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Abstract

Causality analysis using data-driven models helps in the construction of graphical

models that illustrate the interaction among the variables of a process system. A

majority of industrial processes operate in multiple operating modes and thus the

measurements from these processes exhibit multi-modal characteristics. However,

the literature for causality analysis is skewed towards analyzing unimodal processes.

In this work, we propose an approach for causality analysis in multi-modal systems.

Granger causality analysis is one of the widely popular methods for causality

analysis. Classical techniques for multivariate Granger causality analysis rely on sig-

nificance tests on parameters of vector autoregressive (VAR) models or vector moving

average (VMA) models of the actual unimodal processes. In this work, we propose a

Granger causality analysis technique with multi-modal VAR models. Our technique

relies on variational Bayesian analysis of multi-modal VAR models. It imposes a soft

constraint through Normal-Gamma priors on multi-modal VAR model parameters.

This soft constraint ensures that the causal graphs extracted from different modes

are consistent while allowing the strengths of interaction to vary across modes. Our

approach also provides a single metric to assess the significance of each causal in-

teraction in multi-modal systems. We illustrate the proposed algorithm using both

simulation and industrial data. Furthermore, Bayesian network based approach for

Granger causality analysis in multi-mode systems can handle data with outliers. The

performance of the robust method is also tested using simulation and industrial pro-

cess data.
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Chapter 1

Introduction

1.1 Causality analysis

Causality analysis has a broad range of applications ranging from neuroscience to eco-

nomics [1], [2]. In process industry as well, causality analysis plays an important role.

Maintaining normal operation is one of the primary challenges in process industries.

Industrial processes often tend to drift from normal operations. These abnormalities

in the normal operation can adversely affect plant performance and quality of prod-

ucts. The process variables often interact with each other, thus making it difficult

to identify the variable causing the abnormality in the plant operations. Causality

analysis helps in understanding relationships among the variables of the system and

identifying the root cause of an abnormality. Causality analysis techniques fall into

two main categories, namely knowledge based techniques and data-driven techniques.

Knowledge about the process can help in analyzing the cause-effect relations among

the variables. However, knowledge based causal relation evaluation is time-consuming

and in most cases, the detailed knowledge of the process is not available. Causality

study based on data-driven models can help circumvent this challenge. Data-driven

causality analysis helps in identifying the cause and effect relationships among the

variables and subsequently aids in the construction of a causal graph. Structural

knowledge about a system helps in answering questions such as how does changes in

one variable reflect in another variable?, if there is a fault in one variable, how is it
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going to affect another variable? and how this change traverses through the system?

Numerous data-driven approaches have been developed to identify cause and effect

relationships among the variables, they include Granger causality [3], coherence-based

methods [1], [4] and entropy-based methods [5], [6].

The main focus of this research is on Granger causality. Existing formulations of

Granger causality have many limitations. Granger causality definitions rely heavily

on observed variables. Nevertheless, in reality not all variables of the analysed system

are measured and available which undermines the performance of Granger causality.

Guo et.al., 2008 [7] proposed the concept of partial Granger causality to account for

the effect of confounding or unknown variables. The method is based on the intuition

that effect of confounding variables will be reflected in the correlation between pre-

diction errors of MVAR models of measured variables. Thus, it removes the effect of

unknown external variables. The underlying assumption of partial Granger causality

is that the confounding variables have equivalent effects on all the measured variables.

Another drawback of the Granger causality concept defined earlier is its applicability

on stationary data only. To deal with the non-stationary data, Hesse et al. (2003) [8]

adopted a windowing technique based on the assumption that in a very small window,

non-stationary data is considered to be stationary.

Sometimes, causality analysis in time domain cannot capture causal connections

among variables. Particularly, in time series data having cyclic patterns, examin-

ing Granger causality in spectral domain will give more accurate results than the

time-domain analysis. The frequency domain representation of Granger causality

called spectral Granger causality [9] is used in such situations and it is widely applied

in neuroscience. In this thesis we are particularly interested in causality analysis

of multi-model systems. Application of traditional Granger causality techniques for

multi-modal systems and subsequent determination of causal structure of such a pro-

cess is a very tiring task.

Inference of causal structure using traditional Granger causality technique for bi-

2



r

x z

r

x z

(a) Mode 1 (b) Mode 2

Figure 1.1: Causal graphs extracted from two modes of the same process. r causes z
in Fig 1.1a, while x causes z through a third variable r in Fig 1.1b

variate system involves statistical tests. To construct the causal structure of a mul-

tivariate system, a series of statistical tests need to be carried out. This makes the

determination of causal structure in multivariate system a tedious task. Each one

of these tests performed for the multivariate case is similar to the test done for a

bivariate case. Now, imagine the number of statistical tests that need to be done for

an actual industrial processes where the number of variables can be very large. The

proposed method suggests a much simpler statistical test to check for the significance

of the causal connections. Besides, many industrial processes have more than one

mode of operation. In such cases, a single VAR model cannot fit the data accurately.

Switched VAR model is usually used to represent such data. The existing causality

methods for multi-model systems have many drawbacks. A major drawback being

that, the existing causality methods do not guarantee that the causal structures ex-

tracted from different modes are the same. This in turn could lead to inconsistent

results. To understand this better, consider a multi-model system with three vari-

ables x, z and r. Suppose, the system has two modes of operations and the causal

structure extracted from the two modes are shown in Fig 1.1. The two figures give

contradictory results, as in the first mode there is no causal relation between x and

r, whereas the causal graph from mode two shows x to be causing r. In such a situ-

ation, no final conclusion can be drawn regarding the cause and effect relationships

among the variables. The proposed method helps to overcome this drawback of the

existing methods. Additionally, the proposed Bayesian approach for Granger causal-
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ity can be extended to the case when the data is contaminated with outliers. The

effect of outliers is minimized by modeling the prediction error of the VAR model as

a t-distribution.

1.2 Thesis Contributions

1. Development of a Granger causality technique which can be applied to multi-

modal systems. It uses a switched VAR model such that model switches de-

pending on the mode of operation of the system.

2. Variational Bayesian approach is used to infer the causal relations in each mode

such that the causal structures extracted from different modes are consistent.

3. Variational Bayesian approach helps to develop a penalized approach for esti-

mating the parameters of the VAR model so that the irrelevant causal connec-

tions vanish.

4. Our method provides a simple statistical test to check the significance of the

causal connections.

5. The proposed method can be extended to find the causal structures of the

systems where the process data collected is contaminated with outliers.

6. The performance of the proposed methods is tested on simulation and industrial

examples.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: In chapter 2, a brief overview of

the data-driven causality methods, namely coherence-based methods, entropy-based

methods and Granger causality. In chapter 3, the existing Granger causality methods

for multi-model systems and their shortcomings are discussed. The proposed approach

4



given in this chapter is able to overcome many of these drawbacks and also has many

added advantages. In this thesis, the data-driven models associated with Granger

causality are expressed graphically using Bayesian networks (BNs) which are a special

type of probabilistic graphical models (PGMs). Furthermore, to make the inference

algorithm tractable, all the Bayesian networks considered in this thesis belong to a

special class of Bayesian networks known as conjugate exponential family graphical

models (CEFGMs). The efficiency of the method is tested using simulation data.

Chapter 4, discusses an extension of the above method to address data with out-

liers and develops a robust Granger causality technique for multi-model systems. The

effect of outliers is alleviated by modeling the noise as a t-distribution variable. The

efficacy of this method is evaluated using the same simulation example. Further-

more, the dependence of several parameters on the performance of the method is also

studied.

In chapter 5, a comparative study between the above two methods is done to

demonstrate the better performance of the robust method for an industrial data

corrupted with outliers. Finally, chapter 6 concludes the thesis.
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Chapter 2

Background

The motivation behind causality analysis is to identify variables affecting variables of

interest such as quality of the product, a safety variable or any other variable which

should be well maintained within a specified range. Causality analysis also helps in

the construction of a causal map for a process plant by inferring the cause and effect

relationships among the variables which can play a vital role in the root cause analysis

of plant disturbances. This chapter provides a brief overview of the popular data-

driven causality methods, namely coherence-based methods, entropy-based methods

and Granger causality.

2.1 Coherence-based methods

Coherence measures the correlation among time series signals as a function of its

frequency components. However, coherence does not provide any temporal relation-

ships among the variables considered. Hence, it cannot be used in cause and effect

analysis. To provide insights into the functional connections among the variables, the

idea of directed coherence (DC) evolved. DC splits coherence into feedforward and

feedback interactions, which helps to unravel the cause and effect relationships among

the variables. The coherence formulation can help understand this concept clearly.

Consider that the time series data of three random variables x, z and r are available.

Let vector Y be constituted of the variables x, z and r. The VAR model for the three-
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variable system is given as the following,

y(t) =
L∑︂
l=1

W (l)y(t− l) + e(t) (2.1)

where y(t) is the vector comprising of x(t), z(t) and r(t). W (l) is the coefficient matrix

at lag l and l = [1, 2, ..., L], y(t− l) comprises of the values of variables x, z and r at

lag l and e(t) represents the noise of the process and has three components e1(t), e2(t)

and e3(t) which represent the process noise associated with the prediction models of

x, z and r respectively. Thus, the above expression can be expanded as given below,⎡⎢⎢⎢⎣
x(t)

z(t)

r(t)

⎤⎥⎥⎥⎦ =
L∑︂
l=1

W (l)

⎡⎢⎢⎢⎣
x(t− l)

z(t− l)

r(t− l)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
e1(t)

e2(t)

e3(t)

⎤⎥⎥⎥⎦ (2.2)

where

W (l) =

⎡⎢⎢⎢⎣
W (l)11 W (l)12 W (l)13

W (l)21 W (l)22 W (l)23

W (l)31 W (l)32 W (l)33

⎤⎥⎥⎥⎦ (2.3)

W (l)11,W (l)12, ....W (l)33 are the elements of the coefficient matrix at lag l. The values

of these elements indicate the presence of causal relation between particular input

variable and corresponding output variable. Coherence-based methods determine

causality in the frequency domain. To perform spectral analysis at frequency f , the

frequency transformation of the VAR model (equation 2.1) is carried out which results

in the following equation,

y(f) =W (f)y(f) + e(f) (2.4)

where y(f) and e(f) are the Fourier transform of Y and E respectively and W (f) is

sum of the Fourier transformations of the coefficient matrices for all the lags and is

given as the following [1],

W (f) =
L∑︂
l=1

W (l)z−l|z=e−i2πf (2.5)
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where i is the imaginary unit,W (l) is coefficient matrix at lag l and f is the frequency.

Now, the transfer function matrix H(f) is obtained by rearranging equation 2.4 as

the following,

y(f) [I −W (f)] = e(f) (2.6)

=⇒ y(f) = W̄
−1
(f)e(f) = [I −W (f)]−1 e(f) = H(f)e(f) (2.7)

where

H(f) =

⎡⎢⎢⎢⎣
H(f)11 H(f)12 H(f)13

H(f)21 H(f)22 H(f)23

H(f)31 H(f)32 H(f)33

⎤⎥⎥⎥⎦ (2.8)

where the elements of transfer matrix, H(f)11, H(f)12, ..., H(f)33 are called the di-

rected transfer functions (DTFs). The first concept which was developed to evaluate

causal relations among variables from the VAR model (equation 2.7) after frequency

transformation is directed coherence (DC). The directed coherence from variable z to

x of the above mentioned three-variable system is given as the following,

DCz→x(f) =
σ22H12(f)√︂∑︁1,2,3

m σ2
mm|H1m(f)|2

(2.9)

where H12 is the element of the transfer function matrix H(f) and is called as the

directed transfer function (DTF) from z to x. H12 shows the causal influence of past

of z on x. In the same lines, directed transfer functions terms Hx11, H12 and H13 of

the denominator of above equation show the causal influence of past of x, z and r

respectively on x. σ2
mm represents the diagonal elements of the covariance matrix σ

given as the following,

Σ =

⎡⎢⎢⎢⎣
σ2
11 σ12 σ13

σ21 σ2
22 σ23

σ31 σ32 σ2
33

⎤⎥⎥⎥⎦ (2.10)
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Figure 2.1: Direct and indirect effects captured by DTF and PDC

Under the assumption that Σ is diagonal, the square of DC given in equation 2.9

can be interpreted as the ratio of power of x contributed by past of z to the total

power of x at frequency f [10]. This provides a directionality to the relation between

x and z. Further, to overcome the restriction of diagonal covariance, Kamiński and

Blinowska [11] proposed a normalized directed transfer function (DTF) given below

which avoids the covariance term,

DTFz→x(f) =
H12(f)√︂∑︁1,2,3
m |H1m(f)|2

(2.11)

where H1,1, H12 and H13 are directed transfer functions which give the causal relation

of past of x, z and r on x respectively. The term in the denominator is used to

normalize the DTF. Under unit variance condition, normalized DTF can be considered

to be equal to the fraction of total power of x which is contributed by the past of z.

DTF measures the total effect of one variable on another variable. For instance, for

the three-variable system considered, when there exists no direct relation between x

and r as given in Fig 2.1, DTF still measures the indirect effect of x on r through the

third variable z. To measure the direct effect of one variable on another variable in

such multivariate systems, the concept of partial directed coherence (PDC) was later

introduced [1]. Partial directed coherence from z to x for the same three-variable

9



system is represented as the following,

PDCz→x(f) =
W̄ 12(f)√︁
w̄H

z (f)w̄z(f)
(2.12)

where W̄ (f) = I −W (f) and I being an identity matrix with dimensions equal to

the dimension of W (f). W̄ (f) is derived as the following,

=⇒ W̄ (f) =

⎡⎢⎢⎢⎣
1−W (l)11 −W (l)12 −W (l)13

−W (l)21 1−W (l)22 −W (l)23

−W (l)31 −W (l)32 1−W (l)33

⎤⎥⎥⎥⎦ (2.13)

=[w̄1(f)w̄2(f)w̄3(f)] (2.14)

where w̄1(f), w̄2(f), w̄3(f) represent the three columns of W̄ (f) and superscript H

represents the Hermitian transpose. W̄ 12 is the element of the matrix W̄ (f), which

is the Fourier transform of the VAR coefficient matrix. PDCz→x(f) compares the

effect of past of z on the current value of x to the effect of past z on all the other

variables. The term in the denominator normalizes the expression such that the value

of PDC ranges from 0 to 1. Unlike the DTF, PDC measures only the direct effect of

one variable on another.

2.2 Entropy based methods

Mutual information and transfer entropy are the entropy based methods used for

detection of cause and effect relationship among variables. These concepts are devel-

oped from Shannon entropy which quantifies the uncertainty of variable x, based on

its probability density function p(x). Shannon entropy is mathematically represented

as the following,

Hx =
∑︂
x

p(x) log
1

p(x)
(2.15)

The difference between the Shannon entropies of two probability density functions

is defined as Kullback entropy which is given as the following,

Kx =
∑︂
x

p(x) log
p(x)

q(x)
(2.16)
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where q(x) and p(x) are the two probability density functions assumed for x. Mu-

tual Information is a special kind of Kullback entropy which measures amount of

dependency between two random variables x and z as the following,

Mxz =
∑︂
x,z

p(x, z) log
p(x, z)

p(x)p(z)
(2.17)

where p(x) and p(z) are the marginal probability density functions of x and z re-

spectively, while p(x, z) is the joint probability density of x and z. Now, if x and z

are independent, then numerator and denominator inside the log term become equal

which makes the mutual information zero. However, mutual information does not

give any idea about the direction of influence between the two variables. Some sense

of directionality can be achieved from time lagged mutual information expressed as

Mxz(h) =
∑︂
x,z

p(x(t), z(t− h)) log
p(x(t), z(t− h))

p(x(t))p(z(t− h))
(2.18)

where h and t represent the time lag and the current time instant respectively.

p(x(t), z(t−h)) is the joint probability density of x(t) and z(t−h), while p(x(t)) and

p(z(t−h)) are marginal probability density functions of x(t) and z(t−h) respectively.

The value of h which gives the highest mutual information is considered as time lag

of z from x. Now, suppose we find that history of z influences the current value of

x. In some cases, the two variables may just be correlated and this is the reason why

we see the influence of past values of z on x. In reality, the current value of x may

also get all the information from its own past values and no additional information is

supplied by the history of z. To make a clear distinction among such cases, transfer

entropy is used, as it takes into account history of the variable itself. The expression

of transfer entropy is the following,

Tz→x =
∑︂
x,z

p(x(t), x(t− 1)k, z(t− 1)l) log
p(x(t)|x(t− 1)k, z(t− 1)l)

p(x(t)|x(t− 1)k)
(2.19)

where k and l are the number of previous time instants considered for x and z

respectively i.e. x(t−1)k = [x(t−1), x(t−2), ..., x(t−k)] and z(t−1)l = [z(t−1), z(t−
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2), ..., z(t− l)]. p(x(t), x(t− 1)k, z(t− 1)l) is the joint probability density of predicted

value of x, k past values of x and l past values of z. p(x(t)|x(t− 1)k, z(t− 1)l)is the

conditional probability density function of predicted value of x given k and l past

values of x and z respectively. Similarly p(x(t)|x(t − 1)k) is conditional probability

density function of x(t) given its k past values in the immediate past. Transfer entropy

measures the effect of past of z on the future value of x and thus helps in evaluating

the causal relation between the two variables.

2.3 Granger causality

Among the data-driven causality analysis techniques, Weiner-Granger causality also

often simply referred to as Granger causality is probably the most popular technique.

2.3.1 Bivariate case

Consider time series data of two variables x and z, the variable z is said to Granger

cause the variable x if the past states of both x and z combined give a better prediction

of x than just the past states of x alone. In a simple system of two variables x and z,

two separate prediction models are constructed for x. The first model consists of just

the past values of x as input and the second model has past values of both variables

x and z as inputs [3]. A reduction in the prediction error variance with the inclusion

of past values of z in the model is said to indicate that z Granger causes x. The mean

square of prediction error of the two prediction models is subjected to statistical tests

to assess the improvement in the prediction accuracy of x when the past values of z

are included in the model. Consider the two prediction models for x as follows,

x(t) =
L∑︂
l=1

W (l)′11x(t− l) + e1,R(t) (2.20)

x(t) =
L∑︂
l=1

W (l)11x(t− l) +
L∑︂
l=1

W (l)12z(t− l) + e1,UR(t) (2.21)
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where x(t) is the predicted value of variable x at time instant t, while x(t − l)

and z(t − l) are the past values of x and z respectively at lag l. L represents the

extend of the time lag. Prediction models given in equation 2.20 and equation 2.21

are called restricted and unrestricted models respectively as the the first model is

more restricted since it has just the past values of one variable (here x), while the

second model has past values of both the variables x and z. W (l)′11 is the coefficient of

restricted prediction model at lag l, whileW (l)11 andW (l)12 represent the coefficients

of unrestricted prediction model at lag l. ex,R and ex,uR are the noise of the two models

with subscripts R and UR indicating restricted and unrestricted respectively. The

magnitude of Granger causal relation Fz→x [9] is defined as the logarithm of the

F-statistic as follows,

Fz→x = ln
var(e1,R)

var(e1,UR)
(2.22)

where the F-statistic is the ratio of prediction error variances of the restricted and

unrestricted models given as var(ex,R) and var(ex,UR) respectively. If Fz→x > 0, it

implies Granger causality. However, to conclude if the causal connection is relevant,

additional statistical tests have to be conducted. One such test involves the F statistic

given in equation 2.22, which under null hypothesis follows a F-distribution. The

null hypothesis of the statistical test is that the coefficients associated with the past

values of z are jointly equal to zero. The rejection of this null hypothesis implies that

z Granger causes x.

2.3.2 Multivariate case

The VAR model for a multivariate system is represented as follows,

y(t) =
L∑︂
l=1

W (l)y(t− l) + e(t) (2.23)

where y(t) ∈ RD is the observation at time instant t with dimensionD,W (l) ∈ RD×D

is the coefficient matrix at lag l and e(t) ∈ RD is a noise which follows a Gaussian

distribution with zero mean. If the values of the ijth elements of the coefficient
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matrices W (1),W (2), ...,W (L) i.e. for all the lags l are zero, it would imply that jth

component of y(t) does not Granger cause the ith component of y(t). The relevance

of the causal connections can be checked using statistical tests to discard insignificant

causal connections. Now, the statistical test for a multivariate case is very tedious

when compared to the bivariate case discussed earlier. A technique of conditional

Granger causality is used in the multivariate case. Conditional Granger causality

can essentially be considered as an extension of bivariate Granger causality to a

multivariate case. To understand conditional Granger causality better, consider the

simplest multivariate system with three variables x, z and r, then y(t) in equation

2.23 is given as follows,

y(t) =

⎡⎢⎢⎢⎣
x(t)

z(t)

r(t)

⎤⎥⎥⎥⎦ (2.24)

Then, the VAR model for the three-variable system can be written as follows,⎡⎢⎢⎢⎣
x(t)

z(t)

r(t)

⎤⎥⎥⎥⎦ =
L∑︂
l=1

⎡⎢⎢⎢⎣
W (l)11 W (l)12 W (l)13

W (l)21 W (l)22 W (l)23

W (l)31 W (l)32 W (l)33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x(t− l)

z(t− l)

r(t− l)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
e1(t)

e2(t)

e3(t)

⎤⎥⎥⎥⎦ (2.25)

To inspect the causal relation between x and z, the unrestricted and restricted regres-

sion models of the x component of the VAR model need to be constructed which are

analogous to equations 2.20 and 2.21 respectively. The two prediction models are as

follows,

x(t) =
L∑︂
l=1

W (l)′11x(t− l) +
L∑︂
l=1

W (l)′13r(t− l) + e1,R(t) (2.26)

x(t) =
L∑︂
l=1

W (l)11x(t− l) +
L∑︂
l=1

W (l)12z(t− l) +
L∑︂
l=1

W (l)13r(t− l) + e1,UR(t)

(2.27)

whereW (l)′11 andW (l)′13 are coefficients of restricted regression model, whileW (l)11,

W (l)12 andW (l)13 represent the coefficients of the unrestricted model. The regression
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models for evaluating conditional Granger causality between x and z consist of the

past values of the third variable r. Thus, the effect of past values of r is accounted

for in both the equations. Except for the past values of z, both the models contain

past values of x and r. In such a case, if the prediction accuracy of the unrestricted

regression model is higher that the restricted model, it implies that, the improvement

is solely due to inclusion of the past values of z in the unrestricted model. The

expression of conditional Granger causality Fz→x|r [12] which gives the magnitude of

Granger causality from z to x given r for the three-variable system is given as the

following,

Fz→x|r = ln
var(e1,R)

var(e1,UR)
(2.28)

var(e1,R) and var(e2,UR) represent the variances of the restricted and unrestricted

model errors respectively. To construct the causal structure of a multivariate system,

a series of statistical tests needs to be carried out. This makes the determination of

causal structure in multivariate system a tedious task. For instance, for the earlier

three-variable system, if we want to check whether x causes r, a different reduced

regression model containing just the past values of x and z needs to be constructed

like the one given in equation 2.26 and subsequently, the statistical test has to be

conducted. This process has to be repeated for evaluating the causal relation between

each pair of variables. Each one of these tests performed for the multivariate case is

similar to the test done for a bivariate case.

2.4 Conclusions

This chapter of the thesis gives a background on data-driven causality techniques,

particularly coherence-based methods, entropy-based methods and Granger causality.

Further, this chapter gives the basic formulation of these techniques for causality

analysis.
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Chapter 3

A variational Bayesian approach
for causality analysis in
multi-modal systems

3.1 Introduction

Granger causality which is widely used for causal inference in time series data has

several shortcomings. This may greatly restrict the applicability of the method on

real systems. Major drawbacks of the classical definition are covariance stationary

assumption of data, applicability to linear systems and the dependence on selection

of observed variables. Over the years, several extensions have been made for the basic

Granger causality technique to overcome these drawbacks. In this chapter, a novel

Granger causality technique for multi-model systems using the variational Bayesian

approach is proposed. The chapter also gives a brief literature review of the existing

multi-model Granger causality techniques, lists their drawbacks before moving onto

the formulation of the proposed method.

Numerous extensions are available in the literature to implement Granger causal-

ity to multi-model systems. Freiwald et al.(1999) [13] in their work inferred causal

relations in a multi-model system by identifying locally linear neighborhoods for the

non-linear data and applied Granger causality in each of these linear neighbourhoods.

In general, the methods for determining Granger causality in non-linear systems
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which operate around multiple steady states fall mainly into two categories, namely

information-theoretic approach-based methods and nonlinear predictor construction

based methods. Information-theoretic based methods such as transfer entropy [14]

and conditional mutual information [15], [16] rely on the measurement of entropy

to infer non linear Granger causality, while kernel method based causality methods

[17] fall under the latter category. Kernel methods are based on the idea that after

transforming data points from a lower dimensional feature space to a higher dimen-

sional feature space, linear relations may exist among the data points. Then, linear

Granger causality analysis can be applied on the new higher dimensional feature space

[17]. Furthermore, a correntropy-based partial directed coherence(PDC) called Ker-

nel PDC (KPDC) [18] combines the concepts of kernels and partial directed coherence

to estimate Granger causality in multi-model systems. Coherence is the measure of

linear relation among variables in the frequency domain similar to correlation in time

domain. For a multivariate case, partial coherence is used in place of coherence. Both

coherence and partial coherence are symmetric measures and do not provide any di-

rectionality information. Directed coherence (DC)[10] and partial directed coherence

(PDC), split coherence and partial coherence terms into feed-forward and feedback

directed influences respectively. However, PDC can be used only in the case when a

linear relationship exists among the variables. Therefore, transforming the data into a

higher dimensional space where the variables are linearly associated and subsequent

calculation of PDC helps to calculate Granger causality for multi-model systems.

Calculation of PDC needs the determination of coefficients of the VAR model in the

higher dimension space. The VAR model coefficients cannot be determined directly

as non-linear transformation is not known explicitly. Thangirala and Kannan [18]

used the concept of correntropy to estimate the coefficients of the VAR model. Cor-

rentropy is a similarity measure (correlation) in the higher dimension feature space

and is defined as the expectation of the inner product of the vectors in the higher di-

mension space. In KPDC, the covariance between the variables at different time lags
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which is given by correntropy is used to calculate the coefficients of the VAR model.

There exist many other kernel based approaches to compute multi-model Granger

causality. Unlike KPDC which uses a Gaussian kernel, the nonlinear Granger causal-

ity technique proposed by Ancona et.al. [19] uses a specific type of kernel functions

called radial basis functions. A more generalized approach for multi-model Granger

causality which does not place restrictions on the type of kernel function was de-

veloped later [20]. This method uses variance operator which gives the variance of

the variables in the higher dimensional feature space. A significant reduction in the

variance indicates the presence of Granger causal relation.

The main drawback of the entropy-based methods is that their application to mul-

tivariate systems is computationally expensive. The entropy based methods are prac-

tically applied mainly to bivariate systems. For instance, in transfer entropy which is

a popular information-theoretic based method, conditional probability density func-

tions (PDFs) need to be determined. For a multivariate system, large amounts of

data need to be used for accurate calculation of the joint PDFs; furthermore the di-

mensionality of the PDF increases drastically when the dimensionality of the system

increases. This leads to an increase in the computational load. For kernel based

methods, the computational load is a function of number of training instances. When

the number of training data increases the computational load increases significantly.

This makes the implementation of kernel methods on real industrial processes with

a huge amount of process data difficult. Furthermore, kernel based methods involve

the transformation into another higher dimensional feature space, this is not required

in the proposed method. Unlike these multi-model Granger causality methods, the

proposed method also could be more easily applied on large datasets of multivariate

systems.

Auto-regressive (AR) models have been widely used for identifying causal connec-

tions among the variables. In multivariate systems, the AR model is replaced with

a vector auto regressive (VAR) model[1], [21]. The coefficients of the VAR model
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indicate the presence or absence of causal relations among the variables. Significance

testing of the coefficients gives the relevance of the causal relations. When the system

is multi-model, a single linear VAR model cannot capture the complete system dy-

namics. In such cases, a VAR model which switches among different operating points

is used. To the best of our knowledge, a switched VAR model has not been used in

the study of Granger causality analysis. In this work, a switched VAR model will be

used to infer Granger causality in multi-model systems.

Parameter estimation of the switched VAR model can be done in a number of ways

such as maximum likelihood estimation (MLE) and maximum a posteriori (MAP) et-

simation. However, these methods only give a point estimate of the parameters. In

most of the real processes where data is corrupted corrupted by noise, estimation of

uncertainty of the parameters is also required. The uncertainty associated with the

estimates can be quantified by adopting a Bayesian approach where parameters are

considered to be random variables. The Bayesian approach adopted in this thesis

involves the graphical representation of the data-driven models using probabilistic

graphical models. Bayesian approach estimates the posterior distributions for the pa-

rameters instead of their point estimates. Bayesian approach has the added advantage

over the point estimation approaches that process knowledge can be incorporated in

the form of prior distributions of unknown model parameters and latent variables.

The exact determination of posterior distribution in the Bayesian approach using the

Bayes’s rule is generally difficult as some of the integrals are intractable. Monte Carlo

based sampling methods can be used to approximate such integrals and subsequently

estimate the posterior distribution. An alternate approach for determining posterior

distribution of parameters is variational inference [22], [23].

Variational inference involves approximating the true posterior distribution as a

distribution which is easier to handle. A VAR model tends to overfit a model as

it contains many model parameters. Hence, different model structures with differ-

ent order and lag combinations need to be estimated and validated to determine the
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best VAR model structure. The variational Bayesian approach helps in overcoming

this difficulty by regularizing the model structure and thereby removing the insignifi-

cant model parameters. Furthermore, the variational Bayesian approach reduces the

computational load as it determines only an approximate distribution instead of the

actual posterior distribution.

Causality studies have already been performed using the variational Bayesian ap-

proach [24]. In this work, we attempt to estimate the Granger causality among

variables in a multivariate multi-model system using variational Bayesian parame-

ter estimation technique through a switched VAR model. The main advantage of the

variational Bayesian approach used in this thesis over other nonlinear methods is that

it is able to maintain constant causal structure across different modes. It achieves

it by placing a soft constraint using a Normal-Gamma prior on the corresponding

elements of the coefficient matrices from all the VAR models. The statistical tests

involved in the traditional Granger causality techniques for a multivariate system like

conditional Granger causality are tedious as it uses a series of F-tests. For which, the

proposed method provides an alternative way of defining a single metric for evaluating

the significance of the causal connections.

The rest of the chapter is organized as follows. Section 3.2 presents the model

description in detail. Section 3.3 discusses the model estimation approach. Section

3.4 provides the implementation steps and section 3.5 presents the simulation case

study. In section3.6, we present the concluding remarks.
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3.2 Model description

3.2.1 VAR model

For determining the Granger causal connections in a multivariate system y(t) ∈ RD,

the linear vector auto regressive (VAR) model is constructed as follows,

y(t) =
L∑︂
l=1

W (l)y(t− l) + e(t) (3.1)

where l represents the lag and it varies from 1 to maximum lag L, t represents the

time instants and it ranges from 1 to N and y(t) is measured variable at time t.

W (l) ∈ RD×D is the coefficient matrix of the VAR model at lag l and e(t) ∈ RD is the

noise associated with the process which is assumed to follow a Gaussian distribution.

3.2.2 Mixture VAR model

Most of the industrial processes operate in more than one mode, due to changes in

operating conditions such as changing feed rates, varying production targets, varying

catalyst conditions etc. In such cases more than one linear VAR model need to be

used to model the actual process. Switched linear VAR model assumes the following

structure,

y(t) =
L∑︂
l=1

W (l)sy(t− l) + es(t) (3.2)

where W (l)s ∈ RD×D is the regression parameters for the sth local model at lag l

which is given as the following,

W (l)s =

⎡⎢⎢⎢⎣
w(l)s11 . . . w(l)s1D

...
. . .

...

w(l)sD1 . . . w(l)sDD

⎤⎥⎥⎥⎦ (3.3)

where the values of s and sampling time instant t range from 1 to ub and 1 to N

respectively. The values of the elements of W (l)s give indication of causal relation

between a particular input in the regression vector and the corresponding output

variable. For instance w(l)sij = 0 implies that there exists no causal relation between

21



the jth input in the regression vector and ith output for sth local model at lag l. Each

linear VAR model is represented by a probability distribution (typically multivariate

Gaussian distribution) and the entire multi-mode process is expressed as a weighted

sum of the multi-variate normal distributions. Such a probabilistic model is called

a mixture vector auto regressive model (MVAR) [25]. The formulation of a typical

MVAR model for time series y(t) ∈ RD is given as follows,

p(y(t)|Y t−1) =
ub∑︂
s=1

αs,t2π
−D/2 det((δs)−1ID)

−1/2

× exp{−1

2
(y(t)− µs,t)

T ((δs)−1ID)
−1(y(t)− µs,t)} (3.4)

where p(y(t)|Y t−1) represents the conditional distribution of y(t) given all its past val-

ues represented as Y t−1. αs,t represents the mixing weights and it satisfies
∑︁ub

s=1 αs,t =

1 at any time t. (δs)−1ID is the noise covariance, where δs is a scalar quantity and ID

is the identity matrix of dimension D. The mean, µs, is the conditional mean given

as the following,

µs = µ0,s +
L∑︂
l=1

W (l)sy(t− l) (3.5)

where s = 1, 2, ..., ub

The unknown parameters set of the sth local model of the MVAR model is Φs =

W s,Σs where W s = (W (1)s,W (2)s, ....W (L)s). There are different choice of weights

in the literature such as constant or time varying weights [25].

3.2.3 Bayesian Mixture VAR model

In this thesis, a Bayesian approach is used which assumes the unknown parameters

and mixing weights as random variables and assigns prior distributions to the vari-

ables. A higher order MVAR model may be used without loss of generality. However,

for the sake of simplicity, we restrict the illustrations and case studies to first order

MVAR model. For a first order model, equation 3.2 simplifies to the following form,

y(t) = W sy(t− 1) + es(t) (3.6)
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where, W s(orW (1)s) ∈ RD×D are the regression parameters for the sth local model.

To distinguish the rows and columns ofW s, in our derivation, the number of columns

is indicated asM even though D is equal toM in our case i.e. W s(orW (1)s) ∈ RD×M .

W s is given as the following,

W s =

⎡⎢⎢⎢⎣
ws

11 . . . ws
1M

...
. . .

...

ws
D1 . . . ws

DM

⎤⎥⎥⎥⎦ (3.7)

In this work, the causal structure is assumed to be same across all the operating

modes. In terms of the switched VAR model considered, it would mean that the

coefficient matricesW 1,W 2, ...,W ub will have zero and non-zero elements at the same

locations. To achieve the same sparse structure for the coefficients matrices across

modes, we assign a single joint prior on the corresponding elements of the coefficient

matrices from all the operating modes. A sparsity enforcing prior like a Normal-

Gamma prior is used to represent the joint prior. For instance, the prior distributions

of the dmth element of the coefficient matrices from all the modes are assumed to

follow a Normal-Gamma distribution as the following,

[w1
dm, w

2
dm, ..., w

ub
dm] = Wdm ∼N (0, β−1

dmI)

where βdm ∼Γ(a∗, b∗)
(3.8)

where Wdm is the set of the dmth elements from all the coefficient matrices, a∗ and b∗

are the shape parameter and rate parameter respectively. βdm is the precision param-

eter of the normal distribution. While I is identity matrix in general, here it is just

one. The priors of the MVAR coefficients are assumed to have Gaussian distributions

with zero mean. The precision parameter (inverse of variance) of the normal distribu-

tion is assumed to follow a gamma distribution. Adopting a Normal-Gamma prior for

the coefficients will introduce a penalty on the lower valued coefficients which will in-

troduce a sparsity in the coefficient matrix by reducing the insignificant coefficients to

zero. Now, since the similar positioned elements across coefficient matrices have the

same Normal-Gamma prior they will be simultaneously all zero or all non-zero, this
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allows for a consistent causal structure across all modes. Thus, the Normal-Gamma

prior will act as a soft constraint which ensures that the causal structure across the

operating modes remains the same. Under the above assumption, the prior distribu-

tion of the set of coefficient matrices W = [W 1,W 2, ...,W ub] given the set of precision

parameters β = [β11, β12, ..., βDM ] can be factorized as the following,

p(W |β) =
D∏︂

d=1

M∏︂
m=1

p(Wdm|βdm) =
D∏︂

d=1

M∏︂
m=1

N (Wdm|0, β−1
dm) (3.9)

where Wdm represents the dmth element of all the coefficient matrices in set W

and its precision parameter is βdm. The precision parameter βdm follows a gamma

distribution with a∗ and b∗ as shape and rate parameters respectively. Each regression

parameter from all the local models is considered to follow Gaussian distribution with

zero mean and a certain value (βdm) of precision. Then, the joint distribution of β

which is the set of all the precision parameters [β11, β1,2, ..., βDM ] can be factorized as

the following,

p(β|a∗, b∗) =
D∏︂

d=1

M∏︂
m=1

p(βdm) =
D∏︂

d=1

M∏︂
m=1

Γ(βdm|a∗, b∗) (3.10)

where a∗ and b∗ are shape and rate parameters of the prior gamma distributions.

Measurement noise of the sth local model is considered to be a normal distri-

bution variable with zero mean and precision δs. The noise precision δs is con-

sidered as an unknown constant. Then, the probability that the observed data

Y = [y(1), y(2), ..., y(N)] is generated by the sth local model is given as the following,

p(Y |W s, δs, S = s) =
N∏︂
t=1

p(y(t)|W s, δs, S = s) =
N∏︂
t=1

N (y(t)|0, δs−1ID) (3.11)

where p(Y |W s, δs, S = s) is the conditional distribution of Y given coefficient matrix

W s and precision of the noise δs for the sth local model. ID is the identity matrix of

dimension D.

Now, we move onto the prior distributions of the latent variables. The model

identity S is the hidden variable in the proposed model. The prior distribution of
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model identity S being s can be factorized as the following,

p(S = s) =
N∑︂
t=1

p(S(t) = s) =
N∑︂
t=1

αS(t)=s (3.12)

where S is the model indicator random variable which takes value s that ranges from

1 to ub. The prior probability of the model indicator variable S taking the value s is

derived by taking the sum of the prior probabilities of local model s from time instants

1 to N . Finally, significant coefficients are assigned to each of the local models. The

significance coefficient αs of local model s is derived as the following,

αs =

∑︁N
t=1 α

S(t)=s

N
(3.13)

The initial significance coefficient of local model s being assigned as αs is the average

of prior probabilities of model indicator variable S = s over N time instants.

Furthermore, a symmetric Dirichlet distribution prior is assigned to the set of

significant coefficients α =
[︁
α1, α2, ..., αub

]︁
which is given as the following,

p(α) = Dir(α|α∗m∗),m∗ =

[︃
1

ub
, ...,

1

ub

]︃
(3.14)

where α1, α2 and αub are significant coefficients of local models 1, 2 and ub respec-

tively. α∗ is the only hyperparameter of the Dirichlet distribution and is a scalar value.

Since we assume the Dirichlet distribution to be symmetric, a parameter vector α∗m∗

is used such that all the elements of scale vector m∗ are equal.

The Bayesian network (BN) for the model described above is given in Fig 3.1. The

nodes inside circles are random variables, while the others are deterministic. The

nodes enclosed within the squares repeat themselves by the number given in its lower

left corner. The BN considered belongs to a special subclass of BN called as conjugate

exponential family graphical model (CEFGM). In CEFGM, the prior distributions

of all the random variable nodes belong to the exponential family of distributions.

Under the independence assumption in the VB approach (equation 3.15), the prior

distributions are conjugate to their likelihoods; then prior and posterior belong to the

same family of distributions.
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Figure 3.1: Bayesian Network for the proposed model

26



3.3 Model Estimation

Variational Bayesian Expectation Maximization (VBEM) Theory

The set of unknown parameters of the model are represented as Φ = [Φ1,Φ2, ...,Φub]

and it includes the set of coefficient matrices of all the local models,W = [W 1,W 2, ...,

W ub], set of precision of the local model parameters β = [β11, β1,2, ..., βdm], and set of

model significance coefficients α =
[︁
α1, α2, ..., αub

]︁
. The latent variable is the model

identity S. The joint posterior distribution of ϕ and S using the Bayes rule is given

as the following,

p(ϕ, S|Y,M) =
p(Y |Φ, S,M)p(Φ, S|M)

p(Y |M)

=
p(Y |Φ, S,M)p(Φ, S|M)∑︁

S

∫︁
Φ
p(Y |Φ)p(Φ, S|M))

where p(ϕ, S|Y,M) represents the posterior distribution of unknown parameters (Φ)

and latent variable (S) given the data Y and the model structure M. Switched VAR

model is considered as the model structure. p(Φ, S|M) represents the joint prior dis-

tribution of the unknown parameters and latent variables, p(Y |Φ, S,M) represents

the likelihood of the data Y and p(Y |M) is the model evidence which is the likelihood

that Y is generated by model structure M . Additionally, we are also interested in

obtaining the model evidence given a model structure as it helps in determining the

best model for a given data. However,the actual posterior distribution is often diffi-

cult to determine as the calculation of model evidence is often intractable. Hence, the

variational Bayesian expectation maximization (VBEM) approach is used as it helps

to determine the posterior distribution and model evidence in an approximate man-

ner [22], [23]. The variational Bayesian approach approximates the actual posterior

distribution p(ϕ, S|Y,M) as the following,

p(ϕ, S|Y,M) ∼ q(Φ)q(S) (3.15)

where the approximate posterior distributions of unknown parameters set Φ and

latent variable S are given as q(ϕ) and q(S) respectively. This approximation is made

27



for tractability. The log of model evidence can be expanded as follows through some

mathematical manipulations,

ln p(Y |M) =
∑︂
S

∫︂
Φ

q(Φ)q(S) ln
p(Y, S,Φ|M)

q(Φ)q(S)
dΦ

+
∑︂
S

∫︂
Φ

q(Φ)q(S) ln
q(Φ)q(S)

p(Φ, S|Y,M)
dΦ

=L(q(S), q(Φ)) +KL(q(Φ)q(S)||p(Φ, S|Y,M)) (3.16)

where the second term is the KL divergence between approximated posterior dis-

tributions (q(Φ)q(S)) and actual posterior distribution (p(Y, S,Φ|M)). It is always

a positive quantity and hence the first term L(q(S), q(Φ)) lower bounds the log of

model evidence. KL divergence approaches zero when the approximated posterior

distribution becomes equal to the actual posterior distribution. Equation 3.16 shows

that the minimization of KL divergence can be interpreted as the maximization of the

lower bound of the log model evidence.Thus, to find the most appropriate approxi-

mated posterior distribution, instead of minimizing KL divergence, the lower bound

L(q(S), q(Φ)) is maximized.

3.3.1 Lower bound expression

Further, the approximated posterior distribution of the unknown parameters set Φ is

further factorized as follows,

q(ϕ) = q(W |S)q(β)q(α) (3.17)

where W = [W 1,W 2, ...,W ub], β = [β11, β1,2, ..., βdm], and α =
[︁
α1, α2, ..., αub

]︁
and

S is the model identity. The initial step in VBEM is to assume the structure for the

approximated posterior distributions for the unknown parameters. The D-separation

principle helps to factorize the approximated posterior distributions further. The rows

of the regression parameter matrix W s of a local model s are independent given Y

since each row of W s is a parent to only a particular dimension of Y and no two rows

of W s share a common child. Then, q(W |S = s) which is the approximate posterior
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distribution of coefficient matrix of the sth local model and W s can be expressed as

the product of distribution of rows of W s as the following,

q(W |S = s) =q(W s) =
D∏︂

d=1

q(W s
d |Ŵ

s

d,ΣŴ
s
d)
=

D∏︂
d=1

N (W s
d |Ŵ

s

d,ΣŴ
s
d
) (3.18)

where W s
d represents the dth row of W s of local model s. It is assumed to be a Gaus-

sian distribution with mean and covariance being equal to Ŵ
s

d and ΣŴ
s
d
respectively.

Similarly, q(β) can be expanded as the following,

q(β) =
D∏︂

d=1

M∏︂
m=1

q(βdm|a, bdm) =
D∏︂

d=1

M∏︂
m=1

Γ(βdm|a, bdm) (3.19)

where a and bdm represent the shape and rate parameters respectively. βdm is the

parent of ws
dm. Additionally it does not share its child with any other βab̸=dm which

implies that βab is independent to βdm. The noise precision of the sth local model, δs,

is assumed to be an unknown constant. However, we could also define a distributions

for δs and further define distribution for its hyperparameters and so on.

The approximated posterior distribution of latent variable S = s is as the following,

q(S = s) =
N∑︂
t=1

q(S(t) = s) =
N∑︂
t=1

αS(t)=s
new (3.20)

where α
S(t)=s
new represents the approximate posterior probability of local model s at

time instant t. It should satisfy the following constraint,

ub∑︂
s=1

q(S(t) = s) =
ub∑︂
s=1

αS(t)=s
new = 1 (3.21)

since we are assuming the data at any time instant t to be generated by any one of

local models considered. This in turn implies the following,

N∑︂
t=1

ub∑︂
s=1

q(S(t) = s) =
N∑︂
t=1

ub∑︂
s=1

αS(t)=s
new = N (3.22)

The expression for the significance coefficient for the sth local model, αs, is derived

as the following,

αs =

∑︁N
t=1 α

S(t)=s
new

N
(3.23)
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Thus, the updated significance coefficient of the sth local model is obtained by taking

the average of the approximate posterior probability of model indicator variable s

(α
S(t)=s
new ) over N time instants. The approximated posterior distribution of the set of

significance coefficients of models, α, is considered to be independent to each other

and follows a dirichlet distribution as the following,

q(α) =
ub∏︂
s=1

q(αs) =
ub∏︂
s=1

q(αS|α∗
newmS) =

ub∏︂
s=1

Dir(αS|α∗
newmS) (3.24)

where α∗
newms is the parameter of the approximate posterior Dirichlet distribution

of significance coefficient αs.

The lower bound is given as follows,

L(q(S), q(ϕ)) =
∑︂
S

∫︂
W,β,α

q(W |S)q(β)q(α)q(S) ln p(Y,W, β, α, S|δ, α
∗, a∗, b∗)

q(W |S)q(β)q(S)
(3.25)

The above equation can be expanded further into the following form,

L(q(S), q(ϕ)) =
ub∑︂
s=1

∫︂
β

q(β)
D∑︂

d=1

∫︂
W

q(Wd|S = s) ln
p(W s

d |βd)
q(Wd|S = s)

+
D∑︂

d=1

M∑︂
m=1

∫︂
βdm

q(βdm|a, bdm) ln
p(βdm|a∗, b∗)
q(βdm|a, bdm)

+
ub∑︂
s=1

q(αs) ln
p(αs|α∗)

q(αs)

+
N∑︂
t=1

ub∑︂
s=1

q(S(t) = s)

∫︂
q(αs) ln

p(S|αs)

q(S(t) = s)

+
ub∑︂
s=1

∫︂
q(W |S = s)q(S = s) ln p(Y |W, δ, S = s) (3.26)
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The first term of the expression can be expanded as the following,

ub∑︂
s=1

∫︂
β

q(β)
D∑︂

d=1

∫︂
W

q(Wd|S = s) ln
p(W s

d |βd)
q(Wd|S = s)

(3.27)

=
ub∑︂
S=1

∫︂
q(β)[−

D∑︂
d=1

KL(q(W s
d |Ŵ

s

d,ΣŴ
s
d
)||p(Wd|[0]1×M , (diag([βd1, ..., βdM ]T ))−1))]

(3.28)

=
1

2

ub∑︂
s=1

D∑︂
d=1

ln |ΣWd
ˆ s|+ ub

2

D∑︂
d=1

M∑︂
m=1

(ψ(a)− ln bdm) +
ubDM

2
(3.29)

− 1

2

ub∑︂
s=1

D∑︂
d=1

tr[λd(ΣWd
ˆ s + (Ŵ

s

d

T
Ŵ

s

d)]

where

λd = diag

(︃
[
a

bd1
, ...,

a

bdM
]

)︃
(3.30)

In CEFGMs, an explicit expression for the lower bound can be derived. The detailed

expression for the lower bound is given in table A.1 of the appendix.

3.3.2 Posterior updates

In the VBEM algorithm, the lower bound is maximized iteratively through an expec-

tation step or E-step and a maximization step or M-step such that with each iteration

the approximated posterior distributions of the unknown parameters and latent vari-

ables are updated. Substituting these updates in the lower bound expression will

maximize the lower bound iteratively. The VB E-step involves maximizing the lower

bound with respect to q(S) while keeping q(ϕ) constant. In the VB M-step, the lower

bound is maximized with respect to q(ϕ) while keeping the distribution of hidden

variable q(S) constant. For instance, the derivative of lower bound with respect to

31



q(W |S = s) is given as the following,

∂L

∂q(W |S = s)
=

∫︂
q(β) ln p(W |β)dβ −

∫︂
q(β) ln q(W |S = s)dβ − 1 (3.31)

+
N∑︂
t=1

q(S(t) = s) ln p(y(t)|W s, S(t) = s, δs, α) = 0

=⇒ ΣŴ d
s =[λd + δs

N∑︂
t=1

αS(t)=s
new y(t− 1)y(t− 1)T ]−1 (3.32)

(Ŵ d
s
)
T
=ΣŴ d

s [
N∑︂
t=1

αS(t)=s
new δsyd(t)y(t− 1)] (3.33)

The dth row of coefficient matrix W s follows a multivariate Gaussian distribution

of covariance ΣŴ d
s and mean Ŵ d

s
. yd(t) is the d

th component of y(t). The remain-

ing updated approximated posterior distributions are given in appendix A.2. The

maximization involves taking the derivative of the lower bound with respect to the

particular approximated posterior distribution and then equating it to zero. The

point estimate of noise precision is obtained by taking the derivative of the lower

bound with respect to the precision variable and equating it to zero.

3.3.3 Hyperparameter selection

Rather than assuming random values for the hyperparameters, it is better to infer the

hyperparameter values from the given data. One of the methods of hyperparameter

selection is cross validation. In cross validation, the data is divided into training

and validation sets. The model parameters are identified using the training set for

different hyperparameter values and the model is validated using the validation set.

The hyperparameters which give the best validation performance is retained. Log

likelihood of the model parameters in the validation data set is used as the validation

criterion in this thesis and it is as follows,

Nval∑︂
t=1

log
ub∑︂
s=1

α̂sN (y(t)|Ŵ
s
y(t− 1), δ̂

s−1
ID) (3.34)

where Nval is the number of data points in the validation set, Ŵ
s
and δ̂

s
are derived

from the update equations and the mixing coefficients α̂s are the initial guess values of
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weights αs. Bayesian optimization using ‘Bayesopt’ function in MATLAB is used to

obtain the optimal hyperparameter values. Since ‘Bayesopt’ performs minimization

of the objective function, the negative of the log likelihood function is passed as

the objective function. The significance of hyperparameter selection becomes clear

from the update equation given in 3.33. λd adds a penalty to each column of the

coefficient matrix W . For instance, the penalty added to the mth column is given as

the following,

a

bdm
=

a∗ + ub
2

b∗ + 1
2

∑︁ub
s=1

[︂
Ŵ

s

dm

2
+ ΣŴ

s
dm

]︂
=

a∗ + ub
2

b∗ + 1
2

∑︁ub
s=1E((W

s
dm)

2)
(3.35)

where E((W s
dm)

2) is the posterior expectation of (W s
dm)

2 for local model s. Now, it

is observed that for a fixed value of b∗, a decrease in a∗ value imposes heavier penalty

on lower valued coefficients and lower penalty on higher valued coefficients (Fig 3.2).

Hence, the rate factor a∗ is the only parameter in this work which is estimated using

Bayesian optimization. The best value of a∗ is chosen to be between 10−8 and 108

and b∗ is fixed at 10−8.

3.4 Implementation of causality analysis

The implementation of the VBEM approach for the causality analysis is explained in

this section. It involves the maximization of lower bound iteratively. After each iter-

ation, the parameters of the approximated posterior distributions and noise precision

set δ are updated. The iteration is stopped once the value of lower bound increases

only by a negligible value. The detailed implementation steps are given in table 3.1.

The implementation of the VBEM approach for the causality analysis is explained in

this section. It involves the maximization of lower bound iteratively. After each iter-

ation, the parameters of the approximated posterior distributions and noise precision

set δ are updated. The iteration is stopped once the value of lower bound increases
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Figure 3.2: The graph showing the effect of decrease in a∗ values on the penalty for
a fixed b∗. As a∗ decreases, heavier penalty is imposed on lower valued coefficients of
the switched VAR model.

only by a negligible value. The detailed implementation steps are given in table 3.1.

Once W has been determined, relevance of each element in W can be checked using

the estimate of its precision parameter β. The posterior distribution of the precision

parameter of the dmth element of the coefficient matricesW 1,W 2, ...,W ub is a gamma

distribution and its expected value is given as the following,

βdm =
a

bdm
(3.36)

which is same as equation (3.35) where a and bdm are the shape and rate parameters of

the approximated posterior gamma distribution of precision parameter βdm. Higher

expected value (βdm) implies that the sum of the posterior expectation of (W s
dm)

2

from all the local models (
∑︁

S E((W
s
dm)

2)) is close to zero. This implies that values

of the dmth element of the coefficient matrix are close to zero in all the local models.

Thus, by setting a lower threshold value on the inverse of the expected value of

precision parameter, the relevant parameters in the coefficient matrix set W can be
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Table 3.1: Implementation steps

Steps

1 Fix values for MaxIter, threshold ϵ and ub

2 Perform Bayesian optimization to determine a suitable a∗ value

3 Assign initial guess values for the remaining hyperparameters of

the priors and the approximate posterior distributions

4 Compute lower bound L(k) where k=1, using the initial guess

values given in step 3

5 Begin For loop. For idx=1:MaxIter

6 Take first derivative of lower bound with respect to q(Φ) keeping

q(S) constant and equate it to zero

7 Update the parameters of q(ϕ)

8 Take first derivative of lower bound with respect to q(S) keeping

q(Φ) constant and equate it to zero

9 Update the parameters of q(S)

10 If reminder of (idx/10)=0 then k=k+1

11 Recompute the lower bound L(k), using the previously

updated parameters

12 If |(L(k)− L(k − 1)|/|L(k − 1)| ≤ ϵ

13 Break For loop

14 Else

15 End both of the If loops

16 update idx=idx+1 and repeat steps from 6 to 15

17 End For
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differentiated from the irrelevant ones.

3.5 Simulation case study

Simulation case study is used to verify the VBEM approach for identifying causal

relations in multi-mode systems. The data of a multi-mode system with ub number

of local models is generated as the following,

y(t) = W sy(t− 1) + es(t), t ∈ [1, 2, ..., N ], s ∈ [1, 2, ..., ub] (3.37)

where W s is the coefficient matrix for the sth local model and N is the number of

samples.

For our simulation example, we set N = 3000 and ub = 3. 1000 data points

were generated for each local model. The causal connections in all three models were

considered to be the same, but the strengths of the causal connections were allowed

to be different in each of the modes. The true coefficient matrix representing the

causal relations for one of the simulation example is below,

W 1 =

⎡⎢⎢⎢⎣
0 0 0

0 0.3 0

−0.9 0 0

⎤⎥⎥⎥⎦, W 2 =

⎡⎢⎢⎢⎣
0 0 0

0 0.9 0

0.9 0 0

⎤⎥⎥⎥⎦, W 3 =

⎡⎢⎢⎢⎣
0 0 0

0 −0.9 0

0.9 0 0

⎤⎥⎥⎥⎦
The additive noise es was generated from a normal distribution with mean 0 and

variance 1. The proposed method was able to identify causal structure in each mode

accurately.

Further simulations were done to check the accuracy of the proposed method when

changes were made in the number of local models (ub), dimension of data, noise

variance, sparsity percentages and b∗ values. The accuracy is defined as the number

of causal connections identified correctly. The simulation was repeated for 50 different

causal connections. The relevance metric defined earlier in section 3.4 was used to

check the accuracy of the method. The simulation details are summarized in table 3.2.

Switched VAR model considered here is a dynamic system as the values of coefficient

matrix W s changes after 1000 time instants. The elements of the parameter matrix
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Table 3.2: Simulation details

Attribute Value

Number of local models 2 to 5

Number of different causal cases 50

Model order 1

Dimension of input and output 2 to 6

Threshold of the relevance metric 10−3

Total time instants 3000

Sparsity ∼ U(0.1, 0.4)& ∼ U(0.4, 0.9)

Parameter, W ∼ U(−1.9,−1)& ∼ U(1, 1.9)

Noise mean 0

Noise variance 0.1, 0.3, 0.5, 0.7, 1

W s, were drawn from the uniform distributions such that the local models are stable.

The accuracy of the proposed method for different number of local models is given in

Fig 3.3. Thus the method is sensitive to the number of local models considered. As

the number of local models ub increases, the accuracy increases.

In the second simulation study, the dimension of the data was changed keeping

the number of local models constant (ub=3). Accuracy of the method was checked

for 50 different causal connections while dimension was varied from 2 to 6 and the

results are shown in Fig 3.4. Overall, there is a decrease in accuracy with increase

in dimension. This can probably be attributed to local optima convergence of the

model. As the dimension increases, generating initial guesses close to global optima

becomes more challenging. There seems to be an exception only for the case when

dimension increases from 3 to 4. In the proposed work, different initial guesses were

assumed arbitrarily and the accuracy of the algorithm for each of these guesses was

evaluated. The arbitrary guess which gave the most accurate result was chosen.
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Figure 3.3: Accuracy of the proposed method for different number of local models
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Figure 3.4: Accuracy of the proposed method for different dimensions of data
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Figure 3.5: Accuracy of proposed method for different noise variance

Table 3.3: Accuracy results for different sparsity of coefficient matrix W

Sparsity Number of causal cases Accuracy Percentage

∼ U(0.4, 0.9) 15 93.33

∼ U(0.1, 0.4) 15 66.67

The noise acts as both disturbance and excitation in the above example. The

accuracy of the method increases with increase in the variance of the disturbance

(Fig 3.5). The penalty (equation 3.36) added to lower valued coefficients is seen to

increase with increase in the noise variance. This increased the accuracy of the method

for higher noise variance as it helped to eliminate insignificant causal connections.

The change in sparsity of the coefficient matrix had an effect on the accuracy of

the method. Two different cases of sparsity were considered in the work and the

results are given in table 3.3. The last set of simulations were done to study the effect

of change of b∗ values on the accuracy (Fig 3.6). b∗ is the shape parameter of the
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Figure 3.6: Accuracy of the proposed method for different b∗ values

prior gamma distributions of the precision parameters [β11, β12, ..., βDM ]. It can be

concluded that accuracy decreases as the b∗ value increases. Thus, the choice of the

hyperparameter b∗ plays a crucial role in the accuracy of the method. Lower values of

b∗ will impose heavier penalty on the lower valued coefficients which in turn improves

the accuracy of the method.

3.6 Conclusions

The existing Granger causality methods do not ensure the causal structure extracted

from each mode of operation to be same. This can lead to inconclusive result on the

cause-effect relationship among the variables of the multi-mode system when each

mode has the same causal structure. Moreover, in these approaches the statistical

tests to check for the significance of the causal connections are laborious. To overcome

these drawbacks, a novel variational Bayesian approach is proposed to infer the causal

relations in multi-modal systems, which introduces the same sparsity across coefficient
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matrices across modes through a Normal-Gamma prior. This ensures that the causal

structure extracted from each mode is consistent. The proposed method can be easily

extended to a multivariate system and also provides a simpler statistical test for

checking the significance of the causal connections. The method when implemented

on simulation example was able to infer the causal connections with good accuracy.

Additionally, it is observed that the accuracy of the proposed method is dependent on

several parameters such as dimension of data, number of local models chosen, sparsity

and hyperparameter values.
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Chapter 4

A robust variational Bayesian
approach for causality analysis in
multi-modal systems

4.1 Introduction

Granger causality is a popular data-driven technique which infers causal relations

among variables in a process system. The primary step in Granger causality analysis

is the construction of time-series models for the process. However, the accuracy of

the data-driven models obtained greatly depends on the quality of the data used for

the identification process. Data derived from many industrial processes tend to have

data points called outliers, which lie outside the normal range of the data and this

can compromise the quality of the data. Instrument failures, process disturbances,

human errors and errors during the transmission of data can give rise to outliers in

the data. Presence of outliers leads to poor parameter estimates and subsequently

inaccurate Granger causality analysis. In this chapter, the method developed in the

earlier chapter is extended to infer Granger causality relations among variables in a

nonlinear systems when process data contains outliers.

Numerous methods have been developed in the past for outlier detection [26] and

process identification in the presence of outliers. Process identification by data after

outlier removal can lead to loss of important process information in some cases. So
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it is important to develop a model which can also describe the data with outliers.

There exist both deterministic and probabilistic approaches to identify models that

are robust against outliers. The deterministic approaches such as M estimator [27]

which minimizes a weighted sum of square of residuals to reduce the effect of outliers,

while the probabilistic approaches use noise models such as mixture of Gaussian dis-

tributions [28], t-distribution [29] and Laplace distribution [30] to handle the outliers.

Granger causality involves the estimation of vector auto-regressive (VAR) model. The

magnitudes of the coefficients represent the strength of causal connections among the

variables of the considered process system. Probabilistic approach for robust identifi-

cation and inference of Granger causality in multi-model systems are the main focus

of this chapter.

Noise with mixture of Gaussian distributions

The outliers fall into two types, namely scale outliers and location outliers. Scale

and location outliers are generated by shift in scale (variability) and location (mean)

respectively [28],[30]. Scale outliers are usually modelled as a mixture of two Gaus-

sian distributions with same mean but different covariance matrices such that one

covariance matrix is inflated to include outliers i.e noise term ϵk is expressed as the

following equation which is taken from [30],

ϵk ∼ δN (0, ρ−1σ2
ϵ ) + (1− δ)N (0, σ2

ϵ ) (4.1)

where σ2
ϵ is the noise covariance, 0 < ρ < 1 is the inflation factor and δ is the unknown

prior probability of occurrence of outliers.

Location outliers arise due to several reasons such as jammed measuring instru-

ments to name one. The distribution of noise term in presence of location outliers is

usually modelled as the following equation which is taken again from [30],

ϵk ∼ δ[N (Γ, σ2
ϵ ) +N (−Γ, σ2

ϵ ] + (1− δ)N (0, σ2
ϵ ) (4.2)
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where σ2
ϵ is the covariance, Γ indicates the shift in location of the outlier and δ is

again the prior probability of occurrence of outliers.

Noise with Student’s t-distribution

Another common method to deal with outliers is to consider a t-distribution for

the prediction error. T-distribution differs from a Gaussain disribution in that it

has heavier tails to accommodate large-valued outliers, which make it more robust

to outliers compared to a Gaussian distribution. The heavier tails in t-distribution

help to handle outliers unlike a Gaussian distribution. In the past, robust parameter

estimation has been carried out using t-distribution in many types of problems such as

linear regression [31] and mixture probabilistic principle component regression models

for soft-sensor development [32] to name a few. The probability density of noise ϵ is

assumed to follow a t-distribution with mean µ, covariance σ2 and degree of freedom

ν is as the following [30], [33],

P (ϵ|µ, σ2, ν) =
Γ(ν+1

2
)

Γ(ν
2
)(πνσ2)1/2

(︄
1 +

1

ν

(︃
ϵ− µ

σ

)︃2
)︄−( ν+1

2
)

(4.3)

where Γ(t) is the Gamma function which is given as the following,

Γ(t) =

∫︂ ∞

0

zt−1e−zdz (4.4)

The degree of freedom, ν, controls the width of the tails of the t-distribution and σ

corresponds to the scale of the distribution. When ν → ∞, the t-distribution becomes

a Gaussian distribution. Fig 4.1 shows t-distribution for different ν values. The mean

and scale parameters are fixed at 0 and 1 respectively. From the figure, it is clear

that as ν value decreases, the tails get heavier which can account for the outliers with

larger values.

Another property of t-distribution which makes it useful for system identification

is that it can be decomposed into a scaled Gaussian distribution and a gamma dis-
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tribution as the following [30],

p(ϵ|0, σ2, ν) =

∫︂ ∞

0

p(ϵ|0, σ2, r)p(r|ν)dr (4.5)

where p(ϵ|0, σ2, r) is the scaled Gaussian distribution with scale r and p(r|ν) is the

gamma distributions, mathematically expressed as the following,

ϵ|0, σ2, r ∼ N (0, σ2/r) (4.6)

r|ν ∼ Γ(
ν

2
,
ν

2
) (4.7)

The noise variable in the proposed approach is considered to follow a multivariate

t-distribution.
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Figure 4.1: t-distribution for different degree of freedom value

Some new techniques have been developed to estimate VAR parameters and infer

Granger causality more reliably in the presence of outlier noise. Granger causality

analysis in Lp (p ≤ 1) norm space [34] is one such method. Traditionally, Granger

causality analysis involves the minimization of the L2 norm of the prediction error

which is the objective function with respect to the coefficients of the VAR model.
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It is done by taking first derivative of the objective function with respect to the

coefficients and equating the derivative to zero. By doing so, the optimum values of

the coefficients are obtained, which subsequently helps to determine the prediction

errors and help in the estimation of Granger causality. In the presence of outliers,

the L2 norm based objective function exaggerates the effect of outliers further as a

square of the prediction error is used as the objective function. This method is unable

to incorporate prior knowledge of the system in the estimation algorithm and also

require more complicated statistical tests. The proposed Bayesian approach helps to

overcome these drawbacks.

A single linear VAR model cannot give good parameter estimation for complex

multi-mode processes. A switched VAR model is used in the proposed method, whose

structure is given in detail in section 4.2. Many methods are available in literature

to determine multi-model Granger causality relations in times series data contami-

nated with outliers. The method of robust time varying generalized partial directed

coherence (rTV-gPDC) [35] uses a time varying multivariate auto-regressive model

(TVAR) whose parameters are determined using Kalman filter. An outlier-free ob-

servation is estimated and it is used in place of the outlier observation. Such an

observation is then used in a Kalman filter algorithm and this makes the algorithm

robust against outliers. The coloured noise of the TVAR model is modelled as a time

varying moving average (TVMA) model. The time varying nature of the parame-

ters makes the TVAR and TMVA models more suitable for non-linear process when

the process operates around multiple steady states. The gPDC obtained using the

TVAR coefficients gives the causal relations among the variables of the system. Fujita

et.al. [36] developed a robust statistical test for a VAR model using a likelihood ratio

test statistic. The switched VAR considered in this current work has noise which is

modelled as a t-distribution to account for the outliers in the data. Subsequently, a

Variational Bayesian inference is used for the parameter estimation of model which

helps in evaluating the Granger causality relations among the variables. There are
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some advantages of using variational Bayesian method over the existing multi-model

or time-varying methods. First, the variational approach proposes an easier statis-

tical test to determine the significance of causal connections. Second, the Bayesian

approach regularizes the model structure which helps in circumventing the tedious

process of finding the best model by trying different combinations of model order

and lag. Last, the variational Bayesian approach ensures that the causal structure

extracted from each mode is consistent. This is achieved by choosing a Normal-

Gamma prior for the identically positioned elements of coefficient matrices for all of

the VAR models considered. It acts as a soft constraint during optimization using

the variational Bayesian approach.

The rest of the chapter is organized as follows. Section 4.2 presents the proposed

model followed by section 4.3 which discusses the proposed model estimation ap-

proach. Sections 4.4 and 4.5 give the implementation steps and case study results

respectively. Finally, section 4.6 provides the concluding remarks.

4.2 Model description

In a multi-mode system, a switched VAR model needs to be used such that the

process switches among different VAR models depending on the mode of operation

of the process system. The switched VAR model considered in this chapter is shown

below,

y(t) =
L∑︂
l=1

W (l)sy(t− l) + es(t) (4.8)

where y(t) ∈ RD is the observation at time t, l represents the lag and it ranges from

1 to L. W (l)s ∈ D × D corresponds to the VAR coefficients of the sth local model

at time lag l. s and t range from 1 to ub and 1 to N respectively. es(t) ∈ RD is the

process noise associated with the sth local model. A probabilistic model is used to

represent each VAR model (usually Gaussian distribution) and the resulting switched

VAR model is represented as the weighted sum of the individual probabilistic models
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(mixture VAR model). However, in the presence of data contaminated with outliers,

we assume the noise associated with the process to follow a t-distribution. This,

in-turn leads to the representation of the mixture VAR (MVAR) model as a sum of

t-distributions as given below,

p(y(t)|Y t−1) =
ub∑︂
s=1

αs,tt(y(t)|µs, (δ
s)−1ID, ν

s) (4.9)

where p(y(t)|Y t−1) is the conditional distribution of y(t) given its t− 1 past values,

Y t−1. αs,t is the mixing weight for the sth local model. (δs)−1ID is the covariance

where δs is a scalar value and ID ∈ RD×D is the identity matrix. νs is the degrees of

freedom respectively and µs is the conditional mean which is given as the following,

µs = µ0,s +
L∑︂
l=1

W (l)sy(t− l)

where s = 1, 2, ..., ub

(4.10)

In the above model, W (l)s are the unknown parameters. In a Bayesian mixture VAR

model which is used in this thesis, they are considered to be random variables with

probability distributions.

4.2.1 Proposed model

The proposed model in this work is a Bayesian mixture VAR model which switches

from one mode to another as given in equation 4.8. In this work, the lag parameter

is restricted to one in the derivations and case studies for simplicity of presentation

but they can be extended to more lags following the same procedure as given below.

The switched VAR model given in equation 4.8 can be modified for unit lag as the

following,

y(t) = W sy(t− 1) + es(t) (4.11)

Therefore, the coefficient matrix of the model reduces to the following form,

W s =

⎡⎢⎢⎢⎣
ws

11 . . . ws
1M

...
. . .

...

ws
D1 . . . ws

DM

⎤⎥⎥⎥⎦ (4.12)
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where D and M are the number of columns and rows of the coefficient matrix of the

sth local model, W s. For a VAR model, the number of rows and columns are the

same. However, throughout this chapter, to distinguish between rows and columns,

they are indicated as D and M respectively. The first step in a Bayesian approach

is the construction of a Bayesian network by defining the prior distributions of the

unknown parameters and latent variables.

The proposed work ensures that the causal structures extracted from all the op-

erating modes are consistent, only the magnitudes or the strengths of the causal

relations vary from one mode to another. This is achieved by assuming the identi-

cally positioned elements of coefficient matrices from all modes to follow the same

normal-gamma prior. Consider the multivariate system with D variables discussed

before has ub modes of operation. This would imply that ub number of coefficient

matrices W 1,W 2 , ..., W ub are present and it is assumed that any dmth element of

W 1,W 2, ...,W ub follows the same Normal-Gamma distribution. The Normal-Gamma

prior for the dmth element of the coefficient matrices W 1,W 2 , ..., W ub represented

as w1
dm, w

2
dm, ..., w

ub
dm respectively is given as the following,

[w1
dm, w

2
dm, ..., w

ub
dm] = Wdm ∼N (0, β−1

dmI)

where βdm ∼ Γ(a∗, b∗)
(4.13)

where βdm is the precision parameter of dmth element of the coefficient matrices

W 1,W 2 , ..., W ub. The precision parameter βdm is assumed to follow a gamma dis-

tribution with a∗ and b∗ as its shape and rate parameters respectively. The normal-

gamma prior introduces a penalty on the lower valued coefficients, which will make

the insignificant lower valued coefficients to converge to zero. Now, since identi-

cally positioned elements, for instance, the dmth element of the coefficient matrices

W 1,W 2 , ..., W ub are considered to have the same Normal-Gamma prior and hence

if the causal effect between mth variable on the dth variable is small in one mode,

then the assumption would ensure that the causal relation remains insignificant in

all other modes as well. Subsequently, w1
dm, w

2
dm, ..., w

ub
dm would all converge to zero
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simultaneously. This would in-turn lead to identical sparsity structures in the coeffi-

cient matrices from all the modes. The above assumption helps to factorize the prior

distribution of W as the following,

p(W |β) =
D∏︂

d=1

M∏︂
m=1

p(Wdm|βdm) =
D∏︂

d=1

M∏︂
m=1

N (Wdm|0, β−1
dm) (4.14)

where W = [W 1,W 2, ...,W ub] and Wdm is the set of element in the dth row and mth

column from coefficient matrices W 1 to W ub. The precision parameter of the dmth

element is assumed to follow a gamma distribution. The prior distribution of set of

precision parameters β = [β11, β1,2, ..., βdm] can be factorized as the following,

P (β|a∗, b∗) =
D∏︂

d=1

M∏︂
m=1

P (βdm) =
D∏︂

d=1

M∏︂
m=1

Γ(βdm|a∗, b∗) (4.15)

where a∗ and b∗ are the shape and rate parameters respectively.

The process noise is considered to follow a t-distribution as the following,

es(t) ∼t(0, (δs)−1ID, ν
s) (4.16)

where δs is the precision of the local model s that is a scalar quantity, ID is an identity

matrix of dimensionD and νs is the degree of freedom for the sth local model. Further,

the t-distribution can be decomposed into a scaled Gaussian distribution and a gamma

distribution as the following,

t(es|0, (δs)−1ID, ν
s) =

∫︂ ∞

0

N (es|0, (δ
s)−1

RS(t)=s
ID)Γ(R

S(t)=s|ν
s

2
,
νs

2
)dRS(t)=s (4.17)

where

N (es|0, (δ
s)−1

RS(t)=s
ID) =

(RS(t)=sδs)D/2

2πD/2
exp−R

S(t)=sδs(esTes)

2

Γ(RS(t)=s|ν
s

2
,
νs

2
) =

1

Γ(ν
s

2
)
(
νs

2
)
νs

2 (RS(t)=s)
νs

2 exp− νs

2
RS(t)=s

(4.18)

S represents the model identity, RS(t)=s and δs are the scale and precision parameters

for the sth local model. The prior distribution of scale R of the noise vector is expanded

as the following,

p(R|S) =
ub∏︂
s=1

N∏︂
t=1

Γ(RS(t)=s|ν
S(t)=s

2
,
νS(t)=s

2
) (4.19)
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No two local models are considered to have the same scale for its noise vector.

Additionally within each local model, the scale of noise is assumed to vary with time.

The noise precision is considered to be an unknown parameter in this chapter, which

will be estimated.

The joint distribution of the observed data Y is expressed as the product of N

multivariate t- distributions as given below,

p(Y |W s, δs, νs, S = s) =
N∏︂
t=1

p(y(t)|W s, δs, νs, S = s) =
N∏︂
t=1

t(y(t)|0, δs−1ID, ν
s)

(4.20)

p(y(t)|W s, δs, νs, S = s) is the conditional probability distribution for which y(t) is

generated by the sth local model.

Now, we move to defining the prior distributions of the latent variable of the

model. The prior distribution of the model identity S, which is a latent variable, is

given below,

p(S = s) =
N∑︂
t=1

p(S(t) = s) =
N∑︂
t=1

αS(t)=s (4.21)

where p(S = s) is prior probability of local model s which is obtained by summing

up the individual prior probabilities (αS(t)=s) of local model s for N time instants.

Now, the significance coefficient of local model s, αs, is given as follows,

αs =

∑︁N
t=1 α

S(t)=s

N
(4.22)

which implies the significance coefficient of local model s is obtained by taking the

time average of the prior probabilities of local s. It is assumed that as prior each

of the local model is equally probable. This is achieved by assuming a symmetric

Dirichlet function as prior for the significance coefficients setα which is given as the

following,

p(α) = Dir(α|α∗m∗),m∗ =

[︃
1

ub
, ...,

1

ub

]︃
(4.23)

where α =
[︁
α1, α2, ..., αub

]︁
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α1, α2 are the significance coefficients of local models 1, 2 respectively. α∗ is the

hyperparameter and α∗m∗ is parameter vector of the Dirichlet distribution. Since

α∗ is scalar and elements of scale vector of the prior, m∗, are identical, the resulting

Dirichlet distribution is symmetric. The above assumptions on the prior distributions

help in the construction of the Bayesian network shown in Fig 4.2. The random

variables are represented as circular nodes. The nodes inside the rectangle repeats

by the number given in its bottom corner. The nodes are connected based on their

parent-child relations.

4.3 Estimation

The unknown parameters set is Φ = [W,β,R, α] and latent variable is the model

identity S. Given data Y = [y(1), y(2), ..., y(N) and model structure M which is the

switched VAR model, the posterior distribution of ϕ and S is given by Bayes rule as

the following,

p(Φ, S|Y,M) =
p(Y |Φ, S,M)p(Φ, S|M)

p(Y |M)
=
p(Y |Φ, S,M)p(Φ, S|M)∫︁
Φ

∫︁
S
p(Y |Φ)p(Φ, S|M)

(4.24)

where p(Y |Φ, S,M) represents the likelihood of data Y , p(Φ, S|M) represents the

joint prior of parameters and latent variables, and finally, p(Y |M) represents the

model evidence. However, the exact determination of posterior distribution is often

impossible as the model evidence P (Y |M) which gives the likelihood of the data Y

being generated by the model M is intractable. In such situations, the approximate

posterior distributions of the unknown parameters and latent variable are evaluated

using the variational Bayesian expectation maximization (VBEM) approach. The

VBEM approach assumes the actual posterior distribution to be approximated as the

following factorization,

p(Φ, S|Y,M) ∼ q(Φ)q(S) (4.25)

where q(Φ) and q(S) represent the approximate posterior distributions. The above

approximation will ensure the tractability using the VBEM algorithm. The VBEM
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Figure 4.2: Bayesian Network for the proposed model
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approach involves the maximization of the lower bound of the log of model evidence

iteratively. The lower bound of log of model evidence is derived from the model

evidence in the following manner,

ln p(Y |M) =
∑︂
S

∫︂
Φ

q(Φ)q(S) ln
p(Y, S,Φ|M)

q(Φ)q(S)
dΦ

+
∑︂
S

∫︂
Φ

q(Φ)q(S) ln
q(Φ)q(S)

p(Φ, S|Y,M)
dΦ

=L(q(S), q(Φ)) +KL(q(Φ)q(S)||p(Φ, S|Y,M)) (4.26)

where the first term L(q(S), q(Φ)) is the lower bound of the model evidence and the

second term KL(q(Φ)q(S)||P (Φ, S|Y,M)) is KL divergence between the approximate

and true posterior distributions. Our objective is to obtain an approximate poste-

rior distribution which is as close to the actual posterior distribution as possible.

This can be achieved by minimizing the KL divergence term. The model evidence

is a fixed value given a particular model structure. Additionally, KL divergence is

always a positive quantity, which in turn would imply that, minimizing KL diver-

gence is equivalent to maximizing the lower bound. The lower bound L(q(S), q(Φ))

is iteratively maximized with respect to q(Φ) and q(S).

4.3.1 Approximate posterior distribution

The approximate posterior distribution of unknown parameters q(Φ) is further fac-

torized as follows,

q(Φ) =q(W,β,R, α) = q(W |S)q(β)q(R|S)q(α) (4.27)

where W = [W 1,W 2, ...,W ub], β = [β11, β12, ..., βDM ], R = [R1, R2, ..., Rub] and

α = [α1, α2, ..., αub]. The above approximation is to make posterior distribution

approximation tractable. Further factorization of the approximate posterior distri-

butions q(W ), q(β), q(R) and q(α) is done using the D-separation rules. Each row of

the coefficient matrix W is independent given Y , as each row of W acts as parent to

a particular dimension of Y and no two rows of the matrix W share a common child.
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From the Bayesian network given in Fig. 4.2, W is dependent on β as they share a

parent child relationship. However, from equation 4.27, it assumed that W,β,R and

α are independent to each other in their posterior. This is the trade off that needs

to be made to make the calculation of approximate posterior distributions tractable.

The expansion of approximated posterior probability of the coefficient matrix of the

sth local model, q(W |S = s) is given as follows,

q(W |S = s) =
D∏︂

d=1

q(W s
d |Ŵ

s

d,ΣŴ
s
d
) =

D∏︂
d=1

N ((W s
d |Ŵ

s

d,ΣŴ
s
d
) (4.28)

Each rowW s
d of the coefficient matrixW s is assumed to follow a Gaussian distribution

with mean Ŵ
s

d and covariance ΣŴ
s
d
. Now, q(β) is further expanded as follows,

q(β) =
D∏︂

d=1

M∏︂
m=1

q(βdm) =
D∏︂

d=1

M∏︂
m=1

Γ(βdm|a, bdm) (4.29)

where a and bdm are the shape and rate parameters respectively. The above ex-

pansion is possible as the set of dmth elements of coefficient matrices, Wdm, has a

different parent represented as βdm and none of the parents have a common child.

The approximate posterior distribution q(R|S) of the scale R of the noise vector can

be expanded as follows,

q(R|S) =
ub∏︂
s=1

N∏︂
t=1

Γ(RS(t)=s|ναS(t)=s, ν
S(t)=s
β ) (4.30)

where να
S(t)=s and ν

S(t)=s
β are shape and rate parameters of the gamma distribution

respectively. At each local model s, RS(t)=s has y(t) as child and none of the parents

have a common child, which makes them independent according to the D-separation

principle. Since they are independent to each other, the above separation can be

made. The model indicator variables S has the approximate posterior distribution as

follows,

q(S = s) =
N∑︂
t=1

q(S(t) = s) =
N∑︂
t=1

αS(t)=s
new (4.31)
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where α
S(t)=s
new is the approximate posterior probability of model s at time t. At any

time instant, it is assumed that the data is generated by any one of the ub number

of local models. This imposes an additional constraint as follows,

ub∑︂
s=1

αS(t)=s
new =1 (4.32)

which in turn would imply that

N∑︂
t=1

ub∑︂
s=1

αS(t)=s
new =N (4.33)

The significance coefficient for the sth local model is as the following,

αs =

∑︁N
t=1 α

S(t)=s
new

N
(4.34)

No two significance coefficients have the same parent and none of the parents have

a common child. As a result, the significance coefficient set α has the approximate

posterior which can be expanded as follows,

q(α) =
ub∏︂
s=1

q(αs) =
ub∏︂
s=1

q(αs|α∗
newms) =

ub∏︂
s=1

Dir(αs|α∗
newms) (4.35)

where α∗
newms is the parameter of the Dirichlet distribution of αs.
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4.3.2 Lower bound

The next step in the VBEM framework is the calculation of a lower bound for the

model evidence. The lower bound can be expanded as follows,

L(q(ϕ), q(S)) =
ub∑︂
s=1

∫︂
β

q(β)
D∑︂

d=1

∫︂
W

q(Wd|S = s) ln
p(W s

d |βd)
q(Wd|S = s)

(4.36)

+
D∑︂

d=1

M∑︂
m=1

∫︂
βdm

q(βdm|a, bdm) ln
p(βdm|a∗, b∗)
q(βdm|a, bdm)

+
N∑︂
t=1

ub∑︂
s=1

q(S(t) = s)

∫︂
q(αs) ln

p(S(t) = s|αs)

q(S(t) = s)

+
ub∑︂
s=1

q(αs) ln
p(αs|α∗)

q(αs)

+
ub∑︂
s=1

N∑︂
t=1

∫︂
q(R|S(t) = s) ln

p(R|S(t) = s)

q(R|S(t) = s

+
ub∑︂
s=1

∫︂
q(W |S = s)q(S = s)q(R|S = s) ln p(Y |W, δ, S = s)

Except for the last term in the above expression, rest of the terms can be expressed

as expectations of KL divergences. For instance, the first term can be expanded as

the following,

ub∑︂
s=1

∫︂
β

q(β)
D∑︂

d=1

∫︂
W

q(Wd|S = s) ln
p(W s

d |βd)
q(Wd|S = s)

(4.37)

=
ub∑︂
S=1

∫︂
q(β)[−

D∑︂
d=1

KL(q(W S
d |Ŵ

s

d,ΣŴ
s
d
)||p(Wd|[0]1xM , (diag([βd1, ..., βdM ]T ))−1))]

=
1

2

ub∑︂
S=1

D∑︂
d=1

ln |Σ
Wd
ˆ S(t)|+

ub

2

D∑︂
d=1

M∑︂
m=1

(ψ(a)− ln bdm) +
ubDM

2
(4.38)

−1

2

ub∑︂
S=1

D∑︂
d=1

tr[λd(ΣWd
ˆ S(t) + (Ŵ

S(t)

d

T

Ŵ
S(t)

d )]

where

λd = diag

(︄
[
a

bd1
, ...,

a

bdM
]

)︄
(4.39)

The explicit expression for lower bound is given in table B.1 of appendix.
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4.3.3 Updates of posterior distribution

The approximate posterior distributions of the unknown parameters and hidden vari-

ables are obtained by maximizing the lower bound with respect to each of the ap-

proximate posterior distributions of unknown parameters and hidden variables one at

a time in an iterative manner and updating the hyper parameters continuously. The

derivatives of lower bound are taken with respect to each of these approximate poste-

rior distributions and are equated to zero. For instance, the updated hyperparameters

of the approximate posterior distribution q(W |S) is obtained as the following,

∂L

∂q(W |S = s)
=

∫︂
q(β) lnP (W |β)dβ −

∫︂
q(β) ln q(W |S = s)dβ − 1 (4.40)

+
N∑︂
t=1

q(S(t) = s) ln p(y(t)|W s, S(t) = s, δs, α) = 0

=⇒ ΣŴ d
s =[λd + δs

N∑︂
t=1

αS(t)=s
new y(t− 1)y(t− 1)T ]−1 (4.41)

(Ŵ d

s
)
T
=ΣŴ d

s [
N∑︂
t=1

αS(t)=s
new δsyd(t)y(t− 1)] (4.42)

where

λd = diag

(︄
[
a

bd1
, ...,

a

bdM
]

)︄
(4.43)

ΣŴ d
s and Ŵ d

s
represent the covariance and mean of multivariate Gaussian distribu-

tion followed by the dth row vector of coefficient matrix W s. yd(t) represents the d
th

element of observation y(t). δs is the precision parameter of the sth local model and

α
S(t)=s
new is the approximate posterior probability of indicator variable S taking value

s at time t. The updates for the hyper parameters of the approximated posterior

distributions are given in table B.2 of the appendix.

4.3.4 Hyperparameter selection through Bayesian optimiza-
tion

In some situations, when the prior process knowledge is not informative, it is better to

determine the hyperparameters of the prior distributions through cross validation, as
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it is proposed in the previous chapter. The first step in cross validation is separation

of given data into training and validation sets. Subsequently, for different choices of

hyperparameters, the parameters of the model are determined using training data and

are validated using the validation data. The log likelihood function given in equation

4.44 is the validation criterion which is maximized through cross validation.

Nval∑︂
t=1

log
ub∑︂
s=1

α̂sN (y(t)|ˆ︂Wy(t− 1), δ̂
s
ID) (4.44)

where Nval is the total number of data points in the validation set, ˆ︂W and δ̂
s
are

obtained from the update equations given in table B.2, ID is an identity matrix of

dimension D. α̂s is the intial guess for the significance coefficient of the local model s.

Bayesian optimization is performed using the MATLAB built-in function ’Bayesopt’

to perform cross validation by minimizing the negative log likelihood of the validation

data. For a given b∗ value, decrease in a∗ value imposes a heavier penalty on smaller

valued coefficients. This can be better understood using the expression of penalty

which is added to the mth column of the coefficient matrix given below,

a

bdm
=

a∗ + ub
2

b∗ + 1
2

∑︁ub
s=1

[︂
Ŵ

s

dm

2
+ ΣŴ

s
dm

]︂ (4.45)

where the term in the bracket of the denominator represents the posterior mean of

(W s
dm)

2 which is represented as E((W s
dm)

2). Now, for a fixed value of b∗, say 10−8,

the effect of decreasing a∗ on the penalty a
bdm

is shown in Fig 3.2. Clearly from Fig

3.2, for a certain small value of b∗, the penalty added to smaller valued coefficients

increases when a∗ value is decreased. Hence in this work, b∗ is fixed at a small value

of 10−8 and the best value of a∗ is chosen between 10−8 to 108.

4.4 Implementation steps

Various steps involved in the implementation of the proposed method is summarized

in table 4.1. Once the implementation is complete, our proposed approach helps in
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Table 4.1: Implementation steps

Steps

1 Fix values for MaxIter , threshold, ϵ and upper bound on number

of local models, ub

2 Perform Bayesian optimization and determine the value of the

hyperparameter a∗ for a fixed value of b∗

3 Assign initial guess values for the rest of the hyperparameters of the

prior and approximate posterior distributions of parameter set

Φ = [W,β,R, α] and latent variables in set S

4 Compute the lower bound L(k) when k = 1 using the parameters of the

prior and initial parameters of approximate posterior distributions

q(Φ) and q(S)

5 For idx=1:MaxIter

6 Update parameters of q(S) by taking derivative of the lower bound L(k)

with respect to q(S) keeping q(Φ) constant and equating it to zero

7 Update parameters of q(Φ) by taking derivative of the lower bound L(k)

with respect to q(Φ) keeping q(S) constant and equating it to zero

8 If reminder of (idx/10)=0 then k=k+1

9 Recompute the lower bound L(k), using the previously

updated parameters

10 If |(L(k)− L(k − 1)|/|L(k − 1)| ≤ ϵ

11 Break For loop

12 Else

13 End both If loops

14 idx=idx+1 and repeat steps from 6 to 13

15 End For
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the formulation of a metric which helps to determine the relevance of the estimated

causal connections. The expected value of the gamma distributed precision parameter

of the dmth element of the coefficient matrix W is given as follows:

βdm =
a

bdm
=

a∗ + ub
2

b∗ + 1
2

∑︁ub
s=1E(W

s
dm)

2
(4.46)

where E((W s
dm)

2) represents the posterior mean of (W s
dm)

2. When the value of the

inverse of the metric βdm is small, it would imply that the sum of posterior expectation

of (W s
dm)

2 from all the local models is close to zero. This in turn would imply that

the values of W s
dm in all the local models are close to zero. Thus, by assigning a lower

threshold value to the inverse of the metric βdm, the parameters with inverse of metric

value lesser than the threshold value can be considered to be irrelevant.

4.5 Simulation case study

Multi-modal data contaminated with outliers is generated using the following model,

y(t) = W sy(t− 1) + es(t) (4.47)

where W s is the coefficient matrix which represents causal connections in the sth

local model. Model identity s and time instant t range from 1 to ub and 1 to N

respectively. Noise es is considered to be a zero mean and unit variance Gaussian

distribution.

For the above simulation, ub = 3 and N = 3000 were considered, such that there

were 1000 data points for each local model. The generated data was corrupted with

outliers. Outliers are data points outside the five sigma bound. A total of 50 different

causal connections were considered for the simulation and subsequently accuracy of

the method was checked when different parameters of the model, namely outlier per-

centage, number of local models (ub), dimension of data, noise variance and sparsity

of the coefficient matrix W were varied. Accuracy is defined as the number of causal

connections determined correctly. The specific values of the attributes of the model

used in the simulation are given in table 4.2.
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Table 4.2: Simulation details for the relevance study

Attribute Value

Number of local models 3

Model order 1

Dimension of input and output 2 to 6

Threshold of the relevance metric 10−3

Total time instants 3000

Sparsity ∼ U(0.1, 0.4)& ∼ U(0.4, 0.9)

Parameter, W ∼ U(−1.9,−1)& ∼ U(1, 1.9)

Noise mean 0

Noise variance 0.1 0.3 0.5 0.7 1

The first set of simulation studies performed demonstrates the accuracy of the

method for different percentages of outliers in the data. Four different percentages

of outliers, namely 5, 10, 15 and 20 percent were considered for the simulation study.

From Fig 4.3, it is clear that the accuracy of the proposed method is high even with

a considerable percentage of outliers in the data.

The number of local models does not seem to have an apparent effect on the

accuracy of the method (Fig 4.4) when ub ranges from 2 to 5. A slight increase in

accuracy is observed when the number of local models increases from 5 to 6. However,

higher number of local models are not preferred as the number of parameters to be

estimated also increases; hence a optimum value has to be determined.

The accuracy of the method for different dimension of data is given in Fig 4.5.

In general there is a decrease in accuracy with increase in dimension. This might

be due to the difficulty for generating initial guesses close to global optima in higher

dimensional problems. Due to this, the optimizer might converge to local optima.

In this work, different initial guesses were chosen arbitrarily and subsequently, the
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Figure 4.3: Accuracy of the proposed method for different percentages of outliers
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accuracy of the method was calculated for each of these initial guesses to choose the

best guess.
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Figure 4.5: Accuracy of the proposed method for different dimensions of data

The noise plays a dual role in this simulation example as both disturbance and

excitation. The variance of the disturbance is varied and the accuracy of the method

for different variances is given in Fig 4.6. As the variance of the disturbance increases,

the accuracy was observed to increase. It was observed that the inverse of expected

value of precision parameter (inverse of βdm given in equation 4.46) decreases with

increase in noise variance. This would in turn mean that penalty added to the lower

valued coefficients increases with variance. This helps in eliminating insignificant

causal connections which increases the accuracy.

Sparsity also influences the accuracy of the method (table 4.3). As the sparsity of

the coefficient matrix reduces, more parameters have to be estimated, which affects

the accuracy of the method, causing it to decrease.

The last set of simulation studies were carried out to study the effect of hyperpa-

rameter values on the accuracy (Fig 4.7). Clearly low b∗ values are preferred as they
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Figure 4.6: Accuracy of the proposed method for different noise variance

Table 4.3: Accuracy results for different sparsity of the coefficient matrix W

Sparsity Number of causal cases Accuracy Percentage

∼ U(0.4, 0.9) 15 86.67

∼ U(0.1, 0.4) 15 53.33

give higher accuracy. The possible reason is that penalty imposed on lower valued

coefficients is decreased when b∗ value increases. This can affect the accuracy of the

method.

4.6 Conclusions

The failure to account for the influence of outliers can greatly reduce the performance

of the causality analysis methods. Furthermore, the existing causality methods which

are robust against outliers have complex statistical tests to determine the significance

of the causal connections. In this chapter, a robust Granger causality technique
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Figure 4.7: Accuracy of the proposed method for different b∗ values

for multi-model systems using the variational Bayesian approach is proposed. As

the data-driven models can be expressed as a Bayesian network, the outliers can be

accommodated by modelling the prediction error by a t-distribution. This popular

technique is used to account for the outliers in this work. In addition, this method also

proposes a simple statistical test to check the significance of the causal connections.

From the simulation results, it is evident that the proposed method is able to mitigate

the effect of different percentages of outliers in the data to give accurate results.
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Chapter 5

A comparative study of the two
methods using an industrial
example

The two proposed methods were implemented on a real industrial process. This

chapter presents the results for the multi-model case first when no outliers were

present, followed by providing a comparison of the performance of the two methods

on the same industrial data after outliers were introduced. The industrial system

considered is a refinery process which consists of a fluid catalytic cracking (FCC)

unit and an unsaturated gas plant. These two units are part of any refinery settings

and converts unmarketable gas oils into lighter oils with higher market value such as

gasoline, fuel gas etc.

5.1 Process description

The FCC unit consists of a reactor-regenerator system followed by a fractionator.

The gas oil feed is combined with fluidized solid catalyst (at high temperature) and

sent from bottom of a reactor where the thermal cracking of the heavy gas oil into

lighter components takes place. A simplified schematic of the process along with the

stream numbers is given in Fig 5.1. The lighter products are separated from the

catalyst using a riser termination device (RTD) device and a series of cyclone sepa-

rators. The mixture of lighter products (stream 5) is sent to a fractionator and the
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Figure 5.1: Simple schematic flowchart of the industrial process

68



deactivated/spent catalyst goes to a regenerator to burn off the coke deposited on

the catalyst surface during thermal cracking process. Regenerated catalyst is then

returned to the reactor riser feed mixing point. The fractionator system separates the

mixture of lighter products into an overhead vapor stream (light ends and LPG prod-

ucts in a downstream plant), overhead liquid stream (olefin and gasoline products in a

downstream plant), a liquid side draw (light cycle oil) and a bottom product (decant)

based on the differences in volatility. Unsaturated gas plant separates the overhead

stream from the FCC unit into commercially valuable products such as gasoline, fuel

gas and olefin (which is a feed stream to downstream alkylation unit). The overhead

vapors (stream 6) with some amount of overhead liquid from fractionator overhead

receiver pass through a series of trim coolers and pass to a product accumulator. The

accumulator separates the liquid and vapor from the trim coolers and ensures only

the vapor stream to be sent to the wet gas compressor. The compressed vapor goes

to an interstage cooler and the remaining vapor proceeds to the second stage of the

compressor. Compressed vapors from the compressor (stream 13) and rich gasoline

stream from the upper deethanizer section (stream 18) are sent to the deethanizer

feed cooler. Cooled and partially compressed stream from the cooler gets separated

into 3 streams (hydrocarbon vapors, gasoline and condensed sour water) after pass-

ing through the feed separator. The hydrocarbon vapor stream (stream 16) flows

to the bottom of the absorber section of the deethanizer. The third liquid stream

(stream 17) which is non stabilized gasoline enters the top tray of the lower deetha-

nizer section. A part of non-stabilized gasoline entering the lower deethanizer section

is partially vaporized by a reboiler which draws liquid from bottom section (stream

21) of the deethanizer section. The rate of vaporization is controlled by a temperature

controller (TC) , which measures liquid temperature from the downspout of tray 9 of

the 20 tray absorber section. It is usually maintained at 250F to ensure low content

of the ethane in the bottom product (stream 19) of the deethanizer column which

goes to the alkylation unit. The TC can also get its signal from deethanizer reboiler
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outlet temperature.

The deethanizer tower is prone to frequent flooding followed by weeping incidents.

One of the reasons for flooding which can be concluded from time trends of the

variables is that, the increase in reboiler duty increases the temperature profile of

the de-ethanizer column bottom. The increased reboiler duty will increase the tem-

perature of the stream entering the de-ethanizer bottom, which in turn increases

the temperature of the reboiler product stream (TIRBP
) and de-ethanizer bottom

(TIDEO
). Increase in the temperature profile in the de-ethanizer tower increases the

vapor flow up the column. When the vapor flow exceeds a threshold value, flooding

occurs. After flooding the controller in the de-ethanizer tower tries to bring down

the tower bottom temperature (indicated by two temperature indicators, TITB1 and

TITB2), which causes a reduction in vapor pressure in the tower and in turn leads to

weeping in the de-ethanizer tower.
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Figure 5.2: Time trends of TIRBP
and FIDE2FC during flooding event

Causality methods can be used to find the root causes of such flooding events

as such a study can give the cause and effect graph which illustrates the causal
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Figure 5.3: Time trends of TIDEO
and FIDE2FC during flooding event
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Figure 5.4: Time trends of TITB2 and FIDE2FC during flooding event
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Figure 5.5: Time trends of TITB1 and FIDE2FC during flooding event

relationships among the variables. In this chapter we try to identify the cause and

effect relations of a set of variables (given in Table 5.1) chosen from the deethanizer

column with the flooding indicator (FIDE2FC), which indicates the flow from upper

deethanizer section to deethanizer feed cooler (stream 18). When this flow exceeds

a certain value, it indicates flooding. The 12 variables chosen are temperature, flow

and pressure indicators inside and immediately around the deethanizer column .

5.2 Data

Flooding data for the month of October 2018 with a sampling interval of 1 min

from a refinery was available for analysis. For proprietary reason, all data have

been normalized. The following steps were carried out in sequence as part of the

data pre-processing: 1. Removal of missing data 2. Removal of NaN values 3. Re-

moval of data points over the 3 sigma bounds . When the value of flow indicator

(FIDE2FC) which measures the flow of de-ethanizer feed to the deethanizer feed cool-
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Table 5.1: List of selected variables for causality analysis.

No Variable Description

1 TIABST
TI of stream from top of the absorber

2 FIDE2FC FI in the stream from deethanizer to deethanizer feed coolers

3 FIFSA FI in the input stream to the absorber from the feed separator

4 TIABSB
TI in the stream from bottom of the absorber

5 TIDET
TI in the Stream from top of deethanizer

6 FIABS2FS FI in the stream from absorber to feed separator

7 TIRBP
TI in the reboiler product stream

8 TITB1 First TI in the deethanizer tower bottom

9 TITB2 Second TI in the deethanizer tower bottom( above TITB1)

10 TIDEO
TI in the outlet stream from the extreme bottom of deethanizer

11 PIDE PI at Deethanizer tray 1

12 TIDE2DP FI in the deethanizer bottom stream to depentanizer
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ers crosses 16, it indicates flooding. A continuous data for 3400 time instants which

contains data during both normal operation and flooding condition was chosen for

the causality study. The causal relations among the variables were obtained using the

Multi-Variate Granger Causality (MVGC) toolbox [21] and the proposed multi-mode

causality method. Sixth order VAR models were considered for both the MVGC

toolbox and the traditional Granger causality method based on the AIC criteria.

5.3 Results and discussions

5.3.1 Results of multi-model method

The cause and effect relationship among the variables in the analysis is represented

as 2D colour intensity plots.

Figure 5.6: Traditional Granger Causality

The traditional method and MVGC toolbox were not able to capture the sequence

of events leading to flooding. Both the MVGC toolbox and traditional method are

based on the assumption that the data can be represented as a linear model satisfac-
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Figure 5.7: Multi Variate Granger Causality (MVGC) toolbox results

Figure 5.8: New method results
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torily. Hence, they cannot handle data from processes which operate in more than

one mode, which is the reason behind the poor performance of these methods. The

causal intensity graph derived from the proposed method helps in the construction

of the causal graph given in Fig 5.10.

A ub of 2 was chosen for our simulation. Fig 5.9 shows the variation of the sig-

nificant coefficients with time. It was observed that only when the flooding is very

high, the model switches to the second mode completely. Otherwise, the model is a

mixture of the two VAR models considered.
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Figure 5.9: Significant coefficients and flooding indicator plots

The causal graph helps to conclude that, an increase in the reboiler duty increases

the temperature profile of the bottom of the de-ethanizer column. The increased

reboiler duty will increase the temperature of the stream entering the de-ethanizer

bottom, which in turn would increase the temperature of the reboiler product stream

(TIRBP
) and de-ethanizer bottom temperature (TIDEO

). The increase in the tem-

perature profile in the de-ethanizer tower increases the vapor flow inside the column.
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Figure 5.10: Identified causal graph

When the vapor flow exceeds a threshold value, flooding occurs, which is indicated by

the flooding indicator. The reboiler product temperature (TIRBP
) and de-ethanizer

bottom temperature (TIDEO
) cause change in TITB1 and TITB2 . From process

knowledge, it is understood that the flooding event is followed by weeping of the

de-ethanizer tower. This explains why TIRBP
and TIDEO

cause change in TITB1 and

TITB2. Decrease in TITB1 and TITB2 is indication of weeping. Now, a third variable,

FIFSA appears to be a causal variable of flooding. The weeping indicators (TITB1 and

TITB2 ) and temperature indicator TIABSB
seem to be the causal variables of FIFSA.

However, from time trends it is observed that the changes in TIABSB
and FIFSA

happen after the flooding event. The proposed method is not able capture this causal

relation accurately. A possible reason for this being the presence of an unaccounted

variable which is correlated to FIFSA and is not considered in the causality analysis.

This unaccounted variable might be a possible causal variable, however since it is

not considered in the causality analysis, the variable correlated to it (here FIFSA) is

wrongly concluded to be a causal variable.
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Now, we segregate the data to flooding and non-flooding data, and use only the

flooding data to perform traditional Granger causality technique (Fig 5.11) and

method using the MVGC toolbox (Fig 5.12). TIRBP
which is the primary causal

variable, now appears in the causal graph obtained using traditional Granger causal-

ity technique. However, the MVGC toolbox is still unable to identity the causal

variables. We chose the best model order (using AIC criteria) from a upper limit of

10, maybe a higher upper limit has to be set for selecting the best model order for

the MVGC toolbox.
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Figure 5.11: Traditional Granger causality results using only flooding data

Remarks

When compared to the traditional and MVGC toolbox results, the results from the

new method are more accurate and aligned with the process knowledge of the system.

It can be concluded that an increase in reboiler duty leads to an increase in the
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MVGC toolbox
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Figure 5.12: Multi Variate Granger Causality (MVGC) toolbox results using only
flooding data
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deethanizer bottom temperature which in turn leads to an excess vapor production

causing flooding.

5.3.2 Comparison study of the two methods in presence of
outliers

In this section, a comparison of the performances of the two methods mentioned in

the previous chapters is done using the same industrial process data set. The actual

industrial data did not have any outliers, hence outliers were introduced artificially

to check the robustness of the two proposed methods. We tried to check if the

robust method was able to infer the root causes of flooding in the situation when the

process data is contaminated by outliers. Real industrial flooding data for the month

of October 2018 with the maximum number of flooding events was chosen again.

The sampling interval was 1 min. We performed data-preprocessing steps to remove

missing data. For performing the causality analysis, the same set of 12 variables (table

5.1) in and around the deethanizer column were chosen. 3400 continuous data points

containing both flooding and normal operation data were collected for analysis. Then,

20 percentage of the data was replaced by data points which lie outside the 5 sigma

bounds of the original data. The causality matrices obtained from implementing the

two proposed method on the data are shown in Fig. 5.13 and 5.14.

Clearly, there is a difference between the results obtained using the two methods.

The robust method is able to identify the root cause of flooding more accurately in

the presence of outliers. The increase in the reboiler product temperature TIRBP
,

which in turn is caused due to an increase in the reboiler duty was the root cause of

the flooding. The multi-model method is unable to find the root cause of flooding as

it cannot handle data contaminated with outliers.

80



Figure 5.13: Robust multi-model method where the noise of the prediction model has
a t-distribution

Figure 5.14: Multi-model method where the noise of the prediction model has a
Gaussian distribution
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Figure 5.15: Causal graph extracted using the robust multi-model method
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Chapter 6

Conclusions

6.1 Summary of the research

This thesis developed a new framework for causality analysis for multi-modal pro-

cesses using Bayesian networks which are a special class of probabilistic graphical

models. The two main methods developed and the findings from these methods can

be summarized as follows:

1. In chapter 3, we developed a method for Granger causality analysis for multi-

model processes. As the process has more than one mode of operation, a single

VAR model is not enough to model the process. We developed a Granger

causality technique with multi-mode VAR model using a variational Bayesian

approach such that the causal structures extracted from different modes are

consistent. It was achieved by assuming the corresponding elements of the co-

efficient matrices from all the modes to come from the same Gaussian distribu-

tion with precision parameter following a gamma distribution. This introduces

same sparsity in coefficient matrices across modes. The proposed method also

provides a simpler statistical test for checking the significance of the causal

connections. The theoretical findings were confirmed using simulation process

data.

2. In chapter 4, we extended our proposed work to handle data contaminated

83



with outliers. Data from real industrial process systems is often corrupted

with outliers. These outliers, if not handled properly, can greatly reduce the

performance of causal analysis. Robust extension of the earlier work is able

to handle outliers efficiently. Outliers in the data are handled by assuming a

t-distribution for the model residuals. Variational Bayesian approach is once

again used for parameter estimation. Simulation case studies were used to verify

the performance of the method.

3. In chapter 5, a comparative study of the two methods was done using data from

a deethanizer column tower. The data consists of both flooding and normal

operation data. However, the actual data did not have any outliers in it, hence

we introduced outliers manually (20 percentage). The robust method was able

to detect the events of flooding correctly in the presence of outliers unlike the

multi-model case.

6.2 Directions for future work

1. The robust extension of the proposed method is assumed to be resistant only

against outliers. The method can be extended for missing data as well.

2. In this method, we assume a BN initially. In its place, a method to propose the

best possible BN structure can be developed.

3. In the proposed methods, we assumed that the causal structure did not change

with time. However, this is not always true in real systems. The causal struc-

tures can be time dependent. In such cases, a time varying BN structure needs

to be used.
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Appendix A: First Appendix

The expressions for lower bound is given in Table A.1. The posterior distributions
with their updated parameters are given in A.2.

Table A.1: Lower Bound Expression
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s

d

T
Ŵ
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Table A.2: Update equations

Distribution Parameters
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s
dm
]

q(αs|α∗
newms) α∗

newms = α∗m∗
s +

∑︁N
t=1 q(S(t) = s)

q(S(t) = s) = α
S(t)=s
new /z Z is normalizing constant

where α
S(t)=s
new = eP , such that

P=Ψ(α∗
newms)−Ψ(α∗

0,new)− D
2
ln(2π) + D

2
ln δs − δs

2
tr[y(t)y(t)T ] +

∑︁D
d=1 δ

sy(t)dŴ
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Appendix B: Second Appendix

The expressions for lower bound is given in Table B.1. The posterior distributions
with their updated parameters are given in B.2.
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Table B.1: Lower Bound Expression
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Table B.2: Update Equations

Distribution Parameters
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new = eP , such that P=Ψ(α∗

newms)−Ψ(α∗
0,new)− D

2
ln(2π) + D

2
ln δs − δs

2
tr[y(t)y(t)T ]

+
∑︁D

d=1 δ
sy(t)dŴ

s

dy(t− 1)−
∑︁D

d=1
δs

2
tr[(ΣŴ

s
d
+ (Ŵ

s

d)
T
Ŵ

s

d)(y(t− 1)y(t− 1)T )]

Z =
∑︁ub

s=1 α
S(t)=s
new , ΣWd

= diag
(︁[︁
βd1

−1, βd2
−1, ..., βdM

−1
]︁)︁
, λd = diag

(︂[︂
a
bd1
, a
bd2
, ..., a

bdM

]︂)︂
δs =

D∗
∑︁N

t=1 α
S(t)=s
new

2

(︄∑︁N
t=1

(︃
ν
S(t)=s
α

ν
S(t)=s
β

)︃
α
S(t)=s
new

2
tr(y(t)y(t)T −

∑︁N
t=1

(︃
ν
S(t)=s
α

ν
S(t)=s
β

)︃
α
S(t)=s
new ×

∑︁D
d=1 yd(t)Ŵ

s

dy(t− 1) +
∑︁N

t=1

(︃
ν
S(t)=s
α

ν
S(t)=s
β

)︃
α
S(t)=s
new ×

∑︁D
d=1

1
2
tr

[︄
(ΣŴ

s
d
+ (Ŵ

s

d)
T
Ŵ

s

d)(y(t− 1)y(t− 1)T )

]︄)︄−1
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