
University of Alberta

METHODOLOGIES FOR MANY-INPUT FEEDBACK-DIRECTED
OPTIMIZATION

by

Paul Berube

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Paul Berube
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

for Amber
May 18, 2012

Abstract

This thesis makes improvement to the process of ahead-of-time feedback-directed

optimization (FDO) in compiler design. It examines multiple aspects of FDO from

profile collection and representation through to the performance evaluation of FDO

code transformations. Two guiding principals knit the four components of the re-

search together. The first principle is a recognition that program behavior frequently

depends on the input to the program; the second is that FDO is a predictive model-

ing technique, and must be designed and evaluated as such. Performance-evaluation

methodology can be improved to be sensitive to input-dependent program behavior

by using cross-validation with a workload of diverse program inputs. In many cases,

expert knowledge can be leveraged to select program workloads that are represen-

tative of expected program usage. However, even with expert knowledge, charac-

terizing input similarity and determining both how many inputs and the specific

inputs to include in a workload are challenging questions. A compiler-centric clus-

tering approach selects a small, representative, evaluation workload from a large

initial collection of program inputs. Previous work has not addressed the problem

of representing and utilizing multi-run profiles. An FDO compiler should not sim-

ply add, or average, profiles from multiple runs because a profile obtained this way

does not provide any information about the variations in program behaviors ob-

served between different inputs. Combined Profiling (CP) merges the profiles from

multiple runs into a distribution model that allows code transformations to consider

cross-run behavior variations. An FDO-based function inlining transformation is

implemented in the LLVM compiler to illustrate the use of combined profiling by a

code transformation in a complex compiler and to provide a concrete example of

the usage of a rigorous cross-validation evaluation methodology for FDO.

Acknowledgements

I must thank Nelson Amaral for his excellent supervision. Without his perfect blend

of pressure and understanding this thesis would not have been completed. The

many lunches spent with my mentor Bruce Wilkinson provided the hope necessary

to stay the course. And to my friends and family, thank you for putting up with

all my complaining. Claire, I cannot overstate how much your understanding and

encouragement over the past 11
2

years have improved and maintained my mental

health.

Funding for parts of this work have been provided by the Natural Sciences and

Engineering Research Council of Canada, Alberta Innovates: Technology Futures

(formerly iCORE and Alberta Ingenuity), and by the IBM Center for Advanced

Studies at the IBM Toronto Software Laboratory.

Table of Contents

1 Introduction 1

2 Background and Motivation 4
2.1 Terminology and Notation . 4
2.2 Representations of Program Structure 5

2.2.1 Profiling Terminology . 7
2.3 Performance Evaluation . 8

2.3.1 Evaluating Learning Systems 9
2.4 Static vs. Dynamic FDO . 11
2.5 Variations in Behavior and Performance 12
2.6 Program Transformations . 14

2.6.1 Inlining . 15
2.7 Conclusion . 17

3 Performance Evaluation Using Many Inputs 18
3.1 The SPEC CPU Benchmark Suite Methodology 19

3.1.1 Programs . 20
3.1.2 Program Inputs . 21
3.1.3 Measuring Performance 21

3.2 Proposed Benchmark Methodology 22
3.2.1 Programs and Benchmark Conversion 22
3.2.2 Evaluation Workload . 23
3.2.3 Training and Evaluation 23
3.2.4 Reporting FDO Performance 24
3.2.5 Combining Workloads for FDOPeak and Peak 28

3.3 Practicality Considerations . 28
3.3.1 Compiler Users . 29
3.3.2 Compiler Developers . 29
3.3.3 Benchmark Users . 30
3.3.4 Benchmark Authors . 30

3.4 Conclusion . 31

4 Selecting Workloads of Inputs 32
4.1 Clustering . 33

4.1.1 Input Features and Similarity 34
4.1.2 Performance Weighting 35
4.1.3 Clustering . 38
4.1.4 ε-Greedy Spectral Clustering 39
4.1.5 Unimplemented Refinements 41

4.2 Using Clustered Workloads . 42
4.2.1 Using Reduced Workloads 42
4.2.2 CrossError : Comparing Clusterings 43

4.3 Evaluation Methodology . 44
4.3.1 Transformations . 45
4.3.2 Clustering Comparison . 46

4.4 Clustering Evaluation . 47
4.4.1 ε-Greedy Parameters . 47
4.4.2 Impact of Performance Weighting 48
4.4.3 Clustering Comparison . 49
4.4.4 Clustering for Workload Reduction 51
4.4.5 Qualitative Clustering Evaluation 55
4.4.6 Algorithm-Independent Input Similarity 56

4.5 Conclusion . 57

5 Combined Profiling:
Multi-Run Behavior Modeling 58
5.1 Design Considerations . 60

5.1.1 Model Properties . 60
5.1.2 Parametric Models . 61
5.1.3 Statistical Considerations 61

5.2 Approximating the Empirical Distribution 62
5.2.1 Building Histograms . 63
5.2.2 Multiplication of Histograms 65

5.3 Unifying and Using Profile Information 66
5.3.1 Hierarchical Normalization 68
5.3.2 Denormalization . 69
5.3.3 Queries . 71
5.3.4 Extensions and Alternative Usage 72

5.4 Characterizing Combined Profiles 74
5.4.1 Histogram Breakdown . 75
5.4.2 Coverage . 77
5.4.3 Maximum Probability . 78
5.4.4 Occupancy . 79
5.4.5 Span . 80
5.4.6 Drift . 80
5.4.7 Space Requirements . 82
5.4.8 Number of Bins . 83

5.5 Conclusion . 84

6 Function Inlining 85
6.1 Inlining Considerations . 86

6.1.1 Barriers to Inlining . 86
6.1.2 Benefits of Inlining . 86
6.1.3 Estimating Inlining Benefit 88
6.1.4 Costs of Inlining . 90
6.1.5 Inlining-Invariant Program Characteristics 90

6.2 Static inlining in LLVM . 91
6.3 A New CP-Driven Feedback-Directed Inliner for LLVM 92

6.3.1 Worklist Algorithm . 92
6.3.2 Code-Growth Budget . 95
6.3.3 Candidate Scoring . 96
6.3.4 Frequency Estimation with Combined Profiles 100
6.3.5 Potential Improvements 102

6.4 Conclusion . 103

7 Evaluation:
CP in the LLVM Compiler 104
7.1 LLVM Implementation . 104

7.1.1 Loading Combined Profiles 105
7.1.2 Compiling with LLVM . 105
7.1.3 Transformation Sequence 107
7.1.4 Detecting Equivalent Inlining Outcomes 108

7.2 Experimental Methodology . 109
7.2.1 Measuring Single-Run Performance 110
7.2.2 Static Inlining . 110
7.2.3 Single-Profile FDO . 110
7.2.4 FDI Reward Functions . 111
7.2.5 Programs and Inputs . 112

7.3 Results . 115
7.3.1 Compilation Time and File Size 117
7.3.2 Execution Time . 118
7.3.3 Equivalent Inlining Outcomes 129

7.4 Conclusion . 131

8 Related Work 132
8.1 Program Workloads . 132
8.2 Combining Profile Information Across Runs 134
8.3 Input-Conscious Dynamic Compilation 136
8.4 Conclusion . 137

9 Conclusion 138

Bibliography 140

A General Background 148
A.1 Compiler Terminology . 148
A.2 Computer Architecture . 149
A.3 Code Transformations . 151

A.3.1 Code Placement . 151
A.3.2 Data Flow Analysis and Instruction Scheduling 152
A.3.3 Register Allocation . 155
A.3.4 Enlarged Compilation Regions 155
A.3.5 Specialization . 157
A.3.6 Alias Analysis . 158

A.4 Summary . 160

B Profiling 161
B.1 Profiling Techniques . 161

B.1.1 Vertex and Edge Profiling 162
B.1.2 Path Profiling . 162
B.1.3 Extended Path Profiles . 164
B.1.4 Call-Graph Profiling . 164
B.1.5 Value Profiling . 165

B.2 Profiling Overhead . 165

List of Tables

4.1 Running-times (in seconds) for an example workload when using
alternative training inputs for FDO, and for the non-FDO baseline
(t∅(i)) . 35

4.2 Combined difference matrix D for the example workload 36
4.3 The upper portion of the table lists the normalized run-times (τ−1

u (i))
and log-weights (log(t∅(i))) computed from Table 4.1. The bottom
row lists the per-input LNP values computed from each column. . 36

4.4 Performance Weight matrix PW (x1000), computed from the LNP
values in Table 4.3 . 37

4.5 The weighted difference matrixD, computed as the pointwise prod-
uct of PW matrix from Table 4.4 and the difference matrix from
Table 4.2 . 38

4.6 Similarity matrix S, computed from the weighted difference matrix
D from Table 4.5 . 38

4.7 Workload performance evaluated using the full workload (bold)
and clustering-based reduced workloads consisting of either the
best representative (italics) of each cluster, or 100 samples of randomly-
selected representatives. 52

5.1 Characteristics for batch-combined (E)dge and (P)ath profiles. . . . 76
5.2 File sizes, in KB, of raw, batch-combined, and incrementally-combined

(E)dge and (P)ath profiles. The % column gives the overhead factor
for the CProf vs. the collected raw profiles. 82

7.1 Concrete quantile-based reward functions 112
7.2 Time (in seconds) for each step of compilation from inlining to link-

ing and generation of the native executable. Ranges are listed for
the collections of Single and FDI inliners. 116

7.3 Initial code size, inlining statistics, code growth and executable file
sizes for each class of inliner . 116

7.4 Workload ranking of FDI inliners for bzip2 119
7.5 Workload ranking of FDI inliners for gzip 119
7.6 Workload ranking of FDI inliners for gcc 120
7.7 Workload ranking of FDI inliners for gobmk 120
7.8 Pairwise matched-pairs workload performance comparison for bzip2125
7.9 Pairwise matched-pairs workload performance comparison for gzip 126
7.10 Pairwise matched-pairs workload performance comparison for gcc 127
7.11 Pairwise matched-pairs workload performance comparison for gobmk

(statistically-significant differences in bold) 128

List of Figures

1.1 Measurements for workload evaluation using latency or throughput . 2

2.1 A loop and the corresponding CFG 5
2.2 Call sites in a simple program, the context-insensitive CG, and the

call-site sensitive CG . 6

4.1 Clustering error for varied iterations of ε-greedy spectral clustering
when using similarity matrix S from gcc 47

4.2 Comparison of CrossError using weighted (D) and unweighed (D)
difference matrices from gcc . 48

4.3 Clustering error comparison between the early-inlining and late-
inlining clusterings from VPR routing 49

4.4 Clustering results for GAP as k increases, using the combined dif-
ference matrix . 54

4.5 Mismatch and CrossError using the combined clusterings of bzip2
and gzip . 56

5.1 Three phases of combined profiling: 1) profile each input, 2) nor-
malize each profile, and 3) combine the profiles into a distribution
model. 59

5.2 Alternative interpretations of a monitor’s histogram 62
5.3 Combining histograms: H1 +H2 = H3 63
5.4 The CFG and edge-dominator tree of a procedure, with three possi-

ble edge profiles . 67
5.5 Denormalization of Ra and Rb with respect to their least-common

dominatorRd. Dashed lines show the path over which the marginal-
ized histograms are computed. 70

5.6 Some sub-paths through a nested loop. The outer loop L1 iterates a
total of k times; the inner loop L2 iterates 10 times per iteration of L1. 73

5.7 Edge coverage, excluding fully-covered monitors 77
5.8 Maximum edge likelihood with 50 bins (no points) 78
5.9 50-bin histogram occupancy for edges (no points) 79
5.10 Span of edge histograms (no points) 80
5.11 Edge-weight drift using 50-bin histograms (no points) 81

6.1 A sequence of transformations on a code fragment that computes
Fibonacci numbers, illustrating the code-simplification opportuni-
ties enabled by inlining . 87

6.2 Allowable code-growth budget for FDI inlining in terms of LLVM
IR instructions. The initial size of bzip2, gzip, gobmk, and gcc
are indicated with vertical lines. 97

7.1 Overview of FDO program compilation with LLVM for static and
FDI inlining. Postinline .bc files are omitted for simplicity. 106

7.2 Geometric-mean performance: real bzip2 118
7.3 Geometric-mean performance: real gzip 121
7.4 Geometric-mean performance: SPEC 2006 gcc 121
7.5 Geometric-mean performance: SPEC 2006 gobmk 122
7.6 Distribution of the number of unique, non-zero, zIDs per function

across all inliners . 130

A.1 Points for the loop body from Figure 2.1 (BB2 and BB3) 149
A.2 Local instruction scheduling . 152
A.3 Speculative PRE and PDE using predication 153
A.4 Specialization of an indirect procedure call 158
A.5 Pointers and aliases . 159

B.1 Block, edge, and path profiles for a simple CFG 161
B.2 Acyclic paths for Ball and Larus’ path profiling 162
B.3 Finding the minimum instrumentation required for edge profiling . . 166

List of Symbols

Miscellaneous:
a, b Miscellaneous subscripts.
PROG A program.
j Input or profile specifier/subscript, e.g.: ij, pj .

u Training input/workload specifier/subscript, e.g.: tu(i).
x, y Matrix indexes, e.g., D[x, y].

Workloads:
i A program input.
W The full evaluation workload of inputs for a program.
n The number of inputs inW; n = |W|.
Ω A set of program inputs too large to use asW .
ω The number of inputs in Ω; ω = |Ω|.
Wtest A testing workload.
Wtrain A training workload.
k The size of a clustering; a k-clustering is a set of k disjoint partitions

that cover the original set of inputs.
C A partition/cluster of similar inputs.
CT,k A k-clustering of Ω for transformation T :

CT,k = {CT,1, CT,2, . . . , CT,k}
Ck A k-clustering of Ω for transformation all transformation in T :

Ck = {C1, C2, . . . , Ck}
Ck A performance-weighted k-clustering of Ω for transformation all

transformation in T : Ck = {C1, C2, . . . , Ck}

Profiling:
P The set of raw profiles generated by profiling each of the n inputs in

W: P = {p1, p2, . . . , pn}
pj[l] The value of monitor Rl in profile pj , or the distribution of Rl if pj

is a CProf.
l A location in a program.

L A set of locations: L = {l1, l2, . . . , lk}
k The number of locations in a program (of transformation

applications or of inserted monitors).
B A behavior.
M A metric of a behavior.
R(B, l,M) A monitor of behavior B by metric M at location l.
Rl The monitor at location l (B,M implicit).
Hn The histogram for the combined profile of monitor Rn.

Transformations:
T, U An FDO transformation.
T The set of code transformations that use profile information in an

FDO compiler: T = {T1, T2, . . . , Tm}
m The number of FDO transformations in a compiler: m = |T |.
Vj A transformation vector for transformation T (implicit from

context) using profile pj .
DT The difference matrix for transformation T (pg. 27) (pg. 35).

DT [x, y] = Manhattan(Vx,Vy)

D The combined difference matrix for all transformations (pg. 35).

D =
∑
T∈T

DT

|LT |

D The performance-weighted combined difference matrix; D
point-wise weighted by the pair-wise performance weight PW (pg.
37).

D[x, y] = D[x, y]× PW [x, y]

S, ST , S The combined similarity matrix created from D,DT , or S,
respectively.

S[x, y] = max(D[x, y])−D[x, y]

Times:
t∅(()i) The execution time of a non-FDO baseline version of a program on

input i, measured as the average of an odd number of runs.
tu(i) The execution time of an FDO version of a program on input i when

u is used asWtrain, measured as the average of an odd number of
runs.

τu(i) The speedup of an FDO version of a program on input i versus a
non-FDO baseline, when u is used asWtrain: τu(i) = t∅(i)

tu(i)
.

τ−1
u (i) The normalized execution time of an FDO version of a program on

input i versus a non-FDO baseline, when u is used asWtrain:
τ−1
u (i) = tu(i)

t∅(i)
.

Equations:
LNP A vector of log-normalized performance for each input in a

workload (pg. 36):

LNP[u] =

∑
i∈Ω−u

(
τ−1
u (i)× log(t∅(i))

)
∑

i∈Ω−u log(t∅(i))

PW The pairwise performance weighting factor (pg. 37):

PW [x, y] =
max(LNP[x],LNP[y])

min(LNP[x],LNP[y])
− 1

Mismatch Clustering error (pg. 39):

Mismatch(C,D) =
∑
Ca∈C

 ∑
ix,iy∈Ca

D[ix, iy]

∆Mismatch Reduction in clustering error when k is increased (pg. 51):

∆Mismatch(k) = Mismatch(Ck−1, D)−Mismatch(Ck, D)

CrossError Additional clustering error incurred by using an alternative
clustering (pg. 44):

CrossError(CT,k/CU,k, DU) = Mismatch(CT,k, DU)−Mismatch(CU,k, DU)

µg(W) The geometric mean of normalized execution times forW ,
measured by 3-fold cross-validation (pg. 27):

µg(W) =
1

FDOPeak
= |W|

√∏
i∈W

τ−1
u (i)

σg(W) The geometric standard deviation for µg(W) (pg. 27):

σg(W) = exp

√∑i∈W (ln τ−1
u (i)− lnµg(W))2

|W|

List of Abbreviations

AOT Ahead-of-Time, referring to any program-related processing that is
done by the developer before a program is deployed and/or run by a
user. AOT often refers to the compilation of source code to an
architecture and operating-system specific executable binary. AOT
contrasts with JIT techniques.

CP Combined Profiling
CProf A Combined Profile.
FDO Feedback-Directed Optimization. When used as an adjective,

indicates that the subject uses profile information for code
optimization. (e.g., an FDO transformation or an FDO compiler.)

FDI Feedback-Directed Inlining. Function inlining that uses feedback
information to guide its decisions.

IR Intermediary Representation, a program representation used
internally by a compiler to facilitate code transformation and native
code generation. Many IRs attempt to be independent of the original
source code language and the eventual target machine.

JIT Just-In-Time, referring to processing to facilitate the execution of a
program at the time it is run. JIT often refers to the (re)compilation
and (re)optimization of machine-independent interpreted code to
machine-specific binary code by a run-time system during the
execution of the (initially interpreted) program.

LNP Log-Normalized Performance (see symbols).
SCC A strongly-connected component in a graph. In a call-graph, a set of

functions that form a recursive cycle.
SPEC Standard Performance Evaluation Corporation, a consortium of

commercial and academic interests that produce the most widely
used performance evaluation benchmark suites. Of particular note
for compiler evaluation are the SPEC CPU suites of C, C++, and
Fortran CPU-intensive programs released in 2000 and 2006.

Glossary

Evaluation Workload (W) A set of program input that are used in the
performance evaluation of a system. When
cross-validation is used, the evaluation workload is the
full set of all input that is then divided into training and
testing sets.

Testing Workload (Wtest) In cross-validation, the subset of input used to
evaluate the result of a training run. This set has no
members in common with the training workload.

Training Workload (Wtrain). In cross-validation, the subset of input used
in a training run. This set has no members in common
with the testing workload.

LLVM A modular open-source compiler implemented in C++.
XLC IBM’s commercial compiler.
k-Fold A cross-validation technique whereW is partitioned

into k equally-sized sets (folds). Each fold takes a turn
asWtest;Wtrain =W/Wtest.

Leave-One-Out A cross-validation technique whereWtrain is all ofW
except a single element (the one left out). Each
element ofW takes a turn asWtest.

Leave-One-In An evaluation technique for situation whereWtrain is
limited to a single element. It is the inverse of
leave-one-out cross-validation: each element u ofW
takes a turn asWtrain, and is evaluated on
Wtest =W/{u}.

Coverage (of a monitor) The proportion of runs represented in a
CProf where the monitor executes at least once.

Occupancy (of a monitor) The proportion of histogram bins
containing weight out of the maximum possible
number of bins that could contain weight given the
number profiles that cover the monitor.

Span (of a monitor) The ratio between a histogram’s range
and its maximum value.

Drift (of a monitor) The proportion of weight that does not
overlap between between the batch-constructed and
incrementally-constructed versions of a histogram.

Source call site A call site that is inlined, possibly copying original call
sites in the callee to target call sites in the caller.

Original call site A call site inside a callee that is copied to a target call
site in a caller when a source call site in the caller is
inlined.

Target call site A call site copied into a caller from the original call
site in the callee when a source call site in the caller is
inlined.

Chapter 1

Introduction

The field of compiler optimization is a combined effort of science and engineer-
ing which, like all scientific advancement, is an iterative process of analysis, ex-
ploratory implementation, and evaluation. For most useful programs, execution
depends on the program’s input. Consequently, there is no optimally-efficient exe-
cutable representation of high-level source code that, for instance, executes in the
least possible amount of time for every program input. Even given an optimiza-
tion criteria, such as processing throughput, and a reasonable set of program inputs,
creating an executable whose performance is optimal for that set of inputs is (prov-
ably) intractable. Moreover, it is infeasible to approach compiler design as a single
problem. Instead, compilers apply a series of transformations1 that attempt to im-
prove the efficiency of a particular region of code in a specific way. For instance,
Chapter 6 presents a function-inlining transformation that replaces a function call
by a copy of the body of the called function. This transformation improves program
efficiency by eliminating the overhead of making function calls, while improving
the effectiveness of subsequent transformations.

Research in compiler transformations often demonstrates heroic efforts in both
the identification and abstract analysis of opportunities to improve program effi-
ciency, and in the concrete implementation of these ideas. However, standard prac-
tices at the evaluation stage of the scientific process are modest at best, perhaps
because code transformations have a long history of providing significant benefits
in practical, every-day situations. In most cases, compilers are evaluated using a
collection of programs, with each program evaluated using a timing run on a single
evaluation input. The deficiencies of this evaluation process are particularly preva-
lent, and especially disconcerting, when feedback-directed optimization (FDO) is
used to guide a transformation. In this scenario, instrumentation is inserted into the
program during an initial compilation in order to collect a profile of the run-time
behavior of the program during one or more training runs. The profile is used in a
second compilation of the program to help the compiler assess the benefit of code

1Transformations are frequently, but inaccurately, referred to as optimizations. Most transfor-
mations provide heuristic and/or partial solutions to NP-Hard problems, which are themselves ab-
stracted from the full complexity of generating truly optimal code for a specific physical machine.

1

Latency

Time

Pro
g
ra
m

(a) Longest individual time

Throughput

Time

(b) Total time

Figure 1.1: Measurements for workload evaluation using latency or throughput

transformation opportunities. The current standard practice for evaluating an FDO
compiler uses the profile of a single training input to guide transformations, and
evaluates the transformed program with a single evaluation input. These standard
practices set program inputs as controlled variables. However, performance evalu-
ation should be generalizable to real-world program workloads. Consequently, the
program-input dimensions of a rigorous evaluation of compiler performance must
be manipulated variables.

Performance evaluation is a challenging, multi-faceted problem. In this thesis,
performance is always assessed in terms of program execution time2 One dimension
of this challenge is the choice between evaluating throughput or latency, as illus-
trated in Figure 1.1. Given a collection of tasks (e.g., the programs in a benchmark
suite or runs of a single program on a workload of inputs), throughput measures
the total time required to complete all tasks sequentially. Conversely, latency con-
siders the tasks in parallel and measures the task that takes the longest. Improving
throughput means reducing average execution time; improving latency means re-
ducing worst-case execution time. Both types of performance are important, and
both approaches to evaluation are valid. The choice of focus in an evaluation must
match the goals of the system’s user, and as such is beyond the scope of this doc-
ument. Fortunately, shifting focus is often as simple as changing the weighting
used to combine measurements from the individual tasks. Different aspects of this
work assume different performance goals and thus perform the weighting in differ-
ent ways. Consider each of these approaches as one possible option for evaluation,
independent of the specific evaluation in which they appear. A real-world applica-
tion of any of the ideas presented here will have unique performance goals, and can
mix-and-match these approaches as appropriate.

This work spans the scientific process as it relates to the design of FDO com-
pilers, with two pervasive themes throughout. The first theme is a recognition that
program behavior frequently depends on the input to the program; the second is
that FDO is a predictive modeling technique, and must be designed and evaluated
as such. Chapter 3 explains the current methodology used to evaluate compilers,

2Other measures of performance include power consumption and code size.

2

and how it can be improved for use with FDO. The fundamental idea is that an
evaluation should be cross-validated; a workload of inputs should be used to test
and train an FDO compiler. This methodology does not answer how the evaluation
workload should be selected. In many cases, expert knowledge can be leveraged to
select representative workloads of inputs. However, even with expert knowledge,
characterizing input similarity and determining both how many inputs and which
specific inputs to include in the workload are challenging questions.

Chapter 4 proposes a compiler-centric clustering methodology to select a small,
representative, evaluation workload from an infeasibly-large initial collection of
program inputs. The performance evaluation of an FDO compiler using the reduced
workloads accurately predicts the performance evaluation results obtained using the
full workload.

Previous work has not addressed the problem of representing and utilizing multi-
run profiles. An FDO compiler should not simply add or average profiles from
multiple runs, because such a profile does not provide any information about the
variations in program behaviors observed between different inputs. Chapter 5 uses
Combined Profiling (CP) to merge the profiles from multiple runs into a distribution
model that allows code transformations to consider cross-run behavior variations.
Experimental results demonstrate that meaningful behavior variation is present in
the program workloads, and that this variation is successfully captured and repre-
sented by the CP methodology.

The FDO-based inliner presented in Chapter 6 demonstrates how a transforma-
tion can use the information stored in a combined profile. The feedback-directed
inlining framework sorts inlining opportunities according to parameterized reward
functions that query a combined profile using distribution quantiles. Chapter 7
brings these components together by performing a thorough cross-validated evalu-
ation of the CP-informed inliner.

3

Chapter 2

Background and Motivation

This chapter presents some of the basic notation and terminology used through the
rest of the document. In addition, it discusses two fundamental issues addressed
in later chapters, namely the proper evaluation of FDO compilers, and the recogni-
tion of the existence of input-dependent program behavior and its impact on mea-
sured performance results. Finally, existing approaches to function inlining, the
transformation investigated in Chapters 6 and 7, are reviewed. Further details on
code analysis and FDO code transformations are left to Appendix A, while a de-
scription of the profiling techniques used to inform FDO transformations follows in
Appendix B.

2.1 Terminology and Notation
Many aspects of this work require quite a bit of notation. Every effort has been
made to ensure that this notation is clear and that every symbol has a single mean-
ing throughout. However, with sets, vectors and matrices derived from behaviors,
benefits, clusters, inputs, locations, metrics, parameters, partitions, multi-versioned
programs, profiles, transformations, and all manner of times, all of which are used
in several contexts, the notation can be burdensome. To help ease this burden, there
is a list of symbols in the front matter of this document . Furthermore, to help
keep the notation as clean and consistent as possible, most notation follows these
guidelines:

• Sets are denoted by a capital letter in calligraphy: S.

• An exemplar element from a set is a lowercase letter and is not subscripted
with an index: s ∈ S.

• Matrices are denoted by capital letters: M .

• Vectors use bold font: V.

• Individual elements of matrices and vectors are specified using square brack-
ets, never subscripts: M [x, y],V[z].

4

• Times and speedups indicate the input who’s running time they measure in
parenthesis, with the training set as a subscript. Non-FDO measurements use
∅ as the training set: tu(i), t∅(i).

2.2 Representations of Program Structure

i = 0;
if(i<ROWS) {
do {
a = &A + i;
ta = *a;
r = foo(ta);
r = r * 2;
a = &B + i;

*a = r;
i = i + 1;

}
while(i<ROWS)
}

(a) Loop code

if(i < ROWS)

i = 0;BB1

BB3

a = &B + i;
*a = r;
i = i + 1;
if(i < ROWS)

r = r * 2;

a = &A + i;
ta = *a;
r = foo(ta);

BB2

BB4 (loop exit)

(b) BBs

if(i < ROWS)

i = 0;BB1

BB2

BB3

a = &B + i;
*a = r;
i = i + 1;
if(i < ROWS)

a = &A + i;
ta = *a;
r = foo(ta);

r = r * 2;

BB0 (entry)

BB4

BB5 (exit)

(loop exit)

(c) CFG

Figure 2.1: A loop and the corresponding CFG

A major component of profiling is measuring program behavior to determine
which parts of the code are hot. Most profiling techniques attempt to observe and
record the control flow of a program during execution. Consequently, the standard
representations of program structure and control flow used by compilers are also
used to discuss profiling.

A basic block (BB) is a unit of program control flow consisting of a single-
entry, single-exit sequence of instructions for which the following restriction holds:
If program execution reaches the first instruction in the BB, every instruction in
the BB must execute. Branches (conditional or unconditional), procedure calls1,
and returns from a procedure end a BB as they are a break in control flow and
are thus the single exit from the BB. The first instruction in a procedure and the
first instruction following the end of a BB start a new BB. Branch or jump targets
(labels) start a new BB and end any block reaching the label since the label would
break the single-entry property. Sub-figures (a) and (b) of Figure 2.1 show the

1Various programming constructs in, e.g., FORTRAN (alternate returns), C (setjump()), and
Pascal (out-of-procedure goto targets), allow execution to return from a procedure to a different
location than the invoking call site [77].

5

main() {
foo(x);//s1
bar(y);//s2
}

foo(x) {
if(cond)
bar(x-1);//s3

else
bar(x*2);//s4

}

bar(x) {
if(cond)
bar(x-1);//s5

}
(a) Call sites S1 – S5

bar

main

foo

(b) Context-insensitive CG

s5

s3s4

s2
s1

bar

foo

main

(c) Call-site sensitive CG

Figure 2.2: Call sites in a simple program, the context-insensitive CG, and the call-
site sensitive CG

decompositions of a do-while loop into BBs.2 BB4 starts at the branch target used
by the loop bounds tests in BB1 and BB3, which is implied but not shown in the
original code.

A procedure can be decomposed into a set of BBs. A control flow graph (CFG)
represents a procedure, with each BB forming a node in the graph and the transfers
in control between BBs forming the directed edges of the graph. Figure 2.1(c)
shows the CFG for the loop in Figure 2.1(a). The entry point into a procedure
marks the start of the first regular BB in the CFG. Each CFG starts with a special
entry node which represents the entry point into the function and ends with an exit
node, neither of which contain any instructions. For every BB BBi in the CFG,
there exists a directed path from the entry node to the exit node that contains BBi.3

In an extended CFG, BB execution may be interrupted by an exception [28].
The call graph (CG) of a program represents the calling relationships between

the procedures of the program. Each procedure is a node in the graph. A call from
one procedure to another is represented as a directed edge from the caller to the
callee. A static CG is inferred from the program code and contains all procedure
calls. A dynamic CG is constructed at runtime and contains only those calls that
occurred during program execution. Procedure call statements in a program are
referred to as call sites. A call chain exists during program execution and is the or-

2Compilers typically convert all loops to do-while loops to enable the use of the same internal
representation for every loop.

3This constraint may be temporarily violated when code transformations render a BB non-
executable. Dead code elimination will remove such BBs from the graph.

6

dered list of call sites on the call stack. That is, the call chain is the list of procedures
that have been called (and where they were called from) but have not yet returned.
A length l calling context of call site c consists of the l most recent call sites in
the call chain when c is executed. A context-sensitive CG contains different edges
for each distinct 〈call site, calling context〉 pair, while a context-insensitive CG will
summarize all calls between a caller and a callee with a single edge. A call-site
sensitive CG does not record calling contexts but does include a separate edge for
each call site. A call-site sensitive CG is important for many inter-procedural trans-
formations. Figure 2.2(a) presents the call sites (labeled S1 through S5) of a simple
program. Figure 2.2(b) is the static, context-insensitive call graph of the program.
Notice that the two calls to bar() from foo() are represented by a single edge. In
contrast, the call-site sensitive CG in Figure 2.2(c) contains two edges from foo()
to bar() which correspond to the two different call sites.

2.2.1 Profiling Terminology

The profile of a program PROG records information about a set of program behav-
iors. A program behavior B is a (potentially) dynamic feature of the execution of
a program. The observation of a behavior B at a location l of a representation of
the program is denoted Bl.4 A behavior B is quantified by some metric M(B) as a
tuple of numeric values. A monitor R(B, l,M)5 is injected into a program at every
location l where the behavior B is to be measured using metric M . At the com-
pletion of a training run, each monitor records the tuple 〈l,M(Bl)〉 in a raw profile
that contains unmodified metric values. The value (or distribution) of the metric of
a monitor is simply called the value (or distribution) of the monitor. For example, in
naive edge profiling, the locations l are the edges of the Control Flow Graph (CFG),
the metricM is the execution count of each edge, the observation Bl of the behavior
B is the traversal of the edge during program execution, and the raw edge profile
contains a listing of 〈edgeID, count〉 pairs.

For simplicity, consider a program with a single monitor, R1. When no program
state is shared between executions, the raw profile from each training run i provides
one independent sample,6 R1[i], of the possible values of R1. Thus, each R1[i] is
an independent random variable identically distributed according to some unknown
probability distribution which arises as the result of the interactions between a pro-
gram and its inputs.

4For instance a location l can be a point or a single-entry-single-exit region in the Control Flow
Graph of the program.

5A monitor can also be thought of as a Recorder, thus the use of the letterR to refer to a monitor.
6Execution independence is sufficient, but not strictly necessary for Ri and Rj (i 6= j) to be

independent.

7

2.3 Performance Evaluation

The goal of most compiler research, and the result most reported by and most ex-
pected of compiler research, is reduced program execution time. It is therefore
critical that the methodologies used to measure the impact of a compiler on pro-
gram execution time, as well as the metrics used to summarize and draw conclu-
sions from those measurements, are scientifically and statistically sound. Scientific
soundness requires a recognition of controlled, manipulated, and responding ex-
perimental variables, along with any uncontrolled or unmanipulated variables and
conflating factors that might limit the strength and/or generality of any conclusions.
For FDO compilers, this means, in part, that both training and evaluation inputs,
along with the evaluated programs, must be varied in the evaluation. Without vary-
ing both input sets, experimental results cannot be generalized to other training
and/or evaluation inputs.

Data inputs are a key component of benchmarks. Evaluation inputs must be
carefully selected to represent typical program usage while meeting benchmark re-
quirements such as dynamic memory footprint size, CPU load, and running time.
The use of FDO for benchmark programs enhances both the importance and selec-
tion difficulty of inputs. In particular, two intuitively similar inputs may not induce
similar code transformations in a compiler, or may not present similar performance
responses to compiler transformations [15, 16].

Training input selection presents several additional challenges beyond those
presented by the selection of evaluation inputs. Training inputs must represent
typical program use, without requiring long running times. Furthermore, in large
applications, a single training-sized input cannot cover all the important use cases.
Therefore, it can be difficult to provide a single representative training input.

Furthermore, there is disagreement in the benchmarking community over what
is meant by a “representative training input.” Some benchmark authors advocate
that an effective way to ensure that the training input is representative of the eval-
uation input is to include a portion of the evaluation input in the training input.
Thus, part of what the compiler sees during training is a perfect predictor of at least
some portion of the evaluation input. Some studies use similar arguments to jus-
tify training and testing with the same input. However, others in the benchmarking
community argue that this technique for training input creation makes the training
and evaluation inputs too similar [101]. Using the same input(s) for both training
and testing is neither a scientifically nor a statistically sound practice, and can gen-
erate very misleading results. For instance, as an argument for the combination of
off-line and on-line profiling, Krintz shows that for a collection of Java benchmark
programs, optimizing according to an off-line profile improves average performance
by 13% when the training and testing inputs are identical, but degrades performance
by 28% when the training and testing inputs differ [64]. When training inputs are re-
peated in the evaluation set, over-fitting is rewarded, which is counter to the goals of
an effective evaluation. Is the purpose of FDO to maximize program performance

8

on a particular input, or to enhance program performance on the range of inputs
likely to be seen in practice? If FDO is meant to improve performance in practice
rather than to maximize benchmark scores, then training and evaluation workloads
should not overlap. Nonetheless, overlapping training and testing inputs have been
published by SPEC for SPEC CPU benchmarks, such as gap from CPU2000 and
hmmer from CPU2006. Previously, there have been no precise guidelines or rules
for input selection for SPEC CPU benchmarks, which has left individual benchmark
authors to decide for themselves how these inputs should be devised.

Finally, an often overlooked issue in performance evaluation is the proper sum-
marization of results. Fleming and Wallace provide an excellent discussion on this
point that is perhaps best summarized by the paper’s abstract [41]:

Using the arithmetic mean to summarize normalized benchmark re-
sults leads to mistaken conclusions that can be avoided by using the
preferred method: the geometric mean.

Nonetheless, arithmetic means are routinely used to summarize speedups both across
the inputs to a single program and across the set of programs used in a study. All
summary results presented here use carefully-considered summarization methods.
In most cases, the technique of choice is the geometric mean. Furthermore, when
presenting aggregated results, confidence intervals and/or extreme values are also
reported to give a clear indication of the spread between the aggregated elements.

2.3.1 Evaluating Learning Systems
A training run to generate a program profile for a compiler is very similar to a
training run in machine learning. The profile essentially provides a sample data
point (of program execution) to which the compiler attempts to fit the program in
order to maximize expected program performance. Thus, as with any predictive-
modeling system, both the training and testing input dimensions must be considered
by an evaluation methodology.

There are two classic characterizations of the amount of learning, or goodness
of fit, achieved by a predictive model [53]. Underfitting is the problem where the
system does not learn as much as possible from the training data, and consequently
fails to achieve maximum performance on the evaluation data. Underfitting is not
a significant problem for the reliability of an evaluation, but rather indicates that
opportunities for improvement exist.

Conversely, over-fitting is the case where the learning system matches the train-
ing data too closely. Consequently, small variations from the training data in the
evaluation data cause large errors by the system. Over-fitting can be detected by
comparing the performance of the system when evaluated using the training data
versus distinct evaluation data. Excellent performance on the training data, but
poor performance on the evaluation data, suggests that over-fitting has occurred.
Over-fitting is a significant problem that must be avoided. The upshot of the over-
fitting-underfitting spectrum is that an evaluation must be careful to ensure that the

9

set of training inputs is fully distinct from the set of evaluation inputs. This way,
if over-fitting does happen, it is detectable and does not inflate the evaluation re-
sults. Otherwise, evaluation could report significant performance gains that are not
achievable in practice.

Over-fitting is particularly problematic when the number of training inputs is
low. With few training examples, it is difficult to separate the peculiarities that
make inputs non-identical from the commonalities between inputs that should be
exploited. If a single training input is used, this distinction is impossible. Since
discovering and exploiting the commonalities between inputs is a fundamental task
of many learning systems, including FDO compilers, it is imperative that multiple
inputs are used during the training process. The use of multiple inputs and cross-
validation for robust performance evaluation are discussed in Chapter 3.

The statistical significance of results is very important when evaluating com-
plex systems. System performance is not independent of the data used, and will
vary according to the inputs used for training and evaluation. Changing the data
may change the maximum possible level of performance. For example, the entropy
in data used for a compression algorithm will change how much the data can be
compressed, and consequently how significantly the performance of the compres-
sion routines impact the whole program. According to the central limit theorem,
random samples from a population with finite variance are approximately normally
distributed. Performance measures have finite variance, and are thus approximately
normally distributed around their mean. Consequently, the sample standard devia-
tion or confidence intervals can be calculated from the measurements to express the
expected spread of individual performance measurements from the mean.

If the standard deviation is small compared to the measured gain, then the mea-
sured gain is meaningful, and will very likely be observed in any additional sample
points (i.e., other data inputs) that were not tested during evaluation. On the other
hand, if the standard deviation (or confidence interval) is large compared to the
mean, then the true mean may be significantly different than the measured mean,
and the measured mean may not accurately represent the gain expected on other
inputs. In other words, the gain observed during evaluation may simply be noise.
For example, consider an evaluation that yields a mean speedup of 1.05 over a base-
line. Two times the standard deviations is approximately a 95% confidence interval.
Thus, if the standard deviation is 0.005, it can be stated, with high confidence, that
the evaluated technique provided a 5% improvement, ± 1%. Alternatively, if the
same evaluation produced a standard deviation of 0.05, then the technique provides
a 5% improvement ± 10%. In this second case, the 5% improvement is not statisti-
cally significant, and it is uncertain that the technique improves performance. Thus,
calculating standard deviations or confidence intervals provides a good measure of
the robustness of the measured performance across the untested inputs that could
be encountered in the field, provided that the sample of inputs used for evaluation
is representative of those unseen inputs.

10

2.4 Static vs. Dynamic FDO

The work presented in this thesis is explicitly developed for, and evaluated using,
FDO for ahead-of-time compilers (static FDO). Outside of this section, FDO refers
only to static FDO. Although dynamic FDO is fundamentally different from static
FDO in several ways, both use profile information to guide compilation decisions.
Therefore, it is important to understand the differences between these techniques
in order to distinguish between methodologies that are tightly-coupled with one
approach and those that have more general applicability.

In dynamic FDO, both profiling and program optimization happen at runtime.
Consequently, the profile is extremely likely to accurately predict program behavior
in the near future. Since the program is re-optimized on each execution and even
during execution, behavior diversity is not a significant issue for dynamic FDO.
However, a system that operates only at runtime presents several challenges. First,
the overhead of profiling and optimization must first be overcome before a perfor-
mance benefit is incurred. As such, both the profiling mechanism and the program
transformation candidates must be as light-weight as possible, thus excluding im-
portant classes of program transformations. For example, most transformations that
require intra-procedural analysis are usually omitted from dynamic FDO systems.
Furthermore, many opportunities for improvement are overlooked. In order to min-
imize the time required for optimization, only those transformation opportunities
with the largest expected benefit are pursued. In order to ensure program progress,
program optimization is usually allocated a time budget in proportion to the exe-
cution of the program. Consequently, the exploitation of opportunities, even those
with large expected benefit, may be delayed while other opportunities consume the
optimization budget. Additionally, a dynamic FDO system requires a warm-up pe-
riod at the start of program execution while profiling gathers the initial data required
to target the largest opportunities for performance improvement.

On the other hand, a static FDO system (the only FDO considered by this work)
does profiling and optimization ahead of program execution time. Therefore, the
compiler is free to use expensive program analysis and code transformation algo-
rithms. All opportunities for improvement may be exploited and those code trans-
formations improve program performance from the start of execution without de-
lay. While offline training and optimization incur an overhead for the developer,
this overhead need only be incurred once rather than during every execution of the
program. Of course, since dynamic FDO requires the support of a runtime system
to facilitate profiling and recompilation, static FDO is the only option for a very
large body of applications written in languages such as C, C++ and FORTRAN,
which currently execute without a runtime system.

However, offline FDO does not have a real-time measurement of program be-
havior. Instead, the premise of static FDO is that it should be possible to capture the
general trends in program behavior by observing a fixed number of runs. That is, a
summary of program behavior during past runs is assumed to predict the behavior

11

in future runs. In light of this premise, behavior diversity must be considered in
the application and evaluation of static FDO. However, most uses of FDO assume
(often implicitly) a negligible level of behavior diversity in the program workload.
Unfortunately, behavior diversity is often present in practice, leading to conserva-
tive FDO-driven code transformations, unpredictable program performance across
inputs, and unreliable FDO performance measurements in benchmark results and
academic literature.

The Standard Performance Evaluation Corporation (SPEC) is a cooperative ef-
fort between system vendors, processor designers, compiler developers, and aca-
demics to produces benchmark suites that are relevant to current computing needs
and provide reliable performance evaluation [37]. The SPEC CPU suite is designed
to evaluate processor performance and has become the primary tool used for static
compiler evaluation. SPEC CPU supports static FDO and provides both training
and evaluation inputs for each benchmark program. However, usually a single train-
ing input is provided. Many programs use a single evaluation input, and none use
a large collection of evaluation inputs. In fairness to SPEC, this methodology is
reasonable when creating a set of representative programs for the purposes of eval-
uating processor performance. However, the adoption of the same methodology for
FDO compiler evaluation ignores any issues of behavior diversity.

2.5 Variations in Behavior and Performance
Variation in program behavior is a central concern of FDO and code transformation
in general. However, until recently, most studies assumed the representativeness of
a profile and rarely investigated the existence or impact of behavior diversity.

Fisher and Freuenberger investigate the variability of branch probabilities in C
and FORTRAN programs [39]. Hardware branch prediction is usually evaluated
using the percent of dynamic branches correctly predicted. The authors argue that
the average number of instructions executed before a break in control flow occurs is
a more appropriate measure of the effectiveness of compiler branch prediction. This
alternate metric is better correlated with the execution time of the program, since
the cost of a mispredicted branch, unconditional jump, or procedure call impacts
performance in accordance with the frequency of these events with respect to other
instructions. For example, incurring an instruction cache miss on every branch
would have little impact on the execution time of a program containing very little
control flow compared to computation. Using this new metric, they find that control
flow is very predictable and is stable across different input data sets.

Wall measures the accuracy of profiles across different data sets [99]. He com-
pares a random profile, three statically-estimated profile techniques, and real pro-
files collected from multiple data sets. The profiles record BB, procedure, and
call-site execution frequency, as well as global variable access frequency and pro-
cedure execution time. Each profile is sorted in decreasing order of frequency or
time. A matching algorithm calculates how well the profile predicts the n most

12

frequent elements. BB execution frequency is the most difficult to predict. Static
estimation methods perform almost as poorly as the random profile, while real pro-
files from alternate inputs are on average less than 50% accurate unless n is made
large. Therefore, this result suggests that there exists significant variation in the
most frequently executed portions of a program when the input is varied.

Perelman et al. introduce Variational Path Profiling (VPP), a technique that de-
tects variations in the execution time of control-flow paths in a program [78]. They
posit that paths with larger variations in execution time hold the greatest potential
for optimization opportunities because it may be possible to make all executions
of the path require time similar to the fastest execution of the path. In extensively
hand-optimized programs they find that the paths with the most execution-time vari-
ation seldom correspond to the most frequently executed paths because those paths
have already been heavily optimized. Investigation of the paths with the most ex-
ecution time variation allows simple, but effective, hand optimization that reduces
program execution time by 8% on average for three commercial applications.

Multiple inputs are used in attempts to scale input sizes (up or down). Bienia
et al. focuses on micro-architectural features to scale the input sizes of PARSEC
benchmarks [22]. When a reduced input has a large error in comparison with a
reference input, they regard the reference input as “correct.” Input-dependent pro-
gram behaviors must become recognized as inherent characteristics of programs,
not errors in workload selection.

Kim et al. compare FDO’s simulated dynamic branch prediction accuracy on
the diverge-merge processor using the MinneSPEC reduced program inputs against
the same benchmarks using the SPEC training inputs [60]. They find that FDO is
not sensitive to program input. Their evaluation is not sound because comparing
program behavior between a reference input and an input that was specifically se-
lected by experts on the criteria that it be representative of the reference is unlikely
to predict the actual variations between inputs encountered after deployment.

Gove and Spracklen test how well the SPEC CPU 2006 training inputs represent
the reference workloads [46]. They find that in almost every case, based only on
the correspondence of function execution frequencies and branch behaviors, the
training workload is highly representative of the reference workload. However, this
comparison is only between the reference workload and the training input. The
training input is explicitly selected to be representative of the reference workload.
Significant dissimilarity between ref and train indicates a failure of the training-
input selection process; similarity between these two inputs does not suggest that
program runs on all inputs are similar.

Fursin et al.. collect 20 inputs for each program in the MiBench benchmark
suite to evaluate iterative optimization over a workload of inputs [43]. While many
of the optimized programs have similar performance across all inputs, some pro-
grams display significant variations in instructions per cycle (IPC) and execution
time. However, the best optimization configuration usually produces stable per-
formance results across the workload. Chen et al.. collect 1000 inputs for the

13

MiBench benchmark programs to perform a similar study [102]. As in the Fursin
study, performance characteristics both during and after the iterative compilation
process vary significantly between inputs for some programs. For instance, the
best average-case execution time improvement of about 37% for adpcm d also ex-
hibits the greatest performance differences between inputs; individual performance
improvements range from 10% to 70%. Iterative optimization is fundamentally
different than FDO. Iteration allows the compiler to observe the impact of, and sub-
sequently correct, poor decisions; a facility not available with FDO. Furthermore,
in these studies, global compiler flags are tuned by the iterative process. FDO af-
fects compilation at a much finer granularity, for example, informing the inlining
decisions at individual call sites. Thus, FDO is potentially more sensitive to input
variation.

2.6 Program Transformations

In the introduction to his 1971 study of FORTRAN programs, Knuth states “Our
experience has suggested that frequency counts are so important they deserve a spe-
cial name; let us call the collection of frequency counts the profile of a program.”
“There are strong indications that profile-keeping should become a standard prac-
tice in all computer systems.” [63]

Sites provides a much stronger endorsement of profiling in 1978, saying “State-
ment counting is the single most useful tool that a programming system can provide
to the user. Counting represents a simple, uniform, reliable mechanism which de-
livers a wealth of information.” [93]

Indeed, we have been counting ever since; FDO is the result of automated col-
lection and analysis of profile information. Many compiler analyses and code trans-
formations have been reported to benefit from FDO, or require that profile infor-
mation is available7. The literature contains (non-exhaustively) works using FDO
for instruction set selection [66]; register allocation [98]; code placement [79, 45];
(speculative) partially-dead and (speculative) partially-redundant expression elim-
ination [62, 74, 50, 51, 86]; superblock formation [56, 32, 103], hyperblock for-
mation [71, 36] and other compilation-region enlargements [52]; hot-cold code
splitting (partial inlining, outlining) [106, 6]; switch-case optimization [105]; call
specialization for polymorphic and indirect calls [49]; and pointer and alias anal-
ysis [34, 92, 97]. The application of FDO to these transformations is discussed in
detail in Appendix A.

Some compilers use profile information to guide code transformations for which
no results have been reported. For instance, the IBM XL compiler uses value pro-
files to specialize the denominator of division instructions and to replace generic
memory allocations by size-specialized, pooled custom allocators [58]. Loop fu-

7Compilers can estimate vertex and/or edge profile information using simple heuristics, e.g.,
loops iterate 10 times, or more sophisticated analysis [10].

14

sion, loop unrolling, and loop peeling are also guided by profile information (see
Chapter 4). GCC can use profile information for (at least) procedure placement8

and loop transformations [81]. The Intel C Compiler [57], the Visual Studio com-
piler from Microsoft, the Open Research Compiler, and others also support FDO.
These implementations of FDO in popular open-source and commercial products
demonstrate that FDO is widely believed to improve a compiler’s ability to generate
efficient code.

Profiling is also used to guide a compiler when inserting instructions for software-
controlled hardware adaptation to reduce power consumption. For instance, in
multiple clock domain processors, the clock frequency of different processor com-
ponents can be controlled independently. Magklis et al.. use context-sensitive,
call-site sensitive call profiles that includes loops in order to find program sections
that execute a sufficient number of instructions to warrant adjusting clock frequen-
cies [70]. A detailed architectural simulation of the selected sections determines the
use of functional units by the instructions in each section. A scheduling analysis of
the dependence graph for the uses of the functional units finds a balanced execution-
speed reductions for each use that consume the slack between instructions off the
critical path. For each section and each clock domain, a histogram summarizes the
distribution of the minimum frequency required by each use of each functional unit
so that the critical path is not extended. A frequency for each domain is selected
such that the critical path is not extended by more than a threshold. The use of
single-input profiling in this work limit its application to the portions of the code
executed by the profiled use case. Furthermore, the authors note that in some cases,
whether or not a section is deemed “large enough” is dependent on the input used
for profiling. The combined profiling and hierarchical normalization techniques
presented in Chapter 5 would enhance the ability of clock-domain frequency reduc-
tion to save power without increasing execution time across a varied workload of
inputs.

2.6.1 Inlining

The FDO code transformation discussed in Chapter 6 of this thesis, and evaluated in
Chapter 7, is function inlining. Function inlining, or simply inlining, is well-studied
both as a static code transformation and as an FDO code transformation. Procedure
calls impose overhead on program execution, but, more importantly, they limit the
effectiveness of many transformations. For example, in most cases an instruction
scheduler cannot move instructions past a procedure call. The inliner developed in
this work follows a classic design: call sites are evaluated to determine the expected
benefit of inlining, weighted by call frequency from profiling, and placed in a sorted
worklist. The call sites expected to most improve program execution time is inlined
first, and the expected benefit of any affected call sites is re-evaluated. Inlining
continues until a code-growth budget is spent.

8The -freorder-functions flag (§3.10 [1])

15

Early work by Chang proposes automatic (as opposed to manual) inlining. The
inliner is guided by a context-insensitive call-graph profile identifying procedure
execution frequency [31]. Functions are sorted by frequency and the most fre-
quently executed function is selected for inlining first. A function selected for in-
lining is inlined at all call sites from which it is called, because the profile identifies
the function as frequently-executed, but does not identify from where the function
is called. Furthermore, a function is not inlined if it contains any calls. Inlining
stops when a code-expansion budget is consumed. Hwu and Chang propose a sim-
ilar approach that uses a call-site specific profile, and sorts call sites by expected
inlining benefit instead of merely by frequency [30]. They identify the problems
of estimating both the costs and benefits of inlining as very challenging, and use a
constant value weighted by call frequency as the benefit term, and a crude code-size
increase estimate as the cost term. Call sites are sorted for inlining by the difference
between the estimated benefit and the estimated cost.

Arnold et al.. present an inlining strategy for Java that is similar to that used in
modern C/C++ compilers [8]. They use a call-site sensitive call-graph profile, thus
allocating procedure execution frequencies to individual call sites. Using code size
expansion as the cost and call-site frequency as the benefit, call sites are inlined
in decreasing cost/benefit order up to a code expansion limit. They find that a 1%
code-size expansion limit accounts for 73% of dynamic calls and reduces execution
time by 9% to 57%.

Zhao and Amaral investigate FDO inlining in the Open Research Compiler
(ORC) [104]. The original benefit of inlining a call site in the ORC is measured
by a temperature metric that takes the ratio of execution time spent in the callee
compared to the total program execution time, weighted by the normalized fre-
quency of the call compared to the invocation frequency of the caller. Temperature
is intended to identify frequently-executed call sites to small callees, but infrequent
calls to functions containing high trip-count loops will also result in a high tempera-
ture. An improved metric corrects this deficiency. A second improvement proposed
in this work is adaptive inlining, which allows the temperature threshold required
to inline a call site to vary with program size. Thus, smaller programs, which tend
to benefit more from inlining, allow more aggressive inlining than larger programs,
which tend to suffer more from the negative effects of excessive code growth.

Chakrabarti et al.. investigate the scalability of cross-module inlining for large
applications [27]. They explore inliners that process the program call graph in both
a top-down and a bottom-up order, as well as a worklist-based inlining order based
on estimated benefit of inlining each call site. From these three alternatives, the
worklist inlining order results in faster compilation that uses less memory. As well,
the worklist approach produces faster application code because the orderings based
on program structure frequently inline low-benefit call sites early in the process
that suppress inlining of more beneficial call sites that occur later in the order. A
further study by Chakrabarti and Liu presents a worklist-based inliner that updates
the expected benefit of inlining candidates each time a candidate is selected for in-

16

lining [26]. In their implementation, the selection of all the call sites that will be
inlined precedes any actual code transformation. Consequently, elaborate heuris-
tics are required to predict the impact of inlining on the involved functions and to
then update the expected benefit of inlining any associated call sites. They show
that updating the expected inlining benefit of call sites to reflect previous inlining
decisions improves program performance by up to 7% compared to inlining using
the same worklist algorithm without such updates.

Lokuciejewsk et al.. use machine learning to optimize inlining heuristics to
minimize the worst-case execution time of embedded kernels [69]. They use sim-
ulation to determine that inlining can degrade worst-case execution time by up to
60% when using a typical top-down static inliner. However, a learned heuristic
based on (in order of importance) callee size, the number of calls in the caller,
worst-case execution time of the callee and caller, and register pressure, provides
an inlining order based on expected worst-case execution time that prevents these
performance degradation.

Sewe et al.. enhance the Jikes RVM inliner by estimating the impact of sub-
sequent transformation opportunities enabled by inlining [87]. Specifically, they
predict whether or not call sites in an inlined callee will also be inlined. While
the proposed technique produces accurate predictions of future inlining and often
reduces compilation times compared to the default inliner, total program execution
time for the programs and input sets in the DaCapo benchmark suite are largely un-
affected. The best geometric-mean improvement across the workload of inputs for
each program is an improvement in total execution of 7% for bloat; the next-best
improvement is 5% for fop. Other results are within ±2% of the default inliner.
However, scatter plots of the results for the individual inputs show significant over-
lap between the results from the two inliners; except for a small improvement for
chart, the differences in total execution time are most likely not statistically sig-
nificant (confidence measures are not reported). In the case of fop, the difference
in workload-performance is due entirely to a single poorly-performing outlier for
the default inliner.

2.7 Conclusion
This chapter reviews the terminology used throughout the rest of this document,
and discusses the proper evaluation of FDO systems. A cross-validation technique
that addresses this need is presented in Chapter 3. The results from the litera-
ture highlighted in this chapter demonstrate that program behavior varies between
inputs, and that this variation can significantly change measured performance out-
comes. At the same time, profile information is used to guide a plethora of code
transformations. In particular, inlining has received significant attention. Chapter 5
presents combined profiling, a technique that allows FDO based on these inter-run
behavior variations, while Chapter 6 describes a feedback-directed inliner that uses
combined profiles.

17

Chapter 3

Performance Evaluation Using Many
Inputs

The SPEC CPU benchmark suite is likely the most significant performance evalu-
ation tool for computer systems and compilers available today. SPEC CPU is the
standard used for performance comparison across platforms. SPEC scores are used
both as targets for development teams and as a quantification of performance ad-
vantage for sales teams. The SPEC CPU programs are a component of the testing
framework for compiler teams, both to ensure functionality and to detect perfor-
mance bugs or new performance-enhancing transformation opportunities. These
industrial uses of the SPEC CPU are the primary concern of SPEC’s industrial part-
ners, and SPEC CPU fulfills this role very well.

Another significant group of consumers of SPEC CPU are academic researchers.
While researchers seldom run the suite as prescribed by SPEC, and hence seldom
publish reportable SPEC performance scores, the benchmark programs are well-
known to the research community and provide a common framework for the dis-
cussion and comparison of research results. Furthermore, SPEC CPU is endorsed
by industry as representative of a wide range of important applications, and comes
complete with program input sets. Thus, using the benchmark suite minimizes re-
search time for experimental design while providing an implicit suggestion of the
general applicability of experimental results. Therefore, in a very significant way,
the SPEC CPU benchmark suite guides compiler and architecture research.

While the academic community is indebted to SPEC for the value provided by
its benchmark suites, we also have an interest and responsibility to help ensure that
the benchmark suites used in research, including SPEC CPU, maintain the high-
est possible levels of scientific utility and integrity. The particular concern of this
work is with the evaluation of FDO compilers. FDO is not widely regarded as
robust: it may not improve program performance (and may possibly hurt perfor-
mance). Rightfully, users worry about the representativeness of the training inputs
they might select for the learning phase of the FDO process. Although FDO is dis-
allowed when reporting base SPEC scores for CPU 2006 (the most recent version
of the CPU benchmark suite), our concern does not lie in whether or not FDO is

18

allowed when reporting these scores. Instead, we want FDO to be evaluated in a
scientifically sound manner, both in industry and in academia. Therefore, while
the proposals in this chapter are not specific to the context of performance evalua-
tion using SPEC CPU, applicability in that context is the driving motivation behind
them.

There is both industrial and academic demand for benchmarks with effective
methodologies for the evaluation of FDO and related technologies. Robustness (or
performance stability) is one of the key evaluation criteria for FDO. A benchmark
suitable for FDO should asses performance along three dimensions:

1. The range of application domains

2. The typical program inputs used for evaluation

3. The input(s) selected for training

The current structure of the SPEC CPU, and of most other benchmark suites,
is already designed to address the first dimension, since it is a classic concern in-
dependent of FDO. However, in most suites where FDO is allowed, even in SPEC
CPU, the second and third dimensions are neglected. In the absence of FDO, train-
ing inputs are irrelevant, and diversity in the set of evaluation inputs is (arguably) a
smaller concern. However, when FDO is used, the program is specialized according
to the training input(s), and input sensitivity issues should be considered. Unfortu-
nately, the academic community has generally suffered from the same deficiencies
as SPEC CPU with regards to the use of sound evaluation methodologies for FDO.

Most of this chapter was previously reported [17]. However, the previous ver-
sion erroneously computed program performance using arithmetic means of nor-
malized times. This presentation corrects that oversight by computing all summa-
rized statistics of normalized values using the geometric mean.

The following section discusses the current construction and implementation
of SPEC CPU. Section 3.2 details the proposed evaluation methodology for FDO,
while Section 3.3 discusses the practicality of the proposal. Section 3.4 offers some
concluding remarks.

3.1 The SPEC CPU Benchmark Suite Methodology
As its name suggests, SPEC CPU is designed to evaluate the core computing capa-
bility of a computer system. Therefore, the benchmark programs are all CPU and/or
memory intensive, with minimal interaction with the operating system or I/O de-
vices. In order to improve the performance measured by the suite, a hardware
or software solution must reduce the execution time of the benchmark programs.
Hardware solutions increase the speed, capacity, and efficiency of the processor
and/or memory system. Compilers reduce a program’s need for computation or
memory access, or improve the interleaving of those needs to increase instruction-
level parallelism or hide memory latency.

19

The programs in SPEC CPU are divided into two categories: INT and FP. The
FP programs spend a large portion of their execution doing floating-point arithmetic
operations, and are often numerical or scientific applications such as physics or
chemistry simulations. Ideally, an FP benchmark loops over large arrays of data
with the loop bodies containing a large amount of (floating-point) computation but
little control flow. In contrast to FP, the INT, or “integer”, programs spend most
of their time in non-floating-point instructions. They typically have complicated
control flow and process data in linked data structures. Compilers, interpreters, and
text or media processing applications fall into the INT category.

3.1.1 Programs

Most useful programs cannot be immediately incorporated into a benchmark suite.
For portability and consistency, system-specific implementation details must be
minimized. Furthermore, programs are frequently modified to better suit the evalu-
ation objectives of the benchmark suite.

For SPEC CPU, regular programs are converted to compute and/or memory-
intensive benchmarks by minimizing file I/O. For instance, bzip replicates input
data in memory until a size threshold has been reached rather than reading in large
files. The benchmark version of bzip also leaves the compressed data in memory
and does not produce the expected output file.

Bzip is an instructive example of the benchmark-conversion process. As a
compression and decompression program, bzip has several mutually-exclusive
use cases: compression using one of the nine mutually-exclusive block sizes and
decompression cannot be combined into a single program run. The benchmark
version of bzip is modified to compress the (replicated) input data three times in
memory, using block-size settings of 5, 7, and 9. After each compression pass, the
data is decompressed (also in memory) to enable correctness verification. Thus,
each run of SPEC bzip bundles together six mutually-exclusive runs of the non-
benchmark version of the program.

The benchmark conversion of gcc removes the preprocessor, and has unfore-
seen complications. Without the preprocessor, new programs cannot be used di-
rectly as benchmark inputs. Furthermore, this gcc accepts only a single file. Cre-
ating a new input for gcc thus requires preprocessing the source files using the
same (very old) version of gcc used for the benchmark, and then manually combin-
ing of these files into a single input file. Unfortunately, this combination process
requires the manual resolution of all the ordering, name-mangling, and scoping is-
sues that are usually taken care of by the compiler. The least-problematic approach
involves concatenating all the source files together (destroying file scope), remov-
ing multiple header inclusions and macro definitions, and then identifying symbols
that occur in multiple files but that have different definitions. These symbols are
then manually renamed in their original source files to allow find-replace renaming
and to ensure that the original scope is preserved. The process is then restarted, and

20

iterates until the pre-processed combined file compiles successfully. Consequently,
it is very difficult to create new gcc inputs from any program with more than a few
source files. While this concern is irrelevent for a typical user of the benchmark
suite, it is problematic for researchers or future benchmark authors who need to
modify or augment the gcc workload.

3.1.2 Program Inputs

SPEC provides three workloads for each benchmark: test, train, and ref. Each
benchmark program has one test input that is not intended to be used for perfor-
mance evaluation. Rather, it is a minimal program run used to demonstrate that
the benchmark suite has installed properly on the target system, that the benchmark
program has compiled successfully, and that no obvious problems exist to prevent
the benchmark from running.

Each benchmark also has one train input, intended for use as the training run for
FDO compilers. This input provides a short run that should be “representative” of
the ref workload. As discussed in Section 2.3, there are few guidelines to instruct
benchmark authors on how this input should (and should not) be chosen, resulting
in several train inputs that sample the ref workload.

The ref workload for each program is usually also a single input. One long run
instead of several shorter runs means that program loading time and any initializa-
tion activity is only included in the evaluation once.

The test inputs are not suitable for evaluation, and studies show them to be
non-representative of typical (i.e., train or ref) program execution [61]. Nonethe-
less, research, including work presented in this document, has used the test inputs
for evaluation. Two reasons exist for this decision: the ref inputs are too large
for simulation-driven architecture studies; and research often requires more than a
single evaluation run. Indeed, proper evaluation of any system that uses profile in-
formation requires far more evaluation inputs than are currently provided with any
benchmark in SPEC CPU. In the absence of a proper evaluation workload, any and
all available inputs are used.

3.1.3 Measuring Performance

SPEC CPU performance scores are computed relative to a historical baseline ma-
chine. Larger scores are better, and many regulations govern how the performance
evaluations can be done and how the results must be reported. Execution time is
measured as the average of three runs on the ref workload. SPEC CPU reports two
different scores: base and peak.

The base score is computed by using an identical system configuration for every
benchmark in the suite. In particular, each program is compiled with the same
set of compiler optimization flags, and FDO is not permitted. Base represents the
performance available to users who cannot or do not tune their compiler settings for

21

individual applications.
On the other hand, the peak score allows each benchmark program to be treated

individually. Each program can be compiled with a hand-picked set of compiler
flags that produce the best results for that program. It is well known that aggressive
code transformations may only be beneficial for some programs, and can hurt the
performance of others; these transformations are usually not enabled by default.
When reporting a peak score, these transformations can be selectively enabled for
the programs they benefit. FDO is one such compilation option and has traditionally
been allowed when computing peak scores1. The peak score represents the perfor-
mance potential of the system for users who demand the best possible application
performance and are willing to spend the time and effort to get it.

3.2 Proposed Benchmark Methodology
FDO is a different compilation technique than traditional non-FDO compilation,
with different performance issues and consequently different requirements for a
performance-evaluation methodology. Therefore, instead of considering FDO “just
another optimization” and allowing FDO in reported peak scores, we propose that
FDO be disallowed for peak scores, but also that along with base and (non-FDO)
peak, an optional FDOPeak score be reported for FDO performance. The com-
pilation rules governing FDOPeak should be the same as those for peak, simply
extended to allow FDO.

The proposed FDO evaluation methodology is based on cross-validation, and
incorporates the requirements of this technique with the constraints and concerns
of performance evaluation for high-performance systems. However, since most
compilers have, at best, limited support for multi-run profiling, allowances are made
for single-run training workloads that nonetheless encourage the use of full multi-
run training workloads.

3.2.1 Programs and Benchmark Conversion
It is appropriate for some program modifications to be made when constructing a
portable benchmark suite. It is also appropriate to omit file I/O time from a CPU (as
opposed to a full-system) benchmark. However, as much as feasible, converting a
program into a benchmark should preserve the functionality of the original program.
For example, in the case of bzip, the program should simply be run multiple times
to cover the desired use cases, rather than modifying the program to operate in
an unrealistic manner. In order to avoid file I/O, inserting timing points inside a
benchmark program to exclude that I/O (or measure and report it) is a less drastic,
and likely easier and more general, solution than making significant modification
to the original program.

1Though CPU 2006 disallows using FDO for base scores, its use is allowed in peak scores ([48],
rule 2.1.3).

22

3.2.2 Evaluation Workload
Cross-validation requires a workload of inputs. We call this set of inputs the evalu-
ation workload,W . The intuitive guideline for the evaluation workload is that the
inputs in the workload should be as varied as possible and should attempt to cover
or sample the space of program inputs, biased toward typical program inputs but
not selecting these types of inputs exclusively. Rather than attempting to find one
input that is universally representative of all program runs, the workload as a whole
will be representative of program usage. For example, one input could correspond
to a particular use-case of the program, and another input could correspond to a dif-
ferent use-case. These two inputs can be completely unrelated, and neither need try
to represent all common uses of the program. Program behaviors that are common
independent of input characteristics will be universally represented, while input-
dependent program behaviors will be represented in proportion to their occurrence
in the workload. Consequently, the more important a particular program behavior
is to overall program performance, the more frequently it will be represented in the
workload.

The inputs selected for the FDO workload should be independent of each other.
Input independence is difficult to define precisely, but intuitively, two inputs should
never be identical, and the data in two inputs should not overlap or have a common
origin. For example, a particular chess position should not occur in multiple input
files, images should not be subsections from a common source, or a matrix of data
should not be sampled from another matrix used in a different input. Randomly
generated data should be avoided because it is usually unrepresentative of real data,
and multiple samples randomly generated in the same way will likely have very
similar characteristics. If the program accepts multiple data formats, W should
contain examples from as many of these formats as practical. If the data has implicit
or explicit dimensionality, different elements ofW should avoid repeating the same
dimensionality.

Each input inW may potentially be used for both training and evaluation (but
only in different evaluation contexts). Therefore, these inputs must run long enough
to provide meaningful performance measures, but must also be small enough that
training runs (possibly an order of magnitude slower than an optimized non-training
run) complete in an acceptable time. Furthermore, these constraints should continue
to be met as machine performance increases during the lifetime of the benchmark.
Therefore, we suggest that inputs in W should initially have a (non-training) run-
ning time of approximately 2 minutes on recent systems.

3.2.3 Training and Evaluation
Evaluation of FDO uses a 3-fold cross-validation strategy in order to minimize the
number of FDO compilations required for evaluation while still using every input
in W for both training and evaluation. The evaluation workload is randomly split
into three non-overlapping partitions, each containing an equal number of inputs.

23

Let A, B, and C be the names of the three partitions. These partitions may be
specified as part of the benchmark design in order to provide determinism in the
evaluation, or may be selected at random on each evaluation in order to prevent
the exploitation (intentional or accidental) of any particular interactions within a
predetermined partitioning.

One at a time, each partition (say A) is selected as the testing workload,Wtest.
The remaining inputs (B ∪ C) form the training workload, Wtrain. A training
run using one or more of the inputs in Wtrain produces the profile(s) used by the
compiler to guide optimization. If the compiler cannot use profile information from
all inputs inWtrain(e.g., it can only train on a single input), then the subset of inputs
that the compiler uses for training is selected fromWtrain in order, according to an
ordered input list supplied with the benchmark. Let the version of the program
whereWtest = A be called PA. PA is run on each input in A. Likewise, PB is run
on B and PC is run on C. Thus, each input in W has been used twice for training,
and once for evaluation. However, since each profiling run is independent, only one
profiling run per input is needed; the compiler (or an external tool) should combine
those individual profiles as needed for FDO training.

A rule of thumb suggests that at least 5 independent measurements are required
to make statistical significance tests worthwhile. More than 30 evaluations would
typically be considered a large sample size, which enhances the reliability of sta-
tistical measures. However, benchmark running time constraints and benchmark
author resources place practical limitations on how many inputs can be collected
and used. In order to conveniently facilitate the cross-validation methodology pre-
sented here, the number of inputs should be a multiple of 3. To enable meaningful
statistical measures of confidence, a minimum of 15 independent inputs are re-
quired, since 15

3
provides 5 independent performance measures of the FDO version

of the benchmark produced for eachWtest.

3.2.4 Reporting FDO Performance
FDO performance should be reported as a geometric mean of execution time speed-
ups compared to the program used to report peak performance.

Program execution time on input i measured as the arithmetic mean running
time of an odd number (at least 3) of executions on input i. The baseline execution
time for input i, t∅(i), is measured using the version of the program used to report
the SPEC peak score. During the cross-validation process described above, each
input i is used for evaluation exactly once. Input i belongs to only one partition of
W , and thus implicitly defines the training set u as the union of the two partitions
that do not contain i2. Let tu(i) be the program execution time on i when FDO is
informed by training on u. To simplify notation, the training set u is left implicitly
defined by i. The speedup obtained by using FDO, as evaluated on i, is τu(i) = tu(i)

t∅(i)
.

2Compilers that train on a single input select this input from u according to the ordered list of
inputs.

24

The FDOPeak score is the geometric mean speedup compared to peak observed
in all FDO evaluation, computed as the |W|th root of the product of speedups:

FDOPeak(W) = |W|

√∏
i∈W

τu(i)

In addition to reporting FDOPeak, the standard deviation of the speedups must
also be reported, using the geometric standard deviation:

FDODev(W) = exp

(√∑
i∈W(ln τu(i)− ln FDOPeak)2

|W|

)

Sample arithmetic means are normally distributed byN(µa, σa), leading to con-
fidence intervals of the form µa ± zσa where µa is the arithmetic mean, σa is the
standard deviation, and z is the number of standard deviations needed to achieve
the desired confidence level, determined from the standard normal’s PDF. Using
the geometric mean is the same as calculating the arithmetic mean after the data
has been transformed by taking the logarithm of each data value. The geometric
mean (µg) and geometric standard deviation (σg) are the parameters of the result-
ing log-normal distribution. Consequently, the usual confidence interval around
the geometric mean is not symmetric. However, the bounds of this interval can
be computed by first taking the logarithm of µg and σg, determining the limits of
CIa = µa± zσa in this space, and then re-applying exponentiation to get CIg in the
original space. Let A represent a vector of the τu(i) data forW:

ln FDOPeak = lnµg(A) = µa(ln(A))

ln FDODev = lnσg(A) = σa(ln(A))

ln CIg = µa(ln(A))± zσa(ln(A)) (3.1)

Now, solve for the end-points of CIg in terms of µg(lnA) and σg(lnA). The lnA
parameters are only required to connect the arithmetic and geometric means when

25

setting up Equation 3.1; these parameters are henceforth omitted:

ln CIg =
[
µa(lnA)− zσs(lnA) , µa(lnA) + zσs(lnA)

]
ln CIg =

[
ln(µg)− z ln(σg) , ln(µg) + z ln(σg)

]
=

[
ln(µg)− ln(σz

g) , ln(µg) + ln(σz
g)
]

=

[
ln

(
µg

σz
g

)
, ln

(
µg × σz

g

)]

CIg =

[
exp

(
ln

(
µg

σz
g

))
, exp

(
ln
(
µg × σz

g

))]

=

[
µg

σz
g

, µg × σz
g

]
=

[
µg × σ−zg , µg × σz

g

]
(3.2)

Equation 3.2 gives the geometric analogue of the CIa = µa ± zσa expression
for the confidence interval of arithmetic means. The addition of a multiple of the
standard deviation in the arithmetic form is promoted to multiplication by a power
of the standard deviation, just as the geometric mean uses multiplication in place
of addition and exponentiation in place of multiplication when compared to the
arithmetic mean. Substituting in FDOPeak and FDODev:

CIg =
[
FDOPeak× FDODev−z,FDOPeak× FDODevz

]
(3.3)

The value of appropriate value of z for a particular confidence interval is still
based on the normal distribution, so the bounds of a 95% confidence interval for
FDOPeak can be computed with Equation 3.3 by setting z = 1.96 as usual.

Clearly, compiler designers will strive for a high FDOPeak score. In order to
achieve this goal, FDO must improve the performance of the program over a large
number of unseen inputs. Furthermore, the training phase does not guarantee that
selecting a single input from the training set will provide a particularly representa-
tive training run. However, using more than one input during training (in particular,
all of the training set) likely provides a more representative sample of program exe-
cution than any single training input could. Therefore, in order for an FDO compiler
to achieve a high FDOPeak score, it must be both robust in the face of the possi-
bility of a poorly chosen training input, as well as in the face of potentially varying
behavior in evaluation inputs. Of course, a good way to avoid problems with an
unfortunate training input is to use multiple training inputs. The nascent capability
to use multiple training inputs is already present in several commercial compilers,
including the IBM XL compiler [58] and the Intel C++ Compiler [57].

Additionally, the standard deviation is a critical metric, because it provides con-
fidence for the FDOPeak speedup value. If the lower bound of CIg in Equation 3.3
is greater than 1, we have confidence (determined by z) that FDO does improve

26

program performance. Even if FDOPeak shows a large speedup over peak, we can-
not be confident that FDO improves performance for the program if CIg is large
compared to that difference. In essence, the standard deviation gives a measure of
the robustness of FDO in improving performance, which is a key factor that must
be considered when FDO is evaluated.

While SPEC scores use the geometric means of speedups over a baseline ma-
chine, performance evaluation frequently uses normalized execution time (τ−1

u (i))
instead. The geometric mean of normalized execution times for W , measured by
3-fold cross-validation, and its geometric standard deviation are denoted:

µg(W) =
1

FDOPeak
= |W|

√∏
i∈W

τ−1
u (i)

σg(W) = exp

√∑i∈W (ln τ−1
u (i)− lnµg(W))2

|W|

Ideally, the performance differences between alternative evaluations, such as

between FDOPeak and peak, would be consistent and large enough to require little
statistical analysis to establish the superior result. After all, a statistically-significant
result that is inconsequential in practice has little value. However, the standard de-
viation of a data set is a measure of the spread of values from the mean. Thus, while
useful for assessing the generality of average performance results, confidence inter-
vals on the mean of a high-variance data set can obscure real improvements in mean
performance. Statistical location tests can determine if the difference between the
means of two data sets, such as the evaluations for FDOPeak and peak over a work-
load, is significant [100]. Many such hypothesis tests exist, such as the Student’s
t-test or the Wald test. Each test starts with a null and an alternative hypothesis. The
test indicates if there is sufficient evidence in the data to reject the null hypothesis.
Tests with higher power reduce the chance of false negatives, the situation where a
real difference exists, but the test fails to reject the null hypothesis. In the typical
setup for this case, the null hypothesis states that the the sample means for FDO-
Peak and peak are the same; the alternative hypothesis states that they are different.
Both FDOPeak and peak are computed on the same workload of inputs. Thus, a
paired difference test should be used to compare the two sets of evaluations. Not
only does the paired difference approach account for the two data sets not being in-
dependent, but it also increases a test’s power compared to a non-paired approach.
Thus, a paired difference test may determine the statistical significance of an im-
provement in mean workload performance in spite of large performance variations
across the workload.

Additional utility can be added to the results of hypothesis testing if the question
of significant performance-impact is framed as an equivalence test, as suggested by
Hoenig and Heisey [54]. Instead of taking the null hypothesis as the equivalence
of FDOPeak and peak, the null hypothesis states that FDO produces a practically

27

significant performance impact, say, a 1% or 2% difference from peak. The alter-
native hypothesis states that the impact of FDO is not practically significant. The
usual hypothesis testing methodology is applied to determine if the null hypothesis
should be rejected.

3.2.5 Combining Workloads for FDOPeak and Peak
Traditionally, SPEC CPU benchmarks have included a ref input or workload of
inputs used for the base and peak performance evaluations. In cases where ref is a
workload, it is likely appropriate to let ref and W be the same set of inputs. This
unification of ref andW not only reduces the input selection burden on benchmark
authors, but also reduces the computational overhead required to get the running
time measurements required to compute FDOPeak. Furthermore, even in the case
where FDO is not used, evaluation on a workload of inputs provides statistical
confidence measures that evaluation on one large input cannot. Thus, a transition
to a model that always uses a workload of inputs for evaluation is beneficial in all
cases.

However, in some rare cases it may be necessary for ref to consist ofW plus one
or more large inputs that are not suitable for inclusion inWtrain. In these cases, two
options are available. The simplest option is to leave the evaluations of base/peak
and FDOPeak completely independent. However, a potentially more informative
approach is to let those large ref inputs be added to each Wtest but never used for
training. In this way, the performance of FDO on these large (and presumably more
important) inputs is taken into account. If this method is used, it may be beneficial
to reformulate the equation for FDOPeak to use a weighted mean instead of an
unweighted mean, and to give more weight to those large inputs. These weights
must take into account that these non-training inputs will always be part ofWtest,
and will consequently be used for evaluation three times.

3.3 Practicality Considerations
A cross-validation approach to FDO evaluation provides performance measure-
ments that are more reliable than traditional approaches. However, this improved
evaluation does incur a cost, and it is important that the cost is not prohibitive for
any stakeholders.

For compilers without multi-run profiling and FDO, an alternative approach
to that presented here is a leave-one-in evaluation strategy. Under this methodol-
ogy, each input is used in turn for training and FDO individually; each version of
the program produced this way is evaluated on the entire evaluation workload ex-
cept that training input. This approach provides a thorough evaluation of a single-
profile FDO compiler across both the training input and evaluation input dimen-
sions. However, if |W| = n, n FDO compilations are needed, and evaluation runs
on all n(n − 1) training-testing input pairings are required. Clearly, the cost of

28

this method is impractical for all but the smallest workloads. The proposed 3-fold
cross-validation method keeps the number of compilations constant (3) and needs
n evaluation runs.

3.3.1 Compiler Users

The performance results produced using benchmarks are intended to help end-users
of computer systems estimate the performance of various systems for their applica-
tion workloads. If multiple training inputs are required to reliably obtain the level of
performance indicated by the proposed evaluation methodology, end users should
also adopt a multi-input training policy. Despite the immediate impression that such
a training methodology would increase the burden on FDO users, training on mul-
tiple inputs should not be a significant issue for the class of performance-sensitive
users who are interested in FDO. Such users typically maintain sets of inputs to
use for regression testing, both for program correctness and program performance.
These input sets will include the important use cases of the program. Instead of re-
quiring the user to develop a specific training input that attempts to cover all those
use cases (in order to be representative), the user is freed to simply train on all the
use cases they have already identified. While the training time may be extended,
the training process can be be trivially parallelized. Meanwhile, the human effort
required to create and maintain a representative training regiment is significantly
reduced.

3.3.2 Compiler Developers

A primary objective of a compiler developer is the generation of the fastest possible
programs from source code. For important clients, compiler developers may inter-
act directly with the client in order to minimize program execution time. FDO is
one option for improving program performance. When all parties are accustomed
to using a rigorous training and evaluation methodology, compiler developers can
immediately focus on analyzing program behavior and on the impacts of code trans-
formations, rather than working to ensure that the client is using a good training
input.

More importantly, during the development of FDO transformations, evalua-
tion on a workload ensures that these transformations provide reliable performance
gains despite variations in input data. Since FDO currently uses a single training
input, compiler developers know that a profile is merely a hint, rather than a proper
characterization of program behavior. A compiler that uses multiple profiling runs
with FDO can place greater trust in the generalizability of that profile informa-
tion and thus exploit it more aggressively, but only when using a sound evaluation
methodology such as the one proposed here. Under these circumstances, the devel-
oper can recommend FDO compiler options to clients with greater confidence.

29

3.3.3 Benchmark Users
When properly incorporated into a benchmark suite, cross-validation should be
nearly invisible to a benchmark user. The multiple training runs, evaluations, and
performance measure calculations should all be performed automatically by the
benchmark framework. The only task for the user should be to specify the correct
arguments to the compiler to enable the creation and use of program profiles, and
possibly to specify the maximum number of inputs to use for training, if this is a
limitation in the profiling or FDO implemented by the compiler.

The proposed training and evaluation methodology is not significantly more ex-
pensive in terms of computation time than the traditional methodology. Assuming
that the evaluation workload is unified with the ref workload, the baseline mea-
surements for speedup comparison are taken care of by a standard non-FDO run of
the benchmark. Training requires instrumented runs on at most |W| training-sized
inputs, but only three additional program compilations. Evaluation requires one
additional set of runs on each input.

3.3.4 Benchmark Authors
Benchmark authors face the largest burden from the proposed methodology. Each
benchmark author must select the inputs used with the program. Authors have two
options when selecting the training set. They may use their expert knowledge to
carefully consider a number of inputs and select those that expose different program
behaviors or present distinct program use cases. Alternatively, they may select a
large collection of inputs and then use a clustering technique, perhaps as presented
in Chapter 4, to determine redundancy in the original collection.

The ease with which many inputs can be gathered or generated is an important
consideration when proposing the collection of a workload of inputs. Most appli-
cations in wide use collect sets of inputs for correctness and performance testing;
these sets provide a good starting point to construct the evaluation workload. Based
on the documentation of SPEC CPU 2006 benchmark programs [94], there should
be little difficulty obtaining inputs for integer-style benchmark programs:

perlbench, gcc, xalancbmk There are large repositories on the web of C,
C++, and Perl programs, and each compiler or interpreter maintains sets of
example and testing inputs. XML documents should be easy to obtain. The
ref workloads for these programs already consist of several inputs.

bzip2 Any file can serve as a valid input for a compression program. The bzip2
reference workload consists of several inputs.

mcf, omnetpp, astar The algorithms implemented by these programs work on
the provided topology. Commodity flow graph, network topologies and path-
finding maps may not be plentifully available in the particular formats re-
quired by these programs, but the use of format conversion scripts or other

30

input generators should allow for the collection of many inputs with moderate
effort from the authors.

gobmk, sjeng Both go and chess board positions are easily generated. Further-
more, given that programs for both games compete at events such as the Com-
puter Olympiad [3] and the World Chess Championship [4], collections of
board positions in standard formats should be available.

hmmer Many online, publicly accessible databases for protein sequences and re-
lated information exist, such as the Swiss-Prot [5] database.

libquantum Number factoring requires only an integer as input, and an optional
base for modular exponentiation.

h264ref Video streams are plentiful on the Internet. Furthermore, various video
characteristics impact encoders, such as the amount of action in a scene, gray-
scale (“black and white” movies) or color, and animated or live-action.

A scan of the SPEC 2006 floating-point programs presents modeling and simu-
lation tools, equation solvers, a rendering engine and a speech-recognition program.
Changing system parameters, data sizes, material properties, and/or the scenario
presented by the input files should lead to the creation of collections of inputs, in
the absence of real-world input sets. However, profile-guided optimizations are
typically most beneficial to integer programs, and have far less impact on scientific
codes.

In short, the burden of collecting a set of inputs for cross-validation does not
appear to be significant in most cases, as represented by SPEC CPU 2006.

3.4 Conclusion
FDO requires a more robust evaluation methodology than traditionally used for
the performance evaluation of computer systems. The methodology presented here
provides a cross-validation approach to FDO evaluation that avoids the problem of
over-fitting the training data while providing statistical confidence measures for the
performance results. Furthermore, while the proposed methodology is effective for
the current single-profile approach to FDO, it encourages FDO compilers to use
a multi-run profiling approach to enhance the compiler’s behavior modeling and
behavior prediction capabilities.

31

Chapter 4

Selecting Workloads of Inputs

Performance evaluation is usually envisioned as a post-hoc characterization of a
system; evaluation is performed once the system is completed. This view is in-
correct. First, most software is never completed; versions are released at cer-
tain milestones, but development is continuous. Furthermore, the development of
any performance-critical system will either continuously or periodically use perfor-
mance estimation to guide development. For instance, compiler vendors routinely
assist clients in using the compiler to improve the performance of the client’s pro-
grams. In cases involving the most important customers, members of the compiler
development team may be involved in this process, and may implement improve-
ments in the compiler to better optimize the client’s code. These changes will be
evaluated both on the client’s program as well as on the in-house performance eval-
uation suite.

Input selection is an important dimension of performance evaluation. Chapter 3
discusses how multiple inputs should be used when evaluating FDO. However, con-
sider the case where a large number of inputs are available. How should a devel-
oper considering FDO transformations proceed if the client provides hundreds, or
thousands, of inputs to the compiler team? Using such a large set of inputs is com-
putationally prohibitive, and is not suitable for repeated performance evaluations
as the compiler evolves. Each additional input used for training and/or evaluation
increases the time required to evaluate performance, due to additional training runs
and execution-time measurements. This problem is particularly pronounced for
compilers limited to single-profile FDO, since leave-one-in evaluation requires a
number of evaluation runs quadratic in the number of inputs. On the other hand,
if the compiler supports the simultaneous use of multiple training inputs (perhaps
as proposed in Chapter 5), the client cannot be expected to use such a large set of
inputs for training in their build process.

Therefore, a minimal set of representative inputs is required to reduce the time
consumed by performance evaluation, without compromising evaluation quality.
The method used to reduce the workload should not rely on human intuition or the
experience of experts. For large, complicated programs, predicting the interactions
between the program, the compiler, data inputs, and the underlying computer archi-

32

tecture is likely impossible, even for an expert of all the involved components. Thus,
an automatic workload-reduction technique is useful for both compiler designers,
who may not be experts regarding the client’s program or its inputs, as well as for
the client, who may not be an expert regarding the compiler or architecture. Fur-
thermore, the method should measure how representative the selected inputs are of
the full workload, and thus provide a quantitative estimate of the trade-off between
workload size and workload accuracy.

This chapter presents a compiler-centric methodology to reduce the size of the
workload needed for proper evaluation of the performance improvements achieved
by an FDO compiler for a given application. Input similarity is based on the code-
transformation decisions made by the compiler according to the profile generated
for each input. Inputs are clustered based on the variations they induce in code
transformations. This clustering produces groups of inputs to which the compiler
responds in a similar fashion, and thus identifies redundancy in the training, and
testing, workloads.

Furthermore, we present a novel metric to compare different clusterings on re-
lated data. This metric allows for intuitive investigation of the correlation between
individual transformations and the significance of differences between clusterings
as development of the application and/or compiler advance.

Previous presentations of this work reported the impact of reduced workloads on
performance evaluation in Section 4.4.4 using a summary metric called LWA [19].
However, LWA is flawed because it inappropriately weights the workload perfor-
mance values for each FDO version of a benchmark using the execution time of the
training input used to create that version. This problem is corrected by instead tak-
ing a geometric mean over the workload performance evaluations of each version
of the program, without regards to the (irrelevant) execution time of the training
input.

The next section details the clustering technique, ε-greedy spectral clustering,
while Section 4.2 discusses how the clustering results can be used during the devel-
opment of an FDO compiler. Sections 4.3 and 4.4 present the evaluation methodol-
ogy and experimental results of applying clustering to SPEC CPU programs.

4.1 Clustering
Consider a program PROG with an impractically-large workload of inputs Ω =
{i1, i2, . . . , iω}, and an optimizing compiler with a set T = {T1, T2, . . . , Tm} of
profile-directed transformations. Each input i ∈ Ω is profiled to create a corre-
sponding set of profiles, P = {p1, p2, . . . , pω}. When the compiler uses pa instead
of pb, it may potentially apply transformations from T to different locations of
PROG, and/or apply such transformations with different frequencies. Clustering
will group inputs in Ω based on how similarly the compiler applies the transfor-
mations in T to PROG when using each p ∈ P . The clustering then enables the
selection of a usable representativeW from Ω. The calculated input similarities are

33

held in a similarity matrix, which is the input for the clustering algorithm.

4.1.1 Input Features and Similarity

For a given transformation T , the set LT = {l1, l2, . . . , lk} is the union of all loca-
tions where T is applied when compiling using any p ∈ P , or during a statically-
optimized baseline compilation. A transformation vector Vj records how many
times T is applied at each l ∈ LT when the compiler is guided by profile pj .

Collecting transformations vectors from each compilation essentially entails
profiling the compiler. For each T ∈ T , each location l ∈ LT where T may
be applied is identified, as uniquely as possible, using source-code line numbers
and expression identifiers. A monitor is inserted into transformation T to collect
〈location, value〉 pairs that indicate how many times T is applied at each location.
Most transformations are all-or-nothing transformations: when using the profile pj ,
a 1 is recorded in Vj[l] if T is applied at l; a 0 is recorded if T is not applied
at l. For loop unrolling, the unroll factor is recorded as the value for the pair in
the transformation vector. Due to code replication, a transformation may be applied
multiple times in indistinguishable locations. In these cases, the values from aliased
locations are accumulated at the appropriate index of Vj .

Distance metrics, such as the Euclidean1 and Manhattan2 distances, are often
used to compute the similarity of vectors. In this work, similarity is based on
transformation decisions. The difference between two inputs increases with the
number of differing transformations decisions between their vectors. An appropri-
ate similarity metric will count how many transformation decisions differ between
two vectors. Therefore, the Manhattan distance is used as the similarity metric.
The Manhattan distance between two vectors is the sum of the absolute value of
their index-wise differences. Geometrically, the Manhattan distance is the length
of the shortest path from two points if travel is restricted to movement along a unit
grid. Thus, in the context of transformation vectors, the Manhattan distance directly
counts the number of differences between two vectors. As discussed above, code
transformations are either applied or not applied at a particular location; they cannot
be partially applied. The Euclidean, or straight-line, distance is not restricted to the
unit grid, and thus would essentially allows fractional decision differences between
vectors. For instance, there are two decision differences between v1 = [0, 1, 1] and
v2 = [1, 0, 1]. The Manhattan distance between v1 and v2 is 2, but the Euclidean
distance is only

√
2.

The difference matrix DT for transformation T is an ω × ω symmetric matrix
that encodes the pairwise Manhattan distances between the Vj vectors for T from
each of the ω profiles:

DT [x, y] = Manhattan(Vx,Vy)

1also called the L2-norm
2also called the L1-norm

34

Training Input
Data A B C D t∅(i)

A - 59.07 62.08 58.74 61.76
B 71.29 - 74.15 70.09 73.35
C 4.34 4.14 - 4.14 4.29
D 110.14 108.65 115.17 - 116.89

Table 4.1: Running-times (in seconds) for an example workload when using alter-
native training inputs for FDO, and for the non-FDO baseline (t∅(i))

In order to account for all transformations during clustering, a combined dif-
ference matrix D includes the data from all T ∈ T . Each DT is normalized by
dividing its elements by the size of LT . The combined difference matrix D is cre-
ated by point-wise summing the normalized matrices:

D =
∑
T∈T

DT

|LT |

Normalization gives each transformation equal weight in D, even if the num-
ber of transformation sites differ by orders of magnitude between transformations.
Thus, a single transformation will not dominate the combined difference.

4.1.2 Performance Weighting
Compilers make a large number of transformation decisions while compiling a pro-
gram. The interactions between these decisions is complex and can result in un-
expected performance results. A single decision may have a large impact on per-
formance, while many others may not make any measurable difference. In order
to take program performance into account, and to attempt to filter out the incon-
sequential differences in transformation decisions, the elements of the difference
matrix are weighted by a pair-wise performance factor. A running example will
illustrate how the weights are determined. Table 4.1 presents a small set of actual
execution times. The input names are omitted for clarity since this example has no
relation to the results in Section 4.4. Each table row gives execution times on the
listed input. Each column indicates the training input. The baseline, t∅(i), indicates
that FDO is not used.

Table 4.2 presents the matrix D for the example inputs, using data from the
seven transformation discussed later in Section 4.3.1. Training on A produces sig-
nificantly different transformation decisions than training on the other inputs, while
training on B or D results in very similar decisions.

The non-FDO baseline program is run on each input i ∈ Ω to provide reference
time measurements (t∅(i)). Similarly, each of the FDO-optimized programs are run
on Ω, excluding the training input for that program. A log-weighted normalized

35

A B C D
A 0 86.55 91.11 90.05
B 86.55 0 9.38 0.06
C 91.11 9.38 0 9.14
D 90.05 0.06 9.14 0

Table 4.2: Combined difference matrix D for the example workload

Training Input
Data A B C D log(t∅(i))

A - 0.96 1.01 0.95 4.12
B 0.97 - 1.01 0.96 4.30
C 1.01 0.97 - 0.97 1.46
D 0.94 0.93 0.99 - 4.76

LNP 0.96 0.94 1.00 0.96

Table 4.3: The upper portion of the table lists the normalized run-times (τ−1
u (i))

and log-weights (log(t∅(i))) computed from Table 4.1. The bottom row lists the
per-input LNP values computed from each column.

workload running time is calculated for each copy of the program. Given a training
input u and an evaluation input i 6= u, let tu(i) be the average running time of three3

runs of the program trained on input u executing using input i. For example, the
value of tB(D) in Table 4.1 is 108.65s. A log-weighted normalized performance
(LNP) vector summarizes the workload performance using each training input u
in Ω:

LNP[u] =

∑
i∈Ω−u (τ−1

u (i)× log(t∅(i)))∑
i∈Ω/{u} log(t∅(i))

We take a throughput-oriented approach to performance weighting, assuming
that Ω is representative of the real workload with respect to the relative execution
times of the inputs. Thus, workload performance should be a weighted average,
such that the weight assigned to relative performance compared to the baseline
on any individual input is in relation to the execution time of that input. Further-
more, the performance measure should follow a cross-validation methodology, as
discussed in Chapter 3. Thus, LNP[u] excludes values where the training and eval-
uation input would be the same. In the situation of acquiring many inputs from a
client, there is no control over the running-times of the inputs. Consequently, the
execution times for different inputs may vary significantly. A long-running input
should not unduly influence the workload performance metric (a concession toward
latency-oriented evaluation). Log-weighting addresses this issue, while normaliz-
ing by the weights ensures comparability between different LNP values. Table 4.3
shows the speedup in the execution time from Table 4.1 relative to the baseline

3Good experimental practice uses multiple runs to measure execution times; averages should be
over an odd number of runs.

36

A B C D
A 0 19.82 37.21 9.31
B 19.82 0 57.77 10.41
C 37.21 57.77 0 46.87
D 9.31 10.41 46.87 0

Table 4.4: Performance Weight matrix PW (x1000), computed from the LNP
values in Table 4.3

(τ−1
u (i)), along with log(t∅(i)), to illustrate the logarithm’s effect on the weights.

C still has a smaller weight than the other inputs, but the other three inputs are as-
signed similar weights, even though processing input D takes nearly twice as long
as input A. The final LNP values are listed in the last row of Table 4.3.

The definition of LNP presumes that all running times will be longer than 1
second. Shorter times are highly susceptible to significant perturbation by system
noise and timing imprecision; the offending inputs should be categorically removed
from the workload. However, if these very short times are unavoidable, adding 1 to
each time keeps the logarithm positive.

LNP is used to calculate the performance weight matrix PW , which is used to
weigh the transformation-vector differences between inputs in a difference matrix.
Weighing these differences based on performance helps to identify when the dif-
ferences in transformation decisions impact program performance, and filters out
cases where different decisions have little practical effect. Clustering requires a
symmetric matrix, thus PW must also be symmetric.

PW [x, y] =
max(LNP[x],LNP[y])

min(LNP[x],LNP[y])
− 1

As the difference between the LNP scores for a pair of programs reduces to 0,
so does the weight assigned to their difference scores. Table 4.4 shows the PW ma-
trix for the example. The largest PW values correspond to C, as expected. Unlike
training on C, training on the other inputs results in a performance improvement.
Therefore, some portion of the decisions the compiler made differently when using
C’s profile compared to the other profiles have a significant (negative) impact on
performance. Similarly, the differences between the other inputs are less impor-
tant, but still impact performance. Complex interactions between transformation
decisions make inferring the performance impact of any individual transformation
difficult. Therefore, when individual transformations are investigated, DT is not
weighted by PW .

The combined difference matrix D is pointwise-weighted by PW to generate
the weighted difference matrix, D. For 0 < x ≤ ω and 0 < y ≤ ω:

D[x, y] = D[x, y]× PW [x, y]

37

A B C D
A 0 1.716 3.391 0.838
B 1.716 0 0.542 0.001
C 3.391 0.542 0 0.428
D 0.838 0.001 0.428 0

Table 4.5: The weighted difference matrix D, computed as the pointwise product
of PW matrix from Table 4.4 and the difference matrix from Table 4.2

A B C D
A 3.39 1.86 0.00 2.55
B 1.68 3.39 2.85 3.39
C 0.00 2.85 3.39 2.96
D 2.55 3.39 2.96 3.39

Table 4.6: Similarity matrix S, computed from the weighted difference matrix D
from Table 4.5

D for the example is shown in Table 4.5. Consider the columns for input A in
Table 4.2 and Table 4.5. The differences between A and C and between A and D inD
are almost the same. When these differences are weighed by PW to create D, the
relative differentiation between A and D is reduced, but the relative differentiation
between A and C is maintained. This change indicates that while both D and C had a
similar number of transformation differences when compared to A, the differences
between A and D have less impact on performance.

Thus far, input similarity data has been presented in a difference matrix. How-
ever, the clustering problem is formulated in terms of similarity, and clustering
algorithms require a similarity matrix as input. As implied by its name, a similarity
matrix measures input similarity rather than difference. Any difference matrix D
can be converted to a similarity matrix S by subtracting each element of D from
the maximum element in the D. For 0 ≤ x < n and 0 ≤ y < n:

S[x, y] = max(D[x, y])−D[x, y]

S denotes the similarity matrix for D. Table 4.6 shows S for the example. The
lowest values in the similarity matrix indicate that the strongest combination of
transformation differences and performance differences occur between A and C. In
a manual study this result would indicate that the decisions made by the compiler
using FDO from inputs A and C warrant closer examination. However, a complete
analysis should consider the similarity between every pair of inputs, which is what
clustering provides.

4.1.3 Clustering
The goal of clustering is to group inputs to which the compiler responds similarly.
By comparing each Vj , D leverages the expertise and experience built into the

38

compiler to indirectly identify which aspects of the profiles are important. Thus,
clustering S will group together inputs predicted by the compiler to have similar
important runtime behaviors.

For clarity and simplicity, further discussion will use a graph interpretation of
matrices. Each data input is a vertex in a complete, undirected graph. The differ-
ence matrix DT for a transformation T contains the edge weights for the graph.
Clustering can be interpreted as breaking the graph into several disconnected max-
imal cliques by removing edges. The goal is to minimize the sum of the weights
on the remaining edges. The quality of a clustering is measured by calculating that
sum.

A k-clustering Ck of D is a set of k disjoint vertex partitions (clusters) that
covers the set of program inputs Ω as presented in the difference matrix D. Denote
the ath cluster of Ck by Ca. Likewise, CT,k is a k-clustering of the similarity matrix
ST . When used in general, without a specific k, the k subscript is omitted. Formally:

∀ Ca ∈ C : Ca ⊂ Ω

∀ Ca, Cb ∈ C, a 6= b : Ca ∩ Cb = ∅⋃
Ca∈ C

Ca = Ω

Given a clusteringC and a difference matrixD, the clustering error Mismatch(C,D)
is defined as the sum of the edge weights in D for all clusters of C:

Mismatch(C,D) =
∑
Ca∈C

 ∑
ix,iy∈Ca

D[ix, iy]

Mismatch is applicable to clusterings based on any difference matrix: D, D,

and DT are all valid parameters, provided that the clustering used S, S, or ST ,
respectively. For the combined matrices D or D, the clustering will be denoted C
or C, respectively.

4.1.4 ε-Greedy Spectral Clustering
Spectral clustering conveniently relies entirely on the similarity matrix, and does
not use the raw vectors to recompute the similarity matrix as partitioning pro-
gresses [91]. We modify the original recursive spectral clustering algorithm to pa-
rameterize the number of clusters generated, and mitigate the sub-optimality of a
purely greedy algorithm.

As in the original formulation, cuts are selected in a best-first order. Each cut
splits one of the current partitions in two. To select the best cut, a local similarity
matrix is created using the rows/columns of the nodes in the partition. The elements
of the partition are ordered by their projection onto the 2nd eigenvector of the local
similarity matrix. The partition is cut at each point along the ordered list of partition

39

Algorithm 1: ε-Greedy Spectral Clustering
C = randomPartitioning(S);1

for i← 1 to N do2

Partition.length = 1;3

Partition[0] =W;4

while Partition.length < k do5

maxCutValue = 0;6

for i← 0 to Partition.length do7

if rand() < ε18

cut[i] = SpectralCut(Partition[i]);9

else10

cut[i] = RandomCut(Partition[i]);11

endif12

if cut[i].NcutValue > maxCutValue13

maxCutValue = cut[i].NcutValue;14

maxCut = i;15

endif16

end17

if rand() < ε218

p = Random(Partition.length);19

else20

p = maxCut;21

endif22

[partA,partB] = Partition[p].applyCut(cut[p]);23

Partition[p] = partA;24

Partition.add(partB);25

end26

if Mismatch(Partition, D) <Mismatch(C, D)27

C = Partition;28

endif29

end30

return C;31

elements, and a cut value is determined. The cut corresponding to the smallest cut
value is selected.

Cut values are calculated using Ncut. Ncut solves a relaxed version of the
NP-Complete minimum cut problem. Cuts selected based on the Ncut value are
therefore not guaranteed to minimize Mismatch. Moreover, greedy algorithms can
result in very sub-optimal solutions unless specific conditions are met. For graph
partitioning, a greedy algorithm has no optimality guarantees. In particular, when
purely greedy 2-way partitioning is used, the Mismatch does not always monoton-
ically decrease as the number of clusters increases.

Therefore, we employ the classic search technique of injecting a random com-
ponent to the greedy partitioning, and then iterate the search. Simulated annealing
is not appropriate because the solution space is not smooth and has many local min-

40

ima. We use a fixed number of iterations with a constant probability of making a
random choice in each iteration. As shown in Algorithm 1, the clustering result C
is initialized randomly (line 1). A fixed, pre-determined, number of iterations, N ,
is used to search for the best clustering (line 2). Partition is a vector, thus Parti-
tion.length is the number of partitions.

Each iteration of partitioning proceeds as follows: Initially, Partition has a sin-
gle partition containing every vertex of S (line 4). Two-way partitioning is then iter-
ated to produce k partitions. In order to select which of the Partition.length < k
current partitions to split, and how to split it, a cut is proposed for each partition
(lines 7-17), and the Ncut value recorded (lines 9, 11). However, a random cut will
be proposed with probability ε1, and a greedy cut calculated by spectral clustering
with probability (1−ε1) (line 8). The partition with the lowest Ncut value is selected
to be cut with probability ε2, while a random partition is cut with probability (1−ε2)
(line 18). Applying the selected cut (from line 9 or 11) creates two new partitions
(line 23), which replace the split partition in the Partition vector (lines 24,25). Par-
titioning continues until there are k partitions. At this point, the Partition vector is
one possible k-clustering of S.

Mismatch(Partition,D) is calculated at the end of each partitioning. If Mismatch
for Partition is less than the previous best clustering, the clustering result is updated
(line 27). After the N iterations of partitioning are complete, the best clustering, C,
is reported.

A direct method for spectral clustering using multiple eigenvectors of the simi-
larity matrix is presented in conjunction with the recursive version [91]. The direct
method is preferable in most cases because it is computationally efficient and takes
the desired number of clusters as an input. However, to produce k clusters, the sim-
ilarity matrix must have k distinct eigenvalues. Unfortunately, the direct method is
unsuitable for the exhaustive clustering used in this study because an m×m simi-
larity matrix frequently does not have m distinct eigenvalues, thus necessitating the
use of an iterative approach.

4.1.5 Unimplemented Refinements

The ε-greedy algorithm presented above is inefficient if clusterings for multiple
values of k are desired. Multiple clusterings are needed, for instance, in order to
choose the most appropriate k for a particular data set. The recursive splitting pro-
cess produces intermediate clusterings for every size smaller than k. Furthermore,
the quality of each clustering is computed in order to determine the greedy option.
Therefore, it would be trivial to keep the best clustering for each size.

The partitioning process is essentially a search in a lattice with an often large,
non-constant, branching factor. With each iteration, Algorithm 1 walks one full
path to depth k in the lattice, thus producing one possible k-clustering. A depth-
first search is more efficient because the earlier steps in the path would need to be
selected and evaluated less frequently. However, since an exhaustive search is in-

41

feasible, some form of search-space pruning is required. An adequate discussion
of efficient search techniques is beyond the scope of this document. However, one
simple approach is to keep the basic ε-greedy algorithm, but to convert it to a re-
cursive depth-first search and move the iteration component inside the recursion.
Rather than doing N walks to depth k, each intermediate partitioning (recursive
call) would try M cuts, using the same ε-greedy approach to select which cuts to
try.

4.2 Using Clustered Workloads

Grouping inputs in Ω by similarity allows a smaller W to be created for efficient
performance evaluation. However, in the context of an FDO compiler under devel-
opment, input similarity may also be constantly changing. The use of clustering
results during compiler development should take this fact into consideration. In ad-
dition, a metric is needed to evaluate differences between alternative clusterings to
help developers estimate the frequency with which Ω should be re-clustered.

4.2.1 Using Reduced Workloads

Clustering a large set of inputs provides a (much) smaller set of clusters, each con-
taining a subset of Ω to which a single-profile FDO compiler responds in a similar
manner. A representative evaluation workload of reduced size,W , must be created
by selecting inputs from each cluster. A naive approach to using the clustering re-
sults involves picking one representative input from each cluster for inclusion inW ,
and using thisW throughout the compiler development process. This approach can
be significantly improved. If the compiler supports multi-profile FDO a slightly
better approach is to select one such reduced workload to use for Wtrain, and an-
other to use forWtest.

However, both these approaches neglect two factors. First, the original work-
load is a tremendous resource, and using only a small, fixed subset of inputs throws
away most of that resource. Furthermore, the compiler, and possibly the applica-
tion, are constantly evolving. Any fixed, initially-representative subset of inputs
may potentially become less and less representative as development progresses.
Eventually, a new clustering should be computed, but in the mean time, dynamically
selecting representative inputs by random sampling can mitigate the divergence be-
tween performance evaluations using W instead of Ω. Therefore, W should be
created by randomly selecting a small set of representative inputs from each cluster.
Moreover, W should be routinely re-selected, perhaps on a weekly or bi-monthly
basis. Additionally, a compiler development team has many members, each modi-
fying and testing the compiler simultaneously. W need not be shared by the team.
Instead, each developer can randomly select (or be provided with) a new W on
a routine basis. Consequently, a large portion of Ω can be in simultaneous use

42

across the team, although no individual developer is using more than a small sam-
ple. Furthermore, variance between the simultaneous performance evaluations of
multiple developers can serve as a heuristic indicating that a complete re-clustering
is required. Inter-developer performance variance is only a heuristic, and must be
tempered by an understanding of each developer’s private modifications to the com-
piler.

4.2.2 CrossError : Comparing Clusterings

When both the compiler and the application are evolving, how often should the
input clustering be recomputed? The more significant the gradual changes due to
development work are on the clustering, the more frequently the clustering pro-
cess should be repeated to ensure that the clustering remains relevant. Also, if a
transformation T may generate clustering results that are representative of several
transformations. In that case, generating transformation vectors only for T can re-
duce compilation time, and save time and effort invested by developers into analyz-
ing and interpreting clustering data. To address both of these issues, the clustering
methodology must provide a measure of clustering similarity based on different
data-sets.

The clustering similarity measure cannot simply compare error curves or cluster
members. Comparing error curves is only useful for different clustering methods
using the same data. Different data sets are not equally difficult to cluster — a
good k-clustering of one data set may also be a good k-clustering of another data
set, even if the Mismatchs are different. Comparing the members of the result-
ing clusters may be more informative, but does not indicate the importance of the
observed differences. Several near-optimal clusterings may exist, with cluster com-
position differing only for (possibly many) insignificant elements. We propose a
novel metric, CrossError , to allow quantitative clustering comparison.

CrossError requires that each matrix contain the same amount of potential er-
ror, so that all Mismatch measurements share the same range. Transformation
vector dimensions depend on the transformation, the compiler, and the program,
leading to different ranges of possible Manhattan distances. The original matrices
result in error values without context, which are both incomparable and difficult to
interpret. Therefore, each similarity matrix is normalized by point-wise dividing it
by the sum of its elements:

S̃[x, y] =
S[x, y]

sum(S)

Normalization makes each edge weight proportional to the total weight in the
graph. Consequently, Mismatch and CrossError values are a percent of the total
possible error, a more intuitive metric that enables comparisons between error val-
ues. Clustering uses relative edge weights and is not influenced by this uniform
scaling. Henceforth, normalization always precedes clustering, but we omit the S̃
symbol to streamline the notation.

43

The CrossError metric quantitatively measures the differences between two k-
clusterings of the same workload, using different edge weights. If the CrossError
is low, one similarity matrix, and consequently the clustering based on that matrix,
may be representative of the other.

Given code transformations T and U , with difference matrices DT and DU , and
their clusterings CT,k and CU,k, the CrossError metric is computed:

CrossError(CT,k/CU,k, DU) = Mismatch(CT,k, DU)−Mismatch(CU,k, DU)

CrossError evaluates CT,k using CU,k as a baseline. If CU,k is an optimal clus-
tering of SU , then Mismatch(CU,k, DU) is the minimum error for DU . This prop-
erty of DU and k is invariant with respect to the clustering. Thus, for any other k-
clustering of DU (e.g., CT,k), Mismatch(CT,k, DU) ≥ Mismatch(CU,k, DU). With
effective but sub-optimal clustering, CU,k estimates the minimum error for DU .
Therefore, CrossError(CT,k/CU,k, DU) measures (or estimates, for sub-optimal
clustering) the extra error incurred by using the alternate clustering CT,k.

Consider Mismatch over the possible range of k. For small k, clustering sep-
arates the greatest differences in D. As k increases, less significant differences
are separated until each partition contains identical elements. Therefore, regard-
less of k, if CU is a good clustering of SU , CrossError(CT,k/CU,k, DU) will be
low, implying that transformation T provides input similarity data that is repre-
sentative of the input similarity data provided by transformation U . The curve for
CrossError(CT,k/CU,k, DU) over the range of k provides a quantitative measure of
the strength of the representativeness relationship.

CrossError is not symmetric. As such, if T is judged to be representative of
U , the reciprocal relationship is not implied. For example, transformation U might
have little impact on the program, and consequently expose few differences between
inputs.

Alternately, CrossError can be used to compare clusterings for similar pro-
grams.4 In this case, the transformation T and workloadW are held fixed, and the
programs p and q are compared:

CrossError(Cp
T,k/C

q
T,k, D

q
T) = Mismatch(Cp

T,k, D
q
T)−Mismatch(Cq

T,k, D
q
T)

4.3 Evaluation Methodology
We investigate workload clustering for a range of programs. Clustering is per-
formed for both individual transformations and combined multi-transformation data.
These clusterings are analyzed to identify the impact of performance filtering, the

4A practical use for such comparison is to evaluate if two versions of the same program produce
a similar clustering of inputs.

44

correlations between transformations, and the significance of the input-processing
source code on input similarity.

All programs are compiled using a development snapshot of the IBM XL 8.0
compiler that is instrumented to output transformation vectors. Performance eval-
uation uses a dedicated machine running AIX on a POWER4 processor. Five runs
are used for each program on each input, and the average of these runs is used as
tj(i) when calculating LNP[j].

All experiments are performed using gzip, bzip2, VPR, crafty, MCF, and
GAP from the SPEC CPU 2000 suite, as well as gcc from the SPEC CPU 2006
suite [37]. VPR performs two digital design tasks, logic placement and circuit rout-
ing, which take different input files and exercise different portions of the code.
Therefore, VPR is used for these two tasks separately and identified as vpr.place
and vpr.route.

Each program uses a workload of inputs. The provided inputs from both CPU
2000 and CPU 2006 are used when possible (MCF, bzip2, and gcc). Furthermore,
the CPU 2000 program workloads are augmented with inputs that we collected or
generated [14], and described in more detail in our previous work [16]. The gcc
workload is augmented with source code from the CPU2000 benchmark programs
gzip, mesa, parser, and twolf. Gzip and bzip2 use a common workload
that is the union of their available inputs.

4.3.1 Transformations

During the training process, transformation vectors are collected for the transfor-
mations that are the primary consumers of profile information. Inlining and loop
transformations use profile information to order the transformation opportunities by
expected profitability (i.e., hottest first). The following transformations are instru-
mented:

Early Inlining Inlining at the beginning of the optimization phase focused on re-
moving calls to small functions to enable subsequent transformations.

Late Inlining Inlining after high-level transformations such as loop nest optimiza-
tions and function-pointer specialization, focused on removing function call
overhead.

Loop Unrolling The loop unrolling factor is based on the number of memory
streams in the loop, the number of hardware-supported memory streams, and
the number of instructions in the unrolled loop. Ideally, unrolling should ac-
tivate all the hardware memory stream prefetching units without overflowing
the instruction cache.

Loop Unroll-and-Jam Loop unrolling, loop peeling and loop fusion for the inner
loops in loop nests, to create perfectly-nested loops.

45

Specialization transformations use value profiling to replicate code segments,
replacing the use of variables with constants. A test ensures that the run-time vari-
able value matches the specialized value:

Memory Allocation Specialization Memory allocation library calls with variable
memory block sizes are specialized with a constant memory size. These spe-
cialized allocations use a pooled memory allocator that increases the spatial
locality of memory accesses and reduces the overhead of memory allocation
and deallocation.

Function-Pointer Specialization Indirect calls are converted to direct function calls.
Removing indirection enables other transformations, e.g., inlining. Further-
more, function call overhead is reduced on architectures where a branch and
direct call is less expensive than an indirect call.

Value Specialization Integer division and modulus operations with a variable de-
nominator are replaced with constant-denominator versions for frequently ob-
served denominator values. Constant denominators allow for the generation
of more efficient code using various architecture-dependent instruction-level
transformations.

4.3.2 Clustering Comparison

ε-Greedy clustering is applied to these similarity matrices:

• The similarity matrix ST for each transformation T from Section 4.3.1, with-
out performance-weighting, produces clustering CT .

• The combined, performance-weighted similarity matrix S produces cluster-
ing C, as discussed in Section 4.1.2.

• The combined, but not performance-weighted, similarity matrix S produces
clustering C

Clusterings are compared in several ways. These comparisons are not intended
to support strong claims about particular transformations, benchmark programs, or
data inputs. Rather, they serve as single-point case studies that illustrate the types
of questions that cluster comparison can help answer. Three variables that influence
clustering results are investigated:

Performance Performance-weighting using PW serves as a filter to remove the
impact of distinct transformation decisions that have little impact on pro-
gram running time. Comparing the clustering with and without performance
weighting indicates the impact of this filtering.

46

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14

M
is
m
a
tc
h

(%
)

Number of Clusters (k)

10
100

1000
10000

Figure 4.1: Clustering error for varied iterations of ε-greedy spectral clustering
when using similarity matrix S from gcc

Transformations Clustering based on one transformation may predict the cluster-
ing based on another, particularly if the transformations are closely related.
If the clustering for T can be predicted by the clustering for U , then T could
be omitted from the analysis.

Algorithms Bzip2 and gzip share an identical workload, but are very different
algorithms. Comparing the clusterings for the two programs suggests the de-
gree to which input similarity can be considered independently of the code
processing the input, and thus the feasibility of manual clustering without
extensive detailed analysis. This information may also be significant when
using a reduced workload for evaluation in the case of rapid program devel-
opment with frequent and significant code changes.

4.4 Clustering Evaluation
Reliable clustering depends on setting the clustering algorithm parameters to ap-
propriate values. Once the ε-greedy clusterer has been tuned, the workload for each
benchmark program is clustered for each transformation listed in Section 4.3.1,
along with the combined matrices D and D, for each possible number of clusters.

4.4.1 ε-Greedy Parameters

The two ε parameters for ε-greedy clustering control the amount of randomization in
the search process. In practice, selecting the partition to cut at random (ε2) provides
significant improvement to clustering results. The addition of random cuts (ε1) pro-
vides a small additional improvement. The ε values provide exploration away from
the greedy choice. Given a particular k-clustering, the value of all possible cuts to
form cluster k + 1 are fixed. Since the greedy choice is always the same for the

47

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14

C
ro
ss
E
rr
or

(%
)

Number of Clusters (k)

CrossError(C/C,D)

CrossError(C/C,D)

Figure 4.2: Comparison of CrossError using weighted (D) and unweighed (D)
difference matrices from gcc

same point in the recursive splitting process, there is no local benefit to selecting it
multiple times. However, any subsequent splitting decisions present a space that is
predicated by selecting the greedy option, but may need many iterations to explore.
Thus, the ε values must balance selecting greedy option with exploration. Manual
tuning suggests that 0.5 is a reasonable value for both ε values for the transforma-
tions, benchmark programs, and input sets used in this experimental study.

Each iteration of ε-greedy clustering increases the amount of the clustering
space explored. However, each additional iteration increases the computational cost
of clustering, while providing diminishing returns with respect to error reduction.
Empirically, 1,000 iterations of clustering produces good results, with very little im-
provement when the number of iterations is increased to 10,000, as demonstrated
in Figure 4.1. Using fewer than 1000 iterations does not always allow ε-greedy to
find a good clustering, and produces significant variation in the Mismatch across
different clustering runs. The ε-greedy results presented henceforth set ε1 = 0.5
and ε2 = 0.5, with 1000 iterations.

4.4.2 Impact of Performance Weighting

Section 4.1.2 justifies the use of performance weighting as a means of taking pro-
gram performance into account when clustering inputs. Compiler decisions with a
larger impact on the program’s performance should have more weight when clus-
tering inputs than decisions with little effect on performance. But does performance
weighting change the resulting input clusters? Comparing the CrossError between
unweighted and weighted clusters should answer this question. The results in Fig-
ure 4.2 are typical of this comparison: D and D are, respectively, the weighted and
unweighted combined difference matrices for the seven transformations described
in Section 4.3.1 for gcc, and C and C are their corresponding clusterings.

CrossError(C/C,D) evaluates the weighted clustering with the unweighted

48

0

5

10

15

20

25

30

35

0 5 10 15 20 25

C
lu

st
er

in
g

E
rr

or
(%

)

Number of Clusters (k)

CrossError(CLate/CEarly, DEarly)

CrossError(CEarly/CLate, DLate)

Mismatch(CEarly, DEarly)

Mismatch(CLate, DLate)

Figure 4.3: Clustering error comparison between the early-inlining and late-inlining
clusterings from VPR routing

difference matrix. As illustrated by the evaluation of gcc in Figure 4.2, an un-
weighted clustering C evaluated with a weighted difference matrix D generally
results in less CrossError than C evaluated with D. This result indicates that
D is more representative of D than vice-versa. Thus, in this case, performance-
weighting filters out performance-irrelevant differences in the data that would oth-
erwise influence the clustering. The additional error under the CrossError curves
illustrates that D is not a scaled version of D; in that case, the clustering results
would be equivalent, and both CrossError curves would be near 0. Instead, the
performance-weighting has changed which pairs of inputs are most similar or most
different from each other, thus changing the clustering in a meaningful way.

4.4.3 Clustering Comparison

An important application of CrossError is to evaluate the representativeness of pre-
vious clustering when the compiler and application program change. Benchmarks
only provide a single snapshot of application code and consequently make evaluat-
ing this use of CrossError difficult. However, the placement and routing tasks for
VPR use related data sets with the same application, and bzip2 and gzip share
a common workload. An investigation of the CrossError in these cases indicates
that the clustering results are not similar across such large differences in programs
or workloads.

Section 4.3.2 discussed the possibility that several code transformations in the
compiler could yield similar clusterings, and thus some of these transformations
could be eliminated from future input clusterings. This section illustrates how to
evaluate the similarity of two transformations in relation to the clustering of inputs.

We generated CrossError graphs for each possible pairing of clusterings from
the transformations listed in Section 4.3.1 plus the combined matrices D and D,
for each of the 7 benchmark programs. Careful examination of these graphs sug-

49

gests that transformations are generally not representative of others. Furthermore,
the combined matrices tend not to be good representatives of any individual trans-
formation, nor is any single transformation representative of either combined case.
The greatest correlation exists between the two inlining transformations, but even
here, the correlation is usually weak.

The Mismatch between a clustering, such as CEarly, and its difference matrix,
DEarly, is a measurement of the differences that exist within nodes that CEarly clus-
ters together. Figure 4.3 plots Mismatch(CEarly, DEarly) and
Mismatch(CLate, DLate) as a function of the number of clusters k for the VPR rout-
ing benchmark. This plot is typical of such curves between early and late inlining
for most benchmarks. While four clusters are sufficient to separate virtually all the
differences between inputs with respect to early inlining, the Mismatch curve for
late inlining has a long tail, indicating that many more differences exist amongst
the inputs when late inlining is considered. Thus, early inlining would be a poor
representative of late inlining.

Figure 4.3 also plots the CrossError curves that evaluate how well the cluster-
ing based on late inlining, CLate, represents that data in the early inlining difference
matrix DEarly, and vice-versa. CrossError(CEarly/CLate, DLate) stays level in the
3%-3.5% range from 4 clusters to 11 clusters. Over this range, CrossError is on
average 97% of Mismatch, so applying CEarly to the late inlining data results in
about twice as much error as using CLate. The level CrossError curve through this
range indicates that even with additional clusters, early inlining does not provide
any information to enable the extra clusters to better separate the inputs.

On the other hand, since late inlining has more information regarding input dis-
similarity, perhaps this information is a superset of the information provided by
early inlining. However, from 4 to 8 clusters, CrossError(CLate/CEarly, DEarly)
tracks just below Mismatch(Clate, DLate). Even at 8 clusters, the CrossError is
only slightly less than Mismatch(Clate, DLate) at 3 clusters. The late-inlining clus-
tering does not separate the few differences that do exist in the early-inlining data.
Therefore, in this case, late inlining is not a good representative of early inlining,
despite the conceptual similarity of the transformations. We observed similar pat-
terns between early and late inlining for most benchmarks.

An alternate way to try to test the correlation between these two transformations
is to take each pair of inputs as a data point and use the early-inlining Manhattan
distance between the inputs for one axis and their late-inlining Manhattan distance
for the other axis. The coefficient of correlation calculated this way is 0.99, which
indicates a very high degree of correlation. The large coefficient of correlation can
be attributed to data points falling into two clusters, with one cluster occurring very
far from the others. Consequently, at the full scale of the data, the clusters become
two points and display a linear relationship. However, looking at each of the two
groups of data individually, the data does not exhibit any linear or recognizable
non-linear relationship. A systematic study of the same form of data across all
transformation pairings and all programs suggests that the coefficient of correlation

50

is usually not a good indicator of a representativeness relationship between a pair
of transformations.

4.4.4 Clustering for Workload Reduction
The goal of clustering is to group similar inputs so that one of them can be selected
as the representative of that cluster in a reduced workload. The overall performance
estimated using the evaluation workload W should predict the real performance
evaluation of the actual workload Ω. As suggested in Chapter 3, the FDO work-
load performance of a program is summarized by taking the geometric mean of
the performance computed for each training input. In this case, per-training-input
performance is given by LNP, thus workload performance is:

µg = |W|

√∏
i∈W

LNP[i] (4.1)

An evaluation of reduced workloads selected from Ω according to clustering
suggests that clustering can effectively group similar inputs, and that evaluation
of a reduced workload can provide reasonable estimates of full-workload perfor-
mance evaluation. Selecting an appropriate number of clusters from which to select
a reduced workload is a problem beyond the scope of this document. The auto-
matic method used here is based on the reduction in Mismatch observed when k
is increased by one. This quantity, denoted ∆Mismatch, indicates the benefit to
clustering quality obtained by incurring the increased evaluation cost of a larger k:

∆Mismatch(k) = Mismatch(Ck−1, D)−Mismatch(Ck, D)

The results of performance evaluation when using the full workload Ω, as well
when using reduced workloads selected based on clustering results from combined
difference matrixes, are presented in Table 4.7. The table contains five rows for each
benchmark. The first row, in bold, is the full-workload evaluation whereW = Ω.
The average and confidence interval on this line correspond to the geometric mean,
as calculated by Equation 4.1. The column labeled “Range” displays the range of
the per-training-input LNP values.

The remaining table rows for each benchmark give results when the value of
k for W is chosen as the largest k where ∆Mismatch(k) > δ. For each δ, the k
column gives the number of clusters selected, and M column gives the mismatch
of that clustering. The two values of δ = 0.75 and δ = 0.05 are chosen for demon-
stration.

Table 4.7 contains two rows for each δ. The first row reports on 100 samples
of random-representative selection, as proposed in Section 4.2: one representative
is chosen at random from each cluster. Each sample provides one workload eval-
uation using Equation 4.1. The averages and confidence intervals in these rows
correspond to the arithmetic average of these 100 workload evaluations, while the

51

Program δ k M AVG 95% CI Range ± 1

bzip2

Ω = 23 97.4 [93.6,101.4] [95.5, 105.3]

0.75 6 1.73
98.5 ±1.4 [96.5, 99.5] 42%
99.3 [94 .0 , 104 .9] [97 .6 , 104 .6]

0.05 11 0.24
97.7 ±0.4 [97.2, 98.1] 100%
97.4 [93 .4 , 101 .6] [95 .7 , 102 .8]

crafty

Ω = 8 89.5 [87.9,91.0] [87.8, 90.6]

0.75 4 0.33
89.3 ±0.4 [89.0, 89.7] 100%
89.1 [87 .1 , 91 .1] [87 .9 , 90 .1]

0.05 6 0.01
89.2 ±0.2 [89.0, 89.3] 100%
89.3 [87 .8 , 90 .8] [88 .0 , 90 .3]

gap

Ω = 11 74.8 [64.5,86.8] [67.1, 88.6]

0.75 5 0.70
77.3 ±4.6 [73.6, 80.1] 34%
84.9 [72 .6 , 99 .3] [75 .3 , 93 .4]

0.05 6 0.10
80.4 ±1.2 [79.6, 81.3] 0%
80.1 [70 .6 , 90 .8] [71 .9 , 89 .7]

gcc

Ω = 15 91.7 [89.8,93.5] [90.1, 94.1]

0.75 5 1.92
91.6 ±1.4 [90.1, 92.9] 81%
92.8 [89 .1 , 96 .6] [90 .1 , 95 .1]

0.05 12 0.05
91.8 ±0.2 [91.7, 91.9] 100%
91.9 [89 .9 , 94 .0] [90 .5 , 94 .3]

gzip

Ω = 23 85.7 [83.9,87.6] [83.6, 87.4]

0.75 4 0.73
87.1 ±4.0 [82.0, 92.4] 27%
89.1 [86 .5 , 91 .8] [87 .4 , 90 .3]

0.05 9 0.02
86.1 ±2.4 [83.7, 88.7] 53%
83.7 [81 .7 , 85 .8] [81 .9 , 85 .3]

mcf

Ω = 16 104.1 [96.4,112.5] [97.2, 107.3]

0.75 4 0.28
103.4 ±1.9 [101.1, 104.8] 69%
103.3 [92 .1 , 115 .8] [96 .7 , 107 .1]

0.05 5 0.02
104.0 ±1.3 [102.5, 105.2] 86%
102.9 [92 .5 , 114 .5] [98 .3 , 107 .7]

vpr.place

Ω = 23 89.7 [87.5,91.8] [88.1, 92.7]

0.75 3 0.70
90.4 ±2.1 [88.4, 92.8] 52%
87.7 [83 .8 , 91 .8] [86 .1 , 89 .4]

0.05 7 0.08
90.6 ±0.8 [89.8, 91.4] 52%
91.5 [89 .7 , 93 .4] [90 .6 , 93 .5]

vpr.route

Ω = 23 92.9 [90.6,95.4] [90.9, 94.9]

0.75 4 0.41
92.9 ±0.9 [91.8, 93.8] 92%
93.5 [89 .7 , 97 .6] [91 .3 , 95 .7]

0.05 7 0.05
93.2 ±0.6 [92.2, 93.6] 100%
92.3 [89 .4 , 95 .2] [90 .4 , 94 .7]

Table 4.7: Workload performance evaluated using the full workload (bold) and
clustering-based reduced workloads consisting of either the best representative
(italics) of each cluster, or 100 samples of randomly-selected representatives.

52

range indicates the minimum and maximum values of those samples. The “±1”
column reports the proportion of samples where the reduced-workload evaluation
is within 1% of the full-workload evaluation. The second line for each δ, in italics,
is a single evaluation directly comparable to the full-workload row. These rows
are calculated on aW created by selecting the best candidate from each cluster of
the selected k-clustering. Determining the best candidate is straight-forward: the
best representative is the input corresponding to the column of the difference matrix
with the lowest column-wise sum of differences.

The full-workload evaluations demonstrate that FDO does, in general, improve
program performance. Based on the average LNP, all programs except MCF ben-
efit from FDO: from a 2.6% improvement for bzip2 to a 25.2% improvement for
GAP. However, the confidence intervals and ranges show how much variation in
workload performance is possible depending on the selection of training input. For
MCF and bzip2, FDO could be judged to be either beneficial (µg < 1) or detri-
mental (µg > 1), depending on which input is used for training. Any variation in
performance measured between different testing inputs is hidden within the LNP
for the training input; the variations in performance measured pair-wise between
individual testing and training inputs may be much greater than the variation be-
tween LNP values presented here. This evidence further supports the need for the
cross-validated evaluation of FDO proposed in Chapter 3.

Selecting cluster representatives at random to create W may not provide reli-
able results if this practice results in large evaluation variations between different
instances of W . Recall that a reduced workload reduces not only the set of train-
ing inputs, but also the set of testing inputs. Thus, even keeping the training input
constant, the LNP for that training input in a reduced workload will not be the
same as in the full workload. Table 4.7 presents promising results in this respect:
mostW selected in this way predict the full-workload evaluation results quite accu-
rately. The evaluation results for GAP are inconsistent with the results of the other
benchmarks, and are discussed separately.

The range of the evaluation results produced by random representative selec-
tions is usually small. Furthermore, that range contains the full-workload evalua-
tion in all cases except for crafty when δ = 0.05. However, in that case, the
range of sampled evaluation results is only 0.3, and no sample is more than half
a percent from the full-workload evaluation. Furthermore, when a larger k is se-
lected, the spread of the sampled results becomes tighter, as seen in both the con-
fidence intervals and ranges. Even the small workloads (3–6 inputs) selected when
δ = 0.75 provide good predictions of full-workload performance. The last column
in Table 4.7 directly measures the proportion of randomly-selected workloads that
produce evaluation results within 1% of the full-workload value. In most cases, the
majority of samples fall within this window, and the proportion increases as δ de-
creases. However, this pattern does not apply to the placement task for VPR. While
there is less variation between the samples when δ = 0.05 than when δ = 0.75,
the full-workload performance value is slightly outside the range covered by the

53

2 3 4 5 6
Number of Clusters (k)

Static
Ref
Train

Test
A
B
C
D
E
F
G

13.72

Static

Ref
Train
Test

A
B
C
D
E
F
G

4.30

A
B

C
D
E
F
G

Static

Ref
Train
Test

1.80

Static

Ref
Train

Test

A
B

C
D
E
F
G

0.70

Static

Ref
Train

Test

A
B

C
D
F

E
G

0.10
C

lu
s t

e
rs

M
is

m
a
tc

h
 (

%
)

Figure 4.4: Clustering results for GAP as k increases, using the combined difference
matrix

samples at δ = 0.05. Performance evaluation using these reduced workloads are
nonetheless very accurate: all the samples span a range of only 1.6%, and all fall
within 1.7% of the full workload average.

The clustering-based evaluations of GAP contradict the preceding discussion.
Most significantly, both reduced-workload evaluations significantly underestimate
the benefit of FDO. This result is explained by particularly favorable pairings of
testing and training inputs being placed into the same clusters, and thus never eval-
uated in the reduced workload. The workload for GAP is poorly constructed. GAP
is an interpreter for a domain-specific language for mathematics. All but the SPEC
inputs are the same numerical algorithm, simply called with an increasingly large
input-parameter value. Larger parameter values invoke longer-running computa-
tions that may shift the relative frequency weighting between different components
in the interpreter, but the underlying computation, and thus the overall behavior
of the interpreter, is essentially unchanged. Details of the clustering for GAP are
illustrated in Figure 4.4. The SPEC ref, test, and train inputs, along with the
static non-FDO compilation, are labeled accordingly. The remaining inputs are
labeled A through G by increasing parameter value. As indicated by the propor-
tion of Mismatch remaining between the clustered inputs, the most significantly
different inputs have been separated by 4 or 5 clusters. As expected, the static
compilation is unlike the FDO compilations. At 3 clusters, the SPEC inputs are
separated from the additional inputs, and test is separated from ref and train at 5
clusters. As noted in Section 2.3, the train input is a subset of the computation
performed by ref, thus these two inputs are expected to be very similar. The A and
B inputs execute significantly more quickly than the other additional inputs; at 4
clusters, these short-running inputs are separated from their peers.

Consider two inputs, such as ref and train. If the runs on ref and train are very
similar, using them both in an evaluation workload is liable to reward over-fitting.
Clustering naturally identifies ref and train as similar and groups them together. A

54

reduced workload will thus never contain both ref and train, and the evaluation will
not benefit from over-fitting. Consequently, the reduced workloads likely provide a
more realistic evaluation of GAP than the full-workload evaluation.

4.4.5 Qualitative Clustering Evaluation

Section 4.4.4 uses a threshold on δ-Mismatch to select the number of clusters for
a reduced workload. While such an automatic technique is helpful for the practical
application of clustering, tuning the process and evaluating the quality and implica-
tions of the resulting clusters can be enhanced using qualitative assessment.

Mismatch encourages splitting large clusters, since this action removes the
most edges from the graph. However, when the edge weights are not similar, the
benefit of splitting smaller clusters or splitting a cluster into unequally-sized parts
increases. Thus, partitioning that does not split the largest cluster suggests that sig-
nificant differences are being separated in the graph. For example, the combined
2-clustering of gzip places the baseline compilation in its own cluster5; the 3-
clustering places a single FDO compilation alone in another cluster. These two
singleton clusters persist as k increases, and identify very significant differences
in code transformations for these two compilations. This observation explains the
large confidence interval on the average LWA for gzip in Table 4.7 when δ = 0.5:
only these two very significant differences have been identified by clustering; the
less extreme differences within the rest of the workload remain.

There is no strict relationship between the clusters of a k-clustering and a (k+1)-
clustering, though large differences will keep inputs from being clustered together,
while small differences will tend to keep inputs clustered together. However, con-
sider a subset of inputs that all have similar pair-wise differences. Partitioning
this subset will reduce Mismatch by nearly the same amount regardless of exactly
which inputs end up clustered together, as long as the same number of edges are re-
moved. Thus, cluster membership within such a subset often appears to randomly
change as k increases. This re-distribution of inputs among clusters occurs in two
situation. On one hand, when Mismatch is large, not enough clusters are avail-
able to separate out the many similarly-large differences. On the other hand, when
Mismatch is near zero, the number of clusters required to separate meaningful dif-
ferences has already been exceeded.

For a lower-level analysis, a developer can scan the values in the combined
difference matrix to identify where the largest differences exist, and use this infor-
mation either to evaluate a clustering, or to direct investigation within the compiler.
In the case where the combined difference matrix does not present strong evidence,
the difference matrices of the individual transformations may be consulted. Finally,
investigating the individual transformation locations that differ in the transforma-

5Baseline compilation is expected to be significantly different than FDO compilation because
the compiler is forced to estimate profile information from the source code to inform transformation
decisions.

55

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

C
lu

st
er

in
g

E
rr

or
(%

)

Number of Clusters (k)

CrossError(Cgzip/Cbzip2, Dbzip2)
CrossError(Cbzip2/Cgzip, Dgzip)

Mismatch(Cbzip2, Dbzip2)
Mismatch(Cgzip, Dgzip)

Figure 4.5: Mismatch and CrossError using the combined clusterings of bzip2
and gzip

tion vectors may not only provide important information on how much inputs differ
from each other, but also offer clues about why those differences occur.

4.4.6 Algorithm-Independent Input Similarity

Human intuition for input similarity is largely algorithm-independent. Both bzip2
and gzip are lossless data compression programs, and use the same set of inputs
for clustering, but the algorithms implemented by the two programs are completely
different. Nonetheless, human intuition likely would groups inputs together the
same way regardless of the algorithm used. The grouping would be done based on
the types of data in the files: jpeg images, or plain-text files for example. However,
intuition also expects that clustering inputs without regard for the algorithm using
them is ill-conceived.

Figure 4.5 highlights the dangers of relying on such manual clustering by show-
ing the Mismatch curves for bzip2 and gzip, along with the CrossError curves
when those clusterings are swapped between the programs. By 6 clusters, the
Mismatch for both programs is very small. However, at the same point, the
CrossError for both programs is more than 18%. Furthermore, even as the number
of clusters increases, the CrossErrors reduce slowly. This evidence indicates that,
from the compiler’s perspective, input similarity cannot be adequately measured
outside of the context of the algorithm processing the inputs. Therefore, an auto-
mated approach such as the methodology presented here is required to adequately
asses the differences between inputs within the complex context of their interactions
with a program. Furthermore, switching one algorithm in a program for another (as
opposed to incremental refinements) during development will likely necessitate the
reevaluation and reclustering on its inputs.

56

4.5 Conclusion
FDO is an important tool for program optimization. Unfortunately, the standard
single-training/single-evaluation practice of FDO can be sensitive to input diversity,
and thus a cross-validation strategy is required for performance evaluation. How-
ever, selecting an appropriate workload for cross-validation is challenging: The
workload must cover all the important aspects of the program, while also mini-
mizing the number of inputs in the workload. This chapter illustrates a clustering
technique to select this small subset of inputs from the large number of inputs avail-
able to a compiler designer. A similarity matrix is constructed from transformation
vectors, information extracted directly from the compiler regarding differences be-
tween inputs. This matrix is weighted by a cross-validation-based performance
metric in order to filter out those differences that do not impact performance. Once
the workload has been clustered, the Mismatch curve presents a quantitative mea-
sure of the tradeoff between the number of clusters and how well a selection of rep-
resentatives from these clusters represents the full workload. Finally, CrossError
provides a means to investigate correlations between transformations, and the sig-
nificance of differences between clustering done at different points in compiler or
application development.

57

Chapter 5

Combined Profiling:
Multi-Run Behavior Modeling

Capturing behavior variations across inputs is important in the design of an FDO
compiler. A number of speculative code transformations are known to benefit from
FDO, including speculative partial redundancy elimination [35, 51], trace-based
scheduling and others [24, 33]. Several open questions remain about the use of
profiles collected from multiple runs of a program. How should the multiple profiles
be combined? Is it sufficient to simply average the multiple measurements? Is it
necessary to compute the parameters for an assumed statistical distribution of the
measurements? Or is there a simple technique to combine the measurements and
provide useful statistics to FDO?

This chapter addresses these questions by arguing that the behavior variations in
an application due to multiple inputs should be evaluated by FDO decisions. It also
argues that a full parametric estimation of a statistical distribution is not only unnec-
essary, but it may also mislead FDO decisions if the wrong distribution is assumed
or there is insufficient data to accurately estimate the parameters. Instead, it pro-
poses the use of a non-parametric empirical distribution that makes no assumptions
about the shape of the actual distribution.

A major challenge in the use of traditional single-training-run FDO is the selec-
tion of a profiling data input that is representative of the execution of the program
throughout its lifetime. For large and complex programs dealing with many use
cases and used by a multitude of users, assembling an appropriately representative
workload may be a difficult task. Picking a solitary training run to represent such a
space is far more challenging, or potentially impossible, if use-cases are mutually-
exclusive. While benchmark programs can be modified to combine such use-cases
into a single run (Section 3.1), this approach is obviously inapplicable to real pro-
grams. Moreover, user workloads are prone to change over time. Ensuring stable
performance across all inputs in today’s workload prevents performance degrada-
tion due to changes in the relative importance of workload components.

The Combined Profiling (CP) statistical modeling technique presented in this
chapter produces a Combined Profile (CProf) from a collection of traditional single-

58

Hier. Norm.

(per monitor)

Hier. Norm.

(per monitor)

Combined Profile

(histogram per monitor)

Training Workload

raw

profile 1

raw

profile n

Combined Profiling

(empirical distribution estimation)

(histogram creation)

2.

3.

1. Traditional Profiling

(multiple runs)

normalized

profile 1

normalized

profile n

Figure 5.1: Three phases of combined profiling: 1) profile each input, 2) normalize
each profile, and 3) combine the profiles into a distribution model.

run profiles, thus facilitating the collection and representation of profile informa-
tion over multiple runs. The use of many profiling runs, in turn, eases the burden
of training-workload selection and mitigates the potential for performance degra-
dation. There is no need to select a single input for training because data from
any number of training runs can be merged into a combined profile. More impor-
tantly, CP preserves variations in execution behavior across inputs. The distribu-
tion of behaviors can be queried and analyzed by the compiler when making code-
transformation decisions. Modestly profitable transformations can be performed
with confidence when they are beneficial to the entire workload. On the other hand,
transformations expected to be highly beneficial on average can be suppressed when
performance degradation would be incurred on some members of the workload.

Combining profiles is a three-step process, as illustrated in Figure 5.1. Shaded
components of the figure identify the combined-profiling work-flow:

1. Collect raw profiles via traditional profiling.

2. Apply Hierarchical Normalization (HN) to each raw profile.

3. Apply CP to the normalized profiles to create the combined profile.

CP and HN have been presented in previous work [20, 18]. However, this pre-
sentation clarifies and expands on previous versions, particularly the description of
CP’s histograms in Section 5.2 and the discussion of queries in Section 5.3.3.

59

Section 5.1 discusses the design of CP, and the details of the technique are
presented in Section 5.2. CP is widely applicable; Section 5.3.4 briefly discusses
the use of CP with additional forms of profiling.

5.1 Design Considerations

To facilitate the use of CP with existing FDO compilers, CP should offer a semantic
“drop-in replacement” for raw profiles. In particular, a CP created from a single
raw profile should be as informative as the original raw profile. This goal is at odds
with parametric models, which need many data points to accurately estimate their
parameters. As a matter of practicality, the distribution model should have a (small)
bounded size because it competes with the rest of the compiler for memory during
compilation.

5.1.1 Model Properties

We refer to traditional single-run profiles, such as edge or path profiles, as raw
profiles. The simplest technique to maintain information about many profiling runs
is to keep all the raw profiles and provide them to the compiler. However, not
only does such a representation require space linear in the number of profiles, but
querying such data (e.g., within code transformation heuristics) incurs an associated
computational cost. CP aims to represent an unbounded number of profiles in a
compact, fixed-size representation in order to bound such costs by a small constant.

In a batch environment, optimization minimizes (weighted) average execution
time, and consequently an average of program behavior over a workload is a suf-
ficient statistic. However, more typically, program optimization across a workload
of inputs is not a batch-execution scenario: the execution time on each individ-
ual input is significant. Thus, average-case performance is not the metric that an
FDO compiler should maximize. Rather, for a given program, each transforma-
tion should attempt to minimize the execution time for each input in the program
workload; average execution time is merely a convenient aggregate statistic. Thus,
an FDO transformation decision is a multi-objective optimization problem with the
dual goals of maximizing both the worst-case and average-case improvements in
program execution time across the workload. A single-run profile, or even an ag-
gregated profile using sums or averages across multiple runs, is not adequate to
meet these goals because it only allows for the assessment of the average case.

Similarly, there is no reason to assume that the amount of computation per-
formed on a given training input is related to the importance of such an input in
a user’s workload. The relative weights of profiles being combined can only be
assigned by the user. A CProf is a weighted combination of profiles, but in the
absence of user specification, all profiles are assumed to be equally important.

60

5.1.2 Parametric Models
The core of CP is the distribution model associated with each monitor. CP is based
on the empirical distribution and histograms because we believe this approach to be
both effective and efficient. An alternative would be to create parametric probability
models.

The empirical distribution is a non-parametric model that makes no assumptions
about the shape of the data. Parametric probability models assume that data comes
from a family of distributions characterized by a fixed set of parameters. Building
the model entails estimating the values of those parameters. For instance, a normal
distribution is parameterized by the mean and standard deviation of the data. While
those two parameters are easily estimated and have a small space requirement, we
have no justification to assume that monitor values are distributed according to any
particular distribution. In fact, preliminary data contradicts this assumption [20].
More flexible parametric models can better estimate arbitrary distributions, but re-
quire a larger number of parameters. Unfortunately, accurately estimating many
parameters necessitates many data samples in order to constrain each degree of
freedom in the model. For example, the generalized lambda distribution can ap-
proximate a large number of well-known distributions, but is parameterized by the
first four moments of the data [67]. Thus, the model may be very different from the
real distribution of the data when the number of raw profiles collected is small.

5.1.3 Statistical Considerations
Any execution profile is a statistical model of program behavior; FDO uses these
models to predict future program behavior. It is therefore important to identify the
assumptions that limit the prediction accuracy of the model. Compared to tradi-
tional FDO, CP makes this statistical modeling explicit and replaces point statistics
with probability distributions. By using raw profiles to build a CP, the CP inherits
the statistical assumptions of those raw profiles. An edge profile does not model the
correlations in execution frequency between edges in a CFG. Thus, when an edge
profile is used to estimate CFG edge frequencies, the estimate is made under the
assumption that each edge frequency is statistically independent. This limitation
of edge profiles inspired path profiles. A combined edge profile (CEP) built from
multiple edge profiles cannot remove this assumption. However, at the time of com-
bination, the model could measure cross-run edge correlations. That model would
be a joint distribution across all edges, and would require space exponential in the
number of edges. Furthermore, a vast number of input profiles would be needed to
estimate all of the joint probabilities.

Hierarchical normalization, presented in Section 5.3.1, models the correlations
between a monitor and its immediate dominator, and assumes independence for
other pairings. This assumption allows the size of the model to grow linearly with
the number of monitors, and furthermore allows queries to the combined profile to
be computed in constant time.

61

1
3
7

1
5
0

1
2
4

1
1
1

9
8

8
5

20% 48% 22% 5.6% 3.7%

1.01.5
6.0135.5

(a) Adjacent uniform distributions 1
0
4
.5

1
1
7
.5

1
3
0
.5

1
4
3
.5

9
1
.5

5.5

13

6.0

1.5 1.0

(b) Impulses at bin centers

Figure 5.2: Alternative interpretations of a monitor’s histogram

The inter-run independence assumptions of hierarchically-normalized combined
profiles are analogous to the intra-run assumption made by the underlying profiling
technique. An edge profile assumes all edge probabilities are independent; a CEP
assumes that edge probabilities remain independent across runs. A path profile
models the (in)dependence between edges within a path, but assumes that all paths
are independent within a run. A combined path profile (CPP) maintains the corre-
lations between edges in a path, but extends the assumption of path independence
across multiple runs.

5.2 Approximating the Empirical Distribution

A simple method to create a model is to build the empirical distribution, where
the data is the distribution. This approach requires the storage and analysis of all
existing profiles. However, in the context of compiler decisions, a coarse-grained
distribution model is sufficient because small variations in a distribution have no
impact on decision outcomes. Therefore, the empirical distribution can be approxi-
mated by storing quantized monitor values in histograms.

A monitor’s histogram can be interpreted in two ways, as illustrated in Fig-
ure 5.2. In both interpretations, the underlying histogram has five bins, each 7.0
units wide, over the range [85, 150]. The first bin contains 5.5 units of weight, the
second 13 units of weight, and so on. Assuming that a monitor is uniformly dis-
tributed within a bin, as in a Riemann sum, its histogram forms a contiguous n-step
probability distribution, with a well-defined and piece-wise continuous CDF and
inverse CDF. This interpretation is shown in Figure 5.2(a). FDO’s limited precision
requirements make this assumption reasonable. The probability that a monitor’s
value for a run will be in the range covered by the ith histogram bin is the propor-
tion of the histogram’s total weight falling in that bin, and is shown at the top of the
figure. For instance, the 5.5 units of weight in the first bin in Figure 5.2(a) account
for 20% of the total histogram weight, and thus there is a 20% probability that the
monitor will have a value between 85 and 98.

Alternatively, a histogram can be interpreted as a set of impulses centered at
the midpoints of each bin, as in Figure 5.2(b). Under this interpretation, the 5.5

62

1H

2H

3H

10

12

Bin width:

Weight:

15

8Bin width:

Weight:

13

27

Bin width:

Weight:

10
0

11
0

12
0

13
0

14
0

15
0

11
7

12
585 93 10
1

10
9

12
4

15
085 13
7

11
198

3 5
1 2

6 3
102

4

1.01.5
6.0135.5

Figure 5.3: Combining histograms: H1 +H2 = H3

units of weight in the first histogram bin are a single impulse at exactly 91.5, the
mid-point of the bin. Similarly, an individual monitor value from a raw profile,
or monitors where all observations have the same value, can be seen as degenerate
point histograms where all the weight is contained in a single point (single impulse).

5.2.1 Building Histograms
For the purposes of combined profiling, a histogram H is a structure containing the
following fields:

bins The number of bins used by the histogram.

min,max The histogram covers the range [H.min, H.max]. Zero-valued
samples are not added to bins, so H.min > 0.

bin[b] The weight in the bth bin of an array of weights. Bins are counted
from 1. The lower bound of H.bin[1] = H.min, and the upper
bound of H.bin[H.bins] = H.max.

W The total non-zero weight added to H , i.e., the sum of weights in the
bins.

TW The total weight added to H . TW is the sum of W plus the weight
assigned to zero, which is not stored in any bin.

S The sum of all values added to H .

SS The weighted sum of squared deviations from the histogram mean
(
∑

weight(value −H.µ)2)

The values of W , TW , S, and SS allow the weighted mean and standard de-
viation of the values added to H to be updated incrementally. Tracking both W
and TW allows queries to the histogram to choose whether or not to include the
raw profiles where a monitor is never executed. The weighted average value, H.µ,

63

is computed by either H.µ = H.S
H.W

(zeros not included) or H.µ = H.S
H.TW

(zeros
included). The weighted standard deviation H.σ, is computed H.σ = H.SS

H.W
(zeros

excluded). To include zeros in the standard deviation, a copy of SS , SS ′, is incre-
mentally updated to include H.TW −H.W weights-worth of zero values, and then
H.σ = H.SS ′

H.TW
.

The histogram of a combined profile may be updated in a batch, incrementally,
or by a hybrid approach. The update method is unaffected by the choice of update
frequency. In general, updating produces a new histogram in 4 steps, with details
to follow:

1. Determine the range of the combined data. Create a new histogram with this
range.

2. Proportionally weight the bins of the new histogram according to their over-
lap with the bins of the original histogram.

3. Add the new data by increasing the weight in the appropriate bins.

4. Calculate new values for the mean and variance.

Usually, data added to a histogram comes from raw profiles, and takes the form
of one 〈weight , value〉 pair from each new profile. Weights are assigned on a per-
profile basis, and default to 1.0. If both the weight and value are non-zero, weight
is added to the bin who’s range encloses value, and weight is added to both W and
TW . Otherwise, the only change to the histogram is the addition of weight to TW .

The combination, or addition, of two histograms H1 and H2 to form a new
histogram H3 is illustrated in Figure 5.3. The range of H3 is simply the minimum
encompassing range of the ranges of H1 and H2: H3.min = min(100, 85) and
H3.max = max (150, 125). This range ([85, 150]) is divided into the same number
of bins as were present in H1 (5), giving H3 a bin width of 13. The weight of a bin
H3.bin[b] is given by the weights of the bins of H1 and H2 that overlap the range of
H3.bin[b], multiplied by the proportion of overlap. Take for example H3.bin[3] in
Figure 5.3. In H1 the bin width is 10, and in H2 the bin width is 8. The weight in
H3.bin[3] is calculated as follows:

overlap(H1, H3.bin[3]) = 3
(

120−111
10

)
+ 2

(
124−120

10

)
= 27+8

10
= 3.5

overlap(H2, H3.bin[3]) = 1
(

117−111
8

)
+ 2

(
124−117

8

)
= 6+14

8
= 2.5

H3.bin[3] = 3.5 + 2.5 = 6.0

Updating the sample mean and variance of a combined profile uses a weighted
version of the parallel algorithm due to Chan et al.. [29]. Given two bags of
〈weight , value〉 pairs, A (i.e., the original histogram H1) and B (i.e., the new data,

64

or another histogram H2), the W , TW , S, and SS from each set are combined to
calculate the values of these fields for the new histogram H3:

H3.W =H1.W +H2.W

H3.TW =H1.TW +H2.TW

H3.S =H1.S +H2.S

H3.SS =H1.SS +H2.SS + H1.W×H2.W
H1.W+H2.W

(
H1.S
H1.W

− H2.S
H2.W

)2

5.2.2 Multiplication of Histograms
In the next section, the ability to multiply together histograms (or monitors) is nec-
essary. However, multiplication is not a well-defined operation on histograms. Re-
calling that these histograms are probability distributions, multiplication intuitively
represents the conjunction of the events represented by the two monitors; the re-
sulting histogram is for the situation where both monitored behaviors occur. As
well, the coverage ratio H.W

H.TW
represents the (weighted) probability that a monitor

is executed in one run of the program.
Consider first the simplest case where a histogram H1 is multiplied by a point-

histogram Hp to produce H3. Hp is essentially a single 〈weight , value〉 pair. The
value range of H3 should be scaled by value = H2.min = H2.max. Since the
bin ranges are computed from min and max, this scaling automatically moves and
resizes the bins:

H3.min = H1.min×H2.min

H3.max = H1.max×H2.max

Additionally, the weight of H1 must be scaled by the weight of H2 to produce
the expected coverage ratio. Since we require that:

H3.W

H3.TW
=

H1.W

H1.TW
× H2.W

H2.TW

the weights can be set in the expected way:

H3.W = H1.W ×H2.W

H3.TW = H1.TW ×H2.TW

Finally, the weights in the bins of H1 must be similarly scaled to maintain the
condition that H.W is the sum of weights:

H3.bin[b] = H1.bin[b]×H2.W

Now consider the case where H1 and H2 are both full-fledged histograms. Un-
der the probability-distribution interpretation, each histogram bin is a uniform dis-
tribution. The probability distribution function of H1 × H2 is the normalized sum

65

of the probability distributions of the products of each pair-wise combination of
bins between H1 and H2. For illustrative purposes, consider two discrete uniform
distributions, X ∈ [1, 10] and Y ∈ [2, 11]. The product X × Y must have the
range [1× 2, 10× 11]. However, the resulting distribution will not be uniform: the
pair-wise products of the possible values forX and Y will be biased toward smaller
values. Likewise, the products of the continuous uniform distributions of histogram
bins will have non-constant range sizes and will not be uniformly distributed.

Histograms are already a fairly coarse approximation of monitor distributions.
Instead of dealing with H1.bins × H2.bins overlapping, variable-width, and non-
uniformly-distributed1 bin×bin products, the multiplication of histograms assumes
that each histogram bin is an impulse at the bin’s midpoint, as illustrated in Fig-
ure 5.2(b). Using a larger number of narrower bins reduces the modeling error in-
duced by this assumption. Consequently, the product of two bins is a 〈value,weight〉
pair, where the value is the product of the bin midpoints, and weight is the prod-
uct of the bin weights. The point-wise product of two histograms uses all pairings
between the b1 bins ofH1 and the b2 bins ofH2 to produce a bagB of b1b2 weighted-
value pairs. First, the range and weight of H3 are computed as above. Then, H3

allocates the same number of bins as H1, and the pairs in B are added to H3.

5.3 Unifying and Using Profile Information

CP provides a data representation for profile information, but does not specify the
semantics of the information stored in the combined profile. Raw profiles cannot
be combined naively. To illustrate this point, Figure 5.4(a) presents a CFG and the
table in Figure 5.4(c) provides the edge frequencies observed for three profiles: P1,
P2, and P3. The numbers within the rectangles are the probabilities for edges A→B
and B→C. First note that averaging values across profiles is misleading because it
can easily characterize behavior in a way that does not correspond to any individ-
ual profile; The average branch probability at B is 0.37, hiding its strongly biased
behavior. In all three profiles, the probability of entering the G-H loop from A is
0.2. The loop trip counts for P1 and P2 are identical, but the probability of entering
the C→D loop from B is 0.9 in P1 and 0.1 in P2. P3 is identical to P2, except that
all edge counts are doubled. Therefore, P2 and P3 are essentially the same pro-
file; if they were combined, the resulting profile should not show any variation in
program behavior. However, if the two raw frequencies for an edge such as G→H
were combined into a histogram, the values 5,000 and 10,000 would not suggest
this consistent behavior.

On the other hand, the raw frequencies for edge C→D in P1 and P2 are both
5,000, but P1 enters the loop much more frequently than P2 due to the 0.9 vs 0.1
branch probability at B. Therefore, the average trip count of the loop in P1 is much

1Glen et al. provide a case-based algorithm on geometric regions to compute the piece-wise
distribution function for the product of continuous random variables [44].

66

A

D

E

B

C

IN

OUT

F

{8,

 72,

 144}

G

H

{5k,

 5k,

 10k}

{8,

 72,

 144}

{5k,

 5k,

 10k}

{0.9, 0.1, 0.1}

{0.8, 0.8, 0.8}

{4980,

 4980,

 9960}

{4928,

 4992,

 9984}

{100, 100, 200}

{100; 100; 200}

{20, 20, 40}{80, 80, 160}

{20; 20; 40}

{72, 8, 16}

{72, 8, 16}

(a) A control flow graph. Edges are labeled with
the raw frequencies for {P1, P2, P3}. The proba-
bilities that the left branch is taken from nodes A
and B are listed in the adjacent boxes.

IN−A

OUT

E−

H−G H−EC−D

D−C D−E

B−F

F−E

A−GA−B

B−C G−H

(b) The edge-dominator tree for Figure 5.4(a).

Raw Normalized
Edge Dom P1 P2 P3 P1’ P2’ P3’

IN→A 100 100 200 1.0 1.0 1.0
A→B IN→A 80 80 160 0.8 0.8 0.8
A→G IN→A 20 20 40 0.2 0.2 0.2
G→H A→G 5,000 5,000 10,000 250 250 250
H→G G→H 4,980 4,980 9,960 249 249 249
H→E G→H 20 20 40 4.0e-3 4.0e-3 4.0e-3
B→C A→B 72 8 16 0.9 0.1 0.1
C→D B→C 5,000 5,000 10,000 69.4 625 625
D→C C→D 4,928 4,992 9,984 1.0 1.0 1.0
D→E C→D 72 8 16 1.4e-2 1.6e-3 1.6e-3
B→F A→B 8 72 144 0.1 0.9 0.9
F→E B→F 8 72 144 1.0 1.0 1.0
E→OUT IN→A 100 100 200 1.0 1.0 1.0

(c) Profiles P1, P2 and P3 show raw edge frequency counts. P1’, P2’, and P3’ are hierarchically-
normalized profiles suitable for combined profiling.

Figure 5.4: The CFG and edge-dominator tree of a procedure, with three possible
edge profiles

67

lower (69.4) than in P2 (625). In this case, histogramming the raw frequencies
suggests consistent behavior for the loop, which is misleading.

5.3.1 Hierarchical Normalization
The problem in both of the examples presented above is that the pairs of measure-
ments were taken under different conditions. Thus, when combining these measure-
ments, all values recorded for a monitor must be normalized relative to a common
fixed reference. Hierarchical normalization (HN) is a profile semantic designed
for use with CP that achieves this goal by decomposing a CFG into a hierarchy of
dominating regions. The results of using HN for the profiles in Figure 5.4(c) are
shown in the right portion of the table. As desired, P2 and P3 are identical, and the
differences in loop trip count between P1 and P2 are identified.

HN is presented for edge profiling. Vertex profiles are treated identically, but
use the domination relationships between vertexes instead of edges. Domination is
usually defined in terms of vertexes. In order to use an existing implementation of
a vertex dominator-tree algorithm with edge profiles, use the line graph of the CFG
instead of the CFG itself. The line graph contains one vertex for each edge in the
CFG, and edges in the line graph correspond to adjacencies between the edges of
the CFG.

Decomposing a CFG into a hierarchy of dominating regions to enable HN is
achieved by constructing its dominator tree. Each edge in the CFG is represented by
a node in the dominator tree. Denote the immediate proper dominator of CFG edge
e by dom(e). Each non-leaf node n(e) in the dominator tree is the head of a region
Ge, which, by construction, encompasses any regions entered through descendants
of e. To prepare a raw profile for combination with other profiles, the frequency
fe of each non-root node n(e) is normalized against the frequency of its immediate
proper dominator, fdom(e). The ratio of these two frequencies is invariant when a
branch probability or loop iteration count is (dynamically) constant. Along with
the issues illustrated in Figure 5.4, this process also prevents variable behavior in
an outer loop from masking consistent behaviors within the loop. Normalization
proceeds in a bottom-up traversal of the dominator tree, so that the head of a region
is normalized to its immediate dominator only after all of its descendents have been
normalized. The root of the dominator tree, i.e., the edge representing entry into
the procedure, is assigned a “normalized” value of 1. The HN for the example is
shown in the left portion of the table in Figure 5.4(c).

In order to understand the capabilities and limitations of a statistical model
incorporating HN, and to use it correctly, the model must be precisely defined.
Therefore, let Fe and Fdom(e) be random variables for the raw frequencies of e and
dom(e), respectively. Define a new random variable Ye = Fe

Fdom(e)
, which is the

frequency of edge e with respect to its dominator. The raw profile from run 1 of
the program records f 1

dom(e) and f 1
e , the observed frequencies of the two nodes over

that run. One sample of Ye, y1
e = f1

e

f1
dom(e)

is calculated as the hierarchically normal-

68

ized value for e. Over k runs, k samples y1
e , y

2
e , ..., y

k
e are added to the histogram of

Re. Thus, the histogram of monitor Re is an approximation for the true probability
density R∗e:

P(Re ≤ θ) ≈ P(R∗e ≤ θ) = P (Y ≤ θ) = P
(
Fe

Fdom(e)

≤ θ

)

5.3.2 Denormalization
The properties of a monitor Ra can only be directly compared to those of a mon-
itor Rb when dom(a) = dom(b). However, more generalized reasoning about Ra

may be needed when considering code transformations. Similarly, when code is
moved by a transformation, its profile information must be correctly updated. De-
normalization reverses the effects of hierarchical normalization to lift monitors out
of nested domination regions by marginalizing-out the distribution of the domina-
tors above which they are lifted. Denormalization is a heuristic method rather than
an exact statistical inference because it assumes statistical2 independence between
monitors.

Consider first the hierarchically-normalized raw profiles in Figure 5.4. Intu-
itively, the expected execution count of node F for a single execution through the
graph is calculated:

BPl(A) =

(
fA←B

fA←B + fA←G

)
BPr(B) =

(
fB←F

fB←C + fB←F

)
E[fF] = E[RIN←A × BPl(A)× BPr(B)]

P1 : E[fF] = 1.0× 0.80× 0.90 = 0.72

P2,P3 : E[fF] = 1.0× 0.80× 0.10 = 0.08

where BPd(n) is the probability of a branch going in direction d (either (l)eft or
(r)ight) from node n. However, even a single raw profile is a statistical model.
Thus, the calculation above assumes that the edge frequencies are independent.

With the same assumption, the same approach can be used with a CP. Thus, for
the CP built from P1, P2 and P3:

E[fF] = 1.0× 0.8×
(

0.9 + 0.1 + 0.1

3

)
= 0.29

which is the average of the expected frequencies.
The mean is a special case of marginalization; independence allows the joint

distribution to be broken into the product of individual distributions, where the ex-
pectation associates over the product, simplifying the calculation to the product of

2Ri,Rj are independent iff ∀i, j : P(Ri = i, Rj = j) = P(Ri = i)P(Rj = j). Control-flow
equivalence implies independence. Independence does not hold in most other cases.

69

DF DFb d
a d

g

d

f

e

ab

Figure 5.5: Denormalization of Ra and Rb with respect to their least-common dom-
inator Rd. Dashed lines show the path over which the marginalized histograms are
computed.

means seen above. Thus, to recover an “absolute” expected execution count from
an HN CProf, multiply the means of each monitor up the dominator tree to the pro-
cedure entry. Then, multiply by the expected invocation frequency of the procedure
(possibly using this technique over a CG CProf). Denormalization is this process of
multiplying monitors along a path in the dominator tree. The mean is a special case
of denormalization because it does not require the distribution of monitor values.
The general denormalization technique is formally presented in the remainder of
this section.

Let Ra and Rb be monitors from the same CFG. Let dom i(Ra) be the ith most-
immediate proper dominator of Ra. The least-common dominator of Ra and Rb

is Rd = domj(Ra) = domk(Rb), where there is no monitor Rn such that Rd

properly dominatesRn, andRn dominates bothRa andRb. DenormalizingRa from
the region dominated by dom(Ra) to the region dominated by Rd is achieved by
walking up the dominator tree. Let R̂−in be the denormalized distribution when Rn

is lifted above domi(n). R̂−1
n is created by multiplying together the histograms Hn

and Hdom(n). Denormalization can be applied to Ra and Rb recursively to produce

the desired R̂−ja and R̂−kb , which can be compared.

The computation of R̂−in takes O(ib2) time, assuming that all histograms use
b bins. The number of bins is chosen by the user. There is a tradeoff between
accuracy and precision on one hand and memory space and computation time on
the other.

Figure 5.5 shows a dominator tree containing the nodes a and b and their least
common dominator d, which is shaded. The dashed lines illustrate the paths fol-
lowed, in the dominator tree, to compute the denormalization. Nodes f and e are in
the path from d to a and there might be other nodes in the path from d to b. Thus,

70

Rd = dom3(Ra), and the histogram for R̂−3
a is calculated:

Ĥ−3
a = Ha ×He ×Hf ×Hd

5.3.3 Queries
In an AOT compiler, profiles are used to predict program behavior. Thus, raw pro-
files are statistical models that use a single sample to answer exactly one question:
“What is the expected frequency of X?” where X is an edge or path in a CFG or a
Call Graph (CG). A CP is a much richer statistical model that can answer a wide
range of queries about the measured program behavior. The implementation of CP
used in this work provides the following statistical queries as methods of a moni-
tor’s histogram:

H.min, H.max :
The maximum and non-zero minimum monitor value observed, as in Sec-
tion 5.2.1.

H.mean(incl0s) :
The true weighted average of observed monitor values. If incl0s is true, count
raw profiles where the monitor did not execute as 0-valued observations, as
in Section 5.2.1.

H.stdev(incl0s) :
The true weighted standard deviation of observed monitor values. If incl0s
is true, count raw profiles where the monitor did not execute as 0-valued
observations, as in Section 5.2.1

H.estProbLessThan(v) :
Estimates the value of the monitor’s CDF at v, i.e., P(R ≤ v). The estimation
is based on the assumed uniform distribution of bins.

H.quantile(q) :
For 0 ≤ q ≤ 1, estimates the (minimum) value v at the point where the
monitor’s CDF equals q, i.e., v when P(R ≤ v) = q. The estimation is based
on the assumed uniform distribution of bins.

H.applyOnRange(F (w, v), vmin, vmax) :
Computes the sum of applying the function F (w, v) to the impulses of the his-
togram in the range [vmin, vmax], as with the multiplication of histograms in
Section 5.2.2. For bins that partially overlap the range, the impulse’s weight
is proportional to the overlap of the bin with the range, and the impulse’s
value is the midpoint of the overlapping range.

H.applyOnQuantile(F (w, v), qmin, qmax) :
Like applyOnRange, but the range is set using the values associated with the
quantile points qmin and qmax.

71

H.coverage :
The probability of the monitor executing in a run of the program, computed
as H.W

H.TW
.

H.span :
The ratio between the range of the histogram and its maximum value, com-
puted as H.max−H.min

H.max
.

The mean value of a monitor is analogous to the value provided by a single
raw profile, and provides the desired substitutability of a CProf for a raw profile in
existing FDO transformations.

The additional statistical information provided by a CProf allows an FDO heuris-
tic to quantify the expected trade-offs between various workload-performance mea-
surements, such as between the impact on the 5%-quantile (nearly worst-case) or
the average impact on the 5%–95%-quantile range (omitting potential outliers).
In some transformations, the order in which candidates are considered is impor-
tant [26]. CP allows a sorting function to use, for example, both the mean and
the standard deviation of the candidates in order to prioritize low-variance oppor-
tunities. Behavior variation should not, by itself, inhibit optimization. Rather, CP
enables the accurate assessment of the potential performance impact of transfor-
mations informed by variable-behavior monitors in a variety of ways, and with
adjustable confidence in the result. Concrete examples of this kind of analysis are
provided by the implementation of an FDO inliner using CP described in Chapter 6.

5.3.4 Extensions and Alternative Usage
The empirical-distribution methodology of CP is orthogonal to the techniques used
to collect raw profiles. CP is applicable whenever multiple profile instances are
collected, including intra-run phase-based profiles, profiles collected from hard-
ware performance-counter, and sampled profiles. The main issue when combining
profiles is how normalization should be done in order to preserve program-behavior
characteristics.

CFG Paths

An algorithm that collects path profiling in a program that contains loops must break
cycles. The most commonly used technique to break such cycles is due to Ball and
Larus [12]. Given a simple loop, the main idea is to replace the back edge with a
set of sub-paths that include (a) a path from a point outside the loop to the end of
the first iteration, (b) a path from the loop entry point to a point outside the loop,
and (c) a path from the entry point to the exit point in the loop. Figure 5.6 illustrates
some of the paths inserted to replace the two back edges in a double-nested loop.

Hierarchical normalization must be adapted to work with paths because there
are no dominance relationships between paths. Consider two runs of the double-
nested loop of Figure 5.6, where the outer loop L1 iterates a total of k = 10, 000

72

A

B

C

Loop L1

Loop L2

P2 P3

P4 P5 P6

P1

(exit)

(entry)

k−1

9*k

Figure 5.6: Some sub-paths through a nested loop. The outer loop L1 iterates a total
of k times; the inner loop L2 iterates 10 times per iteration of L1.

times in the first run, and k = 100 times in the second run. In both cases the inner
loop L2 iterates 10 times per iteration of L1. A combined profile should identify the
path of execution within L1 as consistent across runs, but should indicate that the
frequency of the paths into and out of L1 vary significantly from run to run. The
solution is to normalize path frequencies with respect to the frequency of the vertex
that starts the path. For instance, P4 should be normalized to the frequency of L2 to
factor out k and preserve the constant nature of the inner loop.

Program Call-Graphs

Combined profiling can easily be extended to call-graphs (CG)3. Profiling a CG
gathers information about the frequency of inter-procedural calls. A CG can be
represented in multiple ways. For instance, a single edge may represent all calls
from a procedure foo() to a procedure bar(). Alternatively, there may be a separate
edge for each call-site in foo() that targets bar(). If context-sensitivity is included,
there are several alternatives to keep track of the execution path that leads to a call
from foo() to bar(). A common solution is to keep track of the k most recent calls
on the stack when the call from foo() to bar() occurs [76]. This sequence of calls is
called a call string.

Unlike a CFG, a CG is not a well-structured graph. Consequently, the dominator
tree is often very wide and shallow, which limits the utility of applying HN to the
full CG. Instead, we propose that CG monitors are normalized with respect to the
invocation frequency of the procedure where the behavior originates. In the case
of CG profiles that do not use context sensitivity, call frequencies are normalized
against the caller’s frequency. Likewise, when context-sensitivity is used to collect
a CG profile, call-string frequencies are normalized against the frequency of the
caller of the first call in the string. The combined profile then provides a conditional

3We do not attempt to extend CP to inter-procedural paths [75].

73

distribution describing the expected frequency of following a call or call string,
given that the start of the call string has been reached.

Value Profiling

A monitor R for value profiling observes the run-time values of a variable at a spe-
cific program point in order to enable specialization transformations [25]. Each
profiling run produces a histogram of the frequency of observed values of the vari-
able. However, since a variable could potentially take very many different values
over a program run, a caching technique is used to estimate the frequency of the n
most frequent values. Since a value profile is completely local to a single program
point, there is no hierarchy over which to normalize; normalization simply requires
converting the frequency for each value v, f(v), into a proportion of the total num-
ber of observations, P(v) (i.e., the probability of observing v). The CProf for value
profiling then creates a histogram for each frequently-observed v over the P(v) of
each run. Thus, the CProf identifies the frequent values of R, and the distribution
of the likelihood of observing each value. If the set of frequent values is not con-
sistent across runs, less-likely values may need to be pruned from the CProf, or the
variable may simply be marked as unsuitable for specialization.

Profiling Granularity

This work assumes that CP will combine input profiles from complete, single, pro-
gram runs. However, the input profiles can have arbitrary granularity. For instance,
CP could combine CFG profiles from each separate invocation of a function (a
finer temporal granularity). Similarly, each thread in a concurrent application could
contribute a separate raw profile for combination into a multi-threaded CProf for a
single run (thread-level granularity). In conjunction with phase detection, a CProf
could be build to represent behavior variation between fine-grained program phases.
Conversely, long-running server applications could periodically commit profile in-
formation to a CProf to model program behavior variation over different times of
day or even different days of the week.

5.4 Characterizing Combined Profiles

Combined profiling is a data representation for profile information collected over
multiple runs, and is motivated by the observation that program behavior is input
dependent and varies from run to run. Thus, a CProf supports queries to allow the
variation present in a program workload to be assessed. These metrics are calcu-
lated on a per-monitor basis for edge and path profiles for SPEC CPU 2006 integer
C benchmarks. All the inputs provided by SPEC are used; when the SPEC ’ref’
run uses multiple inputs, each of these inputs is treated separately. Additional in-
puts for MCF are taken from Berube [16]. Bzip2 uses the 1000-input workload

74

from kDataSets [102]. All combined edge profiles employ HN. The figures for path
profiling are very similar to their edge profiling counterparts, and are omitted. All
experiments are performed, and all metrics are calculated for combined profiles us-
ing 10, 20, 30, 40, and 50 histogram bins. We present detailed results for 50 bins.
Section 5.4.8 discusses the impact, which is modest and anticipated, of the number
of bins on the reported metrics.

The figures in this section, such as Figure 5.7, use violin plots, which are proba-
bility densities drawn vertically with the weight centered horizontally: the width of
the shaded area represents the probability mass at the corresponding y-axis value.
A uniform distribution would appear as a vertical band with constant width, while
a normal distribution would have a bulge at its mean and thin to a vertical line.
Gaussian smoothing transforms the discrete experimental data into a continuous
distribution. A black dot is placed at the mean of the data. The values listed at the
tops of the figures identify the number of unique monitors represented in the plot.

5.4.1 Histogram Breakdown

Table 5.1 summarizes the characteristics of the combined profiles for each bench-
mark. Runs indicates the number of program inputs in the workload. The Monitors
column lists the number of unique (E)dge or (P)ath monitors executed at least once
across all runs. All results exclude unexecuted monitors.

The “%” column for Histograms indicates the proportion of monitors who’s
non-zero values vary across the workload and thus require a histogram for accurate
modeling. Monitors executed in every run have Full coverage. Otherwise, they
have Partial coverage. No less than 10% of monitors require histograms, demon-
strating the presence of input-dependent program behavior in all benchmarks. The
following subsections examine this variation in detail.

The column labeled Points list the proportion of monitors that are Point distri-
butions in the CP. Points arise when all non-zero values for a monitor are equal: all
the probability mass occurs at a single point on the real number line. In these cases,
no histogram bins are required to represent the monitor in the CP. Point histograms
at 1.0 are uninteresting because they indicate that the monitor always executes the
same number of times as its dominator. For example, in Figure 5.4, the F→E edge
would have a point distribution at 1 because it is immediately dominated by, and
control-flow equivalent to, B→F, and thus must always have an HN frequency of
1. For edges, most of these monitors can likely be proved redundant by static anal-
ysis and then removed from the CP to reduce file size with no loss of information.
For paths, these point histograms identify paths that execute exactly once each time
their procedure executes. In most cases, such a path is the only non-loop path exe-
cuted in a function. Point distributions at values other than 1 are more interesting.
These points arise is cases such as (dynamically) constant loop trip counts or branch
probabilities. CP allows a compiler to evaluate potential code transformations in-
volving these monitors with confidence that the analysis is applicable to all program

75

Histograms Points (%)
Name Runs Monitors % Partial Full 6= 1.0 = 1.0

bzip2 1,000
2,182 E 35 366 399 3 61
1,295 P 90 904 265 3 6

gcc 11
93,748 E 43 15,973 24,703 3 52
41,276 P 81 18,972 14,724 13 4

gobmk 20
29,858 E 49 12,807 2,030 4 45
64,436 P 82 51,051 2,011 16 1

h264ref 5
8,846 E 26 1,023 1,297 8 65
4,857 P 76 2,398 1,325 13 9

hmmer 4
1,534 E 11 1 179 5 82

390 P 46 8 174 21 31

lbm 3
188 E 10 1 18 28 61

99 P 15 3 12 56 28

libquantum 3
585 E 27 8 150 1 71
220 P 63 13 126 5 31

mcf 12
491 E 42 22 187 1 56
249 P 83 39 170 1 14

milc 3
1,933 E 11 12 202 16 72

750 P 32 23 217 44 23

sjeng 3
3,778 E 58 127 2,077 2 38

36,111 P 41 9,913 4,971 58 0

sphinx3 3
3,278 E 10 9 342 14 74
1,147 P 35 30 374 36 28

Table 5.1: Characteristics for batch-combined (E)dge and (P)ath profiles.

76

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

●

●

●

●

E
xe

cu
te

d
E

dg
e

C
ov

er
ag

e

bzip
2 gcc

gobmk

h264ref

hmmer
lbm

libquantum mcf milc
sje

ng

sp
hinx3

670 38091 23596 2687 15 87 24 57 51 276 15

Figure 5.7: Edge coverage, excluding fully-covered monitors

runs.

5.4.2 Coverage

One benefit of using multiple profiling runs is that these runs might exercise more of
the program code than any individual run. The dichotomy between a monitor being
executed or unexecuted in a run is perhaps the most obvious indicator of behavior
variation. We report the coverage of a monitor as the proportion of runs where the
monitor executes.

Figure 5.7 shows the distribution of monitor coverage across the workload, ex-
cluding fully-covered monitors. The coverage value is normalized to the number of
runs. For example, 670 of the 2182 executed edges in bzip2 are not executed in
every run. On average, those edges are executed by about 65% of the 1000 runs.
However, the small bulge at the bottom of the plot indicates that several edges are
covered by very few runs; a large group of edges are covered by slightly more than
40% of the runs, and another group of edges are covered by more than 85% of
the runs. An FDO compiler would be oblivious to the execution of any or all of
these monitors using a single-input profile, and may consequently make suboptimal
decisions from a whole-workload perspective.

Hmmer, libquantum, milc, sjeng, and sphinx3 have more than 90% of
their executed edges covered by every run, which may be due to a lack of diversity
in their very small workloads. At least 30% of the edges in the other benchmarks
are not executed in every run, up to 79% for gobmk. Furthermore, the distribu-
tion of coverage for these benchmarks shows that the number of runs that did not
execute some edge is spread across the range, indicating that these differences in

77

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

●

●

●

●

M
ax

im
um

 E
dg

e
P

ro
ba

bi
lit

y

bzip
2 gcc

gobmk

h264ref

hmmer
lbm

libquantum mcf milc
sje

ng

sp
hinx3

765 40676 14837 2320 180 19 158 209 214 2204 351

Figure 5.8: Maximum edge likelihood with 50 bins (no points)

coverage are unlikely due to a small number of large-scale control-flow alternatives.
Particularly for gcc and gobmk, the set of executed edges varies significantly from
run to run. In contrast, for both milc and sphinx the ref and train inputs cover
identical sets of edges, while the test input misses a handful of edges, producing
their distinctive “point violins” at 66%.

5.4.3 Maximum Probability

An FDO compiler uses profile information to predict future program behavior. In
the case of point histograms, this prediction can be made correctly from any non-
zero sample. The prediction is more complicated when behavior varies from run
to run. However, if the behavior is consistent for most runs, then perhaps the most
frequently observed behavior is a good predictor. It may be sufficient for transfor-
mations to only consider this dominating behavior. A CP histogram is a probability
distribution: the probability of the monitor taking on a value within the range of a
histogram bin is equal to the proportion of the histogram’s total weight found in that
bin. Thus, the most likely behavior of a monitor can be estimated by finding the
bin containing the most weight. The maximum probability of a monitor is the pro-
portion of weight in the heaviest bin out of the weight in the histogram. Histogram
weight only includes weight from raw profiles that cover the monitor.

Unfortunately, most monitors do not have overwhelmingly dominant behaviors.
Figure 5.8 shows the proportion of histogram weight that occurs in the heaviest
bin, i.e., the probability of the most likely behavior. For the four benchmarks with
more than 10 runs, this probability tends to be low: there is no dominant behavior
for these monitors. No single run, and no point statistic, is a good representative of

78

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

● ●

●

●
●

●

●

●

●

E
dg

e
O

cc
up

an
cy

bzip
2 gcc

gobmk

h264ref

hmmer
lbm

libquantum mcf milc
sje

ng

sp
hinx3

765 40676 14837 2320 180 19 158 209 214 2204 351

50 11 20 5 4 3 3 12 3 3 3

Figure 5.9: 50-bin histogram occupancy for edges (no points)

such monitors. A distribution model is needed to evaluate transformations involving
these monitors, as discussed in Section 5.3.3. Redundancy in bzip2’s very large
workload allows for dominant behaviors in some monitors, as exemplified by the
bulge near 100%.

5.4.4 Occupancy

The occupancy of a histogram refers to the proportion of bins that contain non-
zero weight, and thus indicates how weight is distributed within the histogram.
If the weight is distributed across the histogram, many bins will be used, but if
weight is concentrated at a few points, then most histogram bins will be empty. The
number of non-empty bins is limited by the number of raw profiles combined. This
evaluation reports the number of non-empty bins as a proportion of the maximum
possible number of non-empty bins.

Figure 5.9 presents bin occupancy: a histogram with weight in many bins in-
creases the violin width toward the top of the figure. The maximum number of
occupied bins is listed at the bottom of the figure, which is, with the exception of
bzip2, the number of runs. The average proportion of bins used is over 50%,
indicating that when variation is present, monitor values are not limited to a small
number of possibilities. The maximum probabilities discussed above indicate that,
in most cases, none of the bins contain a majority of the histogram weight. Con-
sequently, the weight must be distributed across many bins. Visual investigation of
the individual histograms for bzip2 reveals that no single simple parametric model
(e.g., uniform, normal) matches the shape of a majority of the histograms [21]. In
contrast, CP’s histograms match the shape of the data automatically.

79

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

●

●

●
●

●

●

●

●

E
dg

e
S

pa
n

bzip
2 gcc

gobmk

h264ref

hmmer
lbm

libquantum mcf milc
sje

ng

sp
hinx3

765 40676 14837 2320 180 19 158 209 214 2204 351

Figure 5.10: Span of edge histograms (no points)

5.4.5 Span
Variation of program behaviors is practically relevant only if the variation is sig-
nificant compared to typical monitor values. The span of a histogram is the ratio
between its range and its maximum value. The lower-bound on the range is the
smallest non-zero value in the histogram. Figure 5.10 presents histogram span. Re-
call that monitors use HN to keep behavior variation local to the monitor where it
occurs. Practically relevant behavior variation should widen the violin plot toward
the top of the figure. Figure 5.10 suggests that all the benchmarks contain monitors
that exhibit practically significant behavior variation across the workloads. An FDO
compiler must take this variation into account when proposing code transformations
by, for example, calculating expected benefit for the worst case or a low-quantile
point as well as the average, weighting by coverage, or considering span in sorting
functions.

5.4.6 Drift
Ideally, building a combined profile incrementally should yield the same result as
building it from a batch of raw profiles. However, when histograms are combined in
the incremental construction, weight is proportionally allocated to the overlapping
bins in the new histogram. This weight-distribution process can cause histogram
weight to shift away from the observed value. Drift measures the difference be-
tween a combined profile built as a single batch versus one built fully incrementally
from the same raw profiles.

Drift is due to histogram ranges growing during incremental construction. How-
ever, the final range, and thus the bin boundaries, of both histograms will be iden-

80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

● ●

●
● ● ●

●

●
●

●

E
dg

e
D

rif
t

bzip
2 gcc

gobmk

h264ref

hmmer
lbm

libquantum mcf milc
sje

ng

sp
hinx3

765 40676 14837 2320 180 19 158 209 214 2204 351

Figure 5.11: Edge-weight drift using 50-bin histograms (no points)

tical because the extreme values in the data are fixed. The difference in weight
between corresponding bins is due to drift. Summing these differences for all pairs
of bins double-counts total drift: drift is half this sum, reported as a proportion of
total histogram weight. This study reports drift using the merged results of 5 dif-
ferent randomly-selected incremental combination orders. Drift is maximized by
combining profiles one at a time. Drift is calculated between these CProfs and a
batch-combined profile and presented in Figure 5.11. The figure merges all five
comparison results. A drift of 0 indicates that the batch and incremental histograms
are identical, while a value of 1 is impossible because it requires that the weight in
the two histograms not overlap at all.

For benchmarks with few runs, there is very little drift because the histograms
do not have a range until the second profile is added; a third profile will only change
the histogram range if the new value is not between the first two. The infrequent
large drift values occur when the range expansion from the third point causes one
of the existing end-point bins to be split near that endpoint’s value, causing a large
proportion of that bin’s weight to be distributed to an adjacent bin.

From the benchmarks with a greater number of runs, gcc, gobmk, and MCF
show much more drift. This drift is due to two factors: histogram ranges have been
changed more frequently in the incremental construction, causing more bin weights
to be split; and more bins contain weight that can drift when the range changes.

However, bzip2 does not display much more drift than the benchmarks with
few runs. The larger the number of raw profiles that have already been added to the
CProf, the lower the probability that an additional raw profile will change one of the
extreme values. The large number of runs for bzip2 allows the histogram ranges
to expand to approximately their final size before most of the weight is added to

81

Raw Batch Incremental
Name Runs Single Total Size % Size %

bzip2 1,000
E 14 14,392 489 0.03 530 0.03
P 9 8,062 664 0.08 741 0.09

gcc 11
E 1,047 11,517 9,793 0.85 11,859 1.02
P 251 2,552 5,853 2.29 7,413 2.90

gobmk 20
E 178 3,557 4,127 1.16 5,417 1.52
P 432 4,916 10,436 2.12 13,456 2.73

h264ref 5
E 99 495 592 1.19 604 1.22
P 35 146 420 2.86 433 2.95

hmmer 4
E 59 238 94 0.39 96 0.40
P 4 15 32 2.13 34 2.25

lbm 3
E 1 4 11 3.17 12 3.20
P 1 2 6 2.78 6 2.82

libquantum 3
E 5 16 40 2.42 41 2.48
P 2 7 19 2.80 20 2.98

mcf 12
E 3 31 60 1.91 79 2.53
P 3 33 45 1.36 63 1.93

milc 3
E 19 56 118 2.10 119 2.13
P 7 21 54 2.61 56 2.71

sjeng 3
E 32 95 313 3.29 325 3.42
P 272 451 2,570 5.69 2,584 5.72

sphinx3 3
E 30 91 199 2.18 202 2.21
P 11 33 83 2.50 87 2.61

Table 5.2: File sizes, in KB, of raw, batch-combined, and incrementally-combined
(E)dge and (P)ath profiles. The % column gives the overhead factor for the CProf
vs. the collected raw profiles.

the histogram. Thus, the vast majority of the weight in those histograms is subject
to very little drift. Therefore, in order to minimize drift, a CProf should initially
be batch-constructed from a collection of raw profiles. Subsequent incremental
additions to the CProf then have a greatly reduced probability of causing drift.

5.4.7 Space Requirements

Edge profiles grow linearly with the number of edges in a program; path profiles
grow linearly with the number of executed paths. In raw profiles, each monitor is
represented by a 4-byte counter. Like combined profiles, path profiles only store
executed monitors, but add a 4-byte identifier. In a CP, each monitor maintains
the true mean and variance of all samples along with the histograms; an entry for

82

a single monitor is 45 bytes4, plus a 1-byte bin index and an 8-byte weight per
non-empty histogram bin. Thus, even point distributions requires 11x (edge) or
5.5x (path) more space than the same monitor in a raw profile. Table 5.2 presents
profile file sizes. Raw edge profiles and batch-combined profiles always have the
same size. The sizes of raw path profiles and increment CPs are taken as the largest
file across all runs or combination orders, respectively. Comparing batch and in-
cremental combination, the drift observed in Figure 5.11 causes more bins to be
non-empty, resulting in larger files. This effect is most visible for the benchmarks
with several runs: gcc, MCF, gobmk, and bzip2. Likewise, these benchmarks
illustrate that the file size grows slowly: as more profiles are combined, it becomes
less likely that an additional profile will place weight in an empty histogram bin.
Bzip2 illustrates how CP can dramatically reduce storage requirements for pro-
files as the total number of profiles becomes large, e.g., systems using continuous
profiling.

5.4.8 Number of Bins

The appropriate number of histogram bins is dependent on the precision require-
ments of the profile’s consumers and is independent of the number of raw profiles
available. We present data from 50 bins because it is likely a (loose) upper-bound
on the required precision.

Coverage, span, and the results in Table 5.1 are properties of program behaviors
and are thus independent of the number of histogram bins, while maximum likeli-
hood, occupancy, and drift depend on the number of bins. Results from 10, 20, 30,
and 40 bins are consistent with the discussion and conclusions presented above for
50 bins.

Maximum likelihood increases by roughly 0.1 with 10 bins instead of 50 for
benchmarks with more than 10 runs. Occupancy decreases slightly with fewer bins,
even for benchmarks with only 3 runs: the reduced precision changes some 3-
bin monitors into 2-bin monitors. Bzip2 is the exception. With 10 bins, nearly
all monitors have 100% occupancy. Increased precision allows the CP to identify
ranges where monitor values are not observed, resulting in empty bins. The differ-
ence in drift between 10 and 50 bins is negligible for all benchmarks except MCF,
where drift is reduced by about 0.05 with 10 instead of 50 bins.

File size increases with more bins, though this effect is small or negligible for all
benchmarks except gobmk and MCF, and bzip2, where it is most pronounced. As
expected from occupancy, gcc, gobmk, and MCF exhibit modest file size increases
all the way up to 50 bins despite having 20 or fewer runs. The rate of growth
decreases as the number of bins increases. For example, the batch-combined edge
profile for bzip2 is 219 KB with 10 bins, and grows by 75, 70, 65, and 60 KB to
reach 489 KB with 50 bins.

4Fields are 8-byte doubles; floats would roughly halve the size

83

5.5 Conclusion
Combined profiling is a practical and statistically sound methodology to model be-
havior variation across multiple data inputs. Histograms provide a simple repre-
sentation with bounded space requirements that nonetheless provide the rich set
of queries associated with a distribution model. Hierarchical normalization local-
izes behavior variation to the monitor where it occurs, while providing a consistent
frame of reference that separates the characterization of behavior variation from the
inevitable, but uninformative, run-to-run variations in raw profile counter values.
The experimental evaluation of CP shows that behavior variation is present both in
simple programs such as bzip and in programs with more complex control flow
like gcc and gobmk. This variation can be captured and queried by the CP statis-
tical model. Chapter 6 demonstrates the use of CP to inform function inlining.

84

Chapter 6

Function Inlining

Function inlining, or simply inlining, is a classic code transformation that can sig-
nificantly increase the performance of many programs. A compiler pass that decides
which calls to inline, and in which order, is referred to as an inliner. The basic idea
of inlining is straightforward: rather than making a function call, replace the call
in the originating function with a copy of the body of the to-be-called function.
Nonetheless, many inliner designs are possible; Section 6.2 describes the existing
inliner in LLVM, while Section 6.3 describes the alternative approach used by a new
feedback-directed inliner (FDI) that uses CP. All inlining discussed in this chapter
is implemented in the open-source LLVM compiler [68].

The use of combined profiles to guide FDI allows FDI to consider the impact of
inlining decisions across the variations in calling behavior observed in the training
workload. Existing FDO systems rely on the single values recorded in raw profiles
to inform code transformations. Consequently, FDI is the first feedback-directed
transformation to make decisions weighted by more than a single value. Therefore,
instead of developing a single inlining heuristic, FDI provides a framework upon
which several parameterized families of inlining heuristics are built. These families,
described in Section 6.3, demonstrate the versatility provided to transformations by
CP’s distribution model.

Some terminology is required to identify the various functions and calls in-
volved in the inlining process. The function making a call is referred to as the
caller, while the called function is the callee. The representation of a call in a com-
piler’s internal representation (IR) is a call site; in LLVM, a call site is an instruction
that indicates both the caller and the callee. Thus, inlining replaces a call site by
a copy of that call site’s callee. When a call is inlined, the callee may contain call
sites, which are copied into the caller to produce new call sites. The call site where
inlining occurs is called the source call site. A call site in the callee that is copied
during inlining is called an original call site, and the new copy of the original call
site inside the caller is called the target call site.

85

6.1 Inlining Considerations

There are several issues that any inliner must consider when choosing call sites for
inlining. This section examines the conditions that make a call site ineligible for
inlining, along with the costs and benefits of inlining a call.

6.1.1 Barriers to Inlining

Not every call site can be inlined. Indirect calls use a pointer variable to identify
the location of the called code, and arise from function pointers and dynamically-
polymorphic call dispatching. These calls cannot be inlined, because the callee is
unknown at compiler time. External calls transfer execution outside of the current
compilation unit, such as into different modules (source files) or to statically linked
library functions, and cannot be inlined before link time because the source repre-
sentation of the callee is not available to the compiler. Calls to dynamically-linked
libraries can never be inlined. Moreover, if a callee uses a setjump instruction or
indirect branch (computed goto), that callee cannot be inlined.

Recursion presents a challenge to inlining because care must be taken to prevent
infinite inlining of the recursive call chain. The inlining chain of call site c repre-
sents the sequence of calls removed from the (dynamic) call chain between the entry
into c’s caller and the entry into c’s callee because of inlining. For instance, if foo
is inlined into bar, any target call sites created by this inlining will append bar
to their inlining chain; inlining has removed bar from the call chain originally re-
quired to eventually execute the original call site starting from foo. If the callee of
call site c is already in c’s inlining chain, then c’s inlining chain already contains a
recursive cycle. For some inliners and some inlining heuristics, inlining a function
a second time in an inlining chain may potentially lead to infinite inlining, because
the set of target call sites from this inlining are equivalent to those in the initial set
of call sites that lead to the creation of c.

The inliner implemented in LLVM never inlines directly-recursive call sites (iden-
tical caller and callee). Functions that form a multi-call recursive cycle can be in-
lined into other functions in the cycle, but a function can appear at most once in any
inlining chain. The new FDO inliner presented in this chapter uses the same policy
to control recursive inlining.

6.1.2 Benefits of Inlining

Inlining a call has a small direct benefit. Removing the call reduces the number of
executed instructions. The call instruction in the caller is unnecessary, as is the
return instruction in the callee. Furthermore, any parameters passed to the callee
and any values returned no longer need to be pushed onto the stack1.

1Some calling conventions allow values to pass between the caller and callee in registers.

86

fib5() {

 result = iterative(&fibStep(), 5);

 return(result);

}

iterative(*Step(), n) {

 A = array[n+1];

 for(i=1; i<=n; i++)

 A[i] = *Step(A, i);

 return(A[n]);

}

fibStep(A[], n) {

 if((n==1)||(n==2)) return(1);

 return(A[n−2] + A[n−1]);

}

(a) Original code fragment

fibStep(A[], n) {

 if((n==1)||(n==2)) return(1);

 return(A[n−2] + A[n−1]);

}figStep(A[],n) {

 A = array[n+1];

 for(i=1; i<=n; i++)

 A[i] = *Step(A, i);

 ret_iterative = A[n];

 n=5;

 Step() = &fibStep();

fib5() {

 return(result);
 result = ret_iterative;

}

(b) after inlining iterative

fibStep(A[], n) {

 if((n==1)||(n==2)) return(1);

 return(A[n−2] + A[n−1]);

}

fib5() {

 A = array[6];

 for(i=1, i<=6; i++)

 A[i] = fibStep(A, i);

 return(A[6]);

}

(c) after constant and
copy propagation

fib5() {

 A = array[6];

 if((i==1)||(i==2)) A[i] = 1;

 else A[i] = A[i−2] + A[i−1];

 }

 return(A[6]);

 for(i=1, i<=6; i++) {

}

.

(d) after inlining fibStep
and simplification

fib5() {

 A0 = 1;

 A1 = 1;

 A2 = A0 + A1;

 A3 = A1 + A2;

 A4 = A2 + A3;

 A5 = A3 + A4;

 A6 = A4 + A5;

 return(A6);

}

.

(e) after loop unrolling
and scalar promotion

Figure 6.1: A sequence of transformations on a code fragment that computes Fi-
bonacci numbers, illustrating the code-simplification opportunities enabled by in-
lining

87

However, the greatest potential benefit of inlining comes from additional code
simplification it may enable by bringing the callee’s code into the caller’s scope.
Figure 6.1 presents a running example demonstrating the transformations that be-
come possible due to inlining. Many code analysis algorithms work within the
scope of a single function; inter-procedural analysis is usually fundamentally more
difficult, and always more computationally expensive than intra-procedural analy-
sis, because of the increased scope. A function call inhibits the precision of analyses
and is a barrier to code motion because the caller sees the callee as a “black box”
with unknown effect.

Upon inlining, the formal parameters in the callee are replaced by the actual
parameters used in the call. Thus, constants passed as parameters can be propagated
within the inlined code and any expressions using these values can be simplified,
as demonstrated by the transformation from Figure 6.1(b) to Figure 6.1(c). When
a branch test simplifies to a constant expression, the branch outcome is known at
compile time. The branch is removed, along with the now-dead code for the not-
taken branch. Similarly, constant propagation can limit the possible target of an
indirect call to a single function. In that case, the indirect call can be converted to a
direct call, as illustrated by the conversion of ∗Step to fibStep in Figure 6.1(c).

Pointers frequently impede the ability of a compiler to transform code because
the exact memory location(s) accessed through a pointer are usually obscured or
unknowable at compile time. Alias2 analysis attempts to prove which memory lo-
cations a pointer must never, must always, or may possibly point to, and the sets
of pointers that may point to the same location(s). If a local variable is passed to
a call by a pointer, an alias is created. Inlining the call allows the parameter to
remain a local variable referring to a non-ambiguous memory location. Thus, the
alias analysis within the inlined code is more precise than it is in the callee.

6.1.3 Estimating Inlining Benefit

As discussed above, inlining a call directly reduces the number of executed instruc-
tions. Both the LLVM and FDI inliners estimate these savings as 10 instructions for
the call, plus one instruction per parameter. The analyses used to determine the ad-
ditional benefits of inlining a call site do so by estimating the number of instructions
in the inlined code that will be eliminated after inlining. Therefore, the estimate is
for the static number of instructions, or code size, rather than the dynamic number
of instructions executed at run time. Code size reduction is estimated for constant
parameters and stack-allocated arrays passed by pointer, on a per-parameter basis.

The same straight-forward analysis is used by both inliners to estimate the im-
pact of each parameter. When analyzing a parameter, the LLVM inliner counts the
number of instructions eliminated, and adds bonus “instruction-equivalent” sav-
ings for beneficial situations that do not directly eliminate instructions. Instead of

2Multiple names (e.g., pointer variables) for a single memory location are aliases.

88

adding bonuses to a grand total during the analysis, the FDI inliner maintains sepa-
rate counts for each indirectly-beneficial situation.

The analysis for stack-allocated arrays passed by pointer is essentially the same
as the constant-parameter analysis. The base address of the array becomes a con-
stant that can be propagated, while the array data is known to reside on the stack.
This additional information enables transformations that treat the array locations as
scalar values3. For example, after loop unrolling and scalar promotion, the code in
Figure 6.1(d) is transformed into the code in Figure 6.1(e). Constant propagation in
that final version of the code allows the compiler to replace the entire initial com-
putation of fib5 by the constant value 13. However, the analysis does not consider
the potential impact of such transformations, but only count instructions directly
eliminated because the array’s base address is a constant.

The impact of a constant parameter is determined for each formal parameter of
each function in advance, by assuming that it takes a constant, but unknown, value.
LLVM’s IR uses a single static assignment (SSA) representation, where each value
produced is defined exactly once. Data flow is represented by directly linking each
value4 to the instructions that use it. Each IR instruction u using parameter p is
examined, assuming that p takes a constant value. If u is neither a branch nor a call
instruction, then if all of u’s inputs are constants, it can be eliminated by constant
folding. When p is the only non-constant input to u, u is counted as an eliminated
instruction, and the analysis continues recursively to the uses of u.

When u is an indirect call for which the callee becomes constant, the call is
resolved to a direct call. LLVM awards a large bonus for this conversion; FDI counts
the conversion separately from other eliminated instructions.

If u is a branch or switch instruction who’s test condition becomes constant, the
control-flow outcome of the branch is restricted to a single possibility. However,
since the value of p is unknown, the actual outcome of the branch is also unknown.
Each of the n possible outcomes are considered equally likely. The average size
of the blocks corresponding to the possible outcomes, s, is determined. Only one
outcome is possible, thus s(n−1) instructions are expected to be eliminated. LLVM
does not include the (now-unconditional) branch instruction in the count of elimi-
nated instructions. FDI counts eliminated branch instructions separately from other
eliminated instructions. The analysis does not continue to subsequent successor
blocks.

In the evaluation of the inlining benefit of a particular call site, the benefit pre-
computed for the callee’s formal parameters is retrieved, as appropriate, for each
actual parameter that is a constant or a pointer to a stack-allocated array. The impact
of each parameter is accumulated to estimate the total code-size reduction enabled
by inlining the call site. The LLVM inliner simply adds these values together. FDI
adds the counts for each category it measures and then computes a weighted sum
of those values, as explained in Section 6.3.

3e.g., scalar promotion, loop-invariant code motion
4Formal parameters and IR instructions are both values.

89

6.1.4 Costs of Inlining
Inlining non-profitable call sites can indirectly produce negative effects. The in-
creased scope provided for analysis by inlining also increases the costs of these
analyses. Most algorithms used by compilers have super-linear time complexity.
Extremely large procedures may take excessively long to analyse; some compilers
will abort an analysis that takes too long. Furthermore, a program must be loaded
into memory from disk before it can be executed. A larger executable file size in-
creases a program’s start-up time. Finally, developers eschew unnecessarily large
program binaries because of the costs associated with the storage and transmission
of large files for both the developer and their clients. Therefore, inlining that does
not improve performance should be avoided.

Both inliners discussed in this chapter use estimated code growth as the cost
metric for inlining. The basic technique for code-growth estimation is to count the
number of instructions in the callee. Each inliner then adjusts this base cost as
explained in their respective sections.

6.1.5 Inlining-Invariant Program Characteristics
While inlining a call causes a large change in the caller’s code, it has a minimal
direct impact of the use of memory system resources at run time. Ignoring the
subsequent simplifications the inlining enables, inlining proper has no appreciable
impact on register use, or data or instruction cache efficiency. Regardless of inlin-
ing, the same dynamic sequence of instructions must process the same data in the
same order to produce the same deterministic program result.

Inlining should have negligible impact on register spills. The additional vari-
ables introduced into the caller by inlining place additional demands on the register
allocator, and may increase the number of register spills introduced into the caller.
However, without inlining, the register values in the caller must be preserved across
the call. The architecture-specific calling convention requires the caller and/or
callee to save register values on the stack before execution in the callee begins,
so that register values needed by the caller are not overwritten by the callee. The
original register values must be restored before resuming execution in the caller.
Thus, inlining merely shifts the responsibility for register management from the
calling convention to the register allocator.

Similarly, inlining does not change the data memory accesses of a program.
Whether in the caller or the callee, the same loads and stores, in the same order,
are required for correct computation. Subsequent transformations may reorder in-
dependent memory accesses to better hide cache latency, or eliminate unnecessary
accesses altogether, but this is not a direct consequence of inlining. Thus, data
cache accesses do not change with inlining, and nor does the cache miss rate.

Likewise, the same instruction sequence, minus the call and return instructions,
is executed regardless of inlining. Given a fully-associative cache with sufficiently
small lines, instruction cache activity will be identical in either case. However,

90

caches are set associative, and have lines that hold many instructions. Therefore,
instruction cache efficiency can change if frequently-executed instructions are more
often adjacent to infrequently-executed instructions in the inlined code, and this
adjacency is contained within a cache line. A block placement algorithm linearizes
the basic blocks in a function in order to place it in the linear memory address space.
Block placement attempts to follow a block in the linear sequence by its most likely
successor. Given the same block placement algorithm for both the inlined and non-
inlined versions of the code, there is no reason to believe that inlining will cause the
algorithm to be less effective at separating hot and cold code. Furthermore, even if
hot code more frequently shares a cache line with cold code, this situation will only
cause a small increase in the number of cold misses in the instruction cache. Unless
the hot code no longer fits within the instruction cache, the steady-state miss rate
will not change. On the other hand, the potentially reduced total code size in the
case of inlining can only increase the effectiveness of instruction caching.

6.2 Static inlining in LLVM
The default, or static, inliner in LLVM is focused on eliminating calls to small func-
tions. It does not use any feedback information, nor does it make any attempt
to estimate the execution frequencies of call sites. The CG is decomposed into
strongly-connected components (SCC). Since the edges in a CG are function calls,
an SCC in the call graph represents a recursive cycle. Each component is processed
as a unit, and each function is processed exactly once during the entire inlining pass.

Inlining decisions for the call sites within a function are considered using a
worklist. The worklist initially contains all call sites in the function, with calls to
other functions in the same SCC moved to the end of the list. New call sites created
by inlining are added to the end of the list. Thus, the inliner usually requires a single
pass over the worklist. However, if the target of an indirect call is resolved, inlining
becomes possible at that call site and it must be re-considered in an additional pass
over the worklist.

The decision of whether or not to inline a call is made by comparing the cost
of inlining to a threshold. Costs are measured in terms of code size. The base cost
of inlining is determined for a callee independently of the call site. This base cost
is computed as the number of instructions in the callee, plus a penalty for each call
site in the callee. When making the inlining decision for a source call site, the base
cost is modified by several factors. First, the cost is reduced by a large constant if
the source is the only call to the callee; in that case, the original copy of the callee
will be dead code after inlining, and will be deleted. The cost is also reduced using
the method described in Section 6.1.3 if any of the actual parameters at source are
constants and/or arrays allocated on the caller’s stack. If the adjusted inlining cost
is greater than the threshold, the source call site will not be inlined.

However, if the cost is less than the threshold, an additional check is performed
to determine if inlining the source will prevent the caller from itself being inlined

91

at other outer call sites5. The initial cost of each outer call site is evaluated to see
if it would be inlined under the condition that the source call site is not inlined.
The outer call site is also evaluated assuming that the source call site is inlined.
This increased cost of the outer call site is (roughly) the sum of its initial cost plus
the cost of inlining source. If the outer call site would be inlined using the initial
cost but would not be inlined using the increased cost, its initial cost is added to a
total outer cost. After all outer call sites have been evaluated, the total outer cost is
compared to the inlining cost of source. Source is inlined only if there are no outer
call sites or its inlining cost is less than the total outer cost.

6.3 A New CP-Driven Feedback-Directed Inliner for
LLVM

The feedback-directed inlining (FDI) evaluated in this work is fundamentally differ-
ent than the existing static inliner in LLVM. The static inliner inlines small calls to
remove call overhead with minimal increases in code size. FDI attempts to min-
imize the dynamic number of instructions executed by the program by inlining
the most frequent calls. While the static inliner considers call sites on a function-
by-function basis, FDI considers the set of inlining opportunities present at global
scope in the current state of the program.

6.3.1 Worklist Algorithm

Algorithm 2 presents an outline of the worklist algorithm used by FDI. The algo-
rithm uses several data structures:

candidates The worklist is a sorted list of candidates. A call site is an inlining
candidate if it is a direct call, and if the callee does not contain a setjump
nor has any previous attempt to inline the callee failed. Furthermore, the call
site must have executed at least once during profiling.

ignored A list of call sites that are not inlining candidates. This list is maintained
to enable correct and efficient bookkeeping, and to allow any copies of these
call sites created by inlining their caller to be immediately ignored.

callers A mapping from functions to the call sites that call them. This map al-
lows for the re-scoring of call sites on the event that a call is inlined into
their callee. That inlining will change the callee’s size, and may change the
expected simplifications possible if the callee is inlined.

inlineResult A structure returned by inliner that provides summary information re-
garding the transformation. In particular, it indicates if the attempted inlining

5Some details are omitted from this description

92

Algorithm 2: FDI worklist
input : Module M: Whole-program IR
input : File cpFile: Combined profile
Data: List<call site> candidates, ignored
Data: Map<Function→ List<call site> > callers
initialize(M, cpFile);1

budget = computeCodeGrowthBudget();2

candidates.sort();3

while budget > 0 AND NOT candidates.empty do4

source = candidates.popBest();5

if source.score ≤ 06

break;7

endif8

if source.callee.cannotInline9

ignored.add(source);10

continue;11

endif12

if source.expectedCodeGrowth > budget13

ignored.add(source);14

continue;15

endif16

// Try to inline the candidate...
inlineResult = LLVM.inlineIfPossible(source);17

if inlineResult.failed18

source.callee.setCannotInline();19

ignored.add(source);20

continue;21

endif22

// Inlining succeeded
budget -= inlineResults.codegrowth;23

callers[source.getCallee].delete(source);24

for caller ∈ callers[source.caller] do25

caller.calcScore();26

end27

for i← 1 to inlineResults.numInlinedCalls do28

target = inlineResults.inlinedCall[i];29

original = inlineResults.originalCall[i];30

callers[target.getCallee].insert(target);31

if ignored.contains(original) > 032

target.histogram = 0;33

ignored.add(target);34

else35

target.histogram = source.histogram × original.histogram;36

target.calcScore();37

candidates.insert(target);38

endif39

end40

end41

93

failed. FDI enhances the default LLVM structure with co-indexed lists identi-
fying the new call sites created in the caller by inlining, and their originating
call sites in the callee. This information is required so that profile information
can be estimated for the new call sites.

At the start of FDI, the CProf is read in, and the histograms are associated with
the appropriate call sites (line 1). Every call site is inserted into the callers list of
their callee. During initialization, each call site is evaluated, and added to either the
candidates or ignored list, as appropriate. When a call site is rejected for inlining,
it is immediately and permanently moved from the list of candidates to the ignore
list. Transformations such as constant propagation or alias analysis can resolve
the callee of an indirect call to a single possibility, thereby making it a direct call.
However, if the call is indirect when the call site is first discovered by the inliner, it
is placed on the ignore list in spite of the possibility of future inlining resolving the
call. Calls to libraries and compiler built-in functions are also immediately ignored
because they cannot be inlined.

The initial size of each function, in LLVM IR instructions, is computed; the total
program size is used to determine the code growth budget (line 2). The compu-
tation of the code-growth budget is explained in Section 6.3.2. Each successful
function inlining reduces the code growth budget by the resulting increase in code
size (line 23). The worklist algorithm iterates until either the budget is expended,
or no candidates remain.

In each iteration of the algorithm, the best candidate (largest score) is removed
from the candidates list as a potential inlining source call site (line 5). Scoring
candidates is explained in detail in Section 6.3.3, but the basic idea is that the score
represents the expected benefit of inlining the candidate. Higher scores are better,
while a zero score represents no expected benefit. Before inlining is attempted for
the source, several checks are performed. If the source’s score is not positive, then
no more candidates exist with positive scores (line 6). Inlining call sites with no
expected benefit is counter-productive, so the algorithm terminates. If it has already
been determined that the callee of the source cannot be inlined, attempting to inline
this candidate is futile (line 9). Finally, if the code growth incurred by inlining the
source is expected to exceed the remaining code-growth budget, the candidate is
skipped (line 13). However, other candidates with lower scores but also smaller
size may still exist in the candidates list.

If all the initial checks succeed, an attempt is made to inline the source call site
(line 17). If inlining fails, the callee is marked “cannotInline” and the source is
ignored. Successful inlining leads to several subsequent tasks. First, the remaining
code-growth budget is reduced by the actual increase in code size caused by inlining
(line 23). If the inlined callee becomes dead code, the size of the callee is deducted
from the increase in size of the caller. In such cases, the net code growth due to
inlining is frequently negative due to simplification of the inlined code, and the
remaining code-growth budget increases. Next, since the source no longer exists,
it is removed from the callee’s list of callers (line 24). The caller has changed due

94

to inlining, thus every candidate that calls the caller must have its score reevaluated
(line 25).

Finally, inlining may copy original call sites from the callee to target call sites
in the caller; they must be added to their callee’s callers list. These target call sites
may be new inlining opportunities. If the original call site was ignored, the target
should be ignored as well (line 32). Otherwise, a combined profile for the target
must be estimated. This estimation is in fact denormalization; the original call site
has effectively been moved “above” the source call site and into the caller, just as
CFG monitors were moved above branches in Chapter 5.3.2. The histogram for
the target is thus the product of the histograms from the source and original call
sites (line 36). The call site profiling is not context sensitive, and therefore assumes
that the distributions of the original and source call sites are independent. This
independence in turn allows the distribution of the target call site to be estimated by
simply taking the product of the source and original histograms.

6.3.2 Code-Growth Budget

Section 6.1 identified that excessive increases in code size should be avoided. Code
growth is the ratio of the size of the transformed program to the original size of
the program. Size can be measured in many ways; the selected method is highly
dependent on the context in which the measurement is done. The “real” measure
of code growth comes from comparing the final executables. However, it is impos-
sible to know these file sizes in the middle of compilation. In addition, the exact
impact of a transformation (e.g., inlining) on code size can only be estimated. More
significantly, the actions of one transformation can change the actions taken by sub-
sequent transformations. Therefore, both code size and code growth are estimated
at inlining time by counting LLVM IR instructions.

As shown in Algorithm 2, inlining is controlled by a code-growth budget. Each
successful inlining operation reduces the remaining budget by the increase in size of
the caller function. If the callee becomes dead after inlining, i.e., there are no other
direct calls to the callee, and the callee cannot be called indirectly (is not address-
taken), the callee code will be removed by inter-procedural dead-code elimination.
In this case, the inlining budget is also credited with the size of the callee.

Zhao showed that smaller programs benefit from proportionally larger inlining
budgets than larger programs [104]. He defines a sequence of code-size thresholds
that determine the allowable code-growth. This work takes an alternative approach
of defining a continuous function to calculate the code-growth budget. Consider
the requirements of such a function. First, it must be a decreasing function. More
specifically, it must be a concave function that has a slope that is initially negative
and increases to 0: small programs can have a very large budget, but the budget
quickly reduces to a small value as program size increases. The 1

x
family is a good

initial candidate for the code-growth function. However, these functions reduce too
quickly initially. Therefore, a convex function is used in the denominator. Experi-

95

mentation suggests that a function of the form 1√
x

has the desired shape. Given the
initial program size, s, the final code-growth budget function, Budget(s), computes
the proportional growth appropriate for a program of the given size. The allowed
total code size after inlining is thus s(1 + Budget(s)). Budget is fine-tuned with the
following parameters:

gmax The maximum limit on code growth.

gmin The minimum limit on allowed code growth.

smax The maximum program size; the point where all larger programs
simply use gmin as the code growth limit.

smin The minimum program size; the point where all smaller programs
simply use gmax as the code-growth limit.

A scaling factor, denotedA, allows the budget computed when the program size
is smin or smax to equal gmax or gmin respectively, keeping Budget continuous at the
endpoints of the specified size range. Thus, A is defined by the g and s parameters:

A = gmax

(√
smin −

√
smax + gmin

)
The complete code-growth function is:

Budget(s) =

gmax, s <= smin

A

(
1√
s
− 1
√
smax

+ gmin

)
, smin < s < smax

gmin, s >= smax

This implementation sets the program size range [smin, smax] to [5,000, 425,000]
LLVM IR instructions, and the code-growth range [gmin, gmax] to [0.05, 10.0]. Fig-
ure 6.2(b) displays the resulting code-growth function, with dashed lines showing
gmin and gmax, and vertical lines identifying benchmark sizes at the start of inlin-
ing. The total code size obtained if the code-growth budget is consumed exactly is
presented in Figure 6.2(c).

6.3.3 Candidate Scoring
The LLVM inliner makes inlining decisions at each call site by comparing the ex-
pected code growth to a fixed threshold. FDI takes a more directly execution-time-
oriented approach to inlining and attempts to achieve the greatest reduction in ex-
ecuted instructions for the least amount of code growth. Therefore, FDI breaks
the evaluation of a call site into three components: the expected inlining bene-
fit, the expected code growth, and execution frequency of the call site. Given a
call site, CS, the inlining candidate scoring function, Score(CS), combines these
three elements so that Algorithm 2 can select the best (highest score) candidates for

96

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

C
od

e
S

iz
e

In
cr

ea
se

 F
ac

to
r

Code Size (1K Instr.)

bz
ip

gz
ip

(a) Code-growth budget: small programs

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

C
od

e
S

iz
e

In
cr

ea
se

 (
%

)

Code Size (1K Instr.)

go
bm

k

gc
c

(b) Code-growth budget: large programs

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 50 100 150 200 250 300 350 400

To
ta

l C
od

e
S

iz
e

(1
K

 In
st

r.
)

Original Code Size (1K Instr.)

go
bm

k

gc
c

Size+G(x)
Size+gmin

Size

(c) Total code size if inlining budget is exhausted

Figure 6.2: Allowable code-growth budget for FDI inlining in terms of LLVM IR
instructions. The initial size of bzip2, gzip, gobmk, and gcc are indicated with
vertical lines.

inlining first. CP provides a rich characterization of execution frequency. Mak-
ing use of that information is described in detail in Section 6.3.4; for now, let
Reward(Benefit(CS), RCS) represent some function of the estimated (execution-
frequency independent) inlining benefit at call site CS and RCS, that call-site’s CP
monitor. Given the benefit function Benefit(CS) and a cost function Cost(CS) de-
scribed in this section, an inlining candidate’s Score is conceptually computed:

Score(CS) =
Reward(Benefit(CS), RCS)

Cost(CS)

The exact definition of Score(CS) is given at the end of this section. Both Cost
and Benefit consider the code simplification potential of a call site. Given a call
site, CS, and its set of actual parameters, A, the following terms contribute to those
functions:

A The number of parameters passed at CS.

iConst The total estimated number of non-branch instructions eliminated,
for each constant parameter a ∈ A.

brConst The total estimated number of branch instructions eliminated, for
each constant parameter a ∈ A.

97

iCall The total estimated number of indirect call targets resolved over
each constant actual parameter at CS.

iArray The total estimated number of instructions eliminated over each
local stack-allocated array parameter at CS.

The true code-size impact of multiple constant parameters is unlikely to be
the additive combination of the impact of each constant parameter considered in
isolation. However, the straight-forward implementation of this analysis does not
propagate the impact of branch removal beyond the immediate successor blocks
of a removed branch. Thus, the potential overlap between the sets of instructions
eliminated for multiple constant parameters is negligible. Therefore, while the es-
timated amount of code reduction for a single constant parameter may be signif-
icantly under-estimated, the impact of multiple constant parameters is essentially
additive. Improvements to the constant-parameter analysis are suggested in Sec-
tion 6.3.5.

Benefit

The inlining benefit function Benefit(CS) predicts the benefit of inlining call site
CS. This benefit is expressed as the estimated number of instructions (or equivalent)
saved at execution time for each execution of R; Reward will use the CProf to
incorporate the execution frequency of RCS into the final score.

When estimating the number of instructions saved due to a constant parameter,
FDI counts the number of non-branch instructions eliminated separately from the
number of branches eliminated. Even though they will not become inlining can-
didates, FDI also counts the number of indirect calls resolved to direct calls. The
increased analysability of the function may benefit subsequent transformations.

The underlying analysis for constant and local-array parameters is shared by
FDI and the LLVM inliner. However, unlike the LLVM inliner, FDI does not assume
that the benefits of constant arguments are additive. Instead, the maximum savings
for any individual constant parameter is used as the estimated instruction savings.
The number of indirect calls resolved to direct calls is additive, because the resolved
target must, by definition, be a single constant value; a target resolved using one
constant parameter must be independent of all other parameters.

In addition, parameter analysis in FDI is done lazily instead of eagerly. Inlining
into a function invalidates any pre-computed parameter benefits in either approach,
while the estimates are not required unless scoring a candidate call site that actu-
ally passes a constant or local array. There is no point calculating the impact of a
constant parameter if no call sites have a constant for that parameter.

Unlike the static inliner, FDI does not penalize a call site when additional call
sites exist in the callee. Benefit(CS) is computed:

Benefit(CS) = 10 + |A|+ iConst + iArray + (4× brConst) + (2× iCall)

98

Cost

The code-growth budget limits the amount of inlining that FDI can do; when the to-
tal, real, increase in code size exceeds the budget, FDI terminates. Thus, the notion
of cost in this section does not pertain to a negative impact of inlining on execution
time, but rather is used to normalize the estimated Benefit of inlining according to
the corresponding budget consumption. Consider, for instance, a single-instruction
accessor function. The Benefit of inlining such a function is only the default 10 in-
structions saved for eliminating the call. However, the inlined instruction can likely
be eliminated entirely; once the identity of the returned value is no longer obscured
by the function call, uses of the returned value can access it directly. Thus, the
Benefit of inlining the accessors, per unit cost, should be large.

The code-growth estimate for inlining CS is initially the size of the callee,
Size(CS). Similar to the computation of Benefit, one instruction is subtracted from
the callee’s size for each instruction (branch or otherwise) estimated saved due to
constant parameters or local-array parameters. If the callee has a single basic block,
the code in this block is inserted directly into the caller’s block in place of CS. Con-
sequently, it is much more likely that the expressions in the callee can be folded into
expression in the caller, thus eliminating those instructions. If the callee contains no
conditional branches, only a single block will be inlined6, and therefore the code-
growth estimate is reduced by 5 instructions. Conditional branches are counted
while the size of a function is calculated. Cost is thus defined:

Cost(CS) = Size(CS)− iConst− brConst− iArray − (CS.branches ? 0 : 5)

The above code-growth estimate may be negative for very small callees. Using
a negative Cost value for normalization in the definition of Score given at the be-
ginning of this section would result in a negative score (an unprofitable candidate),
when it should instead indicate a highly profitable candidate for inlining. As well,
a cost of 0 results in an undefined score. These problems are solved by interpreting
a negative Cost 7 as a bonus to benefit. Thus, 8 a negative Cost is subtracted from
Benefit, making it larger:

Score(CS) =

Reward(Benefit(CS), RCS)

|Cost(CS)|
, Cost(CS) > 0

Reward(Benefit(CS), RCS), Cost(CS) = 0

Reward(Benefit(CS), RCS)− Cost(CS), Cost(CS) < 0

6Function entry and exit blocks are eliminated by inlining.
7Intended method: as a multiplicative inverse rather than an additive inverse
8Intended method: Score is computed by dividing the Reward by positive Costs, but multiplying

by the absolute value of negative Costs

99

6.3.4 Frequency Estimation with Combined Profiles

The execution frequency of a call site is a direct indicator of the exploitability
of the inlining opportunity presented by that call site. A reward function com-
bines this notion of exploitability with the expected benefit of inlining. The pre-
vious section presented the abstract reward function, Reward(Benefit(CS), RCS),
and detailed the frequency-independent calculation of Benefit. FDI provides sev-
eral increasingly-sophisticated categories of reward functions that combine Benefit
with the exploitability indicated byR’s frequency distribution. The reward function
desired for a particular compilation is selected, by name, through a command-line
parameter.

Frequency estimation from a raw profile is straight-forward: the value in the
profile is the frequency estimation. A CProf provides much richer data, and rather
than reasoning about execution frequency values, inlining decisions must consider
execution frequency distributions. The combined call profiling used to inform FDI
uses the hierarchical-normalization approach suggested in Chapter 5.3.4: the ex-
ecution frequency of each call site is normalized with respect to the invocation
frequency of the caller. In order to improve execution time for all inputs in a
program’s workload, FDI should likely consider inlining as a multi-objective op-
timization problem and use an appropriate reward function. This section describes
the framework provided by FDI for the construction of reward functions. Specific
reward functions are proposed and evaluated in Chapter 7.

Static Rewards

Static reward functions are comparable to the default LLVM inliner, and do not
use any profile information. FDI provides the static Benefit reward, which simply
returns the result of Benefit(CS). Using this reward function allows the FDI inlining
algorithm presented in Algorithm 2 to be directly compared to the default inliner.
Any performance difference between these two inliners is not due to the use of FDO
or CP but rather to the the use of a code-growth budget instead of an allowable
callee-size threshold; a global, sorted, worklist; and/or the small differences in the
computation of the impact of constant arguments.

Simple Point Rewards

Simple Point (SP) reward functions are comparable to traditional FDO approaches
because they estimate call-site execution frequency using point summary statistics
that can be computed exactly by simple incremental algorithms. The histograms
described in Chapter 5 provide three such metrics: the minimum (non-zero) ob-
served value, the maximum observed value, and the average of all observed values.
FDI computes the min, max, and mean rewards by simply multiplying Benefit by

100

the corresponding statistic:

min(CS) = Benefit(CS)×HCS.min×HCS.coverage

max(CS) = Benefit(CS)×HCS.max

mean(CS) = Benefit(CS)×HCS.mean×HCS.coverage

Weighting Benefit by coverage in the min and mean rewards is appropriate be-
cause the minimum and average benefit of inlining should also consider how often
(in terms of program runs) this reward is available. However, max is estimating
the maximum benefit in any run, so the proportion of runs where the call site is
executed is not relevant.

Quantile Point Rewards

Quantile Point (QP) reward functions use the estimated frequency of a monitor cor-
responding to one or more quantile values to compute reward, and thus cannot be
computed without a distribution model. FDI accepts, as command line parame-
ters, a list of quantile points, Q. For each point q ∈ Q, QPPart(CS, q) computes
the product of Benefit and the estimated frequency value for quantile(q). These
products can be combined linearly, or, to support multi-objective evaluation, non-
linearly:

QPPart(CS, q) = Benefit(CS)×HCS.quantile(q)

QPLinear(CS) =
∑
q∈Q

QPPart(CS, q)

QPSqrt(CS) =
∑
q∈Q

√
QPPart(CS, q)

When Q = {0.5}, the QP reward acts like the mean SP reward, but weight
Benefit by the estimated median value of the distribution rather than the average.
If Q = {0.25, 0.75}, the quantile point metrics use the value of the first and third
quartiles. QPLinear weights Benefit by the sum of these values; a lower frequency
at q = 0.25 can be directly compensated for by a higher frequency at q = 0.75. On
the other hand, QPSqrt takes the square root before summing the weighted Benefits,
and thus balances the dual objectives of greater benefit at both the q = 0.25 and
q = 0.75 quantile points.

Neither the QP nor QR quantile-based reward functions weight by coverage.
The selection of multiple quantile points for consideration is a case-based analysis;
selecting one low and one high quantile point could be seen as balancing a pes-
simistic estimation against an optimistic estimation. Weighting by coverage may
be appropriate for a pessimistic estimation, but is not appropriate for an optimistic
estimation (e.g., the max SP reward)9.

9Weighting only some quantiles by coverage is a problem not dealt with in this work, but is a
straight-forward extension of the current implementation; weighting all quantiles by coverage can
be trivially implemented.

101

Quantile Range Rewards

Quantile Range (QR) reward functions compute reward based on the histogram
weight contained in one or more histogram segments (ranges of monitor values),
where the endpoints of these segments are determined by pairs of quantile points.
The QR rewards use the same command-line list, Q, of quantile points as the QP
rewards, but group the q values into a sequence of 〈qmin, qmax 〉 pairs. Recall
from Chapter 5 that the histogram query applyOnQuantile(F (w, v), qmin, qmax)
applies the function F to the 〈weight , value〉 pairs of the set-of-impulses interpreta-
tion of a histogram between the specified quantile points. The QR rewards define F
to be a simple product, thus applyOnRange computes the weighted average value
of the monitor in the specified range. QRPart(CS, 〈qLB, qUB〉) weights Benefit by
the average monitor value for each segment. As with the QP rewards, the QR
rewards can be computed using either a linear or non-linear combination of the
histogram-weighted Benefit of each segment:

F (w, v) = w × v

QRPart(CS, 〈qLB, qUB〉) = Benefit(CS)×HCS.applyOnQuantile(F, qLB, qUB)

QRLinear(CS) =
∑

〈qLB,qUB〉∈Q

QRPart(CS, 〈qLB, qUB〉)

QRSqrt(CS) =
∑

〈qLB,qUB〉∈Q

√
QRPart(CS, 〈qLB, qUB〉)

6.3.5 Potential Improvements

The existing parameter analysis could be improved for FDI in several ways. The
existing analysis tries to estimate the impact of parameter attributes on the amount
of code inlined into the caller. While code-size impact is important to compute
an accurate Cost, it provides a poor estimate of inlining’s execution-time impact,
which is needed to compute Benefit.

One improvement would be the use of a more sophisticated dead-code analysis
when a branch is eliminated. Eliminating a branch can potentially cause an entire
sub-graph of the CFG to become dead, not just the blocks that are the immediate
successors of the branch. Consider, for instance, the common practice of early-
exit tests that skip nearly the entire function when little or no work needs to be
done. The current analysis estimates that the average size of the two immediate
successor blocks of the test will be eliminated, regardless of the parameter value.
A more accurate analysis would distinguish between the case where most of the
function is eliminated because the early exit is taken, versus the case where the exit
is not taken and only the early return and the branch are saved. However, in
this case the benefit of multiple constant parameters would not be additive. One
solution would be to compute the set of eliminated basic blocks for each individual

102

parameter, and then compute the combined impact using the union of these sets for
all constant parameters. Furthermore, each analysis result would be tied to a specific
parameter value. However, constant parameters tend to take values from a small
set (e.g., −1, 0, 1, 2; enumerated types) or widely-used compile-time constants
(e.g., #define BLOCKSIZE 128), so caching the analysis results should be
very effective.

Additionally, FDI could significantly improve the estimation of the reduction
in executed instructions by using CFG profiling to provide an execution-frequency
estimate for eliminated instructions. In fact, even the current straight-forward anal-
ysis could be greatly enhanced; constant-folding an instruction in a hot loop would
be estimated to provides a large reduction in executed instructions, while the same
opportunity within an unexecuted error-handling path would be expected to have
no impact on execution time.

6.4 Conclusion
This chapter presents the new FDI inlining framework, a versatile set of inliners
for LLVM guided by combined profile information. Each family of inliners uses a
parameterized Reward function to query the combined profile for points or ranges
of expected execution frequencies in terms of distribution quantiles. FDI differs
from the default inliner not only in its use of profile information to include ex-
pected execution frequencies in the estimated benefit of inlining a call site, but also
because it employs a worklist to select the most profitable inlining opportunities
first, stopping only when a code-growth budget is exceeded or when no profitable
opportunities remain. In contrast, the default inliner investigates each call site once
during a bottom-up traversal of the call graph, selecting call sites for inlining if the
estimated benefit of inlining exceeds a threshold. Therefore, the FDI framework
allows flexibility in the order in which inlining is performed. While the default
inliner includes heuristics to suppress the inlining of a call site if this inlining will
likely inhibit a more profitable inlining opportunity later in the call-graph traversal,
the FDI worklist automatically prioritizes the most profitable opportunities regard-
less of where they occur in the program. A thorough evaluation of both the default
inliner and FDI inliners follows in Chapter 7.

103

Chapter 7

Evaluation:
CP in the LLVM Compiler

Many aspect of FDO for ahead-of-time compilation have been explored in the pre-
vious chapters. Chapter 3 proposed a cross-validation evaluation methodology for
FDO. Chapter 4 presented evidence of the often large variations in FDO perfor-
mance resulting from the choice of a different training input in the traditional single-
profile approach to FDO. Chapter 5 introduced the combined-profiling technique
that provides an FDO compiler with a distribution model characterizing the inter-
run variations in program behavior. Chapter 6 explained FDI, an inlining framework
for LLVM informed by combined profiles.

This chapter brings the elements of the preceding chapters together by perform-
ing a proper cross-validated evaluation of FDI and static inliners. Afforded with the
parametrized families of inliners offered by FDI, this first evaluation of CP-driven
FDO includes several instantiations of inliners from each family. Section 7.1 ex-
plains how FDI is integrated into the LLVM compilation process. The details of the
experimental methodology used for this study, including concrete instantiations of
FDI’s quantile-based reward functions, are presented in Section 7.2. Results from a
case-study evaluation of FDI using the real, non-benchmark versions of bzip2 and
gzip, as well as the gcc and gobmk benchmarks from SPEC CPU 2006, follow
in Section 7.3.

7.1 LLVM Implementation

Chapter 6 described FDI in insolation. However, FDI must be integrated into LLVM
in order to be used. For this study, two issues must be resolved: the position of
FDI in the sequence of code transformations, and the design of a build process that
allows all inliners, including the default inliner, to be applied in a consistent and
comparable fashion. Section 7.1.2 presents a high-level overview of the compilation
process used to generate each version of the program used in the evaluation of FDI.
Section 7.1.3 then details how FDI is incorporated into the LLVM transformation

104

sequence. The details of the evaluation of each inlining alternative, including the
specific program versions created, the way profiles are used with FDO, and the
concrete instantiations of FDI reward functions are left to Section 7.2.

7.1.1 Loading Combined Profiles

Combined profiling is available to LLVM transformations in two ways. An exter-
nal tool named llvm-cprof creates a CProf using histograms with the specified
number of bins. One or more profiles, in any combination of raw or combined,
are given as command-line parameters. However, because CP applies HN to raw
profiles, the whole-program bitcode file from which the instrumented executable
was created must be available and specified as a required command-line parameter.
Alternatively, FDI allows the set of raw and/or combined call profiles it should use
to be specified as parameters in the compilation command-line that invokes FDI.

Both approaches use a CProf factory class to transparently load, normalize (if
applicable), and combine the input profiles. The LLVM profile file format is struc-
tured as a sequence of profile information blocks. This format allows multiple raw
and/or combined profiles for any combination of the profiling types supported by
LLVM to exist in the same file. Thus, if instrumentation for both edges and call
profiling is inserted into the program, a training run will generate a profile file con-
taining one profile information block for the call profile, and another for the edge
profile. If such a file is provided to the factory class, it will load all available profile
blocks, and store each in a list according to the type (edge, path or call) of profile
it represents. When all the input profile files have been processed, the profiles in
the list for each type of profiling are combined in a CP batch operation, produc-
ing one combined edge profile, one combined path profile, and/or one combined
call profile. These profiles are then available to FDI and llvm-cprof. FDI uses
only the combined call profile, and will abort if this profile fails to build or is empty.
llvm-cprof will write each non-empty combined profile as a profile information
block in a new output profile file.

In this study, FDI is always provided with a single profile file containing one
call-profiling information block. If the required profile is a raw profile, it is listed
on the command-line as-is. However, if FDI will use a truly combined profile from
multiple training runs, llvm-cprof is used to create the combined profile in ad-
vance.

7.1.2 Compiling with LLVM

An overview of the compilation process used in this study is presented in Figure 7.1.
Light-gray shapes are intermediate program representations, black shapes are data
inputs and profiles, and white shapes are executable programs. Thin white arrows
represent conceptual data flow without processing, such as re-using preinline.bc;
or un-grouping or regrouping the sets of inputs and profiles. The large, shaded,

105

instr preinline
base
.bc

static static inlining

postinline
FDI
.bcFDI

Static Compilation

Multi-Profile with CP

Profiling

CProf

postinline

single
.bc
(in)

single
(in)

W

pn
(pick one)

in

Traditional Single-Profile

Feedback-Directed Optimization

pn1-prof. inlining

FDI inlining CP & HN

.bc.c
.cpp

P

postinline
static
.bc

instr
.bc instr. calls

preinline
.bc

preinline
.bc

preinline
.bc

Figure 7.1: Overview of FDO program compilation with LLVM for static and FDI
inlining. Postinline .bc files are omitted for simplicity.

boxes identify the three main components of the build process: static compilation,
call profiling, and FDO; FDO contains sub-components for traditional single-input
FDO and for the multi-profile FDO enabled by CP.

Compilation with LLVM begins with the translation of each source file into an
LLVM bitcode file (.bc). Bitcode is the on-disk representation of LLVM’s IR lan-
guage; compilation can be stopped at any point and the intermediate form of the
program written to disk. A bitcode file can be an input to the compiler in order to
resume compilation or to combine several bitcode files. Bitcode can thus serve the
same function as object files, and are used in their stead. A whole-program base
bitcode file is constructed before any code transformations are applied.

LLVM provides the opt program, which allows compiler users to directly apply
one or more transformations to a bitcode file. The results produced by opt are writ-
ten to a new bitcode file. Each labeled transition between bitcode files in Figure 7.1
represents a separate invocation of opt. For instance, applying the preinline trans-
formations to base.bc, or inserting the call profiling instrumentation (implemented
as a transformation) into preinline.bc, are each done using opt.

The static compilation component of the build process applies the default in-
liner, as well as FDI using the static Anti and Benefit reward functions. After in-
lining, the postinline transformations are applied, and an optimized version of the
program is produced for each of the three static inlining alternatives.

The profiling component of the build process inserts call profiling instrumenta-
tion into the preinline bitcode to produce the instr version of the program. The call

106

profiling is a vertex profiling, limited to the basic blocks containing call sites that
FDI considers inlining candidates, and to the entry block of each function. This
profiling allows hierarchal normalization to normalize the frequency of each call
site by the frequency of the caller. The set of raw call profiles, P , is generated by
running instr on each input inW .

The FDO component of the build process uses FDI. Under the traditional ap-
proach to FDO, a single raw profile is used. FDI internally produces a CProf from
this profile, and uses a simple point reward function to guide inlining on the preinline
bitcode. Since the CProf contains a single value for each monitor, all simple point
metrics are equal. Alternatively, FDI is informed by a multi-profile CProf and uses
one of the concrete reward functions described in Section 7.2.4. In both cases,
compilation then proceeds as in the static inlining case: the postinline transforma-
tion group is applied and the native executable is created. The details of which
profiles are used to create program versions follows the methodology of Chapter 3
and are presented in Section 7.2.

7.1.3 Transformation Sequence

Selecting the correct sequence in which to apply code transformations is a chal-
lenging problem. Iterative compilation techniques often search for the best order-
ing, which has been demonstrated to depend on both the program being compiled
and the input on which the program is run. This problem arises because each trans-
formation applied may create or inhibit opportunities for later transformations. In
this study, the position of inlining in LLVM’s transformation sequence is selected to
match its position during a typical compilation. However, because FDI uses profile
information, it must follow the creation of the instrumented version of the program.
Since profiling imposes an execution time overhead, as much optimization as pos-
sible should precede the profiling step in order to minimize profiling time.

Inlining alternatives are injected into LLVM’s standard -O3 code transformation
sequence by creating two subsets of -O3 to apply before and after inlining. Trans-
formations applied before inlining are referred to as the preinline transformation
group; those applied after inlining are referred to as the postinline transformation
group. Every compilation, regardless of inliner, first applies preinline, then the se-
lected inlining, and finally postinline. In this way, each inliner, including the de-
fault inliner, is applied to the identical initial program, and followed by the same
sequence of subsequent transformations. Therefore, a fair comparison of code size,
inlining transformation time, and program execution times is possible between al-
ternative inliners. The instrumented version of the program is created from the
preinline version, as illustrated in Figure 7.1.

Inlining (with the rest of -O3) happens twice in a typical compilation using
LLVM. The first inlining is done with the initial processing of the individual source
files, where any calls to functions in a different file cannot be inlined. The second
inlining happens at link time, and can thus inline those previously cross-module

107

calls. The compilation process followed in this work does not do any code transfor-
mation until after all the source files have been combined into a single bitcode file.
Thus, the inlining evaluated here is essentially the link-time inlining.

The preinline and postinline groups are both large subsets of -O3. Each group
maintains the original ordering of the transformations. postinline is all of -O3 ex-
cept for library-call simplification, which is done in preinline and should not be
affected by inlining. Because preinline occurs before profiling, it focuses on code
simplification (e.g., constant propagation, global variable elimination, dead code
elimination) and excludes transformations that modify function calls (e.g., argu-
ment promotion, argument scalarization), replicate code (e.g., loop unrolling, scalar
promotion), or explicitly change control flow (e.g., jump threading, loop unstitch-
ing). The application of preinline before profiling and inlining, and postinline after-
ward, is similar to a typical compilation where -O3 is applied first on a file-by-file
basis, and then again at link time.

Inlining is the first transformation applied in LLVM’s -O3 transformation group.
This approach is consistent with the default inliner’s focus on code size. In compar-
ison to the FDO transformations in the IBM XL compiler listed in Chapter 4.3.1,
the default LLVM inliner is an aggressive early inliner. The LLVM inliner must be
aggressive, because it is not followed by a late inliner focused on execution time
improvement. In contrast, FDI is a late inliner, as discussed in Chapter 6. Ide-
ally, FDI would be accompanied by an FDO-based early inliner that targets tiny,
frequently-executed functions. However, this early inliner does not exist. While
additional performance gains might be available if the default inliner was applied
after FDI, this approach would conflate the inlining decisions of the two inliners,
and hinder the evaluation and analysis of FDI. Therefore, the modified transforma-
tion sequence applies inlining only once.

7.1.4 Detecting Equivalent Inlining Outcomes

Performance evaluation can tell a compiler designer which inliner is most effec-
tive for a workload of programs and inputs. However, execution time alone does
not enlighten the designer as to why one inliner is more effective than another. In
order to answer this question, the inlining decision made by each inliner must be
compared, and the differences identified. In Chapter 4, the outcome of a a decision
made at a call site is associated with the source-code file and line number of the
caller, and with the name of the callee. However, this approach suffers from sig-
nificant imprecision, because multiple calls to the same callee can exist on a single
line of source code. More significantly, inlining replaces a call site by the entire
body of the callee. When an original call site is copied into the caller, the target
call site could be associated with the line number of the source call site, because
that is where it is created; with the line number of the original call site, because
that is where it comes from; or with no line number at all, because the call does not
exist in the original code. This problem is exacerbated when target call sites are

108

subsequently inlined.
Additionally, inlining call sites in a different order can produce the same final

result. An inlining chain is similar to a call chain. When a new call site is created
by inlining, that target call site retains the inlining chain of the original call site, and
appends the source call site to the chain. In the absence of additional inlining into
the functions along an inlining chain, the result of inlining the chain is independent
of the order in which the call sites along the chain are inlined.

This work uses Zobrist hashing to provide unique identifiers to call sites that
are independent of inlining-chain orderings, very similarly to how the technique is
used to detect equivalent states arrived at by different paths in a search tree [2]. The
implementation is straight-forward: when the initial set of inlining candidates is
determined, each is assigned a random integer identifier called a zID. The random
number generator is seeded with a constant, and the candidates are detected in a
deterministic order. Thus, the assignment of identifiers to call sites is constant
across all compilations that use the same initial program source. A target call site
is assigned a zID by taking the bitwise exclusive OR of the zIDs of the source and
original call sites. Thus, the inlining chain provides a history describing how a call
site came to exist, and the zID summarizes this history in an order-independent
manner. The same source call site will not be added to the inlining chain or XORed
into a zID twice because recursive inlining is disallowed.

When the inlining pass is finished, a zID for each function can be created by
adding together the zIDs of all the call sites in the function. Addition is used in-
stead of XOR because using XOR would cause call sites inlined an even number of
times through different inlining chains to cancel themselves out. If the transformed
function after inlining is identical for two inliners, then the IDs computed for that
function under either inliner will also be the same. Finally, a global identifier can be
created by XORing the function IDs for all functions in the program. If two inliners
transform a program in exactly the same way, their global zIDs will match.

Thus, a compiler developer can identify the transformation differences between
inliners by following the zID computations in reverse order. The global zIDs are
compared first to ensure that the transformed programs are in fact different. Then,
the functions with non-matching zIDs can be identified. The zID of a function that
does not contain a call site is 0, so this comparison will work even when all the
call sites in a function have been inlined. Finally, difference in the zIDs of the call
sites in a function indicate which inlining chains are different, and thus where the
significant differences in inlining decisions occur.

7.2 Experimental Methodology
This study evaluates 14 instantiations of FDI reward functions, along with the
Benefit static-reward function, single-profile FDO, and the default LLVM inliner.
The version of a program transformed by an FDI inliner is referred to simply by the
FDI reward function used by the inliner. For example, the mean version of a pro-

109

gram refers to the version of the program created by applying the FDI inliner using
the mean reward function. This section outlines how performance is measured and
evaluated for these inliners, the concrete FDI reward functions evaluated, and the
set of programs and inputs used for the evaluation.

7.2.1 Measuring Single-Run Performance
Before an inliner’s workload performance can be calculated, execution times for
runs on individual inputs must be determined. In this study, the execution time
of one version of a program on a particular input is computed as the minimum
of the execution times of three runs for this pairing. Henceforth, any reference to
execution time assumes this three-run measurement.

The baseline execution time used in this study is obtained using the Never static
FDI reward function, which unconditionally returns -1.0. Thus, Never will never
inline any call site where Cost(CS) > −2. Given the definition of Cost(CS) from
Chapter 6.3, inlining is thus limited to callees containing a single basic block, that
are expected to increase code size in the caller by no more than 3 instructions.

The performance of a particular version of a program on one input is computed
as the execution time of that version of the program on that input, normalized by
the execution time of Never on that input.

7.2.2 Static Inlining
Two static inliners are evaluated: Benefit, and the default LLVM inliner, Static.
These inliners are evaluated by simply taking the geometric mean of their normal-
ized execution times over all inputs inW .

7.2.3 Single-Profile FDO
Traditional single-profile FDO is referred to in this evaluation as the Single inliner.
Inlining is performed using a simple point reward function with FDI, informed by a
single profile. Since the profile contains a single value for each monitor, all simple
point reward functions are equal. The evaluation uses the leave-one-in methodology
in a manner similar to that of Chapter 4. Each input u ∈ W is used for training, and
then evaluated usingW/{u}. A performance score for u is calculated by taking the
geometric mean of those normalized times:

gm[u] = |W−1|

√ ∏
i∈W/{u}

τ−1
u (i)

The final performance for traditional FDO is computed as the geometric mean of
each µg[u]:

µg = |W|

√∏
u∈W

gm[u]

110

7.2.4 FDI Reward Functions

The goal of CP-informed inlining is to increase performance across all future pro-
gram executions by considering the cross-input behavior variations captured in the
CProf. In particular, it strives to minimize the worst-case negative impact on the
performance of any run. Performance degradation (versus an alternative inlining
algorithm) is caused by a failure to inline call sites that are important in one or
more program runs. These missed candidates are opportunity costs: the potential
benefit of inlining is not realized in those runs because the inlining budget was spent
on other candidates. It is the responsibility of the reward function to prioritize inlin-
ing candidates such that this opportunity cost is minimized. However, opportunity
cost cuts both ways. Inlining a call that is important in only a small proportion
of program runs may consequently expend the code-growth budget before more
generally-beneficial inlining opportunities can be exploited.

Hypothesis: Most inlining candidates that significantly impact the per-
formance of any run also improve performance across most of the
workload. The number of inlining opportunities that are particularly
important for only a minority of runs is a small fraction of the total
number of inlining opportunities that significantly impact program per-
formance.

This hypothesis guides the selection of the example reward functions evaluated
in this study. If correct, this hypothesis implies that scoring inlining candidates
by their maximum expected benefit will identify both those few candidates that
have a large impact in rare cases, as well as the candidates that provide benefit for
the majority of the workload. Furthermore, weighting candidates by coverage is
not necessary because the number of rarely-beneficial candidates is small. While
inlining these candidates will consume some of the inlining budget, this merely
prevents inlining a small number of calls that are expected to be the least beneficial
among the set of calls that would otherwise be inlined.

As explained in Chapter 6.3.4, FDI provides three classes of reward functions
that use combined profiles. Results are presented for the mean and max simple point
rewards, seven concrete instantiations of quantile point rewards, and five concrete
instantiations of quantile range rewards. The quantile points selected for these ex-
ample reward functions are listed in Table 7.1. The type column, T, indicates if
the reward functions uses (P)oints or (R)anges; this aspect of the reward function
is also evident in the Quantiles column, where ranges are listed in angled brackets.
The combination column, C, indicates how multiple points or ranges are combined:
(L)inearly or (N)on-(L)inearly. Evaluation name provides the notation used to iden-
tify each inliner in the figures in Section 7.3.

The first resward functions sample the quartile boundaries, and represent some-
what pessimistic, median and somewhat optimistic rewards. The remaining point
metrics represent cases that combine a high and a low frequency estimate. Non-

111

T C Quantiles (%) Description Evaluation Name
P – 25 first quartile QPointQ=25
P – 50 estimated median QPointQ=50
P – 75 third quartile QPointQ=75
P L 50, 75 average and optimistic QPLinearQ=50,75
P NL 50, 75 QPSqrtQ=50,75
P L 5, 95 worst and best w/o outliers QPLinearQ=5,95
P NL 5, 95 QPSqrtQ=5,95
R – 〈50, 100〉 top half: optimistic QRangeQ=50,100
R – 〈25, 75〉 “central” average QRangeQ=25,75
R – 〈5, 95〉 average w/o outliers QRangeQ=5,95
R L 〈0, 25〉, 〈75, 100〉 pessimistic and optimistic QRLinearQ=0,25,75,100
R NL 〈0, 25〉, 〈75, 100〉 QRSqrtQ=0,25,75,100

Table 7.1: Concrete quantile-based reward functions

linear combination (sqrt) uses a multi-objective approach that balances the impor-
tance of the two measurements. The first two range-based rewards consider the
weighted average frequency over half of the histogram’s weight. The third range-
based reward uses the weighted average over the whole histogram, excluding any
high or low outliers. The final two reward metrics combine the weighted average
frequency from the top and bottom quartiles, balancing optimistic and pessimistic
frequency predictions.

The inliners using these reward functions are evaluated according to the 3-fold
cross-validation methodology proposed in Chapter 3. The testing and training sets
are determined once from a random ordering of the inputs inW . Identical testing
and training sets are used in each fold by each inliner. Each input inW is in exactly
one testing set, thus the workload performance of an inliner is determined by taking
the usual geometric mean:

µg = |W|

√∏
i∈W

τ−1(i)

7.2.5 Programs and Inputs
This study evaluates the inliners described above using four programs: bzip2,
gzip, gcc, and gobmk. Each program is evaluated using a 15-input workload,
as suggested in Chapter 3. Gcc and gobmk are taken from the SPEC CPU 2006
benchmark suite. SPEC provides 11 inputs for gcc. In spite of the challenges
involved in creating new inputs for this benchmark, four1 of the SPEC 2000 bench-
mark programs were converted to the single pre-processed file format. The con-
verted programs are bzip2, LBM, MCF, and parser. For gobmk, SPEC pro-
vides 20 inputs. However, only 5 of these inputs come from the ref workload;

1of seven attempts

112

the train workload contains 8 inputs, and the test workload contains 7 inputs.
Many of the inputs from test and train have very short execution times: 4 in-
puts take less than 1 second, 6 take 2–9 seconds, 4 take 12–19 seconds, and 1 takes
longer than 1 minute. Execution times of less than a few seconds are subject to large
proportional timing imprecision, because the Linux time command reports times
with a resolution of 1/100th of a second. Therefore, the 15 longest-running inputs
are chosen forW . This set is composed of the ref and train SPEC workloads,
plus connect and dniwog from test. The shortest baseline running time in W is
2.3 seconds, for connect.

The other two programs used in the case study are bzip2 and gzip. How-
ever, rather than using the SPEC benchmark versions of these programs, the fully-
functional “real” versions are used. Using the real versions of the compressor pro-
grams eliminates the unrealistically-simplified profiling situation where mutually-
exclusive use cases are combined into a single program run. Consequently, these
programs cannot do decompression and compression, or multiple levels of com-
pression, within the same run. These distinct use-cases must be covered by different
inputs in the program workload. Both bzip2 and gzip share the same workload
of inputs. This workload is split in half into a compression set and a decompression
set. Several inputs in the compression set have an analogue in the decompression
set. However, the file format is usually different, and the source of the data is never
the same. For instance, revelation-ogg in the compression set and sherlock-mp3 in
the decompression set are both audio books, but the audio is recorded in different
formats, and the books themselves are different.

Both compressors use a numeric command-line flag to control the tradeoff be-
tween compression speed and compression quality. The flags take integer values
between 1 (fastest, least compressed) and 9 (slowest, most compressed). The seven
inputs in the compression set each use a different compression level, from 3 to 9.
Most inputs are collections of files. Each collection is archived (uncompressed) so
that the input and output of each run is a single file. In order to minimize the impact
of disk access, the output of each run is redirected to /dev/null.

The compression set contains the following inputs, with the compression level
shown in parentheses:

avernum (-3) The installer for the demo version of the game “Avernum: Escape
from the Pit” from Spiderweb Software.

cards (-4) A collection of greeting card layouts in the TIFF (uncompressed) image
format.

ebooks (-5) A collection of ebooks, with and without images, and in a variety of
formats, from Project Gutenberg2.

2http://www.gutenberg.org

113

potemkin-mp4 (-6) The 1925 movie “Bronenosets Potyomkin (Battleship Potemkin)”
in MP4 format, from the Internet Archive3.

proteins-1 (-7) A sample of 33 proteins from the RCSB Protein Data Bank database.
6 files for each protein, each stored in a different text-based format, provide
different characteristics of the protein’s structure4.

revelation-ogg (-8) The audio book “The Revelation of Saint John” in OGG for-
mat, from Project Gutenberg5.

usrlib-so (-9) A collection of shared object (.so) files from /usr/lib/ of a 32-
bit gentoo-linux machine.

The decompression set for each compressor uses the same base set of files, pre-
compressed by the appropriate compressor at the default compression level. The
decompression set is composed of:

auriel The “Auriel’s Retreat” land-mass addition mod by lance4791 for the game
“The Elder Scrolls IV: Oblivion” from Bethesda Softworks6.

gcc-453 The source-code archive of the gcc compiler, version 4.5.37.

lib-a A collection of library files (.a) from /lib/ of a gentoo-linux machine. As
per the gentoo development guide, a library will be installed in /lib (boot
critical) or /usr/lib (general applications), but not both8.

mohicans-ogv The 1920 movie “Last of the Mohicans” in OGV (ogg video) for-
mat, from the Internet Archive9.

ocal-019 The Open Clip Art Library archive, version 0.19. The images are primar-
ily in vector-graphics formats10.

paintings-jpg A collection of watercolor paintings, in JPG format.

proteins-2 A completely different sample of 157 proteins from the RCSB Protein
Data Bank database, each in 6 different file formats.

sherlock-mp3 The audio book “The Adventures of Sherlock Holmes” in MP3 for-
mat, from Project Gutenberg11.

3http://archive.org/details/BattleshipPotemkin
4http://www.rcsb.org
5http://www.gutenberg.org/ebooks/22945
6http://planetelderscrolls.gamespy.com/View.php?view=OblivionMods.Detail&id=5949
7http://gcc.gnu.org/gcc-4.5
8http://devmanual.gentoo.org/general-concepts/filesystem/index.html
9http://archive.org/details/last of the mohicans 1920

10http://openclipart.org/collections
11http://www.gutenberg.org/ebooks/28733

114

7.3 Results

The results presented in this section are computed using Redhat Linux 2.6.32 run-
ning on quad-core AMD OpteronTM Processor 2350 running at 2 GHz with 512
KB of L1 cache and 8 GB RAM. A single timing run executes on the machine at
any time; no performance measurements execute in parallel.

Overall, the results presented in the remainder of this section suggest that when
evaluated on a workload of inputs, none of the studied inliners are statistically dif-
ferent from the baseline or from each other. This result is due to large per-input
variations in performance. Chapter 3 suggests the use of hypothesis testing to
potentially establish statistically-significant differences in mean workload perfor-
mance in spite such variation. While this approach may be effective when compar-
ing two alternatives, comparisons between multiple alternatives must be performed
with the utmost caution. Using the typical significance level α = 0.05, 5% of test
are expected to incorrectly reject the null hypothesis. The full pair-wise compar-
ison for one program between the 14 FDI inliners requires 142 = 196 tests, 10
of which are expected to indicate a statistically-significant result by chance. So-
phisticated techniques that account for this increased risk of false positives among
multiple comparisons in order to potentially expose statistically-significant (though
not necessarily practically-significant) performance differences between the inlin-
ers could be employed. Instead, this section focuses on presenting the actual data.
The figures found in the following sections summarize performance data-sets us-
ing the geometric mean with 95% confidence intervals. These confidence intervals
describe the mean, not the data, thus the maximum and minimum values in each
data set are also marked to indicate the range of observed values. Furthermore,
performance measurements are presented along two dimensions: by inliner, and
by data input. Cutting the results along the input dimension provides insight into
the inliners’ workload performance. Finally, ranking inliner performance across
the workload investigates consistency in the relative per-input ordering of inliner
performance.

However, from the collected results it is also clear that Benefit is a very poor in-
liner. Recall that the Benefit reward function is simply the unmodified Benefit(CS)
static estimate of inlining utility discussed in Chapter 6.3.3. Benefit inlines more
calls than other inliners, significantly increasing compilation time. At the same
time, Benefit seldom improves program performance, but frequently causes large
performance degradation. The FDI inliners are based on Benefit, but do not increase
compilation time and often manage to improve on Benefit’s performance. On the
other hand, the default inliner is almost always better than Benefit. However, even
this production-quality inliner causes some performance degradation compared to
the baseline, and seldom improves performance by even 5%.

115

Compilation Step bzip2 gzip gcc gobmk

Never
inlining 0.1 0.3 23.6 18.3
postinline 0.6 2.8 18.9 20.7
native 1.2 4.0 45.0 63.4

Static
inlining 0.1 0.5 6.9 18.6
postinline 0.9 3.8 44.3 24.6
native 1.4 5.2 62.2 115.1

Benefit
inlining 0.8 3.4 108.5 23.6
postinline 18.6 36.0 20.2 26.8
native 13.4 29.7 45.8 90.1

Single
inlining 0.1–0.1 0.3–0.4 16.0–21.3 18.2–20.1
postinline 0.6–0.8 2.9–4.0 20.1–23.0 20.6–22.7
native 1.2–1.4 4.1–5.8 47.2–47.5 63.1–70.3

FDI
inlining 0.1–0.1 0.4–0.8 17.5–25.4 19.4–21.9
postinline 0.6–0.6 3.5–5.5 20.0–22.6 22.0–24.5
native 1.2–1.3 4.6–6.8 47.0–47.8 77.9–83.1

Table 7.2: Time (in seconds) for each step of compilation from inlining to linking
and generation of the native executable. Ranges are listed for the collections of
Single and FDI inliners.

Measurement bzip2 gzip gcc gobmk

Code
size 12,064 7,301 407,976 91,778
growth 605% 812% 7.5% 145%
budget 73,040 59,252 30,648 133,209

Calls inlined

candidates 348 302 45,296 8,640
Never 29 2 1,162 566

growth: -2 2 3,853 146
Benefit 354 353 9,047 3,697

growth: 642% 812% 7.5% 145%
Single 46–61 18–48 811–1,250 580–861

growth: 3%–59% 3%–25% 7.5%–7.5% 0.2%–10%
FDI 59–59 72–101 977–1,605 1,253–1,592

growth: 4%–4% 30%–72% 7.5%–8.1% 23%–37%

Exec size

instr 88 K 73 K 3.7 M 3.9 M
Static 93 K 73 K 3.6 M 3.9 M
Never 81 K 65 K 2.9 M 3.7 M
Benefit 305 K 238 K 3.0 M 4.4 M
Single 81–88 K 66–75 K 3.0–3.0 M 3.7–3.7 M
FDI 82–82 K 72–84 K 3.0–3.1 M 3.8–3.9 M

Table 7.3: Initial code size, inlining statistics, code growth and executable file sizes
for each class of inliner

116

7.3.1 Compilation Time and File Size
As illustrated in Figure 7.1, all versions of a program share a common compilation
path until the point where inlining is applied. Table 7.2 presents a breakdown of
the remaining compilation time for each program. The rows labeled “inlining”
report the time required for opt to apply the inlining transformations, those labeled
“postinline” report the time taken by opt to apply the postinline transformation
group, and the lines labeled “native” report the time taken by the final invocation of
LLVM used to generate executable native code from the postinline.bc bitcode files.
The lines for Single give ranges over each version of the program created by leave-
one-in; the lines for FDI give ranges over all program versions created by each of
the three folds of cross validation over all FDI inliners.

Compilation time is similar across most inliners for most programs. The pri-
mary exception is Benefit, which takes significantly longer than other inliners for all
compilation steps for bzip2 and gzip, and dramatically increases inlining time
for gcc. Conversely, for gcc the Static inliner spends very little time inlining, but
compilation spends much more time on postinline and native than is required after
applying the FDI inliner.

Table 7.3 provides additional details about the inlining performed by each in-
liner, and the sizes of the resulting executable files. The “Code” section of the table
lists the initial size of the program in LLVM IR instructions, the proportional code
growth allowed by Budget, and the code growth budget in IR instructions. The
“Calls inlined” section lists the number of call sites inlined by each inliner, and
the resulting code growth. The “candidates” row indicates the initial number of
call sites that are inlining candidates at the beginning of inlining; additional inlin-
ing candidates are created during inlining when new target call sites are created.
Growth is given as a number of IR instructions for Never, but as a proportion of
the initial number of IR instructions for the other inliners. Finally, the “Exec size”
section gives the size of the executable files.

As expected, Never provides the fastest compilation and smallest file sizes.
However, for gcc with Never, inlining takes more than 3x longer than with Static,
and longer than with many of the Single and FDI inliners. This observation is ex-
plained in Table 7.3 by the 1162 call sites inlined by Never. The resulting code
growth of 3,853 instructions averages to 3.3 instructions per inlined call, an excess
of 10% over Never’s allowed limit of 3 instruction of predicted growth per inlined
call. Thus, Benefit(CS) must be over-estimating the code-simplification opportuni-
ties available when inlining some call sites in gcc.

Benefit inlines many more calls than the other inliners. For bzip2, gzip, and
gobmk, the increased number of call sites inlined is the result of Benefit exhausting
the inlining budget while the other inliners do not. Profile information suppresses
inlining for un-executed call sites; the FDI inliners are informed by a multi-run
CProf, and thus tend to inline more calls than the Single inliners. Consequently, the
postinline and native compilation steps after Benefit inlining take longer than after
other inliners using the FDI framework, because subsequent analyses and trans-

117

0.
9

1.
0

1.
1

1.
2

1.
3

●

● ● ●
● ● ● ● ● ●

●
●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ●
●

●
●

● ●
● ● ● ●

●

●

µ g
 E

xe
cu

tio
n

T
im

e

sin
gle

mean
max

QPointQ
=25

QPointQ
=50

QPointQ
=75

QPLinearQ
=50,75

QPSqrtQ
=50,75

QPLinearQ
=5,95

QPSqrtQ
=5,95

QRangeQ=50,100

QRangeQ=25,75

QRangeQ=5,95

QRLinearQ
=0,25,75,100

QRSqrtQ
=0,25,75,100

benefit
sta

tic

(a) over all inputs inW , for each inliner

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

● ●
●

●
●

●
●

●

● ● ●

●

●

●

●

● ●
● ● ●

●
●

●

µ g
 E

xe
cu

tio
n

T
im

e

ave
rnum

ca
rds

ebooks

potemkin
−mp4

proteins−
1

reve
latio

n−ogg

usrl
ib−so

aurie
l

gcc−
453

lib−a

mohica
ns−

ogv

oca
l−019

paintin
gs−

jpg

proteins−
2

sh
erlo

ck−
mp3

(b) over all FDI inliners, for each input inW

Figure 7.2: Geometric-mean performance: real bzip2

formations act over a larger program. However, for gcc, all inliners consume the
entire code-growth budget. Thus, the increased inlining by Benefit indicates that
each call site inlined contributes less code growth on average than those inlined by
the other inliners, a result of the LLVM code simplification heuristics upon which
Benefit is built begin focused on code size. The cost of inlining more call sites and
of re-evaluating inlining candidate scores and re-sorting the list of candidates more
frequently results in the increased time spent by Benefit on inlining. However, be-
cause the total code size after inlining is similar between inliners, the time taken by
the rest of the compilation also remains similar.

Although code size measured in IR instructions does not directly predict the
size of the executable file for a program, comparing code growth and executable file
sizes in Table 7.3 suggests a reliable correlation between increases in the number
of IR instructions in a program and the resulting size of the executable file.

The code-growth budget function presented in Chapter 6 has not been tuned for
this work or tested on other programs. The code growth results in Table 7.3 suggest
that the code growth limit allowed for small programs is significantly larger than
required, while the limit for gcc may be too restrictive. In the case of gcc, the
inlining done by Never suggests that an early inliner might inline many low-cost
call sites; computing the inlining budget after early inlining will slightly increase
the inlining budget of large programs, but will also prevent the inlining of these
calls from consuming the inlining budget, which is mostly intended to control code
growth due to inlining larger callees.

7.3.2 Execution Time

The execution time performance of the inliners described in Section 7.2 are pre-
sented for the four case-study applications in Figures 7.2 through 7.5. As described
in Section 7.2, performance is summarized using a geometric mean of normalized
execution times. Thus, values smaller than 1.0 represent speedups, while values
greater than 1.0 represent slowdowns. Each figure displays two charts. In both, the

118

Rank
Reward µ σ Weighted
QRangeQ=5,95 5.3 4.4 5.0
QPSqrtQ=50,75 6.3 3.1 6.1
QPointQ=50 6.4 3.5 6.5
max 6.5 3.4 6.2
QRangeQ=50,100 6.6 4.3 6.6
QPointQ=75 7.1 4.2 5.8
QPointQ=25 7.6 4.3 7.5
QRLinearQ=0,25,75,100 7.7 4.5 7.5
QPLinearQ=50,75 7.7 4.5 9.9
mean 7.7 3.2 8.3
QPSqrtQ=5,95 8.0 3.8 8.1
QRangeQ=25,75 8.6 4.8 8.8
QRSqrtQ=0,25,75,100 9.3 3.7 8.7
QPLinearQ=5,95 10.2 3.3 10.0

Table 7.4: Workload ranking of FDI inliners for bzip2

Rank
Reward µ σ Weighted
QPLinearQ=50,75 5.3 4.2 6.4
QPointQ=50 6.5 4.2 5.2
max 7.0 4.2 8.5
QPSqrtQ=50,75 7.4 4.5 6.9
QPLinearQ=5,95 7.5 4.3 9.0
QPointQ=25 7.6 4.0 8.7
QRangeQ=25,75 7.6 3.5 7.9
QRangeQ=5,95 7.6 4.3 7.2
QRangeQ=50,100 7.6 3.9 6.8
QRLinearQ=0,25,75,100 7.7 3.0 8.1
mean 7.7 4.7 6.3
QRSqrtQ=0,25,75,100 8.2 4.8 7.1
QPSqrtQ=5,95 8.3 4.0 6.7
QPointQ=75 8.8 3.4 10.3

Table 7.5: Workload ranking of FDI inliners for gzip

119

Rank
Reward µ σ Weighted
QPSqrtQ=5,95 5.9 4.4 5.4
QRangeQ=25,75 6.6 5.3 6.6
QPointQ=50 7.1 4.8 6.3
QPLinearQ=50,75 7.1 4.8 7.2
QRLinearQ=0,25,75,100 7.4 6.7 7.7
max 7.6 5.8 7.7
QPointQ=25 7.7 3.4 7.4
QPointQ=75 8.3 4.8 8.7
QPSqrtQ=50,75 8.5 4.6 8.9
QRangeQ=5,95 9.7 4.5 9.7
QRangeQ=50,100 9.7 5.0 9.1
mean 10.2 6.1 8.7
QRSqrtQ=0,25,75,100 10.6 5.6 10.5
QPLinearQ=5,95 10.8 6.2 10.5

Table 7.6: Workload ranking of FDI inliners for gcc

Rank
Reward µ σ Weighted
QPSqrtQ=50,75 2.9 2.0 2.8
QPSqrtQ=5,95 3.4 3.7 3.2
QRangeQ=25,75 4.5 2.4 4.7
QRSqrtQ=0,25,75,100 4.9 2.6 4.9
QPLinearQ=50,75 6.9 2.9 6.8
QRangeQ=5,95 7.7 2.6 7.9
QRangeQ=50,100 8.1 1.9 8.2
QPointQ=25 8.4 3.7 8.7
QRLinearQ=0,25,75,100 8.6 3.7 8.4
QPointQ=50 8.7 1.6 8.7
QPLinearQ=5,95 9.3 5.2 9.3
QPointQ=75 9.6 4.1 9.1
max 9.7 4.2 9.8
mean 12.5 1.1 12.5

Table 7.7: Workload ranking of FDI inliners for gobmk

120

0.
9

1.
0

1.
1

1.
2

●
●

●
●

●

●
●

●

●

● ●
● ● ●

●

●

●

●

● ● ● ●

●

● ● ● ● ●

●

● ● ● ●

●

●
● ●

●
●

●
● ● ● ● ●

●
● ● ●

●

●

µ g
 E

xe
cu

tio
n

T
im

e

sin
gle

mean
max

QPointQ
=25

QPointQ
=50

QPointQ
=75

QPLinearQ
=50,75

QPSqrtQ
=50,75

QPLinearQ
=5,95

QPSqrtQ
=5,95

QRangeQ=50,100

QRangeQ=25,75

QRangeQ=5,95

QRLinearQ
=0,25,75,100

QRSqrtQ
=0,25,75,100

benefit
sta

tic

(a) over all inputs inW , for each inliner

0.
8

0.
9

1.
0

1.
1

1.
2

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●
● ●

●
●

●

●

●

● ●
● ● ●

●

● ● ● ● ● ●

●

●
●

●

●

●

●
●

µ g
 E

xe
cu

tio
n

T
im

e

ave
rnum

ca
rds

ebooks

potemkin
−mp4

proteins−
1

reve
latio

n−ogg

usrl
ib−so

aurie
l

gcc−
453

lib−a

mohica
ns−

ogv

oca
l−019

paintin
gs−

jpg

proteins−
2

sh
erlo

ck−
mp3

(b) over all FDI inliners, for each input inW

Figure 7.3: Geometric-mean performance: real gzip

0.
95

1.
00

1.
05

1.
10

●
●

●
●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

● ●

●
●

● ●
●

● ●

●

●

●

●

●

●
● ● ● ●

● ● ● ●
● ● ●

●
●

●

●

●µ g
 E

xe
cu

tio
n

T
im

e

sin
gle

mean
max

QPointQ
=25

QPointQ
=50

QPointQ
=75

QPLinearQ
=50,75

QPSqrtQ
=50,75

QPLinearQ
=5,95

QPSqrtQ
=5,95

QRangeQ=50,100

QRangeQ=25,75

QRangeQ=5,95

QRLinearQ
=0,25,75,100

QRSqrtQ
=0,25,75,100

benefit
sta

tic

(a) over all inputs inW , for each inliner

0.
95

1.
00

1.
05

1.
10

●

●
●

●
●

●
● ●

●

●

●

●

● ●

●

●
● ● ● ● ●

● ●

●

●

● ●

● ●

●

●
● ●

●
● ●

● ●

●

●

●
●

●
●

●

µ g
 E

xe
cu

tio
n

T
im

e

166
200

c−
typ

eck ccc
p

cp
−decl

exp
r
exp

r2 g23

integrate s0
4
sci

lab

bzip
R−all

lbm−all

mcf−
all

parse
r−all

(b) over all FDI inliners, for each input inW

Figure 7.4: Geometric-mean performance: SPEC 2006 gcc

black dot represents the geometric mean of normalized execution times. The error
bars show a 95% confidence interval for that mean. Another set of error bar, tipped
with small open circles, indicate the best and worst measurements included in the
mean.

In subfigure (a) on the left, each inliner is evaluated onW . The results presented
for the Single inliner refer to traditional single-profile FDO, and are computed as
the geometric mean of workload performance from each version of the program
produced by the leave-one-in method. The FDI inliners are evaluated by 3-fold
cross-validation.

In subfigure (b) on the right, the performance of the FDI inliners is summarized
for each input by taking the geometric mean of the normalized execution time of
each FDI inliner for that input. For bzip2 and gzip, the inputs are listed in
alphabetical order, with the compression set on the left and the decompression set
on the right. The dashed horizontal lines indicate the geometric mean of the best
and worst normalized times, and thus indicate the bounds on possible workload
performance if a different inliner could be chosen for each input. In addition, the
results for Benefit are marked by 4, and results for Static are marked by 5. Note

121

1.
00

1.
05

1.
10

●
● ●

● ●
● ● ●

● ●

●
●

●
●

●

●

●

●

●

● ●
● ●

●
● ● ●

●
●

●
● ●

●

●

●
●

● ● ●
●

●
●

●

●

●
●

● ●
●

●

●

µ g
 E

xe
cu

tio
n

T
im

e

sin
gle

mean
max

QPointQ
=25

QPointQ
=50

QPointQ
=75

QPLinearQ
=50,75

QPSqrtQ
=50,75

QPLinearQ
=5,95

QPSqrtQ
=5,95

QRangeQ=50,100

QRangeQ=25,75

QRangeQ=5,95

QRLinearQ
=0,25,75,100

QRSqrtQ
=0,25,75,100

benefit
sta

tic

(a) over all inputs inW , for each inliner

1.
00

1.
05

1.
10

●
● ●

● ● ●
● ●

● ● ● ● ● ● ●

● ●
●

●

● ●
●

●

● ●

●
●

●

●
●

● ● ● ● ●
●

● ●
● ●

●
● ●

●
●µ g

 E
xe

cu
tio

n
T

im
e

13x1
3 arb

arend
ario

n

atari_
atari

buzco

co
nnect

co
nnectio

n
dniwog

nick
las2

nick
las4 nngs

sco
re2

tre
vo

rc

tre
vo

rd

(b) over all FDI inliners, for each input inW

Figure 7.5: Geometric-mean performance: SPEC 2006 gobmk

that Single is not present in these charts. To reduce symbol overlap, the triangles
are shifted slightly to the right, and the best-worst error bar is shifted slightly to the
left, compared to the error bar for the mean.

The inlining performance presented in Figure 7.2(a) shows variations from 0.98
to 1.23 in the per-input performance of all inliners across the workload. Conse-
quently, there is no statistically-significant difference between the inliners. Fig-
ure 7.2(b) shows a clear distinction between the compression and decompression
sets of inputs. All FDI inliners perform quite similarly on the compression set
of inputs. However, for 5 of the 7 compression inputs, all FDI inliners, as well
as Benefit and Static, degrade performance by more than 15% compared to the
Never baseline. Benefit also significantly degrades performance on the remaining 2
compression inputs; in these cases, FDI and Static avoid most of that degradation.
Throughout the compression set, Benefit is at least 3% slower than Static.

On the other hand, the inliners cause at most an 8% degradation for the de-
compression set, and Benefit and Static are almost equivalent for all inputs except
paintings-jpg, where Static is 7% worse than Benefit. However, there is significant
variation between the FDI inliners on 6 of the 8 inputs in the decompression set.

A more detailed examination of FDI inliner performance is provided by the
rank analysis presented in Table 7.4, and by the matched-pairs pairwise workload
evaluations presented in Table 7.8. The rank analysis investigates relative inliner
performance without regard to the magnitude of performance impacts. For each in-
put, the inliners are sorted by execution time to determine each inliner’s rank, from
1 (fastest) to 14 (slowest). Table 7.4 lists the FDI inliners, sorted by their average
rank (µ) overW , along with the standard deviation (σ). If the ranks were randomly
assigned, an average ranks of 7.5 would be expected for all inliners. For bzip2, not
only are the average ranks clustered around the expectation, but the variation in the
ranks of each inliner across the workload is significant; none of the differences in
average rank between inliners are statistically-significant. The “weighted” column
computes a weighted average rank for each inliner. The difference in normalized
execution time between the best and worst FDI inliner is used as the weight for each

122

input. Thus, the ranks assigned for inputs where little performance variation exists
between the inliners will have little impact on the inliners’ weighted average rank.
However, this weighting has a negligible impact on the average ranks.

The complete pairwise performance comparisons of FDI inliners reported in Ta-
ble 7.8 further supports the assessment that for bzip2, the FDI inliners are indistin-
guishable. Each inliner is selected as the baseline, in place of Never. Each baseline
is a column on the table. The inliners on each row of the table are evaluated onW
against each baseline inliner, using the same methodology used to compute work-
load performance compared to Never. The table gives the geometric mean and 95%
confidence interval, as percentages, for each pairwise evaluation. Thus, the value
0.2±1.1 in the first row of Table 7.8 in the QPointsQ=25 column indicates that, for
the tested workload, mean produces 0.2% (±1.1%) faster code than QPointsQ=25.
Negative values indicate that the evaluated inliner (row) is slower than the baseline
(column). In Table 7.8, almost none of the pairwise differences are larger than 1%,
and none are statistically significant.

The results for gzip in Figure 7.3 also show significant variation between in-
liners for the decompression set. While Static provides a 5% performance improve-
ment for half the decompression set, and no impact for the other half, Benefit de-
grades performance by 5–20%. On the compression set, gzip does not suffer from
the large degradations seen with bzip2. However, all inliners improve execution
time for avernum. Avernum is also the only input where Benefit produces a better
result than Static. Furthermore, this is also the only case over the entire gzipwork-
load where Benefit, as well as every FDI inliner, improves performance. Recall that
the FDI inliners essentially weight the inlining utility predicted by Benefit(CS) by
frequency estimates from the profiles. Thus, FDI can amplify the expected inlin-
ing utility of frequently-executed call sites, or suppress the inlining of un-executed
call sites. FDI cannot correct errors in the basic utility estimates computed by
Benefit(CS). The results in both Figure 7.2(b) and Figure 7.3(b) suggest that FDI
performance can be dramatically degraded when the inlining utility predicted by
Benefit(CS) produce poor inlining decisions. The gzip results for avernum also
suggest that if Benefit provides good utility predictions, the FDI inliners can exploit
this information.

The results of rank analysis and pairwise evaluation for gzip are presented in
Tables 7.5 and 7.9, respectively. As with bzip2, neither analyses provides any
evidence of statistically-significant differences between the FDI inliners.

Inlining has very little impact for gcc, as shown in Figure 7.4(a). At worst,
performance is degraded by less than 4%, and at best performance is improved by
slightly more than 5%. The average impact of the FDI inliners tracks the impact
of Benefit quite closely. In particular, the greatest improvement from FDI inlin-
ing corresponds to the best impact of Benefit, for s04. Similarly, the worst result
of FDI inlining corresponds to the worst impact of Benefit, for integrate. The av-
erage rankings in Table 7.6 do not suggest any significant ranking differences be-
tween the inliners, and none of the pairwise evaluations reported in Table 7.11 show

123

statistically-significant performance differences.
The workload performance results for gobmk in Figure 7.5(a) display the only

statistically-significant workload-performance differences between inliners in this
study. Benefit is worse than Static and several of the FDI inliners, while Static
improves performance compared to most of the FDI inliners. The only significant
result between the FDI inliners indicates that Mean is worse than QRangeQ=25, 75.
These results are explained by Figure 7.5(b). On a per-input basis, Static is strictly
better than the FDI inliners, while Benefit is worse than the FDI inliners for all
inputs except score2. The performance of the FDI inliners on each input is quite
similar, and does not vary significantly between inputs. However, Figure 7.5(a)
shows that amount of variation in performance across the workload is not consis-
tent between inliners. For instance, the performance of QRangeQ=50, 100 is very
consistent between inputs, while the performance of QPLinearQ=5, 95 varies to a
larger degree.

The rank analysis and pairwise evaluation results confirm that Mean is the
worst inliner for gobmk. The average inliner rankings for gobmk, shown in Ta-
ble 7.7, span a much larger range than the rankings for the other programs. How-
ever, the most significant result of the rankings is the 12.5 average rank for Mean.
AcrossW , Mean is never ranked better than 11th. Conversely, QPSqrtQ=50, 75 is
ranked 2nd on over half the inputs inW , but falls to 9th for connect. Nonetheless,
QPSqrtQ=50, 75 is a good inliner for gobmk. These ranking results are supported
by the pairwise workload evaluations in Table 7.10. The differences in workload
performance between inliners are necessarily small, given the slight impact of inlin-
ing on gobmk observed in Figure 7.5(b). QPSqrtQ=50, 75 produces better results,
by a statistically-significant margin, than all but three of the other FDI inliners. On
the other hand, Mean produces worse results than all but three of the other FDI in-
liners. These results demonstrate, for the first time, that simply taking the average
of multiple profiles may not be an effective profile-combination methodology.

124

Reward m
ea

n

m
ax

Q
Po

in
tQ

=2
5

Q
Po

in
tQ

=5
0

Q
Po

in
tQ

=7
5

Q
PL

in
ea

rQ
=5

0,
75

Q
PS

qr
tQ

=5
0,

75

Q
PL

in
ea

rQ
=5

,9
5

Q
PS

qr
tQ

=5
,9

5

Q
R

an
ge

Q
=5

0,
10

0

Q
R

an
ge

Q
=2

5,
75

Q
R

an
ge

Q
=5

,9
5

Q
R

L
in

ea
rQ

=0
,2

5,
75

,1
00

Q
R

Sq
rt

Q
=0

,2
5,

75
,1

00

mean – 0.0±0.5 0.2±1.1 0.4±1.6 0.0±0.7 0.9±2.5 -0.0±0.4 1.0±1.9 0.2±0.8 -0.0±0.6 0.6±1.9 0.2±1.3 0.4±1.3 0.3±0.8
max -0.0±0.5 – 0.2±1.3 0.4±1.5 0.0±0.4 0.9±2.6 -0.0±0.4 1.0±2.1 0.2±0.4 -0.1±0.4 0.6±2.1 0.2±1.3 0.4±1.5 0.3±0.7
QPointQ=25 -0.2±1.2 -0.2±1.3 – 0.2±1.9 -0.2±1.3 0.7±2.8 -0.3±1.2 0.8±2.5 -0.0±1.4 -0.3±1.3 0.4±2.5 -0.1±1.9 0.2±1.9 0.1±1.3
QPointQ=50 -0.5±1.7 -0.5±1.5 -0.2±2.0 – -0.4±1.8 0.5±3.2 -0.5±1.6 0.5±2.8 -0.2±1.7 -0.5±1.9 0.2±2.8 -0.3±2.2 -0.0±2.2 -0.1±1.9
QPointQ=75 -0.0±0.7 -0.0±0.4 0.2±1.3 0.4±1.7 – 0.9±2.6 -0.1±0.5 1.0±2.0 0.2±0.4 -0.1±0.5 0.6±2.1 0.1±1.3 0.4±1.6 0.3±0.8
QPLinearQ=50,75 -1.0±2.7 -1.0±2.8 -0.8±3.0 -0.6±3.3 -1.0±2.8 – -1.0±2.8 -0.0±3.6 -0.8±2.8 -1.1±2.7 -0.4±3.5 -0.8±3.1 -0.6±3.2 -0.7±2.9
QPSqrtQ=50,75 0.0±0.4 0.0±0.4 0.2±1.2 0.5±1.5 0.1±0.5 1.0±2.6 – 1.0±2.0 0.2±0.6 -0.0±0.6 0.6±2.1 0.2±1.3 0.4±1.5 0.4±0.7
QPLinearQ=5,95 -1.1±2.0 -1.0±2.2 -0.8±2.6 -0.6±2.9 -1.0±2.2 -0.1±3.5 -1.1±2.1 – -0.8±2.1 -1.1±2.1 -0.4±1.6 -0.9±1.8 -0.6±1.5 -0.7±2.2
QPSqrtQ=5,95 -0.2±0.8 -0.2±0.4 0.0±1.4 0.2±1.6 -0.2±0.4 0.7±2.6 -0.2±0.6 0.8±2.0 – -0.3±0.4 0.4±2.2 -0.0±1.2 0.2±1.7 0.1±0.8
QRangeQ=50,100 0.0±0.6 0.1±0.4 0.3±1.3 0.5±1.7 0.1±0.5 1.0±2.5 0.0±0.6 1.1±2.0 0.3±0.4 – 0.7±2.1 0.2±1.2 0.5±1.6 0.4±0.7
QRangeQ=25,75 -0.7±2.1 -0.7±2.3 -0.4±2.6 -0.2±2.9 -0.6±2.3 0.3±3.5 -0.7±2.3 0.4±1.5 -0.5±2.4 -0.7±2.3 – -0.5±2.7 -0.2±0.8 -0.3±2.2
QRangeQ=5,95 -0.2±1.3 -0.2±1.4 0.0±1.9 0.2±2.1 -0.2±1.3 0.8±2.9 -0.2±1.3 0.8±1.7 0.0±1.2 -0.2±1.2 0.4±2.6 – 0.2±2.1 0.1±1.6
QRLinearQ=0,25,75,100 -0.5±1.4 -0.4±1.6 -0.2±2.0 -0.0±2.2 -0.4±1.7 0.5±3.1 -0.5±1.5 0.6±1.4 -0.2±1.7 -0.5±1.7 0.2±0.8 -0.3±2.1 – -0.1±1.6
QRSqrtQ=0,25,75,100 -0.3±0.8 -0.3±0.7 -0.1±1.3 0.1±1.8 -0.3±0.8 0.6±2.7 -0.4±0.7 0.7±2.1 -0.1±0.8 -0.4±0.7 0.3±2.1 -0.2±1.6 0.1±1.6 –

Table 7.8: Pairwise matched-pairs workload performance comparison for bzip2

125

Reward m
ea

n

m
ax

Q
Po

in
tQ

=2
5

Q
Po

in
tQ

=5
0

Q
Po

in
tQ

=7
5

Q
PL

in
ea

rQ
=5

0,
75

Q
PS

qr
tQ

=5
0,

75

Q
PL

in
ea

rQ
=5

,9
5

Q
PS

qr
tQ

=5
,9

5

Q
R

an
ge

Q
=5

0,
10

0

Q
R

an
ge

Q
=2

5,
75

Q
R

an
ge

Q
=5

,9
5

Q
R

L
in

ea
rQ

=0
,2

5,
75

,1
00

Q
R

Sq
rt

Q
=0

,2
5,

75
,1

00

mean – 0.4±2.3 1.3±3.5 -0.2±1.6 1.7±4.1 0.7±2.8 0.5±2.1 0.8±2.8 0.6±1.9 0.0±1.7 0.9±3.6 -0.2±1.6 0.0±1.5 0.1±2.4
max -0.4±2.3 – 0.8±3.9 -0.6±2.3 1.3±3.3 0.3±1.0 0.0±2.4 0.5±0.8 0.2±2.6 -0.4±2.5 0.5±3.8 -0.6±2.3 -0.4±2.0 -0.3±3.3
QPointQ=25 -1.4±3.8 -1.0±4.1 – -1.6±3.5 0.3±5.5 -0.7±4.6 -0.9±4.0 -0.6±4.5 -0.8±3.9 -1.4±3.6 -0.5±4.9 -1.6±3.5 -1.4±3.3 -1.3±3.8
QPointQ=50 0.2±1.5 0.6±2.2 1.5±3.2 – 1.8±4.0 0.9±2.7 0.6±1.6 1.0±2.7 0.8±1.5 0.2±1.4 1.1±3.2 0.0±0.8 0.2±0.6 0.3±1.9
QPointQ=75 -1.9±4.5 -1.4±3.8 -0.6±5.7 -2.0±4.4 – -1.1±3.8 -1.4±4.5 -0.9±3.7 -1.3±4.7 -1.8±4.4 -0.8±2.2 -2.0±4.4 -1.8±4.2 -1.7±4.9
QPLinearQ=50,75 -0.8±3.0 -0.4±1.0 0.5±4.5 -1.0±2.9 0.9±3.3 – -0.3±2.7 0.1±0.6 -0.2±3.1 -0.8±3.0 0.1±4.1 -1.0±2.8 -0.8±2.5 -0.7±3.7
QPSqrtQ=50,75 -0.5±2.1 -0.1±2.3 0.8±3.7 -0.7±1.7 1.2±4.0 0.3±2.6 – 0.4±2.7 0.1±1.1 -0.5±1.8 0.5±3.5 -0.6±1.4 -0.4±1.6 -0.4±1.7
QPLinearQ=5,95 -0.9±3.0 -0.5±0.8 0.4±4.4 -1.1±2.9 0.8±3.3 -0.1±0.6 -0.4±2.8 – -0.3±3.2 -0.9±3.1 0.0±4.1 -1.1±2.9 -0.9±2.6 -0.8±3.8
QPSqrtQ=5,95 -0.6±1.9 -0.2±2.5 0.7±3.6 -0.8±1.5 1.1±4.2 0.1±3.0 -0.1±1.1 0.2±3.1 – -0.6±1.3 0.3±3.5 -0.8±1.6 -0.6±1.4 -0.5±1.1
QRangeQ=50,100 -0.0±1.7 0.4±2.4 1.3±3.3 -0.2±1.4 1.6±4.0 0.7±2.7 0.4±1.7 0.8±2.9 0.6±1.3 – 0.9±3.2 -0.2±1.2 0.0±1.1 0.1±1.6
QRangeQ=25,75 -1.1±3.9 -0.7±4.1 0.2±5.0 -1.2±3.6 0.7±2.1 -0.3±4.4 -0.6±3.9 -0.2±4.4 -0.5±3.9 -1.0±3.7 – -1.2±3.6 -1.0±3.6 -0.9±4.0
QRangeQ=5,95 0.1±1.5 0.6±2.2 1.4±3.2 -0.0±0.8 1.8±3.9 0.9±2.6 0.6±1.4 1.0±2.7 0.7±1.5 0.2±1.2 1.1±3.1 – 0.2±0.8 0.3±1.9
QRLinearQ=0,25,75,100 -0.1±1.5 0.4±1.9 1.2±3.0 -0.2±0.6 1.6±3.7 0.7±2.4 0.4±1.5 0.8±2.5 0.6±1.3 -0.0±1.1 0.9±3.1 -0.2±0.8 – 0.1±1.7
QRSqrtQ=0,25,75,100 -0.2±2.4 0.2±3.2 1.1±3.5 -0.3±1.9 1.5±4.4 0.6±3.4 0.3±1.6 0.7±3.6 0.5±1.1 -0.1±1.6 0.8±3.6 -0.3±1.9 -0.1±1.8 –

Table 7.9: Pairwise matched-pairs workload performance comparison for gzip

126

Reward m
ea

n

m
ax

Q
Po

in
tQ

=2
5

Q
Po

in
tQ

=5
0

Q
Po

in
tQ

=7
5

Q
PL

in
ea

rQ
=5

0,
75

Q
PS

qr
tQ

=5
0,

75

Q
PL

in
ea

rQ
=5

,9
5

Q
PS

qr
tQ

=5
,9

5

Q
R

an
ge

Q
=5

0,
10

0

Q
R

an
ge

Q
=2

5,
75

Q
R

an
ge

Q
=5

,9
5

Q
R

L
in

ea
rQ

=0
,2

5,
75

,1
00

Q
R

Sq
rt

Q
=0

,2
5,

75
,1

00

mean – 0.0±0.8 -0.0±0.8 -0.3±0.7 0.2±0.8 -0.0±0.6 0.3±1.1 0.3±0.7 -0.2±0.5 -0.1±0.7 -0.3±0.8 0.2±0.9 -0.2±0.8 0.4±0.9
max -0.1±0.8 – -0.1±0.7 -0.3±1.0 0.2±0.7 -0.1±0.9 0.2±1.3 0.3±0.6 -0.2±0.5 -0.1±1.0 -0.3±1.0 0.1±1.0 -0.2±0.9 0.3±0.8
QPointQ=25 0.0±0.8 0.1±0.7 – -0.3±0.9 0.2±0.6 0.0±0.6 0.3±1.0 0.4±0.8 -0.2±0.7 -0.0±1.0 -0.2±1.0 0.2±1.1 -0.2±1.0 0.4±1.2
QPointQ=50 0.3±0.6 0.3±1.0 0.2±0.8 – 0.5±0.8 0.2±0.7 0.5±1.2 0.6±0.8 0.1±0.9 0.2±0.5 -0.0±0.7 0.4±1.2 0.1±0.5 0.6±1.2
QPointQ=75 -0.2±0.8 -0.2±0.7 -0.3±0.6 -0.5±0.8 – -0.3±0.8 0.0±1.2 0.1±0.6 -0.4±0.8 -0.3±0.9 -0.5±1.0 -0.1±1.2 -0.4±1.0 0.1±1.1
QPLinearQ=50,75 0.0±0.6 0.1±0.9 -0.0±0.6 -0.3±0.7 0.2±0.8 – 0.3±0.8 0.4±1.0 -0.2±0.7 -0.0±0.8 -0.2±0.8 0.2±1.0 -0.2±0.9 0.4±1.0
QPSqrtQ=50,75 -0.3±1.1 -0.2±1.3 -0.3±1.1 -0.5±1.2 -0.0±1.2 -0.3±0.8 – 0.1±1.4 -0.5±1.1 -0.3±1.3 -0.5±1.1 -0.1±1.2 -0.4±1.2 0.1±1.3
QPLinearQ=5,95 -0.4±0.8 -0.3±0.6 -0.4±0.8 -0.6±0.8 -0.1±0.6 -0.4±1.0 -0.1±1.4 – -0.5±0.8 -0.4±0.9 -0.6±1.1 -0.2±1.2 -0.5±0.9 0.0±1.0
QPSqrtQ=5,95 0.2±0.5 0.2±0.5 0.2±0.7 -0.1±0.9 0.4±0.8 0.2±0.6 0.4±1.1 0.5±0.8 – 0.1±0.8 -0.1±0.9 0.3±0.9 0.0±0.8 0.6±0.8
QRangeQ=50,100 0.1±0.7 0.1±0.9 0.0±1.0 -0.2±0.5 0.3±0.9 0.0±0.8 0.3±1.2 0.4±0.9 -0.1±0.8 – -0.2±0.6 0.2±1.1 -0.1±0.6 0.4±0.9
QRangeQ=25,75 0.3±0.8 0.3±1.0 0.2±1.0 -0.0±0.7 0.5±1.0 0.2±0.7 0.5±1.1 0.6±1.1 0.1±0.9 0.2±0.6 – 0.4±1.0 0.1±0.7 0.6±0.9
QRangeQ=5,95 -0.2±0.9 -0.1±1.0 -0.2±1.2 -0.4±1.2 0.1±1.2 -0.2±1.0 0.1±1.2 0.2±1.2 -0.4±1.0 -0.2±1.1 -0.4±1.0 – -0.3±0.9 0.2±0.8
QRLinearQ=0,25,75,100 0.2±0.8 0.2±0.9 0.2±0.9 -0.1±0.5 0.4±1.0 0.2±0.8 0.4±1.2 0.5±0.9 -0.0±0.8 0.1±0.6 -0.1±0.7 0.3±0.9 – 0.6±1.0
QRSqrtQ=0,25,75,100 -0.4±1.0 -0.3±0.8 -0.4±1.2 -0.6±1.2 -0.1±1.1 -0.4±1.0 -0.1±1.3 -0.0±1.0 -0.6±0.8 -0.4±0.9 -0.6±0.9 -0.2±0.8 -0.6±1.0 –

Table 7.10: Pairwise matched-pairs workload performance comparison for gcc

127

Reward m
ea

n

m
ax

Q
Po

in
tQ

=2
5

Q
Po

in
tQ

=5
0

Q
Po

in
tQ

=7
5

Q
PL

in
ea

rQ
=5

0,
75

Q
PS

qr
tQ

=5
0,

75

Q
PL

in
ea

rQ
=5

,9
5

Q
PS

qr
tQ

=5
,9

5

Q
R

an
ge

Q
=5

0,
10

0

Q
R

an
ge

Q
=2

5,
75

Q
R

an
ge

Q
=5

,9
5

Q
R

L
in

ea
rQ

=0
,2

5,
75

,1
00

Q
R

Sq
rt

Q
=0

,2
5,

75
,1

00

mean – -0.3±0.8 -0.5±0.5 -0.5±0.3 -0.2±0.4 -0.6±0.6 -1.2±0.5 -0.3±0.8 -1.3±0.7 -0.5±0.3 -1.0±0.3 -0.5±0.4 -0.4±0.4 -0.9±0.4
max 0.3±0.8 – -0.2±0.9 -0.1±0.8 0.1±1.0 -0.3±0.4 -0.9±0.7 -0.0±0.2 -1.0±0.9 -0.2±0.7 -0.6±0.8 -0.2±0.9 -0.1±1.1 -0.6±0.7
QPointQ=25 0.5±0.5 0.2±0.9 – 0.0±0.5 0.3±0.7 -0.1±0.8 -0.8±0.8 0.1±1.0 -0.9±1.1 -0.1±0.3 -0.5±0.2 -0.1±0.3 0.0±0.6 -0.4±0.6
QPointQ=50 0.5±0.3 0.1±0.8 -0.0±0.5 – 0.3±0.6 -0.2±0.6 -0.8±0.5 0.1±0.9 -0.9±0.7 -0.1±0.3 -0.5±0.3 -0.1±0.3 0.0±0.4 -0.4±0.3
QPointQ=75 0.2±0.4 -0.1±1.0 -0.3±0.7 -0.3±0.6 – -0.4±0.7 -1.0±0.6 -0.2±1.0 -1.1±0.7 -0.3±0.6 -0.8±0.6 -0.3±0.7 -0.2±0.4 -0.7±0.6
QPLinearQ=50,75 0.6±0.6 0.3±0.4 0.1±0.8 0.1±0.6 0.4±0.7 – -0.6±0.5 0.3±0.4 -0.7±0.6 0.1±0.6 -0.4±0.6 0.1±0.8 0.2±0.8 -0.3±0.5
QPSqrtQ=50,75 1.2±0.5 0.9±0.7 0.7±0.8 0.8±0.5 1.0±0.6 0.6±0.5 – 0.9±0.8 -0.1±0.3 0.7±0.6 0.3±0.6 0.7±0.6 0.8±0.6 0.4±0.3
QPLinearQ=5,95 0.3±0.8 0.0±0.2 -0.1±1.0 -0.1±0.9 0.1±1.0 -0.3±0.4 -0.9±0.8 – -1.0±0.9 -0.2±0.8 -0.6±0.8 -0.2±1.0 -0.1±1.1 -0.5±0.8
QPSqrtQ=5,95 1.3±0.7 1.0±0.9 0.8±1.1 0.9±0.7 1.1±0.7 0.7±0.6 0.1±0.3 1.0±0.9 – 0.8±0.9 0.4±0.9 0.8±0.9 0.9±0.7 0.4±0.5
QRangeQ=50,100 0.5±0.3 0.2±0.7 0.1±0.3 0.1±0.3 0.3±0.6 -0.1±0.6 -0.7±0.6 0.2±0.8 -0.8±0.9 – -0.4±0.1 0.0±0.3 0.1±0.5 -0.3±0.4
QRangeQ=25,75 1.0±0.3 0.6±0.7 0.5±0.2 0.5±0.3 0.8±0.6 0.3±0.6 -0.3±0.6 0.6±0.8 -0.4±0.9 0.4±0.1 – 0.4±0.3 0.5±0.5 0.1±0.4
QRangeQ=5,95 0.5±0.4 0.2±0.9 0.1±0.3 0.1±0.3 0.3±0.7 -0.1±0.8 -0.7±0.6 0.2±1.0 -0.8±0.9 -0.0±0.3 -0.4±0.3 – 0.1±0.5 -0.3±0.4
QRLinearQ=0,25,75,100 0.4±0.4 0.1±1.1 -0.0±0.6 -0.0±0.4 0.2±0.4 -0.2±0.9 -0.8±0.6 0.1±1.2 -0.9±0.7 -0.1±0.5 -0.5±0.5 -0.1±0.5 – -0.4±0.5
QRSqrtQ=0,25,75,100 0.9±0.3 0.6±0.7 0.4±0.6 0.4±0.3 0.7±0.6 0.3±0.5 -0.4±0.3 0.5±0.8 -0.4±0.5 0.3±0.4 -0.1±0.4 0.3±0.4 0.4±0.5 –

Table 7.11: Pairwise matched-pairs workload performance comparison for gobmk (statistically-significant differences in bold)

128

Variation and Performance Evaluation

The evaluation results presented in this section are based on a thorough evaluation
of each inliner across a moderately-size workload of inputs. Most compiler evalu-
ations in the literature, for both FDO and static code transformations, use a SPEC-
style methodology where a single input is used to evaluate performance. However,
the results presented here show large performance variations for both an individ-
ual inliner across the inputs inW , and between different inliners for the individual
inputs, corroborating the findings of previous studies [15, 16] . Large variations
are present even for Benefit and Static, which do not use any profile information.
Consider if Figure 7.3(a) used only the evaluation of each inliner on avernum. Each
FDI inliner would report a single performance value between 0.85 and 0.98 that to-
gether imply a total order on the relative quality of those inliners. Benefit would be
judged to be more effective than the best FDI inliners, producing more than a 15%
improvement. A similar analysis using only proteins-1 for evaluation suggests that
all FDI inliners are effectively the same as the default inliner; using sherlock-mp3
suggests that Benefit causes a large performance degradation that is far worse than
the impact of FDI. In reality, the performance relationships between inliners and
inputs, even for static inliners, is complex and not adequately characterized by any
single-input evaluation. Any such analysis is likely to be specific to the evaluation
input and not generalizable to other runs.

7.3.3 Equivalent Inlining Outcomes
In total, 59 non-default versions of each program are created for a workload of 15
inputs (each fold of cross-validation creates a different version). If the global hash
values of these versions are compared to determine the number of different final
inlining outcomes, there are 10 versions of bzip2, 45 versions of gzip, and 59
versions of gcc and gobmk. For bzip2 and gzip, many of the single-profile
inlinings produce identical decisions. These single-profile groupings contain 2, 5,
and 8 of the 15 versions of bzip2; and 2, 2, and 8 of the 15 versions of gzip.
For bzip2, 34 of the 14×3=42 versions of the FDI inliners make identical inlining
decisions.

In order to investigate performance differences between FDI inliners, the zID
hash values can be compared on a function-by-function basis to eliminate any iden-
tical inlining outcomes between two (or more) inliners. Investigating the alternative
sets of inlining decisions that produce different versions of a function can inform a
compiler designer about the origins of performance differences. However, if many
versions of many functions must be investigated, such an approach may be infeasi-
ble.

Figure 7.6 presents histograms describing the distribution of the number of dis-
tinct versions of each function created by the inliners examined in this section. Bins
range from 1 (every inliner produces the same version of the function), to 59 (every
inliner produces a different version of the function). The weight in each bin corre-

129

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55
Distinct zIDs per Function

of

 F
un

ct
io

ns
0

10
20

30
40

50
60

70

(a) Real bzip2: 97 functions

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55
Distinct zIDs per Function

of

 F
un

ct
io

ns
0

10
20

30
40

50
60

(b) Real gzip: 90 functions

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55
Distinct zIDs per Function

of

 F
un

ct
io

ns
0

50
0

10
00

15
00

20
00

25
00

(c) SPEC 2006 gcc: 5,205 functions

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55
Distinct zIDs per Function

of

 F
un

ct
io

ns
0

20
0

40
0

60
0

80
0

10
00

12
00

(d) SPEC 2006 gobmk: 2,597 functions

Figure 7.6: Distribution of the number of unique, non-zero, zIDs per function across
all inliners

130

sponds to the number of functions in the program for which that number of versions
exist across all inliners. The most significant result from the histograms is that the
majority of the functions in all programs have a single distinct version after inlining,
regardless of the inliner used. When different versions of a function are produced
by different inliners, only a few versions are created for most functions. Therefore,
even for large programs like gcc and gobmk, the zID hash values can help a com-
piler designer identify the differences between alternative inliners by separating the
small number of inlining decisions that produce different final code from those that
are equivalent across the alternative inliners.

7.4 Conclusion
This chapter reports a thorough evaluation of inlining across a workload of input
for four example programs. While results on individual inputs range from nearly
a 25% performance degradation to more than a 15% performance improvement,
there are no statistically-significant differences in workload performance between
any inlining approach for bzip, gzip, or gcc.

However, the Benefit inliner performs particularly poorly for many inputs. This
result suggests that the currently-implemented heuristics used to predict the utility
of inlining a given call site are ineffective. Inlining is mostly an enabling transfor-
mation, but the code-size-focused Benefit(CS) estimation uses only an abstracted
and simplified assessment of constant-propagation opportunities. If the estimation
of potential inlining benefit were enhanced by considering a wider scope of im-
pact, for instance, potential improvements to alias analysis, by using a more precise
analysis on inlining impact, as discussed in Chapter 6.3.5, and/or by changing addi-
tional transformations to also use profile information, both FDI and static inlining
might be able to reliably improve program performance. Furthermore, an early in-
liner, perhaps similar to Never, should be included in the transformation sequence
discussed in Section 7.1.3. The addition of an early inliner may improve the inter-
action between inlining and other transformations, while allowing FDI to focus on
execution frequency instead of code size.

Therefore, while the results presented here show no statistically-significant per-
formance improvements from inlining, there remain many aspects of inlining in
LLVM that can likely be substantially improved, and many other transformations
that might benefit from the use of combined profiling.

131

Chapter 8

Related Work

This chapter presents work related to the workload-reduction methodology pre-
sented in Chapter 4 and the profile-combination technique presented in Chapter 5.
In general, existing approaches to workload reduction use low-level behaviors that
are not informative to an FDO compiler, while attempts to combine profiles often
combine single-run offline profile with the online profile collected by a JIT, or oth-
erwise fail to capture inter-run behavior variation in a way that is meaningful for an
ahead-of-time (AOT) FDO compiler.

8.1 Program Workloads

Input characterization and workload reduction are not new problems. However, the
similarity metrics used for clustering in Chapter 4 are unique in their applicability
to workload reduction for an FDO compiler. Most input similarity and cluster-
ing work is done in the area of computer architecture, where research is largely
simulation-based, thus necessitating small workloads of representative programs
using minimally-sized inputs. The architectural metrics of benchmark programs
are repeatedly scrutinized for redundancy, while smaller inputs are compared with
large inputs. Alternatively, some work bypasses program behavior and examines
the inputs directly.

Shen and Mao propose the XICL language to allow programmers to formally
describe how to extract the important properties of an input directly [88]. A feature
selection process removes correlated features, and basic-block frequency counts
are predicted using an input-behavior model constructed by regression. However,
the programmer must understand the code, the input, and the compiler, in order to
hypothesize important features, and then determine a procedure to automatically
extract those features from an arbitral input. Furthermore, the system only predicts
basic-block execution frequencies. While critical to many current transformations,
these frequencies do not inform any value specialization transformations.

Maxiaguine et al. examine the variability of input streams for the system-level
design of multimedia system-on-chip devices [73]. They reduce the input set to

132

corner cases and the best-case and worst-case scenarios, the critical concerns of
real-time data processing systems. However, input characterization that does not
take the run-time characteristics of the program into account does not provide much
useful information in the context of FDO.

Most input characterization and workload reduction research aims to reduce
the time required for detailed architectural simulation, without compromising the
applicability of simulation results. Similarity metrics in this area are based on
architecture-level program characteristics (instructions per branch, cache miss rates,
etc.). Most techniques use clustering to choose a representative subset of the full
workload.

KleinOsiwski and Lilja create the MinneSPEC benchmark suite from the SPEC
CPU 2000 suite by reducing the sizes of the input data [61]. The reference inputs
are truncated, sampled, replaced with the test or train input, or run with a modified
command line. However, the authors warn that these reduced inputs do not always
conserve all the program characteristics of the original inputs, and should be used
with caution.

Vandierendonck et al. cluster SPEC CPU 2000 benchmarks based on perfor-
mance numbers reported on the SPEC web-site [96]. Rank analysis validates the
clustering results, but simply predicting the relative performance of machines does
not provide enough information to determine the reasons for these performance
differences, nor to illuminate opportunities to improve performance in the future.

A prevailing methodology to select representative program-input pairs uses Prin-
cipal Component Analysis (PCA) to reduce the dimensionality of program charac-
teristics, and then clusters the data in the resulting space. Eeckhout et al. employ
this methodology with the SPEC CPU 95 and TCP benchmarks [38]. They find that
while there is significant redundancy between the program-input pairs, the behav-
ior of some programs is significantly impacted by the choice of input. Phansalkar
et al. find that the SPEC CPU 2006 benchmark suite [80] is more varied than earlier
versions of the suite, though some redundancy still exists.

Alternately, Hoste et al. use a correlation reduction technique with a genetic
algorithm on microarchitecturally-independent program characteristics [55]. They
find that this technique provides superior results to PCA and clustering for emerging
benchmarks, while the results are more easily interpreted because the dimensions of
the similarity space are the measured characteristics. In particular, two apparently
similar programs according to micro-architecturally dependent characteristics may
be significantly different, as many different program behaviors can produce similar
performance counter values. While this observation is to be expected, its implica-
tions are paramount to the study of FDO compilers. Calculated input similarity is
dependent on the level where similarity is measured, which must match its intended
use. Consequently, it is essential for FDO that input similarity be determined using
compiler-level program representations such as CFGs and CGs.

Sherwood et al. propose SimPoint, a tool to that identifies representative pro-
gram phases that can be sampled to make predictions about a full simulation [90].

133

Phases are detected using Basic-Block Vectors (BBV) containing basic block exe-
cution counts for 100 million instruction intervals. Random projection reduces the
dimensionality of the BBVs. The Manhattan or Euclidean distance is the similarity
metric for K-means clustering. However, sampling does not reduce the number of
inputs in a workload.

The methodology for the selection of workload inputs presented in Chapter 4
differs from previous work in several ways. In the preceding works, dimensionality-
reducing techniques, such as PCA, are applied before the similarity metric is cal-
culated. The primary motivation for reducing dimensionality is to minimize the
correlations between dimensions, and thus reduce bias toward redundant character-
istics in the clustering. The methodology presented in Chapter 4 assumes that the
number of measured characteristics, i.e., code transformations, is relatively small.
Detecting correlations between transformations is one goal of the study. Thus, the
correlations between transformations are investigated directly.

In most studies, only the (small number of) inputs provided with the benchmark
are considered: The emphasis is the reduction of simulation time for the benchmark
suite, and thus the reduction of the number of program-input pairs that must be
simulated. The use of program-input pairs not withstanding, the focus of workload
reduction for architectural simulation is to select the programs that are representa-
tive of the suite. The motivation for the workload reduction technique presented
in Chapter 4 is finding representative inputs from a large workload for a particular
program.

Finally, this work takes a uniquely compiler-oriented perspective. The primary
point of interest is how training inputs interact with a compiler; how different train-
ing inputs result in different code transformations by a profile-directed compiler.
While variations in code transformations may change architecture-level program
characteristics, these metrics may be too far removed from the compiler to quickly
assist designers in their effort to improve the compiler.

8.2 Combining Profile Information Across Runs
Chapter 5 proposes combined profiling, a data representation for multi-run profiles
based on histograms that store execution frequencies normalized according to pro-
gram structure. Most compilers take a single-run approach to FDO: a single training
run generates a profile, which is used to guide compiler transformations. Some pro-
file file formats support the storage of multiple profiles (e.g., LLVM), but when such
a file is provided to a compiler, either all profiles except the first are ignored, or a
simple sum or average is taken across the frequencies in the collected profiles.

An early attempt to combine profiles is due to Fisher and Freudenberger. They
measure instructions per break in control flow and sum profiles to provide better
branch prediction [40]. Such summations produce similar results to summing nor-
malized frequencies. While better than single-run profiles, they still yield poor
behavior modeling in the presence of multiple program use cases and poor training

134

input selection.
Krintz and Calder annotate Java bytecode with the optimization decisions made

in previous program runs so that the JVM can exploit the benefits of those decisions
immediately in subsequent runs [65]. However, this approach largely negates the
inherent input-sensitivity of dynamic compilation. Furthermore, the profile infor-
mation from previous runs is lost, preventing the system from detecting or consid-
ering the impacts of cross-run behavior variations. Sandya guides dynamic compi-
lation with an off-line profile, but requires the user to specify a confidence level for
the accuracy of that profile [84]. The N hottest methods in the off-line profile are
candidates for dynamic compilation, and are compiled when a hotness threshold is
exceeded. With a high confidence level, the frequency stored in the off-line profile
is used to initialize each method’s hotness. As the confidence level decreases, a
reduced proportion of that frequency is used. On-line profiling contributes to each
method’s hotness during execution until a threshold is exceeded and the method is
compiled. Thus, the input-sensitivity of the JIT can be maintained by setting a low
confidence level for the off-line profile, but this approach largely negates the util-
ity of supplying the off-line profile. Furthermore, this approach does not solve the
problem that the off-line profile is taken from a single runs and thus cannot inform
the JIT regarding the variability of behaviors across different inputs.

Arnold et al.. use histograms to combine the profile information collected by
a Java JIT system over multiple program runs [9]. The online profiler detects hot
methods by periodically sampling the currently-executing method. After each run
of a program, histograms for the hot methods stored in a profile repository are
updated. The histogram bins represent the number of time the method is sampled
during the execution of the program, and thus represent the length of time spend
executing that method in each run. While wall-clock execution time is important
for a JIT system in order to amortize time spent compiling code, this concern is
not relevant to an AOT compiler. Furthermore, variations in execution time may
simply indicate scaled, rather than varying, program behaviors. For instance, the
probability that a particular branch is taken is likely to have little correlation with
the number of times that the branch is executed during a run. The root of these
issues is the use of raw profile information in the histograms, a problem addressed
by the hierarchical normalization performed when constructing combined profiles.

Salverda et al. model the critical paths of a program by generating synthetic pro-
gram traces from a histogram of profiled branch outcomes [82]. To better cover the
program’s footprint, they do an ad-hoc combination of profiles from SPEC training
and reference inputs. In contrast, combined profiling and hierarchical normalization
provide a systematic method to combine profile information for multiple runs.

Savari and Young build a branch and decision model for branch data [85]. Their
model assumes that the next branch and its outcome are independent of previous
branches, an assumption that is violated by computer programs (e.g., correlated
branches). One distribution is used to represent all events from a run; distributions
from multiple runs are combined using relative entropy — a sophisticated way to

135

find the weights for a weighted geometric average across runs. Thus, the model de-
scribes the average branch probability of all branches in the program, and how this
average varies across inputs. The model cannot provide specific information about a
particular branch, which is exactly the information needed by FDO. However, this
information is provided by combined profiles because each event is represented
separately.

Shen et al.. investigate the sensitivity of Java garbage collectors to the inputs
given to programs [89]. They find that varying program inputs can dramatically
change the impact of garbage collection on program performance, and that the best
garbage collector for a program is not consistent across inputs. Furthermore, runs
on many inputs are required in order to adequately assess the performance of the
individual garbage collectors in order to select the collector that best meets the
desired performance goals. These results suggest that a JIT that attempts to select
the best garbage collector for the executing program at or near the beginning of
execution could greatly benefit from the behavior-variation information collected
in a combined profile over many runs.

8.3 Input-Conscious Dynamic Compilation
An alternative to profiling application is to use machine learning techniques to iden-
tify input-dependent patters of behavior and to learn effective compilation strategies
for these patterns.

Mao and Shen use classification trees to select the optimization level at which
methods are compiled by the Jikes RVM [72]. The user must use XICL (see Sec-
tion 8.1) to specify how to automatically extract important input features. This
feature set is automatically pruned to the set of informative features, which is used
to build one classification tree for each method. The input-feature vector is com-
puted for each run. Rather than storing profile information, the number of times
each method is sampled during a run is used to decide the best optimization level
for that method, given the observed input. The feature vector for the input of that
run is used with the selected optimization level to update each method’s tree, as
well as a confidence measure based on accuracy of past predictions. In subsequent
runs, the input feature vector is computed near the beginning of execution; if this
vector matches a high-confidence decision in a method’s tree, the predicted decision
(classification) is immediately used to compile the method. For all benchmarks, the
worst-case performance is a degradation compared to the default optimization se-
lection mechanisms. For about half the programs, the median speedup is nearly 1.0,
i.e., there is no impact. All but 2 programs exhibit performance differences greater
than 10% between the best and worst cases, e.g., speedups ranging from 0.85 to 1.8
for Mtrt.

Jiang et al. use seminal behaviors, program behaviors that are highly correlated
with subsequent behaviors, to predict behaviors at runtime [59]. Unsurprisingly, the
bounds on loop trip counts calculated before entering a loop are excellent predic-

136

tors of the frequency of other behaviors inside the loops. Tian et al. exploit seminal
behaviors in C programs to select between function versions at runtime. Each ver-
sion is created using a standard single-input FDO compilation [95]. While many
runs achieve impressive speedups, worst-case performance suffers by over 5% on
average. Traditional FDO produces similar results. These results highlight the fact
that FDO performance is sensitive to program inputs and can vary widely across
the workload. Furthermore, optimization based on one input frequently reduces
performance for some other inputs.

8.4 Conclusion
Existing work in workload reduction is targeted at architectural simulation, and is
thus poorly matched to the task of selecting a reduced training workload for an
FDO compiler. The clustering technique presented in Chapter 4 is specifically de-
signed for this purpose, and thus measures input similarity using the compiler’s own
heuristics. On the other hand, combining profile information from multiple runs is
often investigated in the context of dynamic FDO. In this context, the profiling done
in previous runs is leveraged to quickly focus the actions of the JIT compiler at the
start of execution, before run-time profiling is available or reliable. However, no
previous work captures inter-run behavior variability in a manner suitable for use
by static FDO. Combined profiling provides a cross-run characterization of program
behaviors that is appropriate for static FDO.

137

Chapter 9

Conclusion

This thesis presents an end-to-end investigation of feedback-directed optimization
in ahead-of-time compilers, with respect to the issues surrounding input-dependent
program behavior. Performance evaluation is sensitive to the data input used in the
evaluation, but standard practices typically employ only one testing input. Simi-
larly, the choice of training input(s) used with FDO change the transformation deci-
sions made by a compiler, and consequently also impacts the results of performance
evaluation. Furthermore, overlap between the testing and training inputs can reward
over-fitting by an FDO compiler, and consequently produce unrealistically-positive
performance improvements. These issues are solved in Chapter 3 by employing
3-fold cross-validation in the evaluation of FDO compilers.

Selecting the workload of inputs to use in cross-validated evaluations and to
drive compiler development is a challenging problem. Results from Chapter 4 sug-
gest that inputs intuitively judged to be similar by humans can be significantly
different in the way they interact with FDO. Therefore, an automated clustering
technique, based on the code transformation decisions made by the FDO compiler
when informed by an input’s profile, is used to select reduced workloads. These
reduced workloads enable accurate performance evaluation without the expense of
training and testing on the full workload. Furthermore, clustering can also prevent
very similar or duplicated inputs in the full workload from rewarding over-fitting
and artificially inflating evaluation results.

Cross-validation and reduced workloads allow a rigorous evaluation of FDO
where the performance impact of cross-input behavior variation can be assessed.
While useful for analysis, post-hoc detection of performance variations across a
workload does not provide any mechanism by which the compiler can be made
aware of these variations, in order to pro-actively account for input-dependent be-
havior when making code transformation decisions. Chapter 5 presents combined
profiling, a bounded-size profile representation that enables multi-run profile in-
formation to be collected from an arbitrary number of training runs. In addition,
CP preserves the cross-input distributions of input-varying behaviors. Unlike the
single-point values of current profiles, an FDO compiler can query a combined
profile to assess the impact of code transformations across the range of observed

138

behaviors. The FDI inlining framework presented in Chapter 6 demonstrates how
these queries can be used. FDI provides reward functions parameterized by either
quantile points or quantile ranges. These reward functions are used to estimate the
run-time benefits of inlining candidate call sites.

Chapter 7 demonstrates the use of combined profiling with FDI and rigorous
cross-validated performance evaluation for inlining in LLVM. The surprising re-
sult of this study is that for three of the four case-study applications (bzip2,
gzip, and gcc), none of the inliners, including the default static inliner, have
any statistically-significant impact on workload performance. In the fourth appli-
cation (gobmk), only the default inliner provides a small statistically-significant
performance improvement, while Benefit, the static estimate of inlining benefit un-
derlying FDI, produces a small statistically-significant performance degradation.
Furthermore, for gobmk, rank and pairwise evaluation of the FDI inliners demon-
strates that Mean produces worse performance results than any other FDI inliner.
For bzip2 and gzip, all inliners display large input-dependent variations in per-
formance, while performance measured using a single input varies considerably
from inliner to inliner in many cases. These results suggest two conclusions. First,
it is likely that the evaluations of inliners (both FDO and static) in the literature
using the standard single-evaluation-input methodology also produce significant
performance variations when that input is changed. In fact, any transformations
evaluated using single program inputs may potentially be subject to similarly large
variations in performance if evaluated on a workload of inputs. Additionally, the
frequently abysmal performance of Benefit suggests that there is significant room
for improvement in the heuristics used to estimate the impact of inlining a call site
in LLVM.

Collectively, the work presented in this thesis represents a significant step for-
ward in the statistical and scientific soundness of the implementation and evaluation
of FDO compilers. However, the use of these techniques will continue to pose a
challenge to researchers until benchmark suites routinely provide sufficiently-large
and diverse workloads of input for their included programs, and refrain from arti-
ficially combining or unnecessarily removing program use cases. The variations in
behavior and performance between realistic program inputs have been repeatedly
demonstrated in this and other work. Failure to include the program-input dimen-
sions in performance analysis demonstrates a blindness to the complexity of rigor-
ous evaluation. Continued acceptance of this practice threatens to delay progress
in compiler design by encouraging the reporting of non-generalizable performance
results.

139

Bibliography

[1] Optimzation options – using the GNU compiler collection (GCC).
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[2] Zobrist hashing. http://en.wikipedia.org/wiki/Zobrist hashing. accessed July
16, 2012.

[3] 11th Computer Olympiad. http://www.cs.unimaas.nl/Olympiad2006/, June
2006.

[4] 14th World Computer-Chess Championship.
http://www.cs.unimaas.nl/wccc2006/, June 2006.

[5] Swiss-prot protein knowledgbase. http://www.expasy.org/sprot/, November
2006.

[6] Glenn Ammons and James R. Larus. Improving data-flow analysis with path
profiles. In Conference on Programming Language Design and Implementa-
tion (PLDI), pages 72–84, Montreal, Canada, 1998.

[7] Taweesup Apiwattanapong and Mary Jean Harrold. Selective path profiling.
In Program Analysis for Software Tools and Engineering (PASTE), pages
35–42, Charleston, South Carolina, 2002.

[8] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. A com-
parative study of static and profile-based heuristics for inlining. In Workshop
on Dynamic and Adaptive Compilation and Optimization (Dynamo), pages
52–64, Boston, Massachusetts, January 2000.

[9] Matthew Arnold, Adam Welc, and V. T. Rajan. Improving virtual machine
performance using a cross-run profile repository. In Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 297–
311, San Diego, California, October 2005.

[10] Thomas Ball and James R. Larus. Branch prediction for free. In Conference
on Programming Language Design and Implementation (PLDI), pages 300–
313, Albuquerque, New Mexico, June 1993.

[11] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1319–1360, July 1994.

[12] Thomas Ball and James R. Larus. Efficient path profiling. In Intern. Sympo-
sium on Microarchitecture (MICRO), pages 46–57, Paris, France, December
1996.

140

[13] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path
profiling: The showdown. In Symposium on Programming Languages
(POPL), pages 134–148, San Diego, California, January 1998.

[14] Paul Berube. Additional FDO inputs.
http://www.cs.ualberta.ca/∼berube/compiler/fdo/inputs.shtml.

[15] Paul Berube. Aestimo: A feedback-directed optimization evaluation tool.
Master’s thesis, University of Alberta, October 2005.

[16] Paul Berube and José Nelson Amaral. Aestimo: A feedback-directed opti-
mization evaluation tool. In Intern. Symp. on Performance Analysis of Sys-
tems and Software (ISPASS), pages 251 – 260, Austin, Texas, March 2006.

[17] Paul Berube and José Nelson Amaral. Benchmark design for robust profile-
directed optimization. In Standard Performance Evaluation Corporation
(SPEC) Workshop, Austin, Texas, January 2007.

[18] Paul Berube and José Nelson Amaral. Combined profiling: A methodology
to capture varied program behavior across multiple inputs. In Intern. Symp.
on Performance Analysis of Systems and Software (ISPASS), pages 210–220,
New Brunswick, New Jersey, April 2012.

[19] Paul Berube, José Nelson Amaral, Rayson Ho, and Raul Silvera. Workload
reduction for multi-input feedback-directed optimization. In Code Genera-
tion and Optimization (CGO), pages 59–69, Seattle, WA, 2009.

[20] Paul Berube, Adam Preuss, and José Nelson Amaral. Combined profiling:
Practical collection of feedback information for code optimization. In In-
tern. Conf. on Performance Engineering (ICPE), pages 493–498, Karlsruhe,
Germany, 2011. Work-In-Progress Session.

[21] Paul Berube, Adam Preuss, and José Nelson Amaral. Extended description
of the combined profiling methodology. Technical report, University of Al-
berta, Edmonton, AB, Canada, March 2011.

[22] Christian Bienia and Kai Li. Scaling of the PARSEC benchmark inputs. In
Parallel Architectures and Compilation Techniques (PACT), pages 561–562,
Vienna, Austria, September 2010.

[23] Rastislav Bodik. Path-sensitive, value-flow optimizations of programs (pro-
gram analysis). PhD thesis, Pittsburgh, PA, USA, 1999. Chair-Rajiv Gupta
and Chair-Mary Lou Soffa.

[24] Rastislav Bodı́k and Rajiv Gupta. Partial dead code elimination using slic-
ing transformations. In Conference on Programming Language Design and
Implementation (PLDI), pages 159–170, Las Vegas, Nevada, May 1997.

[25] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Intern. Sym-
posium on Microarchitecture (MICRO), pages 259–269, Research Triangle
Park, North Carolina, December 1997.

[26] David R. Chakrabarti and Shin-Ming Liu. Inline analysis: Beyond selection
heuristics. In Code Generation and Optimization (CGO), pages 221–232,
New York, New York, 2006.

141

[27] Dhruva R. Chakrabarti, Luis A. Lozano, Xinliang D. Li, Robert Hundt, and
Shin-Ming Liu. Scalable high performance cross-module inlining. In Paral-
lel Architectures and Compilation Techniques (PACT), pages 165–176, An-
tibes Juan-les-Pins, France, October 2004.

[28] Craig Chambers, Igor Pechtchanski, Vivek Sarkar, Mauricio J. Serrano, and
Harini Srinivasan. Dependence analysis for java. In Workshop on Languages
and Compilers and Parallel Computing (LCPC), pages 35–52, La Jolla, Cal-
ifornia, August 1999.

[29] Tony F. Chan, Gene H. Golub, and Randall J. LeVeque. Updating formulae
and a pairwise algorithm for computing sample variances. Technical Report
STAN-CS-79-773, Stanford University, November 1979.

[30] P. P. Chang and W.-W. Hwu. Inline function expansion for compiling C
programs. In Conference on Programming Language Design and Implemen-
tation (PLDI), pages 246–257, Portland, Oregon, 1989.

[31] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen mei W. Hwu.
Profile-guided automatic inline expansion for C programs. Software: Prac-
tice and Experience, 22(5):349–369, 1992.

[32] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile
information to assist classic code optimizations. Software: Practice and
Experience, 21(12):1301–1321, 1991.

[33] Chandra Chekuri, Richard Johnson, Rajeev Motwani, Balas Natarajan,
Bob R. Rau, and Mike Schlansker. Profile-driven instruction level paral-
lel scheduling with application to super blocks. In Intern. Symposium on
Microarchitecture (MICRO), pages 58–67, Paris, France, December 1996.

[34] Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, and Jenq Kuen Lee.
Interprocedural probabilistic pointer analysis. Transactions on Parallel and
Distributed Systems, 15(10):893–907, 2004.

[35] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and
Peng Tu. A new algorithm for partial redundancy elimination based on SSA
form. In Conference on Programming Language Design and Implementation
(PLDI), pages 273–286, Las Vegas, Nevada, May 1997.

[36] Robert Cohn and P. Geoffrey Lowney. Hot cold optimization of large Win-
dows/NT applications. In Intern. Symposium on Microarchitecture (MI-
CRO), pages 80–89, Paris, France, 1996.

[37] Standard Performance Evaluation Corporation. SPEC: The standard perfor-
mance evaluation corporation. http://www.spec.org/.

[38] Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Work-
load design: Selecting representative program-input pairs. In Parallel Ar-
chitectures and Compilation Techniques (PACT), page 83, Charlottesville,
Virginia, September 2002.

[39] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. In Intern. Conf. on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 85–95, Boston, Massachusetts, 1992.

142

[40] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. In Intern. Conf. on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 85–95, Boston, Massachusetts, October 1992.

[41] Philip J. Fleming and John J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Communications of the ACM,
29(3):218–221, March 1986.

[42] Ira R. Forman. On the time overhead of counters and traversal markers. In
International Conference on Software Engineering (ICSE), pages 164–169,
San Diego, California, March 1981.

[43] Grigori Fursin, John Cavazos Michael OBoyle, and Olivier Temam. Mi-
DataSets: creating the conditions for a more realistic evaluation of iterative
optimization. In High Performance Embedded Architectures and Compilers
(HiPEAC), pages 245–260, Ghent, Belgium, January 2007.

[44] Andrew G. Glen, Lawrence M. Leemis, and John H. Drew. Computing the
distribution of the product of two continuous random variables. Computa-
tional Statistics and Data Analysis, 44(3):451 – 464, 2004.

[45] Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-
ordering information. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(5):977–1027, September 1999.

[46] Darryl Gove and Lawrence Spracklen. Evaluating the correspondence be-
tween training and reference workloads in SPEC CPU2006. Computer Ar-
chitecture News, 35(1):122–129, 2007.

[47] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. gprof: A call
graph execution profiler. In Compiler Construction (CC), pages 120–126,
Boston, Massachusetts, 1982.

[48] SPEC Open Systems Group. SPEC CPU2006 run and reporting rules.
http://www.spec.org/cpu2006/docs/runrules.html. accessed June 25, 2012.

[49] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-
guided receiver class prediction. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 108–123, Austin, Texas,
1995.

[50] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path profile guided partial
dead code elimination using predication. In Parallel Architectures and Com-
pilation Techniques (PACT), page 102, San Francisco, California, October
1997.

[51] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path profile guided partial
redundancy elimination using speculation. In Intern. Conf. on Computer
Languages (ICCL), pages 230–239, Chicago, Illinois, May 1998.

[52] Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna Rau. Region-
based compilation: An introduction and motivation. In Intern. Symposium on
Microarchitecture (MICRO), pages 158–168, Ann Arbor, Michigan, 1995.

143

[53] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning, chapter 7, pages 214–221. Springer Series in Statistics.
Springer, 2003.

[54] John M. Hoenig and Dennis M. Heisey. The abuse of power. The American
Statistician, 55(1):19–24, 2001.

[55] Kenneth Hoste and Lieven Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In Intern. Symp. on Workload
Characterization (IISWC), pages 83–92, San Jose, CA, October 2006.

[56] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,
Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E.
Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lav-
ery. The superblock: An effective technique for VLIW and superscalar com-
pilation. Journal of Supercomputing, 7(1-2):229–248, 1993.

[57] Intel Corporation. Intel C++ compiler options.
ftp://download.intel.com/support/performancetools/c/linux/
v9/copts cls.pdf, 2006.

[58] International Business Machines. Detailed descriptions of the XL Fortran
compiler options. http://publib.boulder.ibm.com/infocenter/pseries/v5r3/
index.jsp?topic=/com.ibm.xlf101a.doc/xlfcr/opts-details.htm.

[59] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, Feng Mao, Malcom Gethers,
Xipeng Shen, and Yaoqing Gao. Exploiting statistical correlations for proac-
tive prediction of program behaviors. In Code Generation and Optimization
(CGO), pages 248–256, Toronto, Canada, April 2010.

[60] Hyesoon Kim, José A. Joao, Onur Mutlu, and Yale N. Patt. Profile-assisted
compiler support for dynamic predication in diverge-merge processors. In
Code Generation and Optimization (CGO), pages 367–378, San Jose, Cali-
fornia, March 2007.

[61] AJ KleinOsowski and David J. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research. Computer
Architecture Letters, 1, June 2002.

[62] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimi-
nation. In Conference on Programming Language Design and Implementa-
tion (PLDI), pages 147–158, Orlando, Florida, 1994.

[63] Donald E. Knuth. An empirical study of Fortran programs. In Software:
Practice and Experience, volume 1, pages 105–133, April/June 1971.

[64] Chandra Krintz. Coupling on-line and off-line profile information to improve
program performance. In Code Generation and Optimization (CGO), pages
69 – 78, San Francisco, California, march 2003.

[65] Chandra Krintz and Brad Calder. Using annotations to reduce dynamic op-
timization time. In Conference on Programming Language Design and Im-
plementation (PLDI), pages 156–167, Snowbird, Utah, 2001.

144

[66] Arvind Krishnaswamy and Rajiv Gupta. Profile guided selection of ARM
and Thumb instructions. In Joint Conf. on Languages, Compilers and Tools
for Embedded Systems: Software and Compilers for Embedded Systems
(LCTES), pages 56–64, Berlin, Germany, June 2002.

[67] Asif Lakhany and Helmut Mausser. Estimating the parameters of the gener-
alized lambda distribution. Algo Research Quarterly, 3(3):47–58, December
2000.

[68] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Code Generation and Optimiza-
tion (CGO), Palo Alto, California, March 2004.

[69] Paul Lokuciejewsk, Fatih Gedikli, Peter Marwedel, Katharina Morik, and
TU Dortmund. Automatic WCET reduction by machine learning based
heuristics for function inlining. In Workshop on Statistical and Machine
Learning Approaches to Architectures and Compilation (SMART), 2009.

[70] Grigorios Magklis, Greg Semeraro, David H. Albonesi, Steven G. Dropsho,
Sandhya Dwarkadas, and Michael L. Scott. Dynamic frequency and voltage
scaling for a multiple-clock-domain microprocessor. IEEE Micro, 23(6):62
– 68, November 2003.

[71] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective compiler support for predicated execution
using the hyperblock. In International Symposium on Microarchitecture (MI-
CRO), pages 45–54, Portland, Oregon, 1992.

[72] Feng Mao and Xipeng Shen. Cross-input learning and discriminative pre-
diction in evolvable virtual machines. In Code Generation and Optimization
(CGO), pages 92–101, Seatle, Washington, March 2009.

[73] Alexander Maxiaguine, Yanhong Liu, Samarjit Chakraborty, and Wei Tsang
Ooi. Identifying “representative” workloads in designing MpSoC platforms
for media processing. In Embedded Systems for Real-Time Multimedia (ES-
TImedia), pages 41– 46, September 2004.

[74] Eduard Mehofer and Bernhard Scholz. Probabilistic data flow system with
two-edge profiling. In Workshop on Dynamic and Adaptive Compilation and
Optimization (Dynamo), pages 65–72, New York, New York, 2000.

[75] David Gordon Melski. Interprocedural path profiling and the interprocedu-
ral express-lane transformation. PhD thesis, University of Wisconsin, 2002.

[76] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and
exploiting the k-CFA paradox: Illuminating functional vs. object-oriented
program analysis. In Conference on Programming Language Design and
Implementation (PLDI), pages 305–315, Toronto, Canada, June 2010.

[77] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[78] Erez Perelman, Trishul Chilimbi, and Brad Calder. Variational path profiling.
In Parallel Architectures and Compilation Techniques (PACT), pages 7–16,
Saint Louis, Missouri, 2005.

145

[79] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In
Programming Language Design and Implementation (PLDI), pages 16–27,
White Plains, New York, 1990.

[80] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of redun-
dancy and application balance in the SPEC CPU2006 benchmark suite. In
SIGARCH Computer Architecture News, volume 35, pages 412–423, New
York, New York, 2007.

[81] Vinodha Ramasamy, Paul Yuan, and Dehao Chen. Feedback-directed opti-
mizations in GCC with estimated edge profiles from hardware event sam-
pling. In GCC Developers’ Summit, pages 87–101, Ottawa, Canada, June
2008.

[82] Pierre Salverda, Charles Tuker, and Craig Zilles. Accurate critical path pre-
diction via random trace construction. In Code Generation and Optimization
(CGO), pages 64–73, Boston, Massachusetts, April 2008.

[83] Alan Dain Samples. Profile-driven compilation. PhD thesis, Berkeley, CA,
USA, 1992.

[84] S. M. Sandya. Jazzing up JVMs with off-line profile data: Does it pay?
SIGPLAN Notices, 39(8):72–80, August 2004.

[85] Serap Savari and Cliff Young. Comparing and combining profiles. Journal
of Instruction-Level Parallelism, 2, May 2000.

[86] Bernhard Scholz, Nigel Horspool, and Jens Knoop. Optimizing for space
and time usage with speculative partial redundancy elimination. In Joint
Conf. on Languages, Compilers and Tools for Embedded Systems: Software
and Compilers for Embedded Systems (LCTES), pages 221–230, Washing-
ton, DC, June 2004.

[87] Andreas Sewe, Jannik Jochem, and Mira Mezini. Next in line, please!: Ex-
ploiting the indirect benefits of inlining by accurately predicting further inlin-
ing. In Workshop on virtual machines and intermediate languages (VMIL),
SPLASH ’11 Workshops, pages 317–328, Tuscon, Arizona, 2011.

[88] Xipeng Shen and Feng Mao. Modeling relations between inputs and dynamic
behavior for general programs. In Workshop on Languages and Compilers
and Parallel Computing (LCPC), Urbana, Illinois, October 2007.

[89] Xipeng Shen, Feng Mao, Kai Tian, and Eddy Zheng Zhang. The study and
handling of program inputs in the selection of garbage collectors. SIGOPS
Opererating Systems Review, 43(3):48–61, July 2009.

[90] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-
matically characterizing large scale program behavior. In Intern. Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 45–57, San Jose, California, 2002.

[91] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol-
ume 22, pages 888–905, August 2000.

146

[92] Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer analysis for
speculative optimizations. In Intern. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 416–425,
San Jose, California, 2006.

[93] Richard L. Sites. Programming tools: Statement counts and procedure tim-
ings. SIGPLAN Notices, 13(12):98–101, 1978.

[94] Standard Performance Evaluation Corporation. SPEC CPU2006.
http://www.spec.org/cpu2006/, August 2006.

[95] Kai Tian, Yunlian Jiang, Eddy Z. Zhang, and Xipeng Shen. An input-centric
paradigm for program dynamic optimizations. In Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 125–139,
Reno/Tahoe, Nevada, 2010.

[96] Hahs Vandierendonck and Koen De Bosschere. Experiments with subset-
ting benchmark suites. In Workshop on Workload Characterization (WWC),
pages 55–62, October 2004.

[97] Rajeshwar Vanka and James Tuck. Efficient and accurate data dependence
profiling using software signatures. In Code Generation and Optimization
(CGO), pages 186–195, San Jose, California, 2012.

[98] David W. Wall. Global register allocation at link time. In Compiler Con-
struction (CC), pages 264–275, Palo Alto, California, 1986.

[99] David W. Wall. Predicting program behavior using real or estimated pro-
files. In Conference on Programming Language Design and Implementation
(PLDI), pages 59–70, Toronto, Canada, June 1991.

[100] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference.
Springer, 2003.

[101] Reinhold Weicker and Kaivalya Dixit. (osgcpu-10955) re: Your question to
SPEC about input data selection for benchmarks. Personal email correspon-
dences, July 2004.

[102] H. Yuanjie Y. Chen, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and C. Wu.
Evaluating iterative optimization across 1000 data sets. In Conference on
Programming Language Design and Implementation (PLDI), pages 448–
459, Toronto, Canada, June 2010.

[103] Reginald Clifford Young. Path-based compilation. PhD thesis, Cambridge,
MA, USA, 1998. Adviser-Michael D. Smith and Adviser-Paul C. Martin.

[104] Peng Zhao and José Nelson Amaral. To inline or not to inline? Enhanced
inlining decisions. In Workshop on Languages and Compilers and Parallel
Computing (LCPC), College Station, Texas, October 2003.

[105] Peng Zhao and José Nelson Amaral. Feedback-directed switch-case state-
ment optimization. In Intern. Conf. on Parallel Processing (ICPP), pages
295 – 302, Oslo, Norway, June 2005.

[106] Peng Zhao and José Nelson Amaral. Function outlining and partial inlining.
In Intern. Symp. on Computer Architecture and High Performance Comput-
ing (SBAC), pages 101 – 108, October 2005.

147

Appendix A

General Background

Most of the work done by a compiler during the compilation process involves trans-
formations on an internal representation of a program. These transformations are
designed to reduce the number of instructions that must be executed to generate
correct output. The abstraction of high-level programming languages, convenient
language features, and idiosyncratic programming styles provide compilers with
tremendous opportunities to improve program efficiency. However, these factors
also present challenging analysis problems to identify and exploit those opportuni-
ties.

Many code transformations are based on the observation that programs tend to
have typical, or expected, dynamic behavior. While unexpected behaviors must
always execute correctly, if they occur infrequently there is no need for them to
execute quickly. Profiling provides a summary of past program behavior to inform
those code transformations that try to predict future program behavior and optimize
accordingly.

A.1 Compiler Terminology
Compiler transformations and program analysis require precise terminology to de-
scribe the computation performed by a program.

Program analysis often determines which facts hold at each point in a program.
A point exists:

1. between each instruction in a basic block.

2. at the entry to a basic block, before the first instruction.

3. at the end of a basic block, after the last instruction.

Figure A.1 contains the two BBs from the body of the loop in Figure 2.1. The
points in these blocks are identified by the labels p1 though p10.

The definition (def) of a variable v occurs when v is the left hand side of a
statement. A use of v occurs when v appears on the right hand side of a statement.
For example, in Figure A.1 statement S1 is a def of a and a use of both &A and i.
A def of v kills any previous def of v that reaches the point preceding the new def
v. A def of v at point pd reaches a point p if there exists a directed path from pd to p
that does not contain a def of v. The def of r in S3 is alive at, and thus reaches, p4
and p5, but is killed at S4, and is dead at p6. Points are particularly useful in this
situation as they allow for a distinction between the r that is alive at p5 and used in

148

p1
S1: a = &A + i;

p2
S2: ta = *a;

p3
S3: r = foo(ta);

p4

p5
S4: r = r * 2;

p6
S5: a = &B + i;

p7
S6: *a = r;

p8
S7: i = i + 1;

p9
S8: if(i<ROWS) GOTO BB2;

p10

Figure A.1: Points for the loop body from Figure 2.1 (BB2 and BB3)

S4, and the r that is defined in S4 and alive at p6. A variable is dead at a point p if
it has no use on any path in the CFG starting at p. That is, every path from p either
contains a def that kills v, or v goes out of scope, before there is a use of v. v is live
starting at the point after its def until the point where it is dead. The region of the
program where v is live is referred to as the live range of v. Thus, the live range of
the a defined in S12 is the set of points {p2, p3, p4, p5, p6}.

An expression is the right-hand side of a statement. The definitions of use and
dead for variables also apply to expressions. Furthermore, an expression e is avail-
able at point p if and only if two conditions hold: First, e is computed on every path
from the entry node of the CFG to p. Furthermore, the variables used to compute
e must not have changed between the computation of e and p. An expression is
redundant at point p if it is available on all paths leading to p.

A.2 Computer Architecture
Many code transformations are designed to make better use of processor features.
This section provides a brief overview of elements of computer architecture that are
significant for code transformations. There is a large degree of diversity among pro-
cessors, however several basic components of the execution pipeline are common
to most processors:

Fetch: The next instruction(s) is (are) fetched from memory. Fetch proceeds se-
quentially through memory unless the fetch location is modified by a taken
branch, procedure call, or procedure return.

149

Decode: The instruction(s) is (are) interpreted by the processor to determine what
type of instruction is being executed (e.g., branch, arithmetic, memory ac-
cess), and the source registers are read. The condition of a branch may be
computed in decode.

Issue: Instructions and operands are routed to the appropriate functional units.

Functional Units: Usually called the execute phase of the pipeline, instructions
are processed by functional units. Different functional units usually take a
different number of cycles to compute a result. Moreover, the number of
cycles required by a functional unit need not be constant (e.g., a load from
the memory unit will take longer if the required data is not cached).

Commit: The result from a functional unit is written to the instruction’s destination
register.

Main memory is slow compared to modern processors and direct access to mem-
ory requires many cycles. Therefore smaller, faster, caches are placed between the
processor and main memory. Caches exploit both temporal locality, repeatedly ac-
cessing the same data over a short amount of time; and spatial locality, accessing
nearby data with greater probability than distant memory locations. Often, there
are several layers of caches that become larger and slower over the progression be-
tween the processor and main memory. When a memory access occurs at a location
that is not stored in a cache a cache miss occurs. On a miss, the cache fetches
a block of memory containing the requested location (not just the requested loca-
tion) and replaces a previously obtained block by this new one. A cache hit occurs
when requested data is already in a cache. One goal of an optimizing compiler is
to minimize memory access time by making effective use of these caches; i.e., by
maximizing the temporal and spatial locality of memory accesses.

An instruction cache (icache) sits between the processor’s fetch unit and main
memory. Usually, the fetch unit accesses sequential instructions. If an icache miss
occurs, the block fetched by the cache will contain not only the requested instruc-
tion, but also the next several instructions. In the ideal case for a loop, the entire
loop body is fetched into the icache during the first iteration. Thus, subsequent loop
iterations do not incur any cache misses.

A data cache (dcache) sits between the processors memory access unit and main
memory. A dcache performs the same function for data that the icache performs for
instructions: A dcache speeds up memory access to sequential memory locations,
for example, when processing an array.

Data my be brought into cache before it is requested, or prefetched, by means of
hardware prediction of memory access patterns or by special prefetch instructions
inserted by the compiler. A prefetch may eliminate the cache miss for the first
access to a new block of memory. However, prefetching too often or too early can
cause the prefetched data to replace cached data that is still being used.

Instruction-level parallelism (IPL) exists in an instruction sequence when in-
structions are both data and control-flow independent. ILP allows instructions to be
executed in an arbitrary order and still maintain program correctness. Superscalar
architectures are processors designed to exploit ILP by issuing multiple instruc-
tions each cycle. They frequently have multiple copies of each functional unit. In
order to utilize these functional units, superscalar processors fetch multiple instruc-
tions each cycle. Each instruction is individually issued to functional units when
a) the appropriate functional unit is available, and b) the processor has determined
that the operands of the instruction have been computed. Therefore, compilers for
Superscalar architectures must maximize the instruction-level parallelism (data and

150

control-independent instructions) in the instruction sequence to enable effective use
of processor resources.

In contrast to superscalar processors, very large instruction word (VLIW) archi-
tectures process instructions in bundles. Several instructions are grouped together
into a bundle that is fetched, decoded, and issued as a unit. The compiler must
ensure that all the instructions in a bundle are independent of each other and that
the processor has enough functional units to execute all the instructions at once.
As with superscalar processors, a compiler for VLIW processors must find ILP in
order to fill bundles with as many useful operations as possible.

Compilers for superscalar and VLIW processors analyze the dependencies be-
tween instructions in order to group independent instructions together. However,
there is frequently insufficient IPL within a BB to fully utilize the available pro-
cessor resources. Therefore, many of the code transformations discussed below are
designed to increase ILP, either by moving instructions beyond BB boundaries, or
by combining BBs into larger regions.

Some processors support predicated execution. Predicates are single-bit regis-
ters that are set by special test instructions. Every instruction includes a predicate-
register argument. When an instruction is executed the indicated predicate register
is checked. If the predicate is false the instruction will be squashed. That is, the
result of the instruction will not be committed. However, the location in the pipeline
where the instruction is squashed, and thus the resources consumed by the squashed
instruction, are implementation-specific. Regardless of implementation, every in-
struction must be fetched and decoded before it is possible to check the predicate. In
VLIW processors, different instructions in the same bundle may use different pred-
icates. Two instructions may have the same destination register if they use mutually
exclusive predicates, as only one of them will commit.

A.3 Code Transformations

Many code transformations benefit from profile information that accurately identi-
fies the hot elements of a program.

A.3.1 Code Placement

Code placement is the problem of finding a linear ordering BBs that can be trans-
formed into a sequence of instructions that can be stored in memory. Pettis and
Hansen use edge profiles to place BBs in memory such that the most probable out-
come of a branch causes execution to continue at the next memory location rather
than jumping to some other address [79]. Consequently, the fetch unit is more likely
to continue requesting instructions sequentially, thus reducing the probability of an
icache miss.

Procedure placement is the same problem as code placement, but operates at
a coarser granularity by creating a linear ordering of the procedures in a program.
Gloy and Smith use profiling to measure both the frequency of call graph edges,
and also the temporal locality of those calls [45]. Code placement attempts to im-
proves instruction cache efficiency, and thus the code placed adjacent in memory
must not only be frequently accessed together, but multiple accesses in succession
are required to exploit the cache contents before other code replaces the cached
instructions.

151

A.3.2 Data Flow Analysis and Instruction Scheduling

S1: n=n+1;
S2: m=m+2;
S3: a=a*2;
S4: c=c*2;
S5: b=b+a;
S6: d=d+c;
S7: y=b/n;
S8: x=d/m;
S9: *q=y;
S10: *p=x;
(a) Original sequence

S1: n=n+1;
S3: a=a*2;
S5: b=b+a;
S7: y=b/n;
S2: m=m+2;
S4: c=c*2;
S6: d=d+c;
S8: x=d/m;
S9: *q=y;
S10: *p=x;
(b) Scheduled code

Figure A.2: Local instruction scheduling

Data flow analysis uses the defs and uses in a procedure to determine which
defs reach which uses (the flow of values), what the live ranges for each def are,
and when a value is dead. These data flow facts define constraints on the ordering of
instructions. For example, a def of a value must occur before any uses of the value.
These constraints are used by the instruction scheduler to ensure correct program
execution and by the register allocator to know which values need to be in a register
at each point in the program.

Instruction scheduling is the problem of determining the order to list instruc-
tions in the compiled program. Many instructions may be independent of each
other. Thus, the compiler is free to arrange them in any order to take advantage of
ILP. Local instruction scheduling orders the instructions within a BB, while global
instructions scheduling considers larger regions of a program and can move instruc-
tions across BB boundaries.

One goal of instruction scheduling is to ensure that the resources required to
execute an instruction are free in the processor when the instruction enters the issue
phase. If the required resources are not available, the instruction cannot be issued,
and may cause the processor to stall until the resources become available. For
example, the code in Figure A.2 contains two divisions. Placing two divide instruc-
tions is succession, as in Figure A.2(a), on a processor with a single, multi-cycle,
functional unit for division guarantees that the second division cannot be issued for
several cycles. Thus, other (non-division) instructions should be placed between
the two divisions if possible. In the scheduled code in Figure A.2(b), S2, S4, and
S6 have been moved down between S7 and S8. This change gives S7 4 cycles to
complete before S8 requires the division unit.

A second goal instruction scheduling is to ensure that the operands of an in-
struction are available when the instruction is due to be issued. In Figure A.2(a),
S9 could be moved up above S8 to further separate the two divisions. However,
S9 requires the value produced by S7. While S8 must wait on S7 to use the di-
vision unit, S9 must wait the same amount of time for S7 to calculated the value
of y. Thus, moving S9 up only trades one cause for delay with another. Moreover,
this change would reduce the distance between S8 and S10; it is better to leave
S9 in place so it can overlap one cycle of the division in S8. Typically, moving
long-latency instructions such as memory loads and divisions, in order for them to
execute sooner, is one of the greatest priorities for a scheduler.

152

x=a+b

q=b+1

q=a+1

s=q+r

y=a+b

t=y+1

A

B

D

E

C

(a) Original

q=a+1

y=a+b

x=y

q=b+1

s=q+r

t=y+1

A

B

C

D

E

(b) SPRE

C

E

D

x=y

setp P1,P0

B

P0: q=a+1

A

P1: q=b+1

s=q+r

t=y+1

y=a+b

setp P0,P1

(c) Predicated PDE

Figure A.3: Speculative PRE and PDE using predication

Speculation is a technique that allows a global instruction scheduler to move
instructions above branches that they depend on. By doing so, an instruction that
was originally executed conditionally will be executed unconditionally. Instructions
that cannot cause exceptions can always be moved above a branch. In this case, the
expression calculated by the instruction becomes available on one or more paths
that do not use it. Consequently, these path execute more instructions than nec-
essary. However, program execution remains correct. Instructions that can cause
exceptions, such as memory accesses or division, require hardware support for spec-
ulation. The processor must suppress any exception until it is determined that the
excepting instruction would have definitely executed without speculation. More
aggressive speculation may move instructions such that additional compensation
code is needed on other execution paths to ensure program correctness. For ex-
ample, speculation may make an expression unavailable, requiring paths with uses
of that expression to recompute it. Profile information is important for speculation
to ensure that instructions scheduled speculatively are from hot paths and that use-
less instructions and compensation code are only inserted into cold paths. If the
profile information is not representative of all important program-execution paths,
or an edge profile fails to correctly predict the hot path, speculation may degrade
program execution time rather than improving it.

The computation of an expression is partially redundant if it is redundant on
some paths of execution but not on other. Partial redundancy elimination (PRE)
is a data-flow analysis and code transformation that hoists the computation of an
expression higher in the CFG such that it is computed once on all paths. However,
an expression will not be moved above a branch if this would cause the expression
to become available on any paths where it was not previously available. Doing so
would introduce extra instructions on the paths that do not originally calculate the
expression. Speculative PRE (SPRE) extends PRE by moving expressions above
such branches when the extra instructions are expected to only impact cold paths.

Similarly, an expression is partially dead if it has no uses on some path of exe-
cution [62]. Partially dead elimination is a data-flow analysis and code transforma-
tion where the compiler sinks partially dead expressions down the CFG until they
are only computed on paths where they are used. A merge point for an expression
occurs at the first point in a BB with multiple incoming edges where the expression
is available, but may have different values, on different incoming edges. An expres-
sion cannot sink past a merge point as this change would cause incorrect program
execution along some paths that would receive the wrong value for the expression.
Predication can be used to sink partially dead expressions below merge points.

Figure A.3 shows an example of PRE and PDE. The expression a + b is com-

153

puted in both B and D. Thus, a+ b is partially redundant in B. Because a+ b is not
fully redundant, PRE cannot hoist the expression upward from D. However, using
speculation, a+ b can be hoisted into A. Then, the calculation in D can be removed
and the calculation of a+ b in B can be replaced with a copy. This copy will likely
be removed by other code simplification transformations.

The def of q in A is partially dead – the second def of q in B kills it before it
is used. However, the def of q in A is not dead along the ACDE path. Predication
allows the correct q to be calculated in D, when it is needed. Both definitions of q are
removed and replaced by a predicate calculation that encodes the path of execution.
setp is an inexpensive instruction to set predicates; the first argument is set to true
and the second argument is set to false. In block D, predicated execution calculates
the value for q.

SPRE reduces the number of instructions executed on the paths ABCDE and
ACDE but increases the number of instructions executed on the ACE path and possi-
bly on the ABCE path. Predicated PDE reduces the cost of instructions along paths
ABCDE and ABCE but increase number of instructions along the ACDE path. Fur-
thermore, predicated PDE increases resource utilization in block D. Consequently,
even in this simple example, the benefit of these transformations is highly depen-
dent on the frequency with which each path is executed. If ABCDE is the dominant
path, then both transformations will reduce execution time. However, if ACDE is
the dominant path, SPRE has no impact while PDE is detrimental. Finally, if ACE
is the dominant path, the two transformations counteract each other, with the net re-
sult of one extra predicate calculation. The code size explosion observed by Scholz
et al.. attests to the large number of opportunities to apply SPRE. However, every
additional instruction represents the potential for increased execution time if the
hot path is not predicted correctly. Furthermore, in a case where behavior diversity
affects the hot path, the program might run faster on some inputs but significantly
slower on others. Consequently, compiler heuristics tend to be conservative and
only optimize for “very hot” paths.

Mehofer and Scholz propose probabilistic data-flow analysis, where profile in-
formation is used to weight the importance of data-flow facts, such as available
expressions for PRE and PDE [74]. They use 2-edge profiles as an approximation
to path profiles to calculate the probability with which data flow facts hold at each
point in the program. They compare the 2-edge solution to a traditional 1-edge ap-
proach and the theoretically optimal solution. While the 2-edge approximation is
significantly better than the 1-edge approximation, there are occasions where even
the 2-edge approach deviates significantly from optimal solution.

Gupta et al.. use path profiles to inform an aggressive PDE algorithm [50].
Predication is used to allow expressions to sink below a merge point in the CFG,
similarly speculation allows them to be hoisted above a branch. The predicate al-
lows the expression to be computed only if control flow has taken a path where
the expression is not available. Thus, an existing (correct) value is not overwritten.
Gupta et al.. extend this idea to PRE, using path profiles to inform speculation [51].
In both cases, a cost-benefit framework using path frequencies is used to determine
when predication or speculation is profitable. In neither case are experimental re-
sults presented. Consequently, the impact of these transformations on execution
time is unknown.

Scholz et al.. use edge profiles to inform speculative PRE (SPRE) [86]. They
use a network flow formulation for cost-benefit analysis that can use any linear
combination of factors, including execution speed, code size, or power consump-
tion. Using integer programs from the SPEC 95 benchmark suite they find that
optimizing only for speed often results in a code size explosion, up to 56 times
larger than non-speculative PRE for the GCC benchmark. However, by including a
small factor for space and a large factor for speed in the objective function, space

154

is reduced nearly as much as optimizing for space alone, while the execution time
improvement is the same as when only optimizing for speed.

A.3.3 Register Allocation
Due to the relatively slow speed of memory, most architectures require that all in-
struction operands reside in registers and that the result of each instruction be stored
in a register. Register allocation assigns program variables to machine registers.
Two variables with overlapping live ranges cannot be stored in the same register
and are therefore said to conflict. Many register allocators construct a graph to rep-
resent conflict relationships and then apply graph coloring to the graph.1 However,
there are frequently more live values than the processor has registers. Consequently,
the compiler must spill some variables to memory after a def or use, then restore the
registers from memory before the next use. Spills are costly because they introduce
memory accesses. Therefore, a register allocator attempts to minimize the dynamic
number of spills.

Wall proposes a global, inter-procedurally aware register allocator that uses pro-
file information [98]. Inter-procedural register allocation is concerned with reduc-
ing the spill code inserted to preserve local variable values across procedure calls
or when different procedures access a global variable through different registers.
Wall’s allocator assumes that all variables reside in memory and then promotes
variables to registers if they are frequently used. Using the call graph, procedures
which are not simultaneously active (i.e., they cannot occur on the same call chain)
are identified and grouped together. As with variables whose live ranges do not
overlap, these procedures may use the same registers for local variables. Blocks of
registers are assigned to these groups of procedures according to the execution fre-
quency – blocks containing the most frequently executed procedures are allocated
registers first. Furthermore, the frequency of use of each global variable is used to
allocate a register to a global variable instead of to a group of procedures. While
these frequencies can be statically estimated, profiling provides more accurate re-
sults. For the largest of six small programs, on a machine with fast memory access,
profiling improves execution time by 4%. This improvement would be larger on
larger programs and on machines with more expensive memory access.

Different use-cases for a program can dramatically change the relative execution
frequencies for procedures, or even cause the hot procedures for one input to never
execute for a different input. For example, Gove and Spracklen find this to be the
case between the training and evaluation inputs for the wrf benchmark from the
SPEC 2006 suite [46]. In this case, Wall’s allocator could assign many registers to
procedures that are never called for an input, leaving few registers available to that
input’s frequently called procedures.

A.3.4 Enlarged Compilation Regions
Procedure calls impose overhead on program execution, but more importantly, they
limit the effectiveness of many transformations. For example, in most cases an in-
struction scheduler cannot move instructions past a procedure call. Chang et al..
propose automatic inlining, a transformation where the compiler replaces a proce-
dure call with the body of the callee [31]. A context-insensitive call graph profile is
used to identify procedure execution frequency. Procedures are sorted by frequency

1There are a large number of register allocation algorithms; coloring the conflict graph is the
classic technique.

155

and the hottest procedure is selected for inlining first. A procedure selected for in-
lining is inlined at all of its call sites in the program. Furthermore, a procedure is
not inlined unless all of its outgoing call sites have already been inlined. Inlining
stops when a code expansion budget has been consumed.

Arnold et al.. present an inlining strategy similar to that used in modern com-
pilers [8]. They use a call-site sensitive call graph profile, thus allocating procedure
executions frequencies to individual call sites. Using code size expansion as the cost
and call site frequency as the benefit, call sites are inlined in decreasing cost/benefit
order up to a code expansion limit. They find that a 1% code size expansion limit
accounts for 73% of dynamic calls and reduces execution time by 9% to 57%.

A superblock is a region of code designed to improve global instruction schedul-
ing and improve the amount of instruction-level parallelism available for super-
scalar and VLIW processors [56]. Unlike a BB, a superblock is a single-entry, but
multiple-exit region. A superblock is constructed from the BBs along a hot path.
Paths are processed in a hottest-first order until all BBs have been included in one
superblock. Each branch out of a superblock is a side exit. However, it is possi-
ble that branches could enter the superblock in the middle of the path. Such side
entrances would violate the single-entry semantic of a superblock. Therefore, tail
duplication creates a copy of the remainder of the path from the potential side en-
trance for use by the cold code. Instruction scheduling for a superblock employs
extensive use of speculation. Side exists are ignored and the instructions are sched-
uled as if the superblock were a basic block. Then, compensation code is added
on the side exits in order to maintain program correctness. Due to this aggressive
speculation, superblock-formation algorithms expect profile information to inform
the identification of hot paths. If the hot paths are not correctly identified, the hot
path may take an early side-exit from a superblock. Consequently, not only will the
hot path contain the poorly-optimized code in the tail, but may also incur substantial
compensation code to correct for speculation along the expected path.

Chang et al.. present an early implementation of a C compiler that uses profile
information to inform ten classic code transformations applied to superblocks [32].
The profiler provides block profiles, branch probabilities, and a context-insensitive
call graph profile. Experiments over a collection of programs show that superblock
optimization alone always improves program execution time for a MIPS-R2000
processor; on average a 4% speedup compared to the commercial MIPS C com-
piler and a 12% speedup compared to GCC. Profile information improves upon
that performance by another 15% speedup on average, illustrating the potential for
profile-directed optimization to significantly improve performance.

Young uses path profiling to direct the formation of superblocks [103]. Com-
pared to superblocks formed using edge profiles, superblocks formed using path
profiles reduce both the cycle count for program execution and the icache miss rate.
These benefits are the result of improved instruction scheduling and more useful
speculation: The hottest paths were identified more accurately; consequently spec-
ulation was correct more often.

Hank et al.. propose region-based compilation to provide the compiler with
a larger scope of instructions than a superblock and thus enable more aggressive
code transformation [52]. Region formation assumes that profile information is
available to accurately determine the execution frequencies of BBs. Aggressive
inlining is first applied to expand the size of procedures. Compilation complexity is
then managed by using each region as a compilation unit, rather than each procedure
(since only a few large procedures remain). A region is formed by selecting the
most frequently executed BB in a CFG that is not yet in a region. Blocks are
then selectively added to the region. The region is grown down by selecting the
most likely successor of the last block in the region. Likewise, the region is grown
upward by selecting the most likely predecessor of the first block in the region.

156

However, an execution frequency threshold ensures that the region only contains
hot blocks. Once the region has been thus grown as much as possible, all sequences
of hot blocks leading out of the region are also added to the region. Region-based
compilation is effective at increasing the scope available to the compiler, while still
breaking compilation into manageable units. However, no performance evaluation
is presented. Thus, the execution-time benefits of these larger regions is unknown.

If-conversion is a transformation that converts a branch into a predicate calcu-
lation. If the branch condition is calculated as the predicate P , the instructions on
the “true” path of the branch are predicated with P while instructions on the “false”
path are predicated with the complement of P , P . The instructions from the true
path and false path then are merged into a single path containing all the instructions
from both sides of the branch. With the branch removed, the CFG can be recom-
puted to create a new BB from the old BB containing the branch and its children.

A hyperblock is a single-entry, multiple-exit alternative to a superblock designed
for regions that are not dominated by a single hot path [71]. Hyperblock formation
starts by selecting all the BBs along the hottest path in the region (the region is usu-
ally the body of an inner loop but may be other sections of code). Then, additional
BBs from side exits are evaluated for inclusion in the hyperblock. The BB inclu-
sion heuristic looks for frequently executed BBs, that are not too large, and that do
not contain instructions that hinder optimization (e.g., procedure calls or indirect
memory accesses). Cold block are not selected, since merging cold code with hot
code will only slow down the hot code. Large BBs have many instructions and use
many processor resources. Therefore, they should be avoided because they may
impede optimization of the hyperblock. When a BB is selected for inclusion in the
hyperblock, if-conversion is applied to remove the side exit and merge the block
into the hyperblock. Tail duplication is used to prevent side entrances in the case
that the selected block has multiple incoming edges. As with superblocks, profile
information is critical for the effective formation of hyperblocks.

Cohn and Lowney state that “the scope of a superblock is too small for effective
optimization, even when using techniques that expand their scope such as predica-
tion” (i.e., hyperblocks) [36]. Therefore, they propose hot-cold optimization (HCO)
to expand a compilation region. HCO duplicates a procedure to creates a hot and
a cold version. Code is pruned from the hot version until only the hot BBs re-
main. All calls to the procedure call this hot version. Any side exits from the code
remaining in the hot version jump into the cold version. As with side exits from
other enlarged regions, compensation code is added in the cold version to ensure
correct execution. Subsequent optimization of the hot version reduces the overall
path length by up to 11% for large desktop applications, mostly due to PDE and
more efficient register use. However, the results are unclear as to the effect of HCO
on the overall execution time of applications.

Ammons and Larus create hot path graphs (HPG) to improve data flow op-
timizations on the hot paths in a CFG [6]. Path profiling is used to identify the
hot paths in a procedure. Each hot path is duplicated in the CFG, eliminating all
side entrances and exits, to create an HPG. Data flow analysis and code transfor-
mations proceed on the HPG using a finite automaton that recognized hot paths.
A subsequent pass eliminates duplicated paths that did not benefit from separate
optimization. Experiments with SPEC 95 benchmark programs report mixed re-
sults. While the dynamic number of instructions with constant operands is always
increased, execution time ranges from 4.4% slower to 9.8% faster.

157

main() {
foo =

&realFoo();
if(

RARE COND 1)
foo =

&bar();
if(

RARE COND 2)
foo =

&baz();
}

proc() {
(*foo)();
}

(a) Original code

main() {
foo = &realFoo();
if(RARE COND 1)
foo = &bar();

if(RARE COND 2)
foo = &baz();

}

proc() {
if(foo ==

&realFoo())
x = realFoo();

else
x = (*foo)();

}
(b) Specialized code

Figure A.4: Specialization of an indirect procedure call

A.3.5 Specialization

A specialization transformation replaces a general/unknown quantity with one or
more specific/known quantities guarded by checks. The general case is left as a
failsafe for instances when the runtime value does not match one of the specialized
cases. Value profiling is used to determine the candidates for specialization. Behav-
ior diversity has the potential to be particularly problematic for value specialization,
since many programs contain variables that are effectively constants that are set by
the input. For example, the size of a data array in a scientific computing applica-
tion is often directly determined by the size of the input data. This size will remain
constant over the execution of any individual input. However, each input may have
a different data size.

Figure A.4 shows an example of specialization for an indirect procedure call.
main sets the function pointer foo to one of three procedures. Later, proc makes
an indirect call through foo. However, profiling could show that in most cases foo
points to realFoo(). In that case, the indirect call could be specialized as shown
in Figure A.4(b). Making the direct call to realFoo() instead of the direct call
will have limited immediate benefit on execution time. However, once the target of
the procedure call is constant, other transformations such as inlining can be applied.

In object-oriented languages, polymorphism can lead to method calls where the
class of the receiver object cannot be determined at compilation time. This situation
requires a virtual dispatch mechanism to invoke the procedure in the correct class
at runtime. In other languages, indirect calls can similarly prevent the callee from
being determined statically. Grove et al.propose receiver class specialization [49].
They find that the distribution of possible receivers for virtually-dispatched meth-
ods is strongly peaked and stable across different program inputs. Receiver class
specialization results in an average speedup of 2 on a collection of C++ and Cecil
programs.

158

S1: pa = &a;

S2: pb = &b;

S5: d = *pa * 2;

S6: c = *pb * 2;

S8: *pb = d;

S7: *pa = c;

S3: pb = &a;

A

B

D

E

S4: foo(pb);C

Figure A.5: Pointers and aliases

A.3.6 Alias Analysis
Pointers are variables that contain the address of a memory location and thus facil-
itate indirect memory access. However, this indirection allows a single location in
memory to be accessed by multiple names in the program. Names that refer to the
same memory location are said to be aliases. Aliases hinder many code transfor-
mations, particularly those that rely on data-flow analysis (such as PRE and PDE).
Alias analysis, or pointer analysis, is a program analysis that determines if point-
ers definitely alias, definitely do not alias, or may alias. Pointers that definitely
do or do not alias do not pose significant problems: Definitely aliasing pointers
are simply multiple names for the same memory location; definitely non-aliasing
pointers never refer to the same memory location and can be treated independently.
However, may-alias relationships prevent the compiler from applying code trans-
formations because it cannot prove that the transformations are safe.

Figure A.5 illustrates some of the complications introduced by pointers and
aliases. In block A, ∗pa is an alias for a and ∗b is an alias for b. Statement S3 is
executed conditionally; at the entry point to block C, ∗pb might be an alias for a
and ∗pa, or, it might be an alias for b. In S4, pb is passed as a parameter. Whatever
address pb holds is said to escape into foo(). In order to determine the alias relation-
ships that (might) hold after S4, the effects of foo() on all alias relationships must
be known. For some executions, it is possible that both statements in block E are
equivalent. Likewise, S6 may be partially redundant with S5. Speculation allows
a compiler to perform code transformations in the presence of potentially aliasing
pointers; for example, SPRE for S6. However, the compiler requires additional
information to evaluate the benefit of a potential speculation and whether it should
speculate that the pointers do, or do not, alias. If ∗pb is seldom an alias for ∗pa at
S6, applying SPRE would be counter-productive.

Therefore, Chen et al.. propose inter-procedural probabilistic pointer analysis
(PPA) [34]. Standard data-flow equations used to calculate alias relationships are
augmented with probabilities to calculate the probability that two pointers alias.
Inter-procedural analysis is facilitated by mapping the actual parameters of a call to
the formal parameters and tracing the callee. Tracing results are summarized as a
transfer function, which is cached to keep the analysis tractable. They find that edge
profiles improve the average accuracy of the probability predictions compared to
static estimates from 76% to 95%. Note that the 24% error in probability estimates
is very large, particularly since a non-negligible portion of alias relationships can
be determined to definitely alias or definitely not alias, and thus have 0% error.
Consequently, aliasing probabilities appear to be of limited reliability without edge

159

profile information, making speculation a risky proposition.
Da Silva and Steffan propose a PPA analysis using an inter-procedural control

flow graph (ICFG) which combines the CFGs from every procedure in a program
with the context-sensitive call graph. In an ICFG, an edge is added between a call
site in one CFG to the entry vertex of the CFG of the caller. A return edge is
similarly added from the callee’s exit block back to the caller. Each edge must be
weighted by execution frequency, either from static estimates or profile informa-
tion. Analysis traverses the ICFG and at each point assigns a probability to each
alias relationship. The aliasing effects of each statement that may impact alias re-
lationships are encoded in a sparse matrix. Simple operations on these matrices
propagate the aliasing probabilities and allow the aliasing impact of each procedure
to be conveniently summarized. Experiments using the SPEC 2000 integer bench-
marks show that the method scales to large programs. Furthermore, a large major-
ity of may-alias relationships have very low probability. This observation makes
speculative transformations very promising. Furthermore, while static estimates of
edge weights provide quite accurate alias-probability predictions for some bench-
marks, using profile information significantly improves the accuracy for several
other benchmarks. Surprisingly, relaxed safety conditions in the analysis (which
is acceptable for speculation) provide more accurate estimates than a safe analysis,
suggesting that the conservative assumptions required to ensure safety introduce
many false may-alias relationships.

A.4 Summary
The code transformations described in this chapter are significant contributors to
the level of program execution efficiency achieved by modern compilers. However,
the list of transformations discussed in this chapter is not exhaustive; many other
transformations can benefit from more accurate predictions of program behavior
in simple ways that do not warrant publication. The common theme among these
transformations is the idea that program execution time can be reduced by predict-
ing what will or will not happen at run time. Many of these transformations make
significant assumptions about the stability of these predictions and must be care-
fully guarded by conservative heuristics. Despite the often-impressive execution
time gains these techniques report on benchmarks, behavior diversity is an issue.
Consider for example the motivation hyperblocks: The hyperblock is designed for
instances where there is no dominant path through a procedure. This situation is a
manifestation of behavior diversity.

As processors and programs continue to become more complex, occurrences of
problematic behavior diversity are likely to become more common, and their impact
more substantial. Thus, the heuristics controlling code transformations must start
to consider the implications of behavior diversity. Simply making these heuristics
more conservative is not a solution; rather, they must be enhanced to determine how
to appropriately apply code transformations both in the presence, and the absence,
of behavior diversity.

160

Appendix B

Profiling

B.1 Profiling Techniques
There are many different approaches to profiling, each with strengths and weak-
nesses. Each technique is particularly suited for certain consumers of the profiling
information. A profiler may collect complete information over the run of a program,
or may apply a sampling technique to capture a statistically-representative record of
program behavior with much lower overhead. In dynamic optimization, overhead
is a critical concern. Therefore, sampling is usually accompanied by techniques
to focus profiling on the most frequently executed portions of the program. Some
researchers have proposed hardware-assisted or full-hardware solutions for profil-
ing with negligible overhead. This form of profiling is increasingly feasible due to
hardware performance counters accessible in recent processors. Within this gamut
of possibilities, this work only considers profiling as performed by a compiler in
the context of statically-optimized code executed in a static execution environment.
Thus, both sampled profiling and focused profiling for dynamic optimization, as
well as hardware support for profiling, are beyond the scope of this research.

Profiling uses monitors to observe program behavior. Since program control
flow is often critical to code transformation decisions, monitors may observe branch
frequencies (equivalently, BB execution frequencies) to provide weights for the
edges of a CFG. Monitors may also observe procedure calls to provide weights

60

25

100

100

100

A

B

C

D

E

(a) Block

A

C

B

E

D

75

40

25

60

60

25

100

(b) Edge

A

C

B

E

D

10

50

15

25

(c) Path

Figure B.1: Block, edge, and path profiles for a simple CFG

161

A

E

D

C

B

(exit)

(entry)

(a) Cycle

A

E

D

C

B

(exit)

(entry)

(b) Broken cycle

P1

A

B

C

D

E

P2

A

B

C

D

P3

C

D

E

P4

C

D

(c) Paths

Figure B.2: Acyclic paths for Ball and Larus’ path profiling

for the edges of a CG, or observe various other aspects of program behavior to in-
form code transformations. The simplest monitor is a counter but monitors also
include more involved operations such as locating values in a hash table or travers-
ing complex data structures.

Within the context of this research several profiling possibilities exist. This
section lays out each form of profiling, while issues related to the efficient imple-
mentation of these techniques are discussed in Section B.2.

B.1.1 Vertex and Edge Profiling
Initially, profiling was concerned only with determining the execution frequen-
cies of program instructions. Vertex, or block, profiling is an intuitive solution
for this problem. By placing a monitor in each BB of a CFG, each instruction’s
frequency can be determined directly from the frequency of its BB. Figure B.1(a)
shows weights assigned to a CFG using vertex profiling.

An alternative to vertex profiling is edge profiling. An edge profile places a
monitor on each edge in the CFG instead of in each vertex. The flow through
the edges incident to a vertex provide the execution frequency of the block. Fig-
ure B.1(b) shows weights assigned to a CFG using edge profiling that are equivalent
to the vertex profile in Figure B.1(a).

As described, both vertex and edge profiling are very inefficient and impose
a very large penalty on program execution time due to the excessive insertion of
monitor code. Fortunately, as discussed in the next section, techniques exist to sub-
stantially reduce the number of monitors required and lower overhead to acceptable
levels.

B.1.2 Path Profiling
Along with BB execution frequency, the sequence in which BBs execute is signif-
icant for several code transformations. Path profiling, due to Ball and Larus, is a
technique to monitor the frequency with which sequences of BBs execute over a
run of a program [12]. A basic path is a sequence of BBs that form an acyclic path
through the CFG. Figure B.1(c) illustrates the paths through a simple CFG with the
path frequencies for the corresponding vertex and edge profiles.

To maintain the acyclic property of the paths, the CFG is converted into a di-
rected, acyclic graph (DAG), as shown in Figure B.2. In the DAG, every path starts

162

at the entry vertex of the CFG and ends at the exit vertex. Each back edge in the
CFG (the dashed arc in Figure B.2(a)) is replaced by 2 edges; one from the entry
vertex to the target of the back edge (i.e., the entry point of the cycle) and another
from the source of the back edge to the exit vertex (the dashed arcs in Figure B.2(b)).
In the DAG, a path through an iteration of the cycle starts at the entry vertex, may
optionally pass through other BBs prior to encountering the entry point of the cy-
cle, traverses a path through the cycle to the source of the back edge, and may then
optionally traverse other BBs before ending at the exit vertex. These paths are il-
lustrated in Figure B.2(c). Thus, all paths from the CFG are preserved except those
that traverse more than one iteration of the cycle. The edges added to the DAG cre-
ate (all possible) paths that include only one iteration through the cycle, including
the paths that are exactly one iteration of the loop. Thus, path profiling does capture
all of the execution of the program.

All the possible paths through the DAG are known at compile-time. A num-
bering algorithm assigns unique, non-negative integers to each edge in the DAG
such that accumulating the edge numbers along a path results in a unique sum for
each distinct path. Furthermore, these path numbers are compact. If N is the num-
ber of paths and pn is the number of some path, all path numbers fall in the range
0 ≤ pn < N − 1. In a naive implementation monitors are placed on each edge of
the DAG to accumulate the path number during execution. Additional monitors on
each back edge (in the actual CFG) and in the exit vertex increment the appropriate
counters in a path frequency table. In Figure B.2, a monitor on the D-C back-edge
would record occurrences of P2 and P4. A monitor in the exit vertex would record
the frequency of paths P1 and P3.

Young proposes an alternate form of path profiling [103]. General paths do not
preclude back edges and can thus record information about successive iterations of
a loop in the same path. Thus, general paths can detect patterns that span multiple
loop iterations such as odd/even alternating paths through the loop body. Instead
of numbering paths, paths have a length less than or equal to L. Each path is
identified by the last L BBs executed. BB identifiers are kept in an L-entry FIFO
buffer. Path frequency counts are incremented whenever execution crosses a CFG
edge and the FIFO is full or when a path ends at a procedure boundary. Paths will
only be less than L BBs long when the FIFO is not full when the path encounters
a procedure boundary. Since most of the FIFO is unchanged at each successive
edge, efficient data structures to record path frequencies exist. These data structures
allow monitors with algorithmic complexityO(1), the same complexity as the other
profiling techniques discussed above. Nonetheless, many instructions are required
to update the data structures, which introduces substantially more overhead than the
additions and counters of the path numbering technique.

Due to the general acceptance of Ball and Larus’s technique references to paths
and path profiling in the remainder of this document refer to the Ball and Larus
definition of paths and path profiling.

Path profiles are more expensive to collect than edge profiles. While Ball and
Larus showed that path profiles cannot always be accurately constructed from edge
profiles [12], this limitation may be acceptable in practice. Bodik develops and
evaluates five algorithms to infer path profiles from edge profiles [23]. The algo-
rithms are progressively more expensive but also progressively more accurate. Each
estimated path profile is evaluated to determine an upper and lower bound on the
error in the estimate compared to the true path profile. Unfortunately, error is mea-
sured with respect to a particular data flow problem1, but nonetheless average error
is only 5% for the best estimator.

In order to address the problem of measuring the accuracy of path profiles es-

1The data flow problem is partial redundancy elimination, which is discussed in Appendix A.

163

timated from edge profiles, Ball et al. define definite and potential path frequen-
cies [13]. Given an edge profile Pe, the definite frequency (or flow) for path p is
the minimum frequency that p must execute in all path profile that could induce
Pe. Similarly, the potential frequency of p is the maximum frequency that p could
execute in any of the path profiles that induce Pe. In experiments with the SPEC
95 benchmarks they find that 85% of the execution of FORTRAN programs and
76% of the execution of C programs is definite flow. Consequently, estimating path
profiles from edge profiles is usually very effective.

B.1.3 Extended Path Profiles
Several works extend path profiling to include information about loops and proce-
dure calls.

Melski and Reps present the idea of inter-procedural path profiling. They pro-
pose combining all the CFGs of all the procedure in a program into a supergraph.
Ball and Larus’s path profiling technique is applied to the supergraph, with a slight
change to the numbering algorithm to support the huge number of paths. How-
ever, this technique does not support indirect calls and has not been implemented.
Consequently, no evaluation is available. Given these limitation, this approach to
inter-procedural path profiling is not a feasible solution.

Tallman et al. introduce overlapping paths (OL paths), an extension of Ball-
Larus paths. An OL − k path consists of a standard path with k additional BBs
appended to the end. These additional BBs come from the cycle that ended the
original path; that is, an OL − k path is a path through a cycle plus k BBs from
the next iteration of the cycle. OL− k allows the standard numbering technique to
efficiently identify paths while adding the ability to make inferences about program
behavior across multiple loop iterations. Furthermore, OL− k paths can be used to
profile paths across procedure boundaries. Two forms of this inter-procedural path
profiling are supported: A path in the caller plus k blocks of the callee, or a path in
the callee that returns plus k blocks after the return in the caller. Experimental re-
sults using selected SPEC 2000 benchmarks show thatOL−k paths can effectively
estimate the paths of two full loop iterations: OL−k paths assign 96% definite flow
when k is one third the length of the longest cycle.

Larus develops whole program paths, which compactly encode the full dynamic
control flow for an execution of a program including loops and paths through proce-
dure calls. Regular path profiling is used to instrument every CFG in the program,
with the modification that paths end at edges entering a BB containing a procedure
call. Instead of counting the frequency of each path number for a profile, the num-
ber of each detected path is emitted as a token in a trace of program execution. The
tokens are generated lazily to minimize the alphabet of the trace. Additional tokens
are added to the trace for procedure calls and returns. The trace is then processed
by an efficient string compressor called SEQUITUR which produces a context-free
grammar for the trace. This grammar dramatically reduces the size of the trace, as
well as making analysis easier. The grammar is represented as a DAG which has
grammar productions as the interior nodes and terminals (paths) as the leaves. A
trace through the program can be generated by traversing the DAG. Weights on the
nodes of the DAG allow the frequency of path sequences to be determined.

B.1.4 Call-Graph Profiling
Call-graph profiling is another important aspect of profiling. Graham et al. develop
g-prof, a tool that determines the dynamic call graph of a program and records
the edge frequencies for that graph [47]. Furthermore, execution time is assigned

164

to each function to inform programmers of where their program is spending the
most execution time. Periodically sampling the program counter provides a low-
overhead method for gprof to determine, as a statistical estimate, what proportion
of execution time is spent in which procedure. Time spent in a procedure is reported
both including and excluding time spent in any procedure calls. Unfortunately,
gprof makes a uniform-time assumption: Total execution time for a procedure is
divided evenly among every invocation of the function. Furthermore, in the case
of recursion, all procedures involved in the recursion are collapsed into a single
call graph node for the purpose of data collection. Execution time is proportioned
evenly between the procedures in the collapsed node.

Spivey observes that the uniform time assumption can dramatically reduce the
usefulness of information reported by g-prof in programs where shared procedures
have different behavior when called from different callers and call sites. Creating
a fully context-sensitive call graph allows execution time and frequency to be allo-
cated to procedures based on the call chain. Full context-sensitivity is used rather
than a length l context because the “layered” nature of program development often
results in situations where the caller in the programmer’s code is separated from the
utility procedure that performs the majority of the work by a long call chain through
library code.

B.1.5 Value Profiling
While program control flow has traditionally been the focus of profiling, value pro-
filing, proposed by Calder et al., facilitates control-flow independent transforma-
tions when presented with semi-invariant variables [25]. A semi-invariant variable
at the instruction level is not constant at compile time, but takes few distinct values
during execution. The Invariance-M metric characterizes the stability of the values
taken by a variable. This metric is calculated for a variable v in statement s as the
proportion of the executions of s that are accounted for by the M most frequent
values of v. Frequent values are determined by recording the frequency of each
observed value in a table. In order to limit the space requirement, the table has a
fixed size. Table entries are replaced according to the least frequently used replace-
ment policy (LFU). However, newly observed values may compete with each other
as the LFU entry. Thus, the half of the table containing the least frequent values
is occasionally flushed. The unused space allows newly observed values time to
accumulate frequency before they are a candidate for replacement.

B.2 Profiling Overhead
The overhead incurred to collect a profile is one of the greatest barriers to the prac-
tical application of profiling. In this work, monitors are extra instructions inserted
by the compiler into the original code and thus impose execution overhead. One
of the first compilers to use profiling for a large number of transformations reports
that naively-instrumented versions of a programs run 25 to 35 times slower than the
un-instrumented versions [32]. In order to minimize this overhead, monitors may
be intelligently placed. Such a placement reduces the number of monitors needed
and more frequently places those monitors in cold portions of the code. Ball reports
that these efficient algorithms reduce the overhead of edge profiling to around 16%
and the overhead of path profiling to about 30% [13].

Forman studies the optimal placement of counters to record CFG edge frequen-
cies using an m-graph representation from circuit theory [42]. A foundational con-
tribution of this work is to use existing graph theory results to intelligently place the

165

A

C

B

E

D

75

40

25

60

60

25

100

(a)
Weighted
CFG

A

C

B

E

D

(b) Span-
ning Tree

A

C

B

E

D

M

M

(c) Cotree

Figure B.3: Finding the minimum instrumentation required for edge profiling

counters. The complement of an undirected spanning tree is called a cotree. Given
the cotree for a flow graph and flow values for the edges of the cotree, the law of
conservation of flow allows the flow on the edges in the spanning tree to be com-
puted. Therefore, counters need only be inserted to record the execution frequencies
of the edges in the complement of the undirected spanning tree of the m-graph for
a procedure. Edge frequencies are computed by placing the branch probabilities
of the procedure in a Markov process. The matrix of the steady-state solution of
the Markov process provides the relative frequencies of all possible edges in the
graph. Forman uses these properties to determine dominating cotrees. A cotree CA

dominates cotree CB if, for any assignment of branching probabilities, the sum of
flow on the edges of CA is less than or equal to the sum of the flow on the edges of
CB. Unfortunately, cotrees seldom dominate each other, necessitating heuristics to
select a “good” cotree.

Ball and Larus implement the spanning tree technique for the CFG of a proce-
dure in order to determine the execution frequencies of each BB [11]. They propose
using the maximal spanning tree of the CFG, and consequently the minimal cotree,
to insert monitors as shown in Figure B.3. For this simple CFG, monitors are only
needed on the B-C and D-E edges. These monitors are indicated in the figure by
a circled M. Edge weights are assigned to the CFG using static heuristics. Given
this weighting, they show that, with the exception of some particular cases of re-
peat loops and break statements, inserting monitors on the edges of the minimal
cotree adds minimal overhead. Furthermore, an edge profile uniquely determines
a vertex profile but the reverse is not true. Thus, an optimal edge monitor solution
cannot have more overhead than an optimal vertex monitor solution. Furthermore,
edge profiles can be collected with similar overhead to that of vertex profiling tech-
niques.

Samples investigates the optimality of monitor placement. He finds that the
maximum spanning tree algorithms (e.g., the Ball and Larus technique discussed
above) are not optimal because instrumentation does not have a fixed cost [83]. In-
strumenting one edge may make instrumentation of another edge more expensive
(e.g., by preventing monitor code from moving from the edge into an adjacent BB).
Furthermore, the optimality claims of maximal spanning tree approaches hold only
for the edge weights estimated when creating the tree. He provides a modified max-
imum spanning tree algorithm that makes better decisions but is still not optimal.
Fortunately, experiments reveal that, in practice, optimality is not a major concern.

166

The problematic situations that lead to suboptimal solutions arise rarely and account
for very little overhead. Finally, Samples reinforces the advantage of edge profiles
over vertex profiles. When monitors are inserted by the compiler before code trans-
formations are applied, vertex and edge profiles have nearly identical profile data
sizes and profiling overheads. In some cases, edge profiling induces less overhead
than the corresponding vertex profiling. Consequently, edge profiles are strictly
superior to vertex profiles; modern compilers and recent research never use vertex
profiling.

Apiwattanapong and Harrold reduce the instrumentation overhead of path pro-
filing with selective path profiling (SPP) in order to enable programs to be profiled
after they are deployed at client locations [7]. When the paths in a CFG are parti-
tioned into “interesting” and “uninteresting” paths, SPP uses a modified version of
the Ball and Larus path numbering algorithm to assign unique path number to the
interesting paths but allows other paths to have non-unique path numbers. Conse-
quently, any instrumentation that would be needed to profile the uninteresting paths
can be eliminated. However, while the amount of instrumentation required for SPP
is reduced, several new open problems arise. First, how can interesting paths be
selected? For a compiler, the interesting paths are the hot paths but accurately iden-
tifying hot paths requires profiling. Once the hot paths are determined, additional
profiling is unnecessary. Furthermore, if additional profiling of hot paths is desired
in the field, removing the instrumentation from cold paths will have little impact on
the dynamic overhead imposed by profiling.

Value profiling incurs substantial overhead for each variable profiled. Thus,
Calder et al. propose convergence profiling to intelligently turn off profiling for
variables who’s profile has reached a steady state [25]. The Invariance-M metric is
periodically calculated to test for convergence. If the invariance is increasing, then
the variable is judged to be potentially semi-invariant and profiling is continued.
Otherwise, the variable is unlikely to be semi-invariant and profiling is turned off.
Using this approach, profiling is turned off for 98% of the time that instrumented
instructions are executed. Meanwhile, the 5 most frequent values for semi-invariant
variables were correctly identified 98% of the time.

167

