)

" . Microfiche Service

SR .
N . " . \

CANADIAN THESES ON MICRCFICHE |

y \ R

1\. \

.. THESES CANADIENNES SUR MICROFICHE

Nationat Library of Canada
Collections Development Branch

Cangdian Theses on’
sur microfliche

Ottawa, Canada
1 K1A ONq

NOTICE

The quality of this m'éroﬂche Is heavily dependent upon the
quality ot the original thesis submitted for microfilming, Every
effort has been made to ensure the highest quality of reproduc.
tion possible,

It pages are missing, contact the university which granted the
degree, "

Some pages may have Indistinct print especially if the original
pages were typed with a poor typewriter ribbon os it the univer-
sity sent us an inferior photocopy

Previously copyrighted material$ (journal articles, published
tests, etc.) are not fimed,

Reproduction in tull or in parg of this film is governed by the
Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read
the authorization forms which accompany this thesis.

THIS DISSERTATION
HAS BEEN' MICROFILMED
EXACTLY AS RECEIVED

N 339 ¢. 8809)

{

| . .

Bibhothéque nationale du Canada
Otrection du développement des collections

Service des théses canadiennes

AVIS

La qualité de cette mlcroﬁche dépend grandement de lg quatité
de la thése soumise au microfilmage Nous avons tout fait pour
assurer une qualité sm?eneure de reproduct'on,

S manque des pages, veuillez communiqyer avec {'univer-

sité qui a contérd le grade,)
h .

La qualité d'impression de certaines pages peut laisser &

Gésirer, surtout si les pages originales ont été dactylographiées

a l'aide d'un ruban usé ou si l'université nous a tait parvenir

une phptocople de qualité intérieure,

Les documents qui font déja I'objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimés.

La reproduction, méme partielle, de ce-microfilm est soumise
a la Loi canadienne sur le droit d'auteur, SRC 1970, ¢, C-30.
Veumez prendre connaissance des formules d° autodsaﬂbn qut

" accompagnent cette thése.

\ 3
LA THESE A ETE
_ MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

Can%i’d'a’i

N
\
The University.of Alberta

A

L

A MULTIPROCESSOR ARCHITECTURE FOR
REALTIME IMAGE GENERATION

by

Kenneth W Hruday

A A thesis
submitted to the Faculty of Graduate Studiés and Research
in partial fulfillment of the requirements for the degree .
of Master of Science

-

Department of Computing Science -

Edmonton, Alberta
Fall, 1986

Permission has been granted
to the Natjional Library of
Canada to microfilm this
thesis and to lend or sell
coplies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

]

i

Ltautorisation a 8t® accordde
a la Biblioth®gue nationale
du Canada de microfilmer
cette th@se et de pré8ter ou
de vendre des exemplaires du
£ilm.

L'auteur (titulaire du droit
d'auteur) se r8serve Jes
autres droits de publication;
ni la thé&se ni de longs
extraits de ‘celle~ci ne
doivent @&tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

ISBN @8-315-32568-2

THE UNIVERSITY-OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Kenneth W, Hruday . . N

TITLE OF THESIS: A Multiprocessor Architeét'urc For Realtime Image Gcne\ration'
’ DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 19868 J

Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only, : e

The author reserves other publication rights, and neither the thesns por
extensive extracts from it may be printed or otherwise reproduced without the
author's written permission. o -

Y

\ -

(Signed) X,.r""”/

Permanent Address:
#202 2703-111B St,
Edmontdn, Alberta
Canada T6J 4L9

Dated 14, October 1986

A L

THE UNIVERSITY ()l*‘~/\yl,ll)|-ll'(’l‘/\

\¢
§

_ ')
FACULTY OF GRADUATE STUDIES AND RESEARCH
. ' ' :
' ‘%\.

AR Y

. The undersigned certify that they have read, and "r"e{:gx\nmeﬁd to the

Faculty of Graduate Studies and Rescarch, fot acce'h§ance, a th‘eaisléhtit‘ledA Mul-
; ' C "

tiprocessor Architecture for Realtime Image Generation, submitted by

. , 4, A
Kenneth W. Hruday in partial fulfillment of the requircments for the degree of
. e

i
l

Master of Science.

Date

ABSTRACT ' | :
@

N .
. L] LN ,

T'his thesis presents an architecture for realtime generation of ithages, The archi-
tecture uses a rendering algorithm that'is a variation of the "A-bufler” scheme pro-
posed by L. Carpenter. This method uses a bitmap’ approximation of polygon surfaces
to perform antialiasing. Modifications to the algorithm include using non-intersecting
polygons and edge coberence for fragment product,i?'g!lh with various simplifications to

.

implement parts of the algorithm in VLSI, e

The architecture is based on a modular arbitration scheme, which allows casy
construction of multiport memory connected to numerous processors. A key feature of
the architecture is its ability to expand by simple insertion of processing cards. This
architecture can also be scaled to allow more interleaving and more proc‘esSilé nodes,

l

, A simulation was written to test the algorithm and architecture. Iinage quality
was found comparable to that produced by the Movie. BYU graphics package. Realtime
performance cai®be obtained for "typical™ images of less than 2,000 polygons and
image resolution of 256-by-256 pixels. ‘ . ’

d .
. . A
- '

Speédup is the factor most critical to achieving higher performance in the archi-"

tecture, [t was found that linear speedup is' obtainable for less than 8 processors per
node, after this point fragment storage is unable'to copé with production. . ‘

J

')

[
~

. The main obstacle to speedup by scaling the system is non-uniform distribution
" of aliasing. Remedies to this problem are propdsed. It is concluded that the algorithm
and architecture are promising but need more research to balance worklﬁg‘d between
various phases of the algorithm and on various resources in the‘architectgre:.t -

s . -

Acknowllzdgements = L

'l‘o badly paraphrnsc Sir. Issac Newton "If.1 have seen farther lh.m most men ll B
. only bccause l haye stood on the shoulders of glanta . Thls small contribution to the
‘ﬁeld is bullt Jupon the works and advice of ot.hers Thc authors of \dowc BYU H.

Chrlsuanscn and M, Stephcnson havc provided my thesis with a basis ol' comparlaon
! \

€

. for my parallel algorithm, o o

»l'am\ alSo indebted to Mar;in Dube_tz‘for t.he:} use of his modiﬁe'd Movie.BYU

software and his IIS frame buffer mampulauon programs He was also mstrumcntal in
!

the carly phascs of t.hc pro;cct by tolcratmg my frequent. questions about Movie.BYU.

The picture data ,uscd in the expenments was drawn from a number of sourdes, 'some

of it bemg Martln s l'amous roosacene and .ludy McGlllls s artistic flower pot.

;

Robert Lake has taken great delight in ﬁndlng grammatlcal errors in this thcsns

and | am grateful for his cdltorlal skills. Kcn Bobcy has also contnbuted his time and

talent to the i improvement of this thesis.

i

1 mdebted for advnce and guxdancc to my supervisor, John Tart.ar Hls experience
' has gutded me through a potcntnal mmeﬁeld ol' difficulties in rcseanebmg and wrmng
thls thesns Last but, not lcast, is my vnfe Conme who has gaven me ‘moral support in

/

my: many hours of need and has supplied exccllent, edntorlal comments

* Table of Contents

i
|

, | ‘ ‘
Chapter \ . ; © = . Page
Chapter 1: Introduction .,..........cccciiiniinnes e neires s s errebapaanaeres VAt 1
\ 1 ! ’ . v 4
. ' “\‘ |> . " av\‘.
1.1, Importance off{lcscarch in Computer Graphics ,......ccocvviinsnrnennnn. FTVSUUAURRTRURTR
1.2. The Image Generation Process OO UUUU PR
+*_ 1.3. Raster Graphics Systems aanpaanaans irinnarnensanes bamesmanansernann P SV L. 9
1.4. Scope of the Thesis ceriettainennsann eraraansannns raneasnnnsnseantrrannrennins STCUTRNEN
1.5. Thesis Overviewi..iicomisinereriosinins e, irreinesesansanasaaasassansneseanansannnanes B
Chapter 2: Rendering Algorithms and Aliasingc.c.coceveerscsesisnsnrons. wenern USRI
.o ~ ! . ,
g " ‘ : \\\ , < ‘ ‘ ‘
2.1. Rendering Algorithms ...\................. ‘ rvensarenenaees rrrenn T
. \ / 4 »
2.1.1. Rendering serredaneadsanesansasantiansiannneassnns ietrnineennnnnnan prerareananann errrge 9
2.1.2. Z-buffer Algorithm0ccceecrrerrrnnn. forrransanansantanas berennmnmaaninentnnarnsbanan 9
2.2. What is Aliasing?l e aerrhrneaneenr e aaaaas 10
2.3. Prefilteringc..c..... vereeenns e tr e eAr et eteetr e et eeateeaneeaeaeeteeenrteareetneeeanan 12 .
i . A ’l .
- 2.4. A-buffer Algorithm ... et et e e et e aaaeean s aaia 15
Chapter 3: Review of Parallel Architectures for Image Synthesis © 21
™o ' '] : . - o ‘
3.1. Importance of the Frame Buffer SO UUUUROS SURURRPUURR SUUUINOTIRI FUUTUIUI .21
. 3.2. Different Memory Access Schemeso.ooioiiioiioiiiiiieeeeeeee e e e 22
' " : " v . . . ‘ o
f - ‘ . ‘ - / o . :
i 3.3. Processor-per-Pixel Approaches SETPTNR S (U F e a e e 24
3.4. Processor-Per-Object Approaches (Object-Oriented Processing) 26
s . 3.5. Image Oriented Processing e et e h e e e e, 30
© 3.6. Other Approachesccoooveeiieeiie e e v 34
. ' ‘ . . . A i ‘
3.7.Summary .oo...oooiiiiie i, Srtaamernearanns S S ST SO 36
, . ' : o B .1 , : ‘ " '
wi
‘ . N ‘ .}“

'
\ '

Chapter4: A Multiprocessor Algorithm for Rendering ...

4.1, Pactors in Algorithm Design ..., ..

4.1.1.“Phasel
4, l 2. Phase 2 S S,
4 l 2.1. Ready_poly e anmanaareanns Ve

4 1.2.2, Ready_;cau .

I

4 .1.2.3. Make_plx frianeann .; R TN VTR
‘ 4.1.3. Phase 3 LR P TP
4, 1 3 1. fragen_jmt.

4.1.3.2\1,make_jrag

r

414, Phase 4 L.

Chépker 5: The System Architecture

f A.;“.'}«",,u o

AP .o
5-1/‘ System Control and Operation ...

PR

5.2! System Overview ..

i

5.3:0. Phase 1 v,

»
'

5.3.2. Phase _2 erareaanan

.

i

v
'

.-

R R R Y R
N

LEEREYRY TS

\ -
;

P e @ gy, A0

L
» AL
,I‘
. 4
.
cevranrrannsnensrarneananipgananannes 43
\
. 44
T T
A Eannaaeraanennn O PPITIRIY 1
C. ‘ 51
'

NTAAAALNAAAAS A AR AR AR R R A R AR AR AR AR AR 53

e ; L. 88
PN Gneseanennaaan Aeamsasaanna Nerennetrananacaana heased AN “adeamaniaaneas .

i

oemeirreens SR SRS RO 60

massedidincnanecann sessapaeanann EEETP R

5.3.3. Phase 3 nioooooiisylieen. e e e e 61

14

'5.3.4.'Phase4v'..;,..... eeaer e el e 81

5 4 A Plpelmed Modular, Equal Access Arbntratnon Scheme e 82 -

5.5. lnterface to Processnng Nodcs and Requu’ements

\

5.5.1."A-bus Arbltrator L.f

Q

5.5.2..' B-bus Arbitrator

i

y ‘ — Ly

5.0, Processing Nodes . e SRR 67

L \) to .

- 5.6:1; The VLS Processor (Pixel Gun)’, ... e NPT ORI Ceeens OB
5.6.1.1. The Microprocessor laterface e ans e erearan et iereenn, 89
5.6.1.2. The Buffer-Arbiter [nterface:ovvivvrivrsens. N ‘?;’71

- 5.6.2. A-buffer Structure and Function rraans aernenRan s rrrnanraanas carrnirennannns 12

1 . N . . i
: . . . _
§5:8.2. 1. Phase 10..0ccecmnennireaerannnn earanannnnnnann M ranneneAn A na R s nnns hervrnaans ceenran 13
'] . t - .

i . .
S .
- §.6.2.2. Phase 2 ' . : ‘ ; 73
D44, FDase 2 fRARARAARAAR anAnanaasane AaAnaAnRAsaeaTannAn ArnanasanRRanAn Aaraaan e ITRYTPIN Annaan »
: "

-

‘
§.8.2.3. Phase 3 ...oooiiiiitiiineeeannnaeneanennnnnn NARAARAAAA AR AT AR naRnrnnn Fnrnanernnarnan s e 74

§5.6.24. Phase 4ocovnrirniinrnanan nenenan T Nanearannanarannrann cannenae 14
. .
. . .

5.6.3. Memory Access Patterns of thé Algorithmccorovvevnon.... fanansnsananninannans 75

"

5.7, Sysi’em Limitations N NAnsantaranaananenaRaATneiannans e aAAttnaesearannrananan ferrnnares 76
. . , % L ,

Chapter 6: Simulation Results and Discussionc.cciereeennnn.. RS porennnne - 1T \
. p ' f .

6.1. Speedup with Added Processors rexetenare e s ene e raes e eateneseereaeans 77
~ 6.2. Speedup With S_ystcth Scaling -............ raerearfeenns TP SO SEA 85

: 6.3.‘Sy3tém‘Bottlenecks rerreraeerananens eeegeiererennngee e e eeenniaaaeaaaaaraeeaenan ierioeaes 95

6.4. Data Dependenciés_ eererenaqeesanaaed ROPRT Ceevns ISUURPURUUUOURRT T: &
'6.5; $um‘mary Meeeeeieaeaaaanen e 99
Chépter 7: Conélusions and Future Resez;r(h O fereeeennrraaaeran 101

7oL COBCIUSIONS -..ovveo oo e T S R 101
7.2. Extensions and Further Work e epersens ettt SORPII {1 X

~

_ RCférénces e e p et ettt s s " 1068

Al:Simu‘lat’.ion Methddolqu eeranseionieeisinn s rsueanened 109

.

1.1 Thc Eﬁ(perimental Design cesssesbanaistensananaentaanaan e nnnanis 109

' »
1 \ . //
\ . /)
‘ \
Ty / ‘ = .
L. The Simulation ., e // R O e 109
. ’ ! // ' .
b2 MOVIEBYU ... RPN T 110
/ '
1.1.3, Polygon Generator/f N e A e v 110
-
./
1.1.4. Other Software/ e rf e ettt aar ey Cear e nnranen T e rrnaranaes araie 111
// “
1.2. The Level of Simulation ..,.....c.c..........ii rreantaniaenas braeans rarhaanns e ae, 111
//
1
+ 1,2.1. CPU and Pixe}'Gun Statés ,................. OO AN A e rraarareras e 112
) // R ’ .
1.3. The Data .../ .corririinnnns Sraskesnnnnnanns Far R aa e irenanana s e ines drennninnis gt henaatnca ey 118
. ; o
1.3,1, Distribution of Complexity ..., ... et pe e nni s 11s
1.3.2 Hcteroéenclty of Polygon Size AU SUR Venaagaaesenns 116
1.4, Simulation Assumptions and Level of Modeling rrnreaans freereaeen 116
1.4.1. S/iin'ulation Parameters fenannnnarnn renrenannn W rnninnnanaenen ven 116
/ * ‘ ’
l.4.2/.f:'/ Definition of Statistical Parameters Collected NP e ae s 118
// ’ M . ’ t) \,
1/4.2.1. Total Number of Pixels Covered: reeereanenaannen ferarries SO 118
1.4.2.2. Total Number of Wholc Plxels On the Screen: ISP . 118
1.4.2.3. Total Number of Whole Pixels Stored: TS U 119
. o !
1.4:2.4. Total Number of Fragments i eeranaeraranareans e eari 119
. o ¥ B " . ' .« .
1.4.2.5. Total Number of Antialiased Pixels On The Sereenio....i..... o f19
1.4.2.6. Percentage of Frame Covered: ,.............. Lt v e er s 119
1.4,2.’7. Whole Pixels‘ (% of Frame): ORISR 119
1.4. 2 8. Ahased Plxels (All)(% of frame) e, et 119
14 2 9. Allased Plxels Exposed (% of frame) et PR 120
1.4.2.10. Ahased Plxels (% of St.ored Plxels) e 120
1.4.2.11. Average Number of Plxels per Edge 120
) .
< \ h I1X :

. } ~ . ¢
" l ' f
\\\ . - . . . A ‘ ' A
1.1,2.12, Average Number of Pixels per Polygon: " e e v 120
. . ‘ N

. B

t 1.4,2.13, Average Number of Qveriaps per Pixel: ... SR e 120

i
; 121
T RN Ny S P I L R

-A2: Sample Simulation Outputcovies vesriinnninan,

' . "
.
'
, b
'
.
\
'
s '
’ ' '
' i
.
.
i .
'
;)
1
'
[N
, .
~ . .
a
' '
.
l
- ’
t
; LY
. -
N
' \
N 1
\ -
)
'
v
.
'
.
.
’ »
'
i
)
- .
N
' -
'
. 4
. PR
.
-~
” '
‘
)
'
. -
& ’ '
¥ i - -
'
’
5 -
¢ -
- -
'
) "
i
.
A !
\ 2
‘ . I
K
'
d
'
’ " .
- ‘.
f
N
-
- NG \ IS
(o]
" o -
=
- . .
v X
. . N
. Q N
. - -
; o v . L ~

List Of'Tablea ‘ ‘ o

Table - R / ;. ' Page \
2,1 Fragment Déclaration (Taken from Carpenten|28]) ...ccccoonvivisiiccriiiiinins 16

2.2 Pixel Struct Declaration (Taken from Carhpcntt;r[28]) s aaarne. 16

. s '
5.1 Microprocessor Interface Pins T PO O ARV DTN 1

|
'

5.2 Whole Pixel Phase Loading Re.qui:emc‘nts‘ , war 10

5.3 Fragment Phase Loading Requirements ,.............cocorrevcvrisrorononosooneonns 71

5.4 Output Buffer Interface Pins A .1
6.1 Percent Busy of Performance Ihdices in‘Pha‘sc 2 q . L. 82
6.2 Percent Utilization of Phase 2 R€30Urcescoovivmvniioininin ., 86
6.3 Percent Activity For Phase 1,In The 4-by-4 Configuration ... | v 98
) ' e [N
6.4 Time (millisec.) to Render Asymmetric Polygons I SO SOOI . 99
» :) ‘) r | / “ ' .
Al,1 Simulated CPU States e cr e anaananaanas JUTUT e 113
A1.2 Simulated Pixel Gun States SCTUUTUIVOTUENRRURAS ¥ ¥ I
Al.3 Data Characteristics of Experimental Data Sets ‘ e, . 116
@ F e
S .
' ')
—
. ‘ | s |
i ' | ')
! xi . .

List of Figures

\
Figure Piage
1.1 lmage Genceration Process ... PR DR TR YRPPY 2

, l2 Geueric Raster System (From (23]) perent et e v 5
1.3 Scope of Problem TR ‘ et e 5

201 Rendering of Pixelscoccceeviviennn, et et 7
2.2 Point Sampling ettt ettt 10

\ 1 o |
2.3 Aliasing ..., A r e et T P PRI e e eaean 10 -
2.4 Multiple Overlaps(7] ,.................... \ TP 11
2.5 Sampling with a 5-by-5 filter et L 2
2.6 Weights For Two Filters 13
2.7 Catmull's Prefiltering Method 13
2.8 Bitmap R'eprese;xtati-on of a Polygbn Cor;xt;r TR 16
2.9 V|3|ble/Fracuon of Front Fragment (after[28]) : e, 19
~ ‘ |
(i A Companson of Standard RAM wnh Whelan 3 RAM 23
3.2 Selection of Interior Pixels-...... ' e 25
3.3 Triangle Proccssor Arcbltecture (After Fussell and Ratl’n[4]) e 26
3.4 "“Wcmberg s Rendcnng Arcbnectpre (From [36]) [T TR UUUROURURRO e 28
3.5 A Rectangle Cell (After Locant.hl[?]) TR SO 29
3.(.3 .Fucha' Iand Johqson'g Mqlpiproccssor.Archite~cture 30
3.7 A Geu&il}ied lvmagc-O;icnt,cd Architecture (After [12]‘) e e e 31
,378 The"’E“(PERTS Proccsslng Systém e, 33
4.1 chderlug of Whole- Pm:ls ya e i e e, 41
' xii ’

1.2 Polvgon lnli(i:\liz:\lion TR , "
4.3 Ready_senn Caleulations ‘ T (N}
AA \v\’holo Pixel ‘Dm:x Structure e e I R
4.5 Pixel Fragment Generation, e e e 45
4.6 [terative Clipping Agai;m Pixel Colurana and Rows |........oooinniiin o 47
AT Az and Ay’ e o ; A8
4.8 Extrapolation of Polygon Edgesc.cccovvvieiooer oo 50
4.9 Iterative Line Clippingc..e.... ettt . 51
4.10 Clipping‘/\cross aY Bot;ndArj U T PR SUTUT | 52
411 Fragment Data Structure‘ ... RITSIPRIVPPIN erranan 52
4.12 Merging Two Common Pix_el Fragments A et r e et e e raenia 54
4.13 Phase 3 Operations T it E i e e s e rerte s reree b enne e erenns ‘ 54
5.1 System C;nﬁguration .. U /"ﬁ
. 5.2 Bus Arbitratio'u Circuit ... et e A KoL rea et st ren e r e en s 62
5.3 Arbitration with the Ring-counter),,_ 65
5.4 Processing Card pereaaaens e e e \ e 67
5.5 A-Multiport Buffer Cacinin Ceernaeane s e 72
6.1 Processors Per Node vs. Time l ... et 78
» -
6.2 System Speedup vs. # of Processorscccoooimiiemii e 79
6.3 Speedup ;'s. Processors For TestvSet #i ' 80
6.4 Phase 2 Performance vs.-Processors For Test Set #1 ... : , 81
6.5 Phase 3 Performance vs. Processors For Test Sc‘t #1 82
6.6 Pbase’j Performance vs. Proce;son For Test Set #; 84

Xt

0.7 Time va Conliguration for Random Polygons L R

OR .\‘y.«(vnln Speedup vs, Configuration For Random Polygons ... T B
0.9 Th’“ff vs. Configuration for The Room Scene ...,coooeil, J 85
6.10 .System Speedup vs, Configuration For the Room Scene PR 8‘3
6.11 Speedup vsl. Configuration For The Room (16 Proc. Per Node) A' 86
A) [
6.12 Speedup vs, Configuration For The Split Room ,,............c0vnnne e irn 91
6,‘3 Speedup vs, C,onﬁgul:ation'For The Split Room (16 Proc, Per Node) 91.
6.14 Normal CPU Times Over Fast Times vs, Processors (4-by-4) i, . 95
6.15 Time Per Partial Result va, 98 ALIasingoiiiiiiiiiiiieeeierer e eiineeerirs s res s 97
Al.l Microprocessor State Diagramccoiiiiiiiiinininnii s rce e 112
Al.2 Pixel Gun State DIagramcccoeiiiiiiniiiiniiiier e iees e e e ennaanns UV 152

xiv

Chapter 1

Introduction

1.1. lmportance of Reuen;*ch in Computer Graphics

Today computer graphics is finding application in maﬁy diverse ﬁclas, Computer

aided design, computer aided learning, flight simulation, ac}vcrtnsmg, and the film
0 * ! -)/ ' .
industry are all turning to computer graphics to perform many tasks involving consid-

a .
erable effort and time,

.) N

It is a testimony to the need of comp‘uter graphics that its use continues to grow
dcapvite the.heavy computational demands requiréd. Consider, for instance, a typical
color monitor with a raster of 512-by-512 pixels.t This repfesents 1/4 of a million pix-
. els, the c_ztlculation of géch req.uiring AOzcns of ﬂoatin‘g p;o‘i‘n{ operations,

'

Occasionally the screen is 1012-by-1012 or even 4000-by-4000 — this latter case
represents 16 million pixels. This is common in the film industry and-is usually accom-
panied by even more calculations per pixel since there is a greater demand for realism.

Considering that 1 second of film needs roughly 22 frames, a full length feature film

generated with computer graphics would require a staggering number of computations.

Some computer graphics applications' require that the calculations be dom; fast
enough to ‘give the illusion of movement on the screen. Using a color monitor, this
"realtime” reqqirement dictates that 30 ne;w frames of p.ixels be calculated per second.
For the case of‘512-by-512 pixels, assuu?ing a meager ten ﬂoatiug.point operations per

pixel, one needs a computational bandwidth of at least.75 million floating point opera-

~

tions per second. The heavy compl;tational burden posed by computer graphics, cou-

pled with realtime requirements, shows'that most current computers are inadequate.

A

* A "pixeT is a'spot of color on the video screen. A computer generated image is simply an ar.

ray of these color spots. : :
/

‘I'hia thesis proposon an architectural solution to p:\\rt of the ‘;;;o.blom, Specifically,
a multiprocessor architecture 13 proposed which runs a modified version of Carpenter's
"/\I~l)u'ﬂcr" algorithm, This arcl;itcctur'o is modlularly‘cxpandable and (*)nn be scaled to
diffcrent configurations, Tl“lia thesis injestigatpslits performance withfvarying data

characteristics and with factors determining achieved speedup. ngfore defining the

scope of the thesis a brief sketch of the image generation process is presented to place

it in perspective, . o . .

1.2. Thelmage Generation Process)

The following discussion limits itself to a "typical™t approach taken to producing
. ' ,
a co}nputcr image and_therefore excludes techniques such as ray tracing or texture

mapping. Applications for typical images' range from flight simulation to cartoon ani-

mation. Figure 1.1 illustrates the generic process of producing a computer generated

image. The reader is refered to the follawing sources for a more detailed discussion:

(19], [40], (23], [41) and [22]. —

The first step is creating a geometric approximation of the doéired scene. Surfaces
of objects, such as vases and spheres, are modeled wjtﬁ a poly/gon, mesh. Eac’h polygon
in the mesh bounds a region which.tak‘e.s the coldr of the aeﬁoing polygo\n.t The next

phase consists of transforming the polygon coordinates from object coordinate space to

image coordinate space. A scene is usually modeled in a coordinate system convenient

for defimng and mampulaung objects Thls system, however, cannot be used for image

coordinate-space.

A ——

Iy

displdy. After transformation, the pol);gon coordinates are in "image” or video-screen

A

tA typlcal approach uses only polygons for modeling and Gouraud shadmg for the lnght.mg
model. Typical rendering is done with a scanline algorithm. The Movie. BYU graphics package is
what this thesis defines as zyplcal

¢ Note that not all scene modeling uses polygons as the fundamental geometric pnmmve
Curved surfaces such as “bicubic patches”™ are used for more accurate modeling. Unfortunatkly, .
mampulauon of bicubic patches is much more time consummg than that. of planar polygons. Th:s
problem is the primary reason polygons are most commbnly used.

7

1 Geometrie Modvel
© | (polygon data)

Viewing

‘ ' Transformations - . T
\.\ - ~ | 3 , Co
3 . . . " o
' . @ 1 * ! r)
L, ' '

Clipping " B o b

Perspective) C Wy 7
Projection) S

i [l

. 1 | ‘ F

-

Lighting
~ Calculations .

--———--..-—o---—q‘—-

Rendenng

- Figure 1 I' Image Geueranon Process
Chpplng is the third step and it ellmmates parts of the polygon model tbat can %;
not be seen in the final i image. Perspective pro;ecuon follows cllppmg and is neccsaary |
- because there is no perspecuve in the polygon model. This shrmks t.he lmes and

polygons in the image that are most distant from the obsefvation peint and gives thc

appearance of perspective. - 4

All the above transformations can be accomplished with matrix-veéctor ‘multiplica-
. » ’ B ‘

.

‘tion for which much special purpose hardware exists. .There is even a special-purpose '
graphics chip specifitally designed to handle all these operations [25).

Tbe volume of data in the described operations is cohsidcrably leSs thali that of

Iy

\ [

the I.'M‘c‘r plmscs of. imngc cren(io’n ‘A smglo polygoq collld for - nns(,mco be dcﬂnul

4

with 3 or A -coord’inntm ’Ih»s same polygon’ could covw an (‘nuro \uloo SCreen .uul

\
' 1

causc prod\\ctnon ol' 262, 144 plxels (in' a 512- by 512 pnxel rcsolnuon scrccn) (‘lcarly

thns later part of i |mage creauon ment.s more at.tenuon

After performing the above t.ransfdrmations,’ the polygons ca'n"be“con‘yerted into

pixels on the computer‘ screen.. Firs't ligl)t.in‘g of the polygons-is simulated w’it‘h a light-
ing model. This model is an equatlon relating the angle of the polygon surl‘ace (wnth :

respect, to the vnewer and the light source) to the intensity of hght reﬂected from its

. e
surface. A commonly ysed model is Gouraud Shcdmg and the |nterested reader is

directed to t.he prev:ously cited references or to the original paper for detalls [20].

)

The llghung calculations insure that all the polygons have colors assocnated with .

-

t,helr defining points. These colors are represented by three integers correspondmg to

the red, blue and green components of t.he CRT display, In good quahty dlsplays these

components can take up to: 256 values. Thus it is possnble to display up to 2563

dlﬂ'erent colors A o o

Algorithms handling the final phases' vary greatly b“ut generally they accomplish /

' three tasks before the process is complete Flrst "hidden surface removal" is performed

) Thls procedure insures that object.s (or parts ol’ objects) wnll not be dlsplayed if they :

are covered by other object,s. Next is a step called. anuahasmg, whlc_b is discussed

and defined iu the uext 'chapter. It should be poiuted out’ tha\t” antialiasing is com'put.a--'

uonally expenswe so it is ol’ten omm,ed desplte the i immense dlﬂ’erence it makes in the "
(\1%) .

qualny of the ﬁnal image. The last. procedure is called scan conversion” and it pro-

duces ﬁmshed plxels from the';p“.hlygon prlmmves. o

L

73

[

1.3, “Raster Graphics Systemn : \

!

Figure 1.2 illustrates a "gencric” raster graphicy system, "The image creation sy
: . : ! ;

» N ‘ . ' ~ ‘ * N
tem is usually a general purpose computer which performs the modeling and scan®

conversion of an image, reducing it to a set of integers representing color values for

. i " I . " ¢ ! \ ~ L]
each pixel. These pixel colors are stored into special-purpose memory called a “refresh

—

or "frame” buffer.

' ' ‘ : Image)
Image“ v Refreeh) g _
‘ Creaho\n‘ - Buffer Display :
Syetem " |, System
t : - Intcr’(ctll'ee
‘ Devices

Figure 1.2 Generic Raster System (From [23])

v'l

The image display, system reads values out of the frame buffer and in‘terprets
4 ! ' ' : .) o

them as mtensnties for the color gun of the video dlsplay. For a comprehensive review,

o)

ctinsult, [23] A more thorough review and descrnptlon of raster graphlcs technology

can be l'ound in [33] and (26). o | o Y

1.4. Scope of;the Thesis

Thls thesis. proposes an architecture for real_;xme lmage productlon Speclﬁcally, ‘

l ' l

polygon rendermg is separated from the unage creatnon system and mtegrated in a sys-

l

tem that contams the frame buﬂ’er Flgure 1.3 lllustrates the scope ol’ thls thesls Hcre

3

5 .

a host comput.er performs ‘all t.he modellng, llghung and transl'ormauon tasks whlle

. the proposed archltecture and algonthm (enclosed in’ the dotted b0\) handles render-

g mg

l

P

/

! “' o
'

lnput. to thls renderlng system conslsts of Gouraud shaded polygons havmg color

B

values at* each vertex. It also assumes that the polygons are convex, non lntersecwag,

b

and have been scaled Uanslated and cllpped to the CRT (cathode ray luhe) screen .

'

r

\ .
- Scope of the Problem

' e Nl N W R e R [e e T S P -~
' !
Scene v : Rendering Refreeh ; ' Image,
Modelling —:‘-’ ' Spstem . }— Buffer | _ia | Display
. . ‘ o ! System
. '
! e :
Cmcmmmm e m e —— "

Figure 1.3 Scope of Pro‘blem

-

coordmate system The proposed architecture performs hldden surface removal,
antlallasmg and scan conversnon to produce a frame buffer of pixels, While hghtmg cal-

culations could be’ performed in the archltecture it is felt that these’ calculauons are

more properly part of the modeling aspects of scene generation so are beyond the pur-

. Ay '
view of the thesis, -

i

1.5. Thesis Overview

Chapter 2 briefly reviews some concepts fundamental to graphics algorithms and
[el

introduces the reader to the A buffer algorithm. The thore knowledgeable reader can

safely sklp thns chapter as well as Chapter 3 (which surveys graphics architectures i in

”n

the llterature) »

‘Chapter 4 discusSes the\ nlgorithms desighed 'for this thesis and is foliowed- by an
: e).(planatlon of the structure and functlon of the proposed architecture. Results dlscus-"
‘slons and conclusnons are found in Chapters 6 and 7 Thns thesls also mcludes two
"appendlces The ﬁrst dlscusses the assumptlons tools and data used for the e‘(perx- -

ments The second appendlx is a sample of the mmulatlon output and nt mcludes a .

summary of all the parameters used in the snmulator

TN .) a . : V
| Chapter2 o N

Rendemng Algorlthms and Aliasing

2.1. Rendering Allgorithma
Given a~co|lectionof oolygons with color descriptions at\‘ea'ch node, ’ how does one
produce an 1mage on the vndeo screen? This process is called rendenng and consists of
producmg plxels for the frame buffer (which represent dots of light on the. screen)b
Conceptually, one can view the frame buﬁel‘ as-an n-"by-m grid of squares —_— with each’
square represenung a prxel Rendering is then the process of determlnlng the color for'
" each square ln the grid. This color corresponds to the welghted color value of all the
‘polygons mtersectmg that square. Conslder for mstance the two polygons in Flgure
2.1. When a pixel falls wnthm the polygon ingerior, it ‘assumes'100% of the polygon 's
color, otherwise the final color may come from a numbe; of so\urcesuncludnng the back-
ground.'An addit.iona.l considcration is deherminingv‘whether‘ ovbjc‘c‘ts within the ‘tmage »

are covered by other objects (hidden’surface:rcmoval).‘

" 100% red IRNEE . 50% red
~ 4% | 50% b

| | 50% background
o color"

0;9 blue \§ {1 /Iblu

\Y 4

=" __100% blue

Figure 2.1 .Rendcri'ng of Pixels'

A -

There are many ways of produclng pxxcls One could for mstance consldcr each

pixel and check for object.s that intersect lts area. Another method is to consndcr cach |

[
~

polygon and produce all t.he ptxels that it covcrs Xet. another poss:ble solut.lon is to

‘ consldcr the lmage scanhne by scanlme All these approaches dlﬂer in thexr degrcc af .

“

[
-

- practicality since some (like the pixel approach} make a very ipeflicient implementa-
tion in software, but still make a good hardware algorit'hm. ‘ (™ “
Rendering algorithms can be classified’ according to the approach they take, Two

v

broad categories — not mutually exclusive — are whether calculations are carried out

in 'imagc-space' or “object-space.”

lmage space algonthma calculate a color intensity for pixels on the screen to the

!
1

limits of screen resolutlon Object-space algorithms calculate an image to the hmnts of

computer prccmon. Thus images produced in ob)ect-space appear correct when
. | .. : .
expanded.many times, yvhxle lmage-space |mages degrade.
. N) : .

Two elemcnta of rendermg algorlthms were obscrvcd by Sutherland, Sproull and

.

Schumacker (21 22] to be fundamental in eﬁiclent rendering algonthms Sorting or

organizing polygons allows efﬁcnent conalderat:on of only those polygons relevant toa’
¥ - .

partlcular area of the screen \ : Co

The other clement data coherency, sa property of the data lndrcatlng that data

in one region of space (usually) differ ttle from data’ of an- adjacent reglou This can’
' /
. be used to advantage smce\u’can reduce the computatnonal effort requlred to render

-
-

thelmage ‘ C e _ S '

For a comprehenswc rcvnew of renderlng algonthms the reader is refered to [22]

More up-to—date coverage can be found in [40] [23] and (41] The remainder of thls
. chapter cousndcrs hidden surface removal and mtroduces the reader to the concept oI'

'allasmg in computer graphlcs Varlous solutlons to aliasing are - consldered and the
chapter concludes mth adtscusston of the A- buﬂ'er algorlthm ’

v S

2.1.1. Renderins . .
| |

chdering, or'scan conVersnon 13 a snmple proccas - dmpnte the grc.u amount of;

. /\\

time it consumes The |dea is to lnberpolate pnxel colors msnde a polygon based on the

" colors of tbe polygon veruccs 1‘ In the 3|mplest case of rendering a single polygo% one

calculat.es colors, along the polygon edges for each scan hne Tbls produccs a starung

" color value and an endmg value for the “run” of plxels bounded by’ the two polygon‘

>

2.1.2. Z-buﬂ'er Algo'rithm

\

- edges~ Tbe pixel colors on a acanlxz are tbcn linearly mterpolated at each pixel center .

and stored in the frame buffer at the" appropnat.e pixel addresses, Thts produces shaded

plxels S
A slmplcr approach is to assign a smgle color to all the plxels in the polygon The

problem is then reduced to determining tbe plxels covered by tbe polygon Tbns solu--

. f

tnon howe’Ver does not produce reahsuc images. The rendenng problem is made much

more complex when more than one polygon is consndered since there is.a possubllny of

‘

overlap or intersection of the polygons: Tbls problem is bandled by a bldden surface
algorithm. '~ .~ o . | o AR > o

-
a

This algonthm 18 perbaps the slmplest means of hldden surl'ace removal The |dea

is to assugn a deptb value for every plxel produced Tbls deptb is'stored along wnb

plxel color values and permn,s condluonal replacement of plxels in the frame buffcr If,

l'or mstance the resndent. ptxel is closer to tbe viewer. than tbe in- commg pnxel tben

t.he in- coming plxel is rejected. Ot.berw:se the new pnxcl and deptb value replace tbc

@

old pnxel

' \
.- ,

An lmportant consequencc of tbns algontbm ls t.bat no deptb somng is nccessary

' .Tbxs has repercussnons l'or a parallel lmplementauon of the algom.bm Wnthout

* Sincé a vertex “color” is composed of three €olor components (red. blue, green}, this is acgual-

“ly an lntcrpolauon of-three diflerent values.

ok '

‘ 10

4

aor(mg, the data can be dlstrlbutcd :xmong sovcml mdopcndent proccworﬂ The sim-,

phclty of thc algonthm is also a major comndera(mn for dnrcct hardwape uuplcmcm'h'
‘ R :

-

“tion, For tbese reasons the Z-buffer algontbm is the most common elcx&m of recently

proposed parallel architectures, Unfortunately, it succumbs to aliasing problems,

.
t

2.2. What is Aliasing? ‘ - R

(%3

\

Aliasing, in the context of computer graphics, js most commonly manifested in
the appearance of jagged edges instead of smooth ones. This should be recognizable to
anyone who has seen cheap video graphics, Aliasing arises from the way that pixel

.
colors are calculated, A\

Consndor the pixels i in Flgure 2, 2 Here polygona intersect the boundanca of both

plxcls A rendenng algorithm must decide what color to asslgn to each pnxel

Case .2

. 'Figu’fgz.z'Poinps‘ampling‘

S The most common approach in the past was to- calculate the color at a smgle

N

ponnt at t.he center of the plxcl Thls has the advant,age of bclng very fast and, in most '

,cases is accurate. Wlth t.hls metbod the plxels iD anure 2.2 are asstgned two vastly

»‘dlﬂerent. colors snnce thc polygon intersects Lhe plxel center. in Case 1 but. not, in 2. Flg-

ure 2.3 lllustrates what happens on a large scale. If one were consndermg"an‘ object

.agmnst the background the problem would be dlﬂicult cnough but when mulupie

objects mzersect a smgle pixel it. gex,s even more complex Consnder the case taken from

T~

\

11

A~ . -
Rendering" .
o , Aliased screen

Rendered . ‘ . " image

Polygon to be

Figure 2.3 Aliasing '
. " L3 ! ' ' l " 4 » * ‘
Catmull (7], shown in Figure 2.4. Not only must one determine color contributions

from each object, but their depth relationships must be accounted for,

)
) g
‘ one plxel -
‘.n o
green
“blue S
black
'
top view, - ' o : " side view .

Flgure 2.4 Mulnple Overlaps[7]

oo

As Catmull pomt.s out m [7] correct anuahaamg requurcs some sort of—h&ddcn

\

surface algornhm at. eacb pixel. Antlallasmg ‘can be a very expenslve tecknquc to use

' since it greatly increases Lhe amount. of computauon o fact Catmnll ;eports that in

‘anuahasmg complex |mages the total cxecutlon ume is increased by 3 umes uslng hls

' method.

“The: cost of anuahasmg has fed researchers to mvesug'\tc alternate means. of

'
-

reducing the allasmg problem Crow has rese'\rcbcd the area and comparcd 3 dlﬂerent ‘

{

. LN) '
' L] ‘. *

w28 Prefiltering !
Tﬁ.-}‘ . ‘;‘v "

o i ' - ' .

4 - ' , 14 : . . R R ~n n
QQ»» _ +There are two approaches to solving the aliasing problem, One can prefilter” the
pixel by calculdting the visible objcci areas a3 fractions of the total pixel area and use
these as wclghts on the object colors, Altcrnauvely, one can sample within the pixel

at many points (oucrmmplmg) to derive an esumate of the total plxel color. This latter

method correspon_ds 'té "ﬁhcring" the pixel and various filter types can be used,

. .
o " oo ! grccn -
‘ : S . blue

i

Fourier Filtcr

—— green + 1z blue + —red

(\ ‘ l‘l 4 3
Y " : 25 21 25
' Bartlett Filter:
§7T~ green + %‘;—3— blue + '-8:2% red

Prefiltering :
0.16 green + 0.43 bluec + 0.41 red

‘ !y w - B, o ‘ red ' L
‘ C -

:(‘ .
»’
Flgure 2.5 Sampling with a - by~5 ﬁltcr ‘ ‘

-

Figure 2. 5 illustrates the sample points of a 5-by-5 ﬁlter in a covered pixel, For
" the purposes of dlscusswn, assume that the 3 polygons intersect the pixel are 100% of

“the primary color indicated. Hence, if the red polygon covers half the pixel, half of the

.

calculated pixel color ahould be red. This would be the resuli. given by prefiltering.

Figure 2.6 shows the two filters used for the above calculations. The Fourier filter
gives ed&ﬁi'sémple point equal weight. in the final pixel color while the Bartlett filter

gives great,er weight to sample ponnts near the pixel center. Theory mdlcates that the
t'

L

B@ﬂ;lett ﬁlter is better but Crow found that it requlres more computatlon than asim-

!

\{Jple‘Founer» filter. Both filtering methods are slower than preﬁltering when images of

o - . s “
ay ! .
o : .

comparable quality are rendered,

[t i3 instructive to examine a prefiltering method 1o more detail, The following 1a

a description of the pixel integrator proposed jn Catmull's algorithm {7).

~

N U T b2 3 21 '
IO 2 4.6 4 2
| S U T A § 369 6 3
N T U 2 4.6 4 2
11111 12 3 2)
‘/E‘ouricr + Bartlett
. : Filter Filter
~

Figure 2,6 Weights For Two Filters

Catmull’s prefiltering method is illustrated gn Figure’ 2.7." The first step is to clip
all the polygons to the pixel boundary. This results jn, several polygons with clipped
edges (a clibped edge is i!lustrated in the figure with a dashed line). ;I‘he polygons are
depth serted and an edgo) from the top-most polygon is used to clip the remailning

~

polygons, : 4

This clipping process vproduces two.polygon lists, 6ne set o‘f polygons is covered
by polygon "A" while the other is partially covered by a frag.ment. of polygon "B". The
clipped edges are marked as clipped and the top-most polygon of each list is checked

to see if all its edges are clibped.

lo the list sheaded by "A" all edggs are clipped so now the area of polygon "A” is
calculated and used to weight its color. This forms a partial result to be added to the
-‘oth& area;weighted‘colors calculated later.

_Thé list headed by "B -is then clipped aloﬁg onc of its unclipped edges. This also
yields two polygon lists and the saxhe.t'ermination criteria is applied as above. So the

color contribution of a fragment of polygon "C" is calculated hére.

Step 4 ﬁnally results in two polygon lists where the top polygons have all their

o

14

Step 1
Step 2

A"

Commmmmm

Top View of
Overlapping Polygons

Vo
A

Step 3

_-:\\.\1
\\V/ r
>,
7 7z
d
, .

Figure 2.7 Catmull's Prefiltering Method

16

cdges clipped, Clipping now coasea and more partial colora are calculated and summed
to give the prefiltered pixel color, The purpose of clipping is (o remove partsy of

polygons not visible in the pixel. Now any area calculations performed on the remain-

ing fragments will only count the visible areas,

2.4. A-buffer Algorithm

There is an interesting approach to the aliasing problem combining elements of

~prefiltering with filtering techniques, This‘appro.ach can best be described as a digital

approximation to prefiltering. The solution depends on using bitmaps to represent t

-

geometry and area of a poly‘gon within a pixcl. This technique was described in 19865

by Fiume, Fournier and Rudolph [6]. A vanant. of this scheme, called the A buffe

A

was reported the following year by Lorin Carpenter [28] ‘

Below is a more detailed explanation of Carpenter's algorithm, Only the antialias-

[
A [

ing scheme is described since rendering of “normal” pixels is done by a conventional Z-

buffer type algorit‘hm. The algorithm has been modified so that the produced pixels
. - :) ‘ -

carry two Z values; Z_;, and Z_,,, whose use will be explained later.

Bitmz;ps describing the geometry and area of a polygon within a pixel can be con-

T . [.
structed very quickly using "table-lookup”. This is done by extrapolating each polygon
edge to the pixel boundaries. The resulting intercepts are rounded to a specified accu-

.

racy and are used as indices into a precaiculated table of bitmaps.t

In Carp.ent.e;'s scheme bitmaps are 8-by-4 bits. This decision allows bitmaps to be
\

‘convenientl}j'manipulated in a 32 bit register computer. An example of a 5-by-5 bit-

map is glven in Flgure 2.8. Generated bitmaps form part. of a data structurc-defining a

va

/ragmcnl A complete [ragmcnl declaratlon coded in C, is given in Table 2.1. This

data structure.includes tbe color of t.hc fragment, its area, opacity, bitmap, Obj(‘(‘t tag

* A table lookup stheme for bnmap generation is described in Chapter 4. Carpenter's dercrip-
tion is too vague to judge if there is any similarity between his lmplementulon and the one
descnbed in this thesis.

.

S e
i

and max-min depth values,

) N . .
Pixel) : ,
g . T — “ Ia
- - , ,
' ¢

Bit ’ N ; ;L ‘
! O O Or0o 0
- '
Representation 000 oo | .

.)) 7
‘ . ’ -
: ’, :
-, - 4

Figure 2.8 Bitmap Representation of a Polygon Corner
Ta ,

The A-buffer also uses a data structure for simple whole data representation.t
' Thcse st.ructnres, called “pixel structs™ are arranged in an array corresponding to the

screen resolution (usually 512-by-512). If the pixel does not requ:re ant.mhasnng, then
‘ !
the Z value in the “pixel struct” is positive - ®

; fragment_ptr next; . [* next fragment on list */
_short int - T, g b; /‘ color, 12 bits */
shortint' opacity; /* 1 bit transparency ‘/
sloft int . area; /* 12 bit precision */ .
short int object._tag; " |* from parent surface / ‘
{ . pixel_mask m; , ' ' ~
' float zmax, zmin; /* positive */

o

Tnble 2.1 Fragment. Declaration (Taken from Carpenter[28])

»
s

and the color values for the plxel are gwen A negauve Z value xndlcates that the pnxel
requires ant.lallaslng and the plxcl atruct contains a pointer toa list of fragment struc-

tnres sorted by lncreasmg depth. Tbe plxel struct declarauon is given in Table 2

_Since Carpenters renderlng system uses polygons denved from more sophlsu-
cated pmnmves (such as bicubic patcbes) it is possible that some polygons could ‘be .

generated from the same patch in the sam? plxel Object tags denote a unique sphere

Yt Whole date refers to data from pixels entirely covered bys polygon. - N 5

“ A s
- ; . [\

float 7 /* ‘nognl.iv(‘ /A
fragment_ptr flist; /* never null */
- ' R (or)
' float Z . /* positive 7 q/
byte r,g, b; /* color Lo
byte a; /* coverage ‘/ ‘ ‘

Table 2.2 Pixel St.ruct Declaration (Taken from Carpenter[28])
ol' "patch® and are used to mdncate a commoa orlgln for polygons intersecting t.he same
pnxel If polygons with the same ID intersect the same pixel, thelr bltmaps and dat.a

structures are combmed into fragment lists.

The fragment lists are sorted by increasing depth and the packing process follows.

LN

Packing is a digital version of the "clipping and hidden-surface” aléOriLhm described by

Catmull in (7] and is mentioned earlier in this chapter. "lt. starts with a search mask, -
M,md, whlch deﬁnes the visible area remamlng in the plxel — lnlually thls is set to

all ones. The vmble parts of a polygon are deﬁned by the mask, Thls is, 10 turn,

]

given by the equauon combining the fragment. mask (M,) and t.he search mask
v-v : e \

‘Mu'n' = Mharch_ n ‘MI

~

- The mask describin“g‘the,oul.slde area is:

o VMW"%' Muaech n ﬁ[.

Slnce'the search mask is all ones all the area ol' the t.op fragment, is visible. M,,,, now

becomes the new search mask of the lower fragment.s in Lhe hst Thc recursive calls ‘

finish when M 'f D, i ie . when all the vns:ble aréa ol’ the plxel has been accounted ‘

7

for.

;I'he color ofa j)"ixel"is described by the folloiving equation:

SR . .
’ S C= Gy XA -l.-C,,,, (1,,-,4,,

 where C;, is the color in the interior of a fragment., Cout» the color of the exterior and

, . .
/) ‘
‘. .

A,, the weighted arca of the fragment (ranging from zero to one) As in Catmull’s

mcthod, thls algonthm has a ﬂmple recursive formulation, The color of (!, can be

dcterm,mcd by substltutlng itas C ln the above equation. Once done, C,, is taken from

a fragment found in the area M, . The new M,,, then becomes the old area without

the fragment.

Transparency |s also easily handled The followmg equatlon descrlbes ‘the color

"

contnbutlon from a transparent fragment

Cin =) Opacity, X C, f (1 - 'Opacc'ty,] X Chaing

The degree of ~ opaqueness is x:alled the opacnty factor (Opaccty,) Thls factor Yeter-
mines the transparency of a fragment —\ra value of "1" means ‘the fragment is com-

pletely opaque and nothlng can be' seen behlnd it; a value of "0" indicates that the

fragment ls completely lnvmble :By thls equatlon, the color of a transparent fragment
. is the sum of the opacnty-welghted fragment color (CI) and the transparency-

wenghted color (CM,,,‘) hehlnd the fragment ln determlmng the color behlnd a tran-'v ' :

‘ sparent fragmcnt the search mask is snmply the current M,,. value
‘ ‘ 3

lntersectlons occur in thls system and are handled by an approxunatlon Consnder:
" the case glven |n Flgure 2 9. Thls is a slde wew of two polygons mersectlng wnthm a,

plxel The X dlmensmn of the plxel is perpendlcular to the plane of page “The vnslble'

-~

'fractlon of the front fragment ls be estlmated wnth the followmg equatlon

e e

Xy Z.m"’pht

Vial‘,,',;-.‘ :
s ront E ‘(Zmu - ,Zmiul/ranl‘i"' (Zm"a'x - Z'mln)ne"xl '

-

The bntmap solutuon to allaslng has many beneﬁts Smce it ls possnble to generate

l | T

This fractlon ls used to welght the colors of the mtersectlng pleces to gwe appropnate

colorbleudmg I S S PR .

| bltmaps wnth table lookup, bltmaps can ‘be produced qulckly Therefore at the

.
-

R 'vulnerable to contentlon

3 i '

[

‘ cxpcnsc of storage, bltmaps can be |ncrc:\sc<l n resolution without | mcrc vun;, the lnnc

t:nk(‘n in ant.mlnasnpg,T

Polygons

Side View of \\1 | Z. v - Zm;xl,,‘,,,

One Pixe’l
Width "

Vie Jront

S . zmin[raul : DAX et
.lncreasing Image ‘ ‘ o

Depth (Z)

Flgure 2.9 Vlsnble Fraction of Front Fragment (after(28])

Chppmg and hldden surface removal can be done very qunckly since they only ° :

involve |og|cal operatlons It should therefore be faster than: Catmuli's scheme Thls

e - i

should also be much faster than ﬁlt.erlng methods smce only onc color is asstgned to‘

o each blt, ina map, whereas oversamplnng may requlrc a separate color calculauon for

each ponnt in t,he sample

The most sxgmﬁcant beneﬁt oﬂered by t,hls approach is that it allows a convenlent,‘

and’ eﬂicnent. parallel solutxon 'to t.he ahaslng problem Past solutlons such as'

‘ Cat.mull s algonthm or ﬁlterlng algorlthms requlred that all polygon data be present‘ o

te correctly anuahas Thls lmplles global readmg of common data and is therefore' :

w

ln Carpenter s scheme, bltmaps can be produced lndependently by many proces- |

‘

sors and stored in some central locatlon to be reconﬁgured later H|dden surface rcmo-.j -

e

vaI for normal plxels is handled s:mply wnt,h the pA buﬂ'er algornhm whlch is.a good

- parallel algonthm for hldden surface‘removal Slnce thcre is no need to sort data in the’,f

¢ This assumes zhat t.he Iogncal operatlons can'be performed in Lhe same time regardleas of bn- .

‘map size. For bntmap sizes less than tl\e corr_;puter register size; this will be true.

N \

; | 20

i

7 buﬂcr nlgonthm not all the dam have to bc prc*cnt at (hc same time, 'Ifnn algo-

rithm, thcrcforc could have a plpclmcd lmplcmonmnon I (,lmptcr 1, a modlh("\ll()n‘

.
.

of thns nlgontbm is prcsented whlch allows easter lmplemcntatlon ina parallel environ-
. ! A ‘ . N . i

'

ment. A

Chapter, 3 . o '
Revrew of Parallel Archrtectures for lmage Synthesls

Although many ‘architectures have been proposed and lmplemented specnﬁc.\lly
for computer graphtcs many are desngned for either very sopbnstlcated problems such

as ray tracnng, or. much simpler problems such as black and white bit manlpulatlon
This review js rest.rlcted to archltectures deslgned for generatlon of typncal lmages
which are deemed to be of moderate complexlty t ln addmon only s&stems attempt-l -«
ing blgh performance or realtlme |mage synthesls (wnth purely dlgnal t.echnlques) "are

'considered..

3.1. Importance of the Rrame Biffer

Given the enormous bandwidth‘required in the later phases of image generation,

it is ‘not surprnsmg that many of the proposed grapblcs archntectures give memory
o
deslgn a promlnent place as part. of the soluuon The t.remendous amount of generated

‘ data presents a twpfold problem the' ﬁrst. i3 how to generate the dat.a in real ume the

_".second is how to get. it to the frame buﬂ'er We can classlfy t,he vanous approacbes on .

‘ the basis of how they handle these t.wo problems . " '

A problem related to producuon is bow to dlst.nbut.e tbe polygons to t.be process-

ing, element.s ‘This is also useful for categonzlng archlt.eet.ures The problem of usmg
“.plxel data for vxdeo stgnal generatlon wrll not, be consldered here although |t does place »
beavy constralnts on the frame buﬂ'er deslgn Whmon [31] gwes an excellent t.ut.onal

““on.this issue. .

7

ot Ty‘p:ica'l image‘sware of the quality used for'computer aided 'design, or flight sirn‘ula!.ion.

© 3.2. Different Memory Access Schemes

’

Some papcrs proposc a flexible accéss scheme to. lhc frame l)uﬂor as a partial solu-

)

tion. t.o blgh specd lmage synthesns The prmcnple bebind these approaches is that

' 'much mformauon st.ored in t.he frame buﬂer is redundant Also (for some apphcatlons)

‘ many sequences of operatlons for one plxel are ldentlcal to those performe& on others

S

land [38] and Sproull et al [35] Thls system called Thc 8 by 8 Duplay, permnts’,v

s

tegy.

“Thus much tlme could be saved lf one could store and mampulate many plxels simul-.

: taneously

Unfortunately, there is little redundancy.in shaded reahstlc lmages nor is there

" much need to mampulate plxels mdnvndually So these approaches are best suited to

. black-and—whlte one-blt. plxela or to rendenng simple monochrome (unshaded)

v

polygons lt. would be mstructnve however, to examme two approaches usmg this stra-

Bechtolshelm and Baskett [l} have proposed and lmplemented a system that per- l ‘

mn.s some parallehsm ln wrmng and mampulatmg pnxela in the frame buffer. Thenr

system performs 'frame huffer op’eratlons that reqmre ﬁve parameters:

(X Y Width 0pcratson Dala)

Py \

where X and Y specnfy the st.art.mg addrcss of a vector of pnxels up to. w:dth 16. The‘
operauon specnﬁes wbat is to. be done wlth‘ ghe daga aud the information 'at the

spec:ﬁed locatlon All t.he parameters are updated lndependently The:r |mplementa-.

~tion .is based on a 1024 by-1024 by one~b|t. frame buffer mtended for use on’ a

mlcroprocessor-based workst,atlon

' A more sophlstlcated scheme has been proposed by Gupta Sproull and Suther-

4

L access to elght-by-exght blocks of plxels The prmcnpal problem that the system over- =

mes is addressmg on arbltrary plxel boundaries. This problem is also found m't,he

‘ prcv.r ' ‘s‘system and&m bot.h‘gcases;n c'onsumes mo:n of the hardware and.design effort,

-

14

5 . .
) .
o . v

23

'
1y
| -~

The 8 by 8 [)laplay was |m.plcmontcd for a kOZl b\ 1024 by onc- lnt l'r'\mc bufler

_iising oll'~thc shelf parts, but' a VLbl smart memory h.n also been <l<-~ugn(‘(l for this

o 5 archltecture This chip also handles output to the video dlsplay The prototype necds

1l cycles or 2420 nanoseconds to operate- on all 64 plxels of an 8 by 8 block The proto»

type can palnt or erase a 768-by-1024 plxel screen in 93 mllhseconds [35]

"

A promnslng scheme has been proposed by Whelan [5] ln contrast to the prevnous“
."two systems whlch could be lmplemented with "off the'shelf" RAM/dns system needs a

specnally deslgned RAM. The ndea bchnnd the system is slmple

’

ln a typlcal RAM one is able to write mto a slngle cell in an array of memory '

‘cells. Figure 3.1 shows a slngle blt of a plxel bemg addrcssed at the mtcrsectlon of the

,s.ﬂ 3

row and column select llnes By a sultable redesngn of the baslc cell and’ th&selectlon

‘clrcuntry, a rectangular reglon of cells can be selected The bold lmes ln the ﬁgure |nd|~ |
. - /\h’
¢

cate the selected lmes whlle the clrcles lndlcate selected cells

. '
.l
v

S TR T ‘
T K .
-~ . N g ' ‘
’,, L e d -‘,-: .L 1 _--:s— - b, - »—-:-———4 LR FEASN) SN Qi
. : 1 !
S ; Y ' :
' _“‘"'“1"‘r“t7“'|"f""_" : . F T "=~ rF- 1T r--
. Row ‘ tor !+ |, - DBanded" '
' . ’-—u-J——l—‘.‘_l-,-'-—-l‘——-—), L ‘.‘_ d :
.. Select v ' ‘ Decoder. s 1
, N e - o .
o I N ' ‘ ' , vy
5 IR | [} 9 R 1]
EX TR U S N L K S F-t--o--F-4-4-=}--
} vor g ' ' -
SR ' 4 <
\ J N a ! |
. Colump Select s o o X'Ban'ded‘.De.coderf
‘ Typical RAM ' ‘ L Whelan s RAM’

Flgure 3. l A Companson of Standard RAM wnth Wbelan s RAM

Wlth thls redeslgn it is possnble to slmultaneously wnte a single color to all the cclls in

' thxs rectangular reglon

; » ’) .4.,...\1 24 '

'
v

Régions are ‘sclec‘ted by taking two‘d‘iagonnlly opposed points from a rectangle

primitive makmg it possible to ﬁll a whole rccmngle in omne opormon High

bandwndtbs are possnble usmg thls scbeme ~ 1t is poss:ble to ﬁll the whole screen, fqr
instance, in one memory write cycle, C.

This architecture is restricted to rectangular geomet.ric primitives and does not

permlt. ahadlng wnhm the rectangle Shadcd antlahased plcturca can, however be ren-
s
)

e

dered by lndlvndually addressmg pixels havmg colors dtﬂ'erent. from their neighbors.

Smce pixel colors in ‘most realistic unages are umque system’ performance would

rapldly degenerate to be (possibly) slower than that of a conventlonal aystem. For this

reason the system would be extremely useful for VLSI CAD workatatlons but not use-

ful for gencral purpose sbaded scene generation,
4 ’ ‘
3.3. Processor-per-Pixel Approaches o .
‘-Reeent edvéneea in VLSI technology have made even the most ambitious of archi-.

tectures seem feasnble A scheme devised by Fuchs et al. [17], for mstance proposes to

'

put. a slmplc processor at every plxel locauon in the frame buﬂ'er As extravagant as

thls archntect.ure sounds, it eﬂ'ectlvely solves the two - baslc problems of the rendering

g,
process. The masswe parallellsm solves t.he computat:onal bandwndth ‘problem while

commumcatlon bandmdth bet.ween ‘processors and memory is no longer an |ssue since

data |s generated where it's needed ’

"

‘ The system is'base‘d on_a processort w‘hi‘cb eflectively calculates functions of the -

: p/(z,y) - Az + ‘By"+ (o

» . ,

. by broadcasting the coefficients to all the processors in the a?r‘ay‘. Each element can

v

.4 The proceuors m the array are quite snmple A clever VLSI lmplementatlon allows partlal
‘results to be distributed to each element '50. that each element appears to be performmg multipli-
cation and addition operauons e — N L

. ' . . Lo . . T

9y -

P S

T

\ L | |
thep perform color calculntions such as: . : ‘ o

Red = fhgy)= A5+ By G,

or depth calculations of the form:

' z= m,n = A,z + By * C,.

o Cow A

w

A slmplc t,est equation of the above form c can also be tsed. to "set” plxels l'ound in
the mtenor ol' cach polygon. By broadcast.nng the appropnate A B and C values for
each edge, plxels in the polygon intefior yield a posmve number Whllc thosc outside

‘ t.he reglon glve a negatlve number Positive pixels are left active and negauve opes are

set mactlve After broadcastmg all the polygon cdgcs all points in the polygon mtenor'

1 1

are set (see Figure 3 2) S : T

o Poly'goll to be ‘
+ rendered i ' l
Region of active
pixels N
L , ’
a a b
. LD ; > ¢
W v W vy IR 1
\ ‘ L VP W W W ' : . : SRR ¢
‘ ' - . AV \: 1) o ‘)
. Afteredge"a” Afteredge "b” ' After cdge c”

is broadcast- . is broadeast. R ls broadcast
‘ Figure»;3.2. ISclection of, Interior Pixcls

Now all the. selected plxels are tested for nsnblhty by calculatmg dcpth at eacl
“pnxel and companng the me value to that alrcady storcd there Plxcls covere(l bv prc- .
‘v:ously stored data are dlsabled and Zis calculated for thc remalnxng active plxcls abd

stored. Color is t,hen calculated in tbe remammg acuve plxcls by successnve broadcasts‘-

of the coeﬂicnems‘for the color equations. o ANV,)
o ‘ P R o 8 '.3 A ‘é?‘.l‘ ' |

@

-

,

.3.4. Processor-Per-Object Appro'aches (Object-Oriented Processing)

20

s N . - P
['he aystem can handle convex polygons with arbitrary numberstof cdges apd can

perform amooth shading, Unfortunately, the syatem Js incapable of antialinsing, Most
‘ \ .

]

rccently the system has been implemented in two-micron technology with 64 pixel cells

per chip, At this level of integration, a commercial implementation may not be

cconomically feasible, but further advances in VLSI -ould change this,

There are several papers which allotate a processor to every object or geometric
o~

‘g,aprimitive. ‘They can.therefore be described as object-orsented. These approaches are

similar in that all processors generate data for a single pixel or region of pixels at more

or less the same time. After data generation, hidden surface removal takes place, usu-

ally using the Z buffer algorithm, The following discussion considers two systems simi-
™
lar in concept. o ‘ : ‘ L
. Mosh

v N
Sy

Fussell and Rathi [4], have proposed an architecture which, they claim, should be

'c’apable of rendering 25,000 polygons in real time. A simplified schematic of this archi-

tecture is given in Figure 3.3, ‘ 3 | ‘. - ﬁ |
‘ i &
L IT -{ TP
" Host | IT - L_|TP Arbitration ’ <
Com'pdter : : N |0gic - »
— : :
,;ﬁ«;' N t °. ' _— N

K

: IT - Interface to host and transformation and clipping
S . TP - Trianglé Processors (1000 per block) - »
RV - Refresh controller and VDT -

- - [

'Figure 3.3 Triangle Processor Architecture (After Fussell and Rathi[4])
b e T

The s¥§£em is intended to be attached to a host computer which generatés clipping

f) . [

and (r:‘mslform:xl‘ion instructions, Triangles n(‘n.tl from t‘h(? host to the "I'T"™ wnits are
buflered and the transformation and clipping are performed as specified by the host
computer, In addition, the trinnglés are initiaiized so they can be processed by the sim-
ple triangle processors, Notice that the "JT" units are connected to modules of 1000

processors at a time. This is based on the assumption that the clipping and transfor-

mation units can process 1000 polygons in real time,t 4 !

The triangle ‘processors and arbitration logic now act as a-"virtual frame buﬂ‘cr.."
Tbi; is a "virtual” frame buffer since it does not really hold pixels Hut. the refresh con-
troller operates as if it is reading out of a norm;l memory, When a read ‘requ‘cst. is sent
to the “triangle buﬂ".:r" all triangle processors generate a pixelt and the arbitration
logic decides ‘which pixel is closest to the viewer, The arbitration logic now returns this
pixel to the refresh controller for displdy on ti:c video screen. This eliminates the need

for a frame buffer,
3
A desirable feature of this system is that processing time is independent of

polygon size and the number of polygons (up to the maximum number allowed). There

are, however, a number of problems with this system.

All geometric primitjves must ﬁl;e reduced to triangles to accommodate the simple
structure of the VLSI processor. A‘lso, since tber;e is one processor per object, the
number of processors limits the number of triangles in the scene. The most serious
difficulty of this system is the inability to perform antialiasing. The authors admit "’
that adapting the system to periorm antialiasing is difficult. This is the greatest prob- .
lem since an image composed of 25,000 aliased triangles can be easily poorer in quality

than an antialiased image of far fewer polygons.-

A similar system has been advocated by Richard Wejnberg [36,37). A diagram of

*"This is the estimate given for the speed of Clark's geometry Engine which could be used in
this unit[4].
$ Only if the triangle in the processor covers that pixel location.

his architecture i3 given in Figure 3.4,

() o oo O] ‘ *
. @@0 ° o"@_—“ F F prooo— F L«» Frame
: Buffer

O ~ Object Processors

y : C -~ Comparators .
F - Filters L ‘ ' %

; Figure 3.4 Weinberg's Rendering Architecture (From [36])

In this system, object processors receive and render one object per processor and out-

put groups of pixels covered by thqsé object?. The‘pipelined comparators receive a

- pixel region for the background colors at the head of the pipeline. At each subsequent

comparator stage a check is made to see if the object (stored at the current object pro-

-

cessor) covers the current region. If an object partly covers other objects (or\is partly

visible) then it is added to a list which is passed on through the pipeline. This growing

~

list contains all objects covering the area of current interest.

The filters are also arranged in a pipeline fashion. Each element in the fiiter pipe-
line clips a "sub-scanline” from the pixel list and passes the rest of the pixel list on to
» - ' » | ﬁ . ’ .
other filters in the pipeline. Colors are calculated for each sub-scanline and are passed

and summed in later stages. The last stage of the pipeline stores the z;ntialiasgd pixels
[s B

into the frame buffer.
This method, like the previous one, restricts the number of objects to the total
number of object processors. It also requires sophisticated timing and control logic

since flow through the pipeline is not uniform.t Weinberg bounds the speed of his sys-

tem (measured in cycles) with the equation:

. Number of cycles = (n x m) + p+q

t Pixel.lists, describing a particular region, could grow or could be partly delcteci within the
pipeline; yKis could leave regions of gaps in the data flow.

" . ‘ - 29
\ o ' ‘ .
\ B ' , ' v h
where noand m are the dimensions of the frame buffer, p is lhc number of the objeet

\ .
procoesxors, ;nd < i3 the aum of the perimetery of all (hc lr\pczmd'« i the scene,

i

‘These two papers are similar in philosophy, Their differences lie primarily in the .

comparison\ stages — Weinberg pipelines the comparisons while Fussell and Rathi

\ ®
carry out comparison in a tree-like structure, While Weinberg ctaims to be able to per-

form antialid\sing, Fussell and Rathi point out that their scheme is also amenable to
\ o ‘

the same algorithm that Weinberg proposes — they, howevér, are sceptical about ijts
implementation\ [t appears that Wienberg’s antialiasing scheme may fail under certain
pathologlcal condmons Unfortunately, no report. was glvcn about any functional or .

pcrformancc snmulatlons that may have been carried out, \

A clean, clegant and feasib‘lc design is proposed b?' Locanthi [2]. .This system is

designed to render rkctanglea for VLSI desngn stations, It is restrlcted to planar, nony
\

shaded rectangles and\does not perform ant.lallasmg or hidden surface removal
. ‘
This system is fouhded on a basic cell illustrat‘ed in Figure 375 'This ce" stores

two diagonally opposed pomts of a rectangle When an X-Y pixel address is broadcast

toit, a slmple test is maée to determine if the plxel falls Wlthln the rectangle If it

does, the rectangle ‘golor is YORed" with the colors of other rectangles that contain the .

pixel. This basic cell is replic t%d» to hold all the rectangles displayed in the scene.

[N

- ‘ | Ongin' Y I\ B l Ongin X l o
, e ‘V v .‘ o
= I
ih—J " ‘
p Color 3
—y = >
[Ee¥]
Raster ¥ _ Raster X

Figure 3.5 A Rectan le Cell (Afier Locanthif2]) -

‘ ' 30 -

Alt ugh‘ there I’! no ‘hi(ldon surface removal, this does not nc(‘(my (‘:nu.w a
problein with the intended application. As in the previous Iobjccl orwm(-(l dungnw'
~the numbcr of objccts dlsplnycd is hmned by the hardhw'\re An advamagc with th;s ‘
dcsign is t.bat it eliminates the need for a frame bufler since rendering can occur as the
, vndeo ‘screen ‘ns r‘efreahed Using technology available in 1979, it seeme;i feasible to
obtain upwards of 200 cells per chip.
3.5. Image Oriente’d Prooeuing

. : g "
ln contrast’ to the above approach it is possnble to dedicate processors to parucu-,
lar part.s of the image rather than to objects. m the image. In thes.e fmage-oriented
schemes, processors are responsnble for groups of pixels so they are a g'en'el"alization of .

the processor-per-pixel schemes. The problem with this solution is that the image may

not be uniformly complex so some processors do more work than others. -

There are many schemeo t.nking 't,his tack, and th‘ey‘) can all Be distinguished on'
how data is dlstnbut,ed to- tbc processors. The ﬁrst. archntecture proposed by F‘uchs ‘
and Johnson [16] broadcasts polygon descnptlons to all processors snmultaneously |
The structure of the system is shown in Flgure 3.6. Notice that all t,be processors are
connocted to one or more pnv.atel}_he,ld 'memory,modules. .. |

Tne,purpo:xe of the CBC (Cenornl Broadcast ‘Contro'ller) is to Broadcaso ‘polygon
doscrlptlons to all the processors slmulmneously Recenvnng proc;ssors then decude |f

the polygons intersect tbelr area of the screen. If they do, plxels are generated and

v

wtored lnto the. frame’ buﬂ'er When the Iast processor has ﬁmshed wnh the currentf -

polygon anothcr descnpuon is broadcast on Lhe bus. L

'This archi;ecture is cleverly const.ruct.ed to‘allow flexible configuration of memory
and processing. It is possible, for instance, to increase (or de.creaqé) screen resolution-or
to increase processing power by simply insertiilg or removing men’i’bry and processing :

—— ' e X . f,

™

o

LA

Central Broadeast
Controller

/7 ||
{i 1 [m M m
| I
v
. Video Scan' Y
‘ ‘ ' Generator 3

N

Figure 3.6 Fuchs' and Jobnson’s Multiprocessor Architecture
cards from the bus Also, the system is mterleaved to allow umform alstnbuuon of tbe
image over all tbe processmg modules. Tbe authors of thls paper claim their system is

capable of prodncrng a pixel every\ 50 mncroseconds.

' ,

f? . .

There are a number of problems with this- system The l'ull parallel potentlal of .

tbelprocessors can not. be realized since. tbe common preparanon of the polygons is car-‘

'

‘ned out by all processors Tbls mmahzauon 1s necessary before pnxels can be produced

. in the system and it is possible, in prmclple, to perform them prlor to broadcast.mg

ot

Anotber problem is the lneﬂictent use of processors Smce all processors must. wan

for the slowest ‘one, tbere is great potentlal l'or wastmg the computmg power ol' the ;

=

~ system. In addltlon, the broadcastlng time is not overlapped wntb computatnon S0’ “this

source of parallellsm is also wasted

Parke [12] generahzes t,bls lmagc orlented scheme to the system structure in Flg- -

ure 3.7. Scheme varlatxons are dlsungulshed by thelr dlstrlbuuon process Parl\e com- ‘

“

pares the broadcast scheme (descnbed above) to a splntmg—tree and- t,o a bybnd of

“.the two approacbes. '

Splitting-tree disl.ribution. schemes take incoming objects 3'.1,‘1 s‘plit them about a

- vt 32
) ‘ N
& Host

o N ‘Distribution Process /\ : lmagen

_ : : ‘ . - . Processor
: | N | N | ‘ Y ‘ i
R IP |.|IP IP : P '

Memory 4 | RE :

3“/
— Z
— =
Z
k<

Vndeo _. CRT- .
Generator . ‘ o

I

vFigure 3.7 'A Generalized lmage-'Orienvted Archit;ectul:e (After [12]‘)
4 gnven pamuon If the polygons (or polygon l'ragments) l'all on one slde of the part.mon
¢ they are sent t.o one half ol' t.he tree, otherwnse they are sent to the other half. At each
- node ol' t.he ‘tree —vexcept for the branches ~— there is a splltter which fragments
"mcommg‘ polygons and sends them to the appropnate processors Thns dlstnbution
- scheme attempts to overcome t,he problem of wamng for slow processors and achneves

‘ more parallellsm since I/O and m:t:ahzatlon are overlapped thh ‘pixel computauon

- The: performance of t.hls deslgn is. vulnerable t,o the charactensucs ol' the rendered ‘

,ﬂ'

' ',scene ll' for mstance, the i |mage ls non-umform in lt.s complexn,y (a hlghly probable .

s

) scenano), some parts of the spht.ter tree wnll be overloaded whlle ot.hers remam ldle
‘ The splltter tree approach requlres t,hat. processors be responslble l'or a contlguous_

I reglon of t.he ﬁnal lmage, thus there is no mt.erleavmg to dlsperse the workload

The hybrld approach combmes t.he spln.t.er tree wnh the broadcaster In, '»t.h'is '
."method &he splm.er sphts and dlstrlbutes polygons to t,wo halves of a tree but uses a

L 1
broadcast approach at the bot,tom The hybrxd scheme tends to "even- out t,he del'ects__v-,

passcd on t,o t.he pixel processors fOl‘.plXCl producuon

: ‘ 33
AN ! ! '
. v “l v"'
of both approaches, N

QUII anothor image- oncntcd" d("ugn, called "E \PI‘RTS"

“has been proposed by
Niimi et al. (18]. This system mcorporates two' specially desngned mlcroprogramnble

processors for rendermg ~— the SLP (scanlme processor) and the PXP (plxel processor)

Tbese two processlng element,s are specnally deslgned t.o 1mp|ement, a scanllne render-
| ing algonthm Tbe system ‘partitions the lmage space into bundles of scanllnes with
~ processors dedlcated to rendering them and-roughly follows the gem'znc archntccture

. described by Parke (see Figure 38) The host computer dlstnbutcs the polygon
descnpuons l ‘ '

. A -
Hos§ ' o
SLP ‘ R @p
[1 . o NN B ‘ . 1 .
PXP| [PXP|oao PXP - |PXP[|[PXPlooo [PXP| o 0o - [PXP] [PXP

ooo PXP) I'“

Frame | " ", | Frame o000 Franiq
Buffer |- | Buffer | e ' ; Buffer .
. " . o . o . ' » \ .
LA Video Display .
: _Generator' o c
) Flgure 3 8 The "EXPERTS Processmg System S

to the scanlme proccssors whlch prepares acuvc segment llsts Thcse segmeut llsts are

. ' o
" . o
L »

The authors clmm Lbls system is capable of rendermg about. 200 polygons in l/lS

of a second Thls system is also capable of anuahaslng and handlmg transparcncy1 Tbe

authors use an mtcrcstmg approx:manon l’or the antmhaslng scbcme wblch also bclps

B

) [. —
‘speed systesn rendering,

3.8. Other A'p‘p‘roa‘ches
* .. A .general purpose multiprocessor has been considered f‘or use in h‘igh' speed
rendenng (6]- The authors of thls paper show how high speed graphlcs can be lmple—

e

mented on a general purpose system called an Ultracomputer Thisis a parallel pro-

cesslng system belng developed at New York Umverslty '

.“’ o ‘ ’.The proposed system consists_ of n independent processing elements connected ,to‘
‘n independent shared memory modules. Connectilon is achleved using Lawrie's Omega
network swntches which have been augmented with some addltlonal processnng capabll-
ity. The swntches haue the ahlllty to merge slmultaneous operatlons on any given

memory locatlon ‘Thus, memory traﬂic can actually be reduced as operatlons comblne
in the netw;ork. | |

No performancé estlmates are’ ngen for the approach although a claim is made'.

" that speed-up is llnear up to'some lower bound deﬁned by the screen resolutlon The‘

proposed algonthms have been mplemented usmg the parallel langunge Concurrent |

Crow and Howard [10] ‘have deslgned a’ smart. frame bufl'er with a view-to

speedmg up plcture generatlon They u’se a 32 blt-word frame buﬂ'er wn,h a smart,t ;

. update port whlch can dlrectly lmplement the Z bull'er algorlthm or can- comblne "

§|ncomlng data wnth p|xels already in the frame buﬂ'er The emphasxs in thls desngn is

‘more on ﬂexlbxllty than speed
Whltted [39] has also suggested a pxece of hardware that resndes wlth theﬂllg,mel
bull'er He has deslgned a specnal LSl chlp to produce both pnxels and thenr depth :
' values Thls chlp ls mtended to lnterface wnth the front end of : a frame bullcr and

accept lnmahzatlon parameters from the host machme Performance snmulatlons mdn-, -

B cate that usnng the Clllp can at least double the speed of a Z buﬂ'er algorlthm comparéd‘

.

to a VAX.780 ulon(-,‘ - L S L , i

(}

A spccml bus (lemgn has bccn proposcd to aid Z depth comparnon (34). Gomh \ll

and l,mdner describe a mulluplc wr:tc bus scheme where several processors cnu write

E A

. to the bus at the same tlme with the result bemg the ‘ OR" of all the data output

Wrmng processors can t.hen check tbenr output agannst tbe most slgmﬁcant blt' on thc ‘

 bus. If this blt is greater t.han the correspondnng blt in the processor t.be proccssor

’

. wntbdraWs ‘its output Otberw:se processors cbeck the next. lowest bit, and" contmue,

P

’ unul tbe lowest order blt. is reached and only one processor remains (assummg that all

Iy

' the data is umque). - *
The authors observe tbat this scheme Can be used to plck t.he closest. ‘pixel among

a number of plxels wrltten to t.he bus This approacb requ:res that all data going to a

partlcular locauon be wrlt.t.en at. once Tbls lmphes that t.he mult.nple-wme bus must

be used in an object-orlented archltect.ure : N ,
'A scheme mvolvmg mlcroprogrammmg has been proposed by Jackson [24]. 'I‘bls ‘

: approach mvolves non-shaded polygons and no antlahaslng Scanllnes are run-lengtb, o “

encoded by a host processor and are sent to a speclal purpose processor wlnch can
s R

‘ ‘decode and ﬁll the frame buﬂ’er at. hlgh speed ‘ ’ BRI

S LI
Cl‘ow [9] descrlbes a scan Converslon SCheme for Vector generatlon On a raster o
P N s ‘n

. display devnce. Tlns plan uses a speclal blt—shce processor whlcb sorts 5 and mamtams“ ’

Lvectors and scanhnes. As in Jackson) scheme run-lengtb encodmg is used to handle

' 'bandwndth problems to the plcture element processor Thls arclntecture uses only 2

: scanllne buﬂ'ers in place’ of an entire 512 by 512 plxel frame buﬂer B
. S 'l

‘.

N

" tures takrng thls approach have antlallaslng capabllrt.y

N - o I 4

A .
' . L
. (M

'3.7. Summary ‘ ' ‘ ’ , . <
. . : i . ,
l xpcr:mcnts with memory acccess schemes m(llcate that they are only good in l|m~

x ‘v

Jited nppllcauons since the maJor lssue of plxel generauon is not solved Whelans

i

scheme in partlcular would be ideal for VLSJ ‘workstations dlsplaylng Manhattan type

| . deslgns The vertlcal and honzontal edges of t.hls appllcauon do not have problems

- with allaslng delects 80 antlallaslng is not lmportant

l’rocessor—per-plxel approaches ~— of whlch there i is really only one reported —
promlse t,o be very l‘ast, and oﬂer shaded lmages but no antlahaslng But current levels
of |ntegratlon mal(e any usable sized implementation lnfeaslble. Thls.ls likely to'be gche
case in the foreseeable fut,ure; - ' | o B . \ ST p
Variouslschemes are ob‘ject-oriented.‘ These are characterized by having each pro-'

cessor dedicated to rendenng one |mage pnmltlve A lgeneral property of such systems

is t.hat processing tlme is lndependent of the’ number of pnmmves up to a certaln

[

' llmlt namely the number of processors in the system It does not appear t.hat.

antlahaslng can be accompllshed easlly, although Welnberg clalms hxs system IS capa—

~ble ol' it. In t.he short t.erm, t.hls t.ype ol' archxtecture may ﬁnd only llmxted appllcatnom

*‘Locanthr s scheme, l'or lnstance appears l'easlble and is ldeal for. VLSl workstauons

Archnectures have been proposed where processlng power is dedlcated t,o parts. of

‘the lmage rat.her t.han to objects Some of the archltectures using thls scheme are

. modular and ﬂexlble The most obv:ous defect. m thls approach is ns suscepnbillty t.o

‘0.

’-non-uml’orm complexnty ol’ the |mage ll' a compllcated lmage falls in part. ol‘ the image

space. t.he processors in thls reglon Wlll bave more work than t.he others Few archnec- ‘

Ot.her approaches do- not. appear to cgme close to- the requlrements of provadmg

-'l’ast. shaded anuallased nnages Most, ol‘ the ot,her schemes, l'or mstance .are jus!, "

i

‘hardware alds for the Z buﬂ'er algorlthm The Ultracomputer syst,em provrdes shadmg

T L wm

)

and 'mtnqha'ung, but realtime produc(ton 'and (lnpl:w rcqulrc« 1pcc|.nl purpose

hardware if only to h: mdlf- the lmndwndlh of data to e wn‘tl(‘n into'the frame buffer,
There are many desllralble cbaractenstncs Lhat a hlgh‘ performancc rendering s)a«
tem should have. Ant.l ahasmg, with shadmg and transparcncy is necessary for rca||3~)
tic @age gener;tnon The problcm i3 that this must be done very qmckly In addmon .
it is desnrable for the system to. allow ﬂexlbﬂnty in the type of rcndcnng algonthm used" ’
and to be easlly chanqu to give hngher speeds. lndcpendence of data complexity and

performance are necessary for a robust system Nearly all the systems exammed

' here have one or more of the abovc properues but none has them all,
.

- Chapter 4

A Multiprocessor“ Algorithm for Rendcrin}g
. b : ! . '

4.1. Factors in Algorithm Design

Real tlme requlrements place severe constralnts on any algontbm consndered for a

‘system. A llmltlng factor in most pirallel systems is the amount of commumcatnon’

requlred between processors ’I‘he amount of commumcatlon requlred is lndlcatwe of

1

the computatlons partltlonablhty Kaplan and Greenberg [29] suggest this’ is the
s o
'major conslderatlo,n in chooslng a hidden- surface algor{thm for parallel lmplementa-

tlon and is’ glven great empbasls in the proposed algorltbms

| Otber factors consldered are the types of operatlons performed by‘ the algorzthm
" Floatlng pomt operatlons for instance, are tlme consuming and should be avonded
Even greater apeed-up is galned by placnng the most frequently executed operatnons in
hardware But to easlly oﬂload" the algonthm into VLSl the algornthm must be sim-

3
i

ple — thls means agaln no ﬁoatnng ponnt operatnons

Fortunately the'rendering problem is well bounded ‘with respect .to numerical

"values Numbers, representlng plxel addresses all fall between 0 and 255, pnmary

‘ color values can be represented by 8 bit lntegers and a lﬁ-blt integer. 18 suﬂiment for"
‘ the Z depth All these calculatlons can therefore be performed with. ﬁxed ponnt arlth-‘ =
‘,metlc as the dynamlc range of numbers is small. These observatnons prompted the

- decnslon to. put’ most of. the workload lnto dedlcated bardware Thus the plxel genera-‘

' tlon algorltbms are slmpllﬁed for VLSl mplementatnon Thls dedzcated VLSi dev:ce is

‘called a plxel-gun R

. ' i
e

The algorltbm presented in this thesls is based on tbe work of Loren Carpenter

" [28) and uses two data structures slmllar to those in' his scbeme Whole pizels : are gen-

' r“"

| (‘erated from polygon mterlors and are completely covered by a polygon Fragmcnts are N

pleces of polygons that partlally cover a pmel and are rcpresented by structurcs‘

39

» .) \ ! ’ . ' J . ' s) s
containing bitmaps. 'In the present scheme all fragmenta are gencrated from polygon
cdges. ‘ ‘ o |)

. 9 ’ t ' '
But. Carpenter s algornhm reqmros some chauges and theae mcludc data restric- -

Co uons to allow snmpllﬁcauon and changes to Lake advant.age of data coherency in'. the

rendenng and fragbent generauon phases Slmpllﬁcamon is neccasary to allow eﬂiclent

parallel decomposmon and ' to allow some “of the algorlthm to be performed on a -

special- purpose VLSI device.’

'

!

The proposed algonthm assumes non~|ntersectlng polygons so mteraectlng

\ .

polygons must be split(if t.hey occur) Splm.lng has no effect on Lhe appearance of t.be

|mage but |t allows a simpler mergmg algorithm . This assumpt.lon places all ahased
plxelrlocauons on polygon edges and allows-eﬂicient fragment production since edge
coherence can be used to generate bitmaps}'.f

Fragment generatlon is also slmphﬁed to produce bltmaps of reglons on the lnt,e~
" rior slde of the polygon edge This may lead to ‘an |naccurate representatlon of the
polygon geometry wnt,hln a smgle bnt.map, but. the correct geometry ns reconstructed in

a later phase of the algorlthm Sunpllfymg t,hls generauon makes a pnpehned VLSl

(

N

-

algont.hm much easier to lmplement SR o Lo

5
°

Whole-plxel and fragment. generatnon have bcen slmphﬁed to the point where
both can be performed on the same VLSI device. usmg ﬁxcd .point anthmetm Slnce

1

these aspects of rendenng are the most time- consumlng, some real performance gams “‘\“

o g

. can be expected. C ' E S A) " e
The proposed rendenng algornbm is d|V|ded iito four dlstmct phases in t.he ﬁrst
pbase the frame buﬂ'er is lnmahzcd to t.he background color ln the second only

- whole-plxel data are generated, in tbe t.hlrd only fragments and in t.he founb the Lwo |

day,a types are merged lnto ﬁmshed pmels Partltlonlng of pbascs is not st,nctly

.+ Polygon spht.tmg may cause’ more \vork for the i |mage modellng systcm

.

A

[}

'ai_)d make_frag algorithm; it also considers some possibilities for implementing

i

40

neceaaary since both fragments and whole-pixel data can be generated concurrently.
‘ :

)

Iliase partitioning is chosca for the following rensons,

If whole pixcls are stored first then fragments can be rejected with only one com-
. e,

parison. In a more concurrent scheme the same (ragments could not. be rejected if

* . I "t
' to . . , . a 3 »
.stored before the whole pixel, Since fragment storage is time consuming, unnecessary
. . N 'y 1

u. L) ! . . N
. fragment acceptance would 'be a detriment to system performance. More fragment
[C i

\ I

"

storage into the frame buffer puts a greater demard on memory capacity, Also, more
A g P gr y cap Yy '

.

oA

fragménts will lengthen the merging phase.

Depth comparison would be more time consuming since a whole pixel or a frag-

ment can not be rejected using depth alone. A depth, for instance, can belong to a
. ”

fragment that does not cover a whole pixel; hence, even if the incoming pixel fragment

is behind the resident one, it may still be visible. Therefore, phase partitioning is
‘kl.
Al

justified. .

\

\ .
. . -
. » 7(B

' This chapter considers the designed algorithms in more detail. Phases 1 and 2 are

v

discussed ‘and three ﬁ:ajor algori't.vhms, used in Phase 2, are described; these include

Arcady;poly, ready_scan and make_psz. Phase 3 discussion:centers on the fragen_snit

e o

. . N R] :
Jragen_snit into VLSI. Phase 4 is considered last and the merging and clipping algo-
rithms are explained. . - *

'

¢

/4.1.1. Phasel . .) C

. Phase'1 consists of frame buffer initialization by setting the background color and

) the depth and dz values. -

)

"

4.1.2. Phase2 o : :
' ! -
In' Phase 2, "whole pixels” are produced and stored into a feame batler, A~ mens
tioned previously, "whole pixels™ are those elements falling in the interior of:polygon
primitives and have full bit map descriptions (see Figure 4.1),

One Pixel ; r ' .

- - ' /

Nz
—— 4 A

]/
117 ;. .

Figure 4.1 Rendering of Whole Pixeis

This phasé generates pixels in scanline order starting from the top of the polygon
prin?itive (highest y:value) to thc‘ bottom (lowest y value). Since t.be pixel-gun per-
forms whole pixel generation, this phase must be simplified to allow VLSI implementa-
tion. Unfortunately, the pixel-gun processor is unllkely to be sophlstlcated enough: to
handle raw polygon descriptions so it must be.initialized before each scanline. Initiali-
‘zation will be done with a more flexible, but slower, general-purpose processor.
Polygons also require initialization a:lxd in preparing them (using rchy_palﬁ), incre-
mental parameters aré produced for the vscanline initialization routine. These include

edge colors and coordmate changes (2’5 -A v

initialization routine (ready_scan) uses these in‘crenicnt. values to calculate new edge .

values. After calculating edge parameters, a new set of incremeats are produced for the

pixel-gun. These routines are now examined. in more detail, “

) along each polygon edge. The scanline -

-

42

4.1.2.1. Ready_poly

This routine is responsible for preparing a new polygon for scanline rendering,

,

When ready_poly receives a polygon, it discards horizontal line segments and tries to

. find the top two edges‘ that bound an area of the polygon, In Figure 4.2 the bold

{ ' .
polygon edges bound the top scanlines of the polygon.

. discarded horizontal

w

edg - lht'tl'fll Xgicur

Initial color; ppr ‘ | i /

’ ‘\ | Endy
———a
/ / #]

color gy + Acoldr cfr

;- Lo ‘ { Kriont [Y- A XgiGur
. . @-

Figure 4.2 Polygon Initialization
Increment values are calculated for both these edges and are added to the current left

and right values when a new scanline is started. In this ﬁgure, the new x value for the

right edge is: z,, + Az, Snmnlarly, the new right color is: color iop + Acolor"’h,‘l‘
Notice, however, that the pixel color is calculated at the center of the pnxel while the X

§,

value is calculated at the bottom. Discontinuous color ‘changés'might result in later -

rendering phases if the color is increnented on pixel boundaries. The increx;ented

- . ~ . .
t-Although the diagram indicates color calculation with a single value, three different color
components are used. ‘

' | A3

-
cdge values are: x, 7, red, blue .iml green,

The next cvent is the determination of when o new polygon line segment needs to

be considered, This must be done when the next v v:ilue or 3caanline is not bounded by

'
¢

the current two line segments. ln the figure, the "end y” occurs above the bottom of

~the right hne segment This value is chosen because the right slde ends sooner than the -

~
v

Ieft..

ll' the line segment ends exactly on a ‘pixel boundary (the case with the left linc
seglnent) this value will become an end y value slnce the scanline is still bounded by it,
Now rcady_poly mterpolates the colors, z” and x coordinates l'or the first scanling
bounded b)' both line segment.s These points are cnrcleyn the figure at the top of the

polygon. After this, processing is taken over by ready_s

‘

4.1.2.2. Ready_scan

The first function of this routine is to dccrement the current y value. If the new
scanline equals the prevnously calculated "end y” value a new hne segment needs to be

-added, otherwnse the l'unction _proceeds as l'ollows ‘

The next step is, establishing the beginning and end of thevwholc pixel "run” on
the new scanline. The int,ersection points of the polygon edge wn,h the boundanes of

‘one scanline ‘are circled in Figure 4.3. The ceillng of tbe maxnmum x intersection pomt

1

on the left edge defines the first pOss:bIe point ol' arun of whole pixels (start x). Simi-

A

larly, the floor of the minimum of the |ntersccuons on the rlght edge defines'the lowest'

x value where a whole plxel run must end (stop x).

.

If start x is greater than or equql to stop x tben tbere are no whole pixels on the

-

current, scanline ‘A new scanline is smrted and the process iterates unul the current
line segments are ﬁmshed,o_r ybole pixels can be found. Whole pixels are indicated in
" the figure with cross hatching: o .

.

2R

L

: ! ™\
n . N o ‘¢
\ Start x = __| \ 1 Stop x
. T ; / i |

Eod y : A 3.
—\ / fe) : red + Ared
: X - : h Ablue
d . / / \‘l‘ een + Agreen
r \) :
btlue NP \ Zl+ AZ
/ ‘\
green . C \
YA ‘\ ’ . : ,I
{

‘ Figure 4.3 Ready_:can Calculations
[N B .
When thc beglnnlng and end of a whole pixel run is found t.he new starung

values can be lnt.erpolat.ed from the polygon edge to “start x. " These colors and z

...depth represent t,he values for the first whole’ plxel on the scanll'ne.

The last step in scanline: initialization occurs with the calculation of increment
values for red, blue, green and z. These are used by the make_piz algorithm for cal¢u-

lating new pixels. - _ { , SRS

' 4123 Make_pix .. | | -
This algonthm is executed by the plxel gun It compares the current X value to
‘t.he stop x value lf the current. X equals 8top x, the algonthm stops otherwnse it adds |
A values to calculate !.he new colors and 2. The new pixel'is t,hen output, t.he current X,
.' 'lncremented and t.he process repeats The pn(cl produced by t.hy’ phase is given in Flg-

1

ure44

RN

lr("d green ‘blue .k X | Y

0 7 15 23 31 39

z] dajdx C O de/dy

3§ S ‘ .55 ‘ . 71 | . ‘ 87

_ kFigure 4.4 Whole Pixel Data Structure |

4.1.3. Phase3 | |
The purpose. ol" Phase 3 .is to follow each‘. polygon edg'e 'an‘d. produ'ce bitmans of

pixela-intersecting the edge (see Figure 45) Whole pixels are Inot. generated in rhis

phase, alt.lxough Loc,casionally’a full bitmap is produced. Also notice t.hat‘corners pro-

:duce two bltmaps even though they fall into one pixel. Thls isa consequence ol' the

x vfragment, generauon algorlthm since t.be plxel-gun only bandles one edge at a umé a‘hd ‘

always extrapolat,es polygon edges to the plxel boundary when producnng bltmaps ;

: Polygons narrower than a pnxel also produce two bit maps — one map l‘or each’ oppos-

. ing edge In cases such as these the true bltmap ol' the area lS reconstructed in the\

fourth pbase.

To gcnerate fragments an algorlt.hm must cllp t.he polygon. edge to eacb pnxel

boundary. This cllpplng is executed by the VLSI plxel gun and must t.berefér‘e be l'as!. : .' .

s
K]

ey

Y

‘and snmple

Al’t.cr cl:pplng it is possible to generate a bnmap approxsmaung both the area of o
the polygon l'ragment. and its geomemc ml'ormauon Thls allows judgemem ol' wbetbcr"-"
‘a parucular polygon l'ragment is covered Each blt. in the map represents 1/16 ol' Lbe‘ A
total pixel area and is. used in Phase 4 t,o wenght the color value of the fragment for "

ﬁnal pnel color determlnatnon The plxel -gun must do bn.map gcnerauon a8 wcll as"

46

7
/]

One Pixel

Figure 4. 5 Plxel Fragment. Generatlon

produce the red, blue and green colors, the z depth and the x, y addresses for each

plxel frggmqnt

&

_Color productlon and depth calculatlons can be carned out exactly the same way -

~asis done wuth the whole plxels Speclﬁcally, as. the edge is traversed new depth and ‘

- color values are calculated by addlng increment values Thls is lmportant when consld-

, erlng lmplementatlon in VLSl because the ‘same clrcultry could calculate color and

’ depth for fragments and. whole plxels - the only dlﬂ'erences between the two phases is

' 7 l'm X,y address generatlon,'and generatlon of a bntmap.

The VLS[based archltecture proposed by Fuchs Poulton et al. [17] is capable of L

‘ produclng 3 plxel map of all plxels bounded by the edges of any partlcular polygon

' ‘Note that just as all polygou edges deﬁne a bounded reglon of plxels, the pl‘(el boun- -

v danes and polygon edges deﬁne a bounded reglon of sub-pn:els thus the problem of'. .

produclng a fragment bltmap is exactly analogous to that ol' producmg a map of pm- -
The plxel planes algonthm can bc adopted ina stralghtforward fashlon go b:tmap ‘

';generatlon Usnng thns algonthm would be advantageous slnce lt has been euensn ely»-'

Ay
A .
\ " . ¢

tostcd by Fuchs ct '\l in two different |mplcm(nt:\tlons - with lhc x(‘(‘oml \(‘r\ion con-
. \ . N ' i

a subset of thls hardware since bltmap snze i3 16 bits wnth a depth of one, bit, while the

"pixel planes algonthm uses 64 pixels’ and a depth of 16 blts per plxel It is therefore'

feasible, and\desuable, to adapt thls algonthm to b|tmap generatlon

~ An alternate\ faster unplementatnon could use precalculated maps and lookup '

‘tables for bitmap generatlon since only a small number ol' bltmaps are posslble 1' The.

bltmap table contalns precalculated bltmaps of polygon interiors based on the assump-

L]

tion that edges ‘are traversed clockwxse aBout the convex polygon Thls aasumptlon‘ |

allows predlctlon ol' whlch blts fall within the polygon mtenor (see Flgure 4 8). Bitmap

table size does not need to be large since bntmap symmetry permlts a subset of cases to

. oo Lo
< cover all possnbllltles ‘ :

Although table lookup snmplnﬁes VLSl |mplementat|on it also uses greater chlp

area. Also hlgher speed ls not needed snnce bltmap calculatlon can be overlapped with

.

output of the other results l'rom the plxel gun

Bltmap generatlon reqmres pa|rs ol' X, y values to determme where the edge enters

“the plxel and. where it leaves — thes’é‘ a‘re the ponnts where the polygon edge is cllpped‘ .

\ o C S .~ 47

tammg 64 pmels in 2- mlcron tcchnolog) In addition, l)ltm'\p gcnent’on roqulrm oul) o

: to the plxel boundar:es Tt was thought that a DDA (dlgltal dlﬂ'erentlal analyzer) algo- '

‘nthm could be adopted to produce the cllpped edge values but unl'ortunately none of‘
'those examlned were accurate enough or sunple enough l'or VLSl lmplementatlon Anl

' |terat|ve cllppmg algorlthm was therefore dev:scd to produce the appropnate values o

Thls algonthm is l'ounded on . the follomng observatlons ln anure 46 the';

]

'polygon edge mtersects columns ol' pnels wnth exactly the same y dlstance between' T

1ntersect|ons (Ay) 'I‘he cdge also mtersccts rows of plxels wrth the same X dlstance ‘

(Az'). All the X,y mterscctlon pomts fall on’ multlples ol' these Az and Ay values

. l
3

2 Thxs techque is used in the experments to snmulate the archnecture tnd algorlthm ,

e : . S "

48

. '.. ' ' ‘
QR P 1)
alndis Eulanl it T ' 4
o (]] o
~ o o . ;\ ‘
Lo 1
) Polygon ” Ml e,
lyg ' ' ‘ Polygon -
'Edge — Az - '

Edge
Flgure 4.6 lteratlve Chpplng Agamst Plxel Colnmns and Rows

and in pnnclple, lntersccuons can be calcdlated by slmply mcrement,lng wnth the A

v

' . .

values.
. lteratlve cllppmg can be performed by decndlnnghnch valuea to'add and whether
to take t.he cellrng or ﬂoor of X, y addresses This great.ly eases t.he burden on the VLSI

plxel gun since it’ avonds multlphcatlon and dnvnsnon, requmng only :nmple lOglC and
ﬁxed ponnt addmon “ - " PR g “ 3 ,‘ . . ‘
The thlrd bhase consnsts prlmarlly of two routmes [ragen_;mt and makchag

"

i :: The functlon ol' t.hese routmes is elaborated in the next two sect:ons SR S

4,1 3.1.. l'ragen_xmt

. -

Thls routlne ls responsnble for mamtamnng a hst of. polygon edges and for deter-

- mlnlng t.he edges neednng processlng lts prlmary funct.lon however, is to mmahze

[

edges and parameters for subsequent processmg by the fragment. generauon routme — j

makchag ‘.: s o

'

Among t.he lnrtlallzed parameters are the A colors, Az, Az " Ay Zrem and ym,,
(the l' uncuon ol' these last t.wo parameters are dlscuased lat,er) The A colors (red blue

Q.‘ and green) and A. value are rauos of the color or z change dmded by the t.otal change

. ‘in y l'rom the top ol‘ t.he polygon segment to the bottom (y, y,) (Flgure 4. 7) So Arcd

' ~

.

........

- Thls is used“.t.o lncrement' the 'cnr'rent color Whene}'er ;th“y

49

_____ : Polygon edge

. \"(y- ¥ - !Ix"v"

Az = z, - z, -

»
i

Flgure 4.7 Az and Ay
plxel value is changed Note that if the polygon segment. is horlzont.al the X change is

used in the ratlo

The Az and Ay values are lllustrated in Flgure 4. 7 Ay is slmnlar to t.he slope

x of the polygon edge whlle Az’ is slmllar to the lnverse of the. slope Ay is deﬁned as:

. o A f A‘y/Ai' |f Az ia‘pliaitl‘ve k
L V " | -ApAz if Az is negative
Slmllarly, Az ‘is deﬁned as " ‘ R o
. o A o Az/Ay lf Ay T poutwe ‘
' * Az/Ay if. Ay u ncgatwc TR

-

! These values are fundamental to the makc_frag algonthm and t,helr use is descrlbed

~

later

The next major funcuon of thls routlne is to lnterpolate t,he st,art ol' the polygon .

P,

edge back t,o the plxel boundanes Makchag assumes for the sake of snmpllcny, that'

—-—-—-‘

: all the polygon edges start on plxel boundanes lt ls |mportant to note that tbe" S

polygon edges are ,assumed to’ have dlrect,lon Thls assumpt.lon ls used in generaung

bxt.maps m a later phase consequently all polygon edges are traversed ln the clockwuse o

s

dnrecnon Thls means that the ﬁrst, pomt ln t,he edge is consldered to be t.he starung'“-

: ponnt and is e\tnpolated back to t,he plxel boundary ln Flgure 4 8 thls extrapolatlon '

[

is indicated by a dashed line. ‘ ‘ ;

o 4 " Pollygon S '
>~ o ‘ . Intdrior \
. Pol rgon \.\ .
~ Intqrior R
}
. . .
L —Poty / ‘
~Interjor > 1 /
' " /| Polygon’
\ o # | Interor
- P :] "

Flgure 4 8. Extrapolatnon of Polygon Edges

P

The lntenor of the polygon is Iabeled in the ﬁgure and can be predlcted from the
assumptlon that the edges\are traversed clockmse The mterpolat‘ed pomt is lndlcated
"ln the ﬁgure wlth a clrcle Notlce that the algonthm must. determnne edge dlrectlon‘ '

' before mterpolatmg back to the plxel boundary B o .

The Iast functnon performed by thls routme |s calculatlng z,,,,,‘ and ym,, ‘~:\','¢,',, is

-

deﬁned as the x dlstance remalnlng between the current ponnt and the next y boundary

and y,, ls the y dlstance remalmng before the next x boundary lf the mterpolated :

ter

,pomt falls on’ an X boundary, ym,, Ay |f it falls on-a y boundary, Zrem Az Both o

'.'y,,,,; and :r remy are: calculated l'rom the mterpolated pomt ln the dlrectlou of the edge

The use of these values wnll be explamed below

)
. . . | . ot © . . .
P LR S

- o B L MR

; 1.1.3_.2; mnke_frag . ‘
T hls algorithm is based .on a few qnmplc prmmples It shoqld be nquc;‘ for °
‘ mstance ~that polygon line segments usually have an "axis ol greatest change t ie,

Polygon edges wnll pass t.hrongh more X plxel boundarles or more y plxel boundarnes

This- axls of greatest change is reﬂected in Az and Ay’ . The greatest absolut.e value of

these mdncates whether X is preferred or y is prel‘erred r 3

[l

The other observatlon ment.loned prev:ously, is t.hat. there is a constant. X incre--. -
ment bet.ween ¥ boundaries and a constant y lncrement between x boundanes — Az’
‘and Ay’ resp,ect,zvely. . ' ,

(2, + 1,9, + Ay') : ') f b

\ . (zr +.2, 4, +24y)
T

+
-,

S P
e

Flgure 4 9 lterauve Lme Cllppmg

One can easlly calculate t.he mtersecuons ol' the polygon edge wnh the pxxel ‘boun-

,‘z‘\daégéq@gwen the startlng coordlnates wnth Az and Ay o thls ﬂssumes that a method

ex:sts for decxdlng when t.he llne crosses ay boundary (see thure 4. 9) Slnce Az

N

great,er than Ay t,he x value |s lncremented by ‘one: l’or each plxel ’I‘hls is Jusuﬁed
slnce it |s known that more x boundanes are traversed than y boundarles and that fio

y boundanes are crossed in’ thls ﬁgure Therefore the X coordmate calculatlons are

.

easy The y coordlnates are also easy to calculate because t,he change in y betwccn x

. boundarles is slmply Ay lncremént.lng by Ay gwes the requnred y coordmates L #

+ Unless the angle of the edge is 45° Specul treat.mem. must be gwen to edges at 45’ that 1
" also pass through pixel corners. ‘ Coeet
$ A direction is said to be preferred if the «polygon edge passes through more of its boundarnes
‘ t.hus. when the x dlrecuon is prcferred more x. boundaries are psssed ‘

\ S . " . ' ' : .
: e ‘ o k 52
To predict intersections between boundarices, 1., and y,.,. are maintained, These
represent the remaining distance between the current point and the next boundary,

t
"

The valugs must be updated with each point calculation, So, for instance, increment- !

ing the x coordinate by one m'eans‘decr_cmenting Z,.m' by one.

Theselvalucs are used as predlctors in the followmg mhnner If the x axls is the
major. axls of change t.hen a check is made to see lf z,. g0€s below one. Thls means §
that. the next y boundary ynll be reachcd before the next x/boundary. So to calculate
the next x value Z,em, the rcmalnmg x dlstance is added to the current x value. This’
ls‘done ‘lns‘tcad of adding one. The y calculation is nmde easy Isince it.is just the floor of

' bv »

the current y value. The calculation of y,,,, is somewhat more difficult.

lnst.cad of a simple asslgnmcnt of Ay, as done prevnously, the y value betwéen

the current pomt and t,he mtersect,lon of the next. X coordmate needs to be calculated

ln Figure 4. 10 thls dlst.ance is:

A

'Ay"“'T‘[y+2Ay {y+AyJ) o :

The wholc process is shown in Flgure 4:10, in the case. of a major X axis change When

v v

t.he y axis is the hajor axis of change, the roles of x and y are reversed smce the algo- .

-

‘ nthm |s symmetnc wn.h respect to the two axes b

ln t.he remalnder of t.he algomhm colors are updated each time a y (or x) p|xel
boundary is crossed The same: |s t.rue of t.he z vnlue Bltn!ap generauon dnscussed pre-
‘ vnously, can he done by table Iookup or by the algont,hm found in [117] The fragment

produced by thls phase is 120 blts long (Flgure 4. ll) lt. cont,alns two 8-bit x, y- valuks
. . ° 1’
24 blts for color a lG-hlt map, a lﬁ-blt Z dept.h and a lﬁ-blt objcc€ lD g

» [

© 83

« .
’ ~
Ay *
A y: ’ '. . — K
4+ - o .
* . ‘l’ Frem Az ! z + l ha Zrem » Zrem ™ AZ' .
4+ Ay, g = Ay’ ‘ ‘ g
y“ vy, yrem LAY ly + Ay\J' Yiem ™ y + 2Ay - 1y + Ay’ }
Figure 4.10 Clipping Across a Y Bound;r)"
"red | green blue - X N B ¢ .
0 7 15 23 31 39
f .
" ‘ \’.>‘
7. S deae . dz/dy
39 SR S S 7& R 87
" Bitmap H . ObjectID -+ - E e
BT e e e
. , ' “.". . Lo | . X a ‘ ‘.,ll N "‘ ‘ i
;. Figure 4.11 Fragment Data Structure B

4{1‘.?.‘1?!1&3@4; C

The purpose of Phase 4is Lo calculate the color at each plxel on thc scrccn Tbls

|s done. in’ several st.eps Flrst. fragment hsts -are sort.ed in order of depth and common o
. {

"

‘ bltmaps are merged anure 4.12 is an examplc of thxs mergmg Hcre a polygon corner’

.falls mthm the boundanes of a plxel (the dashcd box) and bltmap gencr:mon ywlds

L

PN

4“)'
/'; ' A
two fragments corresponding to the corner. A bitwise "AND” operation: merges these
two fragments into a single bitmap that reflects the geownetry of the corner, Note that
h C . r "

a

the crosshatched area indic:ites the parts of the bitmap set to "1,

Pixel (Top View)

i

- .o -

—— - -

00000000 0110 1111

Polygon

0001 0011 0111 1111

Figure 4.12 Merging Two Common Pixel Fragments

+

After mergmg, the subprxels in the polygon interior are retained since these are

common to both blt.maps This procedure also reconstructs part.s from those pol) gons '

narrower t.han one plxel width. Bltmaps are known to be common if they possess the
same object ID and fall in the same plxel Aft,er tbc bltmaps are depth sorted and com-
mon bltmaps are merged chpplng is done Flgurc 4.13 lllustrates the cllppmg phase

y along with t.he prevnous operatlons of sorting and mergmg

Clipping. is Qsed to predict héw much of a'biuﬁap is visible in a giv;'eu pixel.

Assuming that the top of the figure is closest to the observer, then the closest bitmap

1

“masks oyt” bits not visible to the ‘observer. The cross-hatched areas of the bitmaps

indicate which bits are set. Notice that bitmaps in the dashed box marked."clipping

phase” are reduced to only those areas seen from the top of the pixel; thus the back-

ground color — completely covered by the previous three ﬁ)itmaps - has none of its

<
N

Ordered in increasing depth
TOP OF PIXEL . ' . '

T P S S
) J ' .
' ' . ') X |
ID= 101 ‘ ‘ - ' ‘ '
o ' ' N ° “lOl
. 1
- : L wi=12/16
ID= 273 O O O O, ID=273 : : '
®© oo , .
o © 0 . '
S 00 O ' ' © o006 o

-

o o od ___r_____A.A_, © 0 00
© o ¢ o527 ID=273

(]

Al R I I A IR . IR O I

o o A :
ID=273 P ! '
G >0 e X : wt-2/10
___-/ : : "
' Lo ' '
. C ' ' G o o
ID=7050 &5 X ; °°%%°
i ! ' : ’ /0 o l -7050
]
. ‘ : ; ' wi=2/16
[} (] N
. . , ' ‘
iD=0 1 ' ' Qoo o/
: : ' - ‘o %o o /.
ﬂ } ! ‘ °o°o° c.»o ID=0
. '] '
Background color ! X , wt=0/16'"
]
i Ly _,' . ‘:.__-; 4
BOTTOM OF PIXEL . After Merging After Clipping

" Figure 4.13 Phase 3 Operations

bits set.

- After' the elipping phase the bitmaps represent the area and geometry of
polygons visible in the pixel. Each blt in these maps represents 1/16th of the total area
of the pixel. By summing tbe number of bits, a welght is constructed for the colors of
each bmnap The ﬁnal plxel color is determined by summing thc wenghted bitmap
“colors. Thus 'ﬂar object 273 in the ﬁgure a weight of 2/16 is calculated. This means.

that 2/16 of t,be bitmap color is contributed to the final pixel.
.~ To continue the example, the red component of the final color is the sum of the
" partial contrlbuuons from all the bltmaps For the above figure:

. final red = -ll? X (12 X Red\g; + 2 X Redyyy + 2 % R‘dmso) '

56

where the magnitude of red in object x is denoted by Red,,

Fn
This algorithm has a straightforward implementation in a multiprocessor system,
By duplicating .the code on each processor, it is possible to have processors indepen-
dently process polygons and store into a common frame buffer. Interaction of frag-
ments for antialiasing is also handled in a parallel fashion since, after data generation,
. ‘) v - ! \.\ﬁ/«*-&
all the data necessary to antialias a single pixel can placed in a "parcel” of work that i3

easily handled independently. This scheme is elaborated in the next chapter,

The algorithm appears simple enough to implement in VLSI since only fixed point
additions are needed. In addition the bitmap genératipn algorithm has been already

been tested. The only complication is the iterative line clipping algorithm which

requires some degree of decisional logic. .
’
i

The above algorithm has been implemented and tested. Images of 256-by-256 pix-

‘els have been produced and are found (by inspection) to be comparable to 512-by-512 °

jmages produced by the Movie.BYU graphics package.

’

‘ Chabpter 5

L -~ The System Architecture

5.1. System Control and Operation

, Currently, multlprocessor archllectures are bemg heavuly lnvesugated for their
commercial potcnual Interest in multhmxcroproeessors is especlally great, Although
commercial opPortumtles have not been explored until recently, multiprocesaors have
been in the literéture for many years, Numerous surveys were writt:en on these systems
and their mterconnecuon structures [14,15,27 32] ln fact, the ﬁeld has existed long .,

enough for several textbooks to appear (3,30 42]

'The appeal of such systems comes from their potentially great practicality,
These systems take advantage of a clieap and reasonably powerful source of processing
‘power. Since system design is usually a modular replication of brocessora, construction

‘co:_ns are reduced and system repair is cheaper and ,easier.

A mult‘i'procevs.sor- architecture ls a good choice for high performance ’grapvh'ice.‘
" Sinee .microprocessors ‘,ére_glene_-ral uurpose QPUs,l tllere is _Ii't.t.le restrict’ion in the tasks
they can perform. Special purpose VLSI systems, on the other hand, can only executc ‘
bard-wired (and by necessity) cimple alguri;hms. This usually p‘recludes implementing
sophistieaﬁed algorithms sueh as anti-aliasing.

By takmg ‘a muluurocessor approach to this system desngn t.be problem of insur-
ing sulﬁuent plxel t.hroughput. (from a generauon standpomt) is eased If a parucular -
lmplementatxon, for instance, has msuﬂiclent speed- to sust,am realtlme tbroughput"
processors can be added to- augment system capabllny Thls assumes howcvcr that
system ‘design :s modular and that slgmﬁcant speedup occurs with ‘expansion. Thus

- the bandwidth of the parueular processmg element used is'not as nmportant to insur-

~ mg realtlme performance»— replication can compcnsatc fora slow processor.

u

57 T

\ S s Y
a : .

\ "

. , :
The problcm of system dewlgn is now rceduced to insuring that the memogy and

bussés h: .»; sufficient bandwndth to handlc realtime pl((‘l throyghput.. Thn is an enor-
mous task in itself since potential for "bottlenecking" ‘at the frame buffer end of a
geaph'ics system is huge. Consider input data which con;ists of an a\ferage‘-of 4 points
per polygon. After pixel productioé, these points could give rise to a whole frame

buffer of pixels (65,536). Thus, data handling requirements for graphics systems are

potentially crippling. Careful consideration of these. requirements is warranted.
¢ . :

This chapter discusses the system architecture. It provides a high-level view of

’

the system in Sections 5.2 and 5.3. Since the architecture is founded on a distributed-
modular arbitration scheme, this is given prominent coverage in section 5:4. Various

system components are presented in subsequent sections and the chapter ends with.a

discussion of system liabilities.

6.2. System Overview

Tl;e propoeed system is illustretv,ed inF ig‘;lvre‘ 5.1. Tllle system is comprlsed of four
N muluport. buffers (AB) -ach consisting of a bit-slice processor with memory (BM) and
four vertical buﬂer—mterfaces \ﬂl'). Theee 'units ..make-up the frame buffer and are
" attached to four vertical va-p'eess'iﬁg nedes (PN) through the buﬁer-ieterf aces (BI).‘
Each‘pro‘cessin‘g ndfie' consists o‘f Van arbi;rery xﬁxmbef of ";’:roceseing, boalj:is (P)
sandwiched between two !;usses; Ohe.df ”t;h.e nodé busees is c'eeneeted to‘thellbuﬂ’er-

interfaces: of the multlport memory, . while the other is connected to a block of hlgh-

speed memory (B) which buﬂ'ers polygon descnpuons taken from the host comput,er

S

" At the bottom of the diagram are some ports connecting a system controller to

’

‘uthe uiult.iport. buﬂ'e'x"s."l‘he system c-ont,rolle‘r (S) can also writé to the host‘buﬁei-s a'nd‘ :

. access xtatus port. mformatxon lt, is responsnble I‘or booting t.he syst,em as well as

s

s\utcbmg system phases . o : . ' o |

59

AB exxll .xx10 xx01 LxX00
I)N R) ‘1,_1” ———— al Y e | r="=-=- B r"’q'v—‘_—'\
. [} [} t L]] [} + o (]
"t P ' t A 1 t 1 1) '
A I i O B EREY IV R S VR
; RN B Lo Lo :
N Rt N Voo Vo v v
JRSSR——— S P ' B |] ot] ' [} . [}
. X I NN w « B o = L A = « BT = = T
1 P — v LT ¢ 4, o W, o L1,
1 ' ', ' n I ' ' ' 0
[T ' ' 1 ') ‘A " N
R K) ' ' a ' '
— B e L]
' N : mm| RN 11) ! mm| ! LI v e
4 P ' . v - ' v 1 ' HEL = l
L J ' ' ‘ 1 ' T 1
: ' “-=== N ' TN) N E AN .
TN | R A AR N S
' + [' ' 1 ' ' [' '
fl - A l_—l s 't ‘_‘—1 A —d l'"'1 4 4 1 i
Jd P v o U e Ny g, Y W B I
) T 4 v A ' 'R ! '
T e e] ' 1 J J A 1 '
f--=223 ' R ' ' Vo 1
. B] p] ' : ' 1 ' ’ v) '
g B o S | NP SO S SO S 1S SN N o I
P L N = S = 5 i g o
L I ' -3 T3 ' -3 . C3.
Cemmea ! ' ! e o ' '
! TR 1 i ' ']
, } ro "o ' ' '
: 1 ' [[. [1 1
Data Bus R Lod-1-4 tod-t-d Lol VN D I
. b AY ‘
, ‘ _ 1 ,
l‘ Control Bus . » > *
S
S - System Controller’ , AB - Muuipon A*butrer
“p* Processlng Boards _ BM Bltsllce Proc &Memory
'BI- Buﬂer lnterl'ace R B Buﬁers attached to host -
o " Figu're‘S.I‘S.ys'tem Conﬁgufation »

+

"There is extensive buﬂ'ermg at each node and- at each port on t,he muluport
memory. This allows wrmng to proceed whlle the l'rame buﬂ'er is busy and allows tlxe

‘mncroprocessor to run. wnthout blockage

The system can be scaled to allow greater mterleavmg and addmon ol’ ‘more

busses to bnndle greater bandmdtb lt. is. poss|blc to have a 2 by-2 systcm wnt.h two

ki

,.muluport. mcmories connected to two' processmg nodes This conﬁgurauon has a mucb

te

.«’ ' . ’ e co 60 '

I'lo_wcr performance than the illustr‘alecl "t-by-4" system‘, but will be more ccononx’ic:ll lo
construct and yet be valuable for.a less demanding application. This thes’ls!invcjsti-
gates varions,scales ranging from a 2-by-2 system to a 16-by-16 system. |

'The architect‘.vu‘re',is als\o modularly e‘xpan“dable since additional processi‘ng power -
can be added at ‘each node by inserting a process‘ing card. The illustrated conli.guration
only shows"l.wo‘processors per node but experinxents have.been runl -wit,h‘ as m‘any.as 3? |
_ processors per node.f The modularity of the system derives from the arbitration

scheme explained in Section §.4.

- 5.3. System Operation ' t o

The l'ollownng is a high-level descnptlon of system operation and uses Figure 5.1.

K
N

Notlce that system operatlon follows the 4 phase part.momng dlscussed in 'Chapter 4.

‘531. Phasel |

The system controller (S) starts the bltshce processors (AB) mmallzmg theframe -

v

buffer wnh the background color and depth At the same tlme, the host. is given per— "

mission to start. ﬁlhng the host. buﬂ'ers (B) wnt.h polygon prlmmves Transfer of .-

polygon ml’ormatlon l'rom t.he host cont.mues mto t.he next phase
5'.3‘.2.‘Phss'e2‘"' B ST

5

.

Bltsllce processors slgnal t.hat, mmahzauon of the l‘rame buﬂ’er is complete When,h S

a .'the last processor lndlcat.es ﬁmshed t,he system controller st.art.s the processnng nodes

e

7‘ (PN) At. t.hls stage, polygon descrlptlons are read l'rom t,he host. buﬂers (B) mto local_"

j‘memory on each processmg card These polygons are lnlttallzed l'or scanlme producuon'

and the plxel-guns are loaded t Plxel producuon proceeds wnh successwe wrmng of".‘?“

. f Tt is also; techmcally leaslble to allow arbn.rsry expansxon of ptocessmg nodes wn;h a ﬁxed
. ‘-number of ‘multiport :memories. The .design of this system allows arbltrary expansnon alter con-
. struction but system “scaling” must be designed and planned before ‘construction. -

-3 Plxel guns,. as discussed.in the previous chapter, are speclal purpose VLSI devices which pro—
duce uhole plxel and l’rasment data. ' . ‘ ‘ o

er
wholc pixel data to the multiport A-buffer. The phasc.ends when tio more polygons are

- left to be rendered, the processors are idle and the buffers are cleared. ‘

'
\

'15.3.'3. Phase 3

ln this phase, node, processors, again read polygons from the‘ host buffers. Polygon

descriptions are initialized for bltmap productlon and plxel-guns are loaded F‘ragment

' productlon results in fragment. writes to the multlport memory and ‘the phase ﬁmshes

)

‘ accordmg to the cntena gnven in Phase 2 above ' S "

. 5.3.4. Phase 4
The system controller slgnals the start of Phase 4 and node processors begm read
ing at a’ dummy memory locatlon in the multnport memory Bltsllce processors nnter-

pret plxel readlng at the dummy locatlon as a signal to send a fragment. list. A node ‘

processor contlnues readlng at thls locatlon untnl it reads a stop slgnal it then releases

i

the bus for another processor B : :

When a node processor has a complete fragment hst mcrgmg and cllpplng‘
|) ‘proceeds and the final pxxel color is. found fthat plxel The completed plxel is wrnt - ’

: ,'ten to the multlport memory and the prbcessor attempts to fetch another llst

The system controller termmates thls phase when all processors are |dle, the‘

buﬂ'ers are empty and all’ bltsllce processors are slgnalllng ﬁmshed A slgual is then |

'gwen to restart Phase 1 and the frame buﬂer is released to the V|deo dlsplay processor

Thls is only a sketch of system operatxon there are many possnble varnants usnng'

: .the same basnc archntecture Loadmg of host bull’ers could commence in Phase 4 for

- mstance Another posslblllty is local polygon storage at each processlng node Thls"
posslblllty requlres addltlonal ‘memory but ehmlnates read contentlon at the A" bus ‘

. ‘for Phase 3, and « even permlts host polygon transfer dunng thls phase Thls mvestnga-l

._"tnon was deslgned to examme performance under a haslc set ol' condntlons and leavcs

i
(A

“finc tuning” of the system for Tuture work.

5.4. A Pipelined, Modular, Equal-Access Arbitration Scheme

Early in the system deslgn it was recogmzed that a dlstnbuted arbn.rauon scheme

was needed to provide system modulanty ‘and easy expanslon A search of the htera- NE)

‘ture found an arblter that provndes equal access and modularity but it requlres an’

)
una&eptable arbltratlon time [13] The' scheme presented in this paper reqmres a 40

nanosecond delay to bus access in order to prevent |l||c1t states. ._ E
A o L . (i

ll' resource usage is long — in ‘the order of mlcroseconds — then thls delay

»

becomes nearly |nslgnlﬁcant But in thls system typlcal usage lasts 200 nanoseconds

Thls lmplles an overhead of 20 percent on each multlport memory access, thus reduc-

N

_ lng the eﬂ'ectlve memory bandwndth by 20 ‘percent. Under these condltlons the arblter
. could not be used for a\multlport memory. - “ B A
lt was notlced however, that arbltratlon can proceed whlle the bus is busy Thls‘ S

, would allow overlapplng arbltratlon wnth bus use. The Cll'Clllt was redesxgned to

-~
T

demonstrate the feaslblllty of thls ldea Before proceednng;, a problem w:th plpellned“

v arbntratlon should be mentloned lf the bus is usually ndlé then arbltratlon can not be .

.

overlapped wuth the bus use. Eﬂiclent arblter operatlon requlres the bus to be heavnly o

loaded The lntent ol' the present deslgn is to ﬁood the busses wnth plxel wrnte requests “

'Under tbese condmons, nearly all the eﬂiclency ol' the scheme is retamed .The l'ollow- -

L L
[

|ng dlscusslon is a descrlptlon of the arblter deslgn and lts l'unctlon

Whlle the clalm ls made that the arblter provndes equal access it only does s0 on E
a 'st‘atnstlcal" baLIs At any glven tlme however the mechamsm selects one devuce as . o
havmg the hlghest prlorlty Thls pnorlty rotates amoug dev1ces to glve equahty over at' ’
long penod ol' tlme The rotatlng pnornty token is accompllshed wnth a rrng

‘ couvnter\\-déscnbcd later The arbltratlon clrcult is shown ln Flgure 59.. .. Ve ‘

63"

/\O - ‘ »
. (. !
v 3 N——
S o.cn | \
RE .

BF ‘
Y 0.C.2

e Q _‘,‘_'.‘.._"Acknowledge "

® .

Note FF2 ls trlggered ona S R o
falhngedge U : R

Flgure 5 2 Bus Arbltratlon Clrcult,

Co‘mnder t.he followmg sequence of eventis Whlle the bus ls tdle and there‘ are a0 o

rcquests AO (arblt,rat.lon open) and BF (bus free) are hlgh wh:le RE (requesbenable) b
lmes are low When a request is: made at devnce :, RQ, (devnce request slgna] at t.he s"'
“dewce) is asserted hlgh and the walt sngnal i3 sent to t.he requestlng dewce \\r hll(!‘ thxs |

’ | ‘IS occurrlng, FFl |s set and the AO llne is dropped by t.he open collector buﬂer OCl

| : ‘Thts blocks out any request.s that occur after the present one lf other requests are scnt

"conc'urrent. wnt.h thls one t,he other nodes follow the same sequence to thns pomt

The node current.ly holdlng th(/‘. prlorlty token (PT) asserts RE'O hlgh |f no rcqucst
-'vwas made at it, slnce RE,O, (the,request cnable output) passed to thf? deuce is: v SRS

-~
'y

REQ = A0 QT, (RE!+ PT)

and AO is Jow with Q1, and PT high. This causes a 1 to be propagatcd‘ doarn lhc'

. chain of nodes until it encounters the first requesting node. Since the Q1 at that node

is high, the request enable after that point is held low and nodes after this point are

denied access to the bus.

If the bus was prevxously free then FF2 is set and the request is acknowledged by '

‘dropping the "WAIT" line and ralslng ACK. Thls also drops the BF sngnal to indicate

‘the bus is now busy Another consequence is that the Ql is set h:gh and the AO line

‘opens arbltratlon (If there are no other requestlng nodes which had snmultaneously

requested access) Also at thls tlme the PT (pnonty token) is shlfted m the cham of

.- "

_n0des'l o T

Two thlngs may happen at thls point. If AO goes high then there are no other

'

) stmultaneous requests and arbltratlon can proceed as descrnbed before lf however

there are. smultaneous requests then AO i is stlll Iow and only the other sxmultaneous

3‘ requests are consldered l'or the next arbltratlon Slnce F Fl‘ is’ reset at the successful
node 3 h|gh slgnal is free to propagate past the ponnt ol' the current successful nodé

'to the next requestlng node Arbltratlon 1s done whlle the bus i3 busy As soon as the

‘bus is set hlgh to mdxcate "l'ree, FF2 at the next successful node is set and it grabs the o

lbus before opeulng arbatration l'or another node

The clrcult descnbed above can rephcated and be channed together to" almost

i ‘_,arbltrary length As Iong as the total propagatlon delay does not exceed 200

. nanoseconds,,the tlme taken l'or arbltratlon wnll not slgnlﬁcantly be lncreased (thls .

. :;assumes heavnly loaded busses) Thls deslgn allows c1rcu|t boards to be added by s:m- s

Q'ply plugglng them |n No change to the arbltratlon scheme is necessary smce new

4

~"ldev1ces are Just mserted lnto the dalsy ch:nn Thls allows modular addmon ol’ ports on’ '

’ A

-

“;'thc multlport A buﬂ‘er as well as modular addmon ol’ macroprocessors at the processtng

03
nodcs, l"‘igur_c‘S.S gives a high-level view of this scheme, In the dia‘gmm the ring

countcr is shown separately, although an implementation would integrate it into the

arbitration circuits, . '

\ BF
"ACK ' . ACK
ACL ‘AC|— o000
—— OO O .
S ' . Ring
PTT B P ;/I/Counter oo
0o T Y oo | - 0 :
ACK - Acknowledge ' BF - Bus freé |
"RE - Request Enable ‘ . ‘AC Arbttrauon Clrcult .
-AO - Arbitration O_pen = PT Pnonty Token o
‘Figul"e"5.3 Arbitrat‘i‘on“wit.h thg.Ring-'counter R

f ;This' arhi@ratio’li' scheme is used in access to all comtptzn busses as well :;s in ;n‘ﬁ‘l-;
1 tipg‘i't,‘ ;ar‘bi‘u‘"at.ioﬁv.“ The next sgctiqn dis’%usses ad&iiidhal funcp;ods present in tﬁ; bus “
‘arbit',e‘x.'s.“‘"“‘ B o 1 A g :
. 5'.5.. VI.r{n‘t'e‘rf;ce to P;rdcehping Nod'ea ﬁ.nd,.ﬁéth_i'rétﬂe‘nta

l A‘ll-.buﬂ'el"‘inlg‘ ahd, l;us 'i'nt.e‘l"facfdgy in“the"system ¢an be doﬁe ‘wit.h the ;amé com:
ponent |f it’ s desngned w:th enough ﬂexnblhty ‘Specuﬁcally, thc A-bus buﬂ'er B-bus

-

: buﬂ'en and muluport buﬂ'ers can all use the same arbxtratnou cnrcunry ‘and t.he same ;

t

"FIFO queumg structure slnce all wntc and read requests !,o thcse devu:es can be han-

Lo

dlcd in: Lbe same way

66

5.5.1. -.A-bun Arbitra’tor

. Aa

. This buﬁcr-arblter structure’ lnterfaces the proccssmg nodes to the mcmory bullcr

rcsndlng bctvlveen host and system Thns bulfer handles "16-bit words ‘and buffers .
read/wrlte addresses as well Write: operatlons are buffered slmllarly throughout the
system namcly, when a wrltc operatlon is performed the data and address is entered
|nto a FlFO qucue by the reeelvmg buﬂ'er and an acknowledge slgnal is sent to the

IR ‘ ,

wrmng processor When arbltratlon allows access’ to common memory, the buﬂ'er

N ‘

'

A

places the address and. data on the address and data lmes and performs the write

req‘t prevlously buﬂ'ered 'In wrltlng to memory the buﬁ'er-arblter is transparent to

processlng nodes since there i is no apparent dlll'erencc betWeen wntlng to the buﬂ'er and

writing to memory. o ‘ » L
o Read request.s are handled somewhat diﬂ'crently..To make' read reQuests' trano-

, sparent the buﬂer must service requests qulckly Tt i is assumed that a read request has

' .

‘the bus. to the huﬂ'er tled up When the, bufler gets access, to the memory, the read

’

’request is sent dlrectly through the buﬁer to the memory and the request acknowledge o
lS relayed from the memory to the processor. If there is any bus contentlon bel’ore o

readlng, ‘the processor will "thlnk its deahng wnth a slow memory devnce and the

§
1

' mterl‘ace w:ll remaln transparent Notlce, however that' t‘he requestlng processor must

'handle vanablereadtlmes ot LT T K B

All the buﬂermg loglc m ‘the. system can. be bu|lt wnth the same chxp if properly

desngned Addmonal loglc is requnred in the buﬂ’er to notnl’y the system controller of

.
a

/any outstandlng read or wrlte requests Thls is done wnth a common hnc Wl’ll(‘b can bc

/

set low by an open collector gatc at each buﬁ’er '

. . e '] . . : e et A3 L
‘ - RN % s o v
B - N . f

' ' ' ' [

"5.5,2. B-bus Arbitrator ‘ . ' . o ‘ .

\

This buller lnt(‘rhccs lhc procc“mg card to a port on i m(‘mory modulo lt. mu:«t
buﬂér 10 bit data recclved from tbe plxel -gun or mlcroprocessor and send a wider. data

request to the port Typncally, output from the plxel gun consxsts of up to nine lO’blt

words. These must. be buﬂered to be sent down the wnder data paths of the bus

attached to memory These paths are w:der becauae ‘of bandwndth rcqulrcments ‘of the ’

'

bus but some multlplexlng of data mlght take placé to reduce the path wndth here as

, u -
ot ' [¢

well, . S

P

5.6. Proceuing Nodea ‘ o o T ‘
A processxng node conslsts of an arbrtrary number of circuit boards attached to

two busses — the A bus and the "B" bus Board attachment to the busses i3 by

"

' means. of two buﬂ'ered‘ ports The buﬁ'e red ports contam the same’ arb:tratlon scheme

as those nn the mul ort memory Tbe processor board also contams a. memory

‘ mapped VLSI co—proie;;or called a Prxel Gun

- ! +
\ ?

The plxel -gun operates mdependent of the CPU so |t is capable of stormg data to

'

the buﬂ'ered port whlle the mlcroprocessor |s busy lmtlallzmg aeanlmes There isa. g

. \ . 4

memory mapped trnstate buﬂer which |solates the output buﬂ’er from the main bus.
T)hls is done to permlt plxel storage to proceed wnthout dlsturbmg CPU opcratlon

‘ The system controller has mterrupt lmes connectcd to tbe CPU bus and nt com- |

o

mumcates specnﬁc lnformatlon (dlagnostlcs rendermg mstructlons ete.) by stonng tbe

w o
'

) lnformatlon in.the host buﬁer

X

ce
N

' 408——"‘
, / ‘ - A-bus \
<& e —

< ‘ T * >

LN y f‘"”"”"“"‘"””'-—ﬁa%——" ~~~~~ e e e e e e e R e e B B T R R -~ ¢
! . bue frecrbusy : '
. : o ‘ ~ buffer empty/full N —:>
:'\-{P :‘ : ' A Arbitrator ' priority cAain ' : N
ARy 'ﬂ? - - '
‘:;.x\#{ “ — . A I‘ enable : . L=
A) ' ‘ : ! ' '
RAM ROM

. . B R Y . E
bl R I I I T U e

/

> C

AN

.

i - :I o
oY Pixel Gun

A o I) '{)

bue [rqe/&ut’ . /f o ' R | ‘

buffer empty/full fi
. ' priority chain '

L 4
r

- e et m e ™ e . -wa--eE .- -r - - -

}

vy

B-Arbitrator -

- -

A

) |
- oo o

>

2

L

enable
' = - L

"

Fe=1

: A . 1
5 ®
-—— - - '_--—-,--i__\».——_v-l.—-‘“

, ! . ‘ R ‘) . \) .
. — - X - . - - — : e
v ! P B"‘bus v . b

' - Co '.|

(IR Flgur054 Proc'essmg Card L

'5.6.1. 'I‘heV'laSI Processor (PlxelGun) o S |

'I‘hc purposc of t.be p:xel-gun‘ns to produqe whole plxels and fragments for the sys- ‘

I

. Lt

~,' 4 . ‘ .

tcm Slnce plxeis are. merely dots of co‘ldr on the screen the most unportant. funcpon

{

" of the plxel-gun is to prodUce tﬁe three 8 blt color values of each of the rcd greep, and

K

blue components, ~Addmonally \the locauon of ﬁhe spotﬂmust be detérmtned 30- an X, y

B = . f e ':. ‘ . s . o K . . + o "
address is prod'uced T - o
¢ - . M : ‘ v a - ‘ ' T
K The A-buﬂer algomhm requures more. lnformatlon to calculate the final pnxel .
: P o

k o8
Al s e

color Slnce ltns not Known' lf tbe px‘bduced plxel qr fragment is in the foreground oris

i -

N \1";* . .
paruall) cove:cd (or even® totally coveréd’f .n is necessary to’ p;:oduce a’hd store the

. . B S S . ;) N . R /

e T
\ - S . . L ‘
- LI w : BN ks . . .) . . i

B T 2

'

v

’ 69

following data; Z depth values, dz_gx and dz_dy values, the bitmap d(‘.‘i(‘lr”)lng‘(‘()\'(‘h

age of the addressed pixels (fragment phase only), and an object ID for merging bits

maps from common polygons ([ragment phase),

P
[

Iy : ™ . " ,
Fortunately, nearly all this data can be produced by -integer or fixed point addi-

tion. Bitmap production is more sophisticatéd but the VLSI] algorithm is well proven.,

The fragment generation phase also requires some complexity in decisional logic but

these are primarily bit shifting, masking and comparison operations — 3o all this can

‘be done quite feasibly by a single ' VLSI device. A more thorough discussion of the algo-

rithm is given in Chapter 4.
’ ~ 1
The pixel-gun is located at a processing node and shares a circuit board with a
’ . Lo Co
N . S ’

microprocessor. It must interface with the microprocessor, and be capable of indepen-

dent data storage into the multipo‘rt_-A-buﬂ'gr. CMOS teéhnolog'y is assumed with an

estimate of 200 ranosecqnds for com’munication. It is expected, therefore, that thre chip
] . ‘

can produce partial pixel results every 200 nanoseconds to fully utilize th?cstimatcd

[

bandwidth.

.5.8.1.1. The Microprocessor Interface . ‘ P

A DU v - s\
Table 5.1 lists the Pixel Gun pins used to interface to the microprocessor. Not all

&

the pins may be reqmred.Jf data entry is restricted to a standard sequence then regis-

ter addressmg can be carned out transparently wnh an on- chnp counter' t'hus eliminat-

lng tbe reglster select plns Slmllarly, the 16 data Imes could be reduced to 8 but.

*.,.t~

70

Number of Pins Fuaction i
16 Data lines
2, ‘ Handshake lines
1 ' Start processing signal
1 Finished (status from the pixel-gun)’
5 Register select (addresses internal registers)
\ 1 Chip select / enable o ‘
[Mode select (Phase 2 / Phase 3)

. Table 5.1 Microprocessor Interface Pins -
multiplexing requires more data loading operations. Sixteen pins are chosen since they

" are a good match for the data paths of a 18-bit micrdprocessor.

Data loading requircments between Phase 2 and Phase 3 vary greatly. The data
loaded in Phase 2 is given in. Table 5.2, A.tl 200 nanoseconds per load, it takes 1.8
microseconds to initialize the pixel gun for scanline prod_uc't.lon. ‘Additional data must

A

be stored to

‘\ -
Data Amount " No. of Bits Data Type
Color increments Cy 3 I signed fixed point
Current colprs c 3 b1 " signed fixed point
Start_x, Stop_x N 2 8 ‘ unsigned integer
Current Z R 1 . 16 1. unsngned integer
DeltaZ L M N 16 - signed tnteger

LA
e

lralble 5.2 Whole Pixel Phase Loading R_equiremqnt's o L

complete a whole pixel but these need not, be passed to the pixel-gun as tlley‘ require no

processlng lnstead these values are buﬂ'ered at the B- bus buﬂ'er-arbxter and are cqpud

every. tlme t.he plxel-gun outputs a complete pnxel These are the current y and the

dz_dy, dz_dx values, which ‘are mvanant. l'or the durauon ol‘ the current scanhne This

L—

represents an addlt,lonal 40 blt.s of mformatlon whnch is loaded after mnnalmng the

polygon values (dz values) or ldaded pnor to each scaullne (the current y value)

By contrast. the l'ragment phase has a very large loadmg overhead. The Phase 3

R : e e

values t,lxat. are loaded are given in T able 5 3 Thls represents 15 loadxng operatlons -

' or 3.-0 mscrqseconds to load the pixel-gun for each edge. As in Phase?, there is dnt‘a-»

“w
. e

- . e U . v‘) L . . ."‘ . . ' ' B

which remains constant and can be preioaded into the B-bux buffer-arbiter to xave

~
oot

I

time. This data is 48 bits long and represeats the ID of the parent polygon and they,

values,
. v

.Data _ Amount No. of Buts Data Type

Color increments 3 16 signed fixed point
Current colors 3 16 signed fixed point
Curreat Z -~ 1 106 integer :
Yrem, Xrem L2 16 signed fixed point
Dz_dx, dz_dy 2 16 signed fixed point
Current x, y . 2 16 fixed point -
Delta_x’', delta_y’ 2 16 signed fixed point

Table 5.3 Fragment Phase Lo:;d'ing Requirexﬁents

' I . ' \ .
5.6.1.2. The Buffer-Arbiter Interface

A

r .

As stated previously, the pixel-gun must be capable of independently storing pix-

els and fragment informat,ion. The interface assumes a 16-bit data path, two bits for A

handshaking, a t,hree-bnt. address, and a one-bit signal to tell t,he buﬂ'er that the dat.a is!

.

complete and should be sent. Table 5 4 llsts the pins used to mterface the B. buﬂ’er-

arbiter to the pixel-gun. .

N

. Number of ‘l-;ins

Function

i

vy

.o~

16 . Data lines

2 ' Handshake lines .,
3 " Address select

1 Send data - -

..'.Table 5.4 ‘OdtphtiBuﬁer‘ Interface Pips |

A

72

5.8.2. A-buffer Structure and Function

Figure 5.5 is a schematic o'{ the ‘A-bufler processor and memory, The "A-bufler”
consists of a high. speed bit-slice processor which |nterfaees to ;.he memory on one Slde
and to the buﬂer-arblters on thc other Processor nnd arblter -are transparent to the-

processing nodes which perform read/wnte operatlons on the memory.

)

| B | Ce— >
‘ ata
Ny A 7
o Port A N : : Y SC
Bit-Slice A~ L . N
Processor % (1] Address .® , >
. ' H N} R A I8 7
’ \\ \\ \\ :
Port B ’ L ‘ ' N\
S - < | Conf,rol _ ‘ >J
‘ : ' N\ Bl ' 7 I
$ $.' | $ $
yvy yvvy: . vy CT
‘ v . , L. . |- BUF
| . RAM. "= B/A [T] B/A- 1 B/A —’,PC
‘ e . !) B e . > v

N 2N - o o : ‘ '
R \/K\(\ \ ,/(\{\\ A\ K2

R T — ——AO and
) e e e BF lines * .

‘.'.. no\(e‘ ’ ‘n}ﬁ,

v . k “ ... bus0 bus'1
i : SC System Controller | BUF - Bixﬂ'er Full &
MBE Master Buffer enable S PC Prlorlt,y Ch in .
Flgures 5 A- Multlport Buﬂ'er ;."' o

s processor responds dlﬂ'erently to the nncomurg data ﬂependrn‘g"on wiﬁt’ phase is *”“‘.‘“

rently belng cxecutcd R e s

' 5821 Phase 1 S : A N

5.'5.2.2. ‘Phssez o e

)
'

|

T hc prnmary purpow of this procc“or |s to compare |ncom|ng data to resident

data and clthcr accept or reject it on.the l).ms of (lcpth This processor alxo ro(rim-cw

a

linked llsts of fragments fronr the memory for mergmg and is responslble for mwmtmu-

ing and lmklng lncommg fragment data.

The memory acts as a frame buﬂer and an unstructured storage area for the frag-

ment data It is therefore heterogeneous in structure since it must nnterfacé‘ to the
’

-

~ CRT wuth the slmple color data and yet store more compllcated data types(such ’gs

fragment structures. To achleve hlgh speed perform,an_ce,, the frame hyﬂer portlon of

s g

this memory must be "dual- buffered" to allow the dlsplay processor to refresh the CRT

-

without aﬂectlng pixel storager Thns system ~assumes a’ memory sﬁ‘eed of 200“.‘

nanoseconds: A descnptlon of- A- buﬂer operatlon follows R

“

\ ' ' "

[T .
"‘. L . [

s

In phase l ‘the l)ltsllce processor gets the background color of the frame and ini-

1]

tlahzes all the module plxels to the appropnate color, depth and dz values

’ . ‘e 0
PN .

ln thls phase whole data types are stor.ed ‘into memory The bltslnce processor

~ e

reads data on the A-port -and fetches the current plxel depth correspondlng to: the ‘

lncomlng data. lt then does a comparnson of depth values and e_rther rejects the arrnv-

-"~.!

lng dat.a Qr: stores |t over the current data No readmg is: done by ohe node processors

et . 1

durmﬁthls phase It is assumedﬂthat compar:son of Z‘values |s very fast; slnce ECL : .- e

/

3

)

5.8.2.3. Phase3 R o

Fragment data typcs (bltmaps) are, crcatcd and storcd dunng this phase. The
.storagc operatlon is analogous to the above but depth comparlson |s more compllcated
since a bltmap does not. cover the whole plxel Depth comparlson consists of usmg dz

values to ﬁnd the closcst extent of the fragment. and the furthest extent of the whole
.M’? ‘

’ g plxel data. A companson of these depths Ieads to enther tnvnal rejectlon of the frag-.

_ment bitmap (lt is cové&‘ed) or condltlonal acceptance — the bntmap covers. the whole

]

. pixel data but may .be covered by*othcrfragments.

Acceptance |s more comphcated since the fragment structure must be stored into
-

two lmked lists for easy retrleval in Phase 4. The tlmes taken for these operatnons are +

‘coarse estlmates sincé there is'no workmg model and no easy way to benchmarks the) n

¥

‘ ‘proposed processor short of bulldlng, or at least desngmng lt Assumlng ECL hlgh- o
‘speed loglc, a comparlson time of 650 nanoseconds and an msertlon time of 2»

mlcroseconds ls assngned These hopefully represent reahstlc (and possnbly pessnmlstlc)

estnmates for performance

5.6.3. Memory Access Patterns of the Algorithm

opposed to the highest order bits.

starts a new frame.

w
[

" Some account has to be made of how the memory%g to be, conﬁgured since one

'would like to avond unequal usage of, the lnterleaved l‘rame buﬂ'ers }‘he question is

o/
how to partmon or mterleave the memory modules in order to. msurebm equal dlstn-

bution of work. It was declded to mterleave the memory on tbe'lower address bits as

4
- .
-

\ '

This decnsxon solved two problems The first was the non—random nature ol' scene

data Vlsual complexlty of scenes tends to "cluster,” go certain areas ol' a screen lmage

can contaln ‘thousands ol' polygons while others may contam only one or two. Il‘ partl-

’ tlonlng is on the blghest order blts |t ls possnble that one memory module vhll have

o

nearly all the actmlty and storage wbnle the others s:t ldle. Thus, lnterleavmg on tbe‘

lowest order blts lnsures uml'orm lmage dlspersnon throughout the memory modules N

.

: ".‘are consnstently sent to the same memory module in: roughly the same perlod of tnme

" _j»'causes memory modules to be}(ldressed in'a consecutlve fasluon as: plxels are produced. S

Conslder a worst case sntuatlon l[l a slmplc system lntcrleaved on the Iast bit lf'al

‘o .

The other potentlal problem is temporal' clustenng of data Tbls occurs lf psxels"'k‘ =

l«,‘ K '

| . 'even addressed pmels are produce& followed by all odd plxels, qne node wnll be alter- R

nately hnt whxle t§he other remolns |dle Fortunately, scanhne order . productlon o

=

t . LR

. _only in rare cases wnll q snngle module be consecuttvely accessed by 4 partlcular
' R - :

. ﬁ f In phase 3; some temponl clustenng can occur Vertncal dges-will fall into. one module and -
could eause workload dlstnbutlon problems B ; . g

5.7. Syaterﬁ Limibations

s)

. ‘l '
’l‘hcre are numerous Iumltatlons in the w*atcm descnbed Some of thesc are hmlt.\-‘ ‘

tions in the al\gonthm whlle others are lmplemen,t.at.lon decmons

The current vcrslon of t.he syst,em does not support transparent ob;ects‘ although

. [

these can be accommodated in prlnclple by the algorlthm A more sophlst.ncated nmple-,‘

.

mentauon of thls algorlthm should permlt this.

3

There is an upper hmlt on the number of fragments the system can handle since
each module has only a ﬁmt.e amount of memory Thls lndlrectly, places an’ upper_ '

bound on t.he number of polygons that can be handled

A\l

The desngn of tche system rests heavnly on its a‘blht.y to store many mtermedlate.

,reaults in the form o’f whole plxel data structures and blt.maps Thls requlres a large .

o 'amountv of RAM and an make lmplementatlon costly It is hoped that ‘the; ever .

decreasmg cost. of memory and VLSl wnll make the economlcs of nmplementauon much)

PN

L morefeaslble T v'
P B . :) ‘ o .

Chapter6

Simulation Results'and Discussion
" The primary‘ question)to be answered in anytarchitecture study is: "Hov'v'w_ell docs
’. . | N b

r
[.

it perform”? Desplte tho slmphclty of the quesuon, it subsumes many other questlons
How well will the archltecture perform wnth vanous data' What are the bottlenecks in
‘the system’ Are the bandwndths of the vanous components well matqhed’ How well is'

the work dmtnbuted in the system’ Thls thesls set out to determme the answers to

.

P

these’ questlons o BN
A very |mportant lssue in this study is the expandablllty of the archntecture
speclﬁcally the concern is gettlng hnear speed -up. Thls lnvolved nnvestngatlon of per-

’

formance gams by lncreagng the number of processors in the system and by scallng

i

. the system to varlous conﬁguratlons lmportant‘ obstacles are ldentlﬁed in achlevmg

‘e
'

speed—up potentlal and these issues. are consndered ﬁrst in thls chapter o RN

"." . n. ‘,~‘\

5' materlal ln most cases. no. knowledge of snmulatlon deta;l is. needed to.‘a

The too!s and methodology used in the expernments are dlscussed m the appen- '

‘ [. /,

': 'ces Thns mcludes a descrlptlon of timmg parameters data characterlstlcs and level‘,.. :

N ! . Co o Vv "‘ ".. o

of slmulatlon The mterested reader ls, therefore dlrected to the appendu:es for thns,

‘preclate the

Some of the characteristics of these data sets are gi ven in the appendix

. ‘u‘. N '
. 1 ') Co
1 L ‘ o :
ol .

| | .18

ce 'y
'

between randomly generated data and-data derived from a natural scene, The plant
. " oy . ' . L K ' . B ‘ '
scene follows Test Set #1 clasely 'This lends cre

S

[=
‘.. dom source. -~ .

dibility to results gainéd from a rin-

S 00 AU >' n e

I o o »_.A]wTestSet#l. o .
: R oo o Test Set #2

600 |~ N v O Plant

o " @ Reom -

I3l

. Time .
" 'Per

. |
' -

(millisec) "

»

]

1
]
1
]
)
1
\ .
' ¥ . '
)) ' ’ . .

Frame °%° 1 i
'
\
)
\
1)
]
]
4

3 ‘ .
LIS . 1
+ . 1
‘a : E
. N ' ’ R L
X } o . T 79
. ! ! ' . ' ‘ ' n . ‘, o E ' .
TR ' : . ‘ ‘ L
‘ lhc plant \C,('m‘ Performance was investi "nlcd fur(hcr by ploumg -&pccdup on u ph e
Ca L .] -
; P ‘b'\nn pl Pis a mdc dnorxnty \]n pcrformnnco gninml using thc four ‘(l-u'\ *N-«' 'l‘hk»
) ‘,’,’ room sccne bas partncularly poor speedup, Reasons for this are, consndercd hlcr i, (h('
. \ ¢ o N .
Yo cb"pter ‘ o \ I | | \
' ‘ ' ' . o A ' e
, . S ‘ o ‘" £3. ldeal Speedup °
, ' st | S, . B ’ N .
Iy oot : L "o & TestSet #1 7
O YR 1207+ . R : . .) . .
3, Vo , . : o Test Set #2
‘ \“(\.' D ' . : .) A -) .
y RPN ® /) S . O Plant 1
. R . } \ .
e o RPom CN \
100
e B
- Total" 9.0
 System"; ' |’

- ," ISpegd up80)

B
'

. . -,'.‘
.\

Co | . 80
a) ’ ! L

: S A
" : Phase 2 (whole pixel production) and Phasc 4 (fragmcgt list mergmg) gwe almost pera’

N

fect speed up. The pcrformance of Phase 4.is almgst perfectly linear,

1
' »

+"'a’ Phase 2‘Spe.éd-u;‘>‘ o :
' 6 ' Phase 3 Speed-up R
:-U Phase 4 Spée'd-u‘p'v-

e

\ . ‘ I.\‘ ! . . : .
Flgure 6.4 gwes pqrcent.age ut;lhzauon for CPU memory, plxel gun A~ bus and

. d}lbus The ﬁrst obserVatlon is the remarkably low use of all 'bc ay;t‘em componcnts mae

REPS ' ' ' .' h' o~)
cxcept. for the’ CPU, whlch operatcs at. maxnmum capacnty Thls is atrong evndcnce for

mncroprocessor Spced belng a bott.leneck in Phase 2 ' S ' S | - @

o . ‘.\";u
90.0 |-
o 8070 L Co IR &, CPU_ « ".’j-{
: S e S L - o , fa
PRI ST R R PR o Memory" Tl
A‘L . o . ‘ v e yw) . . f e e - s
’ A A S . " @ Pixel Gun- = -
. ' . . q

700} . . ‘
Percent . 7| . , ' o : : v A:bus - .
" Busy : L L e O A-bus -) -

. . Y, . . .
e00k ., o \ | o | 8 . f
[

' N o
- n [
: ‘
1 1 : N .
: oo 200
PR . . .
o
waq f
o e " ! 1 B PR
Y R ; P DR
100 |-
L. . e St L e -
! i : o o o g oo o - o -
LR - - m— OO :
I . A A e i ‘ .
! I . . !
N g e
- ' €

o

thure 6 4 Pha.ser? 'Performance vs Prycessors For Test Sct. #l

A

\ " 82

) lmndlcd per unijt Limé, is doull)lcd by doubling the number of processors, Table 0.1

better-illustrates this linearity.

A slight degradation of CPU is noted with an increase of A-bus use. This suggests

. , .
there might be some contention in reading polygons Hl“om the host buffer. Loss of CPU

' use may not bz as bad as suggested, since statistics are collected {rom the beginning of

. Phase 2 and includes the idle time of all processors waiting for their first polygon.' This

idle time appears to increase in proportion to the number of processors in the system.

" If more polygons were rendered, this initial idle phase would diminish in comparis?n.

. "
Results, collected during Phase 4 support the idea that this is a simulation artifact

,

rather than a problem with contention.

Parameter Number of Processers -
CPU 988 |98.4 |973 [950 |897

Memory | 0.235 | 0.468 | 0.933 | 1.800 | 3.410
Pixel Gun | 0.155 [0.154 | 0.154°| 0.146 | 0.137
A-bus - | 1,567 3.12 6.18 12.1 22.8
n B-bus 0.127 | 0.262 | 0.492 | 1.02 1.93

Table 6.1 Percent Busy of Performance Indices in Phase 2

Results are plotted for Phase 3 and are given in Figure 6.5. Fewer than 4 to.6
processors per node give nearly linear speed-up as indicated b); the increase in memory
use, Bctweexll 6 to 8 processors however, memoryq_feaches its maximum capacity. At
this point thc‘B-bus, is alrso‘sa‘turated since write requests 'will bol(i the bus until the

- | l

receiving buffers can hold the request.

The initial busy time of the memory starts at 30 percent while the B-bud-uses

only about 2.5 percent of its';capac'itﬁy‘. This suggests a major performance mismatch .

deriving from the assumptit;n that it takes 2 microseconds to store a‘ragment and 650

‘nanoseconds for reject.ioni. This is much more than the 200 nanoseconds taken to -

transfer fragments on the B-bus.

. . - .
A e 2
.

- 83
N ' |
™
N
100.0 |- o - ' >
ﬁﬁﬁﬁﬁﬁﬁ HHHHH"\HA"\HHQ
4 L ‘
. 90.0 |- a CPU N
&,
. o Memory
‘80.0 n o Pixel Gun
H O A-bus
. o B-bus'
Percent ' o
Busy
6001
§50.0}-

foo|

30.0 |-
20.0}-

10.0 -

.........

.................
.......................

Processors Per Node

\

Figure 6.5 Phase 3 Performance v,:s. Processors For Test Set #1
. B - C . —
Another observation is that percént CPg‘busy does not degrade as rapidly as
other param‘eters. This is partly due to the buffering capacity of the arbiters at each

proc.;essing node. But the dominant factor is likely to be the CPU production rate

which is slow compared' to the transfer and storage rate of fragments.

. Phase 4 performance characteristics show good speed-up with added processors
e o

4 ‘ ‘
(Figure 6.8). Nearly perfect increase in B-bus busy and memory busy indicates a nearly

‘P' " 1 . i N
A | 84
L . 4 4)
or . .
)

linear increase in fragment list merging. An important observation is that CPU busy is

maintained at nearly 100% capacity despit‘e B-bus loading to a maximum of about
' |
52%.

r
’

1000 o o = -

90.0 |- acPy
‘ o Memory
80.0 |~ '1 g @O B-bus

70
Percent 0 ‘ /
Busy ‘ l :

60.0 |- K / }" ‘
50.0
40.0
30.0
20.0

10.0

1 | | *
74 B BE—— [' KOE

Processors Per Node

. Figure 6.6 Phase 4 Performance vs. Processors For Test Set #1

In fact, CPU busy degrades only about 0.8% from 99.4% (in the two processor case) to
98.6% (in the 32 -processor case). This vclearly supports conclusions about processor

busy in Phase 2. Namely, that CPU degradation is an artifact of the initial reading

\

f .
’

) » '
L]
; . A 2 processors
. MQO b~ ‘ \‘ ‘ ‘ o 4 processo‘rs g
. - 1300 L ‘\ © 8 processors
' - \ O 16 processors t
1200 |- ' ‘ '
: 3 32 processors
1100 |- \ i a
Time 1000}
(millisec)
: 900 |-
, 800 = »
700}
600}
500 |-
400~
300}
v
200 |-
100 |- ' | ‘ ~
o L :gm
ox2 4x§ Bx8 ~ I6x

Configuration
¢ : S o

l
|
|
|

Figure 0.7 Time vs. Configuration for Random Polygons g

contrast to the prevnous expenment Phase 2 now has minimal performance gains and(

Phase 3 has the best performance increase of the slmulated phases. Table 6.2 gwes

,‘utlllzatlon for Phase l system resources. Despite- zerz performance gain thh mcreaslng

a

' system configuration, all uuhntlon figures drop. In fact, after the 4-by-4

configuration, utilization suffers a lipear dccreasc id all categories.

a

In addition, time required to complete Phase 2 is constant for coifigurations

= \8‘5 [;
W
hase when all processors stand idle, watting to-read their ﬁrst polygon. This is not a - ‘

'problem in the fourth phase since there are tcns of thousands of fragmeu?s to be read

‘and the initial idle phase is, therefore, much smaller in comparis;on. _ o
‘ | ' D I
To summarize, these experiments suggest a serious pérl\rrmance mismatch in.
Phase 3 limiting potential for linear speedup, Specifically, fragmenb handlmg capacity

)

of the multlport buffer is exceeded aft,er 6 processors per node t There j 1s also'endence

that CPU c?\pacn.y isa bottleneck in the system o |
, ' ’ l' !) \ .
6‘.2. Speedup With System Scaling — SR UN

ln prlncnple scallng should glve perfect. speedup slnce processors, memory and

-~

busses are added in direct proportlon to each other. Thus the load balance between

system resources should be. unalfected This predlctlon is confirined by expenments

.. A i
l ‘b‘

with random polygons. Time is plotted for 5. different cases agalnst mcreaslng o

configuration size in Flgure 6.7.

Plot,t,ed speed-up for these configurations is glven in Figure 6.8. There appears to

be a slight performance degradat.lon wnth increasing processors per node, but for the
two and four processor per node case, performance galns are very good The same

experlments were done wnth t.he room scene and the time plot is: glven in Flgure 6 9.

‘

There is apparent,ly ht.tle lmprovement for.the 16 to 32 processor per node case. The

mlnlmum rendermg tlme appears to be about 60. mllhseconds There also appears to be

Ps

degradatnon ig speedup when increaslng the system scale’ slnce all curves appear to

.

converge at the lO-by-lﬂ conﬁguratlon . .-v“

Speedup relationships are better illustrated in F igure 6.10. For '16‘ to 32 Pproces-
sors per node, speedup barely exceeds a factor of two Performanee was examlned on a

phase basis uslng t.be 16 processor per ‘node case and thxs is given in Figure 6 i1. In |

» c
3,

t'Six processors per node is not an absolute number independent of processing speed lt is, rath-
er. a function of processor speed R

N N~ - .) , ‘ ’
1 .

8.0} | | ‘ ‘ : C))
70}
| | 4
d b
. 6.0 —
‘ \ \
‘System 3 I ‘ - \
Speedup C : : .
: 5.0 | a 2 processors 5,&‘
o 4 processors '
0 © 8 processors ,3
T oW O 16 processors
o 32 procgssors
[=
3.0} [’
| l
20}
; 1.0".;“ ‘g
g . \ : Y
| A | |
: | 1 ;‘ : . . ‘ . J . L ‘
‘ . TxL2 T &8 — I0xI8 -~
e o Configuration L ' ‘
S ‘ » ’ l ' . ' . ' ’

Figure-6. 8 System Speedup vs. ~Coqﬁguration For Random Polygons

greater than 4- by-4 Phase 3 only has a shght utlhzatlon loss whnle Pbase 4 utnhzatlon

.

_ drops to’ hsll’ for the memory and B-bus t Lack of speed—up is not due to resource ton-

[
LS

tentlon problems (ps was the case m prevnouf expenments) ' L

1

lf no smgle resource is causmg the bottleneck lt is suspected that a slngle devnce‘
' T ~ ’
or devtces could be the problem Tlns mll occur |l' there is a non~un|form workload :

+ Memory utnllntlon is 14% in the 2-by-2 cue, and 7 5% m the l.by-ls conﬂguntlon

’ L)

!

4,

. A 2 processors
800 |- r'y o 4 processors
Tt
-\ © 8 processors
o \ O 16 processors
700 t '
o \ A . 3 32processors
.\‘ . ! ' ‘
‘ N '
K 600 |- N ,
] Time L :
(millisec) . \
4 X \
500 |- \
1
)
“ 400 |-
300 1
N4

200

100

' SxB

Configuratlon

1
v

Flgure 6 9 Time vs. Conﬁguratlon for The Room Scene

work t.han t.he others Thus, as the system is scaled upward .added devnces become
lncreasanglyldle.- KA

.

dnst,rlbuuon in the system and smgle processors or other dences .are handhng more

A

whlch makeup a vase, to huge polygons t.hat deﬁne tbe ﬂoor and walls of the room It

'

Polygons in. the room scene are very heterogeneous, ranglng from uny polygons

is therefore hypot.hesned that one or two huxe polygons were hmmng the syslem

88

" 89

8.0} . A 2 processors\._
‘3 o 4 processors
L " © 8 processors
7"9 B \ D O 16 processors
\‘g\ ‘ g 32 processors
6.0|-
System
. Speedup
S S0
w1 4.0 4=
~
3.0
2.0
?)
1.0}
. .‘\ 0 4 3
— 1 - -~
—ex2 4xd . Bx8 ' ~16x18
| Configuration '

o

Flgure 6 10 Syst.em Speedup vs. Conﬁg;xratlon For the Room Scene
ﬂ speedup Thls conject.ure was based on the ’observatlon that a polygon represent.s an

- mﬁwmble umt of work in the syst,em No speedup coﬁld be obtamed by addlng proces- :

sors lf tlns unit of work dommates completlon tlme of a phase. S \;‘; o

' This may-explain why' Phase 2 time is constant pa‘st.;the 4-by-4 eouﬁg‘uration One‘

processor may be lmtlally loaded with a huge polygon whlch it works on well after, all '

»

the other processors have ﬁmshed -

8.0
7.0

8.0

» System
Speedup
5.0

4.0

‘3.0

— . . ‘ _ ‘ v ' & Phase?2
. o Ph‘nse& '
.° Phase 4 .

[| 1 . ,
- 2x2 ,‘4x4 . ‘ v 8x8 - - ' - 10x1 ,
o ‘ Coﬁﬁéutatibﬂ ‘ | .
. ,m ' :

‘ F’ikﬁre 6.11 Speedup vs. Configuration For The Room (16 Proc. Per Node) .

- . Configuration

| Resource oo Taxs [8X8 16 X16
. [cPu 7 [8030 | 45.43 | 22.72 | 11.37.
- | Pixel Gun |:2.78 | 1.56 |-0.78 | 0.39

'Memory) | 2691 | 15.82 | 8.02 | 4.04-
-{A-bus | 1239 |7.00 |3.52 |1.76

B-bus _ [.17.45 | 10.20 | 5.18 | 2.60

{

Table 8.2 Percent Utilization of Phase 2 Resources

- \vhlle other processors stand |dle L .'. o o

91

To test this, a polygon spllttmg program was written which "chopped” the
¢

- polygons ‘into smaller pieces.$ Unfortunately, the room scene could not be split as
LR

"

~ much as deslred since it would mcrease data requlrements for the slmulatlon and

"a problem wlth processor bandwndth but wnth storage speed

exceed virtual memory space allotted to users.e Despite this llmltatlon, there was a

o L N
great improvement in performance. '

Flgure 6. 12 shows speedup obtanned wnth a more umform work dlstnbutlon.. Per-

»
-

formance gains are parttcularly ehdent in the 16 and 32 processor cases. Speedup is

.t
examlned for 16 processors per node and ‘is plotted for each phase in Flgure 6 l3

Phase 2 now has an lmp'resslvermcrea.se in performance but only margmal gams are "

¥

made for phases 3 and 4. Deﬁcrent speed-up in these phases can agam be attnbuted to
poor workload dlstnbutlon ‘

* The problem in Phase, 4 is the work allocation scheme. For ease of implementa-

tion, it is assumed that "ohly processors attached to processing node "n” can read frag-

me‘nt lists from \'multiport memory "n". Thus, processors at node 1 only read fragments

from memory 1. ll' there are many more lragment lists in one memory module than in

-

the others, the processors at the correspondmg processlng node will be over-worked

v

This can be corrected by a better algorlthm where p dcessors are allowed to read

from any module So m prmclple, nearly llnear speedup is achnevable m th|s phase 1’

Phase 3 however, poses-a more dlﬂicult problem Non-umform work dlstnbutlon -

, voccurs because more fragments are "hnttmg one module than others Thns is oo longer

" $'The charaeterlstu:s of thxs data are given in tl\e appendlx
* This occurred at 6.25 megabytes : o
t This should be true for the range of. processors that tlns study conslders lt is recogmsed that

- it orie modiile has many. more fragments than the others, eventually -all processors in-the system
* will be reading from it. At this point. memory: becomes a bottleneck. But the time required.to read
s list is much shorter than' proceum; it, so. many processors can read hom the same module .

without too much dlﬁlculty

.

N}

-\ R . . i

 8‘.0 = " A 2 processors
o 4 /proceasors ;
@ 8 processors

70}
‘ O/ 16 procesaors

32 processors .

System
Speedup

1 1 S DR .
IxT T Axd - 8x8) . IsxIg
o ‘Conﬁguration ‘ Lo -
1 ‘,A ' N , . ' . o 1 ¢ ‘i
o . ».1“9‘ . '

Flgure 6 12 Speedup vs. Conﬁguratlon For The Split. Room B

In random polygon scenes, fragments are umformly dlstnbuted throughout the

¥ nmage The room scene, on the other hand has many vertlcal edges Thls great,ly,

s

" increases the chances of storage lmbalance in the system smce all fragments along an o

'edge fa‘ll into uhe same memory module Expandlng t.he system conﬁgurauon exacer-

g

o batcs the problem .

T lncreased conﬁgnrap'ion sizes cause each memory module to sample smaller parts

‘93

- :f“. . -
. .)
: : NG .. ' X ' IR ' '
8.0 SRR . - a Phase?
‘ , ‘ ‘ o
|) a Phase3
‘ b S ' © Phase 4 B
N \ 7.0 e " ,, . o
| (
B] . \
System
Speedup .
peet sol
! ' :
40
. 30}]
2.0}
~ 1.0}
e
L. P L _ 1 . |
Co2x2 - 4x4T T Bx8 N . I&xI8
. Configuration . | ‘ -
Figure 0. 13 Speedup vs. Conﬁguratnon\For The Spht. Room (16 Proc Per Node)
‘of t.he {image, t.hus thalung n nncreasmgly hkely that one module hags more fragmenbs L

3 : than another The worst. ca.se occurs when there are as many modules’ as columns of

Iplxels. Here, some modules may have no fragments whlle others are overwhelmed

Smce fragment dlsperslon isa functlon of the |mage, there is: lm.le that can be
done. Splmmg the polygons should have a modest. eﬂ’ect smce thl% wull mcrease the -

h number of fragment.s and mlght therefore reduce the relatlve lmbalance bet,ween,_

.".

.

modules, This dispersion problem is made more sensitive because of the slow fragment

~storage rates already observed in the previous experiments, L
The major problems with scaling a system involve workload'diatribution. This is
_expected since all' resources. are added in direct proportion so balance between

v . ' i . ’
'

resources is maintained ie, the ratio between’ processors and buases stays constant

'

- Workload d:stnbnuon problems in Phase 4\are casily solved by changlng the wo?k

allocation algo‘nthm. '

Better work allocatlon |n Phase 2.is also easily achieved.. The modehng system
‘could solve [this problem. by insuring that polygons are umformly amall The archntec-

ture conld Iso achleve thls by antomatncally spht.tmg large polygona and storlng them

N

back into the host lnt.erfade. ’I‘hls latter approach is more ﬂexnble and reduces the

.
\

2 .

host’s workloadr

o : . !)

. The only real obstacle to achieving nearly linear speedup is non-uniform disper-

“sion of fragment data. This is not as severe a problem as exceeding a regource’s capa-
‘ . . - } o e " ‘. ‘

city. since this leads to minor degradat.ion in only one of t.l_:e four phases, also,‘.not all

lmages have serious dlsperslon dlﬁicnlues T A remedy to this problem wowld be to.

—~

interleave the memones on the lowest. order bits of both the x and 'y address. Thls

would pamtlon the screen lmage lnke a checker 'board among all the buﬂ'ers t,hus ,

) “,uﬂ"b
e A L

) 'spreac}@wmkload from vertlcal edges m{c:éevenly

-

‘ *. lmages with vertical edges are more hkely to have non- umform dupemon and Q—nul edges
are rare. in appllcatlons such as flight simulators. .

6.3, System Bottlenecks
As pointed out, thcro .is ample ecvidence that the multiport memorics are a
bott'leneck in t‘he third phase of the algorithm. There is also good evidence that the
' microprocessor CPU is a bottleneck in tho other phaaés. To oonﬁrm that CPU speed is
a problem, all CPU time parameters were cut ;n half and a simulation”was run using
random polygon sets. If system performance is doubled by increasing CPU speed, then

the microprocessor would be confirmed as a bottleneck.

Figure 6.14 gives a plot of the 'nor:nal" CPU divided by fast CPU times, Phase 2
and Phase 4 performance is evidently limited by the CPU speed, Phase 4 however,

suffers a slight decline in performance between 16 and 32 processors per mode. This

A

‘indicates that another factor, such as B-bus contention, becomes more important.
Phase 3 starts out CPU bound but the multiport memory is a bottleneck between 4

and 8 processors. Microprocessor speed is clearly a limiting factor, especially in Phase

-

2.

-

" When CPU‘ -utilization is examined, it bccomes clear ‘that most of the time is

‘

,spcnt in elther mltlahzlng polygons or in mmalmng scanlmes Initializing a polygon

and a scanline take 173 mlcroseconds and 116 mlcroseconds respectively.t But the

ratio of time spent betwecn these actlvntles is dat,a dependent In Test Set #2, 14% of

a

CPU time is spent in mmahung polygons and about 83% in initializing scanlines —

t.hns result.s from e blgger polygons found in Test Sct *2. Tybncally, tlme spem

bet.ween t.hese actnvuttes\,;s more evenly balanced — the plant scene spends 47% in

polygon initialization and 38% in scanline initialization. This data is summarized in
Table 8.3.2, ° ‘ : .
. B ' . .

e

+ A'Pjhendix 2 gives other simulation parameters.

&

96

2.0 -
~~~~~~~~~ P
"""""""""""""" 0“ "H-\’\HHH"‘
oLl A\ T e,
""""" o
1.8 ’
1.7
System
Speedup
1.6 |
1.5
| A Phase?2
1.4 O Phase3
‘ © Phase 4
1.3 \
1.2
1.1
1.0 —a a
1 | y
0.95 5 u

Processors Per Node
v /

Figurg 6.14 Normal CPU Times Over Fast Times vs. Processors (4-by-4)

. . Activity Data Set
Test Set 1 | Test Set 2 | Room Scene | Plant
Polygon Initialization 51.2 143 ' 53.6 47 .4
Scanline Initialization 41.1 82.9 31.3 38.3

Table 6.3 Percent Activity For Phase 1 In The 4-by-4 Configuration

6.4. Dat.;\ Dependencies



It was noted earlier that fragments cause much work in Phase 3, The amouat of
fragment generation depends on how much aliasing occurs in the scene. It was there-

fore decided to investigate the dependence of processing time on aliasing in a scene,

Unfm&ely,_it is difficult to separate some factorﬁ, like aliasing, from others —
such as polygon size, This difficulty makes performance dependencies hard to deter-

mine. In the present case, high aliasing generally means low screen coverage, and low

——

amounts of generated data, This causes a wide variance in time taken to generate a

scene. Low aliased pictures take 2l§ milliseconds to render and have over 30 overlaps

per pixel. Highly aliased images take 51 milliseconds and have less than one overlap,

To factor out these rcsults the time per partial result is plotted against percent
aliasing (Figure 6. 15) t An lnspccuon of the graph shows a roughly linear dependence

of processing time per part.ial results on percent aliasing. This relationship reflects the

‘

composition of the rendered image. At low aliasing, there are few fragments and more

n

whole pixels producfe(.i. Oune would expect, at a lower bound of zero aliasing, that thé
time is determined by memory .int'erleaving and rejection speed. This lower bound is 50
nanoseconds for an interleaving of four multiport me‘tﬁories and a rejection time of 200
nanoseconds.$

An upper bound is also likely for 100% aliasing since each generated fragment

-

takes a fixed amount of time to produce, store, and merge. The graph should therefore

resemble an "S"” shaped curve. Aliasing is clearly afactor in determining system perfor-

»

mance. a

The large amount of time to initialize a scanline produces a dependency on

'

polygon orientation. Efficient production of whole pixels is dependent on how many

. . . aas e . . ’ - -
pixels liec on an initialized scanline. This makes sense because the "true” cost of pro-

v,

.0

A

t Partial results are defined as the sum of the fngmenta and whole pixels produced.
¢ This represents the best case of 100% rejection, thus four pixels would be simultaneously re- -
jected for a mean throughput of 50 nanoseconds each.




98

1600.0 |-

1400.0 |-

1200.0 |-

Time
(nanoseconds)
1000.0 -

800.0 |-
. 600.0 |-

400.0

‘- 200.0 |-

100.0 -

1 ! \ " Percent Aliasing

. | : : '
Figure 6.15 Time Per Partial Result vs. % Aliasing
ducmg a wbole pixel is the su{m of the time taken by the pixel gun and the time to ini-
tialize the scanline. Producmg pixels on short. scan scgments would therefore be very )

inefficient. . !

" An experiment was cou"structcd to observe the effect of very narrow, long rectan-
' I N N
gles on workload. The rectangles were randomly generated from a template having an

. / .
aspect ratio of 15 to 1. There were 500 polygons in each file and they differed in their

oricntation. One file had all polygons oriented vertically, another had them oriented



99

~

horizohtally, while a third file had all polygons randomly oriented, T‘ablel“*ﬁ},fl gives the

results of the experiment. There is almost a ten-fold ratio in the time taken to com- -
plete Phase 2 when comparing horizontal orientation to.vertical orientation, This is

\
’

caused by many more scanline initializations which must be done.

Phase Polygon Orientation
Vertical | Random } Horizontal
2 .611.6 4282 | . 718
.3 84.0 82.06 64.1
- 4 55.6 65.9 49.8
Total Time 751.3 576.7 135.9

Table 6.4 Time ( millisec.) to Render Asymmetric Polygons

There were other differences between the orientations. In Phase 3 the horizontal

e

case was almost 20 milliseconds faster than the vertical case. The cause of this is likely
a more uniform dispersion of fragments among the multiport memories. Thus all com-

ponents of the systém handle the workload evenly.

'

- Phase 4 results show that randomly rotated polygons take longer to process than

\

i . T
either vertical or horizontal. This is because there are more fragments produced by an
edge whlcb is not vertlcally or horlzontally oriented. The shghtly great.er time taken

by t.he vertlcal case is an indication of some multlpom memories havnng more stored

fragments than others — thus the effect of a load |mbalagce is observed.

%,
.

6.5. VSi'xmmi.ry V ' . L .
) v ’ ‘ ‘ ‘ .

Experiments with added processors show that the main obstacle to s'pecd-up' is

the multiport memories in Phase 3. Fragment production speed appears to exceed their

storage speed. Phase 2 resources are under-utilized because of insufficient whole pixel

1
o

bandwidth. - . - , X

A

Work allocation is found to be the biggest,problem in scaling the ard)'n.ectur&.‘ :



L T 100

Phase 2 has workload distribution proBlcm: because of very 'large polygons, while
. ) A ' . ¥ .
Phase 4 has problems with the dlgori\thm used to rcad fragment lists, Both of these

. . ; r
.. . L E ) [
) ‘ @\ 4 . . ' . ‘ o

Unfortunately, non-uniform - distribution of aliasing in the scene cauaes‘som'e:? .

obstacles are easily corrected,

.

memory modules to be worked more than others and a degradation of speedup is,

experienced in Phase 3. This non-uniformity of i\lf‘ﬂsin“g‘ is aggravatéd by vertical edies :

- ¢

in the room scene. The problem can be corrected by interleaving the xpultiport
s ‘ ¢

memories on the last bits of both the x and y screen coordinates. - .o

" R ' “ e g

_ Aliasing is identified ‘'as a data characteristic causing greater workload in the sys-
tem. In addition, whole pixel production efficiency is heavilyjdependent on the length
0 | o "

of the scanline section being rendered. 1 ' : A R

¢

.



‘Chapther 7
Conclusions and Fu{ture“Ree‘earch E

V-
g "
. . ’ .
. !
. . ,

7.1. Conclusions

This thesis coucludes that the A buffer algonthm can be adapted to a multlpro-

——

A ‘
cessor envnronment and therefore forms the basis for a good parallel antlahasmg algo-
: .

rithm. The adapted algorithm produees good picture quahty and’ gnves realtnme perl‘or«

mance for many of the tested data sets.’
s ) - ‘ Y .

. bespite thi‘s, further work is needed to get.the performance required for‘ﬂight
slmulatlon t Speelﬁcally, the memory bottleneck experienced in Phase 3 limits the
system's speedup potential. There Woul* be httle trouble getting the requnred perfor—

1

mance if llnear‘ speedup can be obtained vnth added processors. Thns bottleneck also ™

]

makes the architecture performance.more susceptible to data characteristics such as
. ) ' . N '

o
t

high amounts of aliasing. - ‘ | ‘ L .
‘.,‘A‘dditional research should focus on finding a faster way’ of handling the gen-
erated 'fragment's. At the.cos‘t of more orerhead in Phasel 4, one of the linl(ed_ lists coulél
be eliminated. _There is also apossibility for ‘m_ore hardware support in this phase to
help ragment ‘st'orage‘ |
Scalmg the system glves much better speedup, but is not a ﬂexnble alternatnve"

and i |s more expenswe Thls expense is hard ‘to justlfy smce bus and memory resources

are senously underutlhzed in Phase 2.

A secondary problem i is the lack ol‘ computatlonal bandwndth in Phase 2. ldeally, '
this can be lncreased to balance processmg bandwndth between the three phases The .
objectlve is to balance throughput so that they all 'bottleneck" \wnth roughly the same/

number of processors Boostlng Phase 2 throughput would make the system’ ﬁm

o -—

t But the performance of this architecture is good enough for less demanding applications. .




T R , . oy 102
| | o I i@ “ P . ‘ . , ’ ' o '
- " vulnerable to asymmetric polygons, B e v

[
\ .

c " ‘\."‘ E ,."'.' “M.\ . ‘ . , ,
A secondary d:rection for research I3 to investigate ways to speed up Phase 2, In

‘ ‘ prmcnple more dedlcated hardware can be apphed since scanhne lmtlahtauou is a
matter of hnearly mterpolatmg between two vertuces Thls is slmllar to the process

‘ used to ﬁnd pixel colors between two polygon edges. VLSI asslstance should be feasi- .
. A '
ble, it may also be posslble to mtegrate this into the plxel-gun. An even easier solution

¢

would be to use a faster microprocessor.

Coope

Once these .ohsta‘cles are eliminated, particularly the Phate 3 bottleneck, nearlf
linear perfbrmance would be achieved and this system could be applied to‘ﬂight simu-
lation. Tbe requlrement that mcommg polygons be non-mtersectmg, is not. a hablhty‘ ‘

in ﬂlght slmulatlon since most of the objects are predeﬁned and any additional expense
\

‘ in producmg them is be easy to justify, espec;ally ‘considering that much more difficult

and expensive means are currently used to achieve realtime for this same purpose.

o ! :
X
!

This' architectur'e has many desirable properties. Processor failul?é' for‘instance
. causes’?nly mlnor problems The system cap’ be run wnthout the failed part and wnll .

. experience. only minor performance degradatlon Therefore, the down-tlme for thls sys-

tem is Iow Mamtenance is also easner in. thls modular envnronment , .
" The arclntecture is ﬂexlble sxnce dlﬂ’erent algonthms can be executed wnthout ‘
o oo

@ardware modlﬁcatlon lt is posslble, for mstance to fgnder wnthout shaded polygonsl

— this greatly lncreases Phase 2 performance ’fhe system can also be run in. "vector
. mode ‘where thin,’ Iong polygons are used to frepresent vectors Thls later change ehm-

fr mates Phase 2 altogether smce there are no whole plxels generated

L ‘_ o 3 Thls thesns proposes two hardware alds useful on thenr own merlts The plxel gun~-

DT can be used ln low-budget hlgh—performance *um-processor systems Performance of

l

mncroprocessor based workstatlons for mstance, can be greatly :ncreased mth thls co- -

;proeessor Thls VLSI eblp also represents one of the ﬁrst hardware devnces proposed

4 . . s . ‘ i



" 7.2. Extensions and Furhher Work

‘ t,hls archltecture.

103

! . . \ - - Y ! N ,l
for aldlng the antlahasmg process. ' ‘ : : l

The arbltrauon scheme |f lmplemented on a chlp, can be used as the bulldlng

block for many dlﬂerent archltecturcs partlcularly those havmg a hlgh degree of inter-
connection such as crossbar type systems. At the very least, this circuit makcs it easier
to implement multiport memory since ports can be added to the memory bus bj simple

modular connection to the bus. ——

N

' Much work needs to be done to make this architecture a viable solution to-the
. . ) f - , , i

rendering problem. Transparency, for instance, is not implemented in the present sys-

tem, although adding it is not likely to be a problem.t The.simnlated. system has a °

frame buffer size of only 2$b-by-256 pixels. A higher quality production system would

\

require four times as many‘pix'e‘ls — namely 512-by-512. The appropriate system scale

should be determined for such a system, although it is not expected that much more

4,

" e - T . \
- than twice the computational bandwidth would be required for the same performance.

'

Non-nnil‘orm_distribuﬁbn of fragm’ents is the only re'al obstacle to obtaining linear

speedup hy ‘scaling' An imoort‘ant improvement to t.his system-would be to configure

memory so. t.hat interleaving will occur on the- lowest. order bits of t.he y address in

[

| addmon to the x address Thns mt,erleavnng approach has already been tned in Fuchs o

-~ and Johnson's system[lﬁ] to overcome the same problem and merxts lnvestlgatlon in

[} .
Yo

)

’

Nu)}nerous hardware changes could be made to "tune” t,he system for opnmal per-
|t

‘ jformancg One ldea wonld be to st.ore the YA depth value in 50 nanosecond RAM‘

'

l |nstead of 200 nanosecond RAM Plxel rejectlon would be 4 tunes faster ‘The accep-‘

v ‘t.ance ume would be only 250 nanoseconds mst.ead of t.he 400 nanoseconds currently _

o
o

B

) 'l‘he A-buffer algoriltym hsndles tnnsparent.bitm_sp‘s 'easily'. '

S



104

v |“
A

required. Thns would. be a tremendous boost, to memory perfol‘mance in. ?hase 2 and 3.

Phase 4 performance could be |mproved with a VLSI plxel merger s The merging )

operations are all slmple since they‘requlre only loglcal operauons with blt.maps It

should be relauvely easy to build a devicé which takes dept.h sorted [ragment lists and |

Al

produces plxels color as output.

[ s . . N

Various changes could be made to the algorithm torimprove performance. After

Phase 2 polygon reading, polygons could be stored at each processing board instead of

A

belng written back into the host. bnﬂ'er This would help reheve cgntentlon problems at

the A-bus.

¢ The capabllmes of the system could be expanded to encompass chpplng, scaling

and t,ransformatlon of polygons One way to accomphsh thls would be to place a pipe-

line of "Matrix Engines” before each host buffer. WI_gh this scheme, the host only needs
. ' N '

"

to specify polygon transformations, thus even more of the image generation process is

N

off-loaded into' therarehitecture. v ' , ’ Lo 5

There may be some potentlal for lmplementmg Phong shadmg on- the pnxel gun.
Thls should be lnvestlgated as a means of obtanmng hxgber quallt,y nmages Slnce the
- pnxel-gun is many mnes faster than the CRU there should be no problems wuth accept-

vmg a slower (but hlgher quahty) rendermg scheme

Further'rese,arch needs to determine if‘t.his architecture could fill all the needs of -
. ' s ' ' . . .

a flight simulation environment. One concern is whether fast texture mapping is possi- . -
ble in this system. Texture mapping is common and desirable for realism in flight

O 9 '- ,‘,‘y‘. . ' - “ ' . : . = k . ) i
,simulators‘. ‘

.

of cqurse there are numerous other practlcal detalls whlch need to be resolved

The plxel-gun and bus arblter need to be deslgned and nnplemented for a prototype

| system The frame bnﬁ'er mterface t.o tbe monltor also needs work.

-



. . o . . . . ‘ " 105

‘

Th]s thesis takes only a small step towards crééiing a system for realtime image
generation; there is much more work to be dope"bcfore suchi a system can be built, But
it should be remepbgred that "a journmey of a thousand miles begins with a silngleu

8 v,

footstep.”



o

U

8
-4l

(5]

(6]

e
#
ool

" fto]

At

nzt

gl

el
sl
[ls]”‘

S

References

Bechtolshiem, A. and Baskett F. "ngh Performance Raster Graphlcs for .

Mlcrocomputer Sy\stems S:ggroph ACM, Vol. 14, No. 3, July 1980 pp 43-

47. \ ,

Locanthi, B, Object Onented Rast,er Dlsplays, Pr‘occedmga of Caltcch
Confercncc on Very Lorge Scalc ?ntegrohon ‘1979, pp. 215-225. :

Bowen .B.A. " and Bnbr RJA The

Logical Design

Mucroproccuor Syatcmc Prentlce Hall Englewood Cllﬂs, NJ, 1st edmon

'1980.
* Fussell, D. and Rathl B D, A VLSI-Oriented Architécture for Real- Tlme

Raster Dlsplay of Shaded Polygons, Proceedmga o[ Grcplucs lnter[ace 8¢e,

1983, pp. 373-380.

‘ Whelan, D.S., "A Rectangular Area F‘llllng System Arcbltecture
Graphsca Vol. 16, No. 3, July 1982, pp. 350—362

" Fiume, E., Fourmer, A. and Rudolph, L.,

Algorltbm for' A General-Purpose . Ultracomputer\, Computer Graplucc Vol.

17, No. 3, July 1983, pp. 141-150.

Catmull, Edwin, "A Hidden Surface Algont.hm wnth ntnahasmg , Computer

Graplucc Vol. 12 No. 3, August 1978, pp. 6-12 .
Crow F.C., "The Aliasing Problem in Computer Generated Shaded Images”,

Comm ACM Vol. 20, No. 11, November 1977, pp: 799-805.
Crow, F.C., ."An Approach to Real-Time Sean Conversnon , AFIPS Con[.

Proc.; Vol. 48 1979, pp. 157-163.

Crow, F.C. and Howard, M.W.; "A Frame Buffer. System with Enhanced

‘Development of Circuit’ Swntclnng Topologles
. Vol.' 15, No. 2 “June 1983, pp. 95-134.

'Grapluco 8Applscotwm, Vol. 1, No. 1, January 1981, pp. 40-48.

- Parke, F.I., "Simulation and Expected Performanee of Multlple Processor' Z-
' -.buﬂ'er Systems Snggraph ACM, Vol. 14, No. 3, July 1980, pp. 48-58.

Cloﬁl G. and Velardi, P., "A Fully Dlstnbuted Arbiter for Muluprocessor ,
' Systems”, Mrcroproccumg and M:croprogrammmg, Vol. 11, 1983, pp. 15-22.

) Broomwell G. and Heath, J.R., Classnﬁcamon Categones and Historical -

"Functlonahty Computer Grapluca Vol. 18§, No. 3, August 1981, pp. 63-69..
Crow, F.C., "A Compar:son of Anualnasmg Techaiques®, IEEE Compulcr

EARPE

ACM Comxzutmy Survcya

Anderson, G.A. and Jensen, D.E., Computer lnterconnectlon Structures
C'omputmg Suwcyc Vol. 7 No

.. Taxonomy, Characteristics, and Examples

4, December 1975, pp. 197-213.

System, Proceedmga

.

o/ the

of Multiple

Computer ‘

A Parallel Scan Conversion '

G

: »Fuchs, H. and Johnson, B.W,, An Expandable Multlprocessor Archn.ect.ure |
. for Video" Graphics, . Proccedmg: of the Sizth dnmml Sympouum on
.“C‘omputer Arclutecture, 1979, : pp. 58-67. : y

Fuchs, H BPoulton, I, Paeth, A. and Bell A Developlng Plxel Planes, A
- Smart - Memory-Based Raster, Graphlcs
" "Confcrence on Advanced Reuarch in VLSI January 1982 pp.137-146.




Lo 107
e
{18) ©  Niimi, H.,.Imai, Y., Murakami, M., Tomita, S, and Hagiwara, H., "A Parallel
: " System for Three Dlmensional Color Graphncs Computer Gfapln“ca Vol, 18
No. 3, July 1984, pp. 67-76, '

- [19] : Chnstlansen, H. and Stepbenson M Momc BYU Trammg Tezt, Unlvcrsnty‘ ‘
L " Press, Bngham Young Umversnty, 1983-84 Edition.
(20} = ' Gouraud, Henri, "Continuous Shading of Curved Surfacesk , IEEE Trana on

Computen Vol. 20, No. 6, 1971, pp. 623-629.
(21] Sutherland LE,, Sproull R.F. and Schumacker RA, Sortmg and the
Hldden-Surface Problem , AFIPS .Conf. Proc. ’Vol 42 June 1973, PP} 685-
693. '
[22] -  Sutherland, LE., Sproull R. F and Schumacker, R A A Charactenzatnon‘
‘ of Ten Hldden-Snrface Algonthms Comput:vg Surveyt Vol 0, No 1,
- March 1974, pp. 1-45. : ‘ ‘

(23] ‘Foley, J.D."and Van Dam, " AL, Fundamentals of lnteractwc Computer
. Graphics, Addison-Wesley, 1982 ‘ ‘
(24] . Jackson, J.H., "Dynamic’ Scan-Converted Images With a Frame Buffer
' Display Device , Siggraph ACM, Vol. 14, No, 3, 1980, pp. 163-169.. 2
[25‘] Clark, J.H, 'Thg Geometry Engine: A VLSI Geometry System for
Graphics”, Computer\Graphscc Vol. 16, No. 3, July 1982, pp, 127-133. 7
[26) - Acquah, James, Foley, James, Slebert John and Wenner, Patricia, "A

Conceptual Model of Raster Graphlcs Systems , Computer Grqpbicc, Vol, 18,
~ No.3, July 1982, pp. 321-328. o o |
(27] Thurber,. K.J. and Wald, .L.D., "As‘sociatiVe and Paral‘l‘el Processors",
o Computing Surveys, Vol. 7, No. 4, December 1975, pp. 215-255. :
- (28] Carpenter, L., "The A-buﬂ'er, an Antialiased Hidden Surface Method",
Computer Graphics, Vol. 18, No. 3, Jnly 1984, pp. 103-108.

[29] | ‘Kaplan, M. and Greenberg, D.P,, "Parallel Processing Techniques for Hidden
‘ " Surface Removal®, ACM Computer Graphm, Vol. 13, No 2, August 1979
. ‘ PP. :300-307. r .
[30] ,Satyanarayanan, M., Mulh-Proeeuon A Comparatwe btudy, Prentlce-Hall
e New. Jersey, 1980 ,
[31] - Whitton, M.C., "Memory Desngn for Raster Graphlcs Systems ) IEE'E'
: - CG8Appl., Vol. 4 No. 3, March 1984, pp 48-65. " ‘
[32] " Fnslow, P.H., Multlprocessor Orgamzatlon = A Survey A Computmg .
" Surveys, Vol. 9 No 1, March 1977, pp. 103-129. »
[33] 'Baecker, R., "Digital Video . Dlsplay Systems and Dynamlc Graphncs ,

o ‘ chgraph ACM Vol. 13, No. 2 ‘August 1979 pp- 48-56. - ‘
[34] . Gemballa, R. and Lindner, R , "The Mult.lple-Wrn.e Bus Technlque IEEE' -
R A ¢ X G'Appl Vol. 2, No. 7, September 1082, pp: 33-4L.." 3

[35] L Sproull R.F., Sutherland LLE., Thompson, Alistair, Gupta, ‘Satish and

. Minter, Charles, "The 8 by 8 Dlsplay ACM, Tramactmm on Grapluca,, Vol.'
2, No. 1, January 1983, pp. 33-56.. .

| '[36], Welnberg, Richatd, 'Parallel Processmg Image Syntl}esm and Arm Ahasmg ,
. . . Computer Grapﬁae:, Vol. 15, No.'3, August 1981, pp. 55-61. ! : -
37 . Wemberg, Richard,; An Arclutecmre Jor Parallcl Processing Image Syntheua‘ X

' unth Anh-almamg, PhD Thesls, Umverslty of Mlnnesota, 1982



(38]

Tao)

[40} -

[41)

[42]

108
SRR '

¢
A

Gupta S., Sproull R.F, and Suthcr‘land "A VLSl Archltcclure for
Updating Rastcr«Scaq Dnsplays Compulcr Graplnca Vol 15, No 3, Auguqt
1981, pp, 71-78,

| ‘Whitted, T,, Hardware Enhanced 3-D Rast.er Display System, Procccdmga of

the 7th Man-Computcr Commumcalwm Conference, 1981, pp. 349-356,

Giloi, W K., Interactive Computer Graphics: Data Structdﬂca Algonthmc
Languagcc Prentlce Hall, Englewood Cliffs, NJ, 1978, -

Newman, W.M. and" Sproul[ RF Principles of Interactive Computcr
Graplnca Second Edition, McGraw- Hl” 1979,

- Paker, Y. Mulh«M:croproccuor Syatema Academlc Press (London), 1983



Appendlx Al

. Slmulatlon Methodology

oo
o v

a0 | : ,

N ' . |
1.4. The Experimental Design L ‘

Y

'1.1.1. The Simulation

Oa
-
' t

‘The experiments suppor't'ing this thesis are founded on many picces of software.

’l‘he mmulatlon itself is composed of about 7000 lines of code wrltten in C and is data
T * '. ‘

driven. It is structured to execute the proposed algorithms while simulating architec-

t.ixral perfox‘tn‘ance; Thus; wheneve’r a polygdn initialization event takes place, a

polygon is acttially lnmahzed Many purposes are served by structuring the simulator

A
Co Fo >
in this fashiod. a IR N .

' If the simulated architecture is to be tested for data dependencies, real data must

be used. The speed of execution depends on the algorithm and data so the easiest way

to observe dependencies is to assign invariant segments of cade a constant execution

Bl

speed §ln‘1 let the data determine how often and when code is execute
i ¢ ' N

\

Anotherreason for taking this appfoacb is to verify sihulétndﬁ?brrectness. If, for

instance, - the simu uon is modehng bus transfers lncorrectly, ‘the resulting image

5

, would)o>dlatondd since the correct execution of the graphics algorithm is tied to the

‘ev,ent. slmul i
< ‘
New graphlcs algonthms were used so they needed to be verlﬁed 1€ was also

unport.ant.\tu see t,be lmage quallty resulting from the algonthms since architecture
’

and algonthm speed means nothmg if i image quality were poor. All t.he above reasons
\_

" guided t.he desngn of the snmulat.or

# e | 109



| K > 110

1.1.2, MOVIE.BYU

Since generation of “real” scenes is painstaking work, it is best to use pre-cxisting
image datfa, Unfortunately, data has to be preprocessed to do the lighting and scaling
calculations before rendering, This in itself, is an enormous amount of work. An addi:
tional problem is finding a standard for comparing generated images, As it turns out,

the Movie.BYU graphics package provides a solution to both problems,

Fort;xnatcly there is a large amount of image data available for_the Movie.BYU
package and there'was also access to it\s source code, Movie.BYU was modified to out-
put polygons which are scaled ;xnd have lighting values. This is an ideal solution since
Movie.BYl.J images can be compared with the "A-buffer” images, The only difference
between the Movie.BYU and A-buffer images is in the rendering since lighting and
scaling are identicgl,

»

1.1.3. Polygon Generator .

It was also_pecessary to write a polygon generator to have greater control over
polygon data characteristics used in the simulation. The polygon gchcrator, as imple-
mented,. takes "tex;:plates" or prot.ot,yeical polygons and randoml;' sca!esh‘rotates and
translates them to create a file of pelygons with randémly‘ assigned depth and color

values. "
a

The generator takes up to 10 diﬂer)éntl prototypes gnd mixes them with a
weightgd prqbability taken from the user. Control over data characteristics is acc'ém-
plishqd by changing the supplied templates and by adju/sting their prqbability of inclu- -
sion. 'f‘his means of control is not ‘exact, and not all parameters can be controlled

~ indepeadently of others.



bl

\

1.1.4. Other Software

Many other utilitiés were written to "massage” data for experimentation, A
\

scrambling program was written to scramble the order of polygon data to determine if

" ordering has an effect, A "smoothing™ program was written to average the colors of

i

polygon vertices — smoothing is not done by the modified Movie.BYU package. A
polygon splitter was written to split polygons over a specified size. Some debixgging

tools were also implemented to help isolate problem causing data.

1.2. The Level of Simulation

a

The simulator is a discrete event simulator that executes the graphics algorithm
when scheduled events arise, "Events” are dcﬁnéd‘as system actions which can not be
interrupted. Thus events are indivisible actions taken by the system, I\ike initializing a
polygon. Since event can not be interrupted it is gafe to assign phem a benchmarked

time. This time is used to update the event clock when an event is executed. -

- Unfortunately, a few events can not be assigned one completion time. Some
events, such as preparing a scanline, could take many different ‘steps. In these cases

loops or branches within the routines hiave to- be beuchmarked individually. This is

done for only a few routines since most could be assigned a constant time. This vari-

able execution time causes some problems with the simulation, and is described betow.

Processor states are modeled. by reserving storage for intermediate variables used

f

in the graphics calculations. When a particular phase of the algorithm is executed this

processor “image” is updated to reflect the computation.

' Since events have variable, and unpredictable, completion tixﬂes, events are per-
«————formed to determine these times. Unfortunately this changes the processor state

‘ . - \ ' J " - - - . - -
before the event is scheduled to complete and causes inconsistencies'in the simulation.

The solution to this is in performing the calculations on a “reserve processor image”.



112

This allows prediction of event complction times without affecting processor state,
\thn an cvent completes (according to the simulation élock), the reserved atafe is

)

transferred to the processor image.

1.2.1. CPU and Pixel Gun States

The modeled microprocessor and pixel-gun states are listed below, These states

are dependent on polygon characteristics and state of the

|
@/ r /; : r®\/
(OGO {0

®0.g = O

Phase 2 ‘ ‘ ' Phase 3

®©
K | : ‘Phase 4 '
Figui‘e Al.l ?vii'croprocessor State Diagram

" busses. Figure Al.1 gives the state transition diagram of the microprocessor CPU and

\ Al

%Figure Al.2 is the state diagram for the pixel-gun. Numbers for these states are

explained in Tables Al.1 and Al.2.

State transitions in Phase 2 are the most complicated of the three modelcd
phases. As in all three phases, the CPU starts idle waiting to use the bus (State 0).
When the bus is free, reading starts (State 1) and the processor may either stop (if it

reads a termination signal) or it starts calculating dz’ values for the current polygon

L}




= 113

l TS T ' TS T
ONBOSNONNONMIONEO

‘Phase 2 , Phase 3

- Figure A1.2 Pi);‘el ‘Gun State Diagram

(State 2). lnit;ializat.ion follows (State 3) and the CPU is temporarily blocked until tlhé
pixel-gun is free (State 4), After tlxis the CPU initializes scanlines (State §) angl‘ repeats
until t,he last scanline is initialized. Occasionally the CPU becomes blocked v;ylriting for
the pixcl-gun (State 6), but this rarely happens in practice.

l;hase 3 follolws a s‘imifar sequence but omil.s polygon inltialigation and calcula-
tion of dz values. The sequence starts with waiting to access the A-bus (State 7) and
then gocr to a “reading” state (State 8). The sequence ends if the lé,at poly‘gon,is‘ read,
or it proceeds to edge initialization (State 9), Edge initializé_t".ion may become blockéd
if the pi;cel-gun is busy (lstate 10), otherwise it 'cycles. until the last edge is read

“whereupon it proéeed; into the wait state for the A-bus.

The last modeled ph#se (Phase 4) is similar to t.he above; e*c'ept that the Cl’.U is
waits for dnﬂ'erent. system resources It starts by wamng to read a fragment list from
the B-bus (State 11). lt. stops upon reading a termination signal, otherwlse the list is
merged and it attemgts to store (State 13). The CPU goes to the blocked state if the
buﬂers are full (State 14) ot.hervnse it attempts to read another pixel list. These stateswm :
are hstcd in Table Al.l. | ‘ ..

The plxel-gun states are simple; elt,her a plxel-gun is wamng for the initialization
. parameters (St,ates 0 or 3), or lt. is busy producmg data (States 20r5).Itis also possi-
ble for the plxel-gun to be blocked by f ull stor?ge buffers. These st,ates are hsted in

Table:Al.2.\ L ~



114

Phase - " State State
Number Descnptlon
Y idle, waiting for a polygon -
1 Busy, reading a polygon
2 Busy, calculating ds values and storing them
Phase 2 3 Busy, initializsing before scanline processing
4 Idle, waiting for the pixel-gun to finish
S Busy, calculating scanline parameters *
) 0 Idle, blocked in “ready_scan” waiting for the pixel-gun to finish,
7 idle, waiting to read a polygon :
" Phase 3 8 | Busy, reading a polygon
) Busy, execuyting "fragen_init"
10 _Idle, waiting for the plxel-gufn_ibq ﬂmsh
11 idle, waiting to read a fngmem)ac
Phaee . 12. Busy, retd.ing a pixel liet ! .
13 Busy, sorting and merging -
14 Idle, blocked on a pixel store = *
Table Al.1 Simulated CPU States
Phase State ‘ ) - State
Number ' Description
0 ‘ Idle, waiting to make a pixel -
Phase2 | 1 Busy, making: pixels '
2 Idle, blocked on storing pixels
3 ‘ | 1dle, waiting to make fragments
Phase 3 4 ‘ ' Busy, making fragments .
‘ ) ‘ ]~ Idle, blocked on storing fragments
Phase 4 The pixel-syn is idle durins Phase 4. g

Py

Ta.ble Al.2 Slmulated Pixel Gun States

4

Thns snmulauon gathers statlst,lcal data lndlcatmg utlllzatlon of memory, .CPU |

v A bus, and B-bus There is also a t,abulat.lon of t.he percentage tlme ‘spent in each .

phase of operatlon.

'
‘

7

All data was collected every 1333 nanoseconds of slmulated ume Th:s rate was

N

fast enough to glve a faxrly accurate pncture of system operatlon It was also chosen to .

be an odd number that would not- coincide wnt.h any regular frequency of system opera-

/
¥

tion. This sho’uld alle\nate ‘concerns that samphng rate alla.ses even!.s in the syst.em. .

Vo
i

r
/
'



115

e

< 1.3. The Data

\

Data used in the experiments' is derived from di{erent sources, Natural scene
data is taken as output from a modlﬁed Mowe BYU graphlcs package, As well rand)/m
polygons are generated There s a qualltatnve and quantltatlve dlﬂ'erence between

these two data types which should be pointed out.

1 3.1. Dlstnbutxon of Complexxty

.
‘e

Complexlty is unnl'ormly dnstnbuted throughout the frame buﬂ'er in a randomly

' generated scene. N atural scenes, on the other hand tend to have complexlty locallzed

Modele’d ‘objects s‘uch as vases mayvcontam hundreds of tiny polygons while, in the
same scene, there may exist large walls modeled with a single polygon. b
oA

Complexlty ina real scene is nearly always visible. The person modellng a scene

'8

almost never put a complex object such as a vase behmd a wall. Randomly generated

'

polygons have as much complexlty h|dden as there is visible. Thts makes a dlﬂ'erence in
the rejectlon rates of fragments i the two dlﬁerent data sets It is probable that glven
| a scene and a random data set with the same amounts of alxasxng, the, natural scene
- will have a lower fragment rejectlon r'ate.‘ - .)'_ |
: Vnsnblllty of complexnty also .reduces the numher ol‘ plxel overlaps ina scene Ran- ‘

: domly generated data should have more: plxel overlaps and therefore, a hlgher whole

- o .
. 3 . . "
kS

data re)ectlon rate T _ o,
Another lmportant dlﬂ'erence s how objects are modeled |n a natural scene
. Polygons in objects tend to have 'buttlng edges A curved surl'ace, for mstance, is

modeled with many buttmg polygons Randomly generated polygons have no buttlng

‘ "contacts Thls makes a dlﬂ'erence ln the depth of generated fragment llsts

-

. ‘Since a shared edge causes generatlon of two fragments for each plxel the edge'

' covers, l'ragment hsts in a natural scene tend to be much longer and alnasmg is more_

o

B



e

i ' \
'

,l " ' ' . ‘a s, vl ! .« . ', : '
Iocall‘zed‘. In a random scene fragment lists are shorter and, more uniformly distri-

: buted. .ot , ,

 1.3.2. Heterogeneity of Polygon Size

Charact.enstlcs .Data Set -
- | Room | Plant | Test 1 | Test 2 | Split Room |
Total Polygons T 7 Tiee1r [1s85 |1625 |1625 | 2244
Total Edges 6535 |6116 6335 |6341 | 8866
~"{ Average Edges per Polygon " 1394 |3.86 |3.90 |[3.90 |3.95
Average Pixels per Edge ' 1761 |6.32 [6.56. |[16.5 7.06
% Frame Covered .. ‘ '169.7 |[21.6 |40.8 '|94.7 | 69.7
| Relative Aliasing (% of stored. plxels) 207 [46.4 |90.1 304 |2068
| Total Aliasing (% of Frame) 16.34 |11.88 | 37.67 |74.92 |21.76
Visible Aliasing (%-of Frame) 1 11442 |10.02:| 36.73 |28.78 | 18.65 -
- Average Overlaps - - . }1.65 . [2.684 | 0.685 | 4.405 |.1.85 "

‘ memory speed are part. of the archnectural deﬁmtlon Other parameters are a func-, A

Random polygo‘ne are generated by scaling a "template pdlygqn' with a 'no:l-mally ‘
distributed Vacaling‘ factor. This tends to produce similar sized polygons. But the dis-

tribution of polygon size in the room scene does not follow a normal distribution —

- there are a great number of small pelygoha wit.h only a fei large polygons. This has

implications‘o‘n. workload distribution and is noted i‘h‘Chapter 6. Table A1.3 gives

some of the characteristics of the data sets. -

1.4.1;'.‘ Simulatidn P#ra:’neters' -

Table Al.q3 Data Chéi“acterlis'ticv's of vExperiment.dI'D'dta Sets | .
1.4. Simulation Ansdmptio‘dae‘dd Level of Modeling o

[

Parameters used in thls slmulatxon are denved by varlous means Bus and

tion of the algonthm and processmg speed Since the slmulatnon is deslgned t,o test the
archntecture and not a partncular |mplementatlon itis. felt. t.hat, eXact benchmarkmg ls. N
- :not, reqmred to derlve parameters lf the numbers are rcasonable and proportlonately,' .

'correct then snmulatlon ‘results should not. be blased The slmulated archltecturcl '

v > 7



, 117
'-‘ .’ '
R " ' A ' ‘ . l
should show the same sensitivity and trends to changes in the data and to various

.
- v

conﬁgul'at'ions; o ' ' . . o

To‘ exp'ound on this point, the reader‘should realizevtha‘t.the emp'hasis*of this
study is to observe architectural behajvior.:with changing conﬁgurstion.and data, It is
not ‘inté‘nded_ to discover how fhst it is, although 'ball-parlc" estlmstes are made.
'Since benchmsrking onlj' involv_es microprocessor execution time,‘the deriyed parame-

ters should be proportionately correct. Thus one can validly argue that a microproces-

sor exists or can be constructed to give roughly the same performance as specified by
e parameters, - | . ‘ o -
A further, retrospective, justiﬁcatlon'of this method is the results obtained for -

vafious phases. The microprocessor is vastly slower than othé’fr system components in

[

Phases -2 and"’4 so considerable latitude can be given to CPU*“e'xecutlon speed. Ohe can,

)
\

-for lnstance, greatly mcrease CPU speed before it céases to be a bottleneck The

'fb:tsllce processor bandwndth in Phase 3 is stlll a bottleneck since the benchmarked

’

A

‘ parameters are roughly correct Also these parameters are hkely to be a Iower perl'or-
mance bound for any reahstlc system R o

, Wnth thls |n mlnd a rough benchmarkmg was. done to approxnmate the txme ‘

taken to execute the algornthms |n ﬁxed ponnt anthmetnc Segments of codeﬁwere :

a

: rcduced to essentlals and henchmarked on the VAX 11 /780 to approxlmate execut:on

t

' ‘tlmes on the. mlcroprocessors Time taken to execute 100 000 lteratlons ol‘ thxs code

- was dnnded by 100 000 to glve the approxlmate value Thls probably gwes a lower

S '-‘bound to processor performance since an actual |mplementat|on would use hand coded

-.assembler, and would llkely run on a processor “of the Motorola 68000 famlly The \' -
V"‘:“greater number of reg‘:sters svallable could make it possxble to store nearly all the data }.

fq-on the processor thus reduclng memory fetches to lnstructlons only On the 68020

wuth an lnstructlon cache thls could be an’ |mpresslve performance gam



118

Parameters for the bitslice processor had to be estimated since'there Wwas no exist-

ing processot‘ that could give an approxlmate benohmark lt was felt, however that a

hlgh speed processor could be bullt An exammatlon of the l982 Motorola MECL guide

1

shows that cnrcunts exist that do compansons in under 3. 6 nanoseconds A 4 bnt ALU .

takes 10 8 nanoseconds (in the worst case) and RAM is avallable whlch operates in

“

under 30 nanoseconds Slnce processor operatlons are simple, the processor can be
bmlt wnth thls technology leen this- assumptlon the l|m|t|ng factor in processor

‘speed is the time to access common RAM (200 nanosecondp).‘ Therel‘ore 'tlme to com-‘ ‘

Iy

plete the bltshce processor algorlthms are estimated by the number of data fetches and

"Stores made to RAM

A . LRI

1.4.2. Definition of Statistical Parameters Collected
‘ X )

¢

Most data cl)aracteristics that were collected are Self—explanatory, however, oth-
ers are a llttle more subtle Below is a llst of collected parameters requiring further .

. explanatnon in order to properly mterpret them These deﬁnltlona correspond to the'

. . ’ [Q’b,
simulation output in tl)e'followmg appe‘ndlx. S .o

»

- 1.4.2.1. ‘Tot'nl Number of Pixela Covered:
This represents the number of pixels where-an atte.nrpt was maderto“ﬂore ,eitheri‘la
whole pixel or a pixel.fragtnent.'
-‘1.4.'2.2‘. ‘Total Nnniber of Whole Pixels On the Sereenzl :
Thns ls a count of all the locations'iln .menlory where at least one whole pixel was

- stored. The same location may also’contain a l'rzig‘ment.



T ments may also- be stored into the same memory locatlons

C 119

"1.4.2.3.‘ Total Number of Whole Pixels Stored:
Thisls.tatistic counts the number of times pixels, were stored. This also includes

whole pixels that may be subsequently over written.

: 1.4.2‘.’4,‘ Total Number of Fragments
The number of times fragments have been accepted by the Z-buffer processot for

Y
'

o ‘sto‘frage (sce definition of "Total Number of Whole Pixels Stored.").
1.4.2.5. 'i‘qtal Number oflﬁ&ntinliued Pixels On The Screen ‘

This is the count of all pixels where at least one fragment must be merged.
1.4.2.6. Perce‘ntage of Frame Covered:

The number. of plxel locatlons where elther a, fragment or a whole pixel was

‘ ':stored dwuded by the number of plxels on the screen and multlphed by 100%

.4 2 7. Whole Pixels (7 ovarame): o

Tbls represents the uumber of locatlons where a whole plxel was stdred dlwded

-

by the number of plxels on the screen, and multlplled by - 100% Note that pxxel frag- .

. 1‘.4.‘2‘.”8. Aliued Pixels (All)’ (%’ -or r’n;me’):

Tbe number of umque plxel locatlons where a: fragment store. was attempted L

dwlded by the number of plxels m the frame B

oy
A

A
e



120

1.4.2.9. Aliased Pixels Ex'n‘osed_(%bor' frame):

4
-

The number of locations where a fragment was stored, divided by the number o‘f
" pixels on the screen, . .

\

1.4.2.10. Aliased Pixela (% of Stored Plxels)

'

The number of Iocatlons where a fragment. was stored divided by the number of' |

"

Iocauons where anything was stored . o ,

~

1.4.2.11. Average Number of Pixels pervEdge:‘
The number of fragmen‘t.a‘ generated, divid‘ed' by the humber of edges.'

~

1.4.2‘.‘12. Avernge Number of Piiela per Polygo\rn . ‘ ‘,' " o ,,~~3§

The total number of. plxel locations where elther a fragment was st.ored ora whole‘ ‘

pixel dnnded by t,he number of polygons o .

(o)

V . ) .
r. . . . . ol
f

' “;

L T T L ’ a e
‘ v;’1.4;2.13.- Avera.ge Number of OVer!aps» per‘Pixel:, :
The total number of fragment.s and whole plxels generated dn'lded by th%otal

number of locatlons where elther a fragment. ora whoie plxel was stored

A



\

Appendix A2

i [

f

Sample Slmulatlon Output

#########3##3##########8###############################é&############3#####
* SIMARCH PERFORMANCE QUTPUT FILE -~ run 1n1tiat.ed on, Wed ‘Aug 20 13 34:69 1986

" INPUT TAKEN FROM FILE: plant
8###3######ﬁ###ﬁ##'##ﬁ‘########t'######8#############8#####################

—— . o T~ .~ =

v~ ——— o " o~

1610'
bnsyﬂ
busy,

busy,
idle,
busy.

busy,

vainxng tor a polygon
reading a<polygon

calcylating dz values and storlng them
1n1t1311:1ng polygon paranotors R

'

CPU States Summary -----~- mmm———s o fale
Phase 1 CPU States -~-—--- mm—mm e ———————— ‘

A

(&

after poly initialization blocked by the pixel gonoracor
calculating scanline parameters for the pixel generator
idle, after scanlino proparation blocked by the pixel gcnoraoor

'
s s - . e

—————74—?—-"-; ----- Phase 2 CPU States -

vaiting for a . polygon in the fragment phaso"‘

ronding_a polygon in the fragment phase
y. initializing the fragment generation algorithm
0 - idle, valting for tho VLSI procossor to finish

i e ?-—ﬁ--f-— Phase 3 CPU Sﬁatos

C11 - 1410;
' 12 - busy,
., 13 - ‘busy,
. .14 - 1dle,

cmememmmmmmmmmme——eee-—— Pixel Procossor State Table
-Phase 1’ Pixel Processor States

“idle,
. 'busy, .

’--'———_--------—-—----——

'ldle

idle,

busy,

lolq

vaiting to read a pixel 1ist.
reading a . pixel 1ist
sorting and merging

blocked on a pixel store

vaiting to mako plxols
‘making pixels ,
blockod on a pixol store

vaiting to make tragments
making, fragments
blockod .on storing fragments

"g

Phase ‘2 Pixel Processor Statos

- o > -

- ——




S Average CPU busy' 56.092111 .

- B Bus busy: 4.690435

122
535333533335333 Phase 1 System Performance 53535353333333 / : -
. CPU STATE SUMMARY o ‘
cpu STATE PERCENTAGE TIME ' o ¢
0 43.9060 - | S
1 0.1808 = N o
2 3.5979 - . L ‘ ' o .
3 ' 28.9255 . B ‘
.4 0.0000 = - " B ‘
.5 23.3880 . - ' S ,
6 0.0019 : S A '
7 0.0000 . A . N SR
. 8 0.0000 ‘ |
9 0,0000 - .
10 . 0.0000 -
11 £ 0.0000
12 . 0.0000
13 0.0000

14 . 00000 o o N
} . o : . Y ‘ . ‘ ! A Al '
'PIXEL PROCESSOR STATE SUMMARY v ( '

"

PIXEL PROCESSOR STATE " PERCEN'T‘AQE, TIME -

99,6263
— 0.3737
o -0.0000
.. 0.0000
0.0000 . . :
‘0.0000 . T
oo ooooo ' .

ho_

~

“ocn.noo’w-—-

| ; Average Pixel Processor busy: 0573687 '~ : . ‘ a i :
Average Memory Module busy: 8. 056121 ' B : ‘ P

A Bus busy 14‘807000

Maxlmum Observed A buﬂer length: 2, - o ‘ :
.Maximum Observed B buffer length: 2 : P S
Maxnnum Observed Multlport buffer length 2 , L

Average A buﬂer length 0. 015608\ R K ‘ L

* Average B buffer length: 0.001519 . ' ’ L
Average Multiport buffer length 0.02131 4 S e

. Total number of observatlons 12776 S ‘ P B

Phase 1 complet.e after 17040153 nanosecopds o : ‘ ' :
‘ #######################H#############################




i

e

‘Average Memory Module busy: 96.901615

Average A buffer length: 0. 006249

4. ' . o ' ‘ 123

"
1

55353333353555535353 Phasc 2 System Performance SSSSS”SSSSSSSSSSS
CPU STATE SUMMARY

CPU STATE PERCENTAGE TIME

........................

0.0000
26.4133
,0.2620
23.3142
50.0099
0.0000 :
0.0000 ‘l .
0-0000 : S
0.0000:

DX IO BN O
o
(=4
o
o
(=]

Dt b
- O

Dt Yt et
o W

PIXEL PROCESSOR STATE SUMMARY ‘ "
PIXEL PROCESSOR STATE PERCENTAGE TlME 7 '
. | ‘

0.6000 ‘ , .

0.0000

0.0000 o :
33.8571 : : ki & b
Jl240 a
64.8938

0.0000

—_—

QNN O

Average CPU btfar 23 576753 -
Average Pixel Processor busy: 1. 249127 . -

A B\ls busy: 8. 402002 , .
B Bus b 96 831103 T ' -

& : 5
Maxlmum “Observed A bufler lcngth 1 ’ #
Maximum Observed B buffer length: 64 :

Maxlmum Observed Multlport buffer length: 64
»

Average B buffer length: 49.824667
Average M\rluport buffer length 35. 418095

" Total num&ber of observatlons 18082

“

E\:
Phase 2 complete after 41143303 nanoseconds
#####################################################

L



124

$35333353835333338383 Phase 3 System Performance $$$$$$$$$$$$$$$$$$

CPU STATE SUMMARY
CPU STATE PERCENTAGE TlME

........................

12 8.3088 ' ‘
13 90,9530 '
14 0.0000

PIXEL PROCESSOR STATE SUMMARY-

PIXEL PROCESSOR STATE PERCENTAGE TIME

e —————— —————— - ————

0
1
2 0.0000 | \ . .
3 . 100.0000 . ‘ -

4 0.0000 -

5 0.0000

8 0.0000 ‘ \

Average CPU busy: 99.261834 -
Average Pixel Processor-busy: 0.000000 .
Average Memory Module busy: 25.085368 ° \

A Bis busy: 0.000000
" B Bus busy: 30.023903

Maximum Observed A bt;ﬂ'el_' length: 0
Maximum Observed B buffer length: 2
Maximum Observed Multiport buffer length: 2

Average A buffer length: 0.000000
Average B buffer length: 0.019616
Average Multiport buffer length: 0.065189

Total ﬁumber of observa’tions: 5887 \ s o

Phase 3 complete after 48949896 nanoseconds
###################################################l



125

System Conﬁguration Parameters:
Frame Size; 256 X 256 pixels - \ a
Numbcr of Nodes: 4 [
Numbcr of Processors’ per node: 32 o . '

Pixel Resolution: 256
Number of Memory Modules: 4
Maximum Buffer sizes: 64

Red Pixel Starting Value: 20 '
Blue Pixel Starting Value: 20
Green Pixel S:t.arting Value: 20

Timing Parameters:

All the following numbers are for times to complete t.be described task
Reading a whole vertex: 1200 nsec
Traversing a vertex description: 500 nsec .
Preparing a polgon for pixel production: 173334 nsec
Calculating the dz/dy, and dzdx values 49500 nsec
Storing the dz values: 400 nsec
Checking if any polygons left: 800 nsec
Adding a new edge: 133000 nsec _ - -
Checking if any edges remain: 3500 nsec
Calculating new edge parameters in ready_scan: 116363 nsec
Calculating new start_x and stop_x parameters: 31667 nsec
Calculating a new pixel: 600 nsec '

Initializing a new fragment edge: 117600 nsec

Is edge horiz or vert!: 4334 nsec : )
“Making a new fragment: 1000 nsec

Reading a dz value from the node buffer: 200 nsec

Insertion of a fragment into a frag list: 2000 nsec

Comparing the fragment depth: 650 | nsec

Z buf read cycle: 200 nsec

-Z buf write cycle: 200 nsec

Merging the last fragment: 16500 nsec

Merging other fragments 24000 nsec
Traversing one link in a frag list: 400 nsec
Merging common ID fragments: 4667 nsec -
‘Time to perform an if test and shift: 3500 nsec
Time to do a depth calc: 7333 nsec ‘
Exchanging fragments on a list: 11000 nsec ’

Collection start tithe: 10000 nsec
Collection intervals: 1333 nsec

Clock start time: 0 nsec

Arbitrating a request without overlap: 50 nsec



\ k , ‘ 126

Number of Polygons Rendered: 1585

Number of Transparent Polygons Rendered: 0 .
Number of Edges Rendered: 6116

Total Number of Pixels in Frame: 85536

Total Number of Pixels Covered: 14170

Total Number of Whole Pixels Generated: 13561
Total Number of Whole Pixels Stored: 10786 (includes overlap\
Total Number of Whole Pixels On the Screen: 9339

Tot,al Number of Fragments Generated: 38646
Total N umbcr\of Fragments Stored: 31047
Total Number of Antlahased Pixels on Screen: 6571

Percentage of Fr me Covered: 21.6217
Whole Pixels (% of Frame): 14.2502
Aliased Pixels (All) (% of Frame): 11.8820
. Aliased Pixels (Exposed) (% of Frame): 10.0266
Aliased Pixels (% of Stored Pixels): 46.3726
‘Average Number of Pixels per Edge: 6.3188
(if there are no transparent leygons)
Average Number of Pixels per Polygon: 8.9401 ‘ ‘
Average Number of Edges per Polygon: 3.8587 K g
Average Number of Oﬁerlaps per Pixel: 2.6843 . .

Maximum Number of\.‘Over‘la‘ps: 6 : s
Maximum Number of Whole Pixel Stores: § :
Maximum Number of Fragment Overlaps: 103

'Maximum Number of Frai:xent Stores: 85

SIMARCH PERFORMANCE OUTPUT FILE-run termmated on Wed Aug 20 14:09:47 1986 -
##############l###r#################################.ﬁ




t127



