · · · · · · · · · · · · ·	G(8)=-XRE*DE(I)*10.0**10/(R*T(1)**3)
	G(9)=-XSR*DE(I)*10.0**1C/(R*T(I)**3)
	G(1C) = -XSQ + DD + 10.0 + + 4/(R + T(I))
	G(11)=-XRE*DD*10.0**4/(R*T(I))
	G(12)=-XSR*DD*10.0**4/(R*T(I))
	G(13)=XSQ*DD
	G(14)=XRE*DD
	G(15)=XSR*DD
	G(16) = XSQ*DD*DD*DE(I)*10.C**4/(R*T(I))

	G(17) = XRE*DD*DE(I)*10.0**4/(R*T(I))
	G(18) = XSR*DD*DD*DE(I)*10.0**4/(R*T(I))
	G(19)=XSQ*DD*(1.0+EA)*EXP(-EA)*10.0**10/(R*T(I)**3)
	G(20)=XRE*DD*(1.0+EA)*EXP(-EA)*10.0**10/(R*T(I)**3)
	G(21)=XSR*DD*(1.C+EA)*EXP(-EA)*10.C**10/(R*T(I)**3)
	DO 25 $J=1,N$
	B(J)=B(J)+FY*G(J)
25	CONTINUE
22	DO 27 K=1,N
	DO 28 L=1, N
	$A(K_{1}L) = A(K_{1}L) + G(K) + G(L)$
20	CONTINUE
	CONTINUE
	CONTINUE
_	CUNTINUE
C	COLUTION OF LINEAR FOUNTIONS ON MATRIX INVERSION
<u> </u>	SOLUTION OF LINEAR EQUATIONS BY MATRIX INVERSION
C	
	WRITE (6,505)
505	FORMAT(1HC,25X, 14H MATRIX A(I,J))
	WRITE(6,504) ((A(I,J), $J=1,N$), $I=1,N$)
504	FGRMAT(1H0, (15X, 4E15.6))
	FAC=10.0**5
	DC 2 I=1,N
	CO 1 J=1,N
	A(I,J)=A(I,J)*FAC
1	CONTINUE
2	CONTINUE
	CALL PARTN(A, D, U, N)
	IF(NOUT.EQ.1) GO TO 200
	WRITE (6,506)
506	FORMAT(1HO, 25X, 14H MATRIX L(I,J))
	WRITE (6,5C4) ((D(I,J), $J=1,N$), $I=1,N$)
	WRITE(6,507)
567	FORMAT(1HC, 25X, 14H MATRIX U(I,J))
201	wRITE (6,504) ((U(I,J), $J=1,N), I=1,N)$
200	CONTINUE
	CONTINUL
<u> </u>	DETERMINATION OF INVERSE MATRICES
C	DETERMINATION OF INVERSE MATRICES
L	
	CALL INVER(D, U, P, Q, N, NOUT)
	DC 7C I=1,N
	DO 69 J=1,N
	D(I, J) = 0.0
	DG 68 K=1,N
	D(I,J)=D(I,J)+P(I,K)+Q(K,J)+FAC
	CONTINUE
	CONTINUE
70	CONTINUE
	WRITE(6,512)
512	FORMAT(1HO, 25X, 18H INVERSE OF A(I,J))
	WRITE (6,504) ((D(I,J),J=1,N), I=1,N)

C CHECK OF INVERSION
C
DO 73 I=1,N
DC 72 J=1, N
U(I,J)=0.0
DO 71 K=1, N
U(I,J)=U(I,J)+A(I,K)*D(K,J)/FAC
71 CONTINUE
72 CONTINUE
73 CONTINUE
WRITE(6,513)
513 FORMAT(1HO, 25X, 19H CHECK OF INVERSION)
WRITE (6,504) ((U(I,J),J=1,N), I=1,N)
WRITE $(7,504)$ $((U(I,J),J=1,N), I=1,N)$
CALL IMPRO(A, D, U, P, Q, N, ITER)
DO 91 I=1,N
X(I)=0.0
DO 90 J=1,N
X(I) = X(I) + D(I, J) + B(J)
90 CONTINUE
91 CONTINUE
WRITE(6,515)
515 FORMAT(1HC, 25X, 16H FINAL SOLUTIONS)
XONE=X(1)*10.0**4
XTwO=X(2)*10.0**4
XTRE=X(3)*10.C**4
XSEv=X(7)*10.0**10
XEIT=X(8) *1C.0**10
XNIN=X(9)*10.0**10
XTEN=X(1C)*10.C**4
XELV=X(11) +10.C*+4
XTWL = X(12) + 10.0 + 4
XSXN=X(16) *10.0**4
XSVN=X(17) #10.C##4
XETN=X(18) *10.0**4
<u>XNTN=X(19)+10.0++10</u>
XTTY=X(2C)*10.0**10
XTEN=X(21)*10.C**1C
WRITE(6,516) XCNE, XTWO, XTRE, X(4), X(5), X(6), XSEV,
IXEIT, XNIN, XTEN, XELV, XTNL, X(13), X(14), X(15),
2 XSXN, XSVN, XETN, XNTN, XTTY, XTON
<u>516 FORMAT(1H0,15X,*AC1=*,E15.8,2X,*A02=*,E15.8,2X,*A012=*</u> 1,E15.8/15X,*B01=*,E15.8,2X,*B02=*,E15.8,2X,*B012=*,
2E15.8/15X, *C01=*, E15.8, 2X, *C02=*, E15.8, 2X, *C012=*,
3E15.8/15x, *A11=*, E15.8, 2X, *A12=*, E15.8, 2X, *A112=*,
4E15.8/15X, 'B11=', E15.8, 2X, 'B12=', E15.8, 2X, 'B12=',
4E15.8/15X,*B11=*,E15.8,2X,*B12=*,E15.8,2X,*B12=*, 5E15.8/15X,8HA1ALPH1=,E15.8,2X,8HA1ALPH2=,E15.8,2X,
69HA1ALPH12=,E15.8,/15X,4HC11=,E15.8,2X,4HC12=,E15.8,
72X, 5HC112=, E15.8)
ALPHA1=X(16)/X(10)
ALPHA2 = X(17) / X(11)

ALPH12 = X(18)/X(12)WRITE(6,518) ALPHA1, ALPHA2, ALPH12 518 FORMAT(1H ,15X,7HALPHA1=, E15.8, 2X, 7HALPHA2=, E15.8, 12X, 7HALPH12=, E15.8) С С CHECK OF SOLUTIONS C wRITE(6,531) 531 FORMAT(1H0,18X,7HP(PSIA),3X,9HT(DEG.R.),5X,1HZ,7X,7HZ(C 1AL.) . 6X. 4HDEV. , 5X, 1% DEV. 1) SE=0.0 SP=0.0 SES=C.O DC 92 I=1,MM $XSQ=XCOMP(I) \times XCOMP(I)$ $XRE=(1.0-XCOMP(I)) \neq 2$ XSR = (1.0 - XCOMP(I)) + XCOMP(I) + 2.0 $DD=DE(I) \neq DE(I)$ GAM=(XCOMP(I)*SQRT(GAM1)+(1.0-XCOMP(I))*SQRT(GAM2))**2 EA=GAM*DD IF(EA.GT.50.) EA=50.0 $G(1) = -XSG \neq DE(I) \neq 10.0 \neq 4/(R \neq T(I))$ G(2)=-XRE*DE(I)*10.0**4/(R*T(I)) G(3)=-XSR*DE(I)*10.0**4/(R*T(I)) $G(4) = XSQ \neq DE(I)$ $G(5) = XRE \neq DE(I)$ $G(6) = XSR \neq DE(I)$ G(7)=-XSQ*DE(I)*10.0**10/(R*T(I)**3) G(8)=-XRE*DE(I)*1C.C**10/(R*T(I)**3) G(9)=-XSR*DE(I)*10.0**10/(R*T(I)**3) $G(1C) = -XSQ + DD + 10 \cdot O + + 4/(R + T(I))$ $G(11) = -XRE \neq DC \neq 10.0 \neq \neq 4/(R \neq T(I))$ G(12)=-XSR*DD*10.0**4/(R*T(I)) $G(13) = XSC \neq DD$ $G(14) = XRE \neq DD$ G(15)=XSR*DD G(16)= XSC*DD*DD*DE(I)*10.C**4/(R*T(I)) G(17)= XRE*DD*DD*DE(I)*10.0**4/(R*T(I)) G(18)= XSR*DD*DD*DE(I)*10.0**4/(R*T(I)) G(19)=XSQ*DD*(1.0+EA)*EXP(-EA)*10.0**10/(R*T(I)**3) G(2C)=XRE*DD*(1.0+EA)*EXP(-EA)*10.0**10/(R*T(I)**3) G(21)=XSR*DD*(1.0+EA)*EXP(-EA)*10.0**10/(R*T(I)**3) w=0.0 CC 95 JJK=1,21 w=w+X(JJK) +G(JJK) 95 CONTINUE h=W+1.CER=ABS(w-Z(I)) ERSQ=ER≠ER $DEV=ER/Z(I) \neq 10C$. SE=SE+ER SP=SP+DEV
.

SES=SES+ERSQ WRITE(6,535) PA(I), T(I), Z(I), W, ER, DEV
535 FORMAT(1H , 15X, 2F10.2, 3F11.5, F10.4)
92 CONTINUE
SER=SE/AM
SPR=SP/AM WRITE(6,537) SER, SPR
537 FORMAT(1HO, 15X, 11HAVE. DEV. =, F10.5, 5X, 17HAVE. PER
1C. DEV. =, F10.5
WRITE(6,538) SES
538 FORMAT(1H , 15X, 14HERROR SQUARE =, E16.6) 10C CONTINUE
STOP
END

<u>с</u> с с

SAMPLE UUTPUT

.

MATRIX A(I,J)

		0.2669010 02	-0.5523670 02
<u>C.8349790 C2</u>	0.11C983D 02 -0.178808D 02	C.2250C0D 03	0.290092D 02
-0.742574D 01	-0.1788080 02 C.629922D C2	0.985266D 01	0.2171470 02
C.695911D 02	-0.653750D C1	-0.1443490 02	-0.334032D 02
-0.412082D 02		-0.969822D 02	-0.153335D 02
-0.903635D 01	-0.153901D 02	0.251036D 03	0.368792D 02
-C.342957D 02	0.110983D C2	-0.2466 <u>18D_02</u>	C.290092D 02
<u>-C.742574D 01</u>	-0.164335D C3	C.985266D 01	0.3156940 03
0.6902760 03	0.965082D 02	-0.204379D 03	-0.2348670 02
0.35438CD C2	-0.653750D C1	-0.395350D 02	-0.153335D 02
-C.903535D 01	-0.725773D C3	0.266901D 02	0.368792D 02
-C.412624D 03	-0.54C241D C2	-0.246618D 02	-0.297029D 02
C.4439330 02	-0.178808D 02	0.116037D 03	0.2171470 02
<u>C.695911D 02</u>	<u>0.965082D 02</u>	-0.144349D 02	-0.234867D 02
C.35438CD 02	0.394106D C2	-0.395350D 02	-0.3614540 02
-C.2615COD C2	-0.153901D 02	-0.6133410 02	-0.552367D 02
-C.342957D C2	-9.540241D 02		C.499598D 01
-C.742574D 01	-0.178808D 02	9.368471D 02	-C.461422D 02
C.120455D 02	-0.146571D 03	-0.192110D 02 -0.1443490 02	0.272452D 02
-C.412682D C2	<u>-C.65375CD C1</u>	0.214825D 02	C.589952D 01
C.435953D 01	0.964526D 01	0.214825D 02 0.101597D 02	0.227503D 02
C.1C0701D 02	0.633688D 02	-0.246618D 02	0.4995980 01
-0.7425740 01	-0.164335D C3	-0.192110D 02	-C.445209D 03
0.1084630 03	0.165838D 02	-0.204379D 03	-0.234867D 02
-0.6387370 02	-0.053750D C1	0.156449 <u>0</u> 02	0.589952D 01
0.4359930 01	<u>0.133307D 03</u>	0.101597D 02	0.267714D 03
C.4593C2D 03	0.257775D 02	-0.246618D 02	-0.2970290 02
C.3578C5D C2	-0.178808D 02	0.1998390 02	-0.461422D 02
C.120455D 02	0.165838D 02 -0.768439D C2	-0.144349D 02	-0.234867D 02
-0.6387370 02		0.156449D 02	0.174397D 02
-C.261500D 02	0.964526D Cl 0.257775D <u>C2</u>	0.235981D 02	0.227503D 02
C.1007C10 02	0.406388D C2	0.225000D 03	0.2900920 02
C.3578C5D C2	-0.146571D C3	-0.192110D 02	-0.461422D 02
C.695911D 02	0.772712D C2	0.1849380 03	0.172716D 03
0.6234450 03	0.574334D C2	-0.111580D 03	-0.1718970 02
C.261496D C2	-0.945542D 02	-0.246889D 02	-0.4138C2D 02
-C.3781810 02		-0.910548D 02	0.290092D 02
-C.267(91) 03	<u>-C.408006D 02</u> 0.965082D C2	-C.192110D 02	-0.445209D 03
C.6902750 C3	0.9650820 02	0.194904D 04	0.257376D 03
-C.638737D 02	0.8855550 C3	0.942621D 02	-0.171897D 02
C.261496D C2	-0.618972D C2	-0.246889D C2	-0.211917D 04
-0.5657080 03 -0.1082690 03	-0.408006D 02	-0.115249D 04	-0.143874D 03
-0.108269D 03 C.695911D 02	-0.4080080 02 0.965082D 02	0.1 <u>16037D</u> 03	-C.461422D 02
-0.6387370 02	-0.768439D C2	C.184938D 03	0.257376D 03
0.3090850 03	0.5743340 02	0.942621D 02	0.104598D 03
-0.378181D C2	-0.618972D 02	-0.687587D 02	-0.418802D 02
-0.5751310 02	0.0107120 02		

-C.108269D 03	-0.9875570 02	-0.910548D 02	-0.143874D 03
-0.1632020 03		0.985266D 01	0.2171470 02
-C.412682D 02		-0.144349D 02	0.172716D C3
0.261496D 02	0.5743340 02	0.497062D 02	0.9273550 01
C.187511D 02	-0.323223D C2	-0.611416D 01	-0.123892D 02
-0.281474D 02	-0.923392D C1	-0.144503D 02	-0.748488D 02
-0.141100D 02	-0.289069D CZ	0.985266D 01	0.315694D 03
0.354380D 02	-0.653750D 01	-0.204379D 03	-0.234867D 02
C.261496D 02	0.885555D C3	0.942621D 02	0.927355D 01
0.4092590 03	0.3582490 02	-0.611416D 01	-0.2626200 03
-0.235874D 02	-0.923392D 01	-0.985282D 03	-0.426336D 02
-C.1411COD 02	-0.527277D C3	-0.535464D 02	0.2171470 02
C.354380D 02	0.394106D 02	<u>-0.144349D 02</u>	-0.234867D 02
-C.2615COD 02	0.574334D C2	0.942621D 02	0.104598D 03
0.187511D 02	0.3582490 02	0.370942D 02	
-0.235874D 02	-0.244566D C2	-0.144503D 02	-0.1238920 02
-0.369357D C2	-0.289C69D C2	-0.535464D 02	-0.426336D 02
-0.412682D 02	-0.65375CD C1	-0.144349D 02	-0.564402D 02
C.435953D_01	<u>0.964526D C1</u>		0.272452D 02
-0.378181D C2	-0.323223D 02	<u>-0.111580D 03</u> -0.611416D 01	-0.171897D 02
0.2116770 02	0.405007D 01	0.8225110 01	-0.123892D 02
<u>C.600443D</u> 01	0.941667D 01		0.180259D 02
C.190614D 02	-0.653750D C1	0.485501D 02	0.928946D 01
0.435993D 01	0.133307D 03	-0.204379D 03	-0.234867D 02
-0.5657C8D C3	-0.618972D 02	0.156449D 02	-0.171897D 02
-C.235874D C2		-0.611416D 01	-0.262620D 03
C.600443D 01	0.405007D 01	0.169675D 03	0.156C20D 02
C.338913D_C3	0.620056D C3	0.276904D 02	0.928946D 01
-C.261500D 02	0.3522270 02	-0.144349D 02	-0.234867D 02
-0.3781810 02	0.964526D 01	0.156449D 02	0.174397D 02
-0.235874D 02	-0.618972D C2	-0.687587D 02	-0.123892D 02
C.1620C3D 02	-0.244566D C2	0.822511D 01	0.156020D 02
C.190614D 02	0.941667D 01	0.276904D 02	0.240177D 02
	0.352227D 02	0.371578D 02	-0.3340320 02
-C.903635D 01	-0.153901D C2	0.214825D 02	0.589952D 01
C.100701D 02	-0.945542D 02	-0.246889D C2	-0.418802D 02
-0.2814740 02	-0.923392D 01	-0.144503D 02	0.180259D 02
<u> </u>	0.941667D 01	<u>0.183414D 02</u>	0.109277D 02
C.134432D 02	0.405928D 02	0.134534D 02	0.212925D 02
-0.903635D 01	-0.725773D 03	-0.395350D 02	0.589952D 01
<u> </u>		-0.246889D 02	-0.211917D 04
-C.1C8269D 03	-0.923392D 01	-0.985282D 03	-0.426336D 02
C.600443D 01	0.620056D C3	0.276904D 02	0.109277D 02
<u> </u>	0.575645D 02	0.134534D 02	0.123452D 04
0.613595D 02	-0.153901D 02	-0.395350D C2	-0.361454D 02
C.100701D 02	0.257775D C2	0.235981D 02	-0.418802D 02
-C.1C8269D 03	-0.987557D C2	-0.144503D 02	-0.426336D 02
-C.369357D C2	0.941667D 01	0.276904D 02	0.2401770 02
0.134432D 02	0.575645D 02	0.437109D 02	0.212925D 02
0.613595D C2	0.538137D 02	-0.969822D 02	-0.153335D 02
-0.342957D 02	0.633688D 02	0.101597D 02	0.227503D 02
-0.267091D 03	-0.408006D 02	-0.910548D 02	-0.748488D 02
-0.1411000 02	-0.289069D 02	0.485501D 02	C.928946D 01

	.190614D	02	0.4059280	02	0.134534D	02	0.212925D	02	
C	.116794D	03	0.2205350	C2	0.459346D		-0.153335D		
-0	•412624D	03	-0.540241D	02	0.101597D	02	C.267714D		
	.357805D		-0.408006D	02	-0.115249D	04	-0.143874D	03	
-0	•141100D	02	-0.527277D	03	-0.535464D	02	0.928946D	01	
C	•338913D	03	0.352227D	C2	0.134534D	02	0.123452D	04	
	<u>.613595D</u>		0.220535D	<u>C2</u>	C.690132D	03	0.819331D	02	
-0	•342957D	02	-0.540241D	02	-0.613341D	02	0.227503D	02	
C	.357805D	02	0.406388D	C2	-0.910548D	02	-0.143874D		
-0	.163202D	03	-0.289069D	<u>C2</u>	-0.5354640	02	-0.564402D	02	
C	.190614D	02	0.352227D	02	0.371578D	02	0.212925D		
C	.613595D	C 2	0.538137D	C2	0.459346D	02	0.819331D	02	
C	.882139D	02							

CHECK OF INVERSION

)	C.100000D 01		0.106297D-10	-0.1818990-11
	-0.6323830-12	0.185878D-1C	0.358114D-11	0.647704D-12
	-0.145661D-11	0.659384D-11	0.1158180-11	-0,568434D-11
	-C.210321D-11	-0.300560D-11	-0.1034550-10	0.100613D-10
	-C.477396D-12	-0.781597D-12	0.147793D-11	0.980549D-12
	-0.613909D-11	-0.886757D-11	0.100000D 01	0.243290D-10
	-C.227374D-12	-0.430518D-10	0.241585D-10	0.795808D-12
	C.957945D-11	-0.4316550-11	-0.704858D-11	0.212200D-09
	0.1733720-10	-C.966338D-12	-0.814353D-10	0.2711430-10
	-0.295586D-11	-0.135472D-1C	-0.117346D-10	-0.136424D-11
	C.261551D-1C	-0.3C1270D-11	-0.380851D-11	-0.573408D-11
	0.1000000 01	0.397904D-12	-0.5858420-11	0.229079D-10
	0.146372D-11	0.6539210-12	-0.196465D-11	0.710543D-11
	C.468958D-11	0.1085710-10	-0.267164D-11	0.100187D-11
·	0.155751D-1C	0.4604320-11	-0.812017D-12	-0.401457D-12
	-C.966338D-12	0.4771290-11	-0.426326D-11	0.875389D-11
	-0.124345D-12	-0.123919D-1C	0.100000D 01	0.444977D-12
	-0.216360D-1C	-0.163780D-11	-0.632827D-13	0.216005D-11
	0.392220D-11	0.117950D-11	0.568434D-13	-0.159162D-11
	0.2561510-11	C.829914D-11	-0.574119D-11	0.362377D-12
	0.5293540-12	-0.167333D-11	-0.168532D-12	C•443379D-11
	-0.198952D-11	0.1363530-10	0.267164D-11	-0.471800D-11
	C.100000D 01	-0.670752D-11	-0.106581D-12	-0.5033090-11
	0.2177810-11	-0.1136870-11	0.535962D-10	-0.106297D-10
	-0.2387420-11	0.891C21D-1C	-0.937916D-11	0.1193710-11
	0.856559D-11	0.146940D-10	0.125056D-11	-0.214690D-10
	C.181899D-11	<u>9.261480D-11</u>	0.208189D-11	-0.130740D-11
	C.3979C4D-11	0.358114D-11	0.100000D 01	-0.112976D-11
	-0.686784D-12	0.1602270-11	0.545697D-11	-0.447642D-11
	0.1818990-11	0.216005D-11	-0.614619D-12	-0.966338D-12
	-0.2955860-11	0.4845C1D-12	0.710543D-13	0.966338D-12
	-0.307665D-11	0.363798D-11	-0.1532500-09	-0.488143D-11
	0.4757790-10	-0.777050D-10	-0.3016250-11	0.627551D-10
	0.1000000 01	0.134359D-11	-0.205986D-10	0.181899D-11
	0.1196200-10	0.267164D-1C	-0.972022D-11	-0.139835D-10
	0.1421C9D-11	0.248406D-10	-0.6232790-12	-0.176215D-11

0.5911720-11		-0.183036D-10	-0.1324450-10
-C.745111D-1C		0.142109D-1C	-0.906546D-10
0.615046D-10	0.1591620-11	0.100000D 01	-0.1341500-10
-0.136424D-1C	0.127912D-C9	0.563887D-10	-0.163709D-10
0.3464250-10	0.436557D-1C	-0.363798D-11	-0.342553D-10
-0.423483D-1C	-0.568434D-11	0.2329510-10	-0.727596D-11
-0.2592060-10		0.1625720-10	-C.920863D-11
-0.9180210-11	0.555929D-10	0.341061D-11	0.317613D-11
C.1000000 01	-0.100C44D-10	0.243858D-10	0.236469D-10
-0.6366460-11	-0.3858250-11	0.2637530-10	0.108002D-10
-0.3183230-11	-0.113687D-11	-0.426326D-11	C.878586D-11
-C.121076D-1C	-0.211458D-10	-0.116529D-11	0.216005D-11
C.181899D-11	-0.717648D-12	0.871836D-11	0.326139D-11
0.2025050-12	-0.235900D-11	0.100000D 01	0.191847D-12
0.1648400-11	0.568434D-11	-0.257927D-11	-0.295586D-11
<u> </u>	-0.385691D-12	-0.110845D-11	0.181899D-11
0.4221070-12	-0.591172D-11	-0.545697D-11	-0.480824D-10
0.3552710-10	0.3410610-11	-0.7943160-10	0.4496310-10
<u> </u>	<u>0.554312D-11</u>	-0.65441CD-11	-0.159162D-11
C.100000D 01	0.297291D-10	-0.943601D-11	0.9740120-10
0.346745D-10	-0.1818990-11	-0.1326250-10	-0.629541D-11
-0.5115910-12	0.397620D-10	-0.250111D-11	-0.1091390-10
-0.5286440-11	-0.7389540-11	0.545697D-11	-0.251177D-11
C.142109D-1C	0.987654D-12	0.136313D-11	-0.1524110-11
<u>C.1250560-11</u>	0.7251C9D-11	0.100000D 01	0.6252780-12
C.3772980-11	0.522959D-11	0.227374D-11	-0.683231D-12
-C.6C39610-13	-0.5684340-12	0.4170890-11	-0.324007D-11
<u> </u>	-0.423439D-12	0.568434D-12	0.109068D-10
0.6821210-12	-0.954969D-11	-0.1044500-11	-0.7926990-13
	0.5456970-11	0.756728D-12	-0.267164D-11
C•342615D-12	0.2078340-11	0.6536990-11	-0.665068D-11
C.4000360-11	0.7744920-12	-0.112976D-11	-0.754952D-13
-C.5229590-11	-0.2273740-12	0.327134D-10	-0.2034990-10
-0.107752D-10	<u>0.432259D-1C</u>	-0.209752D-10	-0.419220D-12
-0.193268D-10	C.236966D-11 -0.682121D-12	0.954969D-11	0.694911D-11
C.301270D-11	0.6128880-11	0.100000D 01	-0.300702D-10
-C.3316460-10	0.159162D-11	<u>0.615685D-11</u>	0.113687D-11
-C.113687D-12	0.261480D-11	0.106866D-10	0.336797D-11
-0.7993610-12	<u>-0.102451D-11</u>	0.457590D-11 0.266454D-11	-0.142109D-10
-C.1434599-1C	-0.403588D-11	0.1762150-11	0.1762150-11
C.1000000 C1	-0.198952D-11	0.178215D-11 0.5067C6D-12	-0.4391150-11
<u>C.5684340-12</u>	-0.332179D-11	<u>0.278533</u> D-11	0.746070D-13
0.146372D-11	0.396483D-11	0.853007D-11	0.471800D-11
-C.736833D-11	-0.635936D-12	-0.214051D-12	0.122502D-11
-0.460432D-11	-0.998313D-12	-0.214051D-12 -0.216005D-11	0.1385560-11
C.128964D-11	0.102318D-11	0.100000D 01	-0.676437D-11
C.600409D-12	-0.123990D-11	-0.787148D-12	0.375033D-12
-0.6480150-11	0.112799D-09	-0.376872D-10	0.3264940-11
C.164460D-09	-0.362093D-10	-0.209610D-12	-0.181331D-10 -0.263221D-10
0.606803D-11	0.2785330-10	-0.3151720-09	-0.4888530-10
C.312639D-10	-0.283009D-10	-0.441673D-10	C.142677D-10
			001420110-10

		<u>2107470-10</u>	0.409273D-11	-0.6466290-10
0.40	3588D-11 (.414957D-11	0.418154D-11	-0.687805D-11
0.41	4957D-11 (.3709C3D-11	-0.200089D-10	-0.603961D-12
-0.12	1281D-11 (.279954D-11	0.255795D-11	-0.925482D-11
-0.10	175CD-1C (0.494538D-11	0.365574D-11	-0.648015D-11
-0.25	01110-11 (0.159273D-11	0.100000D 01	0.125056D-11
	5365D-11 (.414957D-11	0.693490D-11	0.6263430-11
-0.51	4433D-10 -(.216005D-11	0.649081D-11	-0.651994D-10
-C.17	0175D-11 -0	.105471D-11	0.961009D-11	0.795808D-12
-0.20	6768D-11 -(.574119D-11	-0.142109D-11	0.537526D-11
-0.56		.932232D-11	0.877520D-12	0.122569D-11
C.10	0000D 01 -0	•171241D-11	0.937916D-11	0.557066D-11
C.84		.744649D-11	-0.602540D-11	0.867928D-10
-0.40		.5684340-13	-0.179490D-10	0.533262D-11
0.26		•732392D-1C	-0.400746D-10	0.340492D-10
-C.83		.283080D-1C	0.807177D-11	0.1233550-10
		.375167D-11	0.100000D 01	0.517275D-11
0.21		.845901D-11	-0.379714D-10	0.676437D-11
0.87		.436557D-1C	-0.289901D-11	-0.168709D-11
		.386535D-11	-0.672529D-11	-0.139835D-10
-0.32		•411760D-11	-0.235900D-10	-0.505906D-11
		.7958C8D-12	-0.511591D-12	-0.506262D-11
the second se	00CCD 01			0.002020-11
	FINAL SC			
			······································	
AC1 = C	.13C78922D C	5 AC2= C.101	130450 05 401	2= 0.92241154D 04
	74741433D CC			= 0.922411540 04 = 0.537783910 00
	20839369D 10	And all the state of the state		$= 0.283629060 \ 10$
	24734128D 05			
	33393006D 01			• 0.23377858D 05
	= 0.18767683	1) 05 A1ALDU2	2 = 0.20352946D (= 0.25084904D 01
	- 0.10101005 8230 04	U UU AIALPHZ	- 0.203529460 (14 AIALPHIZ=

C.59659823D 04 C11= C.54193845D 10 C12= C.27043472D 10 C112= C.69438667D 10 ALPHA1= C.75877678E 0C ALPHA2= 0.36091477E 00

ALPH12= 0.25519794E 00

 F(PSIA)	T(DEG.R.)	Ζ	Z(CAL.)	DEV.	% DEV.
200.00	559.69	0.9057	0.9096	0.0039	0.4285
400.00	559.69	0.7921	0.8016	0.0095	1.1984
 60.00	559.69	C.6411	0.6559	0.0148	2.3123
800.00	559.69	0.2935	0.2855	C.008C	2.7258
1000.00	559.69	0.2571	0.2536	0.0035	1.3679
 1250.00	559.69	0.2955	0.2944	0.0011	0.3733
1500.00	559.69	C.3387	0.3358	0.0029	0.8504
1750.00	559.69	0.3820	0.3788	0.0032	0.8418
2000.00	559.69	0.4251	0.4220	0.0031	0.7341
2250.00	559.69	0.4676	0.4662	0.0014	0.2948
2500.00	559.69	0.5100	0.5089	0.0011	0.2060
 2750.00	559.69	0.5520	0.5514	0.0006	0.1136
3000.00	559.69	0.5937	0.5930	0.0007	0.1148
3500.00	559.69	0.6756	0.6775	0.0019	0.2853
4000.00	559,69	0.7565	0.7591	0.0026	0.3392
4500.00	559.69	0.8362	0.8395	0.0033	0.3982
5000.00	559.69	0.9154	0.9156	0.0002	0.0236
 600.000	559.69	1.0714	1.0624	0.0090	0.8440
200.00	619.69	0.9328	C.9362	0.0034	0.3666
400.00	619.69	C.8594	0.8662	0.0068	0.7854
 60.00	615.69	C.7784	0,7876	0.0092	1.1870
800.00	619.69	0.6878	0.6977	0.0099	1.4455
1000.00	619.69	0.5881	0.5951	0.0070	1.1927
 1250.00	619.69	0.4769	0.4763	0.0006	0.1257
1500.00	619.69	C.4391	0.4360	0.0031	0.7041
1750.00	619.69	C.4500	0.4457	0.0043	0.9516
 2000.00	619.69	0.4753	0.4714	0.0039	0.8115
2250.00	619.69	C.5081	0.5008	0.0073	1.4280
2500.00	619.69	0.5426	0.5333	0.0093	1.7212
 2750.00	619.69	C.5778	0.5677	0,0101	1.7414
3000.00	619.69	0.6134	0.6034	0.0100	1.6297
3500.00	619.69	0.6846	0.6778	0.0068	0.9929
 4000.00	619.69	C.7563	0.7517	0.0046	0.6066
4500.00	619.69	C.8285	0.8224	0.0061	0.7348
5000.00	619.69	C.9004	0.8913	0.0091	1.0053
 600.00	619.69	1.0423	1.0267	0.0156	1.5013
200.00	679.69	C.9508	0.9533	0.0025	0.2657
400.00	679.69	C.8999	0.9044	0.0045	0.5022
 600.0C	679.69	C.8476	0.8533	0.0057	0.6668
800.00	679.69	0.7939	C.8000	0.0061	0.7693
1000.00	679.69	C.7394	0.7455	0.0061	0.8202
 1250.00	679.69	0.6753	0.6796	0.0043	0.6396
1500.00	679.69	0.6242	0.6255	0.0013	0.2142
1750.00	679.69	0.5939	0.5930	0.0009	0.1531
 2000.CC	675.69	0.5845	0.5832	0.0013	0.2227
2250.00	679.69	0.5915	0.5899	0.0016	0.2644
2500.00	679.69	0.6083	0.6065	0.0018	0.2987
 2750.00	679.69	0.6314	0.6283	0.0031	0.4940
3000.00	679.69	0.6579	0.6532	0.0047	0.7131
3500.00	679.69	0.7158	0.7088	0.0070	0.9787
4000.00	679.69	0.7771	0.7682	0.0089	1.1503

•

	P(PSIA)	T(DEG.R.)	Ζ	Z(CAL.)	DEV.	Z DEV.
	4500.00	679.69	0.8398	0.8293	C.0105	1.2514
	500.00	679.69	0.9030	0.8913	0.0117	1.3002
	6000.00	679.69	1.0287	1.0178	0.0109	1.0639
	200.00	739.69	0.9635	0.9649	0.0014	0.1490
	400.00	735.65	C.9267	0.9293	0.0026	0.2854
	600.00	739.69	0.8900	0.8935	0.0035	0.3899
	800.00	739.69	0.8541	0.8578	0.0037	0.4286
	1000.00	739.69	0.8194	0.8229	0.0035	0.4213
	1250.00	739,69	0.7792	0.7819	0.0027	0.3415
	1500.00	739.69	C.7440	0.7461	0.0021	0.2826
	1750.CC	739.69	0.7175	0.7187	0.0012	0.1680
	2000.00	739.69	0.7010	0.7016	0.0006	0.0885
	2250.00	739.69	0.6954	0.6951	0.0003	0.0419
	2500.00	739.69	0.6979	0.6977	0.0002	0.0318
	2750.CC	739.69	C.7073	0.7074	C.0001	0.0166
	3000.00	739.69	0.7218	0.7225	C.0007	0.0914
	350C.CC	739.69	C.7632	0.7613	0.0019	0.2447
	00.00	739.69	0.8114	0.8081	0.0033	0.4006
	500.00	739.69	0.8639	0.8587	0.0052	0.6047
	5000.00	739.69	C.9184	0.9116	0.0068	0.7453
<u>6</u>	20.000	739.69	1.0298	1.0214	0.0084	0.8130
	94.16	581.69	C.9638	0.9642	0.0003	0.0347
	99.19	581.69	0.9619	0.9622	0.0003	0.0312
	123.16	581.69	0.9530	0.9528	0.0002	0.0170
	150.46	581.69	0.9427	0.9419	0.0008	0.0804
	175.73	581.69	0.9327	0.9317	0.0010	0.1056
	267.31	581.69	0.8950	0.8934	0.0016	0.1797
	360.16	581.69	C.8533	0.8520	0.0013	0.1507
	414.72	581.69	0.8296	0.8267	0.0029	0.3519
	458.47	581.69	C.8058	0.8047	0.0011	0.1364
	514.11	581.69	0.7773	0.7760	0.0013	0.1654
	567.16	581.69	0.7482	0.7469	0.0013	0.1680
	616.23	581.69	C.7186	0.7180	0.0006	0.0784
	716.87	581.69	0.6521	0.6519	C.0002	0.0351
	816.60	581.69	C.5724	0.5718	0.0006	0.1012
	916.59	581.69	0.4667	0.4640	0.0027	0.5762
	016.43	581.69	0.3417	0.3370	0.0047	1.3697
	216.47	581.69	C.3003	0.3050	0.0047	1.5645
	416.53	581.69	0.3194	0.3267	0.0073	2.2977
	516.71	581.69	0.3459	0.3535	0.0076	2.1948
	816.81	581.69	0.3749	0.3813	0.0064	1.7010
	<u>C17.06</u>	581.69	0.4036	0.4126	0.0090	2.2277
	517.36	581.69	0.4781	0.4869	0.0088	1.8508
	017.79	581.69	0.5527	0.5592	0.0065	1.1787
	518.19	581.69	0.6246	0.6393	0.0147	2.3599
	C18.66	581.69	0.6971	0.7118	0.0147	2.1115
	519.11	581.69	0.7676	0.7886	0.0210	2.7358
	<u>C19.61</u>	581.69	0.8338	0.8845	0.0507	6.0787
	101.24	626.69	C.9691	0.9699	0.0008	0.0853
	107.33	626.69	0.9674	0.9681	0.0007	0.0704
	119.10	626.69	0.9645	0.9645	0.0000	0.0046

-ES

P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	ä DEV.
133.57	626.69	0.9601	0.9601	0.0001	0.0063
152.24	626.69	0.9553	0.9544	0.0008	0.0849
 163.72	626.69	0.9520	0.9509	0.0011	0.1112
189.92	625.69	0.9440	0.9428	0.0012	0.1288
229.62	626.69	0.9316	0.9303	0.0013	0.1358
 322.19	626.69	0.9025	0.9006	0.0020	0.2184
412.18	626.69	0.8724	0.8704	0.0020	0.2347
455.69	626.69	C.8584	0.8555	0.0020	0.3386
505.56	626.69	C.8395	0.8377	C.0019	
535.84	626.69	0.8287	0.8268	0.0020	0.2205
567.63	626.69	C.8170	0.8151	0.0019	0.2368
616.37	626.69	<u>C.7990</u>	0.7969	0.0019	0.2367
 717.34	626.69	0.7579	0.7569		0.2639
816.92	626.69	C.7154		0.0010	0.1289
917.12	626.69		0.7150	0.0004	0.0601
1016.75		0.6711	<u>C.6704</u>	C.0007	0.1113
1216.94	626.69 626.69	0.6245	0.6233	0.0013	0.2014
1210.94		0.5295	0.5264	0.0030	0.5738
 1617.05	626.69	0.4590	0.4566	0.0024	0.5276
	626.69	0.4352	0.4350	0.0004	0.1000
1816.93	620.69	0.4382	0.4414	0.0033	0.7456
 2017.32	626.69	0.4532	0.4579	0.0047	1.0326
2517.69	626.69	C.5084	0.5146	0.0062	1.2238
3018.12	626.69	C.5712	0.5794	0.0081	1.4220
 3518.52	626.69	0.6376	0.6428	0.0051	0,8075
4019.00	626.69	C.7016	0.7146	0.0130	1.8525
4519.45	626.69	C.7670	0.7824	0.0155	2.0177
 5019.97	626.69	C.8271	0.8083	0.0412	4.9808
109.18	671.69	0.9721	0.9742	0.0022	0.2212
128.26	671.69	0.9679	0.9697	0.0018	0.1813
 144.10	671.69	0.9640	0.9659	0.0018	0.1878
164.37	671.69	C.9596	0.9610	0.0013	0.1400
177.71	671.69	0.9593	0.9579	0.0014	C.1461
 204.08	671.69	C.9529	0.9515	0.0014	0.1494
247.27	671.69	0.9429	C.9409	0.0019	0.2050
335.83	671.69	0.9211	0.9190	0.0022	0.2375
 427.34	671.69	0.8980	0.8957	0.0022	0.2496
471.14	671.69	0.8878	0.8845	0.0032	0.3623
522.03	671.69	0.8738	0.8712	0.0026	0.3012
 567.62	671.69	C.8615	0.8591	0.0025	0.2866
616.71	671.69	0.8490	0.8460	0.0029	0.3470
717.30	671.69	0.8197	0.8182	0.0015	0.1789
 817.06	671.69	0.7917	0.7903	0.0014	0.1795
917.05	671.69	C.7625	0.7615	0.0010	0.1275
1016.96	671.69	0.7334	0.7324	0.0010	0.1351
 1216.87	671.69	0.6754	0.6742	0.0012	0.1764
1416.93	671.69	0.6232	C.6207	0.0025	0.4021
1616.92	671.69	C.5800	0.5782	0.0018	0.3047
1817.12	671.69	0.5555	0.5538	0.0017	0.3084
 2017.14	671.69	C.5438	0.5455	0.0016	C•3031
2517.47	671.69	0.5615	0.5684	0.0068	1.2183
3017.90	671.69	0.6052	0.6170	0.0119	1.9591
 an ann an tairt dhù chuiteac a				000117	10/271

P (PSI	A) T(DEG.R.	.) 7	Z(CAL.)	DEV.	% DEV.
		0.6577	0.6750	0.0173	2.6346
3518.					
4018.		0.7144	0.7359	0.0215	3.0057
4519.		0.7715	0.8008	0.0292	3.7868
5019.		0.8278	C.8709	0.0431	5.2020
119.		0.9778	0.9774	0.0003	0.0346
130.		0.9756	0.9752	0.0004	0.0445
146.		C•9733	0.9723	0.0010	0.1026
165.		0.9699	0.9686	0.0013	0.1370
		<u>C.9653</u>	0.9637	0.0016	0.1707
222.		0.9594	0.9576	0.0018	0.1924
324.		C.9403	0.9379	0.0024	0.2582
422.		<u>C.9232</u>	0.9188	0.0043	0.4711
459.		0.9154	0.9113	0.0040	0.4420
505.		C.9050	0.9022	0.0028	0.3125
531.		0.8994	0.8968	0.0025	0.2813
567.		0.8930	0.8897	0.0033	0.3657
616.		0.8832	0.8800	0.0032	0.3625
717.		0.8620	0.8594	0.0025	0.2947
816.		0.8423	0.8393	0.0030	0.3527
917.		C.8202	0.8186	0.0016	0.2005
1016.	86 716.69	0.8009	0.7985	0.0024	0.2939
1217.		C.7603	0.7585	0.0018	0.2413
1416.	82 716.69	0.7242	0.7214	0.0028	0.3849
1617.	05 716.69	0.6894	0.6882	0.0012	0.1792
1816.	95 716.69	0.6661	0.6632	0.0030	0.4457
2017.	20 716.69	0.6452	0.6455	0.0003	0.0501
2517.	50 716.69	0.6347	0.6389	0.0041	0.6518
3017.	86 716.69	0.6578	0.6655	0.0077	1.1656
3518.	716.69	C.6965	0.7078	0.0113	1.6245
4018.	66 716.69	C.7433	0.7570	0.0137	1.8418
4519.		0.7917	0.8130	0.0213	2.6960
5019.	.60 716.69	0.8441	0.8684	0.0242	2.8684
	33 581.69	0.9728	0.9737	C.0009	0.0965
117.	82 581.69	0.9541	0.9548	0.0007	0.0751
167.	20 581.69	0.9341	0.9350	C.0009	0.0954
216.	88 581.69	0.9138	0.9144	0.0006	0.0651
266.		0.8929	0.8932	0.0003	0.0355
316.		0.8706	0.8712	0.0006	0.0674
366.	47 581.69	0.8473	0.8482	C.0009	0.1026
394.	23 581.69	0.8363	0.8354	0.0008	0.0991
419.	581.69	0.8239	0.8233	C.0006	0.0739
468.	79 581.69	C.7987	0.7984	0.0003	0.0331
518.	.44 581.69	0.7722	0.7722	0.0000	0.0032
568.	.17 581.69	0.7443	0.7444	0.0001	0.0150
617.	94 581.69	0.7146	0.7148	0.0001	0.0208
717.		0.6473	0.6476	0.0003	0.0463
817.	27 581.69	0.5635	0.5634	0.0001	0.0189
916.		0.4383	0.4363	0.0020	0.4536
1016.		0.2816	0.2835	0.0019	0.6781
1216.		0.2723	0.2831	0.0108	3.9650
1416.		0.2956	0.3056	0.0100	3.3955

P	(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	% DEV.
	616.95	581.69	0.3228	C.3308	0.0080	2.4695
	317.11	581.69	0.3515	0.3560	0.0046	1.3020
	17.24	581.69	C.3803	0.3823	0.0020	0.5235
	517.60	581.69	0.4531	0.4464	0.0066	1.4596
	018.01	581.69	0.5243	0.5135	0.0108	2.0509
	518.4C	581.69	0.5950	0.5783	0.0168	2.8184
	18.87	561.69	C.6652	0.6407	0.0245	3.6844
	519.30	581.69	0.7324	0.7122	0.0202	2.7543
		581.69	C.8010	0.7726	0.0283	3.5353
51	03.81	626.69	C.9708	0.9722	C.0014	0.1461
	93.81	626.69	0.9636	0.9648	0.0012	0.1285
	118.21		<u>C.9480</u>	0.9496	0.0012	0.1678
	167.55	626.69				
	217.20	626.69	0.9325	0.9341		0.1730
	267.00	620.69	0.9164	0.9182	0.0018	0.1927
	316.90	626.69	<u> </u>	0.9018	0.0019	0.2061
	366.81	626.69	0.8829	0.8851	0.0022	0.2505
	416.75	626.69	0.8659	0.8680	0.0021	0.2472
	469.20	626.69	0,8496	0.8500	0.0004	0.0454
	518.84	626.69	0.8314	0.8320	C.0007	0.0813
	568.56	626.69	0.8128	0.8136	0.0008	0.0979
	618.31	626.69	0.7937	0.7946	0.0009	0.1171
	717.93	626.69	0.7537	0.7548	0.0011	C.1416
i	817.60	626.69	0.7111	0.7121	0.0010	0.1376
	917.47	626.69	0.6656	0.6661	0.0006	0.0835
10	017.30	626.69	0.6165	0.6164	0.0000	0.0022
11	217.04	526.09	0.5116	0.5099	0.0017	0.3354
1.	416.95	626.69	0.4304	0.4302	0.0002	0.0459
1	616.98	626.69	0.4052	0.4092	0.0040	0.9900
1.	817.10	626.69	6.4099	0.4159	0.0060	1.4700
20	017.21	626.69	C.4253	0.4316	0.0057	1.3489
2	517.54	626.69	C.4808	0.4834	0.0025	0.5251
	017.94	026.69	0.5432	0.5395	0.0036	0.6650
	518.32	626.69	C.6061	0.5993	C.0068	1.1177
	018.77	626.69	0.6699	0.6583	0.0116	1.7280
	519.19	626.69	0.7328	0.7189	0.0139	1.8960
	019.69	626.69	0.7960	0.7772	0.0188	2.3579
_	93.80	671.69	0.9768	0.9780	0.0012	0.1215
	118.22	671.69	0.9713	0.9722	0.0009	0.0886
	167.44	671.69	0.9593	0.9604	0.0010	0.1081
	217.06	671.69	C.9469	0.9483	0.0014	0.1426
	266.84	671.69	C.9349	0.9360	C.0012	0.1235
	316.69	671.69	0.9224	0.9236	0.0012	0.1300
	366.60	671.69	<u> 0.9224 </u> C.9098	0.9110	0.0012	0.1275
	416.53	671.69	0.8971	0.8982	0.0011	0.1245
				0.8852	0.0011	0.1238
	466.46	671.69	0.8841	0.8714	0.0008	0.0886
	519.17	671.69	C.8706			0.1050
	568.87	671.69	C.8572	0.8581	C.0009	
	618.01	671.69	0.8435	0.8445	0.0011	0.1262
	718.25	671.69	C.8156	0.8168	0.0013	0.1538
	817.97	671.69	0.7870	0.7883	0.0013	0.1713
	917.75	671.69	C.7577	0.7590	0.0013	0.1723

P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	0.514	8 D.C.M
1017.60	571.69	0.7278	0.7290	DEV.	% DEV.
1217.36	671.69	0.6677		0.0012	0.1607
1417.27	671.69	C.6100	0.6680	0.0004	0.0556
1617.23	671.69	0.5625	0.6095	0.0005	0.0801
1817.30	671.69	0.5323	0.5618	0.0007	0.1221
2017.45	671.69		0.5325	0.0002	0.0423
 2517.72	671.69	<u>C.5194</u>	0.5216	0.0021	0.4091
3018.15	671.69	0.5358	0.5392	0.0035	0.6475
3518.48	671.69	0.5795	0.5805	0.0010	0.1731
 4018.93	671.69	0.6321	0.6289	0.0032	0.5081
4519.36		0.6877	0.6804	0.0072	1.0509
<u>5019.88</u>	671.69	0.7446	0.7331	0.0115	1.5498
118.23	671.69	0.8023	0.7857	0.0166	2.0686
	716.69	0.9770	0.9777	0.0006	0.0647
167.48	716.09	C.9680	0.9683	0.0003	0.0302
 217.08	716.69	<u>C.9585</u>	0.9587	<u>C.0003</u>	0.0265
266.84	716.69	0.9489	0.9491	0.0002	0.0201
316.68	716.69	0.9394	0.9394	C.0000	0.0008
 365.58	716.69	0.9296	0.9296	C.0000	0.0026
416.51	716.69	0.9200	0.9197	0.0003	0.0328
466.45	716.69	C.9103	0.9098	0.0005	0.0588
 516.41	716.69	0.9006	0.8998	0.0008	0.0848
569.31	716.69	C.8883	0.8889	C.0006	0.0729
619.04	716.69	C.8730	0.8788	C.0008	0.0927
 718.66	716.69	0.8574	0.8584	0.0009	0.1096
818.36	716.69	0.8365	0.8376	0.0012	0.1411
918.14	716.69	0.8156	0.8168	0.0012	0.1444
1017.98	716.69	C.7948	0.7959	0.0011	0.1416
1217.73	716.69	0.7535	0.7544	0.0009	0.1218
1417.63	716.69	C.7142	0.7147	C.0005	0.0722
 1617.59	716.69	0.6789	0.6789	<u> </u>	0.0026
1817.63	716.69	0.6498	0.6497	0.0001	0.0173
2017.68	716.69	0.6236	0.6289	0.0004	0.0570
2517.88	716.69	C.6131	0.6147	0.0016	0.2611
3018.21	716.69	0.6332	0.6352	0.0020	0.3188
3518.55	716.69	0.6798	0.6709	0.0001	0.0088
 4018.98	716.69	0.7166	0.7127	0.0039	0.5393
4519.39	716.69	C.7647	0.7595	0.0053	0.6885
5019.87	716.69	C.8157	0.8068	0.0089	1.0899
 79.31	581.69	0.9694	0.9696	0.0002	0.0166
118.13	581.69	0.9543	0.9542	0.0001	0.0145
167.45	581.69	C.9348	0.9342	C.0006	0.0694
 217.08	581.69	0.9142	0.9134	0.0009	0.0947
266.86	581.69	0.8924	0.8917	0.0007	0.0829
316.72	581.69	0.8702	0.8692	0.0009	0.1070
366.64	581.69	0.8468	J.8458	0.0010	0.1146
419.32	581.69	0.8241	0.8205	0.0036	0.4321
468.87	581.69	C.7983	0.7949	0.0034	0.4275
 518.51	581.69	0.7711	0.7677	0.0033	0.4336
568.22	581.69	0.7420	0.7387	0.0033	0.4438
617.97	581.69	C.7104	0.7072	0.0032	0.4481
717.59	581.69	0.6365	0.6336	0.0029	0.4574

	P(PSIA)	T(DEG.R.)	<u>Z</u>	Z(CAL.)	DEV.	% DEV.
	817.23	581.69	0.5338	0.5303	0.0035	0.6551
	916.47	581.69	0.1917	0.1855	0.0063	3.2609
	1016.50	581.69	0.1979	0.1972	0.0007	0.3405
	1216.58	581.69	0.2220	0.2232	0.0012	0.5487
	1416.71	581.69	0.2486	0.2497	0.0011	0.4305
	1616.83	581.69	0.2760	0.2749	0.0011	0.3851
	1817.00	581.69	0.3036	0.2993	0.0043	1.4040
	2017.14	581.69	0.3305	0.3258	C.0047	1.4159
	2517.50	581.69	0.3977	0.3883	C.C094	
	3017.93	581.69	0.4632	0.4523	C.C109	2.3617
	3518.32	581.69	0.5273	0.5174	C.0099	1.8703
	4018.79	581.69	0.5914	0.5761	0.0153	2.5791
	4519.23	581.69	0.6529	0.6441	0.0087	
	5019.74	581.69	0.7143	0.7072	0.0071	1.3392
	93.92	626.69	0.9717	0.9719		0.9996
	118.25	626.69	0.9640	0.9645	0.0002	0.0196
	167.50	626.69	C•9484		0.0005	0.0526
	217.10	626.69	0.9330	0.9492	0.0008	0.0793
······································	266.86	626.69		0.9334	0.0005	0.0492
	316.70		0.9166	0.9173	C.0007	0.0745
	366.59	626.69	0.9001	0.9007	9.0006	0.0721
		626.69	<u> </u>	0.8837	0.0006	0.0631
	416.52	626.69	C.8658	0.8662	C.0004	0.0470
	469.42	626.69	0.8481	0.8474	0.0007	0.0808
	519.05	620.69	0.8295	0.8289	C.0005	0.0662
	568.75	626.69	0.8103	0.8098	0.0005	0.0633
	618.50	626.69	0.7906	0.7900	0.0005	0.0666
	718.08	626.69	0.7487	0.7480	0.0006	0.0846
	817.79	626.69	0.7030	0.7021	0.0009	0.1333
	917.57	626.69	0.6526	0.6510	0.0017	0.2528
	1017.38	626.69	0.5959	0.5929	C.0030	0.5041
	1216.97	626.69	0.4548	0.4465	0.0083	1.8208
	1416.87	626.69	0.3473	0.3394	C.0080	2.2913
	1616.93	626.69	0.3345	0.3322	0.0023	0.6900
	1817.08	626.69	0.3465	0.3461	0.0004	0.1083
	2017.18	626.69	C.3649	0.3653	0.0004	0.1178
	2517.52	626.69	0.4205	0.4179	0.0026	0.6193
	3017.94	626.69	0.4780	0.4763	0.0017	0.3490
	3518.50	626.69	0.5372	0.5323	C.0048	0.8995
	4018.97	626.69	0.5958	0.5894	0.0064	1.0825
	4519.41	626.69	0.6536	0.6475	0.0061	0.9406
	5019.92	626.69	0.7113	0.7037	C.0077	1.0789
	94.19	671.69	0.9771	0.9777	0.0006	0.0641
	118.52	671.69	0.9711	0.9719	0.0007	0.0772
	167.73	671.69	0.9594	0.9599	C.0005	0.0563
	217.31	671.69	C.9473	0.9477	0.0004	0.0436
	267.06	671.69	C.9351	0.9353	C.0002	0.0264
	316.89	671.69	C.9224	C.9227	C.0003	0.0304
	366.78	671.69	0.9096	0.9098	0.0002	0.0226
	416.70	671.69	0.8966	0.8967	0.0001	0.0154
	466.63	671.69	C.8834	0.8834	0.0000	0.0035
	519.27	671.69	0.8688	0.8691	0.0003	0.0374
				010071	0.0005	0.0314

	P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	≵ DEV.
	568.95	671.69	0.8550	0.8554	0.0003	0.0407
	618.68	671.69	C.8408	0.8413	0.0005	0.0606
	718.30	671.69	0.8118	0.8124	0.0006	0.0740
	818.01	671.69	0.7816	0.7822	0.0006	0.0769
	917.78	671.69	C.7503	0.7507	0.0004	0.0548
	1017.60	671.69	0.7177	0.7177	0.0000	0.0046
·	1217.34	671.69	C.6495	0.6479	0.0016	0.2483
	1417.23	671.69	0.5789	0.5749	0.0040	0.6949
	1617.18	671.69	0.5151	0.5092	0.0059	1.1493
	1817.31	671.69	C•4733	0.4675	0.0057	1.2115
	2017.37	671.69	0.4564	0.4524	0.0040	0.8664
·····	2517.66	671.69	0.4714	0.4698	0.0016	0.3380
	3018.07	671.69	C.5130	0.5107	0.0022	0.4373
	3518.46	671.69	0.5617	0.5583	0.0034	0.5973
	4018.92	671.69	0.6136	0.6071	0.0065	1.0660
	4519.35	671.69	0.6655	0.6590	0.0065	0.9771
	5019.85	671.69	0.7186	0.7088	0.0098	1.3636
	118.68	716.69	0.9771	0.9774	0.0003	0.0340
	167.84	716.69	0.9674	0.9679	0.0005	0.0492
	217.39	716.69	0.9580	0.9582	C.0002	0.0234
	267,12	716.69	C.9484	0.9485	0.0000	0.0029
	316.94	716.69	C.9385	0.9386	0.0000	0.0049
	366.82	716.69	C.9285	0.9285	C.0000	0.0021
	416.73	716.69	C.9185	0.9184	0.0001	0.0100
	466.67	716.69	0.9084	0.9082	0.0002	0.0218
	516.62	716.69	0.8985	0.8980	0.0005	0.0565
	569.24	716.69	0.3862	0.8868	0.0007	0.0752
	618.96	716.69	0.8756	0.8763	0.0007	0.0819
	718.56	716.69	C.8540	0.8550	0.0010	0.1124
	018.25	716.69	0.8321	0.8332	0.0010	0.1213
	918.02	716.69	C.8100	0.8109	C.0009	0.1133
	1017.82	716.69	0.7873	0.7883	0.0010	0.1264
	1217.50	716.69	0.7420	0.7423	0.0003	0.0418
	1417.38	716.69	0.6966	0.6960	0.0006	0.0917
	1617.33	716.69	0.6536	0.6516	0.0020	0.3061
	1817.36	716.69	0.6157	0.6124	0.0033	0.5368
	2017.39	716.69	0.5855	0.5819	0.0036	0.6087
	2517.61	716.69	0.5554	0.5527	0.0028	0.4984
	3017.97	716.69	0.5693	0.5674	0.0019	0.3391
	3518.30	716.69	0.6024	0.5998	0.0019	0.4384
	4010.72				0.0028	0.6126
		716.69	0.6434	0.6395		
	4519.14	716.69	0.6878	0.6830	0.0048	0.6967
	5019.64	716.69	C.7350	0.7268	0.0082	1.1118
	55.28	581.69	0.9771	0.9786	0.0015	0.1487
	68.55	581.69	0.9716	0.9733	0.0017	0.1761
	87.89	581.69	0.9638	0.9656	0.0018	0.1885
	117.31	581.69	0.9527	0.9537	0.0010	0.1086
	166.81	581.69	0.9324	0.9332	<u>C.0007</u>	0.0754
	216.54	581.69	0.9115	0.9118	0.0003	0.0311
	266.38	581.69	0.8896	0.8895	0.0000	0.0021
	319.44	581.69	0.8691	0.8654	0.0037	0.4262

A-!	50
-----	----

 P(PSIA)	T(CEG.R.)	Ζ	Z(CAL.)	DEV.	% DEV.
368.89	581.69	0.8444	0.8412	0.0032	0.3758
418.44	581.69	0.8182	0.8157	0.0025	0.3092
468.10	581.69	0.7904	0.7884	0.0019	0.2450
517.83	581.69	0.7602	0.7591	0.0011	0.1486
567.62	581.69	0.7273	C.7270	0.0003	0.0357
 617.48	581.69	0.6905	0.6913	0.0008	0.1152
816.38	581.69	0.1275	0.1308	0.0033	2.6040
916.45	581.69	0.1410	0.1467	0.0057	4.0706
1016.49	581.69	C.1545	0.1608	C.0064	4.1142
1216.58	581.69	C.1814	0.1865	0.0051	2.8272
1416.71	581.69	C.2079	0.2115	0.0036	1.7474
 1616.88	581.69	0.2341	0.2355	0.0014	0.5921
1817.06	581.69	0.2598	0.2603	0.0005	0.1808
2017.19	561.69	0.2842	0.2928	0.0086	3.0344
2517.56	581.69	0.3473	0.3466	0,0007	0.2042
3017.98	581.69	C.4084	0.4042	0.0042	1.0188
3518.37	581.69	0.4665	0.4750	0.0085	1.8237
 4018.84	581.69	0.5257	0.5281	0.0024	0.4564
4519.28	581.69	0.5830	C.5891	0.0060	1.0305
5019.78	581.69	0.6373	0.6679	0.0306	4.8019
 68.83	626.69	0.9766	0.9791	0.0025	0.2563
107.68	626.69	0.9651	0.9671	0.0020	0.2057
117.50	626.69	0.9620	0.9640	0.0021	0.2135
 166.98	626.69	0.9469	0.9483	0.0015	0.1552
216.70	626.69	0.9317	0.9322	C.0006	0.0592
266.53	626.69	0.9147	0.9156	C.0009	0.0989
 316,43	626,69	C.8976	0.8985	0.0009	0.0995
369.31	626.69	0.8807	0.8801	C.0006	0.0694
418.81	626.69	0.8642	0.8623	0.0019	0.2204
 468.46	626.69	0.8451	0.8436	0.0015	0.1746
518.19	626.69	0.8250	0.8241	C.0009	0.1110
568.03	626.69	0.8043	0.8038	0.0005	0.0587
 617.84	626.69	C.7827	0.7826	0.0001	0.0139
717.67	626.69	0.7360	0.7366	0.0006	0.0822
817.37	626.69	0.6827	0.6842	0.0015	0.2206
 917.20	626.69	C.6198	0.6217	0.0019	0.3037
1017.05	626.69	0.5575	0.5388	0.0013	0.2340
1116.79	626.69	0.3552	0.3476	0.0077	2.1542
 1416.80	626.69	C.2390	0.2403	0.0013	0.5260
1616.92	626.69	0.2586	0.2634	0.0047	1.8358
1817.00	626.69	C.2806	0.2863	0.0057	2.0227
 2017.21	626.69	0.3030	0.3098	0.0068	2.2502
2517.56	626.09	C.3601	0.3667	0.0066	1.8333
3017.98	626.69	0.4176	C.4191	0.0015	0.3501
 3518.37	620.69	C•4739	0.4724	0.0014	0.2991
4018.83	626.69	0.5294	0.5250	0.0044	0.8269
4519.25	620.09	0.5827	0.5839	0.0012	0.2090
 5C19.76	626.69	C.6368	0.6351	0.0017	0.2680
59.02	671.69	C.9820	0.9834	C.0014	0.1429
117.61	671.69	C.9704	0.9716	0.0012	0.1195
167.04	671.69	C.9585	0.9593		

 P(PSIA)	T(DEG.R.)	Ζ	Z(CAL.)	DEV.	Z DEV.
216.74	671.69	0.9465	0.9468	0.0002	0.0253
266.56	671.69	C.9338	0.9340	0.0002	0.0175
 316.45	671.69	0.9213	C.9210	C.0003	0.0367
419.02	671.69	0.8953	0.8936	0.0017	0.1887
468.64	671.69	0.8812	C.8798	0.0013	
518.34	671.69	0.8667	0.8657	0.0013	0.1511
 568.10	671.69	0.8518	0.8512		0.1142
617.90	671.69	C•8365		0.0006	0.0712
717.63	671.69		0.8364	0.0002	0.0184
 817.41	671.69	0.8051	0.8055	0.0004	0.0482
917.26		0.7718	0.7727	0.0008	0.1096
	671.69	C.7366	0.7377	0.0011	0.1443
 1017.12	671.69	0.6985	0.6999	0.0014	0.1952
1116.97	671.69	0.6580	0.6590	0.0010	0.1511
1216.90	671.69	0.6138	0.6140	0.0002	0.0399
 1316.79	671.69	0.5653	0.5641	0.0011	0.1997
14:16.74	671.69	0.5121	0.5090	0.0032	0.6197
1516.71	671.69	0.4589	0.4527	0.0062	1.3516
 1516.70	671.69	0.4131	0.4048	0.0082	1.9876
1716.74	671.69	0.3836	0.3756	0.0080	2.0750
1816.78	671.69	C.3690	0.3629	0.0061	1.6542
 2016.86	671.69	0.3642	0.3624	0.0019	0.5085
2517.14	671.69	C. 3954	0.3997	0.0043	
3017.50	671.69	0.4415	0.4469		1.0824
3517.83	671.69	<u>C.4907</u>	0.4957	0.0054	1.2267
 4018.25	671.69	0.5412		0.0049	1.0075
4518.63	671.69		0.5434	0.0021	0.3914
5019.09		C.5911	0.5928	0.0017	0.2826
 69.25	671.69	0.6406	0.6429	0.0023	0.3578
	710.69	C.9845	0.9866	0.0021	0.2138
117.78	716.69	C.9760	0.9771	0.0011	0.1155
 167.18	716.69	C.9667	0.9673	C.0006	0.0667
216.88	716.69	C.9571	0.9574	0.0003	0.0315
266.69	716.69	0.9473	0.9473	0.0000	C.0008
 316.56	716.69	0.9372	0.9371	0.0001	0.0149
416.43	716.69	C.9171	0.9163	0.0008	0.0845
468.57	716.69	C.9068	0.9052	0.0016	0.1715
 518.66	716.69	C.8957	0.8945	0.0012	0.1305
568.42	716.69	C.8844	0.8836	0.0008	0.0909
618.22	716.69	C.8731	0.8725	0.0006	0.0663
 717.94	716.69	0.8497	C.8498	0.0001	0.0158
 817.73	716.69	0.8251	0.8265	C.0004	0.0472
917.62	716.69	0.8014	0.8023	0.0008	
1017.50	716.69	C.7761			0.1008
 1117.37	716.69		0.7772	0.0012	0.1498
1217.30	716.69	C.7500	0.7513	0.0014	0.1826
1317.26	710.69	0.7232	0.7246	0.0014	0.1942
	sector and the sector design and the sector of the sector	0.6959	0.6970	0.0011	0.1545
1417.24	716.69	0.6676	0.6685	0.0009	0.1359
1517.22	716.69	C.6398	0.6398	C.0000	0.0015
 1617.22	716.69	0.6114	0.6107	0.0007	0.1114
1717.26	716.69	0.5837	0.5822	0.0015	0.2559
1817.28	716.69	C.5578	0.5553	0.0024	0.4391
1917.30	716.69	0.5342	0.5311	0.0031	0.5760

<u> </u>	P(PSIA)	T(DEG.R.)	Ζ	Z(CAL.)	DEV.	% DEV.
	2017.31	716.69	0.5146	0.5110	0.0036	0.6950
	2217.39	716.69	C.4874	0.4843	0.0030	0.6172
	2417.51	716.69	C.4761	0.4743	0.0018	0.3822
	2617.63	716.69	0.4759	0.4752	C.0C07	0.1575
	3017.96	716.69	0.4918	0.4935	0.0018	0.3616
	3518.34	716.69	C.5285	0.5270	0.0016	0.2997
	4018.80	716.69	0.5680	0.5690	0.0011	0.1872
	4519.25	716.69	0.6113	0.6117	0.0004	0.0693
	5019.75	716.69	0.6573	0.6510	0.0069	1.0443
	14.70	559.69	C.9927	0.9935	0.0008	0.0774
	20.00	559.69	0.9901	0.9911	0.0010	0.1001
		559.69	C.9852	0.9866	0.0014	0.1403
	40.00	559.69	0.9802	0.9820	0.0018	0.1403
	50.00	559.69	0.9752	0.9774	0.0022	0.2305
	60.00	559.69	0.9703	0.9728	0.0025	
	80.00	559.69	C.9603	0.9635	0.0032	<u>C.2603</u>
	100.00	559.69	0.9503	0.9539	0.0032	0.3288
	125.00	559.69	<u>C.9377</u>	0.9418	0.0038	0.3819
	150.00	559.69	0.9248	0.9293	0.0041	0.4351
	200.00	559.69	C.8985	0.9035		0.4908
	303.00	559.69	C.8403	0.8471	0.0050	0.5606
	400.00	559.69	C.0487	0.0514	0.0068	0.8098
	500.00	559.69	C.0607	0.0622	0.0027	5.6059
	600.00	_ 559.69	0.0726	0.0748	0.0015	2.4390
	80.00	559.69	0.0963	0.0953	0.0022	3.0350
	1000.00	559.69	0.1197		0.0010	1.0752
	1250.0C	_559.69	0.1437	0.1184	0.0013	1.0589
	1500.00	559.69	0.1773	0.1452	0.0035	2.3870
	1750.00	559.69	0.2056	0.1741	0.0032	1.7909
	200.00	559.69	0.2337	0.2028	0.0028	1.3406
	2250.00	559.69	0.2515	0.2297	0.0040	1.7228
	2500.00	559.69	0.2891	0.2574	0.0041	1.5628
	2750.00	559.69	C•3164	0.2843	0.0048	1.6650
	3000.00	559.69	0.3435	0.3125	0.0039	1.2405
	3500.00	559.69	0.3971	0.3403	0.0032	0.9314
	400.00	559.69	C•4499	0.3958	0.0013	0.3378
	4500.00	559.69	0.5022	0.4520	0.0021	0.4599
	5000.00	559.69		0.5055	0.0033	0.6651
	6000.00	559.69	0.5538	0.5603	C.0065	1.1713
	14.70	619.69	0.6560	0.6613	0.0053	0.8099
	20.00	619.69	0.9949	0.9953	C.0004	0.0420
	30.00		C.9930	0.9936	0.0006	0.0623
	40.00	619.69	<u>C.9895</u>	0.9904	0.0009	0.0911
	50.00	619.69	C.9860	0.9872	0.0012	0.1184
	60.00	619.69	0.9826	0.9839	0.0013	0.1340
	80.00	619.69	<u>C.9790</u>	0.9806	0.0016	0.1679
	160.00	619.69	0.9720	0.9740	0.0020	0.2108
	125.00	619.09	0.9050	0.9674	0.0024	0.2466
	125.00	619.69	<u>C.9560</u>	0.9589	0.0029	0.3062
	200.00	619.69	0.9471	0.9504	0.0033	0.3438
	300.00	619.69	C.9290	0.9328	0.0038	0.4110
	300.00	619.69	0.8912	C.8960	0.0048	0.5332

Α-	5	3
----	---	---

			_			
	P(PSIA)	T(DEG.R.)	<u>Z</u>	Z(CAL.)	DEV.	% DEV.
	400.00	619.69	C.8502	0.8561	0.0059	0.6962
	500.00	619.69	C.8041	0.8121	0.0080	0.9998
	600.00	615.69	<u>C.7518</u>	0.7623	0.0105	1.4004
	00.008	619.69	0.1030	0.1035	0.0005	0.5047
	1000.00	619.69	0.1267	0.1257	0.0010	0.8251
	1250.00	619.69	0.1554	0.1557	0.0003	0.1920
	1500.00	619.69	0.1836	0.1839	0.0003	0.1398
	1750.CC	619.69	0.2110	0.2144	0.0034	1.6219
	2000.00	619.69	0.2378	0.2460	0.0082	3.4405
	2250.00	619.69	0.2649	0.2703	0.0054	2.0379
	2500.00	619.69	0.2916	0.2950	0.0034	1.1520
	2750.00	619.69	0.3179	0.3202	C.0023	0.7345
	3000.00	619.69	0.3440	0.3445	0.0005	0.1571
	3500.00	619.69	0.3955	0.3921	0.0034	G.8546
	4000.00	619.69	0.4460	0.4400	0.0060	1.3453
	4500.00	619.69	0.4951	0.4924	0.0027	0.5397
	5000.00	619.69	0.5442	0.5385	0.0057	1.0414
	6000.00	619.69	C.6406	0.6295	0.0111	1.7386
	14.70	679.69	0.9962	0.9965	C.0003	0.0330
	20.00	679.69	0.9949	0.9953	0.0004	0.0373
	30.00	679.69	0.9923	0.9929	0.0006	0.0598
	40.00	679.69	0.9897	C.9905	0.0008	0.0815
	50.00	679.69	0.9872	0.9881	C.0009	0.0924
	60.00	679.69	0.9846	0.9857	0.0011	0.1125
·	80.00	679.69	0.9794	0.9809	0.0015	0.1502
	100.00	679.69	0.9742	0.9760	C.0018	0.1845
	125.00	679.69	0.9677	0.9699	0.0022	
	150.00	679.69	0.9612	0.9636	0.0022	0.2225
	200.00	679.69	C.9480	0.9511		0.3221
	300.00				0.0031	
		679.69	0.9210	C.9251	0.0041	0.4409
	400.00	679.69	C.8931	0.8979	0.0048	0.5358
	500.00	679.09	0.8636	0.8693	0.0057	0.6577
	600.00	679.69	0.8324	0.8390	0.0066	0.7913
	800.00	679.69	0.7629	0.7716	0.0087	1.1379
	1000.00	679.69	0.6783	0.6895	0.0112	1.6549
	1250.00	679.69	0.5275	0.5373	0.0098	1.8582
	1500.00	679.69	0.2355	0.2184	0.0171	7.2425
	1750.00	679.69	0.2451	0.2395	0.0056	2.3016
	2000.00	679.69	0.2654	0.2659	0.0005	0.1819
	2250.00	679.69	0.2881	0.2917	0.0036	1.2471
	2500.00	679.69	0.3112	0.3179	0.0067	2.1641
	2750.00	679.69	0.3352	0.3414	0.0062	1.8502
	3000.00	679.69	0.3589	0.3655	0.0066	1.8362
	3500.00	679.69	0.4063	0.4116	0.0053	1.2953
	4000.00	679.69	0.4532	0.4563	0.0031	0.6860
	45C0.CC	679.09	0.4994	0.5006	0.0012	0.2476
	5000.00	679.69	0.5446	0.5462	0.0016	0.3026
	6000.00	679.69	0.6350	0.6280	0.0070	1.0949
	14.70	739.69	0.9972	0.9974	C.0002	0.0158
		739.69 739.69	0.9972 0.9962	0.9974 0.9964	0.0002	0.0158 0.0202

	P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	% DEV.
	40.00	739.69	0.9923	0.9928	0.0005	0.0487
	50.00	739.69	C•9904	0.9910	0.0006	0.0574
	60.00	739.69	C.9884	0,9891	0.0007	0.0757
	80.00	739.69	C.9846	0.9855	C.0009	0.0910
	100.00	739.69	C.9807	0.9818	0.0011	0.1146
	125.CC	739.69	<u>C.9759</u>	0.9772	0.0013	0.1342
	150.00	739.69	0.9710	0.9726	0.0016	0.1611
	200.00	739.69	0.9612	0.9632	0.0020	0.2065
	300.00	739.69	0.9415	0.9441	0.0026	0.2718
	400.CC	739.69	C.9213	C.9244	0.0031	0.3364
	500.00	739.69	C.9005	0.9042	0.0037	0.4055
	60.00	739.69	C.8790	0.8832	0.0042	0.4834
	800.00	739.69	0.8331	0.8391	0.0060	0.7168
	1000.00	739.69	C.7830	0.7910	0.0080	1.0228
	1250.00	739.69	C.7141	0.7239	0.0098	1.3744
	1500.00	739.69	C.6368	0.6464	0.0096	1.5136
	1750.00	739.69	0.5501	0.5561	0.0060	1.0890
	2000.00	739.69	0.4649	0.4631	0,0018	0.3977
	2250.00	739.69	0.4111	0.4049	0.0062	1.4997
	2500.00	739.69	C.3950	0.3910	0.0040	1.0240
	2750.CC	739.69	0.3994	0.3970	0.0024	0.6001
	3000.00	739.69	0.4116	0.4101	0.0015	0.3661
	3500.00	739.69	C•4435	0.4457	0.0022	0.5036
	4000.00	739.69	C.4810	0.4844	0.0034	0.7074
	4500.00	739.69	0.5204	0.5238	0.0034	0.6514
	5000.00	739.69	C.5606	0.5630	0.0024	0.4214
	600.00	739.69	0.6415	0.6401	0.0014	0.2164
	AVE. DEV. =	0.00353	AVE. PERC	• DEV. =0.64	466	
	ERRUR SUUARE	= 0.242	347E-01			
	STANDARD ERR	OR CF ESTIMA	ATE = 0.00	0616		
·					······································	

c	
<u>C</u>	PROGRAM NUMBER 3
C	PROGRAM ROMBER 5
C	
C	CCNTROL CARDS
c	
C	THE MAINLINE OF THIS PROGRAM EXTENDS THE SEARCH FOR
C	THE MINIMUM, USING VARIABLE STEPS ALONG ORTHOGONAL VEC-
C	TORS. IF A STEP ALONG A VECTOR IS SUCCESSFUL, THE STEP
C	IN THAT DIRECTION IS INCREASED THREEFOLD AND THE REFER-
C	ENCE FUNCTION VALUE IS REPLACED BY THE NEW IMPROVED
C	VALUE. IF UNSUCCESSFUL, THE REFERENCE FUNCTION VALUE IS
C	RETAINED AND THE GLD COORDINATE VALUES ARE REPLACED.
C	WHEN OSCILLATIONS BETWEEN SUCCESSFUL AND UNSUCCESSFUL
C	STEPS OCCURS ALONG ALL THE ORTHOGONAL VECTORS, THE
C	ROTATE SUBROUTINE IS CALLED TO ROTATE THE ORTHOGONAL
С	SET OF VECTORS SO THAT ONE OF THE VECTORS LIES PARALLEL
С	TO THE PROGRESS VECTOR (VECTOR BETWEEN COORDINATES OF
C	ACJACENT ITERATIONS) AND A NEW ITERATION BEGINS.
C	· ·
	DOUBLE PRECISION VAR2,OV,X, Y,PAR1,PAR3,VAR1,VAR3,ELAM,
	1FUNC, DEV, T, V
	INTEGER P
	CGMMGN VAR2,0V(10,10),X(200,10),Y(200),PAR1(10),PAR3(10
<u> </u>	1),M,N,P,KP,KDCF,KSF(10)
	DIMENSION PRES(200), DES(200), PNAM(10,5), ELAM(10), KS(10)
	1,KF(10)
<u> </u>	
C	THIS IS THE MAINLINE PROGRAM FOR ROSENBROCK'S METHOD OF
c	1 ROTATING CO-ORDINATES
<u> </u>	
	INPUT DATA READIN
C C	
<u> </u>	MAXMIN = O FUR MINIMIZATION = 1 FOR MAXIMIZATION
C C	$P = NC_{\bullet} CF PARAMETERS$
C	KUCF EQUALS O FOR DATA CORRELATION
<u>C</u>	EQUALS 1 FOR JPTIMIZATION
C	KPN EQUALS G IF NORMALIZATION IS REQUIRED
C	EQUALS O IF NORMALIZATION IS REQUIRED
C	M1 = MAXIMUM NC. CF ROTATIONS (=25*P)
C	M2 = MAXIMUM NO. OF STEPS BETWEEN ROTATIONS (=25*P)
C	M = NUMBER OF VARIABLES
<u>C</u>	N = NUMBER OF POINTS
C C	READ(5,1) MAXMIN,P,KDCF,KPN,M1,M2
	1 FURMAT(615)
	KP=P+1
	READ(5,12) $SS_{1}(PAR1(I), I=1, P)$
	12 FORMAT(6F12.5)
	IF(KDCF.EQ.1) GO TO 2C
	READ (5,1) M,N
	DO 3 L=1,N
	REAC(5,4) TEMP, PRESS, COMP
	4 FORMAT(8X, F7.2, 6X, F8.2, 31X, F8.5)

	A-56
	PRES(L)=PRESS
	Y(L)=CCMP
	X(L,1)=1.8*(TEMP+273.16)
	X(L,2) = CCMP * 10.7335 * X(L,1) / PRESS
	3 CONTINUE
	2C WRITE(6,28)
	28 FORMAT(1H1)
	wRITE(6,32)
	32 FORMAT(1H0,10X, PARAMETER ESTIMATES BY ROSENBROCK METHO
	wRITE(6,29)
	29 FORMAT(1H0,1X, "ROTATION NO.", 8X, "ALPHA",10X, "BETA",11
	1X, "GAMMA", 10X, "DELTA", 9X, "VARIANCE"//)
C	
C C	GENERATE INITIAL SET OF ORTHOGONAL VECTORS & NULL SCAL- ING FACTORS
0	ING FACTURS
C	DO 5 I=1,P
	$\frac{KSF(I)=0}{KSF(I)=0}$
	PAK3(I)=PAK1(I)
	5 CONTINUE
	<u>14 DC 67 I=1,P</u>
	DO 6 J=1,P
	OV(I,J)=C,UO
	6 CCNTINUE
	CV(I,I)=1.DO
C	67 CONTINUE
C C	ADJUSTMENT OF PARAMETERS
Č	ABOUSTPERT OF PARAMETERS
	CALL_VARIAN
	VAR1=VAR2*(-1.DC)**MAXMIN
	VAR 3=VAR1
	COUNT=0.
	DC 7 KKK=1,M1
	00 85 I=1,P
	$ELAM(I) = SS \neq (10.D0) \neq \# KSF(I)$
	KS(I)=0
	KF(I)=C
	85 CONTINUE
	DO 80 KLP=1,M2 DO 90 II=1,P
	DO 9 I=1,P
	$PAR1(I) = PAR1(I) + OV(II, I) \neq ELAM(II)$
	9 CONTINUE
	CALL VARIAN
	VAK2=VAR2*(-1.DO)**MAXMIN
	COUNT=CCUNT+1.
	IF(VAR1.LT.VAR2)GOTO10
	VAR1=VAR2
	KS(II)=1
	ELAM(II)=ELAM(II)*3.DO

	GC TO 81
	10 DO 13 I=1,P
	$PAR1(I) = PAR1(I) - ELAM(II) \neq OV(II, I)$
	13 CONTINUE
	ELAM(II) = -ELAM(II)/(2.D0)
	KF(II) = KS(II)
	KS(II)=0
	81 DO 82 I=1,P
	IF(KF(I).EQ.0) GD TD 90
	82 CONTINUE
	GO TC 83
	90 CENTINUE
	8C CONTINUE
	83 CONTINUE
	C
	C RETATION OF AXES
	C
	CALL ROTATE
	C
······	C DATA DUTPUT
	DO 40 1=1,P
	PAR1(I)=PAR1(I)/((10.D0)**KSF(I))
	40 CONTINUE
	$\frac{\text{WRITE}(6,26)\text{KKK},(\text{PAR1}(I),I=1,P),\text{VAR1},\text{COUNT}}{26}$
	26 FORMAT(4X,15,7X,6E15.8) CU 17 I=1,P
an a	PAR1(I)=PAR1(I)*((10.DC)**KSF(I)) PAR3(I)=PAR1(I)
	17 CONTINUE
	IF (ABS(VAR1-VAR3).LT. 1.E-12) GO TO 30
	VAR3=VAR1
	IF(KPN.EG.O) GU TO 30
	7 CENTINUE
	3C IF(KPN.EG.1)GOT0100
	KPN=1
	CALL NORMAL
	CC 11 I=1,P
	PAR3(I) = PAK1(I)
	11 CONTINUE
	GC TC 14
	10C DG 31 I=1,P
	PAR1(I)=PAR1(I)/((10.DC)**KSF(I))
	31 CONTINUE
	IF(KDCF.EQ.1) GO TO 8
	wRITE(6,18)
	18 FCRMAT(1H0,20X, 7HP(PSIA), 2X, 9HT(DEG.R.), 5X, 1HZ, 8X
	I, AMPUNC, 6X, PERC. ER.")
	DO 15 J=1.N
	FUNC=C.

A-58
C
C FOR DATA CORRELATION, INSERT FUNCTION AFTER THIS CARD. C
T=X(j,1)
V=X(J,2) FUNC=V/(V-10.7335*(PAR1(3)+PAR1(4)*(T-1.8*311.0)))-(PAR
$\frac{11(1) + PAR1(2) * (T-1.8 * 311.0) + 10.7335 / ((T * 1.5) * (V+10.733)}{25 * (PAR1(3) + PAR1(4) * (T-1.8 * 311.0)))}$
CEV=1CO.DO*(FUNC-Y(J))/Y(J)
WRITE(6,16) PRES(J), X(J,1), Y(J), FUNC, DEV 16 FORMAT(1H, 15X, 2F10.2, 2F11.5, F12.5)
15 CONTINUE
8 CGNTINUE
VAR2=VAR3 STOP
END

	SUBROUTINE VARIAN DOUBLE PRECISION VAR2,OV,X, Y,PAR1,PAR3,FUNC,DEV2,T,V
	COMMON VAR2, 0V(10,10), X(200,10), Y(200), PAR1(10), PAR3(10
	1), M, N, P, KP, KDCF, KSF(10)
	INTEGER P
С	
Č	THIS SUBROUTINE CALCULATES THE VALUE OF THE FUNCTION TO
	1 BE OPTIMIZED. IT ALSO CALCULATES THE VARIANCE IN
	2 THE CASE OF DATA CORRELATION
С	
	DO 5 I=1,P
	PAR1(I)=PAR1(I)/((10.DO)**KSF(I))
	5 CONTINUE
	IF(KCCF.EQ.0) G0 TO 1
C	
C	FUR OPTIMIZATION INSERT FUNCTION AFTER THIS CARD
C	
	VAR2=FUNC
	DQ 6 I=1,P
	PAR1(I)=PAR1(I)*((10.D0)**KSF(I))
	6 CENTINUE
	RETURN
	1 DEV2=C.DC
_	CC = 2 J = 1 N
<u>C</u>	FOR DATA CORRELATION, INSERT FUNCTION AFTER THIS CARD.
C	FUR DATA LURRELATION, INSERT FUNCTION AFTER THIS CARD.
C	
	$\frac{T=X(J,1)}{V=Y(J-2)}$
	V=X(J,2) FUNC=V/(V-10.7335*(PAR1(3)+PAR1(4)*(T-1.8*311.0)))-(PAR
	11(1) + PAR1(2) * (T-1.8 + 311.0) + 10.7335/((T + 1.5) * (V+10.733))
	25*(PAR1(3)+PAR1(4)*(T-1.8*311.0)))
	DEV2=DEV2+(Y(J)-FUNC)**2
	2 CONTINUE
a ya angka kanakan an mana mana wanan wana kana ana kana ana kana ana kana ana	VAR2=CEV2/(N-1)
	DG = 3 I = 1, P
	PAR1(1)=PAR1(I)*((10.DC)**KSF(I))
	3 CONTINUE
	RETURN
	END

	SUBROUTINE ROTATE
,,,,,	DOUBLE PRECISION VAR2, OV, X, Y, PAR1, PAR3, A, B, SO, S, DOG
	CGMMON VAR2, 0V(10,10), X(200,10), Y(200), PAR1(10), PAR3(10
	1), M, N, P, KP, KUCF, KSF(10)
	DIMENSION A(10,10), B(10,10)
	INTEGER P
С	
C	THIS SUBROUTINE RCTATES THE AXES USING THE GRAM SCHMIDT
C	CRTHOGUNALIZATION PROCESS
C	
	CO 1 I=1,P
	D0 1 J=1,P
	A(I,J)=0.DC
	B(I,J) = 0.00
	1 CONTINUE
	DC 2 I=1,P
	CO 2 J=I,P
	A(I,J) = PAR1(J) - PAR3(J)
	B(I,J)=A(I,J)
	2 CONTINUE
	SC=0.D0
	<u>DO 3 J=1,P</u>
	SU=SC+A(1,J)**2
	3 CONTINUE
	<u>S=SC##0.5</u>
	DC 4 J=1,P
	OV(1, J) = A(1, J) / S
	4 CONTINUE
	DG 5 I=2,P
	MI = I - 1
	<u>CC 6 K=1,MI</u>
	$DU = 7 J = 1 \cdot P$
	LEG=DEG+LV(K,J)*A(K,J) 7 CONTINUE
	EO = 8 J = 1 P
	B(I,J)=B(I,J)=DOG*CV(K,J)
· · · · · · · · · · · · · · · · · · ·	8 CONTINUE
	6 CONTINUE
	SC=0.00
	DC 9 J=1,P
	SG=SC+B(I,J)**2
	9 CONTINUE
	S=SU##0.5
	DG 10 J=1,P
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	10 CONTINUE
	5 CONTINUE
	RETURN
	END

	SUBROUTINE NORMAL Double precision var2,ov,x, y,par1,par3,pp1
	CCMMON VAR2, 0V(10,10), X(200,10), Y(200), PAR1(10), PAR3(10
	1), M, N, P, KP, KDCF, KSF(10)
	INTEGER P
С	
Ċ	THIS SUBROUTINE MAPS THE PARAMETERS BETWEEN 0.1 & 1.0
C	
	CU 1 I=1,P
	KSF(I)=0
	1 CONTINUE
	DG 2 I=1,P
	DO 3 K=1,50
	PP1=PAR1(I)/((10.D0)**K)
	IF(ABS(PP1).GT.1.)GO TO 3
	KSF(I)=-K
	GO TC 2
	3 CONTINUE
· <u>····································</u>	2 CONTINUE
	DO 5 I=1,P
	IF(KSF(I).NE1)GC TO 5
	$DC \leftarrow K=1,50$
	PP1=PAR1(I)*((10.D0)**K)
	IF(ABS(PP1).LT.1.)GO TO 6
	$\frac{KSF(I) = K - I}{CS - I - I}$
	GO TO 5
	6 CONTINUE
	5 CONTINUE DC 4 I=1,P
	DG 4 I=I,P PAR1(I)=PAR1(I)*((10.D0)**KSF(I))
	4 CONTINUE
•.	RETUKN
	END
	END

The second s

	_	
	<u> </u>	DATA INPUT
	-	DATA INPUT
	C	FIRST CARD CONTAINS THE VALUE OF MAXMIN, P, KDCF, KPN,
	<u> </u>	M1, AND M2
	C	PIJ AND PZ
	C	SECOND CARD CONTAINS THE VALUE OF SS, (PAR1(I), I=1,P)
	<u>C</u>	SS IS THE STEP SIZE
	C	PARI(1) IS THE ESTIMATE FOR FIRST PARAMETER
	C C	PARI(2) IS THE ESTIMATE FOR SECOND PARAMETER
	<u> </u>	AND SO UN
	C	
	C C	THIRD CARD CONTAINS THE VALUE OF M AND N
	<u> </u>	M=NUMBER OF INCEPENDENT VARIABLES
	C	N=NUMBER OF DATA POINTS
	c	
	<u>C</u>	FOURTH TO (N+4)TH CARD HAVE THE DATA VALUES ACCORDING
	č	TU THE FCRMAT 12
	C C	
	C	
	C	SAMPLE OUTPUT
	C	
	C C	THE VALUE OF THE REDLICH-KWONG EQUATION CONSTANTS
	C	(NOT ACCORDING TO THE CUTPUT FORMAT) CAME OUT AS
	Č	ALPHA = 0.38944740D C4
	č	BETA =-0.74775389D 00
	C	GAMMA = 0.556036470-C1
	č	DELTA =-0.607012440-04
	Č	VARIANCE=0.C04C9
<u>, </u>	·	

	P(PSIA)	T(DEG.R.)	Z	FUNC	PERC. ER.
	69.33	581.69	0.96699	0.97348	C.67099
	.17.82	581.69	0.94839	C.95439	0.63279
	.67.20	581.69	0.92850	0.93442	0.63756
	16.88	581.69	0.90840	0.91379	0.59283
2	66.69	581.69	0.88758	0.89246	C.55006
3	16.55	581.69	0.86538	0.87032	0.57041
	66.47	581.69	C.84228	0.84729	0.59508
	94.23	581.69	0.83128	0.83450	0.38694
	19.22	581.69	0.81901	0.82235	0.40725
	68.79	581.69	0.79392	0.79740	0.43843
	18.44	581.69	0.76762	0.77113	0.45771
	68.17	581.69	C.73987	0.74329	0.46282
	17.94	581.69	0.71037	0.71357	C.45011
	17.57	581.69	0.64346	0.64602	0.39823
	17.27	581.69	0.56010	0.56054	C.C7862
	16.95	581.69	0.43569	0.42840	-1.67206
	16.65	581.69	C.27988	0.26305	-6.01290
	16.71	581.69	0.27068	0.27210	0.52312
	16.83	581.69	0.29382	0.29916	1.81633
	16.95	581.69	0.32086	0.32552	1.45118
	17.11	581.69	C.34937	0.34989	0.14789
	17.24	581.69	0.37802	0.37363	-1.16244
	93.81	626.69	0.96498	0.97134	0.65876
	18.21	626.69	0.95782	0.96375	C.61868
	67.55	ó26.69	0.94239	0.94817	0.61356
	17.20	626.69	0.92691	0.93224	0.57467
	67.00	626.69	0.91092	C.91594	0.55129
	16.90	626.69	0.89462	0.89929	0.52245
	66.81	626.69	0.87764	0.88225	0.52566
	16.75	626.69	0.86073	C.86488	0.48227
	69.20	626.69	0.84451	0.84654	0.23985
		626.69	0.82641	0.82838	0.23825
		626.69	0.80798	0.80974	0.21822
			0.78897	0.79056	0.20163
			0.74921	0.75038	0.15629
			0.70685	0.70743	0.08136
		626.69	0.66159	0.66124	-0.05319
101			0.61278	0.61126	-0.24812
			0.50857	0.50321	-1.05388
			0.42786	0.42160	-1.46341
16]			0.40278	0.40228	-0.12405
			0.40741	0.41166	1.04368
			0.42329	0.42894	1.33378
			0.97096	0.97696	0.61831
			0.96553	0.97093	0.55888
			0.95360	0.95861	0.52586
			0.94128	0.94607	0.50837
			C.92930	0.93337	0.43819
			0.91689	0.92051	0.39474
	6.60		0.90439	0.90750	0.34352

.

 P(PSIA)	T(DEG.R.)	Z	FUNC	PERC. ER.
416.53	671.69	0.89172	0.89433	0.29310
466.46	671.69	0.87835	0.88102	0.24654
 519.17	671.69	0.86541	0.86684	0.16489
568.87	671.69	0.85205	0.85323	0.13906
618.61	671.69	0.83844	0.83944	0,11970
718.25	671.69	0.81073	0.81132	0.07218
817.97	671.69	0.78229	0.78247	0.02343
917.76	671.69	0.75320	0.75296	-0.03200
 1017.60	671.69	0.72350	0.72285	-0.08947
1217.36	671.69	0.06368	0.66199	-0.25516
1417.27	671.69	0.60637	0.60383	-0.41950
1617.23	671.69	0.55911	0.55652	-0.46326
1817.30	671.69	0.52912	0.52789	-0.23210
2017.45	671.69	0.51033	0.51784	0.29222
 118.23	716.69	0.97121	0.97644	0.53861
167.48	716.69	0.96220	0.96656	0.45302
217.08	716.69	0.95275	0.95655	0.39911
266.84	716.69	0.94323	0.94647	0.34332
316.68	716.69	0.93377	0.93633	0.27425
366,58	716.69	0.92404	0.92612	0,22555
416.51	716.69	0.91452	0.91589	0.14978
466.45	716.69	0.90489	0.90561	0.07965
 516.41	716.69	0.89519	0.89529	0.01115
569.31	716.69	0.88300	0.88410	0.12490
619.04	716.69	0.87276	0.87368	0.10546
 718.66	716.69	0.85230	0.85272	0.04966
818.36	716.69	0.83148	0.83162	0.01639
918.14	716.69	0.81078	0.81049	-0.03598
 1017.98	716.69	0.79006	0.78939	-0.08444
1217.73	716.69	0.74903	0.74781	-0.16326
1417.63	716.69	0.70991	0.70830	-0.22740
 1617.59	716.69	0.67490	0.67302	-0.27782
1817.63	716.69	0.64589	0.64433	-0.24229
2017.68	716.69	0.62483	0.62415	-0.10806

......

C	
C	PROGRAM NUMBER 4
Ċ	
<u> </u>	CONTROL CARDS
C	
C	THIS PROGRAM EVALUATES THE CONSTANTS OF THE REDLICH-
<u> </u>	KWONG EQUATION BY ANALYTICALLY DIFFERENTIATING THE
C	TERM FOR THE SUM OF THE SQUARES OF THE RESIDUALS. THE
C	CONSTANT A IS USED FOR THIS PURPOSE. AN ITERATIVE PRO-
<u></u>	CEDURE IS USED IN WHICH THE VALUE OF THE CONSTANT B IS
C	ASSUMED AND BY SUBSTITUTING IN THE RELATIO OBTAINED
C	FROM DIFFERENTIATION FOR THE LEAST SQUARES CRITERION
C_	A VALUE OF THE CONSTANT A IS DETERMINED. THE VALUE OF
C	THESE CONSTANTS IS USED IN THE SUM OF THE SQUARES OF
C	THE RESIDUALS TERM TO FIND A MINIMUM FOR THE LATTER
C	TERM. THE BEST FIT CONSTANTS GIVE THE MINIMUM FOR THE
C	ERROR SQUARES TERM.
C	
	REAL Z(7,200), PA(7,200), ZCAL(7,200), DELZ(7,200),
	1PERC(7,2C0), E(9C0), COUN(900)
	DOUBLE PRECISION V(7,200), A(900), B(900), AA(7), BB(7)
	1,T(7), G(7),S1, S2, S3, SA, SE, ST, SAT, SBT, STT,
	IALAST, BLAST, ALPHA, BETA, GAMMA, DELTA,X1, X2, X3
C	
L	MM=NUMBMR OF DATA POINTS
C	DECOLE ECTI NM
	READ(5,501) MM
	501 FCRMAT(I4) R=10.7335
C	
C C	SEPARATE INTO GROUPS AT THE SAME TEMPERATURE
C	SEPARATE INTO ORODIO AT THE DAME VEHICING
6	J=0
	TINI=0.C
	CC 1C I=1,MM
	READ(5,502) TEMP, PRES, COMP
	502 FURMAT(9X, Fo.2, 7X, F7.2, 31X, F8.5)
	DTPTI=ABS(TEMP-TINI)
	IF(DTPTI.LT.0.1) GC TC 5
	TINI=TEMP
	J=J+1
	JTCT=J
	T(J)=1.8*(TEMP+273.16)
<u> </u>	K=0
	5 K=K+1
	PA(J,K)=PRES
	Z(J,K)=CGMP
	COUN(J)=K
	V(J,K)=R*T(J)*CCMP/PRES
	10 CONTINUE
C	FIT THE TWO CONSTANT EQUATION TO FIND THE EFFECT OF
C	TEMPERATURE

	DO 50 J=1, JTOT
	KM=CCUN(J)
	G(J) = (ABS(T(J))) * * 1.5
	DELB=0.1
	ELAST=100000.
	BLAST=0.2
	I=1
	JKITER=1
•	5 I=I+1
1	
	JKITER=JKITER+1
	IF(JKITER.LE.800) GO TO 12
	I=1
1	2 B(I)=BLAST+DELB
	S1=C.C
	S2=0.0
	\$3=C.C
	DO 25 K=1,KM
	X1=1.C/(R*G(J)*(V(J,K)+B(I)))
	$X_2 = Z(J,K) - V(J,K) / (V(J,K) - B(I))$
	S1=S1+X1*X1
	S2=S2+X1+X2
	\$3=\$3+X2*X2
2	25 CONTINUE
	$A(I) = -\frac{52}{51}$
	E(I) = A(I) * A(I) * S1 + 2.0 * A(I) * S2 + S3
	IF(ELAST.LT.E(I)) GO TO 40
	ELAST=E(I)
	BLAST=B(I)
	ALAST=A(I)
	GC TG 15
4	C DDELB=ABS(DELB)
	IF(DEELB.LT.C.000001) GC TC 42
	ELAST=E(I)
	ELAST=3(1)
	DELB-DELB/3.0
	I=1
	GC TC 15
2	+2 AA(J) = ALAST
	BB(J)=BLAST
	wRITE(6,1C5) AA(J), BB(J)
	D5 FURMAT(1HC, 20X, 3HA =, E15.8, 2X, 3HB =, E15.8)
	50 CONTINUE
C	
C	FIND THE DEPENDENCE LF TEMPERATURE
C	
	ST=C.C
	SA=C.C
	SB=0.0
	STT=C.0
	SAT=C.C
	SBT=C.O
	DO 70 J=1,JTCT

	$x_1 = T(J) - 1.6 \times 311.0$
	X2=AA(J)/(R*R)
	X3=BB(J)/R
	ST=ST+X1
	SA=SA+X2
	SB=SB+X3
	STT=STT+X1*X1
	SAT=SAT+X1*X2
	SBT=SBT+X1*X3
and we have a plant of the balance in the set of	7C CONTINUE
	ATCT=JICT
	ALPHA=(STT*SA-SAT*ST)/(ATCT*STT-ST*ST)
······································	BETA=(ATCI*SAT-SA*ST)/(ATOT*STT-ST*ST)
	GAMMA=(STT*SB-ST*SBT)/(ATOT*STT-ST*ST)
	DELTA=(ATCT*SBT-ST*SB)/(ATCT*STT-ST*ST)
	WRITE(6,120) ALPHA, BETA, GAMMA, DELTA
	120 FORMAT(1HC, 20X, 7HALPHA =, E15.8/ 20X, 7HBETA =, E15.
	18/ 20X, 7HGAMMA =, E15.8/2CX, 7HDELTA =, E15.8)
	SE=0.0
	SAE=C.O
	SES=C.O
	wRITE(6,106)
	106 FORMAT(1H0,20X, 4HT(J), 5X, 7HPA(J,K), 4X, 6HZ(J,K),3X,
	19HZCAL(J,K), 2X, 9HDELZ(J,K), 1X, 9HPERC(J,K))
	$\underline{DO 9C J=1, JTCT}$
	KM=CCUN(J)
	AA(J)=R*R*(ALPHA+BETA*(T(J)−1.8*311.0))
	$BB(J) = R * (GAMMA + DELTA * (T(J) - 1 \cdot 8 * 311 \cdot 0))$
	DD 88 K=1,KM
	2CAL(J,K)=V(J,K)/(V(J,K)-BB(J))-AA(J)/(R*G(J)*(V(J,K)+B 15(J)))
	UELZ(J,K)=Z(J,K)-ZCAL(J,K)
	PERC(J,K)=DELZ(J,K)/Z(J,K) +100.
	$\frac{1}{100}$
	WRITE(6,107) T(J), PA(J,K), Z(J,K), ZCAL(J,K), DELZ(J,K 1),PERC(J,K)
	107 FORMAT(1H , 15X, 2F1C.2, 3F11.5, F1C.4)
	SE=SE+DELZ(J,K)
	SAE=SAE+ABS(DELZ(J,K))
	SES=SES+DELZ(J,K) *DELZ(J,K)
	88 CONTINUE
	90 CONTINUE
· · · · · · · · · · · · · · · · · · ·	AVERR=SE/AM
	AVDEV=SAE/AM
	STDEV=SQRT(SES/(AM-1.0))
	WRITE(6,124)
	124 FORMAT(1HC, 20X, 7HAV.ERR., 10X, 7HAVDEV., 10X, 7HST.DE
	WRITE(6,125) AVERK, AVDEV, STDEV
	125 FORMAT(1H ,9X,3(7X, F1C.6))
	STOP
	END

Ç С DATA INPUT С С FIRST CARD CONTAINS THE NUMBER OF POINTS IN 14 FORMAT С NEXT MM CARDS CUNTAIN DATA IN FORMAT 502 С C С SAMPLE CUTPUT С B = 0.61955422D 00A = 0.463647900 06A = 0.45356069006B = 0.61358235D COA = 0.447823160 G6 B = 0.61087330D 00A = C.43244418D CEB = 0.609014960 00ALPHA = C.4C393690D C4BETA =-0.12913588D C1 GAMMA = 0.577700580-01 DELTA =-0.71068973D-05 PA(J,K) T(J) Z(J,K) ZCAL(J,K) DELZ(J,K) PERC(J,K) 581.69 69.33 0.96699 0.97216 -0.00517 -0.5347 581.69 117.82 0.94839 0.95214 -0.00375 -0.3952 581.69 167.20 0.92850 0.93120 -0.00270 -0.2908 581.69 216.88 0.90840 C.90958 -0.00118 -0.1301 581.69 266.69 0.88758 0.88726 0.00032 0.0365 581.69 316.55 0.86538 0.86409 0.00129 0.1496 581.69 366.47 0.84228 0.84001 0.00227 0.2689 581.69 394.23 0.83128 0.82665 0.00463 0.5575 581.69 419.22 0.81901 0.81396 0.00505 0.6170 561.69 468.79 0.79392 0.78792 0.00600 0.7551 581.69 518.44 0.76762 0.76054 0.00708 0.9222 581.69 568.17 0.73987 0.73155 0.00832 1.1244 581.69 617.94 0.71037 0.70064 0.00973 1.3704 717.57 581.69 0.64346 0.63056 0.01290 2.0043 581.69 817.27 0.56010 0.54231 0.01779 3.1769 581.69 \$16.95 0.43569 0.40734 0.02835 6.5062 581.69 1016.65 0.27988 0.24896 0.03092 11.0480 581.69 1216.71 0.27068 0.27376 -0.00308 -1.1375 581.69 1416.83 0.29382 0.31026 -0.01644 -5.5958 581.69 1616.95 C.32086 -0.02345 0.34431 -7.3085 581.69 1817.11 0.34937 0.37527 -0.02590 -7.4130 581.69 2017.24 0.37802 0.40517 -0.02715 -7.1809 581.69 2517.60 0.45035 0.47216 -0.02181 -4.8433 581.69 3018.01 0.52116 0.53624 -0.01508 -2.8945 581.69 3518.40 0.59149 0.59431 -0.00282 -0.4759 581.69 4018.87 0.66122 0.64779 0.01343 2.0314

	T(J)	PA(J,K)	Z(J,K)	ZCAL(J,K)	DELZ(J,K)	PERC(J,K)
	81.69	4519.30	0.72804	0.70687	0.02117	2.9083
	81.69	5019.80	0.79618	0.75530	0.04088	5.1346
	26.69	93.81	0.96498	0.97023	-0.00525	-0.5436
	26.69	118.21	0.95782	0.96234	-0.00452	-0.4723
	26.69	167.55	0.94239	0.94618	-0.00379	-0.4024
	26.69	217.20	0.92691	0.92965	-0.00274	-0.2959
	26.69	267.00	0.91092	0.91276	-0.00184	-0.2021
	26.69	316.90	0.89462	0.89551	-0.00089	-0.0999
	26.69	366.81	0.87764	0.87787	-0.00023	-0.0262
	26.69	416.75	0.86073	0.85989	0.00084	0.0970
	26.69	469.20	0.84451	0.84093	0.00358	0.4243
	26.69	518.84	0.82641	0.82217	0.00424	0.5132
	26.69	568.56	0.80798	0.80293	0.00505	0.6248
	26.69	618.31	0.78897	0.78315	0.00582	0.7378
	26.69	717.93	0.74921	C.74177	0.00744	0.9925
	26.69	817.66	0.70685	0.69765	0.00920	1.3016
	26.69	917.47	0.66159	0.65036	0.01123	1.6978
	26.69	1017.30	0.61278	0.59941	0.01337	2.1821
	26.69	1217.04	0.50857	0.49061	0.01796	3.5323
	26.69	1416.95	0.42786	0.41218	0.01568	3.6655
	26.69	1616.98	0.40278	0.39910	0.00368	0.9132
	26.69	1817.10	0.40741	0.41468	-0.00727	-1.7843
ć	26.69	2017.21	0.42329	0.43747	-0.01418	-3.3504
6	26.69	2517.54	0.47798	0.49938	-0.02140	-4.4780
6	26.69	3017.94	0.53992	0.55778	-0.01786	-3.3073
6	26.69	3518.32	0.60250	0.61467	-0.01217	-2.0205
6	26.69	4018.77	0.66587	0.66729	-0.00142	-0.2131
6.	26.69	4519.19	0.72845	0.71883	C.00962	1.3203
6	26.69	5019.69	0.79126	0.76653	0.02473	3.1248
	71.69	93.86	0.97096	0.97633	-0.00537	-0.5530
	71.69	118.22	0.96553	0.97013	-0.00460	-0.4763
	71.69	167.44	C.95360	0.95749	-0.00389	-0.4078
	71.69	217.06	0.94128	0.94461	-0.00333	-0.3539
	71.69	266.84	0.92930	0.93159	-0.00229	-0.2466
6	71.69	316.69	0.91689	0.91840	-0.00152	-0.1652
	71.69	366.60	C.90439	0.90507	-0.00068	-0.0754
6	71.69	416.53	0.89172	0.89159	0.00013	0.0143
6	71.69	466.46	0.87885	0.87796	0.00089	0.1009
	71.69	519.17	0.86541	C.86346	0.00195	0.2253
	71.69	568.87	0.85205	0.84956	0.00249	0.2926
	71.69	613.61	0.83844	0.83547	0.00297	0.3541
	71.69	718.25	C.81073	0.80678	0.00395	0.4877
	71.69	817.97	0.78229	0.77740	0.00489	0.6245
	71.69	917.76	0.75320	0.74741	0.00579	0.7684
	71.69	1017.60	0.72350	0.71690	0.00660	0.9127
6	71.69	1217.36	0.66368	0.65553	0.00815	1.2284
	71.69	1417.27	0.60637	0.59754	0.00883	1.4557
	71.69	1617.23	0.55911	0.55145	0.00766	1.3704
	71.69	1817.30	0.52912	0.52515	0.00397	0.7511
	71.69	2017.45	0.51633	0.51819	-0.00186	-0.3607
<u> </u>	71.69	2517.72	0.53256	0.54546	-0.01290	-2.4217

			~ 10			
	T(J)	PA(J,K)	Z(J,K)	ZCAL(J,K)	DELZ(.L.K)	PERC(J,K)
	671.69	3018.15	0.57607	0.59165	-0.01558	-2.7037
	671.69	3518.48	0.62832	0.64013	-0.01181	-1.8798
	671.69	4018.93	0.68356	0.68811	-0.00455	-0.6663
	671.69	4519.36	0.74019	0.73440	0.00579	0.7821
	671.69	5019.88	0.79753	0.77862	0.01891	2.3717
	716.69	118.23	0.97121	0.97607	-0.00486	-0.5008
	716.69	167.48	0.96220	0.96604	-0.00384	-0.3995
	716.69	217.08	0.95275	0.95589	-0.00314	-0.3298
	716.69	266.84	0.94323	0.94567	-0.00244	-0.2583
	716.69	316.68	0.93377	0.93539	-0.00162	-0.1735
	716.69	366.58	0.92404	0.92505	-0.00101	-0.1092
	716.69	416.51	0.91452	0.91469	-0.00017	-0.0181
	716.69	466.45	0.90489	0.90428	0.00061	0.0673
	716.69	516.41	0.89519	C•89384	0.00135	0.1507
	716.69	569.31	0.88300	0.88253	0.00047	0.0532
	716.69	619.04	0.87276	0.87200	0.00076	0.0871
	716.69	718.66	0.85230	0.85085	0.00145	0.1706
	716.69	818.36	0.83148	0.82957	0.00191	0.2296
	716.69	918.14	0.81078	0.80831	0.00247	0.3045
	716.69	1017.98	C.79006	0.78712	0.00294	0.3716
	710.69	_1217.73_	0.74903	0.74551	C.00352	C.4703
•	716.69	1417.63	0.70991	0.70623	0.00368	0.5187
	716.69 716.69	1617.59	0.67490	0.67152	0.00338	0.5001
		1817.63	0.64589	0.64379	0.00210	0.3253
	716.69	2017.68	0.62483	0.62498	-0.00015	-0.0244
	716.69	2517.88	0.60949	0.61602	-0.00653	-1.0711
	716.69 716.69	3018.21	0.62945	C.64026	-0.01081	-1.7180
	716.69	3518.55	0.66682	0.67669	-0.00987	-1.4804
	716.69	4018.98	0.71233	0.71639	-0.00406	-0.5702
		4519.39	0.76017	0.75822	0.00195	0.2563
	716.69	5019.87	0.81086	0.79865	0.01221	1.5054
	AV.ERR.		Αν.ΰΕν.	ST.DEV	,	
	C.000976	C	.007624	C.01096		
				0.01030		
			-			·····

	<u> </u>
	C PROGRAM NUMBER 5
	C
	C CONTROL CARDS
	C
	C THIS PROGRAM IS ESSENTIALLY THE SAME AS PROGRAM NO. 2.
<u> </u>	<u>C</u> <u>THEREFORE, ONLY THE MAIN LINE PROGRAM IS PRESENTED.</u>
	C THE SUBREUTINES USED IN THIS PROGRAM ARE THE SAME AS IN
	C PREGRAM NUMBER 1.
	<u>C</u>
	C THE EQUATION OF STATE IS REPRESENTED BY A POWER SERIES
	C OP TO FOURTH DEGREE IN RECIPROCAL VOLUME
	C UP TO SECOND DEGREE IN RECIPROCAL TEMPERATURE
	REAL Z(300), PA(300), T(300), TT(5)
	DOUBLE PRECISION A(16,16), D(16,16), U(16,16), P(16,16)
	1, (16, 1c), DE(30C), B(16), G(16), X(16), TTT(5), DD.
	2VRIAL2, VRIAL3, VKIAL5, XTWO, XTRE, XFIV, XSIX, XAIT,
	3XNIN, XELN, XTHL, VRIAL4
	INTEGER N, NOUT, ITER, MM
	C
	C THE TEMPERATURES AT WHICH THE VIRIAL COEFFICIENTS ARE
	C TO BE CALCULATED ARE READ IN.
	C
	$\frac{\text{REAC(5,545)} (\text{TT(ITP), ITP=1,4)}}{5(5,545)(5,565)($
	545 FORMAT(4F6.1)
	C DATA INPLT
	READ (5,501) N, NCUT, ITER, MM
	5C1 FORMAT (414)
	R=10.7335
	DC 11 I=1, MM
	READ (5,502) TEMP, PRES, CCMP
	502 FORMAT(8x, F7.2, 6x, F8.2, 31x, F8.5)
	T(I)=1.8*(TEMP+273.16)
	PA(I)=PRES
	DE(I)=PRES/(COMP#10.7335#T(I))
	11 CONTINUE
	C GENERATE MATRIX A(I,J)
	$\begin{array}{cccc} LO & 15 & I = 1, N \\ D & I I = 2, O \end{array}$
	$B(I) = C \cdot O$
	D0 16 J=1,N
	A(I,J)=0.0
	16 CONTINUE
	15 CONTINUE
	DO 20 I=1,MM
	DD = DE(I) * DE(I)
	FY = (Z(I)-1.0)/DE(I)
----------	--
	G(1) = 1.0
	G(2) = 1.0/T(I) + 10.0 + 3
	G(3) = 1.C/T(I) + 2 + 10.0 + 6
	G(4)=DE(I)
	$G(5) = DE(I)/T(I) \neq 10.0 \neq 3$
	G(6)=DE(I)/T(I)**2*10.0**6
	G(7) = DD
	G(8)=DD/T(I)*1C.0**3
	G(9) = DD/T(I) * * 2 * 10.0 * * 6
	$G(10)=DD \neq DE(I)$
	G(11)=DD*DE(I)/T(I)*10.0**3
	G(12)=DD*DE(I)/T(I)**2*10.0**6
	DC 25 J=1,N
	B(J)=B(J)+FY*G(J)
25	CONTINUE
	DC 27 K=1,N
	DU = 28 L = 1, N
	A(K,L) = A(K,L) + G(K) + G(L)
	CONTINUE
	CONTINUE
2C	CCNTINUE
C	
C	SCLUTION OF LINEAR EQUATIONS BY MATRIX INVERSION
C	
	WRITE (6,505)
505	FORMAT(1H0,25X, 14H MATRIX A(I,J))
	wRITE(6,504) ((A(1,J), J=1,N), I=1,N)
504	FORMAT(1HO, (15X, 4E15.6))
	FAC=10.C**5
	<u>CO 2 I=1,N</u>
	DG = 1 J = 1, N
	A(I,J)=A(I,J)*FAC
	CONTINUE
2	CONTINUE
	CALL PARTN(A, D, U, N)
	IF(NOUT.EQ.1) GO TO 200
	WRITE (6,506)
5Co	FORMAT(1HO, 25X, 14H MATRIX L(I,J))
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	WRITE(6,507)
5C7	FORMAT(1H0, 25X, 14H MATRIX U(I,J))
	wRITE (5,504) ((U(I,J), $J=1,N$), $I=1,N$)
	CONTINUE
C	
<u> </u>	DETERMINATION OF INVERSE MATRICES
C	
	CALL INVER(D, U, P, Q, N, NOUT)
	DO 70 I=1,N
	CC 69 J=1,N
	D(I,J)=0.0
	DŪ 68 K=1,N

	D(I,J)=D(I,J)+P(I,K)*Q(K,J)*FAC
	68 CONTINUE
	69 CONTINUE
	7C CONTINUE
	WRITE(6,512)
	512 FGRMAT(1HO, 25X, 18H INVERSE OF A(1,J))
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
C	$\frac{1}{1} \frac{1}{1} \frac{1}$
č	CHECK OF INVERSION
C	CHECK OF INVERSION
	CO 73 I=1,N
	DC 72 J=1,N
· · · · · · · · · · · · · · · · · · ·	U(I,J)=0.0 DO 71 K=1,N
	U(I,J)=U(I,J)+A(I,K)*D(K,J)/FAC
	71 CONTINUE
	72 CONTINUE
	73 CONTINUE
	wRITE(6,513)
3	13 FORMAT(1HC, 25X, 19H CHECK OF INVERSION)
	WRITE (6,5C4) ((U(I,J),J=1,N), I=1,N)
	CALL IMPRO(A, D, U, P, W, N, ITER)
	DO 91 I=1,N
	X(I)=0.0
	DO 90 $J=1,N$
	X(I)=X(I)+C(I,J)*B(J)
	90 CENTINUE
	91 CONTINUE
	WRITE(0,515)
5	15 FORMAT(1HC, 25X, 16H FINAL SOLUTIONS)
	XIWG=X(2)*10.0**3
	XTRE=X(3)*10.0**6
	XFIV=X(5)*10.0**3
	XSIX=X(6)*10.0**6
	XAIT=X(8)*1C.0**3
	XNIN=X(9)*1C.0**6
	XELN=X(11)*10.0**3
	XTWL=X(12)*10.0**6
	WRITE(6,516) X(1), XTWD, XTRE, X(4), XFIV, XSIX, X(7),
	1XAIT, XNIN, X(10), XELN, XTWL
5	16 FORMAT(1H0,15X, 'THE CONSTANTS'/15X, 'BO =', E15.8, 2X,
-	1*61 =*, E15.8, 2X, *B2 =*, E15.8/15X, *C0 =*, E15.8, 2X,
	$\frac{22x}{10} + \frac{15}{10} = \frac{15}{10} + 1$
······································	32X, 'D1 =', E15.8, $2X$, 'D2 =', E15.8/15X, 'E0 =', E15.8,
	42X, *E1 =*, E15.8, $2X$, *E2 =*, E15.8)
C	$\{2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
<u>C</u>	CALCULATION OF VIRIAL COEFFICIENTS
C	CALCOLATION OF VIKIAL CUEFFICIENIS
C	DO 25 ITO-1 4
	<u>DO 35 ITP=1,4</u>
	TTT(ITP)=1.8*(TT(ITP)+273.16)
	VRIAL2=X(1)+XTWC/TTT(ITP)+XTRE/TTT(ITP)**2 VRIAL3=X(4)+XFIV/TTT(ITP)+XSIX/TTT(ITP)**2
	VK I NE KARIA I HY HIV / TTTT / TTD) I VCTV / TTTT / TTD I AAA

VRIAL4=X(7)+XAIT/TTT(ITP)+XNIN/TTT(ITP)+*2
 $\frac{VRIAL4=X(7)+XAII/JIII(IIP)+XIII/JIII(IIP)+2}{VRIAL5=X(1C)+XELN/TTT(ITP)+XIWL/TTT(ITP)**2}$
WRITE(6,546) TT(ITP), VRIAL2, VRIAL3, VRIAL4, VRIAL5
WRITELO, 3407 THEFT, VRIALZ, VRIALJ, VRIALT,
 546 FORMAT(1H0,15X, * TEMP. DEG. C. =*, F7.1/
1 15X, 'VIRIAL COEFFICIENT NO. 2 =', E15.8/
2 15X, VIRIAL COEFFICIENT NO. 3 =*, E15.8/
 3 15X, VIRIAL COEFFICIENT NO. 4 =", E15.8/
4 15X, VIRIAL COEFFICIENT NO. 5 = ', E15.8)
35 CONTINUE
C CHECK OF SCLUTIONS
C
 WRITE(6,531) 531 FORMAT(1H0,18X,7HP(PSIA),3X,9HT(DEG.R.),5X,1HZ,7X,
1 7HZ(CAL.), 5X, 4HDEV.,7X, 1% DEV.")
 SE=C.0
SP=0.0
SES=0.0
 DO 92 I=1,MM
DD=DE(I) * DE(I)
$FY = (Z(I) - 1 \cdot 0) / DE(I)$
 w=1,0+DE(I)*(X(1)+XTwO/T(I)+XTRE/T(I)**2)+DD*(X(4)+XEIV
1/T(I)+XSIX/T(I)**2)+DD*DE(I)*(X(7)+XAIT/T(I)+XNIN/(T(I)
2**2)+CD*DD*(X(10)+XELN/T(I)+XTWL/T(I)**2)
 ER = ABS(W - Z(I))
ERSQ=ER*ER
DEV=ER/Z(I)*10C.
 SE=SE+ER
SP=SP+DEV
SES=SES+ERSQ
 WRITE(6,535) PA(I), T(I), Z(I), W, ER, DEV
535 FORMAT(1H , 15X, 2F10.2, 3F11.5, F10.4)
92 CONTINUE
 SER=SE/AM
SPR=SP/AM
STDEV=SQRT(SES/MM)
 WRITE(6,537) SER, SPR
537 FORMAT(1H ,15X, 10HAVE.DEV. =, F10.6, 5X,
1 12HAVE.PC.DEV.=, F12.6)
WRITE(6,538) STDEV
538 FCRMAT(1H,20X, ' ST. DEV. =', E15.8)
STOP
END

		A-75
	C	
	C	CATA INPUT
	С	
	C	FIRST CARD READS THE FOUR TEMPERATURES AT WHICH THE
	C	VIRIAL CCEFFICIENTS ARE TO BE CALCULATED.
	С	
	C	SECOND CARD READS- NUMBER OF CONSTANTS IN THE EQUATION
	C	OF STATE, NOUT (=1 FOR SUPPRESSING THE PRINT-OUT OF L
	C	AND U MATRICES, ITER (=1 FOR THE SUBROUTINE FOR IMPRO-
	Ċ	VEMENT OF INVERSION NOT USED A SUBROUTINE FUR IMPRU-
	C	VEMENT OF INVERSION NOT USED), AND MM (=NUMBER OF DATA
	C C	PDINTS USED FOR CORRELATION).
	L	
· · · · · · · · · · · · · · · · · · ·	C	
	С	THIRD CARD TO CARD NUMBER (MM+3) READ THE DATA POINTS
	С	ACCORDING TO THE FORMAT 502 (EACH CARD CONTAINS VALUES
	Ē	TEMPERATURE, PRESSURE AND COMPRESSIBILITY FACTOR)
		COMPRESSIBILITY FACTOR)

C C C	DATA CUTPUT
С С С	THE PRINT-OUT FOR MATRIX A(I,J), INVERSE OF A(I,J), AND THE CHECK OF INVERSION IS NOT INCLUDED IN THE OUTPUT.
 с с с с	UNITS OF PRESSURE - POUNDS PER SQUARE INCH UNITS OF VOLUME - CUBIC FEET PER POUND MOLE UNITS OF TEMPERATURE - DEGREES RANKINE

FINAL SCLUTIONS

THE CONSTANTS 60 = 0.410989420 01 B1 =-0.51915807D C4 B2 = 0.73896403D 06 $CC = -C \cdot 232272C6D C2$ C1 = 0.317570970 05 C2 = -0.896423000 0700 = 0.389577760 02D1 = -0.56650451D C5D2 = 0.17481682D 08EC =- C.9903371CD 01 E1 = 0.202740390 05E2 =-0.69925804D 07 50.0 TEMP. DEG. C. = VIRIAL COEFFICIENT NG. 2 =-C.26311840D 01 VIRIAL CUEFFICIENT NO. 3 = 0.48744209D C1 VIRIAL CCEFFICIENT NO. 4 =-0.67661910D 01 VIRIAL COEFFICIENT NO. 5 = 0.42843875D 01 $TEMP \cdot DEG \cdot C \cdot = 75 \cdot 0$ VIRIAL COEFFICIENT NO. 2 =-C.22926940D 01 VIRIAL CCEFFICIENT NO. 3 = 0.462232030 01 VIRIAL COEFFICIENT NC. 4 =-0.69264607D 01 VIRIAL COEFFICIENT NO. 5 = 0.46430136D 01 IEMP. DEG. C. = 100.0VIRIAL COEFFICIENT NU. 2 =-0.19813614D 01 VIRIAL CCEFFICIENT NC. 3 = 0.41832529D 01 VIRIAL COEFFICIENT NO. 4 =-0.66347659D 01 VIRIAL COEFFICIENT NC. 5 = 0.47813933D 01 TEMP. DEG. C. = 125.0VIRIAL COEFFICIENT NO. 2 =-0.169528320 01 VIRIAL COEFFICIENT NO. 3 = 0.363140740 01 VIRIAL COEFFICIENT NC. 4 =-0.60522399D 01 VIRIAL COEFFICIENT NO. 5 = 0.47714128D 01 P(PSIA) T(DEG.R.) Z Z(CAL.) DEV. ≈ DEV. 69.33 501.69 0.96599 0.97042 0.00343 0.3545 117.82 501.69 0.94839 0.94952 0.00113 0.1195 167.20 581.69 0.00049 0.92850 0.92801 0.0531 216.88 501.69 3.90843 0.99614 0.90226 0.2484 266.69 581.69 0.88758 C.88393 0.00365 0.4109 316.55 581.69 0.86538 0.86127 0.00411 0.4753 366.47 581.09 0.84228 0.83812 0.00416 0.4934 394.23 581.09 0.83128 0.82544 0.00584 0.7023 419.22 581.69 C.81901 0.81352 0.00549 C.67C8 468.79 581.69 0.79392 0.78938 0.00454 0.5723 516.44 581.69 0.76762 0.76444 0.00318 0.4148 568.17 581.69 C.73987 C.73851 0.00136 0.1844617.54 581.69 0.71037 0.711340.00097 C.1371 717.57 581.69 0.64346 0.05135 0.00789 1.2261 817.27 581.69 0.56010 0.57772 0.01762 3.1465 916.95 581.69 0.43569 0.46309 0.02740 6.2889 1016.65 0.27988 501.69 0.27752 0.00236 0.84181216.71 581.69 0.27068 0.25835 0.01233 4.5566

P(PSIA) 1416.83 1616.95 1817.11 2017.24 2517.60 3018.01 3518.40 4018.87 4519.30 5019.80 93.81 118.21	T(DEG.R.) 581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69	Z 0.29382 0.32086 0.34937 0.37802 0.45035 0.52116 0.59149 0.66122 0.72804	Z(CAL.) 0.28271 0.31233 0.34251 0.37370 0.44866 0.52482 0.59628 0.66355	DEV. 0.01111 0.00853 0.00686 0.00432 0.00169 0.00366 0.00479	<pre>% DEV. 3.7809 2.6573 1.9628 1.1424 0.3749 0.7015 0.8105</pre>
1616.95 1817.11 2017.24 2517.60 3018.01 3518.40 4018.87 4519.30 5C19.80 93.61	581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69	0.32086 0.34937 0.37802 0.45035 0.52116 0.59149 0.66122 0.72804	0.31233 0.34251 0.37370 0.44866 0.52482 0.59628	0.00853 0.00686 0.00432 0.00169 0.00366 0.00479	2.6573 1.9628 1.1424 0.3749 0.7015
1817.11 2017.24 2517.60 3018.01 3518.40 4018.87 4519.30 5019.80 93.61	581.69 581.69 581.69 581.69 581.69 581.69 581.69 581.69	0.34937 0.37802 0.45035 0.52116 0.59149 0.66122 0.72804	0.34251 0.37370 <u>0.44866</u> 0.52482 0.59628	0.00686 0.00432 0.00169 0.00366 0.00479	1.9628 1.1424 0.3749 0.7015
2017.24 2517.60 3018.01 3518.40 4018.87 4519.30 5019.80 93.61	581.69 581.69 581.69 581.69 581.69 581.69 581.69	0.37802 0.45035 0.52116 0.59149 0.66122 0.72804	0.37370 <u>0.44866</u> 0.52482 0.59628	0.00432 0.00169 0.00366 0.00479	1.1424 0.3749 0.7015
2517.60 3018.01 3518.40 4018.87 4519.30 5C19.80 93.61	581.69 581.69 581.69 581.69 581.69 581.69 581.69	0.45035 0.52116 0.59149 0.66122 0.72804	0.44866 0.52482 0.59628	0.00169 0.00366 0.00479	0.3749
3018.01 3518.40 4018.87 4519.30 5C19.80 93.81	581.69 581.69 581.69 581.69 581.69 581.69	0.52116 0.59149 0.66122 0.72804	0•52482 0•59628	0.00366 0.00479	0.7015
3518.40 4018.87 4519.30 5C19.80 93.81	581.69 581.69 581.69 581.69 581.69	0.59149 0.66122 0.72804	0.59628	0.00479	
4018.87 4519.30 5019.80 93.81	581.69 581.69 581.69	0.66122			0.8105
4519.30 5019.80 93.81	581.69 581.69	0.72804	0.66355	· · · · ·	
5019.80 	581.69			0.00233	0.3518
93.81			0.73893	0.01089	1.4952
	626 60	0.79618	0.80129	0.00511	0.6418
118.21	626.69	<u>C.96498</u>	0.96781	0.00283	0.2933
	626.69	0.95782	0.95945	0.00163	0.1700
		0.94239	0.94250	0.00011	0.0121
		0.92691	0.92545	0.00146	0.1570
			0.90832	0.00260	0.2859
			0.89111	0.00351	0.3927
	626.69		0.87380		0.4378
	626.69	0.86073	0.85646		0.4960
469.20	626.69	0.84451	0.83848		0.7141
	626.69	0.82641			0.6548
568.56	620.69	0.80798			0.5709
618.31	626.69	0.78897			0.4361
717.93	626.69	0.74921			0.0171
817.66	626.69				0.6237
917.47	626.69				1.4962
1017.30					2.6157
1217.04					4.5818
1416.95					2.3351
1616.98					1.9954
1817.10	626.69				4.1999
2017.21	626.69				4.9255
2517.54					3.9899
3017.94					2.5654
3518.32					0.6327
4018.77					0.6321
4519.19					1.9763
5019.69					2.6283
93.86					0.3306
					0.2066
					0.0557
					0.0624
					0.2136
					0.3181
					0.4090
					0.4769
					0.5178
					0.5178
					0.5373
					0.4751 0.2785
	518.84 568.56 618.31 717.93 817.66 917.47 1017.30 1217.04 1416.95 1616.98 1817.10 2017.21 2517.54 3017.94 3518.32 4018.77 4519.19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	217.20 626.69 0.92691 267.00 626.69 0.89462 316.90 626.69 0.89462 366.81 626.69 0.87764 416.75 626.69 0.86073 469.20 626.69 0.84451 518.84 626.69 0.82641 568.56 620.69 0.82641 568.56 620.69 0.80798 618.31 626.69 0.74921 817.66 626.69 0.74921 817.66 626.69 0.70685 917.47 626.69 0.61278 1217.04 626.69 0.40278 1616.98 626.69 0.42278 1817.10 626.69 0.42278 1817.10 626.69 0.42329 2517.54 626.69 0.42329 2517.54 626.69 0.60250 4018.77 626.69 0.72845 5019.69 626.69 0.79126 93.66 671.69 0.97096 118.22 671.69 0.94128 266.84 671.69 0.9230 316.69 671.69 0.87885 519.17 671.69 0.86541 568.87 671.69 0.85205 618.61 671.69 0.83844	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167,55 626.69 0.94239 0.94250 0.00011 217.20 626.69 0.92691 0.92545 0.00146 267.00 626.69 0.91092 0.90832 0.00260 316.90 626.69 0.89462 0.87380 0.00284 416.75 626.69 0.87764 0.87380 0.00284 415.75 626.69 0.84451 0.83648 0.00603 518.84 626.69 0.82641 0.83348 0.00603 518.84 626.69 0.82641 0.80337 0.00461 568.56 620.69 0.74921 0.74908 0.00013 517.64 $0.26.69$ 0.72685 0.71126 0.00441 917.47 626.69 0.61278 0.62881 0.01603 1217.04 626.69 0.42786 0.43785 0.00999 1616.98 626.69 0.40741 0.39030 0.01711 2017.21 626.69 0.40741 0.39030 0.01711 2017.94 626.69 0.42278 0.49244 0.02085 517.54 626.69 0.66587 0.67008 0.00421 4519.16 626.69 0.72845 0.97417 0.00321 18.22 671.69 0.97996 0.97417 0.00230 53.66 671.69 0.97996 0.97417 0.00292 266.84 671.69 0.92930 0.92732 0.00199 1616.53 671.69 0.96553 0.96752 0.00199

	P(PSIA)	T(DEG.R.)	Z	Z(CAL.)	DEV.	% DEV.
	817.97	671.69	0.78229	0.78251	0.00022	0.0277
	917.76	671.69	0.75320	0.75649	0.00329	0.4373
	1017.60	671.69	0.72350	0.73034	0.00684	0.9448
	1217.36	671.69	0.66368	0.67745	0.01377	2.0749
	1417.27	671.69	0.60637	0.62407	0.01770	2,9189
	1617.23	671.69	0.55911	0.57384	0.01473	2.6343
	1817.30	671.69	C.52912	0.53442	0.00530	1.0021
	2017.45	671.69	0.51633	0.51123	0.00510	0,9869
	2517.72	671.69	0.53256	0.51281	0.01975	3.7091
	3018.15	671.69	0.57607	0.55655	0.01952	3.3889
	3518.48	671.69	0.62832	0.61604	0.01228	1.9549
	4018.93	671.69	0.68356	0.68264	0.00092	0.1342
	4519.36	671.69	0.74019	0.75189	0.01170	1.5812
	5019.88	671.69	0.79753	0,82145	0.02392	2,9990
	118.23	716.69	0.97121	0.97406	0.00285	0.2932
	167.48	716.69	0.96220	0.96343	0.00123	0.1280
	217.08	716.69	0.95275	0.95282	0.00007	0.0073
	266.84	716.69	0.94323	0.94227	0.00096	0.1014
	316.68	716.69	0.93377	0.93182	0.00195	0.2091
	366.58	716.69	0.92404	0.92143	0.00261	0.2820
	416.51	716.69	0.91452	0.91116	0.00336	0.3672
	466.45	716.69	0.90489	C.9C098	0.00391	0.4320
	516.41	716.69	0.89519	0.89089	0.00430	0.4804
	569.31	716.69	0.88300	C.88009	0.00291	0.3292
	619.04	716.69	0.87276	0.87016	0.00260	0.2978
	718.66	716.69	0.85230	0,85052	C.00178	0.2083
	818.36	716.69	0.83148	0.83115	0.00033	0.0402
	918.14	716.69	0.81078	0.81207	0.00129	0.1587
	1017.98	716.69	0.79006	0.79324	0.00318	0.4025
	1217.73	716.69	0.74903	0.75630	0.00727	0.9711
	1417.63	716.69	0.70991	0.72043	0.01052	1.4813
	1617.59	716.69	0.67490	0.68623	0.01133	1.6788
	1817.63	716.69	0.64589	0.65496	0.00907	1.4039
	2017.68	710.69	0.62483	0.62873	0.00390	0.6244
	2517.88	716.69	0.60949	0.59638	0.01311	2.1516
	3018.21	716.69	0.62945	0.60875	0.02070	3.2884
	3518.55	716.69	0.66682	0.64875	0.01807	2.7104
	4018.98	716.69	0.71233	0.70292	0.00941	1.3208
	4519.39	716.69	0.76017	0.76726	0.00709	0.9332
	5019.87	716.69	0.81086	0.83450	0.02364	2.9148
						<u></u>
A	E.DEV. =	0.006991	AVE.PC.C	DEV.= 1.176	943	
		$EV_{\bullet} = 0.9533$				

 C
C PROGRAM NUMBER 6
C
C THIS PROGRAM IS SIMILAR TO PROGRAM NUMBER 5 IN EVERY
C RESPECT EXCEPT THAT THE EQUATION OF STATE FITTED TO THE
C DATA IS A POWER SERIES IN PRESSURE AND RECIPROCAL TEMP-
C ERATURE IN PLACE OF RECIPROCAL VOLUME AND RECIPROCAL
C TEMPERATURE.
C THESE CUEFFICIENTS ARE NOT THE SAME AS THE COEFFICIENTS
 C EVALUATED IN THE LAST PROGRAM, BUT ARE RELATED.
C THE FINAL RESULTS FOR THE SAME DATA, MIXTURE NUMBER 2
C CONTAINING 63.52 MOLE PERCENT ETHANE, AS USED IN THE
 C PREVIOUS PROGRAM ARE PRESENTED BELOW.
C
FINAL SOLUTIONS
 THE CONSTANTS
B0 = -0.75786536D - 02 B1 = 0.10690992D 02 B2 = -0.38679633D 04
C0 = 0.93400504D - C5 $C1 = -0.12547769D - 01$ $C2 = 0.41695171D$ $O1$
 D0 = -0.29834149D - 08 D1 = 0.39075159D - 05 D2 = -0.12497259D - 02
E0 = 0.28547034D - 12 $E1 = -0.36759972D - 09$ $E2 = 0.11482057D - 06$
$TEMP \cdot DEG \cdot C \cdot = 50 \cdot C$
 VIRIAL COEFFICIENT NO. 2 =- C.63087345D-C3
VIRIAL CCEFFICIENT NO. $3 = C.91439558D-C7$
VIRIAL CCEFFICIENT ND. $4 = 0.40660585D-10$
VIRIAL CCEFFICIENT ND. 5 =- C. 71395834D-14
$TEMP \cdot DEG \cdot C \cdot = 75 \cdot C$
VIRIAL COEFFICIENT NO. 2 =-0.36785768D-03
VIRIAL COEFFICIENT NO. 3 =-0.65762351D-07
VIRIAL CCEFFICIENT NO. $4 = 0.69683663D-10$
 VIRIAL CCEFFICIENT ND. 5 =- 0.87455807D-14
 $TEMP \cdot DEG \cdot C \cdot = 100 \cdot O$
VIRIAL CCEFFICIENT NO. 2 =- 0.23533298D-03
VIRIAL COEFFICIENT NO. 3 =- C.99225455D-C7
VIRIAL CUEFFICIENT NO. $4 = 0.64C43165D - 10$
 VIRIAL CCEFFICIENT NO. 5 =- 0.73C90964D-14
$TEMP \cdot DEG \cdot C \cdot = 125 \cdot O$
VIRIAL CGEFFICIENT NO. 2 =-0.19190394D-03
VIRIAL COEFFICIENT NO. 3 =-0.50384217D-07
 VIRIAL CCEFFICIENT NO. $4 = 0.35701503D - 10$

P(PSIA)	T(DEG.R.)	Ζ.	Z(CAL.)	DDEV.	% DEV.
69.33	581.69	0.96699	0.95671	0.01028	1.0628
117.82	581.69	0.94839	0.92700	0.02139	2.2550
167.20	581.69	0.92850	0.89726	0.03124	3.3648
216.88	581.69	0.90840	0.86787	0.04053	4.4612
266.69	581.69	0.88758	0.83899	0.04859	5.4744
316.55	581.69	0.86538	0.81068	0.05470	6.3213
366.47	581.69	C.84228	0.78296	0.05932	7.0433
	581.69	0.83128	0.76782	0.06346	7.6338
419.22	581.69	0.81901	0.75437	0.06464	7.8924
468.79	5 81.6 9	0.79392	0.72819	0.06573	8.2787
518,44	581,69	0.76762	0.70266	0.06496	8.4626
568.17	581.69	0.73987	0.67779	0.06208	8.3909
617.94	581.69	0.71037	0.65362	0.05675	7.9882
717.57	581.69	0.64346	0.60751	0.03595	5.5864
817.27	581.69	0.56010	0.56449	0.00439	0.7839
916.95	581.69	0.43569	0.52470	0.08901	20.4300
1016.65	581.69	C.27988	0.48822	0.20834	74.4397
1216.71	581.69	0.27068	0.42537	0.15469	57.1472
1416.83	581.69	0.29382	0.37658	0.08276	
1616.95	581.69	0.32086	0.34207	0.02121	28.1682
1817.11	581.69	0.34937	0.32167	0.02770	<u>6.6110</u> 7.9273
2017.24	581.69	0.37802	0.31501	0.06301	16.6678
2517.60	581.69	0.45035	0.35328	0.09707	21.5537
3018.01	581.69	0.52116	0.45436	0.06680	12.8179
3518.40	561.69	0.59149	C.58923	0.00226	0.3826
4018.87	561.69	0.66122	0.71823	0.05701	8.6217
4519.30	581.69	0.72804	0.79134	0.06330	8.6945
5019.80	581.69	0.79618	0.74717	0.04901	6.1562
93.81	626.69	0.96498	0.96497	0.00001	0.0012
118.21	626.69	0.95782	0.95571	0.00211	0.2204
167.55	626.69	0.94239	0.93684	0.00555	0.5891
217.20	626.69	0.92691	C.91769	0.00922	0.9944
267.00	626.69	C.91092	0.89837	0.01255	1.3772
316.90	626.69	0.89462	0.87895	0.01567	1.7516
366.81	626.69	0.87764	C.85950	0.01814	2.0670
416.75	626.69	0.86073	0.84006	0.02067	2.4020
409.20	626.69	0.84451	0.81970	0.02481	2.9379
518.84	626.69	0.82641	0.80054	0.02587	3.1308
568.56	626.69	0.80798	0.78149	0.02649	3.2788
618.31	626.69	0.78897	0.76260	0.02637	3.3419
717.93	626.69	0.74921	C.72547	0.02374	3.1685
817.66	626.69	0.70635	0.68943	0.01742	2.4650
917.47	626.69	0.66159	0.65476	0.00683	1.0325
1017.30	626.69	0.61278	0.62171	0.00893	1.4575
1217.04	626.69	0.50857	0.56132	0.05275	10.3715
1416.95	626.69	0.42786	0.50972	0.08186	19.1327
1616.98	626.69	0.40278	0.46805	0.06527	16.2061
1817.10	626.69	0.40741	0.43718	0.02977	7.3082
2017.21	626.69	0.42329	0.41753	0.00576	1.3608
2517.54	626.69	C.47798	0.41768	0.06030	12.6161

			A-81			
P()	PSIA) T(DEG.R.)	Z	Z(CAL.)	DDEV.	
300		26.69	0.53992	0.48086	0.05906	% DEV. 10.9395
35	18.32 6	26.69	0.60250	0.58634	0.01616	
40		26.69	0.66587	0.70118	0.03531	<u>2.6819</u> 5.3035
45		26.69	0.72845	0.77799	0.04954	
50]		26.69	0.79126	0.75778	0.03348	6.8006
		71.69	0.97096	0.97709	0.00613	4.2307
		71.69	0.96553	0.97089	0.00536	0.6311 0.5556
16		71.69	0.95360	0.95811	0.00451	
21		71.69	0.94128	0.94488	0.00360	0.4727
		71.69	C.92930	0.93132	0.00202	0.3826
31		71.69	0.91689	0.91748	0.00059	0.2171
		71.69	0.90439	0.90341	0.00098	0.0644
		71.69	0.89172	0.88917	0.00255	0.1080
		71.69	0.87885	0.87479		0.2859
		/i.09	0.86541	C.85951	0.00406	0.4620
		71.69	0.85205	0.84504	0.00590	0.6817
		71.69	0.83844	0.83054	0.00701	0.8226
71		1.69	0.81073	0.80157	0.00790	0.9422
		1.69	0.78229		0.00916	1.1302
		1.69	0.75320	0.77289	0.00940	1.2021
		1.69	0.72350	0.74476	0.00844	1.1202
		1.69	0.66368	0.71742	0.00608	0.8403
				0.66594	0.00226	0.3404
		1.69	<u>0.60637</u> 0.55911	0.61997	0.01360	2.2436
				0.58078	0.02167	3.8751
			0.52912	0.54929	0.02017	3.8124
			0.51633	0.52616	0.00983	1.9046
			0.53256	0.50691	0.02565	4.8166
			0.57607	0.54007	0.03600	6.2494
			0.62832	0.61299	0.01533	2.4397
			0.68356	0.70197	0.01841	2.6935
			0.74019	0.77212	0.03193	4.3141
	the second	the second se	0.79753	0.77837	0.01916	2.4022
			0.97121	0.97666	0.00545	0.5614
			0.96220	0.96661	0.00441	0•4583
		<i></i>	0.95275	0.95632	0.00357	0.3750
			0.94323	0.94586	0.00263	0.2791
			0.93377	0.93527	0.00150	0.1604
			0.92404	0.92457	0.00053	0.0571
			0.91452	0.91379	0.00073	0.0798
			0.90489	0.90296	0.00193	0.2129
560			0.89519	0.89210	0.00309	0.3449
			0.88300	0.88060	0.00240	0.2722
		6 - 0	0.87276	0.86979	C.00297	0.3399
			0.85230	0.84827	0.00403	0.4734
	_		0.83148	0.82702	0.00446	0.5361
1017			0.81078	0.80618	0.00460	0.5667
1217			0.79006	0.78590	0.00416	0.5261
			0.74903	0.74748	0.00155	0.2073
1417 1617			0.7C991 0.67490		0.00273	0.3840
101/				0.68213	0.00723	1.0715

			A-82			
<u> </u>						
	P(PSIA) 1817 63	T(DEG.R.)	Ζ	Z(CAL.)	DDEV.	% DEV.
	<u>1817.63</u> 2017.68	716.69	0.64589	0.65658	0.01069	1.6544
	2517.88	716.69 716.69	0.62483 0.60949	0.63627	0.01144	1.8317
	3018.21	716.69	0.62945	0.61042	0.00093	0.1530
	3518.55	716.69	0.66682	<u>0.61956</u> 0.65807	<u>C.00989</u>	1.5711
	4018.98	716.69	0.71233	0.71446	0.00875 0.00213	1.3125
	4519.39	716.69	0.76017	0.77152	0.01135	C.2986 1.4930
	5019.87	716.69	0.81086	C.80540	0.00546	0.6735
· · · · · · · · · · · · · · · · · · ·	AVE. DEV. =	C.026075	AVE. PC.	DEV. = 5.	024807	
	ST.	DEV = 0.4	1533675E-0	1		
						<u></u>
					· · · · · · · · · · · · · · · · · · ·	
	The second se					· · · · · · · · · · · · · · · · · · ·
						······································
	·····					

C	
<u>C</u>	PROGRAM NUMBER 7
C	TROOMAN RONDER T
C	IN THIS BROCKAN THE DATA ARE CORRELATED BY SEVERATED
<u> </u>	IN THIS PROGRAM THE DATA ARE CURRELATED BY GENERATING
	A SET OF ORTHOGONAL POLYNOMIALS. THE POLYNOMIALS ARE
C C	THEN CONVERTED TO A POWER SERIES SIMILAR IN FORM TO THE
	VIRIAL EQUATION. ALTHOUGH THE COEFFICIENTS OF THIS
C	SERIES HAVE BEEN CALLED THE VIRIAL COEFFICIENTS, THESE
C	COEFFICIENTS DO NOT CORRESPOND TO THE VIRIAL EQUATION
C	CCEFFICIENTS
C	
	REAL GZ(50,10), GX(50), GY(10)
	COUBLE PRECISION Z(50,10), P(8,50), Q(8,10), PA(8,8),
	1UB(8,8), A(8,8), C(8,8), X(50), Y(10), ALPX(8), BETX(8)
	2, GAMY(8), DELY(8), XXXB(8), FXY, S1, S2, S3, S4, T1, T2
	<u>3, T3, T4</u>
	INTEGER N, M, KU, LV
C	
C	DATA REAC IN
С	
C	N=DEGREE IN VARIABLE X
СС	M=DEGREE IN VARIABLE Y
C	KU=NUMBER OF POINTS ALONG THE X-AXIS
Č	LV=NUMBER OF POINTS ALONG THE Y-AXIS
C	GX(K)=GNE INDEPENDENT VARIABLE AT POINT (K,L)
<u>C</u>	GX(K) = GNCTHER INDERENDENT WARTABLE AT PUTNE (K,L)
C	GY(L)=ANCTHER INDEPENDENT VARIABLE AT (K,L)
C C	GZ(K,L)=DEPENDENT VARIABLE AT POINT (K,L)
<u> </u>	
s	READ(5,500) N, M, KU, LV CO FORMAT(4(2X,I2))
د.	
······································	$\frac{READ(5,5C1)}{(GX(K),K=1,KU)}$
E	READ(5,5C1) (GY(L), L=1, LV)
2	01 FORMAT(F10.3)
	DO 4 K=1,KU
	X(K)=GX(K)
	4 CONTINUE
	DO 5 L=1, LV
	Y(L)=1000.0/GY(L)
	5 CONTINUE
	REAU(5,502) ((GZ(K,L), K=1,KU), L=1,LV)
51	02 FORMAT(12X, F11.5)
	DC 7 K=1, KU
	$DC \in L=1, LV$
	Z(K,L) = GZ(K,L)
	6 CONTINUE
	7 CONTINUE
C	
C	GENERATE & SET DE CRIHECONAL DOLYNONIALE
C C	GENERATE A SET OF GRTHOGONAL POLYNOMIALS
U	
	CO 10 K=1,KU
	P(1,K) = 1.0
	LC CONTINUE
	DO 20 L=1,LV

	Q(1,L)=1.0
20	CONTINUE
20	I=2
	J=2
	IA = I - I
	JA=J-1
	S1=C•0
	S2=C.0
	DO 30 K=1,KU
	$S_1 = S_1 + X(K) \neq P(I-1,K) \neq P(I-1,K)$
	S2=S2+P(I-1,K)*P(I-1,K)
30	CONTINUE
56	ALPX(IA) = S1/S2
	BETX(IA)=0.0
	DD 40 K=1,KU
	P(I,K) = (X(K) - ALPX(IA)) * P(I - 1,K)
40	CONTINUE
46	T1=0.0
	T2=0.0
······································	DU 5C L=1,LV
	T1=T1+Y(L)*Q(J-1,L)*Q(J-1,L)
	T2=T2+Q(J-1,L) + Q(J-1,L)
50	CONTINUE
20	GAMY(JA) = T1/T2
	DELY(JA)=0.0
	DC 60 $L=1,LV$
	$Q(J_1L) = (Y(L) - GAMY(JA)) * Q(J-1,L)$
60	CONTINUE
	WRITE(6,504)
504	FORMAT(1H ,19X,7HALPX(I),9X, 7HBETX(I),9X,7HGAMY(J),9X,
	17HDELY(J))
	WRITE(6,505) ALPX(IA), BETX(IA), GAMY(JA), DELY(JA)
505	FORMAT(1H, 15X, 4E16.8)
	NA=N+1
	MA=M+1
	DD 80 I=3,NA
	IA=I-1
<u> </u>	S1=0.0
	S2=C•C
	S3=C.0
	\$4=0.0
	DC 7C K=1,KU
	S1=S1+X(K)*P(I-1,K)*P(I-1,K)
·	S2=S2+P(1-1,K)*P(1-1,K)
	S3=S3+X(K)*P(I-1,K)*P(I-2,K)
	S4=S4+P(I-2,K)*P(I-2,K)
70	CONTINUE
10	ALPX(IA)=S1/S2
	BETX(1A) = S3/S4
	WRITE(6,506) ALPX(IA), BETX(IA)
50.4	FORMAT(1H ,15X, 2E16.8)
	DO 75 K=1,KU
	P(I,K) = (X(K) - ALPX(IA)) * P(I - 1,K) - BETX(IA) * P(I - 2,K)
	T \ 1 YN / = \ A \ N / A E A \ 1 A / / "F \ 1 " 1 YN / = D E A \ 1 A / "F \ 1 = Z YN / =

75	CONTINUE
80	CONTINUE
	DO 100 J=3,MA
	JA=J-1
	T1=C.0
	T2=C.0
	T3=C.C
	T4=C.C
	D0 90 L=1,LV
	T1=T1+Y(L)*Q(J-1,L)*Q(J-1,L)
	T2=ï2+Q(J-1,L)+Q(J-1,L)
	T3=T3+Y(L)*Q(J-1,L)*Q(J-2,L)
	T4=T4+Q(J-2,L)*Q(J-2,L)
90	CONTINUE
	GAMY(JA)=T1/T2
	DELY(JA)=T3/T4
	kRITE(0,507) GAMY(JA), DELY(JA)
507	FORMAT(1H ,47X, 2E16.8)
	DC 95 L=1,LV
	$Q(J,L) = (Y(L) - GAMY(JA)) \neq Q(J-1,L) - DELY(JA) \neq Q(J-2,L)$
	CCNTINUE
100	CGNTINUE
	WRITE(6,508)
508	FORMAT(1H0,22X, 1HI, 6X, 1HJ, 10X, 6HA(I,J))
	DG 116 I=1,NA
	DC 115 J=1,MA
	S1=C.O
	<u>\$2=0.0</u>
	DO 110 K=1,KU
	DO 105 L=1,LV
	S1=S1+Z(K,L)*P(I,K)*Q(J,L)
	S2=S2+P(I,K)*P(I,K)*Q(J,L)*Q(J,L)
	CONTINUE
110	CONTINUE
	A(I,J) = S1/S2
	WRITE(6,509) I, J, A(I,J)
	FORMAT(1H,21X, 12, 5X, 12, 5X, E16.8)
	CONTINUE
116	CONTINUE
	CALL CHECK(GZ, GX, GY, Z, X, Y, P, Q, A, N, M, KU, LV)
	NLCCP=NA
	DO 230 IJKL=3,NLCCP,2
	N=IJKL-1
	CALL CCNVR(PA, QB, A, C, ALPX, BETX, GAMY, DELY, N, M,
	LKU, LV)
<u> </u>	
C	CHECK OF CONVERSION AND FIT
C	$\Lambda : \Lambda \rightarrow \Lambda \rightarrow I$
	NA=N+1
	DO 136 L=1,LV WEITE(6, 531) $CN(1)$
501	WRITE(6,531) GY(L) EPENAT($140,234$ etcap dec d = $50,43$
	FORMAT(1HC,23X, *TEMP. DEG. R =*, F9.4) DO 135 I=2,NA
	DO IJJ I-ZAINA

	XXXB(I)=C.O
	$I \times X \times = I$
	DO 134 J=1, MA
	JA = J - 1
	XXXB(I) = XXXB(I) + C(I, J) + Y(L) + JA
	134 CONTINUE
· · · · · · · · · · · · · · · · · · ·	WRITE(6,532) IXXX, XXXB(I)
	532 FORMAT(1HC,23X, *VIRIAL CCEFF. NO.*, I2, *=*, E15.8)
	135 CONTINUE
	136 CONTINUE
	WRITE(6,510)
	51C FORMAT(1HC,27X, 4HX(K), 6X, 4HY(L), 7X, 6HZ(K,L), 7X,
	<u>1 3HERR, 7X, 5H% ERR)</u>
	IJK=0
	SD=0.0
	SQ=C.C
	SE=C.O
	SP=C.O
	DU 218 L=1,LV
	DO 220 K=1,KU
	FXY=0.0
	DO 215 I=1,NA
	DO 214 J=1,MA
	IA = I - I
	JA=J-1
	FXY=FXY+C(1,J)*X(K)**IA*Y(L)**JA
	214 CUNTINUE
	215 CONTINUE
	IJK=IJK+1
	ERROR=(Z(K,L)-FXY)
	E=ABS(ERRCR)
	ERPER=100.0*ERROR/GZ(K,L)
	DEVPR=ABS(ERPER)
	SE=SE+E
	SD=SC+DEVPK
	SP=SP+ERPER
	SQ=SC+ERRCR
	WRITE(6,511) GX(K), GY(L), GZ(K,L), ERROR, ERPER
	511 FORMAT(1H,23X, F8.1, 2X, F9.2, 3X, F9.6, 3X, F9.4, 2X,
	1F9.4)
	220 CONTINUE
	218 CONTINUE
	AVERRESE/AIJK
	AVDEV=SQ/AIJK
	PCEEV=SD/AIJK
	PCERR=SP/AIJK
	wRITE(6,530) AVERR, AVDEV, PCERR, PCDEV
	530 FORMAT(1H0,23X, 'AV. ERR. =', F9.4, 5X, 'AV. DEV. =',
	2F9.4/24X, *PER. ERR. =*, F9.4, 5X, *PER. DEV. =*, F9.4)
	23C CONTINUE
	STOP
	ENC

	SUBRGUTINE CHECK(GZ, GX, GY, Z, X, Y, P, Q, A, N, M, KU
	1, LV)
	C CHECK OF APPROXIMATION
	C
	REAL GZ(50,10), GX(50), GY(10)
	DOUBLE PRECISION Z(50,10), P(8,50), Q(8,10), A(8,8),
	1FXY
	INTEGER N, M, KU, LV
	WRITE(6,510)
	51C FORMAT(1HC,27X, 4HX(K), 6X, 4HY(L), 7X, 6HZ(K,L), 7X,
	1 3HERR,7X, 5H% ERR)
	NA=N+1
	MA = N + 1
	IJK=C
	SD=C.0
	SE=0.0
	SP=0.0
	DO 128 L=1,LV
	DC 130 K=1,KU
	FXY=0.0
	DC 126 I=1, NA
	DC 124 J=1, MA
<u> </u>	$FXY=FXY+A(I,J) \neq P(I,K) \neq Q(J,L)$
	124 CONTINUE
	126 CONTINUE
	ERROR=(Z(K,L)-FXY)
	E=ABS(ERRCR)
	ERPER=100.0*ERROR/GZ(K,L)
	DEVPR=ABS(ERPER)
	SD=SD+DEVPR
	SE=SE+E
	SP=SP+ERPER
	SQ=SQ+ERRCR wRITE(6,511) GX(K), GY(L), GZ(K,L), ERROR, ERPER
	511 FORMAT(1H,23X, F8.1, 2X, F9.2, 3X, F9.6, 3X, F9.4, 2X,
	1F9.4)
	128 CONTINUE
	PCDEV=SD/AIJK
	AVERR=SE/AIJK
	AVDEV=SQ/AIJK
	WRITE(6,53C) AVERR, AVDEV, PCERR, PCDEV
	530 FORMAT(1HC,23X, *AV. ERR. =', F9.4, 5X, *AV. DEV. =', 1F9.4/24X, *PER. ERR. =*, F9.4, 5X, *PER. DEV. =*, F9.4)
	RETURN
	END

-

	SUBREUTINE CONVR(PA, QB, A, C, ALPX, BETX, GAMY, DELY,
	1N, M, KU, LV)
C	
C	CCNVERSION TO POWER SERIES
C	
-	DOUBLE PRECISION PA(8,8), QB(8,8), A(8,8), C(8,8),
	1ALPX(8), BETX(8), GAMY(8), DELY(8)
	INTEGER N, M, KU, LV
	NA=N+1
•	MA = M + 1
	PA(1,1)=1.C
	PA(2,2) = PA(1,1)
<u> </u>	PA(2,1) = -ALPX(1)
	PA(3,3) = PA(2,2)
	PA(3,2) = PA(2,1) - ALPX(2) * PA(2,2)
and and the second s	PA(3,1) = -PA(2,1) * ALPX(2) - BETX(2)
	DO 150 I=4, NA
	$\mathbf{IA} = \mathbf{I} - \mathbf{I}$
	<u>IB=I-2</u>
	PA(I, I) = PA(I-1, I-1)
	PA(I, I-1) = PA(I-1, I-2) - ALPX(IA) * PA(I-1, I-1)
	DO 140 J=2,IB
	I J=I-J
	PA(I,IJ)=PA(IA,IJ-1)-ALPX(IA)*PA(IA,IJ)-BETX(IA)*PA(IB,
	1IJ)
	140 CONTINUE
	PA(I,1)=-ALPX(IA)*PA(IA,1)-BETX(IA)*PA(IB,1)
	150 CGNTINUE
	QB(1,1)=1.0
	QB(2,2)=QB(1,1)
	QB(2,1) = -GAMY(1)
	QB(3,3) = QB(2,2)
	QB(3,2)=QB(2,1)-GAMY(2)*QB(2,2)
	B(3,1) = -QB(2,1) * GAMY(2) - DELY(2)
	DC 17C I=4,MA
	IA = I - I
	IB=I-2
	QB(I,I)=QB(I-1,I-1)
	QB(1,IA)=QB(IA,IB)-GAMY(IA)*QB(IA,IA)
	DO 160 J=2,IB
	I J=I-J
	$QB(I,IJ)=QB(IA,IJ-1)-GAMY(IA) \neq QB(IA,IJ)-DELY(IA) \neq QB(IB,$
	16C CONTINUE
	$QB(I,1) = -GAMY(IA) \neq QB(IA,1) - DELY(IA) \neq QB(IB,1)$
	17C CUNTINUE
	DO 180 K=1,NA
	LO 100 R = 1, RA LO 178 L = 1, RA
	$C(K_{1}L) = C \cdot O$
<u> </u>	KA=K
	DÛ 176 I=KA,NA

	DO 174 J=LA,MA
······································	C(K,L) = C(K,L) + A(I,J) + PA(I,K) + QB(J,L)
1	74 CONTINUE
-	76 CONTINUE
	78 CONTINUE
	80 CONTINUE
-	WRITE(6,512)
5	12 FORMAT(1H0,21X, 33H COEFFICIENTS OF POWER POLYNOMIAL)
	WRITE(6,513)
5	13 FORMAT(1HC,22X, 1HI, 2X, 1HJ, 10X, 7HPA(I,J), 12X, 7HQB
	1(I,J))
	IF(NA.EQ.MA) GC TO 188
	IF(NA.GT.MA) GG TO 184
	NM=MA
	NX=NA+1
	DO 182 I=NX, MA
	DO 181 $J=1, I$
_	PA(I,J)=0.0
	81_CONTINUE
i	82 CONTINUE
	GO TO 189
	84 NM=NA
	NY=MA+1
	DO 186 I=NY,NA
	$\frac{\text{DO } 185 \text{ J=1,I}}{\text{OP}(I_{1},I_{2$
1	QB(I,J)=0.0 85 CCNTINUE
	86 CONTINUE
4	GC TO 189
1	88 NM=NA
	89 DO 191 I=1,NM
_	DO 190 J=1,I
	WRITE(6,514) I, J, PA(I,J), GB(I,J)
5	14 FORMAT(1H,22X, I1, 2X, I1, 5X, E15.8, 5X, E15.8)
	9C CONTINUE
	91 CONTINUE
	WRITE(6,515)
5	15 FURMAT(1H0,22X, 1HI, 2X, 1HJ, 20X, 6HC(I,J))
	CO 201 I=1,NA
	DO 200 J=1, MA
	WRITE(6,516) I, J, C(I,J)
5	16 FORMAT(1H,22X, I1, 2X, I1, 16X, E15.8)
	OC CONTINUE
2	O1 CONTINUE
	RETURN
	END

		Δ-9	90		
C					
C C	SAMPLE CUTP	UT			
	ALPX(I) C.1483CCCCD C4		GAMY(0.15497		DELY(J)
	0.309672330 04		07		
	C.25671271D C4 C.26863760D C4				
	C.247383880 C4				
	C.253557690 C4				
				114D 01 0.	14592547D-01
	i J	A(I,J)		
	1 1	0.732035	14D 00		
· · · · · · · · · · · · · · · · · · ·	· · · · · 2 · .	-C.538741	460 00		
	1 3	-0.168260	91D OC	- ministration - ministration and	
	$\frac{2}{2}$ 1	-C.527722			
	2 3	<u> </u>			
	3 1	C.374044 C.76C450			
	32	0.172554			
	3 3	-C.7927C3		· · · · · · · · · · · · · · · · · · ·	
	4 1	-C.175674			
	<u> </u>	-0.114357			
	4 3	-0.219481		<u> </u>	
	5 1	-C.340594			
· · · · · · · · · · · · · · · · · · ·		C.234174			
	53 61	0.237274			
	<u> </u>	C.531293			
	6 3	<u> </u>			
	7 1	-0.251151	DAD-10		
	7 2	-C.282427			
	7 3	-C.116195			
	X(K)	Y(L)	L(K,L)	ERR	% ERR
	100.0	581.69	0.9609	0.0154	1.6079
	155.0	581.69	0.9411	-0.0026	-0.2779
· · · · · · · · · · · · · · · · · · ·	200.0	581.69	0.9208	-0.0130	-1.4071
	250.0 300.0	581.69	0.9000	-0.0167	-1.8557
	350.0	581.69	0.8781	-0.0158	-1.8011
	400.0	<u> </u>	0.8547	-0.0116	-1.3605
	450.C	581.69	0.8336 0.8084	-0.0015	-0.1756
	500.0	581.69	0.7822	0.0076	0.9345
	600.0	581.69	0.7256	0.0368	2.2540 5.0737
	700.0	581.69	0.6602	0.0477	7.2190
	300.0	581.69	0.5803	0.0405	6.9762
	900.0	581.69	0.4621	-0.0113	-2.4457
	1000.0	581.69	0.3057	-0.1097	-35.8941
	1200.0	581.69	0.2656	-0.0638	-24.0375

SPAN SPACE

	<u> </u>	Y(L)	<u>Z(K,L)</u>	ERR	<u> </u>	
	1400.0	581.69	0.2931	0.0077	2.6408	
	1600.0	581.69	0.3204	0.0409	12.7655	
	1800.0	581.69	û.3490	0.0452	12.9391	
	2000.0	581.69	0.3778	0.0297	7.8609	
	250C.C	581.69	0.4505	-0.0291	-6.4697	
	3000.0	581.69	0.5217	-0.0369	-7.0754	
	3500.0	581.69	0.5924	0.0125	2.1045	
	4000.C	581.69	0.6626	0.0349	5.2683	
	4500.0	581.69	0.7298	-0.0291	-3.9915	
	5000.0	581.69	0.7982	0.0067	0.8399	
	100.0	626.69	C.9689	0.0172	1.7797	
	150.0	626.69	<u> </u>	0.0051	0,5296	
	206.0	626.69	0.9379	-0.0035	-0.3765	
	25C.C	626.69	0.9219	-0.0088	-0.9525	
	300.0	626.69	0.9056	-0.0113	-1.2492	
	350.0	626.69	C.8887	-0.0118	-1.3320	
	400.0	625.69	C.8715	-0.0105	-1.2003	
	450.0	626.69	<u>C.8557</u>	-0.0060	-0.6984	
	500.0	626.69	0.8384	-0.0014	-0.1711	
	000.0	626.69	0.8008	0.0074	0.9208	
	700.0	626.69	C.7611	0.0161	2.1136	
	80C.C	626.69	C.7188	0.0223	3.1073	
	900.0	626.09	0.6738	0.0242	3.5969	
	1600.0	626.69	0.6252	0.0198	3.1740	
	1200.0	625.69	C.5202	-0.0086	-1.6489	
	1400.0	026.69	0.4356	-0.0358	-8.2225	
	1600.0	626.69	C.4058	-0.0288	-7.0907	
	1800.0	626.69	C.4087	-0.0085	-2.0906	
	2000.0	620.59	0.4241	0.0072	1.7030	
	<u>2500.0</u>	625.69	0.4787	0.0126	2.6365	
	3000 . C	626.69	0.5409	-0.0012	-0.2149	
	3500.0	620.69	0.6038	-0.0057	-0.9374	
······	4000.0	626.69	0.6675	0.0017	0.2532	
	4500.0	626.69	0.7304	0.0023	0.3188	
	5000.0	626.69	6.7935	-0.0008	-0.1024	
	<u> 100.C </u>	671.69	C.9754	0.0112	1.1504	
	15C.C	671.69	C.9637	0.0052	0.5412	
	200 . C	671.69	C.9512	0.0000	0.0026	
······································	250.0	671.69	0.9390	-0.0035	-0.3725	
	300.0	671.69	0.9266	-0.0059	-0.6350	
	350.0	671.69	0.9140	-0.0073	-0.8041	
	400.0	671.69	0.9013	-0.0079	-0.8790	
	450.0	071.69	0.8884	-0.0078	-0.8802	
	500.0	671.69	0.8756	-0.0069	-0.7833	
· · · · · · · · · · · · · · · · · · ·	0.000	071.69	0.8486	-0.0044	-0.5157	
	700.0	671.69	0.8207	-0.0011	-0.1318	
	300.0	671.69	C.7922	0.0025	0.3140	
	900.0	671.69	0.7630	0.0056	0.7402	
	1000.0	071.69	0.7331	0.0078	1.0625	
	1200.0	671.69	0.6728	0.0081	1.2014	
		·	·			

	Х(К)	Y(L)	Z(K,L)	ERR	Z ERR
	1400.0	671.69	0.6147	0.0031	0.5015
	1600.0	671.69	0.5660	-0.0025	-0.4413
	1800.0	671.09	C. <u>5342</u>	-0.0027	-0.4977
	2000.0	671.69	0.5200	0.0026	0.4912
	2500.0	671.69	0.5344	0.0160	2.9960
· · · · · · · · · · · · · · · · · · ·	<u> </u>	671.69	0.5777	0.0071	1.2225
	3500.0	671.69	0.6301	-0.0094	-1.4921
	4000.0	671.69	0.6855	-0.0092	-1.3484
	4200.0	671.69	0.7424	0.0095	1.2832
	5000.C	671.69	0.8000	-0.0025	-0.3092
	100.0	716.69	0.9806	0.0002	0.0156
	152.0	716.69	C.9712	-0.0002	-0.0162
	200.0	716.69	0.9618	-0.0002	-0.0244
	250.C	716.69	0.9521	-0.0004	-0.0377
	300.0	716.69	0.9426	-0.0002	-0.0230
	350.0	716.69	0.9328	-0.0001	-0.0086
	400 . 0	716.69	0.9232	0.0003	0.0312
	450.0	715.69	0.9135	0.0008	0.0902
	500.C	716.69	0.9039	0.0015	0.1659
	0.000	710.69	C.8819	0.0004	0.0480
••••••••	700.0	716.69	0.8613	0.0011	0.1252
	800.0	716.69	0.8403	0.0015	0.1779
	900.0	716.69	0.8194	0.0019	0.2312
	1000.0	716.69	0.7986	0.0021	0.2607
	1200.0	710.69	0.7571	0.0013	0.1748
	1400.0	715.69	0.7175	-3.0008	-0.1102
	1600.0	716.69	0.6318	-0.0034	-0.4972
	1300.0	716.69	0.6520	-0.0056	-0.8609
	2000.0	716.69	0.6301	-0.0063	-0.9954
	2500.C	716.69	0.6130	0.0001	0.0153
	3000.0	710.69	0.6321	0.0038	0.6006
	3500.C	716.69	0.6592	0.0001	
	4000.C	716.69	0.7148		0.0205
•••	4500.C	710.69	C.7628	-0.0023 0.0017	-0.3171
	5000.0				0.2287
		716.69		-0.0004	-0.0432
······································	<u>AV. EKR. =</u> PER. ERR. =		$AV \cdot DEV =$		
	FLN+ CNN+ -	-0.2219	PER. DEV.	= 2.2741	
	CEFFICIENTS	OF POWER PO	LYNOMIAL		
	L L	PA(I,J)	6 a	(I,J)	
		10000000 01		000000 01	
		148800CCD 01		97246D 01	
		10000000 01		00000D C1	
	3 1 0.	25736682D 07		492840 01	
	3 2 -0.		the second se	······	
		458472330 04		74360D 01	
	יט ככ	100000000-01	0.100	00000D C1	
	I J	······	C(I,J)		
	1 0				
	1 1		8448437D CC		

	64	T		
			. <u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>
	and the second se	and the second	,	
			<u> </u>	
	-0.172	19330-01		
AL CUEFF.	NC• 3= 0•17	4399900-00		
AL CCEFF.	Nu. 3= 0.85	0305880-07		
. DEG. R =	671.6399			
		321268D-03		
¥ 1 K)	V(1)	7 (K . I)	FRR	% ERR
		-		4.5106
				5.1274
				5.6562
				6.1080
				6.3942
				6.4759
				6.7477
				6.0656 4.3105
	-			4.3105
				0.6476
				-6.7850
				-26.6900
	and a second	A server and an approximation of the server start of the server server start of the server server start of the server server server start of the server server server start of the server ser	the set that the easy set and set where the set of the	-80.9929
		C.2656	-0.2297	-86.4933
		0.2931	-0.1526	-52.0819
<u>500.0 5</u>	681.69	0.3204	-0.0841	-26.2380
30C.C 5	581.69	0.3490	-0.0226	-6.4621
	69	0.3778	0.0308	8.1574
		0.4505	0.1284	28.4954
		C.5217	0.1723	33.0191
		0.5924	0.1634	27.5866
		C.6626	0.1018	15.3689
/				
		0.7298	-0.0149	-2.0373
	AL CCEFF. SO.0 5 SO.0 5	-C.9288 0.2534 -C.3044 0.7374 -C.362 0.4194 -C.792 DEG. R = 581.6899 AL CCEFF. NG. 2=-0.514 AL CCEFF. NG. 3= 0.104 DEG. R = 626.6899 AL CCEFF. NG. 3= 0.104 DEG. R = 671.6399 AL CCEFF. NG. 2=-0.36 AL CCEFF. NG. 2=-0.27 AL CCEFF. NG. 2=-0.27 AL CCEFF. NG. 3= 0.48 X(K) Y(L) 00.0 581.69 50.0	AL CCEFF. NJ. $2=-9.51951658D-03$ AL CCEFF. NC. $3=0.10439990D-06$. DEG. R = 626.6899 AL CCEFF. NJ. $2=-0.44548489D-03$ AL CCEFF. NJ. $3=0.8503C588D-07$. DEG. R = 671.6399 AL CCEFF. NJ. $2=-0.36321268D-03$ AL CUEFF. NC. $3=0.66304612D-07$. DEG. R = 716.6899 AL CCEFF. NJ. $2=-0.27745737D-03$ AL CCEFF. NJ. $2=-0.27745737D-03$ AL CCEFF. NJ. $3=0.48445216D-07$ X(K) Y(L) Z(K,L) 20.0 581.69 C.9609 50.0 581.69 C.9609 50.0 581.69 C.9000 00.0 581.69 C.9000 00.0 581.69 C.8547 00.0 581.69 C.8547 00.0 581.69 C.8547 00.0 581.69 C.8547 00.0 581.69 C.8084 00.0 581.69 C.7822 00.0 581.69 C.7822 00.0 581.69 C.7822 00.0 581.69 C.7822 00.0 581.69 C.7822 00.0 581.69 C.7822 00.0 581.69 C.6602 00.0 581.69 C.4621 00.0 581.69 C.4621 00.0 581.69 C.4621 00.0 581.69 C.4621 00.0 581.69 C.4621 00.0 581.69 C.3803 00.0 581.69 C.2656 00.0 581.69 C.3204 00.0 581.69 C.3204 00.0 581.69 C.3490 00.0 581.69 C.3490 00.0 581.69 C.3490 00.0 581.69 C.3490 00.0 581.69 C.3217 50.0 581.69 C.5217 50.0 C.581.69 C.5924	-0.928655070 C0 $0.25345193D-C2$ $-C.30243207D-02$ $0.73747733D-03$ $-C.38279880D-C6$ $0.41967454D-C6$ $-C.79270338D-C7$ $. DEG. R = 581.6899$ AL CCEFF. NG. 2=-0.51951658D-03 AL CCEFF. NG. 3= 0.10439990D-06 . DEG. R = 526.6899 AL CCEFF. NO. 2=-0.44548489D-03 AL CCEFF. NO. 2=-0.44548489D-03 AL CCEFF. NO. 2=-0.36321268D-03 AL CCEFF. NO. 3= 0.66304612D-07 . DEG. R = 671.66399 AL CCEFF. NO. 3= 0.66304612D-07 . DEG. R = 716.66399 AL CCEFF. NO. 3= 0.463445216D-07 X(K) Y(L) Z(K,L) ERR $20.6 581.69 C.9609 0.C433 5C.0 581.69 C.9609 0.C433 5C.0 581.69 C.9609 0.C433 5C.0 581.69 C.9600 0.0550 00.6 581.69 C.8547 0.0554 CCC 581.69 C.8547 0.0554 CCC 581.69 C.8084 0.0526 50.0 581.69 C.3057 -0.2476 50.0 581.69 C.3217 0.1723 50.0 581.69 C.3217 0.1723 50.0 581.69 C.3217 0.1723 50.0 581.69 C.3217 0.1723 50.0 581.69 C.5217 0.1723$

Х(К)	Y(L)	Z(K,L)	ERR	ERR
100.0	626.69	0.9689	0.0015	0.1523
150.0	626.69	C.9536	0.0074	0.7766
200.0	620.69	C.9379	0.0124	1.3262
250.0	626.69	C.9219	C.C168	1.8249
300.0	626.69	C.9056	0.0204	2.2573
350.0	625.69	<u> </u>	0.0230	2.5928
400.0	625.69	C.8715	0.0249	2.8623
450.0	626.69	C.8557	0.0278	3.2433
<u> </u>	620.69	C.8384	0.0288	3.4319
000.0	626.69	0.8008	0.0263	3.2885
70C.C	625.69	0.7611	0.0201	2.6413
800.C	626.69	C.7188	0.0097	1.3430
900.0	626.69	C.6738	-0.0053	-0.7898
1000.0	626.69	0.6252	-0.0255	-4.0818
1,200.0	626.69	C.5202	-0.0788	-15.1522
1400.0	626.69	0.4356	-0.1185	-27.2148
1600.0	625.69	0.4058	-0.1102	-27.1662
1800.0	626.69	C.4087	-0.0760	-18.6006
2000.0	625.69	0.4241	-0.0362	-8.5265
2500.0	626.69	0.4787	0.0498	10.4064
3000.0	626.69	<u>C.54C9</u>	0.1009	18.6557
3500.C	626.69	0.6038	0.1102	18.2547
4000.0	626.09	C.6675	0.0778	11.6527
<u> </u>	626.69	0.7304	0.0021	0.2831
5000.0	626.69	0.7935	-0.1160	-14.6173
100.0	671.69	0.9754	-0.0142	-1.4600
150.0	671.69	0.9637	-0.0086	-0.8964
200.0	671.69	0.9512	-0.0041	-0.4324
250.0	671.69	C.9390	0.0003	0.0355
	671.69	0.9266	0.0043	0.4648
350.0	671.69	0.9140	0.0077	0.8455
400.0	671.69	0.9013	0.0107	1.1867
<u>450.0</u>	671.69	<u>C.8884</u>	0.0131	1.4770
500.0	671.69	0.8756	0.0153	1.7482
603.0 700.0	671.69	0.8486	0.0174	2.0496
<u> </u>	671.69	<u>C.8207</u>	0.0172	2.0980
	671.69	0.7922	0.0150	1.8978
900.0 1000.0	671.69	C.7630	C.0109	1.4246
1303.0 1200.0	671.69	0.7331	C.C048	0.6486
1400.0	671.09	0.6728	-0.0121	-1.7933
1600.0	671.69	0.6147	-0.0320	-5.2138
<u></u>	671.69	<u>0.5660</u>	-0.0479	-8.4650
2000.0	671.69	0.5342	-0.0521	-9.7552
2000.0 2500.0	671.69	0.5200	-0.0441	-8.4848
3000.0	671.69 671.69	C.5344	0.0027	0.5126
3500.C		0.5777	0.0453	7.8394
4000.0	671.69 671.69	0.6301	0.0638	10.1237
4500.0	<u>671.69</u> 571.69	0.6855	0.0522	7.6175
5000.0	671.69	0.7424	0.0089	1.2003
	011.07	0.8000	-0.0668	-8.3518
and a second		· ···· · ··· · · · · · · · · · · · · ·		

		A-	-95		
	<u>X(K)</u>	Y(L)	Z(K,L)	ERR	K ERR
	100.0	716.09	0.9806	-0.0124	-1.2642
	150.0	716.09	0.9712	-0.0086	-0.8810
	200.0	710.69	0.9618	-0.0049	-0.5123
	250.0	716.69	0.9521	-0.0018	-0.1871
	300.0	710.69	0.9426	0.0012	0.1275
	350.0	710.69	0.9328	0.0038	0.4034
	400.0	716.69	0.9232	0.0062	0.6663
	452.0	716.09	0.9135	0.0083	C.9105
	500.C	716.69	C.9039	0.0103	1.1342
	600 . C	716.69	0.8819	0.0106	1.2074
	700.C	716.69	0.8613	0.0138	1.3367
	300.0	716.69	0.8403	-0.0110	1.3145
	900.0	716.69	0.8194	0.0097	
	1000.0	716.69	0.7936	0.0097	1.1779
	1<00.0	716.59	C.7571	0.0073	0.9165
	1400.0	716.69	0.7175	-0.0092	0.0102
	1600.0	715.69	0.5818		-1.2891
	1800.0	716.69		-0.0185	-2.7129
	2000.0	710.69	0.6301	-0.0257	-3.9471
	2500.0	716.69	0.6130	-0.0290	-4.6014
	3000.0	716.69	0.6130	-0.0164	-2.6804
	3500.0	715.69		0.0082	1.2971
	4000.0	716.69	0.6692	0.0266	3.9780
	<u>4500.C</u>	716.69	0.7148	0.0292	4.0911
	<u>4000.0</u>	716.69	0.0126	0.0101	1.3261
	AV. ERR. =		0.8136	-0.0304	-3.7421
	$PER \bullet ERR \bullet =$	0.0421	AV. DEV. =		
C		-1.7625	PEK. DEV.	= 8.1071	
Č	THE LOOP TO CA	CONTATE TH			
Č	THE LOOP TO CAL	LULAIE INT No notonost	LENVERIED ST	ERIES GIVES	
<u></u>	<u>KESULTS TILL TH</u> IS REACHED.	HIGHESI	DEGREE UF POI	LYNDMIAL IN	PART 1
C	13 REAUTED.				
~					
···· — •••••• · ••••• · • · • • • • • •	and the second sec		a server a server		
· • · · · • • · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· .	and the second second second		

.....

-- .

â	
<u> </u>	PROGRAM NUMBER 8
C	LAGRANGIAN INTERPOLATION
C	P(J) AND Z(J) ARE THE PRESSURE AND COMPRESSIBILITY
Ċ	RESPECTIVELY READ AT M POINTS. ZA(I) ARE INTERPOLATED
C	COMPRESSIBILITY AT N PA(I) PRESSURES.
C	THE CUTPLT FROM THIS INTERPOLATION PROCEDURE IS GIVEN
<u>C</u>	IN TABLE F-7 OF APPENDIX F.
	REAL P(50), Z(50)
	DOUBLE PRECISION PA(50), DL(50), ZA(50), PROD, PROD1
	INTEGER N, M
	REAC(5,501) N
501	FORMAT(I4)
	READ(5,502) (PA(I), I=1,N)
5C2	FORMAT(2X, 1CF7.1)
	DC 100 IJK=1,16
	WRITE(6,512) IJK
512	FORMAT(I INTERPOLATION SEQUENCE NO. 9, 12)
<i>2</i> - -	READ(5,5C3) M
503	FORMAT(14)
	READ(5,5C4) (P(J), Z(J), J=1,M)
504	FORMAT(21X, F8.2, 31X, F8.5)
204	KK=1
	II=1
10	KK1=KK+1
10	KK1=KK+1 KK2=KK+2
	DO 90 I=II,N
	IF(KK3.EQ.M) GO TO 50
5.0	IF(P(KK2).LT.PA(I)) GO TO 80
<u> </u>	
	DG 7C K=KK,KK3
	PROD=1.0
	PRCD1=1.0
	DO 6C J=KK,KK3
	IF(K.EQ.J) GC TO 60
•••	PROD = PROD * (PA(I) - P(J))
	PRUD1=PKOD1*(P(K)-P(J))
23	CONTINUE
	DL(K)=PRCD/PROD1
	ZA(I)=ZA(I)+DL(K)*Z(K)
70	CONTINUE
	WRITE(6,511) I, PA(I), ZA(I)
511	FGRMAT(1H , I2, F10.1, F10.5)
	IF(I.EQ.N) GO TO 90
	IF(KK3.EQ.M) GC TO 75
	IF(P(KK2).GT.PA(IP)) GO TO 90
75	II=I+1
	IF(KK3.EQ.M) GO TO 10
80	КК=КК+1
	GC TC 10
90	CONTINUE
Carlo and provide the second statement of the second s	CONTINUE
	STOP
	END

.

APPENDIX B

PRESSURE MEASUREMENT

•

•

The pressure exerted by the gas in the sample bomb was measured by applying hydraulic oil pressure to the diaphragm which separated mercury, the fluid confining the gas under observation, from the fluid used to transmit pressure to the piston gauges. The pressure from the DWG was applied to the upper chamber; the pressure which was to be measured was applied to the lower chamber. The diaphragm was unbalanced and flexed by the presence of a differential pressure between the two chambers. This unbalance was relayed to the control box with a zero-center milliammeter which indicated that the pressure in the gauge was either higher, lower than, or equal to, the pressure in the sample bomb.

The total pressure, P, exerted by the gas in the sample bomb can be written as,

$$P = P_{G} + P_{B} + P_{L} - P_{Hq}$$
(B-1)

where

$$P_G =$$
 the pressure exerted by the piston gauge
 $P_B =$ barometric pressure acting on the piston
 $P_L =$ correction for the level of mercury in
the sample bomb

and P_{Hg} = correction for the vapor pressure of mercury

The express purpose of this Appendix is to show how each of these contributions to the total pressure was determined.

B-1. Calculation of Gauge Pressure

The formula for calculating the pressure exerted by the gauge is given by the equation:

$$P = P_e + \frac{W}{A} (K) \frac{g}{g_s}$$
(B-2)

where

P = pressure exerted by the gauge as measured
P_e = pressure of empty weight at standard gravity
W = weight of dead weights, at standard gravity,
in grams

- A = effective area of piston = 0.026038 inch²
 for high range, = 0.13023 inch² for low
 range
- K = conversion constant = 0.0022046 lbs/gram
 g = local gravity = 981.272 cm/sec²

$$g_s = standard gravity = 980.665 cm/sec^2$$

Table B-1 gives the tabulation of weights for Type 2400 HL Ruska Dead Weight Gauge, Serial No. 8338..

Tab	le	B-1

	Weight Tabulation	(psi),	Serial	No.	8338
--	-------------------	--------	--------	-----	------

Weight Number	Pressu High Range	ure (psi) Low Range	Weight (Grams)	Actual Weight Tolerance (Grams ±)
A	1000	200	11,810.7	0.15
в	1000	200	11,810.8	0.15
C	1000	200	11,810.8	0.15
D	1000	200	11,810.8	0.15
Е	1000	200	11,810.8	0.15
F	1000	200	11,810.8	0.15
G	1000	200	11,810.8	0.15
H	1000	200	11,810.8	0.15
I	1000	200	11,810.8	0.15
J	1000	200	11,810.8	0.15
K	1000	200	11,810.8	0.15
L	500	100	5,905.41	0.08
М	200	40	2,362.16	0.03
N	200	40	2,362.17	0.03
0	100	20	1,181.11	0.02
P	50	10	590.55	0.01
Q	20	4	236.217	0.005
R	20	4	236.214	0.005
S	10	2	118.108	0.005
Т	5	l	59.054	0.005
U	2	0.4	23.621	0.005
v	2	0.4	23.621	0.005
W	1	0.2	11.810	0.005
Х	0.5	0.1	5.905	0.005

Set of Fractional Weights adjusted to within 0.002 grams of calculated weights.

Empty Weight at Standard Gravity is 30.00 psi for high range and 6.00 psi for low range.

a. Correction for Elastic Distortions

The application of pressure causes elastic distortions in the piston and cylinder, resulting in a change of effective area. As the pressure surrounds the piston and cylinder, the diameters are decreased, causing an increase of pressure. The formula for calculating corrections for the effect of elastic distortion is

$$P_{c} = P(1 - f_{p}P) \qquad (B-3)$$

where

P_c = correction pressure P = measured pressure

and

 f_p = fraction change of area per unit pressure = -4.2 x 10⁻⁸/psi for high range = -4.7 x 10⁻⁸/psi for low range

b. Correction for Change in Temperature

Rise in temperature results in a decrease of pressure exerted by the weights. The formula for calculating correct pressures for change in temperature is

$$P_{c} = P \left[1 - f_{t} (t-20) \right]$$
 (B-4)

where

P_c = corrected pressure P = measured pressure

 f_t = fractional change of effective area with temperature = 2.4 x $10^{-5}/^{\circ}$ c

and t = temperature, °C

B-2. Calculation of Barometric Pressure

The barometric pressure was determined with a Fortin type barometer. The scale on the barometer could be read to 0.1 mm by means of a vernier. A thermometer was mounted near the middle of the barometer, and it served to determine the temperature of the mercury column.

A single equation incorporating a temperature correction, that holds true for ordinary room temperatures, was used to calculate the barometric pressure. The pressure P_B in psi is given by

$$P_{B} = \left[13.5462 - 0.00245(t_{c} - 20)\right](1.45038 \times 10^{-5})g \cdot h_{c}$$
$$= (1.96471 \times 10^{-4})\left[1 - 1.81 \times 10^{-4}(t_{c} - 20)\right]g \cdot h_{c} \quad (B-5)$$

where

and

 h_c = measured height Hg in cm t_c = temperature in ^OC g = 981.272 cm/sec²

B-3. Hydraulic Head Correction

Owing to the difference in the levels of mercury in the sample bomb as compared to the reference point, a correction has to be made to account for the mercury head. The mercury head was divided into two sections, one at room temperature, and the other at the thermostat temperature, the

B-6

dividing line being the outer surface of the thermostat top. The mercury level inside the sample bomb was calculated from the cross sectional area of the bomb. The formula used for hydraulic head correction is given as

$$P_{L} = \left[(h_{1} + \frac{mV}{(2.54)^{3}} \cdot \frac{4}{\pi (1.25)^{2}}) \rho_{z} - h_{2} \rho_{R} \right] \left(\frac{62.4}{1728} \right) \frac{g}{g_{C}}$$
(B-6)

where

$$P_L$$
 = hydraulic head correction in psi
 h_1 = 5.5 in.
 h_2 = 1.25 in.
mV = volume of gas in the sample bomb, ml
 ρ_z = density of mercury at thermostat temperature,
g/ml
 ρ_R = density of mercury at room temperature, g/ml

B4. Correction for the Vapor Pressure of Mercury

In calculating the pressure exerted by the gas sample it was necessary to subtract the vapor pressure of mercury, P_{Hg} , from the measured total pressure P. The equation used for evaluating the effect of total pressure on the vapor pressure is

$$\operatorname{RT} \ln \left(\frac{P_{Hg}}{P_{Hg}^{O}}\right) = V(P - P_{Hg}^{O}) \qquad (B-7)$$

where

P^O_{Hg} = vapor pressure of mercury, psia
P_{Hg} = vapor pressure of mercury at total
pressure P, psia

- P = total pressure exerted by the gas in the sample bomb
- V = molal volume of liquid mercury

T = temperature of the thermostat

Exploratory calculations were made to determine the magnitude of this correction. For the maximum pressure of 5,020 pounds per square inch used in this work the values for different temperatures are as follows:

t ^o c	P ^O Hg, psia*	Max. P _{Hg} , psia
50 ⁰	2.45×10^{-4}	2.96×10^{-4}
75 ⁰	1.27×10^{-3}	1.52×10^{-3}
100 ⁰	5.28×10^{-3}	6.29×10^{-3}
125 ⁰	1.83×10^{-2}	2.15 x 10^{-2}

From these calculations it was concluded that the partial pressure of mercury is negligible for temperatures up to and including 100°C. At 125°C the vapor pressure of mercury is independent of the total pressure within the accuracy of pressure measurement.

^{*} Lange, N.A., "Handbook of Chemistry", 10th ed., p. 1465, McGraw-Hill, New York, 1967.

APPENDIX C

.

CALIBRATIONS

This Appendix includes:

- a. Calibration of the mercury displacement pump;
- Calibration of the equipment for the effect of pressure and temperature; and
- c. Calibration of chromatograph for mixtures of ethane and hydrogen sulfide.

a. Calibration of the Mercury Displacement Pump

The cumulative volume of mercury forced out at 30° C and 1 atmosphere pressure was fitted to the residual equation of the form given by Equation (IV-1). Figure 35 shows the plot of residual volume δ V in milliliters of mercury versus the pump scale reading N in inches.

b. Calibration of the Equipment for the Effect of Pressure and Temperature

The calibration used for the calculation of volumes for the latter part of this work on mixtures of ethane and hydrogen sulfide is given in Table C-1. A plot of $\Delta V_{t,P_{G}}$ versus pressure for 50°, 75°, 100°, and 125°C is presented in Figure 36.

C-3

Figure 47. Calibration of the Mercury Displacement Pump
Table C-1

Calibration	of	the	Equipment	for	the	Effect
of I	Pres	ssure	e and Tempe	erati	ire	

	^{∆V} t,P	(pump scale r	eading in in	ches)
Pressure psig	50°C	75 ⁰ C	100 ⁰ C	125 ⁰ C
50	-0.001	0.0715	0.141	0.211
100	-0.002	0.0705	0.140	0.211
150	-0.003	0.0695	0.139	0.209
200	-0.004	0.0685	0.139	0.209
250	-0.005	0.068		
300	-0.006		0.137	0.207
350	-0.007	0.067	0.136	0.206
		0.066	0.135	0.205
400	-0.008	0.065	0.134	0.204
450	-0.009	0.064	0.133	0.203
500	-0.010	0.063	0.132	0.202
550	-0.011	0.062	0.131	0.201
600	-0.012	0.061	0.130	0.200
700	-0.014	0.059	0.128	0.198
800	-0.016	0.057	0.126	0.1955
900	-0.018	0.055	0.124	0.1935
1000	-0.020	0.053	0.122	0.1915
1100	-0.022	0.051	0.120	0.1895
1200	-0.024	0.049	0.118	0.187
1300	-0.0265	0.047	0.116	0.185
1400	-0.029	0.0445	0.114	0.183
1500	-0.031	0.0425	0.112	0.181
1600	-0.033	0.0405	0.1095	0.179
1700	-0.035	0.0385	0.1075	0.177
1800	-0.037	0.0365	0.1055	0.175
1900	-0.039	0.0345	0.1035	0.173

Table C-1 (continued)

	$-t, P_{G}$ (rum for the local sector for the loca			
Pressure psig	50 ⁰ C	75 ⁰ C	100 ⁰ C	125 ⁰ C
2000	-0.041	0.032	0.1015	0.171
2200	-0.045	0.028	0.0975	0.167
2400	-0.049	0.024	0.0935	0.163
2600	-0.053	0.020	0.0895	0.1585
2800	-0.057	0.016	0.0855	0.1545
3000	-0.061	0.012	0.0815	0.1505
3200	-0.065	0.008	0.0775	0.1465
3400	-0.0685	0.004	0.074	0.1425
3600	-0.072	0.0005	0.070	0.1385
3800	-0.0755	-0.004	0.066	0.1345
4000	-0.0795	-0.008	0.062	0.131
4200	-0.0835	-0.011	0.0585	0.127
4400	-0.087	-0.0145	0.0545	0.123
4600	-0.091	-0.018	0.0505	0.1195
4800	-0.095	-0.022	0.047	0.1155
5000	-0.0985	-0.0255	0.0435	0.1115

 $\Delta V_{+,P}$ (pump scale reading in inches)

.

.

C-6

b. Calibration of Chromatograph for Mixtures of Ethane and Hydrogen Sulfide

Ethane, hydrogen sulfide, and eight mixtures of known composition of these gases were analyzed on a Burrell K-2 chromatograph. A method using volume or mole percentages was used to calculate the composition of mixtures. Plots of peak heights for each component against mole percent of ethane in the mixture are presented in Figure 37.

Calibration of Chromatograph for Mixtures of Ethane and Hydrogen Sulfide -

APPENDIX D

SAMPLE BOMB VOLUME

.

The volume of the sample bomb, including the connecting line up to the rupture disc, was calculated from the zeroset and the blank run measurements. The volume of mercury displaced from the displacement pump to fill the bomb is given by the relationships:

$$V'_{B,500} = aN_{500,0} + \delta V_{500,0} - aN_{500,z}$$

$$- \delta V_{500,0,z}$$
(D-1)

where

- V'_{B,500} = volume of mercury at 30[°]C required to fill sample bomb at 50[°]C and zero gauge pressure, ml. Hg at 30[°]C
 - a = average volumetric displacement per inch of piston movement, 7.0139 ml. Hg at 30⁰C per inch
- N_{500,0} = displacement pump reading for sample bomb at 50[°]C and zero gauge pressure, inches of pump scale
- N_{500,0,z} = zero set pump reading for sample bomb at 50^OC and zero gauge pressure, inches of pump scale
 - δV = pump calibration correction, ml. Hg at 30^oC

This volume is corrected to determine the volume of the sample bomb at 50° C, by the expression

$$V_{B,500} = V'_{B,500} \frac{d_{30}}{d_{50}}$$
 (D-2)

where

Evaluation of Bomb Volume

.

Because of a smaller total displacement volume of the pump compared to the sample bomb volume, mercury was added into the sample bomb in two instalments. Equation D-1) then reduces to

$$V'_{B,500} = (aN_{500,0} + \delta V_{500,0} - aN''_{500,0} - \delta V''_{500,0})$$

+ (aN'_{500,0} + \delta V'_{500,0} - aN_{500,0,z}
- \delta V_{500,0,z}) (D-3)

From extrapolation of blank run data at 50°C

 $N_{500,0} = 12.448$ pump scale reading, inches

From intermediate readings on pump scale

$$N'_{500,0} = 3.105$$
 inches
 $N'_{500,0} = 15.480$ inches
extrapolation of zero-set at $50^{\circ}C$

 $N_{50^{\circ},0,z} = 2.950$ pump scale reading, inches From displacement pump calibrations

$$\delta V_{500,0} = 0.0007 \text{ ml. Hg at } 30^{\circ}\text{C}$$

 $\delta V''_{500,0} = -0.001 \text{ ml. Hg at } 30^{\circ}\text{C}$
 $\delta V'_{500,0} = -0.0012 \text{ ml. Hg at } 30^{\circ}\text{C}$
 $\delta V_{500,0,z} = -0.007 \text{ ml. Hg at } 30^{\circ}\text{C}$

Calculating from these data

From

At 50°C the bomb volume is 153.978 ml.

For the second part of this work the values are

^N 500,0,z	=	3.498 inches
^{&V} 50°,0,z	=	-0.0018 ml. Hg at 30 ⁰ C
^{N'} 50 [°] ,0	=	15.482 inches
^{&V'} 50°,0	=	-0.0011 ml. Hg at $30^{\circ}C$
^{N''} 50°,0	=	4.482 inches
^{&V''} 50°,0	=	-0.006 ml. Hg at 30 [°] C

$$N_{50^{\circ},0} = 14.352$$
 inches
 $\delta V_{50^{\circ},0} = +0.005$ ml. Hg at $30^{\circ}C$

Calculating from these data

$$V_{B,50^{\circ}} = 153.844 \text{ ml}.$$

Considering the uncertainties in the ejector pump readings, the volume of the sample bomb is $153.98\pm.01$ ml. at 50° C and zero gauge pressure for the first part of this work. The sample bomb volume for the second part of the work is 153.84 ± 0.01 ml. at 50° C and zero gauge pressure.

<u>APPENDIX E</u>

SAMPLE CALCULATIONS OF VOLUME

The equations used in calculating the values of volume from the experimentally observed quantities were developed in Section F of Chapter IV. In an effort to show more clearly the sequence in which the calculations were performed, the auxiliary data, plots and equations used to evaluate various terms, and the order of magnitude of the several corrections are presented here.

Calculations of a PVT point from measurements on the second mixture of ethane and hydrogen sulfide at 50[°]C and 500 pounds per square inch gauge pressure in the increasing pressure series of points includes the following:

 From zero-set measurements and the bomb volume, the bench volume is calculated

$$V_{\text{Bench}} = 179.324 \text{ ml. Hg at } 30^{\circ}\text{C}$$

2) The pump scale reading is

N = 10.430 inch.

3) From pump calibration curve

5)

$$\delta V = +0.0004 \text{ ml}$$
. Hg at 30°C

4) From the plot of blank run data

 $\Delta V_{500,500} = -0.010$ inch of pump scale reading Approximate volume using Equation (IV-7)

$$mV = \begin{bmatrix} 179.324 - (10.430 - 0.010) (7.0139) \\ - 0.0004 \end{bmatrix} \left(\frac{13.5213}{13.4725} \right) = 106.625 \text{ ml.}$$

6) From equation (IV-10) using the gauge pressure in atmospheres as (P'-1)

$$D_{1} = \begin{bmatrix} 5.8 \times 10^{-7} + 5.5 \times 10^{-9} (50 - 30) \end{bmatrix}$$
$$\times \left(\frac{500}{14.7} \right) (106.625)$$

= 0.003 ml.

7)
$$D_2 = 0.000 \text{ ml.}$$

8) $D_3 = (0.00235)(23.3 - 22.8)(\frac{12}{13.5213})$

= 0.001 ml

9) The corrected volume of the gas sample

$$mV = \begin{bmatrix} 179.324 - 7.0139(10.430 - 0.010) \\ - 0.0004 - 0.003 + 0.001 \end{bmatrix} (\frac{13.5213}{13.4725})$$

= 106.623 ml.

APPENDIX F

EXPERIMENTAL DATA

Experimental measurements of the specific volumes of ethane, hydrogen sulfide, and four mixtures of these gases were made. In Table F-1 are presented the volumetric data on ethane at 50° C up to a pressure of 5,000 pounds per square inch gauge. The experimental data on hydrogen sulfide at temperatures of 50° , 71.11° , 75° , 100° , 104.44° , and 125° C and pressures up to 5,000 pounds per square inch constitute Table F-2. Each of the four mixtures of ethane hydrogen sulfide was studied at four temperatures, 50° , 75° , 100° , and 125° C. Tables F-3, F-4, F-5, and F-6 include volumetric measurements on mixtures 1, 2, 3, and 4 respectively.

Lagrangian interpolation was used to obtain compressibility factors at discrete values of pressures. These interpolated values for the four mixtures are presented in Table F-7. The range of temperatures which was covered extends from 50° to 125°C and the pressures up to 5,000 pounds per square inch.

	F-3	
	TABLE F-1.	
VOLU	METRIC BEHAVICR OF E	THANE
TE	MPERATURE = 5C.00 DE	:G•C•
PRESSURE	VOLUME	
(PSIA)	(ML./GMOLE)	COMPRESSIBILITY FACTOR
SAMP	LE WEIGHT = 0.07615	
	L MELOUI ~ VIVIVIV	<u>Ge-MULE</u>
226.30	1556.26	0.90372
233.50	1501.92	0.89991
239.00	1463.83	0.89776
248.30	1401.52	0.89299
<u>253.10</u>	1371.48	0.89074
268.10	1284.02	0.88336
269.20	1279.03	0.88353
	1185.61	<u>0.87480</u>
308.00	1094.26	0.86485
317.60	1054.91	0.85973
332.00	1001.84	0.85350
359.90	909.50	0.83994
367.30	886.16	
	817.09	0.83522
417.10	756.23	0.82337
431.70	724.61	0.80940
466,90	653.17	0.80270
478.90	632.28	0,78256
516.70	032•28 508•79	0.77700
536.70	539.95	0.75415
566.80	498.35	<u> </u>
6C8.6C		0.72482
666.40	447.79	0.69932
698.20	385.60	0.65938
716.30	355.46	0.63685
710.30	338.55	0.62227
808.80	295.85	0.58169
816.10	263.23	0.54633
816.15	256.18	0.53649
866.30	251.78	0.53141
916.40	217.90	0.48440
	182.58	0.42935
<u> </u>	132.27	<u>0.34506</u>
1216.70	103.92	0.32446
1416.70	95.21	0.34614
1616.80	90.13	0.37394
1816.90	86.78	0.40461
2017.10	84.31	0.43641
2517.30	79.94	0.51637
3017.60	76.98	0.59611
3517.90	74.74	0.67466
4018.50	72.99	0.75264
4518.80	71.39	0.82776
5019.40	70.14	0.90337

TADLE F-2.	•
------------	---

VOLUMETRIC BEHAVIOR OF HYDROGEN SULFIDE

 TEM	TEMPERATURE = 5C.CO DEG.C.		
 PRESSURE	VOLUME	COMPRESSIBILITY	
(PSIA)	(ML./GMOLE)	FACTOR	
 SANPL	E WEIGHT = 0.04645	GMOLE	
119.40	3111.45	0.95331	
 168.35	2151.99	0.92965	
217.76	1622.75	0.90677	
267.39	1286.76	0.88290	
 267.39	1286.74	0.88288	
317.18 366.96	1053.07	0.85710	
416.83	881.05	0.82964	
 466.71	748.61	0.80072	
516.64	642.15	0.76905	
521.65	553.50	0.73379	
 521.05	541.68	0.72508	
 SAMPL	E WEIGHT = 0.07259 (GMOLE	
184.13	1945.82	0.91938	
218.58	1609.71	0.90287	
 268.04	1278.14	0.87911	
317.65	1047.57	0.85388	
317.65	1047.50	0.85383	
 367.52	876.73	0.82683	
417.25	744.94	0.79760	
466.94	638.95	0.76559	
 516.86	550.60	0.73026	
521.57	351.47	0.47050	
526.17	165.54	0.22351	
 531.02	82.10	0.11188	
535.98	49.92	0.06866	
540.97	49.07	0.06812	
 545.98	49.05	0.06873	
565.96	49.00	0.07116	
615.99	48.96	0.07739	
 716.03	48.66	0.08940	
816.20	43.41	0.10139	
91ć.26	48.16	0.11323	
 1016.31	47.95	0.12506	
1516.53	47.10	0.18329	
2016.95	46.23	0.23926	
 2517.31	45.61	0.29461	
3017.74	45.14	C.34954	
4018.60	44.53	0.45920	
5019.54	43.48	0.56007	

	TABLE F-2. (CONT.)	
<u>T</u> E	EMPERATURE = 71.11 DE	G•C•
PRESSURE	VOLUME	COMPRESSIBILITY
(PSIA)	(ML./GMOLE)	FACTOR
SAMF	PLE WEIGHT = 0.07259	GMOLE
199.15	1934.91	0.92817
218.77	1748.67	0.92147
268.08	1398.32	0.90294
317.70	1154.63	0.88358
367.42	975.60	0.86342
367.42	975.67	0.86348
417.21	837.83	0.84197
467.05	728.60	0.81969
516.94	639.14	0.79583
566.82	564.54	0.77077
616.74	500.63	0.74372
666.70	444.95	0.71455
716.65	394.97	0.68181
. 766.61	349.27	0.64494
	80.09	0.15459
806.27	54.78	0.10640
811.27	54.C1	0.10555
816.27	54.03	0.10623
866.31	53.74	0.11214
916.35	53.43	0.11794
1016.45		0,12961
1516.72	50.98	0.18626
2017.08	49.49	0.24047
2517.44	48.44	0.29376
3017.83	47.55	0.34564
4018.71	46.13	0.44652
5019.68	45.05	0.54473

.

•

	TABLE F-2. (CONT.)	
TE	MPERATURE = 75.00 DE	с. с.
	<u> </u>	6.L.
PRESSURE	VOLUME	COMPRESSIBILITY
(PSIA)	(ML./GMOLE)	FACTOR
SAMPI	LE WEIGHT = 0.04645	
		GMULE
139.14	2875.00	0.95279
168.57	2348.50	0.94293
217.98	1782.93	0.92567
267.59	1424.11	0.90765
317.37	1176.92	0.88965
317.37	1176.88	0.88962
367.17	994.88	0.87005
417.02	855.74	0.84997
466.90	745.38	0.82891
516.82	655.03	0.80631
566.75	579.98	0.78291
616.67	516.43	0.75852
666.58	460.52	0.73179
716.56	411.93	0.70304
766.52		0.67132
816.49	326.31	0.63458
836.48	310.25	0.61812
851.52	297.55	0.60347
936.37	56.40	0.12580
965.39	55.95	0.12866
1016.37	55.59	0.13456
1116.38	54.90	0.14597
1216.43	54.32	0.15737
1316.51	53.76	0.16856
1416.60	53.30	0.17985
1616.79	52.46	0.20204
1816.88	51.71	
2017.14	51.11	0.22378
2217.24	50.66	0.24555
2517.51	49.75	0.26752
3018.04	48.70	0.29833
3518.38	47.79	0.35006
4018.87	47.06	0.40051
4519.30	46.41	0.45048
5019.79	45.79	0.49962
	42.19	0.54749

PERATURE = 100.00 D	EG•C•
VOLUME (ML./GMOLE)	COMPRESSIBILITY FACTOR
E WEIGHT = 0.04645	GMOLE
2007 05	0.04122
	0.96122
	0.95458 0.94102
	0.94102
	0.91280
	0.91286
	0.89822
	0.88313 0.86766
	0.85205
	0.83575
	0.81886
	0.80146
	0.78364
	0,76530
	0.74556
	0.72509
	0.70371
	0.68068
	0.65612
	0.62966
	0.60041
	0.56802
	0.52958
	0.48143
	0.40803
	0.26074
	0.23415
	0.23050
	0.23088
	0.23598
	0.24213
	0.25094
	0.26867
	0.28820
	0.31700
	0.36516
	0.41307
	0.45952
	0.50679
48.16	0.53722
	(ML./GMOLE) $E WEIGHT = 0.04645$ 2997.95 2545.23 1941.40 $1558.C2$ 1293.88 1293.97 1100.75 952.90 836.21 741.85 663.57 597.65 $541.C8$ 492.14 449.26 410.87 376.53 345.49 316.90 290.44 265.66 241.98 219.12 195.89 171.04 139.46 85.86 74.38 70.72 68.50 65.68 63.47 62.15 59.93 58.49 56.66 54.45 52.83 51.45

		TABLE F-2. (CONT.)	
	TEM	IPERATURE = 104.44 D	EG.C.
	PRESSURE (PSIA)	VOLUME (ML./GMOLE)	COMPRESSIBILITY FACTOR
	SAMPL	E WEIGHT = 0.04645	GMOLE
	168.83	2575.00	0.95473
	218.17	1965.96	0.94194
	267.74	1579.44	0,92869
	317.50	1312.96	0.91548
	367.24	1118.19	0.90182
	367.24	1117.98	0.90165
	417.09 466.96	968.52	0.88714
	<u> </u>	850.70	0.87239
	566.76	755.26	0.85732
	616.59	676.62	0.84216
	716.57	609.97 5C3.92	0.82596 0.79300
	219.21	E WEIGHT = 0.07259 G	0.94125
	268.53	1574.37	0.92844
	318.09	1310.00	0.91511
	367.78 417.56	1115.63	0.90108
	417.56	967.29	0.88701
	467.41	967.29	0.88701
	517.27	849.67	0.87218
	567.20	754.48 675.70	0.85708
	617.10	609.15	0.84167
	717.00	502.89	0.82553
	816.91	421.20	0.79186
	916.85	355.64	<u> 0.75564 </u>
	1016.75	301.13	0.67239
	1116.69	253.58	0.62187
	1216.74	210.49	0.56244
	1316.73 1416.70	166.41	0.48119
	1516.70	103.04	0.32058
	1616.73	74.04	0.24662
	1816.81	68.60	0.24357
and the second se	2016.98	<u>63.74</u> 60.88	0.25431
	2517.28	56.88	0.26969
			0.31442
	3017.54	54.48	0 34100
	<u>3017.64</u> 3518.00	<u> </u>	0.36103
	<u>3017.64</u> 3518.00 4018.45	52.73	0.40737
	<u>3017.64</u> 3518.00		

TEMPERATURE = 125.00 DEG.C.			
PRESSURE (PSIA)	VOLUME (ML./GMDLE)	COMPRESSIBILITY FACTOR	
	E WEIGHT = 0.07259		
232.40	1958.59	0.94800	
253.94	1783.66	0.94334	
283.39	1587.13	0.93675	
300.82	1488.87	0.93280	
320.49	1390.60	0.92821	
343.22	1292.35	0.92381	
368.76	1194.10	0.91709	
398.74	1095.85	0.91006	
434.06	997.61	0.90186	
454.18	948.50	0.89721	
454.18	948.49	0.89720	
468.20	916.76	C. 89396	
517.2t	818.57	0.88184	
545.89	769.48	0.87485	
577.93			
	720.40	0.86711	
613.43	671.32	0.85767	
653.89	622.25	0.84741	
699.77	573.20	0.83539	
752.46	524.16	0.82144	
813.25	475.12	0.80474	
884.14	426.13	0.78468	
967.69	377.13	0.76007	
1067.16	328.19	0.72942	
1160.59	289.08	0.69874	
1269.49	249.99	0.66098	
1361.67	220.71	0.62592	
1464.24	191.45	0.58384	
1577.39	162.17	0.53278	
1702.50	132.93	0.47134	
1798.13	113.46	0.42492	
1923.32	94.06	0.37676	
2198.41	74.92	0.34304	
2576.69	65.83	0.35327	
2937.48	61.63	0.37703	
3186.71	59.63	0.39576	
3475.24	57.73	0.41783	
3819.70	55.94	0.44499	
4223.82	54.25	0.47728	
4686.77	52.67	0.51412	
5019.33	51.87	0.54224	

TABLE F-2. (CONT.)

<u></u>			TACLE F-3.		
	VGLUMETRIC	BEHAVIOR OF	ETHANE - HYDI	ROGEN SULFIDE S	YSTEM
		M	IXTURE NC. 1		
		MOLE FRAC	TICN ETHANE =	0.7755	
		TEMPERA	TURE = 50.00 1	DEG.C.	
	FRESSURE	VOLUME	CCMPRE-	VOLUME	COMPRE-
	(PSIA)	(ML./G Mole)	SSIBILITY FACTOR	(ML./G Mole)	SSIBILITY FACTOR
	SAMPLE WEI	GHT = 0.03664	4 GMOLE	MULTIPLICAT	
	94.16	4013.11	C.96965	3989.0	C.9638
	99.19	3801.96	0.96771	3779.1	0.9619
	123.16	3033.53	C.95871	3015.3	0.9530
	150.46	2456.42	C•94839	2441.7	0.9427
	175.73	2080.90	C•93835	2068.4	0.9327
	267.31	1312.73	C.90045	1304.9	0.8950
	360.16	928.84	C.85844	923.3	0.8533
	458.47	689.04	C.81063	684.9	0.8058
······································	616.23	457.15	0.72289	454.4	0.7186
	SAMPLE WEI	GHT = 0.0831	1 GMOLE		
	214.01	1685.54	C.92564	1675.4	0.9201
	290.87	1195.52	0.89232	1188.3	0.8870
	414.11	784.87	0.83403	780.2	0.8290
	514.11	592.75	C.78197	589.2	0.7773
	716.66	356.77	C.65611	354.6	0.6522
	816.60	274.82	C•57587	273.2	0.5724
	1016.43	131.79	0.34374	131.0	0.3417
	1416.53	88.39	C.32128	87.9	0.3194
	1816.81	80.90	0.37718	80.4	0.3749
	SAMPLE WEI	GHT = 0.1079	8 GMOLE		
	308.88	1116.62	0.88504	1109.9	0.8797
	414.72	784.23	C • 8345 8	779.5	0.8296
	567.16	517.20	0.75272	514.1	0.7482
	716.87	356.64	0.65604	354.5	0.6521
	916.59	199.62	0.46951	198.4	0.4667
	1216.47	96.78	0.30209	96.2	0.3003
	1616.71	83.89	C.34803	83.4	0.3459
	2017.06	78.44	0.40603	78.0	0.4036
	2517.36	74.45	C.48095	74.0	0.4781
	3017.79	71.80	G•55604	71.4	0.5527
	3518.19	69.60	0.62832	69.2	0.6246
	4018.66	68.00	0.70127	67.6	0.6971
	4519.11	66.59	0.77226	66.2	0.7676
	5019.61	65.12	C.83882	64.7	0.8338
	2027002				

<u> </u>		ТАВ	LE F-3. (CONT.)	
		TEMPERA	TURE = 75.00 D	EG.C.	
	PRESSURE (PSIA)	VOLUME (ML./G	CGMPRE- SSIBILITY	VOLUME (ML+/G+-	COMPRE- SSIBILITY
		MOLE)	FACTOR	MOLE)	FACTOR
				MULTIPLICAT	
	SAMPLE WEI	GHT = 0.0366	4 GMULE	0.9	94
	101.24	4043.21	C.97495	4019.0	0.9691
	107.33	3807.12	C.97325	3784.3	0.9674
	119.10	3420.56	C.97032	3400.0	0.9645
	133.57	3035.99	0.96586	3017.8	0.9601
	152.24	2650.34	0.96102	2634.4	0.9553
	163.72	2456.03	C.95773	2441.3	0.9520
	163.67	2457.04	0.95783	2442.3	0.9521
	189.92	2099.52	0.94972	2086.9	0.9440
	229.62	1713.66	0.93723	1703.4	C.9316
	322.19	1183.19	C.90797	1176.1	0.9025
· <u>·······················</u> ············	412.18	894.04	0.87771	888.7	0.8724
	505.56	701.40	0.84460	697.2	0.8395
	535.84	653.26	0.83374	649.3	0.8287
	616.37	547.53	C.80380	544.2	0.7990
	SAMPLE WEI	GHT = 0.0831	1 GMOLE		······································
	274.15	1416.56	C.92497	1408.1	0.9194
	455.41	795.52	0.86289	790.7	0.8577
	567.20	607.97	0.82134	604.3	0.8164
	717.00	446.23	0.76207	443.6	0.7575
	816.92	369.91	C.71976	367.7	0.7154
	1016.75	259.44	C.62828	257.9	0.6245
	1416.71	136.85	0.46179	136.0	0.4590
	1816.93	101.86	0.44082	101.3	0.4382
	SAMPLE WEI	GHT = 0.1079	8 GMOLE		
	363.57	1034.86	0.89614	1028.7	C.8908
	455.69	795.68	0.86361	790.9	0.8584
	455.69	795.68	0.86360	790.9	0.8584
	567.63	607.97	C.82197	604.3	0.8170
	717.34	446.25	0.76245	443.6	0.7579
	917.12	309.09	0.67517	307.2	0.6711
	1216.94	183.77	0.53267	182.7	0.5295
	1617.05	113.66	0.43778	113.0	0.4352
	2017.32	94.90	0.45595	94.3	0.4532
	2517.69	85.28	0.51144	84.8	0.5084
	3018.12	79.95	0.57468	79.5	0.5712
	3518.52	76.54	C.64146	76.1	0.6376
	4019.00	73.73	0.70584	73.3	0.7016
	4519.45	71.68	C.77159	71.3	0.7670
	5019.97	69.59	0.83211	69.2	0.8271

F-	11	
----	----	--

 	TAB	LE F-3. (CONT.)	
	TEMPERA	TURE = 100.00	DEG.C.	
PRESSURE (PSIA)	VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME (ML./G	COMPRE- SSIBILITY
	MOLE)	FACTOR	MOLE)	FACTOR
 		•	MULTIPLICAT	
SAMPLE WEI	GHT = 0.0366	4 GMOLE	0.9	994
100 10	4020 71	C C770/	4004 E	0 0721
 <u>109.18</u> 128.26	<u>4030.71</u> 3416.41	<u>C.97794</u> C.97375	4006.5	<u>C.9721</u> C.9679
144.10	3028.70	0.96986	3010.5	0.9640
164.37	2643.07	C•96543	2627.2	0.9596
 177.71	2443.72	C.96506	2429.1	0.9593
177.73	2443.91	0.96524	2429.2	0.9594
204.08	2113.82	C•95865	2101.1	0.9529
 247.27	1726.25	C•94856	1715.9	0.9429
335.83	1241.73	C.9267C	1234.3	0.9211
427.34	951.27	C.90338	945.6	0.8980
 522.03	757.76	0.87907	753.2	0.8738
616.71	623.21	0.85409	619.5	0.8490
SAMPLE WEI	GHT = 0.0831	1 GMOLE		
 393.06	1045.83	0.91351	1039.6	0.9080
471.05	853.11	0.89302	848.0	0.8877
471.04	853.01	0.89291	847.9	0.8875
 567.36	667.63	0.86698	683.5	0.8618
717.15	517.72	0.82508	514.6	0.8201
817.06	438.66	0.79649	436.0	0.7917
 1016.96	326.49	C.73786	324.5	0.7334
1216.90	251.59	C.68037	250.1	0.6763
1416.93	199.12	0.62698	197.9	0.6232
1817.12	138.40	C.55888	137.6	0.5555
SAMPLE WEI	GHT = 0.1C79	8 GMOLE		
 353.40	1045.81	C.91428	1039.5	0.9088
471.14	853.03	C.89311	847.9	0.8878
 567.62	687.14	C.86674	683.0	0.8615
 717.30	517.34	0.82465	514.2	0.8197
917.05	376.41	0.76709	374.2	0.7625
 1216.87	251.26	C.67944	249.7	0.6754
 1216.87	251.27	C.67946	249.8	0.6754
1616.92	162.39	C•5834E	161.4	0.5800
2017.14	122.05	C.54712	121.3	0.5438
 2517.47	100.97	0.56490	100.4	0.5615
3017.90	90.78	0.60880	90.2	0.6052
 3518.29	84.63	0.66166	84.1	0.6577
4018.76	80.47	0.71872	80.0	0.7144
4519.20	77.29	C.7762C	76.8	0.7715
5019.71	74.66	0.83282	74.2	C.8278

		TABI	LE F-3. (CONT.)	
		TENDEDA	TURE = 125.00		
			10RE = 125.00		
	PRESSURE (PSIA)	VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME (ML./G	COMPRE- SSIBILITY
		MÜLE)	FACTOR	MOLE)	FACTOR
				MULTIPLICAT	ION FACTOR
	SAMPLE WEI	GHT = 0.03664	4 GMOLE	0.9	94
	119.05	3967.27	0.98367	3943.5	0.9778
	130.68	3606.37	0.98154	3584.7	0.9756
	146.15	3216.75	C.97914	3197.4	C•9733
	165.58	2829.41	0.97573	2812.4	0.9699
	191.11	2440.00	C.97118	2425.4	0.9654
	191.05	2440.66	0.97114	2426.0	0.9653
	222.63	2081.69	C.96522	2069.2	0.9594
	324.31	1400.50	C•94596	1392.1	0.9403
	505.02	865.65	0.91050	860.5	6.9050
	531.70	817.08	C,90480	812.2	0,8994
	566.35	761.69	C.89845	757.1	0.8931
	616.32	692.18	C.88849	688.0	0.8832
	716.32	581.86	C.868C6	578.4	0.8628
	374.25	1203.72	C. 93824	1196.5	0.9326
	459.85	961.53	C•92088	955.8	0.9154
	567.3	760.80	C.8989C	756.2	0.8935
	567.30	760.82	0.89892	756.3	0.8935
	717.06	581.13	0.86788	577.6	0.8627
	816.96	498.00	C.84734	495.0	0.8423
	1016.85	380.43	0.80570	378.2	0.8009
	1216.79	302.06	0.76548	300.2	0.7609
	<u>1416.82</u> 1816.95	<u>246.91</u> 177.10	<u>C.7286C</u>	<u>245.4</u> 176.0	0.7242
	1010.70	177.10	C.67017	170.0	0.0001
	SAMPLE WEI	$\hat{\mathbf{G}}\mathbf{H}\mathbf{T} = 0.1079$	B GMOLE		
	422.05	1056.57	C.92873	1050.2	0.9232
	567.83	759.63	C.89836	755.1	0.8930
	717.49	580.30	0.86716	576.8	0.8620
	917.24	431.95	C.82517	429.4	0.8202
	1217.03	301.77	0.76491	300.0	C.7603
*******	1617.05	205.86			
			0.69329	204.6	0.6891
	1617.05	205.94	0.69357	204.7	0.6894
	2017.20	154.49	0.64906	153.6	0.6452
	2517.50	121.79	0.63858	121.1	0.6347
	3C17.86	105.29	0.66177	104.7	0.6578
	3518.22	95.63	C.7C071	95.1	0.6965
	1010 //	89.35	C.74781	88.8	0.7433
	4018.66	07.55	COLLINE	00.0	
	4018.66 4519.C9	04.62	C•79648	84.1	0.7917

2

TABLE F-4.					
IADEL I -++	Т	ABL	EF	-4.	

VOLUMETRIC BEHAVIOR OF ETHANE - HYDROGEN SULFIDE SYSTEM

MIXTURE NO. 2

MOLE FRACTION ETHANE = 0.6352

TEMPERATURE = 50.00 DEG.C.

	PRESSURE (PSIA)	VOLUME (ML./G	CCMPRE- SSIBILITY	VOLUME (ML./G	COMPRE-
		MOLE)	FACTOR	MOLE)	SSIBILITY FACTOR
		GHT = 0.0276		MULTIPLICAT	
	SARFLE MLI	011 - 0.0216	I DMULE	1.0	06
	69.33	5435.43	C.96699	5468.0	0.9728
	117.83	3136.46	C.94834	3155.3	0.9540
	117.82	3136.89	0.94839	3155.7	C.9541
	167.20	2164.09	C.9285C	2177.1	0.9341
	216.88	1632.26	0.90840	1642.1	0.9138
	266.69	1296.98	0.88758	1304.8	0.8929
	316.55	1065.36	0.86538	1071.8	0.8706
	366.47	895.68	0.84228	901.1	0.8473
	416.41	765.80	C.81828	770.4	0.8232
	466.36	663.04	0.79347	667.0	0.7982
	516.34	578.91	0.76703	582.4	0.7716
	616.32	449.25	0.71049	451.9	0.7148
	SAMPLE WEI	GHT = 0.18482	2 GMOLE		
	394.23	0.01 7.0			
	419.22	821.73	0.83128	826.7	0.8363
	468.79	761.34	0.81901	765.9	0.8239
	518.44	659.98	0.79392	663.9	0.7987
		577.0C	0.76762	580.5	0.7722
	<u> </u>	507.47	<u>C.73987</u>	510.5	0.7443
	717.57	447.99	C.71037	450.7	0.7146
		349.49	0.64352	351.6	0.6474
	717.57	349.45	0.64346	351.5	0.6473
	817.27	267.07	C.5601C	268.7	0.5635
	916.95	185.17	0.43569	186.3	0.4383
<u>.</u>	1016.65	107.28	0.27988	107.9	0.2816
	1216.71	86.70	0.27068	87.2	0.2723
	1416.83	80.81	0.29382	81.3	0.2956
	1616.95	77.33	C.32086	77.8	0.3228
	1817.11	74.93	0.34937	75.4	0.3515
	2017.24	73.03	0.37802	73.5	0.3803
	2517.60	69.71	C.45035	70.1	0.4531
	3018.01	67.29	C.52116	67.7	0.5243
	3518.40	65.51	0.59149	65.9	0.5950
	4018.87	64.12	0.66122	64.5	0.6652
	4519.30	62.78	0.72804	63.2	0.7324
	5019.80	61.81	C.79618	62.2	0.8010

<u></u>		ТАВ	LE F-4. (CONT.)	
		TEMPERA	TURE = 75.00 D	EG.C.	
	SSURE	VOLUME	COMPRE-	VOLUME	COMPRE-
<u>(P</u>	SIA)	(ML./G MOLE)	SSIBILITY FACTOR	(ML-/G MOLE)	<u>SSIBILITY</u> FACTOR
		MULE J	FACIOR	MULEJ	FACTUR
					TION FACTOR
SAM	PLE WEI	GHT = 0.0276	1 GMOLE	1.0	006
9	3.81	4318.77	C.96498	4344.7	0.9708
11	8.21	3401.91	0.95782	3422.3	0.9636
11	8.21	3401.36	0.95766	3421.8	0.9634
16	7.55	2361.45	C.94239	2375.6	0.9480
21	7.20	1791.73	C.92691	1802.5	0.9325
26	7.00	1432.40	C.91092	1441.0	0.9164
31	6,90	1185.24	0.89462	1192.4	0,9000
36	6.81	1004.55	0.87764	1010.6	0.8829
41	6.75	867.13	C.86073	872.3	0.8659
46	6.70	758,41	0.84304	763.0	0.8481
51	6.68	670.29	0.82488	674.3	0.8298
61	6.66	536 . C6	0.78735	539.3	0.7921
SAM	PLE WEI	GHT = C.1848	2 GMOLE		
46	9.20	755.68	C.84451	760.2	0.8496
	8.84	668.73	0.82641	672.7	0.8314
	8.56	596.65	0.80798	600.2	0.8128
	8.31	535.73	0.78897	538.9	0.7937
	7.93	438.14	0.74921	440.8	0.7537
81	7.66	362.95	C.70685	365.1	0.7111
81	7.66	362.95	0.70685	365.1	0.7111
	7.47	302.75	0.66159	304.6	0.6656
	7.30	252.90	0.61278	254.4	0.6165
121	7.04	175.44	0.50857	176.5	0.5116
	6.95	126.78	C.42786	127.5	0.4304
	6.98	104.58	0.40278	105.2	0.4052
181	7.10	94.13	0.40741	94 .7	0.4099
	7.21	88.10	0.42329	88.6	0.4258
	7.54	79.71	0.47798	80.2	0.4808
	7.94	75.11	0.53992	75.6	0.5432
	8.32	71.90	0.60250	72.3	0.6061
	8.77	69.56	0.66587	70.0	0.6699
	9.19	67.67	0.72845	68.1	0.7328
	9.69	66.18	0.79126	66.6	0.7960

		LE F-4. (CONT.		
	TEMPERA	TURE = 100.00	DEG.C.	
PRESSURE	VOLUME	COMPRE-	VOLUME	COMPRE-
(PSIA)	(ML./G	SSIBILITY	(ML./G	SSIBILITY
	MOLE)	FACTOR	MOLE)	FACTOR
			MULTIPLICAT	ION FACTOR
SAMPLE WE	IGHT = 0.0276	1 GMOLE	1.0	
93.86	4655.11	0.97096	4683.0	0.9768
118.23	3674.81	C.9655C	3696.9	0.9713
118.22	3675.25	C.96553	3697.3	0.9713
167.44	2562.82	0. 9536C	2578.2	0.9593
217.06	1951.41	C.94128	1963.1	0.9469
266.84	1567.17	0.92930	1576.6	0.9349
316.69	1302.84	0.91689	1310.7	0.9224
366.60	1110.13	C.90439	1116.8	C.9098
416.53	963.37	0.89172	969.1	0.8971
466.46	847.83	C.87885	852.9	0.8841
516.43	754.31	0.86567	758.8	0.8709
616.40	612.91	C.83956	616.6	0.8446
SAMPLE WE	IGHT = 0.1848	2 GMOLE		
519.17	750.10	0.86541	754.6	0.8706
568.87	674.00	0.85205	678.0	0.8572
618.61	609.91	C.83844	613.6	0.8435
718.25	507.94	0.81073	511.0	0.8156
817.97	430.37	C.78229	433.0	0.7870
917.76	369.31	0.75320	371.5	0.7577
917.77	369.29	0.75317	371.5	0.7577
1017.60	319.94	C.7235C	321.9	0.7278
1217.36	245.33	0.66368	246.8	0.6677
1417.27	192.53	0.60637	193.7	0.6100
1617.23	155.57	0.55911	156.5	0.5625
1817.30	131.02	0.52912	131.8	0.5323
2017.45	115.17	C.51633	115.9	0.5194
2517.72	95.19	0.53256	95.8	0.5358
3018.15	85.89	0.57607	86.4	0.5795
3518.48	80.36	0.62832	80.8	0.6321
4018.93	76.54	0.68356	77.0	0.6877
4519.36	73.70	0.74019	74.1	0.7446
5019.88	71.49	0.79753	71.9	0.8023

.

		TEMPERA	TURE = 125.00	DEG.C.	
PRESS (PSI		VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME (ml./g	COMPRE- SSIBILITY
		MOLE)	FACTOR	MOLE)	FACTOR
	FUETC		1 0 401 5	MULTIPLICAT	
SAMPL	E WEIG	HT = 0.0276	I GMULE	1.0	06
118.	23	3944.17	C.97121	3967.8	0.9770
167.		2758.51	0.96220	2775.1	0.9680
217.		2107.33	C.95275	2120.0	0.9585
266.		1697.23	0.94323	1707.4	0.9489
316.		1415.77	C.93377	1424.3	0.9394
366.		1210.30	C•92404	1217.6	0.9296
416.		1054.24	0.91452	1060.6	0.9200
466.		931.46	C.90489	937.0	0.9103
516.		832.33	0.89519	837.3	0.9006
616.		681.91	0.87538	686.0	0.8806
716.		573.62	0.85585	577.1	0.8610
SAMPL	E WEIG	HT = 0.1848	2 GMOLE		
565.	31	744.71	0.88300	749.2	0.8883
619.	04	676.93	0.87276	681.0	0.8780
718.		569.43	0.85230	572.8	0.8574
818.	36	487.84	0.83148	490.8	0.8365
918.	14	424.00	C.81078	426.5	0.8156
1017.		372.64	0.79006	374.9	0.7948
1017.		372.67	C.79011	374.9	0.7949
1217.		295.34	0.74903	297.1	0.7535
1417.		240.44	0.70991	241.9	0.7142
1617.		200.33	0.67490	201.5	0.6789
1817.		170.62	0.64589	171.6	0.6498
2017.		148.69	0.62483	149.6	0.6286
2517.		116.23	0.60949	116.9	0.6131
3018.		100.13	0.62945	100.7	0.6332
3518.		90.99	0.66682	91.5	0.6708
4018.		85.10	0.71233	85.6	0.7166
4519.		<u>8C.76</u>	0.76017	81.2	0.7647
5019.	87	77.56	0.81086	78.0	0.8157

	τ	Α	в	L	Е	F	-	5	•	
--	---	---	---	---	---	---	---	---	---	--

VOLUMETRIC BEHAVIOR OF ETHANE - HYDROGEN SULFIDE SYSTEM

MIXTURE NC. 3

MOLE FRACTION ETHANE = 0.3995

TEMPERATURE = 50.00 DEG.C.

PRESSURE	VGLUME	COMPRE-	VOLUME	COMPRE-
(PSIA)	(ML./G	SSIBILITY	(ML./G	SSIBILITY
 •	MOLE)	FACTOR	MOLE)	FACTOR
			MULTIPLICAT	ION FACTOR
 SAMPLE WEI	$GHT = C \cdot C307$	2 GMOLE	0.9	
79.31	4787.29	0.97429	4763.4	0.9694
118.13	3164.59	0.95928	3148.8	0.9545
118.13	3164.11	0.95914	3148.3	0.9543
167.45	2186.50	C•93951	2175.6	C.9348
217.08	1649.45	C.91881	1641.2	0.9142
266.86	1309.81	0.89693	1303.3	0.8924
316.72	1076.07	0.87455	1070.7	0.8702
 366.64	904.54	C.85101	900.0	0.8468
416.56	773.45	0.82675	769.6	0.8226
466.51	669.17	C.80107	665.8	0.7971
 516.47	583.68	0.77356	580.8	0.7697
616.44	451.42	C.71407	449.2	0.7105
 SAMPLE WEL	GHT = 0.1891	8 GMOLE		
419.32	769.70	C.8282C	7/5 0	
468.87	666.83	0.80230	765.9	0.8241
 518.51	582.42	C.77493	663.5	0.7983
568.22	511.41	C•74568	579.5	0.7711
617.97	450.24	0.71397	508.9	0.7420
 617.98	450.16	C.71386	448.0	0.7104
717.59	347.41	0.63972	447.9	0.7103
817.23	255.82	0.53647	345.7 254.5	0.6365
 916.47	81.94	0.19271	81.5	0.5338
1016.50	76.23	C.19884	75.9	0.1917
	71.46	0.22309		0.1979
1216.58				
 1216.58			71.1	0.2220
1416.71	68.72	0.24984	68.4	0.2486
1416.71 1616.83	68.72 66.86	0.24984 0.27739	68.4 66.5	0.2486 0.2760
1416.71 1616.83 1817.CO	68.72 66.86 65.44	0.24984 0.27739 0.30511	68.4 66.5 65.1	0.2486 0.2760 0.3036
1416.71 1616.83 1817.CO 2C17.14	68.72 66.86 65.44 64.17	0.24984 0.27739 0.30511 0.33216	68.4 66.5 65.1 63.9	0.2486 0.2760 0.3036 0.3305
1416.71 1616.83 1817.CO 2C17.14 2517.5C	68.72 66.86 65.44 64.17 61.88	0.24984 0.27739 0.30511 0.33216 0.39969	68.4 66.5 65.1 63.9 61.6	0.2486 0.2760 0.3036 0.3305 0.3977
 1416.71 1616.83 1817.CO 2C17.14 2517.5C 3C17.93	68.72 66.86 65.44 64.17 61.88 60.11	0.24984 0.27739 0.30511 0.33216 0.39969 0.46554	68.4 66.5 65.1 63.9 61.6 59.8	0.2486 0.2760 0.3036 0.3305 0.3977 0.4632
 1416.71 1616.83 1817.00 2017.14 2517.50 3017.93 3518.32	68.72 66.86 65.44 64.17 61.88 60.11 58.69	0.24984 0.27739 0.30511 0.33216 0.39969 0.46554 0.52993	68.4 66.5 65.1 63.9 61.6 59.8 58.4	0.2486 0.2760 0.3036 0.3305 0.3977 0.4632 0.5273
1416.71 1616.83 1817.CO 2C17.14 2517.5C 3C17.93	68.72 66.86 65.44 64.17 61.88 60.11	0.24984 0.27739 0.30511 0.33216 0.39969 0.46554	68.4 66.5 65.1 63.9 61.6 59.8	0.2486 0.2760 0.3036 0.3305 0.3977 0.4632

	TEMPERA	TURE = 75.00 D	EG.C.	
PRESSURI (PSIA)	E VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME	COMPRE- SSIBILITY
	MOLE)	FACTOR	MOLE)	FACTOR
			MULTIPLICAT	ION FACTOR
SAMPLE	NEIGHT = 0.0307	2 GMOLE	0.9	
93.92	4365.82	0.97663	4344.0	0,9717
118.25	3439.81	0.96882	3422.6	0.9640
118.25	3439.97	C.96887	3422.8	0.9640
167.50	2389.21	0.95318	2377.3	0.9484
217.10	1813.36	0.93767	1804.3	0.9330
266.86	1449.3C	0.92119	1442.1	0.9166
	1199.19	0.90457	1193.2	C.9001
366.59	1016.53	C.88758	1011.4	0.8831
416.52	877.13	C.87018	872.7	0.8658
466.46	766.74	0.85186	762.9	0.8476
516.42	677.51	0.83334	674.1	0.8292
616.38	541.10	C.79440	538.4	0.7904
SAMPLE W	EIGHT = 0.1891	8 GMOLE		<u></u>
469.42	762.31	0.85232	758.5	0.8481
519.05	674.30	0.83362	670.9	0.8295
568.75	601.19	C.8144C	598.2	0.8103
618.50	539.35	0.79453	536.6	0.7906
718.08	439.94	0.75244	437.7	0.7487
718.08	439.91	0.7524C	437.7	0.7486
817.79	362.75	0.70656	360.9	0.7030
917.57	300.12	0.65590	298.6	0.6526
1017.38	247.13	0.59887	245.9	0.5959
1216.97	157.69	0.45709	156.9	0.4548
1416.87	103.44	0.34908	102.9	0.3473
1616.93	87.29	0.33618	86.9	0.3345
1817.08	80.47	0.34826	80.1	0.3465
2017.18	76.33	0.36674	76.0	0.3649
2517.52	70.48	0.42259	70.1	0.4205
3017.94	66.83	C.48037	66.5	0.4780
3518.50	64.42	0.53987	64.1	0.5372
4018.97	62.55	C.59879	62.2	0.5958
4519.41	61.02	0.65690	60.7	0.6536
5019.92	59.79	0.71491	59.5	0.7113
				001113

		LE F-5. (CONT.	/	<u> </u>
	TEMPERA	TURE = 100.00	DEG.C.	
PRESSURE (PSIA)	VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME	COMPRE- SSIBILITY
	MOLE)	FACTOR	MOLE)	FACTOR
			MULTIPLICAT	
SAMPLE WEI	GHT = 0.0307	2 GMOLE	0.9	and the second se
54.19	4691.58	C.98201	1.669 1	0 0771
118.52	3705.68	C.97600	<u>4668.1</u> 3687.1	0.9771
118.52	3706.07	0.97610	3687.5	0.9711
167.73	2586.85	C.96421	2573.9	0.9712
217.31	1971.50	0.95207		0.9594
267.06	1583.5C	0.93975	1961.6 1575.6	0.9473
316.89	1316.38	0.92701	1309.8	0.9351
366.70	1121.58	0.91417	1116.0	0.9224
416.70	973.10	0.90109	968.2	0.9096
466.63	856.19	0.88785	851.9	0.8966
516.59	762.04	0.87482	758.2	0.8834
616.55	617.96	0.84668	614.9	0.8424
SAMPLE WEI	GHT = 0.1891	8 GMOLE	,	
519.27	756.67	C.87315	750.0	• • · · · ·
568.95	679.66	0.85932	752.9	0.8688
618.68	614.64	0.84504	676.3	0.8550
718.30	511.10	C.81585	611.6	0.8408
818.01	432.12	C.78551	508.5	0.8118
818.00	432.12	C•78549	430.0	0.7816
917.78	369.71	C.75403	430.0	0.7816
1017.60	318.98	C.72132	367.9	0.7503
1217.34	241.29	C. 65274	317.4	0.7177
1417.23	184.74	0.58184	240.1	0.6495
1617.18	144.06	0.58184 0.51771	183.8	0.5789
1817.31	117.77		143.3	0.5151
2017.37	102.32	0.47563	117.2	0.4733
2517.66	84.67	0.45865	101.8	0.4564
3018.07	76.87	0.47373	84.2	0.4714
3518.46	72.20	0.51555	76.5	0.5130
4018.92	69.05	0.56453	71.8	0.5617
4519.35		0.61673	58.7	0.6136
5019.85	66.59 04.75	0.66883 0.72225	66•3 64•4	0.6655 0.7186

	TEMPERA	ATURE = 125.00	DEG.C.	
PRESSURE (PSIA)	VOLUME (ML./G	CCMPRE- SSIBILITY	VOLUME (ML./G	COMPRE-
	MOLE)	FACTOR	MOLE)	SSIBILITY FACTOR
CAMPLE			MULTIPI ICA	TION FACTOR
SAMPLE WEI	GHT = 0.0307	2 GMOLE		995
118.68	3972.79	C.98198	3952.9	0.9771
167.84	2781.43	0.97228	2767.5	0.9674
167.84	2781.72	0.97238	2767.8	0.9675
217.39	2126.56	0.96282	2115.9	<u>C.9580</u>
267.12	1713.35	0.95319	1704.8	
316.94	1428.93	0.94322	1421.8	0.9484
366.82	1221.49	0.93319	1215.4	0.9385
416.73	1063.63	0.92315		0.9285
466.67	939.38	0.91301	1058.3	0.9185
516.62	839.23	0.90299	934.7	0.9084
616.58	687.08	0.88231	835.0	0.8985
716.61	576.72	0.86074	683.6 573.8	0.8779
SAMPLE WETC	HT = 0.18918			0.8564
Charles Weit	-0.1091	B GMULE		
569.24	751.22	C.89062	747.5	0.8862
618.96	682.65	0.88002	679.2	0.8756
718.56	573.51	0.85829	570.6	0.8540
818.25	490.75	0.83633	488.3	
918.02	425.79	0.81410	423.7	0.8321
918.02	425.78	0.81408	423.7	0.8100
1017.82	373.26	C.79125	371.4	C.8100
1217.50	294.08	C.74568		0.7873
1417.38	237.17	C.7C01C	292.6	0.7420
1617.33	195.01	0.65688	236.0	0.6966
1817.36	163.50	0.61884	194.0	0.6536
2017.39	140.05	C•58844	162.7	0.6157
2517.61	106.47	0.55823	139.4	0.5855
3017.97	91.03	C.5722C	105.9	0.5554
3518.30	82.63	0.60547	90.6	0.5693
4018.72	77.26	0.64668	82.2	0.6024
4519.14	73.45	C. 69127	76.9	0.6434
5019.64	70.66		73.1	0.6878
		C.73865	70.3	0.7350

TABLE F-6.	

VOLUMETRIC BEHAVIOR OF ETHANE - HYDROGEN SULFIDE SYSTEM

MIXTURE NO. 4

NOLE FRACTION ETHANE = 0.2142

	TEMPERATURE = 50.00 DEG.C.							
	PRESSURE (PSIA)	VOLUME (ML./G MOLE)	COMPRE- SSIBILITY FACTOR	VOLUME (ML./G MOLE)	COMPRE- SSIBILITY FACTOR			
	SAMPLE WEI	GHT = 0.0219	2 GMOLE	MULTIPLICAT 0.9				
	55.28	6936.95	0.98402	6888.4	0.9771			
	68.55	5562.50	C.97847	5523.6	0.9716			
	87.89	4303.52	0.97058	4273.4	0.9638			
	87.89	4303.75	C.97063	4273.6	0.9638			
	117.31	3187.09	C.95939	3164.8	0.9527			
	166.81	2193.74	0.93902	2178.4	0.9324			
	216.54	1651.96	0.91792	1640.4	0.9115			
	266.38	1310.56	0.89583	1301.4	0.8896			
	316.28	1075.15	0.87258	1067.6	0.8665			
	416.17	769.70	0.82197	764.3	0.8162			
	516.12	577.12	0.76434	573.1	0.7590			
	616.10	439.85	0.69537	436.8	0.6905			
. <u></u>	SAMPLE WEI	GHT = 0.1413	1 GMOLE					
	319.44	1067.76	0.87524	1060.3	0.8691			
	368.89	898.33	C.85036	892.0	0.8444			
	418.44	767.37	C. 82395	762.0	0.8182			
	468.10	662.63	0.79593	658.0	0.7904			
	517.83	576.14	C.76556	572.1	0.7602			
	567.62	502.85	0.73243	499.3	0.7273			
	567.65	502.82	0.73242	499.3	0.7273			
	617.48	438.86	0.69537	435.8	0.6905			
	716.73	183.59	0.33765	182.3	0.3353			
	816.38	61.30	0.12841	60.9	0.1275			
	916.45	60.37	0.14196	59.9	0.1410			
	1016.49	59.64	0.15558	59.2	0.1545			
	1216.58	58.52	0.18269	58.1	0.1814			
	1416.71	57.59	0.20937	57.2	0.2079			
	1616.88	56.82	0.23575	56.4	0.2341			
	1817.06	56.12	0.26164	55.7	0.2598			
	2017.19	55.29	0.28620	54.9	0.2842			
	2517.56	54.13	0.34974	53.8	0.3473			
	3017.98	53.10	0.41125	52.7	0.4084			
	3518.37	52.03	C•46978	51.7	0.4665			
		51.34	C.52945	51.0	0.5257			
	4618-84	21434						
	4018 <u>-</u> 84 4519 . 28	50.63	C•58716	50.3	0.5830			

	TEMPER	ATURE = 75.00 C	EG.C.	
PRESSURE (PSIA)	VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME	COMPRE- SSIBILITY
	MOLE)	FACTOR	MOLE)	FACTOR
CAMPLE		·······	MULTIPLICAT	ION FACTOR
SAMPLE WEI	GHT = 0.0219	92 GMOLE	0.9	
68.83	5999.30	0.98352		-
107.68	3790.59	0.97219	5957.3	0.9766
107.68	3789.59	0.97193	3764.1	0.9654
117.50	3461.56	<u>C.96876</u>	3763.1	0.9651
166.98	2397.58	0.95355	3437.3	0.9620
216.70	1817.84	C•93826	2380.8	0.9469
266.53	1451.03	0.92114	1805.1	0.9317
316.43	1199.37	0.90394	1440.9	0.9147
366.36	1015.19	0.88586	1191.0	0.8976
416.31		0.86749	1008.1	0.8797
516.26	674.16	C.82897	868.7	0.8614
616.25	535.74	0.78636	669.4	0.8232
		0.10030	532.0	0.7809
SAMPLE WEI	GHT = 0.1413	1 G MOLE		
365.31	1008.25	0.88689	1001.2	0.8807
418.81	872.46	0.87030	866.4	0.8642
468.46	762.71	0.85103	757.4	0.8451
518.19	673.16	<u>C.83084</u>	668.5	0.8250
568.03	598.64	0.80993	594.5	0.8043
617.84	535.64	0.78824	531.9	0.7827
617.84	535.61	C.78820	531.9	0.7827
717.67	433.60	0.74118	430.6	0.7360
817.37	353.15	0.68751	350.7	0.6827
917.20	285.72	0.62417	283.7	0.6198
1017.05	223.47	0.54132	221.9	
1116.79	134.49	0.35775	133.5	0.5375
1216.70	80.97	C.23465	80.4	0.3552
1416.80	71.34	C.24073	70.8	0.2330
1616.92	67.62	C.26045	67.1	0.2390
<u> 1817.C8 </u>	65.29	0.28258	<u> </u>	0.2586
2017.21	63.51	0.30513	63.1	0.2806
2517.56	60.47	0.36260		0.3030
3017.98	58.50	0.42053	60.0 58 1	0.3601
3518.37	56.94	0.47720	58.1	0.4176
4018.83	55.69	0.53308	56.5	0.4739
4519.25	54.51	<u>_0.5</u> 8680	55.3	0.5294
5019.76	53.64	0.64129	54.1	0.5827
			53.3	0.6368

		LE F-6. (CONT.		
	TEMPERA	TURE = 100.00	DEG.C.	
PRESSURE (PSIA)	VOLUME (ML./G	COMPRE- SSIBILITY	VOLUME (ML./G	COMPRE- SSIBILITY
		FACTOR	MOLE)	FACTOR
			MULTIPLICA	TION FACTO
SAMPLE WEI	GHT = 0.0219	2 GMOLE		993
69.02	6447.72	<u>C.58894</u>	6402.6	0.9820
117.61	3739.45	0.97733	3713.3	0.9705
117.61	3739.08	0.97723	3712.9	0.9704
167.04	2600.28	0.96523	2582.1	0.9585
216.74	1979.07	0.95321	1965.2	0.9465
266.56	1587.58	C.94042	1576.5	0.9338
316.45	1319.40	0.92784	1310.2	0.9213
416.31	974.08	0.90117	967.3	0.8949
516.25	760.84	0.87286	755.5	0.8667
616.23	616.58	C.84436	612.3	0.8384
716.26	510.92	0.81323	507.3	0.8075
CANDLE WE	IGHT = 0.1413	NI GMOLE		
SAMPLE WE	19/11 - 9+141-			
419.02	968.26	0.90161	961.5	0.8953
468.64	852.07	0.88737	846.1	0.8812
518.34	757.74	C.87282	752.4	0.8667
568.10	679.51	C.85785	674.8	0.8518
617.90	613.51	0.84242	609.2	0.8365
717.63	508.39	C.81075	504.8	0.8051
717.63	508.38	C.81074	504.8	0.8051
817.41	427.90	0.77727	424.9	0.7718
917.26	363.93	0.74183	361.4	0.7366
1017.12	311.23	0.70347	309.1	0.6985
1116.97	266.97	0.66266	265.1	0.6580
1216.90	228.56	0.61809	227.0	0.6138
1316.79	194.53	0.56924	193.2	0.5653
1416.74	163.81	0.51574	162.7	0.5121
1516.71	137.13	0.46217	136.2	0.4589
1616.70	115.78	0.41597	115.0	0.4131
1716.74	101.25	0.38628	100.5	0.3836
1816.78	92.05	C.37165	91.4	C.3690
2016.86	81.84	0.36680	81.3	0.3642
2517.14	71.19	0.39822	70.7	0.3954
	66.30	C•44458	65.8	0.4415
3017.50	63.21	0.49417	62.8	0.4907
3517.83	61.04	0.54505	60.6	0.5412
4018.25		0.59531	58.9	0.5911
4518.63	59.29 5 7. 84	0.64512	57.4	0.6406

		TAB	LE F-6. (CONT.)	
		-			
		TEMPERA	TURE = 125.00	DEG.C.	
	PRESSURE (PSIA)	VOLUME (ML•/G•-	COMPRE- SSIBILITY	VOLUME (ML./G	COMPRE- SSIBILITY
		MOLE)	FACTOR	MOLE)	FACTOR
				MULTIPLICAT	TON EACTOR
	SAMPLE WET	GHT = 0.0219	2 GMOLE	<u>HOLTIPLICA</u>	
	JANFLL HLI			0.	
	69.25	<u> 6874.02</u>	<u>C.99142</u>	6825.9	0.9845
	117.78	4006.66	0.98284	3978.6	0.9760
	117.78	4007.30	0.98300	3979.2	0.9761
	167.18	2795.87	0.97349	2776.3	C.9667
	216.88	2133.78	0.96382	2118.8	0.9571
	266.69	1717.56	0.95399	1705.5	0.9473
	316.56	1431.60	0.94385	1421.6	0.9372
	416.43	1064.87	0.92356	1057.4	0.9171
	516.35	839.26	0.90255	833.4	0.8962
	616.33	686.24	C.88089	681.4	0.8747
	716.36	575.39	0.85846	571.4	0.8524
	816.38	491.85	0.83628	488.4	0.8304
	SAMPLE WEI	GHT = 0.1413	1 GMOLE		
	468.97	934.95	0.91319	928.4	0.9068
	518.66	835.00	0.90198	829.2	0.8957
	568.42	752.31	C.89062	747.0	0.8844
	618.22	682.88	C.87926	678.1	0.8731
	717.94	572.27	C.85567	568.3	0.8497
	817.73	488.46	0.83189	485.0	0.8261
	817.73	488.46	C.83189	485.0	0.8251
	917.62	422.32	C.80710	419.4	0.8014
	1017.50	368.80	0.78153	366.2	0.7761
	1117.37	324.54	0.75525	322.3	C.7500
	1217.30	287.24	C.72825	285.2	0.7232
	1317.26	255.46	C.70084	253.7	0.6959
	1417.24	227.77	0.67230	226.2	0.6676
	1517.22	203.90	0.64433	202.5	0.6398
	1617.22	182.80	0.61570	181.5	0.6114
	1717.26	164.35	C.58778	163.2	0.5837
	1817.28	148.41	0.56172	147.4	0.5578
	1917.30	134.73	0.53799	133.8	0.5342
		123.34	0.51822	122.5	0.5146
· · · ·	2017.31	106.28	C.49079	105.5	0.4874
	2217.39		C.47950	94.6	0.4761
	2417.51	95.24	C.47927		0.4759
	2617.63	87.91		87.3	
	3017.96	78.79 72.44	0.49523	78.2	0.4918
	3518.34	72.64	C.53227	72.1	0.5285
	4018.80	68.33	C.57196	67.9	0.5680
	4519.25 5019.75	65.40 63.36	0.61560 0.66246	64.9 62.9	0.6113 C.6578
	2017.12	63.36	U. CD/4D	0/.9	U. 07/0

<u></u>		ТА	BLE F-7.			
			XTURES OF	_		
	E	THANE AND H	YDROGEN SU	LFIDE		
	· · · · · · · · · · · · · · · · · · ·	TEMPERATUR	E = 50.00	DEG.C.		
			NOLE FORCE			
	PRESSURE	0 7755		ION ETHANE		
	(PSIA)	0.7755	0.6352	0.3995	0.2142	
	100.0	0.9685	C.9689	0.9698	0.9676	
	150.0	0.9549	0.9537	0.9540	0.9519	
	200.0	0.9398	0.9379	0.9384	0.9369	
	250.0	0.9251	0.9219	0.9222	0.9204	
	300.0	0.9094	0.9056	0.9056	0.9032	
	350.0	0.8938	0.8887	0.8888	0.8869	
	400.0	0.8761	0.8715	0.8715	0.8706	
	450.0	0.8594	0.8556	0.8547	0.8523	
	500.0	0.84C8	0.8384	0.8367	0.8325	
	600.0	0.8043	0.8008	0.7980	0.7905	
	700.0	0.7644	0.7610	0.7565	0.7447	
	800.0	0.7220	0.7188	0.7115	0.6925	
	900.0	0.6782	0.6737	0.6619	0.6317	
	1000.0	0.6318	0.6251	0.6063	0.5565	
	1200.0	0.5364	0.5202	0.4667	0.2327	
	1400.0	0.4630	0.4356	0.3536	0.2408	
	1600.0	0.4354	0.4058	0.3337	0.2567	
	1800.0	0.4368	0.4087	0.3450	0.2787	
	2000.0	0.4511	0.4241	0.3631	0.3010	
	2500.0	0.5057	0.4787	0.4185	0.3581	
	3000.0	0.5683	0.5408	0.4758	0.4155	
	3500.0	0.6345	0.6038	0.5350	0.4718	
	4000.0	0.6984	0.6675	0.5936	0.5273	
	4500.0	0.7637	0.7304	0.6514	0.5807	
	5000.0	0.8240	0.7935	0.7090	0.6346	

TABLE F-7. (CONT.)

PRESSURE		MOLE FRACT	ION ETHANE	
(PSIA)	0.7755	0.6352	0.3995	0.2142
				0.2142
100.0	0.9742	0,9754	0.9757	0.9750
150.0	0.9606	0.9636	0.9636	0.9625
200.0	0.9522	0.9512	0.9516	0.9506
250.0	0.9404	0.9390	0.9393	0.9380
300.0	0.9299	0.9266	0.9266	0.9255
350.0	0.9162	0.9141	0.9139	0.9131
400.0	0.9048	0.9013	0.9009	0.9004
450.0	0.8907	0.8884	0.8878	0.8865
500.0	0.8782	0.8755	0.8742	0.8721
600.0	0.8515	0.8487	0.8462	0.8421
700.0	0.8232	C.8207	0.8172	0.8107
0.006	0.7949	0.7922	0.7871	0.7778
900.0	0.7660	0.7630	0.7559	0.7429
1000.0	0.7369	0.7332	0.7235	0.7052
1200.0	0.6788	0.6728	0.6555	0.6215
1400.0	0.6260	0.6147	0.5849	0.5211
1600.0	0.5818	0.5660	0.5199	0.4198
1800.0	0.5559	0.5342	0.4759	0.3707
2000.0	0.5432	0.5200	0.4571	0.3637
2500.0	0.5591	0.5344	0.4699	0.3938
3000.0	0.6021	0.5776	0.5112	0.4397
	0.6543	C.6301	0.5599	0.4889
4000.0	0.7108	0.6855	0.6116	
4500.0	D.7678	0.7424	0.6635	0.5394
5000.0	0.8240	0.8000	0.7165	0.5893 0.6387

TABLE F-7. (CONT.)

TEMPERATURE = 100.00 DEG.C.

	PRESSURE		MOLE FRACT	ION ETHANE	
	(PSIA)	0.7755	0.6352	0.3995	0.2142
	100.0	0,9794	0,9805	0.9803	0.9795
	150.0	0.97C6	C.9712	0.9710	0.9699
	200.0	0.9617	0.9617	0.9613	0.9604
	250.0	0.9538	0,9521	0,9518	0,9506
	300.0	0.9442	0.9425	0.9419	0.9406
	350.0	0.9343	0.9329	0.9319	0.9305
	400.0	0.9257	0.9232	0.9219	0.9203
	450.0	0.9156	0.9135	0.9119	0.9106
	500 . 0	0.9043	0.9039	0.9019	0.9000
	500.0	0.8848	0.8819	0.3796	0.8772
	700.0	0.8639	0.8612	0.8580	0.8539
	800.0	0.8439	0.8403	0.8361	0.8303
	C.00e	0.8223	0.8194	0.8140	0.8059
	1000.0	0.8024	0.7986	0.7914	0.7805
	1200.0	0.7621	0.7571	0.7459	0.7279
	1400.0	0.7257	0.7175	0.7005	0.6725
	1600.0	0.6506	0.6819	0.6572	0.6163
	1800.0	0.6666	0.0521	0.6187	0.5621
	2000.0	0.6455	0.6302	C.5878	0.5177
	2500.0	0.6331	0.6130	0.5556	0.4750
	3000.0	0.6553	0.6321	0.5683	0.4907
	3500.0	0.6935	0.6692	0.6011	0.5270
······	4000.0	0.7400	0.7148	0.6418	0.5664
	4500.0	0.7882	0.7628	0.6861	0.6095
	5000.0	0.8403	0.8137	0.7331	0.6578
	5000.0	0.0403	V+0151	0.1991	0.0010

			F-7, (CON1		
		TEMPERATUR	RE = 125.00) DEG.C.	
	PRESSURE		MOLE FRACTION ETHANE		
	(PSIA)	0.7755	0.6352	0.3995	<u>i.2142</u>
	100.0	0.9596	C.9608	0.9617	0.9592
	150.0	0.9410	0.9411	0.9418	0.9394
	200.0	0.9229	0.9208	0.9214	0.9186
	250.0	0.9010	0.9001	0.8999	0.8966
	300.0	0.8816	0.8781	0.8777	0.8768
	35C•C	0.8570	0.8547	0.8545	0.8542
	400.0	0.8345	0.8336	0.8326	0.8281
	450.0	0.8088	C.8084	0.8084	0.8007
	500.0	0.7829	0.7822	0.7814	0.7713
	600.0	0.7272	0.7255	0.7220	0.7050
	700.0	0.6627	0.6602	0.6512	0.4709
	800.0	0.5860	0.5803	0.5629	0.1245
	9.039	0.4847	0.4621	0.1885	0,1363
	1000.0	0.3600	C.3057	0.1957	0.1503
	1200.0	0.2973	0.2656	0.2197	0.1792
	1400.0	0.3161	C.2930	0.2463	0.2058
	1600.0	0.3428	0.3204	0.2737	0.2319
	1800.0	0.3717	0.3490	0.3012	0.2576
·	2000.C	0.4004	0.3778	0.3282	0.2821
	250C.C	0.4745	C.4505	0.3954	0.3451
	3000.0	0.5489	0.5217	0.4609	0.4062
	<u>350C.C</u>	0.6207	0.5924	0.5249	0.4643
	4000.0	0.6930	0.6626	0.5890	0.5235
	4500.0	0.7634	0.7299	0.6506	0.5809
	5000.0	0.8296	0.7982	0.7119	0.6352

.