
When you know that you’re capable of dealing with
whatever comes, you have the only security the world has to offer.

Harry Browne

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lberta

R e a l T i m e T h r e a t M i t i g a t i o n T e c h n i q u e s

by

Joshua D ustin R yder { jr

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2006 '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22363-5
Our file Notre reference
ISBN: 978-0-494-22363-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Computer networks are constantly the victims of unwanted poking, probes, and

outright violations. As the tools available to potential attackers have increased

in sophistication, so has the need of counter measures to prevent such unwanted

advances. Honeypots are emerging as a particularly interesting defense mechanism.

Honeypots are software constructs tha t provide the ability to create the illusion of a

computer system existing where there is none. These illusions simulate a computer

system by recreating some of tha t system’s signature interaction mechanisms. By

definition, because these systems do not exist, any traffic being sent to them should

be viewed with suspicion.

A novel integration between honeypots and firewalls, called a honeywall, has

proven to be an effective tool in hiding a production network environment from

prying eyes within a facade of false computer systems. The honeywall increases

the response-time window available to computer security experts. This provides the

attacked site the option of passively monitoring the intruder’s activities, routing

the intruder to a completely fictitious network residing on the honeywall itself, or

actively responding to the threat while building an attacker profile.

This thesis demonstrates how a honeywall can be successfully used to mitigate

rapidly spreading Internet worms in real-time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

The process experienced by me during the creation of this dissertation is, I suspect,
not unlike tha t which countless researchers before me have likewise undergone. That
is to say, this dissertation would most likely have never seen the light of day had
it not been for several key people’s contributions along the way. When I look back
on this document years down the road, it will be not only with pride, but also with
the flood of memories from events tha t took place during the writing. Please take
a moment with me to recognize them.

Donna Gorday and Jason Clements of the AICT Labs Group, who generously
provided what became the testing facilities used in this research.
Kevin W atts and Raymond Richmond of AICT Network Operations: Cisco exper
tise.
Bob Beck for his motivating speeches and being an excellent sounding board.
Chris Kuethe for his OpenBSD and gnuplot wizardry, for always making time to
listen to and discuss ideas, and for his unwavering friendship.
Lance Spitzner for our chat at pacsec.jp ’03.
Jenney McNaughton for her Adobe expertise and amazing ability to take my scratch-
ings and turn them into printable diagrams.
Dragos Ruiu for bringing together such an amazing group of individuals for pac-
sec.jp ’03.
Ron Unrau: patience and deadlines.
Jonathan Schaeffer: fear.
Amanda Lorier, or more properly now, Dr. Amanda Lorier. I can’t even begin to
put into words how she has changed my life for the better, to thank her enough for
her love and support, or to repay the hugs and smiles tha t kept me going along the
way.
My family, both here and gone. To my Opa and Grandma, I wish you could see me
now. Grandad, for all the life lessons you provided when I was growing up, and the
ones you keep sharing now. Mom, you were right. Dad, thanks. Jeremy, looking
forward to reading your dissertation in a few years. Kristy, don’t ever change kiddo.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Motivation and S c o p e .. 1
1.2 Overview of T h re a t ... 2

1.2.1 Examination of a Virus ... 2
1.2.2 Examination of a W o rm ... 4
1.2.3 Honeypots and H o n ey w alls .. 4

1.3 Overview of the R e s e a rc h .. 5
1.4 C on trib u tio n s... 7
1.5 Overview of T h e s is ... 7

2 Background 9
2.1 Network A c tiv ity ... 9
2.2 Types of A t ta c k s ... 10

2.2.1 Denial of Service A t t a c k s .. 11
2.2.2 E x p lo its .. 12
2.2.3 Buffer O verflow s... 13

2.3 F irew alls... 14
2.4 Intrusion Detection S ystem s... 17
2.5 H oneypots.. 19

2.5.1 Low In teraction ... 19
2.5.2 High In te ra c t io n ... 20
2.5.3 Honeypots in P r a c t ic e ... 20
2.5.4 S n if f in g ... 21
2.5.5 Scanning .. 22
2.5.6 Fingerprinting ... 24

3 S tate o f th e A rt and D esign 25
3.1 F irew alls... 25

3.1.1 Border F ire w a lls ... 26
3.1.2 Host-Based F irew alls... 27
3.1.3 Static F irew alls ... 30
3.1.4 Reactive F ire w a lls .. 31
3.1.5 Intrusion Detection System s... 32
3.1.6 pf ... 33

3.2 Honeypots and H oneynets... 34
3.3 H o n ey w alls ... 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Evaluation 37
4.1 Test Harness .. 38
4.2 Performance Ind ica to rs... 40

4.2.1 Number of Systems Compromised ... 40
4.2.2 Time to Stable S t a t e ... 40

4.3 Test Worm C o n fig u ra tio n ... 41
4.4 Lab C o n fig u ra tio n .. 44

4.4.1 Client Machine H a rd w a re .. 44
4.4.2 Protection H ard w are .. 44
4.4.3 VPN tu n n e l s ... 45

4.5 M e th o d o lo g y .. 45
4.6 Static Firewall ... 45
4.7 Reactive F ire w a ll... 48

4.7.1 IDS Using p f ... 48
4.7.2 IDS Using S n o r t .. 53

4.8 H oneyw all... 56
4.9 Summary of Findings .. 58

5 D iscussion 61

6 Conclusion and Future W ork 63
6.1 False Positive R ed u c tio n ... 63
6.2 Honeypot Sensor P lac em en t.. 64
6.3 Integration of Solutions .. 65
6.4 pf im p ro v em en ts .. 65
6.5 Response T im es... 66

Bibliography 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otiva tion and Scop e

The task of protecting networked assets has fallen to the network security profes

sional. Unfortunately the tools available to detect and prevent intrusions have not

kept pace with the attacker’s tools to intrude. As a result, the ability to contain

and mitigate potential network threats have been limited in effectiveness.

The goal of this research is to explore methods available to perform intrusion

prevention and threat mitigation. Specifically, we are interested in addressing the

ongoing problem area of so-called zero-day exploits in the guise of mass spreading

worms. A zero-day worm takes advantage of computer systems tha t, while perhaps

previously having been deemed secured, have been discovered to run software vul

nerable to the payload delivered by the worm. In some cases these vulnerabilities

are exploited before the maintainers of the vulnerable program are aware that their

software has been compromised, and therefore have not been able to address the

vulnerability via a patch or an update to their software. In the instance where the

vulnerable software has been widely deployed, the potential amount of disruption

and damage done by a rapidly spreading worm can be tremendous.

In 2003 a mass spreading e-mail worm labeled SoBig was released onto the

Internet. Tens of thousands of vulnerable computer systems were infected by SoBig.

Thousands more were disrupted in varying degrees of severity by the enormous load

placed on the network as the infected machines attem pted to spread the worm

farther. Taking into account downtime, lost business, the cost of investing in new

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technology and wasted productivity, estimates of SoBig’s impact range from 500

million to 2 billion dollars [1],

The initial motivation for this thesis evolved from a perceived deficiency in exist

ing mechanisms to address containment and mitigation of the next rapidly spreading

worm within a heterogeneous distributed and compartmentalized network, as char

acterized by tha t of the University of Alberta. It is desired tha t the thesis be viewed

as a methodological inspection of existing techniques deployed in similar environ

ments.

1.2 O verview o f T h reat

There are several different methods available to disrupt the normal function of a

computer network. For example, a simple high-rate packet flood from a sufficient

number of sources is often enough to affect or disrupt a computer network. Another

example would be a directed attack where an individual targets a set of specific sys

tems on a network and attem pts to gain unauthorized access to them either through

direct compromise, or through other social and/or technical means. For the pur

poses of this dissertation we will be examining techniques tha t are available today for

addressing the problem of rapid worm propagation across the vulnerable computer

systems on a network, as well as including results from testing a novel mechanism

developed for the express purpose of detecting and isolating fast spreading worms.

As there are many differing methods of classifying worms and viruses, we include

below a brief discussion of each and how they apply to the problem that is being

examined.

1 .2 .1 E x a m in a tio n o f a V iru s

Cohen defines a computer virus to be “a computer program tha t can affect other

computer programs by modifying them in such a way as to include a (possibly

evolved) copy of itself’ [2], Computer viruses have been present in one form or

another for decades. In 1981, in answer to a debate regarding the piracy of com

puter games exhibiting traits of evolution and natural selection at Texas A&M, an

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

anonymous individual created the first virus on record [3]. This program, called Elk

Cloner, was designed to integrate with the Apple II operating system present on tha t

platform’s standard formatted diskettes [4]. W hen a specific command was entered

by the user on a system using an infected floppy, the virus would transfer itself to

all other floppies placed in tha t system. Among other mischief, every 50th reboot

of the system a message would appear containing a poem about the Elk Cloner.

The idea of having a virus display text to the user remains a common theme among

virus writers even today.

Early computer viruses spread slowly by today’s standards, hampered by the la

tency introduced by their chosen spreading mechanisms. For example, a virus which

writes itself to the bootsector of a floppy disk, such as M o n k e y .A or S t o n e d , is

limited in impact by the visibility and transportability of the media [5]. If an in

fected floppy is only used on one computer system and tha t computer’s user never

shares diskettes used on tha t system, then the virus can’t spread. Despite this rela

tively slow transport mechanism, in 1991 - the same year Linux 0.01 was introduced

by Linus Torvalds and less than one year after Berners-Lee and Cailliau released hy

pertext to the Internet - the Monkey bootsector virus was able to spread globally

[6] [7].

As certain programs became increasingly ubiquitous, application-specific viruses

began appearing, moving the attack away from the operating system to the applica

tions being run. One infamous example is tha t of the M i c r o s o f t W o r d C o n c e p t

virus [8]. Using the embedded scripting language, called WordBasic, the concept

virus author created a program tha t would spread itself every time the recipient

of an infected Word file opened that document. Released in 1995 to great effect,

by 1997 anti-virus companies had developed successful defenses against this type of

embedded attack.

One particular innovation, e-mail, was nearly transformed overnight from a rel

atively benign communications medium to an aggressively exploited virus transport

mechanism. In 1999 the M e l i s s a virus, borrowing the idea of an embedded macro

from C o n c e p t , began spreading itself via an infected attachment over e-mail [9].

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once a recipient of a MELlsSA-generated e-mail opened the attached Word docu

ment, the virus would e-mail itself to 50 addresses from the freshly infected system’s

Outlook address book. Estimates place the number of computer systems infected

by M e l i s s a at 1 million and damage in excess of $80 million [10].

In general a virus is a program tha t requires the intervention of a user or an

automated scripting process to execute on the vulnerable computer system.

1 .2 .2 E x a m in a tio n o f a W orm

A worm, more so than a virus, is capable of spreading itself with great speed and

without interaction with the users of a system. A successful worm is one tha t is

capable of spreading itself at great speed, often by exploiting a known but as yet un

patched vulnerability in widely deployed software. The M e l i s s a virus is not strictly

speaking a worm as it still required user intervention to open an attachment before

the attack could be launched. In contrast, the S l a m m e r worm, which automatically

exploited a buffer overflow vulnerability in Microsoft SQL Server and the Microsoft

SQL Server Desktop Engine, was observed as doubling in size (measured by number

of infected host systems) every 8 seconds [11]. Globally, over 90% of the vulnerable

systems were infected within 10 minutes of the worm’s release. Worms that exhibit

such super-spreading ability have been classified as Warhol worms [12]. While com

paratively few hosts (75,000) were compromised out of all systems connected to the

Internet, the impact was none-the-less severe, including disruption of ATM service,

delayed flights and degraded ability to use network resources.

Worms pose a significant threat to the global network in its current form. W ith

out automated and coordinated automatically-responding detection and mitigation

mechanisms, the possibility for even greater disruptions and damage exist [13].

1 .2 .3 H o n e y p o ts an d H o n ey w a lls

A honeypot is a software construct whose value lies in being probed, attacked and

compromised [14]. It is both a research tool tha t provides an early warning system

for new and as yet unclassified attacks and a research tool tha t allows a network

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

administrator to discover computer systems tha t may be initiating unwanted contact

with their network resources. Owing to this, a honeypot is, by itself, incapable of

preventing traffic to real network resources and furthermore can only report on traffic

that it sees. This thesis investigates how the idea of a honeypot can be evolved to a

point where it can be deployed as an overlay to an existing network infrastructure

with the intent of not only identifying, but classifying and preventing successful

attacks. This evolved technology, the honeywall, is capable of both monitoring and

responding to threats on the network.

1.3 O verview o f th e R esearch

W hat is it th at we are going to do?

In this dissertation I will survey the current state-of-the-art techniques used in

worm detection and mitigation. Each of the technologies will be tested against one

another under identical conditions in a test environment created specifically for this

purpose. In addition to this, I will create an implementation of a honeywall that is

capable of detecting and responding to a worm attack in a timely and non-signature

based manner that will also be run in the test environment.

It is my intention to demonstrate that, by taking existing honeypot technology

and using it to populate unused IP space on a network, a honeywall could use these

honeypots as sensors to detect and respond unauthorized traffic.

W ho are we protecting?

The technologies reviewed in this dissertation are in most cases capable of scaling

their deployments from a small network of a few single systems, to large enterprises

that contain hundreds or thousands of computers.

While the potential exists for a honeywall to use a single honeypot as a sensor

the true target site for deployment would be a company or university of medium to

large size that has larger amounts of unpopulated public IP space. Having said this,

the honeywall presented is scalable to the environment in which it is deployed.

W ho are we protecting against?

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Unsophisticated attackers. These individuals utilize scripted attack tools widely

available on the Internet. While this type of person is not likely to cause sig

nificant amounts of damage in a well run network, they do have the potential

to greatly disrupt systems tha t are not patched/m aintained by a professional.

2. Worms/viruses. An increasing threat to network stability has been identified

in the form of autom ated worms and viruses set to discover and exploit vulner

able hosts. Once a vulnerable site is discovered, a small payload is delivered.

The payload forces the infected host to start probing and exploiting other ma

chines, both on local and wide area networks. Regardless of the destination

system vulnerability, these payloads still pose a threat to network stability

and general network performance.

W ho w ould w e like to protect against?

The sophisticated attacker. Professionals of the hacking world, they are the

few that have the knowledge and skill to discover and utilize new vulnerabilities.

Once discovered, they may release a scripted tool to allow others to easily exploit

a vulnerability. However, as a result of their expertise, they will also be the most

likely to detect a honeywall in place.

H ypotheses:

1. By populating empty IP space with virtualized “systems” acting as ultra low

interaction honeypots we can turn this otherwise unused area of a network

into a powerful tool for detection of rapidly spreading worms.

2. Furthermore, by doing so we can cause the attacker to waste resources on what

amounts to non-existent network assets.

3. A threat, once identified, can be responded to automatically by the system

thereby reducing the total number of compromised computer systems on a

network.

Experim ents:

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Create a rudimentary honeywall appliance tha t can be deployed on a given test

environment which will be able to respond appropriately to known and unknown

threats. Once created, use known scripted toolsets to test. Observe if traffic can

be detected and stopped before total network compromise occurs. Compare these

results to those observed from other technologies in the same environment.

1.4 C on trib u tion s

I create and test a reactive network intrusion prevention system capable of iden

tifying a threat of which it has no specific knowledge: a honeywall. A honeywall

combines the inherent advantages of a honeypot with those of a reactive firewall in

such a way tha t when it is overlaid with an existing unprotected computer network,

real network assets could be protected by those fabricated by the honeywall. This

honeywall technology is compared against the results of several other accepted threat

detection techniques and is shown to be a viable solution to the rapidly spreading

zero-day worm problem space.

1.5 O verview o f T h esis

This thesis is organized into two primary areas. The first areas comprised of Chap

ters 1 through 3 provide a basis for discussion of the technique developed in this

dissertation. The second area, which includes Chapters 4 through 6, show the re

sults of the honeywall method for detection and isolation of worms on a network, in

addition to a discussion of the significance of these findings.

Highlights of this dissertation include:

• A high level overview of the critical need for accurate and timely detection

and isolation of worms on the network.

• A review of existing worm detection and isolation techniques.

• A novel implementation of a honeywall, which demonstrates the ability to

protect a vulnerable network from rapidly spreading worms.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 provides an overview of the necessary background for the concepts

used in this dissertation. Chapter 3 is a review of the current state of the art in

network security techniques, providing details on how these techniques are used

today. Also included in Chapter 3 is a discussion of related works and the evolution

of the honeywall mechanism created for this dissertation. Chapter 4 details the

implementation of the honeywall, and provides comparison results for the honeywall

mechanism against two other technologies used in worm detection and mitigation.

Chapter 5 further discusses the results of the findings in this dissertation. Future

directions for further refinement of the honeywall technique and the conclusion are

found in Chapter 6.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

An understanding of the nature and types of attacks seen on the network is es

tablished first. Following the classification of attacks, a profile of an attacker is

presented to provide a more substantial example of network intrusions. A discus

sion of firewalls, intrusion detection, and honeypots is provided to complete the

background information necessary to understand the topics discussed in this thesis.

2.1 N etw ork A c tiv ity

Before we can attem pt to detect attacks on the network, we must first specify

what types of traffic and in what quantities are allowable. Specifically, through the

exclusion of certain types of activities and patterns we will be implicitly creating

a listing of anomalies tha t may be used as trip-wires for potentially undesirable

network activities. The allowable network traffic profile can be translated into a

policy, which will be further discussed in Section 2.2.

Lyle posits tha t most attacks fall within one of three main categories: attacks

on integrity, attacks on confidentiality or attacks on availability [15]. The act of

maintaining the integrity of a network is the act of preventing authorized users of the

system from making changes beyond their authority, and to prevent unauthorized

persons from making changes at all. If the integrity of a system can’t be maintained,

then the attacks on confidentiality and availability are much more likely to succeed.

Any data stored within a system whose access has been restricted to a set of users

can be thought of as confidential. W ithin a computer network, multiple individuals

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are performing roles where data access should remain restricted. For example, a

researcher who is developing a new vaccine may want to limit access to her research

while the study is being conducted and should be able to ensure tha t only she can

access that data.

The ability of a system to remain accessible to authorized users is known as

the system’s availability or uptime. In the context of an e-mail delivery system,

a system that claims 99.99 percent uptime will be unavailable to authorized users

no more than 52.56 minutes in one calendar year. These claims are usually made

without dispensation towards abnormal network activity, and as such can be ad

versely affected by the abnormally and artificially high loads generated by a denial

of service attack.

2.2 T y p es o f A ttack s

Motivation for attacks are as varied and numerous as the potential attackers in the

world, and will not be covered within the scope of this dissertation. The desired

result of an attacker is to compromise one or more of the above listed principles of

security. To accomplish their desires, the attacker must exploit weaknesses within

the system they wish to compromise. On a given system any service, protocol or

connected system can be viewed as a potential entry point for the attacker. The

analogy of a chain is often used when describing the security of a system, in tha t

the weakest member of the system will undoubtedly be the first to fail when tested.

At the start of an attack, all the potential attacker may have to go on is the IP

address of the machine they want to compromise. While it is conceivable that they

could run toolkits tha t try hundreds or thousands of known vulnerabilities against

this IP address, the more than casual attacker will attem pt to gather information

about their target before launching an attack. Tools such as nmap [16] and xprobe

[17] are widely accepted as being effective at probing a system remotely to profile

the soon to be victimized system. Additionally, nmap and tools such as pOf [18]

can provide operating system fingerprinting which can be very useful to the poten

tial attacker, as it further refines the types and number of attacks that could be

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

launched. Once a view of the available ports, services, and operating system has

been discovered, the attacker can begin to select from the variety of different attack

mechanisms at their disposal.

2 .2 .1 D en ia l o f S erv ice A tta c k s

When an attacker wants to disrupt the normal operation of their target, but does

not want to gain access to the system itself, they may choose to launch a denial

of service attack. As the name suggests, a denial of service attack occurs when

an individual attem pts to overload the target computer’s available resources which

results in, at best, a drop in the quality of service tha t the system provides and at

worst will cause the system to crash outright.

A denial of service does not necessarily require the attacker to have a large

amount of bandwidth at their disposal. In a Distributed Denial of Service (DDoS)

attack multiple compromised machines are used in concert with one another to

simultaneously attack a target system. When the M yD oom .O computer worm

was released it quickly spread itself to vulnerable computers running Windows [19],

causing infected systems to target Microsoft.com. Once a system was infected,

the worm sends itself to all e-mail addresses stored in any of the address books

contained on the compromised host. Additionally, this variant of the worm was

designed to query four major search engines to discover further e-mail addresses that

it could propagate to. While the purpose of this worm was to create a distributed

denial of server attack against Microsoft.com, however the consequences were far

more reaching as the large amount of traffic generated by the DDoS affected several

Internet Service Provider’s ability to maintain their quality of service to their clients.

A distributed denial of service attack can affect more than the targeted system.

As the number of infected machines grew, two of the search engines used by the

MyD oom .O worm became overloaded with queries and eventually failed to respond

to valid search requests. Additionally, each of the infected systems were forced to

use some of their available network and memory resources while they participated

in the attack.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By automating the attack through the use of self-spreading worms, the attacker

is saved the time and resources of identifying and exploiting machines on a one-by-

one basis [20]. The worm does not discriminate what type of host it sends itself to, be

it a Windows system, a Linux system, a home computer or a financial institution’s

trading computer.

Denial of service attacks may not solely rely on overwhelming the bandwidth of

the target service. An effective method to disrupt, for example, a VPN device may

be to send it false Datagram Too Big messages [21]. If the attacker set the Path

Maximum Transmission Unit size to be greater than it should be, and subsequently

sends enough of these malformed packets, several datagrams will be lost, thereby

disrupting the flow of valid network traffic. Another form of bandwidth independent

denial of service is a SYN-flood which relies on sending a large number of extremely

small TCP connection requests, thereby overwhelming the target com puter’s ability

to process them [22],

2 .2 .2 E x p lo its

An exploit can be classified as the process in which an attacker goes about taking

advantage of a weakness in their ta rge t’s defense. An exploit tha t has been seen on

computer systems outside of a test lab is said to have been found “in the wild.”

Once a vulnerability has been discovered and successfully used to affect the

target system, a common practice is for an attacker to identify this vulnerability to

the Internet community. In some cases, the attacker is a concerned individual who

has discovered a vulnerability in a product and desires the organization responsible

for said product to issue a repair to close the vulnerability before it can be discovered

and used by other less ethical persons. Several of the vulnerabilities discovered in

various Microsoft products have been discovered and reported in this manner [23].

In other cases, however, the attacker will create a tool tha t allows less skilled or

knowledgeable persons to exploit this vulnerability in a repeatable and controllable

fashion. Once a tool has been released, the vulnerable software manufacturers must

race to create a patch to close the vulnerability before it is widely exploited.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As will be discussed in further detail in Section 2.4 Intrusion Detection Systems

(IDS), it is possible to create a signature of a known exploit tha t will allow an IDS

to recognize previously discovered and published vulnerabilities as they occur on

the network.

Vulnerabilities may lie undiscovered for years. When a vulnerability is found

the discoverer must decide whether to release details of the vulnerability to other

concerned individuals, or to attem pt to enter a dialogue with the vendor respon

sible for the product. Some vendors argue tha t the likelihood of a vulnerability

being exploited before a patch can be created is greatly reduced by not releasing

the vulnerability to the community in the first place [24] [25]. However, those in

the security community are often quick to point out that some vendors are slower

to create patches for vulnerabilities told to them through “responsible disclosure”

methods. In a mildly philosophic way the question is posed: If no one is aware of

the vulnerability, does it really exist?

The most dangerous type of exploit is one tha t has not been published but has

been discovered. No IDS signatures exist to mitigate the risk, no patches are being

worked on by the responsible vendor, and the likelihood of the discoverer/attacker

being able to freely use this exploit to their own ends with relative impunity is very

high.

2 .2 .3 B u ffer O verflow s

Your home may have a wall socket tha t contains two identical electrical outlets.

These outlets probably have been built to comply with your country’s particular

outlet requirements. W hat may be standard in one country may not physically fit

in another country’s outlets. The specification of the plug type can be likened to a

data type. The placement of two outlets in a wall socket can be likened to having a

two-element buffer with the same data type. We define a buffer to be a contiguous

allocated piece of computer memory tha t is used to store one or more instances of

an identical data type [26]. C programmers may use the words buffer and array

interchangeably as in C the concepts are interchangeable.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In C, an array can be declared as static, where the size is determined at compile

time, or dynamic, where the size is determined at runtime. At runtime a dynamic

array, in the form of a variable, will be placed on the stack. For the purposes of

discussion we will assume tha t when multiple dynamic variables are used, they will

be layered on top of previously declared ones.

Much like a fluid-containing vessel, if too much data is poured into a buffer

its capacity to store data will be exceeded and some of the excess will necessarily

flow over the top. When a buffer has been filled with too much information it is

said to have experienced overflow. The difference between a physical vessel and the

computer’s stack is tha t when the buffer is over filled, the data does not disappear

down the sides of the buffer onto the ground. Instead, the data continues to fill

the stack where the buffer itself is stored. In some cases it is possible for the data

being written into an over-filled buffer to be written over the data in another buffer

adjacent on the stack.

While buffer overflows can cause system instability through the unintentional

destruction of valid instructions and data on the stack, malicious persons can use

this same side effect to force a computer into doing what they want, often without

the user’s knowledge. Once an attacker has discovered a buffer overflow they may

be able to use it to inject their code into the running code on the target system.

Several buffer overflows have been discovered in Microsoft products with varying

levels of consequence [27] [28] [23]. One such vulnerability resulted in the creation

of over seven different viruses and exploits in a four month period [29].

2.3 F irew alls

When constructing a building, especially when there are other adjacent buildings,

one consideration that the designers must take into account is the potential for fire

to spread between areas. If a fire was to break out in any given unit, there should be

physical walls in place tha t impede the spread of the fire to connecting units. The

term firewall in relation to computing refers to a barrier that in some way isolates

one or more computers from others at the network level. Unlike a physical wall

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tha t prevents both the spread of fires and impedes the movement of objects and

people, a firewall can be configured to allow good traffic through and stop unwanted

or unexpected traffic before it reaches its intended destination.

A firewall can be constructed in software, or as a standalone device tha t is placed

physically on the network. A personal firewall is typically a piece of software in

stalled on a desktop machine th a t allows the user to decide which applications are

allowed to converse with the network. Personal firewalls can be deployed in a corpo

rate environment where a higher level of security is needed, but are more typically

installed on networks where a central network level firewall is not in place or possi

ble. For example, a home user with a high speed Internet connection might install a

firewall that only allows connections initiated from their computer to interact with

their system. By doing this, all network traffic th a t does not originate or is requested

by their desktop will be stopped before it can be processed by the traffic’s intended

destination. To further use this example, with the rise in autom ated worms and

viruses that explore and infect the network automatically, a personal firewall may

prevent an otherwise vulnerable system from becoming infected.

While personal firewalls give their users a great deal of flexibility to customize

their installation, their disadvantages manifest themselves particularly in widespread

or large networks tha t are centrally administered. For example, a department within

a University may have 200 computer systems and one or more system administrators.

If each of these two hundred systems have a personal firewall installed on them, the

risk that a non-expert user may create a rule tha t prevents a valid application from

conversing with the network is very high. Also, it is often possible for the users of

desktop computers with firewalls installed to be granted privileges tha t allow them

to modify their firewall configuration, which is another vector for a firewall related

failure. Two solutions exist to the problem of misconfigured personal firewalls in

the corporate environment. One is for the system administrators to be responsible

for the proper operation of each and every one, a load that, even with user training,

may prevent the administrators from accomplishing their other tasks. The other is

to create a centralized firewall that encompasses the entire departm ent’s network.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: Example firewall placement

In a centralized configuration the firewall typically resides at the point where

the network feed for the department is received. Figure 2.1 shows how a network

level firewall might be implemented. Once the firewall is in place, the administrator

must create rules tha t are sufficient to allow valid transactions to take place on their

network while still providing some layer of protection from the outside world. While

the mechanisms to create and modify these rules differ with the implementation,

the methods are very similar.

A whitelist contains a listing of systems and/or ports tha t are allowed to pass

through the firewall without further scrutiny. If the adm inistrator knew tha t all

traffic from the 129.128.10.X network was valid and should be trusted, this IP block

could be added into the whitelist. Whitelisting mechanisms can be effective at pre

venting users from experiencing unexpected behaviour from their applications when

said applications use an undocumented or obscure port to communicate. While the

whitelist encompasses the known good hosts, a blacklist enumerates the known bad

ones. Use of a blacklist can be effective at blocking systems tha t have historically

shown malicious or unwanted activity originating from them. A blacklisting mech

anism ensures tha t no network activity from the blacklisted hosts will be able to

reach the production network tha t the firewall protects.

As a general starting point, a firewall configuration may allow all traffic outbound

and deny all inbound traffic. This is facilitated by the statefulness of the firewall.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A stateful firewall has the ability to establish a transaction history of connections.

If a machine behind the firewall (129.128.10.3) sends a request to an IP outside of

the firewall (66.35.250.150), the firewall will record this transaction request. When

66.35.250.150 responds to 129.128.10.3’s request, the information will be passed

through.

To further improve the resolution of the filtering tha t a firewall can provide,

mechanisms exist to block specific types of traffic on arbitrary ports. On a given

network, the adm inistrator may be able to determine tha t no UDP traffic should

ever be sent and received on ports 1024-2048, and thus they could create a rule that

would block th a t but still allow TCP traffic through.

Firewalls do not provide a perfect solution to the issues surrounding abuse and

network attacks. Stemming from a misunderstanding of the scope of the technology,

it is not uncommon for systems behind a firewall to remain unpatched or unsecured,

a failing tha t can still be exploited. A firewall can’t stop traffic tha t it has been

configured to pass through. As discussed earlier, one of the predominant methods

for worms to spread themselves is via e-mail, and e-mail is often considered a critical

service on the network. Even though the firewall may be protecting the network

from port scanning, buffer overflows and other malicious traffic, it will not be able

to protect against other types of attacks. Furthermore, once a system behind the

firewall has been infected, there is nothing in place to prevent tha t system from

infecting other vulnerable systems also behind the firewall.

2.4 In trusion D etec tio n S y stem s

A system tha t attem pts to identify and classify unauthorized activities, be they

through use, misuse or abuse of the system, is defined as an Intrusion Detection

System (IDS) [30]. An IDS may be configured to monitor a single system, but

more often they are to monitor several. No one method of implementing an IDS

has proven itself to be the best approach, a conclusion that is supported by the

wide variety of solutions available. An IDS can be installed on a single system to

monitor activities at a system level, be present on a system or device tha t monitors

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the activity of a network, or may be a combination of the two approaches; that is

to say a single system IDS with additional information provided from the network

layer [31].

Of the network-level IDS systems present, two subclasses are available [32]. One

captures data from the network and compares these snapshots or frames of data

against a database of known attacks. This method of detection is known as pat

tern matching, signature analysis, or string matching. The effectiveness of signature

analysis is largely dependent on the scope of the signatures th a t the incoming data

stream is being compared against. If a data stream can’t be matched to a pattern

present in the database of signatures, no warning will be thrown. One caveat re

garding a string matching IDS should be noted. Substring matching may also be

a method used when analyzing a data stream for potential threats. As such, the

possibility of a false positive increases as the substring size shrinks. A false positive

is defined as an event tha t is detected as being malicious when it is not. Pattern

matching can be done at a relatively lower cost to system resources than other tech

niques, and therefore a signature analysis type IDS can be scaled to handle large

bandwidth networks with relative ease.

Alternately, a pseudo-intelligent IDS will still capture the raw data stream from

the network, but instead of matching against known suspicious patterns, it attem pts

to emulate the destination’s host and application based on the traffic seen. This

emulation can provide a reduction in the number of false positives, and also may

be more capable of handling attacks which would confound string matching IDS.

However, the emulation is very resource intensive which prevents this type of IDS

from easily scaling to meet high bandwidth deployments.

While a great deal of effort has been spent improving the field of IDS, by the

very definition of an IDS a severe shortcoming is apparent: an IDS will at best

correctly identify data as being a threat and will do nothing to actually stop a

potential threat, and at worst will trigger too many false positives for the operator

to identify the true threats [33] [34] [35] [36] [37] [38] [39]. The classification of a

th reat is important. However the damage may already be done.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 H o n ey p o ts

A honeypot is a set of services presented to a network, often by one or more systems,

tha t are not considered to be part of the production environment. These services

are designed to mimic or simulate programs or even entire systems tha t a potential

intruder may find interesting. Once an intruder is enticed, a honeypot may then

interact with the potential intruder in such a way as to convince them tha t the

honeypot is legitimately running the service that is being queried. While the depth

of interaction will differ based on the application, a highly interactive honeypot’s

success may be gauged by the time tha t the potential attacker spends interacting

with the simulation before realizing tha t they have been duped. By instrumenting

a honeypot in such a way as to log these interactions, it can be used to monitor the

attacker’s activities for research purposes or for the purposes of intruder detection.

Specifically, because no legitimate network traffic should ever reach these systems,

all traffic reaching the honeypot can be viewed with suspicion [14].

The concept of a honeypot can be implemented using many different types of

operating systems and hardware platforms. For example, the honeyd software cur

rently supports FreeBSD, OpenBSD, Solaris and GNU/Linux operating systems

[40]. However honeypots are not necessarily a product or application. Depending

on the level of interaction your particular honeypot needs to have, it is possible

to implement a basic honeypot using tools already existing on common operating

systems.

2 .5 .1 Low In te ra c tio n

A low interaction honeypot is an incomplete or partial simulation of a set of services

or operating systems that, upon cursory inspection, is sufficiently convincing to

entice an attacker to proceed further [41]. As the attacker proceeds to communicate

with the mimicked systems, their interactions will be limited by the depth of the

simulation itself. For instance, an emulated service might be created to appear as if a

given machine is running an open mail relay server, that when exploited would allow

an attacker to pass mail requests anonymously through the “vulnerable” service.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This emulated process may only respond to telnet to port 25 by returning the start

of a typical SMTP session, or may support further interaction via common SMTP

commands. Lower interaction services typically reduce the chance of an attacker

actually compromising the service itself as the service emulation is not the actual

service that the attacker will think they are exploiting.

2 .5 .2 H ig h In te r a c tio n

High interaction honeypots are well suited to capture hostile activity targeted at a

network as they are usually composed of one or more real computer systems that are

deployed in a known vulnerable configuration. Instead of closely modelling a system

that an attacker can interact with, the exact system is provided. A researcher in

terested in detecting a new rootkit for Windows 2000 Server running IIS 6.0 would

create the exact environment tha t they wanted to monitor. Merely creating an en

vironment is not sufficient however, as this environment must be set up in such a

way as to provide as extensive a forensic trail as possible prior to being deployed.

W ithout instilling the research environment with a level of logging, at least equiva

lent to the perceived risk of deploying a high interaction honeypot, the full benefits

will not be realized.

2 .5 .3 H o n e y p o ts in P r a c tic e

The benefits of the lowered interaction model, specifically ease of deployment and

reduced risk of real system compromise, are at least partially countered by the

limitations of low interaction. A simulation, no m atter how complete, will eventually

reveal itself to a sufficiently determined and knowledgeable attacker either through

missed features, or through interaction tha t slightly differs from tha t of a known

system. This limits the depth of logging that a low interaction honeypot will be

able to provide. In practice a low interaction honeypot is better suited to the task of

identifying potentially hostile IP addresses rather than providing an in-depth view

of the attack against a system.

Through the deployment of a fully configured production environment, the re-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

searcher does not restrict the possible avenues for compromise or detection by the

attacker. For example, the researcher interested in how her IIS 6.0 computer could

be compromised may see an attacker initially ignore IIS 6.0 entirely and proceed

to compromise the system via another service running on the machine. This free

dom coupled with high levels of logging are the true strengths of a high interaction

honeypot and make them ideally suited to research of threats.

However, with the increased possibility of compromise comes the realization

that a high interaction honeypot, once compromised, might be used against non-

honeypot systems. For the purposes of our research we will not implement a high

interaction honeypot, as our solution views every system on the protected network

as a potential high interaction honeypot with poor logging.

2 .5 .4 Sniffing

It is three in the morning somewhere when a call is made from the personal cellphone

of one of the world’s most notorious diamond thieves. Instantly the investigators

sitting in wiretap room are at full alertness, listening to and recording every piece of

information exchanged during the call, ready to call in the troops if their suspect says

something damning. In the world of computers, the ability to perform a function

similar to the wiretap in the example is given by a device called a packet sniffer. This

device can be inserted transparently in the network in one of two ways. Inserting

the sniffer inline in the network provides the opportunity to both monitor and to

modify the flow of data as it passes through the device. Inline sniffers run an

increased risk of detection/corruption as all data must pass through them before it

can continue on to its destination. Alternately, a sniffer can be installed on a span

or tap port within the network. A span port receives a copy of the data flowing

within the switch, which in turn allows the sniffer to see all of the traffic on the

network without influencing the actual data flows. Direct detection of an span port

sniffer is almost impossible from the end-user’s perspective.

Much like the ability to tap a phone conversation, the ability to sniff packets

can be used for both legitimate and questionable activities. By providing a view of

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the actual packet traffic exchanged between computers on the network to a specific

problem machine, the LAN adm inistrator has the ability to reconstruct the unfrag

mented transactions, often essential when resolving connectivity issues. A packet

sniffer so configured has the ability to monitor all traffic from the network to a

specific machine in addition to all traffic leaving the specified machine.

When a packet sniffer is placed in promiscuous mode, it is capable of monitoring

all traffic destined for the network interface it is running on, in addition to all other

traffic on the subnet tha t the sniffer is a member of [42], An attacker might use

a packet sniffer to gather information such as plain-text passwords, logins, and e-

mails, or to discover new IP and MAC addresses. In the case of an attacker using a

packet sniffer to view a network’s traffic, what may be completely legitimate traffic

over authorized protocols can become a good source of material for the attacker to

compromise resources on the network.

A packet sniffer in promiscuous mode can be very difficult to detect on a network,

despite tools like AntiSniff from LOpht Heavy Industries [43]. A common miscon

ception is th a t packet sniffers can only be used on unswitched networks. However by

using techniques such as MAC spoofing [44], ARP spoofing [45], and impersonating

the local network gateway [46] [47], or tools such as fragrouter [48], an attacker is

still able to log network traffic. Tools such as the dsniff package exploits for many

of these vulnerabilities into an easy to use utility [46].

2 .5 .5 S can n in g

To be certain to take what you attack, attack where the enemy cannot

defend. - Sun Tzu

Though the Art of War was written more than two thousand years ago, the

wisdom of General Sun Tzu is still relevant today [49]. The teachings were intended

for the military elite of his time but have come to be applied in all aspects of life

where an absolute victory is essential. When an attacker wishes to compromise

a target, the wise attacker will attem pt to determine his target’s strengths and

weaknesses. Once found the wise attacker will then exploit those weaknesses to

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

press their advantage against their targets. In the field of battle a general might

send forth scouts to keep him informed of the enemy movements and strongholds.

A digital attacker will also check the defenses of her target prior to launching a

targeted attack. One such mechanism to reconnoiter a target is to perform a scan

of their systems.

Before the Internet became as pervasive as it is today, computer systems used

the telephone networks via devices called modems. A computer may reside in a

physically impenetrable building deep inside a corporations’ headquarters, but could

still be potentially accessed from the outside world if it had a modem connected to

it. When the telephone number this modem was attached to was called, the modem

would answer with a carrier signal and thus try to establish a data connection

between itself and the caller. The phone numbers for these systems were often

unpublished outside of their specific user-base, as it was hoped tha t only those who

needed to know about the system’s existence would ever be able to access it. W ith

the prospect of being able to directly connect into a major corporation’s sensitive

systems, attackers had the incentive to try locating these phone numbers.

Mass marketers long ago realized tha t if they dial enough phone numbers, even

tually they will reach one tha t will get answered. Once answered the marketer would

launch into their sales pitch hoping tha t the listener would buy whatever service or

product the marketer was selling. Rather than going through the tedious process of

manually dialing each of the target phone numbers, a device was created tha t would

automatically dial a sequential range of numbers for the marketer.

Taking this automated ability to dial large ranges of numbers automatically to

heart, tools such as Toneloc, so called war-dialers, were created tha t were capable of

sweeping through thousands of phone numbers and recording those where a modem

answered with a carrier signal [50]. Attackers quickly realized tha t by using these

war-dialing programs they could effectively harvest a list of potential victims.

In a more modern context, attackers still need to identify potential victim com

puter systems and potential entry points into those systems. Connected via networks

like the Internet, many of the computers are still vulnerable to brute-force techniques

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tha t establish an unsolicited connection to them. These scans can contact tens or

even hundreds of thousands of systems in a very short period of time by sending

a large amount of packet traffic representing differing protocols. In the case of a

tool such as nmap, probes can be sent and further details can be deduced about the

target systems by the types of responses tha t are received via comparison to known

signatures [51].

2 .5 .6 F in g e rp r in tin g

Since most security holes are version specific, the discovery of a target com puter’s

operating system is of great value to a potential attacker. If, for example, the

attacker probed their target and discovered tha t port 53 was open they might choose

to launch an attack against the BIND daemon tha t is most likely running [16]. If the

BIND daemon is vulnerable the attacker may only have one chance to successfully

exploit it, as a failed attem pt will most likely result in the daemon terminating itself

[52]. By accurately identifying the operating system of the target host/machine, the

attacker can better choose their exploit.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

State of the Art and D esign

In Chapter 2 we introduce several technologies available to the LAN administrator.

In this chapter we take a closer look at some of the state-of-the-art solutions available

and how they apply to the problem space of worm detection and isolation. We also

provide a discussion of honeywalls and how they are the next natural step in the

evolution of reactive firewalls.

3.1 F irew alls

A firewall is defined as a device on the network through which network traffic flows.

As network traffic passes through a firewall, the transactional information will be

inspected and run against a ruleset. A network firewall is typically a separate piece

of hardware which exists physically on the network, often located at an aggregation

point. In the case of an office or departmental LAN, a firewall will commonly be

placed between the outside world and the internal network as shown in Figure 2.1.

While the idea of a device th a t enables the good traffic to flow and prevents the

bad from reaching the intended target is a simple one, there are several differing

approaches on how to actually accomplish this goal. Firewalls appear in many

guises, and in many locations across the network topology. In the following sections

we examine and discuss the categories of firewalls, how they are deployed, and offer

some insight into how they accomplish their tasks.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .1 .1 B ord er F irew a lls

The assumption tha t attacks can only come from the outside is outdated and out

moded. The modern network is an ever changing entity where machines are added

and dropped from the overall topology as individuals move around. For instance if

a user has been off-site with their computer system, there is no guarantee tha t they

have been able to maintain any level of security on that system. While a system,

such as laptop, is used on a foreign network, be it a customer’s site, a coffee shop,

or even at home, it is subject to the security precautions made by those networks.

This means tha t it is possible th a t a laptop which has been used off of the corpo

rate LAN may return in a compromised state. When the user returns and plugs

their machine into the office network, their system becomes a trusted member of

the network with all of the privileges afforded it by that trust. In the case where

the recently reconnected system is compromised, that leaves the internal network

vulnerable to compromise and infection from an inside source.

Border firewalls can play an im portant role in a computer network by acting

as a gatekeeper which permits or forbids traffic from passing through it between

the external and internal networks. From a policy standpoint, border firewalls can

be used to create a digital barrier through which depermitted traffic can’t flow by

blocking ports and IP ranges. However, the wholesale blocking of ports may be

a contentious issue in some environments such as academic institutions where the

users may expect unfettered access to the network. Several commercially developed

solutions exist to perform the role of border firewall from such companies as Cisco,

Sonicwall, 3Com and Radware. These solutions often are packaged as appliances

which, while their implementations differ, are all capable of acting as a border

firewall. The open source community has also developed a large number of software

packages capable of being a border firewall. Each of the major open source operating

systems have border firewall capabilities through packages like iptables, netfilter,

ipfw, and pf. The testing performed in this dissertation was performed using pf

as it was incorporated in the operating system used in the test environment; any

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modern border firewall would suffice.

3 .1 .2 H o st-B a se d F irew a lls

A host-based firewall is deployed as a last and first-line defence against the network

at large. As identified in Section 3.1.1, a border firewall can only protect the internal

network from the external world but not protect the internal network against itself.

By deploying firewalls on each of the member nodes of a network, each node becomes

responsible and enabled to protect itself from every other node both on the internal

and external networks. As seen in Figure 3.1, sometimes it is not possible to deploy

a firewall on all of the devices on your network.

O u ts id e N e tw o rk j

I D esk to p
i j C o m p u te r

- ' A4m4 L a p to p

Figure 3.1: Host-based firewalls

An early form of firewalls still seen today is tha t of the stateless device. Traffic

is permitted/denied on a per packet basis as those packets are matched against a

ruleset. The term “state” refers to the firewall’s ability to remember tha t a connec

tion has been initiated by the host device. Stateless firewalls are uncommon today

because they have extra rules to permit solicited responses to outbound requests.

As a result these rules often create the possibility for an unauthorized inbound

connection from the permitted ports.

Conversely, stateful firewalls are deployed in environments where the internal

device or network is trusted by the LAN administrator to generate good traffic. If a

system on the inside portion of a stateful firewall established an outbound connection

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a service over a port not explicitly permitted, then the firewall will remember

this and when the response comes in from the outside asset its connection will be

permitted. By monitoring the connection states of the internal protected network,

the firewall can prevent unsolicited traffic from the outside network from reaching

the internal private network.

W indow s Firewalls

W ith the introduction of Windows XP Service Pack 2 (SP2), the Windows operat

ing system began shipping with a rudimentary host-based firewall. The Windows

Firewall is an example of a stateful low-interaction firewall. All outbound connec

tions are allowed, and all inbound connections are disallowed unless they have been

approved or “excepted” on a per application basis by the user. A startup policy

is applied by the Windows Firewall as the computer loads allowing the computer

to obtain IP and domain information and to establish itself on the network. The

startup policy is transitory as it is removed once the computer loads the Windows

Firewall service.

The Windows Firewall is low interaction as it will only ask the user to take action

if unsolicited traffic is associated with an application running on the machine. The

user is given the ability to deny the traffic, to allow the traffic (and implicitly create

an entry in the exception table allowing this traffic in the future), or to temporarily

ignore the traffic. If no association between traffic and application is made, the

Windows Firewall will silently drop the traffic before it reaches the host machine.

Also, Microsoft offers an option to not allow exceptions to the stateful rules. When

this rule is activated the user will never be prompted to allow inbound traffic that

may be unsolicited and all such traffic will be dropped silently.

While the Microsoft Windows Firewall is a good first step to protecting desktop

computers running the XP operating system, it is far from a perfect solution. If

a computer system becomes compromised any traffic generated by a worm process

originating from the compromised host running the Windows Firewall will be allowed

onto the network. As all outbound traffic is silently passed by the firewall the user

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will not have any direct feedback from their host based firewall alerting them to the

unusual activity.

Third-party W indow s Firewalls

Applications such as ZoneAlarm and Blacklce Defender provide an increased degree

of control over the traffic flow on a computer. They can bidirectionally apply policy

on the installed host tha t can permit/disallow traffic both from outside networks as

well as tha t traffic which originates from the host. Similar to the Microsoft Firewall

these products use modal dialog boxes th a t prompt the user to correctly identify

traffic/behaviour as events occur. The added benefit tha t can be derived from a

host based firewall that is capable of applying policy on outbound connections is

that the user can now control what applications are allowed to communicate with

the outside world.

The ability to prompt the user and block outbound traffic can, when properly

leveraged, allow for early detection of compromised host systems. In the situation

where an executable has been installed onto a compromised host, a bidirectional

firewall would usually prompt the user to see if this activity was expected and if it

should be allowed. If the user identifies the malicious process as unexpected they

can instruct the firewall to drop the traffic and prevent their compromised system

from infecting other member nodes of their local network.

Some drawbacks exist with these systems. In their attem pts to make deployment

of their products easier, vendors often allow users to create policies th a t trust and

permit all local network traffic. By perm itting all local traffic, the firewall is no

longer protecting local systems from one another, thus reducing their utility in the

case of a major worm outbreak.

By enabling the user to make decisions on what applications are allowed to

talk to the network, the software is implicitly assuming that the end user is knowl

edgeable enough to make the correct decision. For example, if a user is notified

th a t“svchost.exe is attempting to communicate with 127.0.0.1” , the program is ex

pecting tha t the action the user takes is truly tha t which they want to take.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Managing large IP spaces can be very complicated. If the host-based firewalls

are deployed in such a way as to allow individual users to manage the rules of the

systems, they may complicate troubleshooting of connectivity issues. For example,

if a user has chosen to create a list of hosts that are explicitly perm itted upon

installation of the software, they may not remember tha t the list exists later on

when one of their coworkers not in the list attem pts to connect to their system.

This problem can be somewhat overcome through the creation of default policies

that are distributed to all users of the host-based firewall mechanisms.

System resources are consumed by a host-based firewall. They are not optimized

for high throughput attacks. Being software packages they consume host-system

resources, both memory and CPU. In the case of a firewall tha t does some packet

inspection tha t means th a t each packet tha t is passed to/from the host system will

be inspected in software before it is placed back on the wire. As a result of this, high

throughput network devices (such as fileservers), or systems tha t are being directly

attacked with large amounts of traffic, may have their performance degraded.

3 .1 .3 S ta t ic F irew a lls

A static firewall’s rules, as the name implies, do not change. Specifically, any changes

that are made to a static firewall’s ruleset require the manual intervention from a

privileged user. A static firewall is well suited to environments where rules can

be easily codified and are likely to remain unchanged. Rule sets are chosen by

the LAN administrator to suit their network environment. For example, if a LAN

administrator knew that their servers should only ever see network traffic from the

outside world on port 80 (web), then they could configure a ruleset on the firewall

that would enable the firewall device to drop any traffic tha t was not destined for

port 80 on the internal network.

Rules can be created on a per machine or per segment basis. It is not uncommon

for a network administrator to conceptually separate the functions of systems within

their network by function. For example, an administrator might group all of their

servers together while creating another group for their workstations. By grouping

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these machines together by function, rulesets can be created to apply to multiple

machines with similar functionalities. W ithout any rules in place many firewall

implementations will default to a “any/any all/all” rule which states that traffic

from any source to any destination on all source and destinations ports will be

permitted. W hen the “any/any all/all” rule is in place all network traffic will flow

through the firewall undisturbed.

Therefore, it is considered a best practice to create rulesets from a default deny

baseline, the idea being tha t no traffic will flow until the adm inistrator has explicitly

permitted ports and protocols. Static firewalls are limited in their effectiveness

against threats such as worms. If a rule blocking the ports used by a worm does not

exist prior to the release of a worm on the external network, the worm traffic will be

allowed by the static firewall to pass onto the internal network unhampered. In the

situation where a default deny-all traffic policy has been created, with exceptions

added to permit traffic on an as-needed basis, the possibility of using non-standard

ports to propagate is removed. In response, one of the mechanisms tha t is used by

worm creators is to utilize ports tha t are commonly opened on firewalls to transport

their payloads. For example, TCP ports 135, 137, 139 and 445 are used by several

Windows applications and therefore typically have rules in place to permit traffic

across those ports. By transporting the payload across a perm itted port, the worm

effectively bypasses the firewall, allowing it access computers on the internal network.

3 .1 .4 R e a c tiv e F irew alls

At a high level, a reactive firewall with no reaction mechanism is the same as a

static firewall. Reactive firewalls are a superset of static firewalls in tha t they often

are initially configured with a baseline set of unchanging rules. Over time, based

on metrics specified by the adm inistrator of the firewall, a reactive system may

supplement these baseline rules with additional restrictions in response to events

logged by the firewall. Reaction mechanisms range from manual intervention from

the firewall’s administrator, to automated processes tha t may be threshold or proto

col based such as pf and netfilter [53], or Intrusion Detection Systems such as Snort

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[54].

3 .1 .5 In tru sio n D e te c t io n S y s te m s

As noted in Section 2.4 Intrusion Detection Systems (IDS) have historically been de

ployed inline in a network making them capable of statefully inspecting and matching

the traffic against known attack signatures as it flows through them. Many modern

IDS systems are capable of reconstructing data flows to better process out-of-order

attacks, as well as normally disrupted traffic. At its simplest, an IDS can be thought

of as a string matching engine tha t compares all traffic on a network against a list

of known bad strings that appear in various attack vectors, such as buffer over

flows, worms, and e-mail viruses. Depending on the implementation, an IDS may

be configured to passively log all signatures detected, or may be set to contact an

administrator (usually once a set threshold of attacks has been reached).

Deployed inline on the network, a base install of Snort [54] is capable of recom

bining out-of-order traffic, and deep packet inspection looking for a wide variety

of protocol anomalies, port scans, and host-based vulnerabilities. By comparing

network traffic against a database of known attacks, Snort is capable of identifying

threats as they arrive on the wire. This database of rules is currently maintained by

the snort.org team and additional custom rules can be created by the end adminis

trator to handle special cases/conditions within the environment it will be deployed

in. Snort is currently billed as both an intrusion detection and an intrusion preven

tion system (IPS). When initially developed, Snort was capable of only reporting

and alerting on signature matches. The ability to react to undesirable traffic based

on the output of Snort was a feature initially added by other open source projects

such as Hogwash [55], but has since been included and grown in the main Snort

development branch. Over time Snort has evolved into what its creators claim to

be “most widely deployed intrusion detection and prevention technology worldwide

and has become the de facto standard for the industry” [54].

As with all active traffic suppressors there are risks and drawbacks to using Snort.

Being such a high profile and widely deployed IDS/IPS, Snort attacks and scans are

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

created to bypass weaknesses within its architecture [56] [57]. Being largely signa

ture based also has strengths and weaknesses. A well-written signature can have

a very high detection rate while having a very low false-positive rate. False posi

tives occur when a packet is flagged as containing a type of traffic tha t it does not.

In situations where signature-based IDS/IPS devices are deployed in an active re

sponse mode, this can lead to valid traffic being dropped from the network. Because

of the possibility to cause great damage to the valid traffic flows, the Snort team

restricts their base signatures to well-tested ones with extremely high probabilities

of successful detection. However, this often means tha t signatures do not exist for

recently released threats. To fill in this perceived drawback, organizations such as

Bleeding-Edge Snort [58] have formed, where community-developed signatures for

a wide variety of applications aggregate in a freely downloadable and distributable

form. The trade-off for using recently developed signatures is the decreased testing

period and therefore the greater risk of valid traffic being flagged as bad.

3 .1 .6 p f

While not conventionally thought of as an IDS, the OpenBSD packet filter p f pro

vides several features tha t can be applied to the problem-space typically associated

with that of an IDS. Handley and Paxson [59] note tha t while a sufficiently ro

bust and diligent IDS can address the issue of proper protocol inspection, it cannot

correctly determine how the end system will process the packet stream. Pf allows

the administrator to normalize the inbound traffic stream, which can prevent a t

tacks deliberately fragmented by the attacker from slipping through the detection

mechanisms by reconstructing the packet stream upstream of the analyzers.

Another feature tha t is exploited in pf is the ability to monitor the number of

connections/states established by a system behind it. As a computer on the internal

network attem pts to contact a system on the outside network, the firewall creates an

entry in the state table denoting that an outbound connection attem pt was made. If

a connection attem pt returns from the outside system to the inside then traffic will

be permitted. By taking a count of the number of states open in the state table on

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a per IP basis it becomes possible to monitor how transactionally busy each device

on the internal network is.

When deployed on the edge of a subnet, state table monitoring can be useful in

identifying otherwise non-symptomatic compromised hosts. In a typical departmen

tal LAN at the University of Alberta, it has been observed th a t most busy desktop

systems have 25 entries, while busy web servers may have five to ten times that.

This stands in stark contrast to worm infected hosts tha t may have as many as 5,000

to 10,000 entries. By identifying hosts with extremely high state counts, the LAN

administrator is provided with a list of probable infected candidates to review and

repair as necessary.

When pf is used at the border of the network, as is common in bridging and

routing firewalls, it can only monitor outbound/inbound connections. This means

that the firewall can’t prevent infected hosts from reaching others on the local net

work. Also, implementing a threshold is only useful when the threshold permits

normal traffic flow to occur unhampered. Until a threshold is met the infected host

will be permitted to continue transmitting, even in routed mode. The risk of setting

a threshold to high is that an infected computer system will be allowed to propagate

unabated if the threshold is not exceeded. Conversely, if a threshold is set too low,

legitimate traffic may be stopped even in the absence of an infection.

3.2 H o n ey p o ts and H o n ey n ets

The Honeynet project [60] offers some off the shelf tools tha t members of their al

liance can deploy and use to create networks of computers (real or virtual) tha t are

deployed in such a way as to gather information about the types of traffic reaching

the honeynet. Participants in the Honeynet project can aggregate the information

gleaned from their honeynet deployments into a central repository, where infor

mation security researchers can review how a system was attacked and possibly

compromised. A honeynet requires a large amount of resources allocated towards

it to maintain as each of the honeypots are typically high interaction. Because the

honeypots tha t are deployed in the honeynet are high interaction they may be sub-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ject to compromise, which can result in the honeynet falling under the control of an

attacker. Technologies have been developed tha t can detect and disrupt honeynets

[61] [62] which diminish their usefulness further.

Neil Provos’ honeyd virtual honeypot is a daemonized service th a t creates vir

tual hosts capable of emulating a wide variety of services and operating systems.

By using honeyd one computer system can appear as hundreds or even thousands

of different computer systems on a network. By manipulating a configuration file,

each of these virtual hosts can be set to emulate different services with different op

erating systems as needed. Fingerprints, as discussed in Section 2.2, are borrowed

from nmap to provide the appearance tha t a virtual host is running a particular

operating system. Provos has explored simulations using honeyd to identify and

actively counter through forced patching worm infected hosts on a network [63].

Through these simulations he has shown tha t by actively patching known compro

mised systems tha t a widespread infection can be slowed down, or even stopped if

patches can be applied in a timely fashion.

3.3 H on ey w alls

A honeywall extends the notion of a honeypot by combining the capabilities of a low

interaction honeypot with the abilities of a routing firewall. At its core, a honeypot

is a research tool that can provide a more in-depth view on the timeline of an attack

by interacting with the attacker in a manner that belies the true nature of the

honeypot itself. Previously in Section 2.5 three types of honeypots were discussed,

each with their own costs and benefits. Still, even in the highest interaction mode,

honeypots are nothing more than passive participants on the network in tha t they

can’t actively modify the behaviour of systems around them.

When a zero-day worm strikes a network, conventional mechanisms of protecting

the network fail. Border firewalls can’t prevent client systems within a protected

network from infecting one another. Host-based firewalls may be bypassed, rules

may exist allowing local infection through trust relationships with other systems on

the local network, and may be unable to handle the load presented by a rapidly

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spreading worm. Signature-based detection mechanisms can’t be relied upon in a

zero-day worm outbreak as a delay exists between the initial infection run of a worm

and the antivirus vendors releasing signatures to detect attack traffic.

By leveraging a low-interaction honeypot’s ability to pose as a valid member

of a local network with a reactive routing firewall’s ability to act upon undesirable

traffic, it was anticipated tha t a highly sensitive and accurate mechanism could be

developed tha t would allow us to locate and isolate potentially infected members of

a network prior to widespread infection.

To start, a honey wall is deployed on an existing network as a simple routing

border firewall. This machine also becomes the aggregator for network traffic - all

traffic on the network will pass through it before being returned to the local network

wire. By passing all traffic through this routing firewall, a single point where traffic

can be stopped is created. In practice this mechanism could be applied to a network

router or switch, but for the purpose of the experiments a PC-based server was

created to show proof of concept.

Once the honeywall has the ability to control the network, several honeypots

are inserted into the unused IP addresses on the existing production network. In

practice, as the honeywall system acts as a DHCP server for the local network, the

knowledge of the topology can be used to sparsely distribute honeypot listeners on

unpopulated nodes. For the trials performed in the experiments all unoccupied IP

space was consumed by honeypot listeners. The honeywall uses the honeypots as

listeners on the network to identify unexpected traffic flows and to pass the security

event to the reactive firewall mechanism where the security events can be acted

upon.

As is shown in Chapter 4, the honeywall mechanism has proven itself capable of

quickly identifying and isolating rogue systems on a network in such a manner as

to prevent widespread infection of even densely packed networks.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Evaluation

Having established the current state-of-the-art worm detection and mitigation tech

nologies in the previous chapters, it is now time to evaluate these mechanisms against

one another. In this chapter the theories and some of the tools mentioned in the

previous chapters are put into a test harness designed to evaluate the effectiveness

of various worm detection and mitigation techniques. As stated in Chapter 1 the

main hypothesis of the research is to determine if populating unused IP space with

ultra-low interaction honeypots will make it possible to detect and isolate a rapidly

spreading worm, thereby reducing the number of compromised computers on the

network. To this end, a survey of various techniques for detecting and isolating

infected hosts is performed in addition to the creation of and testing on a honeywall

mechanism. The testing performed is not how each of these techniques perform

against M S.B l a s t , but against a generic worm process th a t exhibits characteristics

common to fast spreading worms.

The single most im portant criteria in evaluating the effectiveness of a worm

detection and mitigation technique is to simply count the number of vulnerable

systems that have been compromised despite the defensive measures. Ideally a

detection technique will be able to find and isolate an infected system before it

has the opportunity to infect any other vulnerable systems on the network. A

baseline for worm performance is established first by releasing the worm onto a

network of fully vulnerable hosts. All solutions are evaluated against this baseline,

both for the total number of vulnerable systems compromised and for time until all

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

infected systems are isolated. It is theorized that the quicker the detection/response

mechanism is, the better it will be able to protect the network from infection. This

chapter concludes with a summary of results and findings.

4.1 T est H arness

During the setup of the test environment it was anticipated tha t creating an auto

mated tester would be desirable which could provide a method to rapidly test the

following matrix:

Size of Network Distribution Infected IP Netmask Firewall Vims
Blaster

Rule Sharing
1x30 Sparse First 24 Open Yes
1x51 Dense Mid 23 Closed Nimda No
2x25 Last 22 Dynamic-Snort Custom
5x10 16 Dynamic-pf

Dynamic-Honeywall i

Table 4.1: Experimental setup variables table

If all possible outcomes were tested, 2,880 different trials would need to be run, as

shown in Table 4.1. Further analysis of this trial set revealed tha t several reductions

in the problem space can be performed.

Initially four different network sizes were thought to be necessary to be represen

tative of common deployments in the real world. The 1x30 and 1x51 sizing would

be representative of a small office or department and would help establish a baseline

for comparison of the 2x25 trials. By creating a 2x25 sizing, it was expected that

spread between two distinct networks could be shown. It was anticipated that a

5x10 sizing could demonstrate how a worm could move across multiple networks.

However, it was realized tha t the number of Size trials could be reduced to tha t of a

single boundary case - one where an “outside” machine attem pts to connect to an

“inside” machine. Specifically, while distribution and density of IPs on a network

will vary from site to site, and the mechanism by which a worm will spread itself

varies, a connection between a malicious and a target machine must be established.

For example, if two networks of 25 machines each were created, one on Subnet A and

the other on Subnet B, the boundary case of a machine from one subnet infecting a

system on the other subnet can be reduced to that of an infected host connecting to

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a vulnerable one. Thus for the testing trials were performed using one subnet with

51 computer systems unless otherwise noted.

Distribution of IP addresses to the physical computers was also considered, as

it was theorized tha t by creating a separation between physical systems in the IP

space the detection systems may be given an additional window of opportunity to

detect and respond to a threat. A sparse distribution of IP space, which is to

say allocating IPs tha t are spread apart from one another, may give additional

advantage to detection mechanisms when a worm uses a linear scanning technique.

A dense distribution, where all computers are assigned adjacent IPs, may offer

some advantage to detection mechanisms when a worm uses a random scanning

technique to propagate. However, both the linear and random scans of a local Class

C network consisting of 255 IP addresses are accomplished at such great speed in a

mass spreading worm as to negate any advantage of a sparse or dense IP distribution

of a network. Therefore a sparse distribution has been chosen. Physical computers

in the trials are allocated IP addresses roughly equal distance apart in the various

network configurations.

Choice of initial infected host was also considered as a variable for testing. How

ever, with a linearly scanning worm the initial infected host IP is irrelevant as the

worm will choose a point in the IP space and start its scan from there. Likewise, in

the case of a randomly scanning worm, the initial infected IP will not m atter as the

worm will randomly choose IP addresses within the local space to scan and infect.

Therefore, for the trials performed the same IP address was chosen to be the initial

infected host.

The total problem space to be tested was reduced based on the following consid

erations. An open firewall, that is to say a firewall with no rules or with “any/any

all/all” rules, is equivalent to having no firewall at all and thus is covered by the open

network tests. A static firewall tha t does not have pre-existing rules tha t block the

undesirable traffic also is equivalent to having no firewall. A static firewall tha t has

rules in place to block the specific test worm will not allow the traffic to propagate

from an external source to the internal network but, as noted in Section 3.1.1 it will

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not be able to prevent traffic from occurring within the protected network. From

this analysis the total trial space was reduced from 2,880 possible combinations to

8 representative trials.

4.2 P erform an ce In d ica tors

The metrics described in this section are used to assess the overall effectiveness of

the worm detection techniques within the test environment. These performance

indicators were chosen as they can graphically demonstrate the differences in how

the varying techniques perform, as well as illustrate how quickly a rapidly spreading

worm can affect a vulnerable environment.

4 .2 .1 N u m b er o f S y s te m s C o m p ro m ised

The total number-of-systems-compromised metric is interesting because it is the

golden standard by which all products are judged - specifically the effectiveness

of a protection mechanism can be determined by comparing the to tal number of

vulnerable systems to the number of machines infected after the network has reached

steady state post infection. The derived compromised/vulnerable ratio can be used

to compare the effectiveness at controlling the spread of a virus within the test

environment.

4 .2 .2 T im e to S ta b le S ta te

Stable state is defined as the state in which no further systems within the test

environment are infected by other compromised systems on the local network. In

the case of an unprotected network, measuring the time to achieve steady state

provides a spread rate for the infection. Once established the baseline can be used to

compare various protection mechanisms reaction times against one another. Stable

state is reached either when all vulnerable systems in the test environment have

been compromised by the virus, or when the spread rate of the virus within the test

environment goes to zero.

As the response time of a protection mechanism decreases, it is thought that a

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar decrease in the time to reach stable state occurs. Response time is defined

as the time between the protection system signaling tha t something is wrong to

the time that the appropriate mechanism is put in place to mitigate th a t problem.

However, as established later in the chapter, this was not the case.

4.3 T est W orm C onfiguration

Naturally one of the key components to the testing and verification of the various

protection mechanisms is a consistent repeatable infection agent with known be

haviours. The selection of a worm for the trials was heavily influenced by three

factors: repeatability, ease of replication, and ease of detection.

To meet the repeatability criteria a worm must have a known behaviour that

can be observed and measured by a common set of tools. For example, a worm

tha t is known to attack a specific service or a specific set of ports would be valued

more highly in the selection process than one which indiscriminately attacks a wide

assortment of vulnerable services or has a random timer of days or weeks before

spreading itself. It should be noted tha t while expert knowledge of the worm was

necessary for observation and measurement, no specific information regarding the

worms, unless otherwise specified, would be imparted to the solutions tested.

Ease of replication encompasses how easily the test environment could be reset

to base state between infection runs. As a significant number of trials needed to be

run during the testing, a reduction in time between runs was im portant. Initially

the lab environment was configured to run Windows 2000 Professional in unpatched

form. In this state the test systems were known to be vulnerable to a number of the

mass spreading worms tha t were candidates for our testing. W ith some reduction

in the installation image it was found that all 51 test systems could be reliably re

cloned every 15 minutes. However, it was necessary for each system to be manually

verified during this re-clone process as two reboots were required for the system

imaging to be complete.

To achieve the ease of detection goal, a reliable binary mechanism able to detect

whether or not a system is infected is needed, preferably with a date/tim e stamp to

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allow for reconstruction of the infection path at a later time if necessary. Addition

ally, worm infected systems need to start spreading soon after infecting a vulnerable

computer. This ruled out worms with set propagation windows such as C o d e R e d .

Infection that could be remotely detected, or would signal an infection host, were

given priority over those that would need to be manually verified on a per system

basis. It was felt tha t installing an anti-virus tool on the vulnerable systems could

interfere with the propagation of known worms, as most anti-virus packages will

prevent the infection of a host if a signature has been added to their knowledge

base. Similarly, a host-based anti-virus program without knowledge of the worm

would be unable to detect the infection.

Initial tests were performed on a test environment running an unpatched version

of the Windows 2000 operating system known to be vulnerable to a number of worms

such as M S.B l a s t , C o d e R e d , N i m d a , etc. After examination of the characteristics

of the known worms, M S.B l a s t was selected for use in the experiments because of

its fast-spreading characteristics and its well-documented behaviours. However, the

results from this testing demonstrated several drawbacks with using a real worm

in a test environment. In some cases systems were rendered inoperable by the

worm. This complicated detection, as well as reducing the spread rate of the worm

as inoperable systems would need to be identified and rebooted before they would

start transmitting the worm. Also, remote detection was complicated by the fact

tha t remotely scanning the systems gave inconsistent results, and a manual process

would have to be run on each system to verify infection which may introduce errors

in the data. If this process was scripted, then an increased load on the vulnerable

systems would have skewed results by slowing the infection rate. Also, the spread

time resolution between machines would have been skewed by the nature of the

repeated batch process run time (in excess of 5 seconds).

It was felt that creating a custom worm th a t exhibited key spreading features

of the M S.B l a s t worm was the best method for meeting all three criteria. To

this end, each of the clients systems were setup with a daemon service tha t was

vulnerable to an exploit payload of identical size to tha t of M S.B l a s t . When this

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exploit payload was received, i.e. the daemon was compromised, the service would

then start exhibiting infected behaviour. Table 4.2 below shows the key features of

the M S.B l a s t worm and the custom worm created for the testing.

Feature Ours MS.Blast
Target Port 5678 135, Listens 4444, UDP 69
Targets of Worm Vulnerable host process DCOM RPC (vulnerable dll)
Probability of Infecting on LAN machine 40% 40% **
Probability of Infecting off LAN machine 60% 60% **
Scanning Threads 20 20
Payload (bytes) 6197 6176

** Note that MS.Blast will send a Windows XP exploit 80% of the time and Windows 2000 20%

Table 4.2: Feature comparison between M S.B l a s t and the custom worm

The custom worm th a t was created for the testing exhibited a simplified feature

set of the M S.B l a s t worm. The custom worm operates in the following manner:

1. Once the 6,197 byte payload is received by the vulnerable listening process

on port 5678, the process becomes compromised. For ease of signaling, the

compromised host process prints the string “Eeeek! I feel violated...” once it

has been infected by the payload. By sampling this string from the traffic

stream, it is possible to locate and time when each vulnerable host process

becomes compromised.

2. The compromised process forks 20 child processes. Each child is assigned a

host within a Class B network with a 40 percent probability of being assigned

an IP within the current Class B, and a 60 percent probability of the IP

being outside the current Class B network. After each of the 20 forks a delay

of l/2 0 th of a second occurs to avoid system resource exhaustion. As each

thread terminates, it signals the parent process of its completion. After all

20 of the terminated threads have signaled the parent, 20 new threads are

spawned by the parent and the scan continues.

It should be noted tha t while the custom worm created for testing exhibits

some of the characteristics of the M S.B l a s t worm, it needn’t exhibit them all.

For example, when M S.B l a s t is propagating it will send the Windows-XP-specific

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

version of the exploit with an 80 percent probability, and a Windows 2000 exploit

with a 20 percent probability. In a heterogeneous operating system environment, it

is not guaranteed that all systems will become infected as there is no guarantee tha t

the vulnerable system will receive the correct exploit. Conversely, the custom worm

needs to only send one version of itself to a vulnerable machine. As all computers in

the test lab are running a vulnerable service, they are all susceptible to compromise,

and all infected hosts are guaranteed to infect a vulnerable system when they send

the attack payload. The custom worm, therefore, is capable of spreading itself at a

higher rate than the M S.B l a s t worm.

For the trials it is not necessary to recreate M S.B l a s t worm as it is only one

of many types of worms that currently exist. Instead, certain characteristics such

as spread pattern, scanning pattern, and payload size are mimicked.

4 .4 Lab C onfiguration

4 .4 .1 C lien t M a ch in e H ard w are

Fifty one identical computers were used in the test environment, based on Dell

Dimension GX240 desktop systems. Each contained a Pentium 4 1.8Ghz processor

and 256MB of RAM. As discussed in Section 4.3 these computers were setup with a

minimal OpenBSD 3.6 installation. Each client system was re-imaged after each test

run to ensure tha t no residual effects from previous trials could affect subsequent

testing. The client machine image contained a daemon which was configured to listen

on a specified port. Upon receiving the exploit sequence, in this case a padded plain

text payload, the daemon would become infected and start attempting to spread

the virus, as described in Section 4.3.

Network connectivity was provided through a 100Mbit connection going back to

one of two fiber connected Cisco 2924 switches.

4 .4 .2 P r o te c t io n H ardw are

The computer used as the installation base for the various detection techniques

was a generic PC running a Pentium 4 1.6Ghz processor and 512MB of RAM.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This protection system had a full installation of OpenBSD 3.6 Stable. Network

connectivity was provided by two 100Mbit network cards connected to the Cisco

2924 switch.

4 .4 .3 V P N tu n n e ls

VPN tunnels configured to pass all network data were established from every client

machine to the switch. These VPN tunnels could then be configured to allow the

machines to talk freely to one another as they would normally be able to with a

standard office network configuration, or could be restricted to speaking through

the switch as the trial needed. By doing so the test environment could be physically

configured once while still allowing the testing of many different network topologies.

4.5 M eth o d o lo g y

For all trials the sparse distribution of computers on the local network is the same

unless otherwise noted. For each trial the same vulnerable system is initially infected

with the worm.

4.6 S ta tic F irew all

To establish a baseline for worm effectiveness, the first experiment is run on a test

network where no reactive mechanism is in place to detect and respond to the

worm and where no pre-existing rules are in place on the firewall. By doing so

it is expected tha t the worm will infect all of the vulnerable systems in the test

environment. Figure 4.1 shows how the network was configured for this experiment.

In this test, each of the computers is perm itted to speak with all others on the local

network without hindrance from any packet filtering/blocking devices.

In Figure 4.2 within approximately 20 seconds, 10 of the 51 vulnerable host

computers are infected by the worm. W ithin 40 seconds of initial infection 20 of

the 51 vulnerable hosts have been infected. By approximately 70 seconds into the

trial 50 of the vulnerable hosts have been infected with the worm, demonstrating

this worm’s ability to effectively and rapidly spread itself to all vulnerable host

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Static firewall deployment

Hosts Compromised Versus Time

60

50

40

E

| 30o

20

10

0.0 10050 150 200 250

Figure 4.2: Static Firewall with no rule to block worm.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems within a network. The amount of traffic generated by these 50 infected

hosts was so great tha t all available resources on the Cisco switches were exhausted,

reducing network performance to the point th a t the 51st and final vulnerable host

was infected approximately 233 seconds into the trial. This underscores the severity

of a worm attack by demonstrating how even a relatively small payload can be sent

with such regularity as to disrupt the normal operation of a network, even if some

or most of the hosts on a network are not susceptible to infection.

H osts C om prom ised v e rsu s Time

30

25

20

E

£15
u

x
10

5

0
100 5 15 20 25 30 35

Figure 4.3: Two subnets of equal size were created with a static firewall between
the two. A rule was put in place on the static firewall to block propagation of the
worm between the two subnets.

To demonstrate tha t a static firewall could, given the correct circumstances,

prevent infection from spreading between multiple subnets, trials were performed

where two subnets were created, separated from one another by a static firewall.

This firewall was configured to block the port which the worm uses to propagate.

As seen in Figure 4.3 the static firewall with a pre-existing rule to block the worm

traffic was able to prevent the worm from spreading from one subnet to the other,

with the 26 machines on the initial infected network becoming infected. In the case

where a network a has host-based firewall deployed, those with rules preventing

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

propagation of the worm would remain uninfected. However, it is im portant to

note tha t the rules preventing propagation may interfere with normal operation of

the computers on the network in cases where a worm propagates using commonly

used ports as noted in Section 3.1.2. Therefore, in restricted circumstances a static

firewall may be able to block a rapidly spreading worm, but only in the situation

where the ports used by the worm to propagate have already been blocked prior to

initial spread of the worm.

4.7 R ea ctiv e F irew all

For testing the Reactive firewall, three candidates were selected: a threshold based

model using OpenBSD’s pf, a signature-based model using Snort, and the Honeywall

model described in Section 3.3.

4 .7 .1 ID S U sin g p f

Three thresholds were set for testing pf. The first experimental threshold was set at

50 connections established within a 4 second period. This number was chosen as it

was roughly double the number of connections in a 4 second window tha t a typical

desktop computer would see, and is therefore a reasonable upper bound for testing

rapid worm propagation. By choosing a high threshold, it is expected that some, if

not all, vulnerable computers on the network will become infected before pf is able

to react and stop propagation.

The second experimental threshold was set at 8 connections in a 4 second period.

This number was chosen as it is roughly half the lower bound for the number of

expected connections from a desktop computer under normal usage. By choosing an

extremely low threshold it is expected tha t fewer vulnerable computers will become

infected than with higher thresholds.

A third experimental threshold was set at 28 connections in a 4 second period.

This number was chosen as it is approximately half way between the thresholds

set in the previous two experiments, and is representative of a threshold slightly

higher than the normal number of states expected from a single uninfected desktop

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer.

The pf experimental setup is shown in Figure 4.4 below.

I Fire w a l l
D etector: p f
if th re sh o ld exceeded
block in fec ted hostRules

R eaction:
A dd rule

I Infected
i Host

Figure 4.4: OpenBSD pf deployed as an IDS

P f’s state table monitoring mechanism was used as a tripwire to determine

whether or not a machine had gone rogue. Specifically, if the number of states

established by a member of the test network exceeded a specified number over a

specified period of time it was deemed to have been compromised. Three levels of

sensitivity were chosen. It is im portant to note that the X and Y scales vary on

each of the result figures.

Level l ’s threshold was 50 states within a 4 second period. (Loose enough for

regular use.)

Result: On average 21 of the 51 machines were infected before stable state

was reached. Figure 4.6 shows the best result obtained with this experimental

setup (6 hosts in 263 seconds) while Figure 4.5 shows the poorest result (51 hosts

compromised in 225 seconds).

Level 2’s threshold was 8 states within a 4 second period. (Extremely restrictive)

Result: On average 2 of the 51 machines were infected before stable state was

reached. Figure 4.7 shows the best result obtained with this experimental setup (1

host in 0.31 seconds) while Figure 4.8 shows the poorest result (4 hosts 57 seconds).

Level 3’s threshold was 28 states within a 4 second period. (Medium restriction)

Result: On average 14 of the 51 machines were infected before stable state was

reached. Figure 4.9 shows the best results of this experimental setup (2 hosts in 2.7

seconds) while Figure 4.10 shows the poorest result (38 hosts in 76 seconds).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hosts Compromised versus Time

E 30

0 50 100 150 200 250

Time (seconds)

Figure 4.5: Worst case result from OpenBSD’s pf with a threshold of 50 connections
in 4 seconds per computer

Hosts Compromised versus Time

7

6

5

4E

2

0
100 1500 50 200 250 300

T im e (sec o n d s)

Figure 4.6: Best case result from OpenBSD’s pf with a threshold of 50 connections
in 4 seconds per computer

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H osts C om prom ised v e rsu s Time

|
E

0.05 0.1 0.25 0.3 0.350 0.15 0.2

Time (sec o n d s)

Figure 4.7: Best case result from pf testing with threshold of 8 connections in 4
seconds per computer

Hosts Compromised versus Time

5

4

I 3|
E
o

2z

1

00 10 20 30 40 50 60

Time (sec o n d s)

Figure 4.8: Worst case result from pf testing with threshold of 8 connections in 4
seconds per computer

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hosts Compromised versus Time

E0 a.
1
Oa
X

0 0.5 1.5 2 2.5 3

Time (sec o n d s)

Figure 4.9: Best case result from pf testing with threshold of 28 connections in 4
seconds per computer

Hosts Compromised versus Time

40

35

30

25

E

E 20

x 15

10

5

0
30 40 50 70 80 900 10 20 60

Time (sec o n d s)

Figure 4.10: Worst case result from pf testing with threshold of 28 connections in 4
seconds per computer

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the results of these experiments we can conclude tha t a threshold based

method for worm detection and mitigation can be effective under very special cir

cumstances. Specifically, a threshold model may be able prevent a worm from

infecting all vulnerable systems when tha t threshold has been set extremely low.

From a practical standpoint however, using thresholds to stop worms will be im

practical to deploy in the real world because, as shown in the testing performed, to

stop a rapidly spreading worm effectively the threshold must be set below the aver

age number of states tha t a normal desktop system would use. Such a low threshold

would result in legitimate traffic and uninfected systems becoming blocked on the

network.

An additional drawback of the threshold model is tha t it will be incapable of

stopping a slow spreading worm. In the experiments performed here, the worm

attem pts to affect as many systems as it can in as short a time as possible, resulting

in a large number of states being used by each infected client machine. Another

type of worm that, for example, only attem pts to connect to one system at a time

would most likely go unnoticed by a threshold based detection system.

4 .7 .2 ID S U s in g S n ort

I F i r e w a l l !

R u le s

D etec to r: ch eck for
k n ow n s ig n a tu re s
iffo u n d signal reactor

|
R eaction:

“ Add ru le to
block h o s t

H

Figure 4.11: Snort deployed as an IDS

In the case where no predefined rule exists for the attack in Snort’s database the

test environment will perform similarly to tha t of an unprotected network. Therefore

a custom rule was created to allow Snort to detect the payload delivered by the test

virus. The more precise a rule’s specification, the less likely you will receive a false

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

positive from the Snort IDS.

Snort was setup to send a message to the switch when data on the network

was found to match a signature in the database. The reactive firewall acts on

the message from Snort by blocking the network access to the machine of origin.

Snort was configured to only view traffic inbound to the network, meaning traffic

originating from the network going off network would not be detected.

Trial set 1 was performed with only the custom rule loaded in the Snort database.

Figure 4.12 shows the poorest result of 3 compromised hosts in 1.74 seconds, while

Figure 4.13 shows the best result of 2 compromised hosts in 0.387 seconds.

Hosts Compromised versus Time

4

3

£

E 2

x

0
0 0.2 0.4 0.6 0.8 1 1.2 .4 1.6 1.8 2

Figure 4.12: Worst case result from snort testing with only the custom signature
loaded

Trial set 2 was performed with the entire base ruleset included with Snort in

stalled in addition to the custom rule. Figure 4.14 shows the poorest result of this

experimental setup (3 hosts in 36.62 seconds), while Figure 4.15 shows the best

result (2 hosts in 1.17 seconds).

On average 2 of the 51 machines were banned with 1 additional machine being

infected but going off-LAN before the network reached a stable state.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hosts Compromised versus Time

3

2

o

1

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time (seconds)

Figure 4.13: Best case result from snort testing with only the custom signature
loaded

Hosts Compromised versus Time

4

3

E

E 2

x

0
0 105 15 20 25 3530 40

Time (seconds)

Figure 4.14: Worst case result from snort testing with all signatures + the custom
signature loaded

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hosts Compromised versus Time

3

2

E

E
o

X
1

00 0.2 0.4 0.6 0.8 1.2 1.4

Figure 4.15: Best case result from snort testing with all signatures + the custom
signature loaded

From these experiments we can conclude tha t Snort’s signature matching engine

is sufficiently fast, and tha t a purpose-built system to detect and mitigate worms us

ing Snort as the detection mechanism could load the entire Snort signature database

with minimal performance degradation. This increases the utility of the detection

device as Snort is capable of detecting a number of known attacks, including e-mail

borne viruses, network reconnaissance, etc. However, it should be noted tha t the

effectiveness of Snort as a worm detection mechanism relies entirely on the quality

of the signatures available. If a signature is poor, or does not exist at all, the Snort

device will be unable to properly classify the infected/suspicious traffic thereby al

lowing said traffic to flow on the network unabated as discussed in Section 3.1.5.

4.8 H on ey w all

The base configuration was to setup a honeypot for each of the IPs in 10.0.0.0/23 not

registered in the table of used IPs (i.e. for each IP not assigned to a real machine,

create a honeypot associated with the unregistered IP). Figure 4.16 illustrates how

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I
Sensor n Reactoi

Vulnerable r
I lost w

Vulnerable
I lost

H oneypot
Sensor

H oneypot
Sensor

Figure 4.16: Honey wall

honeypot sensors are intermixed throughout the real computer systems on a network.

Each honeypot acts as a sensor within the network for detecting unexpected network

traffic. Once a sensor has been tripped by unexpected network traffic to the sensor,

the honeywall reaction mechanism will add the source IP of the unexpected traffic

to a block list, thereby preventing tha t source IP from communicating with any

assets on the network.

Hosts Compromised versus Time

2

E

I 1ou
0x

0
0.12 0.140 0.02 0.04 0.06 0.08 0.1 0.16 0.18

Figure 4.17: Best case result from honeywall testing

Figure 4.18 shows the poorest results observed in the experimental setup (1 host

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hosts Compromised versus Time

2

£

i

O'
0.25 0.30.05 0.1 0.15 0.20

Figure 4.18: Worst case result from honeywall testing

in 0.28264 seconds), while Figure 4.17 shows the best results received (1 host in

0.158041 seconds). In all trials only the initially infected machine was banned --

traffic from the initially infected host was contained before it could reach any live

machines on the network. In other words, none of the vulnerable machines beyond

the initial infected host were compromised.

4.9 Sum m ary o f F in d in gs

Throughout the trials the only variable in the experiments was the detection mech

anism used within the test environment. Each trial was monitored for the time

it took for a detection mechanism to prevent further infection. In addition, once

a stable state was reached, a tally of the total number of hosts compromised was

taken. Table 4.3 shows the averaged results for all of the trials performed, while

Figure 4.19 provides those same results in graph form.

From these results the conclusion can be drawn that using a honeywall to detect

and mitigate worms can be an effective mechanism for protecting network assets

against threats which can not be dealt with by the other state-of -the-art solutions

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Protection Type C om prom ised S ystem s Time to S table S tate (seconds)
None 51 9
Per subnet 27 27
pf (50con / 4sec) 21 77
pf (8 con / 4sec) ^ 2 5.7
pf (28con / 4sec) 11 16
Snort (custom rule) 2 0.78
Snort (all + custom) 2 0.99
Honeywall 1 0.27

Table 4.3: Summary of Results for all Configurations

3 Compromised Systems

IT im e to Stable State (seconds)

Figure 4.19: Graph of Summary of Results for all Configurations

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluated in this Chapter. A honeywall does not use signatures to detect worms,

which provides an advantage when compared to Snort because a honeywall is ca

pable of protecting against all forms of unexpected traffic and not just those for

which a signature has been created. Likewise, the honeywall is more flexible than

the threshold model demonstrated with the pf experiments as it does not monitor

individuals computer’s use of the network. These results are sufficiently promising

tha t further research and development of honey walls should be made. As will be

discussed in Chapter 6, there are numerous areas of future work and improvement

to refine the honeywall mechanism so it can be deployed in a real world setting.

The data in this chapter has been presented to the CanSecWest security confer

ence in April 2006 [64].

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Discussion

As a result of its light weight implementation and interaction models the honeywall

is ideally suited for deployment at a network layer. By placing the honeywall func

tionality on the switch it is anticipated tha t the response latency of isolating the

affected systems can be minimized as only the switch itself would be in the decision

making process, this is in contrast to the existing implementation where, in effect,

there are two systems - the honeywall sensor network, and the reactor - which are

involved.

The honeywall as implemented in the testing harness required very few system

resources, impacting memory and CPU minimally. On a 100Mbit network it was

possible to implement the honeywall using less than one percent of the test system’s

CPU. As many commodity switch and firewall units utilize a conventional x86 pro

cessor within their architecture, it is expected tha t the honeywall created for this

dissertation could be ported and deployed onto these devices with minimal negative

impact on their capabilities and available resources. It should be noted that while

the honeywall used in this testing was run on x86 architecture, it is anticipated that

the architecture and technology could be redeployed on other CPUs.

The true strength of the honeywall is apparent when it is deployed in such a way

as to only inspect local network traffic. By limiting the exposure of the honeywall

sensors to the local network the possibility of directed attacks from outside sources

seeking to exploit the behaviour of the honeywall is reduced.

For a honeywall to be deployed in a production environment the following best

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practices are recommended:

1. The border switch/edge network device should have anti-spoofing rules en

forced. Anti-spoofing rules prevent a member of the outside network from

crafting and injecting traffic tha t appears to originate from the inside net

work. If anti-spoofing is not enabled it becomes trivial to turn the honeywall

against the inside network as an attacker could craft and send packets to the

honeywall th a t appeared to originate from a real network asset, resulting in

the honeywall blocking the real network asset.

2. Exception rules must be added to permit multicast and broadcast traffic as by

these transmissions are by nature designed to reach multiple systems on the

inside network simultaneously.

3. Network assets th a t are known to scan a network must be identified and special

exceptions must be made for expected traffic from those systems. For example,

in the normal operation of a network the LAN administrator may wish to probe

the computer systems on the network. Tools such as those described in Section

2.2 could be legitimately used to scan a local network en masse, an action tha t

would undoubtedly touch at least one honeywall sensor. If an exception has

not been created for this workstation it will be dropped from the network once

traffic originating from it reaches the honeywall’s sensors.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion and Future Work

This dissertation has provided a background in the current state-of-the-art tech

nologies used in worm detection and mitigation, these technologies have been taken

and tested against the honeywall technology developed for this dissertation. The

testing performed and following discussions showed the strengths and weaknesses

of these solutions, highlighting how the honeywall technology could be successfully

used to detect and stop worms on a network before more conventional mechanisms

would be able to respond as shown in Figure 4.3.

While the testing performed for this dissertation strongly suggests that honey-

walls could be developed into a highly effective device or mechanism to supplement

existing IDS technologies, it is only the beginning. In the following sections I outline

several promising areas of future work that may be useful in refining the honeywall

technology into something tha t could be widely deployed to great effect.

6.1 False P o sitiv e R ed u ctio n

An area for research is to investigate if any benefit can be derived by using higher

interaction honeypots to replace or supplement the extremely low interaction honey-

pots used in this implementation. From a real-world standpoint the, low-interaction

honeypots are useful because they provide speed and ease of detection when used as

sensor nodes for worm propagation. However, the “if it touches a honeypot it must

be bad” metric may be too aggressive in networks where broadcast protocols are

used, or where client systems scan the entire network. By using higher interaction

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

honeypots, the tradeoff may be made allowing deeper inspection on the unsolicited

traffic seen by the honeypots, thus allowing a more informed decision about the

legitimacy of the traffic. However, as the high interaction honeypot model requires

more transactional information to take place, it necessarily slows down the isolation

phase of the process. While the higher interaction honeypots will most likely slow

down the response time of the system, as compared to a system totally composed of

ultra-low interaction honeypot sensors, it may be possible to find a balance between

the ultra-low and higher interaction honeypots tha t still provides a sufficiently low

response time to block fast spreading worms.

It may be possible to create a more equitable distribution of high and low in

teraction honeypots through careful routing policies. A known high risk port, such

as 445, could be routed to a higher interaction honeypot sensor to determine the

validity of the traffic. Similarly, infrequently used ports could be routed to lower

interaction honeypot sensors to provide greater speed in response.

Hysteresis could be introduced into the response system by implementing a

counter-based honeypot. A threshold for traffic within a fixed period of time could

be set, and when th a t threshold is exceeded the source host will be blocked, not

unlike the threshold mechanism described in Section 4.7.1. Therefore the use and

placement of high interaction honeypots versus low interaction honeypots should

also be looked at.

6.2 H o n ey p o t Sensor P la cem en t

In the experiments reported, uniform placement of honeypots in the empty nodes

between the evenly spaced real systems was used. As one scan pattern can’t be

counted on for mass spreading worms, differing placements of honeypots, as well

as investigating the density and clustering/grouping of sensor nodes, may result in

better detection and isolation of zero day threats to the network. Ideally the initial

infected host system, be it internal or external, will contact a honeypot node before

it contacts a real system node.

A further question that comes from the investigation into honeypot placement is

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that of the ratio between honeypot sensor nodes and real nodes. In the extreme case

of a fully populated local network, no sensor nodes could exist, essentially preventing

the honeypot sensor mechanisms from seeing any traffic at all. On the other end

of a spectrum, a completely unpopulated network could be fully populated with a

set of honeypot sensors, turning every IP address in tha t subnet into a detector and

thus maximizing detection capabilities while completely preventing any real systems

from existing on the network. By investigating the ratio of honeypot nodes to real

nodes a point of diminishing returns may be found.

6.3 In tegra tion o f S o lu tion s

A further hybrid could be created from a combination of the tested setups. For

example, Snort used in conjunction with a Honeywall could provide an even better

resolution. By leveraging the pattern matching of Snort’s known attack database

upstream of the Honeywall’s unknown threat detection, it is anticipated that both

known and unknown attack detection can be improved.

6.4 p f im provem ents

Since the testing was performed, OpenBSD has progressed from version 3.6 to ver

sion 3.9. In OpenBSD 3.8 a new set of features were added to the stateful tracking

options in pf called the overload table and flush [65]. The overload table can be

used in conjunction with the existing connection limiting functions in pf to place an

offending host into a persistent table tha t can be further filtered or blocked. Flush

complements the overload table by providing an easy mechanism to flush the states

of the offending host based on a rule match or by flushing all states for a given

host. In the case where Flush is used to block based on a rule match only the traffic

matching tha t rule will be blocked from tha t host, all other traffic will be allowed.

If flush is invoked using the global flag all connections from the offending host will

be purged.

The ability to log some or all of the traffic seen also exists in pf. An additional

mechanism tha t may prove useful in further limiting the spread of worms on a

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local network proposal follows. If a threshold is met, and the host is added to

the overflow table, an additional function call could be made tha t reconstructs the

past n hosts tha t the blocked machine has communicated with. In the most basic

implementation, a decision can be made to block some or all of the traffic from the

hosts that were communicated with. It may be possible to improve this banning by

association mechanism by blocking the outbound ports/traffic types present on the

initial blocked machine.

6.5 R esp o n se T im es

Further improvements can be made to the response times of the honeywall. Cur

rently a block can go into place in 0.06 seconds when the switch is integrated with

the honeywall. As the response time is lowered so too is the window of opportunity

for a worm to spread across the network. In our trials the worm payload was ap

proximately 7 kilobytes and we were often able to stop a virus in mid transmission.

However, if the payload was smaller or if the honeywall was slower we anticipate

that the current revision of software may allow a slightly wider spread infection of

the network. By reducing the reaction time this possibility would be eliminated.

A runtime version of Perl was used to perform string matching on the traffic flows

through the honeywall aggregator. Improvements could be made to the response

time by optimizing how Perl is used. For example, a pre-compiled Perl executable

could be created so the code is not interpreted at runtime. Alternately, the string

matching could be performed through a mechanism like PCRE [66] or using the

built in regexp functions in a language such as C + + .

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] David Emm. Bugwatch: The real cost of sobig, 2003.
http://w w w .vnunet.com/news/1143284.

[2] Fred Cohen. Computer viruses - theory and experiments. Technical report,
University of Southern California, 1984.

[3] Robert Slade. Apple virus, http://ww w .cknow .com /vtutor/vtsladeapple.htm ,
2001 .

[4] elk@cloner. A (long) story about an (old) Apple 2 virus.
htt p : / / www. skr ent a. com / cloner/clone- post. ht m l.

[5] Mikko Hypponen. F-secure virus descriptions: Monkey. Technical report, F-
Secure, Undated, http://www.f-secure.com/v-descs/monkey.shtml.

[6] English Wikipedia. Timeline of Linux development, 2005.
http://july.fixedreference.org/en/20040724/wikipedia/Timeline_ofXinux
-development.

[7] Sir Timothy Berners-Lee. Longer biography, 2004.
http://www.w3.org/People/Berners-Lee/Longer.html.

[8] Nikolair Bezroukov. Corporate Anti Virus De
fense Secrets. Online Publication, 1997.
http://w w w .softpanorama.org/Antivirus/AV_Secrets/Ygallery/concept.shtml.

[9] CMU. Cert advisory ca-1999-04 melissa macro virus,
ht t p : / / www. cert. org/advisories / C A-19 99-04. htm l.

[10] US Department of Justice. Creator of ’’melissa” com
puter virus pleads guilty to state and federal charges,
http://www .usdoj .gov/criminal/cybercrime/melissa.html.

[11] David Moore, Vern Paxson, and et al. The spread of the sapphire/slammer
worm. Technical report, Cooperative Association for Internet D ata Analysis -
CAIDA, 2003.

[12] Usenix Security 2002. Warhol Worms: The Potential for Very Fast Internet
Plagues, 2002. http://www.cs.berkeley.edu/nweaver/warhol.html.

[13] David Moore, Colleen Shannon, and et al. Internet quarantine: Requirements
for containing self-propagating code, 2003.

[14] Lance Spitzner. Honeypots Definitions and Value of Honeypots, 29 May, 2003.
h ttp : / / www. tracking-hackers. com / papers/honeypots. htm l.

[15] Michael Lyle. Attacks and countermeasures a study of network attack classes
and security components to protect against them. Technical report, Recourse
Technologies Inc., 1997.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vnunet.com/news/1143284
http://www.cknow.com/vtutor/vtsladeapple.htm
http://www.f-secure.com/v-descs/monkey.shtml
http://july.fixedreference.org/en/20040724/wikipedia/Timeline_ofXinux
http://www.w3.org/People/Berners-Lee/Longer.html
http://www.softpanorama.org/Antivirus/AV_Secrets/Ygallery/concept.shtml
http://www.usdoj
http://www.cs.berkeley.edu/nweaver/warhol.html

[16] Fyodor. Remote os detection via tcp /ip stack fingerprinting. Technical report,
www.insecure.org, 2002. h ttp ://w w w .insecure.org/nmap/nmap-fingerprinting-
article.html.

[17] Ofir Arkin and Fyodor Yarochkin. Xprobe v2.0. http://www.sys-security.com,
2002 .

[18] Michal Zalewski. The new pOf: 2.0.5., 2005.
http: / /lcamtuf.coredump.cx/pOf.shtml.

[19] Johanns Ulrich. My Doom-O hits search engines hard.
http://www.incidents.org/diary.php?date=2004-07-26&isc=3ddlf0e697
167ede0f0a3f38cd26340d.

[20] Larry Rogers. W hat is a distributed denial of service (ddos) attack and what
can i do about it? http://w w w .cert.org/hom eusers/ddos.htm l.

[211 J. Mogul, S. Deering, and et al. Path mtu discovery. Technical report, Stanford
University, 1990. ftp ://ftp .ie tf.o rg /rfc /rfc ll91 .tx t.

[22] Internet Security Systems. Syn flood. Techni
cal report, Internet Security Systems, March 3, 2006.
h ttp ://w w w . iss.net/security_center/advice/Exploits/TCP/SY NJloods/
default.htm.

[23] Microsoft. Microsoft security bulletin ms03-
026. Technical report, Microsoft Corporation, 2003.
http://www.m icrosoft.com/technet/security/bulletin/M S03-026.mspx.

[24] Microsoft Corporation. Acknowledgement Policy for Microsoft Security Bul
letins. h ttp ://w w w .microsoft.com/technet/security/bulletin/policy.mspx.

[25] Cisco Systems. Cisco Product Security Incident Response.
h ttp ://w w w . cisco.com/warp/public/707/sec_incident_response.shtml.

[26] Aleph One. Smashing the stack for fun and profit. Phrack, 49(14 of 16), October
1996.

[27] Microsoft Security. Microsoft security bulletin ms04-
011. Technical report, Microsoft Corporation, 2004.
http: / / www.microsoft .com / technet/security/bulletin/M S04-011 .mspx.

[28] CERT. Cert advisory ca-2003-09 buffer overflow in core microsoft
windows dll. Technical report, Carnegie Mellon University, 2003.
http://www.cert.org/advisories/CA-2003-09.html.

[29] Takayoshi Nakayama. W32.sasser.g. Tech
nical report, Symantec Corporation, 2004
http: / / securityresponse.symantec.com / avcenter / venc/data / w32 .sasser .g.html.

[30] Nicholas J. Puketza, Kui Zhang, and et al. A methodology for testing intrusion
detection systems. IEEE, page 25, 1996.

[31] SCS International Symposium on Performance Evaluation of Computer and
Telecommunication Systems. A Distributed Concurrent Intrusion Detection
Scheme Based on Assertions, 1999.

[32] Steve Martin. Anti-ids tools and tactics. SAN S Institute Information Security
Reading Room, 2001.

[33] Thomas H. Ptacek. Insertion, evasion, and denial of service: Eluding network
intrusion detection. Technical report, Secure Networks, Inc., 1998.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.insecure.org
http://www.insecure.org/nmap/nmap-fingerprinting-
http://www.sys-security.com
http://www.incidents.org/diary.php?date=2004-07-26&isc=3ddlf0e697
http://www.cert.org/homeusers/ddos.html
ftp://ftp.ietf.org/rfc/rfcll91.txt
http://www
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/bulletin/policy.mspx
http://www
http://www.microsoft
http://www.cert.org/advisories/CA-2003-09.html

[34] Paul Helman, Gunar Liepins, and W ynette Richards. Foundations of intrusion
detection. In Proceedings o f the Fifth Computer Security Foundations Work
shop, pages 114-120, 1992.

[35] James Cannady. Artificial neural networks for misuse detection. Technical
report, School of Computer and Information Sciences, 1998.

[36] Murali Kodialuam and T.V. Lakshman. Detecting network intrusions via sam
pling: A game theoretic approach, 2003.

[37] Alec Yasinsac. Detecting intrusions in security protocols. In Proceedings of
First Workshop on Intrusion Detection Systems, in the 7th AC M conference
on Computer and communications Security, June 2000, pages 5-8, 2000. cite-
seer.ist.psu.edu/yasinac00detecting.html.

[38] Thomas Daniels and Eugene Spafford. Identification of host audit data to detect
attacks on low-level ip. Journal of Computer Security, 7(Issue 1) :3—35, 1999.

[39] Fred Cohen. 50 ways to defeat your intrusion detection system, 1997.
h ttp : / / all .net / j ournal/ netsec/1997-12 .htm l.

[40] Niels Provos. Honeyd Download and Release Information.
htt p : / / www. honeyd. org / release. php.

[41] Niels Provos. Honeypot Background, http://www.honeyd.org/background.php.

[42] Tony Bradley. Introduction to Packet Sniffing, 2005.
http://netsecurity.about.eom /cs/hackertools/a/aal21403_p.htm .

[43] Ryan Spangler. Packet Sniffer Detection with AntiSniff.
http: / / www.packetwatch.net / docum ents/papers / snifferdetection.pdf.

[44] Stephen Venter. Ethernet M AC address spoofing in Linux.
http://whoozoo.co.uk/mac-spoof-linux.htm, 2005. http://whoozoo.co.uk/m ac-
spoof-linux. h tm .

[45] Sean Whalen. An introduction to arp spoofing.
http://node99.org/projects/arpspoof, April 2001.

[46] Doug Song, dsniff. http://naughty.m onkey.org/~dugsong/dsniff.

[47] Richard Silverman, dnsiff and ssh: Reports of my demise are greatly exagger
ated. Technical report, O ’Reilly, 2000.

[48] Doug Song, fragrouter - network intrusion detection evasion toolkit, 2005.
http ://packetstorm . w idexs.nl/UNIX/IDS/nidsbench/fragrouter.html.

[49] Sun Tzu. The Art of War: The Denma Translation (Shambhala Library).
Shambhala Publications, Inc., 2001.

[50] Mucho Maas and Minor Threat. Toneloc vl.10, 1994.

[51] Fyodor. The art of port scanning. Phrack Magazine, 7(51), 1997.

[52] Ryan W. Maple. Engarde secure linux security advi
sory. Technical report, Guardian Digital Inc., 2002.
http://w w w .linuxsecurity.com/advisories/other _advisory-2564.html.

[53] Harald Welte. netfilter/iptables project homepage - The netfilter.org project,
January 30, 2006. http://ww w .netfilter.org.

[54] Marty Roesch. Snort Project web page, http://www .snort.org.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.honeyd.org/background.php
http://netsecurity.about.eom/cs/hackertools/a/aal21403_p.htm
http://www.packetwatch.net
http://whoozoo.co.uk/mac-spoof-linux.htm
http://whoozoo.co.uk/mac-
http://node99.org/projects/arpspoof
http://naughty.monkey.org/~dugsong/dsniff
http://packetstorm
http://www.linuxsecurity.com/advisories/other
http://www.netfilter.org
http://www.snort.org

[55] Anonpoet. Hogwash Project Homepage, h ttp://sourceforge.net/projects/
hogwash.

[56] Oleg Kolesnikov and Wenke Lee. Advanced polymorphic
worms: Evading ids by blending in with normal traffic, 2004.
http://citeseer.ist.psu.edu/kiolesnikov04advanced.html.

[57] Don Parker. Obfuscated shellcode, the wolf in sheep’s
clothing (part 2). WindowSecurity.com, June 7 2005.
http://www.windowsecurity.com/articles/Obfuscated-Shellcode-Part2.html.

[58] M att Jonkman and James Ashton. The Bleeding Edge of Snort - Breaking Snort
Signatures, February 27, 2006. http://www.bleedingsnort.com /index.php.

[59] Mark Handley and Vern Paxson. Network intrusion detection: Eva
sion, traffic normalization, and end-to-end protocol semantics. Tech
nical report, AT&T Center for fnternet Research at ICSI, 2001.
h ttp ://w w w . icir.org/vern/papers/norm-usenix-sec-01-html/index. html.

[60] Honeynet Project maintainers. The honeynet project. Technical report,
www.honeynet.org, 2006.

[61] Joseph Corey. Advanced honey pot identification and exploitation. Phrack
Magazine, 2004. http://ww w .phrack.org/fakes/p63/p63-0x09.txt.

[62] Neal Krawetz. Anti-honeypot technology. IEEE Security & Privacy. 2(1):76-
79, 2004. http://ieeexplore.ieee.org/iel5/8013/28290/01264861.pdf.

[63] Neils Provos. A virtual honeypot framework. Technical report, 13th USEN1X
Security Symposium, 2004. http://www.honeyd.org/worm s.php.

[64] Josh Ryder. Real time threat mitigation techniques. CanSecWest Applied
Security Conference, 2006. www.cansecwest.com.

[65] www@openbsd.org. PF: Packet Filtering, January 1, 2006.
http: / / www.openbsd.org/faq/pf/filter .html.

[66] Philip Hazel. PCRE - Perl Compatible Regular Expressions, January 30, 2006.
h ttp ://w w w . pcre.org.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sourceforge.net/projects/
http://citeseer.ist.psu.edu/kiolesnikov04advanced.html
http://www.windowsecurity.com/articles/Obfuscated-Shellcode-Part2.html
http://www.bleedingsnort.com/index.php
http://www
http://www.honeynet.org
http://www.phrack.org/fakes/p63/p63-0x09.txt
http://ieeexplore.ieee.org/iel5/8013/28290/01264861.pdf
http://www.honeyd.org/worms.php
http://www.cansecwest.com
mailto:www@openbsd.org
http://www.openbsd.org/faq/pf/filter
http://www

