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Abstract

The search for new phases of matter and their quantitative characterization is one of

the central goals of condensed matter physics. To that end, quantum Monte Carlo is a

tremendously powerful toolbox that enables the simulation of assemblies of interacting

bosons, allowing the exact calculation of thermodynamic, structural, and superfluid

properties. In this thesis, we utilize these techniques to carry out first-principles

computations to study the phase diagrams of a diverse set of quantum many-body

systems, from condensed hydrogen to superfluid helium to ultracold gases with a vari-

ety of inter-particle interactions. Within this framework, we also compute dynamical

properties in imaginary time and perform analytical continuation to extract real-time

information.
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and q = 1.964 Å−1 (top curve). When not shown, statistical errors are

smaller than the size of the symbols. . . . . . . . . . . . . . . . . . . 74

6.2 S(q, ω) in superfluid 4He at T = 1 K (at SVP) for the roton wave
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Chapter 1

Introduction

One of the major themes of modern physics is the prediction of macroscopic properties

and phases of thermodynamic assemblies of atoms and molecules directly from first

principles. A famous quote by Weisskopf from 1977 captures the aspiration, and also

underscores the challenge: “Assume that a group of intelligent theoretical physicists

have lived in closed buildings from birth that they never had occasion to see natural

structures... What would they be able to predict from a fundamental knowledge of

quantum mechanics? They would predict the existence of atoms, of molecules, of

solid crystals, both metals and insulators, of gases, but most likely not the existence

of liquids.” [1]. Although Weisskopf focused on liquids, his remark highlighted the

broader difficulty in treating inter-particle interactions and emergent phenomena. In-

terestingly, factoring in the possibility of computer simulations would almost certainly

have changed this assessment. Simulations using simple models of atomic interactions

allow one to make predictions of equilibrium structure and thermodynamic properties

of many systems, including those of liquids.

The rapid increase of modern computing power and development of computational

algorithms have greatly expanded the role of computer simulations and computa-

tion, now encompassing many subareas of physics, chemistry, materials science, etc.

Despite early fears expressed, e.g., by Dirac that “the exact application of these

laws leads to equations much too complicated to be soluble” [2], we are now in the
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position to apply the fundamental laws of quantum mechanics to a large number

of many-body systems, with precision sufficient for fruitful comparison with experi-

ment. Of particular interest in the understanding of how quantum-mechanical effects

alter the qualitative behavior of the system predicted classically. For systems obeying

Fermi statistics, it is not yet possible to systematically reach the accuracy necessary

for reliable predictions of new reactions, new structures, or new phases of matter;

indeed, this remains a grand challenge. However, if the constituent particles obey

Bose statistics, one has access to the exceedingly powerful toolbox of quantum Monte

Carlo (QMC) simulations, which contains the most reliable tools to investigate the

physics of quantum many-body systems in thermal equilibrium. In Ch. 2, we describe

these methods and show how they enable us to obtain exact numerical estimates of

thermodynamic averages of relevant physical observables. In the remaining chapters,

we apply these methods in a series of investigations of a number of relevant physical

systems that manifest a wide variety of rich physics.

A chief example of this type of condensed matter system is helium. Helium is

unique among all substances, in that it does not solidify at low temperature, under

the pressure of its own vapor. Its most common isotope, 4He, undergoes a phase

transition at a temperature of 2.17 K from a normal liquid to a liquid capable of

flowing without dissipation (superfluid). Both the fact that no crystallization occurs

and the superfluid transition are understood as consequences of Bose statistics [3, 4],

which 4He atoms (composite particles of zero total spin) obey. At higher temperature,

4He shows a behavior typical of other fluids, e.g., it has a liquid-gas critical point at

temperature about 5.19 K and pressure 227 kPa.

The phase diagram of 4He is well understood owing to a wealth of experimental

measurements [5, 6] and theoretical studies [7] throughout the decades. One inter-

esting question to ask is how general some of the properties of 4He are among Bose

systems featuring the same kind of interaction, or how they might evolve with the

mass of the particles and the interaction parameters, or whether new phases might
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arise. In Ch. 3, we address this question through a comprehensive study of a model

which allows us to not only reproduce the well-known phase diagram of 4He, but also

study a much broader class of systems in which we can tune the strength of quantum

mechanical effects. This allows us to explore the evolution of the topology of the fa-

miliar pressure-temperature phase diagram of 4He as we make the system more (and

less) quantum.

On one extreme lies the classical limit, in which inter-particle interactions domi-

nate the physics, and quantum delocalization and the exchange of identical particles

are suppressed. As a consequence, these systems invariably crystallize at zero tem-

perature. This regime is descriptive of most substances found in nature, including

parahydrogen, which solidifies at a temperature of 13.8 K under the pressure of its

own vapor, even in reduced dimensions [8]. As we make the system more quantum

mechanical, we encounter a transition into a regime with phase diagrams that feature

a liquid ground state. This is the regime in which 4He lies, making it unique among

the naturally occurring substances. Moving further in that direction leads to richer

and more interesting behavior as quantum effects are further amplified. Beyond an-

other critical point, the systems become unbound at zero temperature, and as we

move further towards that extreme the system becomes increasingly descriptive of ul-

tracold gases. This remarkably general, albeit simple model is described extensively

in Ch. 3, and the results of our calculations are presented and discussed.

It is of little surprise that this broad class of systems features such a wide variety

of thermodynamic phases, ranging from crystals to normal fluids to superfluids and

gases. However, one phase for which we did not find any evidence at any portion of

any phase diagram and at any level of quantumness, was the ever-elusive supersolid

phase. As its name suggests, the supersolid is a phase of matter that features the

properties of both a solid and a superfluid. In more technical terms, it is a phase that

spontaneously breaks both continuous translational and global U(1) symmetries, thus

featuring simultaneously crystalline order and flow without dissipation (for a review
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of supersolids see, for instance, Ref. [9]).

Supersolid behavior in a crystal of 4He, once deemed the most promising candi-

date, has so far eluded unambiguous observation. Not only has our study in Ch. 3

reinforced the notion of the absence of a supersolid phase in 4He, it also serves as

powerful evidence of its absence in all systems featuring the same kind of interaction.

In Ch. 4 we turn our attention to a class of systems that features a very different kind

of interaction, namely dipolar bosons, which have been suggested as a likely physical

setting for the realization of the supersolid phase in various experimental [10, 11] and

theoretical [12–14] works.

Dipolar gases have been the focus of extensive experimental and theoretical re-

search in recent times, motivated by the possibility that yet unobserved, exotic phases

of matter may be underlain by the distinctive character of the inter-particle interac-

tion, both long ranged and anisotropic [15]. In particular, the experimental achieve-

ment of Bose-Einstein Condensation of atomic systems with large magnetic moments

[16–24] suggests that one might be able to predict and observe phases featuring more

than one type of order. In Ref. [14], for instance, it is contended that, if dipole mo-

ments are aligned, an ordered array of filaments (or prolate droplets) constitutes the

ground state of the system in rather broad conditions, and preliminary evidence of

global phase coherence among such droplets was offered for specific values of density

and interaction parameters.

The appearance of filaments in this system is understood to be the result of the

competition between the attractive part of the dipolar interaction, and the presence

of a short range repulsion which prevents the system from collapsing. Such a repulsive

part is often modeled theoretically through the so-called scattering length approxima-

tion. Because the scattering length is experimentally controllable and can be varied

by means of the Feshbach resonance (see, for instance, Ref. [25]), the possibility

arises of exploring the quantum phase diagram of the system in its entirety, at least

within known limitations (e.g., three-body recombination) [26–29]. This motivated
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us to conduct a comprehensive theoretical study of the bulk phase diagram of the

system at low temperature based on reliable, first principle computational methods,

aimed at helping in the design and interpretation of present and future experiment.

We present this investigation in Ch. 4. We utilized QMC simulations to study the

ground state phase diagram of a system of aligned dipolar bosons, and with the in-

clusion of a two-body repulsive potential of varying range. The system was shown to

display a supersolid phase in a relatively broad region of the phase diagram, featuring

different crystalline patterns depending on the density and on the range of the repul-

sive part of the interaction (scattering length). The supersolid phase is sandwiched

between a classical crystal of parallel filaments and a homogeneous superfluid phase.

We showed that a “roton” minimum appears in the elementary excitation spectrum

of the superfluid as the system approaches crystallization. The predictions of this

study are in quantitative agreement with experimental results.

Next, we turn our attention to lower dimensions. The system of dipolar bosons

in reduced dimensions retains significant fundamental interest, at least from a the-

oretical perspective, and has been extensively studied in recent times [30–32]. Of

particular interest is the case in 1D, as the physics of one-dimensional many-body

systems has been the subject of intense theoretical investigation for decades. A num-

ber of exact solutions and/or rigorous physical statements have been obtained [33],

and there exists a well-established, universal theoretical framework that describes 1D

systems, known as Luttinger Liquid Theory (LLT). Considerable effort has been de-

voted to the realization in the laboratory of systems that may approach the 1D limit,

in order to test the most important predictions of the existing theory.

Experimentally, the quasi-1D limit can be probed in different ways and/or physical

settings. For example, mass flux in solid 4He [34, 35] is speculated to be essentially

one-dimensional in nature, and scenarios have been proposed to the effect that a 3D

supersolid phase of 4He may arise in a network of interconnected superfluid disloca-

tions [36]. Alternatively, one can adsorb gases made of small atoms or molecules,
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such as helium, inside carbon nanotubes [37, 38], or in porous glasses such as vycor,

in which particle motion in confined to within ∼ 1 Å in two directions [39]. This

has motivated theoretical studies of hardcore fluids such as 4He [40, 41] and parahy-

drogen (p-H2) [8] in strictly 1D, as well as inside a single nanotube [42–44], or in

the interstitial channel of a bundle of nanotubes [45]. More recently, experimental

advances in cold atom physics appear now to enable not only systematic, controllable

confinement of particles, but also the tuning of the inter-particle interactions through

the Feshbach resonance as mentioned above. This paves the way to the experimental

validation of the existing theory, to an unprecedented degree of accuracy.

Motivated by these possibilities, we studied through QMC simulations the low-

temperature phase diagram of dipolar bosons confined to one dimension, with dipole

moments aligned along the direction of particle motion. As in our model in Ch. 4, we

added a hardcore repulsive potential of varying range (σ) to the dipolar interaction,

in order to ensure stability of the system against collapse. In the σ → 0 limit, the

physics of the system is dominated by the potential energy and the ground state is

quasi-crystalline; as σ is increased, the attractive part of the interaction weakens, and

the equilibrium phase evolves from quasi-crystalline to a non-superfluid liquid. At

a critical value σc, the kinetic energy becomes dominant and the system undergoes

a quantum phase transition from a self-bound liquid to a gas. In the gaseous phase

with σ → σc, at low density attractive interactions bring the system into a “weak”

superfluid regime. However, gas-liquid coexistence also occurs, as a result of which

no topologically protected superfluid regime is realized. Our theoretical framework

and results are discussed extensively in Ch. 5.

The next problem we look at is that of analytic continuation in QMC. In principle,

QMC not only provides an accurate way to study thermodynamic properties, it also

allows one to obtain dynamical properties, at least within the linear response approx-

imation. This is accomplished by computing correlation functions in imaginary time

from which spectral functions can be inferred through an inverse Laplace transforma-
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tion.

Unfortunately, the inversion is mathematically ill-posed, and because QMC data

are inevitably affected by statistical uncertainties, an unambiguous determination of

the spectral function is usually not possible. In some cases, prior knowledge about

the physics of the system may constrain the set of possible solutions, allowing for a

reliable reconstruction; for example, one may know that the spectral function is dom-

inated by one or two well-defined peaks, and simply fit the QMC data accordingly

(see, for instance, Ref. [46]).

In the general case, however, when no such knowledge is available, a large number

of very different images will be consistent with the QMC data. Thus, one will typically

resort to some kind of “regularization” scheme (RS), aimed at retaining only those

images whose non-trivial structure is truly warranted by the data. Consequently, any

RS will inevitably tend to soften some of the sharpest features; for example, distinct,

isolated peaks will be broadened, to reflect the inherent uncertainty arising from the

finite precision of the data and the ill-posedness of the problem.1

A popular RS, in the context of inversion of QMC data, is the Maximum En-

tropy method (MaxEnt) [47, 48], which has been applied to the determination of

spectral functions of various lattice many-body Hamiltonians [49–53] as well as of

the dynamic structure factor in normal and superfluid 4He [54]. In general, MaxEnt

has yielded quantitatively reliable results for some of the main aspects of the recon-

structed images, i.e., the positions of the peaks, and therefore the determination of

the excitation spectrum; on the other hand, the quantitative accuracy of predictions

concerning, e.g., the widths of the peaks, and the ensuing ability to resolve adjacent

peaks, was less satisfactory, although in most cases the limiting factor was the quality

of the QMC data, rather than the RS adopted to extract the images. Alternative

1This should be regarded not as a limitation, but rather as a quality of the RS, as one ought not
ascribe any physical significance to sharp, distinct features that could be spurious, in conformity
with the accepted “Occam’s razor” principle; credence should be lent only to those sharp features
that remain consistently robust as the quality of the underlying data improves.
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RS have been proposed in the course of the years, the context of QMC simulations

[55–59], displaying some advantages over others for specific applications, but no com-

prehensive, systematic comparison had been carried out.

In Ch. 6, we present an investigation in which we undertake that problem. We used

the Maximum Entropy Method (MaxEnt) to estimate the dynamic structure factor of

superfluid 4He at T = 1 K, by inverting imaginary-time density correlation functions

computed by quantum Monte Carlo (QMC) simulation. Our procedure consisted of

a Metropolis random walk in the space of all possible spectral images, sampled from

a probability density which includes the entropic prior, in the context of the so-called

“classic” MaxEnt, first proposed in Ref. [54]. We also compare with recent work

by other authors and show that, contrary to what is often stated, sharp features in

the reconstructed image are not “washed out” by the entropic prior if the underlying

QMC data have sufficient precision. Only spurious features that tend to appear in a

straightforward χ2 minimization are suppressed.

The success of this investigation encouraged us to utilize our methodologies to fur-

ther study the dynamical properties of 4He. In Ch. 7, we explore the behavior of the

roton excitation in the overpressurized system. As mentioned above, helium is the

only element in nature that does not crystallize at zero temperature under the pres-

sure of its own vapor; instead, its thermodynamic equilibrium phase is a superfluid.

A pressure of around 25 bars must be applied in order to stabilize a hexagonal closed-

packed crystalline phase. It is possible, however, to realize experimentally metastable

liquid phases of helium at pressures higher than that of crystallization [60, 61]. This

allows one to study the superfluid response of the system over a significantly greater

range of pressure.

Theoretical studies have shown that at temperature T = 0 the condensate fraction

remains finite in the overpressurized liquid, decaying exponentially with density [62].

The predicted resilience of the overpressurized superfluid phase of 4He is understood

to be a direct consequence of quantum-mechanical exchanges involving a macroscopic
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fraction of all particles in the system (an effect also referred to as ”quantum jam-

ming”) [4].

Of particular interest is whether superfluidity persists all the way to the limit of

existence of a metastable overpressurized fluid. This limit is identified by a value of

density, referred to as spinodal, above which only the crystalline phase occurs. It is

speculated that the energy of the minimum of the excitation spectrum of superfluid

4He at finite wave vector, known as the roton, should vanish at the spinodal density

[63, 64].

The roton energy as a function of pressure has been measured experimentally in

the equilibrium fluid phase up to a pressure of 20 bars [65–67], as well as in vari-

ous porous media, in which the fluid phase can be stabilized above the bulk freezing

pressure, as crystallization is suppressed by the tight confinement [68]. The highest

pressure at which superfluidity has been observed in porous media is ∼ 37 bars, where

the roton mode disappears [69, 70]. However, no measurement of the roton energy in

the overpressurized bulk superfluid, which has been predicted to exist at much higher

pressures, has to our knowledge been carried out yet.

Besides the outstanding theoretical issue mentioned above, namely the behavior of

the roton energy on approaching the spinodal, the parallel behavior of the superfluid

and condensate fraction at finite temperature, as a function of pressure, is also of

interest; there have been ground state studies of the condensate fraction of overpres-

surized superfluid 4He, but it is known that the superfluid fraction must be equal

to 100% in the ground state of a translationally invariant system [71]. Furthermore,

since the excitation spectrum can be probed by neutron scattering measurements,

knowledge of the roton energy as a function of density and pressure can be used to

gain information about the local environment experienced by the fluid in confinement

or in restricted geometries.

We therefore carried out a theoretical investigation of overpressurized superfluid

phases of 4He by means of quantum Monte Carlo (QMC) simulations, which we
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present in Ch. 7. As a function of density, we study structural and superfluid prop-

erties, and estimate the energy of the roton excitation by inverting imaginary-time

density correlation functions computed by QMC, using Maximum Entropy. We es-

timate the pressure at which the roton energy vanishes to be about 100 bars, which

we identify with the spinodal density, i.e., the upper limit for the existence of a

metastable superfluid phase.
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Chapter 2

Research Methodology: Path
Integral Monte Carlo

In this chapter, we describe the research methodology utilized in this thesis, and the

computational approach we use to carry out the calculations.

In the investigations presented here, we are interested in systems that are modeled

as collections of point-like Bose particles. Each of these systems is described by a

quantum-mechanical many-body Hamiltonian that is, in general, quite intractable

analytically, due to the strength of the interactions between the particles.

Our method of choice is Path Integral Monte Carlo (PIMC), which casts the prob-

lem in such a way that we may rely on the help of the computer to solve it. This

allows for direct, first principle, numerically exact calculation of the physical quanti-

ties of interest such as thermodynamic properties, structural correlations, superfluid

properties, and even dynamical properties to a certain extent.

This method equips us with the ability to make such computations at finite tem-

perature, in an arbitrary number of dimensions, and with an accuracy that may be

rendered arbitrarily small in an amount of time that grows polynomially with the num-

ber of particles. These luxuries are not afforded by alternative numerical approaches,

which are either limited to i) small system sizes, such as exact diagonalization, ii)

zero temperature, such as variational wave methods involving a trial wave function

[72], or iii) lower dimensions, such as the Density Matrix Renormalization Group [73].
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In the coming subsections, we describe the details of the method, and the compu-

tational approaches and algorithms it entails.

2.1 Path Integrals

We start by recalling the basic formalism of quantum statistical mechanics. For a

system of a fixed number of particles N in thermal equilibrium with a reservoir at

temperature T , the thermal expectation value of a physical observable A is given by

⟨Â⟩ = Tr(Âρ̂)

Tr(ρ̂)
=

∫︁
dR dR′ A(R)ρ(R,R′, β)∫︁

dR ρ(R,R, β)
(2.1)

where we have expressed the traces in coordinate representation, with R ≡ r1r2...rN,

i.e., the collective positions of all N particles in the configuration, and β = 1/T (in

units where the Boltzmann constant, kB, is set to unity). The many-body density

matrix, ρ(R,R, β), is given by

ρ(R,R′, β) = ⟨R|e−βĤ |R′⟩ (2.2)

where Ĥ is the quantum-mechanical many-body Hamiltonian describing the system.

The denominator of eq. 2.1 is the partition function Z.

The problem of calculating the RHS of eq. 2.1 often amounts to knowledge of

the density matrix ρ(R,R, β), which is in general inaccessible except for the simplest

systems. The method of path integration, a formulation of quantum mechanics first

introduced by Feynman [74], enables us to circumvent this problem by constructing

the so-called Euclidean action, defined as

S[R(τ)] =

∫︂ βℏ

0

dτ

(︄
N∑︂
i=1

m

2ℏ2

(︃
dri
dτ

)︃2

+ V (R(τ))

)︄
(2.3)

where m is the mass of the particles, ℏ is the Planck constant, and the new variable

τ is defined as the imaginary time coordinate. The first term represents the kinetic

energy, related to path curvature, and the second represents the potential energy
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along the path, which is determined by the inter-particle interactions. This allows

one to express the partition function as

Z ∝
∫︂
DR(τ) e−S[R(τ)] (2.4)

where the functional integral sums over all possible β-periodic N-particle paths start-

ing (and ending) at all possible many-body configurations. Each path R(τ) may

therefore be attributed a probability proportional to the generalized Boltzmann fac-

tors exp{−S[R(τ)]} and sampled through the well-known Metropolis Algorithm [75].

This allows one to evaluate eq. 2.1 as statistical averages along these paths.

The first step in the numerical approach is to discretize the continuous action in-

tegral in eq. 2.3. The continuous many particle path is therefore only considered at

M discrete time slices, i.e., R(τ) ≡ {R0, R1, ..., RM−1}, with RM = PR0 to respect

the β-periodicity (P denotes permutations of particle labels). The finite time step

δτ = β/M results in an inevitable error, which may be rendered arbitrarily small by

appropriate choice of δτ . This allows us to approximate the discretized action as

S[R(τ)] ≈
N∑︂
i=1

M−1∑︂
l=0

m(ril − ril+1)
2

2δτℏ2
+ δτ

∑︂
l

V (Rl) (2.5)

We may now sample the discrete paths R(τ) from the probability distribution

P ∝ e−S[R(τ)] =
N∏︂
i=1

M−1∏︂
l=0

ρ0(ril, ril+1, δτ)
M−1∏︂
l=0

e−U(Rl,δτ) (2.6)

where ρ0 denotes the free-particle density matrix [76], given by

ρ0(ril, ril+1, δτ) =

(︃
2πℏ2δτ
m

)︃−d/2

exp

[︃
−m(r− r′)2

2ℏ2δτ

]︃
(2.7)

where d is the dimensionality of space, and

U(Rl, δτ) = δτV (Rl) (2.8)

in the simplest approximation, i.e., the potential energy does not depend on the time

step. For reasons of computational efficiency, it is often desirable to work with a more
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accurate approximation for the density matrix. In most of the work presented in this

thesis, we utilize the so-called fourth-order approximation for the high-temperature

density matrix (see, for instance, Ref. [77]), which has the form

ρ4(Rl, Rl+1, δτ) = AF (Rl, Rl+1, δτ)e
−Ũ(Rl,δτ) (2.9)

where

AF (R,R
′, δτ) =

N∏︂
i=1

ρ0(ri, r
′
i, δτ) (2.10)

Ũ(Rl, δτ) = δτ

[︃
2V (Rl)

3
+ Ṽ (Rl, δτ)

]︃
(2.11)

and

Ṽ (Rl, δτ) =
2V (Rl)

3
+
δτ 2

9m

N∑︂
i=1

(∇iV (Rl))
2 (2.12)

if l is odd, and zero if l is even. ∇iV (Rl) is the gradient of the total potential energy

for the configuration R with respect to the position of the ith particle. This expression

has been shown [78, 79] to be accurate up to terms of order δτ 4, hence the name.

2.2 Quantum Statistics

Next, we discuss how quantum statistics and the intrinsic indistinguishability of

particles is incorporated into the formalism. As mentioned in Sec. 2.1, the paths

are periodic in imaginary time with period β, which means that the configuration

R(β =Mδτ) must have the particles in the same positions as the configuration R(0).

However, since the particles are identical, they must be allowed to trade places with

each other throughout the period 0 < τ < β as long as there are particles at the

correct positions at imaginary time τ = β. An example is shown in Fig. 2.1, which

shows the exchange of four particles in one spatial dimension. In this case, exchanges

may only occur through periodic boundary conditions assuming that the particles

experience hardcore repulsion at short distances.

This exchange of identical particles in imaginary time is the mechanism through

which quantum statistics manifests itself in the physical picture, thereby causing
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Figure 2.1: An example of identical particle exchanges in one spatial dimension and
periodic boundary conditions. The many-particle paths are periodic in the imaginary
time interval 0 < u < β.

these systems to behave in a dramatically different way, depending on whether the

constituent particles obey Bose or Fermi statistics. It is this essential piece of mi-

croscopic physics that gives rise to macroscopic phenomena such as Bose-Einstein

condensation and superfluidity in the case of Bose systems.

Incorporating quantum statistics, we may write the thermal expectation value of

our physical observable as

⟨Â⟩ ∼
∑︁

paths η
PA(Rpath)∑︁

paths η
P

(2.13)

where P is the parity of permutation associated with particle exchange, A(Rpath) is

the average of the observable Â computed along the path, and η is +1 (-1) for bosons

(fermions).

In the case of Fermi statistics, the sums over paths in eq. 2.13 become alternating

series of terms which very nearly cancel each other out [76]. Attempting to associate
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amplitudes with probabilities in this case causes these series to become exponentially

intractable to sum as a function of N and β. This is the well-known Fermi sign

problem that makes this methdod unsuitable to study systems comprising more than

a few fermions at a temperature that is not unreasonably high.

On the other hand, systems obeying Bose statistics are not plagued by this problem,

as all terms in the sums in eq. 2.13 are strictly non-negative. Only Bose systems are

investigated in this work, and therefore we will not further discuss the Fermi sign

problem.

2.2.1 Thermal Wavelength

Quantum statistics become important only at low temperature. At sufficiently high

temperature, exchanges between particles in imaginary time are inhibited, allowing

them to retain their individuality and behave as distinguishable boltzmannons. One

criterion to quantify the importance of exchanges relies on the so-called thermal

wavelength, defined as

λT =
ℏ√
mT

(2.14)

which characterizes the “size” of a typical single particle path in imaginary time.

In physical terms, it may be thought of as a measure of the quantum mechanical

delocalization of a typical particle (in a free system). Exchanges are important when

λT is of the order of the inter-particle distance n−1/d. This criterion is satisfied below

the temperature T0 ∼ ℏ2n2/d/m, commonly known as the degeneracy temperature.

As the temperature of the system approaches and falls below T0, quantum statistics

becomes increasingly essential to the physics. Sufficiently above T0, on the other hand,

the particle clouds do not experience significant overlap, the identity permutation

dominates, and the quantum statistics of the system becomes irrelevant. Since we

are often interested in the low temperature physics, it is essential to be able to reliably

sample permutations of identical particles.
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2.2.2 Permutation Sampling in Conventional PIMC

We now describe the permutation sampling protocol in conventional PIMC [7]. It is

essentially achieved through explicit construction, by sampling moves which modify

portions of the single particle paths to accomplish the exchange as shown in Fig.

2.2. It is easy to see why this procedure, which requires sampling paths in which the

Figure 2.2: Explicit construction of a permutation of two identical particles in a
conventional PIMC algorithm.

particles are brought in close proximity to one another as shown in Fig. 2.2, can be

highly inefficient. The vast majority of naturally occurring atomic systems feature

hardcore repulsion between the constituent atoms, due to the Pauli exclusion prin-

ciple preventing the overlap of the electronics clouds surrounding the atoms. This

leads to a high probability of rejection according to eq. 2.6, and the computational

effort required to sample macroscopic permutation cycles scales exponentially with

the number of particles.

As mentioned in Sec. 2.2, quantum statistics underlies essential macroscopic phe-

nomena such as Bose-Einstein condensation and superfluidity. The efficient sampling

of macroscopic permutation cycles is therefore crucial to the simulation of the low

temperature physics of these systems. The superfluid fraction, for instance, is di-

rectly related to the winding of paths through the boundaries of the system [80]. It

is therefore essential that we are able to sample paths which have a finite winding

number around the space, i.e., paths which contain permutations of ∼ N1/d particles.

This becomes a macroscopic number of particles when attempting to extrapolate to
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the thermodynamic limit, and thus the exponential scaling of the effort to sample

permutation cycles presents a serious challenge for conventional PIMC. This is one

of the main issues which the Worm Algorithm addresses.

2.3 Worm Algorithm

The worm algorithm deals with the permutation cycle sampling problem that plagues

conventional PIMC in a remarkable way. The configuration space is generalized from

that of the partition function (henceforth referred to as the Z-sector), which contains

only closed paths as shown in Figs. 2.1 and 2.2), to that of the one-particle Matsubara

Green’s function (henceforth referred to as the G-sector), defined as

G(r1, r2, τ) =
g(r1, r2, τ)

Z
= −⟨T̂ [ψ̂(r1, τ)ψ†̂(r2, 0)]⟩ (2.15)

where ψ† and ψ are Bose field operators, T̂ is the time ordering operator, and

−β ≤ τ ≤ β. An example of such a configuration is shown in Fig. 2.3, which

contains not only the familiar closed world lines, but also an open world line with

two dangling ends, referred to in the literature as Ira (I) and Masha (M).

Expanding the space of configurations to include those corresponding to the G-

sector allows us to accomplish non-trivial topological modifications to the world lines

that facilitate the sampling of longer permutation cycles, while avoiding the prob-

lems that plague conventional PIMC, described in subsection 2.2.2. This is achieved

through a series of ergodic and complementary local path updates, the details of

which are extensively described in Refs. [81, 82].

Since the worm algorithm allows the accumulation of statistics for both diagonal

and off-diagonal correlations simultaneously, it enables the efficient computation of

many relevant physical quantities that are not only limited to the energetics and ther-

modynamics, but also quantities such as superfluid density, structural correlations,

and even dynamical correlations to a certain extent. We come back to this in the

coming sections.
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Figure 2.3: Example configuration in the G-sector, i.e., the configuration space as-
sociated with the single-particle Matsubara Green’s function. The red lines are the
closed world lines that are familiar from conventional PIMC. The blue line is the
worm; an open world line with two dangling ends, referred to as Ira (I) and Masha
(M).

Another advantage of the worm algorithm is clear upon taking the τ → 0 limit of

eq. 2.15. In this limit, the Matsubara Green’s function reduces to the one-particle

density matrix n(r1, r2), which is the Fourier transform of the momentum distribution

ñ(k). In a Bose condensed system, ñ(k) has the form

ñ(k) = n0δ(k) + ñNC(k) (2.16)

where n0 denotes the condensate fraction, and ñNC(k) refers to the fraction of particles

outside of the condensate. In this way, the worm algorithm allows for the inference of

the condensate fraction through the computation of off-diagonal correlations in the

G-sector.

Versatility is yet another advantage of the worm algorithm. The protocol is not only

well-suited in the context of the canonical ensemble, but also in the grand canonical

ensemble, where the introduction of a worm facilitates the creation and annihilation
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of world lines to reflect fluctuations in the particle number. For the remainder of this

thesis, however, we will focus on applications of the worm algorithm in the canonical

ensemble, where the number of world lines is constrained to N in the Z-sector (and

N−1 and a single worm in the G-sector) in order to study the system at fixed density

[83, 84].

2.4 Thermodynamic Estimators

Equipped with the tools described in the previous sections, we are in position to com-

pute thermal expectations values of the quantities of interest as statistical averages

over the spacetime configurations generated by the worm algorithm. In this section,

we provide examples of some thermodynamic estimators derived in Ref. [79].

The average kinetic energy per particle may be estimated as

⟨K⟩ ≈ ℏ
2δτ

− 1

4λδτ 2
⟨(rl − rl+1)

2⟩+ λδτ 2

9
⟨(∇V (R2l))

2⟩ (2.17)

where λ = ℏ2/2m, < ... > represents the statistical average along the imaginary time

path, (rl − rl+1)
2 is the square of the distance between two the positions of a particle

at adjacent points along the world line, and the gradient of the potential energy in

the last term is taken with respect to one of the particles at an even time slice. The

potential energy per particle is simply estimated as

⟨V ⟩ ≈ 1

N
⟨V (R2l−1)⟩ (2.18)

Eqs. 2.17 and 2.18 are both approximations that become exact in the δτ → 0 limit.

The superfluid fraction is computed directly through the well-established wind-

ing number estimator, which considers the change in the free energy of the fluid in

response to the uniform motion of the boundary [80]. This yields the expression

ρs
ρ

=
⟨W 2⟩mT
3ℏ2ρL

(2.19)

where W = (Wx,Wy,Wz) is the winding number, and L is the system size. It is

worth noting that the superfluid fraction is susceptible to finite size effects that are
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increasingly prominent as one approaches the critical point, as shown in the example

in Fig. 2.4, and thus an extrapolation procedure is required for a precise estimation

of the critical temperature for the superfluid transition.

The finite size scaling analysis is performed on ⟨W 2⟩/3, since it is proportional to

Figure 2.4: The superfluid fraction ρS(T ) for
4He at saturated vapor pressure (SVP),

modeled by the Aziz potential. The results are computed using the worm algorithm
for various system sizes, namely N=64 (filled circles), N=128 (open circles), N=256
(filled squares), N=512 (diamonds), N=1024 (triangles down), and N=2048 (triangles
left). The solid line is the experimental result. Reproduced from Ref. [82].

the quantity ρSL/mT , which becomes scale invariant at the critical point [82]. An

example of this analysis is shown in Fig. 2.5, in which studying the intersection of

these scaling curves yields a fairly precise estimate of the critical temperature of 4He

at saturated vapor pressure, modeled using the Aziz potential.

We may also estimate the standard errors on these quantities. Since any ex-

pectation value of a physical observable A we compute is a statistical average over

configurations Xl generated at M time slices, it is bound to deviate from, and fluctu-

ate around, the true mean of the Gaussian that is approached in the M → ∞ limit.
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Figure 2.5: Finite size scaling analysis for the quantity ⟨W 2⟩/3 = ℏ2ρSL/mT , for
4He at SVP, modeled by the Aziz potential. The horizontal solid line is the known
U(1) universality class value for the winding number fluctuations at the critical point.
Reproduced from Ref. [82].

The most straightforward estimate of these fluctuations is given by

∆A =

√︄∑︁M
l=1(A(Xl)− ⟨A⟩)2
M(M − 1)

(2.20)

In general, eq. 2.20 yields an underestimate of the true error, since the configurations

Xl are not statistically independent. A more accurate estimate of the error requires

that we reduce the autocorrelations between the configurations, which may be ac-

complished by binning the data and computing averages over these smaller sets of

configurations (which would constitute a set of averages that are less correlated than

the original data set), and then computing the standard error using this new set of

averages.

22



2.5 Dynamical Correlations

As mentioned in Sec. 2.3, it is also possible to compute dynamical properties (in the

linear response regime) within our framework, despite the system being in thermal

equilibrium. One such quantity of interest is the dynamic structure factor S(q, ω),

which describes density fluctuations of wave vector q. For superfluid 4He it has

been extensively studied experimentally by neutron scattering (for a review, see, for

instance, Ref. [70]). It is a direct probe of the elementary excitations (phonons and

rotons) that underlie the physical behavior of the system at low temperature [85–87].

S(q, ω) is a non-negative function satisfying the relation [88]

⟨ω⟩ =
∫︂ ∞

0

dω ω S(q, ω) (1− e−βω) =
q2

2m
(2.21)

known as f-sum rule (for the remainder of this section we set ℏ = 1).

There is no known QMC scheme allowing for the direct calculation of S(q, ω).

However, it can be shown (see, for instance, Ref. [54]) that

F (q, τ) =

∫︂ ∞

0

dω (e−ωτ + e−ω(β−τ)) S(q, ω) (2.22)

where 0 ≤ τ ≤ β and F (q, τ) is the imaginary-time auto-correlation function

F (q, τ) =
1

N
⟨ρ̂q(τ) ρ̂†q(0)⟩ (2.23)

with

ρq(τ) =
N∑︂
j=1

eiq·rj , (2.24)

where the {rj}, j = 1, 2, ...N are the positions of the N particles at imaginary time

τ along the many-particle path. The quantity F (q, τ) is what is actually computed

by QMC, for a discrete set of values of τ ; S(q, ω) is inferred from F (q, τ) through a

numerical inversion of eq. 2.22.

The problem with such an inversion lies in the fact that the integral kernel ex-

ponentially suppresses the contribution at high frequency of the spectral function to
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F (q, τ); consequently, F (q, τ) is minimally affected by the high frequency behavior

of S(q, ω). Because F (q, τ) is the result of QMC simulations, and therefore possesses

finite statistical uncertainties, there will be typically a large set of physically differ-

ent spectral functions consistent with the numerical data for F (q, τ). Most of these

solutions are unphysical and/or bear little resemblance to the actual S(q, ω). The

goal is that of finding a systematic and robust way to weed out spurious solutions,

and retaining only a relatively small subset of physical ones, from which at least the

most important physical features of S(q, ω) may be reliably extracted.

As mentioned above, F (q, τ) is computed for the discrete set of imaginary times

lδτ , l = 0, 1, ..., L, with 2Lδτ = β. In order to simplify the notation, for a given value

of q we define F ≡ {F0, ..., FL}, with Fl ≡ F (q, lδτ). Each entry Fl is affected by

a statistical uncertainty σl, estimated by careful binning analyses of data (see, for

instance, Ref. [89]) collected over sufficiently long simulations. We begin by approx-

imating the integral on the right hand side of eq. 2.22 with a sum, i.e., turn eq. 2.22

into a system of algebraic equations that can be expressed in compact matrix form

F = KS, (2.25)

having defined

Klj = [e−jlδωδτ + e−j(2L−l)δωδτ ] δω, (2.26)

S ≡ {S1, ..., SM}, Sj ≡ S(q, jδω), and Mδω = ωM , ωM chosen large enough that

S(q, ω) can be set to zero for ω > ωM , and δω small enough to achieve the desired

frequency resolution. In the studies presented in this thesis, ωM is between 100

and 300 K, whereas M is between 150 and 400. An important observation is that

typicallyM > L, i.e., the system (2.25) is underdetermined, and therefore, in general,

no unique solution can be found, quite irrespective of the ill-posedness of the problem

and of statistical errors of the computed imaginary-time correlation functions.1

1As mentioned in the text, the value of the time step utilized in the QMC calculation is ϵ = 1/640
K−1. There are therefore 320 “time slices” in the imaginary-time interval 0 ≤ τ ≤ β/2, but because
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We take the same approach as in Ref. [54], based on “classic” MaxEnt (see, for

instance, Ref. [48]) and define our “optimal” solution as

S◦ ≡
∫︂
dα

∫︂
DS S F(α,S) (2.27)

where DS ≡ dS1dS2...dSM , and

F(α,S) =
e−χ2(S)/2

ZQ

eαS(S)

ZS(α)
ρ(S) (2.28)

is a prior probability assigned to the generic image S. Here, α is a non-negative

regularization parameter, to which we come back below; ZQ and ZS(α) ∝ α−M/2 are

normalization constants;

χ2(S′) = (F− F′)TC−1(F− F′) (2.29)

is the standard measure of goodness of fit, with F′ = KS′ and we make the diagonal

approximation2 for the covariance matrix C, i.e.,

Cij = σ2
i δij, (2.30)

and

S(S) = −
M∑︂
i=1

fi ln

(︃
Mfi

)︃
, (2.31)

with fi = Si/(
∑︁

j Sj), is Jaynes’ entropy
3 of the image S [90]; and finally,

ρ(S) ∝ exp

(︃
− [⟨ω⟩ − ωq]

2

2η2ω2
q

)︃
(2.32)

where ⟨ω⟩ is defined in eq. 2.21, ωq = q2/(2m) and η is adjusted to enforce that

relation (2.21) be satisfied to the desired degree of accuracy (typically η ≤ 0.01).

the fourth-order formula is adopted, only half of them are usable for computation of expectation
values of observables. For details, see, for instance, Ref. [79]

2In principle, the diagonal approximation for C is not justified, because QMC data at different
imaginary-times are not generated independently, i.e., they are correlated. However, the diagonal
approximation often allows for a more stable inversion, and in practice the use of the full covariance
matrix does not yield any significant difference in the results. See, for instance, Ref. [54].

3Implicit in the definition (2.31) is the use of a “flat” default model, i.e., one making no a priori
assumption on the shape of S.

25



The prior probability (2.28) ascribes greater weight to those spectral functions that

are consistent with the data, and therefore have a low value of χ2 and fulfill the f -

sum rule, while at the same time are smoother in character. In other words, sharp

features such as isolated peaks should not be included unless consistency with the

data requires it.

The parameter α can be used to “tune” the relative importance of the entropic prior

in F(S); in the limit α → 0, one is performing conventional χ2-fitting; on the other

hand, as α grows the entropic prior becomes increasingly important. The question

arises of how to choose the value of α. In “historic” MaxEnt, one adjusts α so that

on average, the value of χ2 ∼ L. As mentioned above, we adopt the “classic” MaxEnt

approach, in which α is treated as a random variable, and assigned a prior probability

distribution p(α), which is incorporated in the normalization constant ZS(α).

We evaluate the multidimensional integral in eq. 2.27 by Monte Carlo, just as

in Ref. [54]. Specifically, we perform a random walk in {S, α}-space, using the

Metropolis algorithm to sample the probability density given by eq. 2.28. We achieve

that through few elementary moves, designed to satisfy the usual detailed balance

condition. Specifically, we randomly attempt either one of the following:

1. the displacement of an elementary amount of area, equal to γ δS, where 0 ≤

γ ≤ 1 is a uniform random number, from a randomly selected channel j to

another one, randomly selected among j − p, ...j − 1, j + 1, ...j + p.

2. the addition or subtraction of γ δS ′ from a randomly selected channel j.

3. the change of α by an amount (1/2− γ) δα.

Proposed moves are accepted or rejected based on the usual Metropolis test, making

use of eq. 2.28 in the acceptance ratio.4 The parameters δS, δS ′, δα and p are

adjusted to ensure a 50% acceptance rate. The move attempting to change the value

4Obviously, moves attempting to make any of Sj or α negative are automatically rejected.
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of α is typically attempted every ∼M attempts to perform either one of the first two

moves.

Figure 2.6: Posterior probability for the regularization parameter α (top) and for the
the goodness-of-fit parameter χ2 (bottom), obtained from the Metropolis random walk
in {S, α}-space as described in the text. This particular result refers to the q = 1.756
Å−1 wave vector in superfluid 4He at T = 1 K and saturated vapor pressure.

The posterior probability of α, Pr[α], as well as the χ2 distribution Pr[χ2], are

obtained from the random walk, just as in Ref. [54]. Fig. 2.6 shows a typical result.

The optimal image S◦ (eq. 2.27), determined as an average over the images gener-

ated in the random walk, is affected by a statistical error, that can be estimated in the

standard way and can be rendered sufficiently small upon using a relatively modest

amount of CPU time. More significant, however, given the inherent uncertainty of

the inversion, is the standard deviation associated with the fluctuation of the values

Si around their averages; we report them in Ch. 6 along with some example results

of these calculations.
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Chapter 3

Tuning the Quantumness of Simple
Bose Systems: A Universal Phase
Diagram

3.1 Introduction

We begin our journey by considering a category of systems whose main characteristics

are simplicity and generality. This broad class of condensed matter systems is well

described by pair-wise, central interactions among constituent particles (e.g., atoms),

featuring a) a strong repulsion at short inter-particle separations (from Pauli exclusion

principle, acting to prevent electrons from different atomic or molecular clouds from

overlapping spatially) and b) a weak attractive tail at long distances, arising from

mutually induced electric dipole moments. A widely used approximate model to

describe such an interaction is the Lennard-Jones (LJ) potential:

VLJ(r) = 4ϵ

[︃(︂σ
r

)︂12
−
(︂σ
r

)︂6]︃
, (3.1)

where ϵ is the depth of the attractive well, σ is the characteristic range of the interac-

tion, and r is the separation between the two particles. Despite its simplicity, the LJ

potential effectively accounts for the physical behavior of a large number of simple

liquids, such as the well-characterized 4He.

The challenge we undertake in this chapter is that of generalizing our understand-

ing of the properties of 4He to a wider class of Bose systems featuring the same kind
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of interaction. Specifically, we are interested in how the behavior of these system

might evolve as we control the strength of quantum mechanical effects by tuning the

parameters of our model, such as the mass of the particles. One might ask, for in-

stance, what the phase diagrams of the various (bosonic) isotopes of helium might

look like, and how they would connect to the well-known phase diagram of 4He.

A theoretical description of a system of interacting bosons based on the LJ poten-

tial constitutes a simple but remarkably general framework in which such questions

can be addressed. On taking ϵ (σ) as our unit of energy (length), the Hamiltonian is

fully parametrized by the dimensionless parameter1

Λ =
ℏ2

mϵσ2
, (3.2)

whose magnitude expresses the relative importance of the kinetic and potential en-

ergies. The larger the value of Λ, the more significant the quantum effects in the

dynamics of the particles, and the higher the temperature to which they can be ex-

pected to persist. Conversely, in the Λ → 0 limit, the potential energy dominates,

and the behavior of the system is largely classical.

In order to make this argument more quantitative, we note that for 4He, ϵ ≡ ϵHe =

10.22K and σ ≡ σHe = 2.556 Å, i.e., Λ = 0.18, which is the second highest value

among naturally occurring substances (the highest being 0.24 for the lighter helium

isotope, 3He, a fermion). For comparison, for a fluid of parahydrogen molecules, i.e.,

spin-zero bosons of mass one half of that of a 4He atom, ϵ = 34.16K and σ = 2.96 Å,

yielding Λ = 0.08. In stark contrast to helium, fluid parahydrogen crystallizes at a

temperature T=13.8K, well above that at which Bose-Einstein condensation might

take place. Although quantum effects are observable [92] near melting, there is no

evidence of a superfluid phase, even in reduced dimensions, where quantum effects

are amplified [93].

One might wonder what the phase diagram may be if Λ should be significantly

1The Λ parameter used here is proportional to the square of the well-known de Boer parameter
[91].
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greater than the helium value of ∼ 0.2. This may seem like a purely academic ques-

tion, given that helium is an “outlier” among naturally occurring substances. How-

ever, there are avenues that may allow experimental realizations of LJ Bose systems

with larger Λ values. Confined assemblies of ultracold atoms, in which the interac-

tion can be “tuned” by means of techniques such as the Feshbach resonance (see, for

instance, Ref. [25]), may provide a test for some of the predictions, at least in the low

density limit.

Moreover, there are intriguing possibilities with exotic atoms, in which one or more

electrons are replaced by other subatomic particles of the same charge, such as muons

[94]; recently, a long-lived “pionic helium” has been created [95]. A more radical ap-

proach consists of replacing all electrons [96, 97]; for example, a “muonic” version of

a given element of mass M has an equivalent mass Meq given by [98]

Meq =

(︃
1 +

Z

A

mµ

mN

)︃
me

mµ

M (3.3)

where mµ and me are the masses of the muon and the electron respectively. The

replacement of electrons by muons causes a) a shrinkage of the range (σ) of the inter-

particle potential by a factor of mµ/me (∼ 200) and b) an increase in the well depth

(ϵ) by the same factor, resulting in a 200-fold increase of Λ — sufficient to bring

even systems made of heavier elements, e.g., Ne, whose condensed phase displays

essentially classical physical behavior, into the highly quantum regime.

In this chapter, we present a comprehensive study of the universal phase diagram of

LJ Bose systems. We used state-of-the-art quantum Monte Carlo (QMC) methods to

compute numerically exact thermodynamic averages of relevant physical observables

at finite temperatures. Given the presence of both strong interactions and large

quantum effects in these systems, systematically accurate many-body computations

are crucial for reliable predictions. We mapped out the complete thermodynamic

phase diagram as a function of pressure and temperature, varying the parameter Λ

to explore a variety of physical regimes ranging from almost entirely classical, to the
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ultra-quantum.

The remainder of this chapter is organized as follows: in Sec. 3.2 we describe the

model of the system, and briefly summarize the methodology we utilized. In Sec. 3.3,

we present and discuss our results in several subsections separated by the different

regimes of Λ, and we finally outline our conclusions in Sec. 3.4.

3.2 Theoretical Framework

3.2.1 Model

We consider an ensemble of N identical particles of mass m obeying Bose statistics,

enclosed in a cubic box of volume V , with periodic boundary conditions in the three

directions. The density of the system is therefore ρ = N/V . Particles interact via

the LJ potential. As mentioned in Sec. 3.1, we take the characteristic length σ

as our unit of length, and the well depth ϵ as that of energy. The dimensionless

quantum-mechanical many-body Hamiltonian reads as follows:

Ĥ = −1

2
Λ

N∑︂
i

∇2
i + 4

N∑︂
i<j

(︃
1

r12ij
− 1

r6ij

)︃
, (3.4)

where the first (second) sum runs over all particles (pairs of particles), and rij ≡

|ri − rj| is the distance between particles i and j. In these reduced units, Λ is the

only parameter of the Hamiltonian, and therefore, its numerical value univocally

determines the nature of its equilibrium phase, at any values of pressure and temper-

ature.

In discussing our results, we shall at times find it useful to refer to a particular

system, not in terms of its value of Λ, but rather of its “equivalent helium mass” X,

defined as the mass of a hypothetical helium isotope (XHe, always assumed to be a

boson) which yields the same value of Λ. That is, a system of mass M characterized
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by LJ interaction parameters of ϵ and σ has

X =M
ϵ

ϵHe

(︃
σ

σHe

)︃2

. (3.5)

Thus, the mathematical description of the system can also be equivalently parametrized

in terms of X, instead of Λ.

3.2.2 Methodology

Figure 3.1: The pressure as a function of specific volume at temperatures of 0.1
(crosses), 0.2 (squares), 0.32 (circles), 0.4 (stars), and 0.5 (diamonds). This serves as
a tool for detecting coexistence between two phases of different densities, as explained
in the text. This particular result is for LJ boson 3He. Inset: Same as main graph
but with a smaller P scale and only T = 0.32. Different symbols distinguish the
superfluid phase (empty), the normal phase (filled), and the gas phase (grey).

As mentioned above, we carry out systematic many-body calculations of the sys-

tem described in subsection 3.2.1 using QMC simulations. Specifically, we make use

of the well-established continuous-space worm algorithm described in Ch. 2.
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Note that, while there has been considerable simulation work on classical LJ flu-

ids, previous work on quantum systems has been mostly limited to variational ground

state studies [99, 100]. Indeed, the pioneering simulations of the superfluid transition

in 4He were based on a more accurate interatomic pair potential [7, 80]. Finite tem-

perature QMC simulations of LJ systems have also been performed of solids, in which

quantum statistics is neglected [101, 102] on account of the relative infrequency of

quantum exchanges.

Although our technique is based on the finite-temperature path-integral technique

[76], the ground state physics is explored by reaching sufficiently low T so that the

results can be regarded as essentially for the ground state. Once the low-temperature

limit is reached, the equation of state of the system is calculated by computing the

energy as a function of density, and the minimum of this function is taken to be the

equilibrium density, i.e., the density at which the self-bound system exists at T = 0.

As mentioned in subsection 3.2.1, the finite temperature physics is readily accessible

upon raising the temperature T , and the over(under)-pressurized system is explored

by raising (lowering) the density ρ. The value of the pressure at any given T and ρ is

calculated through the virial theorem (see, for instance, Ref. [103]). In this fashion,

one may survey the pressure-temperature phase diagram of the system and explore

the different phases thereof.

We performed simulations for values of the equivalent helium mass 1 ≤ X ≤ 8.

Details of the simulation are standard; we made use of the fourth-order approxima-

tion for the high-temperature density matrix (see Ch. 2), and all of the results quoted

here are extrapolated to the limit of time step δτ → 0.

Superfluid order is detected through the direct calculation of the superfluid fraction

through the well-established winding number estimator described in Ch. 2. The su-

perfluid transition temperature is estimated by performing finite size scaling analysis

of the results for the superfluid fraction, as demonstrated in Sec. 2.4. We obtained

estimates for systems comprising a number of particles ranging from N = 32 to
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N = 512. Crystalline order in the system is detected through i) visual inspection

of the imaginary-time paths and ii) the calculation of the pair-correlation function.

For computational convenience, we simulated all crystalline phases assuming a body-

centered cubic structure. It is known that the energy difference between that and the

hexagonal close-packed, in which, e.g., 4He crystallizes under pressure, is small (less

than 0.02 ϵ in 3He [104]).

The liquid-gas critical temperature is inferred indirectly, through the computation

of the pressure as a function of volume at different temperatures. By definition, the

critical temperature is the highest temperature for which there is coexistence between

the liquid and gas phases, which has the signature of a flat region in the pressure-

volume isotherm. This behavior, however, only occurs in an infinite system. In the

case of finite systems accessible to numerical simulations, in which separation into

two coexisting phases is energetically unfavorable, this behavior is reflected by the

system acquiring negative compressibility, i.e., the isotherm showing positive slope

in the coexistence region [105]. By plotting isotherms at different temperatures, one

can identify the liquid-gas critical temperature as the highest temperature for which

there is evidence of coexistence. This is illustrated in Fig. 3.1 with an example.

As a first gauge of the accuracy and reliability of our approach, we study 4He (i.e.,

Λ = 0.1815). The topology of the P -T phase diagram of 4He is well-known [5–7]

, with which we can compare our results. Although most microscopic calculations

[7] of helium utilize the more accurate Aziz pair potential [106], the LJ potential is

known to give an excellent approximation in 4He. Additionally, three-body terms

have been shown [104] to account for a relatively small correction to the thermody-

namic equation of state, with insignificant effect on structural or superfluid properties.

Comparing our results for X=4 against experimental phase boundaries, as shown in

Fig. 3.2, thus serves as validation for our methodology.

This phase diagram features two critical temperatures: i) the superfluid transition
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Figure 3.2: The pressure-temperature phase diagram of LJ 4He. Solid and dashed
lines represent the experimentally determined phase boundaries. Solid lines corre-
spond to first order transition, and dashed to second order.

temperature Tλ, and ii) the temperature that marks the end of the liquid-gas coex-

istence line TLG, i.e., the highest temperature at which there is a phase transition

between a liquid phase and a gas phase. Clearly, TLG > Tλ in this case. However,

as one continues to lower the value of the mass, one expects i) quantum-mechanical

effects to become more prominent, thus enhancing superfluidity and raising the value

of Tλ, and ii) zero-point motion to increasingly dominate the potential energy, causing

the system to become less bound and suppressing the liquid phase, causing TLG to go

down.

We systematically investigate these trends in Sec. 3.3.
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Figure 3.3: Ground state and liquid-gas critical temperature of the system as a func-
tion of Λ. The liquid-gas critical temperature (TLG, diamonds) is determined by the
procedure discussed in Sec. 1.B and illustrated for X = 3 in Fig. 3.1. Also shown are
the superfluid (Tλ, circles) and Bose-Einstein (TBEC, boxes) transition temperatures
of homogeneous fluids, as well as the melting temperatures (TM, stars) of crystals.
Tλ, TBEC, and TM are computed by holding the density fixed at the ground state
equilibrium value. When not shown, statistical uncertainties are smaller than the
size of the symbols. Lines are guides to the eye.

3.3 Results

3.3.1 Overview

The results of our extensive QMC computations are summarized in Fig. 3.3. In this

subsection, we discuss the main ground state features of this diagram and give a brief

overview of the different physical regimes at zero temperature, before moving on to

describe finite temperature characteristics. The various transition temperatures in

Fig. 3.3 were computed at specific values of Λ. The corresponding equivalent helium

mass X values are also shown in the figure. We indicate with arrows the locations

the muonic counterparts of some molecules.

The different shades in Fig. 3.3 represent the different ground states of the system,
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Figure 3.4: The ground state equilibrium density of the system as a function of the
inverse de Boer parameter. The intercept at ρeq = 0 shows the minimum nuclear
mass that remains self-bound at zero temperature; the red square is an exact result
obtained from the two-body scattering length [107, 108]. Inset: examples of the
equation of state at Λ = 0.1815, 0.242, 0.363, respectively from bottom to top.

depending on the value of Λ. Three distinct physical regimes can be identified. At low

values of Λ (high values of the nuclear mass), the ground state is a crystal. At a value

of Λ ≈ 0.15, the system quantum melts into a superfluid that remains self-bound.

As Λ is further increased, the binding is weakened. This behavior is illustrated in

Fig. 3.4, which shows the equilibrium density going down as Λ grows, to finally hit

zero upon reaching another critical value Λc, whereupon the system undergoes quan-

tum unbinding. In the regime Λ > Λc, the ground state is a superfluid gas.

From the many-body equation of state results, we obtain an estimate of Λc ≈ 0.46

as shown in Fig. 3.4, which corresponds to X ≈ 1.6. This result agrees with an earlier

prediction made in Ref. [108] using the zeros of the two-body scattering length [107],

confirming the argument based on few-body considerations. In the series expansion

of the effective potential in terms of a classical field, the three-body term has the

opposite sign with respect to the two-body term, as we approach Λc from below. We
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can also compute the three-body scattering hypervolume D, related to the three-body

coefficient λ3/3 by ℏ2D/6m = λ3/3. Our estimate is obtained by fitting the energy as

a function of density at a value (chosen to be Λ = 0.44) close to Λc with a third degree

polynomial and extracting the value of the coefficient of the cubic term. This gives

D/σ4 = 57 ± 8, which is again consistent with the estimates made from few-body

calculations in Refs. [108, 109].

The finite-temperature behavior of all three physical regimes is also shown in

Fig. 3.3. The crystalline phase melts into a non-superfluid liquid upon increase of

the temperature. This is not surprising, and underscores the importance of quantum-

mechanical exchanges, which underlie superfluidity, in the melting of the Bose solid

[4]. Melting occurs at a temperature which decreases on increasing the value of Λ. In

the Liquid, we computed three different temperatures: i) the liquid-gas critical tem-

perature, ii) the superfluid transition temperature at the ground state equilibrium

density, and iii) the Bose-Einstein condensation temperature of the non-interacting

system TBEC ≈ 3.3125 Λ ρ2/3, also at the ground-state equilibrium density. The inter-

play between the three temperatures is plotted in Fig. 3.3, and is discussed in more

detail in subsection 3.3.3. Finally, we have the superfluid gas regime, in which the

system behaves very similarly to a dilute Bose gas.

In the following three sub-sections, we provide more detailed descriptions of the dif-

ferent physical regimes in Fig. 3.3, moving from smaller to larger values of Λ. Detailed

P -T phase diagrams are computed at representative Λ values to probe the different

phases and the topology of the phase transitions. It is important to reiterate that

our results are all using the simple LJ atom-atom interaction. Despite its generality,

there will be situations, for example low-density diatomic gases or very high pressure

states, where new phases emerge which are not captured by our Hamiltonian.
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Figure 3.5: The pressure-temperature phase diagram of LJ boson 8He (Λ = 0.09075).
The solid line, drawn as a guide to the eye, corresponds to the first order transition.
The low-pressure vapor region is not visible on this scale.

3.3.2 Low Λ regime

At values of Λ corresponding to X > 4.8, quantum mechanical exchanges are sup-

pressed, and the ground state is primarily the result of minimizing the potential

energy, i.e., a crystal. Nevertheless, as shown in Ref. [4], exchanges play a crucial role

in the determination of the melting temperature. It is worth noting that the isotopes

8He and 6He have both been realized in the laboratory, with single nuclei half-lives

of 0.12 s and 0.8 s, respectively.

The pressure-temperature phase diagram at Λ = 0.09075, corresponding to X = 8,

is shown in Fig. 3.5.

The melting temperature of the equilibrium crystalline phase goes down as Λ grows,

as shown in Fig. 3.3. In particular, we estimate the melting temperature of 6He to

be about 2.5 K, the lowest among naturally occurring substances.

On raising Λ, one encounters the fictitious boson isotope 5He, which still lies on

the solid side of the solid-liquid boundary. Here, the crystalline ground state remains
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Figure 3.6: (a) The pressure-temperature phase diagram of LJ boson 3He (Λ =
0.242). (b) Same as (a) but with a zoom into the lower pressure portion. Lines are
drawn schematically based on the discrete data points to guide the eye. Solid lines
correspond to first order transition, and dashed to second order.

stable against quantum fluctuations, albeit with a relatively small melting tempera-

ture of ∼ 1.5 K. Interestingly, for a value of X this close to the solid-liquid boundary,

we find a possibly long-lived, over-pressurized superfluid phase at the equilibrium

density. Such a phase is not realized in systems deeper within the classical regime,

such as parahydrogen [110], as well as 6He and 8He. It is reminiscent of the situation

of 4He, in which it is possible to achieve metastable superfluid phases at pressures

much higher than the crystallization pressure [60–62, 111].

3.3.3 Intermediate Λ regime

As the value of Λ further grows, one crosses the solid-liquid boundary and encounters

the well-characterized 4He, the results for which, as mentioned in section 3.2, serve

as validation for our methodology, and are compared against the experimental results

in Fig. 3.2.

As shown in Fig. 3.3, as one moves further to the right, the superfluid transition

temperature (Tλ, computed at the ground-state equilibrium density) goes up, then

plateaus and goes slightly back down. This behavior is the result of a competition

between two effects that take place as Λ grows: i) the system becomes increasingly

quantum mechanical, allowing superfluidity to be possible at higher temperatures,

and ii) the equilibrium density decreases, which means that the particles are on av-
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erage more widely spaced apart, requiring larger de Broglie wavelengths, and hence

lower temperatures, to achieve Bose condensation. On the other hand, the liquid-gas

critical temperature TLG goes down monotonically as the value of Λ is increased, as

the system experiences more zero-point fluctuations and becomes more loosely bound.

3He is located at a point fairly close to the crossing of the two temperatures. In

Fig. 3.6, we map out the pressure-temperature phase diagram of the fictitious bosonic

3He, which is distinct from that of 4He in a number of different ways. Overall, the

superfluid region expands greatly, pushing the superfluid-crystal transition line up to

higher P , while pushing the superfluid transition line to the right. The first-order

line that separates the liquid and gases phases shrinks significantly as TLG drops from

0.5 to around 0.34. The second-order line that separates the superfluid and normal

phases, aside from moving to higher temperatures as mentioned, behaves quite differ-

ently from the monotonic line with negative slope that appears in 4He. Instead, the

line starts with a very small positive slope at low pressure, bulges out, then curves

back around and acquires a negative slope as it approaches the crystalline regime.

It is useful to examine more closely the topology of the phase diagram in the vicin-

ity of TLG, as shown in Fig. 3.6b. When Λ is increased, the second-order line expands

to the right and its lower part bends toward the first-order line, which shrinks as its

end, the critical point TLG, moves to the left. Ref. [98] studied the evolution of the

phase diagram of the LJ Bose liquid in the ultra-quantum regime through mean field

considerations based on Landau theory. The authors argued that a portion of the

second-order line should turn first-order before the critical point TLG can merge onto

it, in order to prevent the superfluid and liquid-gas order parameters from becoming

critical at the same point [98]. Our results show that if such a scenario occurs, it is

confined to a tiny portion of the superfluid transition line for very specific values of

Λ, which is challenging to target numerically.

The (P, T ) phase diagram in Fig. 3.6 reveals an interesting range of temperatures

near 0.32. At such a temperature, if one starts at zero pressure and continues pressur-
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izing, keeping the temperature constant, one first encounters a gaseous phase, followed

by a normal liquid phase, followed by a superfluid liquid phase, followed by another

normal fluid phase, finally followed by a crystalline phase at the highest pressures.

Another interesting result is the minimum pressure at which bosonic 3He is found

to crystallize. As shown in Fig. 3.6b, the minimum crystallization pressure is around

1 in our units, which corresponds to roughly 84 bars in SI units. This is much higher

than the minimum pressure at which the real system, obeying Fermi statistics, is

experimentally known to crystallize, which is around 30 bars [112]. This result is

of considerable importance, as it shows that quantum statistics indeed play a large

role in determining the crystallization pressure of the system [4]. The Fermi system

is a non-superfluid liquid at these temperatures, which renders it significantly more

susceptible to crystallization. The Bose system, being in the more robust superfluid

phase, continues to resist crystallization for much higher pressures. This result is

consistent with the prediction made by the variational theory in Ref. [99], in which

the authors contend that the solidification pressure of a bosonic 3He is greater than

that of the Fermi system by at least a factor of 2.

3.3.4 Low Λ regime

On further increasing Λ, one counters 2He, which is located at the region where Tλ

exceeds TLG. While the system remains self-bound at zero temperature, it boils before

losing its superfluidity upon increasing temperature. This is in contrast with the case

of 4He which, as the temperature is raised, loses superfluidity long before it boils.

The pressure-temperature phase diagram for 2He is shown in Fig. 3.7, which is

simpler compared to that of 3He. At low temperatures and pressures, a first-order

boundary separates the superfluid phase and the gas phase. Beyond TLG, the phases

are separated instead by a second order line, which continues to grow as a function of

pressure. In the inset of Fig. 3.7, we present a more complete diagram that includes

higher pressures. The behavior at high pressure is similar to that of 3He, where
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Figure 3.7: The pressure-temperature phase diagram of 2He (Λ = 0.363). The main
graph shows a zoom of the low pressure region, while the inset gives a more global
view. Lines are to guide the eye. Solid lines correspond to first order phase transition,
and dashed to second order.

the second-order line doubles back and intersects the solid-liquid boundary with a

negative slope.

As one continues raising the value of Λ, the first order line separating superfluid

and normal phases progressively recedes towards the origin, until the system no longer

features a first-order phase transition. The first-order portion vanishes precisely when

Λ = Λc, where quantum unbinding takes place in the ground state, as we discussed

with Fig. 3.4. For Λ > Λc there is only a second-order line separating the superfluid

phase and normal gas phase. These features of the phase boundary between the

superfluid and gas phases at low pressure are correctly captured by mean-field and

analytic theory [98].

3.4 Conclusions

We performed extensive, numerically exact many-body computations of simple Bose

systems interacting through the Lennard-Jones potential, and investigated their phys-
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ical properties throughout a wide range of the “quantumness” parameter Λ. As a

function of Λ, we studied the evolution of the phase diagram, and provided detailed

predictions at several values of Λ representative of the different physical regimes.

One goal of this study was to establish the kind of phases, and phase diagram

topology that one can encounter in this very broad class of systems. Only insulating

crystal and (super)fluid phases are present; no “supersolid” is observed, consistent

with a wealth of theoretical predictions pointing to the absence of a supersolid phase

in a system in which the dominant interaction is pair-wise and spherically symmetric

and features a “hardcore” repulsion at short distances [9, 13]. No coexistence of two

superfluid phases is observed either, which is also consistent with the thermodynam-

ics of the liquid-gas transition and our current understanding of the relation between

superfluidity and Bose-Einstein condensation in gases.

Given the generality of the LJ interaction, mapping out in detail the thermody-

namic phase diagram can guide in the design and interpretation of experiments aimed

at observing additional phases of matter, as more experimental avenues continue to

open up. Experimental realization of the systems studied here are certainly not lim-

ited to helium. Among all naturally occurring substances, significant quantum effects

are observed in parahydrogen, and can also be expected in two unstable isotopes of

helium which possess an even number of nucleons (i.e., they are bosons). Higher

values of Λ may be achieved in a laboratory setting by preparing systems of ultracold

atoms, via exotic matter, or in excitonic systems.

In addition to providing a universal phase diagram to this class of simple Bose

system, we hope that this investigation also serves as an example of the progress to

make definitive and comprehensive predictions on interacting quantum many-body

systems. Such examples are still uncommon, but are certainly becoming increasingly

possible, owing to the development of reliable and robust computational methods and

more cross-fertilization between them with analytical approaches.
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Chapter 4

Patterned Supersolids in Dipolar
Bose Systems

4.1 Introduction

In search of the more exotic supersolid phase, whose absence in simple helium-like

systems was demonstrated in Ch. 3, we now turn our attention to a more specific

class of Bose systems, namely dipolar bosons. In this chapter, we present our state-

of-the-art quantum Monte Carlo (QMC) investigation of the low temperature phase

diagram of dipolar bosons with aligned dipole moments. We model the repulsive part

of the interaction by means of an inverse power law potential, as done in previous

work [14]; a straightforward connection exists between the characteristic range σ of

this interaction, and the scattering length as. We map out the phase diagram by

computing relevant correlations, as well as the superfluid density, all directly accessi-

ble in our numerical approach, as a function of particle density and σ.

The system displays several distinct phases, ranging from an essentially classical

crystal of parallel, particle-thin filaments in one limit (σ → 0), to a hard-sphere-like

superfluid, reminiscent of liquid 4He in the opposite (σ → ∞) limit, at any particle

density. An intermediate region exists between these two phases, in which the ground

state displays both crystalline order and a finite superfluid response. This supersolid

phase exists within a range of scattering length that depends monotonically on the

density.
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The crystal structure of the supersolid is quite distinct from that of the classical

crystal, determined by quantum-mechanical effects, both zero-point motion as well

as exchanges of particles (as already noted in Ref. [14]). Remarkably, the super-

solid phase features different arrangements of particles (patterns) in different regions

of the phase diagram. At low density, the supersolid phase consists of a crystal of

prolate droplets, with quantum-mechanical exchanges of particles across droplets, as

suggested in Ref. [14]. As the density is increased, on the other hand, the patterns re-

semble some of the periodic structures originally predicted to occur in two-dimensional

dipolar systems [113, 114].

We study the elementary excitation spectrum for the superfluid phase, which fea-

tures the experimentally observed “roton” minimum [11], as crystallization is ap-

proached from the superfluid side, both on reducing σ (i.e., moving toward the super-

solid phase) as well as on increasing it, in which case the system behaves essentially

as a hard sphere fluid, transitioning into a conventional (i.e., non-superfluid) crystal.

The remainder of this chapter is organized as follows: in section 4.2 we describe

the model of the system; in Sec. 4.3 we briefly describe our methodology; we present

and discuss our results in Sec. 4.4 and finally outline our conclusions in Sec. 4.5,

where we discuss the relevance of this study to recent experimental work.

4.2 Model

The system is modeled as an ensemble ofN identical particles of massm and spin zero,

hence obeying Bose statistics. These particles possess a magnetic moment d, pointing

in the z-direction. We are interested in studying the phase diagram of the bulk; thus,

unlike in a typical experiment, we do not confine the simulated system by means of an

external potential. Rather, our system is enclosed in a three dimensional box, shaped

like a cuboid of volume V , with periodic boundary conditions in the three directions.

The shape of the cell was varied, depending on the particular structures and patterns

forming at the various physical conditions. We take the characteristic length of the
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dipolar interaction, a ≡ md2/ℏ2 as our unit of length, and ϵ ≡ ℏ2/(ma2), as that

of energy and temperature. The quantum-mechanical many-body Hamiltonian in

dimensionless form reads as follows:

Ĥ = −1

2

∑︂
i

∇2
i +

∑︂
i<j

U(ri, rj) (4.1)

where the first (second) sum runs over all particles (pairs of particles), and the pair

potential consists of two parts, U(r, r′) = Usr(|r − r′|) + Ud(r, r
′), Usr being the

repulsive part. As mentioned above, in most theoretical studies the repulsive part of

the interaction is modeled by means of the so-called scattering length approximation,

namely

Usr(r) =
4πℏ2as
m

δ(r) (4.2)

To the extent that such a representation is valid, expression (4.2) can be replaced by

any other potential that has the same scattering length as. In this work, we use for

Usr the repulsive part of the standard Lennard-Jones potential, i.e.,

Usr(r) = (σ/r)12 (4.3)

whose use is more convenient in numerical simulations. The parameter σ of the

potential Usr used here is directly related to the scattering length as, through

as
σ

≈ 0.76 σ1/5 (4.4)

(see, for instance, Ref. [115]). Ud is the classical dipolar interaction between two

aligned dipole moments, namely

Ud(r, r
′) =

1

|r− r′|3

(︃
1− 3(z − z′)2

|r− r′|2

)︃
(4.5)

At zero temperature, there are two parameters that govern the physics of the sys-

tem, namely the particle density ρ ≡ N/V , and the characteristic range σ of the repul-

sive interaction. The classical limit is approached as σ → 0, whereupon the attractive
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well of the anisotropic interaction becomes deep enough to dominate the physics, and

quantum mechanical effects are small. On the other hand, as σ is increased, quantum

mechanical effects are increasingly prominent, eventually destabilizing the classical

ground state and giving rise to interesting physics.

4.3 Calculation

We carry out QMC simulations of the system described in section 4.2 using the

continuous-space worm algorithm (see Ch. 2). Although this is a finite temperature

technique, we perform simulations at sufficiently low temperatures, so that computed

physical properties are essentially those of the ground state.

We survey the phase diagram of the system by performing simulations at a fixed

density for different values of σ, and then repeating the process for different values

of the density. We performed simulations of systems of sizes ranging from N = 160

to N = 648 particles, and densities between ρ = 0.125, which is close to the value

of some of the current experiments [11], and up to three orders of magnitude higher,

i.e., ρ = 100, quite likely not attainable in present time experiments but nonethe-

less of fundamental interest. To ensure that the physics is independent of the initial

configuration of the particles, most simulations were started from high-temperature,

disordered configurations.

Details of the simulation are standard; we made use of the primitive approxima-

tion for the high-temperature density matrix. Although more accurate forms exist, we

found that in practice with this particular interaction the primitive approximation is

the most efficient. All of the results quoted here are extrapolated to the limit of time

step δτ → 0; quite generally we found numerical estimates for structural and super-

fluid properties of interest here obtained with a value of the time step δτ ∼ 10−3ϵ−1 to

be indistinguishable from the extrapolated ones, within the statistical uncertainties

of the calculation.

Occurrence of crystalline order in the system can be detected through the calcula-
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tion of the static structure factor S(q); because of the anisotropy of the interaction

and the ensuing tendency of the system to form filaments along z (the direction of

alignment of the dipole moments), we computed S(q) for q-vectors lying in the xy

plane. As mentioned above, distinct, characteristic patterns form for different values

of the parameters ρ, σ. The identification of the various patterns is achieved through

visual inspection of the configurations generated by the algorithm in the course of

sufficiently long computer runs.

The superfluid response of the system is assessed through the direct calculation of

the superfluid fraction ρS(T ), by means of the well-known winding number estimator

[80]. Due to the anisotropic nature of the interaction, and consequently of the su-

perfluid (and supersolid) phases observed here, we offer results for the in-plane (xy)

superfluid response only. A typical result for the in-plane superfluid fraction ρS is

shown in Fig. 4.1b.

4.4 Results

4.4.1 Phase diagram

The ground state phase diagram of the system, as it emerges from our extensive QMC

simulations, is shown in Fig. 4.1a in the ρ − σ plane. Here we outline some of its

generic features, offering a more detailed discussion of the two most interesting phases

(the supersolid and the superfluid) in subsections 4.4.2 and 4.4.3.

For any fixed value of the density, two clear physical limits can be easily identified,

more intuitively discussed in terms of the average inter-particle distance b ≡ ρ−1/3.

Specifically, if σ << b, the ground state of the system consists of an ordered array

(a triangular lattice) of thin filaments oriented along the z-direction. An example

is shown in Fig. 4.2a, displaying the density of the system, integrated along the
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Figure 4.1: (a) Ground state phase diagram of the system in the (ρ, σ) plane. Each
phase is determined through simulations as explained in the text. (b) Superfluid
fraction (xy plane) of the system at ρ = 100 and σ = 0.18 as a function of temperature,
and for two system sizes.

z-direction.1 In this physical limit, the depth of the attractive well of the dipolar in-

teraction causes the potential energy to dominate the behavior of the system, which

can be understood and predicted quantitatively along classical lines, as shown in Ref.

[14]. Specifically, the system forms an ordered array of particle-thin parallel filaments,

arranged on a triangular lattice. In this case, exchanges of identical particles are sup-

pressed, both within a filament, as well as across filaments.

Conversely, when σ becomes of the order of the inter-particle distance b, the at-

tractive well of the dipolar interaction weakens, and the physics of the system morphs

into that of a hard-sphere fluid, as the repulsive part of the interaction becomes the

dominant feature. The behavior of the system in this limit is very similar to that of

superfluid 4He, which undergoes “conventional” crystallization as σ ∼ b (this part of

the phase diagram is not shown in Fig. 4.1a).

As shown in Fig. 4.1a, there is in an intermediate range of σ/b wherein the system

displays the most interesting, novel behavior, specifically a supersolid phase, which

1More precisely, Fig. 4.2a, like other similar images featured in this paper, shows the particle
density map (integrated over the z direction) obtained from a statistically representative configura-
tion (i.e., particle world lines). By “statistically” representative, we mean that every configuration
generated in the simulation is physically equivalent to that shown in the figure, differing at the most
by a rotation and/or a translation.
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we discuss in detail in subsection 4.4.2. A remarkable feature of this phase diagram is

that there is no way of going from the superfluid to the insulating crystalline phase at

zero temperature, by varying ρ and/or σ, without going through a supersolid phase.

This is also the case in a 2D system of soft-core bosons [116].

Figure 4.2: Density maps of the system at density ρ = 100 for σ = 0.12 (a), and
ρ = 1 for σ = 0.33 (b), integrated along the z-direction (i.e., the direction of dipole
moment alignment). Brighter areas indicate higher density. The maps are obtained
from particle world lines of a single configuration. In (a), the physics of the system
is dominated by the potential energy, and the ground state is essentially the classical
one, consisting of an array of particle-thin, parallel filaments. In (b), the ground
state is a crystal of droplets with frequent quantum mechanical exchanges among ad-
jacent droplets, leading to a finite superfluid response (as such, displaying supersolid
behavior).

4.4.2 Supersolid

The supersolid phase is generally characterized by the formation of relatively large,

prolate droplets, elongated in the z-direction, arranging themselves on a triangular

lattice or forming more complex structures, as we discuss below. Quantum mechani-

cal exchanges of identical particles, largely suppressed in the classical filament crystal,

become important, initially within a single filament and progressively across filaments,

establishing phase coherence and leading to a finite, three-dimensional superfluid re-
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sponse throughout the system. It is interesting to note that while the superfluid

response is anisotropic, and in the xy plane saturates to a value lower than unity as

T → 0 (see Fig. 4.1b), as expected [71], it is always seen to approach unity, in the

same limit, in the direction of elongation of the droplets (z).

The range of values of σ within which the system displays supersolid behavior

depends on the density of the system, as shown in Fig. 4.1a. In particular, at high

density the supersolid occurs for lower values of σ, as quantum-mechanical exchanges

are favored by a lower inter-particle distance. The width in σ of the supersolid region,

however, appears to be roughly independent of ρ.

As mentioned above, the occurrence of an ordered arrangement can be established

through the calculation of the static structure factor, which develops (Bragg) peaks in

correspondence of relevant wave vectors (e.g., the inverse distance between droplets).

Additional information comes from the direct visual inspection of the patterns that

form in the course of the simulation, which are quantum-mechanical in nature and

can be markedly different, depending on both the density and the value of σ.

Fig. 4.2b shows the same type of density map as in Fig. 4.2a, but for a supersolid

system. As one can see, the filaments are in this case replaced by larger droplets,

which include considerably more particles than the classical filaments.2 Quantum-

mechanical exchanges among adjacent droplets are frequent at low temperature (i.e.,

T ∼ 1 for this particular choice of ρ, σ); consequently, macroscopic exchange cy-

cles (i.e., comprising nearly all the particles in the system) take place. Clearly, the

density map shown in Fig. 4.2b is very reminiscent of those that appear in a purely

two-dimensional (2D) system of soft-core bosons [46, 116], namely the simplest super-

solid. Indeed, the physics of the system under study here, projected onto the plane

perpendicular to the filaments, could be regarded as equivalent to that of a 2D soft

core system, the third dimension serving the purpose of “piling up” particles, thus

2It is important to note that these objects appear spontaneously, i.e., they are not the result of
a particular choice of starting configuration of the simulation; indeed, they form regardless of what
such a starting point is.
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allowing for the formation of “cluster” unit cells.

It is quite interesting to note that the supersolid phase does not always display

the structure shown in Fig. 4.2b. Rather, at high particle density patterns begin to

emerge, such as the inverted droplet structure shown in Fig. 4.3a, and the striped

one3 of Fig. 4.3b, or others that are evocative of those predicted for 2D dipolar

systems, in the context of “microemulsions” [113, 114]

Figure 4.3: Density maps of the system at density ρ = 100, for σ = 0.18 (a), and ρ =
19, for σ = 0.22 (b), integrated along the z-direction. Brighter areas indicate higher
density. These maps are obtained from particle world lines of a single configuration.

4.4.3 Superfluid

The superfluid phase arises as the range of the repulsive interaction Usr (eq. 4.3)

is progressively increased, at fixed density, as shown in Fig. 4.1a. As the droplets

expand, due to the hardcore repulsion, they eventually merge, giving rise to a uniform

superfluid phase. It is interesting to study the elementary excitation spectrum of the

superfluid phase, especially as crystallization is approached.

Although it is possible to infer the excitation spectrum from the full imaginary time

dynamics, computed by QMC, using an inversion method (e.g., MaxEnt as described

3It is interesting to note that in the strictly two-dimensional limit no striped supersolid phase
exists in this system. See F. Cinti and M. Boninsegni, J. Low Temp. Phys., vol. 196, p. 413, 2019
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in Sec. 2.5), because we are only interested here in gaining qualitative understanding

we make use of a simpler approach, based on the Bijl-Feynman approximation [86].

Specifically, we assume that the dynamic structure factor S(q, ω) is dominated by a

single peak, which allows one to obtain the elementary excitation spectrum as

e(q) =
q2

2S(q)
(4.6)

eq. 4.6, known as Bijl-Feynman formula, provides a reasonable qualitative and semi-

quantitative account of the elementary excitation spectrum in superfluid 4He, in par-

ticular of the presence and position of the roton minimum [70].

The behavior of the excitation spectrum as a function of σ is the same across all

values of density investigated in our simulations. Fig 4.4 shows two examples, for

ρ = 1.0 and ρ = 100. The phonon-like dispersion, that is characteristic of the super-

fluid phase at low q, starts acquiring a negative curvature as the superfluid-supersolid

transition is approached from above (with reference to the phase diagram shown in

Fig. 4.1a). At values of σ sufficiently close to the critical value, the system experi-

ences stronger density fluctuations at that value of the momentum, giving rise to a

roton minimum and signaling incipient crystallization.

These results are at least in qualitative agreement with the experimental data in

Ref. [117]. As the value of σ is lowered, the roton minimum becomes progressively

lower, eventually hitting the horizontal axis; that is consistent with the divergence of

S(q) at the roton wave vector, i.e., the formation of a dipolar crystal. We come back

to a more extensive comparison of our results with experiment in the next section.

It is important to note that the presence of a roton minimum in the elementary

excitation spectrum merely signals the proximity of the system to crystallization. As

such, it is not a special feature of this particular system, or of the character of the

interaction (dipolar). Indeed, a roton minimum can be observed in the large σ limit,

in which the system is essentially a gas of hard spheres, as the crystal (in this case

a conventional one, i.e., with few particles per unit cell) is approached from below.
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(a)                                                             (b)

Figure 4.4: Elementary excitation spectra of a system of dipolar bosons for different
values of the repulsive radius σ near the superfluid-supersolid transition, computed
using eq. 4.6. Results shown here are for ρ = 1 (a) and ρ = 100 (b), in the low
temperature limit. Statistical errors are smaller than the size of the symbols. Solid
lines are fits to the data using Padé approximants, and are only meant as a guide to
the eye. Insets show the corresponding in-plane static structure factor S(q), averaged
over all directions. In (a), yellow circles refer to σ = 0.33, for which crystal order
appears, i.e., the system is in the supersolid phase. In (b), this happens at σ = 0.18

In the latter case, the roton minimum forms at a different, higher value of the wave

vector, which reflects the fact that the ensuing crystal structure in this case has a

smaller lattice constant.

4.5 Conclusions

We carried out extensive QMC simulations of a system of dipolar Bose particles of

spin zero, in three dimensions, in order to gain insight into the phase diagram of this

system. The anisotropic character of the interaction gives rise to novel phases, chiefly

a supersolid characterized by various, intriguing density patterns.

The supersolid phase appears to be observable in a relatively broad range of pa-

rameter space, obviously making allowance for the difficulty of exploring the high

density phase, as three-body recombination must be overcome.

The results presented here are consistent with recent experimental data [117–120].

In order to assess whether the density range explored here is comparable to that of

recent experiments, we consider Ref. [120], reporting measurements carried out on an
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assembly of 164Dy atoms. Using their numbers, namely N = 3.5×104 atoms confined

in an anisotropic harmonic potential of characteristic frequencies equal to 300, 16 and

22 Hz, we estimate the density at the center of the trap ∼ 1.3× 10−8 Å−3. Expressed

in units of the dipolar length a, which in this case is worth 208 Å, this is equal to

0.117, i.e., very close to the lowest density considered in this work.4 Indeed, the

results shown in Fig. 1g of ref. [120] indicate that the transition between a uniform

BEC and a supersolid occurs in correspondence of a scattering length as ∼ 0.24 a,

which is in remarkable quantitative agreement with our prediction of σ ∼ 0.4 a for

ρ = 0.125 (eq. 4.4 yields σ = 0.38 if as = 0.24).

This result provides strong quantitative support for the microscopic model utilized

here, as well as for the results of our calculation. It also suggests that the experimen-

tal findings of Ref. [120] reflect the physics of the bulk, to an appreciable extent, i.e.,

they are not overly affected by confinement, nor by the relatively small size of the

system. This observation is consistent with the conclusions of a theoretical (mean-

field) study of the system confined in an elongated trap [121], whose results are in

qualitative agreement with ours.

4It need be noted that the dipolar length defined in Ref. [117] is equivalent to 1/3 of that defined
here.
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Chapter 5

Dipolar Bosons in One Dimension:
The Case of Longitudinal Dipole
Alignment

5.1 Introduction

We now consider dipolar bosons in 1D, where quantum effects are enhanced with

respect to the 3D case studied in Ch. 4. One-dimensional systems of dipoles are of

interest because the interaction, while not strictly long-ranged as in three dimensions,

has a much greater spatial extent than most conventional (i.e., atomic or molecular)

interactions, and/or interactions for which analytical results are known. Moreover, it

is anisotropic, which in principle can lead to different physical behavior on aligning

dipole moments in different directions.

Dipolar bosons in 1D have been studied in previous works [122–126], typically

in the case of dipole moments aligned perpendicularly to the direction of particle

motion, rendering the dipolar interaction purely repulsive, i.e., with no many-body

bound state. In this chapter, instead, we align the dipole moments along the direction

of motion, which makes the dipolar interaction purely attractive. In order to prevent

the system from collapsing, we add a hard-sphere-like repulsion of variable range σ,

as we did in Ch. 4. The presence of attractive interactions qualitatively alters the

physical behavior of the system, with respect to the case studied so far. By tuning
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the range of the repulsive interaction, we are able to explore the different physical

regimes and phases accessible to the system.

We carried out a systematic investigation of the ground state phase diagram of

the system as a function of particle density and σ, by means of computer simula-

tions. The main results of our study are the following: a) the system is self-bound

in the σ → 0 limit, in which the two-body interaction features a deep attractive

well; the character of the many-body ground state evolves from quasi-crystalline to

a non-superfluid liquid as σ is increased, and for σ > σc, a gas-liquid quantum phase

transition occurs, as the system becomes unbound b) in the gas phase, near the crit-

ical value σc, attractive interactions bring the system at low density into the regime

known as “weak superfluid”, i.e., unstable against infinitesimal perturbations (e.g.,

disorder or commensurate potentials). Interestingly, the topologically protected su-

perfluid regime cannot be approached, as the system breaks down into coexisting

gas and liquid phases in the dilute limit, despite being unbound. This behavior is

reminiscent of that predicted for quasi-2D 3He films adsorbed on weakly attractive

substrates.

The remainder of this chapter is organized as follows: in section 5.2 we describe

the model of the system, and briefly summarize the universal theoretical framework

that describes systems in 1D; in Sec. 5.3 we describe our methodology; we present

and discuss our results in Sec. 5.4 and finally outline our conclusions in Sec. 5.5.

5.2 Model

We model the system as an ensemble of N identical particles of mass m confined to

the x-axis. The particles have spin zero, i.e., they obey Bose statistics, and a magnetic

moment d pointing in the positive x-direction. The system is enclosed in a box of

length L with periodic boundary conditions. The density of the system is ρ = N/L.

We take the characteristic length of the dipolar interaction, a ≡ md2/ℏ2 as our unit
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of length, and ϵ ≡ ℏ2/(ma2), as that of energy. In these units, the dimensionless

quantum-mechanical many-body Hamiltonian reads as follows:

Ĥ = −1

2

∑︂
i

∂2

∂x2i
+
∑︂
i<j

U(xi, xj) (5.1)

where the first (second) sum runs over all particles (pairs of particles). The pair

potential comprises two parts,

U(x, x′) = Ud(x, x
′) + Usr(x, x

′). (5.2)

Ud is the classical dipolar interaction, which, for particles confined to the x-axis with

their dipole moments pointing along the same axis, reads

Ud(x) = − 2

|x|3
, (5.3)

i.e., unlike the case in which dipoles are aligned in the direction perpendicular to the

line of particle motion, it is purely attractive and would lead to the collapse of the

system, if a short-range, repulsive part were not included in the interaction. The

physical origin of such a repulsive term can be different, depending on the physical

system. As mentioned previously, any atomic or molecular interaction must feature

a hardcore repulsion at short distance arising from Pauli exclusion principle, which

prevents electronic clouds of different atoms from overlapping spatially. In that case,

the effective hardcore diameter is ∼ 1 Å, i.e., much smaller than the typical value

of the characteristic dipolar length in the majority of current experiments (see, for

instance, Ref. [127]) with cold dipolar atoms or molecules. Significantly greater

ranges could be achieved, e.g., by means of the Feshbach resonance [25].

Here we also model Usr through the repulsive part of the standard Lennard-Jones

potential, i.e.,

Usr(x) = (σ/x)12 (5.4)

For positive scattering lengths, which is always the case for the interaction in 5.4,

the effective diameter σ can be directly related to the scattering length as (see, for
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instance, Ref. [115]). It is worth clarifying that the actual form of Usr is not expected

to be important; it can be regarded as a hard wall, its role being exclusively that of

preventing system collapse. The physics of interest here takes place at average inter-

particle separations that are significantly greater than σ, rendering the contribution

of Usr usually relatively small at the densities of interest. For alternative ways to

treat the short-range interaction, see, for instance, Ref. [122, 124, 128].

The presence of both a repulsive and an attractive term, with very different depen-

dencies on the inter-particle distance, make it possible for the system to be self-bound.

In the σ → 0 limit, U features a deep attractive well, ∼ −2/σ3, as a result of which

the ground state of the system is a nearly classical crystal. On the other hand, as

σ grows the attraction is progressively weakened; one expects the ground state of

the self-bound system to become liquid-like, and that a liquid-gas quantum phase

transition should occur for σ > σc, σc being the upper limit for the existence of a

self-bound state.

We study the ground phase diagram of (5.1) by means of computer simulations,

and interpret our results in terms of the LLT, i.e., the comprehensive theoretical ap-

paratus that describes the physics of quantum many-body systems in one dimension

[129]. The essence of the LLT is embodied in an effective quadratic Hamiltonian,

expressed in terms of two bosonic fields θ(x) and ϕ(x), related to density and phase

oscillations respectively (see, for instance, Ref. [130]). In terms of these fields, to

leading order, the Hamiltonian reads

H =
c

2π

∫︂ L

0

dx

[︃
1

K
(∂xϕ)

2 +K(∂xθ)
2

]︃
(5.5)

where c is the speed of sound of the linearly dispersed low energy excitations, and

K is the universal Tomonaga-Luttinger parameter which characterizes the relative

strength of density and phase oscillations.

In one dimension, quantum fluctuations are strong enough to destroy long-range

order. However, correlation functions decay algebraically, allowing for the possibility
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of quasi-long-range order, depending on the value of the decay exponent, which is K

(1/K) in the case of phase (density) correlations; broadly speaking, in the K → 0

(K → ∞) limit the system possesses quasi-superfluid (quasi-crystalline) order.1 We

come back to this point below, with a more precise classification.

5.3 Calculation

As mentioned above, we carry out computer simulations of the system described in

section 5.2 using the continuous-space worm algorithm described in Ch. 2. Although

this is a finite temperature (T ) technique, we perform simulations at sufficiently low

T so that the results can be regarded as essentially ground state (we come back to this

below). Experience accumulated over the past two decades shows that finite temper-

ature techniques are a reliable option to study the ground state of Bose systems, as

they are unaffected by serious limitations plaguing ground state methods [131–133].

Although the computational methodology adopted here allows for the calculation

of off-diagonal correlations, the results shown in Sec. 5.4 all pertain to diagonal corre-

lations; therefore, since exchanges of indistinguishable particles are strictly forbidden

in 1D by the hardcore of the interaction, they can be obtained by means of conven-

tional path integral Monte Carlo as well (see, for instance, Ref. [77]).

In the ground state, the physics of the system depends exclusively on the value of

σ and on the density ρ, or, equivalently, the average inter-particle separation λ ≡ ρ−1.

We investigate the ground state of the system as a function of σ; that is, for a given

value of σ, we compute the equation of state, determining the equilibrium density of

the system, and at that density compute relevant correlation functions in real and

momentum space. We performed simulations for values of σ in the [0.10,2] range; our

typical system sizes range from N = 25 to N = 400. Details of the simulation are

standard; we made use of the fourth-order approximation for the high-temperature

1It should be mentioned that, while the convention adopted here is the same as in many other
works, elsewhere in the literature K is defined as the reciprocal of the parameter defined in this
work.
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density matrix (see Ch. 2), all of the results quoted here are extrapolated to the limit

of time step δτ → 0.

As mentioned above, while true long-range order cannot exist in 1D, quasi-order

can manifest itself in the form of an algebraic decay of the correlation functions, gov-

erned by the exponentK. By studying the evolution of its value as a function of σ (i.e.,

of the equilibrium density) we characterize the kind of (quasi) order that the system

displays. Two methods were primarily utilized to extract the Tomonaga-Luttinger

parameter K at the various physical conditions. The first is through the static struc-

ture factor S(q), which quantifies the strength of density fluctuations with momentum

q. In the units adopted here, the Tomonaga-Luttinger parameter K = cλ/π, where

λ = 1/ρ is the inter-particle distance and c is the speed of sound, accessible from the

long-wave behavior of the static structure factor through relation

1

2c
= lim

q→0

S(q)

q
(5.6)

The second method to calculate K is through the equation of state e(ρ), i.e., the

energy per particle as a function of the density at T = 0, from which one can obtain

the compressibility κ = ρ−1 ∂ρ/∂P , where P is the pressure. κ is related to K

through the relation K = (π2 λ3◦ κ)
−1/2, where λ◦ is the inter-particle distance at the

equilibrium density [130]. The agreement of the values of K computed through the

two methods serves as a self-consistency check.

5.4 Results

We compute the equation of state e(ρ), where e is the energy per particle, in the

T = 0 limit, as a function of σ. As ours is a finite temperature method, extrapolation

of the results obtained at low T is required; in practice, the shape of the curve e(ρ)

is found not to change significantly once the temperature is of order ∼ 0.1 of the

average kinetic energy per particle.
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Figure 5.1: (a) Energy per particle e(ρ) at σ = 0.10 as a function of density in the
T → 0 limit. Statistical errors are smaller than the size of the symbols. Solid line
is a quartic fit to the data. (b) Logarithm of the negative energy per particle in the
T → 0 limit, as a function of σ. Circles are the results of the simulations, solid line
is a fit based on eq. 5.7 (see text).

An example is shown in Fig. 5.1a for σ = 0.10. For this value of σ, the interaction

potential possesses a deep attractive well, and as a result e(ρ) displays a clear mini-

mum at ρ = 17, which corresponds to the equilibrium density. Simulations at density

lower than the equilibrium one can be carried out down to the spinodal density, i.e.,

that at which the speed of sound vanishes and below which the uniform system be-

comes unstable against the formation of “puddles” of fluid. The curvature of e(ρ) also

provides a method of computing the value of the Tomonaga-Luttinger parameter, as

explained in Sec. 5.3.

As the value of σ is increased, the magnitude of the binding energy decreases, until
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it hits zero at σ = σc, whereupon the system becomes unbound. In order to obtain

a quantitative estimate for σc, we fit our computed e(ρ) for the different values of σ,

with the following simple expression, based on the crude approximation for the pair

correlation function g(x) = Θ(x− λ/2) (Θ being the Heaviside’s function):

e(λ) =
C1

λ2
− C2

λ3
+ 0.045

(︃
2σ

λ

)︃12

, (5.7)

where C1 and C2 are fitting parameters. The results are shown in Fig. 5.1b. Beyond

σ = σc, the first (kinetic energy) term in eq. 5.7 overtakes the second (attractive

part of the potential energy) in magnitude, the system is no longer self-bound and a

liquid-gas quantum phase transition occurs. We estimate σc = 0.65± 0.02, based on

the values of the fitting parameters C1 ≈ 1.25 and C2 ≈ 0.76.

The evolution of the structure of the ground state as the hardcore diameter σ is

varied can be illustrated by means of the pair correlation function g(x). At low σ, the

depth of the attractive well favors a quasi-crystalline orderly arrangement of particles,

consistent with a value of the Tomonaga-Luttinger parameter K > 2. Fig. 5.2a shows

the result for g(x) at σ = 0.10, at the equilibrium density ρ = 0.17. On the other

hand, as σ grows and the binding energy tends to zero, the system acquires a more

liquid-like character, behaving essentially like a hard-sphere fluid. This is clear in

Fig. 5.2b, where g(x) is displayed for σ = 0.60, at the equilibrium density ρ = 0.6. In

both cases, the computed g(x) features the expected scaling, i.e., results at a given

density only depend on the product NT , in the low-T limit.

A more quantitative characterization of the physics of the ground state of the

system is achieved through the determination of the Tomonaga-Luttinger parameter

K. We discuss our results for the Tomonaga-Luttinger parameter for the two cases

σ < σc (i.e., where the system is self-bound) and σ > σc. As explained above, the

most direct way of obtaining K from the simulation data makes use of the computed

static structure factor S(q), through eq. 5.6. Results for the static structure factor at

the equilibrium density for different values of σ < σc, are shown in Fig. 5.3. S(q) is
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Figure 5.2: Ground state pair correlation functions g(x) for the system at σ = 0.10
(a) and σ = 0.60 (b), each at two different system sizes N and temperatures T , at the
computed equilibrium densities, namely ρ = 17 (0.6) for σ = 0.10 (0.60) Statistical
errors are smaller than the size of the symbols.

computed directly and/or through the Fourier transform of g(x). Fig. 5.3b illustrates

an example of the calculation of K through S(q), in this case at σ = 0.26.

A strongly oscillatory behaviour of the g(x), e.g., as shown in Fig. 5.2a, is reflected

by the appearance of divergent peaks in S(q). Correspondingly, the value of K is

above 2, consistently with the presence of quasi-crystalline order. As σ grows, K

decreases, and becomes less than 2 at σ ≳ 0.35.

Our results for the Tomonaga-Luttinger parameter below σc are shown in Fig. 5.4.

As expected, K at the equilibrium density is a monotonically decreasing function of

σ, but was always observed to remain above 1 in the range of σ within which the

system is self-bound. It approaches unity from above as σ → σc, above which the
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Figure 5.3: (a) The static structure factor at the equilibrium density for various values
of σ, in the low temperature limit. Statistical errors are smaller than the size of the
symbols. (b) Example of extraction of the Luttinger parameter K based on eq. 5.6,
for σ = 0.26.

behavior of the system is dominated by repulsive interactions (the Tonks-Girardeau

regime [130]). For 0.35 ≲ σ ≲ σc, it is 2 > K > 1, i.e., no evidence was found of

topologically protected superfluid phases in the range in which the system exists as a

self-bound liquid. This overall physical behavior is qualitatively distinct from that of

both 1D 4He, which is a quasi-superfluid at equilibrium [134], as well as parahydrogen,

which is quasi-crystalline [8].

Our results for the Tomonaga-Luttinger parameter for σ ≳ σc are shown in Fig.

5.5 for two values of σ, namely 0.7 and 1. The first value of σ is in the immediate

vicinity of σc. While the system is no longer self-bound, the attractive part of the

interaction drives K below 1, as in the case of 1D 3He [135]. The lowest computed
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Figure 5.4: The Tomonaga-Luttinger parameter of the system as a function of σ (a)
and the equilibrium density ρ (b). The red dashed line is K = 1, the Tonks-Girardeau
limit. Statistical errors are smaller than size of the symbols. Solid lines are guides to
the eyes.

value of K is ≈ 0.8 for ρ = 0.4; at lower density, the system is observed to break

down into two coexisting phases, a low-density gas and a liquid of density ρ = 0.4.

The same behavior is observed for σ = 1, for which K reaches a minimum value of

∼ 0.9 for ρ ≈ 0.15.

The coexistence of a low-density gas and a liquid phase in a system that is not

self-bound was already reported in quasi-2D 3He films on weakly attractive substrates

[136]; it is reflected in the equation of state, as shown in Fig. 5.5b for σ = 1. The

energy per particle is a nearly “flat” function of the density2 in the range 0.025 < ρ <

0.15. The width of this region of phase coexistence is found to diminish as the value

of σ is increased, and for σ as high as 1.5 no coexistence is observed, but K remains

2Although this curve is computed in this work at finite temperature, it retains its shape in the
low temperature limit.
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Figure 5.5: (a) The Tomonaga-Luttinger parameter of the system as a function of ρ
for two values of σ > σc. The shaded area corresponds to the region of the phase
diagram where phase coexistence occurs. The color gradient reflects the fact that
the exact boundary of the green region was not precisely calculated. (b) Energy per
particle e(ρ) at σ = 1 as a function of the density. The shaded area corresponds to the
range of densities where the system is found to feature phase coexistence. Statistical
errors are smaller than size of the symbols.

above 1. This is illustrated in Fig. 5.5a, which features a roughly sketched shaded area

corresponding to the speculated shape of the region of phase coexistence. It should be

emphasized that we did not carry out a quantitative investigation of the boundaries

of the region of phase coexistence, i.e., we are unable to say at what low density the

system returns to a homogeneous, low-density gas phase, for a given value of σ. As

a result, we have blurred out the boundary of the region of phase coexistence in Fig.

5.5a. The physics of such a dilute phase is expected to be amenable to a description

in terms of a Tonks-Girardeau gas.
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5.5 Conclusions

We carried out quantum Monte Carlo simulations of a system of spin zero dipolar

particles in one dimension, with their dipole moments aligned along the direction of

motion. The interaction also includes a hardcore, repulsive term (with a variable

range σ), in order to ensure thermodynamic stability of the system against collapse.

The phase diagram of the system is found to display considerably more richness

with respect to the case previously investigated in previous works, with the dipoles

aligned perpendicular to the direction of particle motion. In the latter case, the

interaction is purely repulsive and the system has no self-bound regime, excluding

the possibility of a quantum phase transition. Moreover, as reported in Ref. 37,

the system with perpendicularly aligned dipoles has a value of K always above 1.

Our system, on the other hand, features quasi-crystalline order at very low values

of σ, and evolves into a non-superfluid liquid as σ grows. Beyond a critical value

σc, inter-particle attraction is no longer sufficient to keep the system self-bound.

Slightly above σc and on lowering the density, superfluidity may be achieved, albeit

topologically unprotected and unstable against disorder. Further lowering the density

results in gas-liquid phase coexistence. It is worth emphasizing that the investigation

carried out here is not merely of academic interest, as the value of σ is experimentally

tunable, and so our predictions are in principle testable in the laboratory. Obviously,

important issues have to be taken into account as the 1D limit is approached. e.g.,

the importance of transverse modes.
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Chapter 6

Dynamic structure factor of
superfluid 4He from quantum
Monte Carlo: Maximum Entropy
revisited

6.1 Introduction

We now shift our focus towards analytic continuation using the tools described in

Sec. 2.5, and the inference of dynamical properties, specifically the dynamic struc-

ture factor. In recent years, the problem of extraction of the dynamic structure factor

of superfluid 4He from imaginary-time correlations computed by QMC has been in-

dependently revisited by two groups [137, 138], who proposed regularization schemes

(RS) not making use of MaxEnt’s entropic prior. In both cases, their procedure es-

sentially amounts to χ2-fitting1, supplemented by averaging over a set of comparable

images, in order to suppress some of the spurious structure that inevitably arises on

carrying out χ2 minimization in the presence of an ill-posed problem. Both works

make the claim that their proposed approaches are superior to MaxEnt, in that the

resulting images are sharper and in better agreement with experimental data.

In this chapter, we revisit the use of MaxEnt for the same problem, in order to as-

sess quantitatively the claims made in Refs. [137, 138]. Specifically, we estimate the

1The main difference between the approaches proposed in Ref. [137] and Ref. [138] is the
numerical methodology adopted to identify the optimal image, i.e., to minimize the value of χ2.
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dynamic structure factor S(q, ω) for superfluid 4He, by computing imaginary-time

density correlations by QMC, and by using MaxEnt to carry out the inversion. The

methodology we used is similar to that of Ref. [54], i.e., it consists of a Metropolis

random walk in the space of spectral images, sampled from a probability density pro-

portional to the standard maximum likelihood estimator, multiplied by the entropic

prior (see Sec. 2.5). This procedure allows us to assign an uncertainty in the value of

S(q, ω), as the standard deviation of the values recorded for the different frequencies

in the course of the random walk.

Compared to Ref. [54], the study presented here benefits from two decades of ad-

vances, both in computing hardware as well as in the QMC methodology utilized to

generate the imaginary-time data. As a result, our statistical uncertainties are much

smaller than those of the 1996 work, comparable to those of the data used in Refs.

[137, 138], which is a necessary condition in order to carry out a meaningful and fair

comparison. Based on the results presented here, we contend that MaxEnt does not

prevent sharp features from appearing in the reconstructed spectral functions, as long

as the accuracy of the QMC data justifies their inclusion. Indeed, the spectral images

shown here are of comparable (or better) quality than those offered in Refs. [137,

138]. Ultimately, the sharpness of the spectral image almost exclusively hinges on

the accuracy of the QMC data; by promoting smoothness, the entropic prior serves

in our view a useful, noise-reducing purpose.

It is worth noting that a general scheme capable of tackling this kind of problem

can be applied in other, rather different contexts, e.g., the determination of ground

state expectation values in QMC transient estimate calculations [139]. These are

typically carried out for Fermi systems, which are affected by the infamous “sign”

problem, resulting in an exponential increase with imaginary time of the statistical

error (see, for instance, Ref. [140]).

The remainder of this chapter is organized as follows: in section 6.2 we describe the

model of the system and the QMC calculations carried out in this work, we present
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and discuss our results in Sec. 6.3, and finally outline our conclusions in Sec. 6.4.

For a detailed description of our inversion method, see 2.5.

6.2 Model and QMC Calculation

In this section we describe the QMC calculation of the imaginary-time correlation

function which is then inverted to obtain the dynamic structure factor. The system

is described as an ensemble of N point-like, identical particles with mass m equal to

that of a He atom and with spin S = 0, thus obeying Bose statistics. It is enclosed in

a cubic cell, with periodic boundary conditions in the three directions. The quantum-

mechanical many-body Hamiltonian reads as follows:

Ĥ = −λ
∑︂
i

∇2
i +

∑︂
i<j

v(rij) (6.1)

where the first (second) sum runs over all particles (pairs of particles), λ ≡ ℏ2/2m =

6.0596415 KÅ2, rij ≡ |ri − rj| and v(r) is a pair potential which describes the in-

teraction between two atoms. We make use in this study of the accepted Aziz pair

potential [141], which has been utilized in most simulation studies of superfluid he-

lium. A more accurate model would also include interactions among triplets of atoms;

however, published numerical work has given strong indications that three-body cor-

rections have a relatively small effect on the structure and dynamics of the system,

of interest here [104].

We carried out QMC simulations of the system described by eq. (6.1) at temper-

ature T = 1 K, using the continuous-space worm algorithm described in Ch. 2. The

details of the simulation are standard; we adopted the usual the short-time approxi-

mation to the imaginary-time propagator accurate to fourth order in the time step δτ

(see Ch. 2). All of the results presented here are extrapolated to the δτ → 0 limit; just

like for other observables, the numerical estimates of the quantities of interest here,

namely the imaginary-time correlation functions described below, computed with a

value of the time step δτ = (1/640) K−1 are indistinguishable from the extrapolated
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ones, within the statistical uncertainties of the calculation.

Calculations were carried out at two different densities, namely 0.021834 Å−3,

which is that at saturated vapor pressure (SVP) [6], and 0.0260 Å−3, which is very

close to the freezing density (at a pressure of approximately 25 bars). All calculations

were carried out at T = 1 K. The experimental and theoretical data we compare

our results against are at temperatures that range from 0 K to 1.3 K. All such tem-

peratures are well below the lambda transition, and at that level the excitations are

essentially independent of temperature (see, for instance, Refs. [67, 142]). We took

advantage of space and time symmetry to improve statistics; a rough estimate of the

statistical error on the generic value of F (q, τ) is given by 5× 10−4 F (q, 0).

The bulk of the results shown here was obtained on a system comprising N = 64

particles, a number which is not particularly large but that allows us to collect good

statistics in a given simulation time; experience with previous work [54] suggests that

this system size is sufficient to extract information at the wave vectors of interest here

(see below). However, we have also repeated the simulation with N = 256 particles,

and found no statistically significant difference in the values of F (q, τ), within the

statistical errors of our calculation.

F (q, 0) ≡ Sq is known as the static structure factor, which is experimentally ac-

cessible and it is related via a Fourier transformation to the atomic pair correlation

function. The values of Sq obtained here are in quantitative agreement with previous

calculations, i.e., in excellent agreement with experiment (see Ref. [7]).

Typical results for F (q, τ) are shown in Fig. 6.1; because F (q, τ) = F (q, β − τ)

(see, for instance, Ref. [88]), one need only compute this quantity in the 0 ≤ τ ≤ β/2

interval.

6.3 Results

Fig. 6.2 shows results for S(q, ω) for the roton wave vector (q = 1.963 Å−1) at T = 1

K and at saturated vapor pressure (SVP). Squares represent the values of S◦ defined
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Figure 6.1: Typical F (q, τ) results computed in a simulation of superfluid 4He at
T = 1 K at density 0.021834 Å−3. Results shown here are for the wave vectors
q = 1.075 Å−1 (bottom curve), q = 1.756 Å−1 (middle curve) and q = 1.964 Å−1 (top
curve). When not shown, statistical errors are smaller than the size of the symbols.

through eq. 2.27, computed by means of the Monte Carlo Metropolis procedure de-

scribed in Sec. 2.5. The statistical errors on the values of S◦ are smaller than the

sizes of the symbols. Also shown in the figure are experimental data2 from Ref. [66]

at T = 1.3 K and for the wave vector q = 1.90 Å−1. Agreement between theory and

experiment seems fairly good; not only the position, but also the width of the peak

is rather well reproduced, unlike in previous applications of MaxEnt [54]. This result

shows that MaxEnt does not prevent the reconstructed spectral image from develop-

ing sharp features, if the quality of the underlying QMC data justifies their inclusion.

2We focus our presentation on the coherent part of the dynamic structure factor, because it is
that which is physically more interesting, and also more challenging to recover. In general, the
incoherent part of the spectrum yielded by our approach is in broad quantitative agreement with
experiment.
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Figure 6.2: S(q, ω) in superfluid 4He at T = 1 K (at SVP) for the roton wave vector
(q = 1.963 Å−1), computed by inversion of QMC data based on MaxEnt (eq. 2.27,
squares). Statistical errors on S(q, ω) are smaller than the sizes of the symbols; the
error bar on the square represents the standard deviation (see text), which has similar
values for the two data points adjacent to the peak, and is comparable to, or smaller
than, symbol sizes for all other data points. Circles show experimental data from Ref.
[66] (only the coherent part is shown) at T = 1.3 K for the wave vector q = 1.90 Å−1.

In the presence of greater statistical uncertainties, on the other hand, MaxEnt implies

a more conservative choice, namely one in which smoother images are privileged.

As mentioned above, the statistical errors on S◦ are comparable to, or smaller than

the sizes of the symbols, and can always be rendered negligible with modest comput-

ing resources. Obviously, however, the issue arises of assessing systematic errors,

which are inherent to this image reconstruction problem. In other words, how far off

can the optimal image S◦ be expected to be from the actual spectral function? The

Metropolis procedure adopted here allows us to offer an estimate of that through the

standard deviation of the values of S◦ for each and every value of the energy. In Fig.

6.2 we show one such standard deviation, corresponding to the energy interval ωm

in which S◦ takes on its highest value. Although not shown in the figure for clarity,
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Figure 6.3: S(q, ω), defined as S◦ (eq. 2.27) and computed as illustrated in the
text, for superfluid 4He at T = 1 K for the roton wave vector at SVP (diamonds,
q = 1.963 Å−1) and at 25 bars (circles, q = 2.081 Å−1). Statistical errors on S(q, ω)
are comparable to the sizes of the symbols for both curves.

S◦ for the two energy intervals adjacent to ωm have comparable standard deviations,

whereas the standard deviation for all other values is much smaller (of the order of

symbol sizes in Fig. 6.2). This is generally found to be the case, i.e., the (typically

relatively few) values of S◦ for which it is most important, are affected by the largest

uncertainty. Thus, at least for the roton wave vector MaxEnt yields a reasonably

accurate estimate of the position and the width of the peak, with some remaining

uncertainty regarding its height.

It is interesting to note that, despite the uncertainty, nevertheless relative compar-

isons of data obtained with the procedure illustrated here are still meaningful. For

example, Fig. 6.3 shows S(q, ω) for the roton wave vector at two different pressures,

namely SVP and 25 bars. The roton minimum shifts from ∼ 1.9 Å−1 at SVP to ∼ 2.1

Å−1 at 25 bars [143]. Our results show that the position of the peak moves to lower

energy and the peak itself gains strength, in remarkable quantitative agreement with
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Figure 6.4: S(q, ω) in superfluid 4He for the roton wave vector (q = 1.963 Å−1) calcu-
lated through the inversion of QMC data based on four different methods. Hexagons
show the result of the inversion using MaxEnt (eq. 2.27), whereas squares show that
with α = 0 (which amounts to standard χ2 fitting). Stars show the result of the
inversion using GIFT [137] for the wave vector q = 1.977 Å−1 at T = 0 K. Dark
circles show the result of χ2-minimization using simulated annealing (SA) [138] for
the wave vector q = 1.91 Å−1 at T = 0.8 K.

experimental observation [67].

In Fig. 6.4, we compare our results with those of other authors who made use of

different approaches (not based on MaxEnt) to tackle the inversion of QMC data.3

The wave vectors are not identical but are reasonably close to the roton minimum in

all cases; all calculations are carried out in the low temperature limit (see caption of

Fig. 6.4 for details). There is nearly perfect agreement between our image and that

of Ref. [137], especially if the standard deviation of our result is taken into account.

On the other hand, the spectral image obtained in Ref. [138] is much broader, with

a significantly lower peak. It is interesting to compare these curves with that arising

from χ2-fitting carried out in the context of our procedure, namely by simply setting

3Data from Ref. [137] were supplied by D. E. Galli, private communication. Data from Ref. [138]
were read off Figs. 4 and 7 therein.
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α = 0. In this case, the average value of χ2 is ∼ 0.2 L, i.e., slightly lower than that

obtained with finite α. However, as can be seen in Fig. 6.4, the peak is significantly

higher (in fact its height exceeds that of the experimental result by almost a factor

two) and also narrower than what is observed experimentally. This is consistent with

the general notion that “brute force” χ2 minimization, while yielding sharp features,

is all too likely to result in unphysical behavior. The use of the entropic prior empha-

sizes the contribution from smoother images (still consistent with the QMC data),

which in this case results in better agreement with experiment.

Figure 6.5: S(q, ω) in superfluid 4He for the wave vector q = 1.756 Å−1 calculated
through the inversion of QMC data based on three different methods. Hexagons
show the result of the inversion using MaxEnt (eq. 2.27). Stars show the result of
the inversion using GIFT [137] for the wave vector q = 1.755 Å−1 at T = 0 K. Dark
circles show the result of χ2-minimization using simulated annealing (SA) [138] for
the wave vector q = 1.76 Å−1 at T = 1.2 K. Diamonds show experimental data from
Ref. [66] (only the coherent part is shown) at T = 1.3 K for the wave vector q = 1.70
Å−1.

Let us now consider a second wave vector, namely q = 1.756 Å−1. In Fig. 6.5,

we compare again the result of our MaxEnt inversion with those of Refs. [137, 138],

as well as experimental data from Ref. [66]. Our procedure yields a spectral image
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in much closer agreement with experiment than the other two. In particular, both

the shape of the curve and the location of the main peak are in excellent agreement

with experiment, taking into account the slight difference in wave vectors [144] and

the resolution of our spectral image. On the other hand, the spectral image reported

in Ref. [138] is once again much too broad compared to the experimentally observed

one, while that of Ref. [137] is considerably sharper.

Figure 6.6: S(q, ω) in superfluid 4He for the maxon wave vector (q = 1.075 Å−1).
Squares show the result calculated through the inversion of QMC data based on
MaxEnt (eq. 2.27). Stars show the result of the inversion using GIFT [137, 145],
calculated for the wave vector q = 1.107 Å−1 at T = 0 K. Circles show experimental
data from Ref. [66] (only the coherent part is shown) at T = 1.3 K for the wave vector
q = 1.10 Å−1. Statistical errors are of the order of the symbol sizes. The error bar
on the square data point close to the peak represents a typical standard deviation.

Finally, let us examine results at a third wave vector, namely q = 1.075 Å−1, which

corresponds to the maxon. In this case, our spectral image features a single peak,

which is however nowhere near as sharp as in the experimentally observed dynamic

structure factor [66], as shown in Fig. 6.6. The considerably greater difficulty in

extracting sharp features for this wave vector is a direct consequence of the behavior
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in imaginary time for F (q, τ) , namely the much faster decay in the maxon case (Fig.

6.1). Indeed, we find that the difficulty of reconstructing S(q, ω) from QMC data is

particularly severe for wave vectors near the maxon. For our procedure to recover

sharp features at this wave vector, it appears that the underlying QMC data should

possess errors that are significantly smaller than those which we could achieve within

this project. This illustrates the difficulty of an a priori, even semi-quantitative as-

sessment of the required precision of the QMC data.

Interestingly, the procedure illustrated in Ref. [137] does yield a sharp peak in

this case as well, of width comparable to that of the experimental image, and ∼ 30%

greater height (data from Ref. [138] for this wave vector were not available). How-

ever, the position of the peak itself is off, compared to experiment, by roughly as

much as that estimated by MaxEnt (in the case of GIFT the peak is detected at

higher energy). Thus, although the shape of the GIFT image is certainly closer to

the experimental result, in quantitative terms (e.g., position of the peak and area in

the experimentally observed peak region), a comparison between the two results may

not be so straightforward; in particular, one ought to think of situations in which this

procedure is to be used in a predictive way, i.e., no experimental data are available

for comparison.

Thus, we conclude that for this particular wave vector the precision required in the

QMC data, in order to achieve a spectral image reconstruction of quality comparable

to that of the other two wave vectors, is significantly greater than that afforded by the

computational resources available to this project. It is incorrect to attribute the lack

of sharpness of the reconstructed spectral image in this case to the inversion scheme

utilized, which proves equally or more effective than the alternatives at other wave

vectors.
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6.4 Conclusions

We have revisited the use of MaxEnt to extract the dynamic structure factor of

superfluid 4He from imaginary-time density correlation functions computed by QMC.

This method was first applied to this problem over two decades ago, yielding results

that were deemed “only qualitatively interesting”, as the sharper features of the

experimentally measured spectra were not fully recovered. In recent years, alternative

schemes [137, 138] have been proposed to tackle the same problem; although they are

based on different numerical optimization strategies, these schemes ultimately amount

to χ2-fitting.

We adopted in this work a procedure similar to that first proposed in Ref. [54],

i.e, we performed a random walk in the space of spectral images, using the entropic

prior in the context of “classic” MaxEnt. Our study benefits from the availability

of new QMC data obtained using state-of-the-art techniques and obviously far more

powerful computing resources than those available two decades ago. The accuracy of

our QMC data is, to the best of our determination, comparable to that of the data

used in Refs. [137, 138].

Our spectral images are of quality at least comparable (and often superior) to that

of those yielded by the methods proposed in Refs. [137, 138]. In particular, spectral

images provided in Ref. [138] are too broad, and compare poorly to experiment,

whereas those of Ref. [137] are at times much sharper than the experimental ones.

We showed that the use of the entropic prior does not cause the reconstructed

spectral images to be unphysically smooth and featureless. Rather, it is the precision

of the underlying QMC data that determines by itself whether the reconstructed

spectra should display sharp peaks or not. In general, the elimination of the entropy

from the inversion process indeed promotes sharper features, but we argue that that

often comes at the expense of accuracy, as such sharpness is ultimately not warranted

by the data. This means that some sharp features might appear at incorrect locations,
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or even be downright spurious. One is therefore left with no real justification to

choose a “sharper” over a more conservative, smoother image, if both are consistent

with the data (a posteriori validation based on agreement with available experiments

for one particular physical system being a dubious criterion to compare different

methodologies).
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Chapter 7

Roton Excitation in
Overpressurized Superfluid 4He

7.1 Introduction

In Ch. 6, we demonstrated the effectiveness of Maximum Entropy (MaxEnt) as a

technique for the inference of the dynamic structure factor from QMC data, at least

in the roton region of the excitation spectrum of superfluid 4He. Inspired by this

conclusion, we applied this technique to more extensively study the roton excitation

in superfluid 4He and its overpressurized metastable phases.

We report in this chapter the results of a theoretical investigation of overpres-

surized superfluid 4He, carried out by means of first principle QMC simulations at

temperature T = 1 K. The goal of this QMC study is to examine the structural and

superfluid properties of the metastable superfluid phase at very high pressures, as

well as to calculate the energy associated to the roton minimum of the elementary

excitation spectrum. We accomplish this by computing imaginary-time correlation

functions, and converting them to real-frequency spectral functions through an in-

verse Laplace transform, relying on MaxEnt as our regularization scheme of choice.

Our main result is that the energy of the roton excitation vanishes at a density

ρsp = 0.0320(2) Å−3. This is also the highest density for which the simulation of a

metastable, overpressurized superfluid phase of 4He is feasible, as spontaneous crys-

tallization rapidly occurs at higher density, not allowing us to collect meaningful
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statistics. We can therefore identify ρsp with the spinodal density, in agreement with

the hypothesis of Ref. [64]. The pressure corresponding to ρsp is equal to 104 bars,

to be compared to that (67 bars) of the equilibrium crystalline phase at the same

density.

We report estimates for the condensate fraction n0 as a function of the density,

and we find them to be in quantitative agreement with previous ground state studies,

up to a pressure of approximately 60 bars; significant deviations are observed from

the previously predicted exponential decay, at higher pressure, i.e., the condensate

fraction decays considerably more rapidly with density. Analogously, the computed

superfluid fraction ρS remains relatively close to 100% as the density is increased, but

falls off abruptly on approaching ρsp.

The remainder of this chapter is organized as follows: in section 7.2 we describe

the model of the system; in Sec. 7.3 we describe our QMC methodology; we present

and discuss our results in Sec. 7.4 and finally outline our conclusions in Sec. 7.5.

7.2 Model

We model the system as an ensemble of N point-like, identical particles with mass m

equal to that of a 4He atom and with spin S = 0, thus obeying Bose statistics. The

system is enclosed in a cubic cell of volume V with periodic boundary conditions in

the three directions. The density of the system is ρ = N/V . The quantum-mechanical

many-body Hamiltonian reads as follows:

Ĥ = −λ
∑︂
i

∇2
i +

∑︂
i<j

v(rij) (7.1)

where the first (second) sum runs over all particles (pairs of particles), λ ≡ ℏ2/2m =

6.06 KÅ2, rij ≡ |ri−rj| and v(r) denotes the pairwise interaction between the helium

atoms. In this investigation, we model this interaction using the well-established Aziz

pair potential [141], which is the canonical model utilized in most numerical studies
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of superfluid helium. This pair-wise potential affords an accurate reproduction of

the equation of state of condensed helium in the range of densities considered in this

work. To put it more quantitatively, three-body terms, which provide the leading

correction to the interaction, are estimated to contribute no more than 1-2% of the

pressure, at or below 100 bars. Their effect on structural and dynamical properties

is negligible [104, 146].

7.3 Calculation

As mentioned above, we carried out QMC simulations of the system described by

eq. (7.1), using the continuous-space worm algorithm described in Ch. 2. The details

of the QMC simulation are standard; we adopted the usual the short-time approxi-

mation for the imaginary-time propagator accurate to fourth order in the time step

δτ (see Ch. 2). All of the results presented here are extrapolated to the limit of

vanishing δτ . The numerical estimates of the quantities of interest computed with

δτ = 1.6 × 10−3 K−1 are indistinguishable from the extrapolated ones, within the

statistical uncertainties of the calculation. The results shown here were obtained for

systems comprising N = 256 particles. Experience with previous work [54] suggests

that this system size is sufficient to extract information at the roton wave vector, of

interest here.

All calculations were carried out at T = 1 K. For densities up to freezing, such

a value of the temperature is well below the superfluid transition temperature Tc,

and therefore our physical estimates may be expected to approach closely ground

state values. For example, the excitation spectrum of the system is experimentally

observed to be essentially independent of temperature, in this range of density (see,

for instance, Refs. [67, 142]). On the other hand, at higher density, in the overpres-

surized metastable regime, this is no longer guaranteed, as pressurization is expected

to suppress Tc (there are no experimental data nor theoretical estimates of which we

are aware).
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The properties of the system are studied as a function of the density; below the

freezing density ρf , equal to ∼ 0.0262 Å−3, simulations are straightforward, as one is

studying the thermodynamic equilibrium phase. On the other hand, above the freez-

ing and melting density (ρm ∼ 0.0286 Å−3), the system starts displaying a marked

tendency to crystallize, and an appropriate simulation protocol has to be adopted

in order to prevent that from happening too quickly, in order to accumulate enough

statistics for the metastable, homogeneous superfluid phase. We adopted the same

protocol as in Ref. [110], i.e., we increase the density of the system in steps, by

rescaling all particle coordinates (i.e., along imaginary-time world lines [82]) in a

many-particle configuration coming from a simulation at a slightly lower density (the

immediately previous step).

The advantage of this approach is that one is starting from configurations that are

already “entangled”, i.e., they feature permutations of large numbers of particles. In

order to reach the crystalline, equilibrium phase, the simulation algorithm must “dis-

entangle” all of these world lines, and although this will of course eventually happen,

the metastable phase may be sufficiently “long-lived” (in the computer) that one may

still arrive at physically meaningful expectation values. Of course, there will always

be a drift in the averages over the course of the simulation, as the true equilibrium

phase inevitably emerges, but in most cases it is small enough not to be a concern.

In order to study the elementary excitations of the system, one can estimate the

dynamic structure factor S(q, ω), by calculating by QMC the imaginary-time correla-

tion function F (q, τ) defined through eq. 2.23. As explained previously, the inversion

constitutes a mathematically ill-posed problem, and hence we rely again on MaxEnt

to obtain the position of the main peak of S(q, ω) (i.e., the energy of the excitation

dominating the spectrum) as a function of density.

In this work, we have not attempted the full reconstruction of the spectral image

S(q, ω) as a function of the wave vector q, in order to obtain the energy dispersion

curve ω(q), thereby identifying the position of the roton minimum for each and every
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Figure 7.1: Instantaneous density map of a system of N = 256 4He atoms (view is
along the z direction) in a cubic box, at T = 1 K and density 0.0336 Å−3. Clearly, in
this case the system has crystallized.

one of the densities considered. Rather, we have focused for simplicity on a single

wave vector for each density, assuming that the magnitudes of the roton wave vectors

q, q′ at two different densities ρ and ρ′ be related through (q′/q) = (ρ′/ρ)1/3, as is ex-

perimentally found to be the case for the equilibrium superfluid phase below freezing

[143].

As mentioned above, since we are using an equilibrium simulation technique, on

simulating the system for a sufficiently long time eventually crystalline order is bound

to emerge. It is therefore necessary to monitor the simulation in order to ensure that

one is actually studying a metastable superfluid phase, and that crystal order has

not yet set in. This is accomplished first and foremost by visual inspection of the
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Figure 7.2: Pair correlation function of 4He at T = 1 K and a density of ρ = 0.0319
Å−3, for both the metastable superfluid and the equilibrium (hcp) crystalline phase
(darker curve).

many-particle configurations (i.e., imaginary-time paths) generated in the course of

the simulation. As shown in Fig. 7.1, it is possible to detect the appearance of order

rather easily, as it sets in even if the geometry of the box (cubic) is not specifically de-

signed to accommodate a crystal of the known equilibrium structure (hcp in the case

of 4He). Another way to monitor the appearance of crystalline order is through the

calculation of the pair correlation function, and the comparison with that (computed

separately) of the equilibrium crystalline phase at the same density. An example of

this is shown in Fig, 7.2; although the two functions follow one another quite closely,

that of the crystal has noticeably higher peaks.

Another important indicator that one is simulating a metastable superfluid phase,

besides of course the value of the superfluid fraction (ρS), which is computed through

the well-established winding number estimator [80], is the one-body density matrix

n(r), which is expected to plateau at long distances in a superfluid, while decaying

exponentially in a crystal.
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7.4 Results

In this section, we present our results for structural, superfluid, and dynamical prop-

erties of the overpressurized metastable phase of 4He.

Figure 7.3: One-body density matrix of the metastable liquid phase of 4He at T = 1 K
and at various increasing densities (higher density shown by lower curve). The lowest
density for which results are shown is the equilibrium density, the highest (bottom
curve) 0.0336 Å−3. The straight line through the peaks of the bottom curve illustrates
the consistency of the data with exponential decay.

Fig. 7.3 shows the one-body density matrix n(r) for a few different densities ex-

plored in this work. The lowest density for which results are shown is the equilibrium

density , ρeq = 0.021834 Å−3. For the highest density, namely 0.0336 Å−3, data are

consistent with an exponential decay, suggesting that this density is above the spin-

odal. For all other densities, n(r) plateaus at long distances to a value corresponding

to the condensate fraction n0.

Fig. 7.4 shows our results for the condensate fraction as a function of density,

comparing them with those for the ground state, obtained in Ref. [62]. The results

of the two calculations are in perfect agreement, i.e., consistent with an exponential

decay of the condensate fraction with density. However, in this work we considered
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Figure 7.4: Condensate fraction (n0) of the metastable liquid phase of 4He at T = 1
K, as a function of density (squares). Also shown are the ground state estimates of
Ref. [62] (circles).

densities ∼ 15% higher than in Ref. [62]; the data shown in Fig. 7.4 show signifi-

cant deviations from the exponential decay, i.e., the condensate fraction decays more

rapidly on approaching ρsp. Assuming that our statistical and systematic errors are

not significantly underestimated (we believe this to be unlikely), one possibility [147]

to account for such deviations is that Tc may be substantially suppressed, as the

density approaches ρsp, and therefore the comparison of our results with ground state

estimates may be complicated by thermal effects.

The suppression of Tc is corroborated by the values of the superfluid fraction, re-

ported in Fig. 7.5. As one can see, while ρS depends very weakly on ρ, remaining

relatively large up to the highest density considered in Ref. [62] (0.0293 Å−3, corre-

sponding to a pressure of approximately 60 bars), it decays abruptly above it, barely

reaching ∼ 10% at the highest density for which a metastable superfluid phase can

be simulated, using our protocol, namely 0.0319 Å−3.
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Figure 7.5: The superfluid fraction of the metastable fluid phase of 4He at T = 1 K,
as a function of density.

We report in Table 7.1 values of the superfluid and condensate fraction, as well

as computed pressure (in bars) for two different densities. Also shown for compari-

son are the values of the pressure for the corresponding equilibrium (crystalline hcp)

phase, obtained separately in this work. As expected, the pressure is considerably

higher for the metastable superfluid phase.

Next, we discuss the results for S(qR, ω), which constitute the most important

part of this study (qR is the magnitude of the roton wave vector). Fig. 7.6 shows our

results for S(qR, ω), inferred through the MEM for the metastable superfluid phase

at three different densities, including the equilibrium density ρeq defined above. The

results for the two higher densities are for two overpressurized superfluid phase.

All of the curves feature a well-defined maximum, whose position corresponds to

the energy of the excitation. We estimate the position of the peak and assign a

statistical uncertainty following the procedure outlined in Ref. [148]. Namely, we

perform a Metropolis Monte Carlo simulation in the space of spectral images and

accumulate statistics on the position of the maximum of the curve, also obtaining
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Superfluid hcp

ρ (Å−3) ρs n0 P P

0.0293 0.86(5) 0.0090(5) 62.0(3) 32.2(2)

0.0304 0.36(5) 0.0040(5) 71.4(9) 45.2(3)

0.0319 0.08(1) 0.0020(4) 96(1) 67.1(7)

Table 7.1: Superfluid (ρs) and condensate fraction (n0), as well as the computed value
of the pressure (P , in bars) for metastable superfluid 4He at T = 1 K at different
densities above the melting density. Statistical errors (in parentheses) are on the
last digit. Also shown for comparison is the computed pressure for the equilibrium
crystalline (hcp) phase.

the uncertainty of its position as the standard deviation. As expected, and as shown

in Fig. 7.7, the roton energy goes down as a function of density. In addition, the

height of the peak grows as one approaches the spinodal density, and the onset of

crystallization.

In Fig. 7.7, we map out the roton energy as a function of density, ωR(ρ). In order

to estimate the density at which ωR = 0, we make the assumption that that occurs

in concomitance with the divergence of the static structure factor, consistently with

Bijl-Feynman theory of the elementary excitations [86]. This leads us to posit the

following form [64]:

ωR(ρ) = A(ρsp − ρ)γ (7.2)

We use this expression to fit the data in Fig. 7.7, using A, ρsp and the unknown

exponent γ as fitting parameters. This yields ρsp = 0.0320(2) Å−3, with a value of

the critical exponent γ = 0.12(5). This is consistent with the observed instability of

the simulated fluid phase at ρ = 0.0336 Å−3, and yields a value of approximately 100

bars for the upper limit to which the superfluid phase can be overpressurized.
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Figure 7.6: The dynamic structure factor S(q, ω) of superfluid 4He at T = 1 K,
evaluated at densities of ρeq (qR = 1.963 Å−1, circles), ρ = 0.0293 Å−3 (qR = 2.159
Å−1, diamonds), and ρ = 0.0319 Å−3 (qR = 2.219 Å−1, squares). The standard
deviation associated with the inversion process is shown only for the peaks of the
curves, with the understanding that the adjacent points have comparable or smaller
standard deviations.

7.5 Conclusions

We presented state-of-the-art QMC results for metastable superfluid phases of 4He,

pressurized above melting, at a temperature T= 1 K. These metastable phases can be

rendered stable in a computer simulation (and presumably in Nature as well [4, 111])

by the presence of long cycles of exchange of 4He atoms, acting to prevent particles

from becoming localized in space. This confers to the simulated metastable phase an

appreciable “lifetime” (i.e., in the computer), that allows the meaningful measure-

ment of physical observables.

The condensate fraction in the metastable overpressurized superfluid phase decays

as a function of density, in a way that is consistent with the exponential decay pre-

dicted in previous ground state studies [62], up to a pressure of approximately 67

bars; concurrently, the superfluid fraction remains relatively close to 100%. At higher

pressures, not explored in previous calculations, we find that both the condensate
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Figure 7.7: The roton energy of superfluid 4He as a function of density, at T = 1 K.

and superfluid fractions decay more rapidly. This suggests that the superfluid tran-

sition temperature, relatively unaffected by pressure in the equilibrium superfluid

phase, and even in the overpressurized phase for pressures below ∼ 67 bars, becomes

strongly suppressed at higher pressure.

We computed the energy of the roton excitation in the overpressurized superfluid

phase, as a function of density. Our results are consistent with the hypothesis [64]

that the roton energy should vanish at the spinodal density ρsp, in correspondence

to a pressure of approximately 100 bars. Above such a pressure, an overpressurized

superfluid phase is unstable against crystallization.

The results of our study open up the possibility of more detailed experimental

investigations of the overpressurized metastable liquid phases of helium, including

in confined geometries. While the high pressures studied here are not necessarily

directly measurable in some experimental settings such as nanoporous media, the

roton energies that we compute are indeed measurable through neutron scattering

techniques. The results we present here could therefore allow an indirect estimate of

the local pressure of a metastable sample of overpressurized superfluid.
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Chapter 8

Conclusions

In this thesis, we presented the results of a number of investigations in which we uti-

lized first-principle computer simulations to study a wide variety of Bose systems. We

explored the phases of matter that emerge, the familiar among them (gases, liquids,

solids), and the exotic (Bose-Einstein condensates, superfluids, and supersolids). We

studied the transitions between these phases and the excitations that underlie them,

as well as the connections between the microscopic physics and the macroscopic phe-

nomena that arise as a result. These investigations are enabled by the exceedingly

powerful toolbox of quantum Monte Carlo, which allows us to compute numerically

exact estimates of thermodynamic quantities and structural correlations at finite tem-

perature.

We started by considering a broad albeit simple class of Bose systems that is

characterized by a central pairwise interaction with hardcore repulsion and a long

attractive tail. We mapped out a universal phase diagram that encapsulates a wide

spectrum of such physical systems that vary in their degree of quantumness. The

classical regime is descriptive of most natural substances, which crystallize at abso-

lute zero temperature. As the systems get more quantum, one encounters a transition

to an intermediate regime in which the systems fail to crystallize at zero temperature,

forming instead a superfluid phase. Finally, a third regime is found beyond the point

of quantum unbinding, which describes systems that are unbound at zero tempera-
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ture, such as ultracold gases. We studied the evolution of the pressure-temperature

phase diagram as we went from one extreme to the other.

In the phase diagram of the hypothetical isotope 5He, we encountered an intriguing

phenomenon which we did not explore deeply enough. While the true ground state of

such a system is indeed a crystal, we found evidence of a metastable over-pressurized

superfluid phase at the equilibrium density. It is also distinct from the situation in

4He, explored extensively in Ch. 7, where the metastable superfluid phases are real-

izable at densities significantly higher than the equilibrium density. No evidence of

such a phase was found deeper into the classical regime, i.e., for systems like 6He, 8He,

and parahydrogen, which suggests that this behavior is unique to the systems that

lie close to the solid-liquid boundary in Fig. 3.3. This phase is potentially long-lived,

and could be the subject of a future study that explores it in greater depth.

This broad class of Lennard-Jones systems was shown to be filled with a variety

of rich physics, and to feature phases ranging from solids to normal fluids to super-

fluids and gases. Motivated by the search for the more exotic supersolid phase, we

also studied systems of dipolar particles with aligned dipole moments. These systems

were speculated to be candidates for the realization of simultaneous crystalline and

superfluid order due to the unique nature of the inter-particle interaction, which is

long-ranged and anisotropic in character. We studied the phase diagram of the bulk

system in three dimensions, which indeed featured a supersolid phase sandwiched

between an insulating crystal and a hard sphere-like superfluid. We also studied the

system in 1D within the framework of Luttinger Liquid Theory, in the previously

unexplored case in which the dipoles are aligned parallel to the direction of particle

motion. The latter study revealed a rich phase diagram compared to the thoroughly

investigated case in which the dipoles are aligned perpendicular to the direction of

particle motion.

There are multiple avenues of future work related to the study of these dipolar

systems. Our three-dimension study was limited to the ground state of the bulk sys-
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tem, so it would be interesting, for instance, to investigate the relationship between

the melting temperature and the superfluid transition temperature across the super-

solid regime. Another avenue to explore would be dipolar systems under confinement

and investigating the effect of trap geometry on the physics, which is not currently

well-understood. Another object of great interest is the self-bound dipolar droplet,

how its geometry evolves as a function of the number of particles and the scattering

length, and how it connects to the bulk physics.

Finally, we addressed the problem of analytic continuation and the extraction of

real-time behavior. Our QMC methodology allowed us to compute correlations in

imaginary time, from which real-time dynamical information may, in principle, be

inferred through an inverse Laplace transform. This is an ill-posed problem in the

presence of the inevitable statistical uncertainties associated with the QMC calcula-

tion. We utilized Maximum Entropy as our choice of regularization scheme to extract

the dynamical structure factor, and we compared this method to others proposed in

the literature, as well as to experimental data. After establishing the effectiveness

of this technique in the presence of high quality QMC data, we applied it to study

the roton excitation in overpressurized 4He as we probed the limits of the metastable

liquid phase. Our predictions of the vanishing of the roton excitation were consistent

with a previously proposed hypothesis.

The problem of analytic continuation of imaginary time data is still far from solved.

Maximum Entropy, our method of choice, relies on the quality of the QMC data be-

ing sufficiently high. Indeed, in the maxon region of the excitation spectrum, where

density correlations decay rapidly in imaginary time, the extracted spectral image

is much too broad compared to the experimental result. A future study seeking a

precise construction of the full excitation spectrum would therefore need to address

this problematic region, either through brute force reduction of the QMC errors by

the utilization of greater computational resources, or through some other means.

The studies presented here constitute a journey through a number of quantum
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many-body systems filled with a wide range of physical behavior, enabled by a re-

markably effective and accurate numerical framework. We have utilized our ability

to control the physical conditions to which these simulated systems are subject in

order to study how their behavior becomes increasingly exotic as quantum effects are

made increasingly prominent. Thus we contribute to mankind’s understanding of the

relationship between the bizarre quantum nature of reality and the classical picture

familiar to our intuitions, and how the latter emerges as a limiting case of the former.

Thus we cast a glimmer of light into the great dark that lies beyond the boundary of

enlightenment.
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