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ABSTRACT

The safety provisions proposed for use in Canada for
limit states design involve load factors +to account for
possible overlcads and resistance or performance factors to
account for possible understrength of structural members.
The purpose of this study was to evaluate the understrength
or @ factor applicable to rectangular tied reinforced column
cross sections based oﬁ a probabilistic analysis of the

results of a Monte Carlo Study.

Probability models were described for the. major
'variablesvaffecting the cross sectional strength. 2 Monfe
Cérlo procedure was used to develop a sample of cross
section strengths from which the understrength factor was
calculated. This study showed +that the concrete strength
variability and the steel strength variability were fhe
major contributing factors to the variability in cross

sectional strength.

The understrength factors calculated from the results
of this study were found to be in close agreement with the

understrength factors used in the ACI 318-71 Building Code.
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CHAPTER I

INTRODUCTION

1.1 General

It is generally recognized that there is somé degree of
uncertainty in the design equations used to calculate th:
resistance of a reinforced concrete section. The strength of
a reinforced concrete section is calculated by the designer
as a constant nominal value but it is recognizgd that the
ultimate strength of a reinforced column is affected by
" variations in:
| A Concrete strength

Steel strength

Cross section dimensions
Location of steel reinforcement -
Eccentricity of load

Rate of loading

Amount of creep and plastic flow

The three most common approaches that have been used to
estimate the variability of the wultimate strength of a

reinforced concrete section are:

\

The technique of error statistics or regression
analysis applied to the results of full scale or

laboratory tests.

Direct statistical evaluation of means and



standard deviations from the means and standard

deviations of the individual parameters involved.

The Moante Carlo Technique in which the variables
affecting the cross section  strength are treated as
random variables and are randémly chosen and used to
calculate a population of ultimate strengths based on

structural theory.

The method of error statistics has been appliéd to sets
of test results in various fields and has been accepted as a
ﬁethod' of vanalyzing test data. This method of using test
daté has thé disadvantage of requiring many fests to produce
reliable results. More important, héwever, the sample may
never be repfesentative of the population due to testing
procedures and systematic errors., Construction tolerances

‘may not be adequately modeled, for example.

bwhen the cross sectional strength can be calculated
with relatively simple analytical expressions, standard
statistical technigues can be used to calculate the mean
erfdr and coefficient of variation of the <cross sectional
strength ‘based on the descriptions of the distributions of
the individual variables., This procedure becomes awkward if

the strength expressions become complex.

The Monte Carlo Technique has been used to model a
population of values in various fields. This method has the

disadvantage of requiring a statistical description of each



individual variable which affects the final variable being
studied. The Monte Carlo Technique has the advantage of
being able to generate a large size sample using computer

simulations rather than actual test data.

Since the error statistics method of predictingb
strength has been considered insufficient and too costly for
develobing p:obability models of cross section strength and
the equations wused to calculate the strength of reinforced
concrete cross sections are relatively complex, the HNonte

Carlo Technique has become popular.

1.2 The Monte Carlo Technigque

The Monte Carlo _Technique is a method of obtaining
information about the total system performance from the
individual component characteristics. It consists of
generating many total systems from the component data and

analyzing the sample of total systems.

This procedure has been used by various researchers to
model the variability of structure strength and loading
conditions. Housner and Jennings39 have used this procedure
to develop "Artificial Earthquakes®" from which the various
effects of earthquakes could be measured. Using the data
generated with the Monte Carlo Technique close agreement was

found with actual measured values.

Warner and Kabalia?2 have described a method of



.developing the strength and serviceability of a real
structure using the Monte Carlo Technique. The strength of
an idealized axially loaded reinforced concrete column was
calculated including the effects of variations in the

material and geometric properties.

AllenS has presented a probability distribution of the
ﬁltimate'moment and ductility ratio for reinforced concrete
in bending. The ultimate moment and ductility ratio were
~ obtained using prediction equations and probability
distributions of the parameters. The computations were based
on the method of using the Monte Carlo Technigue described
by Warner and Kabalia?72., The ‘results showed that the
proﬁability. distribuations of -the ultimate moment and
ductility ‘ratié are affected ‘by material properties,
duration of loading, steel percentage and deometric

-properties.

In this study the Monte Carlo Technique was used to
develop a probability model of the strength of a rectangular
tied reinforced con¢crete column., The actual probability
distribution developed was that for the ratio of the
.theoretical load capacity to that computed in accordance
with the ACI design equations, Ptheory/PACI, for specific
values of e/h or eccentricity of axial load. This study
shows the effect of variations in the concrete strength,
steel strength, cross section dimensions, location of

reinforcing steel and steel percentage on the probability



distribution of +the strength of a reinforced concrete

section under axial load and bending moment.

1.3 Development of the Undersirenqth Factor ¢

The ACI 318-71 Building Code Requirements for
Reinforced Concrete3 requires that the design equation

follow_the format of:

¢R > ypD +y, L (1.1)

Where ¢ is an wunderstrength factor, R is the nominal
~calculated resistance or strength, L and D are the live and
dead lbaQS-respectively‘and Yy and Yy are the 1load factors .

' to account for uncertainties in the loads.

Gehetally the procedure used for determining the values
of ¢, YL., and Yp has been to rely on "common sense and
-exPerience" aloﬁg with a semi-mathematical approach. These
factors may also be determined using a logical mathematical

approaéh using the probabilistic concepts.

The first consistent proposél for design based on the
concépt of probability appears to have been made by
Torroja®®., This proposal was based on the concept of 1limit
states ‘in which the design 1loads and resistance have a

specified'probability of being exceeded.

Basler!?® has suggested that the coefficient of

variation may be wused as a probabilistic but distribution



that:

M5y 2 P O(ros) 3-2)

Lind39 has extended Cornell's approach to code formats
of higher order and demonstrated a method of calibrating a
partial safety factor format to Cornell's as well as Ang and

Amin's format. Since it is possible to choose 8 by

calibrating probabilistic code formats to existing codes,

the parameters may be adjusted to yield designs comparable

to existing code designs. This leads to a more acceptable

_implementation of probabilistic code concepts initially.

Siu et al.®3 have presented a method of code

calibration which may be used to calibrate probabilistic

- code formats with existing code formats as well as to

compare various probabilistic code formats,

In this study understrength factors for rectangular

‘tied reinforced concrete columns were calculated directly

from the distribution of column strength and a probability
of undérstrength of 1 in 100 and have been compared with the

understrength factors calculated on the basis of the first

order second moment format.

The form of the second moment format used was that
developed by Cornell, Lind and ACI Committee 348:

—BaVR

¢_= Yge (1.3)



The derivation of this equation has been reviewed by

Mac Gregoreo,



CHAPTER 1IX

THEORETICAL BEHAVIOUEK OF REINFORCED CONCRETE SECTIONS

2.1 The Basic Assumptions for Analysis

If an analytical expression is to be used to determine
the ultimate strength of a reinforced concrete cross section
a number of assumptions must first be made. The following

basic assumptions were made for the analysis:

-(a) Plane sections remain plane, that is, the strain in
the concrete or steel is directly proportional to the

distance from the fibre to the neutral axis.

(b) The concrete stress is a function of the strain as
expressed by the modified Kent and Park stress strain curve

for concrete for the theoretical calculations.

(c) The steel stress is a function of the strain as

expressed by an elastic plastic stress strain curve.

(d) There 1is no slip between the concrete and steel

reinforcing.

(e) Bending in one plane is assumed and biaxial bending

is neglected.
(f) Stability failure of the member is not included.

- (g) The stiffness in bending of the individual layers

of steel reinforcement is neglected.
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(h) The effect of duration of loading is neglected.

2.2 The Stress-Strain Relationship for Concrete

The properties of the compressive stress block of a
concrete flexural member may be defined by the parameters

k k2, and k3 as shown in Fiqure 2.1. These parameters

1)
depend on the shape of the stress-strain curve for concrete.

In North America the most widely accepted stress-strain
curve for concrete is that proposed by Hognestad29 which
consists of a second order parabola up to a maximum stress
fg at a strain €, -and then a linear falling branch.
Hognestad's2® curve was obtained from results of tests on
~eccentrically loaded short columns in which he found that

£1=0.85£2.

There is controversy as to whether the shape of the
$tress-strain curve for concrete is affected ‘by a strain
gradient. Sturman, Shah and Winteré? concluded that the peak
occured at a 20% higher stress and a 50% higher strain fof
eccentrically loaded prisms compared to concentrically
loaded prisms. In Hognestad's tests this was not observed.
There may be no ﬁignificant effect of the presence of a
strain. gradieni but its presence, if anything, will improve
"the properties of the compression block. There is no doubt,
however, that the presence of a strain gradient delays the

appearance of longitudinal cracking in the compression zone.
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In columns the concrete is confined by the ties to some
éxtent, depending on the type of ties used. The confinement
due to the ties does not affect the concrete strength until
there has been some yielding of the concrete to cause a load
in the ties. At low levels of stress the ties will not be
stressed and therefore the concrete will act as unconfined
concrete., Tests have shown that when the stress in the
concrete approaches the maximum uniaxial strength,
deterioration of the concrete causes an outward expansion
pérpendicular to thé load causing a stress in the ties which
in turn causes a »éonfining pressure. In this case spiral
.ties are more effective than rectangular ties since the
spiral is able to exert pressure for its entire length
whereas the rectangular ties tend to exert pressure at the
corners and.>not along their entire length. This is due to
-the.relatively flexible bar between the corner points. Rs a
result the <concrete is confined at the corners and in the
centroidal core of tﬁe member. Even though fhe rectangular
ties are mnot as effective as the spiral ties, they do
produce a significant increase in ductility of the core as a

'ﬁhole.

Some stress-strain curves proposed for concrete
confined by rectangular ties are shown in Figure 2.2. In
Chan's17 trilinear curve the range OAB approximates the
curve for unconfined concrete and the slope BC depends on

the lateral confinement, Soliman and Yu'sé4 curve consists



Figure 2.2
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Some Suggested Stress-Strain curves for
Confined Concrete '
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of a parabola and +two straight 1lines., Values for the
critical points are related to the properties found from
tests on eccentrically loaded prisms. Roy and SozenS?
conducted tests on éxially loaded prisms and suggested that
the deécending branch 6f the stress-strain curve could be
replaced by a straight 1line. The .strain at 50% of the
maximum stress on the falling branch ¢ was related to the

S50c
volumetric ratio of the transverse steel.

koy and SozenS7?7 concluded that rectaﬁgnlar hoops did
not increase the concrete streﬁgth. Other investigators such
as Chan1?7, Soliman and Yu%%, Bertero and Felippall, and
Rusch and StocklS? have observed an increase in strength due

to closely spaced rectangular ties.

Kent and Park36é, on the basis of experimental évidence
have proposed the stress-strain curve shown in Figure 2.3
for confined and unconfined conérete. This curve combines
mahy of the featufes of the previously described curves. The
ascending region AB is represented by a second order
parébola in common with the Hognestad2? curve. The confining
steel 1is assumed to have no effect on the stress strain
relationship before the maximum stress. Kent and Park35 used
a maximum stress in bending equal to fé, that is, k3=1.0 in
Figure 2.1. sturman, Shah and ¥inter'ss? work suggests that
the value of k3=1.0 ié conservative where there is a strain
gradient. Kent and Park3é assume the strain, e,r at maximum

stress to be 0.002 which is in the range commonly accepted
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Figure 2.3 The Kent and Park Stress=Strain Curve for
- ‘ Concrete -

i ' .I - B
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for unconfined concrete., Confinement may increase the
maximum strain but this will occur after the maximum stress
is reached. Region AB for the Kent and Park36é curve is

expressed using:

(o4 C - EC (2.1)

In this study the value for k3 was taken as 0.85 based
on comparison with Hognestad's29 test results, (See Section
3.3). To allow compatibility between the ACI equation for

modulus of elasticity and the strain at about 0.4f%, the

strain.soat a maximum stress of kaé, was taken as:
e, = 1.8 fé ' ' (2.2)
E

Cc

The region of the curve after the maximum stress is

linear from €, and fCmax and is described by the strain in

the concrete at 50% of the maximum stress as suggested by
Roy and szen. The slope of the falling branch increases
rapidly with an increase in concrete strength. This suggests
that €50u is dependent on fl. This can easily be observed by
the fact that high strength concrete is more brittle than

low strength concrete. For concrete that is not laterally

restrained, Kent and Park suggest that the strain €5, at 50%
u

of fé is:

€ = 3.0 + 0.00Zfé

S50u (2.3
fé ~ 1000 )

. For concrete confined by rectangular ties the slope of
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the falling branch is reduced. This is due mainly to the
restraint supplied by the ties. Kent and Park3s expressed
this in terms of the ratio of the volume of the ties to the
volume of the concrete core within the ties. Kent and Park3se
expressed the volumetric ratio as:

p" = 2.0 (b"+d") A7 | (2.4)
b"d"S

CorieylG suggested that the compression steel should be
included in the volumetrié ratio. In this study the
compression steel was included invthe volumetric ratio whichv
was expressed as: |

" = " " " )
o 2.0 (b"+d'") AS + As S (2.5)
blldlls

The descending branch of Kent and Park's36 curve for

confined concrete may be described by:
£, = £! [1.0 -2 (e - eo)] (2.6)

where:

2.7
50h S5o0u o

and:
€50n - 3/4 p"\/l’— (2.8)
s

Kent and Park36é assumed that confined concrete could
sustain a stress of 0.20fé at an infinite strain as shown by

the dashed line in Figure 2.3. In this study the descending
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region was assumed to continue to zero.

The tensile strength of concrete is usually neglected
in most flexural theories as well as codes of practice. It
is reasoned that it may be unsafe to take into account the
tensile bstrength of the concrete since the concrete méy be
cracked due to shrinkage or other reasons even before any
load is applied. While the tensile strength of concrete is
small compared to its compressive stréngth it has a sizeable
effect on the resistance>and deformation of the uncracked
section, After the appearance of the first cracks this
influence becomes smaller and smaller as the load increases.
This is due to the fact that with the advancement of
6ra¢king the tensile block becomes closer to the neutral
axis resulting in a smaller 1lever arm and a ‘negligible

addition to the moment capacity.

Iﬁ “view of the above it was assumed that for the
purposes of this study an elastic brittle stress-strain
relationéhip can represent fairly well the behaviour of
concrete in tension. An elastic brit£le stress-strain

- relationship can be expressed as follows:

. =E ¢ for e_< ¢

t ct 't t (2.9)

tr

and:

o, =0 for - & > ¢ : (2.10)

The modulus of elasticity of concrete in tension was
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taken as the accepted value in compression:

_ e
EC 57000 ffc _ (2.11)

The modulus of rupture was taken as the accepted value:

o, =17.5 /‘(': (2.12)

The complete stress=strain curve for concrete used in

this study is shown in Figure 2.4.

2:3 The Stress=-Strain Relationship for Steel

In this study an elastic purely plastic stress~strain
relatithhip_was assumed for steel as shown in Figure 2.5.
The modulus of‘eiasficity of steel was taken as 29,000 ksi.
in tension as well as in compression. The steel stress was
assumed to increase to the yield point and remain at the
- yield stress for any further strain. This is a conservative
representation of thé steel strength since the effect of

strain hardening is neglected.

The inter-relationship between the effects of the axial
load and applied moment on a reinforced concrete section are
best shown by an interaction diagram. These diagrams are a
graphical representation of the enveiope of the maximum

capacities of a reinforced concrete section under various
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Figure 2.4  The Stress=Strain Curve for Concrete Used in
: This Study
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axial load and moment combinations.

Using strain compatibility, the moment curvature
relationships were derived for the section for a nﬁmher of
axial load levels using the procedure described in the next
few paragraphs. The moment curvature relationship developed
is similar to that shown in Fiqure 2.6. The maximum moment
in the moment curvature diagram was taken as the ﬁltimate
moment for that given load. The various values of load and

ultimate moment were plotted as an interaction diagranm.

The calculation of the moment curvature diagram was
started by assuming a strain distribution across the cross
section and determining the location of the neutral axis and
the point at which the tensile strains exceeded €ep ° The
compression region was then divided into sections with equal
widths measured perpendicular to the neutral axis, (See
Figure 2.7). Using the concept of linear strains in the
cross section the strain at the centroid of each section may
be: determined. By assuming the strain is constant over each
section the resulting stress and totai force over the area
was determined with the aid of the stressestrain curve for
concrete, »The total conmnpressive force supplied by the

concrete may be expressed as:

ns
FC = 24 fcibdx (2.13)

i=i

Assuming the maximum tensile stress in concrete occurs

at a strain of €, and assuming a linear stress-strain curve
r \
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for concrete in tension, the total tensile force may be
calculated wusing a triangular stress block. The total

concrete tensile force may be expressed as:

F =
% b4 (2.14)
From the strain distribution the strain in each steel
bar may be determined. Using the stress=-strain curve for

steel the stress in each bar may be calculated. The total

steel force may be expressed as:

nb .
Fse = 2 fai &y (2.15)
i=i

The total axial force resisted by the cross section is
the algebraic sum of the concrete compressive force, the
concrete tensile force and the steel force. The total moment
that the section 1is subjected to may be determined by
summing the moments of the above forces about the centroidal

axis. The moment may be expressed as:

ns nb
= + - -
o Z Fci %y Z Fst ¥si + tht Fe (2.16)
i=1i i=i
where ¢ = the distance from the tension steel to the

centroid of the cross section.

The first three terms are the moments of the internal
forces about the tension steel and the last term, Pc, is to
convert the moment to a moment about the centroid of the

cross section.
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~The required points  on the —~axial  load-moment
interaction curve were developed by selecting specific axial
load 1levels at which the ultimate moment was calculated. At
each axial load level an initial strain at fhe extreme
compression fibre and initial curvature was assumed. For the
initial curvature the edge strain was incremented until the
sum of the intérnal forces and the external specified 1load
were balanced within a specified tolerance. After balancing
the axial loads the moment required to provide equilibrium
was calculated. The curvature was thenAincremented and the
axial ioad>again balanced and the moment calculated. This
proCedure ‘was repeated until the maximum moment on the

moment curvature curve was calculated.

The subroutine THECRY and flow diagram in Section 3.2
gives a further description of the above procedure. The

accuracy of this procedure is discussed in Section 3.3.



CHAPTER ITI

COMPUTER PROGRAM FOR ANALYSIS

3.1 Description of The Monte

- —— — e e e e s

The Monte Carlo Technique is a method for obtaining
information about system performance from the performance
data of the individual components. This method may be called
a synthetic or empirical method of sampling. It consists of
simulating many systems by computer calculation and then
evaluating the performance of +the overall systém by
evaluating the performance of the population of synthesized

systems.

if a system consists of many components each with a
number of values, a number of systems coﬁid be built to
measure the performance of the system using each component
value.. Although +this would give an indication of the
variability of the'system, it would generally be impractical
or uneconomical. If there is a relationship between the
total system performance and each component variable, a
measurement of  the total system\ performance may be
calculated without actually building the system. By knowing
the statistical properties of the distribution of each
variable énd drawing a value from this distribution rather
than using measured values, it is possible to calculate the
performance of a specified number of synthetic systems to

get the variability of the systen.

27
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This procedure is called the Monte Carlo Technique and
is shown graphically in the form of a flow diagram in Figure
3.1. The availability of high speed computers has led to the

popularity of this technique.

In this study the Monte Carlo Technique was used to
generate a family of theoretical axial load=moment
interaction vcurves for rectangular column cross sectionsv
using rapdom values of the variables affecting +the cross
section strength. The random value of each variable was
based on the statistical properties of each individual
variable. Fach theoretical curve was then compéred to the
ACI axial load~moment interaction curve to obtain a sample
of ratios of the random theoretical capacity to that based
on the ACI Code, Ptheory/PACI. These ratios were eventually
used to calculate ¢ or understrength factors for rectangular

tied column cross sections.

3.2 Description of The Computer Program

The computer program used in this study is capable of
developing the axial 1load-moment interaction diagram for
rectangular tied column cross sections with the longitudinal
steel at any location in the cross section. The program is
capable of developing the interaction diagram using the ACI
method and assumptions as well as the theoretical
interaction diagram using a theoretical calculation of

strength based on material and cross section properties.



INPUT 1:
STATISTICAL

PROPERTIES OF
VARIABLES

SELECT A
RANDOM VALUE
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INPUT 2:
RELATIONSHIP
BETWEEN
VARIABLES
AND SYSTEM
PERFORMANCE

CALCULATE VALUE OF
SYSTEM PERFORMANCE

REPEAT MANY
TIMES

1

- Figure 3.1

- OUTPUT: SUMMARIZE
AND PLOT RESULTING
VALUES OF SYSTEM
PERFORMANCE WITH
STATISTICAL ANALYSIS

The Monte Carlo Technique
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Figure 3.2 1is a condensed flow diagram of the Monte
Carlo progranm. The main program consists of the subroutines
PROP, ACI, CURVE, THMEAN, RAN‘DOM, THEORY and STAT. A
complete liéting of the program with its subroutines may be
found in Appendix D. Detailed flow diagrams of the

subroutines are given in Appendix C.

The subroutine PROP is used to read and write the
nominal cross section properties. The statistical properties
of the variables are read and written in the main program. A
cémplete description and format of input data is given in

‘Appendix E.

The subroutine ACI is used to calculate the ACI axial
load=-moment interaction diagram wusing the nominal ot
designer's values of section and material properties. The
subroutine ACI wuses the subroutine ASTEEL to calculate the
forces in the steel reinforcement in the cross section. The
capacity under pure axial load, balanced conditions and pure
momeht are first calculated. Using the concept of linear
strain across the cross section the axial load and
associated moment are calculated for various strain
distributions using equations based on Sections 10.2.1 to
10.2.5 and 10.2.7 of ACI 318=713., Tension or compression
failures are classified by comparing the axial load with the
axial load at balanced conditions. The value of e/h for each
load level considered is calculated for use in fitting a

curve to the interaction diagram. Finally the ACI axial
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load-moment interaction diagram is written. A condensed flow
diagram of the subroutines ACI and ASTEEL is shown in Figure

3.3.

The subroutine CURVE is called a number of times to fit
a polynomial curve to the interaction diagram develdped. The
interaction diagram is transformed into a curve of axial
load vs. e/h for axial 1loads above the balance point or
qompression failures and a curve of moment vs. h/e for axial
loads below the balance point or tension failures. The two
part curve fit was used to achieve greater accuracy in
fittiﬁg the curve near the balance point. The use of moment
rather than the axial load was used for the tension region
to achie?e greater accuracy since e/h approaches infinity as
P approaches zero. There was no attempt made to force the
two cﬁrves to Coincide at the balance point but the last
point used for fitting the curve above the balance point was
used as the first point for fitting the curve below the
balance point. By using the same point in both curve fits a
close agreement was achieved at the balance point. When the
subroutine CURVE is .used to fit a polynomial to the
interaction diagram the calculated ﬁoints with an associated
value of e/h greater than 3.0 are eliminated from the curve
fit sincé these pbints may cause large errors. Fiqure 3.4 is
a plot of the ACI interaction diagram plotted from the ACI
calculated values and the ACT interaction diagram plotted
from values from the curve fit., Figure 3.4 is the

transformed diagram with axial load vs. e/bh and moment vs.
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Condensed Flow Diagram of the Subroutines ACI
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h/e plotted.

The curve fit used for the interaction diagram required
a minimum of +two points above the balance point and a
minimum of two points between the balance point and an e/h
value of 3.0. This resulted in a curve fit for three points
‘above and below the balance point. It was determined that a
curve fit using a minimum of six points resulted in a curve
fit with viréually no error above the balance point and a
maximum error of ;bout»2.5% below the balance point with the
general error below the balance point in the range of 1% or
less, On this basis twenty points on the interaction diagram
were considered sufficient to achieve a satisfactory curve
fit. |

!

The subroutine CURVE uses the IBM subroutines GDATa,
ORDER, MINV and the modified IBM subroutine MULTR to TMULTR.
These subroutines are described in Reference 31. A condensed

flow diagram of the subroutine CURVE is shown in Figure 3.5.

The subroutine THMEAN uses the subroutine THEORY to
calculate the theoretical axial 1load-moment interaction
diagram using the mean value of the individual variables.
This subroutine also writes +the interaction diagram’
calculated. 1 condensed flow diagram of the subroutine

THMEAN is shown in Figure 3.6.

The subroutine RANDOM is a subroutine which combines

the IBM subroutine GAUSS and RANDU to calculate random
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Condensed Flow Diagram of the Subroutine CURVE
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values of each variable based on the statistical properties
of each variable. These IBM subroutines are also described

in Reference 31,

The subroutine THEOR? vas developed to calculate the
.theoretical axial load-moment interaction diagram using the
subroutines AXIAL and FSTEEL. A specific axial load level is
chosen in THEORY which in turn calls AXIAL. Using the axial
load level selected, a strain distribution is determined at
a given curvature for which the external load and ipternal
forces balance. For this curvature the moment required to
develop the curvature is determined. The above procedure is
repeated with increasing~cnrvature until the moment capacity
is determined at each load level. This method produces a
moment curvatﬁre diagram similar to the one shown in Figure
2.6, The subroutine FSTEEL is used by AkIAL to calculate the
forces in the reinforcing steel. Figures 3.7 through 3.10
are condensed flow diagrams of the subroutines THEORY, AXIAL
and FSTEEL. The theoretical interaction diagram was obtained
as the 1locus of the values of My for each value of P for
whiéh a moment curvature diagram had been computed as
explained in Section 2.4, All comparisons of the theoretical
"strength with the ACI strength or Hognestad's tests were
dohe using values of the theoretical strength after the

interaction diagram was subjected to a curve fit.

The subroutine STAT is a subroutine used to perform a

statistical analysis on the ratio Ptheory/PACI for the
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Condensed Flow Diagram of the Subroutine AXIAL
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various values of e/h specified. The output fromr the
subroutine STAT includes the mean, standard deviation,
coefficient of variation, coefficient of skewness, kurtosis,’,
minimumv and maximum value, median and cumulative»frequency
table of the ratio Ptheory/PACI. A condensed flow diagram of

the subroutine STAT is shown in Figure 3.10.

3.3 Comparison of Theory With Test Results

The subroutine used to calculate the theoretical axial
load-moment interaction diagram .ﬁas compared with the
results of tests on rectangulér tied cblﬁmns reported by
Hognestad. Using Hognestad's column properties and the total
eccentricity of the reported failure loads the mean ratio of
Ptest/Ptheory was calculated to be 1.0068 with a standard
deviation of 0.064 when k used to define the maximum

3

compressive stress, kaé, was taken equal to 0.85. Table 3.1
is a summary of the values of the ratio Ptest/Ptheory and
standard deviation for various values of k3. Tables 3.2 and
3.3 are the results of a comparison of the theoretical
calculations with Hognestad's29 test results using a value
ofE k350.85. Although the 1lowest standard deviation was
obtained for k3=C.87, any increased accuracy did not warrant

abandoning the traditional value of k3=0.85.

In this study the compression block was divided into
ten equal segments between the extreme compressive fibre and

the neutra1 axis with the strain averaged over the segment
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depth. A comparison of the analysis with an analysis using
twenty segments Showed no significant difference in the
ratio of Ptest/Ptheory. The mean value of Ptest/Ptheofy for
ten segments was 1.0068 compared with 1.005 for calculatidns

using twenty segments.

/

In view of the‘above the calculations in the subroutine
THEORY were based on ten segments with a value qf k3=0.85
resulting in a mean value of Ptest/Ptheory of 1.0068 with a
étandard deviation of 0.064., Any inaccuracies due to the use
of the curve fittingvsubroutine CURVE are included in these

statisticé.
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Comparison With Hognestad's Tests II
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L } L g [ D) k3 T 1
| Concrete | e/h | Ptest | Ptheory | Ptest/Ptheory |
| Strength | 1 Kips | Kips | |
{ Psi. (. | | | {
4 4 v + 4 4
{ 5810 { 0.276 | 28u4.0 | 290.1 | 0.978 {
f 5810 {f 0.540 | 152.0 | 167.7 | 0.906 |
| 5520 f 0.534 | 162.0 | 166.6 | 0.972 {
| 5240 | 0.344 | 274.0 | 233.0 | 1.176 {
| 5170 { 0.789 | 91.2 | 93.7 | 0.973 |
i 5170 { 1.275 | 4.0 | 45,9 | 0.959 {
{ 5100 { 1.278 | 46.1 | 45.9 | 1.004 i
| 5100 { 0.787 1 89.C | 93.7 | 0.950 |
| 4700 | 0.785 | Su.0 | 91.7 | 1.025 {
i 4700 i 0.53%5 | 156.0 | 159.8 | 0.977 |
i 4370 i 1.279 | 44,0 | 45.0 | 0.977 {
{ 4370 . I 0.782 | 89.5 | 90.9 | 0.985 {
I 4260 | 0.532 ¢ 146.0 | 150.6 | 0.970 (
|l 4260 | 1.278 | 43.5 | uu,8 | 0.971 {
{ 4080 | 0.007 |  456.0 | 427.6 | 1. 066 4
| 4080 it 0.275 1 256.0 | 227.8 | 1.124 |
}] 4040 | C.006 | 420.0 | 429.8 | 0.977 |
I 404¢ | 0.274 { 248.0 | 227.9 | 1.088 {
1. 2300 | 1.285 | 44,5 | 42.9 | 1.038 |
| 2020 { 0.010 | 225.0 | 263.8 | 0.853 |
| 1970 I 0.278 | 141.0 | 1U43.0 | 0.981 {
{ 1880 { 0.788 | 73.0 | 73.2 | 0.998 |
{ 1820 I 0.532 | 99,0 | 99.7 |  0.993 I
i ‘1820 1 C.539 | 99.0 | 98.9 | 1.001 {
{ 1770 | 1.288 | 45.0 | 42.0 { 1.071 |
] 1730 | 0.785 | 65.5 | 71.7 | 0.914 {
{ 1520 { 0.018 | 202.0 | 221.5 | 0.912 |
{ 1520 | 0.277 | 126.8 | 130.5 | 0.971 {
1 L 1 L s J
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T

Concrete |

| L B T ]
i e/h | Ptest | Ptheory | Ptest/Ptheory |
{ Strength | | Kips | Kips | |
| Psi.. i | { | i
i 4 3 : 1 .
{ 5350 | 0.536 | 220.0 | 218.1 | 1.009 [
{ 5350 { 0.787 { 142.0 | 151.0 | 0.940 |
{ 5100 i 1.292 | 88.0 | 79.7 | 1.105 |
. 5100 I 0.793 | "153.0 | 147.2 | 1.040 |
| 5050 | €.272 { 326.0 | 325.6 | 1.001 |
| 4850 | ©.534% § 210.0 | 208.2 | 1.008 {
| 4850 [ 1.285 | 79.0 | 79.8 | 0.991 |
| 463¢ I 1.292 | 84.5 | 78.0 | 1.083 i
{ 4300 I 0.272 | 303.0 | 293.8 | 1.031 i
| 4290 | 0.534 } 206.0 | 194.3 | 1.060 i
{ 4150 { 0.270 § 315.0 | 287.7 | 1.095 i
| 4070 { 0.010 | 485.0 | 514.5 | 0.943 i
| 4010 | 0.276 | 284.0 | 279.8 | 1.015 I
{ 3870 | ©0.008 | 500.0 | 501.7 | 0.997 i
{ 3800 { 1.291 | 74,0 | 77.9 | 0.950 i
| 3580 [ €.535 { 180.0 { 179.8 |  1.001 |
{ 3580 { 0.789 { 138.8 | 135.0 | 1.028 i
{ 2300 { 0.276 | 252.0 | 215.3 | 1.171 {
{ 2300 { 0.533 | 151.0 | 145.5 | 1.038 |
1 2200 | 0.272 | 230.0 { 217.9 | 1.055 {
{ 2070 { 0.000 | 353.0 | 376.8 | 0.937 |
[ 2070 { 0.528 | 137.0 | 1w1.4 | 0.969 (
| 2070 | 0.787 { 104.0 | 112.0 | 0.928 i
i 2070 I 1.291 | 74.5 | 72.0 | 1.035 i
{ 1950 { 1.289 | 72.5 | 69.0 | 1.051 i
i 1950 { 0.784 | 115.5 | 107.1 | 1.078 i
[ R N | AL . 4 ] J
/ O
A €fn =
y7 plf
- t
X LR
:} o (\x %; §



CHAPTER IV

PROBABILITY MODELS OF VARIABLES AFFECTING SECTION STRENGTH

4,1 Concrete Variability

4.1.1 Introduction

Concrete, like all other construction materials, is

variable. This variability is influenced by design,

production and testing procedures. Research data shows that

under current design and construction techniques concrete
which differs from fhe specified strength is placed in
structures. These .structures have performed satisfactorily
due‘to redistribution of stresses, mixing of the under
strength concrete with over strength concrete within the
forms, and the fact that the éoncrete strength increases
with age after the time at which tests are made. In some
cases experience has lead to design equations which result
in conservative designs even though the assumptions used are

not entirely correct.

The two broad causes of variations in concrete strength
are varjations in material properties and variations in the
testing procedures. Since concrete is a heterogeneous
mixture of cement, water, coarse and fine aggregate,
entrained air, and in some cases admixtures, variations in
the final - concrete strength are inevitable. Variations in
any one of the ingredients or a combination of variations in

48
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more than one ingredient will result in a variation in the
final concrete strength. Variation in the water-cement ratio
will cause significant strength variation. The water-cement

ratio may be altered due to poor control of water content,
variation in moisture content or nonuniformity of the
aggregate. Variations in the properties or proportioning of
any of the materials will cause strength variation. The
methods of transporting, placing and curing will also affect

the final concrete ‘strength.

Variations in the testing methods will lead to apparent
variations in the concrete strength. Variations in testing
Bay be due to inconsistent sampling, nonuniform fabrication
of test samples or poor handling and care of fresh samples
and variations in temperature and moisture conditions. 2lso
the preparation of the samples for testing and the procedure

used in testing may cause variations in the test strength.

The control strength is affected by material properties
and test procedures whereas the structure concrete strength
will be affected by the material properties and placing
procedurés. This results in different concrete strengths in
the test specimen and in the structure. The concrete
strength will differ from place to place in the structure
due to different placing procedures, curing conditions, and

the location in the structure.
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4.,1.,2 Distribution of Concrete Strength

Generally the distribution of concrete strength has
been assumed to be a Gaussian or normal distribution. ACI
Committee 2142 found that for practical concrete control the
normal distribution adequately describes the variation in
concrete strength. Rusch and Rackwitz have presented data
from an international study of cube and cylinder tests which

also follows a normal distribution in most cases.

Inbestablishing understrength factors for members to
reflect the probability of the material strength being lower
than the specified strength, the low strength tail ends of
the curve are important. Because little data is available
for ‘these tail areas, the tail of the curve mnust be
extrapdlated from the central areé of the curve, The normal
distribution fits the data very well for the majority of the
data in the central portion of the curve. Some researchers
have shown however, that the normal curve does not always

give the best fit in the tail areas.

Freudenthal2+¢, Julian33, and Shalon and Reintzé! have
shown that the log~normal distribution gives a better fit
for concrete strength in which the control is poorer than
average and should be used where extreme values are
important. Shalon and Reintz61 have shown that the normal
curve as a general assumption is valid but in almost every
case a skew towards the higher strengths was obéerved,

especially for cases of high coefficient of variation. Using
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the x2 test as a measure of discrepancy, a discrepancy was
observed between the actual distribution and the normal
distribution at the 5% level of significance for a
coefficient of variation of 23% whereas for a coefficient of
variation of 14.2% practically no skew was observed.
Freudenthal24 suggests the use of the log=normal or the
extreme distribution to better describe the tail area but
the extreme distribution = has the disadvantage of

matheratical complexity.

Table 4.1 is a collection K of data from a number of
statistical studies of concrete strength. The najority of
reéeaichers have used a normal distribution due to its
simplicify and the fact that in concrete control it is the
central area of the curve that is important. Due to this,
studies in concrete control are generally not concerned with

the tail areas of the distribution.

For concrete strengths with a coefficient of variation
of 15% or lower the normal curve describes the variation in
the concrete strength as well as any other distribution. For
cases where the coefficient of variation is greater than 15%
a skevwed distribution is observed for which a log=normal
transformation becomes valid to increase the accuracy in the

tail areas of the curve.
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Table 4.1

Concrete Strength Variability

f T T T 1
{ { | I |
| Source | Test { Type of { Coefficient of|
| | { | |
| + T + | {
| { i { | : l
{ | Type | No. | Distribution} Variation % |
| | | { ' I {
H 4 4 + + |
I _ | | | | _ |
fJualian 19501 cyl. | 861 { Normal { 10. 4 |
{ { { { , { |
{Cunmings 1953 cyl. | 208 | Normal | 9.3 {
|- | | | |
|Shalon 1855| cube | === | Normal | 14.2 |
i | ( { (. l
i " " | cube | =< | Log=normal | 23.6 {
i I | { | |
|Bloenm 19551 cyl. | 1429 | Normal | 1.4 |
{ | | | { {
i " " § cyl. | 354 | Normal | 16.4 I
| | R | { |
| Fagner 1955| cyl. | 613 | Normal | 11.8 {
| | { | | {
|Erntroy 1960} cube | 4000 | eececw=- { 20.0 {
| { i | { |
IMalhotra 1962f cyl. | 68 | w==ece- i 13.5 {
| { | i { |
|Wagner 19631 cyl. | 688 | Normal { 12.4 |
{ | | | | i
| " " { cyl. | 688 | Normal { 15.2 {
| _ i l | | |
| BPR 1963{ cyl. | 975 | Normal { 12.4 |
| , [ | | { |
{ " 1964 cyl. | 200 | Normal | 10.9 {
| i l | | |
{Virginia 1965| cyl. | 210 | Normal i 7.2 |
| | | | | |
| Hwy. | l ( | {
{ | i i { |
j Soroka 19681 cyl. | 68 { Normal | 15.2 |
| { | { | |
IRiley 1971} cyl. 50,000 | Normal | 13.6 |
| | | | |
1 A 4 1 J

A




53

4.1.3 Statistical Description of Concrete Strength

Variation

The average strength and variation in strength of
concrete cylinder tests may be described by the mean,
standard deviation and coefficient of variation. The
coefficient of variation has become the accepted measure of

concrete strength variation.

»Depending on the control of thé concrete operations the
coefficient of variation may range from 5% for laboratory
conditions to as high as 3C% for uncontrolled conditions.
The 30% value is unacceptable under present construction
techniques and the 5% value is not practical for field
conditions. On the Skylon Tower37 at Niagara Falls, Ontario
coefficients of variation ranging from 6.8% +to 9.8% were
achieved using exceptional control methods. This suggests a
minimum value for site conditions. The Bureau of
ReClamationZ consistently achieves a  coefficient of
variation of about 15% which suggests a value for better
than average control or good control. Table 4.1 indicates
that the coefficient of variation ir many cases is between
15% and 20% which'suggests that 20% is a reasonable maximunm

value,

An ASTM2 task force working on the question'of'concrete
strength suggested a coefficient of variation of 20% when no
control data is available for the average job. Figure 4.1

illustrates that the coefficient of variation varies but, on
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the average, 1is less than 20%. In this study the levels of
control were divided into three classes with corrésp0nding
coefficients of variation as follows:

‘Excellent Control 10%

Average Control 15%

Poor Control 20%

The total variation in concrete strength must include
'the»variatiqn in concrete strength within a single batch.
‘Thisl_in batch test vafiation may be considered as a
vériatiqn in testing procedures or a variation in the~a¢£ual
conqrete‘strenéth. The variatioﬁ in concrete strength 'inv'a
single batch . will- include the = effects  of ! mixer
inefficien&ies. Coﬁpérison of samples taken from different
locations in the mixer may be used to evaluate the variation
vithin a single batch. In this study the levels of control
for within bafCh tests were divided into three classes with

corresponding coefficients of variation as follows:

Excellent Control 4%
Average Control 5%
Poor Controi ' 6%

'.figure' 4.1 illustrates that the standardvdeviation and
the coefficient of variation .are not a constant for
_different . strength levels. Due to this the mean strength
along with the coefficient of variation is reguifed to
adequately_describe the strength variation. Thé relationship

~ between the mean strength and the standard deviation shown
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in Figure 4.1 was developed usin§ fhe data from several
continents. The relationships shown by Murdock, Erntroy and
Rusch+? ihdicate that above a certain valué.of mean strength
theAstandard deviation remains conétant while below this
value the coefficient of variation remains constant. The ACI
\data indicates a constant standard deviation for all

stréngth levels.

The differences in values reported by the différent
sources may be partially ekplained}by the type of data used.
The spedimens of Erntroy and Murdock4? were 6 in. cubes
while the ACI/specimens were standard cylihders. The data
reported by Rusch®? contains test specimens of both types.
Neville*é notes that cube tests tend to be more variable
than cylinder tests; The relationship repo;ted by Erntroy
and Murdock were based on individual test values whereas the
ACI values'Were based on two specimens per tesf; The Rusch

data again contains both types of data.

on the baéis of test data available and repofted it
appeérs that the standard deviation remains constant for
concrete strengths above a value of 3500 to uoob psi. and
the coefficienttof variation is constant for strength levels

below 3500 psi. .

4.1.4 Cylinder Strength vs. Design Strength

The average concrete strength required by the ACI
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Building Code3 must exceed the value of the design strength,

fe

o by at least:

400 psi. if the standard deviation is =300 psi.
550 psi. if the standard deviation is 300 to 400 psi.
700 psi. if the standard deviation is 400 to 500 psi.
900 psi. if the standardldeviation is 500 to 606 psi._

If the standard deviation of the test cylinders exceeds
600 psi. or if a suitable record of test results'is not
availabie proportions shall be used which provide an average
strength 1200 psi. greater than the design strength. After
test dgta becomes available the amount by which the average
must exéeéd the design strength may be reduced such that the
probability of a test being 500 psi. below +the design
strength is 1 in 100 and the probability of the average of
three consecutive tests being below the design strength is 1

in 10C.

The amounts by which the average strength must exceed
the design strength in the ACI Code are based on the
following criterias:

1. The probability of less than 1 in 10 that a randon
individual strength test will be below £2.

= 1
fcr fc + .1.2820 (4.1)
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2. The probability of 1 in 100 that an average of three

consecutive strength tests will be below .

= 1
fCr = fC + 1.3430‘ (4.2)

3. The probability of 1 in 100 that an individual

strength test will be more than 500 psi. below fé.

£ = £1 + 2.3260 -500. (4.3)
vyete:
:fé = the design concrete strength
'.fCr = the average cylinder strength

o = the standard deviation individual tests

4.1.5 In-situ Strength of Concrete

The concrete strength in a structure is not <clearly
defined as some specific multiple of the standard cured
cflinder strength. Most researchers agree that the strength
of the concrete in the structure is somewhat lower than the

standard test cylinder strength.

i

Tests by Petersons48 on columns under well controlled
.laboratory conditions suggest that the strength of the
concrete in the structure ranges from 90% to..70% of the
standard cylinder strength. Bloem!2 suggests the strength of

the concrete in columns is 80% of the standard cylinder
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strength for all but the top 10 in. of the column. Allen'sSs
study of beams failing in flexure suggests the strength of
concrete in the cases of éompression failure to be 90% of
the cylinder strength. Table 4.2 gives the average ratios of
core strengths to cylinder strengths from various

researchers.

~ Petersons*é reviewed the data available on core
strength as compared to standard cylinder strength and
concluded that the three most important factors 'affecting

the Strength_of the concrete in the structure are:

1. The strength level of +the concrete= The ratio
between the strength of the concrete in the structure and
the standard cylinder strength decreases as the strength

level increases.

2. The curing of the concrete- The difference between
the minimum curing acceptable and good «curing can be

approximated by a factor of 0.9.

3. The location of the concrete in the structure- Tests
by several researchers have indicated that the concrete in
the +top foot of columns is weaker than the concrete in the
remainder of the .column. This .may be explained by the
inéreased water cement ratio at the top due to water
migration after the concrete is placed. The reduction in
strength 1is of the order iof 15% of the strength of the

remainder of the colunmn.



Table 4,2

Concrete Strength in Structure vs. Cylinder Strength

L L3 . 1
| { Core Strength {
| Researcher | Ratio {
i { Cylinder Strength |
t 4 {
l : 1 |
| Kaplan { C.74 {
| ' | . |
{ i 0.96 {
i | { |
| | 0.90 {
1 . | {
| Petersons { 0.90 {
{ ' | |
i | 0.88 {
. I |
| Bloem | .83 {
. | I
{ Campbell and Tobin | c.87 |
{ ' | {
4 1 ) ]
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The reduction in the concrete strength in the structure
is partially offset by the requirement +that the average
cylinder strength must be from 700 to 900 psi. greater than
the design strength to meet existing design codes. Based on
this observation and on the equations from Allen and Bloem*o-
the mean strength for minimum accepfable curing may be
expressed as:

fc(structurej = (0.675fé + 1.1) ksi (4.4)

4,1.6 Probability Model for Concrete Strenqgth

The variation in concrete strength was described with a

normal distribution and a mean value of:

0.78f' + 670 f!

f = ]
c f? ? real fcyl (4.5)
c c test ’

with a coefficient of variation:

_ 2 2 2
vV = \[Vl v, + V5 | (4.6)
where:
%‘ = the variation in test cylinder strengths
Vé = the variation between real strength of cylinders
and reasured cylinder strengths, "in=-test
variation"
V, = the variation of in-situ strength relative to

cylinder strength
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The basic cylinder strength variation was taken as 0.15
with a basic in-test variation of 0.04 and a variation of
0.10 for differences between in-situ and test cylinder
strengths, Checks were also made with test cylinder
variation of 0.10 and 0.20.

4.2 Reinforcing Steel Variability

————

The variability‘of the strength of the reinforcing
steel was described with a normal distribution as well as a
modified log-normal distribution. The complete discription
-of_the reinforcing steel strength distribution used is given
in Appendix A.

4.3 Cross Section Dimensional Variability

4.3.1 Introduction

Geometric imperfections are the variations in the
dimensions, shape, lines, grades and surfaces of as=built
structures compared to the specified values. Variations in
Cross section dimensions, verticality of columns;
ﬁisalignment and intial curvature of columns are inevitable
in structuree. Geometric imperfections arrise during each
phase of the construction process. Variations in the size
and shape are particularly dependent on the size, shape and
quality of the forms used for manufacture. Setting out and

assembly affect the geometry of the overall structure and
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are dependent on construction techniques and construction

and inspection personnel.

Data frqm field measurements of imperfections is needed
for various purposes such as for the evaluation of specified
toleranbes, construction performance and theoretical
probability models. It is important that data be collected
which is complete and unifornm. Unfortudately at present
there 1is not a uniform method of coliecting and reporting
this data. Without some degree of standardization it is
difficult to compare the results of measurements made by

'various investigators with any degree of reliability.

4,3.2 Probability Model for Cross Section Dimensions

2he variation ir column cross section dimensions has
been reported by Tso and Zelmanb9, Their results are
summarized in the histogram in Figure 4.2, The dimensional
measurements were made to the nearest 1/4 in. in conjunction
with a study of the strength variation in concrete. The data
is based on 299 columns from 8 buildihgs. The nominal
dimensions ranged from 12 in. to 30 in.. Usually two
measurements were made at each of five levels over the
storey height of the column, The mean variation was found to
be + 0.06 in., that is, the width or thickness averaged 0.06
in. 1larger than the specified value with a standard

deviation of 0.28 in.. Tso and Zelman'sé? measurements

indicate the distribution of dimensional variations to be
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normal.

The variation in the dimensions of one size of column
has ﬁeen reported by Hernandez and Martinez2®. Their results
are summarized in the histogram im Figure 4.3. The
measurements were made at five levels over the étorey height
of the column. At each level the width and thickness were
measured at each face and at the centre line of the column.
Seventeen columns were studied with a nominal cross section
of 11.811 in. (30 cm.) by 19.685 in. (50 c¢m.). A mean
variation was found to be + 0.15 in., that is, thevwidth or
thickness averaged 0.15 in. larger than the specified value
with a standard deviation of 0.157 in.. A normal
distribution also describes the - variation in columrn

dimensions reported by Hernandez and Martinez?28,

Fiorato23 has reported a mean deviation of 0.0118 in.
(0.3 mﬁ.) to 0.276 in. (7.0 mm.) with a standard deviation
ranging from 0.063 in. (1.6 mm.) to o.isu in. (3.9 am.) for
precaét beams and columns ranging in size from 7.87 in. (200
mm.) to 23.62 in. (600 mm.). These values are based on a
collection and comparison of published data from field
measurementé, primarily from Sweden. These values may not be
considered comprehensive but do’give an indication of the

variations which may occur in prefabricated structures.

As stated earlier, due to inconsistencies in measuring
and reporting techniques, comparison of data on column

dimensions from various researchers is difficult. The
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majority of researchers are interested in actual

construction tolerances in which a wmaximum and minimum
tolerance is reported rather than a mean value and its

standard deviation.

In this study a normal distribution ‘was used to
describe the variation in column dimensions with a mean
value of + 0.06 in. and a standard deviation of 0.28 in..
Tso and Zelman's®é? results were used since they are based on
North American data and are based on a larger sample size'

than that obtained by Hernandez and Martinez2s,

4.4 Reinforcing Steel Placement Variability

RedkopS3 has developed models describing the error in
placing reinforcing steel in rectangular tied columns based
on test data from measurements on several columns in several
buildings. He describes the variation in steel placement
with respect to the specified cover for the steel in the
exterior layers and the specified position for the interior
steel. The error in steel placement may be described by the
normal probability distribution. RedkopS3 observed that the
placement error was a function of the column size as weli as
construction practices. Since statistical data available
does not suggest a complicated relationship, a 1linear
relationship between column size and placement error was

assumed with a normal distribution of scatter.

Based on Redkop*sS3 data the error in placement of the
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interior steel may be described with:

e = 0.04 in.
n

o = 0.2035 + 0.0329 h 4.7

The placement of the steel in the exterior layers nmay

be described with:

C,6 = Csp + 0.250 + 0.0039 h | (4.8)
o = 0.166
. where:

e, = placement error of interior steél in inches.

o = standard deviation in inches.

h = column dimension perpendicular to the neutral

axis.
C, = actual cover of exterior steel in inches.
cSp = specified cover of exterior steel in inches.

Based on Redkop'sS3 data the mean variation in concrete

. cover of the exterior steel is + 0.315 in., that is, the

actual cover on the average is 0.315 in. larger than the
'specified cover, with a standard deviation of 0.166 in..
Hernandez and Martinez report a mean variaton of + 0.473 in.
with a standard deviation of 0.13 in.. The smaller standard
deviation of the Mexican data is due to measurements being

taken only from one size of column whereas the measurements
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reported by RedkopS3 were taken from various sizes of
columns. Figure 4.4 is a histogram summarizing the results
of concrete cover reported by Hernandez and Martinez!?., The
normal distribution may be used to describe the variation in

the concrete cover feor both sets of measurements.

In this study the error in steel placement was
described by Equations 4.7 and 4.8 with a normal
distribution. Negative cover is not a problem since with 1

1/2 in. nominal cover negative cover does not occur before

‘the value of cover is the mean value minus 10.54 standard

deviations. The probability of the value of cover being the
mean value minus eight standard deviations is approximately

6.22x10-6.,
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CHAPTER V

THE MONTE CARLO STUDY

5.1 size of Columns and Reinforcement Studied

For this study the size of columns and reinforcement
selected was based on a limited study of columns in existing
structures. A columh take=off was domne on five buildings
including a high rise office building, a parking garage, a
university bﬁilding, a hospital and an -industrial type

‘building.

Figure 5.1 is a histogram of the frequency of column
size vs. COlumﬁ size. This histogram indicates that the
majority :of "columns are 24 in. or smaller. The high
percentage of columns in the 52 in. to 56 in. range is due
to the small number of buildings studied in which one was a
high rise uith large columns throughout. From the histogram
' of column sizes the 12 in. column and the 24 in. column vere
- taken as representative of the smaller and larger sizes of

‘columns.

Representative reinforcing  steel percentages were
chosen in the same manner as the column sizes. Figure 5.2 is
a histogranm 6f the reinforcing steel percentage used in éll
columns. Figures 5.3 through 5.5 are histograms of steel
percentagéS‘used in thé various sizes ofvcolumns. From these
,histograms it can be seen that the most commonly used - steel
percentage ranges from 1% to 3%. Based on.these histograms a

71
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steel percentage of 1% was chosen for a lower limit and a

steel percentage of 3% was chosen for an upper limit.

The final column cross sections chosen are shown in
'Figure 5.6. The basic column was 12 in. by 12 in. with a
nominal steel percentage of 1%. A 24 in. by 24 in. column
was chosen to have a low variability of strength with a
nominal steel percentage of 3%. The nominal or designer's
concrete and steel strengths were 3000 psi. and 40000 psi.
respectively. These strengths and properties were chosen to
get an estimate of the upper and lower bounds of the

variabilities.

Interaction diagrams for the two sections are presented
in Fiqures 5.11 and 5.12 and will be dicussed more fully in
Section 5.4. The balanced eccentricity, eb/h, was 0.4 for
the 12 in. column and 0.5 for the 24 in. column. The columns
are fully described in Appendix B with their ~nominal
properties and the mean values and standard deviations of

the variables affecting column strength.

2.2 Size of Sample Studied

For this study a sample size was required which would
give reasonable results compared to a large sample size
without using an excessive amount of computer tinme. Sample
sizes of 1000, 50C and 200 vwere used to determine the

smallest practical sample size.



78

-« 12 in >
3
' @ N——— 4# 6 bars
p=122%
£
o
JF——————'#3@12im
. . \ 7
Y
- 24 |n >
(e 12# 11 bars
p=3.25%
£
S
e #4 @ 12 in.
l 2 \ /4

Figure 5.6 Final Column Cross Sections Studied



79

Figure 5.7 is a plot of the mean value of Ptheory/PACI
vs. e/h for each sample size. The mean value is practically
independent of fhe sample size so that any of the sample
sizes could be used to determine the mean value of

Ptheory/PACI.

Figure 5.8 is a plot of coefficient of variation of the
ratio Ptheory/PACI vs. e/h for the three sample sizes. The
coefficient of variation for the sample size of 500 is
practically the same as the coefficient of variation for a
'éample size of 1000 over the range of e/h less than 1.0.
Since a good correlation was found between the sample size
of SOC and the sample size of 1000 below an e/h value of 1.0
the sample size of 500 was acceptable when the mean and

coefficient of variation were needed as output,

Figure 5.9 is a plot of the coefficient of skewness of
the ratio_ of Ptheory/PACI vs. e/h for the three sample
sizes. The coefficient of skewness for a sample size of 500
is not significantly different from the coefficient of

skevwness for a sample size of 1000,

Tables 5.1 through 5.4 are tables of comparison of the
mean values, coefficients of variation, coefficients of
skewness and kurtosis of +the ratio of Ptheory/PACI for

sample sizes of 200, 50C and 1000.

All the tables and graphs of comparison indicate no

meaningful increase in accuracy in using a sample size of



8c

1.35

1.30

1.25

1.20

115

1.10

MEAN VALUE OF PTHEORY(RACI

1.05

1.00
0

Figure 5.7

0.3 0.6 0.9 1.2 1.5
e/h

Mean Value of the Ratio Ptheory/PACI vs. e/h
for Sample Sizes of 200, 500 and 1000 for a 12
in. Square Column and Modified log=normal Steel
Strength Distribution



81

16 [

COEFFICIENT OF VARIATION %

200
3500
1000
9 ] | 1 | |
0 0.3 0.6 0.9 1.2 1.5
e/h
Figure 5.8 Coefficient of Variation of the Ratio

Ptheory/PACI vs. e/h for Sample Sizes of 200,
500 and 1000 for a 12 in. Square Column and
Modified Log=-normal Steel Strength Distribution



82

1.1

COEFFICIENT OF SKEWNESS

Figure 5.9 Coefficient of Skewness of the Ratio
Ptheory/PACI vs. e/h for Sample Sizes of 200,
500 and 1000 for a 12 in. Square Column and
Modified Log-normal Steel Strength Distribution



Table 5.1

Comparison of the Mean Value of the Ratio Ptheory/PACI
_Sample Sizes of 200, 500 and 1000

LE L 1 8 M |

i { { [

. Sample | | { i

| | | A |

~ Size | 200 | 500 | 1000 {
~

~ | { i {

e/h | | | |

s [ [ |

Ny 1 1 1

il Ll v R

| l i |

c.0 | 1.22535 ! 1.22497 | 1.22010 {

| { | {

0.05 | 1.17705 { 1.17698 | 1.17245 |

| | i |

0.10 | 1.15581 | 1.15575 | 1.15143 {

' | | | |

0.15 { 1.13981 f 1.13985 | 1.13559 |

' i | [ _ |

0.20 { 1.12921 { 1.12937 § 1.12505 |

i | | [

0.30 | 1.12255 {f 1.12239 t 1.117%9¢C {

' { : | | |

0.40 | 1.12228 | 1.12039 | 1.11645 |

l i | {

0.50 | 1.06353 { 1.06030 | 1.05756 |

: { { _ { 1

0.60 | 1.04519 { 1.047139 | 1.03926 |

‘ | i I {

0.70 | 1.03560 | 1.03100 | 1.02921 |

| | | |

0.89 | 1.03162 { 1.02598 | 1.02434 {

| i | l

0.90 | 1.03116 { 1.02439 | 1.02278 |

, | | ' | {

1.00 | 1.03285 { 1.02498 | 1.02334 . |

| | | |

1.50 | 1.05147 ! 1.03976 | 1.03766 {

[ | | |

o) [ 1.02563 { 1.01%98 | 1.01551 i

[ l { |

| i | A ]
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Comparison

Ptheory/PACI for Sample Sizes of 200,

of the

Table 5.2

Coefficient

of vVvariation of the Ratio

500 and 1000

. LI Ly L] 1
l. | [ | |
| sample | ! I |
L [ [ | |
i~ Size | 200 } 500 l 1000 {
N | | [ |
| e/B~_ | l | |

~
- ~y 1 § i
[ | | | |
{ 0.0 | 0.15521 { 0.15491 | 0.15549 |
[ | | | |
| 0.905 | ¢.15230 {f 0.15159 | 0.15234 |
| [ | l |
| 0.10 { 0.14802 {f 0.1748C2 | 0.14871 |
| [ I l [
| 0.15 | 0.14625 {f O0.14549 | 0.14619 |
[ 1 | | |
1 0.20 { 0.14394 { 0.14352 | 0.14428 |
| | | | | 1
{ 0.30 | 0.13696 f 0.13693 | 0.13798 {
] - | | I 1
| 0.40 | ¢.11955 { 0.11908 | 0.12018 l
1 [ | | I
i 0.50 1 C.10186 [ 0.10190 | 0.10117 |
[ | [ | |
I 0.60 i 0.09741 | 0.09705 | 0.09620 |
| s x | |
{f 0.70 | 6.0.840 { 0.0.733 { 0.09661 |
[ [ | | |
t 0.80 | 0.10085 { 0.09929 | 0.09889 {
[ ! | | |
{ 0.90 | 0.10313 { 0.10127  0.101%24 {
[ [ | | |
} 1.00 { 0.10470 { 0.170266 | 0.10295 {
[ | | | | [
{ 1.50 { 0.10497 f 0.102417 | 0.10396 |
| | | | |
| oSO | 0.10744 { 0.10590 | 0.10441 |
| | [ [ |
[ A 'l i Jd

8u
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Table 5.3

Skewness of

Comparison of the Coefficient of the [Ratio

Ptheory/PACI for Sample Sizes of 200, 500 and 100C
q | ] T L
{ { { i {
{ Sample | i { |
L | l ( i
AN Size | 200 | 500 | 1000 {
1 N [ | | |
| e/h>( l | | i

~N

! ~ : . .
| ] Rj A L
| ! | - |
I 0.0 { 0.24511 I 0.70136 | 0.0u4325 (
| { 1 i |
| 0.05 | €.22741 { 0.08661 | 0.02044 {
l [ i | |
i 0.10 | 0.20932 { 0.06424 | =0.00657 {
{ { ' | | |
| 0.15 | €C.19112 | 0.04905 | =0.01670 |
l | i | |
| 0.20 | C.17406 { 0.03912 | =-0.01357 {
1 | i { : |
f 0.30 | 0.13074 | -0.00716 | -0.03286 {
1 | i l |
| 0.40 | 0.14910 | =-0.02379 | =-0.06445 {
i | | | |
I 0.50 | 0.12192 | -06.00978 | 0.05817 |
| i i | |
i 0.60 | 0.33447 f 0.18334 | 0.30627 |
| | | | |
{ 0.70 { 0.53488 I 0.36708 | 0.51101 {
{ ! [ i |
| 0.80 | 0.65065 i 0.49013  0.64057 |
| i l l |
{ 0.90 { C.70518 { 0.55422 | 0.71160 |
| | | i |
{ 1.00 i 0.72474 | 0.57855 { 0.74623 {
{ | | | |
i 1.50 { 0.65006 { 0.50968 {( 0.72784 |
| l | | |
| oo | €.82210 { 0.68282 | 0.81786 |
| | | i |
1 I — J ]

Normal and log=normal distributions have coefficients of

skewness of 0.0 and 0.5 to 1.5 respectively.



Comparison

Ptheory/PACI for Sample Sizes

of the

Table 5.4

Measure

of

Kurtosis

of the

of 200, 500 and 1000
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Fatio

L | L L L3 ]
| | { { i
| Sample | { { {
L [ ’ I | {
i~ Size | 200 { 500 | 1600 |
| S | { | |
I e/h < | | | {
i S| i [ l
N >4 4 + +4
| I { { {
i 0.0 | 3.43756 | 3.09968 { 3.05566 |
i | { . {
I 0.05 { 3.49080 i 3.11334 | 3.07339 |
1 | | i {
{ 0.10 i 3.49196 { 3.11702 | 3.08846 {
i | o | | {
| 0.15 f 3.46624 | 3.10238 ( 3.08172 i
[ i i { |
B 0.20 | 3.42402 | 3.07604 i 3.05890 |
| : { | { {
i 0.30 I 3.41098 | 3.03726 { 3.03096 |
l l { i {
/ | 0.40 I 3.39169 1 3.13717 { 3.16894 {
| i { { {
{ 0.50 | 3.45578 l 3.18934 i 3.30727 |
[ | [ l |
| 0.60 | 3.28053 | 3.10547 | 3.50337 |
| { { { |
] 0.7¢C { 3.15174 { 3.11376 | 3.72044 |
! | { | {
i C.80 i 3.10245 i 3.15105 i 3.88468 |
{ | | { |
| 0.90 ] 3.09217 | 3.16791 | 3.99297 |
{ i { { |
| 1.00 | 3.09422 i 3.15747 | 4,.06460 |
| | i i {
i 1.50 } 3.07980 | 2.96226 I 4,01951 |
| { | { {
| oo { 3.19293 | 3.09842 { 4,08547 |
I | | { |
[l [ ] ER J

A normal distribution has a Kurtosis of 3.0.
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1000 over a sample size of 500. On this basis sample size of

500 was used for all subsequent calculations.

i S — < > o S e

5+3.1 General:

In this Monte Carlo study the relationship between the
theoretical axial load-moment interaction diagram and the
ACI axial load-moment interaction diagram was determined.
This relationship was calculated using the Ménte Carlo
Technique to give the mean ratio of the theoretical strength
divided by the ACI strength along with its standard
deviation at.various e/h values., From the mean ratio, the
standard deviation and the type of distribution an

understrength or ¢ factor was calculated.

To aid in the development of an understrength factor
the effect of the variation in concrete strength, steel
strength, cross section dimensions and location of the
reinforcing steel was studied. In addition the effect of the
type of distribution of steel strength used was studied
using a normal distribution and a modified log-normal

distributiorn.

9.3.2. The Effect of Steel Strength Distribution Used

The effect on the strength of the column cross section
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of the type of distribution of steel strength was studied
using a normal and a log=normal distribution of steel
strength. Both types of distribution can be fitted to the
data on steel strength as shown in Appendix A. Tables 5.5

through 5.8 are tables of comparison of the nmean values,

coefficients of variation, coefficients of skewness and

measure of kurtosis of the ratio Ptheory/PACI for

calculations based on steel strength normally distributed

and steel strength which follows a modified log-normal

distribution.

The distribution assumed for the variation in the steel
strength did not significantly affect the mean ratio of the
theoretical strength to the ACI strength as shown in Table
5.5 but did affect the distribution of the ratio in the
tension failure region of the interaction diagram. When the
modified log-normal steel strength distribution was used,
the distribution of the ratio of theoretical strength to the
ACI strength approached a log-normal distribution for values
of axial 1loads below the balance point. If a normal
distribution of the steel strength were used, this ratio was
normally distributed. This is shown by the coefficient of
skewress given in Table 5.7. For normally distributed steel
yield strengths tke coefficient of skewness remained close
to zero throughout corresponding to a normal distribution.
With the log-normal assumption the cbefficient of skewness
approaches 1.0 for tension failures corresponding to a log-

normal distribution, ( See also Figure 5.9 ). The use of the
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Comparison of the Mean Value of the Ratio Ptheory/PACI for a

Normal and a Modified Log-normal

Steel Strength Distribution

Ll L8 L 1
( [ | {
L\ Distribution] | |
'~ 1 | |
{ \\\Type | Normal | Mod. log=normal |
| \il | [ |
| e/h~ | { |
! St [ [
L ~ ¥ d
L) i T L}
| { | {
| 0.0 | 1.22495 | 1.22497 |
| ' { { {
| 0.05 | 1.17712 ) 1.17698 {
{ l | {
| 0.10 { 1.15605 | 1.15575 |
| { | i
| 0.15 { 1.14012 | 1.13985 |
| | { {
| 0.2¢C | 1.1294¢6 | 1.12937 |
| ! l |
| 0.30 { 1.12212 1.12239 |
| { ' | |
| 0.40 { 1.12012 4 1.12C39 |
| | | l
{ 0.50 | 1.05996 | 1.06030 |
{ | | i
| 0.60 | 1.04162 | 1.04139 |
( { | |
| 0.70 | 1.03157 | 1.03100 I
| | { l
{ ¢.80 | 1.02663 | 1.02598 i
| | { |
[ 0.90 i 1.02495 | 1.02439 i
{ 1 [ |
| 1.00 | 1.02535 1.02498 |
{ | | |
| 1.50 | 1.03889 | 1.03976 {
{ | { !
| O | 1.01677 | 1.01598 |
| | | l
| . A 'l [ ]




Comparison of the

Table 5.

Coefficient

Ptheory/PACI for a Normal and a

Strength Distribution

6

Modified

Log=normal

q LM 1
N | l
L\ Distribution | |
| N | | |
| \,\Type | Normal | Mod. log=normal |
| \h\ { | |
| e/ { f {
i AN | 1
L Y| 1 ]
| 3 Bl i |
| | | : l
| 0.0 | 0.15464 | 0.15441 |
| _ | | (
i 0.05 1 - 0.15189 { 0.15159 |
| | | |
{ 0.10 { 0.14831 | 0.14802 i
{ { | {
{ 0.15 | 0.14576 | 0.14549 |
| | | i
| 0.20 | 0.14378 | 0.14352 |
i | { |
l .30 | 0.13729 | 0.13693 |
| { l |
| 0.40 { 0.12078 | 0.11908 |
{ | | {
| 0.50 | 0.10391 | 0.10190 |
| | | |
| 0.60 { 0.10051 | 0.09705 {
| i | |
| 0.70 i 0.10183 | 0.09733 {
| | | |
| 0.80 | 0.10437 | 0.09929 [
| | { |
i 0.90 | 0.10658 | 0.10127 |
| | | |
] 1.00 | 0.10798 | 0.10266 l
| | { {
i 1.50 | 0.10689 | 0.10241 |
| { | |
( oo | 0.10807 | 0.10590 l
! ! } !

REU

of Variation 0of the PRatio

Steel
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Table 5.7
Comparison of the Coefficient of Skewness of the Ratio

Ptheory/PACI for a Normal and a Modified Log-normal Steel

Strength Distribution

|
L\ Distribution

L3 L Al

| { {

| | {
(AN | | {
I < Type I Normal | Mod. Log-normal |
l S o | | |
| e/BN | |
| ~ | i
b ~y 1 1
| | | |
| 0.0 | 0.09843 | 0.10136 {
{ | [ i
i 0.05 | 0.08254 | 0.08661 {
[ { I |
{ 0.10 { 0.05519 | 0.06424 {
{ I | |
i 0.15 | 0.03722 | 0.04905 (
[ | I |
{ 0.20 | 0.02797 | 0.03912 {
l | [ |
| 0.3¢C { -0.00223 | -0.00716 |
| i i |
i .40 | =0.04916 | -0.02379 |
| | | |
i .50 | -0.10565 | 0.00978 {
| l | i
| 0.60 | -0.08048 | 0.18334 |
[ | i {
| 0.70 i -0.03075 | 0.36708 {
| i | |
{ 0.80 | 0.00709 | 0.49013 |
l | { |
{ 0.90 | 0.02321 | 0.55422 {
| | | |
| 1.00 { 0.02142 | 0.57855 {
{ | i |
| 1.50 | -0.0G3508 | 0.50968 {
| | | i
i oo i 0.04325 | 0.68282 |
| | | |
L y | i | '
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Ptheory/PACI for a

Normal

Table 5.8

Measure

Distribution of Steel Strength

and

of

a

Kurtosis

Modified
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of +the FRatio

Log=normal

1 L | A
l | | {
k Distribution| { {
I~ l | . {
I O~ Type | Normal | Mod. Log=normal |
| \\h { i l
I e/h™~ 1 i |
~
! - | !
L B A ', 1
| | [ . (
i 0.0 | 3.10221 I 3.09968 |
| | { |
i ¢.05 i 3.11561 | 3.11334 |
| | 1 i
} 0.10 1 3.12425 | 3.11702 |
| | { {
i 0.15 | 3.10326 | 3.10238 {
| i l |
| 0.20 } 3.06481 i 3.07604 {
i | | |
i C.30 { 3.04098 { 3.03726 }
i { , | |
{ c.a0 | 3.13422 | 2.13717 |
{ { | {
{ 0.50 i 3.18301 f 3.18934 |
| | { |
| 0.69 i 2.95718 | 3.10547 i
I I 1 |
| 0.70 | 2.81651 | 3.11376 |
| f { |
{ 0.80 i 2.76677 | 3.15105 {
i { | {
| .90 { 2.74429 | 3.16791 {
| | | |
{ 1.00 | 2.72148 | 3.15747 |
| l | |
| 1.50 { 2.65068 | 2.96226 |
| | | |
i ! 2.6943¢9 | 3.09842 {
A | [ {
[ A ) }
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modified 1log~normal steel strength distribution resulted in
a larger ¢ factor at the 1% level of probability of failure
than that for the normal distribution of steel strength in
the tension region of the interaction diagram. The

calculation of this term is discussed in Section 5.5.

The type of steel strength distribution used did not
significantly affect the calculated value of the ¢ factor at
the 1% level of probability of féilure in +the compression
" failure region of the interaction diagram. The distribution
of the ratio of the theoretical strength to the ACT strength
in the compression failure region followed a normal
distribution for both types of steel strength distribution.
This may be explained by the failure in the compression
region being dependent on the concrete strength rather than

the steel strength.

5:3.3 The Effect of The Concrete Strength Variation

The effect of the coefficient of variation of the
concrete cylinder strength was studied by keeping all other
variables at their mean values and using a cylinder strength
variation of 10%, 15% and 20%. The overall coefficients of
variation of in-situ strength were 13.6%, 17.6% and 22% as
computed per Eqn. 4.6 in Section #.1.6. Tables 5.9 through
5.11 are tables of comparison the mean values, coefficients
of variation and skewness of the ratio Ptheory/PACI for

various values of e/h and cylinder strength coefficients of
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Table 5.9
Comparison of the Mean Value of the Ratio Ptheory/PACI for

Concrete Cylinder Strength Coefficients of Variation of 10%,

15% and 20%

T 1
| : |
Lpoefficient of |

r
|
|

I~ { |

{
|
|
{
—

{ < Variation| 10% 15% 20%
e/h N
~
0.0 1.18146 1.22622 1.28386

1.13652 1.17774 - 1.23088

1.11642 1.15546 1.20598

1.10207 1. 14005 1.18897

1.09345 1.13111 1.1791¢C

1.12616 1.17157

1.08946 1.11784 1.15384

1.04264

1.03276 1.04554 1.06304

1.02775 1.03794 1.05140

1.02602 1.03474 1.04549

1.02646 1.03426 1.04316

1.02829 1.03544 1.04310

1.04443 1.04915 1.05515

1.01756 1.02138 1.02887

-‘-—————-‘.——-—.—_-—-—.——.-«—.—_—.——-——-——_—.——-4-———-————-‘

| |
| |
: X
{ {
| |
| !
( |
| I
| |
| |
| f
| [
| |
| |
I 0.30 { 1.09010
| ' !
{ |
l {
| |
| |
| l
i |
! |
| |
| |
| |
| |
i {
| !
I |
! I
! |
I |
| (
[ A

|
l
|
|
|
|
|
|
{
|
|
|
|
|
|
1.06022 | 1.08u408
{
|
i
|
|
|
|
|
|
!
|
|
|
|
|




Comparison of the Coefficient of Variation of the

Table 5.10

Ratio
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of

Ptheory/PACI for Concrete Cylinder Strength Coefficients of

Variation of 10%, 15% and 20%

r

|
Lgoefficient of

RN

L 3 LM LB 1

| l | {

{ | i {

| { | {
{ \‘fariationl 10% | 15% | 20% {
i ' X ~ | { | |
| e/ ~ { | | |
| Sl | ! |
F . 4 + 1
| { | { |
{ 0.0 | 0.11363 | 0.14790 | 0.18607 |
I | { { |
{ 0.05 | 0.11066 | 0.14377 | 0.18100 |
{ | | | {
| 0.10 i 0.10804 | 0.14022 | 0.17669 |
| { | i ' {
| 0.15 { C.10695 | 0.13842 | 0.17369 |
i i | { ]
{ 0.20 | 0.10667 | 0.13762 | 0.17215 |
{ | | | {
| 0.30 1 0.10229 | 0.13189 | 0.16487 i
{ | { { |
{ 0.40 ] 0.08303 | 0.10936 | 0.13953 |
| | | I |
{ 0.50 | 0.05665 | 0.07589 | 0.10000 |
| { | | {
| 0.60 | 0.04427 | 0.05873 | 0.07803 |
| { | | {
| 0.70 | 0.03672 { 0.04840 | 0.06355 |
| | { | |
| 0.80 { 0.03191 | 0.041917 | 0.05381 |
{ | { | |
{ 0.90 | 0.02881 | 0.03789 | 0.04742 |
i | ' i i |
| 1.00 | 0.02679 | 0.03551 | 0.04337 |
| f | { {
{ 1.50 ( D.02844 | 0.03400 | 0.03872 |
| | | l |
| oo | 0.02689 | 0.03184 | 0.03738 |
| { i { {
L 1 A L J




Comparison of the Coefficient of Skewness of the

Ptheory/PACI

Variation of 10%, 15% and 20%

Table 5.11

Ratio
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of

for Concrete Cylinder Strength Coefficients of

L e V € T L R
| | l | |
|Coefficient of| | i |
NN I [ [ [
| \~\yariation| 10% [ 15% { 20% {
i ~ | { i {
i e/h ~ | | | l
l ' | | { |
F n 4 -+ |
| v | | | |
| 0.0 I 0.02523 | 0.02478 | 0.02786 |
| i | | |
1 0.05 {(=0.01578 { =-0.01428 '} 0.00366 |
{ S l { | |
] 0.10 {=0.04927 | =-0.03626 | =0.00627 |
| ! | | |
{ 0.15 [=0.05004 | =-0.04489 | =-0.02282 |
{ | A | | (
| 0.20 =0.02722 | =0.04231 | =-0.04249 |
i | | | |
{ 0.3¢C {=0.C1351 | =0.05370 | =0.G7949 |
| | : { | i
i 0.40 |=-0.17206 | =0.15911 {f =0.17109 |
| | | | |
| 0.5¢0 [=C.21277 | =0.22505 | =0.23879 |
| { i | |
| 0.60 |[=0.38463 | =-0.30449 | =0.35791 |
| | { ) | {
| 0.7C {(=0.50581 | =-0.38219 | =0.50237 |
i | { | |
i 0.80 |[-0.56889 | =0.43285 | =0.62403 |
[ i | | |
| 0.90 {=0.55617 | =0.41673 | =0.67631 |
| | | { {
| 1.0C -6.47411 | =0.32853 | =0.65730 |
| | I |
| 1.50 | 0.09033 | =-0.05914 | =0.51679 |
| | I { |
{ oD | 0.26793 | 0.41395 | 0.39448 |
| | { | {
i A1 y | A |
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variation.

The mean value of the ratio Ptheory/PACI increased in
the compression failure region of the interaction diagram
with increasing cylinder strength coefficient of variation.
This increase may be explained by the increased mean
concrete strength required by ACI 318=71 Section 4.2 to
account for the increased coefficient of variation. There
was no significant increase in the theoretical strength in
the +tension region due to the increased mean concrete
strength. Again this may be explained by the compression
failures deéending on the concrete strength and the tension

failures depending on the steel strength.

As the coefficient of variation of the concrete
cylinder strength was increased the overall coefficient of
variation of the ratio Ptheory/PACI increased. Again the
increase in overall coefficient of variation was greater in
the compression region of the interaction diagram where the
concrete strength has more effect on the cross section

strength than in the tension failure region.

5:3.4 The Effect of The Variables Studied

The effect of the variation in concrete strength, steel
strength, cross section dimensions and location of the
reinforcing steel was determined for the 12 in. by 12 in.

cross section with a nominal steel percentage of 1%. &
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coefficient of variation of concrete cylinder strength of
15% was used for this study. Each variables effect was

studied with all other variables at their mean value.

Figure 5.10 gives a graphical representation of the
overall variation in cross section strength for various e/h
values for each of the variables and for all the variables
combined. The plot of standard deviation squared vs. e/h
indicates‘ the major component causing variation in cross
section strength in the compression region of the
interaction diagram is the variability in the concrete
strength, The effect of +the variability in the concrete
strength becomes minimal in the tension failure region. This
may be explained by the fact that the full strength of the
'COncrete is not utilized in the tension failure region such
that the high concrete strengths have no effect on the

variability of the cross section strength.

The effect of the variability in the steel strength on
the overall cross section strength vafiability is greater in
the tension region where ' the steel strength controls the
Cross section capacity. The effect of the steel strength
variability in the compression failure region is again
minimal due to the concrete strength being the controling

factor.

The effect of the variability of the concrete strength
and the steel strength are about the same at the balance

point. This 1is to be expected since the failures in a
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randonly selected sample would depend on the concrete and

steel strength equally at the balance point.

The effect of the variability in the cross section
dimensions and the location of the steel was very small for
Both compression and tension failures. The most significant
effect occured for the cases of pure axial 1load and pure

- moment.

The total variability in the cross section strength may
be closely approximated by the expression:

2 _ 2 2 2
vi-vy :
t " Ve Vs YV -1

where vV, may be the total standard deviation or coefficient
of variation and Vt:, Vis and vtd are the standard deviation

or coefficient of variation of the cross sectional strength
if only the concrete strength, steel strength or the

dimensions are varied separately.

S5:4 Cross Section Strength

Figures 5.11 and 5.12 are plots of +the interaction
curves for the 12 in. and 24 in. columns based on a modified
log-normal distribution of steel strength. The mean strength
indicated is the mean strength calculated from a sample size
of 500 wusing the Monte Carlo Technique and the theoretical
calculation of cross section strength. The maximum and
minimum strength curves are also calculated from the Monte

Carlo calculations. The ACI ultimate strength is the cross
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section capacity calculated wusing the ACI 318-71 Building
Code. The ACI factored strength is the ACI ultimate strength
divided‘by 1.4/0.7 corresponding to the lowest possible load
factor. Thé ACI factored sttength corresponds to the normal

service load conditions. The discrepancy in the nmean

strength of the 24 in. column immediately above the balance

point is due to the reinforcing steel placement in the
column cross section. As a result of the reinforcing steel

at the centre of the cross section shifting from compression

‘to tension steel the capacity of the section appears to

increase to a second balance point but the first downturn of
the curve is not a true representation of the capacity of

the Ccross section.

The dispersioh of cross section strength is plotted at
selected values of e/h. In each case the dispersion of the
CLoss séction strength is a normal distribution for the
compression failufe region and a log-normal distribution for
the tension failure region. At +the balance point ihe
dispersion of cross section strength may be represented
equally well with either a normal or log=normal

distribution.

Table 5.12 is a comparison of the mean value and
coefficient of variation of Ptheory/PACI for a sample size
of 500 for the cross sections of 12 in. by 12 in. with 1%

steel and 24 in. by 24 in. with 3% steel.

In the compression failure region the variation in the
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strength of the 12 in. and the 24 in. columns are similar

but the mean value of Ptheory/PACI is larger for the 12 in.

- column. This is due to the higher dependence on the concrete

strength. Since the ratio of the mean concrete strength to
the nominal concrete strength is higher than the ratio of
the mean steel strength to the nominal steel strength the
capacity in the compression region increases for decreasing

steel percentages relative to the ACI capacity.

The variability of the theoretical strength of the 24
in. by 24 in. column is greater than that of the 12 in. by
12 in. column in the tension region. This may be due to the
increase in steel percentage from 1% to 3%. Also the mean
value of the ratio Ptheory/PACI is larger in the 24 in.
column in the tension region due to the increased steel

percentage,

Figures 5.13 through 5.16 are cumulative frequency
Plots of the ratio Ptheory/PACI for the 12 in. and 24 1in.
columns at 'selected e/h values, A comparison of these and
similar cumulative frequency plots for a normal and a log-
normal dispersion of the ratio Ptheory/PACI and the data in
Tables 5.1 to 5.4 and 5.9 to 5.1}» suggest that for
compression failures the dispersion may be represented by
the normal distribution and for tension failures the
dispersion may be represented with a log=normal

distribution.
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5.5 Calculation of ¢ Factors

5.5.1 Based on 1 in 100 Understrength

Tables 5.13 and 5.14 are tables of the calculated ¢
factor based on a probability of understrength of 1 in 100
and a normal dispersion of‘cross section strength in the
compression failure region and a log-normal disperSion of
Cross section strength in the tension failure region. Figqure
5.17 is a plot of the ¢ factor for the 12 in. and the 24 in.
columns vs. e/h based on a probability of understrength of 1
in »100. The ¢ factors in the ACI Code are related to a

probability of understrength of 1 in 10040, -
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" Figure 5.17 The Understrength Factor ¢ vs., e/h Based on a
Probability of Understrength of 1 in 100 for
the 12 in. and 24 in. Columns
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It has been proposed that future code revisions have

factors based on the equation:

or:

where:

I

e—BaVR

-BaV
YRe R

the understrengfh factor

YueBGVu
the overload factor

Ptheory/PACI

safety index

3.5 for probability of

4.0 for probability of
the variability of the
the variability of the

0.75

failure of 1.1 x 10 ¢

failure of 3.2 x 10-s

strength or resistance

loads

(5.2)
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The o« value is used to allow the separation of the
effects of the variability of the member strength and the

variability of the member loading.

Tables 5.15 and 5.16 are tables of the ¢ factor for the
12 in. and 24 in. columns based on the above equation. In
these tables the ¢ factors are based on values of 8 of 4.0
for compression failures and 3.5 for tension failures, The
lower probability was used for the compression failures due

to the sudden brittle mode of failure.

‘The 12 in.. square column cross éection wvas chosen to
display a large variébility. For this column, ¢ was
0.78%0.03 throughout the entire range of e/h studied. The 24
in. column was chosen to have a low variability. For this
column, ¢ was 0.79%0.09. The large variability in the 24 in.
column was due to the discrepancy in the theoretical

strength discussed in Section 5.4,



Table 5.15
The Understrength Factor for the 12 in. by 12 in.
Based on ¢ = ype ~Bavp
q L3 L 3 L \
| | i | |
| e/h | Mean | C.0.V, | ¢ Factor |
| | | | |
L. 4 1 ] ;]
1 ) T T LD L
| I { ! i
| ©¢.0 I 1.22497 | 0.15441 | 0.77 l
l i | { {
I 0.05 § 1.,17698 | 0.15159 | 0.75 i
{ I | { |
{ 0.10 | 1.15575 | 0.14802 | 0.74 {
i i i { i
I 0.15 | 1.13985 | 0.14549 | 0.74 |
{ l | | |
i 0.20 | 1.12937 | 0.14352 | 0.78 [
i { { | {
I 0.30 ¢ 1.12239 { 0.13693 | 0.78 {
| i i { l
{ 0.40 } 1.12039 | 0.11908 | 0.78 l
| | - ! (
{ 06.50 | 1,066030 | 0.10190 | 0.81 |
{ { i | !
{ 0.60 | 1.04139 | 0.09705 | 0.81 |
| ' { i l l
| 0.70 | 1.03100 | '0.09733 | 0.80 |
| | { i |
i 0.8C ( 1.02598 | 0.09929 | 0.79 |
| i { | l
t 0.90 ¢ 1.02439 | 0.10127 | 0.79 |
| i ‘ i { |
{ 1.00 | 1.02498 | 0.10266 | 0.78 i
| l { l |
I 1.50 | 1.03976 | 0.10241 | 0.80 (
l | { l i
I &= | 1.01598 | 0.10590  0.77 |
| i { | ]
| — 1 'l A i |
Avg = 0.779
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Based on ¢ = y

Table 5.16

r
|
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The Understrength Factor for the 24 in. by 24 in.
ze —BaVR

L | LM i
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4 4 4 |

| | | |
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y 1 y L J

Avg = 0.794
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In fhis study probability models were developed to
describe the variability of the major variables affecting
the strength of a reinforced concrete section. Based on data
from a 1literature search the concrete strength, cross
-sectional dimensions and location of reinforcing steel were
~described with a normal distribution as described in Chapter
Iv. The steel was described with a normal and modified log-
normal distribution of yield strength as discussed in

Appendix A.

a uoﬁte Carlo study was performed using the probability
models developed to determine the variability in the cross
sectional strength of a 12 in. square and a 24 in. square
tied reinforced concrete column. The results of this study
show that the variability of the concrete strength is the
major contributing factor to «cross sectional strength
variability in the compression failure region and the
variability in the steel strength is the major contributing
factor to cross sectional strength variability in the
tension failure region. The effect on the overall strength
variability of the dimensional variability and the
vﬁriability in the location of the steel strength were found
to be minor compared to the effects of the concrete and

steel strength variability. The type of distribution assumed
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for the steel strength variability was found to
- significantly affect the overall strength variability in the

tension failure region omnly.

.The $ or understrength factors were calculated based on
a probability of understrength of 1 in 100 and based on the
first order second moment procedure developed by Cornell and
Lind. The calculated values of ¢ werev in close agreement
with those wused in the ACI 318-71 Code for column cross
sections but significantly different for the case of pure
bending. This Suggests that the ¢ factors used in the ACT
‘Code are adequate and may be conservative for rectangular
tied column cross sections but seem to be unconservative for

bending tension failures.



10.

11.

REFERENCES

ACI Committee 318, " Commentary on Building Code
Requirements for Reinforced Concrete ( ACI 318-=71 )
", American Concrete Institute, Detroit, 1971.

ACI Committee 214, " Realism in the Application of
Standard 214=-65 ", American Concrete Institute,
Publication SP=37, 1973,

ACI Standard 318-71, " Building Code Requirements for

Reinforced Concrete ( ACI 318=71 ) ", American
Concrete Institute, Detroit, 1971.

Allen, D.E., " sStatistical Study of the Mechanical
Properties of Reinforcing Bars ", Building Research
Note No. 85, Division of Building Research,
National Research Council, Ottawa, April 1972.

Allen, D.E., " Probabilistic Study of Reinforced
Concrete in Bending ", Technical Paper NRC 11139,
National Research Council of Canada, Ottawa, 1970.

Ang, A.H=S. and Cornell C.S., " Realibility Bases of
Structural Safety and Design ", American Society of
Civil Engineers, Journal of the Structural
Division, Vol. 100, No. ST9, September 1974, py.
1755-1769.

ASCE Committee on Structural Safety, " Structural Safety

- A Literature Review ", American Society of Civil
Engineers, Journal of the Structural Dbivision, Vol.
98, No. ST4, April 1972, pp. 845-863.

Baker, M.J., " The Evaluation of Safety Factors in
Structures: Variation in the Strength of Structural
Materials and Their effect on Structural Safety ",
Report, Department of Civil Engineering, Imperial
College, London, July 1970.

Bannister, J.L., " Steel Reinforcement and Tendons for
Structural Concrete, Part 1: Steel for Reinforced
Concrete ", Concrete, Vol. 2, ¥o. 7, July 1968, pp.
295=306. :

Basler, E., " Analysis of Structural Safety ", ASCE
Annual Convention, Boston, Massachusetts, 1960.

Bertero, V.V. and Felippa, C., " Discussion of Ductility
of Concrete ", Proceedings of the International
Symposium on Flexural Mechanics of Reinforced
Concrete, ASCE-ACI, Miami, November 1964, pp. 227-=
234,

120



12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

121

Bloem, D.L., ‘% Concrete Strength in Structures ",
Journal of the American Concrete Institute,
Proceedings, Vol 65, ©No. 3, March 1968, pp. 176-
187.

Bloem, D.L., " Concrete Strength Measurement-Cores
Versus Cylinders ", American Society for Testing
and Materials, Proceedings, Vol. 65, 1965, pp. 668~
686. '

Bloem, D.L., " Studies of Uniformity of Compression
Strength Tests of Ready Mixed Concrete ", American
Society for Testing and Materials, Bulletin Vo,
206, May 1955, pp. 65=70.

Cady, P.D., " Statistical Evaluation of Concrete Tests
", American Society of Civil Engineers, Journal of
the Construction Division, Vol. 89, No. CO1, March
1963, pp. 19=-31.

Campbell, R.H. and Tobin, R.E., " Core and Cylinder

' ~Strengths of Natural and Lightweight Concrete ",

- Journal of the American Concrete Institute,

- Proceedings, Vol. 64, No. 4, April 1967, pp. 190-
195. '

Chan, W.L., " The Ultimate Strength and Deformation of
Plastic Hinges in Reinforced Concrete Frameworks %,
Magazine of Concrete Research, Vol. 7, No. 21,
November 1955, pp. 121=-132.

Corley, W.G., " Rotational Capacity of Reinforced
Concrete Beams ", American Society of Civil
Engineers, Journal of the Structural Division, Vol.
92, No. ST5, October 1966, pp. 121-146,

Cornell, C.A., " A Probability Based Structural Code *,
Journal of the American Concrete Institute, Vol.
66, No. 12, December 1969, pp. 974-985,

Costello, J.F. and Chu, K., " Failure Probabilities of
Reinforced Concrete Beams ", American Society of
Civil Engineers, Journal of the Structural
Division, Vol. 95, ©No. ST10, October 1969, pp.
2281-2304. - S

Cummings, A.E., " Strength Variations in Ready Mixed
Concrete ", Journal of the American Concrete
Institute, Vol. 51, No. 4, April 1955, pp. 765=772.

Drysdale, R.G., " Variation of Concrete Strength 1in
Existing Buildings ", Magazine of Concrete
‘Research, Vol. 25, No. 85, December 1973, pp. 201=
207.



23.
24,
25.

- 26,

27.

28.

29.

30.

31.

32.

33.

122

Fiorato, A.E., " Geometric Imperfections in Concrete
Structures ", Chalmers University of Technology,
Goethenberg, Sweden, National Swedish Building
Research Document Number 5, 1973.

Freudenthal, A.M., " sSafety and +the Probability of
Structural Failure ", American Society of Civil
Engineers, Tramnsactions, Vol. 121, 1956, pp. 1337-
1375.

Gamble, W.L., " Some Observations of the Strength of
Large Reinforcing Bars ", Journal of the American
Concrete Institute, Vol. 70, No. 1, Januray 1973,

Pp. 31=35.
Hahn, 6.J. and Shapiro, S.S., " Statistical Models in
" Engineering ", John Wiley and Sons, Inc, New York,
1967.

Haris, A., " Minimum Eccentricity Requirements in the

' Design of Reinforced Concrete Columns ", The
University of Texas at Austin, Ph. D. Disertation,
1972, Engineering, Civil.

Hernandez, A.A. and Martinez, F.V., " Variaciones de las

' Demensiones y de la Posicion del Acero de Refuerzo
en las Estructuras de Concreto ", Universidad
Nacional Autonoma de Mexico, Facultad de
Ingenieria, 1974. '

Hognestad, E., " A Study of Combined Bending and Axial
Load in Reinforced Concrete Members ", Bulletin No.
399, Engineering Experiment Station, University of
Illinois, Urbana, November 1951.

Housner, G.W. and Jennings, P.C., " Generation of
Artificial Earthquakes ", American Society of Civil
Engineers, Journal of the Engineering Mechanics
Division, Vol. 90, No., EM1, February 1964, pp. 113-

150.

IBM  Application Program GH20-0205-4, " Systen/360
Scientific Subroutine Package, Version I1I
Programers Manual ", Fifth Edition (1970},

International Business Machines Corporation 1968.

Johnson, A.I., " The Determination of the Design Factor
for Reinforced Concrete Structures ", Symposium on
the Strength of Concrete Structures ", Institution
of Civil Engineers - Cement and Concrete
Association, London, May 1956.

Julian, O.G., " Discussion of Reference 21 ", Jourmnal of
the Americamn Concrete Institute, Vol. 51, No. 12,



44,

45.

46.

47.

A.48. 

49.

50.

51.

52.

53.

124

Narayanaswamy, V.P. and Gadh, A.D., " Characteristic
Strength of Reinforcing Steel ", Journal of the
Institute of Engineers (India), Civil Engineering
Division, Vol. 53, Part CI2, November 1972, PP. 85-
88.

National Academy of Sciences-National Research Council,
" The AASHO Road Test, Report 2, Materials and
Construction ", Highway Research Board of the NAS-
NRC division of Engineering and Industrial
Research, Special Report 61B, Publication No. 951,
Washington, D.C., 1962.

Neville, A.M., " The Relation Between Standard Deviation
and  Mean Strength of Concrete Test Cubes ",
Magazine of Concrete Research, Vol. 11, No. 32,
July 1959, pp. 75-84,

Newlon, H.H., " Variability of Portland Cement Concrete
", National Conference on Statistical Quality
Control Methodology in Highway and Airfield

Construction ", Proceedings, University of
Virginia, Charlottesville, Virginia, 1966, Pp. 259-
289.

Petersons, N., " Should Standard Cube Test Specimens Be
Replaced by Test Specimens Taken From Structures ",
Materiaux et Constructions, RILEM, Paris, Vol. 1,
No. 5, 1968, pp. #25=435, :

Plowman, J.M., Smith, W.F., and Sheriff, T., " Cores,
Cubes and the Specified Strength of Concrete ", The
Structural Engineer, Vol. 52, No. 11, November
1974, pp. 421=426.

Plum, N.M., " Quality Control of Concrete Its Rational

' Bases and Economic Aspects ", Institution of Civil
Engineers, Proceedings, Vol, 2, Part 1, London,
1953, pp. 311-333.

Rackwitz, R., " Statistical Control in Concrete
Structures ", C-4, CEB International Course on
Structural Concrete, Laboratorio Nacional de
Engenharia Civil, Lisbon, 1973.

Rao, N.R.N., Lohrmann, M. and Tall, L., " The Effect of
Strain on the Yield Stress of Structural Steels ",
American Society for Testing and Materials, Journal
of Materials, Vol. 1, No. 1, March 1966, Pr. 241~
262.

Redekop, D., " A Study of Reinforced Concrete Columns in
Existing Buildings ", Master of Engineering Thesis,
Mc Master University, August 1971.



54.

55.

56.
57,
58.

59.

60.

61.

62.

63.

125

Riley, 0. and Cooper, S.B., " concrete Control on a
Major Project ", Journal of the American Concrete
Institute Proceedings, Vol. 68, ©No. 2, February
1971, pp. 107=-114,

Roberts, N.P., " The Characteristic Strength of Steel
for Reinforcing and Prestressing Concrete ",
Concrete, Vol. 1, No. 8 August 1967, pp. 273=275.

Robles, F., " Strength Factors: Material and Geometrical
Aspects ", ASCE-IABSE International Conference on
Tall Buildings, Lehigh University, Proceedings,
Vol. III, 1972, pp. 907=921.

Roy, H.E.H. and Sozen, M.A., " Ductility of Concrete ",
Proceedings of the International Symposium on
Flexural Mechanics of Reinforced Concrete, ASCE-

- ACI, Miami, November 1964, pp. 213~224,

Rusch, H., " Die Streung der Eigenschaften von
Schwerbeton ", Symposium on Concepts of Safety of
"Structures and Methods of Design, International
Association for Bridge and Structural Engineering,
London, 1969, pp. 63=74.

Rusch, H. and Stokl, S., " Der Einfluss von Bugelin and
Druckstaben auf das Verhalten der Biegedruckzone
von Stahlebetonbalken L Bulletin No. 148,
‘Deutscher Ausschuss Fur Stahlbetonbau, Berlin,
1963, p. 75.

Sargin, M., " Stress=-Strain Relationships for Concrete
and the Analysis of Structural Concrete Sections ",
SM Study No. 4, Solid Mechanics Division,
University of Waterloo, 1971.

Shalon, R. and Reintz, R.C.,, " Interpretation of
Strengths Distribution As a Factor in Quality
Control of Concrete ", RILEM Symposium on the
Observation of Structures, Vol. 2, Lisbon
Laboratorio Naciano de Engenharia Civil, 1955, pp.
100-116.

Sexsmith, R.G. and Nelson, M.F., " Limitations in
Applications of Probabilistic Concepts ", Journal
of the American Concrete Institute, Proceedings,
Vol. 66, No. 10, October 1969, pp. 823-828.

siu, W.W.C., Parimi, S.R. and Lind, N.C., " Practical
Approach to Code Calibration ", American Society of
Civil Engineers, Journal of the Structural
Division, Vol. 101, No. ST7, July 1975, pp. 1469-
1480. :



64.

65.

66.

67.

68 .

69.

70.

71.

72.

126

Soliman, M.T.M. and Yu, C.W., " The Flexural Stress-
Strain Relationship of Concrete Confined by
Rectangular Transverse Reinforcement ", Magazine of
Concrete Research, Vol. 19, No. 61, December 1967,
PpP. 223-238.

Soroka, I., " An Application of Statistical Procedures
to Quality Control of Concrete ", Materiaux et
Constructions, RILEM, Paris, Vol. 1, No. 5, 1968,
PP. 437-441.

Soroka, I., " On Compressive Strength Variation in
Concrete ", Materiaux et Constructions, RILEM, Vol.

Sturman, G.M., Shah, S.P. and Winter, G., " Effect of
Flexural Strain Gradients on Microcracking and
Stress-Strain Behaviour of Concrete ", Journal of
the American Concrete Institute, Proceedings, Vol.
62, No. 7, July 1965, pp. 805=-822.

Torroja, E., " Philosophy of Structures W, University of‘
- California Press, Berkley, California, 1958.

Tso, W.K. and Zelman, I.M., " Concrete  Strength
Variation in Actual Structures ", Journal of the
American Concrete Institute, Proceedings, Vol. 67,
No. 12, December 1970, pp. 981-988,.

Wagner, W.K., " Discussion of Reference 21 ", Journal of
the American Concrete Institute, Proceedings, Vol.
- 51, No. 12, December 1955, pp. 772=14, 772=16.

Wagner, W.K., " Effect of Sampling and dJob Curing
Proceedures on Compressive Strength of Concrete ",
Materials and Research Standards, August 1973.

Warner, R.F. and Kabaila, " Monte carlo sStudy of
Structural Safety ", American Society of Civil
Engineers, Journal of the Structural Division, Vol.
94, No. ST12, December 1968, pp. 2847-2859,



APPENDIX A

VARIABILITY IN REINFORCING STEEL

Introduction

The three main sources of variation in steel strength
are:
1) variation in the strength of material,
(2) variation in area of the cross-section-
of‘the bar, and

(3) variation in the rate of loading.

The variabilityvof yield strength depends on the source
and the-nature pf the population. The variation in strength
within a single bar is relatively small, while the in=batch
variations are slightly 1larger. However, variability of
samples. derived from different batches and sources may be -
high. This is expected since rolling practices and gquality
measures vary for different countries, different
manufacturers and different bar sizes. Furthermore, the
cross-sectional areas vary due to differences in the setting
‘of the rolls, and this adds to the variation. Mill tests are
generally carried out at a rapid rate of loading (ASTM
corresponds to 1040 micro-in/in/sec) and have the tendency
of reporting the unstable high yield point rather than the
stable low yield point. Since the stfains in the structure
are induced at a much lower rate than the mill tests, mill

tests tend to overestimate the strength of reinforcement,
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hence another source of variation.

An examination of the test data revealed that the bars
of large diameter tended to develop less strength (4, 24,
55) than #3 to #11 bars. Thus, for the purpose of
statistical evaluation, the #14 and #18 bars were studied
separately from the other sizes. Also the #é bars were not
includedvin-‘this study because of their rare use for

structural concrete.

In this study the terms érade 40, Grade 50 and Grade 60.
refer to reinforcing bars with minimum specified yield
stréngth of 40, 50 and 60 ksi, respectively, even though the
‘bars in question may not.have been produced according to
'ASTH or CSA specifications. Only data for deformed bars has
béen included. In some cases data for cold-worked bars has

been considered but most of the data is for hot-rolled bars.

Different values for the yield strength of steel may be
obtained depehding on how it is defined. The static yield
strength based on nominal area seems to be desireable
hecause the strain.rate is similar to what is expected in a
structure and designers use the nominal areas in their
calculations. Most mill tests, however, are conducted with a
rapid rate of loading, and the strength is geﬂerally
referred to actual areas. .For these reasons the yield

strength corresponding to rapid strain rate and measured
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area is discussed in this section, the effects on  this
strength of variations in cross=sectional area and rate of

loading are dealt with in the succeeding sections.

A revievw of literature on steel strength showed that
the coefficient of variation was in general in the order of
1% to 4% for individual bar sizes and 4% to 7% overall for
- data derived fromvany‘one source. When data was taken from
many sources the coefficient of variation increased to 5% to
8% for individual sizes and 10% to 12% overall. A summary of
| selected studies from 1iterature (4,8,9,33,43) is shown in

Table A-1.

The data reported by Allen¢ and Jhlian33 on Grade 40
‘and 60 éteel'bars showed closé agreeﬁent with a ﬁormal
distribution (with respective mean and standard deviation)
in the range approximately 5 to 95 percentile but differ
from +the normal distribution outside this range, Some
: au;hors_have Suggested other types of distributions such as
skewed distributioh (9,.54), truncated normal (31) and Beta
distributioh (20) . These suggestions were, however, based on
a particular set of data and only approximated the
distribution of the population from which the data was
drawvn. ﬁonetheless, they suggest that the yield strength is
a phenomenon that Acan be described by a paiticular
theortical distribution with certain limitations. The normal
" distribution seems to correlate very well in thé vicinity of.

the mean values for different populations of yield strength,
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but it is a crude approximation at low and high levels of
probability where the steel strength distribution curves
tend to have certain minimum and maximum values rather than
following the theoretical tails. This is expected since
there are always some guaiity controls that are used to
attain a certain minimam yield strength with the result that
the ‘manufacturing of steel is not truly a random process.
Furthermore, certain data indicated a positive skewness,
particularly when derived from different sourées and mixed
together. Theoretically a log=normal distribution should . be
a better fit for this case than a normal distribution since
it takes into account.the skew nature of the data. Howvever
the logarithmicaily distributed values of yield strength at
low and high 1levels of probability did not show a
'significant improvement over normally.distributed'values of
available data., Therefore, it was decided to empirically
| establiéh a "modified" 1log-normal distribution that would
~yield correlate with the North American data on yield

strength.

Values of (fy-38ksi) are plotted on logwnormal
probability paper in Figure A=1 for the data fron Julian33
and Allen* for Grade 40 reinforcing bars grouped together.
The values were found to be in good agreement with a 1log-
normal distribution in the range fron the 0.01 percentile to
the 99th percentile. The modification constant of 34 ksi was
established by trial and error. The corresponding frequency

curve, thé histogram of the grouped data and the
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corresponding normal frequency distribution curve are shown
in Figure A-2 for the purpose of comparison. The mean value
of the data was found to be 48.8 ksi with a maximum value of

66 ksi and a coefficient of variation of 10.7%.

Similarly, values of (fy-55ksi) for Grade 60
reinforcing bars from mill tests reported by Allen* were
fpund to be log-ndrmally distributed in the range fr§m the
'0.01erfcen£ile to the 99th percentile as shown in Figure A=
3. The frequency curves and histogram for Grade 60 steel are
‘shdwn in Figure A-4. The mean value for the data was 71.5
ksi with a maximum value. of 90 ksi and a coefficient of

variation of 7.7%.

In both cases the modified log-normal curve is a better
approximation at the lower end of the curve while the normal

curve is better at the high end of the curve.

Variation in Steel Cross~-Sectional Area

The éctual areas of reinforcing bars tends to deviate
ffom the nominal areas due to the rolling process. The
designers do not have this information readily available to
them, and hence use the nominal areas in their calculations.
For this reason this variation should be incorporated in the

strength of steel.

This variation in +the ratio of measured to nominal

areas (Ae/An) was studied as a measure of the variation in
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the cross-sectional area of reinforcing bars. The values of
Ae/An are reproduced from available literature (4, 8, 43) in
Table A=1. Table A-1 indicates that the data Tteported by
Bakers® fof Grade'60 steel demonstrates high mean value and
coefficient of variation. Such values cannot be explained in
definite terms. It is possible that the collected data
contained a good percentage of values from mills with old
rolls that increased the mean and coefficient of variation.
Furthermore, British rolling practice may differ from
Canadian practice. For these reasons, these values were not

included in the analysis.

The ratios of A,/A, from tests on Grade 4C and 60
reinforcing bars, manufactured in Canada (Study No. 1 and 3
in Table A-1), were plotted on normal probability paper.
These values exhibited close agreement in the range from the
5th to thé 95th percentile for Grade 40 steel and from the
2nd to ‘the 98th percentile for Grade 60 bars with a normal
distribution. When the values for both studies were combined
they resulted in a normal distribution in the range between
the 4th and 99th percentile with a mean value of 0.988 and a
coefficient of variation of 2.4%. The effect of such a small
coefficient of variation is not large enough to have any
significant effect on the coefficient of variation of Asfy.
For this reason a single value for A,/R, Seems to be more
appropriate. Allen® has suggested a value of 0.97 for Ae/An.
This seems to be a conservative estimate of the average

values of A./A, shown in Table A~1, and close to ASTHM
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rolling tolerances that allow an average ratio as 1low as

0.965 and a minimum single value up to 0.940.

 Effect of Rate of Loading

The apparent yield strength of a test specimen
increases as the strain rate or the rate of loading
increases. Since mill tests on steel specimens are generally
carried out at much greater strain rates (approximately 1040
micro-in/in/sec) than encountered in a structure, they tend
to overéstimate the yield strength. 1A strain rate of 1
‘in/in/sec may increase the yield strength of Grade 40 steel

as much as 50% over the static yield strength (34).

Tests conducted on steel coupons of A36, A441 and AS14
steel (51) demonstrated a yield strength reduction more or
less of the same value for all types of steel with decrease
in the rate of strain. The equation developed by FaoS! on
the basis of these tests gives values of static vield
strength that are 4.8 ksi and 3.4 ksi less than the yield
strengths obtained at cross-head speed of 1000 and 200
micro-in/in/sec respectively. NRC tests on Grade 40 bars (4)
showed a reduction of approximately 3 ksi in the mean yield
strength when speed of the tésting machine was dropped fronm
208 micro-in/in/sec to static. This value correlates well
with the one obtained from Rao's equation. Similarily, for
Grade 40 bars, it has been shown at the University of

Illinois (34) that the difference between the yield strength
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at a strainlrate of 1040 micro-in/in/sec and the strength at
a strain rate of 20 micro-in/in/sec is about 9% or 4 ksi.
ETH tests (36) for high strength reinforcement demonstrated

a reduction of 3 ksi for static conditions.

For evaluation of the static yield strength from nmill
tests, Allen¢ has suggested a decrease of 4 ksi. This value
seems to be a reasonable estimate for the available test

data.

Effect of Bar Diameter

The strength of steel tends to vary across the cross-
section of a reinforcing bar with the highest strength near
the outside of the bar. This is probably due to the cold-
vorking of éircumferential sections of bars during the
rolling process. Thus the mean yieid strength is expected to
decrease with increasing diameter. The variation of the mean
yield strength with size is plotted in Figures A=5 and A-5.
The data shown in the figures were taken from several test
series for . Grade 40 and Grade 60 reinforcement
(u;ua,s,g,zu). For bars with relatively small diameter the
effect of this variation is small and not clearly
established. For large diameter bars such as #1714 and £18
thisv effect becomes more significant. In addition, the ASTHM
specifications allow the use of small specimens machined
from samples of large diameter bars for testing purposes. A

specimen machined to a smaller diameter from a quarter=-piece



140

100
v : A MILL TESTS (AASHO)
9 ® DATASYSTEM (AASHO)
O NRCTESTS (ALLEN)
O  MILL TESTS (ALLEN)
80 -
‘@
= 70 +
I
f—
O
& o0 .
’.—.
= o
w A
° A
n] A o
W ® ® 9
50 - Q oA 8 Q
. ‘ A
A
o A 0o
O
40 -
30 : .
34 5 8 9 11 14
BAR SIZE

Figure A=5 Effect of Bar Diameter on Steel Strength, Grade
40



141

100
O REPORTED BY BANNISTER
A MANUFACTURER 1 (BANNISTER)
A MANUFACTURER 2 (BANNISTER)
90 - @ REPORTED BY BAKER
' O REPORTED BY GAMBLE
80 |-
E
= 70 | A o ©
I s ®
— o) o
O §8 o &
< |
o 60
= T
m]
50
40
30
345 678 910 : 14 18
BAR SIZE

Figure A=-6 Effect of Bar Diameter on Steel Strength, Grade
: 60



142

of a full size bar tends to show higher yield strength than
the bar itself (24). Since some manufacturers may use these
tests as a measure of quality control, the #14 and #18 bars
tend towards a higher probability of passing through quality

controls without developing the required strength.

An extremely limited amouht of data is available for
#14 and #18 bars. Tests on Grade 40, #14 bars carried out by
Rllen* showed that the mean yield strength of #14 bars was
44 ksi, a 15% decrease from the strength of.#3 to #11 bars
produced by the same manufacturer. Some data has been
reported by Gamble2+¢ for #14 and #18 bars of Grade 60 steel.
The -mean yield strengths were 60 ksi for #14 and 55 ksi for
#18 bars. These strengths were referred to the nominal
areés. Using the mean yield strength of Grade 60, #3 to #11
bdrs as 71.5 ksi (as per Study No. 3 in Table A-1) and a 3%
ad justment for the deviation from the nominal area, the
reduction in strength is app:oximately 13% for #14 bars and
21% for #18 bars. This comparison is, however, not truly
justified.sincé the data for both studies was not drawn fronm
the same source. Nonetheless, it strongly indicates the
understrength of - #14 and #18 bars. Until more data is
available, it seems reasonable that the yield strength of
#14 and #18 bars should be reduced at least 15% below the

Yield strength of reinforcing bars with smaller diameter.
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Summary

The modifiéd log=-normal distribution curves shown in
Figures A=1 through A-~4 seem to correlate well, particularly
near the lower tails of the curves, with the available North
American data for Grade 40 and Grade 60 reinforcing bhars.
Tﬁe Probability Density‘Function for these curves can be
calculated using the following equation:

PDF = c - l X—}: ) 2
. exp |- = |==
yo v 2l 2 \o

X

where:
c = 0.4342¢9
y = £, - 34 ksi for Grade ad bars
y=£f_ = 55 ksi for Grade 60 bars
x = Log Y

10

¥ = 1.,14482 for Grade #0 bars

>
]

1.19456 for Grade 60_bars
o = 0.14866 for Grade 40 bars
g = 0.,14112 for Grade 60 bars

The mean yield strength of the selected data was found
to be 48.8 ksi (c.o0.v. = 10.7%) for Grade 4C bars and 71.5
ksi (c.o.v. = 7.7%) for Grade 60 bars. The modification

constants were empirically established and found to be 34
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ksi and 55 ksi for Grade 40 and Grade 60 steel respectively.

R value of 0.97 for the ratio A /Rh, seems to be
reasonable to accounf for deviations from the nominal areas.
Similarly, for the evaluation of the static yield strength,'
at least U4 ksi should be deducted from the yield strength
obtained in mill tests or at high strain rafes -allowed by

ASTM specifications.

When calculating the yield strength of #14 and #18
reinforcing bars from the strength of bars of smaller sizes
at least a 15% reduction should be used to account for the

effect of the large diameter.
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APPENDIX B

COLUMNS STUDIED

This appendix contains the details of the two major

columns studied. Tables B-=1 and B=2 are tables of the

properties of the 12 in. and 24 in. columns respectively.

Figures B-1 and B-2 are diagrams of each column showing the
designer's properties and the mean values of the colunmn

properties used in the Monte Carlo calculations.

145
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Properties of the 12 in. Column Assumed in the Calculations

concrete Strength

Steel Yield Strength

Dimensions
b, h
d

ar

b“' an

AL

Specified

3000 psi.
40 ksi.

12.00
9.75
2.25
1.76
0.88

12.00
9.00 in.

.11 sqg.in.

Individual lLongitudinal Steel Bars

ASB (1) to ASB(4)
DS (1), DS(2)

DS(3), DS(4)

0.44 sg.in.
2.25 in.

9.75 in.

Mean In- c

situ

3712 psi., ===

48.8 ksi. 1.41 ksi.
12.06 in. 0.280 in.
9.51 in. 0.166 in.
2.55 in. C.166 in.
12.00 in. -

8.47 in. 0.166 in.
0011 sqlin‘ -

0.44 sg.in. ===

2.55 in. 0.166 in.
9.51 in. 0.166 in.

C.0.V.

0.176
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Properties of the 24 in. Column Assumed in the Calculations

Specified

Baterial Strenghts

Concrete Strength 300C psi.
Steel Yield Strength 40 ksi.
Dimensions

b, h - 24.00 in.

d : 21.30 in.

a* ’ 2.70 in.

Ag 18.72 sq.in.
AL 7.80 sqg.in.
s 12.00 in.
bn, an 20.50 in.

A; 0.20 sq.in.

in.
in.

in.

in.

Mean In- g

situ

3712 psi, ===

48.8 ksi 1.41 ksi.
24.C6 in. 0.280
21.01 in. 0.166
3.05 in. 0.166
12.00 in. -—
19.87 in. 0.166
0.20 sg.in., ===

ASB(1) to ASB(12) 1.56 sq.in.
DS (1) to DS (5) 2.70 in.
DS (6) , DS (7) 12.00 in.

DS (8) to DS(12) 21.30 in.

1.56
3.05
12.07

21.01

Sg.in., ===
in. 0.16¢
in. 0.992

in. 0.166

in.
in.

in.

C.O. V.

¢.176
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APPENDIX C

FLOW DIAGRAMS OF THE MONTE CARLO PROGRAM

This appendix contains detailed flow diagrams of the
complete Monte Carlo Program includingi |

The Main Program

Subroutine PROP

Subroutine ACI

Subroutine ASTEEL

Subroutine CdRVE

Subroutine THMEAN

Subroutine THEORY

Subroutine AXIAL

Subroutine FSTEEL

Subroutine RANDOM

Subroutine STAT

15C



MONTE CARLO PROGRAM

START

READ
NUMBER OF VARIABLES
NUMBER OF SIMULATIONS
LIMITING STEEL STRESS
MEAN CONCRETE STRENGTH
MEAN STEEL STRENGTH
SEED FOR RANDOM NUMBER
GENERATOR
CODE NUMBER OF RUN

CALL PROP

k2

—){ I=1,NV
v

READ STATISTICAL PROPERTIES
. OF EACH VARIABLE — MEAN,
STANDARD DEVIATION, TYPE OF

DISTRIBUTION

v

' }L =1, NV
v

WRITE STATISTICAL PROPERTIES
OF EACH VARIABLE

a2

WRITE
MEAN CONCRETE STRENGTH
MEAN STEEL STRENGTH
LIMITING STEEL STRENGTH
SEED FOR RANDOM NUMBER
GENERATOR

v

CALL ACI
v

~ CALL CURVE

151



WRITE ACI INTERACTION
DIAGRAM AFTER CURVE

FIT
PACI (1) =PO
PACI (15) = BMO
PACI (1 + 1) = P(l)
1=1,13
v
CALL THMEAN
L 4
CALL CURVE
v

WRITE MEAN THEORY

INTERACTION DIAGRAM

AFTER CURVE FIT

L 2

PTH (1) =PO
PTH (15) BMO

v

PTH (1 + 1) = P(l)
1=1,13

v

4[

1=1,15

v

DEFINE EOH2

L 2

RP (1, 1) =PTH (I, 1}/PACI (1)

v

WRITE RP (I, 1), EOH2

152



e
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SD = STDV (l)
RM = RMEAN (1) ITP

CONST = FCONST (1)
= ITYPE (I)

v

CALL RANDOM

v

XM=V

. 2

CONTINUE

NO

X (1) < RMEAN (1) — 3.3 sTDv (1)_

X (1) = RMEAN (1) —3.3STDV (1)

FC=X(1) |4

. YES
w X (2) = FY1

NO
FY =0.97 (X (2) —4000) |4
v
BB = X(3) D11= X{(6)
H==X(4) DC = X(7)
B11 = X(5) DD = X(8)
—» 1-1NB
\ 2
NI=1+8
v
DS (1) = X (Nt)




¢

CALL THEORY

L 4

CALL CURVE

. 2

PTH (1,4J) =PO
PTH (15, JJ) = BMO

v

)l 1=1,13

v

PTH (1 + 1, 3J)=P (1)

~

b[ 1=1,15

. 2

RP (1, JJ) = PTH (1, JJ)/PACI (1)

%

CONTINUE

v

)[

1=1,15

v

P

JJ=1,NS

3

L=Jd

]

X (L) =RP (1, 4)

=
i

<

(7]

-

CALL STAT

¢

DEFINE EOH2

&
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WRITE EOH2, NS AND NRU

v

WRITE STATISTICAL EVALUATION
OF RATIO PTH/PACI

DEFINE EOH2

v

WRITE EOH2

v

WRITE RP (1, JJ)
JJ=1,NS

v

——DI JJ=1 NS
' v

L=L+1

v

X (L) =RP (1, )

N=L

v

CALL STAT

L2

WRITE TOTAL STATISTICAL
EVALUATION OF RATIO PTH/PACI

v

STOP
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SUBROUTINE PROP

START

READ NOMINAL b, h,

dp,d, A, A

v

READ NOMINAL f/, f , E,

v

READ NOMINAL d’, d, S, B”

dll' An
S

+

READ NB

v

» 1-1.nB
v

READ ASB (1), DS (1)

\ 4

WRITE COLUMN CROSS
SECTION PROPERTIES

v

RETURN
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YES

SUBROUTINE ACI

START

FC <4000

157

B1=0.85

B1=0.85 — 0.05 (FC — 4000)/1000

YES

¢

E4 = 0.003

B1=0.65

PB

PO = 0.85 FC (BB*H — AS) + AS*FY
= 0.85*B1*FC*BB*DTS*(0.003/(FY/ES + 0.003))

v

AST = AS — ASC
AA = BB*FC*B1*0.85

AB = 0.003*ASC*ES — AST*FY

AC = —0.003*ASC*ES*DCS

RA =\/(ABZ 4*AA*ACF/(2*AA)

= —AB/(2*AA) —

YES

<

\ 4
C1=RA — (AB/(2*AA))

ES2 = 0.003*(C1 — DCS)/C1

]‘__I

&



NO
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"YES

4

BMO =

ASC*ES2*ES*(DTS — DCS) + (AST*FY — ASC*ES2*ES)*(DTS —B1*C1/2)

¥

BMO =
ASC*FY*(DTS — DCS) + ((AST — ASC)*FY)*(DTS — (AST — ASC*FY/(1.7*FC*BB))

v

' { E1=0.0019

v

J=0

v

A 4

4[ ‘J=J+1.

NO

IR

NO

E1=E1 - 0.0005

E1=E1-0.001

———)' C = E4*DD/(E4 — E1)

v

v

PHI = E4/C

v

CALL ASTEEL

—cmne

P(J)=PO
v
BM (J) = 0.0

NO

C =H/B1

FCONCC = 0.85*FC*B1*BB*C ]‘—-—‘

®




?

P (J) = FCCONC + FST

v

COMPM = FCCONC*(DD —B1-C/2

v

SM =0.0

v

» -8

v

SBM (1) = (FSS (1) — FCS (1)*ASB (1))*DD — DS (1))

L Z

SM =SM + SBM ()
|

? .

BM (J) = COMPM + SM — P (J)*(DD — H/2)

v

EOH (Jj = BM (J)/(P(J)*H) k

YES

YES

WRITE PO, PB, BMO

. 4

WRITE ACI INTERACTION

DIAGRAM

v

RETURN
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SUBROUTINE ASTEEL

START

EY
FST

FY/ES
0.0

[

E (I) = E4 — PHI*DS (1)

160

YES
DS (1) >C
, NO
FCS (1) = 0.85 FC
FSC = 0.0
Jr FCS (1)= 0.0
FSC = —FCS (1)*ASB (1)
YES
# FSS (1) =
FSS (1) = —~FY*ASB (1)
FY*ASB (1)
FSS (1) = E (1) *ES*ASB (1) j—1
| FST =FST +FSS (I) + FSC

-

"RETURN




SUBROUTINE CURVE

- DEFINE EOH1 (1)
1=1,NN

v

—p I=1,N

v

DIFM = BM(i + 1) — BM(1)

DIEM < 0.0 —~>—YES

NO

CONTINUE

|
v

NP = | ¢

v

EOHB = EOH (1)
M1=M

NO

L = NP*M <

161

M = NP—2




¢

X (1)= EOH (I)
X{J)=pP)

®

CALL GDATA

CALL ORDER

CALL MINV

v

CALL MULTR

NO
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7

SUMIP = ANS (4) — SUM

YES

SUM = ANS (4)
COE (1) = ANS (1)

v

r—P J=1,1

v

COE(J+1)=B(J)

P(ll1)=0.0

&

2163



—P 1=1,4

P (11) = P(l1) + COE (1)*[EOH1 (I1}**(1 —1)]

|

v

CONTINUE

+

NNN =1

v

I =NP,N

*

DIFE = 3.0 — EOH ()

NO

164

N=I-1

CONTINUE

v

NM=N —-NP+1

v

M =M1

NO

M=NM -2




L =NM*M

v

*

1=1,NM

v

J=L+1

+

X ()= 1/EOH (I +NP — 1)
X (J)= BM (1 + NP — 1)

h 4

CALL GDATA

v

MM = M+ 1
SUM= 0.0

v

1=1,M

-

+

ISAVE (1) =1

v

CALL ORDER

v

CALL MINV

v

CALL MULTR
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ANS (7) <0.0

NO

YES

SUMIP = ANS (4) — SUM

SUMIP > 0.0

NO

SUM = ANS (4)
COE (1) = ANS (1)

__* J

v

il

1,1

COE (J+1)=B{J)
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¥

C?

BM (11) = BM (11) + COE (I)* EOH1 (”)>**(l - 1)]

%

P (11) =BM (11)/[H*EOH1 (11)]

v

4 =1,N4

BM (1) =P (1)*H*EOH1(l)
|

. 4
RETURN

|
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SUBROUTINE THMEAN

START

RMEAN 1

FC =
FY = 0.97 (RMEAN 2-4000)
BB == RMEAN (3)
H = RMEAN (4)
B11 = RMEAN (5)
D11 = RMEAN (6)
DC = RMEAN (7)
DD = RMEAN (8)
> 1=1,NB
Ni=1+8

v

DS (1) = RMEAN (1)
1

v
CALL THEORY

v

WRITE THEORY INTERACTION

DIAGRAM
v

WRITE PO, BMO

v

RETURN
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1€9

SUBROUTINE THEORY

START

FC =0.85 FC
@ FC = 1000.1
ECC = 57000,/ FC
EO = 1.8FC/ECC 4
EY = FY/ES
PO = FC*BB*H + AS * FY — AS*FC
L 4
J=0
Pl J=J+1

P (J) =PO

BMJ = 0.0

v
P(J)=

YES

v

=P(J—1) —0.034 PO

P(J)

P(J)=P({J—-1)—-04PO

YES

P(J—1)>0.6PO

v

P(J)=P(J—-1) -0.16 PO

S




170

- P(J)=0.0

YES

3

P(J)=P(J—1) —0.08PO

CALL AXIAL ]4

B0 - 5

L———) EoH (1) =BM /P (9*H)




0

M=M-1

v

)[ CJd =1 N

v

P(JJJ) =P(JJJ + 1)
BM (JJJ) = BM (JJJ +

EOH (JJJ) = EOH (JJJ + 1)

1)

v

CONTINUE

f

A 4

N=M

v

RETURN
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SUBROUTINE AXIAL

START

PHI = 0.0000001
PHiH=PHI *H

\ 4

=1

* B
E4 = 0.002
() —P|  EINCR= 0.002
v

@———} E4 = E4 — EINCR

EINCR = EINCR/2

@—-—-—-} E4 = E4 + EINCR

'FCCONC = 0.0

<4

4

N

4

C = E4/PHI

v

ECO = (C — H) *PHI

YES

ASC = ASC + ASB (l)




¢

E50H = 0.75*P11*,/ B11/S
E50U = (3 + 0.002*FC)/ (FC — 1000)

P11 =(2*(B11 + D11)*AS11 + ASC*S)/(B11*D11*S)

NO

173

E50U = 0.06

Z = 0.5/(E50H + E50U — EQ
22 = 0.5/(E50U — EO)
EU = 2*(ES0H,+ E50U) — EO

4___

v

DX =cC/10

v

v

A=

A 4

X (1) = C — Al*Dx + Dx/2
E (1) = PHI*X(1) + ECO

B(l) =BB
YES
NO
EC (1) > 0.004
NO
™ YES

EC(l) > EO

I=1,10 M

B (1) =B11

—J| Fcc=Fc (2*EC (1)/EO — (EC (1)/E0)?)

®

©®
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¢ @ ¢

FCC = FC (1 — Z (EC (I) — EO)) FCC =FC (1 Z (EC () — EO))

v

FCU=FC (1 —ZZ(EC(l) — EO))

FCONCC (1) =
FCC*Dx*B11+ FCU*Dx*(B (I) — B11)
v
FCONCC (1) = FCC*D**B (1) <
FCCONC = FCCONC + FCONCC (1)

FCONT =0.0 | XES C>H
NO
SFC =y/FC
ET =7.5*SFC/EC
TC =ET/PHI
TCA =H—C
RTC= TCA/TC
@ YES TC=TCA
NO
RTC=1.0 |ES @
NO
—P| FCONT = ~RTC*7.5*SFC*TC/2*BB

© ®
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CALL FSTEEL

v

PAXIAL = FCCONC + FCONCT + FST

v

TOLA =P (J) 0.02

@ YES TOLA = 0.001 PO

_ NO
TOL =P (J) — PAXIAL |¢

NO . |
ToLA =5
NO
=
NO E4 > EU
YES

TOL >

NO
EINCR > 0.0000001 E4 = 0.001

| PHIH = PHIH — PHINCR

v ¥

COMPM = 0.0 PHINCR = PHINCR/5

>[ 1=1,10 PHIH = PHIH + PHINCR

2 ¥

= * —
COMPM = COMPM + FCONCC (1)*(DD — C + X (1)) PHI = PRI
SM = 0.0 EINCR = EINCR/2

&
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—Pp| 1=1,NB
v
SBM (1) = (FSS (1) — FCS (1)*ASB (1))*(DD — DS (1))
| v
SM =SM + SBM (I)

BM (11) = COMPM + SM + FCONCT (DD — (C + 2*TC/3)) — P (J)*(DD — H/2)

¢ P  PHINCR = 0.001

TOLBMA = ABS (BMM (Il — 1) - 0.01

v

BMTOL = BMM (l1) — BMM (il — 1) @
BMM (1) < 0.0 PHIH = PHIH — PHINCR

<4

PHINCR =PHINCR/5

> 4
BMTOL > 0.5 ' TOLBMA PHIH = PHIH + PHINCR |4~
NO *
PHI = PHIH/H
BMTOL < -TOLBMA +
- H=11+1
BM (J) = BMM (Il — 1)
RETURN




177

SUBRO_UTINE F STEEL

START

FST = 0.0

1=1,NB
¥

E(I)—E4 —PHI*DS (1)

YES | FSC =00
FSC(l)= 0.0

FCS(I) = FC
(1-Z(E (1) —EO))

FCS | FC —-—ZE“)— E“-)'>2
”' EO EO

- FSC = —FCS (H*ASB (1)
E()=—E) |1

FCS (I)

FSS (1) = —FY*ASB (1)

FSS (1) = FY*ASB (1)

FSS (1) = —FY*ASB (1)

v

L——9f rsT=FsT+FSS (1) + FSC |

RETURN




,,,,,

178

SUBROUTINE RANDOM

A=0.0

v

4[ 1=1,12
v

1Y = 1Y*65539

YES —
® IY = 1Y + 21474.83647 + 1

NO

Y = 1Y*0.4656613€ — 9 [¢——0

+

A=A+Y

V = 10.0%*V

V = 10.0**V + CONST

{ RETURN
(L )




SUBROUTINE STAT

SUmM= 0.0

!

1=1,N

v

SUM = 8SUM + X (1)

v

RM = SUM/N

A 4

'SUM = SUM + [X (1) — RM] 2

A 4

SUM/N

v/ SUM/(N — 1)

STDV/RM

um2
STDV
- cou

—

SUM = 0.0

179



SUM =SUM + [X (I) — RM]3

v

UM3 = SUM/N
COS = SUM/N(STDV3)

SUM = SUM + [X (1) — RM] 4

4

‘UM4 = SUM/N
COK SUM/N(STDV#)

-

~ RMAX = X(1)
CIMAX = 1

RMAX < X (1)

IMAX =1

-

RMAX = X(IMAX)

fo

18¢C
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RMIN = X (IMIN)

v

CINT =0.05
CLASS (1) = 0.50

—pl 1=2,30
: CLASS (1) =CLASS (I — 1) + CINT

|
v

‘c'LAss (31)=2.0

"
——-)L.. I =1, 31
v

NPOINT =0

© &




NPOINT = NPOINT + 1

v

N GROSS (I1)

= NPOINT
C FREQ (I) = 100.0 (NPOINT)
&
—Pp 1=1,31

v

CLASS (1) = CLASS (1) — 0.00001

4*

Y(1)= RMIN
N1 = (N/2) +2

v

I=2,N1

v

NPOINT =1
DIF (1) =X (1) =Y (Il —1)

v

YES

1=2N

X(1)=0.0

182



Do

DIF(1)=X{)-Y (1 —=1)

DIF (1) <DIF(NPOINT)

YES

NPOINT =1

v

—

CONTINUE

v

Y (1) = X (NPOINT)
X (NPOINT) = 0.0

" 'NO

NPOINT =1

YES

"X (NPOINT) = RMAX + 1.0

v

N1 = N1-1

v

I=1,N1

v

Y{)=Y({+1)

v

RMED =Y (N1 —1) +Y (N1)
2.0

[o
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'NO

'RMED =Y (N1)

v

'RETURN
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- APPENDIX D

LISTING OF THE MONTE CARLO PROGRAM

This appendix contains a complete listing of the Monte
Carlo Program. The modified IBM Subroutine MULT to MULTR is
also listed. The listing includes:

The Main Progranm
Subroutine THMEAN
Subroutine ACI
Subroutine ASTEEL
Subroutine PROP
Subroutine CURVE
Subroutine RANDOM
Subroutine THEORY
Subroutine AXIAL
Subroutine FSTEEL
Subroutine STAT

Subroutine THMULTR
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SLIST P2 o

-t ol
M-QO\DONO\UI&UN-‘

d.d-ld-d-ld
woqmuau

S¥YUY LYWW N |
owaqau?ua;-o&’a&:’&&’%’&ﬁﬁ’g

&h&'b.bl‘
NQMDWNH

N *PRINT*

C‘*‘t*"t"**t‘*tt**t#*t*t*t*#t*ttﬁt.tt#**’k‘*l***tﬁil“

conmon rc,rv,ns,aa,n,nc,on,as,As11,B11,n11,s,c,zz,nan
CoMMON PHI,EO,J,Z,ECC,EY,FCONCC(ZO),ASC,EOH(UO),FCONST(25)
CoMnoy X(16000),EC(20),B(zo),p(uO),Bnn(1000),Bn(a0),Fc5(20)
Coumoy FST,E(ZO},NB,DS(ZO),ASB(ZO),FSS(20),SBM(20)
DINENSYION pac1(15y,pTH(1s,2000),RP(15,2000)
DINENSTON RHEAN{25),STDV(25),ITYPE(ZS)
DINENSION CLASS(31),CFREQ(31],NGROSS(31)

C BEAD QUANTITIES Nppppp FOR %ONTE caprg SINULATIONS

11

READ (5,571) RHEAN1,RHEAN2,IY,NRU
511 FORMAT (2F15.5, 2I10)
C READ’NOHINAL PROPERTIES
P (¥s

C REap STATISTICAL PROPERTIES op VARIABLES
DO 5 7129,y
READ (5,510 RMEAN(I),STDV(I),FCONST(I),ITYPE(I)
510 roFuAT(3F1s.5,IS) .
P

WRITE (6,513
512 FoRrmay ('1',//////27X,'DISTRIBUTION PROPERTIES op VARIABLES?)
WRITE (6,519) NS, NRy
519 Formar (31x,'(-,14,'51n',15,')-//)
VRITE (6,513,

513 FORMAT (16x,* MEAN-vALYE STD'DEVIATION FCoNsTANT TYPE'y)

DO 1000 1=1, yy
1000 RRIT: (6,514) RHEAN(I),STDV(I),FCONST(I),ITYPE(I)
514 Pomrmap (16x,3F15.5,IS)
5)

515 FORMAT LCA(/ZGX,' FC(MEAN-VALUE) FY(HEAN-VALUE)'/)
©  WRITE (6,516)»RHEAN1,RHEAN2
51¢ PORM2AT (20X,2F15.5)

522 FOkMAT LA//21X,'PY LIMIT=',F9.2)

520 Pogrmar (///21X,'ISEED=',I10)
C carcuiare thg ACI INTERACTION DIAGRAM
CALL acr (ys)
C FIT 3 POLYNOMINAL 7¢ THE acy INTERACTION DIAGRAM
CALL CORVE
€ WRITE Typ jpcp INTERACTION DIAGRAN AFTER 7hp CURVE Frp
¥RITE (6, 100)
100 PoRMar ('1',/777//23x,'****ac1 INTERACTION DIAGRAN*#xxe)
FRITE (6,519) NS, NRg
1, YBITE (6,517)
517 ForuaT (30X, ' (ar7Ep CURVE pIT) 1/,
YRITE (6,103
103 FoRMaT (19X, 1p (g LBs*,6x, 14 (g) LB-IN',?X,'EOH(J)')
DO 6 g=1,13
6 WRITE (6,104) P(J),BM(J),EOH1(J}
104 Formap /16X, 3E75, 7
PACI(1)=pg
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56 PACI (15) =BNO |
57 DO 1 1=1,13

58 1 PACI(I+1)=p(I)

59 C . CALCULATE MEAN THEORY INTEFACTION DIAGRANM

60 CALL THMEAN (RMEAN,PMEAN1,RNEAN2, NS)

61 C FIT A POLYNCHMINAL To Thp THEORY INTERACTION DIAGRAN
62 CALL CURVE

63 C WRITE MEAN THEORY INTERACTION DIAGRAM AFTER CURVE FIT
64 WRITE (6,101) '

65 101 FORMA?T (100 /7/77719%, Cxxxxumry 1nroRY INTERACTION DIAGRAM#*#%1)
66 : WEITE (6,519) NS,NRU

67 WRITE (6,517)

68 WRITE (6, 103)

69 DO 3 J=1,13

70 3 WRITE (6,104) P(J),BH (), EoH 1 ()

71 PTE (1, 1) =po

72 PTH (15, 1) =BMO

73 Do 15 1=1,13

74 15 PTH(I+1,1) =p (1)

7S WEITE (6,105)

76 105 FoRMaT (//18X,'EEANTH/ACI',ZX,'SOHW

77 C CALCULATE A¥D WRITE RaTIO MEAN THEORY/ACI

7€ » Do 17 1=1,15

79 i IF (I.FQ.1) EoH2=0.0

80 IF (I.67.1) EOH2=FOH1 (1-1)

81 IF (I.EQ.15) FOH2=99.99

82 BP(I,1)=PTH (T, 1) sPACT (1)

83 17 WKITE (5, 106) RP(I,1),E0H2

64 106 FORMAT (16%,2F10.5)

as C MONTE CARLO CALCULATION of THEORETICAL STRENGTH

36 DO 4 JJ=1,Ns

87 LO 10 I=1,nv

88 ‘ SD=STDV (I)

89 RM=RMEAN (I)

90 CONST=FCONST (1)

91 ITP=ITYPE (I)

32 CALL RAKDOM (IY,SD,RH,CONST, ITP, V)

93 - X(I)=v

ay 10 CONTINUE

85 IF (X(1).LE.(RHEAH(1)-3.3*STDV(1))) X(1)=RHEAN(1)-3.3*STDV(U
96 FC=X (1) :

97 - IF (X(2).67.FY1) x(2)=F11

98 FY= (X(2)~4000.0)%0.97

99 BB=X (3)

100 H=X (4)

101 B11=X (5)

102 D11=X (6)

103 DC=X (7)

104 DD=xX (8)

105 DO 2 I=1,yB

106 N1=I+g

107 2 DS (I)=x (NI)

108 C CALCULATE THEORETICAL INTERACTION DIAGRAM

109 CALL THEORY

11¢ C FIT A POLYNONINAL TO THE THEORY INTERACTION DIAGRAM
114 CALL CURVE

112 . PTH(1,339)=po

113 © PTH(15,33)=BMD

114 DO 9 1=1,13

115 9 PTH(IOLJJ)'—'P(I)



176 L=1+1

177 7 X(L)=RP(I,dd)
178 N=L

179 CALL STAT (RM,SD,COV,COS,COK,RMIN,RMAX,UM2,UM3,UN4 ,INAX, ININ,RHED,
180 1CLASS,CFREQ, NGROSS)

181 pc 11 I=1,15

182 IHAX=IMAX-NS

183 IF (IMAX.LE.0) GO TO 12

184 11 CONTINUE :

185 12 IMAX=INAX+NS

186 DO 13 I=1,15

187 IMIN=TMIN=-NS

188 IF (ININ.LE.C} GO TO 14

189 13 CONTINDE

190 - 14 IMIN=IMIN+NS

191 WRITE (6,21)

192 21 FOREAT (*1',//////26X,'<*> TOTAL STATISTICAL EVALOATION <*>')
193 WRITE (6,519). NS,NRU .

194 WRITE (6,20)

195 WRITE (6,25) RH,SD,COV,COS,COK

196 WRITE (6,30)

197 WRITE (6,35) RMIN,IMIN,RMAX,IMAX,RMED

198 WRITE (6,36) .

199 WRITE (6,37)

200 WRITE (6,38) UM2,UM3,0UN4

201 WRITE (6,39)

202 WRITE (6,40)

203 DO 55 1=1,31

204 55 WRITE (6,50) I,CLASS(I),CFREQ({I),NGROSS (I)

205 1600 CONTINUE '

206 WRITE (6,1900) JJ

207 1900 FORMAT ('1',/20X,'*xxt IS5, txxst)

208 STOP

209 END

210 Ctttt#*t****************************t*****************

21 [«

212 Ct‘#**********************#****#****#************#****

213 SUBROUTINE TEMEAN (RMEAN,RMEAN1, RMEAN2,NS)

214 COMMON N, EOH1(13),P0,BH0,DCS, DTS

215 CoMMON FC,FY,ES,BB,H,DC,DD,AS,AS11,811,D11,5,C,2Z, NRU
216 COMMON PHI,EO,J,%,ECC, EY, FCONCC (20) ,ASC, EOH (40) , FCONST (25)
217 COMMON X (16000),EC (20) ,B(20) ,P (40) , BHH (1000) , BH (40) , FCS (20)
218 COMHON FST,E (20) ,NB,DS (20) ,ASB (20) ,FSS (20) ,SBH (20)
219 DIMENSION RMEAN (25)

220 € SET EACH VARIABLE EQUAL TO ITS MEAN VALUE

224 FC=RMEAN1

222 FY= (RMEAN2~4000.0) *0,97

223 BB=RMEAN (3)

224 H=RHMEAN (4)

225 B11=RMEAN (5)

226 D11=RMEAN (6)

227 DC=RMEAN (7)

228 DD=RMEAN (8)

229 DO 2 I=1,NB

230 NI=I+8

231 2 DS (I)=RMEAN (NI)

232 € CALCULATE THEORETICAL INTERACTION DIAGRAM

233 CALL THEORY

234 C WRITE MEAYN THEORY INTERACTION DIAGRAN

235 WRITE (6,100)
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239
240
241
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245
246
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248
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250
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280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

100
519
101
102

4
103
104

1
4

FORRAT ('1',//////19%,* $***HEAN THEORY INTERACTION DIAGRAM®*#x1)
WRITE (6,519) NS,NRU -

FORMAT (31X,%(*,I4,'SIH',I5,%)"//)

WRITE (6,101)

FORMAT (//19X,"P(J) LBS®,6X,'H(J) LB=IN', 7%, EOH (J) ")
Do 4 J=1,¥

WRITE (6,102) P(J},BM(J),EOH (J)

FORMAT (/16X,3E15.7)

COKTINUE

WEITE (6,103}

FORMAT (//20X,'PO LBS*,7%X,'BNO LB-IN')

WRITE (6,104) PO,BHO

FORMAT (16X,2E15.7)

RETURN

END

C##t********#****#t**************************#********

C**tt*#*t#*********t*****t*****t***t*****t**#***#***#*

SUBROUTINE ACI (NS) .

C THIS SUBROUTINE CALCULATES THE ACI INTERACTION DIAGRAHM
C

COMMON N,EOH1(13),P0,BNO,DCS, DTS
COMMON FC,FY,ES,BB,H,DC,DD,AS,AS11,B11,D11,8,C,22, NRY
COMMON PHI,EO,J,2,ECC,EY,FCONCC (20) ,ASC, FOR (40) , PCONST (25)
COMMON X (16000), EC(20) ,B(20) ,P(40), BN (1000) , BM (40) , FCS (20)
COMMON FST,E({20) ,NB,DS (20) ,ASB (20), FSS (20) , SBN (20)

IF (FC.LE.4000.0) GO TO .1

B1=0.85=0.05%{FC-400GC. 0) /1500.0

IF (B1.LE.0.65) B1=0.65

GO TO 4

B1=0.85

E4=0.003

C CALCULATE PURE AXIAL LOAD CAPACITY

PO=0.85%FC* (BB*H=AS) +AS*FY

C CALCULATE AXIAL LOAD CAPACITY AT BALANCED CONDITIONS

PB=O.85*E1*FC*EB*DTS*(0.003/(FY/ES+0.003))

C. CALCULATE PURE MOMENT CAPACITY

AST=AS=25C
AR=BB*FC*B1%0.85

AB=0.003%A5C*ES~ AST*FY

AC==0.003%ASC*XES*DCS

RA=SQRT (AB*#2-4 . 0*AA¥AC) /(2. 0%A4)

C1=(=AB/(2.0%AR))~RA

IF (C1.LE.0.0) C1=RA~(AB/(2.0%AR))

ES2=0.003* (C1-DCS) /C1

IF (ES2.GE.(FY/ES)) GO T0 9

BHO=ASC*ES2%FS* (DTS=DCS) ¢ (AST*FY~ASC*ES2*ES) * (DTS=B1%C1/2. 0)
GO TO 8

-9 BHO=ASC*FY*(DTS-DCS)0((AST-ASC)*FY)*(DTS-(AST»ASC)*FY/(1.7*FC*BE))
C INITIALIZE STRAIN IN TENSION STEEL
8 E1=0.0019
J=0
2 J=J+1

IF (J.EQ.1) GO TO 5

MODIFY TENSION STEEL STRAIN

IF (E1.6T.-0.001) E1=E1-0,0005
IF (E1.LF.~0.001) E1=E1-0.001

C CALCULATE NEUTRAL AXIS DEPTH

C=F4*DD/ (EU-E1)
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PHI=EH4 /C
C CALCULATE FORCES IN STEEL BARS
CALL ASTEEL' (E4)
C CALCULATE CONCRETE COMPRESSIVE BLOCK FORCE
IF (C.GE. (H/B1)) C=H/B1
FCCONC=0.85%FC*B1%BB*C
C CALCULATE AXIAL LOAD LEVEL
P (J) =FCCONC+FST
€ CALCULATE DENDING HOMENT DUET TO CONCRETE COMPRESSIVE FORCE
COMPH=FCCONC* (DD~B1%C/2.0)
SN=0.0
C CALCULATE BENDING MCMENT DUE TO STEEL FORCES
DO 3 I=1,NP
SBE (I) = (FSS (1) =FCS (I) *ASB(I) ) * (DD=-DS (1))
3 SH=Su+SBHN (I)
C CALCULATE ‘“TOTAL BENDING MOMTNT CAPACITY
BF (J) =CONPH+SH-P (J) * (DD=-H/2, 0)
GO TO 6 .
5 P(J)=0.85%FC* ((BB*H) =AS) +AS*FY
BM(J)=0.0
C CALCULATE ECCENTRICITY E/H
6 EOH (J) =BN (J) / (P (J) *H)
IF (J.GE.20) GO TO 7
IF (EOH(J).LT.2.0) GO TO 2
7 ¥=J
WRITE THE ACI INTERACTION DIAGRAM
WRITE (6,100)
100 FORMAT ('1',//////23K,V%%%*ACI INTERACTION DIAGRAM**%x1)
WRITE (6,519) NS,NRU
519 FORMAT (31X,'(',I4,'SINY,IS,1)¢
WRITE (6,101)
107 FORMAT (//19X,'P(0} LBS',7X,'P(B) LBS',6X,'¥(0) LB=IN*)
WRITE (6,102) PO,PB,BNO
102 FORMAT (/16X,3E15.7)
WRITE (6,103)
103 FORMAT (//19X,'P(J) LBS',6X,'H(J) LB=IN?',7X, EOH (J) *)
DO 20 J=1,¥
WRITE (6,104) P (J),BM(J),EOH (J)
104 FORMAT (/16X,3E15,7)
20 CONTINUE
RETURN
END
C#**********#***********************************#*****
c
C**'******#*****##**#*********************************
SUBROUTINE ASTEEL (E)

(4]

C
C THIS SUBROUTINE CALCULATES THE ACI FORCES IN THE STEEL
C

COMMON N,EOH1(13),P0,BNO,DCS, DTS
conMoN rc,FY,Es,BB,H,DC,DD,AS, AS11,B11,D11,5S,C, 27, NRU
COMMON PHI,EO0,J,Z,ECC,EY,FCONCC (20) ,ASC, EOH (4C) , FCONST (25)
COMMON X{16000) , EC(20) ,B(20), P(40), bMK (1000), BN (4C) , FCS (20)
COKHMON - FST,E(20) ,NB,DS (20} ,ASB (20) , FSS (20) , SBN (20)
EY=FY/ES :

FST=0.0

DO 4 I=1,NB

E (I) =E4-PHI*DS (I)

IF (DS(I).GE.C) GO TO 5

FCS (I) =0.85*¥C
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105 FORKAT (/16%X,1F6.1,5X,1F7.1,4%,1F10.1)
WRITE (6,106)
106 FORMAT (//16X,*D(IN)*,5X,*H(IN)*,5X,'D (IN)",4X,*DC(IN)"
1 ,4X,%AS (SQINY ', 3X, ASC (SQIN) *)
WRITE (6,1C7) BB,H,DD,DC,AS,ASC
107 FORMAT (/12X,6F10.2)
WRITE (6,108) .
108 FORNAT (//16X,'DCS (IN)',2%,'DT5(IN) ', 4%, 'S (I8)*,4X, B1I(IN)",
14X, D1T(IN) *,2X,*AST1(SQIN)*)
WRITE (6,109) DCS,DTS,S,B11,D11,AS511
109 FORMAT {/12X,6F10.2
WRITE (6,112}
112 FORMAT (//16X,"NBY,uX,'ASB(I)*,5%,'DS (1))
DO 114 I=1,NF
WRKITE (6,113) KB,ASB(I),DS (I)
113 FORMAT (15%,1I3,2F10.2) ~
114 CONTINUE
RETURY
END
Ct#**#*****tt*#*****#*****#**#*******#****t******#****
c
C“************#***#*****#*****#***********t**********
SUBROGUTINE CURVE
c
C THIS SUBROUTINE FITS A POLYNOMIAL TO THE INTERACTION
C DIAGRAM
C .
COMMON N,EOH1(13),P0O,BMO,DCS,DTS
COMMON FC,FY,ES,BB,H,DC,DD,AS,AS11,8B11,D11,5,C,%Z, NRU
COMMON PHI,EO,J,%,ECC,EY,FCONCC(20) ,ASC, EQH (40) ,FCONST (25)
COMEON X (16000} ,EC(20) ,B (20),P (40) , BNK (1000), BN (80) ,FCS (20)
COMMON FST,E(20) ,NB,DS (20) ,ASB (20) ,FS5 (20} ,SEh (20)
DIMENSION DI (400),D(70),SB(10),T(10),COE(11)
DIMENSION XBAR(11),STD(11),S0MS0(11),I5AVE(11),ANS (10)
DIMENSION XX (500),BBB (10),EE (10)
M=10
EOH1 (1) =0.05
EOH1(2)=0.10
EOH1(3)=C.15
EOH1(4) =0.20
EOH1 (5)=C. 30
EOH1(6)=0.40
EOK1 (7)=0.50
EOH1(8)=0.60
EOH1 (9)=0.70
EOH1(10) =0.80
EOH1(11)=0.9¢C
EOH1(12)=1.00
EOH1 (13)=1.50
N=N=1
Do 2 J=1,¥
P(J) =P (J+1)
BE (J)=BU (J+1)
2 EOH (J) =EOH (J+1)
po 100 I=1,N
DIF#=BM (T+1) ~BH (I)
IF (DIFM) 105,100,100
100 CONTINUE
105 NP=I
EOHE=ECH {I)
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526 -

527
528
529
530
531
532
533
534
535

110

130
150

1€0

200
220

245
240
250

101

102
103

310

330

H1=M
IF (M.GE. (NP-1)) M=Np=2

L=Np*p

DO 110 I=1,NP

J=L+1

XX (I)=EOH (I)

XX (J)=P (1)

LL=L+NP

CALL GDATA (NP,H,XX,XBAR,STD,D,SUHS@
MM=M+1

SuUM=0.0 .

DO 200 I=1,M

ISAVE(I)=1

CALL ORDER (MM,D,MH,I,ISAVE,DI,EE)
CALL MINV (DI,I,DET,BBB,T)

CALL TMULTR (NP,I,XBAR,STD,SUHSQ,DI,EE,ISAVE,BBB,SB,T,ANS)
IF (ANS(7)) 220,130,130
SUMIP=ANS (4) =SUN

IF (SUMIP) 220,220,150

SUM=ANS (4)

COE (1) =ANS (1)

DO 160 J=1,1

COE (J+1) =BBB (J)

IT=1+1

JJI=I+1

CONTINUE

NN=13 -
DO 240 II=1,NN

EOH2=EOH1 (I71)

IF (EOHZ.GT.EOHE) GO TO 250
P(II)=0.0

DO 245 1=1,a9
P(II)=P(II)+COE(I)*(EOH1(II)**(I-1))
CONTINUE

NNN=IT

DO 101 I=NP,N

DIFE=3.0-EOH(I)

IF (DIFE) 102,101, 101

CONTINUE

GO TO 103

N=I=-1

NM=N=NP+1

M=M1

IF (H.GE.(NH-1)) M=NM=-2

L=NM*n

DO 310 I=1,NH

J=L+I

XX(I)=1.0/EOH(I+NP-1)

XX (J) =BM(I1+NP-1)

CALL GDATA (NH,H,XX,XBAR,STD,D,SUHSQ)
MM=M+1

SUM=0.0

DO 300 1=1,M

ISAVE(X)=1

CALL ORDER (HM,D,HH,I,ISAVE,DI,EE)
CALL MINY (DI,I,DET,BBB,T)

CALL TMULTR (NM,I,XBAR,STD,SUMSQ,DI,EE,ISAVE,BBB,SB,T,AN$
IF (ANS (7)) 220,330,330
SUMIP=ANS (4) ~SUH

IF (SOMIP) 320,320,350
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350 SUM=ANS (4)
COE (1) =ANS (1)
po 360 J=1,1
360 COE (J+1)=BBB (J)
JI=T+1
300 CONTINUE
320 DO 340 II=NNN,NN
BM (II)=0.0
DO 345 TI=1,JJ :
345 BH (IT)=BM (II)+COE(I)*((1.0/EOR1(II))** (I~1))
P (II)=BH (IX)/(H*EOH1(II))
380 CONTINOE
N4=NNN=-1
DO 370 I=1,Nu
370 BA(I)=P(I) *H*EOH1 (I)
RETORN
END
ct’*t*#tt**#t**********#*tt****************************
c
C**‘***#******#*#************#**********tt************
SUBROUTINE RANDOM (IY,SD,RH,CONST,ITP,V)
c
C THIS SUBROUTINE GENERATES VALUE OF THE VARTABLES WITH
€ THE MEAN, STANDARD DEVIATION, AND DISTRIBUTION GIVEY
c
COMMON N,EOH1(13),P0,BHO,DCS, DTS
counon rc,fY,ES,BB,H,DC,DD,AS,AS11,B11,D11,5,C,2Z, NRU
COMMON PHI,EO,J,?2,ECC,EY,FCONCC(20) ,ASC, EOH (40) , FCONST (25)
COMMON X (1€000), EC {20) ,B (20) , P (40) , BN (100C) , BM (4C) , FCS (20)
COMMON PST,E(20),NB,DS (20) ,ASB (20) ,FSS (20) ,SBY (20)
A=C.0 :
DO 50 I=1,12
IY=IY*65539
IF (IY.LT.C) IY=TY+2147483647+1
Y=IY*0.4656613E-9
S0 A=A+Y
A=p=6.0
V=A%*SD+RM
IF (ITP.EQ.1) V=10,0%*Vy
IF (ITP.EQ.2) V=10,0%*V+CONST
RETURN
END
Ctt#*t*#*t****t**********t********#*******#****#******
c
C*#*‘**t***t*t***ﬁ*****t*t*****************t****t***t*

SUBROUTINE THEORY

c
C THIS SUBROUTINE CALCULATES THE THEORETICAL P-4 DIAGRAMN
c
COMMON W,EOH1(13),P0,BMO,DCS,DTS
ComMMON FC,FY,ES,BB,H,DC,DD,AS,AS11,811,D11,5,C,2%, NRU
COEMON PHI,EO,J,%,ECC,EY,PCONCC(20) ,ASC, EOH (40) ,FCONST (25)
COMMON X (16000) , EC (20) ,B(20), P (40),BUN (1000) , BN (40) , FCS (20)
COMHMON FST,E(20),NB,DS (20) ,ASB(20) ,FSS (20) , 5BM (20)
FC=FC*0,85
IF (FC.EQ.1000.C) FC=1000.1
ECC=57000.0*SQRT (FC)
EO=1,8%*FC/ECC
EY=FY/ES
C CALCULATE PUPE AXIAL LOAD CAPACITY
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1

PO=FC#*BB*H+AS*FY=~AS*FC
J=0
J=J+1 '

C SET AXIAL LOAD LEVEL

IF (J.EQ.1 GO TO §

IF (J.EQ.21) P(J)=0.0

IF (P(J=1).LF.(0.6%P0)) P(J)=P(J-1)-0.034%po
IF (P{J~1).LE.(C.1%P0)) P(J)=P(J~1)-0.04%P0

IF (P(3=1).GT. (0.6%P0)) P(J)=P (J=1)=0.16%P0

IF (P(J).LE.0.0) P(J)=d.0

IF (J.EQ.2) P(J)=P(d-1)=0.08%p0

C CALCULATE MOMENT CAPACITY AT SPECIFIED AXIAL LOAD

5
6
7

CALL BXIAL
IF (P (J).EQ.0.0) BMO=BM(J)
IF (P(J).EQ.0.0) GO TO 7
GO TO 6

P (J)=F0O

BH (J) =0.0

EOH (J) =BH (J) / (P (J) *H)

GO TO 1

N=J=1

C ELIMINATE ERRATIC POINTS ON THE INTERACTION CURVE

#=N
BI=H-1

DO 8 I1J=3,NJ

IF (BM(IJ).GE.BM(IJ-1}) GO TO 8
IF (BM(IJ+¢1).LE.BM(IJ=1)) GO T0O 8
M=N-1

DO 9 JIJ=1J,NJ

P(JJJ) =P (JIJ+1)

BH (JJJ) =BH (JIJ+ 1)

EOH (JJJ) =EOH (3JJ+ 1)

CONTINUE

N=M

RETURN

END

C*******t***ﬁ***#************************************#

c

C*t*t**‘***?*#***************************************t

[

14
33
32

SUBROUTINE AXIAL

C THIS SOUBROUTINE CALCULATES THE MOMENT APTER BALANCING P
C

COMBON §,EOH1(13),P0,BN0,DCS, DTS
COMNOWN FC,FY,ES,BB,H,DC,DD,AS,AS11,B11,D11,S,C,22, NRU
COMMON PHI,EO0,J,%,ECC,EY,FCONCC(20) ,ASC, EOH(40) , PCONST (25)
COMMON X(160G0) , EC (20) ,B(20j, P (40),B4N (1000) , BY (40) , FCS (20)
COMHON FST,E(20),NB,DS (20) ,ASB(20),FSS (20) , SB# (20)
PHI=0.0000001

PHIH=PHI*H

II=1

E4=0.002

EINCE=0.002

E4=E4-EINCR

EINCR=EINCE/2.0

E4=EG+EINCE

FCCONC=0.0

C=F4 /VHT
ECO= (C~H} *PHI
IF (C.GE.H) C=H

196



656
657
658
659
660
661

662

663
664
665
666
667
€668
669
670
671
672
673
674
675

- 676

6717
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

‘702

703
704
705
706
707
708
709
710
711
712
713
714
715

C CALCULATE PARAMETERS OF THE CONCRETE STRESS STRAIN CURVE

C

C

IP (C.LT.H) EC0=0.0

ASC=0.0

DO 34 I=1,NB

IF (DS (I).LE.C) ASC=ASC+ASB(I)
34 CONTINOE

P11=(2.0% (B114D11) *AS114A5C*S) /(B11%D11%5)
ESCH=0,75*%P11*SQRT (B11/5)
E500=(3.0+0.002%FC)/(FC~1000.0)

IF (ES5CU.LF.0.0) ES0U=0.06
Z=0.5/(ESOH+E50U-EOQ)

2Z2=0.5/(ESOU-EO)

EU=2,0*(ESOH+ESQU)-EQ

DX=C/10

CALCULATE THE CONCRETE COMPRESSION BLOCK FORC
DO 23 1I=1,10
AIl=I
X (I) =C=AI*DX+¢DX/2
BC (I) =PHI*X (I) $+ECO
B(I)=BB

MAXIMOM STRAIN FOR UNCONFINED COMPRESSION 0.004
IF (EC(I).LE.E0) GO TO 3
IF (EC(I).GE.0.004) GO TO 21
IF (EC(I).GT.EO0) GO TO 8

3 FCC=FC* (2.0%EC (1) /EO- (EC (I) /EO) ¥*2)
GO T0 22

4 FCC=FPC* (1.0-2* (EC (I)~E0))
FCU=FC* (1.0-2%2* (EC (1) ~EO))
IF (PCC.LE.0.0) FCC=0.0
IF (FCU.LE.0.0) FCU=0.0
PCONCC (I) =FCC*DY¥*B11¢FCU*DX* (B{I)=B11)
GO TO 23

21 B(I)=B11
FCC=FC* (1.0-Z% (EC (I)=EO0))

IF (FCC.LE.G.0) FCC=0.0
IF (X(I).GE.(C~DC))} FPCC=0.0

22 FCONCC (I) =FCC*DX*B (I)

23 PCCONC=FCCONC+FCONCC (I)

CALCULATE THF CONCRETE TENSION BLOCK FORCE
IF (C.GE.H) GO TO 25
SFC=SQRT (FC)

ET=7.5%SFC/ECC

TC=ET/PHI

TCA=H~C

RTC=TCA/TC

IF (TC.GT.TCA) TC=TCA

IF (TC.LE.TCA) RTC=1.0
FCONCT==RTC*7.5%SFC*TC/2.0%BB
GO TO 18

25 PCONCT=0.0

18 CALL FSTEEL (E4)

CHECK FORCE COMPATIBILITY
PAXIAL=FCCONC+FCONCT+FST
TOLA=P (J) *0.02
IF (P(J).EQ.0,0) TOLA=0.001%PO
TOL=P(J)~PAXIAL
IF (TOL.LT.-TOLR) GO TO 33
IF (TOL.GT.TOLA) GO TO 35
GO TO 36

35 IP (F4.GE.EU) GO TO 44
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IF(EINCR.GE.0.0C00001) GO TO 32
36 conpu=0.0 . .
C CALCULATE THE MONENT DUE TO THE CONCRETE COMPRESSION FORCE
DO 24 1=1,10
24 COMPN=COMPH+FCONCC (I)* (DD-CH+X (I))
SM=0.0
C CALCULATE THE MOMENT DUE PO THE STEEL FORCES
DO 13 I=1,NB .
SBM (I) = (FSS (I)~FCS (I) *ASB (I) ) * (DD~DS({I))
13 SH=SH+SBM(I)
IF (FCONCT.EQ.0.0) TC=0.0
C SUM THE MOMENTS ABOUT THE TENSTON STEFL
BHM (I1)=COMPM¢SM+FCONCT* (DD~ (C+2.0%TC/3.0) ) =P (J) * (DD~H/2.0)
IF (II1.EQ.1) GO TO 17
TOLBHA=ARS (BUN (I1=-1) %0,01)
BMTOL=BMH (11)~BMM (II~-1)
IF (BMM(II).LE.0.0) GO TO 42
1F (BMTOL.GE. (0.5*TOLBNA)) GO TO 41
IF (BMTOL.LE.-TOLBMA) GO TO 42
GO TO 16
17 PHINCE=0.001
GO TO 41
44 E4=0.001
PHIH=PHIH-PHINCR
PHINCR=PHINCR/5.0
PHIH=PHIH+PHINCR
PHI=PHIH/H
EINCR=EINCR/2.0
60 TO 32
42 PHIH=PHIH-PHINCR
PRINCR=PHINCR/5.0
41 PHIH=PHKIH+PHINCR
PEI=PHIH/H
II=II+1
GO TO 14
16 BN (J)=BMM (II-1)
CONTINUE
RETURN
END
£33 33k 3k 2 o e 3 o i o3 o afe e o 2 ok o ok 3 oo ok i ok e o ok o o e ok a3 o ok ok afe sk ol gk e e Fe o 3k ook o ko
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SUBROUTINE FSTEEL (E4)
c
C THIS SUBROUTINE CALCULATES THE THEORY FORCES IN THE STEEL
c
COBMON N, EOH1(13),PO,BNO,DCS,DTS
COMMON FC,FY,ES,BB,H,DC,DD,AS,AS11,B11,D11,S,C,22Z, NRU
COMMON PHI,EO,J,Z,ECC,EY,FCONCC (20) ,ASC, EOH(40) , FCONST (25)
COMMON X (16000) ,EC(20) ,B(20),P (40),BHs (1000) ,BM (40} ,FCS (20}
COMMON FST,E(20),NB,DS (20) ,ASB (20),FSS (20) ,SEM (20)
PST=0.0
DO 4 I=1,NB
E (I) =E4=PHI*DS (I)
IF (DS({I).GE.C) GO TO 5
IF (E{I).GT.EO) GO TO 6
FCS (I) =FC* (2.0*E (I} /EO= (E (I} /EO) %%2)
GO TO 7
6 FCS(I)=FC*(1.0-2% (E(I)=E0))
IF (FCS(I).LE.0.C) FCS(I)=0.0
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FSC=~FCS {I) *ASB (I)
GO TO 8

FSC=0.0

FCS (I)=0.0

E(I)=-F (I)

IF (E(I).GE.EY} GO TO 2
IF (E(I).LE.-EY) GO TO 1%
G0 TO 3

FSS(I) =FY*ASB(I)

GO TO 4

. PSS(X) =~FY*ASB (I)
4

GO TO
FSS (I)=~E (1) *ES*ASB (I)
FST=FST+FSS (I) +FSC
RETURN

END

C*##***t*****************#*************t*t***#********

c

C#******#‘#**t*************************t**************

SUBROUTINE STAT (RM,STDV,COV,COS,COK,RHIN,RMAX,UHZ,UH3,UHU,IHAX,IH

1IN,RMED,CLASS,CFLREQ, NGROSS)

C THIS SUBROUTINE CALCULATES THE HEAN, COEFFICIENT OF

C VARIATION, CCEFFICIENT OF SEKEWNESS, COFPFICIENT OF
C KOURTOSTS,AND CUMULATIVE FREQUENCY TABLE

10

20

30

40

50

COMMON N,ECH1(13),P0,BM0,DCS,DTS
conMon Fc,rY,Es,BB,H,DC,DD,AS,4511,B11,D11,5,C, 22, NRU
COMMON PHI,EO,J,Z,ECC,EY,FCONCC(20),ASC,EOH(UO),FCOHST(ZS)
COBNON x<16000),EC(20),B(zo),p(uC),smn(1000),3n(u0),Fc5(20)
COMNON FST,E (20),N8,DS (20) ,ASB(20), FSS (20) , SEH (20)
DIMENSION CLASS(31),CFREQ(31)

DIMENSION Y(8002),DIF(16000),NGROSS (31)

SgN=0.0

PO 10 I=1,N

SOM=SUK+X (I)

RH=SUK/N

SON=0.0

DO 20 I=1,N

SUK=SUM+ (X (I)-RM) *#2

OM2=50M/N

STDV=SQRT (SUN/ (N~ 1))

COV=STDV/RN

SOH=0,0

DO 30 I=1,N

SUM=SUM+ (X (I)~RM) #%3

UN3=SON/N

COS=SUMN/ (N* (STDV*%3))

SON=0.0

DO 40 I=1,N

SUM=SUM¢ (X (I)=RM) **4

UMG=SUN/N

COK=SUM/ (N* (STDV¥*u) )

RMAX=X (1)

IMAX=1

DO 50 I=2,N

IF (BMAX.LT.X(I)) IMAX=T

RMAX=X (IKAX) -

RMIN=Y (1)

ININ=1
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854
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858
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864
865
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878
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886
887
888
889
890
891
892
893
894
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896

DO

60 I=2,N

IF (RMIN.GT.X(I)) IMIN=I

60 RMI
CIN

CLASS (1) =0.50

DO

N=X (IMIN)
T=0.05

70 1=2,30

70 CLASS(I)=CLASS (I=1) +CINT

CLA
bo

$5(31)=2.0
%0 1I=1,31

NPOINT=0

DO

80 I=1,N

80 IF (CLASS (II).GT.X(I)) NPOINT=NPOINT+1
NGROSS (II) =NPOINT
90 CFREQ (I1)=(100.0*NPOINT) /N

Do

100 1=1,31

100 CLASS (I)=CLASS(I)=0.0C001

Y (1
Ni=
Do
NPO

) =RMIN
N/2+2

66 IX=2,81
INT=1

DIF(1) =X (1) =Y (II-1)

DO

65 I=2,N

IP (X(I).EQ.0.0) GO TO 65
DIF (X) =X (I)~Y(II-1)
IF (DIF(I).LT.DIP(NPOINT)) NPOINT=I

65 CON

TINUE

Y (IT) =X (NPOINT}

X(w

POINT)=0.C

66 IF (NPOINT.EQ.1) X (NPOINT) =RMAX+1.0

N1=
DO
67 Y(T

Ni=1

67 I=1,N1

Y=Y (X+1)

RMED=(Y (N1=1) +Y (¥ 1)) /2.0
RR=(N/2.0)= (N/2)
IF (RN.GT.0.1) RMED=Y (N1)

RET
END

URN

C*#****#********************#**t**********************

C

SUBROUTINE

MULTR

C**t*****************t*********t**#*******************

aononananNaAcANNNANA0ON

PURPOSE

PERFORM A MULTIPLE LINEAR REGRESSION ANALYSIS FOR A

DEPENDENT VARIABLE AND A SET OF INDEPENDENT VARIABLES.

SUBROOTINE IS NORMALLY USED IN THE PERFORMANCE CF MULTIPLE
END POLYNOMIAL REGRESSION ANALYSES.

USAGE

CALL MULTR (N,K,XBAR,STD,D,RX,RY,ISAVE,B,SB,T,ANS)

DESCRIPTION OF PARAMETERS
N

K -
XBAR =~
STD -

D -

NUMBER OF OBSERVATIONS.

NUMBER OF INDEPENDENT VARIABLES IN THIS REGRESSION.
INPUT VECTOR OF LENGTH ¥ CONTAINING MEANS OF ALL
VARIABLES. M IS NUMBER OF VARIABLES IN OBSERVATIONS,
INPUT VECTOR OF LENGTH M CONTAINING STANDARD DEVI-
ATIONS OF ALL VARIABLES.

INPUT VECTOR OF LENGTH ¥ CONTAINING THE DIAGONAL OF
THE MATRIX OF SUMS OF CROSS-PRODUCTS OF DEVIATIONS
FROM MEANS FOR ALL VARIABLES.

THIS
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898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
9216
917
918
919
920
921
922
923
924
926
927
928
929
930
931
932
933
934
935
9236
9317
938
939
940
941
941, 1
942
943
944
945
946
947
948
950
951
952
953
954
955
956
957
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RX - INPUT MATRIX (K X K) CONTAINING THE INVERSE OF
INTERCORRELATIONS AMONG INDEPENDENT VAFIARLES.

RY = INPUT VECTOR OF LENGTH K CONTAINING INTERCORRELA~
TIONS OF INDEPENDENT VARIABLES WITH DEPENDENT
VARIABLE.

ISAVE = INPUT VECTOR OF LENGTH K¢1 CONTAINING SUBSCRIPTS OF
INDEPENDENT VARIABLES IN ASCENDING ORDER. THE
SUBSCRIPT OF THE DEPENDENT VARIABLE IS STORED IN
THE LAST, K¢1, POSITION.

B ~ OUTPUT VECTOR OF LENGTH K CONTAINING REGRESSION
COEFFICIENTS.

SB =~ OUTPUT VECTOR OP LENGTH K CONTAINING STANDARD
DEVIATIONS OF REGRESSION COEFFICIENTS.

T = OUTPUT VECTOR OF LENGTH ¥ CONTAINTNG T-VALUES.

ANS = OUTPUT VECTOR OF LENGTH 10 CONTAINING THE FOLLOWING
INFORMATION,.

ANS (1) INTERCEPT

ANS(2) MOLTIPLE CORRELATION CCEFFICIENT

ANS(3) STANDARD ERROR CF ESTIMATE

ANS(4) SUM OF SQUARES ATTRIBUTABLE TO .REGRES-
SION (SSAR)

ANS (5) DEGREES OF FREEDOM ASSOCIATED WITH SSAR

ANS(6) MEAN SQUARE OF SSAR

ANS(7) SUM OF SQUARES OF DEVIATIONS FROM REGRES-
SION (SSDR)

ANS (8) DEGREES OF FREEDOM ASSOCIATED WITH SSDR

ANS (9) MEAN SQUARE OF SSDR

ANS(10) P~VALUE

REMARKS ’

N MUST BE GREATER THAN K+1,

SUEBROUTINES AND FUNCTION SUBPROGFRAKS REQUIRED
NONE

METHOD
THE GAUSS~JORDAN METHOD IS USED IN THE SOLUTION OF THE
NORMAL EQUATIONS. FREFER TO W. W. COOLEY AND P. R. LOHNES,
*MULTIVARIATE PROCEDURES FOR THE BEHAVIORAL SCIENCES',
JOHN WILEY AND SONS, 1962, CHAPTER 3, AND B. OSTLE,
'STATISTICS IN RESEARCH', THE IOWA STATE COLLEGE PRESS,
1954, CHAPTER 8.

-.-o-.o-----.-.-o--o-----.---.u--.-..---.-.---....-..---..-..----

SUBROUTINE THMULTR (NPW,K,XBAR,STD,D,RX,RY,ISAVE,BBB,SB,T,ANS)
COMMON N, EOH1(13) ,PO,BHNO,DCS, DTS

common rc,ry,Es,BB,H,DC,DD,AS,AS11,B11,011,5,C,22, NEU

COMHMON PHI,EO,J,Z,ECC, EY,FCONCC (20) ,ASC, EOH (40) , FCONST (25)
COMMON X (16000) ,EC (20) ,B (20) ,P (40) , BHH (1000) , BY (40) , FCS (20)
COMMON FST,E(20),N3,DS (20) ,ASB (20),FSS (20) , SBM (20)

DIKENSION XBAE (11),STD(11),D(11) ,RX(4C0) ,RY (10)

DIMENSION ISAVE(13),EBB(10),SB(10),T(10) ,ANS(10)

-ca.--.oo.c-..---o-.-o.--.-...o-c.---...-.---....-..---.--.c--

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FOLLOWS,

DOUBLE PRECISION XBAE,STD,D,RX,RY,B,SB,T,ANS,RH,BO,SSAR,SSDR,SY,
FN,FK,SSARM,SSDRYN,F
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987
988
989
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1016
10147
1018
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100

110

120

122

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISICN STATEMENTS
APPEFARING IN OTHER ROUTINES USED IW CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBFOUTINE MUST ALSO

CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT AND ABS IN
STATEMENTS 122, 125, AND 135 HMOUST BE CHANGED TQ DSQRT AND DABS.

.-o---.-nq---.--.o..-...o-.o..-.-.-o-.oo..a...-..-o-.o-..-.--o.

MM=K+1
BETA WEIGHTS
DO 100 J=1,K
BBB (J) =0.0
DO 110 J=1,K
Li=K*({J-1)
DO 110 I=1,K
L=1.1+1
BBE (J) =BBB (J) +RY (I) *RX (L)
RM=0.0
B0=0.0
L1=ISAVE (MM)
COEFFICIENT OF DETERMINATION

DO 120 I=1,K
RM=RU+BBB (I) *RY (I)

REGRESSION COEFFICIENTS

L=ISAVE(I)
BBB (I) =BBB (I)* (STD (L1) /STD (L)) -

INTERCEPT

BO=BO+BBB (I) *XBAR (L)
BO=XBAR {L1) -BO ‘

SUM OF SQUARES ATTRIBUTABLE TO REGRESSION
SSAR=RM*D (L1)

MOLTIPLE CORRELATION COEFFICIENT
RM= SQRT( ABS (RM))

SUM OF SQUARES OF DEVIATIONS FRON KEGRESSION

SSDR=D (L 1) =SSAR
IF (SSDR.EQ.0.0) SSDR=0.1

VARIANCE OF ESTIMATE

FN=NPN=K~1
SY=SSDR/FN

STANDARD DEVIATIONS OF REGRESSION COEFFICIENTS

DO 130 J=1,K
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1020
1021
1022
1023
1024
1025
1026
1028
1030
1032
1034
1035
1036
1037
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
END OF FILE
$SIGNOFT

o a0 non

125

130
135

L1zK* (J=1) +J
L=ISAVE (J)

SB(J)= SQRT( ABS ((RX(L1)/D (L)) *5Y))

COMPUTED T-VALUES

T (J) =BBB(J) /SB (J)
STANDARD ERROR OF ESTIMATE

SY= SQRT( ABS(SY))
F VALUE

PK=K

SSARM=SSAR/FK

SSDRM=SSDR/FN

P=SSARM/SSDRM

ANS (1) =BO

ANS (2) =RM

ANS (3) =sY

ANS (4) =SSAR

ANS (5) =FK

ANS (6) =SSARN

ANS (7) =SSDR

ANS (8) =FN

ANS (9) =SSDRM

ANS (10) =F

RETURN

END
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Note:

Card

Note:

Note:

ARPPENDIX E
DATA INPUT FOR THE MONTE CARLO PROGRAM

A1l units are in inches and pounds.

Columns Data Description Format
1= 5 VPumber of Variables (NV) 15
6=10 VNumber of Simulations (NS) I5

11=19 Limiting Steel Strength (FY1) F9.2

The limiting steel strength is a maximum value of
steel strength which could reasonably be expected.
This is required so that extremely high values of

steel strength are not used for the theoretical

calculations.

1-15 Mean Concrete Strength (RMEAN1) F15.5
15-3C Mean Steel Strength (RMEAN2) F15.5
31-40 TInitial Seed (IY) I10
41-5C Number of Run (NRU) I10

The iritial seed is any integer. This number is
reQuired to initiate the random number generating
subroutine. The number of run is any identifying
number for the specific run.
1= 5 Width of Column (BB) F5.2
6=1C Depth of Column (H) FS5.2
11=15 Distance From the Compression Face to
longitudinal Steel Closest to the
Tension Face (DD) F5.2
16-20 Distance From Compression Face to

Nearest Longitudinal Steel (DC) F5.2
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DATA INPUT CONTINUED

Card Columns Data Description Format
21-25 Total Longitudinal Steel Area (AS) F5.2

26-30 longitudinal Compression Steel Area

(ASC) . F5.2
4 1-10 Concrete Design Strength (FC) F10.0
11-2C0 Steel Yield Strength (FY) F10.0
21=-30 sSteel Modulus of Elasticity (ES) F10.0

5 1= 5 Depth From Compression Face to.the
Centroid of Compression Steel (DCS) F5.2

6=10 Depth From Compression Face to the

Centroid of Tension Steel (DTS) F5,2 .
11-15 Spacing of Steel Ties (S) F5.2
16=-20 width of Ties (B11) F5.2
21-25 Depth of Ties (D11) ' F5.2
26=30 Area of Steel Tie (AS11) FS5.2
6 1= 3 Number of Longitudinal Bars (NB) I3
7 1= 5 Area of Individual Steel Bars (ASB(I)) F5.2

6=11 Distance From Compression Face to the
Individual Steel Bars (DS(I)) F5.2

Note: This card is repeated for each longitudinal bar.

8 1-15 Variable Mean Value (RMEAN(I)) F15.5
T4 Variable Standard Deviation (STDV(I)) F15.5
31=45 Variable Constant (FCONST(I)) F15.5

46-50 Variable Distribution Type (ITYPE(I)) IS5

Note: This card is repeated for each variable. In this



Card Columns

206

DATA INPUT CONTINUED

Data Description Format

program the order of variables is as follows:

Concrete Strength

Steel Strength

Cross Section Width

Cross Section Depth

Core Width

Core Depth

Distance From Compression Face to Nearest
Longitudinal Steel

Distance From Compression Face to the
Longitudinal Steel Furthest From the
Compression Face

Distance From the Compression Face to

Fach longitudinal Bar
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APPENDIX F

NOMENCLATURE
Cross sectional area of tie steel, one side of
colunmn
Width of column core
Actual cover of exterior steel layers
Specifiedléover of exterior steel layers
Depth of column core
Dead load
Eccentricity of axial load divided by the column
dimension perpendicular to the neutral axis
Error in placement of interior steel layers
Modulus of elasticity of concrete in compression
Modulus of elasticity of concrete in tension
Modulus of eiasticity of steel

Concrete stress

Concrete design strength

Mean in-situ concrefe strength

Average concrete cylinder strength

Depth of cross section

Live load

Mean value of (R-S)

ACI calculated axial load

Axial load calculated from Subroutine theory
Axial load from Hognestad's tests

Nominal resistance or strength

Spacing of ties
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NOMENCLATORE CONTINUED

Coefficient of variation of vg
Separation function, 0.75
Safety index

Dead load factor

Live load factor

Concrete strain

Increase in strain at 50% of maximum sStress due

confinement of concrete by tie steel
Concrete strain at maximum stress
Concrete tensile strain

Concrete strain at rupture in tension
Crushing strain of unconfined concrete
Concrete strain at 50% of maximum
unconfined concrete

Steel percentage

Tie steel volumetric ratio

Standard deviation

Standard deviation of (R=S)

Stress in tension

Rupture strength of concrete

Understrength factor

stress
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