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Abstract: Since the interest in studying spatial relations in plant populations was
raised in the 1950s, much effort has been devoted to the development of methods
for spatial data analysis. One such development focused on techniques for detect-
ing spatial clusters of cases and events in the biological sciences and epidemiology
during the late 1980s and the following decade. More recently, research has exam-
ined detecting clusters of correlated count data associated with health conditions
of individuals. Such a method allows researchers to examine spatial relationships of
disease-related events rather than just incidents or prevalent cases. We introduce
a spatial scan test that identifies clusters of events in a study region. Because an
individual case may have multiple (repeated) events, we base the test on a spe-
cial compound Poisson model. Based on this special class (a compound Poisson
representation of the negative binomial distribution), advantages in computation
over the general compound Poisson model that relies on a recursive formula are
realized. We illustrate our method for cluster detection on emergency department
visits, where individuals may make multiple asthma-related visits. We also demon-
strate the spatial scan test adjusted by key population characteristics such as sex
or age.
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1. Introduction

Spatial cluster detection (SCD) methods that provide tools to find proxim-

ities where certain events occur significantly more (or less) often than expected

have become popular in the surveillance of diseases (e.g., Besag and Newell

(1991), Kulldorff and Nagarwalla (1995), Nhu Le, Petkau, and Rosychuk (1996),

Jung, Kulldorff, and Klassen (2007)). The spatial pattern of disease spread or

other health outcomes is often of interest to health authorities; they collect sub-

stantial health data that can lead to important timely information when analysed

by appropriate statistical methods. SCD methods project an objective and sta-

tistically sound approach for surveillance tools that monitor health across an

administrative or geographic region.

http://dx.doi.org/10.5705/ss.2013.215w
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Several authors have advanced SCDmethods (see Marshall (1991), Lawson et

al. (1999), Kulldorff, Tango, and Park (2003a) and Kulldorff (2006) for reviews).

Test may be classified as general or focused (Besag and Newell (1991)) and may

detect clusters or the tendency to cluster. General tests are designed to detect

clusters within the overall pattern of disease in a complete region and the cases

of disease are assumed to occur at random: each individual in the population has

an equal chance of developing the disease. For these tests, no specific alternative

distribution for the cases is hypothesized.

Our health data applications typically have diverse population sizes and we

focus our review on a few key general tests. Kulldorff and Nagarwalla (1995)

introduced the spatial scan statistic (a maximum likelihood ratio statistic) that

assesses if the individuals in a zone (circle) have greater disease risk than those

outside the zone. The method has become popular in applications of spatial

analysis and a standard for comparing with new research methods. Some recent

developments in and adaptations to spatial scan methods include: Neill et al.

(2005) propose an expectation-based Poisson method for larger outbreak sizes

and is a variant to the test in Kulldorff (1997); Kulldorff Fang, and Walsh (2003b)

propose a tree-based scan statistic for the purpose of data mining; Chan and

Walther (2013) discuss the comparison of the optimality of test power of the scan

statistic and the average likelihood ratio (ARL) statistic; a modified ARL statistic

is proposed and its performance is studied in a more technical fashion; Wang and

Yue (2013) propose a two-stage algorithm in which a binomial approximation is

used in the second stage for spatial cluster detection; and Rosychuk and Chang

(2013) provide a spatial scan to detect geographic areas with high numbers of

disease-related events using a compound Poisson model.

Methods of Besag and Newell (1991) and Tango (1995) identify areas with a

tendency to cluster. Besag and Newell (1991) combine regions with nearest neigh-

bors and compare the number of neighbors that must be combined to contain

a pre-specified number of cases. A chi-square statistic based on the discrepancy

between observed and expected relative frequencies and a “closeness” measure is

proposed by Tango (1995). Stone (1988) proposes a general test for elevation of

disease risk around a point source and Morton-Jones, Diggle, and Elliott (1999)

extend Stone’s test with covariate adjustment. Bailey (2001) discusses the gen-

eral classes of problems in geographical epidemiology and reviews key statistical

methods and the software to implement the methods available at that time. The

paper is a good source for the history and background of spatial data modeling,

and provides extensive references to this area of research. The SCD methods

described are all based on detecting excess cases of disease and more recent de-

velopments and extensions have included the detection of excess events related to

a particular condition or disease (e.g., Rosychuk, Huston, and Prasad (2006) and
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Rosychuk and Stuber (2010)). These excess events tests are based on a strategy

similar to that in Besag and Newell (1991).

Very few SCD methods are appropriate for diverse population sizes consider

that stratification of the population by characteristics may influence the geo-

graphic pattern of disease. For example, Cuzick and Edwards (1990) demonstrate

the nearest neighbours test with covariate adjustment, Kulldorff (1997) provides

the spatial scan test in the Poisson model adjusted by race, and Besag and Newell

(1991) and Rosychuk, Huston, and Prasad (2006) offer tests that adjust for co-

variates through stratification. We consider a spatial scan for compound Poisson

data to detect geographic areas with excess events (such as emergency depart-

ment (ED) visits or physician visits), adjusting for key population characteristics

(e.g. sex). Our method uses a negative binomial distribution (in contrast to the

recursions as in Rosychuk and Chang (2013)) for disease-related events as the

primary unit of analysis for SCD rather than analyzing data of individuals in a

case/non-case fashion. Such a model enables us to detect geographical clusters

of events when individuals in a population may have multiple correlated events

related to a disease or condition. In Section 2, we introduce the model and test

statistic. In Section 3, we extend the approach to stratify by important pop-

ulation characteristics. We describe our administrative health data on asthma

and present case studies to illustrate our methodology, stratified by sex and age

group, in Section 4. Some concluding remarks and future research ideas are given

in Section 5.

2. Methodology

We assume that administrative health data can be collected from I non-

overlapping geographic subregions and that each subregion has a health centre

as centroid (e.g., geographic or population based). A zone Z, defined by a circular

spatial scan window of radius r and center at the coordinate of a centroid, consists

of only and all individuals in those subregions whose centroids lie inside the circle

(Kulldorff and Nagarwalla (1995)).

For a two-dimensional scan test, we choose an upper bound r∗i , i = 1, . . . , I,

on the radius of the circular scan window such that the population size of any

zone defined by the window centered at centroid i does not exceed β percent of

the total population in the study region. The choice of the upper bound on ri
should be made prior to analysis (Kulldorff and Nagarwalla (1995)). For each i,

all test zones can be generated by combining nearest subregions with subregion

i by varying the radius of the defining circle from 0 to r∗i and from centroid

to centroid. Each zone coincides with a single subregion when ri = 0 for all i.

Zones with such a definition have irregular geographic boundaries that depend
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Figure 1. A section of Alberta subregional health authorities.

on the size and shape of those subregions whose centroids lie inside the spatial

scan window.

Figure 1 shows a section of the Alberta sub-regional health authorities with

the coordinates of the centroids handpicked (non-official) for illustrative purpose.

Circular scan windows of various radii are centered at the centroids with region

ID 60, 53, and 36. Starting from each centroid, a new test zone is formed when a

new neighboring centroid is enclosed by the scan window. The value of r∗i varies

for each centroid i depending on the population size of cell i and of its nearby

neighbors and the chosen β.

2.1. Notation

Let Z be a collection of distinct subregions (administrative areas) in a geo-

graphic region R. For each predetermined Z ⊂ R, let Z′ ⊂ R denote the compli-

ment of Z. Let there be a total of I non-overlapping and contiguous subregions Si
(such as districts of land space), i = 1, . . . , I, in R (such as a state or a province).

Let the variable Cik, with observed value cik, be the number of individuals

observed with k events in subregion Si (k ∈ N, i = 1, . . . , I). Let Ci =
∑

k∈NCik,

with observed value ci, be the total number of individuals with at least one event

in subregion Si. Let CZ =
∑I

i=1
Si∈Z

Ci, with observed value cZ, be the number of

individuals (cases) with at least one event in Z and, similarly for outside the test

zone, CZ′ =
∑I

i=1
Si /∈Z

Ci with observed value c
Z′ . Let C = CZ+CZ′ denote the total

number of cases in R. We wish to detect zones in R that have significantly higher

numbers of events relative their surrounding regions. The spatial scan statistic
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we propose is based on a likelihood ratio test in the same spirit of Kulldorff and
Nagarwalla (1995).

We assume the population size of subregion Si can be measured and is de-
noted by ni for i = 1, . . . , I, and that Ci ∼ POI(λini) where λi > 0 are standard-
ized Poisson intensities. We consider that within a time period, say fiscal year,
individuals will only have event(s) within the subregion of their residence. Of the
individuals with at least one event, let Xiℓ denote the number of event(s) gener-
ated by the ℓth individual in subregion Si, ℓ = 1, . . . , Ci. The density distribution
of Xiℓ can be arbitrary depending on the context.

The total number of events from the population of subregion Si can be writ-
ten as

Ui =

Ci∑
ℓ=1

Xiℓ

where it is reasonable to assume that Ci is independent of Xiℓ for ℓ = 1, . . . , Ci

and i = 1, . . . , I. Thus, Ci could be used to represent, over a fixed period of
time, the number of people having respiratory symptoms in subregion i and Xiℓ

the number of times the ℓth individual of subregion i visited for hospital emer-
gency service with such symptoms. Any individual with symptoms of asthma
would present to an ED because of a real or perceived need for health care. The
individual would not know a priori the number of ED visits made over the time
period and region, and would therefore not have such information available to
alter the decision to seek health care.

With this formulation, Ui is a compound Poisson random variable and the
distribution of Ui is rarely tractable. In general, the recursive formula (Panjer
(1981))

Pr(Ui = 0) = e−λini ,

Pr(Ui = ui) =
λini

ui

ui∑
x=1

xf(x; θi) Pr(Ui = ui − x) ui = 1, 2, · · · (2.1)

can be used to obtain its distribution. For special classes of the compounding
distribution f(x; θi), more efficient recursions are derived in De Pril (1986a) and
Chadjiconstantinidis and Pitselis (2009). Large data sets make computations
involving a recursion formula lengthy. Suitable exact distributions of Ui (due
to a suitable selection of f(x; θi)) are desirable, especially when numerical opti-
mization is involved, to avoid recursions so that computation can be done more
efficiently.

We assume in this paper that Xiℓ is discrete and follows a Logarithmic
distribution with density

Pr(Xiℓ = x) = f(x; θi) =


−θxi

x log(1− θi)
x = 1, 2, . . . , 0 < θi < 1

0 elsewhere
(2.2)
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which has mean −θi[(1−θi) log(1−θi)]
−1. Supposing λini = −σini log(1−θi), the

probabilities Pr(Ui = ui) can be obtained using the negative binomial distribution
(see Quenouille (1949) and Gurland (1957)),

Pr(Ui = ui) =

(
ui + σini − 1

ui

)
θui
i (1− θi)

σini ui = 0, 1, 2, · · · (2.3)

and are denoted by NB(σini, θi) with mean σiniθi(1 − θi)
−1, where σi > 0 and

0 < θi < 1. Given σi and θi, Pr(Ui = 0) can then be easily calculated using (2.3).
The likelihood function for the negative binomial model can be written as

L(σ1, . . . , σI , θ1, . . . , θI) ∝
I∏

i=1
Ci>0

(
ui + σini − 1

ui

)
θui
i (1− θi)

σini . (2.4)

Under the null hypothesis H0: λi = λ and θi = θ for all i, if λni = −σni log(1−θ),
the likelihood can be expressed as

L(σ̂, θ̂) =

I∏
i=1

(
ui + σ̂ni − 1

ui

)
θ̂ui(1− θ̂)σ̂ni , (2.5)

where σ̂ and θ̂ are maximum likelihood estimates (mle’s) of σ and θ. In direct
joint estimation of σ and θ using (2.5), record level data on the individual event
numbers is not used in estimating θ. For instance, if we observe in a subregion Si
having five cases (Ci = 5), then both {Xi1 = 4, Xi2 = 2, Xi3 = 3, Xi4 = 3, Xi5 =
7} and {Xi1 = 2, Xi2 = 2, Xi3 = 2, Xi4 = 2, Xi5 = 11} give Ui = 19 and yield the
same σ̂ and θ̂ based on (2.5) alone. We suggest that θ̂ be obtained first by the
maximum likelihood method that maximizes

log
I∏

i=1

Ci∏
ℓ=1

−θ̂xiℓ

xiℓ log(1− θ̂)
,

then θ̂ substituted into (2.5) to obtain a mle of σ that maximizes Lθ̂(σ̂).
Under the alternative hypothesis Ha: λi = µ, θi = p and µni = −γni log(1−

p) for Si ∈ Z, λi = ν, θi = q and νni = −δni log(1 − q) for Si /∈ Z, µ ̸= ν,
γp(1 − p)−1 > δq(1 − q)−1, and p ̸= q, the probabilities Pr(Ui = ui) can be
obtained by separate negative binomial distributions, NB(γni, p) for Si ∈ Z and
NB(δni, q) for Si /∈ Z, i = 1, . . . , I. We can interpret the inequality γp(1−p)−1 >
δq(1−q)−1 as: per fixed population size, the expected number of events incurred
inside a test zone is higher than that outside the zone. Conditional on Ui = ui
for i = 1, . . . , I, the likelihood under the alternative becomes

Lp̂,q̂(Z, γ̂, δ̂) =

I∏
i=1
Si∈Z

(
ui + γ̂ni − 1

ui

)
p̂ui(1− p̂)γ̂ni

I∏
i=1
Si /∈Z

(
ui + δ̂ni − 1

ui

)
q̂ui(1− q̂)δ̂ni

(2.6)
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where, conditioned on Z, p̂ and q̂ are mle’s that maximize

log

I∏
i=1
Si∈Z

Ci∏
ℓ=1

−p̂xiℓ

xiℓ log(1− p̂)
and log

I∏
i=1
Si /∈Z

Ci∏
ℓ=1

−q̂xiℓ

xiℓ log(1− q̂)
,

respectively, and γ̂ and δ̂ are mle’s that maximize Lp̂,q̂(Z, γ, δ).

If Ci = 0 occurs in an observed data set, then Si is usually a subregion with

a small population size ni. We consider Si to be at a low risk of being a possible

event cluster and do not include it separately as a test zone for cluster detection

analysis; however, the inclusion and exclusion of Si alone as a test zone under

such criteria, later in assessing the test significance, depends on the Monte Carlo

simulation and is irrelevant to the observed data set.

2.2. Likelihood ratio test statistic

The likelihood ratio test statistic of our choice is

η =
max
Z⊂R

Lp̂,q̂(Z, γ̂, δ̂)

Lθ̂(σ̂)
or η = max

Z⊂R
log

Lp̂,q̂(Z, γ̂, δ̂)

Lθ̂(σ̂)
(2.7)

with σ̂ denoting the mle of σ under the null hypothesis. Note that, in practice,

we only consider η from zones such that the condition

γ̂p̂

1− p̂
>

δ̂q̂

1− q̂
or ϕ =

γ̂p̂(1− q̂)

δ̂q̂(1− p̂)
> 1 (2.8)

is satisfied since our interest is in finding regions of high expected number of

events relative to their surrounding areas.

As with Kulldorff (1997), the exact distribution of η in analytical form is

difficult to obtain. Monte Carlo simulation is to be employed to assess the

significance of an observed value of η under the null hypothesis by taking the

following steps. Each replicate of the data set is generated conditional on C = c

and Xj = xj , the number of events generated by the jth case in the study region

regardless of original cell reference, for j = 1, . . . , c. Under the assumption that

Ci ∼ POI(λni) and the distribution of Xiℓ is identical across all i and ℓ, in each

data replication a new cell reference is assigned randomly to each case by relative

frequencies ni/n to ensure spatial randomness of Xiℓ.

1. Conditioning on C = c and Xj = xj , sample randomly a subregion ID in {1,
2, . . . , 70} for each xj , j = 1, . . . , c. The sampling distribution has weights

ni/n for i = 1, . . . , I. Depending on the generated subregion ID for each xj ,

new Ci and Xiℓ, hence Ui, are generated for ℓ = 1, . . . , Ci and i = 1, . . . , I.
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2. Calculate the test statistic η as defined in (2.7).

3. Repeat Steps 1 and 2 for 999 trials and record the test statistic of each simu-

lation trial.

4. Rank the 999 simulated likelihood ratio statistics and the observed statistic η

from the data.

In our model, the likelihood Lθ̂(σ̂) is not a constant under the null hypothesis

over each simulation trial, because Lθ̂(σ̂) depends on Ui = ui for i = 1, . . . , I,

and Ui’s are not fixed in the simulation trials. Therefore, the numerator and the

denominator of (2.7) need to be computed in Step 2 of each trial. The hypothesis

test can be considered significant at the 1,000α percent level if the value of the

observed η calculated from data is among the 1,000α (an integer) highest of the

1,000 ranked statistics in Step 4. A significant test indicates that the collection

of subregions which yields the observed η in the spatial scan test is the most

likely cluster having higher expected numbers of events per fixed population size.

Other zones that have nonoverlapping subregions with the most likely cluster and

have high values of the test statistic under condition (2.8) should be examined

for the possibility of being secondary clusters.

3. Accounting for Stratification

Suppose the population in geographic areas differs by a key characteristic

B (for instance, sex, age group, or ethnicity) related to the condition under

examination, and that we have such data on the entire population. Analyses

can be adjusted for the population distribution on the key characteristic through

stratification. If B with b categories is anticipated to have an effect on the

distribution of correlated event count, we define Xijℓ to be the number of event

generated by the ℓth individual who has category j of the characteristic of interest

in subregion Si for ℓ = 1, . . . , Cij and j ∈ {1, . . . , b}, where Cij =
∑

k∈NCijk with

Cijk the number of individuals in category j with k events in subregion Si. The

density distribution of Xijℓ is now assumed to be

Pr(Xijℓ = x) = f(x; θij) =


−θxij

x log(1− θij)
x = 1, 2, . . . , 0 < θij < 1,

0 elsewhere.

The likelihood function in (2.4) under the influence of B is

L(Z, σ11, . . . , σIb, θ11, . . . , θIb) ∝
I∏

i=1

b∏
j=1

Cij>0

(
uij + σijnij − 1

uij

)
θ
uij

ij (1− θij)
σijnij ,
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where all parameters and variables have their original definition and are under the

same assumptions. A parameter or variable with indices i and j now is associated

with the ith geographical region and jth level of the population characteristic.

Under the null hypothesis H0: λij = λj and θij = θj for all i, if λjnij =

−σjnij log(1 − θj), the likelihood accounting for stratification can be expressed

as

L
θ̂1,...,θ̂b

(σ̂1, . . . , σ̂b) =
I∏

i=1

b∏
j=1

(
uij + σ̂jnij − 1

uij

)
θ̂
uij

j (1− θ̂j)
σ̂jnij ,

where θ̂j are mle’s of θj that maximize

log
I∏

i=1

Cij∏
ℓ=1

−θ̂
xijℓ

j

xijℓ log(1− θ̂j)

for each j, and σ̂1, . . . , σ̂b maximize L
θ̂1,...,θ̂b

(σ̂1, . . . , σ̂b).

If we assume the alternative hypothesis Ha: λij = µj , θij = pj and µjnij =

−γjnij log(1− pj) for Si ∈ Z, λij = νj , θij = qj and νjnij = −δjnij log(1− qj) for

Si /∈ Z, µj ̸= νj and pj ̸= qj for at least one j in {1, . . . , b}, and
∑b

j=1 γjpj(1 −
pj)

−1 >
∑b

j=1 δjqj(1− qj)
−1, the likelihood under Ha is

Lp̂1,...,p̂b,q̂1,...,q̂b
(Z, γ̂1, . . . , γ̂b, δ̂1, . . . , δ̂b)

=

I∏
i=1
Si∈Z

b∏
j=1

(
uij+γ̂jnij−1

uij

)
p̂
uij

j (1−p̂j)
γ̂jnij

I∏
i=1
Si /∈Z

b∏
j=1

(
uij+δ̂jnij−1

uij

)
q̂
uij

j (1−q̂j )
δ̂jnij

where, conditioned on Z, p̂j and q̂j maximize the log likelihoods

log

I∏
i=1
Si∈Z

Ci∏
ℓ=1

−p̂
xijℓ

j

xijℓ log(1− p̂j)
and log

I∏
i=1
Si /∈Z

Ci∏
ℓ=1

−q̂
xijℓ

j

xijℓ log(1− q̂j)
,

respectively, for each j and γ̂1, . . . , γ̂b, δ̂1, . . . , δ̂b maximize Lp̂1,...,p̂b,q̂1,...,q̂b
(Z, γ̂1,

· · · , γ̂b, δ̂1, · · · , δ̂b). We can interpret the inequality in the alternative hypothesis

as: under the influence of population characteristic B, per fixed population size,

the expected number of events incurred inside a test zone is higher than that

outside the zone.

As the number of categories of characteristic B increases, the chance of not

observing a case and event for some strata in some subregion(s) grows. For

example, we may observe in subregion Si that 5 individuals (all female) made

presentations to the ED because of domestic violence. If population stratification

is categorized by sex, pmale cannot be estimated for Si. In such a situation, we

substitute θ̂j for p̂j .
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The likelihood ratio test statistic is now

η = max
Z⊂R

log
Lp̂1,...,p̂b,q̂1,...,q̂b

(Z, γ̂1, . . . , γ̂b, δ̂1, . . . , δ̂b)

Lθ̂1,...,θ̂b
(σ̂1, . . . , σ̂b)

,

where σ̂1, . . . , σ̂b are mle’s of σ1, . . . , σb under the null. The procedure to as-

sess the significance of an observed η is the same as before, although the pop-

ulation characteristic B should be carefully taken into account when spatially

re-arranging the case data.

If the population differs by key characteristics (related to disease) across

the geographic areas, then stratification by the key characteristics is usually

preferred. If there are several strata variables and many test zones, then there

may be substantive areas where an event is not observed. The stratified analysis

may then yield unreliable parameter estimates and significance calculations.

4. Application

We illustrate our spatial scan on asthma-related ED presentations by children

and youth (age ≤19 years) based on ICD-9-CM or ICD-10-CM codes in the

western Canadian province of Alberta during six fiscal years (April 1, 1999, to

March 31, 2005), see Rosychuk et al. (2010a,b). Each ED presentation during the

study period is considered to be an event and a case is defined as an individual

who had at least one ED presentation for asthma in Alberta during the study

period. All tables and figures referenced in this section can be found in the online

supplementary document. We used 70 subregional health authorities (HAs) as

the cells (see Figure 1). A subset of Aboriginals and Welfare recipients were

selected for illustrating the methods when comparing the compound Poisson

model and the negative binomial model. The full dataset was then used for

analyses with sex and age stratification. We used four age groups to stratify the

population: preschool (from birth to the age of 4); primary school (from 5 to

9); preadolescence (from 10 to 14); and adolescence (from 15 to 19). Five year

age groups are typical for medical and epidemiological studies although other

choices could be made. The analyzed data set contains individual record level

information including age, sex, HA of residence, and fiscal year at the time of ED

visit. The cell population sizes are reported in Table 1, and the aggregated case

and event counts are tabulated in Table 2. In all the analyses, the radius size ri,

i = 1, . . . 70, varied from 0 to an upper limit, r∗i , which restricted test zones to

contain no more than β = 7% of the province’s population size of a fiscal year.

4.1. Compound Poisson model vs. negative binomial model

We first examine each fiscal year separately using both the negative binomial

model (2.3) and the spatial scan for events based on the compound Poisson model
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(Rosychuk and Chang (2013)). This examination allows us to compare the ap-

proaches, in particular the reduced computational time of the negative binomial

model, before considering the effect of stratification. When Xiℓ is discrete and

follows a Logarithmic distribution, the results of event cluster detection analysis

results based on the negative binomial model can be found in Table 3. The most

likely cluster of each year is reported with other calculated statistics including

computation time (CT) in hours. All computer programs were implemented in

MATLAB (2012a), of which the command fmincon is used for constrained op-

timization to seek the maximizer of an objective loglikelihood function on a PC

computer equipped with an Intel i7-2600 processor and 32 GB of memory. We

also report candidate clusters with likelihood ratios in the top 50 rankings that

do not intersect the most likely cluster as secondary clusters. It is common that

many of the secondary candidate clusters intersect with each other. For candi-

date zones that have at least one common cell ID, we manually report the zone

with the highest ranking likelihood ratios. Secondary clusters may be defined

in different ways, and one may report the cell(s) which appear the most often

among all secondary candidate clusters to the health authority for further inves-

tigation. When it is assumed that Xiℓ is discrete and follows a zero-truncated

Poisson distribution, the results of event cluster detection analysis based on the

compound Poisson model can be found in Table 4.

Analyses based on the two assumptions of the compounding distribution may

suggest very different primary event clusters. The commonly reported secondary

candidate clusters would suggest that these subregions deserve further investi-

gation. For instance, in the 2001/2002 fiscal year, zone {18, 19, 20, 21, 22, 26} is

detected as the most likely event cluster and {36, 62} and {27} are significant

secondary candidate clusters assuming a zero-truncated Poisson distribution as

the compounding distribution. Meanwhile, zone {63, 64} is the most likely clus-

ter and {27} is a secondary candidate assuming a Logarithmic distribution as

the compounding distribution. Similarly, {27} appeared to be a secondary can-

didate under both model assumptions in 2002/2003. It appears that the results

of the clustering detection is quite sensitive to model selection of the compound-

ing distribution in describing the intra-person correlation. This diagnostic tool

may require more subjective judgement when reporting potential event clustering

communities to health authorities for further investigation.

As a comparison, instead of assuming that Xiℓ follows a zero-truncated Pois-

son distribution with density

Pr(Xiℓ = x) = f(x; θi) =


θxi

x!(eθi − 1)
x = 1, 2, · · · and θi > 0,

0 elsewhere,
(4.1)



324 HSING-MING CHANG AND RHONDA J. ROSYCHUK

we report in Table 5 the probabilities of zero-truncated Poisson distributions cor-

responding to various θ̂ values estimated by the method of maximum likelihood

under the null hypothesis based on the event per case data from years 1999/2000

to 2004/2005 (from the left to the right), and in Table 6 the probabilities of Loga-

rithmic distributions. Clearly the zero-truncated Poisson distributions approach

zero faster than the Logarithmic distributions as x increases. When comparing

the distributions in the two tables to the relative frequencies of the number of

events per individual for each fiscal year reported in Table 7, even without a

formal goodness of fit test the distributions are closer to the ones in Table 6 in

each year, and there is a good reason to believe that the Logarithmic compound

model is preferable in our studied data set.

4.2. Stratification by sex and age

To have suitable data for demonstrating event cluster detection accounting

for population stratification under the negative binomial model, we focused on

the entire children and youth population of age ≤19 when ED presentations were

made. The event cluster detection results, without stratification, appear in Table

8, and the results when sex and age group are used as strata variables appear in

Tables 9 and 10, respectively.

It is interesting to observe that by examining further some of the secondary

significant event clusters in each fiscal year that, when not accounting for popu-

lation stratification, the detected primary and secondary event clusters together

are quite consistent to cover those regions in the most likely cluster detected while

considering age or sex stratification. The required computing time is consider-

ably less, in our experience, when analyses are carried out without stratification.

The most likely reason is that the optimization algorithm utilized by MATLAB

(fmincon) is quite fast, however, the number of repetitions of initiating the op-

timization algorithm increases significantly as more characteristics are used to

stratify the population and creates more subsets of data in analysis.

5. Discussion

We have explored the use of a compound Poisson model in analyzing disease-

related events. Whereas our earlier work (Rosychuk and Chang (2013)) used a

zero-truncated Poisson distribution for the compounding distribution, here we

took a Logarithmic compounding distribution and, subsequently, a negative bi-

nomial. Across all studies, the negative binomial had a definite advantage in

computing time, especially when case and event counts are large in a study

region. We have considered variability of the population by accounting for pop-

ulation stratification before analysis. It is advised to carry out some testing to

determine if stratification is needed, and a goodness of fit test on the choice of the
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compounding distribution, before adopting our spatial scan test. Further work

will investigate formal tests to assess the choice of compounding distribution.

A limitation of the proposed test is that it lacks the consideration of overdis-

persion as described in Loh and Zhu (2007) Zhang, Zhang, and Lin (2012).

Overdispersion can be caused by correlations existing among the λi and it causes

inflation of type I error in the classical spatial scan test analyzing cases alone,

and assuming Ci ∼ POI(λini). If spatial correlations exist, our spatial scan test

can inherit the problem of inflation in type I error. A possible solution is to

adopt the quasi-Poisson model as in Zhang, Zhang, and Lin (2012), where Ci is

shown to marginally follow a negative binomial distribution, in a specific setting,

governed by λi and dispersion parameter ni(ϕ − 1)−1 when 1 < ϕ < 2. When

Ci follows a negative binomial distribution and Xiℓ is discrete, results in Panjer

(1981) may address the issue; it deserves further investigation in detail.

Tests for detecting case clusters remain the most popular for their fast com-

puting time and performance in certain detection models. We have demonstrated

the advantages of tests based on the compound Poisson model which takes into

consideration the intra-person correlation of disease-related events. The goal is to

provide additional approaches to current methods and offer strategies when con-

fronted with spatial event data having a compound Poisson structure. Whether

the use of an empirical compounding distribution will improve the performance

of our approach of spatial scan test remains an open question. It certainly pro-

vides an alternate choice to the compound Poisson model and is worth further

investigation.
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Table 1: Aboriginal and Welfare Recipient Subregional Population Size
Fiscal sub-RHA
Year 1 2 3 4 · · · 66 67 68 69 70
1999/2000 975 3129 1852 402 · · · 1312 844 41 3293 1111
2000/2001 977 3089 1791 379 · · · 1312 823 41 3343 1096
2001/2002 914 3047 1809 378 · · · 1290 806 50 3369 1125
2002/2003 869 2936 1882 402 · · · 1424 800 46 3348 1168
2003/2004 888 2910 1945 402 · · · 1525 780 42 3367 1168
2004/2005 835 2906 1984 337 · · · 1532 754 31 3382 1210

Table 2: Cases (and Events) by Fiscal Year and sub-RHA
Fiscal sub-RHA
Year 1 2 3 4 · · · 68 69 70
1999/2000 23(32) 93(136) 52(76) 13(43) · · · 0 22(27) 29(34)
2000/2001 23(29) 79(103) 55(79) 11(17) · · · 0 17(23) 27(31)
2001/2002 20(29) 80(119) 50(68) – · · · 0 29(34) 18(21)
2002/2003 20(22) 76(111) 60(95) 12(20) · · · 0 19(24) 21(27)
2003/2004 24(33) 85(132) 61(91) 9(11) · · · 0 21(25) 22(28)
2004/2005 27(38) 83(138) 43(63) 18(39) · · · 0 18(22) 22(28)
– denotes suppressed cell case counts (<6) to ensure non-identifiability of
individual children and youth
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Table 3: Retrospective Analysis, Negative Binomial Model, β = 7
Fiscal statistical summary
Year most likely cluster cases (events) η φ p-value
1999/2000 {23, 27, 28, 29, 33} 307 (442) 36.319 1.933 <0.001
2000/2001 {36, 39, 51, 52, 58, 62} 155 (251) 10.483 3.097 <0.004
2001/2002 {63, 64} 51 (77) 8.729 3.444 <0.010
2002/2003 {1, 2, 3, 4, 20, 21, 22, 25, 26} 232 (360) 14.013 3.012 <0.002
2003/2004 {1, 2, 3, 4, 20, 21, 22, 25, 26} 247 (375) 12.622 2.342 <0.002
2004/2005 {1, 2, 3, 4, 26} 191 (300) 14.031 3.734 <0.001

Fiscal statistical summary
Year secondary clusters CT
1999/2000 3.50
2000/2001 {63, 64} 3.60
2001/2002 {27} 3.54
2002/2003 {27}, {7} 3.50
2003/2004 3.55
2004/2005 {41, 42, 43, 45, 48, 56, 57, 60} 3.57

Table 4: Retrospective Analysis, Compound Poisson Model, β = 7
Fiscal statistical summary
Year most likely cluster cases (events) η φ p-value
1999/2000 {65, 66} 100 (165) 18.167 2.886 <0.001
2000/2001 {36, 62} 138 (210) 8.894 2.186 <0.016
2001/2002 {18, 19, 20, 21, 22, 26} 70 (98) 10.130 2.534 <0.009
2002/2003 {3, 4, 5, 7} 91 (150) 16.282 2.151 <0.001
2003/2004 {2, 3} 146 (223) 10.072 1.613 <0.019
2004/2005 {2, 3, 4} 144 (240) 12.295 1.664 <0.006

Fiscal statistical summary
Year secondary clusters CT
1999/2000 {4}, {2, 3} 11.46
2000/2001 {63, 64, 67, 68} 11.80
2001/2002 {36, 62}, {27} 10.92
2002/2003 {27} 11.19
2003/2004 12.67
2004/2005 12.31
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Table 5: Probabilities of zero-truncated Poisson f(x; θ̂)

Estimated θ̂
mle

x 0.79898 0.83541 0.75543 0.77439 0.77743 0.74419
1 0.65315 0.63979 0.66940 0.66228 0.66115 0.67364
2 0.26093 0.26724 0.25284 0.25643 0.25700 0.25066
3 0.06949 0.07442 0.06367 0.06619 0.06660 0.06218
4 0.01388 0.01554 0.01202 0.01282 0.01294 0.01157
5 0.00222 0.00260 0.00182 0.00198 0.00201 0.00172
6 0.00030 0.00036 0.00023 0.00026 0.00026 0.00021
7 0.00003 0.00004 0.00002 0.00003 0.00003 0.00002
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
≥ 17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 6: Probabilities of Logarithmic f(x; θ̂)

Estimated θ̂
mle

x 0.50581 0.51954 0.48867 0.49623 0.49743 0.48411
1 0.71763 0.70877 0.72855 0.72375 0.72299 0.73143
2 0.18149 0.18412 0.17801 0.17957 0.17982 0.17705
3 0.06120 0.06377 0.05799 0.05941 0.05963 0.05714
4 0.02322 0.02485 0.02125 0.02211 0.02225 0.02075
5 0.00939 0.01033 0.00831 0.00878 0.00885 0.00804
6 0.00396 0.00447 0.00338 0.00363 0.00367 0.00324
7 0.00172 0.00199 0.00142 0.00154 0.00156 0.00135
8 0.00076 0.00091 0.00061 0.00067 0.00068 0.00057
9 0.00034 0.00042 0.00026 0.00030 0.00030 0.00025
10 0.00016 0.00020 0.00012 0.00013 0.00013 0.00011
11 0.00007 0.00009 0.00005 0.00006 0.00006 0.00005
12 0.00003 0.00004 0.00002 0.00003 0.00003 0.00002
13 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001
14 0.00001 0.00001 0.00000 0.00001 0.00001 0.00000
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
≥ 17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 7: Relative Frequencies
Fiscal Years

x 1999/2000 2000/2001 2001/2002 2002/2003 2003/2004 2004/2005
1 75.47% 73.86% 74.61% 75.78% 75.56% 76.86%
2 15.03% 15.08% 16.38% 15.36% 15.94% 14.35%
3 4.52% 5.83% 4.96% 4.36% 3.91% 4.55%
4 2.33% 2.88% 2.13% 2.28% 1.92% 1.96%
5 1.20% 1.01% 0.92% 0.83% 1.12% 1.07%
6 0.73% 0.67% 0.57% 0.62% 0.68% 0.51%
7 0.27% 0.27% 0.14% 0.21% 0.50% 0.19%
8 0.27% 0.27% 0.21% 0.21% 0.12% 0.06%
9 0.00% 0.00% 0.00% 0.07% 0.12% 0.38%
10 0.00% 0.07% 0.00% 0.00% 0.00% 0.00%
11 0.13% 0.07% 0.00% 0.14% 0.06% 0.00%
12 0.00% 0.00% 0.00% 0.07% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.07% 0.07% 0.00% 0.00%
15 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.06% 0.06%

Table 8: Retrospective Analysis, Negative Binomial Model, No Stratification, β = 7
Fiscal statistical summary
Year most likely cluster events η φ p-value
1999/2000 {66} 1194 236.084 3.424 <0.001
2000/2001 {36, 62} 1049 111.240 7.302 <0.001
2001/2002 {64, 65, 66} 1365 139.102 2.438 <0.001
2002/2003 {1, 2, 3, 4, 5, 7, 25} 1658 90.139 4.269 <0.001
2003/2004 {1, 2, 3, 4, 5, 7, 25, 26} 1965 68.549 2.349 <0.001
2004/2005 {1, 2, 3, 4, 5, 7, 25, 26} 1868 63.015 2.452 <0.001

Fiscal statistical summary
Year secondary clusters CT
1999/2000 {36, 62}, {29, 30, 31, 32}, {1, 2, 3, 4, 5, 7, 25} 3.37
2000/2001 {59, 63, 65, 66}, {58}, {29, 30, 31, 32} 3.17
2001/2002 {36}, {1, 2, 3, 4, 5, 7, 25, 26}, {30, 31, 32}, {27} 3.48
2002/2003 {59, 63, 65, 66}, {27} 3.39
2003/2004 {59, 63, 65, 66}, {29, 30, 31, 32}, {36, 62}, {27} 3.49
2004/2005 {59, 63, 65, 66}, {29, 30, 31, 53}. {34, 35}, {36, 62} 3.52
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Table 9: Retrospective Analysis, Negative Binomial Model, Sex Stratified, β = 7
Fiscal statistical summary
Year most likely cluster events η φ p-value CT
1999/2000 {66} 1194 238.716 3.425 <0.001 6.66
2000/2001 {59, 63, 64, 65, 66} 1912 126.374 1.585 <0.001 6.64
2001/2002 {59, 63, 64, 65, 66} 2004 168.167 2.474 <0.001 6.78
2002/2003 {59, 63, 64, 65, 66} 1697 101.186 1.872 <0.001 6.49
2003/2004 {59, 63, 64, 65, 66} 1580 59.316 2.066 <0.001 6.73
2004/2005 {59, 63, 64, 65, 66} 1582 75.026 2.573 <0.001 6.80

Table 10: Retrospective Analysis, Negative Binomial Model, Age Stratified, β = 7
Fiscal statistical summary
Year most likely cluster events η φ p-value CT
1999/2000 {66} 1194 671.518 4.205 <0.001 19.51
2000/2001 {59, 63, 64, 65, 66} 1912 485.073 1.701 <0.001 19.12
2001/2002 {59, 63, 64, 65, 66} 2004 530.151 2.409 <0.001 19.87
2002/2003 {59, 63, 64, 65, 66} 1697 440.489 1.726 <0.001 19.83
2003/2004 {59, 63, 64, 65, 66} 1580 418.572 2.209 <0.001 19.89
2004/2005 {59, 63, 64, 65, 66} 1582 430.706 2.405 <0.001 19.58
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Figure 1: Cells in Alberta.
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