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Abstract

Computer networks are constantly the victims of unwanted poking, probes, and 

outright violations. As the tools available to potential attackers have increased 

in sophistication, so has the need of counter measures to prevent such unwanted 

advances. Honeypots are emerging as a particularly interesting defense mechanism. 

Honeypots are software constructs tha t provide the ability to create the illusion of a 

computer system existing where there is none. These illusions simulate a computer 

system by recreating some of tha t system’s signature interaction mechanisms. By 

definition, because these systems do not exist, any traffic being sent to them should 

be viewed with suspicion.

A novel integration between honeypots and firewalls, called a honeywall, has 

proven to be an effective tool in hiding a production network environment from 

prying eyes within a facade of false computer systems. The honeywall increases 

the response-time window available to computer security experts. This provides the 

attacked site the option of passively monitoring the intruder’s activities, routing 

the intruder to a completely fictitious network residing on the honeywall itself, or 

actively responding to the threat while building an attacker profile.

This thesis demonstrates how a honeywall can be successfully used to mitigate 

rapidly spreading Internet worms in real-time.
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Chapter 1

Introduction

1.1 M otiva tion  and Scop e

The task of protecting networked assets has fallen to the network security profes

sional. Unfortunately the tools available to detect and prevent intrusions have not 

kept pace with the attacker’s tools to intrude. As a result, the ability to contain 

and mitigate potential network threats have been limited in effectiveness.

The goal of this research is to explore methods available to perform intrusion 

prevention and threat mitigation. Specifically, we are interested in addressing the 

ongoing problem area of so-called zero-day exploits in the guise of mass spreading 

worms. A zero-day worm takes advantage of computer systems tha t, while perhaps 

previously having been deemed secured, have been discovered to run software vul

nerable to the payload delivered by the worm. In some cases these vulnerabilities 

are exploited before the maintainers of the vulnerable program are aware that their 

software has been compromised, and therefore have not been able to  address the 

vulnerability via a patch or an update to their software. In the instance where the 

vulnerable software has been widely deployed, the potential amount of disruption 

and damage done by a rapidly spreading worm can be tremendous.

In 2003 a mass spreading e-mail worm labeled SoBig was released onto the 

Internet. Tens of thousands of vulnerable computer systems were infected by SoBig. 

Thousands more were disrupted in varying degrees of severity by the enormous load 

placed on the network as the infected machines attem pted to spread the worm 

farther. Taking into account downtime, lost business, the cost of investing in new

1
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technology and wasted productivity, estimates of SoBig’s impact range from 500 

million to 2 billion dollars [1],

The initial motivation for this thesis evolved from a perceived deficiency in exist

ing mechanisms to address containment and mitigation of the next rapidly spreading 

worm within a heterogeneous distributed and compartmentalized network, as char

acterized by tha t of the University of Alberta. It is desired tha t the thesis be viewed 

as a methodological inspection of existing techniques deployed in similar environ

ments.

1.2 O verview  o f T h reat

There are several different methods available to disrupt the normal function of a 

computer network. For example, a simple high-rate packet flood from a sufficient 

number of sources is often enough to affect or disrupt a computer network. Another 

example would be a directed attack where an individual targets a set of specific sys

tems on a network and attem pts to gain unauthorized access to them either through 

direct compromise, or through other social and/or technical means. For the pur

poses of this dissertation we will be examining techniques tha t are available today for 

addressing the problem of rapid worm propagation across the vulnerable computer 

systems on a network, as well as including results from testing a novel mechanism 

developed for the express purpose of detecting and isolating fast spreading worms.

As there are many differing methods of classifying worms and viruses, we include 

below a brief discussion of each and how they apply to the problem that is being 

examined.

1 .2 .1  E x a m in a tio n  o f  a V iru s

Cohen defines a computer virus to be “a computer program tha t can affect other 

computer programs by modifying them in such a way as to include a (possibly 

evolved) copy of itself’ [2], Computer viruses have been present in one form or 

another for decades. In 1981, in answer to a debate regarding the piracy of com

puter games exhibiting traits of evolution and natural selection at Texas A&M, an

2
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anonymous individual created the first virus on record [3]. This program, called Elk 

Cloner, was designed to integrate with the Apple II operating system present on tha t 

platform’s standard formatted diskettes [4]. W hen a specific command was entered 

by the user on a system using an infected floppy, the virus would transfer itself to 

all other floppies placed in tha t system. Among other mischief, every 50th reboot 

of the system a message would appear containing a poem about the Elk Cloner. 

The idea of having a virus display text to the user remains a common theme among 

virus writers even today.

Early computer viruses spread slowly by today’s standards, hampered by the la

tency introduced by their chosen spreading mechanisms. For example, a virus which 

writes itself to the bootsector of a floppy disk, such as M o n k e y .A or S t o n e d , is 

limited in impact by the visibility and transportability of the media [5]. If an in

fected floppy is only used on one computer system and tha t computer’s user never 

shares diskettes used on tha t system, then the virus can’t spread. Despite this rela

tively slow transport mechanism, in 1991 -  the same year Linux 0.01 was introduced 

by Linus Torvalds and less than one year after Berners-Lee and Cailliau released hy

pertext to the Internet -  the Monkey bootsector virus was able to spread globally

[6] [7].

As certain programs became increasingly ubiquitous, application-specific viruses 

began appearing, moving the attack away from the operating system to the applica

tions being run. One infamous example is tha t of the M i c r o s o f t  W o r d  C o n c e p t  

virus [8]. Using the embedded scripting language, called WordBasic, the concept 

virus author created a program tha t would spread itself every time the recipient 

of an infected Word file opened that document. Released in 1995 to great effect, 

by 1997 anti-virus companies had developed successful defenses against this type of 

embedded attack.

One particular innovation, e-mail, was nearly transformed overnight from a rel

atively benign communications medium to an aggressively exploited virus transport 

mechanism. In 1999 the M e l i s s a  virus, borrowing the idea of an embedded macro 

from C o n c e p t , began spreading itself via an infected attachment over e-mail [9].

3
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Once a recipient of a MELlsSA-generated e-mail opened the attached Word docu

ment, the virus would e-mail itself to 50 addresses from the freshly infected system’s 

Outlook address book. Estimates place the number of computer systems infected 

by M e l i s s a  at 1 million and damage in excess of $80 million [10].

In general a virus is a program tha t requires the intervention of a user or an 

automated scripting process to execute on the vulnerable computer system.

1 .2 .2  E x a m in a tio n  o f  a W orm

A worm, more so than a virus, is capable of spreading itself with great speed and 

without interaction with the users of a system. A successful worm is one tha t is 

capable of spreading itself at great speed, often by exploiting a known but as yet un

patched vulnerability in widely deployed software. The M e l i s s a  virus is not strictly 

speaking a worm as it still required user intervention to open an attachment before 

the attack could be launched. In contrast, the S l a m m e r  worm, which automatically 

exploited a buffer overflow vulnerability in Microsoft SQL Server and the Microsoft 

SQL Server Desktop Engine, was observed as doubling in size (measured by number 

of infected host systems) every 8 seconds [11]. Globally, over 90% of the vulnerable 

systems were infected within 10 minutes of the worm’s release. Worms that exhibit 

such super-spreading ability have been classified as Warhol worms [12]. While com

paratively few hosts (75,000) were compromised out of all systems connected to the 

Internet, the impact was none-the-less severe, including disruption of ATM service, 

delayed flights and degraded ability to use network resources.

Worms pose a significant threat to the global network in its current form. W ith

out automated and coordinated automatically-responding detection and mitigation 

mechanisms, the possibility for even greater disruptions and damage exist [13].

1 .2 .3  H o n e y p o ts  an d  H o n ey w a lls

A honeypot is a software construct whose value lies in being probed, attacked and 

compromised [14]. It is both a research tool tha t provides an early warning system 

for new and as yet unclassified attacks and a research tool tha t allows a network

4
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administrator to discover computer systems tha t may be initiating unwanted contact 

with their network resources. Owing to this, a honeypot is, by itself, incapable of 

preventing traffic to real network resources and furthermore can only report on traffic 

that it sees. This thesis investigates how the idea of a honeypot can be evolved to a 

point where it can be deployed as an overlay to an existing network infrastructure 

with the intent of not only identifying, but classifying and preventing successful 

attacks. This evolved technology, the honeywall, is capable of both monitoring and 

responding to threats on the network.

1.3 O verview  o f th e  R esearch

W hat is it th at we are going to  do?

In this dissertation I will survey the current state-of-the-art techniques used in 

worm detection and mitigation. Each of the technologies will be tested against one 

another under identical conditions in a test environment created specifically for this 

purpose. In addition to this, I will create an implementation of a honeywall that is 

capable of detecting and responding to a worm attack in a timely and non-signature 

based manner that will also be run in the test environment.

It is my intention to demonstrate that, by taking existing honeypot technology 

and using it to populate unused IP space on a network, a honeywall could use these 

honeypots as sensors to detect and respond unauthorized traffic.

W ho are we protecting?

The technologies reviewed in this dissertation are in most cases capable of scaling 

their deployments from a small network of a few single systems, to large enterprises 

that contain hundreds or thousands of computers.

While the potential exists for a honeywall to use a single honeypot as a sensor 

the true target site for deployment would be a company or university of medium to 

large size that has larger amounts of unpopulated public IP space. Having said this, 

the honeywall presented is scalable to the environment in which it is deployed.

W ho are we protecting against?

5
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1. Unsophisticated attackers. These individuals utilize scripted attack tools widely 

available on the Internet. While this type of person is not likely to cause sig

nificant amounts of damage in a well run network, they do have the potential 

to greatly disrupt systems tha t are not patched/m aintained by a professional.

2. Worms/viruses. An increasing threat to network stability has been identified 

in the form of autom ated worms and viruses set to discover and exploit vulner

able hosts. Once a vulnerable site is discovered, a small payload is delivered. 

The payload forces the infected host to start probing and exploiting other ma

chines, both on local and wide area networks. Regardless of the destination 

system vulnerability, these payloads still pose a threat to  network stability 

and general network performance.

W ho w ould w e like to  protect against?

The sophisticated attacker. Professionals of the hacking world, they are the 

few that have the knowledge and skill to discover and utilize new vulnerabilities. 

Once discovered, they may release a scripted tool to allow others to easily exploit 

a vulnerability. However, as a result of their expertise, they will also be the most 

likely to detect a honeywall in place.

H ypotheses:

1. By populating empty IP space with virtualized “systems” acting as ultra low 

interaction honeypots we can turn this otherwise unused area of a network 

into a powerful tool for detection of rapidly spreading worms.

2. Furthermore, by doing so we can cause the attacker to waste resources on what 

amounts to non-existent network assets.

3. A threat, once identified, can be responded to automatically by the system 

thereby reducing the total number of compromised computer systems on a 

network.

Experim ents:

6
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Create a rudimentary honeywall appliance tha t can be deployed on a given test 

environment which will be able to respond appropriately to known and unknown 

threats. Once created, use known scripted toolsets to test. Observe if traffic can 

be detected and stopped before total network compromise occurs. Compare these 

results to those observed from other technologies in the same environment.

1.4 C on trib u tion s

I create and test a reactive network intrusion prevention system capable of iden

tifying a threat of which it has no specific knowledge: a honeywall. A honeywall 

combines the inherent advantages of a honeypot with those of a reactive firewall in 

such a way tha t when it is overlaid with an existing unprotected computer network, 

real network assets could be protected by those fabricated by the honeywall. This 

honeywall technology is compared against the results of several other accepted threat 

detection techniques and is shown to be a viable solution to the rapidly spreading 

zero-day worm problem space.

1.5 O verview  o f T h esis

This thesis is organized into two primary areas. The first areas comprised of Chap

ters 1 through 3 provide a basis for discussion of the technique developed in this 

dissertation. The second area, which includes Chapters 4 through 6, show the re

sults of the honeywall method for detection and isolation of worms on a network, in 

addition to a discussion of the significance of these findings.

Highlights of this dissertation include:

• A high level overview of the critical need for accurate and timely detection 

and isolation of worms on the network.

• A review of existing worm detection and isolation techniques.

• A novel implementation of a honeywall, which demonstrates the ability to 

protect a vulnerable network from rapidly spreading worms.

7
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Chapter 2 provides an overview of the necessary background for the concepts 

used in this dissertation. Chapter 3 is a review of the current state of the art in 

network security techniques, providing details on how these techniques are used 

today. Also included in Chapter 3 is a discussion of related works and the evolution 

of the honeywall mechanism created for this dissertation. Chapter 4 details the 

implementation of the honeywall, and provides comparison results for the honeywall 

mechanism against two other technologies used in worm detection and mitigation. 

Chapter 5 further discusses the results of the findings in this dissertation. Future 

directions for further refinement of the honeywall technique and the conclusion are 

found in Chapter 6.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background

An understanding of the nature and types of attacks seen on the network is es

tablished first. Following the classification of attacks, a profile of an attacker is 

presented to provide a more substantial example of network intrusions. A discus

sion of firewalls, intrusion detection, and honeypots is provided to complete the 

background information necessary to understand the topics discussed in this thesis.

2.1 N etw ork  A c tiv ity

Before we can attem pt to detect attacks on the network, we must first specify 

what types of traffic and in what quantities are allowable. Specifically, through the 

exclusion of certain types of activities and patterns we will be implicitly creating 

a listing of anomalies tha t may be used as trip-wires for potentially undesirable 

network activities. The allowable network traffic profile can be translated into a 

policy, which will be further discussed in Section 2.2.

Lyle posits tha t most attacks fall within one of three main categories: attacks 

on integrity, attacks on confidentiality or attacks on availability [15]. The act of 

maintaining the integrity of a network is the act of preventing authorized users of the 

system from making changes beyond their authority, and to prevent unauthorized 

persons from making changes at all. If the integrity of a system can’t be maintained, 

then the attacks on confidentiality and availability are much more likely to succeed.

Any data stored within a system whose access has been restricted to a set of users 

can be thought of as confidential. W ithin a computer network, multiple individuals

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are performing roles where data access should remain restricted. For example, a 

researcher who is developing a new vaccine may want to limit access to her research 

while the study is being conducted and should be able to ensure tha t only she can 

access that data.

The ability of a system to remain accessible to authorized users is known as 

the system’s availability or uptime. In the context of an e-mail delivery system, 

a system that claims 99.99 percent uptime will be unavailable to authorized users 

no more than 52.56 minutes in one calendar year. These claims are usually made 

without dispensation towards abnormal network activity, and as such can be ad

versely affected by the abnormally and artificially high loads generated by a denial 

of service attack.

2.2 T y p es o f A ttack s

Motivation for attacks are as varied and numerous as the potential attackers in the 

world, and will not be covered within the scope of this dissertation. The desired 

result of an attacker is to compromise one or more of the above listed principles of 

security. To accomplish their desires, the attacker must exploit weaknesses within 

the system they wish to compromise. On a given system any service, protocol or 

connected system can be viewed as a potential entry point for the attacker. The 

analogy of a chain is often used when describing the security of a system, in tha t 

the weakest member of the system will undoubtedly be the first to fail when tested.

At the start of an attack, all the potential attacker may have to go on is the IP 

address of the machine they want to compromise. While it is conceivable that they 

could run toolkits tha t try  hundreds or thousands of known vulnerabilities against 

this IP address, the more than casual attacker will attem pt to gather information 

about their target before launching an attack. Tools such as nmap [16] and xprobe 

[17] are widely accepted as being effective at probing a system remotely to profile 

the soon to be victimized system. Additionally, nmap and tools such as pOf [18] 

can provide operating system fingerprinting which can be very useful to the poten

tial attacker, as it further refines the types and number of attacks that could be

10
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launched. Once a view of the available ports, services, and operating system has 

been discovered, the attacker can begin to select from the variety of different attack 

mechanisms at their disposal.

2 .2 .1  D en ia l o f  S erv ice  A tta c k s

When an attacker wants to disrupt the normal operation of their target, but does 

not want to gain access to the system itself, they may choose to launch a denial 

of service attack. As the name suggests, a denial of service attack occurs when 

an individual attem pts to overload the target computer’s available resources which 

results in, at best, a drop in the quality of service tha t the system provides and at 

worst will cause the system to crash outright.

A denial of service does not necessarily require the attacker to have a large 

amount of bandwidth at their disposal. In a Distributed Denial of Service (DDoS) 

attack multiple compromised machines are used in concert with one another to 

simultaneously attack a target system. When the M yD oom .O computer worm 

was released it quickly spread itself to vulnerable computers running Windows [19], 

causing infected systems to target Microsoft.com. Once a system was infected, 

the worm sends itself to all e-mail addresses stored in any of the address books 

contained on the compromised host. Additionally, this variant of the worm was 

designed to query four major search engines to discover further e-mail addresses that 

it could propagate to. While the purpose of this worm was to create a distributed 

denial of server attack against Microsoft.com, however the consequences were far 

more reaching as the large amount of traffic generated by the DDoS affected several 

Internet Service Provider’s ability to maintain their quality of service to their clients.

A distributed denial of service attack can affect more than the targeted system. 

As the number of infected machines grew, two of the search engines used by the 

MyD oom .O worm became overloaded with queries and eventually failed to respond 

to valid search requests. Additionally, each of the infected systems were forced to 

use some of their available network and memory resources while they participated 

in the attack.

11
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By automating the attack through the use of self-spreading worms, the attacker 

is saved the time and resources of identifying and exploiting machines on a one-by- 

one basis [20]. The worm does not discriminate what type of host it sends itself to, be 

it a Windows system, a Linux system, a home computer or a financial institution’s 

trading computer.

Denial of service attacks may not solely rely on overwhelming the bandwidth of 

the target service. An effective method to disrupt, for example, a VPN device may 

be to send it false Datagram Too Big messages [21]. If the attacker set the Path 

Maximum Transmission Unit size to be greater than it should be, and subsequently 

sends enough of these malformed packets, several datagrams will be lost, thereby 

disrupting the flow of valid network traffic. Another form of bandwidth independent 

denial of service is a SYN-flood which relies on sending a large number of extremely 

small TCP connection requests, thereby overwhelming the target com puter’s ability 

to process them [22],

2 .2 .2  E x p lo its

An exploit can be classified as the process in which an attacker goes about taking 

advantage of a weakness in their ta rge t’s defense. An exploit tha t has been seen on 

computer systems outside of a test lab is said to have been found “in the wild.”

Once a vulnerability has been discovered and successfully used to  affect the 

target system, a common practice is for an attacker to identify this vulnerability to 

the Internet community. In some cases, the attacker is a concerned individual who 

has discovered a vulnerability in a product and desires the organization responsible 

for said product to issue a repair to close the vulnerability before it can be discovered 

and used by other less ethical persons. Several of the vulnerabilities discovered in 

various Microsoft products have been discovered and reported in this manner [23].

In other cases, however, the attacker will create a tool tha t allows less skilled or 

knowledgeable persons to exploit this vulnerability in a repeatable and controllable 

fashion. Once a tool has been released, the vulnerable software manufacturers must 

race to create a patch to close the vulnerability before it is widely exploited.
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As will be discussed in further detail in Section 2.4 Intrusion Detection Systems 

(IDS), it is possible to create a signature of a known exploit tha t will allow an IDS 

to recognize previously discovered and published vulnerabilities as they occur on 

the network.

Vulnerabilities may lie undiscovered for years. When a vulnerability is found 

the discoverer must decide whether to release details of the vulnerability to other 

concerned individuals, or to attem pt to enter a dialogue with the vendor respon

sible for the product. Some vendors argue tha t the likelihood of a vulnerability 

being exploited before a patch can be created is greatly reduced by not releasing 

the vulnerability to the community in the first place [24] [25]. However, those in 

the security community are often quick to point out that some vendors are slower 

to create patches for vulnerabilities told to them through “responsible disclosure” 

methods. In a mildly philosophic way the question is posed: If no one is aware of 

the vulnerability, does it really exist?

The most dangerous type of exploit is one tha t has not been published but has 

been discovered. No IDS signatures exist to mitigate the risk, no patches are being 

worked on by the responsible vendor, and the likelihood of the discoverer/attacker 

being able to freely use this exploit to their own ends with relative impunity is very 

high.

2 .2 .3  B u ffer O verflow s

Your home may have a wall socket tha t contains two identical electrical outlets. 

These outlets probably have been built to comply with your country’s particular 

outlet requirements. W hat may be standard in one country may not physically fit 

in another country’s outlets. The specification of the plug type can be likened to a 

data type. The placement of two outlets in a wall socket can be likened to having a 

two-element buffer with the same data type. We define a buffer to be a contiguous 

allocated piece of computer memory tha t is used to store one or more instances of 

an identical data type [26]. C programmers may use the words buffer and array 

interchangeably as in C the concepts are interchangeable.
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In C, an array can be declared as static, where the size is determined at compile 

time, or dynamic, where the size is determined at runtime. At runtime a dynamic 

array, in the form of a variable, will be placed on the stack. For the purposes of 

discussion we will assume tha t when multiple dynamic variables are used, they will 

be layered on top of previously declared ones.

Much like a fluid-containing vessel, if too much data  is poured into a buffer 

its capacity to store data will be exceeded and some of the excess will necessarily 

flow over the top. When a buffer has been filled with too much information it is 

said to have experienced overflow. The difference between a physical vessel and the 

computer’s stack is tha t when the buffer is over filled, the data  does not disappear 

down the sides of the buffer onto the ground. Instead, the data continues to fill 

the stack where the buffer itself is stored. In some cases it is possible for the data 

being written into an over-filled buffer to be written over the data  in another buffer 

adjacent on the stack.

While buffer overflows can cause system instability through the unintentional 

destruction of valid instructions and data on the stack, malicious persons can use 

this same side effect to force a computer into doing what they want, often without 

the user’s knowledge. Once an attacker has discovered a buffer overflow they may 

be able to use it to inject their code into the running code on the target system.

Several buffer overflows have been discovered in Microsoft products with varying 

levels of consequence [27] [28] [23]. One such vulnerability resulted in the creation 

of over seven different viruses and exploits in a four month period [29].

2.3 F irew alls

When constructing a building, especially when there are other adjacent buildings, 

one consideration that the designers must take into account is the potential for fire 

to spread between areas. If a fire was to break out in any given unit, there should be 

physical walls in place tha t impede the spread of the fire to connecting units. The 

term firewall in relation to computing refers to a barrier that in some way isolates 

one or more computers from others at the network level. Unlike a physical wall
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tha t prevents both the spread of fires and impedes the movement of objects and 

people, a firewall can be configured to allow good traffic through and stop unwanted 

or unexpected traffic before it reaches its intended destination.

A firewall can be constructed in software, or as a standalone device tha t is placed 

physically on the network. A personal firewall is typically a piece of software in

stalled on a desktop machine th a t allows the user to decide which applications are 

allowed to converse with the network. Personal firewalls can be deployed in a corpo

rate environment where a higher level of security is needed, but are more typically 

installed on networks where a central network level firewall is not in place or possi

ble. For example, a home user with a high speed Internet connection might install a 

firewall that only allows connections initiated from their computer to interact with 

their system. By doing this, all network traffic th a t does not originate or is requested 

by their desktop will be stopped before it can be processed by the traffic’s intended 

destination. To further use this example, with the rise in autom ated worms and 

viruses that explore and infect the network automatically, a personal firewall may 

prevent an otherwise vulnerable system from becoming infected.

While personal firewalls give their users a great deal of flexibility to customize 

their installation, their disadvantages manifest themselves particularly in widespread 

or large networks tha t are centrally administered. For example, a department within 

a University may have 200 computer systems and one or more system administrators. 

If each of these two hundred systems have a personal firewall installed on them, the 

risk that a non-expert user may create a rule tha t prevents a valid application from 

conversing with the network is very high. Also, it is often possible for the users of 

desktop computers with firewalls installed to be granted privileges tha t allow them 

to modify their firewall configuration, which is another vector for a firewall related 

failure. Two solutions exist to the problem of misconfigured personal firewalls in 

the corporate environment. One is for the system administrators to be responsible 

for the proper operation of each and every one, a load that, even with user training, 

may prevent the administrators from accomplishing their other tasks. The other is 

to create a centralized firewall that encompasses the entire departm ent’s network.
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Figure 2.1: Example firewall placement

In a centralized configuration the firewall typically resides at the point where 

the network feed for the department is received. Figure 2.1 shows how a network 

level firewall might be implemented. Once the firewall is in place, the administrator 

must create rules tha t are sufficient to allow valid transactions to take place on their 

network while still providing some layer of protection from the outside world. While 

the mechanisms to create and modify these rules differ with the implementation, 

the methods are very similar.

A whitelist contains a listing of systems and/or ports tha t are allowed to pass 

through the firewall without further scrutiny. If the adm inistrator knew tha t all 

traffic from the 129.128.10.X network was valid and should be trusted, this IP block 

could be added into the whitelist. Whitelisting mechanisms can be effective at pre

venting users from experiencing unexpected behaviour from their applications when 

said applications use an undocumented or obscure port to communicate. While the 

whitelist encompasses the known good hosts, a blacklist enumerates the known bad 

ones. Use of a blacklist can be effective at blocking systems tha t have historically 

shown malicious or unwanted activity originating from them. A blacklisting mech

anism ensures tha t no network activity from the blacklisted hosts will be able to 

reach the production network tha t the firewall protects.

As a general starting point, a firewall configuration may allow all traffic outbound 

and deny all inbound traffic. This is facilitated by the statefulness of the firewall.
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A stateful firewall has the ability to establish a transaction history of connections. 

If a machine behind the firewall (129.128.10.3) sends a request to an IP outside of 

the firewall (66.35.250.150), the firewall will record this transaction request. When 

66.35.250.150 responds to 129.128.10.3’s request, the information will be passed 

through.

To further improve the resolution of the filtering tha t a firewall can provide, 

mechanisms exist to block specific types of traffic on arbitrary ports. On a given 

network, the adm inistrator may be able to determine tha t no UDP traffic should 

ever be sent and received on ports 1024-2048, and thus they could create a rule that 

would block th a t but still allow TCP traffic through.

Firewalls do not provide a perfect solution to the issues surrounding abuse and 

network attacks. Stemming from a misunderstanding of the scope of the technology, 

it is not uncommon for systems behind a firewall to remain unpatched or unsecured, 

a failing tha t can still be exploited. A firewall can’t  stop traffic tha t it has been 

configured to pass through. As discussed earlier, one of the predominant methods 

for worms to spread themselves is via e-mail, and e-mail is often considered a critical 

service on the network. Even though the firewall may be protecting the network 

from port scanning, buffer overflows and other malicious traffic, it will not be able 

to protect against other types of attacks. Furthermore, once a system behind the 

firewall has been infected, there is nothing in place to prevent tha t system from 

infecting other vulnerable systems also behind the firewall.

2.4  In trusion  D etec tio n  S y stem s

A system tha t attem pts to identify and classify unauthorized activities, be they 

through use, misuse or abuse of the system, is defined as an Intrusion Detection 

System (IDS) [30]. An IDS may be configured to monitor a single system, but 

more often they are to monitor several. No one method of implementing an IDS 

has proven itself to be the best approach, a conclusion that is supported by the 

wide variety of solutions available. An IDS can be installed on a single system to 

monitor activities at a system level, be present on a system or device tha t monitors
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the activity of a network, or may be a combination of the two approaches; that is 

to say a single system IDS with additional information provided from the network 

layer [31].

Of the network-level IDS systems present, two subclasses are available [32]. One 

captures data from the network and compares these snapshots or frames of data 

against a database of known attacks. This method of detection is known as pat

tern matching, signature analysis, or string matching. The effectiveness of signature 

analysis is largely dependent on the scope of the signatures th a t the incoming data 

stream is being compared against. If a data  stream can’t be matched to a pattern 

present in the database of signatures, no warning will be thrown. One caveat re

garding a string matching IDS should be noted. Substring matching may also be 

a method used when analyzing a data  stream for potential threats. As such, the 

possibility of a false positive increases as the substring size shrinks. A false positive 

is defined as an event tha t is detected as being malicious when it is not. Pattern 

matching can be done at a relatively lower cost to system resources than other tech

niques, and therefore a signature analysis type IDS can be scaled to handle large 

bandwidth networks with relative ease.

Alternately, a pseudo-intelligent IDS will still capture the raw data stream from 

the network, but instead of matching against known suspicious patterns, it attem pts 

to emulate the destination’s host and application based on the traffic seen. This 

emulation can provide a reduction in the number of false positives, and also may 

be more capable of handling attacks which would confound string matching IDS. 

However, the emulation is very resource intensive which prevents this type of IDS 

from easily scaling to meet high bandwidth deployments.

While a great deal of effort has been spent improving the field of IDS, by the 

very definition of an IDS a severe shortcoming is apparent: an IDS will at best 

correctly identify data as being a threat and will do nothing to actually stop a 

potential threat, and at worst will trigger too many false positives for the operator 

to identify the true threats [33] [34] [35] [36] [37] [38] [39]. The classification of a 

th reat is important. However the damage may already be done.
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2.5 H o n ey p o ts

A honeypot is a set of services presented to a network, often by one or more systems, 

tha t are not considered to be part of the production environment. These services 

are designed to mimic or simulate programs or even entire systems tha t a potential 

intruder may find interesting. Once an intruder is enticed, a honeypot may then 

interact with the potential intruder in such a way as to convince them  tha t the 

honeypot is legitimately running the service that is being queried. While the depth 

of interaction will differ based on the application, a highly interactive honeypot’s 

success may be gauged by the time tha t the potential attacker spends interacting 

with the simulation before realizing tha t they have been duped. By instrumenting 

a honeypot in such a way as to log these interactions, it can be used to monitor the 

attacker’s activities for research purposes or for the purposes of intruder detection. 

Specifically, because no legitimate network traffic should ever reach these systems, 

all traffic reaching the honeypot can be viewed with suspicion [14].

The concept of a honeypot can be implemented using many different types of 

operating systems and hardware platforms. For example, the honeyd software cur

rently supports FreeBSD, OpenBSD, Solaris and GNU/Linux operating systems 

[40]. However honeypots are not necessarily a product or application. Depending 

on the level of interaction your particular honeypot needs to have, it is possible 

to implement a basic honeypot using tools already existing on common operating 

systems.

2 .5 .1  Low In te ra c tio n

A low interaction honeypot is an incomplete or partial simulation of a set of services 

or operating systems that, upon cursory inspection, is sufficiently convincing to 

entice an attacker to proceed further [41]. As the attacker proceeds to communicate 

with the mimicked systems, their interactions will be limited by the depth of the 

simulation itself. For instance, an emulated service might be created to appear as if a 

given machine is running an open mail relay server, that when exploited would allow 

an attacker to pass mail requests anonymously through the “vulnerable” service.
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This emulated process may only respond to telnet to port 25 by returning the start 

of a typical SMTP session, or may support further interaction via common SMTP 

commands. Lower interaction services typically reduce the chance of an attacker 

actually compromising the service itself as the service emulation is not the actual 

service that the attacker will think they are exploiting.

2 .5 .2  H ig h  In te r a c tio n

High interaction honeypots are well suited to capture hostile activity targeted at a 

network as they are usually composed of one or more real computer systems that are 

deployed in a known vulnerable configuration. Instead of closely modelling a system 

that an attacker can interact with, the exact system is provided. A researcher in

terested in detecting a new rootkit for Windows 2000 Server running IIS 6.0 would 

create the exact environment tha t they wanted to monitor. Merely creating an en

vironment is not sufficient however, as this environment must be set up in such a 

way as to provide as extensive a forensic trail as possible prior to being deployed. 

W ithout instilling the research environment with a level of logging, at least equiva

lent to the perceived risk of deploying a high interaction honeypot, the full benefits 

will not be realized.

2 .5 .3  H o n e y p o ts  in  P r a c tic e

The benefits of the lowered interaction model, specifically ease of deployment and 

reduced risk of real system compromise, are at least partially countered by the 

limitations of low interaction. A simulation, no m atter how complete, will eventually 

reveal itself to a sufficiently determined and knowledgeable attacker either through 

missed features, or through interaction tha t slightly differs from tha t of a known 

system. This limits the depth of logging that a low interaction honeypot will be 

able to provide. In practice a low interaction honeypot is better suited to the task of 

identifying potentially hostile IP addresses rather than providing an in-depth view 

of the attack against a system.

Through the deployment of a fully configured production environment, the re-
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searcher does not restrict the possible avenues for compromise or detection by the 

attacker. For example, the researcher interested in how her IIS 6.0 computer could 

be compromised may see an attacker initially ignore IIS 6.0 entirely and proceed 

to compromise the system via another service running on the machine. This free

dom coupled with high levels of logging are the true strengths of a high interaction 

honeypot and make them ideally suited to research of threats.

However, with the increased possibility of compromise comes the realization 

that a high interaction honeypot, once compromised, might be used against non- 

honeypot systems. For the purposes of our research we will not implement a high 

interaction honeypot, as our solution views every system on the protected network 

as a potential high interaction honeypot with poor logging.

2 .5 .4  Sniffing

It is three in the morning somewhere when a call is made from the personal cellphone 

of one of the world’s most notorious diamond thieves. Instantly the investigators 

sitting in wiretap room are at full alertness, listening to and recording every piece of 

information exchanged during the call, ready to call in the troops if their suspect says 

something damning. In the world of computers, the ability to perform a function 

similar to the wiretap in the example is given by a device called a packet sniffer. This 

device can be inserted transparently in the network in one of two ways. Inserting 

the sniffer inline in the network provides the opportunity to both monitor and to 

modify the flow of data as it passes through the device. Inline sniffers run an 

increased risk of detection/corruption as all data must pass through them before it 

can continue on to its destination. Alternately, a sniffer can be installed on a span 

or tap port within the network. A span port receives a copy of the data flowing 

within the switch, which in turn allows the sniffer to see all of the traffic on the 

network without influencing the actual data flows. Direct detection of an span port 

sniffer is almost impossible from the end-user’s perspective.

Much like the ability to tap a phone conversation, the ability to sniff packets 

can be used for both legitimate and questionable activities. By providing a view of
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the actual packet traffic exchanged between computers on the network to a specific 

problem machine, the LAN adm inistrator has the ability to reconstruct the unfrag

mented transactions, often essential when resolving connectivity issues. A packet 

sniffer so configured has the ability to monitor all traffic from the network to a 

specific machine in addition to all traffic leaving the specified machine.

When a packet sniffer is placed in promiscuous mode, it is capable of monitoring 

all traffic destined for the network interface it is running on, in addition to all other 

traffic on the subnet tha t the sniffer is a member of [42], An attacker might use 

a packet sniffer to gather information such as plain-text passwords, logins, and e- 

mails, or to discover new IP and MAC addresses. In the case of an attacker using a 

packet sniffer to view a network’s traffic, what may be completely legitimate traffic 

over authorized protocols can become a good source of material for the attacker to 

compromise resources on the network.

A packet sniffer in promiscuous mode can be very difficult to detect on a network, 

despite tools like AntiSniff from LOpht Heavy Industries [43]. A common miscon

ception is th a t packet sniffers can only be used on unswitched networks. However by 

using techniques such as MAC spoofing [44], ARP spoofing [45], and impersonating 

the local network gateway [46] [47], or tools such as fragrouter [48], an attacker is 

still able to log network traffic. Tools such as the dsniff package exploits for many 

of these vulnerabilities into an easy to use utility [46].

2 .5 .5  S can n in g

To be certain to take what you attack, attack where the enemy cannot 

defend. -  Sun Tzu

Though the Art of War was written more than two thousand years ago, the 

wisdom of General Sun Tzu is still relevant today [49]. The teachings were intended 

for the military elite of his time but have come to be applied in all aspects of life 

where an absolute victory is essential. When an attacker wishes to compromise 

a target, the wise attacker will attem pt to determine his target’s strengths and 

weaknesses. Once found the wise attacker will then exploit those weaknesses to
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press their advantage against their targets. In the field of battle a general might 

send forth scouts to keep him informed of the enemy movements and strongholds. 

A digital attacker will also check the defenses of her target prior to launching a 

targeted attack. One such mechanism to reconnoiter a target is to  perform a scan 

of their systems.

Before the Internet became as pervasive as it is today, computer systems used 

the telephone networks via devices called modems. A computer may reside in a 

physically impenetrable building deep inside a corporations’ headquarters, but could 

still be potentially accessed from the outside world if it had a modem connected to 

it. When the telephone number this modem was attached to was called, the modem 

would answer with a carrier signal and thus try  to establish a data  connection 

between itself and the caller. The phone numbers for these systems were often 

unpublished outside of their specific user-base, as it was hoped tha t only those who 

needed to know about the system’s existence would ever be able to access it. W ith 

the prospect of being able to directly connect into a major corporation’s sensitive 

systems, attackers had the incentive to try  locating these phone numbers.

Mass marketers long ago realized tha t if they dial enough phone numbers, even

tually they will reach one tha t will get answered. Once answered the marketer would 

launch into their sales pitch hoping tha t the listener would buy whatever service or 

product the marketer was selling. Rather than going through the tedious process of 

manually dialing each of the target phone numbers, a device was created tha t would 

automatically dial a sequential range of numbers for the marketer.

Taking this automated ability to dial large ranges of numbers automatically to 

heart, tools such as Toneloc, so called war-dialers, were created tha t were capable of 

sweeping through thousands of phone numbers and recording those where a modem 

answered with a carrier signal [50]. Attackers quickly realized tha t by using these 

war-dialing programs they could effectively harvest a list of potential victims.

In a more modern context, attackers still need to identify potential victim com

puter systems and potential entry points into those systems. Connected via networks 

like the Internet, many of the computers are still vulnerable to brute-force techniques
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tha t establish an unsolicited connection to them. These scans can contact tens or 

even hundreds of thousands of systems in a very short period of time by sending 

a large amount of packet traffic representing differing protocols. In the case of a 

tool such as nmap, probes can be sent and further details can be deduced about the 

target systems by the types of responses tha t are received via comparison to known 

signatures [51].

2 .5 .6  F in g e rp r in tin g

Since most security holes are version specific, the discovery of a target com puter’s 

operating system is of great value to a potential attacker. If, for example, the 

attacker probed their target and discovered tha t port 53 was open they might choose 

to launch an attack against the BIND daemon tha t is most likely running [16]. If the 

BIND daemon is vulnerable the attacker may only have one chance to successfully 

exploit it, as a failed attem pt will most likely result in the daemon terminating itself 

[52]. By accurately identifying the operating system of the target host/machine, the 

attacker can better choose their exploit.
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Chapter 3

State of the Art and D esign

In Chapter 2 we introduce several technologies available to the LAN administrator. 

In this chapter we take a closer look at some of the state-of-the-art solutions available 

and how they apply to the problem space of worm detection and isolation. We also 

provide a discussion of honeywalls and how they are the next natural step in the 

evolution of reactive firewalls.

3.1 F irew alls

A firewall is defined as a device on the network through which network traffic flows. 

As network traffic passes through a firewall, the transactional information will be 

inspected and run against a ruleset. A network firewall is typically a separate piece 

of hardware which exists physically on the network, often located at an aggregation 

point. In the case of an office or departmental LAN, a firewall will commonly be 

placed between the outside world and the internal network as shown in Figure 2.1.

While the idea of a device th a t enables the good traffic to flow and prevents the 

bad from reaching the intended target is a simple one, there are several differing 

approaches on how to actually accomplish this goal. Firewalls appear in many 

guises, and in many locations across the network topology. In the following sections 

we examine and discuss the categories of firewalls, how they are deployed, and offer 

some insight into how they accomplish their tasks.
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3 .1 .1  B ord er  F irew a lls

The assumption tha t attacks can only come from the outside is outdated and out

moded. The modern network is an ever changing entity where machines are added 

and dropped from the overall topology as individuals move around. For instance if 

a user has been off-site with their computer system, there is no guarantee tha t they 

have been able to maintain any level of security on that system. While a system, 

such as laptop, is used on a foreign network, be it a customer’s site, a coffee shop, 

or even at home, it is subject to the security precautions made by those networks. 

This means tha t it is possible th a t a laptop which has been used off of the corpo

rate LAN may return in a compromised state. When the user returns and plugs 

their machine into the office network, their system becomes a trusted member of 

the network with all of the privileges afforded it by that trust. In the case where 

the recently reconnected system is compromised, that leaves the internal network 

vulnerable to compromise and infection from an inside source.

Border firewalls can play an im portant role in a computer network by acting 

as a gatekeeper which permits or forbids traffic from passing through it between 

the external and internal networks. From a policy standpoint, border firewalls can 

be used to create a digital barrier through which depermitted traffic can’t  flow by 

blocking ports and IP ranges. However, the wholesale blocking of ports may be 

a contentious issue in some environments such as academic institutions where the 

users may expect unfettered access to the network. Several commercially developed 

solutions exist to perform the role of border firewall from such companies as Cisco, 

Sonicwall, 3Com and Radware. These solutions often are packaged as appliances 

which, while their implementations differ, are all capable of acting as a border 

firewall. The open source community has also developed a large number of software 

packages capable of being a border firewall. Each of the major open source operating 

systems have border firewall capabilities through packages like iptables, netfilter, 

ipfw, and pf. The testing performed in this dissertation was performed using pf 

as it was incorporated in the operating system used in the test environment; any
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modern border firewall would suffice.

3 .1 .2  H o st-B a se d  F irew a lls

A host-based firewall is deployed as a last and first-line defence against the network 

at large. As identified in Section 3.1.1, a border firewall can only protect the internal 

network from the external world but not protect the internal network against itself. 

By deploying firewalls on each of the member nodes of a network, each node becomes 

responsible and enabled to protect itself from every other node both on the internal 

and external networks. As seen in Figure 3.1, sometimes it is not possible to deploy 

a firewall on all of the devices on your network.

O u ts id e  N e tw o rk  j

I D esk to p  
i j C o m p u te r

- ' A4m4 L a p to p

Figure 3.1: Host-based firewalls

An early form of firewalls still seen today is tha t of the stateless device. Traffic 

is permitted/denied on a per packet basis as those packets are matched against a 

ruleset. The term “state” refers to the firewall’s ability to remember tha t a connec

tion has been initiated by the host device. Stateless firewalls are uncommon today 

because they have extra rules to permit solicited responses to outbound requests. 

As a result these rules often create the possibility for an unauthorized inbound 

connection from the permitted ports.

Conversely, stateful firewalls are deployed in environments where the internal 

device or network is trusted by the LAN administrator to generate good traffic. If a 

system on the inside portion of a stateful firewall established an outbound connection
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to a service over a port not explicitly permitted, then the firewall will remember 

this and when the response comes in from the outside asset its connection will be 

permitted. By monitoring the connection states of the internal protected network, 

the firewall can prevent unsolicited traffic from the outside network from reaching 

the internal private network.

W indow s Firewalls

W ith the introduction of Windows XP Service Pack 2 (SP2), the Windows operat

ing system began shipping with a rudimentary host-based firewall. The Windows 

Firewall is an example of a stateful low-interaction firewall. All outbound connec

tions are allowed, and all inbound connections are disallowed unless they have been 

approved or “excepted” on a per application basis by the user. A startup policy 

is applied by the Windows Firewall as the computer loads allowing the computer 

to obtain IP and domain information and to establish itself on the network. The 

startup policy is transitory as it is removed once the computer loads the Windows 

Firewall service.

The Windows Firewall is low interaction as it will only ask the user to take action 

if unsolicited traffic is associated with an application running on the machine. The 

user is given the ability to deny the traffic, to allow the traffic (and implicitly create 

an entry in the exception table allowing this traffic in the future), or to temporarily 

ignore the traffic. If no association between traffic and application is made, the 

Windows Firewall will silently drop the traffic before it reaches the host machine. 

Also, Microsoft offers an option to not allow exceptions to the stateful rules. When 

this rule is activated the user will never be prompted to allow inbound traffic that 

may be unsolicited and all such traffic will be dropped silently.

While the Microsoft Windows Firewall is a good first step to protecting desktop 

computers running the XP operating system, it is far from a perfect solution. If 

a computer system becomes compromised any traffic generated by a worm process 

originating from the compromised host running the Windows Firewall will be allowed 

onto the network. As all outbound traffic is silently passed by the firewall the user
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will not have any direct feedback from their host based firewall alerting them to the 

unusual activity.

Third-party W indow s Firewalls

Applications such as ZoneAlarm and Blacklce Defender provide an increased degree 

of control over the traffic flow on a computer. They can bidirectionally apply policy 

on the installed host tha t can permit/disallow traffic both from outside networks as 

well as tha t traffic which originates from the host. Similar to the Microsoft Firewall 

these products use modal dialog boxes th a t prompt the user to correctly identify 

traffic/behaviour as events occur. The added benefit tha t can be derived from a 

host based firewall that is capable of applying policy on outbound connections is 

that the user can now control what applications are allowed to communicate with 

the outside world.

The ability to prompt the user and block outbound traffic can, when properly 

leveraged, allow for early detection of compromised host systems. In the situation 

where an executable has been installed onto a compromised host, a bidirectional 

firewall would usually prompt the user to  see if this activity was expected and if it 

should be allowed. If the user identifies the malicious process as unexpected they 

can instruct the firewall to drop the traffic and prevent their compromised system 

from infecting other member nodes of their local network.

Some drawbacks exist with these systems. In their attem pts to make deployment 

of their products easier, vendors often allow users to create policies th a t trust and 

permit all local network traffic. By perm itting all local traffic, the firewall is no 

longer protecting local systems from one another, thus reducing their utility in the 

case of a major worm outbreak.

By enabling the user to make decisions on what applications are allowed to 

talk to the network, the software is implicitly assuming that the end user is knowl

edgeable enough to make the correct decision. For example, if a user is notified 

th a t“svchost.exe is attempting to communicate with 127.0.0.1” , the program is ex

pecting tha t the action the user takes is truly tha t which they want to take.
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Managing large IP spaces can be very complicated. If the host-based firewalls 

are deployed in such a way as to allow individual users to manage the rules of the 

systems, they may complicate troubleshooting of connectivity issues. For example, 

if a user has chosen to create a list of hosts that are explicitly perm itted upon 

installation of the software, they may not remember tha t the list exists later on 

when one of their coworkers not in the list attem pts to connect to their system. 

This problem can be somewhat overcome through the creation of default policies 

that are distributed to all users of the host-based firewall mechanisms.

System resources are consumed by a host-based firewall. They are not optimized 

for high throughput attacks. Being software packages they consume host-system 

resources, both memory and CPU. In the case of a firewall tha t does some packet 

inspection tha t means th a t each packet tha t is passed to/from  the host system will 

be inspected in software before it is placed back on the wire. As a result of this, high 

throughput network devices (such as fileservers), or systems tha t are being directly 

attacked with large amounts of traffic, may have their performance degraded.

3 .1 .3  S ta t ic  F irew a lls

A static firewall’s rules, as the name implies, do not change. Specifically, any changes 

that are made to a static firewall’s ruleset require the manual intervention from a 

privileged user. A static firewall is well suited to environments where rules can 

be easily codified and are likely to remain unchanged. Rule sets are chosen by 

the LAN administrator to  suit their network environment. For example, if a LAN 

administrator knew that their servers should only ever see network traffic from the 

outside world on port 80 (web), then they could configure a ruleset on the firewall 

that would enable the firewall device to drop any traffic tha t was not destined for 

port 80 on the internal network.

Rules can be created on a per machine or per segment basis. It is not uncommon 

for a network administrator to conceptually separate the functions of systems within 

their network by function. For example, an administrator might group all of their 

servers together while creating another group for their workstations. By grouping
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these machines together by function, rulesets can be created to apply to multiple 

machines with similar functionalities. W ithout any rules in place many firewall 

implementations will default to a “any/any all/all” rule which states that traffic 

from any source to any destination on all source and destinations ports will be 

permitted. W hen the “any/any all/all” rule is in place all network traffic will flow 

through the firewall undisturbed.

Therefore, it is considered a best practice to create rulesets from a default deny 

baseline, the idea being tha t no traffic will flow until the adm inistrator has explicitly 

permitted ports and protocols. Static firewalls are limited in their effectiveness 

against threats such as worms. If a rule blocking the ports used by a worm does not 

exist prior to the release of a worm on the external network, the worm traffic will be 

allowed by the static firewall to pass onto the internal network unhampered. In the 

situation where a default deny-all traffic policy has been created, with exceptions 

added to permit traffic on an as-needed basis, the possibility of using non-standard 

ports to propagate is removed. In response, one of the mechanisms tha t is used by 

worm creators is to utilize ports tha t are commonly opened on firewalls to transport 

their payloads. For example, TCP ports 135, 137, 139 and 445 are used by several 

Windows applications and therefore typically have rules in place to permit traffic 

across those ports. By transporting the payload across a perm itted port, the worm 

effectively bypasses the firewall, allowing it access computers on the internal network.

3 .1 .4  R e a c tiv e  F irew alls

At a high level, a reactive firewall with no reaction mechanism is the same as a 

static firewall. Reactive firewalls are a superset of static firewalls in tha t they often 

are initially configured with a baseline set of unchanging rules. Over time, based 

on metrics specified by the adm inistrator of the firewall, a reactive system may 

supplement these baseline rules with additional restrictions in response to events 

logged by the firewall. Reaction mechanisms range from manual intervention from 

the firewall’s administrator, to automated processes tha t may be threshold or proto

col based such as pf and netfilter [53], or Intrusion Detection Systems such as Snort
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[54].

3 .1 .5  In tru sio n  D e te c t io n  S y s te m s

As noted in Section 2.4 Intrusion Detection Systems (IDS) have historically been de

ployed inline in a network making them capable of statefully inspecting and matching 

the traffic against known attack signatures as it flows through them. Many modern 

IDS systems are capable of reconstructing data  flows to better process out-of-order 

attacks, as well as normally disrupted traffic. At its simplest, an IDS can be thought 

of as a string matching engine tha t compares all traffic on a network against a list 

of known bad strings that appear in various attack vectors, such as buffer over

flows, worms, and e-mail viruses. Depending on the implementation, an IDS may 

be configured to passively log all signatures detected, or may be set to  contact an 

administrator (usually once a set threshold of attacks has been reached).

Deployed inline on the network, a base install of Snort [54] is capable of recom

bining out-of-order traffic, and deep packet inspection looking for a wide variety 

of protocol anomalies, port scans, and host-based vulnerabilities. By comparing 

network traffic against a database of known attacks, Snort is capable of identifying 

threats as they arrive on the wire. This database of rules is currently maintained by 

the snort.org team and additional custom rules can be created by the end adminis

trator to handle special cases/conditions within the environment it will be deployed 

in. Snort is currently billed as both an intrusion detection and an intrusion preven

tion system (IPS). When initially developed, Snort was capable of only reporting 

and alerting on signature matches. The ability to react to undesirable traffic based 

on the output of Snort was a feature initially added by other open source projects 

such as Hogwash [55], but has since been included and grown in the main Snort 

development branch. Over time Snort has evolved into what its creators claim to 

be “most widely deployed intrusion detection and prevention technology worldwide 

and has become the de facto standard for the industry” [54].

As with all active traffic suppressors there are risks and drawbacks to using Snort. 

Being such a high profile and widely deployed IDS/IPS, Snort attacks and scans are
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created to bypass weaknesses within its architecture [56] [57]. Being largely signa

ture based also has strengths and weaknesses. A well-written signature can have 

a very high detection rate while having a very low false-positive rate. False posi

tives occur when a packet is flagged as containing a type of traffic tha t it does not. 

In situations where signature-based IDS/IPS devices are deployed in an active re

sponse mode, this can lead to valid traffic being dropped from the network. Because 

of the possibility to cause great damage to the valid traffic flows, the Snort team 

restricts their base signatures to well-tested ones with extremely high probabilities 

of successful detection. However, this often means tha t signatures do not exist for 

recently released threats. To fill in this perceived drawback, organizations such as 

Bleeding-Edge Snort [58] have formed, where community-developed signatures for 

a wide variety of applications aggregate in a freely downloadable and distributable 

form. The trade-off for using recently developed signatures is the decreased testing 

period and therefore the greater risk of valid traffic being flagged as bad.

3 .1 .6  p f

While not conventionally thought of as an IDS, the OpenBSD packet filter p f  pro

vides several features tha t can be applied to the problem-space typically associated 

with that of an IDS. Handley and Paxson [59] note tha t while a sufficiently ro

bust and diligent IDS can address the issue of proper protocol inspection, it cannot 

correctly determine how the end system will process the packet stream. Pf allows 

the administrator to  normalize the inbound traffic stream, which can prevent a t

tacks deliberately fragmented by the attacker from slipping through the detection 

mechanisms by reconstructing the packet stream upstream of the analyzers.

Another feature tha t is exploited in pf is the ability to monitor the number of 

connections/states established by a system behind it. As a computer on the internal 

network attem pts to contact a system on the outside network, the firewall creates an 

entry in the state table denoting that an outbound connection attem pt was made. If 

a connection attem pt returns from the outside system to the inside then traffic will 

be permitted. By taking a count of the number of states open in the state table on
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a per IP basis it becomes possible to monitor how transactionally busy each device 

on the internal network is.

When deployed on the edge of a subnet, state table monitoring can be useful in 

identifying otherwise non-symptomatic compromised hosts. In a typical departmen

tal LAN at the University of Alberta, it has been observed th a t most busy desktop 

systems have 25 entries, while busy web servers may have five to ten times that. 

This stands in stark contrast to worm infected hosts tha t may have as many as 5,000 

to 10,000 entries. By identifying hosts with extremely high state counts, the LAN 

administrator is provided with a list of probable infected candidates to review and 

repair as necessary.

When pf is used at the border of the network, as is common in bridging and 

routing firewalls, it can only monitor outbound/inbound connections. This means 

that the firewall can’t prevent infected hosts from reaching others on the local net

work. Also, implementing a threshold is only useful when the threshold permits 

normal traffic flow to occur unhampered. Until a threshold is met the infected host 

will be permitted to continue transmitting, even in routed mode. The risk of setting 

a threshold to high is that an infected computer system will be allowed to propagate 

unabated if the threshold is not exceeded. Conversely, if a threshold is set too low, 

legitimate traffic may be stopped even in the absence of an infection.

3.2 H o n ey p o ts  and H o n ey n ets

The Honeynet project [60] offers some off the shelf tools tha t members of their al

liance can deploy and use to create networks of computers (real or virtual) tha t are 

deployed in such a way as to gather information about the types of traffic reaching 

the honeynet. Participants in the Honeynet project can aggregate the information 

gleaned from their honeynet deployments into a central repository, where infor

mation security researchers can review how a system was attacked and possibly 

compromised. A honeynet requires a large amount of resources allocated towards 

it to maintain as each of the honeypots are typically high interaction. Because the 

honeypots tha t are deployed in the honeynet are high interaction they may be sub-
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ject to compromise, which can result in the honeynet falling under the control of an 

attacker. Technologies have been developed tha t can detect and disrupt honeynets 

[61] [62] which diminish their usefulness further.

Neil Provos’ honeyd virtual honeypot is a daemonized service th a t creates vir

tual hosts capable of emulating a wide variety of services and operating systems. 

By using honeyd one computer system can appear as hundreds or even thousands 

of different computer systems on a network. By manipulating a configuration file, 

each of these virtual hosts can be set to emulate different services with different op

erating systems as needed. Fingerprints, as discussed in Section 2.2, are borrowed 

from nmap to provide the appearance tha t a virtual host is running a particular 

operating system. Provos has explored simulations using honeyd to identify and 

actively counter through forced patching worm infected hosts on a network [63]. 

Through these simulations he has shown tha t by actively patching known compro

mised systems tha t a widespread infection can be slowed down, or even stopped if  

patches can be applied in a timely fashion.

3.3  H on ey  w alls

A honeywall extends the notion of a honeypot by combining the capabilities of a low 

interaction honeypot with the abilities of a routing firewall. At its core, a honeypot 

is a research tool that can provide a more in-depth view on the timeline of an attack 

by interacting with the attacker in a manner that belies the true nature of the 

honeypot itself. Previously in Section 2.5 three types of honeypots were discussed, 

each with their own costs and benefits. Still, even in the highest interaction mode, 

honeypots are nothing more than passive participants on the network in tha t they 

can’t actively modify the behaviour of systems around them.

When a zero-day worm strikes a network, conventional mechanisms of protecting 

the network fail. Border firewalls can’t prevent client systems within a protected 

network from infecting one another. Host-based firewalls may be bypassed, rules 

may exist allowing local infection through trust relationships with other systems on 

the local network, and may be unable to handle the load presented by a rapidly
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spreading worm. Signature-based detection mechanisms can’t  be relied upon in a 

zero-day worm outbreak as a delay exists between the initial infection run of a worm 

and the antivirus vendors releasing signatures to detect attack traffic.

By leveraging a low-interaction honeypot’s ability to pose as a valid member 

of a local network with a reactive routing firewall’s ability to act upon undesirable 

traffic, it was anticipated tha t a highly sensitive and accurate mechanism could be 

developed tha t would allow us to locate and isolate potentially infected members of 

a network prior to widespread infection.

To start, a honey wall is deployed on an existing network as a simple routing 

border firewall. This machine also becomes the aggregator for network traffic -  all 

traffic on the network will pass through it before being returned to the local network 

wire. By passing all traffic through this routing firewall, a single point where traffic 

can be stopped is created. In practice this mechanism could be applied to  a network 

router or switch, but for the purpose of the experiments a PC-based server was 

created to show proof of concept.

Once the honeywall has the ability to control the network, several honeypots 

are inserted into the unused IP addresses on the existing production network. In 

practice, as the honeywall system acts as a DHCP server for the local network, the 

knowledge of the topology can be used to sparsely distribute honeypot listeners on 

unpopulated nodes. For the trials performed in the experiments all unoccupied IP 

space was consumed by honeypot listeners. The honeywall uses the honeypots as 

listeners on the network to identify unexpected traffic flows and to pass the security 

event to the reactive firewall mechanism where the security events can be acted 

upon.

As is shown in Chapter 4, the honeywall mechanism has proven itself capable of 

quickly identifying and isolating rogue systems on a network in such a manner as 

to prevent widespread infection of even densely packed networks.
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Chapter 4

Evaluation

Having established the current state-of-the-art worm detection and mitigation tech

nologies in the previous chapters, it is now time to evaluate these mechanisms against 

one another. In this chapter the theories and some of the tools mentioned in the 

previous chapters are put into a test harness designed to evaluate the effectiveness 

of various worm detection and mitigation techniques. As stated in Chapter 1 the 

main hypothesis of the research is to determine if populating unused IP space with 

ultra-low interaction honeypots will make it possible to detect and isolate a rapidly 

spreading worm, thereby reducing the number of compromised computers on the 

network. To this end, a survey of various techniques for detecting and isolating 

infected hosts is performed in addition to the creation of and testing on a honeywall 

mechanism. The testing performed is not how each of these techniques perform 

against M S.B l a s t , but against a generic worm process th a t exhibits characteristics 

common to fast spreading worms.

The single most im portant criteria in evaluating the effectiveness of a worm 

detection and mitigation technique is to simply count the number of vulnerable 

systems that have been compromised despite the defensive measures. Ideally a 

detection technique will be able to find and isolate an infected system before it 

has the opportunity to infect any other vulnerable systems on the network. A 

baseline for worm performance is established first by releasing the worm onto a 

network of fully vulnerable hosts. All solutions are evaluated against this baseline, 

both for the total number of vulnerable systems compromised and for time until all
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infected systems are isolated. It is theorized that the quicker the detection/response 

mechanism is, the better it will be able to  protect the network from infection. This 

chapter concludes with a summary of results and findings.

4.1 T est H arness

During the setup of the test environment it was anticipated tha t creating an auto

mated tester would be desirable which could provide a method to rapidly test the 

following matrix:

Size of Network Distribution Infected IP Netmask Firewall Vims
Blaster

Rule Sharing
1x30 Sparse First 24 Open Yes
1x51 Dense Mid 23 Closed Nimda No
2x25 Last 22 Dynamic-Snort Custom
5x10 16 Dynamic-pf

Dynamic-Honeywall i

Table 4.1: Experimental setup variables table

If all possible outcomes were tested, 2,880 different trials would need to be run, as 

shown in Table 4.1. Further analysis of this trial set revealed tha t several reductions 

in the problem space can be performed.

Initially four different network sizes were thought to be necessary to be represen

tative of common deployments in the real world. The 1x30 and 1x51 sizing would 

be representative of a small office or department and would help establish a baseline 

for comparison of the 2x25 trials. By creating a 2x25 sizing, it was expected that 

spread between two distinct networks could be shown. It was anticipated that a 

5x10 sizing could demonstrate how a worm could move across multiple networks. 

However, it was realized tha t the number of Size trials could be reduced to tha t of a 

single boundary case -  one where an “outside” machine attem pts to connect to an 

“inside” machine. Specifically, while distribution and density of IPs on a network 

will vary from site to site, and the mechanism by which a worm will spread itself 

varies, a connection between a malicious and a target machine must be established. 

For example, if two networks of 25 machines each were created, one on Subnet A and 

the other on Subnet B, the boundary case of a machine from one subnet infecting a 

system on the other subnet can be reduced to that of an infected host connecting to
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a vulnerable one. Thus for the testing trials were performed using one subnet with 

51 computer systems unless otherwise noted.

Distribution of IP addresses to the physical computers was also considered, as 

it was theorized tha t by creating a separation between physical systems in the IP 

space the detection systems may be given an additional window of opportunity to 

detect and respond to a threat. A sparse distribution of IP space, which is to 

say allocating IPs tha t are spread apart from one another, may give additional 

advantage to detection mechanisms when a worm uses a linear scanning technique. 

A dense distribution, where all computers are assigned adjacent IPs, may offer 

some advantage to detection mechanisms when a worm uses a random scanning 

technique to propagate. However, both the linear and random scans of a local Class 

C network consisting of 255 IP addresses are accomplished at such great speed in a 

mass spreading worm as to negate any advantage of a sparse or dense IP distribution 

of a network. Therefore a sparse distribution has been chosen. Physical computers 

in the trials are allocated IP addresses roughly equal distance apart in the various 

network configurations.

Choice of initial infected host was also considered as a variable for testing. How

ever, with a linearly scanning worm the initial infected host IP is irrelevant as the 

worm will choose a point in the IP space and start its scan from there. Likewise, in 

the case of a randomly scanning worm, the initial infected IP will not m atter as the 

worm will randomly choose IP addresses within the local space to scan and infect. 

Therefore, for the trials performed the same IP address was chosen to be the initial 

infected host.

The total problem space to be tested was reduced based on the following consid

erations. An open firewall, that is to say a firewall with no rules or with “any/any 

all/all” rules, is equivalent to having no firewall at all and thus is covered by the open 

network tests. A static firewall tha t does not have pre-existing rules tha t block the 

undesirable traffic also is equivalent to having no firewall. A static firewall tha t has 

rules in place to block the specific test worm will not allow the traffic to propagate 

from an external source to the internal network but, as noted in Section 3.1.1 it will
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not be able to prevent traffic from occurring within the protected network. From 

this analysis the total trial space was reduced from 2,880 possible combinations to 

8 representative trials.

4.2  P erform an ce In d ica tors

The metrics described in this section are used to assess the overall effectiveness of 

the worm detection techniques within the test environment. These performance 

indicators were chosen as they can graphically demonstrate the differences in how 

the varying techniques perform, as well as illustrate how quickly a rapidly spreading 

worm can affect a vulnerable environment.

4 .2 .1  N u m b er  o f  S y s te m s  C o m p ro m ised

The total number-of-systems-compromised metric is interesting because it is the 

golden standard by which all products are judged -  specifically the effectiveness 

of a protection mechanism can be determined by comparing the to tal number of 

vulnerable systems to the number of machines infected after the network has reached 

steady state post infection. The derived compromised/vulnerable ratio can be used 

to compare the effectiveness at controlling the spread of a virus within the test 

environment.

4 .2 .2  T im e  to  S ta b le  S ta te

Stable state is defined as the state in which no further systems within the test 

environment are infected by other compromised systems on the local network. In 

the case of an unprotected network, measuring the time to achieve steady state 

provides a spread rate for the infection. Once established the baseline can be used to 

compare various protection mechanisms reaction times against one another. Stable 

state is reached either when all vulnerable systems in the test environment have 

been compromised by the virus, or when the spread rate of the virus within the test 

environment goes to zero.

As the response time of a protection mechanism decreases, it is thought that a
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similar decrease in the time to reach stable state occurs. Response time is defined 

as the time between the protection system signaling tha t something is wrong to 

the time that the appropriate mechanism is put in place to mitigate th a t problem. 

However, as established later in the chapter, this was not the case.

4.3  T est W orm  C onfiguration

Naturally one of the key components to the testing and verification of the various 

protection mechanisms is a consistent repeatable infection agent with known be

haviours. The selection of a worm for the trials was heavily influenced by three 

factors: repeatability, ease of replication, and ease of detection.

To meet the repeatability criteria a worm must have a known behaviour that 

can be observed and measured by a common set of tools. For example, a worm 

tha t is known to attack a specific service or a specific set of ports would be valued 

more highly in the selection process than one which indiscriminately attacks a wide 

assortment of vulnerable services or has a random timer of days or weeks before 

spreading itself. It should be noted tha t while expert knowledge of the worm was 

necessary for observation and measurement, no specific information regarding the 

worms, unless otherwise specified, would be imparted to the solutions tested.

Ease of replication encompasses how easily the test environment could be reset 

to base state between infection runs. As a significant number of trials needed to be 

run during the testing, a reduction in time between runs was im portant. Initially 

the lab environment was configured to run Windows 2000 Professional in unpatched 

form. In this state the test systems were known to be vulnerable to a number of the 

mass spreading worms tha t were candidates for our testing. W ith some reduction 

in the installation image it was found that all 51 test systems could be reliably re

cloned every 15 minutes. However, it was necessary for each system to be manually 

verified during this re-clone process as two reboots were required for the system 

imaging to be complete.

To achieve the ease of detection goal, a reliable binary mechanism able to detect 

whether or not a system is infected is needed, preferably with a date/tim e stamp to
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allow for reconstruction of the infection path at a later time if necessary. Addition

ally, worm infected systems need to start spreading soon after infecting a vulnerable 

computer. This ruled out worms with set propagation windows such as C o d e R e d . 

Infection that could be remotely detected, or would signal an infection host, were 

given priority over those that would need to be manually verified on a per system 

basis. It was felt tha t installing an anti-virus tool on the vulnerable systems could 

interfere with the propagation of known worms, as most anti-virus packages will 

prevent the infection of a host if a signature has been added to their knowledge 

base. Similarly, a host-based anti-virus program without knowledge of the worm 

would be unable to detect the infection.

Initial tests were performed on a test environment running an unpatched version 

of the Windows 2000 operating system known to be vulnerable to a number of worms 

such as M S.B l a s t , C o d e R e d , N i m d a , etc. After examination of the characteristics 

of the known worms, M S.B l a s t  was selected for use in the experiments because of 

its fast-spreading characteristics and its well-documented behaviours. However, the 

results from this testing demonstrated several drawbacks with using a real worm 

in a test environment. In some cases systems were rendered inoperable by the 

worm. This complicated detection, as well as reducing the spread rate of the worm 

as inoperable systems would need to be identified and rebooted before they would 

start transmitting the worm. Also, remote detection was complicated by the fact 

tha t remotely scanning the systems gave inconsistent results, and a manual process 

would have to be run on each system to verify infection which may introduce errors 

in the data. If this process was scripted, then an increased load on the vulnerable 

systems would have skewed results by slowing the infection rate. Also, the spread 

time resolution between machines would have been skewed by the nature of the 

repeated batch process run time (in excess of 5 seconds).

It was felt that creating a custom worm th a t exhibited key spreading features 

of the M S.B l a s t  worm was the best method for meeting all three criteria. To 

this end, each of the clients systems were setup with a daemon service tha t was 

vulnerable to an exploit payload of identical size to tha t of M S.B l a s t . When this
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exploit payload was received, i.e. the daemon was compromised, the service would 

then start exhibiting infected behaviour. Table 4.2 below shows the key features of 

the M S.B l a s t  worm and the custom worm created for the testing.

Feature Ours MS.Blast
Target Port 5678 135, Listens 4444, UDP 69
Targets of Worm Vulnerable host process DCOM RPC (vulnerable dll)
Probability of Infecting on LAN machine 40% 40% **
Probability of Infecting off LAN machine 60% 60% **
Scanning Threads 20 20
Payload (bytes) 6197 6176

** Note that MS.Blast will send a Windows XP exploit 80% of the time and Windows 2000 20%

Table 4.2: Feature comparison between M S.B l a s t  and the custom worm

The custom worm th a t was created for the testing exhibited a simplified feature 

set of the M S.B l a s t  worm. The custom worm operates in the following manner:

1. Once the 6,197 byte payload is received by the vulnerable listening process 

on port 5678, the process becomes compromised. For ease of signaling, the 

compromised host process prints the string “Eeeek! I feel violated...” once it 

has been infected by the payload. By sampling this string from the traffic 

stream, it is possible to locate and time when each vulnerable host process 

becomes compromised.

2. The compromised process forks 20 child processes. Each child is assigned a 

host within a Class B network with a 40 percent probability of being assigned 

an IP within the current Class B, and a 60 percent probability of the IP 

being outside the current Class B network. After each of the 20 forks a delay 

of l/2 0 th  of a second occurs to avoid system resource exhaustion. As each 

thread terminates, it signals the parent process of its completion. After all 

20 of the terminated threads have signaled the parent, 20 new threads are 

spawned by the parent and the scan continues.

It should be noted tha t while the custom worm created for testing exhibits 

some of the characteristics of the M S.B l a s t  worm, it needn’t exhibit them all. 

For example, when M S.B l a s t  is propagating it will send the Windows-XP-specific
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version of the exploit with an 80 percent probability, and a Windows 2000 exploit 

with a 20 percent probability. In a heterogeneous operating system environment, it 

is not guaranteed that all systems will become infected as there is no guarantee tha t 

the vulnerable system will receive the correct exploit. Conversely, the custom worm 

needs to only send one version of itself to a vulnerable machine. As all computers in 

the test lab are running a vulnerable service, they are all susceptible to compromise, 

and all infected hosts are guaranteed to infect a vulnerable system when they send 

the attack payload. The custom worm, therefore, is capable of spreading itself at a 

higher rate than the M S.B l a s t  worm.

For the trials it is not necessary to recreate M S.B l a s t  worm as it is only one 

of many types of worms that currently exist. Instead, certain characteristics such 

as spread pattern, scanning pattern, and payload size are mimicked.

4 .4  Lab C onfiguration

4 .4 .1  C lien t M a ch in e  H ard w are

Fifty one identical computers were used in the test environment, based on Dell 

Dimension GX240 desktop systems. Each contained a Pentium 4 1.8Ghz processor 

and 256MB of RAM. As discussed in Section 4.3 these computers were setup with a 

minimal OpenBSD 3.6 installation. Each client system was re-imaged after each test 

run to ensure tha t no residual effects from previous trials could affect subsequent 

testing. The client machine image contained a daemon which was configured to listen 

on a specified port. Upon receiving the exploit sequence, in this case a padded plain 

text payload, the daemon would become infected and start attempting to spread 

the virus, as described in Section 4.3.

Network connectivity was provided through a 100Mbit connection going back to 

one of two fiber connected Cisco 2924 switches.

4 .4 .2  P r o te c t io n  H ardw are

The computer used as the installation base for the various detection techniques 

was a generic PC running a Pentium 4 1.6Ghz processor and 512MB of RAM.
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This protection system had a full installation of OpenBSD 3.6 Stable. Network 

connectivity was provided by two 100Mbit network cards connected to the Cisco 

2924 switch.

4 .4 .3  V P N  tu n n e ls

VPN tunnels configured to pass all network data  were established from every client 

machine to the switch. These VPN tunnels could then be configured to allow the 

machines to talk freely to one another as they would normally be able to with a 

standard office network configuration, or could be restricted to speaking through 

the switch as the trial needed. By doing so the test environment could be physically 

configured once while still allowing the testing of many different network topologies.

4.5 M eth o d o lo g y

For all trials the sparse distribution of computers on the local network is the same 

unless otherwise noted. For each trial the same vulnerable system is initially infected 

with the worm.

4.6 S ta tic  F irew all

To establish a baseline for worm effectiveness, the first experiment is run on a test 

network where no reactive mechanism is in place to detect and respond to the 

worm and where no pre-existing rules are in place on the firewall. By doing so 

it is expected tha t the worm will infect all of the vulnerable systems in the test 

environment. Figure 4.1 shows how the network was configured for this experiment. 

In this test, each of the computers is perm itted to speak with all others on the local 

network without hindrance from any packet filtering/blocking devices.

In Figure 4.2 within approximately 20 seconds, 10 of the 51 vulnerable host 

computers are infected by the worm. W ithin 40 seconds of initial infection 20 of 

the 51 vulnerable hosts have been infected. By approximately 70 seconds into the 

trial 50 of the vulnerable hosts have been infected with the worm, demonstrating 

this worm’s ability to effectively and rapidly spread itself to all vulnerable host
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Figure 4.1: Static firewall deployment
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Figure 4.2: Static Firewall with no rule to block worm.
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systems within a network. The amount of traffic generated by these 50 infected 

hosts was so great tha t all available resources on the Cisco switches were exhausted, 

reducing network performance to the point th a t the 51st and final vulnerable host 

was infected approximately 233 seconds into the trial. This underscores the severity 

of a worm attack by demonstrating how even a relatively small payload can be sent 

with such regularity as to disrupt the normal operation of a network, even if some 

or most of the hosts on a network are not susceptible to infection.

H osts C om prom ised  v e rsu s  Time
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Figure 4.3: Two subnets of equal size were created with a static firewall between 
the two. A rule was put in place on the static firewall to block propagation of the 
worm between the two subnets.

To demonstrate tha t a static firewall could, given the correct circumstances, 

prevent infection from spreading between multiple subnets, trials were performed 

where two subnets were created, separated from one another by a static firewall. 

This firewall was configured to block the port which the worm uses to propagate. 

As seen in Figure 4.3 the static firewall with a pre-existing rule to block the worm 

traffic was able to prevent the worm from spreading from one subnet to the other, 

with the 26 machines on the initial infected network becoming infected. In the case 

where a network a has host-based firewall deployed, those with rules preventing
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propagation of the worm would remain uninfected. However, it is im portant to 

note tha t the rules preventing propagation may interfere with normal operation of 

the computers on the network in cases where a worm propagates using commonly 

used ports as noted in Section 3.1.2. Therefore, in restricted circumstances a static 

firewall may be able to block a rapidly spreading worm, but only in the situation 

where the ports used by the worm to propagate have already been blocked prior to 

initial spread of the worm.

4.7  R ea ctiv e  F irew all

For testing the Reactive firewall, three candidates were selected: a threshold based 

model using OpenBSD’s pf, a signature-based model using Snort, and the Honeywall 

model described in Section 3.3.

4 .7 .1  ID S  U sin g  p f

Three thresholds were set for testing pf. The first experimental threshold was set at 

50 connections established within a 4 second period. This number was chosen as it 

was roughly double the number of connections in a 4 second window tha t a typical 

desktop computer would see, and is therefore a reasonable upper bound for testing 

rapid worm propagation. By choosing a high threshold, it is expected that some, if 

not all, vulnerable computers on the network will become infected before pf is able 

to react and stop propagation.

The second experimental threshold was set at 8 connections in a 4 second period. 

This number was chosen as it is roughly half the lower bound for the number of 

expected connections from a desktop computer under normal usage. By choosing an 

extremely low threshold it is expected tha t fewer vulnerable computers will become 

infected than with higher thresholds.

A third experimental threshold was set at 28 connections in a 4 second period. 

This number was chosen as it is approximately half way between the thresholds 

set in the previous two experiments, and is representative of a threshold slightly 

higher than the normal number of states expected from a single uninfected desktop
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computer.

The pf experimental setup is shown in Figure 4.4 below.

I Fire w a l l
D etector: p f 
if th re sh o ld  exceeded  
block  in fec ted  hostRules

R eaction: 
A dd rule

I Infected 
i Host

Figure 4.4: OpenBSD pf deployed as an IDS

P f’s state table monitoring mechanism was used as a tripwire to determine 

whether or not a machine had gone rogue. Specifically, if the number of states 

established by a member of the test network exceeded a specified number over a 

specified period of time it was deemed to have been compromised. Three levels of 

sensitivity were chosen. It is im portant to note that the X and Y scales vary on 

each of the result figures.

Level l ’s threshold was 50 states within a 4 second period. (Loose enough for 

regular use.)

Result: On average 21 of the 51 machines were infected before stable state 

was reached. Figure 4.6 shows the best result obtained with this experimental 

setup (6 hosts in 263 seconds) while Figure 4.5 shows the poorest result (51 hosts 

compromised in 225 seconds).

Level 2’s threshold was 8 states within a 4 second period. (Extremely restrictive)

Result: On average 2 of the 51 machines were infected before stable state was 

reached. Figure 4.7 shows the best result obtained with this experimental setup (1 

host in 0.31 seconds) while Figure 4.8 shows the poorest result (4 hosts 57 seconds).

Level 3’s threshold was 28 states within a 4 second period. (Medium restriction)

Result: On average 14 of the 51 machines were infected before stable state was 

reached. Figure 4.9 shows the best results of this experimental setup (2 hosts in 2.7 

seconds) while Figure 4.10 shows the poorest result (38 hosts in 76 seconds).
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Figure 4.5: Worst case result from OpenBSD’s pf with a threshold of 50 connections 
in 4 seconds per computer
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Figure 4.6: Best case result from OpenBSD’s pf with a threshold of 50 connections 
in 4 seconds per computer
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Figure 4.7: Best case result from pf testing with threshold of 8 connections in 4 
seconds per computer
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Figure 4.8: Worst case result from pf testing with threshold of 8 connections in 4 
seconds per computer
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Figure 4.9: Best case result from pf testing with threshold of 28 connections in 4 
seconds per computer
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Figure 4.10: Worst case result from pf testing with threshold of 28 connections in 4 
seconds per computer
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From the results of these experiments we can conclude tha t a threshold based 

method for worm detection and mitigation can be effective under very special cir

cumstances. Specifically, a threshold model may be able prevent a worm from 

infecting all vulnerable systems when tha t threshold has been set extremely low. 

From a practical standpoint however, using thresholds to stop worms will be im

practical to deploy in the real world because, as shown in the testing performed, to 

stop a rapidly spreading worm effectively the threshold must be set below the aver

age number of states tha t a normal desktop system would use. Such a low threshold 

would result in legitimate traffic and uninfected systems becoming blocked on the 

network.

An additional drawback of the threshold model is tha t it will be incapable of 

stopping a slow spreading worm. In the experiments performed here, the worm 

attem pts to affect as many systems as it can in as short a time as possible, resulting 

in a large number of states being used by each infected client machine. Another 

type of worm that, for example, only attem pts to connect to one system at a time 

would most likely go unnoticed by a threshold based detection system.

4 .7 .2  ID S  U s in g  S n ort

I F i r e w a l l  !

R u le s

D etec to r: ch eck  for 
k n ow n  s ig n a tu re s  
iffo u n d  signal reactor

|
R eaction: 

“  Add ru le  to  
block h o s t

H

Figure 4.11: Snort deployed as an IDS

In the case where no predefined rule exists for the attack in Snort’s database the 

test environment will perform similarly to tha t of an unprotected network. Therefore 

a custom rule was created to allow Snort to detect the payload delivered by the test 

virus. The more precise a rule’s specification, the less likely you will receive a false
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positive from the Snort IDS.

Snort was setup to send a message to the switch when data on the network 

was found to match a signature in the database. The reactive firewall acts on 

the message from Snort by blocking the network access to the machine of origin. 

Snort was configured to only view traffic inbound to the network, meaning traffic 

originating from the network going off network would not be detected.

Trial set 1 was performed with only the custom rule loaded in the Snort database. 

Figure 4.12 shows the poorest result of 3 compromised hosts in 1.74 seconds, while 

Figure 4.13 shows the best result of 2 compromised hosts in 0.387 seconds.

Hosts Compromised versus Time
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Figure 4.12: Worst case result from snort testing with only the custom signature 
loaded

Trial set 2 was performed with the entire base ruleset included with Snort in

stalled in addition to the custom rule. Figure 4.14 shows the poorest result of this 

experimental setup (3 hosts in 36.62 seconds), while Figure 4.15 shows the best 

result (2 hosts in 1.17 seconds).

On average 2 of the 51 machines were banned with 1 additional machine being 

infected but going off-LAN before the network reached a stable state.
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Figure 4.13: Best case result from snort testing with only the custom signature 
loaded
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Figure 4.14: Worst case result from snort testing with all signatures +  the custom 
signature loaded
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Figure 4.15: Best case result from snort testing with all signatures +  the custom 
signature loaded

From these experiments we can conclude tha t Snort’s signature matching engine 

is sufficiently fast, and tha t a purpose-built system to detect and mitigate worms us

ing Snort as the detection mechanism could load the entire Snort signature database 

with minimal performance degradation. This increases the utility of the detection 

device as Snort is capable of detecting a number of known attacks, including e-mail 

borne viruses, network reconnaissance, etc. However, it should be noted tha t the 

effectiveness of Snort as a worm detection mechanism relies entirely on the quality 

of the signatures available. If a signature is poor, or does not exist at all, the Snort 

device will be unable to properly classify the infected/suspicious traffic thereby al

lowing said traffic to flow on the network unabated as discussed in Section 3.1.5.

4.8 H on ey  w all

The base configuration was to setup a honeypot for each of the IPs in 10.0.0.0/23 not 

registered in the table of used IPs (i.e. for each IP not assigned to a real machine, 

create a honeypot associated with the unregistered IP). Figure 4.16 illustrates how
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Figure 4.16: Honey wall

honeypot sensors are intermixed throughout the real computer systems on a network. 

Each honeypot acts as a sensor within the network for detecting unexpected network 

traffic. Once a sensor has been tripped by unexpected network traffic to the sensor, 

the honeywall reaction mechanism will add the source IP of the unexpected traffic 

to a block list, thereby preventing tha t source IP from communicating with any 

assets on the network.
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Figure 4.17: Best case result from honeywall testing 

Figure 4.18 shows the poorest results observed in the experimental setup (1 host
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Figure 4.18: Worst case result from honeywall testing

in 0.28264 seconds), while Figure 4.17 shows the best results received (1 host in

0.158041 seconds). In all trials only the initially infected machine was banned -- 

traffic from the initially infected host was contained before it could reach any live 

machines on the network. In other words, none of the vulnerable machines beyond 

the initial infected host were compromised.

4.9  Sum m ary o f F in d in gs

Throughout the trials the only variable in the experiments was the detection mech

anism used within the test environment. Each trial was monitored for the time 

it took for a detection mechanism to prevent further infection. In addition, once 

a stable state was reached, a tally of the total number of hosts compromised was 

taken. Table 4.3 shows the averaged results for all of the trials performed, while 

Figure 4.19 provides those same results in graph form.

From these results the conclusion can be drawn that using a honeywall to detect 

and mitigate worms can be an effective mechanism for protecting network assets 

against threats which can not be dealt with by the other state-of -the-art solutions
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Protection Type C om prom ised S ystem s Time to  S table S tate (seconds)
None 51 9
Per subnet 27 27
pf ( 50con / 4sec) 21 77
pf ( 8 con / 4sec) ^ 2 5.7
pf ( 28con / 4sec) 11 16
Snort (custom rule) 2 0.78
Snort (all + custom) 2 0.99
Honeywall 1 0.27

Table 4.3: Summary of Results for all Configurations

3 Compromised Systems 

IT im e to Stable State (seconds)

Figure 4.19: Graph of Summary of Results for all Configurations
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evaluated in this Chapter. A honeywall does not use signatures to detect worms, 

which provides an advantage when compared to Snort because a honeywall is ca

pable of protecting against all forms of unexpected traffic and not just those for 

which a signature has been created. Likewise, the honeywall is more flexible than 

the threshold model demonstrated with the pf experiments as it does not monitor 

individuals computer’s use of the network. These results are sufficiently promising 

tha t further research and development of honey walls should be made. As will be 

discussed in Chapter 6, there are numerous areas of future work and improvement 

to refine the honeywall mechanism so it can be deployed in a real world setting.

The data in this chapter has been presented to the CanSecWest security confer

ence in April 2006 [64].
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Chapter 5

Discussion

As a result of its light weight implementation and interaction models the honeywall 

is ideally suited for deployment at a network layer. By placing the honeywall func

tionality on the switch it is anticipated tha t the response latency of isolating the 

affected systems can be minimized as only the switch itself would be in the decision 

making process, this is in contrast to the existing implementation where, in effect, 

there are two systems -  the honeywall sensor network, and the reactor -  which are 

involved.

The honeywall as implemented in the testing harness required very few system 

resources, impacting memory and CPU minimally. On a 100Mbit network it was 

possible to implement the honeywall using less than one percent of the test system’s 

CPU. As many commodity switch and firewall units utilize a conventional x86 pro

cessor within their architecture, it is expected tha t the honeywall created for this 

dissertation could be ported and deployed onto these devices with minimal negative 

impact on their capabilities and available resources. It should be noted that while 

the honeywall used in this testing was run on x86 architecture, it is anticipated that 

the architecture and technology could be redeployed on other CPUs.

The true strength of the honeywall is apparent when it is deployed in such a way 

as to only inspect local network traffic. By limiting the exposure of the honeywall 

sensors to the local network the possibility of directed attacks from outside sources 

seeking to exploit the behaviour of the honeywall is reduced.

For a honeywall to be deployed in a production environment the following best
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practices are recommended:

1. The border switch/edge network device should have anti-spoofing rules en

forced. Anti-spoofing rules prevent a member of the outside network from 

crafting and injecting traffic tha t appears to originate from the inside net

work. If anti-spoofing is not enabled it becomes trivial to turn  the honeywall 

against the inside network as an attacker could craft and send packets to the 

honeywall th a t appeared to originate from a real network asset, resulting in 

the honeywall blocking the real network asset.

2. Exception rules must be added to permit multicast and broadcast traffic as by 

these transmissions are by nature designed to reach multiple systems on the 

inside network simultaneously.

3. Network assets th a t are known to scan a network must be identified and special 

exceptions must be made for expected traffic from those systems. For example, 

in the normal operation of a network the LAN administrator may wish to probe 

the computer systems on the network. Tools such as those described in Section

2.2 could be legitimately used to scan a local network en masse, an action tha t 

would undoubtedly touch at least one honeywall sensor. If an exception has 

not been created for this workstation it will be dropped from the network once 

traffic originating from it reaches the honeywall’s sensors.
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Chapter 6

Conclusion and Future Work

This dissertation has provided a background in the current state-of-the-art tech

nologies used in worm detection and mitigation, these technologies have been taken 

and tested against the honeywall technology developed for this dissertation. The 

testing performed and following discussions showed the strengths and weaknesses 

of these solutions, highlighting how the honeywall technology could be successfully 

used to detect and stop worms on a network before more conventional mechanisms 

would be able to respond as shown in Figure 4.3.

While the testing performed for this dissertation strongly suggests that honey- 

walls could be developed into a highly effective device or mechanism to supplement 

existing IDS technologies, it is only the beginning. In the following sections I outline 

several promising areas of future work that may be useful in refining the honeywall 

technology into something tha t could be widely deployed to great effect.

6.1 False P o sitiv e  R ed u ctio n

An area for research is to investigate if any benefit can be derived by using higher 

interaction honeypots to replace or supplement the extremely low interaction honey- 

pots used in this implementation. From a real-world standpoint the, low-interaction 

honeypots are useful because they provide speed and ease of detection when used as 

sensor nodes for worm propagation. However, the “if it touches a honeypot it must 

be bad” metric may be too aggressive in networks where broadcast protocols are 

used, or where client systems scan the entire network. By using higher interaction
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honeypots, the tradeoff may be made allowing deeper inspection on the unsolicited 

traffic seen by the honeypots, thus allowing a more informed decision about the 

legitimacy of the traffic. However, as the high interaction honeypot model requires 

more transactional information to take place, it necessarily slows down the isolation 

phase of the process. While the higher interaction honeypots will most likely slow 

down the response time of the system, as compared to a system totally composed of 

ultra-low interaction honeypot sensors, it may be possible to find a balance between 

the ultra-low and higher interaction honeypots tha t still provides a sufficiently low 

response time to block fast spreading worms.

It may be possible to create a more equitable distribution of high and low in

teraction honeypots through careful routing policies. A known high risk port, such 

as 445, could be routed to a higher interaction honeypot sensor to  determine the 

validity of the traffic. Similarly, infrequently used ports could be routed to lower 

interaction honeypot sensors to provide greater speed in response.

Hysteresis could be introduced into the response system by implementing a 

counter-based honeypot. A threshold for traffic within a fixed period of time could 

be set, and when th a t threshold is exceeded the source host will be blocked, not 

unlike the threshold mechanism described in Section 4.7.1. Therefore the use and 

placement of high interaction honeypots versus low interaction honeypots should 

also be looked at.

6.2 H o n ey p o t Sensor P la cem en t

In the experiments reported, uniform placement of honeypots in the empty nodes 

between the evenly spaced real systems was used. As one scan pattern can’t be 

counted on for mass spreading worms, differing placements of honeypots, as well 

as investigating the density and clustering/grouping of sensor nodes, may result in 

better detection and isolation of zero day threats to the network. Ideally the initial 

infected host system, be it internal or external, will contact a honeypot node before 

it contacts a real system node.

A further question that comes from the investigation into honeypot placement is
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that of the ratio between honeypot sensor nodes and real nodes. In the extreme case 

of a fully populated local network, no sensor nodes could exist, essentially preventing 

the honeypot sensor mechanisms from seeing any traffic at all. On the other end 

of a spectrum, a completely unpopulated network could be fully populated with a 

set of honeypot sensors, turning every IP address in tha t subnet into a detector and 

thus maximizing detection capabilities while completely preventing any real systems 

from existing on the network. By investigating the ratio of honeypot nodes to real 

nodes a point of diminishing returns may be found.

6.3 In tegra tion  o f S o lu tion s

A further hybrid could be created from a combination of the tested setups. For 

example, Snort used in conjunction with a Honeywall could provide an even better 

resolution. By leveraging the pattern matching of Snort’s known attack database 

upstream of the Honeywall’s unknown threat detection, it is anticipated that both 

known and unknown attack detection can be improved.

6.4  p f  im provem ents

Since the testing was performed, OpenBSD has progressed from version 3.6 to ver

sion 3.9. In OpenBSD 3.8 a new set of features were added to the stateful tracking 

options in pf called the overload table and flush [65]. The overload table can be 

used in conjunction with the existing connection limiting functions in pf to place an 

offending host into a persistent table tha t can be further filtered or blocked. Flush 

complements the overload table by providing an easy mechanism to flush the states 

of the offending host based on a rule match or by flushing all states for a given 

host. In the case where Flush is used to block based on a rule match only the traffic 

matching tha t rule will be blocked from tha t host, all other traffic will be allowed. 

If flush is invoked using the global flag all connections from the offending host will 

be purged.

The ability to log some or all of the traffic seen also exists in pf. An additional 

mechanism tha t may prove useful in further limiting the spread of worms on a
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local network proposal follows. If a threshold is met, and the host is added to 

the overflow table, an additional function call could be made tha t reconstructs the 

past n hosts tha t the blocked machine has communicated with. In the most basic 

implementation, a decision can be made to block some or all of the traffic from the 

hosts that were communicated with. It may be possible to improve this banning by 

association mechanism by blocking the outbound ports/traffic types present on the 

initial blocked machine.

6.5 R esp o n se  T im es

Further improvements can be made to the response times of the honeywall. Cur

rently a block can go into place in 0.06 seconds when the switch is integrated with 

the honeywall. As the response time is lowered so too is the window of opportunity 

for a worm to spread across the network. In our trials the worm payload was ap

proximately 7 kilobytes and we were often able to stop a virus in mid transmission. 

However, if the payload was smaller or if the honeywall was slower we anticipate 

that the current revision of software may allow a slightly wider spread infection of 

the network. By reducing the reaction time this possibility would be eliminated.

A runtime version of Perl was used to perform string matching on the traffic flows 

through the honeywall aggregator. Improvements could be made to the response 

time by optimizing how Perl is used. For example, a pre-compiled Perl executable 

could be created so the code is not interpreted at runtime. Alternately, the string 

matching could be performed through a mechanism like PCRE  [66] or using the 

built in regexp functions in a language such as C + + .
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