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Abstract

A major problem in exploration seismology entails estimating subsurface structures and

properties via linearized inversion. The problem is often called “least-squares migration”

where seismic imaging is posed as an iterative least-squares problem. The iterative solu-

tion employs the method of conjugate gradients which requires two operators: the forward

operator and the adjoint operator. This thesis investigates the design of the forward oper-

ator and its associated exact adjoint for both acoustic and elastic least-squares migration.

The forward operator is derived using the Born approximation and Green’s functions of the

two-way wave equation.

A few key steps were followed to obtain an adjoint operator that has the exact adjoint

formulation of the forward operator. I first derive the Born approximation and discretize

Green’s functions using the finite difference method, where I have adopted a staggered grid

algorithm with stepping in the time domain. Then, a simple workflow was used to describe

the discrete forward operator in terms of the concatenated multiplication of matrices. Fi-

nally, the exact adjoint operator is obtained by taking the transpose of the discrete forward

operator. The adjointness of the forward and adjoint operators can be verified by the dot

product test. Unlike the conventional adjoint operator derived via the discretization of con-

tinuous kernels, I observe that the proposed exact adjoint operator can pass the dot product

test in machine precision, which implies that the forward and the proposed adjoint operator

achieve sufficient accuracy to use conjugate gradients to solve the aforementioned problem

of least-squares migration.

While the forward and exact adjoint operators are derived in the form of matrices, creating
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explicit matrices in numerical solvers does not provide a memory-efficient implementation.

To deal with this memory issue, a matrix-free programming process is applied to develop

the forward operator and its exact adjoint operator. Preconditioning operators are also

investigated to solve the least-squares migration for extended shot-index images efficiently.

Finally, the proposed method is tested via synthetic examples. Compared with conventional

migration techniques, least-squares migration (both acoustic and elastic) is capable of atten-

uating low-wavenumber artifacts, compensating for insufficient illumination, and increasing

the resolution of seismic images. Elastic least-squares migration provides an additional

benefit of suppressing multi-parameter cross-talk.
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CHAPTER 1

Introduction

1.1 Introduction to least squares migration and moti-

vation

Reflection seismology is a series of methods that use seismic reflections to reveal subsurface

structures and properties. In the methods, man-made sources (e.g. dynamite, air gun

or large vibratory systems) are required to excite the subsurface and sensors are used to

measure the response reflected from the interior of the earth. Seismic migration is a method

to relocate the response measured on the surface into the subsurface, thereby producing an

image of the earth interior.

Migration operators can be derived under ray- and wave-based theoretical frameworks. For

instance, the ray-based migration can be derived using Kirchhoff’s integral formulation

(Gray, 1986; Schneider et al., 1998; Sun et al., 2000) or linearized Born scattering with high-

frequency ray-based approximations (Červenỳ et al., 1982; da Costa et al., 1989; Lazaratos

and Harris, 1990; Hill, 1990). Wave-based migration operators can be derived using one-

way or two-way wave equation propagators. One-way wave equation migration is derived

via the factorization of the acoustic wave equation (Gazdag, 1978; Gazdag and Sguazzero,

1984; Stoffa et al., 1990; Kessinger, 1992; Popovici, 1996). Today the most advanced tech-

nique for seismic migration adopts propagators based on two-way wave equations, which is

frequently called reverse time migration or two-way wave equation migration(Baysal et al.,

1983; Loewenthal and Mufti, 1983; McMechan, 1983; Whitmore, 1983; Levin, 1984). A two-

way propagator entails solving the complete wave equation problem via the finite difference

method, which is able to handle large lateral velocity variations. This advantage permits

reverse time migration to overcome the dip angle limit of the typical migration methods
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CHAPTER 1. INTRODUCTION 2

based on one-way propagators (Hale, 1992).

In general, migration methods apply linear operators on the pre-processed seismic data to

find the location where seismic reflection occurs (Claerbout, 1971). On the other hand,

least-squares migration (LSM) has been proposed as a linear inverse problem, whose goal is

to use constraint inversion to minimize migration artifacts. Least-squares migration solves

the inverse problem for media perturbation that can be used to fit the seismic data (Keys

and Weglein, 1983; Nemeth et al., 1999; Kühl and Sacchi, 2003; Clapp, 2005; Valenciano

et al., 2006; Symes, 2008; Ji, 2009; Yao, 2013; Duan et al., 2016; Feng and Schuster, 2016;

Yang et al., 2016). As a linear inverse problem, the least-squares migration first forms a

linear relationship between pre-processed seismic data and the image via a forward modeling

(de-migration) operator and then, the image that honors the observations is retrieved via

a linear inversion algorithm (Lailly, 1983). Usually, least-squares migration is solved via

iterative gradient-based optimization methods (e.g. steepest descent, conjugate gradients),

which also permit us to iteratively mitigate the influence of dead traces and impose good

feature (Ronen et al., 1995) in the final image via incorporating data space weights (Nemeth

et al., 1999) and model space constraints (Kühl and Sacchi, 2003), respectively.

In this research, least squares two-way wave equation migration is solved by an efficient

linear inversion algorithm: conjugate gradients (Hestenes and Stiefel, 1952). At the core

of conjugate gradients, it is necessary to define the forward operator (denoted as L) and

to design its subsequent adjoint operator (denoted as LT ). Moreover, the forward operator

and its adjoint operator must be constructed in a way that the two operators behave like

an exact adjoint pair because the exact adjoint property is an essential requirement for the

method of conjugate gradients to guarantee that the Hessian matrix (LTL) is symmetric.

The design of the exact adjoint pair is extremely simple when the forward operator is given

in terms of a matrix since the exact adjoint operator is merely the transpose of the forward

operator in the time domain. However, the forward operators are never given in terms of a

matrix but a computer program composed of thousands of lines of code, which makes it a

non-trivial task to turn the program into its adjoint operator. In order to derive the exact

adjoint formulation, the adjoint operator is designed carefully by first understanding the

structure of the forward operator in terms of matrices. Apparently, these matrices are only

used to guide the development of our codes. At the time of writing computer codes, the

forward and adjoint paper are programmed via a matrix-free process.

The forward and adjoint operator in least-squares migration originates from acoustic (Taran-

tola, 1984) and elastic (Mora, 1988, 1987) seismic tomography. The forward operator is de-

rived based on the generalized Born approximation (Lailly, 1983; Keys and Weglein, 1983),

which consists of a response kernel and a wave simulation. The adjoint operator resembles

imaging principle (Claerbout, 1971; Tarantola, 1984), which composed of an imaging con-



CHAPTER 1. INTRODUCTION 3

dition and a reverse-time simulation. In the derivation of Tarantola (1984), the imaging

condition is analogized as the adjoint of the response kernel, and the reverse-time simula-

tion is considered as the adjoint of the normal wave simulation. Note that, in this case,

Tarantola derived both the forward operator and its adjoint operator in the continuous

domain. In the discrete domain, however, Ji (2009) observes that the reverse time sim-

ulation cannot pass dot-product test (Claerbout, 1992) with the normal wave simulation.

The proper design of the forward-adjoint pair for least-squares reverse time migration has

been thoroughly explained by Ji (2009) in the context of post-stack operators. Ji (2009)

adopted a time-domain discrete approach and the language of linear algebra to derive the

forward-adjoint pair. In a similar vein, Yao and Jakubowicz (2015) investigated a matrix

formulation of least-squares reverse time migration in the frequency domain. Zhang et al.

(2015) proposed a similar approach with Tarantola (1984) to derive a continuous forward

and adjoint formulations and then, the two formulations are discretized to obtain forward

and adjoint operators for least-squares reverse time migration. My approach differs from

the authors as mentioned above in several ways. First, I utilize a time-domain discrete

approach that follows the work of Ji (2009). I expand the latter to the prestack migrations

(of both acoustic and elastic). That means this research will investigate the exact adjoint

formulation of both response kernel and wave simulation in the aforementioned problem of

seismic tomography. Besides, the study provides a strategy for applying preconditioning

to extended shot-index images. I also point out that the optimize then discretize approach

proposed by Zhang et al. (2015) could lead to operators that do not pass the dot product

test (Claerbout, 1992) with sufficient accuracy for applying the conjugate gradients method.

On the other hand, our design leads to the forward and adjoint operators that pass the dot

product test in machine precision. The latter verifies a forward-adjoint operator (LTL) that

is symmetric and therefore, also invertible via the method of conjugate gradients. Finally,

the proposed operators are adopted to show the effectiveness of both acoustic and elastic

LSRTM.

1.2 Thesis outline

In Chapter 2, I design the forward operator and its adjoint operator for acoustic least-

squares two-way wave equation migration. Derivation begins with the forward operator.

First, the acoustic wave equations are linearized and incorporated with boundary conditions

of the perfectly matched layers (PML). Secondly, I use finite difference method to discretize

the forward operator and propose a simple workflow to describe the discrete operator in

the form of matrices. Finally, taking the transpose of the forward operator, the exact

adjoint operator is obtained. The exact adjointness of the proposed forward and its adjoint

operator is verified by the dot-product test. Three examples are provided to illustrate the
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effectiveness of the proposed operators. In the first example, I use a single shot example to

compare the proposed exact adjoint operator with reverse time migration in the aspect of

image quality and data fitting performance. In the second and the third example, multiple-

shot examples are provided to demonstrate the advantages of the least-squares two-way wave

equation migration compared with reverse time migration regarding image illumination and

resolution.

In Chapter 3, I follow the same strategy introduced in Chapter 2 to find the forward

and its exact adjoint operator for elastic least-squares two-way wave equation migration.

The forward and its exact adjoint operators are adopted to solve the elastic least-squares

migration. I provide two synthetic examples to show the benefit of the elastic least-squares

migration compared with the elastic two-way wave equation migration. In the first example,

a single-shot survey demonstrates the performance of the elastic least-squares migration in

the aspects of data fitting and cross-talk suppression. In the second example, a multiple-

shot example illustrates the benefit of the elastic least-squares migration regarding image

illumination, resolution, and cross-talk artifact suppression.

In Chapter 4, I stress the importance of the exact adjoint operator in conjugate gradients.

The proposed strategy to design the exact operator is summarized, and some important

observations are mentioned. In the end, I discuss the limitations of the proposed approach

and provide suggestions for future work.



CHAPTER 2

Acoustic least-squares two-way wave equation migration

2.1 Introduction

This chapter discusses the problem of least-squares migration for acoustic media. I first

derive the forward operator using the Born approximation and two-way acoustic Green

function. Then the adjoint operator is derived and finally, forward and adjoint operators

are used in the method of conjugate gradients to obtain subsurface acoustic images.

2.2 Forward modelling via the acoustic Born approxi-

mation (de-migration operator)

Acoustic wave propagation in a media with Lame parameter λ(x, z) and density ρ(x, z) is

described by the following set of partial differential equations

∂vx
∂t
− 1

ρ

∂p

∂x
= 0

∂vz
∂t
− 1

ρ

∂p

∂z
= 0

∂p

∂t
− λ(

∂vx
∂x

+
∂vz
∂z

) =
λ

ρ
δ(x− xs)

∫ t

0

src(τ)dτ (2.1)

where vx(x, z, t), vz(x, z, t) are particle velocities in the x and z directions, respectively.

The scalar field p(x, z, t) denotes pressure. Last, the term src(t) represents the seismic

5



CHAPTER 2. ACOUSTIC LEAST-SQUARES MIGRATION 6

source at position x = xs, z = 0. I assume that background values for the acoustic

parameters are known and given by λ0(x, z) and ρ0(x, z). Similarly, I assume that re-

sponses to these background parameters can be numerically computed and are given by

vx0(x, z, t), vz0(x, z, t), p0(x, z, t). Furthermore, I assume that unknown and known acoustic

parameters are related via small additive perturbations such that λ(x, z) = λ0(x, z)+δλ(x, z)

and ρ0(x, z) = ρ0(x, z)+δρ(x, z). Similarly I define wavefields in terms of responses to back-

ground parameters plus perturbations vx(x, z, t) = vx0(x, z, t) + δvx(x, z, t), vz(x, z, t) =

vz0(x, z, t) + δvz(x, z, t) and p(x, z, t) = p0(x, z, t) + δp(x, z, t). I first substitute the expres-

sions for λ and ρ and their associated fields in equation 2.1. Then after canceling terms

involving multiplication of small perturbations in acoustic parameters and fields, I end up

with the following two partial differential equations

∂vx0

∂t
− 1

ρ0

∂p0

∂x
= 0

∂vz0
∂t
− 1

ρ0

∂p0

∂z
= 0

∂p0

∂t
− λ0(

∂vx0

∂x
+
∂vz0
∂z

) =
λ0

ρ0
δ(x− xs)

∫ t

0

src(τ)dτ (2.2)

and

∂(δvx)

∂t
− 1

ρ0

∂(δp)

∂x
= (

1

ρ2
0

∂p0

∂x
)δρ

∂(δvz)

∂t
− 1

ρ0

∂(δp)

∂z
= (

1

ρ2
0

∂p0

∂x
)δρ

∂(δp)

∂t
− λ0(

∂(δvx)

∂x
+
∂(δvz)

∂z
) = (

∂vx0

∂x
+
∂vz0
∂z

)δλ (2.3)

Equation 2.2 describes propagation in the known background media. I solve this equation

using finite differences for a given source function. In the migration jargon, I will say that

this equation computes the source-side wavefield. Clearly, the solution of equation 2.2 are

fields given in terms of snapshots vx0(x, z, t), vz0(x, z, t), p0(x, z, t) that correspond to an

experiment with a source at x = xs. These wave fields will be considered known and

part of our forward (demigration) operator. Equation 2.3 is equivalent to equation 2.2

but now sources are given by perturbation terms (right hand side of equation 2.3 ) that

contain unknown media perturbations δλ and δµ. The perturbation wavefield snapshots

(δvx0(x, z, t), δvz0(x, z, t), δp0(x, z, t)) are also computable via finite differences. In other

words, the finite difference method will be applied to both 2.2 and 2.3 to compute background

fields resulting from a source at x = xs and responses to media perturbations δλ and

δρ, respectively. I stress that in both cases propagation occurs in the media with known
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background parameters λ0(x, z) and ρ0(x, z).

Following with our analysis, the right-hand side of equation 2.3 can be written in matrix

form as follows

 rvx
rvz
rp

 =


1
ρ20

∂p0
∂x 0

1
ρ20

∂p0
∂x 0

0 ∂vx0

∂x + ∂vz0
∂z


 δρ

δλ

 (2.4)

The fields rvx(x, z, t), rvz (x, z, t) and rp(x, z, t) can be interpreted as responses to scatterers

where δρ 6= 0 or δλ 6= 0. From the equation 2.4, compressional modulus λ and density ρ

are treated as two independent variables. Density can be expressed as a function of com-

pressional modulus based on Gardner’s relation (Gardner et al., 1974). In other words, the

compressional modulus and density could be be regularized via lithologic constrains. How-

ever, the objective of this research is not to estimate the relation between compressional

modulus and density. Instead, the proposed least-squares migration focuses on structural

imaging. I have preferred to limit the research to estimation of one high-quality single pa-

rameter image because the single parameter inversion avoids unwanted artifacts introduced

by multi-parameter crosstalk. It is important to stress, however, that in Chapter 3 I will

discuss multi-parameter inversion. Removing density from our problem leads to an algo-

rithm that resembles classical imaging techniques that are adopted for structural migration.

Therefore, if the proposed least-squares migration is limited to solve for perturbation of δλ

and eliminates δρ in equation 2.4. Equation 2.4 becomes

rp︸︷︷︸
r

= (
∂vx0

∂x
+
∂vz0
∂z︸ ︷︷ ︸

K

) δλ︸︷︷︸
m

(2.5)

Equation 2.5 is valid for each subsurface point x, z and all time t. One can generalize the

above equation for all the subsurface and times via a matrix formulation. To this end I

define a model grid to describe λ and ρ. The grid contains nx × nz points. Equation 2.5

becomes

r = KSm (2.6)

where m ∈ Rnxnz× 1 represents the discretized acoustic parameters: m = δλ. Similarly,

r ∈ Rnxnz nt× 1 represents source term of pressure which is associated to the perturbation m.

The matrix S is a spraying operator that copies the vector m to all times, S ∈ Rnt nxnz×nxnz

and finally, K ∈ Rnxnz nt×nxnz nt is a diagonal matrix with elements containing derivatives

of the source-side solution (equation 2.5). The solution of equation 2.3 can also be written

in matrix form. The excitation source is given by the vector r in equation 2.6. The field

δu(x, z, t) = [δvx(x, z, t), δvz(x, z, t), δp(xz, t)]
T is written for all discrete times and all spatial
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positions as δu ∈ R 3nt nxnz× 1. The solution of equation 2.3 in terms of finite differences

can now be described as follows

δu = Gr, (2.7)

where G is the matrix that represents the finite difference code. Finally, seismic observations

can be computed by extracting data from δu via a sampling operator R ∈ RN ×1 where N

indicates total number of data points. Putting it all together, I have observations (observed

scattered field) in terms of acoustic model perturbations

dobs = Rδu

= RGr

= RGKSm . (2.8)

Notice that in our formulation the sampling operator R could measure particle velocities

and/or pressure. I can use a compact format to represent the problem in terms of a linear

operator L = RGKS

dobs = Lm . (2.9)

The analysis so far is valid for one source but it can be easily generalized to surveys with

more than one source. Equation 2.9 defines the forward problem for least-squares migration.

2.3 Adjoint operator and regularized least-squares lin-

earized inversion

I have defined a single-parameter linearized inversion problem where the unknown is m = δλ.

Let us assume I have observed data (scattered wavefield) and I would like to determine an

estimate of the model perturbation vector m. The simplest solution entails using the adjoint

or transpose operator. The latter also corresponds to applying migration to preprocessed

field observations

m̂ = LTdobs (2.10)

one can replace equation 2.9 into 2.10 to obtain

m̂ = LTLm . (2.11)
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The last equation clearly shows that the image obtained via migration is not equal to the

unknown vector m unless the migration operator is the inverse of the forward modelling

operators. Therefore, I can claim that the migrated image m̂ is a distorted version of the

unknown vector of perturbations m. It is also interesting to note that in the presence of

noise and operator mismatch one should solve the problem Lm ≈ dobs. In this case I write

the estimation of m as an optimization problem where I minimize a cost function of the

form

J = ‖Wd(Lm− dobs)‖22 + µ2‖Wmm‖22 . (2.12)

The first term of the cost function is the misfit. I have also equipped the misfit with a data

space matrix of weights to account for differences in data quality and for missing observations

(Kühl and Sacchi, 2003). The second term is the quadratic regularization term that contains

model space weights Wm to penalize roughness in the solution. The positive scalar µ2 is

the tradeoff parameter that is used to emphasize the importance of regularization versus

misfit. The solution that minimizes J is found using the method of conjugate gradients.

The latter is a semi-iterative technique that construct the solution that minimize J in a

series of steps (iterations). Each iteration requires the application of products of the form

La and LTb where a and b are vectors of size nxnz× 1 and N × 1, respectively. One needs

to understand the precise structure of G in L in order to design the adjoint operator LT

that is required by the conjugate gradients method to iteratively estimate m. The adjoint

is given by

LT = STKTGTRT . (2.13)

The operator ST entails summation over time (adjoint of time spraying). Similarly, RT

inserts zeros in all grid points with no observations (adjoint of wavefield sampling). Similarly,

the operator KT can be computed with no effort as it multiplication by a diagonal matrix

which turns to be equivalent to element-to-element multiplication with the precomputed

divergence of the source-side velocity wavefield (equation 2.6). In the next section, I provide

an algorithm to compute G and its adjoint GT . It is basically the algorithm that permits

to solve the systems given by equations 2.2 and 2.3 via finite differences but expressed in

terms of matrices.

2.4 Matrix-based forward operator G

In this section, I present the solution of the partial differential equations given by equations

2.2 or 2.3 in terms of finite differences and I explain the algorithm in terms of matrices. I

will add extra complexity to the problem by incorporating perfectly matched layer (PML)
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boundary conditions to absorb artificial boundary reflections (Berenger, 1996). In order to

apply the PML method the pressure field is virtually decomposed into two components.

Then, the problem given by equation 2.3 becomes

∂δvx
∂t + κxδvx = 1

ρ
δ∂p
∂x + rvx

∂δvz
∂t + κzδvz = 1

ρ
δ∂p
∂z + rvz

∂δpx
∂t + κxδpx = λ δ∂vx∂x + 1

2rpx
∂δpz
∂t + κzδpz = λ δ∂vz∂z + 1

2rpz

δp = δpx + δpz

(2.14)

where the source terms r[.] can be used to describe a point source as in equation 2.2 or scat-

terers as in the partial differential equations obtained for the field perturbations (equation

2.3). Partial differential equations are discretized via the finite difference method adopting a

staggered grid algorithm (Dablain, 1986; Levander, 1988; Yao, 2013). The discretized finite

difference update can be expressed in the following matrix form

δvn+1
x = A1δv

n
x + B1D1δp

n + rnvx

δvn+1
z = A2δv

n
z + B2D2δp

n + rnvz

δpn+1
x = A3δp

n
x + B3D3δv

n+1
x + 1

2rnpx

δpn+1
z = A4δp

n
z + B4D4δv

n+1
z + 1

2rnpz

δpn+1 = δpn+1
x + δpn+1

z

(2.15)

where n = 1 . . . nt indicates time step. Notice, each vector in equation 2.15 is size nxnz× 1

and corresponds to a spatial field at time n. The matrices Ai and Bi are diagonal matrices

(see Appendix A1). Matrices Di are first order spatial derivative stencils operating on vec-

torized fields. These matrices can be easily obtained via Kronecker products. Furthermore,

equation 2.15 can be written as follows

δun+1 = Tδun + rn+1 (2.16)

where

δun+1 =


δvx

δvz

δpx

δpz

δp



n+1

δun =


δvx

δvz

δpx

δpz

δp



n

δrn+1 =


δrvx

δrvz

δrpx

δrpz

0



n+1
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T =



I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 I I 0





I 0 0 0 0

0 I 0 0 0

A3 0 B3D3 0 0

0 A4 0 B4D4 0

0 0 0 0 I





A1 0 0 0 B1D1

0 A2 0 0 B2D2

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I


(2.17)

with δu0 = 0. For simplicity, I consider a simulation for n = 1, 2, 3 where one injects the

source r to estimate snapshots for all wavefields in δu

δu0 = 0 (2.18)

δu1 = r1 (2.19)

δu2 = T r1 + r2 (2.20)

δu3 = T2 r1 + T r2 + r3 (2.21)

δu4 = T3 r1 + T2 r2 + T r3 + r4 . (2.22)

The last system of equation can be expressed as follows
δu1

δu2

δu3

δu4

 =


I 0 0 0

T I 0 0

T2 T I 0

T3 T2 T I




r1

r2

r3

r4

 (2.23)

which can also be written in terms of 3 steps


δu1

δu2

δu3

δu4

 =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 T I




I 0 0 0

0 I 0 0

0 T I 0

0 0 0 I




I 0 0 0

T I 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

G


r1

r2

r3

r4

 (2.24)

I have now been able to construct our matrix G that propagates all the fields in rn to

responses δun for n = 1 . . . nt. Clearly, I have used nt = 4 to avoid writing pages and pages

of matrices.



CHAPTER 2. ACOUSTIC LEAST-SQUARES MIGRATION 12

2.5 The exact adjoint operator

The adjoint of G is not as simple as one might have thought. Consider equation 3.25, I first

need to flip the order of each of the sub-matrices to compute the adjoint and then, I need to

transpose each sub-matrix. If one only flips the order of the matrices that form G, I have

the pseudo-adjoint operator of G

Gpa =


I 0 0 0

T I 0 0

0 0 I 0

0 0 0 I




I 0 0 0

0 I 0 0

0 T I 0

0 0 0 I




I 0 0 0

0 I 0 0

0 0 I 0

0 0 T I

 . (2.25)

The code that applies the pseudo-adjoint is equivalent to run the finite differences solver

backwards (n = nt . . . 1). It reduces to inject the perturbation δun to obtain rn. On the

other hand, the true adjoint also entails taking the transpose of all sub-matrices in G

GT =


I TT 0 0

0 I 0 0

0 0 I 0

0 0 0 I




I 0 0 0

0 I TT 0

0 0 I 0

0 0 0 I




I 0 0 0

0 I 0 0

0 0 I TT

0 0 0 I

 . (2.26)

I stress that Gpa and GT are different as the results of having introduced boundary condi-

tions (matrices Ai and Bi in 2.17). One could run a reverse time migration algorithm by

either using the true adjoint

madj = STKTGTRT dobs (2.27)

or, the pseudo-adjoint operator

mpa = STKTGpaRT dobs . (2.28)

In our experience, applying the true adjoint or the pseudo adjoint makes almost no difference

for classical migration. However, when computing least-squares migration solutions via the

method of conjugate gradients, one must adopt the exact adjoint propagator GT . In other

words, GpaG is non-symmetric and consequently, the method of conjugate gradients will

fail to converge (Hestenes and Stiefel, 1952).

Last, I point out that the matrix formulation adopted in this work helps us derive a forward-

adjoint pair that rigorously passes the dot product test. It is unrealistic, however, to save

large matrices in memory. In practice, I directly work with operators that were programmed
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in C programming language via a series of spatial and temporal loops. The matrix formula-

tion of the forward-adjoint pair has allowed us to identify the parts of our code that required

special attention in order to pass the dot product test.

2.6 Numerical examples

I present three numerical examples to explore least-squares migration with two-way wave

equation operators. Synthetic data were generated by the finite difference method with

PML boundary conditions.

2.6.1 Example 1: SAIG velocity model

I first compare our adjoint operator with the classical reverse time migration code that uses

the pseudo-adjoint. The model for this particular numerical test consists of an anticlinal

shown in Figure 2.1. The size of the velocity model is 300× 750 grid points in the vertical

and horizontal coordinates, respectively. The spatial sampling for both coordinates is 10m.

I have generated a data set that corresponds to one common shot gather at position x =

3.75 km. The velocity field ranges from 1.5km/s to 3.0km/s. Figures 2.2a and b portray

images computed via the pseudo-adjoint and exact adjoint operators, respectively. The two

results are extremely similar, in fact, the true adjoint and the pseudo-adjoint operators are

fully interchangeable in the classical (non-iterative) reverse time migration.

I have also applied the method of conjugate gradients with preconditioning to estimate the

seismic image. To this end, I minimize the following cost function

J = ‖Wd(LPu− dobs)‖22 + µ2‖u‖22 (2.29)

where

m = Pu . (2.30)

In the data domain, preconditioning operator is denoted as Wd, which is a diagonal matrix

used to remove direct wave. In the model domain, preconditioning was introduced via a

simple change of variable. The operator P contains diagonal weights that are proportional

to the inverse of the source-side wavefield (Valenciano and Biondi, 2003; Guitton et al.,

2006). I also mention that equations (29)-(30) correspond to reducing the cost function in

equation (12) to its standard form by defining P = W−1
m (Ronen et al., 1995). In essence,

I have transformed a least-squares problem with regularization term given by Wm into a

similar problem with preconditioning operator P. Often, the geophysical literature calls

Wm the bad-pass operator. Whereas, P is called the good-pass operator. This emphasizes
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the high-pass and low-pass nature of Wm and P, respectively. This will become evident in

our next example where I use a low-pass preconditioning operator to minimize artifacts in

extended images.

The cost of adding the preconditioning term P to our problem is minimal because the source-

side wavefield was already precomputed and saved. In this particular case P compensates

for illumination by normalizing the amplitudes of the image in terms of the source-side

energy. Figure 2.3a shows the image computed via the method of conjugate gradients with

the pseudo-adjoint operator. The solution corresponds to 14 iterations. It is important

to mention that the solution starts to diverge after about 14 iterations. Preconditioning

does not avoid the divergence of the conjugate gradients algorithm. In fact, divergence

is expected because the forward and pseudo-adjoint operators do not constitute an exact

adjoint pair (the migration-demigration operator is non-symmetric). For completeness, I

have added converge curves given in terms of relative misfit reduction in Figure 2.4. This

figure confirms that the method of conjugate gradients does not converge when the pseudo-

adjoint operator is adopted. It also shows the benefit of adding preconditioning to the

conjugate gradients method. Finally, Figure 2.5 confirms that the data is properly fitted

after 14 iterations. The misfit at this point was reduced to about 1% of the misfit at the

first iteration.
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Figure 2.1: (a) True velocity model. (b) Smooth velocity model used to test least-
squares migration.
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Figure 2.2: Our first example corresponds to the migration of one shot gather.
(a) Migration via classical reverse time migraiton (pseudo-adjoint operator). (b)
Migration via the exact adjoint operator.
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Figure 2.3: Least-squares migration for our first example. a) Image computed
via the method of conjugate gradients and pseudo-adjoint operator. The solution
corresponds to 14 iterations of the conjugate gradients method. (b) Image computed
via the method of preconditioned conjugate gradients after 14 iterations and exact
adjoint operator.
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Figure 2.4: Converge curves for the conjugate gradients method for example 1.
Blue curve: The pseudo-adjoint operator was adopted and the method starts to
diverge at about 14 iterations. Green curve: Conjugate gradients with the exact
adjoint operator. Red curve: Preconditioned conjugate gradients with exact adjoint
operator.
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Figure 2.5: (a) Observed data for our first example . (b) Predicted data via pre-
conditioned least-squares migration at 14 iterations. (c) Data residual.

2.6.2 Example 2: SAIG velocity model with multiple shots and

inversion of an extended image

The second example is an extension of the previous one. From now on, the proposed least-

squares two-way wave equation migration will only utilize the exact adjoint operator. In

addition, all the examples have been computed with source-side energy preconditioning as

described in the first example to normalize migration images (Valenciano and Biondi, 2003;

Guitton et al., 2006). In this example, the synthetic survey includes 81 shots that are evenly

distributed on the surface of the model. To accelerate the convergence rate of the proposed

least squares migration, the least-squares migration is solved for extended shot-index images

instead of one single image (m) (Huang et al., 2016). In other words, rather than inverting

for a single stacked image for all the shots (Figure 2.6a), the least-squares migration inverts

for a image volume (Figure 2.6b) which, in this case, contains 81 partial images for the

corresponding 81 shots. The image volume is indexed by shot number mj .
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Figure 2.6: Solutions of acoustic least-squares two-way wave equation migration.
(a) Stacked image. (b) Partial image volume indexed by shot number. Panel (b)
shows the preferred solution for multi-shot surveys.

I also require lateral continuity across shots at any given subsurface point x, z. For this

purpose, I define a cost function that is given by

J =

Ns∑
j=1

‖Wdj (LjPj(
1

2
aj−1 + aj +

1

2
aj+1)− dobsj )‖22 + µ2

Ns∑
j=1

‖aj‖22 (2.31)

where

mj =
1

2
aj−1 + aj +

1

2
aj+1 (2.32)

I now invert the auxiliary images aj j = 1, . . . Ns rather that inverting directly mj j =

1, . . . Ns. In essence, I are simultaneously inverting aj and forming the final individual

images as a weighted average of nearby a-images (Wang et al., 2005). The approach serves

to estimate extended images that are low-pass in the shot-index direction

m(x, z)j =
1

2
a(x, z)j−1 + a(x, z)j +

1

2
a(x, z)j+1 .

Figures 2.8 a and b show the migration of the 81 shots and the least-squares migration. In

this case, the method of conjugate gradients was run until the misfit was reduced to about

1%. The latter happens at iteration 20 (shown in Figure 2.7). The images correspond to

the average of the 81 partial images mi. To continue with our analysis, I examine the

importance of smoothing across shot-index coordinates and its impact on the estimation of

images for fix spatial position x. Figures 2.9a and b show the shot-index image computed

for lateral position x = 2.25Km for the classical migration and for least-squares migration

with preconditioning. Figures 2.10 and 2.11 show similar information for shot-index images

computer at the centre and right side of the model (x = 3.75km and 5.25km), respectively.
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Figures 2.9-2.11 show the importance of adding preconditioning in the form of lateral conti-

nuity constraints to minimize aperture and sampling artifacts in shot-index images. In this

example, our averaging operator was a simple 3 points smoothing operator. I have tested

our algorithm by varying the length of the smoothing operator. Long operators will produce

overly smooth shot-index images at the cost of degrading data fidelity. For this simple ve-

locity model, a 3-point smoothing operator provides a good trade-off between smoothness in

shot-index images and misfit reduction. One shortcoming of least-squares migration is that

one needs to explore trade-off curves for the scalar µ as well. In this work, I have preferred

to fix µ = 0.001 and use the number of iterations as a stopping criterion. For instance, the

algorithm stops when the normalized misfit is below a predefined threshold. For this simple

velocity model, the threshold is 1%. In essence, the number of iterations of the method of

conjugate gradients is used to control the degree of fitting. In other words, the number of

iteration is used as an effective trade-off parameter. The latter is rigorously discussed in

Hansen (1987)’s book.
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Figure 2.7: Convergence curves for the conjugate gradients method.
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Figure 2.8: (a) Reverse time migration, sum of images computed from 81 shots
gather. (b) Least-squares migration after 20 iterations where the 81 shots were
simultaneously inverted with preconditioning to accentuate lateral continuity in
shot-index images. Panel (b) displays the sum of the 81 inverted shot-index gathers.
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Figure 2.9: Shot-index image at position x = 2.25 km. (a) Migration. (b) Least-
squares migration with preconditioning after 20 iterations.
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Figure 2.10: Shot-index image at position x = 3.75 km. (a) Migration. (b) Least-
squares migration with preconditioning after 20 iterations.
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Figure 2.11: Shot-index image at position x = 5.25 km. (a) Migration. (b) Least-
squares migration with preconditioning after 20 iterations.

2.6.3 Marmousi data set

In our last example, I use the Marmousi model (Figure 2.12) to test the performance

of our least-squares migration algorithm. In this experiment, 81 shots are evenly dis-

tributed on the surface of the earth. I have adopted source-side energy precondition-

ing weights and a 7-point smoothing filter across the shot-index dimension with weights

[1/20, 3/10, 3/4, 1, 3/4, 3/10, 1/20]. The weights correspond to applying the smoothing op-

erator [1/2, 1, 1/2] three times and normalization. After 35 iterations of least-squares mi-

gration, the data misfit is reduced to a predefined target of 10%. In examples 1 and 2 I were

able to reduce the data misfit to about 1%. On the other hand, when working with the Mar-

mousi model I have decided to stop the algorithm at about a 10% data reduction. This was

needed to avoid generating artifacts in the extended image. The data set associated with the

Marmousi model contains waves that are not modeled by the linearized forward operator.

Therefore, one should not attempt to fit the data precisely. Figures 2.13a and b present

our migration and least-squares migration results, respectively. These results correspond
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to stacks obtained by summing individually migrated or inverted shot-index images. The

deblurring capability of least-squares migration (Zeng et al., 2014) is visible in Figure 2.14.

I also computed the shot-index image for shot number 41. Figure 2.15 a and b illustrate the

shot-index image obtained via migration and least-squares migration, respectively. Again,

the addition of lateral smoothing across the shot-index coordinate has lead to a substantial

attenuation of artifacts. Last, Figure 2.16 shows the prediction of shot 41 at iteration 35 of

the conjugate gradients method. As it was already mentioned, the misfit for the 81 shots

gathers was reduced to about 10%.
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Figure 2.12: (a) True velocity for the Marmousi model. (b) Smooth velocity model.
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Figure 2.13: Migration of 81 shots. (a) Reverse time migration. (b) Least-squares
migration after 35 iterations (preconditioning in shot-index images was applied)
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Figure 2.14: Details of the Marmousi model for x in the range 2.50-3.50 km and z
in 0.50− 1.50km. (a) Reverse time migration. (b) Least-squares migration after 35
iterations. (c) Vertical derivative of the velocity model. The last image is used to
represent reflectivity.
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Figure 2.15: Shot-index image at x = 4.00 km of the Marmousi model. (a) Reverse
time migration. (b) Least-squares migration reverse time after 35 iterations.
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Figure 2.16: (a) The 41th shot record of the synthetic Marmousi dataset. (b) Shot
prediction using the image inverted via least-squares migration. (c) Data residual.



CHAPTER 3

Elastic Least Squares Two-way Wave Equation Migration

3.1 Introduction

This chapter introduces elastic least-squares migration in terms of perturbations of Lame’s

parameters. Following Chapter 2, the Born elastic approximation is used to linearized the

inverse problem. Green’s function in smooth elastic media is computed via the method of

finite difference. Once the forward linearized operator is derived, special attention is paid

to designing the adjoint elastic operator. Finally, the method of conjugate gradients is used

to estimate elastic images of the subsurface.

3.2 Forward modelling operator and its exact adjoint

(multi-parameters)

Elastic wave propagation in a media with Lame parameters: λ(x, z) and µ(x, z) and density

ρ(x, z) is governed the following set of partial differential equations:I

32
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∂vx
∂t
− 1

ρ
(
∂τx
∂x

+
∂τs
∂z

) = 0,

∂vz
∂t
− 1

ρ
(
∂τz
∂z

+
∂τs
∂x

) = 0,

∂τx
∂t
− λ(

∂vx
∂x

+
∂vz
∂z

)− 2µ
∂vx
∂x

= δ(x− xs)src,

∂τz
∂t
− λ(

∂vx
∂x

+
∂vz
∂z

)− 2µ
∂vz
∂z

= δ(x− xs)src,

∂τs
∂t
− µ(

∂vx
∂z

+
∂vz
∂x

) = 0, (3.1)

where τx are τz are normal stresses in the x and z directions respectively. τs is a shear stress

that is perpendicular with the two normal stresses. Horizontal and vertical particle velocities

are denoted as vx and vz, respectively. To simulate pure explosive point source, source

function src is injected to the two normal stresses, τx and τz. To linearize the elastic wave

equation, I assume the media parameter consists of known background media and unknown

perturbations such that ρ = ρ0+δρ, λ = λ0+δλ and µ = µ0+δµ. Correspondingly, wavefield

components can be described as linear expressions as: vx(x, z) = vx0(x, z) + δvx(x, z),

vx(x, z) = vx0(x, z)+δvx(x, z), vx(x, z) = vx0(x, z)+δvx(x, z), vx(x, z) = vx0(x, z)+δvx(x, z)

and vx(x, z) = vx0(x, z)+δvx(x, z). To substitute these linear combinations into the equation

3.1 and eliminate multiplication of small perturbations, I can obtain two sets of equations:

∂vx0

∂t
− 1

ρ0
(
∂τx0

∂x
+
∂τs0
∂z

) = 0,

∂vz0
∂t
− 1

ρ0
(
∂τz0
∂z

+
∂τs0
∂x

) = 0,

∂τx0

∂t
− λ0(

∂vx0

∂x
+
∂vz0
∂z

)− 2µ0
∂vx0

∂x
= δ(x− xs)src,

∂τx0

∂t
− λ0(

∂vx0

∂x
+
∂vz0
∂z

)− 2µ0
∂vz0
∂z

= δ(x− xs)src,

∂τs0
∂t
− µ0(

∂vx0

∂z
+
∂vz0
∂x

) = 0, (3.2)
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and

δ∂vx
∂t
− 1

ρ0
(
∂δτx
∂x

+
∂δτs
∂z

) =
1

ρ2
0

(
∂τxx0

∂x
+
∂τxz0
∂z

)δρ,

δ∂vz
∂t
− 1

ρ0
(
∂δτz
∂z

+
∂δτs
∂x

) =
1

ρ2
0

(
∂τzz0
∂z

+
∂τxz0
∂x

)δρ,

∂δτx
∂t
− λ0(

∂δvx
∂x

+
∂δvz
∂z

)− 2µ0
∂vx
∂x

= (
∂vx0

∂x
+
∂vz0
∂z

)δλ+ 2
∂vx0

∂x
δµ,

∂δτx
∂t
− λ0(

∂δvx
∂x

+
∂δvz
∂z

)− 2µ0
∂vz
∂z

= (
∂vx0

∂x
+
∂vz0
∂z

)δλ+ 2
∂vz0
∂z

δµ,

∂δτs
∂t
− µ0(

∂δvx
∂z

+
∂δvz
∂x

) = (
∂vx0

∂z
+
∂vz0
∂x

)δµ. (3.3)

The background media in equation 3.2 can be obtained via tomographic inversion, migra-

tion velocity analysis or full waveform inversion (Tarantola, 1984). I will assume a known

background in order to permits us to solve the equation 3.2 via finite difference to obtain

background wavefield for a given point source function src at x = xs. In migration jargon,

the wavefield is so-called source-side wavefield. Equation 3.3 is similar with equation 3.2

but source input is given by subsurface response (right hand side of equation 3.3), which

consist of unknown media perturbation δρ, δλ and δµ and the source-side wavefield. I can

write the subsurface response in matrix form as


rvx
rvz
rτx
rτz
rτs


︸ ︷︷ ︸

r

=



1
ρ20

(∂τx0

∂x + ∂τs0
∂z ) 0 0

1
ρ20

(∂τz0∂z + ∂τs0
∂x ) 0 0

0 ∂vx0

∂x + ∂vz0
∂z 2∂vx0

∂x

0 ∂vx0

∂x + ∂vz0
∂z 2∂vz0∂z

0 0 ∂vx0

∂z + ∂vz0
∂x


︸ ︷︷ ︸

K


δρ

δλ

δµ

 ,

︸ ︷︷ ︸
m

(3.4)

where The combination of δρ, δλ and δµ are considered as model and denoted as m. The

operatorK is known, which consists of the source-side wavefield. The left side the of equation

3.4 represents subsurface response induced by the model perturbation m. The response is

denoted as r[.]. Following the same strategy applied in the Chapter 2, the proposed elastic

least-squares migration is limited to solve for media perturbation of δλ and δµ in order

to avoid the artifacts of multi-parameter crosstalk with respect to density and to reduce

computational cost. To eliminate density, equation 3.4 becomes rτx
rτz
rτs


︸ ︷︷ ︸

r

=


∂vx0

∂x + ∂vz0
∂z 2∂vx0

∂x
∂vx0

∂x + ∂vz0
∂z 2∂vz0∂z

0 ∂vx0

∂z + ∂vz0
∂x


︸ ︷︷ ︸

K

 δλ

δµ

 .

︸ ︷︷ ︸
m

(3.5)
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Equation 3.5 is valid for each subsurface point x, z and all time t. After discretizing each

wavefield component and each media perturbation by nx × nz × nt and nx × nz points,

equation 3.5 can be converted into a matrix formulation as

r = KSm, (3.6)

where m ∈ R2nxnz×1 represents two unknowns perturbations: m = [δλ, δµ]T . K ∈
R3nxnz nt×2nxnz nt contains wavefield information with respect to both space and time.

Clearly, a matrix S ∈ R3nxnz nt× 2nxnz is required to spray model in time. Finally, equa-

tion 3.6 produces the subsurface response r ∈ R3nxnz×1 which is taken as initial values in

equation 3.3 to solve for the corresponding perturbative wavefield δvx, δvz, δτx, δτz and

δτs. In the least-squares migration, they are also called scattering wavefield. Numerically,

the wavefield can be solved by finite difference method. In a compact form, the relation

(equation 3.3) between the response and the scattering wavefield can be translated into

matrix form as following

δu = Gr, (3.7)

where G is the matrix expression of elastic finite difference method (see Appendix A2) to

solve equation 3.3. I will incorporate a sampling operator R to extract particle velocity at

receiver locations. Then, the seismic observation vector dobs can be expressed by means of

a linear relationship in terms of the model m as

dobs = Rδu,

= RGr,

= RGKSm. (3.8)

In equation 3.8, the observed seismic data dobs defines a linear relationship with respect

to media perturbations m. The linear relationship can be represented by a linear operator

L = RGKS. Then equation 3.8 becomes

dobs = Lm, (3.9)

where L is so-called forward operator. Since the forward operator is in matrix form, its

adjoint operator is the transpose of the forward operator

m̂ = LTdobs,

= STKTGTRTdobs, (3.10)
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where LT represents the adjoint operator. In addition, RT is the adjoint of sampling and

GT is equivalent to propagate the data backwards in time. The matrix KT converts the

responses into media perturbations at each time step. Finally, ST means to integrate the

perturbations over time to produce a model m̂. If I substitute equation 3.9 into equation

3.10, I have

m̂ = LTLm . (3.11)

Equation 3.11 shows that the migration image m̂ is not equal to the unknown media per-

turbation m. In order to obtain m, I construct a optimization problem in the follow form

J = ‖Lm− dobs‖22 + µ2‖m‖22 . (3.12)

The solution of the last equation is the unknown media perturbation where m = (LTL +

µI)−1m̂, where µ is a small damping parameter to make LTL invertible. The optimization

problem is solved by conjugate gradient method, which requires the forward L and LT to

be an exact adjoint pair. Therefore, I have to understand the precise structure of G in L in

order to design its exact adjoint operator LT .

3.3 Matrix-based forward operator G and its exact ad-

joint

In this section, I apply finite difference method to solve for the forward simulation problem

in equation 3.3. In order to adopt the perfectly matched layer (PML) method to absorb

artificial boundary reflections (Berenger, 1996), I convert the partial differential equations in

equation 3.3 into ordinary differential equations. The five wavefield components are virtually

decomposed into horizontal and vertical terms. As a result, the entire set of equation 3.3 is

expanded to fifteen equations as follow
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
∂δvxx
∂t + κxδv

x
x = 1

ρ0
∂δτx
∂x + 1

2rvx ,
∂δvzx
∂t + κzδv

z
x = 1

ρ0
∂δτs
∂z + 1

2rvx ,

δvx = δvxx + δvzx,

(3.13)


∂δvxz
∂t + κxδv

x
z = 1

ρ0
∂δτs
∂x + 1

2rvz ,
∂δvzz
∂t + κzδv

z
z = 1

ρ0
∂δτz
∂z + 1

2rvz ,

δvz = δvxz + δvzz ,

(3.14)


∂δτx

x

∂t + κxδτ
x
x = (λ0 + 2µ0)∂δvx∂x + 1

2rτx ,
∂δτz

x

∂t + κzδτ
z
x = λ0

∂δvz
∂z + 1

2rτx ,

δτx = δτxx + δτzx ,

(3.15)


∂δτx

z

∂t + κxδτ
x
z = λ0

∂δvx
∂x + 1

2rτz ,
∂δτz

z

∂t + κzδτ
z
z = (λ0 + 2µ0)∂δvz∂z + 1

2rτz ,

δτz = δτxz + δτzz ,

(3.16)


∂δτx

s

∂t + κxδτ
x
s = µ0

∂δvz
∂x + 1

2rτs ,
∂δτz

s

∂t + κzδτ
z
s = µ0

∂δvx
∂z + 1

2rτs ,

δτs = δτxs + δτzs ,

(3.17)

Equation 3.13 can be expressed in matrix form (See Appendix A2) as

δv
x
x

δvzx

δvx


n+1

︸ ︷︷ ︸
δun+1

1

=


I 0 0

0 I 0

I I 0


︸ ︷︷ ︸

Mu1
4

(
Avx

1 0 0

0 Avx
2 0

0 0 0


︸ ︷︷ ︸

M
u1
3

δv
x
x

δvzz

δvx


n

︸ ︷︷ ︸
δun

1

+ · · ·

+


0 0 Bvx

1 D1

0 0 0

0 0 0


︸ ︷︷ ︸

M
u1
2

δτ
x
x

δτzx

δτx


n

︸ ︷︷ ︸
δun

3

+


0 0 0

0 0 Bvx
2 D1

0 0 0
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︸ ︷︷ ︸

M
u1
1

δτ
x
s

δτzs

δτs


n
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δun

5

)
+ rn+1

vx (3.18)

where Ai and Bi are diagonal matrices (see Appendix A2) and Di are first order spatial

derivative which can be obtained by adopting Kronecker products, δu1, δu3 and δu5 stands

for the combination of δvx, δτx, δτs and their virtual subsets, respectively. Similarly, I can
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write equation 3.14 to 3.17 in form of matrices as

δv
x
z

δvzz

δvz


n+1

︸ ︷︷ ︸
δun+1
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vz (3.19)
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The vectors δv, δτz and their subsets are denoted as δu2, δu4, respectively. In finite

difference method, spatial extrapolation can be written in the following matrix form:

δsn+1 = Tδsn + rn+1 (3.23)

where
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Symbol s represents a time snapshot. Considering each snapshot si consisting the five

wavefield components and their subsets (si = [δu1, δu2, δu3, δu4, δu5]), the time evolution

of the entire finite difference method can be written as an iterative multiplication of time
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stepping matrices. For instance, if I consider only four steps, the series of stepping matrices

can be written as follow
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So far G (in equation 3.8) is fully constructed in a matrix formulation to propagates sub-

surface responses for all δsn from n = 1 . . . nt (where nt = 4). The exact adjoint of G is the

transpose of equation 3.25 and its sub-matrices. Certainly, it is not practical to save those

gigantic matrices in the computer memory. Instead, I treat the G and GT as operators

(function in C language) and use loops to implement matrix multiplication (for the non-

zeros entries only). Moreover, I note that the procedure leads to G and GT (the forward

operator 3.9 and its adjoint operator 3.10) that pass the dot-product test within machine

precision.

3.4 Numerical examples

In this section, I use SAIG anticline model to demonstrate advantages of the elastic LS-

RTM.The model has a grid size of 300 × 750 and spatial sampling of 7m in x and z as

shown in Figure 3.1. The compressional velocity ranges from 1.5km/s to 3.0km/s. The

shear velocity model is a scaled-down version of the previous model by
√

3. The migration

velocity models are smoothed by a hamming filter in size of 75× 75 as shown in Figure 3.2.

3.4.1 SAIG velocity model: single shot test

A single shot is placed in the center of the model (at 2.67 km) to generate observed data.

Its direct wave is removed by an diagonal matrix Wd and migrated by the exact adjoint

operator LT . The amplitude of the migrated image is balanced by a source-side illumination

compensation operator, P, (Valenciano and Biondi, 2003) where

P (ix, iz) = τ2
x(ix, iz) + τ2

z (ix, iz). (3.26)

I also applied a vertical Laplacian filter (marked as Dv) (Guitton et al., 2007) to remove

near-surface low wavenumber artifacts on the final image.

mmigration = Dv P LT Wd d (3.27)
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Figure 3.4 shows the adjoint image. In seismic imaging, the adjoint operator (equation

3.10) is also called migration. Compared Figure 3.4 with conventional elastic migration

(Rosales and Rickett, 2001; Rosales et al., 2008; Yan and Sava, 2008; Lu et al., 2010; Du

et al., 2012), the proposed adjoint operator does not require polarity correction because the

adjoint operator attempts to solve for media perturbation. Physically, media perturbation

does not have polarity reversal problem. However, Figure 3.4 is contaminated by cross-talk

artifacts, which appears as fake layers between true reflectors. Next, I adopt the forward and

its exact adjoint operator to derive least-squares image via solving the following equation.

J = ‖Wd(LPu− dobs)‖22 + µ‖u‖22 (3.28)

where

mLSM = DvPu (3.29)

The trade-off parameter µ is 10−3. After applying 35 iterations of elastic LSRTM via

conjugate gradients, the norm of the data residual is reduced to 1% (in Figure 3.3). The

corresponding least squares image is shown in Figure 3.5. The elastic LSRTM removes

the artificial layers, near surface layers are refined, amplitude of the deepest structures is

enhanced and the final images are able to honour the data.
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Figure 3.1: True velocity model. (a) Compressional velocity model. (b) Shear
velocity model
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Figure 3.2: Smooth velocity model used to test least-squares migration. (a) Smooth
compressional velocity model. (b) Smooth shear velocity model.
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Figure 3.3: Convergence curves for the conjugate gradients method.
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Figure 3.4: Migration of one shot gather. (a) Migrated perturbation of δλ. (b)
Migrated perturbation of δµ.
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Figure 3.5: Least-squares migration of one shot gather corresponds to 35 iterations
of the conjugate gradients method. (a) Inverted perturbation of δλ. (b) Inverted
perturbation of δµ.

3.4.2 SAIG velocity model: multiple shots test with smoothing in

the shot-index coordinate

In this section, the previous study is extended to 81 shots, which are evenly distributed

on the surface. The final image in the previous section has strong near surface artifact

between 0 to 500 m in depth. Therefore, a diagonal matrix (M) is included to remove near

surface artifacts in the model domain. To accelerate the convergence rate, the proposed

least-squares migration aims to solve for two image volumes of compressional and shear

modulus with respect to each shot (Figure 3.6), rather than solving for two stacked images

for all shots. The image volumes has higher degree of freedom to fit the observed data

(Huang et al., 2016) but it also provides redundancy in the auxiliary shot-index axis to host

artifacts. The artifacts appears as high frequency noise along the shot-index axis. In this

case, a 3-point smoothing filter (equation 2.32) is implemented in form of matrix (denoted as
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Figure 3.6: Partial image volumes indexed by shot numbers. (a) Image volume of
δλ. (b) Image volume of δµ.

E) to penalize large variation along shot axis (Wang et al., 2005). It is a similar procedure

in acoustic least-squares migration (equation 2.32). After incorporating the matrices, M

and S, migration operator is presented in the following equation

m = M E P LT Wd d (3.30)

In this case, a vertical Laplacian filter is applied to the migration image for mitigating

low-wavenumber artifacts. The final migration images are shown in figure 3.7. In both δλ

and δµ models, the near surface area shows strong amplitude artifact (at about 0.75 km in

depth). In the δλ models, deep layers are blurred by strong side-lobe artifacts (Zeng et al.,

2014). The δµ model shows a slightly better resolution and has less side-lobes. However,

the deep structure is still poorly illuminated. Next, I use both forward and adjoint operator

to solve the following inversion problem.

J = ‖Wd(LSPMu− dobs)‖22 + µ‖u‖22 (3.31)

where

m = MSPu. (3.32)

After 35 iterations, LSRTM produces models which can predict about 95% of data (as

shown in Figure 3.9). In Figure 3.8, the near surface layers are clearly separated. In the

deep structures and side-lobes are suppressed. To analyze the upgraded image in details,

I demonstrate three common image gathers located on left, center and right of the model.

In Figure 3.10, 3.12, and 3.14, migration results have imbalanced amplitude with respect to

shot locations. In the far offset, migration gathers have strong side-lobe problem. After 35

iterations, LSRTM produces the results showing better continuity along shot axis (in Figure
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3.11, 3.13 and 3.15). After the side-lobes are suppressed, each layer is resolved. Eventually,

the final image shows higher resolution structure than migration image.
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Figure 3.7: Migration of 81 shots. (a) Migrated image of δλ. (b) Migrated image
of δµ.
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Figure 3.8: Least-squares migration after 35 iterations (preconditioning in shot-
index images was applied). (a) Inverted image of δλ. (b) Inverted image of δµ.
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Figure 3.9: Convergence curves for the conjugate gradients method.
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Figure 3.10: Shot-index migration image at x = 2.25 km. (a) Shot-index image of
δλ. (b) Shot-index image of δµ.
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Figure 3.11: Shot-index least-squares migration image at x = 2.25 km. (a) Shot-
index image of δλ. (b) Shot-index image of δµ.
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Figure 3.12: Shot-index migration image at x = 3.75 km. (a) Shot-index image of
δλ. (b) Shot-index image of δµ.
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Figure 3.13: Shot-index least-squares migration image at x = 3.75 km. (a) Shot-
index image of δλ. Shot-index image of δµ.
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Figure 3.14: Shot-index migration image at x = 5.25 km. (a) Shot-index image of
δλ. (b) Shot-index image of δµ.
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Figure 3.15: Shot-index least-squares migration image at x = 5.25 km. (a) Shot-
index image of δλ. (b) Shot-index image of δµ.



CHAPTER 4

4.1 Main conclusions

Conventionally, the problem of least-squares migration has been mainly investigated via one-

wave operators and ray-based techniques. In this thesis, least-squares migration is studied in

terms of the acoustic and elastic Born approximation and Green’s functions of the two-way

wave equation. A clear workflow is presented to construct operators in the acoustic and

elastic two-way wave equation migration. The problem is solved by the conjugate gradient

method, which requires access to two fundamental computer codes: the forward and its exact

adjoint operators. To my knowledge, this thesis presents, for the first time, a step-by-step

procedure to design forward operator and its exact adjoint operator for both acoustic and

elastic two-way wave equation least-squares migration in the time domain. Many research

groups have reported results of the least-squares two-way wave equation migration with an

adjoint of the classic reverse time migration operator. However, the issue of adjointness is

never fully disclosed in the geophysical literature dealing with the least-squares migration

of two-way wave equation. This research provides a clear path to develop computer codes

for the least-squares two-way wave equation migration that are capable of passing the dot-

product test in machine precision.

I conclude that a classical reverse time migration code is not the exact adjoint of the forward

operator 1. If the inexact adjoint operator is adopted, the conjugate gradient method leads

to an algorithm that does not converge. In this situation, one could adopt the method of

steepest descent or non-linear conjugate gradient (Yao, 2013) to estimate the least-squares

migrated image. However, steepest descent and non-linear conjugate gradients require a

1It is the main reason that to denominate the problem as least-squares two-way wave equation migration
instead of least-squares reverse time migration.

57
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line search to estimate step-lengths in each iteration. The beauty of the conjugate gradients

method is that step-lengths are analytically computed (there is no need of a line search).

The latter is the main reason I advise to design the adjoint operator that does pass the

dot-product test.

Adopting a process that entails computing operators based on two-way wave equation avoids

some of the problems of least-squares migration with one-way wave equation operators. For

instance, the proposed algorithm should have an optimal response to steep structures and

the ability to image turning waves. In general, our algorithm combines the benefits of reverse

time migration in terms of being able to handle data arising from complex structures. It

is obvious that one shortcoming of the least-squares migration is cost. To accelerate the

convergence rate of least squares migration, preconditioning operators is incorporated in the

formulation of the least-squares problem to improve the distribution of amplitudes in the

shallow and deep areas. Moreover, a regularization term is also added to the least-squares

problem, which permits us to add constraints to the least-squares problem to reduce artifact

in the multi-shot examples for both acoustic and elastic seismic imaging.

Overall, the least-squares two-way wave equation migration is an advanced migration method

to generate a high resolution and artifact-free images. The field of linearized inversion-

based migration offers an interesting playground to test regularization and preconditioning

methods for improving the quality of seismic images. It also provides an interesting area

for testing forward and adjoint operators that can become part of full-waveform inversion

methodologies.

4.2 Main contribution

The main contribution of this thesis includes elastic response kernel, the exact adjoint oper-

ator and the framework of least-squares migration in the matrix formulation. The response

kernel is derived from linearized two-way wave equation of elastic media. The kernels define

a clear relation between model perturbation and the associated subsurface responses. The

adjoint of the elastic kernel can successfully avoid polarity issue and therefore, permits us

to stack multiple shot-profile images without the expensive process of polarity correction.

This research also investigates the exact adjoint adjointness of the discretized forward and

adjoint operators for both acoustic and elastic least-squares two-way wave equation migra-

tion. The proposed exact adjoint operator can precisely pass the dot-product test. In this

research, it is stressed that, in the discrete domain, the exact adjoint operator is not same

as the classic reverse time migration and the reverse time migration is the pseudo-adjoint

of the linearized wave equation. Besides, for the sake of memory efficiency and computa-
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tional speed, the forward operator and its adjoint operator are implemented in the form of

a matrix-free algorithm.

Eventually, the correct adjointness permits us to adopt conjugate gradient method to solve

the problem of least-squares migration. The inversion-based migration provides an access

to estimate the linearized relation between data perturbation and model perturbation. The

linearized least-squares migration can be utilized to construct a bridge to investigate the

more complicated non-linear data-model inversion (e.g. full waveform inversion) in the

future.

4.3 Future developments

Computational cost is one of the concerns in the least-squares two-way wave-equation mi-

gration. The iterative algorithm is expensive in terms of computational time and hardware

requirements (memory). Its implementation in 3D and/or on large 2D data sets requires

serious consideration given our group current computational infrastructure. Several research

directions should be followed to further advance the field of least-squares migration. For

instance, future work could move the field in the following direction:

development efficient 3D acoustic and elastic codes to process real data; and,

application of least-squares two-way wave equation migration to global seismology.

The development of 3D codes is limited by access to hardware. At the present time, the

algorithm infrastructure develops in this thesis is ready to be moved to cope with 3D prob-

lems. However, several aspects pertaining preconditioning of 3D survey might have to be

considered. For instance, regularization of receivers, denoising, source amplitude equaliza-

tion, etc. Preconditioning problems might be extremely severe for onshore data. For marine

data, access to high-quality demultiple data might also be important as our methods require

data that are not contaminated by multiples.

Moving the problem to global seismology for regional studies might also involve some in-

teresting challenges. Data are sparse and seismic sources are highly variable. Equalization

of sources, denoising and proper selection of data might also be important to assemble a

realistic volume that can be used to test teleseismic least-squares migration.
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APPENDIX A

Discretization of Partial Differential Equations

A.1 Numerical Simulation of Acoustic Wave Equation

with PML Boundary Condition

Acoustic wave equation consists of three first-order ordinary differential equations (Malvern,

1969) as 
∂vx
∂t = 1

ρ
∂p
∂x ,

∂vz
∂t = 1

ρ
∂p
∂z ,

∂p
∂t = λ(∂vx∂x + ∂vz

∂z ).

(A.1)

Due to the theory of perfectly matched layer (Berenger, 1996), we virtually split the pressure

component into horizontal and vertical directions as p = px + pz (Yao, 2013) and substitute

it into equation A.1 as 

∂vx
∂t = 1

ρ
∂p
∂x ,

∂vz
∂t = 1

ρ
∂p
∂z ,

∂px
∂t = λ∂vx∂x ,
∂pz
∂t = λ∂vz∂z ,

p = px + pz.

(A.2)

Equation A.2 contains four ordinary differential equations, which permits us to incorpo-

rate perfect matched layer as boundary condition (Berenger, 1996) to attenuate artificial
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reflections from numerical boundaries. Then we have

∂vx
∂t + κxvx = 1

ρ
∂p
∂x ,

∂vz
∂t + κzvz = 1

ρ
∂p
∂z ,

∂px
∂t + κxpx = λ∂vx∂x ,
∂pz
∂t + κzpz = λ∂vz∂z ,

p = px + pz.,

(A.3)

where κx and κz are attenuation coefficients to attenuate artificial reflections from vertical

and horizontal boundaries respectively (Berenger, 1996). Equation A.3 can be solved nu-

merically by finite difference method, which includes two steps: variable quantization and

differential operator discretization. The variables are quantized on a mesh grid. As equa-

tion A.3 contains multiple variables, it is important to properly distribute each component

onto the mesh-grid. We uniformly quantize and distribute pressure wavefield on a 3D cubic

mesh-grid of size nx × nz × nt. On the mesh-grid, any pressure point can be presented

as p(ix, iz, it), where ix ∈ {1, 2, 3, ..., nx}, iz ∈ {1, 2, 3, ..., nz} and it ∈ {1, 2, 3, ..., nt}. px
and pz must share the same position with p since they are the virtual subsets of pressure.

To obtain vertical velocity in the first ordinary differential equation of A.3, we adopt cen-

tral finite difference method (Dablain, 1986). Based on the definition of central difference,

each point in the vertical velocity wavefield is located in the middle of every two adjacent

points in pressure wavefield along horizontal (x) and temporal (t) axis. In other words,

each vertical velocity point should be presented as vx(ix + 0.5, iz, it + 0.5). Similarly, the

second ordinary differential equation of A.3 indicates that the vertical velocity should be

presented as vz(ix, iz+ 0.5, it+ 0.5). In this research, we use second-order and higher-order

central difference to discretize temporal and spatial differential operators (Dablain, 1986).

Therefore, equation A.3 can be discretized as

vx(ix+ 0.5, iz, it+ 0.5) = A1vx(ix+ 0.5, iz, it− 0.5) + · · ·
+B1{

∑N
1 cn[−p(ix− (n− 1), iz, it) + p(ix+ n, iz, it)]},

vz(ix, iz + 0.5, it+ 0.5) = A2vz(ix, iz + 0.5, it− 0.5) + · · ·
+B2{

∑N
1 cn[−p(ix, iz − (n− 1), it) + p(ix, iz + n, it)]},

px(ix, iz, it) = A3px(ix, iz, it− 1) + · · ·
+B3{

∑N
1 cn[vx(ix− 0.5 + n, iz, it+ 0.5)− vx(ix+ 0.5 + n, iz, it+ 0.5)]},

pz(ix, iz, it) = A4pz(ix, iz, it− 1) + · · ·
+B4{

∑N
1 cn[vz(ix, iz − 0.5 + n, it+ 0.5)− vz(ix, iz + 0.5 + n, it+ 0.5)]},

p(ix, iz, it) = px(ix, iz, it) + pz(ix, iz, it),

(A.4)
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where 

A1(ix+ 0.5, iz) = 2−∆tκx(ix+0.5,iz)
2+∆tκx(ix+0.5,iz) ,

A2(ix, iz + 0.5) = 2−∆tκz(ix,iz+0.5)
2+∆tκz(ix,iz+0.5) ,

A3(ix, iz) = 2−∆tκx(ix,iz)
2+∆tκx(ix,iz) ,

A4(ix, iz) = 2−∆tκz(ix,iz)
2+∆tκz(ix,iz) ,

B1(ix+ 0.5, iz) = 2∆t
ρ(ix+0.5,iz)∆x[2+∆tκx(ix+0.5,iz)] ,

B2(ix, iz + 0.5) = 2∆t
ρ(ix,iz+0.5)∆x[2+∆tκz(ix,iz+0.5)] ,

B3(ix, iz) = 2∆tλ(ix,iz)
∆x[2+∆tκx(ix,iz)] ,

B4(ix, iz) = 2∆tλ(ix,iz)
∆x[2+∆tκz(ix,iz)] .

(A.5)

The equation A.5 are the diagonal operators in equation 2.15. Finally, we can summarize

the discretization of acoustic wave equation into four steps:

• virtually split pressure components and add attenuation terms to each ordinary equa-

tion based on the theory of perfectly matched layer;

• discretize pressure on a mesh-grid in space and time and mark it as (ix, iz, it);

• find the location of other components with respect to the location of pressure compo-

nent based on central difference;

• use finite difference method to discretize temporal and spatial derivative operators,

respectively.

A.2 Numerical Simulation of Elastic Wave Equation with

PML Boundary Condition

Elastic wave equation consists of 5 partial differential equations (Malvern, 1969) as

∂vx
∂t = 1

ρ (∂τx∂x + ∂τs
∂z ),

∂vz
∂t = 1

ρ (∂τz∂z + ∂τs
∂x ),

∂τx
∂t = λ(∂vx∂x + ∂vz

∂z )− 2µ∂vx∂x ,
∂τz
∂t = λ(∂vx∂x + ∂vz

∂z )− 2µ∂vz∂z ,
∂τs
∂t = µ(∂vx∂z + ∂vz

∂x ).

(A.6)

To attenuate artificial boundary reflections, we adopt perfect matched layer (Berenger,

1996) as boundary condition in equation A.6. To incorporate attenuation coefficients of

the boundary condition, we convert the partial differential equations of A.6 into ordinary
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differential equations via virtually spliting stress and strain components as
∂vxx
∂t = 1

ρ0
∂τx
∂x ,

∂vzx
∂t = 1

ρ0
∂τs
∂z ,

vx = vxx + vzx,

(A.7)


∂vxz
∂t = 1

ρ0
∂δτs
∂x ,

∂vzz
∂t = 1

ρ0
∂δτz
∂z ,

vz = vxz + vzz ,

(A.8)


∂τx

x

∂t = (λ0 + 2µ0)∂vx∂x ,
∂τz

x

∂t = λ0
∂vz
∂z ,

τx = τxx + τzx ,

(A.9)


∂τx

z

∂t = λ0
∂vx
∂x ,

∂τz
z

∂t = (λ0 + 2µ0)∂vz∂z ,

τz = τxz + τzz ,

(A.10)


∂τx

s

∂t = µ0
∂vz
∂x ,

∂τz
s

∂t = µ0
∂vx
∂z ,

τs = τxs + τzs .

(A.11)

Based on the method of perfectly matched layer (Berenger, 1996), attenuation coefficients

are incorporated into the ordinary differential equations above and we obtain
∂vxx
∂t + κxv

x
x = 1

ρ0
∂τx
∂x ,

∂vzx
∂t + κzv

z
x = 1

ρ0
∂τs
∂z ,

vx = vxx + vzx,

(A.12)


∂vxz
∂t + κxv

x
z = 1

ρ0
∂δτs
∂x ,

∂vzz
∂t + κzv

z
z = 1

ρ0
∂δτz
∂z ,

vz = vxz + vzz ,

(A.13)


∂τx

x

∂t + κxτ
x
x = (λ0 + 2µ0)∂vx∂x ,

∂τz
x

∂t + κzτ
z
x = λ0

∂vz
∂z ,

τx = τxx + τzx .

(A.14)


∂τx

z

∂t + κxτ
x
z = λ0

∂vx
∂x ,

∂τz
z

∂t + κzτ
z
z = (λ0 + 2µ0)∂vz∂z ,

τz = τxz + τzz .

(A.15)


∂τx

s

∂t + κxτ
x
s = µ0

∂vz
∂x ,

∂τz
s

∂t + κzτ
z
s = µ0

∂vx
∂z ,

τs = τxs + τzs ,

(A.16)
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where κx and κz are attenuation coefficients to attenuate artificial reflections from vertical

and horizontal boundaries respectively (Berenger, 1996). Elastic wave equation (A.12 to

A.16) can be solved numerically by finite difference method, which includes two steps: vari-

able quantization and differential operator discretization. The variables are quantized on a

mesh grid. To solve the elastic wave equation in computer, it is importance to properly allo-

cate each component on the mesh grid. First, we uniformly discretize and allocate horizontal

stress τx on a 3D mesh grid of size nx × nz × nt. The grid permit us to present the hori-

zontal stress field and its virtual components as τx(ix, iz, it), τxx (ix, iz, it) and τzx (ix, iz, it),

where ix ∈ {1, 2, 3, ..., nx}, iz ∈ {1, 2, 3, ..., nz} and it ∈ {1, 2, 3, ..., nt}. We adopts central

finite difference method (Levander, 1988; Virieux, 1984) to solve the horizontal stress field

τx and its virtual components τxx and τzx in equation A.14. Based on the definition of cen-

tral difference, each point in the virtual stress field τxx should be in the middle of the two

adjacent points in vx along horizontal axis and time axis, so the horizontal velocity should

be expressed as vx(ix + 0.5, iz, it + 0.5). Similarly, vertical velocity should be located at

vz(ix, iz+0.5, it+0.5). Based on vx(ix+0.5, iz, it+0.5) and vz(ix, iz+0.5, it+0.5), equation

A.16 indicates the location of shear stress, which can be presented as τs(ix+0.5, iz+0.5, it).

According to equation A.14 and A.15, the vertical stress should share the same location with

the horizontal stress on the mesh grid because both horizontal and vertical stresses are ob-

tained by calculating ∂vx
∂x and ∂vz

∂z . Therefore, the vertical stress should be presented as

τz(ix, iz, it). In this research, we use second-order and higher-order central difference to

discretize temporal and spatial differential operators. Therefore, the entire elastic wave

equation can be discretized as

vxx(ix+ 0.5, iz, it+ 0.5) = Avx1 vxx(ix+ 0.5, iz, it− 0.5) + · · ·
+Bvx1 {

∑N
1 cn[−τx(ix− (n− 1), iz, it+ 0.5) + τx(ix+ n, iz, it)]},

vzx(ix+ 0.5, iz, it+ 0.5) = Avx2 vzx(ix+ 0.5, iz, it− 0.5) + · · ·
+Bvx2 {

∑N
1 cn[−τs(ix, iz − (n− 1), it+ 0.5) + τs(ix, iz + n, it)]},

vx(ix+ 0.5, iz, it+ 0.5) = vxx(ix+ 0.5, iz, it+ 0.5) + vzx(ix+ 0.5, iz, it+ 0.5),

(A.17)



vxz (ix, iz + 0.5, it+ 0.5) = Avx1 vxz (ix, iz + 0.5, it− 0.5) + · · ·
+Bvz1 {

∑N
1 cn[−τs(ix− (n− 1), iz, it+ 0.5) + τs(ix+ n, iz, it)]},

vzz(ix, iz + 0.5, it+ 0.5) = Avx2 vzz(ix, iz + 0.5, it− 0.5) + · · ·
+Bvz2 {

∑N
1 cn[−τz(ix, iz − (n− 1), it+ 0.5) + τz(ix, iz + n, it)]},

vz(ix, iz + 0.5, it+ 0.5) = vxz (ix, iz + 0.5, it+ 0.5) + vzz(ix, iz + 0.5, it+ 0.5),

(A.18)
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

τxx (ix, iz, it) = Aτx1 τ
x
x (ix, iz, it− 1) + · · ·

+Bτx1 {
∑N

1 cn[vx(ix− 0.5 + (n− 1), iz, it− 0.5)− vx(ix+ 0.5 + n, iz, it− 0.5)]},
τzx (ix, iz, it) = Aτx2 τ

z
x (ix, iz, it− 1) + · · ·

+Bτx2 {
∑N

1 cn[vz(ix, iz − 0.5 + (n− 1), it− 0.5)− vz(ix, iz + 0.5 + n, it− 0.5)]},
τx(ix, iz, it) = τxx (ix, iz, it) + τzx (ix, iz, it),

(A.19)



τxz (ix, iz, it) = Aτz1 τ
x
z (ix, iz, it− 1) + · · ·

+Bτz1 {
∑N

1 cn[vx(ix− 0.5 + (n− 1), iz, it− 0.5)− vx(ix+ 0.5 + n, iz, it− 0.5)]},
τzz (ix, iz, it) = Aτz2 τ

z
z (ix, iz, it− 1) + · · ·

+Bτz2 {
∑N

1 cn[vz(ix, iz − 0.5 + (n− 1), it− 0.5)− vz(ix, iz + 0.5 + n, it− 0.5)]},
τz(ix, iz, it) = τxz (ix, iz, it) + τzz (ix, iz, it),

(A.20)



τxs (ix+ 0.5, iz + 0.5, it) = Aτs1 τ
x
s (ix+ 0.5, iz + 0.5, it− 1) + · · ·

+Bτs1 {
∑N

1 cn[vx(ix+ 0.5, iz − (n− 1), it− 0.5)− vx(ix+ 0.5, iz + n, it− 0.5)]},
τzs (ix+ 0.5, iz + 0.5, it) = Aτs2 τ

z
s (ix+ 0.5, iz + 0.5, it− 1) + · · ·

+Bτs2 {
∑N

1 cn[vz(ix− (n− 1), iz + 0.5, it− 0.5)− vz(ix+ n, iz + 0.5, it− 0.5)]},
τs(ix+ 0.5, iz + 0.5, it) = τxs (ix+ 0.5, iz + 0.5, it) + τzs (ix+ 0.5, iz + 0.5, it),

(A.21)
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where 

Avx1 (ix+ 0.5, iz) = 2−∆tκx(ix+0.5,iz)
2+∆tκx(ix+0.5,iz)

Avx2 (ix+ 0.5, iz) = 2−∆tκz(ix+0.5,iz)
2+∆tκz(ix+0.5,iz)

Avz1 (ix, iz + 0.5) = 2−∆tκx(ix,iz+0.5)
2+∆tκx(ix+0.5,iz)

Avz2 (ix, iz + 0.5) = 2−∆tκz(ix,iz+0.5)
2+∆tκz(ix,iz+0.5)

Aτx1 (ix, iz) = 2−∆tκx(ix,iz)
2+∆tκx(ix,iz)

Aτx2 (ix, iz) = 2−∆tκz(ix,iz)
2+∆tκx(ix,iz)

Aτz1 (ix, iz) = 2−∆tκx(ix,iz)
2+∆tκx(ix,iz)

Aτz2 (ix, iz) = 2−∆tκz(ix,iz)
2+∆tκx(ix,iz)

Aτs1 (ix+ 0.5, iz + 0.5) = 2−∆tκx(ix+0.5,iz+0.5)
2+∆tκx(ix+0.5,iz+0.5)

Aτs2 (ix+ 0.5, iz + 0.5) = 2−∆tκz(ix+0.5,iz+0.5)
2+∆tκx(ix+0.5,iz+0.5)

Bvx1 (ix+ 0.5, iz) = 2∆t
ρ(ix+0.5,iz)∆x[2+∆tκx(ix+0.5,iz)]

Bvx2 (ix+ 0.5, iz) = 2∆t
ρ(ix+0.5,iz)∆z[2+∆tκz(ix+0.5,iz)]

Bvz1 (ix, iz + 0.5) = 2∆t
ρ(ix,iz+0.5)∆x[2+∆tκx(ix,iz+0.5)]

Bvz2 (ix, iz + 0.5) = 2∆t
ρ(ix,iz+0.5)∆z[2+∆tκz(ix,iz+0.5)]

Bτx1 (ix, iz) = 2∆t[λ(ix,iz)+2µ(ix,iz)]
∆x[2+∆tκz(ix,iz)]

Bτx2 (ix, iz) = 2∆tλ(ix,iz)
∆z[2+∆tκz(ix,iz)]

Bτz1 (ix, iz) = 2∆tλ(ix,iz)
∆x[2+∆tκz(ix,iz)]

Bτz2 (ix, iz) = 2∆t[λ(ix,iz)+2µ(ix,iz)]
∆z[2+∆tκz(ix,iz)]

Bτs1 (ix+ 0.5, iz + 0.5) = 2∆tµ(ix+0.5,iz+0.5)
∆x[2+∆tκz(ix+0.5,iz+0.5)]

Bτs2 (ix+ 0.5, iz + 0.5) = 2∆tµ(ix+0.5,iz+0.5)
∆z[2+∆tκz(ix+0.5,iz+0.5)]

(A.22)



APPENDIX B

Software of least-squares migration

B.1 The Software of Least-squares Migration in Julia

and C Languages

This appendix introduces the computer software developed for this research. The software is

developed on a platform named SeismicJulia. In SeismicJulia, the software mainly integrates

two essential packages: DW and LSRTM. DW package is introduced in table B.1, which

generates synthetic data and wavefields for both acoustic and elastic media. Table B.2

explains the package LSRTM, which is used to solve least-square migration of both acoustic

and elastic. For the sake of computational speed, wave simulations are developed in C

language, which is suitable for executing codes composed of a significant amount of for

loops. Computational environments are specified in the following tables. Moreover, the

simulations are paralleled on a shared memory machine with respect to shot index.
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Function Language Description

read param file Julia

The function reads parameters required for wave simulation from a script file.
The parameter includes spatial step-length (dx & dz), temporal step-length (dt),
model size (nz, nx & nt), number of shots (ns), the filename of shot locations,
number of receivers (nr), PML thickness (L), finite difference order (order).

HFD coeff 1D Julia
Calculate finite difference coefficients based on the required finite
difference order.

PML Julia
Calculate PML damping coefficient in the PML damping zones (top,
bottom, left and right).

ACMS Julia
The main function of Acoustic wave simulation. It runs on the master core
to setup parallel framework. ACMS distributes the simulation variables and
parameters to each core and then, execute the function ACM at each core.

ACM Julia

ACM is a function used as application programming interface (API) between
Julia and C language. It receives simulation variable and parameters distributed
from the master core (from ACMS function), passes the information to
C language and call simulation function in C language. In the C language,
acoustic simulation functions are available including
TWES1, TWES1q and TWES2.

TWES1 C
TWES1 solves acoustic two-way wave equations. The input is the source
function. The output is data.

TWES1q C
TWES1 computes acoustic preconditioning operator (the source-side illumination
compensation). The input is the source function. The output is the preconditioning
operator.

TWES2 C
TWES2 computes the acoustic source-side wavefield only. The input is
the source function. The output is wavefield.

ELMS Julia
The main function of elastic wave simulation. It runs on the master core to
setup parallel framework. ELMS distributes the simulation variables and
parameters to each core and then, execute the function ELM at each core.

ELM Julia

ELM is a function used as application programming interface (API)
between Julia and C language. It receives simulation variable and parameters
distributed from the master core (from ACMS function), passes the information
to C language and call simulation function in C language. In the C language,
elastic simulation functions are available including
eTWES1 and eTWES1q and eTWES2.

eTWES1 C
eTWES1 solves elastic two-way wave equations. The input is the source
function. The output is data.

eTWES1q C
eTWES1q computes elastic preconditioning operator (the source-side illumination
compensation). The input is the source function. The output is the
preconditioning operator.

eTWES2 C
eTWES2 computes the elastic source-side wavefield only.
The input is the source function. The output is wavefield.

Table B.1: Description of functions in the DW package.
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Function Language Description

read param file Julia

The function reads parameters required for wave simulation from a script file.
The parameter includes spatial step-length (dx & dz), temporal step-length (dt),
model size (nz, nx & nt), number of shots (ns), the filename of shot locations,
number of receivers (nr), PML thickness (L),finite difference order (order).

LSRTM op Julia
LSRTM op is the main function to initiate parameters in least-squares
and migration. The main function calls the forward operator (function AS or
eAS) and adjoint operator (ATS or eATS).

AS Julia
AS is the forward operator in acoustic least-squares migration working on
the master core. It distributes inputs parameters and variables to each
core and then, call A function.

A Julia

A is a function used as application programming interface (API) between
Julia and C language. It receives variable and parameters distributed from
the master core (from AS function), passes the information to C language
and call the forward operator (function RTM3T) in C language.

ATS Julia
ATS is the adjoint operator in acoustic least-squares migration working
on the master core. It distributes inputs parameters and variables to each
core and then, call A function.

AT Julia

A is a function used as application programming interface (API) between
Julia and C language. It receives variable and parameters distributed from
the master core (from AS function), passes the information to C language
and call the adjoint operator (function RTM3) in C language.

eAS Julia
eAS is the forward operator in elastic least-squares migration working
on the master core. It distributes inputs parameters and variables to each
core and then, call eA function.

eA Julia

eA is a function used as application programming interface (API) between
Julia and C language. It receives variable and parameters distributed from
the master core (from eAS function), passes the information to C language
and call the forward operator (function eRTM3T) in C language.

eATS Julia
eATS is the adjoint operator in elastic least-squares migration working on
the master core. It distributes inputs parameters and variables to each core
and then, call eAT function.

eAT Julia

eAT is a function used as application programming interface (API) between
Julia and C language. It receives variable and parameters distributed from
the master core (from eAS function), passes the information to C language
and call the adjoint operator (function eRTM3) in C language.

RTMS Julia
RTMS is acoustic reverse time migration operator working on the master core. ac
It distributes inputs parameters and variables to each core and then, call
RTM function.

RTM Julia

RTM is a function used as application programming interface (API) between
Julia and C language. It receives variable and parameters distributed from the
master core (from RTMS function), passes the information to C language
and call the reverse time migration operator (function RTM1) in C language.

RTM1 C Classic reverse time migration.
RTM3 C Acoustic exact adjoint operator.
RTM3T C Acoustic forward operator.
eRTM3 C Elastic exact adjoint operator.
eRTM3T C Elastic forward operator.

Table B.2: Description of functions in the LSRTM package.
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