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Abstract

We investigate the production of fast ejecta from the contact interface in

coalescing binary neutron stars. This ejecta expands rapidly enough (veloci-

ties & 0.6c) that the r-process freezes out, generating an ultraviolet precursor

to the kilonova powered by the decay of free neutrons. Previous work using

grid-based simulations has reached inconclusive results about the amount of

this fast ejecta produced in the merger, partly due to an inability to numer-

ically resolve the surface layers of the colliding stars. These results stand in

contrast to those from simulations using particle-based hydrodynamic methods

(SPH), which yield much higher values of free neutron ejecta. Here we report

the development and preliminary results of axisymmetric grid-based merger

simulations that include the dominant physics in approximate form in order

to examine the production of these ejecta at high resolutions not achievable in

three dimensional models. At the resolutions studied thus far ({281.3, 140.6,

70.3} m equivalent to {2.2, 1.1, 0.56} % of the stellar radius, or ∼{70.3, 35.2,

17.6} times the pressure scale height at 99% of the neutron star radius), we find

that the mass of fast ejecta has only a weak resolution dependence, suggesting

that simulations of this ejecta component may be close to converging. Our

results therefore cannot yet resolve the tension in ejecta masses produced by
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SPH and grid-based binary neutron star merger simulations as a pure numerical

resolution effect.
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Preface

This thesis is original work by Coleman Dean. The FLASH simulation was

built starting from an existing setup originally developed by Rodrigo Fernández

to collide white dwarfs head-on. We have a journal manuscript in preparation,

some text (mostly in the methods section, particularly Section 3.2) has been

taken from the manuscript and adapted to this thesis format.
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“the only difference between screwing around and science is writing it down.”

Adam Savage
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Chapter 1

Introduction

Second only to black holes, neutron stars are the densest objects in the uni-

verse. The first neutron star, discovered as a radio pulsar (PSR B1919+21), a

regularly repeating radio source, was found by Hewish et al. (1968). However,

pulsars were later found to emit in other wavelengths as well. Pulsar emission

is generally understood as arising from neutron stars with a dipole magnetic

field inclined relative to their axis of rotation. Particles accelerated by this

dipole magnetic field emit syncrotron radiation in a cone, in the direction of

the dipolar axis (Karttunen et al., 2017). Neutron star masses can be measured

from binary pulsars through the use of pulse timing, thereby measuring orbital

parameters of the binary system to derive the individual masses (e.g., Hulse

and Taylor 1975).

The equation of state of dense matter, particularly at the extreme densities

present within a neutron star (which exceed the density of atomic nuclei),

is largely unknown due to the non-trivial nuclear physics at work (Shapiro

and Teukolsky, 1983). Similarly, due to their extreme density, neutron stars

exist in the general relativistic regime with implications on their structure.

Numerous theoretical models for this equation of state have been proposed

in order to describe the relation between pressure, density, and temperature

within a neutron star. Plausible models can be constrained by both theoretical
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limits from physical effects (e.g., causality of the speed of sound, cs < c; Read

et al. 2009), and empirical limits imposed by observations of neutron stars.

The coalescence of binary neutron stars is the natural outcome of the orbital

decay due to the emission of gravitational waves, as in the Hulse-Taylor pulsar.

The timescale for decay is long, however, with most galactic binaries taking

longer than a Hubble time to merge. Nevertheless, the immense volume of space

to which laser interferometers such as advanced LIGO or advanced Virgo are

sensitive to gravitational waves from binary neutron star mergers from distant

galaxies, leads to a non-negligible detectable binary neutron star merger rate

(290−2810 Gpc−3yr−1, by Abbott et al. 2020). Despite being a rare occurrence,

these mergers were long predicted to be astrophysically interesting: as a source

for the production of heavy elements (Lattimer and Schramm, 1974) and a

progenitor of short Gamma Ray Bursts (Paczynski 1986 and Eichler et al.

1989).

With the advent of advanced LIGO, and advanced Virgo, gravitational

waves have been detected directly. Initially, this was only the case for binary

black hole mergers (Abbott et al., 2016), but on August 17th, 2017 the first

binary neutron star merger GW170817 was observed. After the detection alert,

electromagnetic follow-up observations confirmed that neutron star mergers are

both progenitors of sGRBs and produce r-process elements via the detection of

an associated high energy emission (GRB170817) and kilonova (AT 2017 gfo)

(Abbott et al. 2017a, Abbott et al. 2017b, and references therein).

The material ejected from merging binary neutron stars, which is hot ex-

panding matter rich in neutrons, produces an ideal environment for the pro-

duction of elements with atomic number Z > 30 via the rapid neutron capture

process (r-process) (Cowan et al., 2019). The majority of the ejected material

moves at sub-relativistic velocities (v < 0.3c). Most of the isotopes initially

produced in this process are unstable and undergo beta-decay, thereby pow-

ering an optical / infrared transient commonly known as a kilonova (Li and
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Paczyński 1998, and Metzger et al. 2010).

1.1 Fast Ejecta and the Neutron Precursor

In addition to the kilonova, as first envisioned by Kulkarni (2005), and worked

out by Metzger et al. (2015), material ejected rapidly enough (expansion ve-

locity v & 0.6 c) can generate a precursor to the kilonova powered by the

decay of free neutrons on a timescale of hours after the merger. These neu-

trons are expected to travel fast enough at the forefront of the expanding ejecta

that neutron capture is inefficient, thereby freezing out the r-process. Ejection

of fast material in a shock breakout was witnessed initially in simulations by

Sekiguchi et al. (2011), Paschalidis et al. (2012), and Bauswein et al. (2013).

The r-process freeze-out in these fast travelling neutrons seen in Bauswein et al.

(2013), was further discussed by Goriely et al. (2014), and the neutron precursor

was predicted to peak in the Ultra-Violet on a timescale of hours after merger

by Metzger et al. (2015). In the case of GW170817, the first optical counterpart

was detected 10 hours after the merger due to the timing of the event and the

telescopes available to observe it, thus a neutron-powered precursor, if existing,

would not have been seen. Further, Arcavi (2018) found that the uncertainty

in the ultraviolet flux from the first observations of GW170817 was too large to

constrain early emission mechanisms or free neutron ejecta mass. More recent

observing runs of LIGO/Virgo issue public alerts on a timescale of seconds, so

optical follow up on a timescale of hours is technically feasible.

Other mechanisms have been suggested to generate an Ultra-Violet precur-

sor such as cocoon emission, where a relativistic jet punches through previous

ejected material creating a heated, shocked cocoon (Piro and Kollmeier, 2018),

or reheating such that the merger remnant injects energy into ejected material

via a magnetized wind (Metzger et al., 2018). Here, however, we focus on the

fast ejecta from the neutron star contact interface. While this fast ejecta has
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previously been seen in sufficient amounts to produce a detectable precursor in

Smoothed Particle Hydrodynamics (SPH) simulations (Bauswein et al. 2013),

grid based simulations have shown reduced ejection of fast material in ten-

sion with the SPH finding (Kiuchi et al. 2017, Radice et al. 2018b, and Ishii

et al. 2018). It has been suggested by Kyutoku et al. (2014) that in order

to resolve the fastest components of the ejecta from the contact interface (a

shell of thickness . Rcrust/30, where the crust of the neutron star has thick-

ness Rcrust ≈ 1km), <10m spatial resolution would be required, to accurately

capture the dynamics. This is currently unfeasible with a three dimensional

simulation.

Here we develop and carry out axisymmetric grid-based merger simulations

that include, in approximate form, the dominant physics necessary for the

ejection of material in the contact plane, in order to examine the production of

this ejecta at high resolutions not achievable in three dimensional models. We

present preliminary results of our study at resolutions of {281.3, 140.6, 70.3}
m equivalent to {2.2, 1.1, 0.56} % of the stellar radius, or ∼{70.3, 35.2, 17.6}
times the pressure scale height at 99% RNS.

The structure of this thesis is the following. Chapter 2 discusses the design

of our numerical experiment, the coordinate system chosen, orbital motion,

gravitational wave emission, and inertial forces. In Chapter 3, the computa-

tional method is discussed. This includes the equation of state chosen, physical

approximations implemented, initial set-up, hydrodynamics, models evolved,

and how data is extracted from FLASH. Chapter 4 covers the results of the

simulations run, Chapter 5 discusses conclusions, and Appendix A discusses

optimizations implemented into the code.
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Chapter 2

Numerical Experiment Design

In this chapter we describe the physical assumptions that enter our simula-

tions. We model the collision in two dimensional cylindrical coordinates, using

Newtonian hydrodynamics, and a piece-wise polytropic equation of state with

approximate thermal effects in order to investigate whether the ejecta velocity

distribution (particularly the high velocity tail) has a spatial resolution depen-

dence, reducing the computational workload relative to a 3D simulation while

maintaining the hydrodynamic forces responsible for this contact plane ejecta.

In the following sections I will discuss the implemented geometry and physics

used.

2.1 2D Cylindrical Coordinates

We set up our simulation in two-dimensional cylindrical coordinates on the ρ−z

plane, with ρ the cylindrical radius and z the azimuthal symmetry axis, such

that our domain is rectangular (twice as long in the z direction as it is in the

ρ direction). Two neutron stars are placed symmetrically about the equatorial

plane, such that the star centers are at (0, zcenter), and (0,−zcenter). While the

neutron stars appear semi-circular in shape with rotational symmetry about

the z-axis, if we consider the ϕ-direction the full spherical neutron star is being
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modeled as illustrated in Figure 2.1.

We account for orbital motion by employing a co-rotating frame with con-

stant angular velocity ω about the cylindrical radial axis (ρ). We choose this

angular frequency to match that of the neutron stars at t = 0. Due to gravita-

tional radiation losses that will be discussed in Section 2.3, however, the stars

after time t = 0 will not rotate as a rigid body with angular velocity ω, thus the

stellar fluid rotates relative to the frame for t > 0. This co-rotational reference

frame was chosen as it is the only way to model an orbiting binary system in

two dimensions, given that the axis-symmetry reproduces the stars spherical

shape, and each star orbits the ρ-axis. A Keplerian orbit test, maintaining

orbital seperation without the emission of gravitational waves confirms this.

2.2 Orbital Motion

Orbital motion is accounted for by keeping track of the specific angular momen-

tum of stellar material around the orbital axis. Given the assumed symmetries,

this quantity is a scalar. The stars orbit around the ρ axis, and due to the use

of an initially co-rotating reference frame, the stars are assumed to remain

approximately in the simulation plane throughout the short inspiral process.

Thus the inspiral of the binary neutron star system in the co-rotating reference

frame appears as velocity of each star toward the origin along the z-axis.

Due to the emission of gravitational waves, the stars inspiral together. The

rate of change of the orbital separation d for two point masses with respect to

time is given by (Padmanabhan, 2010):

〈
ddGW

dt

〉

= −64G3

5c5
m1m2(m1 +m2)

d3(1− e2)7/2

(

1 +
73

24
e2 +

37

96
e4
)

, (2.1)

where the angle brackets denote the average rate of decrease due to the emission

of gravitational waves, m1,2 are the masses of the two neutron stars, G is the

gravitational constant, c is the speed of light, and e is the eccentricity of the
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Figure 2.1: Schematic of two dimensional cylindrical geometry of the merger
simulation with rotation of the frame indicated by the rotation rate ω, and
its direction. The axis of cylindrical symmetry is z, with azimuthal angle ϕ.
Spherical geometry of the neutron stars is illustrated representing the effect of
cylindrical symmetry.
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Since we are modelling an inspiral, we know the initial orbital speed will be

smaller than the Keplerian orbital velocity for a given initial orbital separation

d,

vorb < vK =
1

2

√

GM

d
, (2.5)

where vK is the initial Keplerian velocity of each star in the laboratory frame.

Thus our initial orbital parameters for each of the neutron stars are:







|aj| = zcenter

|vz,j| = 1
2

∣
∣
∣
∣
ḋGW

∣
∣
∣
∣
= 1

2
64
5

G3

c5
µM2

d3

vorb,j < vK = 1
2

√
GM
d
.

(2.6)

Where aj is positive (negative), and vz,j is negative (positive) for the neutron

star above (below) the ρ-axis. Here j = 1, 2 denotes which neutron star we are

referring to, vz,j is the initial inward radial velocity for neutron star j due to the

emission of gravitational waves, in our case this velocity is directed along the

z−axis, and vorb,j is the initial orbital velocity of neutron star j, which defines

the angular rotation rate of the co-rotating reference frame ω. To derive the

initial orbital velocity we can use a conservation of energy argument in the

centre of mass frame (Figure 2.2, right pane) comparing the energy of a binary

at infinite separation (d → ∞ limit) E∞, to our initial condition (d = 2 ·zcenter)
Ei, see Figure 2.3.

UG,∞ + EK,∞ = UG,i + EK,i + |Eloss,GW |, (2.7)

where UG is the gravitational potential energy, EK is the kinetic energy, the

∞, and i labels represent the two states (infinite separation ∞, and initial

separation i), and |Eloss,GW | is the absolute value of the total energy that is

radiated away from the binary system due to gravitational wave emission to
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bring it from infinite separation to the initial separation considered in this

simulation (thus UG,i is more negative than it would be without GW emission).

We can rewrite this equation in terms of energy per unit reduced mass,

uG,∞ + eK,∞ = uG,i + eK,i +
1

µ
|Eloss,GW |, (2.8)

where uG = UG/µ, and eK = EK/µ. The average rate of energy loss due to the

emission of gravitational waves
〈
dE
dt

〉
is given by (Padmanabhan, 2010):

〈
dE

dt

〉

= −32G4

5c5
m2

1m
2
2(m1 +m2)

d5(1− e2)7/2

(

1 +
73

24
e2 +

37

96
e4
)

. (2.9)

Once again considering the limiting case of e = 0, and taking advantage of

Equations 2.2 & 2.3 we can rewrite Equation 2.9 as

〈
dE

dt

〉

= −32G4

5c5
µ2M3

d5
. (2.10)

This energy loss rate can then be used to calculate the total energy loss due

to the emission of gravitational waves between our two energy states (infinite

separation, and initial separation):
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Eloss,GW =

∫ ti

0

−32

5

G4

c5
µ2M3

d5
dt

Eloss,GW = −32

5

G4

c5
µ2M3

∫ ti

0

1

d5
dt

Eloss,GW = −32

5

G4

c5
µ2M3

∫ 2·zcenter

∞

1

d5
dd
dd
dt

Eloss,GW = −32

5

G4

c5
µ2M3

∫ 2·zcenter

∞

1

d5
dd

−64
5

G3

c5
µM2

d3

Eloss,GW =
G

2
µM

∫ 2·zcenter

∞

1

d2
dd

Eloss,GW =
G

2
µM

[

− 1

d

]2·zcenter

∞

Eloss,GW = −G

2

µM

2 · zcenter
= −G

2

µM

2 · a = −G

2

µM

d
.

(2.11)

Replacing this result into Equation 2.7 we get,

✘✘✘✘✿0uG,∞ +✘✘✘✘✿0eK,∞ = uG,i + eK,i +
1

µ

G

2

µM

d
(2.12)

Where we choose to anchor our potential energy such that lima→∞ uG → 0,

and the kinetic energy at infinity is neglected due to its small magnitude.

Substituting into Equation 2.12:

0 = uG,i + eK,i +
G

2

M

d

0 = −GM

d
+

1

2
v2rm +

1

2

GM

d

−1

2

GM

d
= −GM

d
+

1

2
v2rm,

(2.13)

where vrm is the total speed of the reduced mass, and we can see that the total

energy in the initial state is different from zero due to the energy radiated away

as gravitational waves. Solving for v2rm:
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v2rm =
GM

d
(2.14)

The initial speed of the reduced mass vrm can be broken down further into

orbital and radial components:

vrm =
√

v2orb,rm + v2z,rm, (2.15)

substituting this into Equation 2.13 we get

v2orb,rm + v2z,rm =
GM

d

v2orb,rm + ḋ2GW =
GM

d

vorb,rm =

√

GM

d
− ḋ2GW

(2.16)

Transforming to the laboratory frame to recover the individual neutron star

initial orbital velocities in the code, we get:

|vorb,j| =
1

2

√

GM

d
− ḋ2GW , (2.17)

where ḋGW is given by equation 2.4. Similarly the initial z velocity in the

laboratory frame is given by Equation 2.6. The co-rotating reference frame

angular rotation rate is obtained from the orbital velocity of the reduced mass:

ω =
1

d

√

GM

d
− ḋ2GW . (2.18)

With our initial orbital parameters derived for the simulation, we can now

discuss how these are implemented in FLASH. Since we are using a co-rotating

reference frame, orbital motion occurs perpendicular to the ρ-z plane. Motion

is tracked with a scalar specific angular momentum variable, initially defined

as:
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Lorb,j = mj(rj × vj)

Lorb,j = mj||rj||||vj||✘✘✘✘✿1
sin(θ) n̂

ℓorb,j = vorb,jaj ρ̂

ℓorb,j = ||ℓorb,j|| = vorb,jaj

(2.19)

Where Lorb is the orbital angular momentum, ℓorb = Lorb/m, is the orbital

angular momentum per unit mass, θ is the angle between r and v (sin(θ) → 1

for a nearly circular orbit) , where ||r|| is the distance from the rotation axis,

and v, the orbital velocity vector (−vorb,i · sgn(z)ϕ̂). Lastly, n̂ is the unit vector

perpendicular to r̂ and v̂, ρ̂ = ẑ × (−ϕ̂) for z > 0, and ρ̂ = (−ẑ)× ϕ̂ for z < 0.

The initial specific angular momentum scalar of the system is shown in Figure

2.4.

The angular momentum is implemented as a “mass scalar” variable in

FLASH, initially set according to Equation 2.19, which is then allowed to advect

with material as it moves throughout the domain. Besides advection, the spe-

cific angular momentum is modified by gravitational wave emission and torques

due to the Coriolis force in an operator-split way. This will be discussed in more

detail later in this chapter.

2.2.1 Fictitious Forces

The use of a co-rotating reference frame introduces fictitious forces. Here I

will derive those forces, following Fetter and Walecka (2003), and discuss their

implementation in FLASH.

Consider an inertial (non-accelerating) reference frame with a set of or-

thonormal coordinate axes êi where an arbitrary vector v can be written as a

linear combination of those 3 orthogonal coordinates:
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vi · ûi = viB. (2.23)

We can also write out the derivative of vector v in terms of the individual

bases:

(
dv

dt

)

inertial

=
dvi

dt
êi =

dv1

dt
ê1 +

dv2

dt
ê2 +

dv3

dt
ê3. (2.24)

Similarly in terms of the rotating basis vectors:

(
dv

dt

)

inertial

=
dviB
dt

ûi + viB
dûi

dt
. (2.25)

Where Equation 2.24 only has one term due to êi being stationary with time,

while the time derivative returns two terms in Equation 2.25 since ûi = ûi(t).

Notice in Equation 2.25, the first term is simply the rate of change of v in the

body frame:

(
dv

dt

)

body

=
dviB
dt

ûi. (2.26)

Substituting this back into Equation 2.25 we obtain:

(
dv

dt

)

inertial

=

(
dv

dt

)

body

+ viB
dûi

dt
, (2.27)

where Equation 2.27 holds for any vector v. If we consider ûi(t) to be a rotating

coordinate system, we can break that rotation down into infinitesimal rotations.

Time t and t+dt have corresponding basis vectors ûi(t) and ûi(t+dt) = ûi+dûi

(Figure 2.6).

Keeping in mind the basis vectors are all orthonormal to one another, thus

the identity:

ûi · ûj = δij, (2.28)
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tion 2.30 we can see that all dΩi
i = 0 for i = 1, 2, 3, and we can write in

general,

dûi · ûj = dΩj
i (2.32)

as the coefficient is just the length of vector dûi projected onto unit vector ûj.

In reality dΩ is a matrix of coefficients:

dΩ =








0 dΩ2
1 dΩ3

1

dΩ1
2 0 dΩ3

2

dΩ1
3 dΩ2

3 0








(2.33)

where each element obeys Equation 2.32. So for example, Ω2
1 = dû1 · û2 and

Ω1
2 = dû2 · û1. If we take the differential of Equation 2.28 we get:

dûi · ûj + ûi · dûj = 0, (2.34)

which implies

dΩij = −dΩji. (2.35)

This suggests that this rotational transformation is defined only by 3 inde-

pendent coefficients dΩ12, dΩ23, and dΩ31 which from here on out we define

as:

dΩ12 ≡ dΩ3

dΩ23 ≡ dΩ1

dΩ31 ≡ dΩ2

(2.36)

Thus we can write as a vector in terms of rotating basis ûi:
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dΩ = dΩ1û1 + dΩ2û2 + dΩ3û3 (2.37)

Following Equation 2.31 we can write out the infinitesimal basis vectors in

terms of the infinitesimal rotation coefficients:

dû1 = ✚
✚✚❃

0
dΩ1

1û1 + dΩ2
1û2 + dΩ3

1û3

dû2 = dΩ1
2û1 +✚

✚✚❃
0

dΩ2
2û2 + dΩ3

2û3

dû3 = dΩ1
3û1 + dΩ2

3û2 +✚
✚✚❃

0
dΩ3

3û3

(2.38)

which written in terms of the coefficients dΩ1, dΩ2, and dΩ3 as:

dû1 = dΩ3û2 − dΩ2û3

dû2 = −dΩ3û1 + dΩ1û3

dû3 = dΩ2û1 − dΩ1û2

(2.39)

which can be written more compactly as:

dûi = dΩ× ûi (2.40)

as for example

dû1 = dΩ×ûi =

∣
∣
∣
∣
∣
∣
∣
∣
∣

û1 û2 û3

dΩ1 dΩ2 dΩ3

1 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0û1−(−dΩ3)û2+(−dΩ2)û3 = dΩ3û2−dΩ2û3

(2.41)

Keep in mind dΩ represents the infinitesimal rotation of the non-inertial

reference frame ûi, but as you can also write dΩ =
∑

i dΩiûi and thus it can
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is given by dûi:

dûi =
dûi

dt
dt (2.43)

using Equation 2.40:

dûi =
dûi

dt
dt =

dΩ

dt
× ûidt = ω × ûidt (2.44)

where ω is the rate of rotation written as a vector with direction pointing in the

direction of the axis of rotation, or in other words, the instantaneous angular

velocity of the rotating frame, as seen in the inertial frame.

ω ≡ dΩ

dt
(2.45)

Substituting this identity into Equation 2.27 we get:

(
dv

dt

)

inertial

=

(
dv

dt

)

body

+ viB(ω × ûi)

=

(
dv

dt

)

body

+ ω × v

(2.46)

Keeping in mind that ω is a vector, like any other vector, ω can be written

in terms of any frame that consists of unit vectors making up a complete set.

Thus substituting ω into Equation 2.46 as our arbitrary vector v we find:

(
dω

dt

)

inertial

=

(
dω

dt

)

body

+✘✘✘✘✿0
ω × ω

(
dω

dt

)

inertial

=

(
dω

dt

)

body

(2.47)

So whether in the inertial or body frame, the observers agree on the rate of

change of the instantaneous angular velocity.

22



Now we consider the effect of the rotations on accelerations, and thus the

addition of any fictitious forces. If we choose our arbitrary vector v to be a

position vector r we have:

(
dr

dt

)

inertial

=

(
dr

dt

)

body

+ ω × r. (2.48)

Since Equation 2.48 holds true for any vector, time derivatives of any vector

obeys the operator:

(
d

dt

)

inertial

=

(
d

dt

)

body

+ ω × . (2.49)

Therefore to get the acceleration we simply apply this operator to r twice:

(
d2r

dt2

)

inertial

=

[(
d

dt

)

body

+ ω ×
][(

dr

dt

)

body

+ ω × r

]

=

(
d2r

dt2

)

body

+

(
d

dt

)

body

(ω × r) + ω ×
(
dr

dt

)

body

+ ω × (ω × r)

=

(
d2r

dt2

)

body

+

(
dω

dt

)

body

× r+ ω ×
(
dr

dt

)

body

+ ω ×
(
dr

dt

)

body

+ ω × (ω × r)

=

(
d2r

dt2

)

body

+ 2ω ×
(
dr

dt

)

body

+
dω

dt
× r+ ω × (ω × r)

(2.50)

Resulting in the fictitious acceleration formula:

(
d2r

dt2

)

body

=

(
d2r

dt2

)

inertial

−2ω ×
(
dr

dt

)

body
︸ ︷︷ ︸

aCoriolis

−dω

dt
× r

︸ ︷︷ ︸

aEuler

−ω × (ω × r)
︸ ︷︷ ︸

aCentrifugal

(2.51)

For operational simplicity, we choose a coordinate system that rotates at

constant angular velocity, while keeping track of variations of the rotation rate

of each fluid element relative to this uniformly rotating frame via the angular
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momentum scalar. The Euler term above is therefore zero.

With our simulation setup in cylindrical coordinates following the geometry

shown in Figure 2.1, we can derive the fictitious accelerations in terms of the

simulation parameters. If material in a cell is located at position:

r = ρρ̂+ zẑ, (2.52)

and has velocity in the co-rotating frame

v = vρρ̂+ vz ẑ (2.53)

the centrifugal acceleration is given by:

acentrifugal = −ω × (ω × r) (2.54)

where ω = ωρ̂. Using Equation 2.52,

ω × r = −ωzϕ̂ = ω|z|ξ̂. (2.55)

Where ξ̂ is the unit vector representing rotation about the ρ-axis (orbital di-

rection) as seen in Figure 2.8. In terms of the standard cylindrical coordinates:

ξ̂ =







−ϕ̂ z > 0

ϕ̂ z < 0

= −sgn(z)ϕ̂. (2.56)

It is also convenient to define ζ̂ as a unit vector pointing away from the rotation

axis ρ in the simulation domain (Figure 2.8) such that it is defined as:

ζ̂ =







ẑ z > 0

−ẑ z < 0

= sgn(z)ẑ. (2.57)

Similarly we can write ω × (ω × r) as:
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Figure 2.8: Unit vector directions in the simulation. It is convenient to define
ξ̂ as the orbital direction for rotation about the ρ-axis, and ζ̂ as the direction
away from the rotation axis ρ.
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ω × (ω × r) = −ω2zẑ = −ω2|z|ζ̂ . (2.58)

Thus the Centrifugal force is given by:

Fcentrifugal = mω2zẑ = mω2|z|ζ̂ . (2.59)

and thus

acentrifugal = ω2zẑ = ω2|z|ζ̂ . (2.60)

The Centrifugal acceleration is implemented into the existing FLASH routine

hy ppm force which adds the fictitious acceleration as a source term within the

Hydro module during each time-step evolution. In the co-rotating frame, which

is rotating at angular velocity ω, the centrifugal fictitious force per unit mass

(acceleration) is added in the form:

f centrifugal = ω2|z| · sgn(z) · ẑ, (2.61)

where sgn(z) ẑ is pointing away from the ρ-axis.

The Coriolis force is given by:

Fcoriolis = −2mω ×
(
dr

dt

)

body

, (2.62)

where,

(
dr

dt

)

body

= vbody = vρρ̂+ vz ẑ + vξ,frameξ̂, (2.63)

is the fluid velocity in the co-rotating frame, and

vξ,frame = vξ,lab − ω|z|, (2.64)
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is the rotational velocity in the co-rotating frame, with vξ,lab the rotational

velocity in the laboratory frame. For convenience, hereafter we refer to vξ,frame

as vξ. Therefore we can write,

ω × vbody = −ωvzϕ̂+ ωvϕẑ = ω sgn(z) (vzξ̂ − vξ ẑ) (2.65)

where vϕϕ̂ = vξ ξ̂, and vϕ = −sgn(z) vξ (The sign factor of the velocity compo-

nent and unit vector cancel out). So the Coriolis force is given by:

Fcoriolis = 2mωvzϕ̂− 2mωvϕẑ = 2mω(vzϕ̂− vϕẑ) = 2mω sgn(z) (vξ ẑ− vzξ̂)

(2.66)

and the Coriolis acceleration is given by:

acoriolis = 2ω(vzϕ̂− vϕẑ) = 2ω sgn(z) (vξ ẑ− vzξ̂) (2.67)

The Coriolis force therefore acts both in the z-direction as well as in the ξ-

direction. By acting in the orbital direction, a torque is introduced which mod-

ifies the angular momentum. This is accounted for by implementing a source

term in the Cooling module of FLASH which modifies the angular momentum

of material within individual cells in between calls to the hydrodynamic solver

(“operator-split”). The z Coriolis force is added as a fictitious acceleration in

the function hy ppm force which acts in addition to the centrifugal force, of

the form:

f coriolis,z = 2ωvξsgn(z)ẑ. (2.68)

Where the sgn(z) factor accounts for how the orbital direction is represented

in terms of ϕ (See Figure 2.1). For the ξ̂ Coriolis force,

f coriolis,ξ = −2ωvzsgn(z)ξ̂ (2.69)
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we convert this acceleration into a dimensionless source term to the angular

momentum below. To do this we will evolve ℓorb as

ℓn+1
orb = ℓnorb(1 + Scoriolis) = ℓnorb

(

1 +
∆ℓorb
ℓnorb

)

(2.70)

where n labels the time step, and Scoriolis is the source term to the angular

momentum corresponding to the Coriolis force. Thus we need to calculate the

torque per unit mass

ℓ̇orb =
τ

m
= r⊥ × f coriolis,ξ

∆ℓorb
∆t

= r⊥
∆v

∆t

∆ℓorb = ∆v|z|.

(2.71)

If we discretize the Coriolis acceleration as:

acoriolis =
∆v

∆t
(2.72)

thus

∆v = acoriolis∆t = −2ωvzsgn(z)∆t. (2.73)

Substituting this into Equation 2.71, the source term can be written as:

Scoriolis =
∆ℓorb
ℓorb

=
∆v|z|
ℓorb

=
−2ωvzsgn(z)∆t|z|

ℓorb
. (2.74)

Writing ω in terms of ℓorb we have:

ω =
ℓorb
|z|2 (2.75)

So,
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Scoriolis =
−2vzsgn(z)∆t

|z| . (2.76)

As will be discussed in Section 2.3 the effect of gravitational wave emission

is also added as a source term SGW to the angular momentum, thus we have a

total evolution equation in the cooling module of the form:

ℓn+1
orb = ℓnorb(1 + [SGW + Scoriolis]). (2.77)

2.3 Gravitational Wave Emission

Due to the time varying quadrupole moment of the orbiting binary system, the

binary neutron star emits gravitational waves. The emission of the gravitational

waves removes angular momentum from the system, and is responsible for the

inspiral. Similarly to how the Coriolis force is implemented, the emission of

gravitational waves and its effect on the orbital separation in the simulation

can be included as a source term to the angular momentum within the Cooling

module in FLASH.

Neglecting the effects of higher order terms, we start by assuming the orbital

velocity is approximately Keplerian. In the centre of mass frame (Figure 2.2,

right pane) the orbital speed of the reduced mass for a circular orbit is:

vorb,i,rm ≈ vK,rm =

√

GM

d
. (2.78)

The associated specific angular momentum of the system is:

ℓorb =
√
GMd. (2.79)
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To calculate the source term used to model losses due to the emission of grav-

itational waves, we consider how the angular momentum changes with time

ℓ̇orb:

˙ℓorb =
1

2

√

GM

d
ḋGW

˙ℓorb =
1

2

ℓorb
d

ḋGW

˙ℓorb =
1

2
vK,rmḋGW ,

(2.80)

where ḋGW is given by Equation 2.4. Therefore the dimensionless source term

can be derived in a similar way to that for the Coriolis force:

SGW =
∆ℓorb
ℓorb

SGW =
ℓ̇orb
ℓorb

∆t,

(2.81)

substituting in Equation 2.80 we get:

SGW =
1

2

ḋGW

d
∆t = SGW (2.82)

Strictly speaking, as derived in Section 2.2 the initial orbital velocity is not

exactly Keplerian as the binary is in inspiral:
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vorb,rm 6= vK,rm

vorb,rm =

√

GM

d
− ḋ2

vorb,rm =

√

GM

d

(

1− dḋ2

GM

)1/2

vorb,rm =

√

GM

d

(

1− d

GM

(

− 64G3

5c5
µM2

d3

)2)1/2

vorb,rm =

√

GM

d

(

1− 4096

25

G5

c10
µ2M3

d5

)1/2

vorb,rm = vK

(

1− 4096

25

G5

c10
µ2M3

d5

)1/2

vorb,rm = vK

(

1− 256

25

G5

c10
M5

d5

)1/2

vorb,rm = vK

(

1− 256

25

(
vK
c

)10)1/2

(2.83)

Setting M = 2× 1.4M⊙, d = 2RNS, and RNS = 12.6km, we obtain

vorb,rm ≈ 0.9994 vK (2.84)

at contact. Given the small magnitude of this correction, we neglect it and

employ the source term as shown in Equation 2.82.
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Figure 2.9: Schematic of inertial acceleration directions, centrifugal acceleration
(Equation 2.61) in blue, Coriolis acceleration (Equations 2.68 and 2.69) in
green due to the initial z-velocity (red), as well as the direction of the effective
acceleration due to gravitational wave emission (Equation 2.80) in orange. The
z-component of the Coriolis acceleration is non-zero only if there is azimuthal
motion relative to the co-rotating frame: excess rotation generates acceleration
away from the orbital axis in excess of the centrifugal contribution.
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Chapter 3

Computational Method

This chapter will discuss the computational implementation in FLASH, the exter-

nal programs written to produce the initial conditions, as well as those written

for post-processing of the data produced in the simulation. In particular, I de-

rive the equations I used to produce the initial neutron star profiles, which are

used to initialize the simulation, modify the FLASH Equation of State module

to run with a Piece-wise Polytropic Equation of State and approximate ther-

mal effects (Bauswein et al., 2010), and track unbound material as it is ejected

from the system. These derivations include writing the equations in the correct

geometric form as they are implemented into the code.

3.1 Equation of State

The equation of state is a scalar thermodynamic function that relates pressure

to internal energy and density, and is needed to close the system of two dimen-

sional Newtonian hydrodynamics equations being solved by FLASH (Equations

3.41 - 3.44).

While FLASH provides several Equations of State (EOS) by default such

as the Helmholtz and Gamma-law equation of state, in order to allow the

parameter space relevant to neutron stars to be easily explored, I implemented
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a piece-wise polytropic equation of state as described in Read et al. (2009),

with approximate thermal effects as described in Bauswein et al. (2010).

3.1.1 Piece-wise Polytropic EOS

The cold (zero-temperature) component of the equation of state is described

in terms of a piece-wise polytropic (PWP) equation of state. This formulation

from Read et al. (2009), allows most microphysical equations of state to be re-

produced to good accuracy through the use of a four-piece piece-wise polytropic

function of the form:

Pcold = Kiρ
Γcold,i , i = {0, 1, 2, 3}, (3.1)

where Pcold is the zero-temperature component of the pressure, Ki are the scale

factors, Γcold,i are the polytropic indices for the cold component of the pressure,

and i is the index denoting which segment of the piece-wise polytropic EOS we

are referring to, for densities higher than ρ1 (Equation 3.7), and a SLy EOS

(Douchin and Haensel, 2001) for lower densities (crust). This formulation is

entirely determined by four parameters (P1,Γ1,Γ2,Γ3). P1 is the dividing pres-

sure between segments 1 and 2, and Γi are the polytropic indexes of segments

1, 2, and 3.

The dividing densities are set as:

ρdiv =







ρ1

1.85ρnuclear

3.70ρnuclear,

(3.2)

where ρnuclear = 2.7×1014 g/cm3, and ρ1 is a calculated quantity. The fixed SLy

crust is defined as a polytrope with scale factor K0 = 3.594×1013 dyn
cm2

(
g

cm3

)−Γ0 ,

and polytropic index Γ0 = 1.357. Given the fit parameters (P1,Γ1,Γ2,Γ3), and

the fixed parameters (ρ2, ρ3,K0,Γ0,a0) where ρi is the ith dividing density, we
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Ki →
[
dyn

cm2

(
g

cm3

)−Γi
]

, (3.6)

to ensure the correct pressure units. Thus each Ki has different units. Contin-

uing with the derivation:

ρ1 =

(
K0

K1

)1/(Γ1−Γ0)

, (3.7)

ǫ(ρ1) = a0 +
K0ρ

Γ0−1
1

Γ0 − 1
, (3.8)

a1 = ǫ(ρ1)−
K1ρ

Γ1−1
1

Γ1 − 1
, (3.9)

ǫ(ρ2) = a1 +
K1ρ

Γ1−1
2

Γ1 − 1
, (3.10)

a2 = ǫ(ρ2)−
K2ρ

Γ2−1
2

Γ2 − 1
, (3.11)

ǫ(ρ3) = a2 +
K2ρ

Γ2−1
3

Γ2 − 1
, (3.12)

and finally,

a3 = ǫ(ρ3)−
K3ρ

Γ3−1
3

Γ3 − 1
. (3.13)

where ǫ is the specific internal energy and a0 = 0 as derived in Section

3.1.2. Thus, through the use of Equations 3.3 - 3.13 we can use the equation

of state parameters (P1,Γ1,Γ2,Γ3) provided in Read et al. (2009) Table III for

a variety of neutron star equations of state, to solve for the remaining required

parameters.
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3.1.2 Thermal Effects

The high density of material within neutron stars, is such that the temperature

is low in comparison to the Fermi energy of that material (e.g., Bauswein et al.

2010), and thus in general a zero temperature approximation is valid for neu-

tron stars (the pressure in a ‘cold’ neutron star is dominated by non-thermal

nuclear forces). However, in the case of a merging binary neutron star the

thermal energy generated at the time of merger via shocks can have a signif-

icant effect. Accurately including the effects of temperature in an EOS can

be computationally expensive, and thus an approximate treatment allows the

dominant thermal effects to be captured while only adding marginal compu-

tational expense. Here I use the approximate thermal treatment presented in

Bauswein et al. (2010), and implement it into FLASH. Using this approximate

thermal treatment, the total gas pressure can be split into a cold and thermal

component:

P = Pcold + Pth. (3.14)

Where P is the total gas pressure, Pth is the thermal contribution to pressure,

and Pcold is the cold pressure provided by the piece-wise polytropic equation

of state (that parameterizes the physical EOS) given by Equation 3.1. The

total pressure can then be used to convert to total internal energy using the

following:

P = (γe − 1)ρǫ, (3.15)

which can be used also to relate the individual internal energy components to

their corresponding pressure components:

Pcold = (Γcold − 1)ρǫcold, (3.16)
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for Pcold or as:

Pth = (Γth − 1)ρǫth, (3.17)

for Pth, where Γth is the thermal polytropic index. We adopt Γth = 5/3 ≃ 1.67

as an intermediate value in the interval [1.5, 2], which was found by Bauswein

et al. (2010) to bracket the behavior of micro-physical, finite-temperature EOS’s.

In general, the EOS is used to obtain a third variable out of two, for example

to obtain the internal energy given density and pressure as input during initial-

ization. In what follows, I will derive the variables using the density-pressure

mode.

In the density-pressure mode, where the equation of state is passed the

evolved pressure and density, we begin by calculating the cold component of

the pressure Pcold using Equation 3.1. Since the dividing densities are known,

they are used to sort input densities into the relevant segment of the EOS.

Next, to calculate the cold component of the internal energy, and ensure we

recover the integration constant responsible for ensuring the internal energy

is continuous, we begin with the first law of thermodynamics written in the

differential form (Read et al., 2009):

d
ε

ρ
= −P

c2
d
1

ρ
, (3.18)

where ε is the energy density (including the rest mass) divided by c2 (units

of mass density). Integrating the left side of the differential equation and

substituting in Equation 3.1,
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∫

d
ε

ρ
= −P

c2
d
1

ρ

ε

ρ
+ A = −KρΓ

c2
d
1

ρ

ε

ρ
+ A = −K

c2

(
1

ρ

)−Γ

d
1

ρ
,

(3.19)

Integrating the right hand side,

ε

ρ
+ A = −K

c2

∫ (
1

ρ

)−Γ

d
1

ρ
,

ε

ρ
+B = −K

c2
1

1− Γ

(
1

ρ

)1−Γ

ε

ρ
+B =

1

Γ− 1

K

c2
ρΓ

ρ
ε

ρ
+B =

1

Γ− 1

P

ρc2
,

ε

ρ
= −B +

1

Γ− 1

P

ρc2
,

(3.20)

where A and B are different constants. If we redefine the constant B = −(1 +

a/c2) we have

ε

ρ
= 1 + a/c2 +

1

Γ− 1

P

ρc2

ε

ρ
= 1 + a/c2 +

1

Γ− 1

KρΓ−1

c2

(3.21)

In our case where we are using the piece-wise polytrope defined in Equation

3.1 we can simply extend this to:

ε

ρ
= 1 + ai/c

2 +
1

Γi − 1

Kiρ
Γi−1

c2
. (3.22)

Rearranging for ai,
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ai =

(
ε

ρ
− 1

)

c2 − Kiρ
Γi−1

Γi − 1
. (3.23)

The energy density divided by c2 (ε) can be related to the internal energy (ǫ)

using the relation (Read et al., 2009):

ǫ =

(
ε

ρ
− 1

)

c2. (3.24)

We can enforce the limit that as ρ → 0, ǫ → 0, and thus

limρ→0
ε

ρ
= 1. (3.25)

Applying the limit 3.25 to Equation 3.23, we find ai = 0 when ρ → 0 therefore

a0 = 0, where the subscript 0 refers to the first polytropic segment (crust)

corresponding to the lowest density regime of the Equation of State. Rewriting

Equations 3.22 and 3.23 in terms of ǫ, and the dividing densities ρi (Equation

3.2) we have

ai = ǫ(ρi)−
Kiρ

Γi−1
i

Γi − 1
, i = 1, 2, 3, (3.26)

and

ǫ(ρi) = ai−1 +
Ki−1ρ

Γi−1−1
i

Γi−1 − 1
, i = 1, 2, 3. (3.27)

We can solve for the remaining ai by using Equation 3.26 and 3.27 in a

leap-frog technique. For example, using a0 to calculate ǫ(ρ1) using Equation

3.27, then using the result to calculate a1 using Equation 3.26, and so on. Thus

for the piece-wise polytropic EOS, we have the specific internal energy given

by:

ǫ =
P

(Γi − 1)ρ
+ ai. (3.28)
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Next the cold component of the internal energy can be calculated using

Equation 3.28:

ǫcold =
Pcold

(Γcold,i − 1)ρ
+ ai. (3.29)

We now have enough information to solve for the total internal energy ǫ.

Using a combination of:

P = Pcold + Pth = Kiρ
Γi + (Γth − 1)ρǫth (3.30)

and

ǫth = ǫ− ǫcold, (3.31)

to solve for the internal energy:

ǫth =
(P − Pcold)

(Γth − 1)ρ
, (3.32)

so the total specific internal energy ǫ is given by

ǫ =
(P − Pcold)

(Γth − 1)ρ
+ ǫcold. (3.33)

Next the equation of state yields two adiabatic indices required for the

hydrodynamic solver: γc, and γe:

P = (γe − 1)ρǫ, (3.34)

γe =
P

ρǫ
+ 1, (3.35)

as defined in Fryxell et al. (2000). γc is defined as:
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γc =
ρ

P

(
∂P

∂ρ

)

S

γc =
ρ

P

(
∂Pcold

∂ρ
+

∂Pth

∂ρ

)

γc =
ρ

P

(

Γcold
Pcold

ρ
+ Γth

Pcold

ρ

)

γc =
Pcold

P
Γcold +

Pth

P
Γth.

(3.36)

3.1.3 Initial Neutron Star Profiles/Implementation in

FLASH

To include neutron star models built with a given equation of state into the

domain we must first generate a radial profile of the star over which pressure

and density are defined {ρ(r), P (r)}. Given that the gravity in our simulations

is Newtonian, we built initial stars in Newtonian hydrostatic equilibrium, using

the equation:

dP

dr
= −Gm(r)ρ(r)

r2
. (3.37)

We also assume that the star is spherically symmetric, and thus

dm

dr
= 4πr2ρ(r). (3.38)

Finally the system of equations is closed with the Equation of State as described

in Sections 3.1.1 - 3.1.2. Equation 3.1 can then be rewritten as a differential

equation, for the density through the use of Equation 3.37:
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dP

dr
= Γ

P

ρ

dρ

dr

−Gm(r)ρ(r)

r2
= Γ

P

ρ

dρ

dr

dρ

dr
= −Gm(r)ρ(r)2

ΓPr2
,

(3.39)

and we only use the cold part of the EOS. To solve for the neutron star

profiles, the system of differential equations is solved by a fourth order accurate

Runge-Kutta solver written in python. As the central density is an unknown

initial condition for the solver, a first guess value is estimated, the solver pro-

duces a profile, then adjustments can be made to obtain the desired mass of

the produced neutron star. In our case we limit our parameter space to the

fiducial neutron star mass of MNS = 1.4M⊙. Profiles are produced individually

for each equation of state considered, at a chosen resolution. In this case we

set the resolution of the profile to be finer than the resolution of the grid cells.

We test the profiles by evolving this hydrostatic star for 10 dynamical times

and verifying that it remains in near steady-state with low kinetic energy over

several dynamical times (Figure 3.2). The dynamical time for a single neutron

star τdyn is defined to be the characteristic length scale over the characteristic

velocity:

τdyn =
R

vesc

τdyn =
R

√
2GM
R

τdyn =

√

R3

2GM
,

(3.40)

where vesc is the escape velocity. For our fiducial case (APR4 EOS, M = 1.4M⊙,

R = 12.6 km) τdyn = 7.3× 10−5 s.
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In an effort to increase the initialization efficiency of the simulation at high

resolution, I implemented a piece-wise polynomial fit to the initial profiles as

described in Section A.4.

3.2 Numerical Hydrodynamics

We use FLASH version 4.5 (Fryxell et al., 2000; Dubey et al., 2009) to solve

the equations of Newtonian hydrodynamics with self-gravity in 2D cylindrical

coordinates:

∂ρ

∂t
+∇ · (ρv) = 0 (3.41)

Dv

Dt
= −∇P

ρ
−∇Φ + fcentrifugal + fcoriolis,z (3.42)

Dǫ

Dt
− P

ρ2
Dρ

Dt
= 0 (3.43)

∇2Φ = 4πGρ (3.44)

dℓorb
dt

=
1

2

ℓorb
|d|

(
dd

dt

)

gw

+ r⊥ × f coriolis,ξ (3.45)

whereD/Dt ≡ (∂/∂t+v·∇), where v is the poloidal velocity, ρ is the density, P

is the total gas pressure, ǫ is the total specific internal energy, v is the velocity,

Φ is the gravitational potential, G is the gravitational constant, t is time, and

the inertial accelerations fcentrifugal and fcoriolis,z are defined in equations (2.61)

and (2.68), r⊥ is the vector perpendicular to the ρ-axis, connecting the rotation

axis and a given cell, and f coriolis,ξ is given by Equation 2.69.

The system of equations is solved with the dimensionally-split Piecewise-

Parabolic Method (PPM; Colella and Woodward 1984), the multipole self-
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gravity solver of Couch et al. (2013), and is closed with a piece-wise polytropic

equation of state (EOS) as discussed in Section 3.1.2.

While the gravitational wave losses are strictly valid only for point masses

at the location of the centers of the stars (with equal masses and at equal

distances from the center of mass at the origin), we apply this source term

to all stellar material that has non-zero ℓorb (i.e., material ejected after the

collision as described in Section 2.3).

The computational domain is discretized with a uniform grid. We choose

our target resolution in relation to the pressure scale height Hp near the star’s

surface (Figure 3.3), such that the pressure scale height of the neutron star at

99% of the neutron star radius can be resolved with at least 10 cells. In order

to ensure our simulation is generalizable, we consider three representative EOS

that span the range of compactnesses present in the EOS parameter space,

APR1 (soft) (Akmal et al., 1998), APR4 (intermediate) (Akmal et al., 1998), and

H3 (stiff) (Lackey et al., 2006). A scale height is the characteristic distance

over which a variable changes:

|HS| =
∣
∣
∣
∣

S(r)
dS(r)
dr

∣
∣
∣
∣
. (3.46)

For exponentially varying quantities, this distance involves a change by a factor

e. In the case of pressure:

dP

dr
= −Gm(r)ρ(r)

r2
, (3.47)

so the pressure scale height is

HP =

∣
∣
∣
∣

P
Gm(r)ρ(r)

r2

∣
∣
∣
∣
=

P

ρ|∇Φ| . (3.48)

Given the numerical dissipation properties of PPM (e.g., Porter and Wood-
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stellar radii, requires including at least 64 multipoles in the self-gravity solver.

We use 128 multipoles by default in all of our simulations.

The domain is set to use a reflecting inner ρ-boundary, and outflow bound-

ary condition preventing material from falling back into the domain at the

outer ρ-boundary, as well as upper and lower z-boundaries. The variable floors

(pressure, density, and internal energy) are set in the final version of the sim-

ulation to be constant (thus variables kin and kout are not used), and will be

discussed further in Section 3.2.1.

3.2.1 Initial Conditions

Simulations are initialized with two identical stars placed along the z-axis, at a

separation slightly larger than two stellar radii, and equidistant from the origin

(Figure 2.9). The initial velocities are in the z-direction and toward the origin,

with a magnitude equal to one half of the decay rate of the orbital seperation

due to gravitational waves (Equation 2.4), typically ≈ 2× 108 cm/s.

The stars are initially embedded in a low-density flat ambient medium.

Density is set such that the ambient mass is negligible in comparison to the

lower estimates of free neutron ejecta from Ishii et al. (2018) (Mfn ∼ 10−7 M⊙).

The ambient pressure is set sufficiently low as to not limit the time step of the

simulation, and the remaining thermodynamic variables determined by the

EOS.

3.2.2 Models Evolved

Table 3.1 shows all models with their parameters. Our default case is a

pair of stars with masses Mns = 1.4M⊙ each, built with the APR4 EOS (Ak-

mal et al., 1998), yielding a radius Rns = 12.6 km, which is consistent with

NICER radius measurements of J0030+0451 (Miller et al. 2019, and Riley

et al. 2019), a nearby 1.4 M⊙ millisecond pulsar, thus yielding a realistic
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compactness. This fiducial case is evolved for three preliminary resolutions

∆x1,2,3 = {281.3, 140.6, 70.3}m which are competitive with some of the finest

resolutions used for grid based numerical relativity simulations of binary neu-

tron star mergers run to date (123 m by Radice et al. (2018a), and 63− 86 m

by Kiuchi et al. (2017)). The stars begin with a scalar specific angular momen-

tum defined by Equation 2.19, which is evolved according to the emission of

gravitational waves (Section 2.3). Source terms for the Centrifugal and Coriolis

fictitious forces necessitated by the co-rotation of the simulation domain are

calculated according to the formulae 2.61, 2.68 and 2.69. The initial z-velocity

of each star is given by Equation 2.6, and the initial orbital velocity is given

by Equation 2.17.

In our default configuration, we simulate, for all three resolutions, a case

with centrifugal acceleration (Equation 2.61), Coriolis acceleration (Equation

2.68) and gravitational wave losses (Equation 2.80), these models are denoted

by AF{1, 2, 3} for “All Forces”. To estimate the range of uncertainty intro-

duced by our approximations, and to connect with previous work, we model a

“head-on” collision, where the stars are set to collide at the free-fall velocity,

orbital angular momentum is zero initially, and assumed to stay small as the

stars begin just before collision, thus these inertial forces are neglected in this

case. This model is denoted by FF{2} and is evolved at the ∆x2 resolution

only. In this case the z-velocity of each star is set to be the Keplerian velocity

(Equation 2.6).

We also consider an intermediate case, where the centrifugal and Coriolis

forces are turned off, as well as the gravitational wave emission source term,

and the angular momentum of the system is set to zero (vorb = 0). The initial

z-velocity is set by the semi-major axis decay rate at the initial separation

distance d (Equation 2.6). This intermediate case is denoted OR{2} for “On

Rails”, and is also evolved at resolution ∆x2 only.

Each model is evolved in a simulation domain of size 9×106 cm by 18×106
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Table 3.1: Models evolved and results. Columns from left to right show model
name, EOS, NS mass, NS radius, cell size, and unbound mass ejected. The
latter is shown as total and broken up by radial velocity.

Model EOS Mns Rns ∆x Mej (M⊙)
(M⊙) (km) (m) total v > 0.6c v < 0.6c

AF1 APR4 1.4 12.6 281.3 6.3× 10−5 5.0× 10−5 1.3× 10−5

AF2 APR4 1.4 12.6 140.6 6.5× 10−5 5.3× 10−5 1.2× 10−5

AF3 APR4 1.4 12.6 70.3 6.4× 10−5 4.9× 10−5 1.5× 10−5

OR2 APR4 1.4 12.6 140.6 4.0× 10−2 1.8× 10−2 2.2× 10−2

FF2 APR4 1.4 12.6 140.6 3.0× 10−2 1.4× 10−3 2.9× 10−2

cm, with stars placed symmetrically about the ρ-axis at a distance of zcenter =

1.3 × 106 cm. Despite developing the capability to easily explore the neutron

star EOS parameter space, for our purposes here we limit all runs to use the

fiducial APR4 EOS. Outside the two neutron stars, we fill the remainder of the

simulation domain with ambient material. The initial ambient material has a

constant density ρambient = 104 g/cm3, pressure Pambient = 1025 dyn/cm2, and

internal energy as determined by the EOS ǫambient ≈ 1021 ergs. We also imple-

ment a flat floor for each of the thermodynamic variables: ρsmall = 103 g/cm3,

Psmall = 1021 dyn/cm2, and ǫsmall = 1016 ergs. The simulation is run for ten

dynamical times, defined be the Keplerian orbital period of the stars at their

initial separation:

tdyn =

√

4π2

G(m1 +m2)

1

d3
. (3.49)

Note that this dynamical time is different than that defined in Equation 3.40

for a single star. For the simulations presented here (m1 = m2 = 1.4M⊙,

d = 2zcenter = 2(1.3 × 106 cm)), we have a dynamical time of tdyn = 1.6 ms.

100 plot files are dumped during the simulation (over 10tdyn), discretizing the

simulation into 0.1 tdyn segments.
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3.3 Data Extraction and Analysis

3.3.1 Extracting Data

FLASH outputs simulation data for analysis as HDF5 files at designated times.

This file type allows many different types of data such as arrays of different sizes

and dimensions to be stored together in an efficient package that is portable

across platforms. In order to analyze the simulation data, and to ask questions

such as how much mass is ejected, it is easiest to work with the data in a

uniform grid format.

Adaptive Mesh Refinement

In order to extract the mass ejecta data from the FLASH output HDF5 files with

a simulation run using Adaptive Mesh Refinement, as described in Section 3.3.2,

we must first convert the data structure to uniform grid. This involves the use

of either the python package yt, or my custom parallelised extraction code,

each of which is discussed in Section A.1.

Uniform Grid

In the case of uniform grid, no use of a covering grid is necessary for data extrac-

tion, and thus we can jump straight to the data extraction method described

in Section 3.3.2.

3.3.2 Mass Ejecta Measurement

Now that the data has been loaded as a uniform grid structure, we can track

the mass ejection from the system. To do this, we consider the amount of

unbound mass crossing a semi-circular threshold integrated over time. First

we define unbound matter, as matter having a positive Bernoulli parameter:
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B =
1

2
v2 + eint +

P

ρ
+ Φ, (3.50)

where







B > 0 unbound material

B < 0 bound material

B = 0 marginally bound material.

(3.51)

To track the unbound material leaving the system, we begin by setting an

outflow sampling radius rej through which to calculate the ejected mass. This is

set to be slightly larger than the initial extent of the neutron stars (∼ 2.4RNS)

as seen in Figure 3.4 .

We then can say that the amount of mass leaving the system is:

∆M =

∫

Ṁdt, B > 0 (3.52)

This calculation can be discretized as mass flux through the rej surface over

time. To do this we consider the fact that due to rotational symmetry about the

z-axis, this semi-circular outflow threshold corresponds to a spherical surface in

3 dimensions. If we want to break the flux through this threshold down cell-by-

cell we need to know the area of a “square” projected onto a sphere’s surface,

or in other words the square subtended by the spherical angle increments dθ

and dϕ, as this is the geometry of the interface between each cell along the

threshold and the spherical threshold itself. The geometrical derivation of this

area for infinitesimally small angles is shown in Figure 3.5, left pane.

The area of an infinitesimally small “square” spherical shell section is given

by:

A = r2ej sin θdθdϕ. (3.53)
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Figure 3.4: Schematic of mass ejecta sampling radius rej relative to the initial
positions of the neutron stars.
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Figure 3.5: Left: Schematic of a square spherical shell subsection shown for the
ejection threshold rej in the simulation domain. Right: Same as the left pane,
but considering azimuthal symmetry.

If we consider cells which have a finite size despite being much smaller than

the scale of the output threshold, the area is approximately given by:

A ≈ r2ej sin θ∆θ∆ϕ

A ≈ r2ej∆cos θ∆ϕ
(3.54)

Where ∆ϕ is the angular width of the cell in the ϕ-direction, which due to

azimuthal symmetry this is set to be 2π, ∆θ is the angular width of the cell

in the θ-direction, and thus ∆ cos θ is the difference in cos θ between the two
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sides of the cell. Therefore we can integrate the outflow by summing the flux

crossing the threshold of each cell that is intersected by the semi-circular out-

flow threshold. Each of which due z-axis-symmetry is represented by a slice of

a spherical shell (Figure 3.5, right panel).

In this case where we are considering z-axis symmetry, the area of the

spherical shell slice is given by:

A ≈ 2πr2ej∆cos θ. (3.55)

Through the use of dimensional analysis, we can easily see mass flux FM with

units of gcm−2s−1 is given by:

FM = ρvr = ρv · r̂ (3.56)

where r̂ is the spherical radial direction, or the normal to the outflow threshold.

To get the mass crossing the boundary in a given amount of time we use:

∆M = FMA∆t

∆M = 2πr2ej∆cos θρvr∆t
(3.57)

So the amount of mass crossing the surface area of an angular bin in time ∆t

is given by:

∆M = 2πr2ej∆cos θρ|vr|∆t ·mask(B > 0) ·mask(vr > 0) , (3.58)

where

vr = vρ sin(θ) + vz cos(θ). (3.59)

Here mask(B > 0) is a mask applied so only gravitationally unbound outflow
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is considered to contribute to the “outflow mass”, and mask(vr > 0) is applied

so only out-flowing material is considered. Notice that we are calculating a

density flux crossing the outflow threshold. Thus, this can be thought of as

a constant increment of material at density ρ given by the density of the cell

nearest the outflow threshold crossing the threshold in time ∆t. Thus we only

need to consider the cell closest to the threshold, no cells interior to that as

while their mass may cross the threshold within the given time step, we are

essentially doing a histogram type integration where we choose one constant

value of the density for the given time step. Also, as we are discretizing this

integration in terms of space (summing cell-by-cell), and in time considering

time resolution ∆t (set by the number of plot files dumped by the simulation).

Thus the accuracy of this integration is limited by both of these factors, with

an increase in temporal and spatial resolution resulting in a more accurate

account of mass outflow.

Velocity and Angular Distribution

Using the method outlined in Section 3.3.2 we can quantify the total mass

ejected from the system, as well as how it changes during the simulation time.

However, if we want to consider the angular distribution of mass ejected, or

how the ejecta is distributed in terms of velocity, we can bin our integration in

terms of spherical polar angle θ as shown in Figure 3.5 left pane, or in terms

of velocity.

This is achieved by applying a sorting system in which mass ejecta is sorted

in terms of polar angle θ, and spherical radial velocity vr during the integration.

Further, as motivated by the physics of the merger geometry, the dynamical

ejecta from tidal tails in the orbital plane can be distinguished from contact

plane ejecta (plane where the two neutron stars first contact one another), mass

ejecta binned in terms of velocity is also filtered by orbital plane vs. contact

plane region as shown in Figure 3.6 using the arbitrarily chosen angle π/6.
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Figure 3.6: Schematic of how ejecta is divided in terms of orbital plane (blue),
vs. contact plane (green).
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Chapter 4

Results

In this chapter we present the results of a preliminary set of simulations that,

while not yet at our final target resolution, allow us to investigate the depen-

dence of the contact plane ejecta on resolution.

4.1 Overview of Default Case (AF ) and Reso-

lution Dependence

In the AF models, the stars come into contact almost immediately at the be-

ginning of the simulation, ejecting material in the contact plane as low density

ejecta is launched from the surfaces of the neutron stars. Material from the

contact plane begins to cross the sampling radius at a time ∼ 0.2 tdyn after

contact, where tdyn = 1.6 ms and the simulation is run for 10 tdyn in total. On

a slightly longer timescale of ∼ 0.4 tdyn, material begins to cross the sampling

threshold in the orbital plane. After 5 tdyn the remnant remains distended in

the orbital plane due to the the remaining rotational velocity vξ not being fully

removed through the emission of gravitational waves. This sequence of events

is illustrated in Figure 4.1.

To test the dependence of this ejecta on spatial resolution, I run the de-
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overlap the range of fast ejecta masses obtained in both grid based simula-

tions (Mfn ∼ 10−6 − 10−5M⊙ Radice et al. (2018b)) and SPH simulations

(Mfn ∼ 10−4M⊙ Metzger et al. (2015)). More reliable however, is the lack of

a strong resolution dependence of the fast contact plane ejecta launched from

the AF1, AF2, and AF3 simulations.

If this trend persists at higher resolution, it would mean that grid-based

simulations have already converged in the amount of fast ejecta to order of

magnitude, with the tension with SPH models being due to a systematic dif-

ference arising from the differing numerical methods.
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Chapter 5

Conclusions

Motivated by the tension between the fast ejecta mass produced in published

SPH and grid-based binary neutron star merger simulations, we investigate the

resolution dependence of fast ejecta mass in grid-based models. This fast ejecta

is thought to be made mostly of free-neutrons, which at sufficient velocity (v >

0.6c) freeze out the r-process, and can power an ultra-violet precursor to the

kilonova. This precursor would peak on a timescale of hours after the merger,

and would encode useful information that could be used to further constrain

the neutron star equation of state and electromagnetic emission mechanisms.

The question of whether or not this ultra-violet precursor is observable for a

merger at a given distance largely depends on the mass of free-neutrons ejected,

thus understanding the relationship between neutron star compactness and fast

ejecta mass is crucial to understanding the observability of this precursor, as

well as extracting useful information about the binary neutron star system.

Due to the extreme density and pressure gradient present near the surface

of a neutron star, and fast ejecta largely being launched from the surface of the

individual neutron stars, it is important to ensure the surface of the neutron

stars are sufficiently resolved when tracking this fast ejecta with grid-based

hydrodynamic methods. Previous numerical relativity simulations in three di-

mensions have reached a spatial resolution of 63 − 86 m cells (Kiuchi et al.,
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2017). We argue however, that in order to resolve the pressure scale height out

to 99% the radius of the neutron star, cells of size ∼ 4 m would be required,

therefore the under-representation of fast ejecta may be due to under-resolving

the neutron star surface. In order to achieve such a resolution however (which is

currently unfeasible in three dimensions), we perform merger simulations in two

dimensional cylindrical coordinates, using the FLASH code. We use Newtonian

hydrodynamics, and other microphysical simplifications such as a piece-wise

polytropic equation of state, and approximate thermal effects. In this the-

sis, I outline the simulation set-up developed, micro-physics implemented into

FLASH, as well as how post-processing of simulation data was done, and how

the efficiency of the simulation was improved.

We present preliminary results of our study with resolutions competitive

with the highest resolutions in existing numerical relativity simulations run to

date. Given the approximations introduced to reduce the dimensionality, we

vary the nature of the key physics driving the binary evolution (inertial forces

and gravitational wave emission) to bracket the uncertainty introduced by these

simplifications. We find only a weak resolution dependence of fast ejecta in the

contact plane, with a somewhat stronger trend for orbital plane ejecta, with an

increase on the order of ∼ 10−6M⊙ from simulation resolution ∆x1 = 281.3 m

to ∆x3 = 70.3 m. This weak resolution dependence suggests that we may be

close to converging on the mass ejected, however higher resolution simulations

are desired to ensure this result.

We also consider the scenarios of a head-on collision between the neutron

stars, motivated by previous works, and a merger with initial velocity set by

the gravitational wave emission orbital seperation decay rate of the binary sys-

tem, neglecting inertial forces and explicit gravitational wave emission. As our

simulation uses a variety of microphysical simplifications, and only Newtonian

physics, these additional scenarios are intended to bracket the true physical

behaviour of the merging system by varying the collisional velocity, and thus
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ejecta kinematics. We find that the mass of fast ejecta from our simulations

fall between Mej,v>0.6c ∼ 10−5 − 10−2M⊙ (Table 3.1). These values are con-

sistent with the range of fast ejecta masses obtained in both grid based sim-

ulations (Mfn ∼ 10−6 − 10−5M⊙ Radice et al. (2018b)) and SPH simulations

(Mfn ∼ 10−4M⊙ Metzger et al. (2015)).

Therefore, while higher resolution simulations are still required in this study,

the lack of a strong resolution dependence of contact plane ejecta suggests we

may be close to convergence on the fast ejecta from the system. We do not

yet have strong evidence to resolve the tension between the fast ejecta masses

produced in SPH and grid-based merger simulations. But if this discrepancy

persists at higher resolutions, we will be able to conclude that the discrepancy

in ejecta masses can be attributed to systemic differences in the numerical

methods.
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Appendix A

Code Optimization

A.1 Adaptive Mesh Refinement

The need to resolve the pressure scale height at the Neutron Star surface, while

requiring a much lower resolution to resolve the dynamics of ejected material,

at larger distances motivates the use of FLASH’s Adaptive Mesh Refinement

(AMR) capability. FLASH implements AMR via the PARAMESH library (MacNe-

ice et al 1999). The use of AMR allows us to resolve the strongest gradients

of density (or another selected variable), such as at the surface of the Neutron

Star, with the finest resolution cells within the domain, while shallower density

gradients can be evolved using lower resolution (Figure A.2, left pane). This

lightens the work load of processors as the total number of cells to evolve is

decreased relative to a Uniform Grid. AMR maintains conservation by match-

ing fluxes (of mass, momentum, and energy) at AMR boundaries (Figure A.1).

Fluxes crossing an AMR boundary from a finer resolution to a coarser resolu-

tion are added together when advecting into the neighbouring coarser cell.

AMR also allows for a time varying grid structure that is updated based

on the location of the steepest density gradients throughout the material as it

moves throughout the domain, ensuring that the highest resolution is employed

where needed.
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Figure A.1: Schematic of flux conservation at an AMR boundary. Flux into
the coarser cell F is given by the sum of the fluxes exiting the two finer cells
fi. Figure adapted from Fryxell et al. (2000)

In testing the use of AMR for our setup, we encountered problems with the

method. In particular, strong gradients in density such as the leading edge of

the expanding ejecta meeting infalling ambient material would in some cases

result in non-convergence of the Riemann solver. This problem was exacerbated

as these strong gradients crossed AMR boundaries. In an attempt to subdue

this issue, I reduced the more complex AMR grid structure (Figure A.2, left

pane), with the limiting case of Static Mesh Refinement (SMR), preventing

the grid structure from changing with time, thus ensuring the material ejected

from the system would only have to cross the refinement boundaries once. I also

limited the refinement structure to follow a simpler rectangular shape (Figure

A.2, right pane). At the cost of a slight loss of efficiency, as more cells must

be evolved, using this simple grid structure reduces the number of refinement

boundaries that ejected material must cross as it advects out of the domain.

While tracking mass ejected from the merging binary system in post-processing,

we found that AMR and SMR introduce another problem due to how grid data

is stored. As an AMR grid is non-uniform, data is stored in a one dimensional
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ified resolution. This Covering Grid is set to the maximum resolution within

the AMR structure, extracting an equivalent uniform grid data structure.

Extracting the AMR data in this way revealed a few problems: first being

that this extraction process is computationally expensive at even a fraction of

the finest resolution targeted in this research. Extracting data in this way is

also problematic, as the data at the highest resolution even for just one physical

variable, is larger than available memory. A double precision number used to

store each variable in each cell at the highest resolution would require:

Memory

V ariable
=

8 bytes

variable · cell × 22, 500 xcells× 45, 000 ycells = 8.1 GB/variable

(A.1)

Thus with FLASH outputting 35 variables in its current state, at full resolu-

tion on the order of 100 GB of memory would be required to simply load the

data for the entire domain at full resolution. As the python module yt is built

in such a way that customization of the loading routine covering grid would

involve modification of the source code, I decided to write my own parallelised

python module consisting of functions that extract the data from the FLASH

output HDF5 file, recursively interpreting the cell neighbour, parent, and child

cell information to map the solution data onto a uniform grid. Writing this

script from scratch allowed it to be run in parallel, to reduce the overall com-

putation time necessary to convert a series of data files, as well as see the inner

mechanics of the loading method. This allowed the domain to be loaded in a

piece-by-piece manner, loading a fraction of the domain to memory, converting

to a uniform grid, then dumping the data to the hard drive and clearing the

memory before loading another section of the domain thus avoiding the larger

than memory issue.
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A.2 Uniform Grid

Weighing the benefits and costs of running the simulations using the simplified

SMR grid structure, given that the post processing was a significant compu-

tational drain that must be run after a simulation is finished, in addition to

the issues introduced by strong density gradients crossing AMR boundaries, I

decided to use the simpler method of running using a Uniform Grid structure,

as the benefits to the stability of the Riemann solver, and removal of the need

to post process the data, and restructure to a Uniform Grid outweighed the

additional computational cost. The final grid structure used in the simulation

was a uniform grid structure in two dimensional cylindrical geometry (ρ,z) as

shown in Figure A.4.

A.3 Power-law Pressure Floor

By default FLASH sets a floor which prevents the pressure of simulated material

from becoming negative and thereby crashing the hydrodynamic solver. This

is implemented in the form:

P = max(P, Psmall), (A.2)

where Psmall is the value of the pressure floor parameter, to be specified by

the user. However, the default implementation only allows for a single floor

value to be applied across the entire domain. In the case where the ambient

material is set to have density and pressure that follow a power-law with radius,

so that the total mass of the ambient material remains low while reducing

the pressure and density jump between the edge of the Neutron Stars and the

ambient material, a power-law pressure floor that more closely tracks the initial

ambient is desired. Similarly this is also useful near the stars when the ejecta

first begins to expand, with a gradually decreasing floor as the material expands
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outward. To address these issues, I implemented a Power-law pressure floor of

the form:

Pfloor(r) =







Psmall

(
Rtrans

Rstart

)kin r ≤ Rstart

Psmall

(
Rtrans

r

)kin Rstart < r ≤ Rtrans

Psmall

(
Rtrans

r

)kout
r > Rtrans

(A.3)

where Psmall is the pressure floor value at the transition radius Rtrans, r =
√

ρ2 + z2 is the spherical radius, kin, and kout are the inner and outer power-

law slopes of the broken power-law, and Rstart is the radius within which the

pressure floor is flat, avoiding the divergence of a power-law at r = 0. While

these parameters can be set manually, the additions to the code also allow

the parameters to be set automatically such that the pressure floor remains a

constant factor below ambient pressure if it is also defined as a power-law.

A.4 Computational Efficiency of Initialization

Another issue exposed by running simulations at extremely high resolution

was the inefficiency of the initialization process. This included loading in the

Neutron Star profile, interpolating from that profile to define the pressure and

density throughout the Neutron Stars in the computational domain, defining

the pressure and density for the cells filled with ambient material, calling upon

the Equation of state to fill in other thermodynamic variables, and defining the

initial kinematics of the material. Despite the initialization being parallelised

by default in FLASH, each processor being responsible for initializing its own

block of cells, the initialization at very high resolutions was of considerable

computational cost in comparison to the cost of evolving the hydrodynamic

variables throughout the simulation. In particular, initialization of the sim-

ulation was taking on the order of hours to tens of hours at full resolution.

Thus I decided to spend some time increasing the efficiency of the initialization
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method. Ultimately, a line of legacy code no longer used was responsible for

most of the slowdown in the initialization at high resolution. Nevertheless,

prior to uncovering this I investigated several modifications to increase the ini-

tialization efficiency, which on their own resulted in a reduction of initialization

time by 25%. Below I describe these additional modifications.

A.4.1 Profile Interpolation

As discussed in Section 3.1.3, to define the density and pressure of cells within

the Neutron Stars, we interpolate from a density/pressure profile of the Neu-

tron Star. This involves looping through the profile for each cell within either

of the stars, to determine the nearest radial distance included in the profile,

then interpolating to the cells radial distance. While this is a straight-forward

approach, it is not particularly efficient.

Some efficiency improvements can be made using block information. The

entire domain is subdivided into blocks each of which is initialized and evolved

by a particular processor. Use of the block limits to determine the nearest

point along the blocks perimeter to the star center, allows the interpolation

index search to be truncated by a minimum search index. Similarly, once the

nearest index has been found, an exit statement can be used to truncate the

index search on the back end. This approach avoids the search over the entire

profile for each grid point inside the star

A.4.2 Piece-wise Polynomial Fit Profile

In an attempt to remove the index search entirely, I implemented an alternative

piece-wise polynomial fit to the Neutron Star profile to further increase the

efficiency of the initialization. As discussed in Section 3.1.1, the simulation

runs using a Piece-wise Polytropic Equation of state, a method used in Read

et al. (2009) to reproduce a variety of different Neutron Star equations of state
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with a four piece piece-wise polytrope (with a fixed Sly EOS crust) that can

be completely described via four parameters (P1,Γ1,Γ2,Γ3). P1 is the dividing

pressure between sections 1 and 2, and Γi is the polytropic index of section i.

Thus the Neutron Star profile discussed in Section 3.1.3 acts as a continuous

density/pressure curve with respect to radius with a discontinuous derivative

corresponding to shifts between sections of the polytropic EOS. In order to

remove the need for an index search we can simply fit the profile with a piece-

wise polynomial, with divisions corresponding to the density division between

EOS pieces. Thus given the cells spherical radial position with respect to

the initial center of the Neutron Star we can simply compute the density and

pressure values rather than interpolating from the full profile. The results of

fitting a 6th order polynomial to each of the four sections of the APR4 EOS can

be seen below for density in Figure A.5, and for pressure in Figure A.6. This

fit reproduces the profile well, limited in accuracy only near the surface where

the fractional difference is largest. Even in this region, the profile is reproduced

to better than 1% accuracy, which is sufficient given the limitations introduced

by other assumptions made for this simulation.

A.4.3 Profile Loading

Another area where efficiency could be gained while initializing the simulation

is loading the profile to memory. In the case of using the full profile, initially

the file was read in by one processor, before being broadcast to the remaining

processors. While efficient in terms of work done by the processors, this takes

additional time as the processors must sit idle while waiting for the primary

processor to finish reading the profile before broadcasting can occur. In this

case we can reduce the total amount of initialization by reading the profile in

individually by each processor, thus eliminating the need for broadcasting.
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