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Abstract 

Chronic wasting disease (CWD) is an emerging prion disease in Canada that infects mule deer, 

white-tailed deer, elk, and moose by direct and environmental transmission and is invariably 

fatal.  CWD spread can be promoted at “hotspots” that attract deer, such as attractants that are 

created in fields by hay bales and grain bags, and attractants such as grain bins and agricultural 

storage at farm sites.  An individual-based model was created to investigate the effects of 

different densities and arrangements of hotspots on contact rates between- and within-groups.  

The model tracks contacts (when two individuals come within five meters of one another), which 

are defined as between- or within-group depending on the group membership of the two 

individuals.  Simulations are run in Netlogo on a heterogeneous landscape and include 

behaviours such as grouping and home ranges.  Using a two-hour time step, deer are moved 

across the landscape based on both step-selection movement rules relative to resources and group 

behaviours.  The integrated step-selection function utilizes GIS layers for environmental weights 

and GPS-collar movement data for calculating step-selection coefficients, and step length 

distributions.  Sensitivity analysis was performed on the model and revealed a greater sensitivity 

of within-group contacts to changes in model parameters, particularly group cohesion.  

Following model analysis, simulations were run to assess the effect of artificial attractant (AA) 

density and configuration using two strategies for initial placement of attractants, random and 

clustered around farms, and two strategies for removing them, random and by proximity to 

woody cover.  Simulations revealed that reducing the number of attractants on the increases 

between-group contacts as well as unique contacts between deer.  Additionally, reducing AA 

density generally increased overall unique visits per site indicating potentially greater 

environmental contamination at remaining sites.  Although having no attractants produced the 
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lowest contact rates, management must take into consideration the feasibility of eliminating all 

attractants and the potentially negative impacts if sufficient reduction of AAs is not achieved.  

Additionally, the strategy used to eliminate attractants must be considered because although 

removal by proximity to woody cover and random removal showed similar patterns, removing 

by proximity to woody cover caused a greater increase in contacts for field attractants.  For 

removal at clusters around farms, removing individual attractants versus all attractants in a 

cluster resulted in different trends as removing individually had a limited effect on contacts, 

whereas removing by cluster caused an increase in between-group contacts.  If feasible, 

management should aim to eliminate attractants via mitigation strategies and enforcement; 

however, if insufficient resources are available for enforcement, then management strategies 

should be taken with caution because insufficient reduction of attractants could worsen contact 

rates.   
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Chapter 1: Introduction 
Disease is an ecologically important problem in populations because it can cause 

increased mortality and population declines (Cotterill et al., 2018; McCallum et al., 2009).  This 

in turn can affect ecosystem function as population declines or extinction of species can disrupt 

natural functioning (Herrera and Nunn, 2019).  A variety of modelling techniques have been 

useful in investigating the effects of disease, as well as certain conservation and management 

strategies.  These models include top-down models such as compartments models and ordinary 

different equations, and bottom-up models such as individual-based models (Croft et al., 2020; 

Wells et al., 2019; White et al., 2018a).  These models can shed light on the influence of factors 

such as connectivity, landscape heterogeneity/fragmentation, social behaviours, and 

vaccinations, and give information on elements such as disease risk, spread, persistence, 

outbreak size, and outbreak duration (Ramsey and Efford, 2010; Silk et al., 2019; White et al., 

2018b, 2018a).  Models can enable one to test multiple scenarios and strategies, without 

requiring manipulation of the landscape or large-scale experiments, making them useful tools in 

conservation disease management.   

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) 

first discovered in Colorado in 1967, and was classified as a TSE in the 1970s (Miller and 

Williams, 2004; Williams and Young, 1982, 1980).  Currently found in 3 Canadian provinces, 

CWD first spread into wild deer in Saskatchewan in 2000 before spreading to wild deer in 

Alberta in 2005 (Miller and Williams, 2004; Smolko et al., 2021).  In Alberta, continued 

surveillance occurs via submission of cervid heads by hunters in wildlife management units 

(WMUs) along the front edge of spread (https://www.alberta.ca/chronic-wasting-disease-

surveillance-and-response.aspx).  In 2020, CWD was found in 12 new WMUs along the south 
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and southwestern fronts (https://www.alberta.ca/chronic-wasting-disease-updates.aspx).  Overall, 

in Alberta the total prevalence exceeds 10% with some areas, such as some WMUs along the 

Saskatchewan border, having a prevalence as high as over 50% in male mule deer 

(https://www.alberta.ca/chronic-wasting-disease-updates.aspx).  Social interactions impact 

spread because the disease is transmitted both directly and indirectly, and season will change the 

ratio of between- and within- group contacts, and the number of contacts  (Schauber et al., 2007; 

Silbernagel et al., 2011).  For example, higher contacts are observed during gestation (Dec. 16-

May 16), and contacts are more often between deer of the same sex, except in rut (Silbernagel et 

al., 2011).  Additionally, the ratio of within:between group contacts is higher in the 

spring/autumn, but this ratio did not differ from 1 in the summer (Schauber et al., 2007). 

At present there is no cure or vaccine for controlling CWD and management actions have 

focused primarily on harvest strategies or using sharp-shooters to remove groups around infected 

animals (Heberlein, 2004; Manjerovic et al., 2014; Mateus-Pinilla et al., 2013) or removing the 

group of individuals with the highest prevalence levels, i.e., males (Heberlein, 2004; Potapov et 

al., 2013).  These efforts have been relatively effective at slowing progression as a retrospective 

study by Conner et al. (2021) showed that number of male deer harvested or number of hunters 

1-2 years prior was an explanatory variable for male CWD prevalence in all competitive models. 

 A third key strategy common in most CWD management plans is the reduction of 

artificial attractants (AA) such as supplemental feeding sites and grain spillage (Heberlein, 2004; 

Peterson et al., 2002; Western Association of Fish and Wildlife Agencies, 2018).  Many 

governmental jurisdictions in North America, including Wisconsin, Michigan, Illinois, Colorado, 

Ontario, Alberta, and others have banned feeding deer as part of their initial management 

strategy.  Banning baiting has been and is a strategy for managing other diseases where 
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transmission is facilitated by congregation such as bovine tuberculosis among white-tailed deer 

in Michigan, where bans have been in place for a long time, though issues with compliance still 

arise (Cosgrove et al., 2018; O’Brien et al., 2011, 2006).  Apparent prevalence of bovine 

tuberculosis did decrease overall; however, bait management was in conjunction with other 

management strategies such as density reduction so the bans cannot be isolated as the cause 

(O’Brien et al. 2011).  Baiting bans for CWD have varied in their longevity as in places such as 

Wisconsin the bans were not received well and received pushback from businesses selling bait 

due to lost revenues, hunters because of reduced harvest opportunities, and the public who feed 

wildlife to view them (Bartlett et al., 2003; Heberlein, 2004; Holsman et al., 2010; Peterson et 

al., 2002; Western Association of Fish and Wildlife Agencies, 2018).  This pushback has led to 

the removal of bans in the long run when political action opposing the bans has been strong 

(Heberlein, 2004).  While the bans aiming to reduce supplemental feeding are still in place in 

Alberta, other places such as Norway have found that a ban has not been successful in removing 

all supplemental feeding sites (Mysterud et al., 2019).   

Previous modelling for CWD has investigated disease elements such as potential 

transmission methods, hunter-harvest strategies, relative importance of direct and indirect 

transmission, frequency- versus density-dependence, and transmission coefficients (Almberg et 

al., 2011; Belsare et al., 2020; Conner et al., 2021; Potapov et al., 2013, 2015). Although less 

modelling has been done on CWD and AA, the work that has been done, in combination with 

previous research on AA in relation to bovine tuberculosis, has revealed the importance of 

habitat in which the AA is located, type of attractant, and layout of feed at the AA (Cosgrove et 

al., 2018; Mejía-Salazar et al., 2018; Miller et al., 2003; Thompson et al., 2008). 
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In this thesis, I develop an individual-based model for mule deer movement that accounts 

for grouping, home range, and resource selection behaviours and use this model to assess direct 

contact rates of deer, particularly in the context of artificial attractants.  In Chapter 2, I develop 

the model and then assess model sensitivity and performance.  In Chapter 3, I use this model to 

evaluate different densities and configurations of attractants and their impact on model outputs 

including within-group and between-group contacts, unique contacts between deer, number of 

attractants used by deer, and the number of unique deer visiting each site.  Attractants were 

placed to represent either a) grain bags and hay bales left in the fields or b) crop storage and 

grain bins at farm sites.  Two AA removal strategies were investigated including random 

removal and removal by proximity to woody cover.  This model gives unique insight into the 

effects of removal strategies and density/configuration that can be difficult to obtain 

experimentally and adds key knowledge to the existing work on AA and wildlife disease. 
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Chapter 2: Individual-based movement model of mule deer (Odocoileus 

hemionus) contacts 

Introduction 

Disease can negatively affect populations and ecosystems by causing mortality directly or by 

lowering individual fitness (Cotterill et al., 2018; McCallum et al., 2009). In turn, declines in 

some species due to disease can alter ecosystem functioning (Herrera and Nunn, 2019).  A range 

of modelling tools from top-down, compartmental and ordinary differential equations models to 

bottom-up, individual-based models (IBMs) have been used to gain insight when addressing the 

impact of diseases on species and ecosystems (Croft et al., 2020; Wells et al., 2019; White et al., 

2018a). Epidemiological studies using compartment models and ordinary differential equations 

can address questions related to pathogen invasion, disease dynamics and persistence, and 

population thresholds.  However, because they employ population averages and do not let each 

individual have unique values and combinations of parameters (Mortensen et al., 2021; Murphy 

et al., 2020), they provide less insight on the effect that small-scale, individual variation in host 

responses to heterogeneity in environmental conditions has on disease dynamics.  

In contrast, bottom-up IBMs are advantageous in that they have the advantage of 

allowing spatial and, uniquely, individual heterogeneity, allowing for variation between 

individuals in behaviour and state variables (An et al., 2020; Kerr, 2019; White et al., 2018a). 

For example, Scherer et al. (2020) found that predicted probabilities of disease persistence were 

up to eight times higher when the underlying habitat structure was accounted for in individual 

movement.  Responses to environmental heterogeneity may be particularly important for wide-

ranging hosts, such as large mammals, where the behavioral interaction with the environment, 

such as habitat selection while moving, can influence host interactions and alter disease spread 

(Accolla et al., 2021; Scherer et al., 2020).  Further, IBMs facilitate the incorporation of host 
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grouping patterns and their correlated movements, which can influence rates of contacts and 

disease transmission (Schauber et al., 2007; Tosa et al., 2015).  As a result, IBMs lend 

themselves to assessing management strategies and the sensitivity of model outcomes to changes 

in individual behaviors and in different environmental conditions (Kerr, 2019; Maloney et al., 

2020; Ramsey et al., 2014). This is particularly useful for assessing disease management 

strategies that focus on altering host densities or the spatial pattern in resources influencing their 

movement and distribution.  At the same time, IBMs require a large amount of data to 

parameterize and can be highly computationally expensive (Crooks et al., 2008; White et al., 

2018a).  To combat these challenges, I used data collected over many years to parameterize and 

perform sensitivity analysis on non-data-driven parameters to assess their influence on the model 

outputs.  I also used servers with high computational power to avoid the limitations of 

computation. 

In this Chapter, I present an IBM to predict contact rates of mule deer (Odocoileus 

hemionus) in a heterogeneous environment as a surrogate of animal-to-animal disease 

transmission.  The model can be used to address questions such as how the density and spatial 

distribution of natural and artificial resources (e.g., food items) influence sex-specific contact 

rates (Chapter 3), the degree to which frequency- and density-dependent transmission influence 

disease dynamics, and how different placement strategies of oral vaccine baits influence their 

rates of encounter (Manlove et al., 2017; Ramsey and Efford, 2010; Smith et al., 2009; Thulke 

and Eisinger, 2008). I include realistic, sex-specific behaviors of mule deer such as home ranges, 

where individuals select the location of their home ranges based on landscape characteristics, and 

selection of preferred habitats while moving within a home range.  I include these two scales of 

resource selection because they may promote conspecifics contacts when deer are attracted to 
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resources and use the same areas (Herrera and Nunn, 2019; White et al., 2018b). I incorporate 

social group structure to be able to assess how within- and between-group contacts change with 

group size and environmental conditions. I do not include demographic changes in the 

population (i.e., birth/death; immigration/emigration). Instead, the model focuses on mule deer 

contact rates in winter when mule deer are generally more concentrated and form larger, mixed-

sex groups (Lingle, 2003), and assumes winter home range size and habitat selection patterns 

during movement remain constant.  However, the model could be extended to include more 

seasons with seasonally changing behaviors within a year.  

Simulations were conducted across a real landscape representing habitats in eastern 

Alberta, where chronic wasting disease (CWD) was first detected in 2005 and has since been 

rapidly increasing.  Chronic wasting disease is a transmissible spongiform encephalopathy 

caused by prions that is 100% fatal in cervids including mule deer (Saunders et al., 2012; 

Williams et al., 2002).  Prevalence of CWD in harvest mule deer submitted for testing in Alberta 

was 14.8% in 2020.  CWD transmission occurs both directly through contact between 

individuals and indirectly through the environment (Williams and Miller, 2003); however, 

transmission during establishment is likely dominated by animal-to-animal contact whereas 

environmental transmission is likely a major route of transmission after CWD becomes well-

established (Almberg et al., 2011). To parameterize the model, I used data from mule deer in this 

region. Winter deer densities, group size, and composition of groups were based on winter aerial 

surveys during 2008, 2009, 2018, and 2020, whereas 81 GPS-collared mule deer, monitored over 

two periods (2006 - 2009, 2017 - 2020), provided the basis for home ranges sizes, home range 

resource selection function, and movement integrated step selection functions.  Outputs of the 
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model include between- and within-group contacts by dyad type (male-male, male-female, 

female-female). 

I first give an overview of the model details in a standard presentation format for IBMs 

(Grimm et al., 2010, 2006). I assessed model performance by comparing a map of the simulated 

contacts across the landscape to a map of the probability of contacts occurring in a location, 

which was derived statistically based on known contacts of GPS collared deer (Dobbin 2022).  I 

also performed a sensitivity analysis on model parameters to identify model output patterns in 

response to parameter changes, model robustness, and key parameters driving outputs (Cariboni 

et al., 2007; Manlik et al., 2018; Prieto and Ibarguen-Mondragon, 2019; ten Broeke et al., 2016).  

Sensitivity analysis can be done using local methods, such as one-at-a-time testing where each 

variable is tested and varied individually, or using global methods, such as variance- or 

regression-based methods that test the influence of covarying parameters (Ligmann-Zielinska et 

al., 2020; ten Broeke et al., 2016).  In this work I used Latin-hypercube sampling to sample the 

parameter space, which takes equal samples across the parameter range, and then used 

regression-based analysis to evaluate the results.  Partial correlation coefficient values were used 

to identify linear effects whereas partial rank correlation coefficient values were used to look for 

non-linear effects (Helton and Davis, 2003).  

Methods 

Overview 

Purpose 

The purpose of this work is to use an IBM to simulate seasonal within- and between-group 

contacts of mule deer on a real, heterogeneous landscape and to record contact rates by deer and 
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by patch, where a patch is a 30 x 30-m cell. The model was programmed, and simulations were 

run in Netlogo 6.1.1. (Wilensky, 1999).  The IBM incorporates key deer behaviours including 

seasonal grouping, home ranges, and resource selection, with the aim of producing a depiction of 

potential contact rates and locations that may be representative of disease transmission on a 

heterogeneous landscape. This model can be used to assess how sensitive the rates and 

distribution of contacts among the sexes are to landscape heterogeneity, and to evaluate disease 

management scenarios such as removal of artificial food attractants (Chapter 3). 

State Variables and Scales 

There are two key sets of state variables for the model -- those belonging to the patches, and 

those belonging to the deer (Appendix A).  The patches are characterized by attributes which 

consist of input values representing landscape features derived from GIS layers (Table 2.1), 

proportional selection weights for the integrated step-selection functions, as well as outputs of 

cumulative between- and within-group contacts and cumulative contacts by deer dyad type.  

Landscape covariates include vegetation features, topography, and distance to linear features, 

which are described in Table 2.1.  Patches represent a 30-by-30-meter area for consistency across 

GIS layers.   

 Individual deer variables include the movement variables of step length, turning angle, 

and the proportional weight at end point destination of the step.  Each deer has its own turning 

angle distribution, a von Mises distribution, which depends on the vm-length that represents the 

agreement between the direction of persistence and the direction towards the home range 

centroid, as well as sine and cosine which are used to define the mean turning angle.  Deer also 

have variables defining their sex, group number, the ID of the group leader, and the x and y 
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coordinates of their home range centre.  Lastly, deer and patches have variables defining their 

cumulative and step-specific number of contacts by group type (within- or between-group) and 

dyad type (male-male, female-female, female-male). 

 Timesteps represent two hours and the simulation was run for a period representing 

winter-spring (16 December 16 – 9 May, modified Silbernagel et al. 2011, Dobbin 2022) plus a 

100-timestep burn-in period yielding 1840 timesteps.  This temporal extent was chosen so as to 

limit the need for incorporating population dynamics such as reproduction and mortality; 

however, the model could be parameterized for other seasons. The total simulation area is 1440 

km2, which represents the largest square extent that can fit in the study area, i.e., Wildlife 

Management Unit 234 in eastern Alberta. 

Process Overview and Scheduling 

Within each two-hour timestep, movement occurs in 4 stages in the order presented in Figure 

2.1. For each module, individuals and patches are processed in a random order. 

 

Design Concepts 

The general concepts considered in this model include home range, social grouping, and resource 

selection at the movement scale because they influence contact rates.  Sex-specific home-range 

placements and size are dictated by landscape resources and deer preferences that will influence 

the overlap between groups.  The more that groups overlap, the more between-group contacts 

will increase (Schauber et al., 2007).  Home range size and placement differ by sex (Silbernagel, 

2010). 

 How deer are grouped also influences contact rates because group-membership is used to 

define between- versus within-group contacts, and group size and spatial proximity within a 
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group will influence within-group contact rates (Habib et al., 2011; Tosa et al., 2015). Group 

sizes of mule deer are larger in winter than in summer and have a mixed-sex composition in 

winter (Lingle, 2003). 

 Resource selection is incorporated into individual deer movement via the integrated step-

selection functions and represents the link between landscape features and how deer move 

(Avgar et al., 2016; Fortin et al., 2005).  Resource selection influences contact rates because, if 

the deer have strong selection for a resource, this can put deer in close proximity to each other 

(Kjær et al., 2008).  Habitat selection is also different for each deer sex (Rodgers et al., 2021).  

Emergence 

The contacts between deer are a focal output that emerges from the model, which are affected by 

the environment and submodels describing the deer’s behaviour.  Spatial use patterns are an 

emergent output that depends on the environmental input as well as the turning angle, and step 

length distributions.  Home range size and shape also are emergent outputs as they are the 

product of a step length distribution, a turning angle distribution modified for a bias to the home 

range centroid, habitat selection, and grouping behaviour.  Other elements, such as group size, 

are less emergent as they are dictated simply by deer density and allocation to home ranges.  

Sensing 

Deer are assumed to sense their environment, responding to resource covariates in the placement 

of their home ranges and their step selection process.  They are assumed to ‘know’ the resources 

covariates and the corresponding selection weight at the end point of every drawn step, which 

determines whether or not they accept the step (Fortin et al., 2005; Thurfjell et al., 2014).  The 

deer also have an intuitive sense of the direction of their home range centre, incorporated as a 
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bias towards their home range centre in calculating their turning angle parameters (Duchesne et 

al., 2015; Moorter et al., 2009).  Deer within a group sense leadership status and consider it in 

their movements as the “followers” are required to move within a defined angle on either side of 

the direction of the group leader (Kjær, 2010). 

Stochasticity 

Stochasticity is included in the home range placement and movement of the deer.  Deer are 

randomly placed on the landscape at the beginning of a simulation at one of the predetermined 

home-range centroids. Because each individual deer, rather than a group of deer, is located at a 

centroid, the exact group size and composition may vary slightly and differ with each iteration, 

although mean group size will stay the same because the number of groups correspond to the 

number of home range centroids. Stochasticity is also included in deer movement within a home 

range as steps are randomly drawn from turning angle and step length distributions at every 

timestep.  A sequential movement of deer proceeds via the acceptance-rejection method for each 

step (Appendix H), with the probability of a step being accepted proportional to the patch 

weight, adding stochasticity to the model.  I do not include stochasticity in resource weights of a 

patch.  

Collectives 

Deer form groups, corresponding to home range centroids, and exhibit grouping behaviour in 

their movement.  Groups move using an approach of a leader moving and the other group 

members following the leader (Kjær, 2010).  Groups will average ~6.6 individuals, which 

corresponds to a mixed-sex group in winter (Lingle, 2003; Merrill, unpublished data). The model 

does not allow fission and fusion in group membership during an iteration. 
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Observation 

The data collected from simulations for each deer and patch include dyad-specific total within- 

and between-group contacts.  The number of contacts is cumulative throughout an iteration of 

the simulation. 

Details 

Initialization 

All model iterations were run with a sex ratio of 70:30 females to males and a density of 1 

deer/km2, which is within the ranges observed for mule deer in winter deer ground surveys in the 

study area (Merrill, unpublished data).  Number of potential deer home ranges were determined 

by dividing deer population size by target group size (~6.6) and location of home range centroid 

was chosen based on a sex-specific, resource selection function derived from field data (see 

below).  At the beginning of an iteration, each deer had a 0.7 probability of being female and 0.3 

probability of being male.  Deer were randomly placed at one of the potential home range 

centroids to create a mixed-sex group associated with each of the home range centroids, and 

group number was assigned based on centroid. 

Input 

Home-range Placement 

Home-range centroids were placed with the probability of a location being picked being 

proportional to the value of its resource selection function weight (Lele et al., 2013; Manly, 

2002).  More than the required number of home ranges were placed on the landscape, and then 

rarified to be no less than 200 meters apart (Comer et al., 2005).  Sex-specific RSFs were 
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developed for home range placement based on field data in 3 seasons (Appendix B), but only the 

sex-specific RSF for winter/spring (16 December – 9 May) was used in this Chapter.  The winter 

home-range selection function was derived using movement data from 54 female and 21 male 

GPS-collared mule deer that had between 309 and 584 fixes for the winter when including only 

one fix from each quarter of the day.  Then home ranges were delineated base on 95% utilization 

distributions calculated with the adehabitatHR software package (Calenge, 2006).  Home 

ranges (used units, 1) were compared to randomly placed circular areas (0, available units), 

where available units were equal in area to the median home range size (16.05 km2 for 

males,14.36 km2 for females).  I used the median home range size instead of the mean due to 

some large outliers due to early seasonal movement.  Five available units were generated for 

each used unit (Gustine et al., 2006; Ladle et al., 2018).  

Covariate values for each used and available home range unit (Table 2.1) were derived as 

the average covariate value in the home range.  Covariates were assessed for collinearity and 

variables correlated with | r2 |> 0.7 were not simultaneously input to the same model.  Models 

were fit using a generalized linear model with a logistic function, using the lme4 package in R, 

for a standard set of models plus the model including covariates that did not overlap zero in the 

global model (Bates et al., 2015; Boyce et al., 2002).  I initially fit home range RSFs separately 

for male and female mule deer; however, males and females needed to be combined if possible, 

because mixed groups needed to be placed with one home-range centroid for all members 

(Lingle, 2003; unpublished data).  Therefore, the top 5 models from males and females were 

taken as the candidate models for the winter-spring category and male and female data were 

pooled to parameterize a winter RSF for both sexes.  Spatial weights on the landscape were then 

calculated using home-range-sized moving window layers.  Separate male and female RSF 
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layers were calculated as the sexes have different home range sizes, and then an RSF layer for 

both sexes was created by averaging the separate female and male layers with a 70:30 weights 

for females: males.    

We used a model selection approach to select the most supported models of home range 

selection based on Akaike’s information criterion (AIC) and parsimony.  AIC is based on using 

maximum likelihood estimates to approximate Kullback-Liebler information (Burnham and 

Anderson, 2002).  The log-likelihood is then corrected for upward bias by penalizing the 

estimate for the number of parameters (i.e., AIC = 2[log-likelihood] + 2K) where K is the 

number of parameters (Burnham and Anderson, 2002).  A model is considered to have more 

support if its AIC is lower than the next best model by at least 2.  The combination of the lowest 

AIC score and the most parsimonious model among competing models (ΔAIC < 2) is considered 

to be the top model to avoid overfitting (Burnham and Anderson, 2004).  An extension of AIC is 

AICc, where AIC corrected for small sample size by adding 
2𝑘2+2𝑘

𝑛−𝑘−1
, where n is the sample size 

and k is the number of parameters (Burnham et al., 2011; Burnham and Anderson, 2002).  

Information criterion, such as AICc, are relative, not absolute, meaning they do not tell one how 

well the model fit the data, only how well it performs compared to other models in a candidate 

set (Burnham and Anderson, 2002).  As a result, I assessed model performance using k-fold 

cross validation that used a circular moving window to calculate covariate values for each cell.  

Submodels 

At the beginning of each time step deer are moved to a new location in four stages (Figure 2.1). 

Turning Angles  

First, at each time step, a turning angle distribution for each individual (leader or follower) 
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within each group is calculated. The turning angle distribution was derived based on the 

consensus method in Duchesne et al. (2015).  Mean turning angle of the distribution was an 

angle between the direction of persistence (θ) and direction of home range (ψ) with the position 

being determined by κ values defining how much the deer favors persistence versus home range 

(Equation 1). 

μ = 𝑎𝑡𝑎𝑛(κ1𝑠𝑖𝑛(θ) + κ2𝑠𝑖𝑛(ψ), κ1𝑐𝑜𝑠(θ) + κ2𝑐𝑜𝑠(ψ)).   (1) 

The spread of the turning angle distribution is defined by the agreement between the direction of 

persistence (θ) and direction of home range (ψ), defined by equation 2. 

κ = √(κ1𝑠𝑖𝑛(θ) + κ2𝑠𝑖𝑛(ψ))
2

+ (κ1𝑐𝑜𝑠(θ) + κ2𝑐𝑜𝑠(ψ))
2
. (2) 

κ values for simulation were derived via simulation experiment and are not empirical. 

Selection and movement of group leader 

The leader of the group was the first individual to move at each time step and moved 

independently of every other individual in the group.  A new group leader was randomly chosen 

with equal probability and designated as the leader, whose movement influences all other 

individuals in the group.  This assumed both male and female deer could be leader of the group. 

The leader moved according to an integrated step-selection function (iSSA, Avgar et al., 2016), 

where the step length and turning angle are randomly chosen from their respective distributions 

to move the leader to a new location. The sex-specific, exponential step length distribution was 

derived from empirical 2-hour GPS data pooled from GPS-collared mule deer whose movements 

were monitored in 2006-2009 (M=11, F=20) and 2017-2020 (M=16, F=34) in eastern Alberta.  

Data used to parameterize the step length distribution were restricted to be above 20 meters to 
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avoid including spurious turning angles due to GPS error (Hurford, 2009). However, when 

simulating movements, deer could select below 20 meters because GPS error is not a concern 

when simulating movements.  Turning angle was randomly chosen from the distribution of 

turning angles calculated for the individual animal as described above.  

Integrated Step Selection Functions 

Once the leader selected a location, the location was either accepted or rejected by comparing the 

proportional weight of selection of the patch at the end of the step to a random number between 0 

and 1 (von Neumann, 1951; Appendix H).  If that number was above the proportional weight, the 

step was rejected, and a new step was taken by redrawing from the step length and turning angle 

distribution until the step is accepted.  Steps also were rejected if the target patch is occupied by 

more than 7 deer, which is the average group size, and two groups were constrained in occupying 

the patch at the same time.  Once the leader moved, other group members followed the leader but 

were required to select an angle that made them move within 30 degrees on either side of the 

leader (Belsare et al., 2020; Kjær, 2010).   

 Proportional weights of rejecting and accepting a step were derived based on sex-specific 

iSSA (Avgar et al. 2016).  I modeled the iSSA weight by comparing covariate values associated 

with the end point of each step of a GPS-collared deer (1) to those at the end point of 15 random 

steps (0), initiated at the same location but whose direction and step length were chosen at 

random from the empirical distributions of the GPS-collared deer (F = 52, M = 25, selection for 

inclusion described in Appendix E).  I drew step lengths from an exponential distribution fit to 

data pooled across individuals for each sex, and a step-specific modified turning angle 

distribution with empirically determined κ.  I measured the attributes in Table 2.1 at the end 
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point of a step as opposed to the beginning point of the step or an average over the step because 

step origin implied current position determining future location, and the latter assumes the 

individual travelled in a straight line  Models were fit using a conditional logistic regression, 

using the amt package in R (Signer et al., 2019).  The candidate models included a set common 

to both sexes plus the model including only variables in the global model that did not overlap 

zero for each sex.  The top model for each sex/season was selected using AICc and parsimony. 

Contacts  

A contact was defined for a current step when two deer came within 5 meters of each other. I 

used 5 m to be consistent with contacts that were used for model assessment (Dobbin 2022).  The 

contact is classified as a between-group contact if the group number of the two individuals is 

different and otherwise as a within-group contact.  At every time step, I recorded the number of 

conspecifics of each sex within 5 m. I summarized the total, cumulative winter contacts by group 

type (within or between) and by dyad type (female-female, FF; male-male, MM; female-male, 

MF) by deer and for each patch in the landscape where a contact occurred. I counted contacts 

only after 100 timesteps to allow for a burn-in period that allowed the individuals to spread out 

and take a more natural positioning on the landscape. 

Sensitivity Analysis 

We conducted a sensitivity analysis of 3 key model parameters while holding all other 

parameters constant.  I varied the magnitude of kappa-1 value from 0 to 1, which influences the 

restriction angle for individuals following the leader to represent social cohesion in movement of 

group members; while holding density constant I varied the number of groups from 196 to 240 to 

represent how aggregated deer were across the landscape; and I varied the restriction angle for 
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the followers to represent varying group cohesion.  I employed a Latin hypercube sampling 

procedure using the nlrx package in R (Salecker et al., 2019).  One hundred iterations, each 

running for 1840 timesteps, were used.  I present partial correlation coefficients as well as partial 

rank correlation coefficients to look for non-linear effects.  Confidence intervals for the 

correlation coefficients were calculated using bootstrapping. 

Model Assessment    

We compared the spatial distribution of contacts output by the model for patches in the study 

area to the predicted relative contact probabilities (RCP), which were statistically derived from 

contact rates of deer collared with proximity loggers in the study area (Dobbin 2022). The RCP 

were derived by modelling actual contact (1) and random locations within the overlap of 2 mule 

deer (0) as function of landscape covariates (Table 2.1) where high values indicated a high 

probability of deer contact. RCP values were scaled between 0 and 1 by dividing by the 

maximum value.  Output values for a patch from the simulations were averaged across 10 

simulations using ten different random seeds.  A t-test was used to compare the mean RCP of 

cells where contacts occurred in the simulations to the mean RCP at the equivalent number of 

random points. This allowed us to see if the model simulated contacts occurring in cells with a 

higher probability of contact, as one would expect, compared to random. 

Results 

Home-range resource selection functions 

There were 4 competing models (ΔAICc <2) for mule deer selection of home range locations, 

and there was considerably more support for these models than the null model (Table 2.2).  The 

top models all included distance to river, streams, well sites, and extent of woody cover, 
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although models differed with respect to the linearity in the selection for woody cover. A 

negative effect of distance to road was also in 3 of the top models.  I selected as the top model 

the one that reflected that home ranges were located in areas generally closer to large rivers and 

well sites, but further from streams and had more woody cover, with woody cover having the 

greatest influence on home range placement (Table 2.2). 

Model predictions across the study area indicated that there was one large cluster of high 

RSF values in the center and one on the western portion of the study near Chauvin, with a few 

other clusters scattered throughout the study area (Figure 2.2), which corresponded to areas of 

high woody cover (Appendix J).   Five-fold cross validation revealed a correlation of 0.82±0.08 

(±SD) for the winter RSF (Appendix B). 

 

Integrated Step Selection Function 

Empirical step length distributions of males and females had exponential rate coefficients of        

-0.0037 and -0.0041, respectively (Figure 2.3).  Turning angle distributions were unique to every 

step of each individual (Figure 2.1) due to the influence of persistence and bias to the home 

range centroid.  I derived the value of the κ1 parameter, which influenced the persistence, and the 

κ2, which influenced home range centroid bias using simulation as 0.4 and 0.5, respectively 

(Appendix F).  When simulating, the same κ values and target home range size were used for 

both sexes as their home range sizes were less than one standard error different (target home 

range size was 14.87 km2, a 70:30 weighted average of female and male home range sizes). 

 There were two competitive iSSF models (ΔAICc <2) for female and one iSSF model for 

males (Table 2.3).  I chose the model for males without the interaction between ruggedness and 

distance to the nearest river as the top model due to parsimony as the addition of an interaction 

term did not considerably improve the model.  Male iSSF models differed from that of females 
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in that female step selection increased at high extents of woody cover whereas males selected 

high and low values of woody cover.  In contrast, female movement was less influenced by the 

distance to well sites compared to males.  The distribution of step selection values in the study 

area did not differ significantly between males and females (KS test D = 0.291, p < 0.001; 

Appendix I).  Values of selection were generally high in the central-west and along the eastern 

edge of the study area.  Although males and females select for similar areas, the male higher 

selection values, especially in the center-west of the map, appear more diffuse than the females, 

likely because they also select for low woody cover values (Figure 2.4).  

Sensitivity 

Partial correlation coefficients (PCC) revealed an extreme sensitivity of within-group contacts to 

group cohesion, a sensitivity of between-group contacts to the number of groups, while none of 

the other parameters have a substantial impact (all other confidence intervals overlap zero; 

Figure 2.6a).  PCC of within-group cohesion was -0.93, indicating that as the restriction angle 

controlling group cohesion increased and the group became less restricted in following the group 

leader, resulting in fewer overall contacts within a group, but not between-group contacts.  As 

the number of groups got larger, the number of between-group contacts decreased as indicated 

by a PCC of -0.29.  This resulted because, as the number of groups increases, group size 

decreases with fewer individuals contacting each other for the groups that overlap more.  

Persistence, which influences home range size, did not significantly affect within- or between-

group contacts.   

Partial rank correlation coefficients (PRCC) reveal non-linear influences not seen by 

looking at partial correlation coefficients (Figure 2.6b).  Within-group contacts remained 

extremely sensitive to group cohesion (PRCC = -1.00), but were also sensitive to both number of 
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groups (PRCC = -0.62) and movement persistence (PRCC = -0.29) in a non-linear manner.  

Between-group contacts were only slightly sensitive to the number of groups (PRCC = -0.26).  

Some of these non-linear relationships can be seen by graphing contacts against parameter value 

(Appendix D); however, these plots cannot display the effects of covariation and therefore some 

relationships may not be visible. 

Comparison to Statistical Contact Risk Map 

The simulation outperforms randomness in all but the male-male, within-group scenario where 

randomness was not significantly different from simulation results (Table 2.4).  Contacts occur 

in higher RCP areas (Figure 2.5).  In every other simulation the model was significantly better 

with very small p-values. 

Discussion 

Males and females selected similarly at the step scale as well as the home range scale, with 

woody cover being particularly important in both cases.  Woody cover was associated with 

selection for both sexes at the home range and step scales, while both sexes selected rivers at the 

home range scale and avoided them at the step scale.  Woody cover was also found to be selected 

for at both scales in previous studies (Habib et al., 2011; Nobert, 2012; VerCauteren and 

Hygnstrom, 2004).  The difference in selection of rivers at the two different scales could be due 

to rivers being associated with other characteristics that deer select for home ranges, such as 

woody cover, which can be riparian, and being able to capture a wider range of values with each 

home-range sample unit as it has a bigger area than simply a point when the sample unit is a step.  

Deer’s avoidance of areas near rivers at the step scale may be simply because major rivers are 

relatively uncommon with only one major drainage in the upper corner of the study area (Battle 

River).  Surprisingly deer avoided streams at both the step and home range which is contrary to 
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previous knowledge about deer preferring riparian areas in the winter (Edmunds et al., 2018; 

Walter et al., 2011).  The similarity of selection and strong dependence on a patchy resource 

could increase contacts as it leads to concentrated areas of home ranges and attracts individuals 

to similar areas (Bonnell et al., 2010; White et al., 2018b).  For example, Bonnell et al. (2010) 

used an IBM with resource selection to show that resource heterogeneity can increase contacts 

between individuals and therefore facilitate disease transmission.  Patches of a selected resource 

effectively increase local density and facilitate more contacts between deer (Joly et al., 2006; 

Storm et al., 2013).  This indicates that a more homogeneous landscape, where woody cover is 

more evenly distributed, could help to reduce contacts as it would spread the deer out more over 

the landscape and not keep them all in the same few areas (Dion et al., 2011; Dion and Lambin, 

2012; Habib et al., 2011; Real and Biek, 2007).  Using an IBM, White et al. (2018b) found that 

more fragmented landscape, with stronger resource selection, and lower resource availability had 

the highest change of disease persistence and higher outbreak peaks.  This is consistent as it 

points to a few patches of woody cover, which the deer strongly select for, facilitating disease 

persistence and transmission. 

 Within-group contact rates were more sensitive to model parameters than between-group 

contact rates.  Contact rates have been found to be higher within groups, and to vary with factors 

such as home range overlap and density (Schauber et al., 2007; Vander Wal et al., 2014).  

Greater home range overlap resulting in increased contact rates was found by both Schauber et 

al. (2007) and Vander Wal et al. (2014) who used GPS collars and proximity loggers to analyze 

this relationship.  Although the sensitivity of within-group is notable, the lack of sensitivity in 

between-group contacts is key as between-group contacts are particularly important for disease, 

since they allow disease to spread through the population instead of being contained to a group, 
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and are therefore an essential output (Cross et al., 2007, 2005; White et al., 2017).  Between-

group contacts are also sensitive to number of groups/group size, although when looking at 

PRCC, they are not as sensitive as within-group contact rates.  Group size is known to correlate 

with disease risk, which is consistent with this result (Rifkin et al., 2012; White et al., 2017).  A 

meta-analysis by Rifkin et al. (2012) revealed a significant, positive correlation between group 

size and measure of parasitic risk.  Group characteristics such as size can vary in response to 

predation risk and habitat (Bowyer et al., 2001; Leuthold and Leuthold, 1975; Ruckstuhl and 

Neuhaus, 2000).  More cohesive groups had individuals contacting each other more, indicating a 

key target for reducing within-group contacts.  Group cohesion can vary with factors such as 

environment; for example, white-tailed deer were more tightly grouped in more open areas 

(Seagle, 2003). 

 Simulation and statistical models agree, which is expected given that the simulation 

should be modelling natural deer behaviour, and supports my model in all except the male-male 

within-group case, where the simulation does not outperform randomness.  This could be 

because upon validation of the RCP model, the male-male within-group model was the worst 

performing model and did not outperform randomness (Dobbin 2022).  Although the statistical 

model can be used for some evaluations such as environmental variables and to determine the 

areas at the highest risk for contacts, the IBM has the ability to analyze multiple scenarios in a 

quick manner on factors such as environmental variables, but additionally can evaluate scenarios 

regarding management factors such as artificial attractants (Chapter 3) and vaccine baits 

(Ramsey and Efford, 2010).  In all these scenarios the model can also analyze the effect of the 

environment and other scenarios on the relative proportion of between- and within-group 

contacts and therefore the degree of density- versus frequency-dependent disease transmission 
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when considered at the population level.  Within-group contacts typically drive frequency-

dependency, whereas between-group contacts typically drive density-dependence and therefore 

looking at their relative proportions can tell us which may dominate at the population level 

(Manlove et al., 2017).   

This model could be extended in several important ways.  First, although contacts are an 

appropriate proxy of transmission, the addition of a transmission coefficient would allow for the 

visualization of geographic spread.  This implementation could be done with a constant 

transmission coefficient as is often done in epidemiological models, but could also be done with 

a statistical distribution of transmission coefficients to represent variation in contact duration that 

cannot be modelled due to the 2-hour timescale (Aiello, 2018; Aiello et al., 2018; Rakowski et 

al., 2010).  Contact duration can influence transmission probability and a distribution of contact 

duration can be fit to a statistical curve such as a lognormal distribution, as shown by Aiello 

(2018).  Second, the model could be extended to multiple seasons to encapsulate seasonally-

varying attributes such as group size, group composition, home range size, and selection (Lingle, 

2003, unpublished data Merrill et al.).  Fission-fusion grouping dynamics can impact group size 

and cohesiveness which both can influence contact rates and transmission between individuals 

and subgroups (Aureli et al., 2012; Body et al., 2015).  Lastly, the model could be applied to 

attractant and vaccine scenarios to investigate management strategies.  Attractant and vaccine 

management focus on minimizing and maximizing contacts, respectively, and this model, given 

its ability to model and record contacts, can be used to evaluate the most ideal and detrimental 

distributions and densities for these elements.  
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Chapter 2 Tables 

Table 2.1. State variables, units, and analysis scale characterizing 30-m patches in a landscape of east central Alberta, Canada used in 

simulating mule deer contact rates 

Variable Unit Analysis 

scale 

Description Source 

Distance to 

wells 

 

m 

 

-- 

Distance to nearest well site as an exponential decay 

function:  Distwell = exp(-0.001*distance). (Appendix G) 

(Alberta Energy Regulator, 2020; 

Governement of Saskatchewan, 

2015) 

 

Distance to 

rivers 

 

m 

 

-- 

Decay distance to nearest river calculated as an 

exponential decay function:  

exp(-0.001*Euclidean distance)   

Rivers were all primary or secondary rivers in Alberta; in 

Saskatchewan rivers were the Battle River, North and 

South Saskatchewan River (Appendix G).  

(Altalis, 2018a; Government of 

Canada, 2017) 

 

Distance to 

streams 

 

m 

 

-- 

Decay distance to nearest stream calculated as an 

exponential decay function:  

exp(-0.001*Euclidean distance)   

Streams included all permanent linear water feature 

besides Battle River, North Saskatchewan River, and 

South Saskatchewan River in Saskatchewan, and all 

perennial and indefinite streams in Alberta. (Appendix G) 

(Altalis, 2018a; Government of 

Canada, 2017). 

 

Distance to 

roads 

 

km 

 

-- 

Distance to nearest road, paved and unpaved, as an 

exponential decay function:  Distroad = exp(-

0.001*distance). (Appendix G) 

(Altalis, 2020; Governement of 

Saskatchewan, 2019). 

Agriculture % 250 m Proportion agriculture land cover from Landsat imagery 

(Appendix G). 

(Latifovic, 2019; Merrill et al., 

2013) 

Woody cover % 250 m Proportion woody cover from TM Landsat imagery. 

(Appendix G)  

(Latifovic, 2019; Merrill et al., 

2013) 

Woody cover 

edge 

km/km2 250 m Linear density of woody cover edge.  (Appendix G) (Latifovic, 2019; Merrill et al., 

2013) 

Ruggedness unitless 30m Terrain ruggedness (Riley et al., 1999; Appendix G)  (Altalis, 2018b; Government of 

Canada, 2016). 
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Table 2.2 Top models for winter, mixed-sex home range resource selection function predicting the 

selected locations of the 95% utilization home ranges of mule deer in eastern central Alberta, 

Canada based on pooled movement data of (54 female and 21 male GPS-collared mule deer).  Edge 

density is not listed as it was not present in any top model.  See Appendix B for full model.  * 

indicates that the confidence interval does not overlap zero. 
 

Int 

Distance 

to rivers 

Distance 

to roads 

Rugged 

Terrain 

Distance to 

streams 

Woody 

cover 

Woody 

cover2 

Distance 

to wells ΔAICc 

-4.64 

± 0.44* 

 

1.21 

± 0.36* 

 

  

-1.34 

± 0.65* 

 

7.48 

± 0.87* 

 

 

0.91 

± 0.31* 

 

0 

 

-5.59 

± 0.77* 

 

0.97 

± 0.41* 

 

-0.59 

± 0.58 

 

0.91 

± 1.16 

 

-1.33 

± 0.64* 

 

16.94 

± 5.30* 

 

-10.44 

± 5.70 

 

1.09 

± 0.41* 

 

0.462 

 

-4.61 

± 0.44* 

 

1.18 

± 0.36* 

 

-0.60 

± 0.59 

 

 

-1.30 

± 0.65* 

 

7.46 

± 0.87* 

 

 

1.17 

± 0.40* 

 

0.962 

 

-4.56 

± 0.45* 

 

0.94 

± 0.41* 

 

-0.63 

± 0.60 

 

1.22 

± 1.16 

 

-1.45 

± 0.65* 

 

7.53 

± 0.88* 

 

 

1.18 

± 0.41* 

 

1.865 

 

-4.19 

± 0.39* 

 

0.85 

± 0.39* 

 

 

1.28 

± 1.16 

 

-1.21 

± 0.62* 

 

6.91 

± 0.81* 

 

  6.953 

-1.61 

±0.13* 
       128.16 
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Table 2.3.  Parameter values for the top 3 sex-specific integrated step-selection functions for mule deer in winter in east central 

Alberta, Canada.  Bolded is the selected model which was chosen as a combination of AICc and parsimony.  * indicates that the 

confidence interval does not overlap zero. 

 

Agriculture 

Edge 

density 

Distance 

to rivers 

Distance 

to roads 

Rugg x 

Rivers 

Rugged 

Terrain 

Distance 

to streams 

Woody 

cover 

Woody 

cover2 

Distance 

to wells 

ΔAICc 

 

Males -0.70  

± 0.09* 

0.09 

± 0.02* 

-0.10  

± 0.02* 

-0.16  

± 0.01* 

-0.11  

± 0.04* 

0.28  

± 0.02* 

-0.12  

± 0.02* 

-0.73  

± 0.26* 

0.73  

± 0.25* 

-0.03  

± 0.01* 
0 

            

 -0.69  

± 0.09* 

0.09  

± 0.02* 

-0.08  

± 0.02* 

-0.16  

± 0.01* 
 

0.28  

± 0.02* 

-0.11  

± 0.02* 

-0.70  

± 0.26* 

0.70  

± 0.25* 

-0.03  

± 0.01* 
10.70 

            

 -0.68  

± 0.09* 

0.06  

± 0.01* 

-0.08  

± 0.02* 

-0.17  

± 0.01* 
 

0.28  

± 0.02* 

-0.12  

± 0.02* 

0.03  

± 0.06 
 

-0.03  

± 0.01 
56.12 

            

Females -0.31  

± 0.06* 

0.07 ± 

0.008* 

-0.05 ± 

0.007* 

-0.12 ± 

0.009* 

-0.02 ± 

0.008* 

0.25  

± 0.01* 

-0.12  

± 0.01* 

0.46  

± 0.04* 
  0 

            

 -0.31  

± 0.06* 

0.07 ± 

0.008* 

-0.05 ± 

0.007* 

-0.12 ± 

0.009* 

 0.25  

± 0.01* 

-0.12  

± 0.01* 

0.46  

± 0.04* 

 

  1.87 

 
-0.31  

± 0.06* 

0.06 

± 0.01* 

-0.05 ± 

0.007* 

-0.12 ± 

0.009* 
 

0.25  

± 0.01* 

-0.12  

± 0.01* 

0.59  

± 0.17* 

-0.13  

± 0.16 

0.003  

± 0.007 
5.01 
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Table 2.4. Two-sided t-test results for comparing mean values of relative contact probability 

(RCP, Dobbin 2022) at locations where simulated contacts occurred and at random locations.  

Sample size (n) indicates the number of cells where contacts occurred and the number of 

random points. Separate t-tests were done for each group and dyad type.  

 

 

Simulated 

Contact 

Location 

Random 

locations  t P value n 

Within group      

   Female-female 0.65 0.59 64.046 <0.001 13823 

   Male-female 0.47 0.35 87.562 <0.001 10852 

   Male-male 0.24 0.25 -0.208 0.835 2578 

      

Between groups      

   Female-female 0.45 0.40 28.766 <0.001 2002 

   Male-female 0.91 0.69 36.423 <0.001 1564 

   Male-male 0.26 0.24 5.5328 <0.001 379 
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Chapter 2 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Flow chart depicting order of scheduling for the 4 major movement stages to 

recording contacts at each time step. 
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Figure 2.2.  Scaled, calculated winter home range RSF weights in 

simulation area based on weighted average of male and female calculated 

RSF layers. Purple lines represent all four-lane undivided paved roads, two-

lane undivided paved roads, and divided paved roads in the study area. 

Chauvin 

Edgerton 
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Figure 2.3. Empirical step length distributions derived from mule deer movements in central eastern 

Alberta, Canada with exponential distribution fit lines overlaid. 
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Figure 2.4.  Winter selection weights derived from empirical iSSF for a) female (n = 52) and b) 

male (n = 25) mule deer predicted for study area in east central Alberta, Canada. 

 A)  B) 

  

  

  

Low: 0.120 
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Figure 2.5.  Simulation contacts overlaid on relative contact probability layers (Dobbin 2022) 

for Within Female-female (left) and Within Male-female (right).  Simulation contacts were 

averaged across runs from 10 random seeds and resampled bilinearly to 300 m by 300 m from 

30 m by 30 m for visibility.   Red represents where contacts occurred in the simulation.  Lighter 

indicates a higher value for the relative contact probability layers.  Remaining overlays are in 

Appendix C. 
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a)          b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Between-Group Contacts                            Within-Group Contacts Between-Group Contacts                  Within-Group Contacts 

Figure 2.6. Sensitivity plots for population between- and within-group contact metrics.  For a, partial correlation 

coefficient is displayed on the y-axis, indicating sensitivity, whereas the test parameters of group cohesion, number of 

groups, and movement persistence are on the x-axis.  For b, partial rank correlation coefficient, looking for non-linear 

effects, is displayed on the y-axis, indicating sensitivity, whereas the test parameters of group cohesion, number of 

groups, and movement are on the x-axis.  Confidence intervals were obtained via bootstrapping. 
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Chapter 3: Artificial Attractants: Fatal Attraction or Management Tool? 
 

Introduction 

Anthropogenic activities on landscapes can create natural and artificial hotspots of wildlife 

activity that drive the spread of emerging diseases.  Supplemental feeding, baiting, and 

unintentional attractants, such as haybales and grain bags, are common for ungulates in North 

America (Sorensen et al. 2014, Milner et al. 2014).  Supplemental feeding sites are designed to 

attract large herbivores for viewing or hunting, to reduce herbivory on plantings or vehicle 

collisions on roads, or to influence population dynamics by supplying additional food resources 

(Sorensen et al. 2014).  Unintentional feeding includes depredation on agricultural crops, such as 

grain and canola, when they are growing or in storage units in the field of origin or clustered 

around farms (Plummer et al. 2018, Jerina 2012, Andreassen et al. 2005, Felton et al. 2017). 

Economic losses to farmers from depredation on stored crops and hay were nearly a quarter-

million dollars total in damage in 1989 in the United States, with costs as high as hundreds of 

dollars per hectare (Austin et al., 1998; Menichetti et al., 2019; Wywialowski, 1994). Most 

jurisdictions pay some level of compensation to farmers for crop damage or provide materials to 

fence out ungulates to prevent depredation on stored crops (Gooding and Brook, 2014; 

Menichetti et al., 2019), but these programs depend on farmers following acceptable storage 

practices, such as erecting fencing and using repellants, to minimize depredation (Lemieux et al., 

2000; Mysterud et al., 2021; Mysterud and Rolandsen, 2019).  Nevertheless, aggregation of 

ungulates in winter due to improperly stored grains or accidental spillage remains a key problem 

in most agricultural areas (Mysterud et al., 2021; Sorensen et al., 2015). 
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In addition to the economic losses, aggregation of ungulates in winter at stored crops can 

lead to higher disease transmission. High use of artificial attractants (AA), such as grain bins, 

stored hay bales, and grain bags, facilitates direct transmission by increasing direct interactions 

among individuals at a site or indirect contacts where diseases are transmitted environmentally 

(Escobar et al., 2020; Oja et al., 2017; Sorensen, 2014; Thompson et al., 2008).  For example, 

individual deer have been shown to stay 1.36 to 1.69 times longer at AA depending on the layout 

of the feed, and increase between-group contacts compared to natural feeding areas (Cross et al., 

2013; Sorensen, 2014; Thompson et al., 2008).  White-tailed deer spent the highest amount of 

time at sites where grain was spread out, followed by sites where the grain was in a pile, both of 

which were higher than at natural areas (Miller et al., 2003; Thompson et al., 2008).  Infected 

animals can also contact individuals along travel routes to and from AA and, if infective agents 

are dropped or excreted along the routes, can spread a disease within the nearby home ranges of 

other individuals (Benavides et al., 2012). The role that AA play in disease transmission in an 

area will depend on the extent to which ungulates use AA, which in turn is contingent on the 

number of AA available, their spatial distribution relative to deer movement patterns, and the 

availability of other natural, high quality forages (Miller et al., 2003; White et al., 2018b). 

One disease of cervids where AA may be influencing the transmission and spread of the 

disease is chronic wasting disease (CWD, Rivera et al., 2019; Sorensen, 2014; Western 

Association of Fish and Wildlife Agencies, 2018).  CWD is a 100% fatal prion disease in cervids 

that has limited vertical transmission but horizontal transmission occurs both directly through 

contact between individuals and indirectly through the environment (Williams and Miller, 2003). 

CWD was first detected in a research facility in Colorado in 1967 and is now found in wild 

cervid populations in 3 Canadian provinces and 26 states (Miller and Williams, 2004; Smolko et 
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al., 2021; U.S. Geological Survery, 2022).  It was transported into Saskatchewan via farmed elk 

in 1996, before being detected in wild deer in Saskatchewan in 2000, and in Alberta in 2005 

(Miller and Williams, 2004; Smolko et al., 2021).  After finding CWD in Alberta, the Alberta 

government initiated a herd reduction program within a CWD control area in 2005 that was 

stopped after 3 years (Smolko et al. 2021).  Alberta has continued a hunter-harvest surveillance 

program since 1996 that shows CWD is spreading from east to west and prevalence province-

wide is now at 14.8% in mule deer and 5% in white-tailed deer (https://www.alberta.ca/chronic-

wasting-disease-updates.aspx).  When local CWD prevalence levels reaches ~25% or higher, 

modelling studies indicate evidence for population decline (DeVivo et al., 2017; Edmunds et al., 

2016).  Because there is no vaccine for CWD, the most common management approach for 

addressing CWD has focused on manipulating harvest strategies (Conner et al., 2021; Mysterud 

and Edmunds, 2019; Potapov et al., 2016; Rivera et al., 2019).  However, if AA play a 

significant role in CWD transmission, particularly in agricultural areas, additional research is 

needed to provide guidelines for best practices in reducing AA (Heberlein, 2004; Peterson et al., 

2002; Western Association of Fish and Wildlife Agencies, 2018).   

A first step to assessing the influence of AA on CWD transmission and devising 

guidelines for their management is modelling how the density and configuration of AA may 

influence deer behavior and potential contact rates.  Assuming deer are attracted to AA, then AA 

density and certain general AA arrangements or their relationship to preferred habitats may 

indicate non-linear increases in the rate of contact among individuals or with unique AA sites, 

which points to where management efforts to reduce AA may be most effective.  For example, 

while a very low number of AA may result in few contacts, as numbers of AA increase 

individuals may be attracted to more and different AA, increasing contacts with multiple, 
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potentially infected groups that use a site.  However, as the number of AA continues to increase, 

individuals may be exposed to fewer numbers of potentially infected groups or sites if they use 

only local, nearby AA and share sites with fewer other groups (Becker et al., 2018; Sah et al., 

2018).  Therefore, I may see the highest contact rates at an intermediate AA density, with peak 

contact rates that may be contingent on the configuration of AA or their proximity to preferred 

habitat.  For example, in the prairie-parklands of Alberta’s CWD zone, woody cover is key to the 

space use and movement behavior of deer (Habib et al., 2011; Nobert et al., 2016; Chapter 2). 

Thus, guidelines for limiting densities and where AA are located may differ between regions.  

In this chapter, I address the effects of non-intentional feeding sites associated with the 

storage of foods that attract deer (i.e., AA) in winter and in a modelling framework assess the 

influence that density and configuration of AA may have on potential contact rates, reflecting the 

potential for the transmission of CWD.  In Alberta, hay bales, grain bags, and grain bins where 

grain spills occur are the most commonly reported types of non-intentional attractants for cervids 

(Ewald, pers. comm.; Government of Alberta unpublished data, 2021; Mejía-Salazar et al., 

2018).  I focus on mule deer because they have the highest prevalence of CWD in Alberta 

(Smolko et al., 2021), and on winter because more aggregation at AA occurs then, most 

commonly in agricultural areas (Mejía-Salazar et al., 2018; Mysterud et al., 2021). I use the 

individual-based model (IBM) developed in Chapter 2 to simulate the influence of AA density, 

arrangement, and proximity to woody cover on metrics of per capita dyad and site contact rates 

in a landscape representative of the habitat conditions in a portion of WMU 234 in central-

eastern Alberta (Fig. 1).  I hypothesize that if mule deer modify their movement in relation to 

AA (i.e., are attracted to AA), there will be a non-linear relationship between total contact rates 

and AA density, whose shape is influenced by both the landscape arrangement of AA and their 
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proximity to woody cover.  More specifically, I predict that the highest per capita contact rates 

and site use among deer will occur at intermediate AA densities because, as the number of AA 

increase, deer will be attracted to more sites initially, but eventually high local density of AA 

will result in fewer contacts with unique deer.  Further, I expect that the general arrangement of 

AA and, in particular relative to preferred habitat (i.e., woody cover), will influence the number 

of unique AA sites any individual would visit, implying a potential influence of environmental 

transmission as overall prevalence increases.  If thresholds in contact rates exist, they may be an 

important consideration in guiding future regulations for how to effectively manage AA to 

minimize transmission of CWD and other diseases.   

Methods 

Study Area 

The focus of this study was a 1440-km2 area representative of eastern Alberta (Fig. 1). The area 

consists of rolling hills with an elevation of 553 to 782 m.  The area is within the parkland 

ecosystem (Meijer and Karpuk, 1999) and consists of agricultural cropland (48%), grassland and 

pastures (18.9%), and woody cover (24%) consisting of deciduous tree stands (Populus spp., 

20.1%), and tall shrubland (Elaeagnus commutata, Salix spp., Prunus spp., and Amelancier 

alnifolia, 3.9%).  The area has no major river drainages, but has multiple creeks and streams, 

including Ribstone creek, the most major drainage in the area.  In the 2006-2009 data period, 

winter temperatures ranged between ~ -20 and ~10o C (based on Lloydminter weather data) 

while in the later 2019-2020 period it ranged from -34.3 – 15.2° C (x̅ = -6.13, based on Edgerton 

AGCM station).  In the earlier period monthly snow depth ranged from 0 – ~45 cm, while in the 

later period monthly snowfall ranged between 12.0 and 22.8 cm.  Land use consists primarily of 

agricultural use and cattle farming as well as oil and gas extraction throughout the area.  Farm 
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sites were located based on buildings designated on the plat maps for Wainwright and Provost 

areas (The Municipal District of Provost No. 52, 2019; The Municipal District of Wainwright 

No. 61, 2020), which assumed all buildings selected were farms (Figure 3.1).  Ruggedness in the 

area ranged from 0 to 36.  

Deer Movement Model and Attraction to AA 

Individual deer moved in groups in 2-hour timesteps responding to landscape covariates at a 30 

by 30 m scale.  The centroid of a group of deer was initially located according to the predicted 

values from a home-range resource selection function (RSF) as described in Chapter 2, and the 

set of centroids used was invariant. Mule deer group size was ~6.6 deer with the composition 

within the group being 70:30 females to males. 

Individual deer were moved according to a sex-specific integrated step selection function 

(iSSF) with movement being biased toward a home range centroid, influenced by social 

grouping, and biased toward AA when they came within a 6-km buffer of the AA.  The iSSFs 

were derived from movements of GPS-collared male (n = 25) and female (n = 52) mule deer in 

the study area, with sex-specific step length distributions fitted to the empirical distributions of 

step lengths and a turning angle distribution that was a modified Von Mises.  The Von Mises 

distribution of turn angles was modified to produce home range behaviour by incorporating bias 

towards a home range centroid via the consensus method in Duchesne et al. (2015). Direction of 

movement of individuals within a group was influenced by a group leader selected randomly at 

each time step with group members following the leader by constraining their movement 

direction to be within 30o of the leader’s turn angle.  For further details on these movements see 

Chapter 2.  When deer were within 6 km of an AA, attraction to AA was incorporated into 
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weighting function of the iSSFs with a negative beta coefficient of 0.001 so that weighting 

values are higher for cells closer to AA (smaller distance value, Appendix L). 

Contact Simulations 

We simulated deer movement and recorded sex-specific contacts of deer dyads, number of 

unique deer contacts, number of unique AA contacted by a deer, and number of unique deer 

using an AA during a 144-day winter period under 6 AA configurations and 6 AA densities.  The 

6 spatial configurations represented two different agricultural practices of storing feed that 

potentially attract deer: grain bags and hay bales left within the fields where they were harvested 

(hereafter field AA) and grain bins (where grain spillage can occur) and hay storage units that 

typically are in proximity to farm sites (hereafter farm AA).  Field AA were randomly distributed 

within agricultural areas across the study area. Farm sites were located based on buildings 

designated on the plat maps for Wainwright and Provost area (The Municipal District of Provost 

No. 52, 2019; The Municipal District of Wainwright No. 61, 2020), which assumed all buildings 

selected were farms sites (Fig. 1).  Farm placement was restricted to areas that were more than 

400 m from the simulation area edge to ensure AA around the farm were not placed outside the 

study area.  AA were located around each farm centroid based on a bivariate normal spatial 

probability distribution, with a standard deviation of 200 m.  I allocated AA to farm sites used 

using a Neyman-Scott process that identified farm centroids as ‘parent’ points, and then placed 

the approximately equal number of ‘daughter’ AA. 

The 6 AA densities ranged from 0 AA to 1 AA/km2, by 0.2 AA/km2.  Varying densities 

of AA were derived by placing the maximum number of AA according to the above 
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configurations, and then removing a set number of AA using different strategies for the field and 

farm AA scenarios.  

For the field AA, I reduced AA randomly and by proximity to wood cover.  The latter 

approach was used because woody cover provides security cover/other resources for deer and 

deer are closely associated with woody cover in this area (Habib et al., 2011; Nobert et al., 2016; 

Chapter 2).  I removed field AA based on a probability function that related the probability of 

removal to the distance to the nearest woody cover.  The relationship used to obtain a probability 

was an exponential transformation with a decay coefficient of -0.0384 (Appendix M).   The 

function was derived from the distribution of distance to woody cover values at GPS- locations 

of 25 male and 52 females from 16 December to 9 May as a function of distance to nearest 

woody cover with data pooled for the sexes during this period.  For altering densities of AA at a 

farm site, I removed either individual AA at a farm, or I removed the entire cluster of AA at a 

farm.  Individual AA or a cluster of AA at a farm site was removed either randomly, or again 

according to their distance from cover.  When removing the entire cluster, I used the average 

distance of all the AA at a farm site to cover.   

We ran 5 iterations of deer moving across the landscape for each density × AA configuration.  

For all simulations, I kept the density of deer constant at 1/km2. I defined a contact as two deer 

coming within 5 m of each other and classified a contact by dyad type (FF: female-female, MF: 

male-female, MM: male-male) and whether contacts occurred within or between a deer group. 

We recorded 1) number of unique deer using each AA, 2) contact rates at each AA and at 

the population level, 3) number of unique contacts for each deer, and 4) number of between- and 

within-group contacts by dyad type (male-male, male-female, female-female).  These metrics 
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were then plotted against AA density to look for relationships between AA reduction and model 

outputs.   

Results 

When there are zero AA, average contacts/deer dyad rates were similar across all simulations, 

because deer were placed in the same initial locations and allowed to move with the same 

movement rules for 1840 steps.  Similarly, average contact rates/deer dyad when comparing 

random removal strategies to removal by proximity to woody cover are similar at maximum 

densities of 1 AA/km2 because these represent the same starting conditions for removal. The 

number of contacts both within and between groups was highest between females and lowest 

between males because I assumed a ratio of 70 females and 30 males in the simulations; further, 

because patterns in contact rates were similar between sex-specific dyads (Appendix K), I 

present only the patterns of contacts across all dyads (Fig. 3.2). 

 When AA were distributed broadly, the number of within-group contacts declined as AA 

density increased, but this was not true with AA that were clustered around farms (Fig. 3.2A).  

The number of within-group contacts does not appear to change in the farm AA scenarios, but 

where contacts occur does change because the number of contacts at each AA increases at lower 

AA density (Figure 3.3).  In contrast, the number of between-group contacts decreased as the 

density of AA increased in most scenarios (Fig. 3.2B).  The exception to this pattern was when 

AA were randomly removed around farms (Fig. 3.2B).  When field AA density was decreased by 

removing AA near woody cover, between-group contacts were higher at low densities compared 

to when they were removed randomly.    
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Mean number of unique deer contacted by each individual exhibited a moderate increase 

at low AA density both in the field and farm-clustered AA scenarios with contacts being slightly 

higher when AA near woody cover were removed (Figure 3.4). The exception was when AA 

clustered at farms were removed randomly (Figure 3.4). Further, when AA near woody cover in 

the field were removed, the number of unique deer contacted by each individual increased more 

than when removed randomly.   

 The number of unique AA used by each deer increased with AA density and the 

relationship showed only minor variation in the linearity of the relationship among scenarios 

(Fig. 3.5).  In contrast, the number of unique deer visiting an AA was highest at low AA density, 

and, in general, the number of unique deer using a site was higher when AA were removed in 

clusters around farms (i.e., all AA around a farm) than when randomly removed around farms 

(Fig. 3.6).  There was some evidence that where field AA near woody cover were removed with 

a higher probability, the number of unique visits declined before increasing.  

Discussion 

We used empirical data for winter movements and habitat selection of mule deer in a 

landscape representative of eastern Alberta, Canada to assess the role artificial attractants (AA) 

may play in the transmission of diseases such as CWD.  I found that increasing AA density from 

none to a density of 0.2 AA/km2 had the potential to increase contact rates by as much as ~300%.  

When AA density is relatively low, yet deer still have access to AA (i.e., some AA fall within 

deer home ranges), the attraction to locations at and near AA (i.e., locations less than 6 km away) 

results in relatively more deer groups using the area around the few available AA sites; 

consequently, the number of contacts increased at low AA density (e.g., Figures 3.2 - 3.4).  In 

this case, the iSSF weight, which is affected by the distance to the nearest AA, is more variable 
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because there is proportionally more area > 6 km from any AA at low AA density.  As a result, 

deer use is concentrated in areas of high iSSF weight areas around few AA, thereby increasing 

deer contacts.  In contrast, as the density of AA increases and proportionally more of the 

landscape is within 6 km of an AA, the mean iSSF weight value will increase and be less 

variable (Figure 3.7). As a result, the landscape is more “connected” in the sense that deer are 

likely to use more of the landscape and deer use around an AA is not as concentrated.  Consistent 

with the increase in total contacts at a site, I found deer had a higher number of contacts with 

unique deer at lower densities of AA.   

 As a result of these dynamics, I found some support for my hypothesis that if mule deer 

were attracted to AA there would be a non-linear relationship between total contact rates and AA 

density with the highest contact rates at moderate densities of AA. I found that compared to zero 

AA present, contact rates increased at very low density but then decreased as density increased 

for the reasons described above.  The non-linear rate of change at low densities and a potential 

threshold might have been clearer if I had modelled densities below 0.2 AA/km2.  How the total 

number of contacts changed after an initial increase depended on the configuration of AA. A 

relative decrease in contacts with increasing AA was more evident across scenarios for between-

group contacts than within-group contacts.  The exception was within-group contacts for field 

AA, where AA were not clustered around a farm (Figure 3.2A).  This could be because when AA 

were placed in clusters around buildings, the deer could spread out over the nearby AA in the 

clusters.  This does not change when removing entire clusters or individual AA at farms because 

what remains on the landscape is still clusters of AA.  In contrast, field AA were more spread out 

and reducing the density of AA concentrated deer at fewer individual AA and increased within-

group contacts.  The fact that, in most cases, the relative responsive to AA densities of direct 
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between-group contacts was greater than within-group contacts, has important disease 

implications.  For example, although contact rates are typically higher within groups (Schauber 

et al., 2007), network models used to model disease dynamics have shown that increased 

connectivity between groups, i.e., more between-group contacts, increases prevalence and is an 

important determinant in epidemic size and duration (Sah et al., 2018; Silk et al., 2019; White et 

al., 2017).   

The model outputs I present assume that deer were attracted to a site from as far away as 

6 km and that attraction to all AA was similar. If deer were attracted to an AA only as they got 

closer than a 6 km distance, (i.e., had a shorter perceptual range), this likely would have 

decreased the number of total contact rates and the unique AA sites visited by deer overall, but 

this could be constrained by density of the AA.  For example, if the perceptual range at which 

deer were attracted to AA was 1000 m instead of 6000 m, contacts at site would likely decrease 

because deer would detect (come within 1000 m) and visit fewer AA (Pe’er and Kramer-Schadt, 

2008; White et al., 2018b).  These results are consistent with those of Pe’er and Kramer-Schadt 

(2008) who, using an IBM model, found that perceptual range for landscape feature selection had 

a large impact on animal movements and landscape connectivity (in their model this was ability 

to immigrate from one forest patch to another), with increased connectivity at higher perceptual 

range.  Further, if deer were attracted to AA differentially, perhaps due to different grain types 

(Cosgrove et al., 2018) or due to tactics used to scare away deer (Lemieux et al., 2000), I would 

have expected higher variability across sites and potentially a less connected landscape because 

deer would not be equally likely to move to every attractant. 

Aggregation of deer also may promote disease spread for some diseases such as CWD 

that are transmitted via the environment.  AA potentially can serve as reservoirs of CWD given 
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the slow degradation of prions in the environment (Plummer et al., 2018; Sorensen, 2014).  

Indeed, several studies based on remote cameras and direct observations of deer behavior 

indicate that environmental contacts and intensity of use may be higher at artificial feeding sites 

than at natural feeding sites (Mejía-Salazar et al., 2018; Thompson et al., 2008).  I found that the 

number of unique AA that a deer visited increased almost linearly with increasing AA density, 

suggesting that because deer within my model ranged widely, they were able to readily access 

AA at least within their home range.  This may not be the case in reality because deer 

movements can be constrained by rivers and roads (Northrup et al., 2015).  Additionally, I saw 

more unique visits per AA as density decreased indicating higher potential for environmental 

contamination at the remaining sites.  This indicates that environmental transmission potential 

may be based on a balance of deer visiting more sites as AA density increases and a higher 

contamination level of remaining sites at low density.  The relative importance of direct animal 

vs. environmental exposure pathway depends on the probability of transmission given exposure, 

and this may change depending on the proportion of infected individuals and sites over the 

disease progression.  In fact, previous modelling of CWD indicated that although individual-to-

individual animal transmission may be key in the early period of disease transmission, 

environmental transmission may be the dominate route of transmission as the disease progresses 

(Almberg et al., 2011).  Thus, the role of AA in transmission also may change over time 

depending on the length of time CWD has been present in the area. 

Although artificial attractants during the winter may provide a major route of CWD 

spread (Western Association of Fish and Wildlife Agencies, 2018), results of this modelling 

exercise provide several insights for designing management.  First, lower density of AA may not 

necessarily translate into fewer between-group contacts unless there are practically no AA (total 
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restriction), or they are so sparsely scattered that the constraints of home range movement 

prevent deer from encountering them.  Similarly, the mean number of contacts with unique, 

individual deer shows the same pattern as between-group contacts, suggesting that reduction in 

AA to an insufficient amount could actually increase disease transmission.  Second, management 

of AA for disease purposes can be directed not only at the density of AA but where to target the 

removal of AA.  When AA were removed based on their proximity to woody cover, I found 

similar overall patterns as when removed randomly, i.e., initial increase in between group 

contacts followed by a decline as AA density increased; however, in cases when AA represented 

grain bags and hay bales widely distributed in the field, there was evidence for a relative increase 

in the number of contacts when the remaining AA at low densities were far from woody cover. 

This is inconsistent with the findings of Miller et al. (2003) that more AA in open areas led to 

lower bovine tuberculosis risk whereas more AA closer to and in wooded areas increased risk; 

however, I attributed this to the relative increase in the attraction of deer to AA when woody 

cover, their preferred habitat was not nearby.  Additionally, in the iSSF weights, if the selection 

for woody cover is much higher, the deer will be more drawn to woody cover and move less far 

for attractants; however, when the selection for AA is higher, deer will be drawn away from 

woody cover into areas where AA are present.  Further, when managing clusters around farms, 

removing individual AA did not have as much of an impact on contact rates when compared to 

removing whole clusters.  This difference in response in cluster versus individual removal of AA 

likely occurred because, removal of farm AA in clusters eliminates some areas where the deer 

congregate, making more groups congregate at the fewer remaining sites/clusters.  The 

difference in response when removing individual AA versus clusters of AA implies that 
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removing individual AA at farms may be a lower risk way to reduce density because 

inadvertently increasing contacts is not as much of a risk.  

Further model refinements that may improve my understanding of AA management fall 

in to three categories.  First, further analysis of the impact of model components on results would 

give us insight into the sensitivity of the model outputs to model assumptions.  In particular, the 

radius within which a deer is attracted is an important parameter because perceptual range is 

known to have a major influence on movements (Pe’er and Kramer-Schadt, 2008). Also, altering 

the relative strength of selection for woody cover versus AA would allow us to see the 

importance of this relationship and its impact on removal strategy results.  Lastly, I could have 

variable attraction amongst sites which would give us insight into the effect of density and 

configuration when multiple attractant types of varying attractiveness are present. 

Second, I could refine the observed patterns by including higher AA densities and finer 

resolution of densities between 0 and 0.2 AA/km2 which may indicate a low-density threshold 

when contacts and unique visits/contacts begin to decrease.  I could also vary deer density to 

examine more of the interplay between deer density and AA densities and distributions.  For the 

current modelling I kept deer densities at 1/km2 but increasing density could lead to a decrease in 

contacts with increasing density, because more AA would be required to spread the larger 

number of deer out on.   

Third, I could extend the model to include the probability of transmission at AA 

(environment) and for direct contacts between deer and keep track of infected individuals.  This 

would allow us to gain insight into the geographic spread of disease and patterns relating to 

prevalence. 
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Finally, the IBM developed here could be used to investigate arrangements for vaccine 

baits, where one is trying to maximize contacts with a site instead of trying to minimize them.  It 

could also be used for different areas and for different types of attractants, providing insight into 

more management scenarios. 

 

Chapter 3 Figures 

 

  

Figure 3.1. Location of simulation area in eastern Alberta, with wildlife management unit 234 

represented by the green polygon.  Within the depiction of the simulation area, the 

background is elevation, roads are displayed in green, and building sites are represented by 

brown points (Altalis, 2020, 2018; The Municipal District of Provost No. 52, 2019; The 

Municipal District of Wainwright No. 61, 2020).   
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A) B) 

Figure 3.2. Mean number of A) total within-group contacts and B) total between-group contacts for all dyad types, averaged across 

5 random seeds for each attractant density.  Error bars represent standard error.  ‘Random’ scenarios refer to when density decrease 

was due to random removal of artificial attractants (AA) whereas ‘Woody Cover’ scenarios refer to when AA were removed based 

on proximity to woody cover.  ‘Individual Farms’ scenarios refer to when AA at farms were removed individually while ‘Cluster 

Farms’ refers to when entire clusters of AA at farms were removed.  Note:  y-axis scales differ between panels A and B. 
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Figure 3.3. Mean within-group contacts at each attractant + the eight neighbouring cells 

averaged across 5 random seeds for each attractant density and across all attractants.  Error 

bars represent standard error. 
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Figure 3.4. Mean number of unique deer contacted by each individual, averaged across 

5 random seeds for each attractant density and across all deer in each simulation.  Error 

bars represent standard error. 
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Figure 3.5. Mean number of unique artificial attractants used by each deer, averaged across 

5 random seeds and across all deer in the simulation for each artificial attractant density for 

field and farm distributions under 6 different management removal scenarios (random 

removal in fields, random removal around farms, random cluster removal of farms, and 

removal by woody cover proximity instead of random for the same three scenarios).  Error 

bars represent standard error. 
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Figure 3.6. Mean number of unique deer that visited each attractant averaged across 5 

random seeds for each attractant density and across all attractants for each simulation.  

Error bars represent standard error. 
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Figure 3.7. Relative selection weight for two different landscape 

arrangements of attractants.  Selection weight decreases less 

between attractants that overlap because the distance to nearest 

attractant does not get as large. 
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Chapter 4: Summary and Conclusions 
 

In this thesis I developed an IBM that simulated deer movement and contacts between dyads of 

mule deer in a heterogeneous landscape and used it to address how rates of contact (i.e., two deer 

within 5 m) were influenced by the density and configuration of artificial attractants such as hay 

bales and grain bags.  The movement model incorporated home range, grouping, and resource 

selection behaviours in an attempt to simulate realistic deer movement.  I used empirical data 

from 81 GPS-collared mule deer in the parkland systems of eastern Alberta to develop sex-

specific iSSFs, and found woody cover had the most influential effect on deer movements.   

The model assumed group leadership could be by either sex, deer can sense their 

environment at the end of any drawn step, and group membership stayed constant throughout 

winter (i.e., no fission or fusion).  From the sensitivity analysis of model parameters, I found that 

within-group contacts are more sensitive than between-group contacts.  Within-group contacts 

were particularly sensitive to group cohesiveness and the number of groups on the landscape 

indicating that tighter and larger groups could increase contacts.   

I had a unique opportunity to compare the relative distribution of where contacts occurred 

from simulations to the relative probability of contact, predicted from a statistical model derived 

by Dobbin (2022) using contact locations of GPS-collared deer.  I found good correspondence 

between the output of my simulation and the statistical predictions based on a t-test comparison 

of average relative contact probability at contact and random locations.  The exception was a 

poor correspondence in the winter within-group male-male contacts and this was attributed to the 

fact that upon validation of the RCP model, this was the worst performing model and did not 

outperform randomness (Dobbin, 2022). 
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Within the context of managing chronic wasting disease in eastern Alberta, I used the 

deer IBM to assess the influence of artificial attractants (AA) on contact rates in winter as a 

surrogate to disease transmission.  AA have been identified by a consortium of wildlife agencies 

as one source of potentially high disease transmission (Western Association of Fish and Wildlife 

Agencies, 2018), and regulations on feeding deer and government programs to abate 

unintentional feeding government vary by agency.  I focused on winter because this has been 

identified as one of the most important and high-use seasons for AA (Mejía-Salazar et al., 2018; 

Mysterud et al., 2021).  My objective was to provide insight on how AA density and 

configurations influence total contact rates and contacts with unique deer representing potential 

animal to animal contact, and the number of AA used by each deer and number of unique visits 

per AA as a surrogate for exposure to environmental transmission.  I used two strategies for 

distributing AA that represented common practices in Alberta of hay bales and grain bags left in 

fields, and agricultural storage, including hay and grain bins, at farms.  I assumed deer were 

attracted to AA when within 6 km of an AA (McRae et al., 2020).  Sensitivity analysis on this 

distance and on relative strength of woody cover and AA attraction, are yet to be conducted.   

The simulations revealed that reducing density of AA can actually increase rates of 

contact because there are few AA that more deer are attracted to and use. Generally, changes in 

within-group contacts were less sensitive to changes in AA density than between-group contacts. 

To reduce overall contact rates, densities would need to be so low that few deer would have AA 

within or adjacent to their winter ranges.  I would need to conduct further simulations to 

determine the threshold density of AA where this would occur under the assumptions of my 

model.  AA density reduction decreased the number of AA used by each deer and increased the 

unique number of deer using each site.  A balance of these effects of deer using fewer potentially 
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contaminated sites or contaminating fewer sites, and a greater number of deer at each site to 

potentially contaminate the environment will impact the amount of environmental transmission.  

Additionally, configuration had an effect as removal strategy at farms, individual or by cluster, 

impacted patterns seen as removing individually had far less of an effect.  Furthermore, only 

removal of field AA appeared to impact within-group contacts.  Removal by proximity to woody 

cover increased between-group contacts more than random removal for field AA, indicating that 

method of removal can make a difference on the magnitude of the impact.  

Our IBM model of mule deer movements is one of several IBMs built to explore 

management of CWD (Belsare et al., 2020; Kjær, 2010), but none of these models have been 

applied to assessing the influence of AA on contacts rates as their potential roles in disease 

spread.  The model could be extended to include different levels of disease transmission from 

individual animal contacts and from visits to AA, as well as to discern how the patterns I 

observed might change at different deer densities.  It could also be used in other applications 

such as identifying the most efficient distribution of oral vaccines in baits, were vaccines 

available for CWD.  Nonetheless, as among the first explorations of how AA influence key 

processes in disease transmission I make the following management recommendations based on 

the current results: 

• Decreasing AA by ≥65% as recommended by the Western Association of Fish and 

Wildlife Agencies (2018) may not be an effective management strategy unless the density 

of AA is already very low.  Management should be an all or none response, not aiming to 

simply reduce AA numbers, but to eliminate or nearly eliminate them as insufficient 

reduction, to 0.2 AA/km2 for example, could increase contacts.  This implies that strong 

restrictions, such as mandatory fencing of bales and bags in fields, with the aim of nearly 
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eliminating AA, as occurs in jurisdictions like in Norway, is likely necessary for CWD 

management.   

• Targeting regulations and the removal of AA that are broadly distributed or entire 

clusters of AA at locations such as farms is risky if densities are not sufficiently lowered 

because this could increase between-group contacts and removing by cluster also could 

increase unique visits per site more than other strategies.  Additionally reducing field AA 

by distance to woody cover may result in larger increases in contact rates than if removed 

randomly. 

• Reducing the density of AA reduces the number of the AA an individual deer visits, 

which may limit exposure to contaminated sites. At the same time, it is more likely the 

AA they visit are contaminated because the number of animal-to-animal contacts, as well 

as the number of unique deer visiting a site, increases at low densities of AA.  To better 

understand these trade-offs, further investigation of the dynamics of these interactions 

would likely need to be studied in the context of actual disease transmission before the 

best course of action in limiting the role of AA in CWD progression could be identified. 
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Appendices 
Appendix A. State variables for the patches and deer in the individual-based model.       

Table A.1 State variables for individuals and patches included in the movement IBM 

 

 

Patches   

proportional-Mweight/ 

proportional-Fweight 

 Used to determine whether an individual accepts or 

rejects a step, calculated by dividing the cell weight (as 

determined by step-selection function) by the maximum 

weight across all cells 

within-contacts-winter-

XX / between-contacts-

winter-XX 

 Total number of within/between-group contacts that have 

occurred on that cell between the given dyad type (MF, 

MM, FF). 

Deer   

male?/female?  True/false variables that define the sex of the individual 

leader  True/false variable that defines the leader of the group 

group  Group number of the individual, defines group 

membership 

leaderangle  [who] (ID) of the deer in group with leader=true 

HRX/HRY  x and y coordinates of the home range centre 

angle  The turning angle for the deer’s step 

step-length  The step length for the deer’s step 

result  A 0/1 parameter, 0 when not accepting step, switches to 1 

when step is accepted and breaks the loop in the code 

point  The proportional weight value of the cell to which the 

drawn step sends the individual 

sine/cosine  Parameters calculated using the direction of persistence 

and direction towards the home range centre, used to 

determine the new heading for the individual 

vm-length  Spread parameter for the Von mises turning angle 

distribution  

Within-group-winter-

same or mixed / between-

group-winter-same or 

mixed 

 The total number of contacts that have occurred for that 

deer, with deer of the same sex and with deer of the 

opposite sex (mixed). 

Step-within-winter-same 

or mixed /step-between-

winter-same or mixed 

 The number of contacts occurring in the current step that 

are with the same sex or with the opposite sex (mixed).  
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Appendix B: Model selection and k-fold validation for home range RSFs 

 

Table B.1 Model selection table for home range resource selection functions with top 5 models for each 

season/sex. * indicates that the confidence interval does not overlap zero. 

Sex/ 

Season Int ED250 Rivers Roads Rugg Streams WC250 WC250
2 Wells ΔAICc 

Female 

Summer 

-4.62 

± 0.65*  

0.45 

± 0.27 

1.11 

± 0.59 

0.19 

± 1.01  

20.67 

± 4.92* 

-18.80 

± 5.52* 

-0.15 

± 0.39 0 

 -4.53 

± 0.61*      

21.09 

± 4.66* 

-19.43 

± 5.17*  1.172 

 -4.62 

± 0.65*  

0.45 

± 0.28 

1.11 

± 0.59 

0.17 

± 1.08 

0.028 

±0.48 

20.70 

± 4.95* 

-18.83 

± 5.55* 

-0.15 

± 0.39 1.997 

 -3.88 

± 0.48* 

1.64 

±0.28*        3.501 

 -4.01 

± 0.52* 

1.65 

±0.29* 

0.48 

± 0.28 

1.05 

± 0.60 

-0.14 

± 1.07 

0.15 

± 0.47   

-0.26 

± 0.38 5.221 

Male 

Summer 

-2.81 

± 0.56*   

-1.91 

± 1.39 

3.04 

± 1.46*  

4.52 

± 1.32*  

-0.003 

± 0.99 0 

 -3.03 

± 0.51*      

4.56 

± 1.18*   1.790 

 -2.82 

± 0.57*   

-1.92 

± 1.39 

2.91 

± 1.75 

0.14 

±1.08 

4.54 

± 1.34*  

-0.025 

± 1.00 1.982 

 -2.93 

± 0.57*  

-0.21 

± 0.77  

3.41 

± 1.94* 

-0.14 

± 1.03 

4.79 

± 1.30*   3.291 

 -3.19 

± 0.79*      

6.85 

± 8.45 

-2.74 

± 9.98  3.714 

Female 

Rut 

-3.81 

± 0.48* 

1.58 

±0.28*        0 

 -4.38 

± 0.60*      

20.37 

± 4.73* 

-19.02 

± 5.32*  0.247 

 -4.12 

± 0.51* 

1.74 

±0.29* 

0.12 

± 0.29 

0.003 

± 0.60 

-1.49 

± 0.97 

1.14 

± 0.47*   

0.087 

± 0.40 3.034 

 -4.72  0.052 0.21 -1.24 1.05 21.68 -19.93 0.14 3.367 
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 ± 0.63* ± 0.29 ± 0.59 ± 0.98 ± 0.47* ± 4.86* ± 5.48* ± 0.40 

 -4.56 

± 0.62*  

0.16 

± 0.28 

0.51 

± 0.44 

-0.46 

± 0.90  

21.07 

± 4.85* 

-19.61 

± 5.47*  4.451 

Male Rut -6.36 

± 0.87*  

0.76 

± 0.60 

-0.75 

± 1.63  

1.98 

± 1.35 

8.18 

± 1.62*  

1.44 

± 0.99 0 

 -6.04 

± 0.78*  

0.86 

± 0.80  

-0.94 

± 2.90 

2.34 

± 1.36 

7.48 

± 1.47*   0.124 

 -5.57 

± 0.69*      

6.50 

± 1.32*   1.896 

 -6.38 

±0.87*  

0.93 

± 0.80 

-0.73 

± 1.62 

-0.88 

± 2.76 

2.11 

± 1.41 

8.11 

± 1.62*  

1.43 

± 0.99 2.021 

 -6.07 

± 0.85*   

-1.24 

± 1.53 

2.90 

± 1.85  

7.86 

± 1.65*  

1.62 

± 0.98 2.701 

Winter 

All 

-4.64 

± 0.44*  

1.21 

± 0.36*   

-1.34 

± 0.65* 

7.48 

± 0.87*  

0.91 

± 0.31* 0 

 -5.59 

± 0.77*  

0.97 

± 0.41* 

-0.59 

± 0.58 

0.91 

± 1.16 

-1.33 

± 0.64* 

16.94 

± 5.30* 

-10.44 

± 5.70 

1.09 

± 0.41* 0.462 

 -4.61 

± 0.44*  

1.18 

± 0.36* 

-0.60 

± 0.59  

-1.30 

± 0.65* 

7.46 

± 0.87*  

1.17 

± 0.40* 0.962 

 -4.56 

± 0.45*  

0.94 

± 0.41* 

-0.63 

± 0.60 

1.22 

± 1.16 

-1.45 

± 0.65* 

7.53 

± 0.88*  

1.18 

± 0.41* 1.865 

 -4.19 

± 0.39*  

0.85 

± 0.39*  

1.28 

± 1.16 

-1.21 

± 0.62* 

6.91 

± 0.81*   

6.953 
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Table B.2.  K-fold results, i.e., number of folds, correlation (r), and standard deviation (σ) for top 

RSF models for each group type.  (WC250m = proportion woody cover and ED250m = woody cover 

edge density) 

Group Model 
# of 

folds 
r σ 

Female Summer WC250m + WC250m
2
 5 0.79 0.12 

Male Summer WC250m 3 0.57 0.13 

Female Rut WC WC250m + WC250m
2
 5 0.84 0.07 

Female Rut ED ED250m 5 0.80 0.10 

Male Rut WC250m 3 0.69 0.01 

Winter All DistWells + DistRivers + DistStreams + WC250m 5 0.82 0.08 
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Appendix C: Simulation contacts overlaid on relative contact probability maps (Dobbin 

2022) 
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Figure C.1. Contacts overlaid on relative contact probability maps (Dobbin 20022 in prep) 

for Between FF (a), MM Within (b), Within MM (c), and Between MF (d).  Simulation 

contacts were averaged across runs from 10 random seeds and resampled bilinearly to 300 

m by 300 m from 30 m by 30 m for visibility.  More red is higher contacts while bluer is 

lower contacts, and no color is no contacts.  On the relative contact probability maps, light 

color is indicative of a higher contact probability. 

d)   

c) 
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Appendix D: Contacts as a Function of Parameter for Sensitivity Results 

 

 

Figure D.1. Total simulation contacts as a function of parameter value.  Left panels depict within-

group contacts while the right panels depict between-group contacts.  The top panels look at the 

parameter of cohesion, or the restriction angle for the followers.  Middle panels look at the number 

of home ranges on the landscape and therefore also group size since deer density is held contacts.  

Bottom panels look at the influence of movement persistence (κ1 in turning angle distribution 

equation).  Non-linear relationships can clearly be seen in within-group cohesion.   
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Appendix E: Inclusion of Individuals in Winter iSSA 

Individuals were selected for inclusion in integrated step selection analysis based on the number 

of observations.  For both males and females, the lowest two individuals were removed as 

outliers and all other individuals were kept (Figure E.1). 

 

 

 

 

 

  

Number of Observations (n) 

b)     Males 

Number of Observations (n) 

a)     Females 

Figure E.1.  Histograms of the number of observations obtained from 

GPS-collared mule deer (54 females (a),27 males (b)) obtained in eastern, 

Alberta in 2006-2009, and 2017-2020. 

Number of Observations (n) 



80 

 

Appendix F: Home Range Size Simulation Testing 

An experiment was done to determine the relative effect of kappa-1 and kappa-2 on home range 

size, and which combination gives us the closest to my target home range size of 14.87 km2, 

which is based on the median 95% UD area for the winter-spring season.  A simulation was run 

with 6 random seeds and uniform SSF weights, that went through kappa values from 0 to 1 by 

0.1 and recorded the distance to home range centre for one of the seven individuals in the group 

at each timesteps.  The 95% 

quantile was then taken and 

used to calculate home range 

size for a given kappa-1, kappa-

2 combination.  This revealed 

that the larger the kappa-1: 

kappa-2 ratio was, the larger the 

HR size was.  This makes sense 

as kappa-1 controls persistence 

while kappa-2 control bias 

towards the HR.  In addition to 

this ratio being important, 

kappa-2 appears to have an 

impact on the standard deviation 

around a point.  Therefore, a 

combination of kappa-1 = 0.4 

and kappa-2 = 0.5 was chosen 

as this combination produced an 

average HR size of 14.64km2 

with a standard deviation of 

2.38km2.  This was the best 

combination of proximity to the 

target HR size and low standard 

deviation 

 

 

 

 

 

 

Figure F.1 mean 95% utilization distribution home 

range size (km2) as a function of kappa-1 to kappa-2 

ratio obtained from simulation with 6 different random 

seed for each combination.  Kappa-1 and kappa-2 were 

varied from 0 to 1 by 0.1, but were never equal. 
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Appendix G: Layer Creation Documentation 

Hydrology: 

 Rivers for Saskatchewan were taken from the Government of Canada hydrology layer 

(Government of Canada, 2017).  The North Saskatchewan, South Saskatchewan, and Battle 

River were taken as the rivers, and all other permanent linear water features were taken as 

streams.  Rivers for Alberta were taken from Altalis and all linear features classified as primary 

or secondary rivers were included in the rivers layer, whereas all permanent and indefinite 

streams were included in the streams layer (Altalis, 2018a). 

Ruggedness: 

Terrain ruggedness index (Riley et al., 1999) was calculated from a digital elevation model in 

Alberta (Altalis, 2018b) and Saskatchewan (Government of Canada, 2016) that were resampled 

to 30 m cells. The TRI function in the spatialEco R package was then used to transform 

elevation to terrain ruggedness index (Evans, 2020). 

 

Woody Cover, Agriculture, Edge Density (Dobbin 2022): 

To create the percent woody cover, percent agricultural cover and edge density rasters, I used an 

amalgamation of landcover data produced by Merrill et al. (2013) and the 2015 landcover of 

Canada (Latifovic, 2019). I primarily used values from Merrill et al. (2013) whenever data was 

available across WMU 234. Landcover was mapped at 25-meter spatial resolution based on data 

collected in 2006 using a multi-temporal remote sensing approach, combining Landsat 5 TM 

satellite imagery and field observations. In areas with no or compromised Landsat imagery 

(southeast corner of WMU234) I supplemented landcover data with the publicly available 2015 

landcover of Canada (Latifovic, 2019). The Canada-wide data was mapped at 30-meter spatial 

resolution using Operational Land Imager (OLI) Landsat sensor data from 2015. I used nearest 

neighbor assignment resampling to resize 25-meter cells to 30 meters. To produce woody cover 

rasters, I defined woody cover (Table H.1.) from both sources and created a binary raster in 

which cells where delineated between woody cover (1) and no woody cover (0). I then 

determined the percent woody cover within varying buffer sizes (100, 250, 500, 1000 m). I 

repeated the same process to produce the percent agricultural cover raster, but created a binary 

raster that delineated between croplands (1) and non-agricultural landcover types (0). To 

determine edge density, I used the same binary woody cover raster and created polylines around 

all clusters of woody cover cells, thereby delineating edge habitat as the boundary between open 

and covered habitat types. I determined line density of edge habitat within varying buffer sizes 

(100, 250, 500, 1000 m).  
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Table G.1. Landcover classifications used to delineate binary rasters for percent woody cover, 

percent agricultural cover and edge density covariates for Wildlife Management Unit 234. 

Landcover data from Merrill et al. (2013) derived using a multi-temporal remote sensing 

approach in 2006 (25x25 m) and from Latifovic (2019) derived using Landsat sensor data 

from 2015 (30x30 m). 

Source  Landcover Classifications 

Woody Cover Agriculture  

Merrill et al. 2013 • Tall shrubland 

(Elaeagnus sp.)  

• Tall shrubland 

(upland mix) 

• Deciduous 

• Deciduous/Conifer 

mix 

• Cultivated/cropland  

• Forage/Moist 

grassland  

Latifovic 2019 • Temperate or sub-

polar needleleaf forest 

• Mixed forest 

• Temperate or sub-

polar broadleaf forest 

• Temperate or sub-

polar shrubland 

• Cropland 

 

Distance Layers: 

We measured the Euclidean distance to the nearest river, well site, road, and stream and then 

transformed them using a decay function.  Decay layers were made using a transformation of 

exp(-α*distance), with an alpha value of 0.01, as per Nielsen et al. (2009).  Testing with 

univariate models was done to determine the alpha value to be used (Table G.2.).  A value of 

0.01 was used as it came out as the top model for all but one variable and sex combination.  It 

was decided to use this alpha value for all model layers despite that one outlying combination for 

the sake of consistency and simplicity. 
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Integrated SSF 

Males Females 

AIC 

Alpha Wells Roads Rivers Streams Alpha Wells Roads Rivers Streams 

Null 239440.2 239291.4 239440 239419.6 Null 581669.9 581493.5 581660.4 581666 

0.006 239395 239105.6 239440 239430.6 0.006 581592.3 581184.5 581640.3 581645.4 

0.007 239387.9 239090.6 239439.2 239432.4 0.007 581581.6 581151.9 581634.8 581646.4 

0.008 239381.7 239077.7 239438 239433.4 0.008 581573.8 581122.4 581629.7 581646.6 

0.009 239376.5 239066.7 239436.4 239433.7 0.009 581568.6 581095.6 581624.9 581646.1 

0.01 239372.2 239057.4 239434.5 239433.6 0.01 581565.4 581071.3 581620.4 581645.3 

          

Δ AIC 

Alpha Wells Roads Rivers Streams Alpha Wells Roads Rivers Streams 

Null 68 234 5.5 0 Null 104.5 422.2 40 20.7 

0.006 22.8 48.2 5.5 11 0.006 26.9 113.2 19.9 0.1 

0.007 15.7 33.2 4.7 12.8 0.007 16.2 80.6 14.4 1.1 

0.008 9.5 20.3 3.5 13.8 0.008 8.4 51.1 9.3 1.3 

0.009 4.3 9.3 1.9 14.1 0.009 3.2 24.3 4.5 0.8 

0.01 0 0 0 14 0.01 0 0 0 0 

Table G.2. Univariate model testing results for decay distance layers of wells, roads, rivers, 

and streams with integrated and non-integrated step-selection functions. 

Non-Integrated SSF 

Males Females 

AIC 

Alpha Wells Roads Rivers Streams Alpha Wells Roads Rivers Streams 

Null 239438.2 239289.8 239438 239417.7 Null 581667.9 581491.5 581658.4 581664 

0.006 239393.1 239104.9 239438.1 239428.6 0.006 581590.3 581182.8 581638.3 581643.4 

0.007 239386 239089.9 239437.3 239430.5 0.007 581579.6 581150.3 581632.8 581644.4 

0.008 239379.8 239077.1 239436 239431.4 0.008 581571.8 581120.8 581627.7 581644.6 

0.009 239374.6 239066.1 239434.4 239431.8 0.009 581566.6 581094.1 581622.9 581644.1 

0.01 239370.4 239056.9 239432.5 239431.7 0.01 581563.4 581069.8 581618.4 581643.3 

          

Δ AIC 

Alpha Wells Roads Rivers Streams Alpha Wells Roads Rivers Streams 

Null 67.8 232.9 5.5 0 Null 104.5 421.7 40 20.7 

0.006 22.7 48 5.6 10.9 0.006 26.9 113 19.9 0.1 

0.007 15.6 33 4.8 12.8 0.007 16.2 80.5 14.4 1.1 

0.008 9.4 20.2 3.5 13.7 0.008 8.4 51 9.3 1.3 

0.009 4.2 9.2 1.9 14.1 0.009 3.2 24.3 4.5 0.8 

0.01 0 0 0 14 0.01 0 0 0 0 
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Appendix H: Step-selection function acceptance-rejection method theory 

Step-Selection Function Background 

The step selection function is a probability density function based on current and previous 

locations, as well as environmental weightings: 

𝑓( 𝑥𝑡+1 ∣∣ 𝑥𝑡, 𝑥𝑡−1, 𝑍(𝑥𝑡+1), 𝜓 ).     

In this equation, xt ∈ Ω ⊂ ℝ2 represents the position of the animal at time t, where Ω is the finite 

sptatial domain of the animal, and Z(x) : Ω → ℝm represents the environmental covariates where 

m is the number of covariates in the model.  The vector 𝜓 ∈ ℝm+2 represents the parameters in the 

model where 𝜓 = (β, α, κ) has components 𝛽∈ ℝm describing covariate weights and 𝛼, 𝜅 ∈  ℝ 

describing step length and turning angle. 

The probability density function can be represented by: 

𝑓( 𝑥𝑡+1 ∣∣ 𝑥𝑡, 𝑥𝑡−1, 𝑍(𝑥𝑡+1), ψ ) =
𝐾( 𝑥𝑡+1∣∣𝑥𝑡, 𝑥𝑡−1, κ, α )𝑤( 𝑍(𝑥𝑡+1)∣∣β )

∫ 𝐾( ξ∣∣𝑥𝑡, 𝑥𝑡−1, κ, α )𝑤( 𝑍(ξ)∣∣β )𝑑ξΩ

.  

The weighting function w : ℝm → ℝ+ describes habitat selection preferences and the numerator 

represents the location at which a step finishes, xt+1, in terms of the dispersal kernel K, and the 

weighting function w.  The dispersal kernel itself depends on the locations at the previous two 

time steps, xt and xt−1, as well as the step length and turning angle parameters 𝛼 𝑎𝑛𝑑 𝜅.  The 

denominator ensures that function  f  is a probability density function, which integrates to 1.  The 

dispersal kernel can be further broken down into a distribution for step length  ζ, given by 

𝐾1( ζ ∣∣ α ) 

and a distribution for turning angles, 𝜓, given by 

𝐾2( ψ ∣∣ κ ). 

Here the step length is defined by 

ζ𝑡 = |𝑥𝑡+1 − 𝑥𝑡| 

and the turning angle is defined as 

ψ𝑡 = θ𝑡 − θ𝑡−1 

the increment in the bearing where, with Δx2t = x2t − x2t−1 and Δx1t = x1t − x1t−1: 

θ𝑡 = tan−1 (
Δ𝑥2𝑡

Δ𝑥1𝑡
) + 𝐼(Δ𝑥1 < 0) 

and the components of xt are given by xt = (
𝑥1𝑡

𝑥2𝑡
) where 𝐼(Δ𝑥1 < 0) represents the indicator 

function and is necessary to produce a range spanning the full unit circle due to the symmetry of 

arctan.  Equations 5 to 7 yield the dispersal kernel as 

𝐾( 𝑥𝑡+1 ∣∣ 𝑥𝑡, 𝑥𝑡−1, κ, α ) = 𝐾1( ζ𝑡+1 ∣∣ α )𝐾2( ψ𝑡+1 ∣∣ κ ) 

(1) 

(2) 

(4) 

(3) 

(5) 

(6) 

(7) 

(8) 
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where ζ𝑡+1 is given in terms of xt+1, xt by equation 5 and ψ𝑡+1 is given in terms of xt+1, xt, xt-1, 

and κ by equations 6 and 7 

 

Acceptance-Rejection Method (von Neumann, 1951) 

This method simulates via an iterative process of randomly drawing steps until one that is 

accepted is found and then taking this step.  Generating a value for simulation from a probability 

density function (pdf; f) via the rejection-acceptance method requires identifying a pdf, g, that is 

similar to one being simulated, but not identical, and that the ratio 
𝑓

𝑔
 is bounded below a constant.  

When simulating an SSF, the dispersal kernel K(x) is taken to be the denominator distribution g, 

while the SSF is the distribution I are simulating from, f. This gives us 

𝑓(𝑥)

𝐾(𝑥)
=

𝑤(𝑥)

∫ 𝐾(ξ)𝑤(ξ)𝑑ξ
Ω

< 𝑐. 

Rearranged this gives us 

𝑓(𝑥)

𝐾(𝑥)
=

𝑤(𝑥)

𝑐 ∫ 𝐾(ξ)𝑤(ξ)𝑑ξ
Ω

< 1. 

It is then easily seen that the numerator that will always make this true is when the maximum 

value of w in Ω is used as the denominator constant.  For a perspective location, y, one then 

evaluates equation 11 

𝑝(𝑦) =
𝑤(𝑦)

max
ξ∈Ω

(𝑤(ξ))
 

generates a random value, u, from uniform(0,1), and then compares the two values.  If u is less 

than p(y), then the step is accepted and the individual moves, if not, choose another step and 

repeat until a step is accepted. 

 

 

 

 

 

 

 

 
 

(9) 

(10) 

(11) 
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Appendix I: iSSF simulation weight distributions. 

 

 

 

 

 

 

 

 

 

 

Figure I.1  Distribution of patch iSSF weights for the simulation landscape for 

males (left) and females (right). 
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Appendix J: Environmental Layers for Simulation Area 

a) Agriculture:     b) Edge: 

 

c) Roads:      d) Ruggedness: 
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e) Streams:     f) Woody Cover: 

 

g) Woody Cover Squared:   h) Wells: 

Figure J.1 Simulation area layers for a) proportion agriculture, b) edge density, c) distance to 

roads, d) terrain ruggedness, e) distance to streams, f) proportion woody cover, g) proportion 

woody cover squared, and h) distance to wells.  Distance to rivers is not included as there is 

not any variation in my study area.  
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Appendix K: Within- and Between-Group Contacts by Dyad Type. 

  A) B) 

Figure K.1. Mean number of A) within-group contacts and B) between-group contacts for 3 dyad types (FF: female-female, 

MM: male-male, and MF: male-female) averaged over 5 different random seeds for each attractant density.  Error bars 

represent standard error. 
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Appendix L: Relationship between Distance to AA and Selection Weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure L.1.  Statistical relationship between iSSF selection weight and distance to AA 

(m), using a beta coefficient of -0.001. 
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Appendix M: Empirical data and fitted relationship for distance to Woody Cover 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure M.1. Relationship between distance to woody cover and frequency GPS 

observations used to obtain decay coefficient for exponential distribution (-0.0384) 

used to calculate probability of removed for an AA. 

Distance to Woody Cover (m) 


