
Automated Hotfixes for Misuses of Crypto APIs

by

Kristen Newbury

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Kristen Newbury, 2020

Abstract

Cryptographic (crypto) Application Programming Interfaces (APIs) play an

important role in application security; unfortunately crypto APIs are difficult

to use, which may lead to security vulnerabilities. Prior work have looked

at detecting and fixing crypto APIs misuses at development time and in the

setting of software patching. However, software patching for security vulnera-

bilities is not ideal for addressing vulnerability windows in servers in a timely

manner. An alternative approach to software patching is hotfixing. In this

paper, we present Hotfixer, a tool that performs automatic crypto API

misuse hotfixing at Java application runtime. To apply its fixes, Hotfixer

automatically transforms hand-crafted software patches into hotfixes that are

valid to use by Java agents. We have evaluated Hotfixer on a set of 103

microbenchmarks, and a set of 27 crypto API misuses found across 7 real-

world Java applications. Hotfixer detects and fixes all misuses in 95% of

all benchmarks, in an identical manner compared to applying a develop-time

patch. Additionally, we have empirically validated that Hotfixer preserves

identical application behaviour compared to software patching in 98% of all

benchmarks. Compared to software patching, the performance overhead that

Hotfixer induces for all benchmarks is at most 17%.

ii

Preface

This thesis is an original work by Kristen Newbury. We intend to publish

this work in the future. The research conducted for this thesis was done as

part of a collaborative project with IBM Centre for Advanced Studies (CAS)

Canada. I was responsible for design decisions and implementing the system

presented in this thesis, as well as the experimental setup and evaluation of our

system. Andrew Craik was responsible for technical advice and contributions

to concept formation and system design, as well as thesis edits. Karim Ali

was the supervisory author and contributed to concept formation and system

design, as well as many thesis edits.

iii

Acknowledgements

Thank you to Karim Ali for all of your patience and effort. I would not be

brave enough to write this without you, and more importantly you’ve always

set a good example for how to be an incredibly intelligent person and also to

make room for oneself to be multi-faceted.

Thank you to Andrew Craik, for always being enthusiastic about having

technical discussions, even when I need to ask for clarification on how some-

thing works for the third time.

Thank you to all of my mentors, especially Nelson Amaral. You were the

first professor that I ever really felt brave enough to actually talk to. The

effort you put into teaching is inspiring and apparent, and I appreciate every

effort that you’ve made to include me in group discussions and meetups.

Thank you to my mom, for having an unreasonable amount of faith in me.

You always thought I could do it, buckle down and make sure I do my best.

Thank you to Amy for being my sweetest and silliest companion through

all of this.

Thank you to all of my fellow classmates and lab-coworkers who have been

there along the way, to bounce ideas of off and talk about work with. You all

have helped me strive to be as intelligent and hard working as you.

This work was made possible with the funding support of the IBM Cen-

ter for Advance Studies (CAS) Canada, the Government of Alberta, and the

University of Alberta.

iv

Contents

1 Introduction 1

2 Background Material 5
2.1 Java Virtual Machine . 5
2.2 Eclipse OpenJ9 . 6
2.3 Crypto API Misuses . 7
2.4 Software Patching and Hotfixing 7

3 Overview of Hotfixer 10
3.1 Phase I: Crypto API Misuse Detection 10
3.2 Phase II: Hotfixing . 13

4 Adapting a Patch into a Hotfix 17
4.1 Handling Field/Method Addition 17

4.1.1 Field Addition . 18
4.1.2 Method Addition . 19

5 Phase II: Hotfixing 25

6 Evaluation 27
6.1 Experimental Setup . 27
6.2 Data Processing . 28

6.2.1 CryptoGuard micro-benchmark 28
6.2.2 Wickert benchmark . 29
6.2.3 Crypto API Misuse Detection 29

6.3 How successful is Hotfixer at fixing crypto API misuses? (RQ1) 30
6.3.1 CryptoGuard micro-benchmark Results 30
6.3.2 Wickert benchmark Results 31

6.4 Does Hotfixer alter the semantics of a running application? (RQ2) 32
6.4.1 Regression Test Setup 32
6.4.2 CryptoGuard micro-benchmark Results 35
6.4.3 Wickert benchmark Results 35

6.5 How does Hotfixer affect application performance? (RQ3) . 37
6.5.1 Performance Test Setup 37
6.5.2 Results . 38

6.6 Threats to Validity . 49

7 Related Work 51
7.1 Crypto API Misuse Detection 51
7.2 Software Patching . 52
7.3 Hotfixing . 52

8 Conclusion 54

v

References 55

vi

List of Tables

6.1 The components in Hotfixer and their corresponding commit
hashes. 28

6.2 The results of running Hotfixer on Wickert benchmark. . . 31

vii

List of Figures

2.1 An example of a crypto API misuse. 8

3.1 Detailed Overview of Hotfixer Phases. 11
3.2 Sequence Diagram Overview of Events and Messages Between

Components of Hotfixer. 12
3.3 An example illustrating a patch that adds a new method to a

class. 14
3.4 An example illustrating a patch that modifies a static field of a

class. 15

4.1 An example illustrating a developer patch that adds an instance
field to a class and the hotfix that our patch adapter generates
by moving the added field to a new class and replacing its ref-
erences with calls to getters and setters. 19

4.2 An example illustrating a developer patch that adds a method
to a class and the hotfix that our patch adapter generates by
moving the added method to a new class and replacing its
monomorphic reference. 21

4.3 An example illustrating a developer patch that adds a method
to a class and the hotfix that our patch adapter generates by
moving the added method to a new class and updating its poly-
morphic references. 23

4.4 An example illustrating a developer patch where an added method
refers to an existing field using this and the hotfix that our
patch adapter generates by correctly updating that reference
using its reverse hashtable. 24

6.1 An example illustrating the cause of CryptoGuard micro-benchmark
test failures. 35

6.2 Throughput of Wickert Dataset. Notches in boxplot represent
a 95% Confidence Interval. 43

6.3 The application throughput using Hotfixer, normalized to
that of using develop-time patch strategy, of Wickert benchmark. 44

6.4 Recovery Curves of Wickert Dataset 48

viii

Chapter 1

Introduction

Detecting misuse of crypto APIs is an important component of application

security. A crypto API is a library that provides a developer with functionality

to perform crypto tasks such as encryption. If such crypto tasks are not

performed in a secure manner, applications may accidentally leak private user

data, leading to both economic losses as well as a loss of trust from the users

of the affected applications.

Unfortunately, crypto APIs remain difficult to use, despite years of tool

development. Some of these tools offer misuse detection [1, 2, 3, 4, 5, 6], and

others help generate secure code to perform crypto tasks [7]. While existing

solutions are valuable during the development of the codebase, they are in-

sufficient to protect an application from all vulnerabilities at all times. For

example, using existing tools to fix misuses of crypto APIs on a server re-

quires shutting down the server, developing the patch offline, deploying the

patched code to the server, and, finally, restarting the server. Such a scenario

is impractical, for example, in the case of a long running server that cannot

afford to restart at all or may only restart at well-defined intervals. Even

more commonly, when considering the time and resources required to develop

and deploy a patch, an unacceptable window of vulnerability may arise in the

application. If any such window exists, an attacker has the opportunity to

exploit the vulnerability.

A solution to this exploitation window is to apply a hotfix to the applica-

tion. A hotfix is similar to a patch, in that it serves the purpose of fixing a

1

misuse. However, instead of having the patch classes load only when the run-

time is restarted, a hotfix allows the patch code to begin execution in a running

application. Although some prior work provides automatic crypto API misuse

hotfixing [8, 9], the techniques are limited to Android applications. To detect

and fix those misuses, such tools use fixed sets of misuse patterns. In this pa-

per, we seek to improve on the coverage of the current state of the art crypto

API hotfix systems over the types of crypto API misuses that can be handled,

as well as the understandability of the mechanism used to perform the hotfix.

Additionally we specialize in systems where hotfixing is more beneficial than

software patching.

We propose Hotfixer, a tool that performs automatic crypto API mis-

use detection and hotfixing for a running Java application. Given a patch,

Hotfixer automatically converts this patch to a hotfix. To perform hotfix-

ing, Hotfixer uses a Java agent, a client of the Java Instrumentation API,

to modify classes in the currently running application. While using a Java

agent provides us a simple mechanism to perform a hotfix, a Java agent has

some limitations. In this work we use developer-provided patches as hotfixes,

however, certain types of changes in patches cause an exception in the agent,

which may result in Java Virtual Machine (JVM) shutdown if we attempt to

use them as is. We call patches that contain any class that causes an ex-

ception redefinition non-compliant. To deal with redefinition non-compliant

patches we contribute a patch adapter that is capable of detecting and fixing

non-compliant changes in developer-provided patches so that a Java agent can

use them to perform hotfixing. Our patch adapter contribution is a modular

component of Hotfixer, therefore it can be used in a variety of settings.

Our hypothesis is that hotfixing is a viable and beneficial alternative to

software patching. In this thesis, we investigate this hypothesis by answering

the following research questions:

RQ1: How successful is Hotfixer at fixing crypto API misuses?

RQ2: Does Hotfixer alter the semantics of a running application?

RQ3: How does Hotfixer affect application performance?

2

To answer the above research questions we present the following contribu-

tions to crypto API hotfixing:

� Hotfixer, a tool that performs automatic runtime crypto API misuse

detection and misuse hotfixing.

� A novel methodology for adapting patches into hotfixes that Hotfixer

successfully applies to a running system.

� An evaluation of Hotfixer in its ability to detect crypto APIs and to

apply hotfixes. We find that we are able to detect and hotfix crypto API

misuses in 95% of benchmarks in an identical manner to the develop-time

patch strategy, over two datasets, one of 103 microbenchmarks and the

other a set of 27 benchmarks found across 7 real-world Java applications.

� An evaluation of Hotfixer in its ability to preserve semantics. We

find that Hotfixer only alters program semantics in 2% of the total

benchmarks, compared to a develop-time patch.

� An evaluation of Hotfixer in its ability to preserve application perfor-

mance, again, with respect to a develop-time patch. We find that the

overhead of Hotfixer not exceed 17% loss at steady state compared to

software patching, for the dataset that we evaluate on.

The remainder of this thesis is organized as follows: in Chapter 2 we present

necessary background information on JVMs in general, followed by specific de-

tails of Eclipse OpenJ9. We then define crypto API misuses and how software

patching would address crypto API misuses. Lastly in Chapter 2, we describe

Java agents. Chapter 3 presents an overview of Hotfixer, including the steps

performed in each of its two phases. Chapter 4 discusses our patch adapter con-

tribution, and the techniques that we use to deal with various types of changes

in patches. Chapter 4 also contains multiple code examples to illustrate how

the patch adapter in Hotfixer works. Chapter 5 describes the concluding

workflow of Hotfixer and enumerates categories which patches may fall into.

These categories serve as the basis for understanding the capabilities of our

3

patch adapter, which we evaluate in Chapter 6. In our evaluation, we answer

the three research questions listed above. Lastly, we present related work and

our conclusion in Chapters 7 and 8.

4

Chapter 2

Background Material

2.1 Java Virtual Machine

A JVM is a virtual machine that can run Java programs. A JVM has many

components that all work together to execute the program; some of those

components include (1) an interpreter loop, and (2) a Just-In-Time (JIT)

compiler. The interpreter loop is the part of the JVM that executes Java

bytecode, which in a typical JVM comes directly from Java classfile format,

and is introduced into the JVM by a classloader. Before execution, a Java

program must be bytecode compiled by javac, a tool which translates Java

source code into Java bytecode. To execute bytecode in a JVM it must be

loaded into the JVM by a classloader. A classloader is responsible for managing

which classes are represented in an application at a given time, by receiving

a Fully Qualified Name (FQN) and depending on the delegation model (a

policy on how classloaders interact and delegate amongst themselves), reading

a classfile from a resource location. The classloader knows the exact resource

location from 2 pieces of information: (1) FQN and (2) classpath. A FQN

is comprised of the class name, as well as a package name. A classpath is a

path on the machine where the JVM is executing that contains the bytecode

to be executed. Once classes are loaded in the JVM, they are executed by

the interpreter. This method of execution is slow however, therefore a typical

modern JVM will also have a JIT. A JIT compiles Java bytecode into platform

dependent native code, which is much faster than interpretation, and can be

optimized. Next we discuss the importance of Java classfile format, and the

5

JIT, in relation to this work.

2.2 Eclipse OpenJ9

In this work we use Eclipse OpenJ9, an open-source JVM, as the base for

a components of Hotfixer, and also the JVM that runs all components

of Hotfixer. The JIT is important to this work because it is where we

initiate the operations performed by Hotfixer. Eclipse OpenJ9 naturally

sorts methods into compilation levels, based on which optimizations that the

JIT performs on that method, which are determined by invocation counters.

Methods that execute most frequently will be compiled at the highest level,

and may be compiled at multiple levels along the way. The compilation levels

in Eclipse OpenJ9 are: cold, warm, hot, very hot, and scorching. We utilize

all compilation levels in this work.

In this work we utilize a unique feature of Eclipse OpenJ9 called the Shared

Class Cache (SCC). The SCC is a portion of shared memory managed by

Eclipse OpenJ9. The SCC holds classes in a format called RomClass, which

acts as an alternative to classfile format. When a class is loaded into the SCC,

some of the work that a classloader would perform is completed, and then the

RomClass can be used by multiple JVMs or by the same JVM across multiple

executions of the same application. This sharing and reusing enables a JVM

to have better startup performance than simply using classfile format. Eclipse

OpenJ9 also naturally manages which classes get stores as RomClasses and if a

class is updated in the file system it will be marked as stale in the SCC and that

outdated class representation will no longer be used. We have built Hotfixer

to prefer to use the RomClasses from the SCC for analysis, however, if a class

is not present in the SCC Hotfixer will fall back on classfile format.

We prefer to utilize RomClasses over classfile format due to one challenge of

static analysis applied to runtime environments related to software versioning.

Software is composed of components which evolve over time, from one version

to the next; this is Lehman’s Law of Continuing Change [10]. When performing

static analysis, we must guarantee that the classes that we analyse are the same

6

versions as those that are running in an application JVM, otherwise the results

of that analysis are irrelevant to the application that is currently executing.

One potential solution to this irrelevant result problem is to send every class to

be analyzed from the JVM to Hotfixer. The analysis however may require

many classes, and, does not know which it will need up front. Therefore, a

solution of sending one class at a time from the JVM to Hotfixer would be

tedious and expensive. Luckily, we are able to mitigate the irrelevant result

problem by having Hotfixer use the SCC.

2.3 Crypto API Misuses

A crypto API misuse arises during application development not from the de-

tails of the implementation of the crypto API itself but instead from the design

choices of the API whereby it is possible to use the crypto API in a way that

creates a vulnerability. Figure 2.1 shows an example of an encryption task in

Java that uses the Java Cryptography Architecture (JCA), which is a common

framework for performing crypto tasks in Java. In Line 3 the developer has

created a Cipher object, and specified what algorithm, mode, and, padding

they want the encryption to use. In the next line they set the cipher object up

to be able to do encryption, and in the last line they call doFinal, the method

that performs the encryption on the bytes of the supplied data. In Line 3 the

developer chose ECB mode for encryption; ECB uses some repetitions [11] of

encryption upon blocks of plaintext data, which can result in patterns in the

ciphertext and therefore a possibility that the ciphertext can leak information

to an attacker. A more secure mode for encryption is CBC. Crypto API mis-

use detection tools can help developers to detect such misuses however, by

alerting the developer to the location of the misuse and potentially suggesting

ways that the developer can fix the misuse.

2.4 Software Patching and Hotfixing

As mentioned in the introduction, existing crypto API misuse detection tools

are valuable during the development of the codebase, however, if an application

7

1 public class Util{

2 public bytes[] encrypt(...){

3 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

4 cipher.init(Cipher.ENCRYPT_MODE, secretKey, paramSpec);

5 return cipher.doFinal(data.getBytes());

6 }

7 }

Figure 2.1: An example of a crypto API misuse.

is already deployed and is discovered to contain a vulnerability the developer

has 2 choices of how to proceed to fix the misuse: (1) software patching or (2)

hotfixing. In both cases the developer fixes the misuse in a local development

setting as a first step, and the method in which the fix is deployed is what

differs. Through software patching the developer shuts down the server where

the application is running, replaces the application with the new version that

contains the fix, and then restarts the server. In this case the developer does

not have to worry about any state transfer of the running application, however

inherently there is a cost to restarting the application. As mentioned in the

introduction it may not be possible to restart the application, or it is not

clear when exactly it is alright to do the restart, and inevitably this process

takes time which can cause windows of vulnerability in the application. The

alternative to software patching is hotfixing.

Hotfixing is when the fix for the misuse can be directly integrated into

the running application, with no need for a restart. There are multiple tech-

niques to perform hotfixing in Java, for example Aspect Oriented Weaving

(AOP) [12], or as another example, Java agents. Originally, a Java agent re-

ferred to clients (written in C or C++) of the standard native API provided by

Java for debugging (i.e., Java Virtual Machine Tool Interface—JVMTI) [13].

However, the term is now also commonly used to refer to clients (written in

Java) of the Java Instrumentation API, because both interfaces provide simi-

lar functionality. In this work we use a Java agent written in Java to perform

hotfixing. The mechanism is simple to understand; a Java agent can per-

form a redefinition event where the definitions of a set of specified classes are

replaced with new definitions. The Java agent guarantees that subsequent

8

invocations of methods that have been replaced will use the redefined im-

plementation, however, if there are some methods currently running, and a

redefinition of that method occurs, the old implementation of the method will

continue execution until it is complete. A redefinition event does not re-run

class initializers,which are run only when explicitly invoked, or in the case of

static initializers, when the class is first loaded by the classloader.

9

Chapter 3

Overview of Hotfixer

We built Hotfixer on top of Eclipse OpenJ9 [14], CogniCrypt [2], and

Soot [15]. Eclipse OpenJ9 is an open-source JVM, CogniCrypt is a static

analysis tool for crypto API misuse detection, and Soot is a bytecode anal-

ysis and optimization framework. The main workflow of Hotfixer consists

of two phases: a crypto API misuse detection phase (Phase I) and a hot-

fix phase (Phase II). Each phase involves the major components of Hot-

fixer: (1) OpenJ9 Hotfixer Version, our enhanced version of Eclipse

OpenJ9 [14], (2) CogniCrypt Hotfixer Server, our enhanced version of

CogniCrypt [2], and (3) Soot Hotfixer Version, our enhanced version of

Soot [15]. Figure 3.1 depicts the general workflow of Hotfixer. Figure 3.2

depicts the specific events, and messages that are transmitted, between the

components of Hotfixer.

3.1 Phase I: Crypto API Misuse Detection

Phase I consists of two major steps: (1) crypto API use detection and (2)

analysis. Hotfixer starts when CogniCrypt Hotfixer Server sets up

a server that waits for analysis requests. Then, when OpenJ9 Hotfixer -

Version runs in Hotfixer mode, it connects to CogniCrypt Hotfixer -

Server during JVM startup. During this connection setup, CogniCrypt -

Hotfixer Server provides OpenJ9 Hotfixer Version with a set of anal-

ysis seeds. The seeds are simply the names of classes that CogniCrypt Hot-

fixer Server has rules for. OpenJ9 Hotfixer Version uses the analysis

10

CogniHotfixer
Connection

Crypto API
Use Detection

Java Agent
Startup

Analysis Setup Perform
AnalysisApp Startup class

names

Apply Hotfix Send Hotfix Patch
Adaptation

{
{

Phase I

Phase II

HOTFIXER
Start

Figure 3.1: Detailed Overview of Hotfixer Phases.

seeds to detect uses of crypto APIs in the running application. The JIT com-

piler of the application JVM uses the seeds to see if a currently compiling

method contains any calls to crypto APIs. We setup the JIT to search for

crypto API uses in all methods at all Eclipse OpenJ9 compilation levels so

that we get maximum analysis coverage over all compiling methods. We use

the JIT to search, as opposed to the interpreter in the JVM, to prioritize meth-

ods that are more likely to contribute to application security. This means if

certain methods never compile, we will miss some uses, however, at this time

we do not investigate the value of searching in methods that do not compile.

For each method under compilation, the JIT uses a check for whether each

full signature of each callee in the method matches any of the seeds. We use the

full signature of a callee, as opposed to just the method name, to ensure that (1)

we classify invocations of methods from classes in a crypto API as uses, and (2)

crypto API type parameters will trigger the detection of a use of a crypto API.

For the example shown in Figure 3.3a, during the compilation of Util.encrypt,

the JIT encounters the callsite keyFactory.generateSecret(...). The JIT will

then look at the callee method signature javax.crypto.SecretKeyFactory.

generateSecret:(java.security.spec.KeySpec). This signature will match

against the seed: javax.crypto.SecretKeyFactory. When the JIT finds a

crypto API use, it sends the name of the class that contains the method un-

der compilation to CogniCrypt Hotfixer Server. In the example from

Figure 3.3a, the JIT will send to CogniCrypt Hotfixer Server the class-

name: Util so that it can be statically analyzed. To ensure that Hotfixer

11

OpenJ9 Hotfixer Version CogniCrypt Hotfixer Server

Java Agent
<<Attach>>

Connection Setup

Analysis Seeds

<<Crypto API use detection>>

Request for Analysis

Names of Methods to Analyse

Soot Hotfixer Version
<<Setup>>

Names of Classes to Load

Class Representations

<<Analysis>>

Patch Adapter
<<Create>>

Names of Classes to Adapt

Names of Classes to Load

Original Class Representations

Location for Patch Classes

Patch Class Representations

Adapted Hotfix Classes

Hotfix Classes

<<Class Redefinition>>

CogniCrypt	Ho,ixer	Server Legend:

<< … >> Event
—> Message
- -> Response

Figure 3.2: Sequence Diagram Overview of Events and Messages Between
Components of Hotfixer.

12

analyzes the same classes that are loaded in the running application, Soot -

Hotfixer Version prefers to obtain the classes from Eclipse OpenJ9’s SCC.

If necessary classes are not found in the SCC, Soot Hotfixer Version uses

class file format. Once Soot Hotfixer Version has gathered the necessary

classes for the analysis, CogniCrypt Hotfixer Server produces a report

of misuses that it detected. CogniCrypt Hotfixer Server then deter-

mines whether it has a patch that can be applied to the detected misuses. If

CogniCrypt Hotfixer Server has a patch that Hotfixer can use, our

system then enters Phase II.

3.2 Phase II: Hotfixing

The major step performed in Phase II is patch adaptation. CogniCrypt -

Hotfixer Server invokes our patch adapter (Section 4), which we built

on top of Soot Hotfixer Version. After patch adaptation, applying the

hotfix occurs in OpenJ9 Hotfixer Version. Similar to CogniCrypt -

Hotfixer Server, to reduce any adverse effect on the normal execution

of the analyzed application, both patch adaptation and hotfix receival occur

asynchronously with respect to the execution of the application.

As can be seen in Figure 3.1, patch adaptation consumes a patch, and

outputs a hotfix. Both a patch and a hotfix are sets of secure classes that are

designed to replace insecure one(s), however, only the hotfix is applicable to a

running application. To see why a hotfix can be applied to a running applica-

tion, while a patch cannot, first we must present the redefinition mechanism

used in Hotfixer. To apply the hotfix to the running application, we have

implemented HotfixerAgent, a custom Java agent.

Although HotfixerAgent is an effective tool to modify running classes

in a JVM, the types of changes that it can apply are limited. According to the

Java Instrumentation API documentation [16]: “The retransformation may

change method bodies, the constant pool and attributes. The retransformation

must not add, remove or rename fields or methods, change the signatures of

methods, or change inheritance.” Because of these limitations, manually spec-

13

8 public class Util{

9 private static final byte[] SALT = "staticSalt".getBytes();

10

11 public bytes[] encrypt(String data){

12 SecretKey key = keyFactory.generateSecret(new PBEKeySpec(habridgeKey));

13 ...

14 cipher.init(Cipher.ENCRYPT_MODE, key, new PBEParameterSpec(SALT, 20));

15 ...

16 }

17 }

(a) The misuse that CogniCrypt detects (Line 14).

18 public class Util{

19

20 public bytes[] encrypt(String data){

21 SecretKey key = keyFactory.generateSecret(pbeks);

22 ...

23 cipher.init(Cipher.ENCRYPT_MODE, key, paramSpec);

24 ...

25 }

26

27 //added field

28 private PBEKeySpec pbeks;

29 private AlgorithmParameterSpec paramSpec;

30

31 //added method

32 private void initPBEKeySpec(){

33 try{

34 char[] password = new char[] {...};

35 byte bytesForKey[] = new byte[32];

36 SecureRandom secureRandom = SecureRandom.getInstance("SHA1PRNG");

37 secureRandom.nextBytes(bytesForKey);

38 pbeks = new PBEKeySpec(password, bytesForKey, 10299, 128);

39 byte bytesForSalt[] = new byte[8];

40 secureRandom.nextBytes(bytesForSalt);

41 paramSpec = new IvParameterSpec(bytesForSalt);

42 }catch(NoSuchAlgorithmException e){

43 ...

44 }

45 }

46

47

48 }

(b) The patch that fixes the error.

Figure 3.3: An example illustrating a patch that adds a new method to a class.

14

49 public class Util{

50 public static String alg = "DES/CBC/PKCS5Padding";

51 public static bytes[] encrypt(...){

52 Cipher cipher = Cipher.getInstance(alg);

53 ...

54 }

55 }

(a) The misuse that CogniCrypt detects (Line 52).

56 public class Util{

57 public static String alg = "AES/CBC/PKCS5Padding";

58 public static bytes[] encrypt(...){

59 Cipher cipher = Cipher.getInstance(alg);

60 ...

61 }

62 }

(b) The patch that fixes the error.

Figure 3.4: An example illustrating a patch that modifies a static field of a
class.

ified patches may cause an exception if we attempt to use them as is. For exam-

ple, Figure 3.3 illustrates a crypto API misuse that CogniCrypt detects due to

a Required Predicate Error (Line 14). The error in Line 14 refers to a crypto

API use that relies on another crypto API use in Line 12, that is insecure,

thus making both uses insecure. To fix the error in Line 14 without causing

an exception the developer must introduce a multi-statement fix. Therefore,

the developer should place this fix into a new method in Util. However, due

to these API limitations on redefinition, this patch would be redefinition non-

compliant and Hotfixer must adapt this patch before HotfixerAgent

uses it as in a hotfix.

Moreover, according Java Instrumentation API documentation [16]: “re-

defining a class does not cause its initializers to be run”. Initializers are meth-

ods in a class that can set the initial state for its fields. Classes have an initial

state when they, for example, declare static fields. Because the redefinition

mechanism does not involve re-running class initializers, if the patch changes

a static field value, that change will not take effect for any current instances of

classes under redefinition. For example, Figure 3.4a shows a Constraint Error

in Line 52. The solution to this misuse is to use a more secure encryption

algorithm, as can be seen in Line 57 in Figure 3.4b. However, since static

15

initializers are not rerun during redefinition events, encryption using the re-

defined encrypt method, in Line 58, will not use the algorithm specified in

Line 57. The only way to observe the intended effects of this patch is for our

patch adapter to adjust it.

16

Chapter 4

Adapting a Patch into a Hotfix

A developer-provided patch may contain redefinition non-compliance because

at develop-time the developer is only focused on fixing the crypto API misuse.

To fix redefinition non-compliance, Hotfixer uses our patch adapter. Hot-

fixer ensures that the transformation preserves the semantics of the patch

while making adjustments. In Section 6, our evaluation shows that our patch

adapter meets these goals.

To perform a transformation, the patch adapter first identifies the differ-

ences between each class in the patch (i.e., a redefinition class) and its cor-

responding original version. The patch adapter assesses those differences at

a non-compliant item level, as opposed to a statement or token level. The

non-compliant items that Hotfixer handles are: (1) field addition and (2)

method addition.

4.1 Handling Field/Method Addition

Addition of either fields or methods represents the more complex scenarios that

our patch adapter handles. To handle addition of either a field or a method,

we follow the same general approach. For each, the patch adapter moves the

added field or method in a completely new class and then updates all references

to that field or method. However, there are key differences between handling

fields and handling methods.

17

4.1.1 Field Addition

In the case where the patch contains field addition, Hotfixer first moves the

added field into a completely new class. For each class in a patch, Hotfixer

constructs a corresponding new class that hosts the added fields, upholding

the semantics of the patch while transforming it into a redefinition compliant

hotfix. To minimize the changes that this addition introduces on the field

visibility, Hotfixer constructs the new class in the same package as the

patch class. After moving the field, Hotfixer also adapts its field references

in the patch. In Java, a field reference consists of the field name and the owner

class of the field. If the moved field is static, Hotfixer simply replaces its

references to match the new owner of the field. If the moved field is non-static

(i.e., an instance field), Hotfixer categorizes all its references in the patch as

either uses or definitions. Hotfixer then replaces these references with calls

to newly constructed getters and setters to access the field. For consistency,

we use this replacement strategy regardless of the field visibility. However,

for private fields, we must expose a protected getter/setter to the added field,

enabling access to that added field from the patch class once we move it into

a new class.

Figure 4.1 illustrates an example for the case where instance field addition

requires further adjustment. In the patch, the base of the field reference p is

a variable of the type of the redefinition class Util that the field was added

to (Line 76). However, in the hotfix, when Hotfixer moves the field to the

new class UtilNew, simply changing the field reference’s owner to match its

new owner is not sufficient. Hotfixer must also produce a variable that

matches the new type that is required to access the field. To fix this issue,

Hotfixer creates two static hashtable fields in the new class UtilNew that

maintain a bidirectional mapping of instances of redefinition class objects to

corresponding new class instances (Lines 94–95). Hotfixer populates both

hashtables in the constructor of the redefinition class (Lines 103–104). For

each instance of the redefinition class, our hotfix creates an instance of the

new class that corresponds to the redefinition class Util and stores it in the

18

63 public class User{

64 public void main(){

65 Util p = new Util();

66

67 }

68 }

69

70 public class Util{

71

72 }

(a) The original code.

73 public class User{

74 public void main(){

75 Util p = new Util();

76 p.aField = "Hello";

77 }

78 }

79

80 public class Util{

81 public String aField;

82 }

(b) The developer patch.

84 public class User{

85 public void main(){

86 Util p = new Util();

87 UtilNew us = UtilNew.redefToNew.get(p);

88 us.setAddedField("Hello");

89 }

90 }

91

92 public class UtilNew{

93 public String aField;

94 public static Hashtable<Util, UtilNew> redefToNew;

95 public static Hashtable<UtilNew, Util> newToRedef;

96 public String getAddedField(){ return aField; }

97 public void setAddedField(String s){ aField = s; }

98 }

99

100 public class Util{

101 Util(){

102 UtilNew us = new UtilNew();

103 UtilNew.redefToNew.put(this, us);

104 UtilNew.newToRedef.put(us, this);

105 }

106 }

(c) Our generated hotfix.

Figure 4.1: An example illustrating a developer patch that adds an instance
field to a class and the hotfix that our patch adapter generates by moving the
added field to a new class and replacing its references with calls to getters and
setters.

hashtable. For each instance field reference, Hotfixer adjusts the reference

location by using the redefinition class variable to lookup the corresponding

new class instance. Hotfixer then uses that returned object to refer to the

copied field (Line 87).

4.1.2 Method Addition

Similar to handling field addition, Hotfixer moves an added method into the

new class that corresponds to the redefinition class. If the moved method is

private, Hotfixer relaxes its visibility to protected such that it can be ac-

19

cessed from the patch class. After moving the method, Hotfixer modifies all

of the references to the moved method. Unlike our solution to field references,

Hotfixer additionally considers dynamic dispatch for method references. If

we simply update moved method references to refer to the new class method,

the intended semantics of the patch may change. In Java, a method reference

consists of a class identifier and a method signature. Statically replacing the

class identifier in the method reference would disallow dynamic dispatch from

functioning correctly. If the reference’s class identifier is for the new class,

but the runtime type for receiver of the call is actually a parent class of the

redefinition class, which is not related to the new class by inheritance, then

the call could not be resolved to the intended target. To handle dynamic

dispatch, Hotfixer first determines the targets that methods may resolve

to. To achieve that, Hotfixer uses a call graph constructed by Soot Hot-

fixer Version. For each method reference, there are two cases that may

occur that the patch adapter addresses.

Monomorphic Call Sites Following the convention in traditional inlining

strategies [15], we refer to a call site as monomorphic [17] if it is guaranteed

to have only one explicit target. For such call sites, it is safe to perform an

outright replacement of the original method invocation with a reference to the

moved method in our hotfix.

For example, in Figure 4.2, the method invocation to emitMsg() (Line 122)

may resolve only to Util.emitMsg(). For this invocation, our adaptation strat-

egy replaces the invocation outright with a reference to the moved method

(Line 134). For instance method references, we use the hashtable (Line 139)

in the new class UtilNew to lookup the correct object reference to use to in-

voke the moved method emitMsg() (Line 133). This lookup is similar to our

approach for handling references to instance field.

Polymorphic Call Sites In this case, the method invocation has multi-

ple potential targets. Figure 4.3 shows an example of a polymorphic call site

(Line 180). When Hotfixer adds emitMsg(), that call site can only be re-

20

107 public class User{

108 public void main(){

109 Util p = new Util();

110

111

112 }

113 }

114

115 public class Util{

116

117 }

(a) The original code.

118 public class User{

119 public void main(){

120 Util p = new Util();

121 // monomorphic call

122 p.emitMsg("Hello");

123 }

124 }

125

126 public class Util{

127 public void emitMsg(String str){...}

128 }

(b) The developer patch.

130 public class User{

131 public void main(){

132 Util p = new Util();

133 UtilNew us = UtilNew.redefToNew.get(p);

134 us.emitMsg("Hello");

135 }

136 }

137

138 public class UtilNew{

139 public static Hashtable<Util, UtilNew> redefToNew;

140 public static Hashtable<UtilNew, Util> newToRedef;

141 public void emitMsg(String str){...}

142 }

143

144 public class Util{

145 Util(){

146 UtilNew us = new UtilNew();

147 UtilNew.redefToNew.put(this, us);

148 UtilNew.newToRedef.put(us, this);

149 }

150 }

(c) Our generated hotfix.

Figure 4.2: An example illustrating a developer patch that adds a method to
a class and the hotfix that our patch adapter generates by moving the added
method to a new class and replacing its monomorphic reference.

21

solved at runtime through dynamic dispatch. To handle this case, Hotfixer

constructs a runtime check that uses the Java instanceof operator. The check

maps the runtime type of the call receiver p to the new class Child that hosts

the added method (Line 197). To discover if a method call may resolve to

a moved method, Hotfixer uses the underlying call graph in Soot Hot-

fixer Version. By default, Soot Hotfixer Version builds a call graph

using Class Hierarchy Analysis (CHA) [18]. Since the CHA call graph is con-

servative, if Hotfixer has copied all possible targets of the method call into

new classes, it will construct a map between each possible runtime type and

the appropriate method call. If not all targets are for methods that Hot-

fixer has moved, the runtime check makes the original method reference as

the default case (Line 200).

The patch adapter generates its runtime checks in a child to parent order-

ing. Because Java’s instanceof operator succeeds on an object of a (subclass

of) class, building the checks in a child to parent order allows the patch adapter

to mimic the way that dynamic dispatch determines the target of the call. The

resulting, sorted set of conditional method calls enables the JVM to handle

the resolution of the type and corresponding method call as it normally would.

Similar to how Hotfixer handles instance field addition, for added instance

methods, Hotfixer includes in each runtime check a lookup of the appropri-

ate invocation object to use for the adjusted method call (Line 198).

Once Hotfixer moves a method into the appropriate new class, it trans-

forms references in the moved method that use the this keyword in Java. In

the developer patch, both fields and methods accessed by this are located

in the redefinition class. However, a moved method that contains any refer-

ence to a field or method that originally (i.e., before the patch) existed in the

class now falsely refers to non-existent fields and methods. Our patch adapter

detects these references, and uses the reverse hashtable to fetch the correct

object reference that accesses the pre-existing fields and methods. Figure 4.4

shows an example of this scenario. The figure is an extension of Figure 4.3

and, therefore, does not depict the code for User and Util. Compared to Fig-

ure 4.3, the addition to Figure 4.4 is Line 234, where a use of the this keyword

22

151 public class User{

152 public void main(){

153 Util p;

154 if(...){

155 p = new Util();

156 }else{

157 p = new Child();

158 }

159 // -> Util.emitMsg()

160 p.emitMsg("Hello");

161 }

162 }

163

164 public class Util{

165 public void emitMsg(){...}

166 }

167

168 public class Child extends Util{

169

170 }

(a) The original code.

171 public class User{

172 public void main(){

173 Util p;

174 if(...){

175 p = new Util();

176 }else{

177 p = new Child();

178 }

179 //polymorphic call

180 p.emitMsg("Hello");

181 }

182 }

183

184 public class Util{

185 public void emitMsg(){...}

186 }

187

188 public class Child extends Util{

189 public void emitMsg(){...}

190 }

(b) The developer patch.

191 public class User{

192 public void main(){

193 Util p;

194 if(...){ p = new Util(); }

195 else{ p = new Child(); }

196

197 if(p instanceof Child){

198 ChildNew us = ChildNew.redefToNew.get(p);

199 us.emitMsg("Hello");

200 }else{

201 p.emitMsg("Hello");

202 }

203 }

204 }

205

206 public class ChildNew{

207 public static Hashtable<Child, ChildNew> redefToNew;

208 public static Hashtable<ChildNew, Child> newToRedef;

209 public void emitMsg(){...}

210 }

211

212 public class Child extends Util{

213 Child(){

214 ChildNew us = new ChildNew();

215 ChildNew.redefToNew.put(this, us);

216 ChildNew.newToRedef.put(us, this);

217 }

218 }

(c) Our generated hotfix.

Figure 4.3: An example illustrating a developer patch that adds a method to
a class and the hotfix that our patch adapter generates by moving the added
method to a new class and updating its polymorphic references.

23

219 public class Util{ }

220

221 public class Child extends Util{

222 public String f;

223

224

225

226

227 }

(a) The original code.

228 public class Util{ }

229

230 public class Child extends Util{

231 public String f;

232

233 public void emitMsg(){

234 System.out.println(this.f);

235 }

236 }

(b) The developer patch.

237 public class ChildNew{

238 public static Hashtable<Child, ChildNew> redefToNew;

239 public static Hashtable<ChildNew, Child> newToRedef;

240

241 public void emitMsg(){

242 Child p = ChildNew.newToRedef.get(this);

243 System.out.println(p.f);

244 }

245 }

246

247 public class Child extends Util{

248 public String f;

249 Child(){

250 ChildNew us = new ChildNew();

251 ChildNew.redefToNew.put(this, us);

252 ChildNew.newToRedef.put(us, this);

253 }

254 }

(c) Our generated hotfix.

Figure 4.4: An example illustrating a developer patch where an added method
refers to an existing field using this and the hotfix that our patch adapter
generates by correctly updating that reference using its reverse hashtable.

requires an adjustment from our patch adapter. Hotfixer performs this ad-

justment by looking up the correct object reference used for the field access

(Lines 242–243). In this work we do not consider accesses to fields or calls to

methods via reflection.

24

Chapter 5

Phase II: Hotfixing

When CogniCrypt Hotfixer Server has a hotfix to deliver,

CogniCrypt Hotfixer Server connects to HotfixerAgent. For the

example in Figure 3.3, the hotfix consists of Util. When HotfixerAgent

performs a redefinition, it guarantees that subsequent invocations of methods

that have been replaced will use the redefined implementation. Despite this

guarantee, if there are some methods currently running, and a redefinition

of that method occurs, the old implementation of the method will continue

execution until it is complete. Hotfixer provides this guarantee only on any

future runs of that method that the new implementation will execute.

There is one more limitation of the redefinition mechanism that cannot

be solved by the patch adapter; hotfixing applies to a single instance of the

running application. In a client-server environment, there is at least one server

and many clients. When there are multiple actors involved in an interaction,

they must coordinate patch changes among each actor. For example, if a client

sends a server message encrypted with RSA [19], the server must know that

RSA was used, so that it can decrypt the message accordingly. Thus, if the

Hotfixer patch changes an encryption algorithm used by the client, and we

do not patch the server, the server will not properly decrypt the message that

it received.

To address the limitation above, and also those limitations discussed in

Section 3.2, we have devised four categories that a patch may fall into, when

it becomes a hotfix:

25

1. Natural Hotfix: If every class in a patch can be used for redefinition

without causing errors, we refer to these classes as redefinition compliant

and the entire patch is a natural hotfix.

2. Adjusted Hotfix: If some classes in the patch may cause an error when

used for redefinition due to the checks that the Instrumentation API

performs before performing redefinition, then Hotfixer must adjust

these classes before using them in the hotfix. To deal with redefining non-

compliant classes, we have devised a patch adaptation tool that takes a

patch, detects the components in each class that are non-compliant, and

then adapts those components so that the patch can be used as a hotfix,

i.e., it expresses the intended semantics of the fix and also only contains

redefinition compliant classes. The patch adaptation tool presented in

Section 4 addresses this category of patches.

3. JVM-Assisted Hotfix: If some classes in the patch are redefinition

non-compliant and cannot be adjusted by our patch adapter, Hotfixer

may require assistance from the JVM to apply this patch as a hotfix.

4. Multi-JVM Hotfix: If the semantics of the changes in the patch re-

quire modifying multiple running applications, we classify this as a multi-

JVM hotfix.

The Natural Hotfix and Adjusted Hotfix categories are mutually exclu-

sive, as well as Natural Hotfix and JVM-Assisted Hotfix categories. It would

be possible, however, to have a Natural Hotfix that falls into the Multi-JVM

Hotfix category. For this work, we focused on addressing the Natural Hotfix

and Adjusted Hotfix categories. Natural hotfixes do not require any special

handling, and simply go through the process described in Figure 3.1. How-

ever, adjustment are necessary when the patch falls into the Adjusted Hotfix

category, as previously discussed in Section 4.

26

Chapter 6

Evaluation

In this section, we evaluate the ability of Hotfixer to fix misuses, as well as

the effect that Hotfixer has on program semantics and program performance.

Our baseline for comparison is a manually applied develop-time patch strategy.

Our evaluation aims at answering the following research questions:

RQ1: How successful is Hotfixer at fixing crypto API misuses?

RQ2: Does Hotfixer alter the semantics of a running application?

RQ3: How does Hotfixer affect application performance?

6.1 Experimental Setup

To answer our research questions, we utilize two datasets: one constructed by

Sharmin et al. [20] comprising of 144 relevant misuses across 103 benchmarks

and the second is constructed by Wickert et al. [21] comprising of 44 crypto

API misuses across 7 open-source projects. We refer to the datasets as Cryp-

toGuard micro-benchmark and Wickert benchmark, respectively.

We ran all of our experiments in a Docker container [22] using Docker ver-

sion 19.03.5, on an x86 64 Ubuntu 18.04.4 machine with two 2.4GHz

AMD EPYC 7351 16-Core processors. We ran all experiments on OpenJ9 -

Hotfixer Version, which is based on the OpenJDK build jdk8u252-b09.

Table 6.1 lists the SHAs for the corresponding commits for each base compo-

nent in Hotfixer.

27

Component Based On SHA

OpenJ9 Hotfixer Version Eclipse OMR [23, 24] d4365f371ce896bead71bc601cbdb53cc35ab47b

OpenJ9 Hotfixer Version Eclipse OpenJ9 [14] 05fa2d3611f757a1ca7bd45d7312f99dd60403cc

OpenJ9 Hotfixer Version OpenJDK [25] 8a27fe4d476a8ca2263c4c031264e204d2e3d259

CogniCrypt Hotfixer Server CogniCrypt [2] 97b22050519bd5a5dbc3c364f5fadb981d043fa6

Soot Hotfixer Version Soot [15] ca72d20db7921415ecd9310f3c5208f20c669991

Table 6.1: The components in Hotfixer and their corresponding commit
hashes.

6.2 Data Processing

6.2.1 CryptoGuard micro-benchmark

To answer our research questions, we run Hotfixer on 103 benchmarks from

CryptoGuard micro-benchmark. As CogniCrypt Hotfixer Server is an

extension of CogniCrypt, first we had to assure that CogniCrypt can detect

misuses in all benchmarks in CryptoGuard micro-benchmark, otherwise Hot-

fixer will not be able to also detect misuses and therefore perform hotfixing.

Although the version of CryptoGuard micro-benchmark that we accessed con-

tains 195 benchmarks, CogniCrypt does not detect misuses in all benchmarks

in the suite. From the 92 benchmarks that do not contain any misuse, 14 of

them serve the purpose of detecting true negatives (or false positives) in the

findings of crypto API misuse detection tools. This means these 14 bench-

marks contain correct uses of crypto APIs, which we can utilize as patches for

Hotfixer. We adapt each of these general patch classes to each individual

benchmark, as we require a corresponding specific patch for each benchmark

for Hotfixer to run on. We changed the provided patches in 7 benchmarks

that store passwords in String objects, which CogniCrypt correctly flags as in-

secure. We are left with 103 benchmarks from CryptoGuard micro-benchmark

to test Hotfixer once we omit both the patch classes and classes where no

misuse is discovered. We leave it to future work to utilize CryptoGuard [5],

the tool that the benchmark was designed around, to enable additional initial

misuse detection.

28

6.2.2 Wickert benchmark

To further evaluate Hotfixer, we obtain the exact versions of all projects in

the dataset that was studied in the work by Wickert et al. [21]; we refer to this

as original version. For this benchmark, the authors had manually crafted

fixes for each misuse, and contributed each fix in a code snippet separate from

the corresponding project. For each benchmark program, we created dev-

patch version by integrating each provided correct usage code snippet into

the application at the location indicated by the dataset to contain the misuse.

The majority of the contributed corrections (34/44) do not classify as correc-

tions in isolation. For example, to correctly accomplish an encryption task,

the same initialization vector must be used in both encryption and decryp-

tion. Encrypted text that is decrypted with a different cipher or initialization

vector is simply invalid. To correct these runtime errors in the original fixes,

we merged the related corrections into a single experimental configuration. To

integrate these merged corrections into the project’s code base, we followed

two basic principles. For single statement-level changes, we generally applied

the correction as that single-statement change. However, for changes (single or

multi statement) that have an interprocedural impact, we applied the changes

in new, added methods; in this case, we additionally added invocations for

these added methods in pre-existing instance or static methods. Column 1 of

Table 6.2 summarizes the results of our consolidation efforts. We maintain the

original schema for identifying the fixes, and in cases where we have merged

the fixes, we simply label them as misuseXandY, where X and Y are the com-

ponents of their original fixes. This consolidation leaves us with a total of

27 misuses to perform our evaluation on.

6.2.3 Crypto API Misuse Detection

Lastly, in preparation for answering our research questions, we assured that

Hotfixer is as effective at detecting crypto API misuses as standalone Cog-

niCrypt, despite performing static analysis at runtime and utilizing classes

from the SCC. Across all of CryptoGuard micro-benchmark CogniCrypt -

29

Hotfixer Server finds the same misuses that CogniCrypt detects, with the

exception of 6 benchmarks, where CogniCrypt Hotfixer Server detects

one extra misuse, which we discuss in further detail in Section 6.3. For the

27 misuses in Wickert benchmark dataset, the findings of CogniCrypt -

Hotfixer Server are identical to CogniCrypt when run standalone on the

original version of each project. Additionally, we manually verified for each

experiment that the initial analysis that CogniCrypt Hotfixer Server

performs is successful in utilizing the class under test from the SCC.

6.3 How successful is Hotfixer at fixing crypto

API misuses? (RQ1)

6.3.1 CryptoGuard micro-benchmark Results

To confirm that each misuse is fixed after hotfixing, we add (for experimen-

tal purposes only) an additional post-hotfix run of CogniCrypt to Hotfixer.

Using this technique, we have verified that Hotfixer fixes the same misuses

that a develop-time patch strategy fixes on the entire CryptoGuard micro-

benchmark suite. During this post-hotfix CogniCrypt analysis, Hotfixer

finds an additional 6 misuses compared to CogniCrypt run on develop-time

patch. However, these extra misuses are also detected by CogniCrypt -

Hotfixer Server in the application before hotfixing. In all 6 cases, the

detected misuse is a constraint error with an identical error message. We

observe that this error is reported in association with an extra upcast state-

ment that is present in the class during hotfixing, compared to the class when

used in develop-time patch. The extra upcast is found between the return

value of a call to java.security.KeyPair.getPublic(), and the argument to

javax.crypto.Cipher.init(intopmode,java.security.Keykey). We observe

that this upcast statement is only present in the analyzed class when it is

either loaded from the SCC or after it has gone through our patch adapter.

Further investigation has showed that this extra upcast is generated by Soot

to represent a stack location. In this case, the generated local has the de-

clared type (java.security.Key) of the argument to javax.crypto.Cipher.

30

Table 6.2: The results of running Hotfixer on Wickert benchmark.

Benchmark Misuse CogniCrypt Misuse Type Fixed? # Introduced Misuses # Passing Tests # Failed Tests

ha-bridge

1and5 Constraint 0 221 0
2and7 Constraint 0 213 0
3and8 Required Predicate 0 182 0
4and6 Forbidden Method 0 795 0

instagram4j 1 Required Predicate 0 8,658 0

jeesuite-libs

1and4 Required Predicate 0 288 0
2and5 Constraint 0 21 0
3 Required Predicate 0 21 0
6and7 Constraint 0 129 0
8 Constraint 0 8,283 0
9 Constraint 0 7,722 0

NettyGameServer
1 Constraint 0 1,492 0
2and3 Constraint 0 1 2
4 Constraint 0 8,038 0

smart

1and6 Required Predicate 0 2 0
2and5 Required Predicate 0 16 0
3 Required Predicate 0 243 0
4and7 Required Predicate 0 16 0
8 Constraint 0 248 0

whatsmars

1and3 Constraint 0 235 5
2and4 Required Predicate 0 226 0
5and9 Constraint 0 245 0
6and11 Required Predicate 0 2,518 0
7and12 Required Predicate 0 253 0
8and10 Required Predicate 0 259 0
13 Constraint 0 159 0

dragonite-java 1 Required Predicate 0 2 0

Total 0 40,486 7

init(intopmode,java.security.Keykey). Since the misuse is present before

and after hotfixing, we do not consider it to be an erroneous behaviour caused

by Hotfixer.

6.3.2 Wickert benchmark Results

Table 6.2 depicts the result of our experiment. The first column of the table

shows the 7 project names comprising the Wickert benchmark. The second

column depicts the exact benchmarks in the entire Wickert benchmark dataset,

and the third column describes the misuse type that was addressed in that

benchmark. The misuse types described in the third column originate from the

categorization that CogniCrypt uses. As shown in the fourth column, across

all of Wickert benchmark, Hotfixer fixes the same misuses as the develop-

time patch strategy. Hotfixer also does not introduce any additional misuses

compared to the develop-time patch strategy, as seen in the fifth column of

Table 6.2. We explain the results presented for the remaining two columns of

Table 6.2 shortly, in Section 6.4.3.

31

Hotfixer fixes crypto API misuses in all of the benchmarks in Cryp-
toGuard micro-benchmark and Wickert benchmark, without introduc-
ing any additional misuses. Hotfixing is as viable of a solution as
software patching, with respect to fixing misuses.

6.4 Does Hotfixer alter the semantics of a run-

ning application? (RQ2)

Similar to prior software patching work [9, 26, 27, 28], we use regression testing

to assess whether Hotfixer alters the intended original functionality of the

application after applying our generated hotfix.

6.4.1 Regression Test Setup

For each patched benchmark in CryptoGuard micro-benchmark and the de-

vpatch version of each project in Wickert benchmark, we generated a set of

regression tests using Randoop, an automatic test generation framework [29].

To avoid generating irrelevant tests, we provided Randoop with the classes

that we know contain the misuses. When Randoop is provided with a set of

names of classes to generate tests for, it only uses those classes in the tests.

We configured Randoop with a 60-second time limit for the test generation.

This limit is more than double the typical suggested time limit [30]. For Cryp-

toGuard micro-benchmark, Randoop generated a total of 78488 tests (min: 2,

max: 5,000, median: 6), whereas for Wickert benchmark, Randoop generated

a total of 40493 tests (min: 2, max: 8,658, median: 240).

Randoop only generates tests for methods accessible to the test suite (i.e.,

public methods). In the cases where a misuse is located in a non-public

method, we changed the visibility of the method to assure that Randoop could

test it. Because Randoop generates tests for the exact set of methods provided,

and only that set, if we change a method from non-public to public, we can

see that this does not alter the effects of that exact method under test. This

change does affect the entire application, however, it is an unavoidable change

that we must make to allow for regression test generation.

32

To answer RQ2, we create 2 different setups from the Randoop tests, for

CryptoGuard micro-benchmark and Wickert benchmark. For CryptoGuard

micro-benchmark, we assess the output of one full iteration of a regression

test suite once the redefinition event has clearly taken place. To ensure that

the redefinition event has occurred (and completed) before the regression tests

run, we create a setup method in the setup class of each regression test suite.

Normally Randoop generates an empty setup class that serves only the purpose

of assuring that all classes containing tests will run, however we take advantage

of Junit BeforeClass [31] annotation to assure that our setup method will run

first. The setup consists of: (1) an invocation of the method(s) relevant to the

experiment, such that we perform a logical task, for example an encryption

followed by a decryption, (2) a loop that ensures that those methods of interest

are to be compiled, (3) a pause until the HotfixerAgent has completed the

redefinition event, and (4) a repetition of the same task that was initially

performed in the method. It is after this setup that the regression tests begin

to run.

For Wickert benchmark we do not run the test suite after inducing the re-

definition event, instead, we continuously iterate the test suite for some large

number of iterations (i.e., a test window), and then observe whether test fail-

ures occur after redefinition occurs. Each test window is thus comprised of:

(1) original subwindow: some number of iterations where the original appli-

cation executes, (2) a redefinition event, and (3) hotfixed subwindow: some

number of iterations where the hotfixed application executes. The number of

iterations required to allow for a sufficient test window is variable between each

benchmark. We determine these values experimentally but have opted for not

presenting them, because the exact values are not relevant to answering RQ2.

Due to several factors, we are unable to utilize the previously mentioned

setup to answer RQ2 for NettyGameServer misuse2and3 and smart

misuse1and6. These two benchmarks take more than three minutes to ex-

ecute each testsuite iteration. Additionally, JUnit’s reporting behaviour, by

default, is only able to report test outcomes at the end of a complete test

run, i.e., the full test window duration. In other words, we can only deter-

33

mine if Hotfixer affects application behaviour after the full test window has

completed. Lastly, redefinition points are non-deterministic (with respect to

testsuite iteration number) due to the behaviours of the JIT and JVM which

vary across application executions; therefore we cannot pre-emptively pick a

number of test iterations for the test window size to accommodate the espe-

cially long patch runtime. Due to all of these factors, for these two benchmarks

only, we use the setup described for CryptoGuard micro-benchmark to answer

RQ2.

Furthermore, Randoop generated 161 flaky tests for each of (ha-bridge

misuse3and8, jeesuite-libs misuse1and4, jeesuite-libs misuse6and7,

and, whatsmars misuse13). We observed that those tests fail at either both

original subwindow and the hotfixed subwindow, or just in the hotfixed sub-

window. In all 4 benchmarks, we are able to replicate the presence of failures

in the iterated devpatch version version of the application. Unfortunately, in

all 4 cases, the number of failures is non-constant across multiple runs of the

application. We refer to such tests that fail on some runs and not others as

flaky, similar to many other research works and software professionals [32, 33].

Flaky tests confound our ability to determine if Hotfixer introduces errors

into the application compared to software patching, therefore, we omit the

flaky tests from the testsuites of these 4 benchmarks.

Finally, the last testsuite size adjustment that we performed was in bench-

mark smart misuse4and7. In this case, Randoop originally generated only

4 tests in the testsuite, resulting in an extremely short runtime of each iteration

(1ms or less). As we measure our iteration runtimes at the precision of mil-

liseconds, any variation in a sample of iteration times of less than 1ms results

in an inflated coefficient of variation (COV), which is the ratio of standard

deviation to the mean. To make it easier and more meaningful to compare

both the COV and throughput of this experiment to the baseline, we repli-

cated the testsuite such that each iteration now contains those original 4 tests

duplicated 4 times, and measured that instead.

34

255 String str0 = cryptoGuardBench.STATIC_FINAL_FIELD;

256 org.junit.Assert.assertTrue(str0.equals("abcde"));

Figure 6.1: An example illustrating the cause of CryptoGuard micro-
benchmark test failures.

6.4.2 CryptoGuard micro-benchmark Results

We observed two test failures across 78488 tests, in StaticInitialization-

VectorABICase2 and StaticSaltsABICase2. Both of the failures ob-

served were caused by tests that check against values of public static final

fields of the redefined class. Figure 6.1 shows an example of such a check.

In these two benchmarks, the patch modifies the value of a static final field.

As explained in Section 5, static initializers are not rerun during redefini-

tion events, therefore to observe the value changes, our patch adapter must

redefine that static variable (as long as it is simply static and not static fi-

nal). An important complication to this is that when javac compiles the tests

alongside the original benchmark class, the static final field’s original constant

value is propagated to all use locations. In the bytecode corresponding to

Figure 6.1, the reference to str0 is replaced by the constant value held in

the original cryptoGuardBench.STATIC_FINAL_FIELD. Because the tests were

generated over the patched version of the benchmark, the value that the test

checks against (in Figure 6.1 this is "abcde") is the static final field value of

the patched class. The constant propagation optimization performed by javac

guarantees that the test will fail, and currently our patch adapter cannot re-

verse the constant propagation that javac does in this scenario, because this

testcase falls into the JVM-Assisted Hotfix category.

6.4.3 Wickert benchmark Results

We ran a cumulative total of 40493 tests, across all projects, with the exact

number of tests for each setup shown in the sixth column of Table 6.2. As

the sixth column of Table 6.2 shows, all tests in all experiments pass, except

for in 2 benchmarks. In the first case we observe two test failures in Net-

tyGameServer misuse2and3. These test failures are due to testing a result

35

of encryption; in this benchmark the patch adds a random component to an

encryption task, and these particular tests assert over the result of encryption.

Therefore, these tests will fail on every run, in both devpatch version and in

Hotfixer, i.e., the failures are not caused by Hotfixer.

The second case occurs in whatsmars misuse1and3, where we observe

5 test failures caused by Hotfixer. All of the failures occur for the same

reason; in whatsmars misuse1and3, the patch introduces a static field that

did not previously exist in the application. That static field is only initialized

at specific points in the application, and in this case 5 tests attempted to access

that state before it had become initialized. This testcase also falls into the

JVM-Assisted Hotfix category because it requires further JVM intervention to

determine application points where performing the hotfix guarantees to avoid

all conflict with the logical state transitions during all tasks.

In 15 benchmarks, some expected test failures occur during the original

subwindow; failures are expected due to the previously mentioned fact that

the testsuites are generated for the devpatch version of the benchmarks, not

the original version. To answer RQ2, we need to observe whether all failures

in test window are expected, i.e., the behaviour of the application during test

window is equivalent to expected behaviour of a combination of original

version (over an original subwindow duration) and devpatch version (over an

hotfixed subwindow duration). We track the exact duration of each original

subwindow in terms of number of full testsuite iterations, plus one partial

iteration, where some number of tests from the latest iteration have executed.

We then run original version over the testsuite for the original subwindow

duration to determine the exact number of expected failures. In 14 of those 15

benchmarks, we observe that the the number of failures reported in Hotfixer

test window exactly matches that of the original application, i.e., Hotfixer

does not cause these failures. The last 1 of those 15 benchmarks is the case

we previously mentioned, whatsmars misuse1and3, where Hotfixer does

cause the failures.

36

Hotfixer preserves program semantics in 98% of the analyzed bench-
marks. The other 2% belong to a patch category that Hotfixer
currently does not support. Hotfixing requires additional considera-
tion compared to software patching, when considering it as a feasible
solution to crypto API misuses in applications running in servers.

6.5 How does Hotfixer affect application per-

formance? (RQ3)

6.5.1 Performance Test Setup

To measure the application performance overhead of using Hotfixer, we

focus on 4 metrics: (1) runtime of patch adapter, (2) duration until the JIT

has sufficiently recovered from the redefinition event in Hotfixer, (3) relative

throughput performance of Hotfixer compared to develop-time patch, and,

(4) recovery profile of application. We answer RQ3 for Wickert benchmark

only, because it consists of real-world applications where performance is a

relevant aspect of application execution. To answer RQ3 we use the same

setup for RQ2.

To collect patch adapter running time, we measure the duration between

the point in time where CogniCrypt Hotfixer Server receives the anal-

ysis request for the class that causes redefinition and the point at which the

JVM observes that the redefinition has taken place. To collect recovery du-

ration, we first define sufficient JIT recovery by inspecting the activities of

the JIT during execution; as a result of the redefinition event, the JIT will

typically experience an increase in the number of compilations that it must

perform. We define sufficiently recovered as the subsequent testsuite iteration

after which the size of the compilation request queue for the JIT has sustained

at 2 requests or less, for a duration of 2 seconds. To compare throughput

performance, we measure 10 contiguous testsuite execution times, after this

recovery point has been observed.

For each benchmark application, we begin our sample from the same recov-

ery point (iteration number) for the baseline as was used for the test window

recovery point. This approach maintains consistency across our experiments.

37

The only exception is 2 long-running benchmarks (NettyGameServer mis-

use2and3 and smart misuse1and6), where it would take upwards of 4,000 hours

to reach the recovered iteration number in the patch; for these two benchmarks

we define our baseline runtimes using 70 and 100 iterations of the testsuite,

respectively, and sample a window of 10 from iteration 55 and 85, respectively,

because these represent a stable point in the application which is the most fair

window for comparison.

To inspect the recovery profile of the application when Hotfixer is run we

observe a window of 30 iterations of each testsuite for each configuration. In

the 30 iteration window we utilize the first 9 iterations at the point before the

HotfixerAgent has observed the redefinition event, the 10-12th iteration

range are where the event occurs and then the remaining iterations depict the

immediate runtimes of the recovering system. We additionally plot, in Fig-

ure 6.4, the runtimes of the develop-time patch baseline over that iteration

window as well, again, with exception of the long-running benchmarks Net-

tyGameServer misuse2and3 and smart misuse1and6, where we take a

sample window starting roughly in the middle of the trial (from iteration 31-

60 and 61-90 respectively). In benchmarks instagram4j, dragonite-java,

jeesuite misuse8, and smart misuse4and7 we were required to collect the

windows from a trial where the OpenJ9 Hotfixer Version heap size is set

to 4g. In jeesuite misuse8 we used a heap size of 6g. We increased the

heap limit in these experiments to allow for an observation window devoid of

garbage collection events. We are required to avoid garbage collection events

in the observation window, as they create an increase in an iteration runtime,

which makes it difficult to observe the isolated effects of the redefinition event.

6.5.2 Results

Over the entire Wickert benchmark, the median of the runtime of the patch

adapter is 32.8 seconds (min: 23.3 seconds, max: 47.9 seconds, standard devi-

ation: 5.8 seconds). Across the benchmark, we observed an median recovery

time of 4.3 seconds (min: 2.1 seconds, max: 128.6 seconds, standard deviation:

28.8 seconds), which represents a 3.6% (min: 0.5, max: 14.3) of the total run-

38

times across all of Wickert benchmark. We note that 2 recovery times stand

out in particular, for NettyGameServer misuse2and3 and smart mis-

use1and6 with recovery times of 128.6 and 93.0 seconds, respectively. These

benchmarks present an outstanding recovery time due to the average runtime

of each testsuite iteration being over 550× and 240× respectively, of the run-

time of the next longest testsuite runtime from the entire Wickert benchmark.

As the runtime of the each iteration is so long, it spreads out the JIT discovery

of compilation tasks such that even if other benchmarks take a number of test-

suite iterations (which represent some number of times encountering methods

affected by the redefinition) to recover, in the case of NettyGameServer

misuse2and3 and smart misuse1and6, that period is simply longer.

Figure 6.2 presents the results of our comparison of throughput perfor-

mance of Hotfixer against develop-time patch, where the notches in the

boxplots represent the 95% confidence interval. Each subfigure in Figure 6.2

contains paired boxplots, such that the leftmost boxplot shows the distribu-

tion of the runtime of the iterations in our sample window for the baseline

develop-time patch strategy, and the rightmost is the distribution for Hot-

fixer. The line in each boxplot represents the median of the data, and each

boxplot’s shape describes the distribution of the data points around that me-

dian. We performed a Shapiro-Wilk [34] normality test and found that 31

of the 54 total windows represent distributions that are not normal. We ad-

ditionally create histograms, for each benchmark, for the differences between

the runtimes in the Hotfixer window and the baseline window. From these

histograms we observe that the differences are not symmetrically distributed

around the medians for most of the benchmarks.

We performed a Paired Sign Test [35, 36], using a significance level of

0.05, to determine whether any difference exists between the runtimes of

the iterations in the sample window of Hotfixer compare to the baseline

develop-time patch strategy, within each benchmark, i.e., the median of the

paired differences is not equal to zero. In the benchmarks ha-bridge mis-

use2and7, jeesuite misuse3, jeesuite misuse6and7, jeesuite misuse9,

NettyGameServer misuse4, smart misuse8, whatsmars misuse6and11,

39

260

270

280

290

300

310

R
un

tim
e

(m
s)

((1)) instagram4j

●●19.00

19.25

19.50

19.75

20.00

R
un

tim
e

(m
s)

((2)) dragonite-java

●

16

20

24

R
un

tim
e

(m
s)

((3)) ha-bridge1and5

●

●

1300

1350

R
un

tim
e

(m
s)

((4)) ha-bridge2and7

●●

●

15

20

25

R
un

tim
e

(m
s)

((5)) ha-bridge3and8

●

85

90

95

R
un

tim
e

(m
s)

((6)) ha-bridge4and6

●

●

●

180

200

220

240

260

280

R
un

tim
e

(m
s)

((7)) netty1

2e+05

4e+05

6e+05

8e+05

1e+06

R
un

tim
e

(m
s)

((8)) netty2and3

40

●

300

325

350

375

R
un

tim
e

(m
s)

((9)) netty4

50

60

70

R
un

tim
e

(m
s)

((10)) jeesuite1and4

●

4

5

6

7

8

9

R
un

tim
e

(m
s)

((11)) jeesuite2and5

4

5

6

7

R
un

tim
e

(m
s)

((12)) jeesuite3

●

●

●

●

35

40

45

50

R
un

tim
e

(m
s)

((13)) jeesuite6and7

400

450

500

550

R
un

tim
e

(m
s)

((14)) jeesuite8

300

350

400

450

R
un

tim
e

(m
s)

((15)) jeesuite9

●●

●

1e+05

2e+05

3e+05

4e+05

5e+05

R
un

tim
e

(m
s)

((16)) smart1and6

41

●

●

●●2

3

4

5

R
un

tim
e

(m
s)

((17)) smart2and5

●

55

60

65

70

75

R
un

tim
e

(m
s)

((18)) smart3

●

●●

1.00

1.25

1.50

1.75

2.00

R
un

tim
e

(m
s)

((19)) smart4and7

●

●●

●●

15

20

25

R
un

tim
e

(m
s)

((20)) smart8

●

10

15

20

25

30

R
un

tim
e

(m
s)

((21)) whatsmars1and3

●

●

●

●

7.5

10.0

12.5

15.0

17.5

R
un

tim
e

(m
s)

((22)) whatsmars2and4

●

8

9

10

11

12

R
un

tim
e

(m
s)

((23)) whatsmars5and9

70

80

90

R
un

tim
e

(m
s)

((24)) whatsmars6and11

42

●

●

10

15

20

25

R
un

tim
e

(m
s)

((25)) whatsmars7and12

●

●

7.5

10.0

12.5

15.0

17.5

R
un

tim
e

(m
s)

((26)) whatsmars8and10

●

●

40

44

48

52

R
un

tim
e

(m
s)

((27)) whatsmars13

100

200

300

400

500

15
28

15
33

15
38

15
43

15
48

15
53

R
un

tim
e

(m
s) Legend:

 Baseline (Software Patch)

 Hotfixer

Figure 6.2: Throughput of Wickert Dataset. Notches in boxplot represent a
95% Confidence Interval.

43

0.5

0.75

1

1.25

1.5

ha
−b

rid
ge

2a
nd

7

jee
su

ite
−li

bs
3

jee
su

ite
−li

bs
6a

nd
7

jee
su

ite
−li

bs
9

Net
tyG

am
eS

er
ve

r4

sm
ar

t8

wha
tsm

ar
s6

an
d1

1N
or

m
al

iz
ed

 A
pp

lic
at

io
n

T
hr

ou
gh

pu
t

Figure 6.3: The application throughput using Hotfixer, normalized to that
of using develop-time patch strategy, of Wickert benchmark.

we observe that the median of the Hotfixer window does differ from the me-

dian of the baseline window.

Additionally, across Wickert benchmark, we calculate the relative effect

as the geometric mean of the runtime of the iterations in our sample window

normalized to the baseline develop-time patch strategy. Figure 6.3 presents the

relative effect, as defined above, for the 7 benchmarks where the samples were

found to differ. We find that the overall median effect is 0.2% overhead, across

all benchmarks, while the overall median of just the 7 benchmarks where the

samples are found to be different is a 3.5% speedup. The maximum overhead

induced in any benchmark is 16.3% and the maximum speedup induced is

38.4%. Considering only the benchmarks where the medians of the differences

were found by the Sign Test to be non-zero, the maximum overhead is 16.3%

and the maximum speedup induced is 23.2%.

However, the runtimes presented for our baseline do not encompass the

cost that we estimate to be associated with fully stopping and restarting an

application to apply develop-time patch. These results, in conjunction with the

overall small recovery times suggest to us that Hotfixer presents a beneficial

alternative to develop-time patch.

Figure 6.4 shows the results of our comparison of the recovery iteration

window of Hotfixer compared to develop-time patch. In all plots, the black

line is the times of Hotfixer and the red line is the times of develop-time

patch. The vertical, red-dotted lines show the iteration (or in some cases a

span of two iterations) where the redefinition event took place. In almost all

44

● ● ●

●

●
● ● ●

●

● ●
●

●
●

●
●

● ●
● ●

●
● ● ● ●

● ●
●

●
●

● ●
●

●
● ●

● ●

●

●

●

●

● ●
●

● ●
●

● ● ●
●

● ● ●
●

●
● ●

●

400

600

800

13
4

13
9

14
4

14
9

15
4

15
9

i'th Iteration

R
un

tim
e

(m
s)

((1)) instagram4j

●
●

● ● ●
●

● ● ● ●
●

● ● ● ● ●
●

● ● ● ●
●

● ● ● ●
●

● ● ●
●

●
●

● ● ●
●

●
●

●

●

● ● ●
●

● ● ●
●

● ● ●
●

● ● ●
●

● ● ●20

30

40

50

33
21

33
26

33
31

33
36

33
41

33
46

i'th Iteration

R
un

tim
e

(m
s)

((2)) dragonite-java

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
0

100

200

300

400

28
00

28
05

28
10

28
15

28
20

28
25

i'th Iteration

R
un

tim
e

(m
s)

((3)) ha-bridge1and5

● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

500

1000

1500

2000

70
5

71
0

71
5

72
0

72
5

73
0

i'th Iteration

R
un

tim
e

(m
s)

((4)) ha-bridge2and7

●

●

● ●● ● ● ● ● ●
●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

0

100

200

300

400

500

70
11

70
16

70
21

70
26

70
31

70
36

i'th Iteration

R
un

tim
e

(m
s)

((5)) ha-bridge3and8

● ● ●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
● ● ●

●

●
● ●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

200

400

600

22
1

22
6

23
1

23
6

24
1

24
6

i'th Iteration

R
un

tim
e

(m
s)

((6)) ha-bridge4and6

●

●

● ● ● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ● ●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

● ●
● ●

●

●

200

250

300

350

26
1

26
6

27
1

27
6

28
1

28
6

i'th Iteration

R
un

tim
e

(m
s)

((7)) netty1

● ●

● ● ●
●

●

●

● ●

●
● ●

●

●
●

●

● ●
●

● ● ● ● ●
●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●
●

●

●

●

●

●

0

250000

500000

750000

1000000

1250000

94
35

1

94
35

6

94
36

1

94
36

6

94
37

1

94
37

6

i'th Iteration

R
un

tim
e

(m
s)

((8)) netty2and3

45

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●
●

●
●

● ●

●

●

300

400

500

58 63 68 73 78 83

i'th Iteration

R
un

tim
e

(m
s)

((9)) netty4

●
●

●

● ●

●

●
●

●
● ● ● ● ●

● ●
● ●

●

● ●

●

●
●

●

●
●

●

●
●

● ●

●

●
●

●

● ●
●

●

● ●

●

● ● ●

●

● ● ●

●

● ●

●

●
●

●

●

● ●

50

100

150

200

13
65

13
70

13
75

13
80

13
85

13
90

i'th Iteration

R
un

tim
e

(m
s)

((10)) jee1and4

● ● ● ●
●

●
●

●
●

● ● ●
● ● ●

● ● ● ●

●

●
● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ●

●

●

● ● ● ● ● ● ●
●

●

●
● ●

0

25

50

75

13
65

13
70

13
75

13
80

13
85

13
90

i'th Iteration

R
un

tim
e

(m
s)

((11)) jee2and5

● ●● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●
0

50

100

78
78

78
83

78
88

78
93

78
98

79
03

i'th Iteration

R
un

tim
e

(m
s)

((12)) jee3

● ●● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

300

600

900

1200

24
20

24
25

24
30

24
35

24
40

24
45

i'th Iteration

R
un

tim
e

(m
s)

((13)) jee6and7

● ●
● ●

●
●

● ● ●

●

●

●
●

●
● ●

●

●
● ● ● ● ●

● ●
●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

● ●

●
●

●

● ●

●
● ●

● ●
●

●
●

● ● ●

1000

2000

3000

6 11 16 21 26 31

i'th Iteration

R
un

tim
e

(m
s)

((14)) jee8

● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ● ● ●

● ● ●

●

●
● ●

●

●

●

●
●

●

●

●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

●
● ● ●

500

1000

1500

19 24 29 34 39 44

i'th Iteration

R
un

tim
e

(m
s)

((15)) jee9

● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

● ● ● ●
● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ●

● ●
● ● ● ●

0e+00

2e+05

4e+05

74
80

0

74
80

5

74
81

0

74
81

5

74
82

0

74
82

5

i'th Iteration

R
un

tim
e

(m
s)

((16)) smart1and6

46

●
●

● ● ● ●
●

●
●

● ● ● ●
●

● ●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

● ●

●
● ● ● ●

●
● ● ● ● ●

●
● ● ● ● ●

●

10

20

13
10

1

13
10

6

13
11

1

13
11

6

13
12

1

13
12

6

i'th Iteration

R
un

tim
e

(m
s)

((17)) smart2and5

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

50

100

150

200

55
7

56
2

56
7

57
2

57
7

58
2

i'th Iteration

R
un

tim
e

(m
s)

((18)) smart3

● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ●

●

● ● ● ●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

● ● ● ●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

5

10

23
92

6

23
93

1

23
93

6

23
94

1

23
94

6

23
95

1

i'th Iteration

R
un

tim
e

(m
s)

((19)) smart4and7

● ●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ● ●

●
● ● ● ● ● ● ●

●

● ● ●

● ● ●
● ● ● ●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

50

100

150

200

250

60
6

61
1

61
6

62
1

62
6

63
1

i'th Iteration

R
un

tim
e

(m
s)

((20)) smart8

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●
●

●
● ● ● ● ● ● ● ●

● ● ●

●

●

● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

25

50

75

20
19

20
24

20
29

20
34

20
39

20
44

i'th Iteration

R
un

tim
e

(m
s)

((21)) whatsmars1and3

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

●
●

●

● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

0

50

100

150

31
95

32
00

32
05

32
10

32
15

32
20

i'th Iteration

R
un

tim
e

(m
s)

((22)) whatsmars2and4

● ●
●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

200

400

600

40
48

40
53

40
58

40
63

40
68

40
73

i'th Iteration

R
un

tim
e

(m
s)

((23)) whatsmars5and9

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

80

100

120

34
72

34
77

34
82

34
87

34
92

34
97

i'th Iteration

R
un

tim
e

(m
s)

((24)) whatsmars6and11

47

● ● ● ● ● ● ● ● ●

●

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●

25

50

75

57
00

57
05

57
10

57
15

57
20

57
25

i'th Iteration

R
un

tim
e

(m
s)

((25)) whatsmars7and12

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●0

200

400

42
25

42
30

42
35

42
40

42
45

42
50

i'th Iteration

R
un

tim
e

(m
s)

((26)) whatsmars8and10

● ● ● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ●

●

●

● ● ● ● ●
●

● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

100

200

300

400

500

15
28

15
33

15
38

15
43

15
48

15
53

i'th Iteration

R
un

tim
e

(m
s)

((27)) whatsmars13

100

200

300

400

500

15
28

15
33

15
38

15
43

15
48

15
53

R
un

tim
e

(m
s)

 Legend:

 Window of Redefinition Event

 Baseline (Software Patch)

 Hotfixer

Figure 6.4: Recovery Curves of Wickert Dataset

48

plots we observe an expected peak during the iteration(s) where the redefini-

tion event takes place, with the exception of Netty misuse2and3, jeesuite

misuse9, smart misuse1and6, and whatsmars misuse2and4. Peaks are

expected at the moment when the redefinition can take place in the JVM as

it is required to briefly halt the execution of the application so that the defi-

nition of a class can be replaced. The delayed peaks in NettyGameServer

misuse2and3 and smart misuse1and6 occur due to the longer runtimes

of each iteration, where it is likely that the JVM cannot immediately per-

form the necessary pause, because active stack frames of the old definitions

of the redefined methods are executing. In jeesuite misuse9 that peak is

less prominent due to the fact that the patch simplifies the application, and

therefore the peak appears as a smaller runtime than the normal runtimes of

the original application. Overall the plots show that in most cases the appli-

cation runtime stabilizes within the next 15-20 iterations, and that the largest

single effect that the redefinition event has on the runtime is when the actual

event occurs. As this is a necessary result of performing redefinition, these re-

sults show that using Hotfixer is still beneficial compared to the undeniable

application halt and restart that would occur when using develop-time patch.

Our patch adapter has a median runtime of 32.8 seconds and appli-
cations in Wickert benchmark experienced a median recovery time of
4.3 seconds. The throughput performance overhead that Hotfixer
induces across all benchmarks is at most 17%. The immediate effect
on the application runtime is largely shortlived and non-concerning.

6.6 Threats to Validity

One threat to the conclusion validity of the evaluation of Hotfixer is that we

rely upon regression testing to serve guide for typical application behaviour.

It is possible that tests do not encompass all possible behaviours of an ap-

plication, and in that case we can only assure that Hotfixer does not alter

program behaviour with respect to the tests that we have utilized. We miti-

gate this threat by using an established test generation tool, Randoop, for our

regression tests, and rely upon the established practice of evaluating regression

49

tests, as does much of software patching.

One threat to the internal validity of our evaluation is that we do not

control for all external and internal events in our experiments. For example we

do not assure that garbage collection does not occur during the execution of the

application, which is an event that would cause a lag in application execution

time. To reduce the possibility of this effect we did monitor for unexplainable

deviations in any one test iteration time over all trials of every setup. This

monitoring led to the JVM heap increases, as described in Section 6.5.1.

Lastly, one threat to the external validity of our evaluation is that Cog-

niCrypt Hotfixer Server in Hotfixer is built on CogniCrypt. We can

only assume that we can extend our work to applications where CogniCrypt is

capable to detect a crypto API misuse, i.e., where CogniCrypt does not have

any false negatives. To mitigate this threat to validity we rely upon the ongo-

ing work of CogniCrypt that is extending the number of crypto API providers

that are covered by CrySL rules, as well as the high precision and recall of

CogniCrypt presented in previous evaluations of CogniCrypt [37].

50

Chapter 7

Related Work

In this section, we discuss prior work that relates to crypto API misuses de-

tection and hotfixing (i.e., the two phases of Hotfixer). We additionally dis-

cuss software patching work that relates to the general principles of Phase II

of Hotfixer.

7.1 Crypto API Misuse Detection

Many static analysis tools have been proposed to aid developers with crypto

API misuses detection. Some tools such as CryptoLint [1], MalloDroid [3],

and, FixDroid [4] are specific to the Android platform, while other tools such

as CryptoGuard [5], and CRYLOGGER [6] detect misuses in both Android

and Java apps. Hotfixer relies on CogniCrypt [2] to detect misuses of crypto

APIs. To define a misuse, tools other than CogniCrypt employ pattern-based

rules relating to various components of crypto APIs. On the other hand, Cog-

niCrypt uses a specification language called CrySL [37] that enables extensible

definitions of misuses that are easy to update. Using CrySL allows Hotfixer

to apply almost all possible techniques for detecting misuses, such as paramet-

ric misuse checking, block-listing, typestate analysis and also, predicates over

the interaction of crypto API objects; these techniques allow Hotfixer to

check for misuses in 39 classes in the Java Cryptographic Architecture (JCA)

API, as well as classes in crypto APIs from other providers such as Tink [38]

and BouncyCastle [39].

51

7.2 Software Patching

Software patching tools provide a foundation for the principles of the imple-

mentation and evaluation of Hotfixer: automating the patching process,

using static analysis during various stages of the patching process, and apply-

ing regression testing to evaluate the correctness of the hotfix.

Automation in software patching can occur at three points in the process:

fault detection, patch generation, and patch application (i.e., program repair).

The state of the art in various levels of automated end-to-end software patching

can be found in the following tools: AutoPAG [40], SapFix [41], SemFix [42],

AE [43], and ASAP [44].

AutoPAG [40] uses static analysis to detect out-of-bounds errors. Sap-

Fix [41] relies on static analysis to validate the ability of candidate patches to

fix null pointer exceptions. Similarly, to perform crypto API misuses detection

(Phase I), Hotfixer also uses static analysis. We also use static analysis to

evaluate the correctness of Hotfixer (Section 6).

SapFix [41] uses software testing to narrow down candidate patches during

a patch selection process. SemFix [42] also uses software testing during the

patch generation process, but in their work, tests are used to create a set

of constraints that the patch must satisfy as it is built. Unlike those tools,

Hotfixer does not use regression testing to generate its hotfix. Instead, we

use regression testing to validate the correctness of the hotfix that Hotfixer

has generated after applying it to the analyzed program.

7.3 Hotfixing

Recent work has focused on security-related hotfixing in Android apps. For

example, AppSealer [45] prevents injection and information leakage attacks in

Android apps. AppSealer automatically detects vulnerabilities via a combi-

nation of static analysis and runtime instrumentation. If AppSealer detects

a potential vulnerability in a running application, the app displays an alert

to the user to restart the application. Similar to AppSealer, Hotfixer uti-

52

lizes static analysis for fault detection, and we also automate portions of the

patching process.

InstaGuard [46], is another fully automated hotfix tool that focuses on

Android app security. InstaGuard avoids adding any new code to the app,

and, instead disallows vulnerability by terminating the app when an inse-

cure condition is detected. Insecure conditions are defined via modular rule-

sets, called GuardRules. Similar to InstaGuard, Hotfixer also uses modu-

lar specifications, in our case CrySL, for fault detection. Unlike InstaGuard

and AppSealer, Hotfixer enables continued program execution at all times.

Moreover, Hotfixer performs targeted program repair for crypto API mis-

uses specifically, compared to InstaGuard that targets generic security vulner-

abilities, and AppSealer that targets component hijacking vulnerabilities.

The most relevant work in the literature is CDRep [8], a tool that auto-

matically repairs crypto API misuses in Android apps. CDRep automatically

detects 7 specific scenarios denoting a misuse by utilizing and extending misuse

patterns defined by CryptoLint [1]. To fix misuses, CDRep automatically ap-

plies a handwritten template patch. FireBugs [9] presents a semi-automated

crypto API misuses detection and repair tool for Android apps. Similar to

Hotfixer, FireBugs uses static analysis to detect misuses and regression

testing to assess the correctness of the patch. While FireBugs also applies the

patch to the running program, it uses Aspect Oriented Programming (AOP)

to achieve this, compared to Hotfixer that utilizes a Java agent. We be-

lieve that, compared to AOP, the Java agent interface is a simpler redefinition

mechanism to understand and maintain. More importantly, while CDRep and

FireBugs use fixed sets of misused patterns, Hotfixer uses modular CrySL

specifications during misuse detection.

53

Chapter 8

Conclusion

In this paper we present Hotfixer, a tool to perform automatic crypto API

misuse hotfixing at Java application runtime. Hotfixer offers a beneficial

alternative to software patching in scenarios where it is nontrivial to restart

servers to adopt software patches, and more importantly, in scenarios where

delays in patch deployment lead to windows of vulnerability in an application.

We additionally contribute (as a component of Hotfixer) a novel patch adap-

tation technique to transform hand written developer patches into hotfixes that

a Java agent can use. Our evaluation has shown that Hotfixer is able to

fix all misuses in 95% of the benchmarks in an identical manner to a baseline

develop-time patch strategy. Furthermore we have shown that Hotfixer pre-

serves program behaviour in 98% of the benchmarks, and, that not only does

the overhead of Hotfixer not exceed 17% loss at steady state compared to

software patching, often Hotfixer outperforms a software patched version

at steady state, for the Wickert benchmark. Through this evaluation we have

shown that Hotfixer presents a simple and effective technique to enhance

application security.

54

References

[1] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in android applications,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 73–84. [Online].
Available: https://doi.org/10.1145/2508859.2516693

[2] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and et al., “Cognicrypt: Supporting
developers in using cryptography,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. IEEE Press, 2017, p. 931–936.

[3] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis of
android ssl (in)security,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, ser. CCS ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 50–61. [Online].
Available: https://doi.org/10.1145/2382196.2382205

[4] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
“A stitch in time: Supporting android developers in writingsecure code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1065–1077. [Online].
Available: https://doi.org/10.1145/3133956.3133977

[5] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “Cryptoguard: High precision
detection of cryptographic vulnerabilities in massive-sized java projects,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2455–2472. [Online].
Available: https://doi.org/10.1145/3319535.3345659

[6] L. Piccolboni, G. D. Guglielmo, L. P. Carloni, and S. Sethumadhavan,
“Crylogger: Detecting crypto misuses dynamically,” 2020.

[7] S. Krüger, K. Ali, and E. Bodden, “Cognicryptgen : generating code
for the secure usage of crypto apis,” in CGO ’20: 18th ACM/IEEE
International Symposium on Code Generation and Optimization, San
Diego, CA, USA, February, 2020. ACM, 2020, pp. 185–198. [Online].
Available: https://doi.org/10.1145/3368826.3377905

55

https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/3368826.3377905

[8] S. Ma, D. Lo, T. Li, and R. H. Deng, “Cdrep: Automatic repair
of cryptographic misuses in android applications,” in Proceedings of
the 11th ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 711–722. [Online]. Available:
https://doi.org/10.1145/2897845.2897896

[9] L. Singleton, R. Zhao, M. Song, and H. Siy, “Firebugs: Finding and
repairing bugs with security patterns,” in Proceedings of the 6th Inter-
national Conference on Mobile Software Engineering and Systems, ser.
MOBILESoft ’19. IEEE Press, 2019, p. 30–34.

[10] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[11] NIST, “Des modes of operation.” [Online]. Avail-
able: https://csrc.nist.gov/csrc/media/publications/fips/81/archive/
1980-12-02/documents/fips81.pdf

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97 —
Object-Oriented Programming, M. Akşit and S. Matsuoka, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–242.

[13] Oracle, “Jvmti doc.” [Online]. Available: https://www.oracle.com/
technical-resources/articles/javase/jvm-tool-interface.html

[14] Eclipse, “Eclipse openj9,” 2018. [Online]. Available: https://www.
eclipse.org/openj9/

[15] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing java bytecode using the soot framework: Is
it feasible?” in Compiler Construction, 9th International Conference, CC
2000, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April
2, 2000, Proceedings, ser. Lecture Notes in Computer Science, D. A.
Watt, Ed., vol. 1781. Springer, 2000, pp. 18–34. [Online]. Available:
https://doi.org/10.1007/3-540-46423-9 2

[16] Oracle, “Instrumentation documentation.” [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/api/java/lang/
instrument/Instrumentation.html#redefineClasses-java.lang.instrument.
ClassDefinition...-

[17] V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution
for java,” in Proceedings of the 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA 2000), Minneapolis, Minnesota, USA, October 15-19, 2000,
M. B. Rosson and D. Lea, Eds. ACM, 2000, pp. 264–280. [Online].
Available: https://doi.org/10.1145/353171.353189

[18] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in ECOOP’95 - Object-
Oriented Programming, 9th European Conference, Århus, Denmark,

56

https://doi.org/10.1145/2897845.2897896
https://csrc.nist.gov/csrc/media/publications/fips/81/archive/1980-12-02/documents/fips81.pdf
https://csrc.nist.gov/csrc/media/publications/fips/81/archive/1980-12-02/documents/fips81.pdf
https://www.oracle.com/technical-resources/articles/javase/jvm-tool-interface.html
https://www.oracle.com/technical-resources/articles/javase/jvm-tool-interface.html
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
https://doi.org/10.1007/3-540-46423-9_2
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html#redefineClasses-java.lang.instrument.ClassDefinition...-
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html#redefineClasses-java.lang.instrument.ClassDefinition...-
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html#redefineClasses-java.lang.instrument.ClassDefinition...-
https://doi.org/10.1145/353171.353189

August 7-11, 1995, Proceedings, ser. Lecture Notes in Computer Science,
W. G. Olthoff, Ed., vol. 952. Springer, 1995, pp. 77–101. [Online].
Available: https://doi.org/10.1007/3-540-49538-X 5

[19] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, p. 120–126, Feb. 1978. [Online]. Available:
https://doi.org/10.1145/359340.359342

[20] S. Afrose, S. Rahaman, and D. Yao, “Cryptoapi-bench: A comprehensive
benchmark on java cryptographic api misuses,” in 2019 IEEE Cybersecu-
rity Development (SecDev). IEEE, 2019, pp. 49–61.

[21] A.-K. Wickert, M. Reif, M. Eichberg, A. Dodhy, and M. Mezini, “A
dataset of parametric cryptographic misuses,” in Proceedings of the 16th
International Conference on Mining Software Repositories, ser. MSR ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 96–100. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00023

[22] Docker, “Docker homepage.” [Online]. Available:
https://www.docker.com/?utm source=google&utm medium=cpc&
utm campaign=dockerhomepage&utm content=namer&utm term=
dockerhomepage&utm budget=growth&gclid=EAIaIQobChMI
snm98785wIVFo ICh3F0wRuEAAYASAAEgI8SPD BwE

[23] Eclipse, “Eclipse openj9,” 2018. [Online]. Available: https://www.
eclipse.org/omr/

[24] ——, “Eclipse omr clone,” 2018. [Online]. Available: https://github.
com/eclipse/openj9-omr

[25] IBM, “Ibmruntimes github.” [Online]. Available: https://github.com/
ibmruntimes/openj9-openjdk-jdk8

[26] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair
at scale,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ser. ICSE-
SEIP ’19. IEEE Press, 2019, p. 269–278. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00039

[27] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p. 257–269.
[Online]. Available: https://doi-org.login.ezproxy.library.ualberta.ca/10.
1145/2771783.2771796

[28] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller, “Automated fixing of programs with contracts,” in
Proceedings of the 19th International Symposium on Software Testing
and Analysis, ser. ISSTA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 61–72. [Online]. Available:
https://doi.org/10.1145/1831708.1831716

57

https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/MSR.2019.00023
https://www.docker.com/?utm_source=google&utm_medium=cpc&utm_campaign=dockerhomepage&utm_content=namer&utm_term=dockerhomepage&utm_budget=growth&gclid=EAIaIQobChMI_snm98785wIVFo_ICh3F0wRuEAAYASAAEgI8SPD_BwE
https://www.docker.com/?utm_source=google&utm_medium=cpc&utm_campaign=dockerhomepage&utm_content=namer&utm_term=dockerhomepage&utm_budget=growth&gclid=EAIaIQobChMI_snm98785wIVFo_ICh3F0wRuEAAYASAAEgI8SPD_BwE
https://www.docker.com/?utm_source=google&utm_medium=cpc&utm_campaign=dockerhomepage&utm_content=namer&utm_term=dockerhomepage&utm_budget=growth&gclid=EAIaIQobChMI_snm98785wIVFo_ICh3F0wRuEAAYASAAEgI8SPD_BwE
https://www.docker.com/?utm_source=google&utm_medium=cpc&utm_campaign=dockerhomepage&utm_content=namer&utm_term=dockerhomepage&utm_budget=growth&gclid=EAIaIQobChMI_snm98785wIVFo_ICh3F0wRuEAAYASAAEgI8SPD_BwE
https://www.eclipse.org/omr/
https://www.eclipse.org/omr/
https://github.com/eclipse/openj9-omr
https://github.com/eclipse/openj9-omr
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/2771783.2771796
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/2771783.2771796
https://doi.org/10.1145/1831708.1831716

[29] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random test-
ing for Java,” in OOPSLA 2007 Companion, Montreal, Canada. ACM,
Oct. 2007.

[30] N. Smeets and A. J. H. Simons, “Automated unit testing with
randoop, jwalk and µjava versus manual junit testing,” 2010. [Online].
Available: http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/
reports/jwalksmeets.pdf

[31] JUnit, “Beforeclass javadoc.” [Online]. Available: https://junit.org/
junit4/javadoc/latest/org/junit/BeforeClass.html

[32] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014, S. Cheung, A. Orso, and
M. D. Storey, Eds. ACM, 2014, pp. 643–653. [Online]. Available:
https://doi.org/10.1145/2635868.2635920

[33] M. Fowler, “Eradicating non-determinism in tests,” 2011. [Online].
Available: https://martinfowler.com/articles/nonDeterminism.html

[34] S. S. SHAPIRO and M. B. WILK, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611,
dec 1965. [Online]. Available: https://doi.org/10.1093/biomet/52.3-4.591

[35] J. Arbuthnot, “An argument for divine providence, taken from the
constant regularity observ’d in the births of both sexes. by dr. john
arbuthnott, physitian in ordinary to her majesty, and fellow of the college
of physitians and the royal society,” vol. 27, p. 186–190, 1710. [Online].
Available: https://martinfowler.com/articles/nonDeterminism.html

[36] W. Conover, Practical nonparametric statistics, 3rd ed., ser. Wiley series
in probability and statistics. New York, NY [u.a.]: Wiley, 1999. [Online].
Available: http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=
YOP&IKT=1016&TRM=ppn+24551600X&sourceid=fbw bibsonomy

[37] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “Crysl: An
extensible approach to validating the correct usage of cryptographic
apis.” in ECOOP, ser. LIPIcs, T. D. Millstein, Ed., vol. 109. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 10:1–10:27.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ecoop/ecoop2018.
html#KrugerS0BM18

[38] Google, “Google tink.” [Online]. Available: https://github.com/google/
tink

[39] Legion of the Bouncy Castle Inc, “Bouncycastle.” [Online]. Available:
https://www.bouncycastle.org/

[40] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “Autopag: Towards
automated software patch generation with source code root cause
identification and repair,” in Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security, ser. ASIACCS ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
329–340. [Online]. Available: https://doi.org/10.1145/1229285.1267001

58

http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/jwalksmeets.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/jwalksmeets.pdf
https://junit.org/junit4/javadoc/latest/org/junit/BeforeClass.html
https://junit.org/junit4/javadoc/latest/org/junit/BeforeClass.html
https://doi.org/10.1145/2635868.2635920
https://martinfowler.com/articles/nonDeterminism.html
https://doi.org/10.1093/biomet/52.3-4.591
https://martinfowler.com/articles/nonDeterminism.html
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+24551600X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+24551600X&sourceid=fbw_bibsonomy
http://dblp.uni-trier.de/db/conf/ecoop/ecoop2018.html#KrugerS0BM18
http://dblp.uni-trier.de/db/conf/ecoop/ecoop2018.html#KrugerS0BM18
https://github.com/google/tink
https://github.com/google/tink
https://www.bouncycastle.org/
https://doi.org/10.1145/1229285.1267001

[41] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair
at scale,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ser. ICSE-
SEIP ’19. IEEE Press, 2019, p. 269–278. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00039

[42] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013 Inter-
national Conference on Software Engineering, ser. ICSE ’13. IEEE Press,
2013, p. 772–781.

[43] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE’13. IEEE Press, 2013, p. 356–366. [Online].
Available: https://doi.org/10.1109/ASE.2013.6693094

[44] M. Payer and T. R. Gross, “Hot-patching a web server: A case study
of ASAP code repair,” in Eleventh Annual International Conference
on Privacy, Security and Trust, PST 2013, 10-12 July, 2013,
Tarragona, Catalonia, Spain, July 10-12, 2013, J. Castellà-Roca,
J. Domingo-Ferrer, J. Garćıa-Alfaro, A. A. Ghorbani, C. D. Jensen,
J. A. Manjón, I. Onut, N. Stakhanova, V. Torra, and J. Zhang,
Eds. IEEE Computer Society, 2013, pp. 143–150. [Online]. Available:
https://doi.org/10.1109/PST.2013.6596048

[45] M. Zhang and H. Yin, “Appsealer: Automatic generation of vulnerability-
specific patches for preventing component hijacking attacks in android
applications,” in NDSS, 2014.

[46] Y. Chen, Y. Li, L. Lu, Y.-H. Lin, H. Vijayakumar, Z. Wang, and X. Ou,
“Instaguard: Instantly deployable hot-patches for vulnerable system pro-
grams on android,” in NDSS, 2018.

59

https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/PST.2013.6596048

	Introduction
	Background Material
	Java Virtual Machine
	Eclipse OpenJ9
	Crypto API Misuses
	Software Patching and Hotfixing

	Overview of Hotfixer
	Phase I: Crypto API Misuse Detection
	Phase II: Hotfixing

	Adapting a Patch into a Hotfix
	Handling Field/Method Addition
	Field Addition
	Method Addition

	Phase II: Hotfixing
	Evaluation
	Experimental Setup
	Data Processing
	CryptoGuard micro-benchmark
	Wickert benchmark
	Crypto API Misuse Detection

	How successful is Hotfixer at fixing crypto API misuses? (RQ1)
	CryptoGuard micro-benchmark Results
	Wickert benchmark Results

	Does Hotfixer alter the semantics of a running application? (RQ2)
	Regression Test Setup
	CryptoGuard micro-benchmark Results
	Wickert benchmark Results

	 How does Hotfixer affect application performance? (RQ3)
	Performance Test Setup
	Results

	Threats to Validity

	Related Work
	Crypto API Misuse Detection
	Software Patching
	Hotfixing

	Conclusion
	References

