The Role of Acoustic Detail in the Production and Processing of Vowels in Spontaneous Speech

by

Michelle Nicole Sims

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Linguistics University of Alberta

Examining committee: Benjamin V. Tucker, Supervisor R. Harald Baayen, Supervisory Committee Terrance M. Nearey, Supervisory Committee Thomas L. Spalding, Examiner Richard Wright, External Examiner

© Michelle Nicole Sims, 2016

Abstract

This dissertation examines the correlations between morphology and spontaneous speech production and perception. Specifically, this dissertation focuses on a subset of irregular English verbs and the production of vowel formants and the perception of vowel durations of those verbs. The dissertation is composed of three studies. Study 1 examines the patterns of formant movement in monosyllabic verbs. Both qualitative and quantitative analyses in Study 1 show that the spontaneously produced formant movement patterns are similar to the patterns found in more carefully controlled citation speech. The formant data gathered in Study 1 was then used in Study 2 to investigate the effect that morphology has on the production of vowels. Morphology was measured by determining whether a vowel appeared in the past or present tense, and by calculating the morphological support for a particular vowel through Naive Discriminant Learning metrics. It was predicted that vowels in the morphologically uncertain tense (past) and/or with a high level of morphological support would be produced with acoustic enhancement. To test these predictions, analyses of four related measures of acoustic detail were conducted: 1) F1 and F2 linear dispersion from vowel space centre; 2) F1 and F2 linear deviation from vowel onset; 3) F1 and F2 linear deviation from vowel offset; and 4) non-linear amount of F1 and F2 movement. Each measure was analyzed with all of the vowels pooled together (global analysis), and then vowel-by-vowel (fractionated analysis). The four main findings of Study 2 are: 1) the global analyses support the predictions; 2) this pattern is not uniform across all vowels in the vowel-byvowel analyses; 3) the vowel-by-vowel analyses better model the formant data than the global analyses; and 4) the linear analyses also better model the formant data than the non-linear analyses. Study 2 discusses the need for granular models of morphological predictability that account for vowel-specific conditions, since global generalizations made about the relationship between morphology and formant production were not found to be uniform for every vowel. Study 3 builds upon Study 2 by testing whether acoustic details in speech are produced in a way that necessarily facilitates perception. Previous research in production has found there to be a correlation between the morphological support for an irregular verb and the duration of its vowel. In both lexical and morphological decision experiments, Study 3 tested whether this production-related correlation affects perception. To test this, the relationship between morphological support and vowel duration was reversed. It was predicted that production and processing are linked, thus disrupting this production-based relationship would lead to processing difficulty in the lexical and morphological decision tasks. Study 3 finds that processing indeed becomes more difficult, but only in certain tasks and under certain conditions. This indicates that there is a link between production and processing, though the link is weaker than predicted. As with Study 2, Study 3 discusses the implications of a global generalization that does not uniformly hold across all conditions. Taken together, the results of the three studies are discussed in terms of an understanding of the mental representation of acoustic detail, and how acoustic detail can weakly link production and perception.

Preface

The studies in this dissertation were conducted under ethics approval from the University of Alberta Research Ethics Board, Project Name "Responses to phonetic detail," Project Number Pro00025509, from October 11, 2011 – October 8, 2015. The studies in this dissertation were funded by a Social Sciences and Humanities Research Council Insight Development Grant with Dr. Benjamin V. Tucker as the principle investigator. The research conducted in this dissertation was done in collaboration with Dr. Benajmin V. Tucker, Dr. Terrance M. Nearey, and Dr. R. Harald Baayen. Dr. Tucker was the supervisory author who assisted in formulating the research concept and experimental design. Dr. Nearey assisted with the contribution of phonetic models in the research design. Dr. Baayen assisted with statistical analyses and computational techniques. All three assisted in the editing of the entire dissertation. I was responsible for the conception of the research, experiment design, data collection, analysis, and manuscript writing. No part of this dissertation has been previously published.

Acknowledgements

I would like to give a heart-felt appreciation for everyone who contributed to my PhD program and the dissertation process. In particular, I would like to thank my supervisor of 8 years, Ben, for guiding and supporting me all throughout grad school. A thank you, too, to Terry for pushing me to think outside of the box, and to Harald for getting me excited about morphology. Thank you to all three of you for your comments, discussion, and investment into this dissertation.

A huge thank you to my Smith and Sims families for your unwavering support from afar. Thanks to my friends and colleagues at the University of Alberta and abroad, and to a few people in particular:

Phil for keeping me caffeinated and sane, and for introducing me to the book that changed my academic life (<u>How to Write a Lot</u> by Paul J. Silvia).

Kailen for being my on-call linguist, statistician, programmer, and academic therapist.

Alvina for teaching me about work-life balance, for a sympathetic ear, and for coming to countless work dates when I needed an extra nudge.

Lin for being there, for saving my writing from absolute peril, and for all the glee throughout this process.

Drew for reading this entire dissertation not once, but three times, for making sure I ate three meals a day for the past 8 years, and for learning what exactly it is that I "do" to answer people when they ask.

Finally, this dissertation could not have been completed without the encouraging contributions of Starbucks, Apple, Taylor Swift, Beyoncé, and Britney Spears.

V

Table of Contents

Chapter 1 - Introduction	1
1.1 - Research Questions and Outline of this Dissertation	2
1.2 - Scope of Linguistic Data for this Dissertation	5
1.3 - The Issue of Spontaneous Speech	7
1.4 - Mental Representations of Morphology and Acoustic Detail	9
1.4.1 - Mental Representation of Morphological Information	9
1.4.2 - Mental Representation of Acoustic Detail	10
1.5 - References	13
Chapter 2 - Dynamic Formant Movement in Spontaneous Speech Vowels	22
2.1 - Introduction	
2.1.1 - Challenges of Dynamic Formant Movement in Spontaneous Speech	23
2.1.2 - Theories of Vowel Inherent Spectral Change	25
2.2 - Method	28
2.2.1 - The Data	28
2.2.2 - Analyses	29
2.2.2.1 - Standard Tests of Difference (t-tests) Procedure	29
2.2.2.2 - Linear Mixed Effects Regression Procedure	30
2.2.2.3 - Discriminant Analysis Procedure	34
2.3 - Results	35
2.3.1 - Vowel Properties, Gender, and Dialect	
2.3.2 - Dynamic Formant Movement Patterns	36
2.3.2.1 - The Presence of Dynamic Formant Movement	37
2.3.2.2 - The Direction of Dynamic Formant Movement	38

2.3.3 - Discriminating Dynamic Formant Movement	41
2.4 - Discussion	42
2.4.1 - Patterns of Formant Movement in Spontaneous Speech	43
2.4.2 - Onset+Offset+Pitch+Duration Model of Formant Movement	48
2.4.3 - Future Research	48
2.5 - Conclusion	49
2.6 - References	51
Chapter 3 - Morphological Influence of Vowel Dispersion and Dynamic Formant	
Movement	56
3.1 - Introduction	56
3.1.1 - Evidence from Studies on Linguistic Properties and Acoustic Detail	58
3.1.2 - Evidence from Studies on Linguistic Paradigms and Acoustic Detail	60
3.1.3 - Hypotheses of Linguistic Properties, Linguistic Paradigms, and Acoustic	
Detail	63
3.1.4 - The Current Analyses: Organizing Principles and Preliminary Predictions	66
3.2 - Methodology	68
3.2.1 - Items	68
3.2.2 - Acoustic Measurements	69
3.3 - Series of Statistical Models: Analyses and Local Results	70
3.3.1 - Linear Analysis of Vowel Dispersion	73
3.3.1.1 - Statistical Procedure	73
3.3.1.2 - Predictors	74
3.3.1.3 - Results with All Vowels Combined (global)	80
3.3.1.3.1 - Tense (linguistic property)	
3.3.1.3.2 - NDL Cue Strength (paradigmatic support)	
3.3.1.4 - Results by Vowel and by Time Percent	
3.3.1.4.1 - Tense (linguistic property)	88
3.3.1.4.2 - NDL Cue Strength (paradigmatic support)	90
3.3.2 - Linear Analysis of Formant Deviation from Vowel Onset	<u>91</u>
3.3.2.1 - Statistical Procedures	93

3.3.2.2 - Predictors	
3.3.2.3 - Results with All Vowels Combined (global)	
3.3.2.3.1 - Tense (linguistic parameter)	98
3.3.2.3.2 - NDL Cue Strength (paradigmatic support)	99
3.3.2.4 - Results by Vowel and by Time Percent	100
3.3.2.4.1 - Tense (linguistic parameter)	104
3.3.2.4.2 - NDL Cue Strength (paradigmatic support)	105
3.3.3 - Linear Analysis of Formant Deviation from Vowel Offset	106
3.3.3.1 - Statistical Procedures	107
3.3.3.2 - Predictors	107
3.3.3.3 - Results with All Vowels Combined (global)	109
3.3.3.1 - Tense (linguistic parameter)	112
3.3.3.2 - NDL Cue Strength (paradigmatic support)	113
3.3.3.4 - Results by Vowel and by Time Percent	113
3.3.3.4.1 - Tense (linguistic parameter)	117
3.3.3.4.2 - NDL Cue Strength (paradigmatic support)	118
3.3.4 - Non-linear Analysis of Overall Formant Movement	119
3.3.4.1 - GAM Statistical Procedure for Overall Formant Movement	120
3.3.4.2 - Predictors	
3.3.4.3 - Results with All Vowels Combined (global)	125
3.3.4.3.1 - Tense (linguistic parameter)	
3.3.4.3.2 - NDL Cue Strength (paradigmatic support)	128
3.3.4.4 - Results by Vowel	129
3.3.4.4.1 - Tense (linguistic parameter)	135
3.3.4.4.2 - NDL Cue Strength (paradigmatic support)	136
3.4 - Overall Results	137
3.5 - Discussion	137
3.5.1 - The Need for Fractioning in Theories of Speech Production	141
3.5.2 - Future Research	144
3.6 - Conclusions	146
3.7 - References	148

Chapter 4 - The Role of Acoustic Detail: Evidence from Lexical and	
Morphological Processing	154
4.1 - Introduction	154
4.1.1 - Acoustic Detail as a Consequence of Production Only	156
4.1.2 - Acoustic Detail as a Link between Production and Processing	157
4.1.3 - The Current Study	159
4.2 - Experiments	161
4.2.1 - Experiment I: Lexical Decision	162
4.2.1.1 - Items	162
4.2.1.2 - Recording Procedure	164
4.2.1.3 - Duration Manipulation	164
4.2.1.4 - Experiment Stimuli Lists	167
4.2.1.5 - Participants	167
4.2.1.6 - Procedure	168
4.2.1.7 - Statistical Analysis	168
4.2.1.8 - Results and Discussion	170
4.2.2 - Experiment II: Morphological Decision	177
4.2.2.1 - Experiment Stimuli Lists	177
4.2.2.2 - Participants	178
4.2.2.3 - Procedure	178
4.2.2.4 - Statistical Analysis	178
4.2.2.5 - Results and Discussion	179
4.3 - General Discussion	181
4.4 - Conclusion	183
4.5 - References	185
Chapter 5 - Conclusions	191
5.1 - General Findings	192
5.1.1 - Study 1 - Dynamic Formant Movement in Spontaneous Speech Vowels	192

5.1.2 - Study 2 - Morphological Influence of Vowel Dispersion and Dynamic	
Formant Movement	193
5.1.3 - Study 3 - The Role of Acoustic Detail: Evidence from Lexical and	
Morphological Processing	194
5.2 - Theoretical Implications for the Mental Lexicon	195
5.2.1 - The Representation of Morphological Information	196
5.2.2 - The Representation of Acoustic Detail	198
5.2.2.1 - The Representation of Acoustic Detail in Current Theories of the Mental	
Lexicon	198
5.2.2.2 - Contributions of the Current Dissertation to the Representation of	
Acoustic Detail and the Mental Lexicon	199
5.3 - Future Research	201
5.4 - Concluding Remarks	203
5.5 - References	204
Bibliography	207
Dionography	207
Appendix	224
A.1 - Supplementary Information for Chapter 2	224
A.2 - Supplementary Information for Chapter 3	248
A.3 - Supplementary Information for Chapter 4	324

List of Tables

2.1 – Predictors for main effects and random effects in the LMER models	34
2.2 – Four vowel properties in the subset data of the Buckeye Corpus	36
2.3 – Summary of statistical analyses for differences in F1 and F2 onsets/offsets	38
2.4 – Euclidean distance estimates and coefficients from tests of significant	
differences and formant movement between males and females	39
2.5 – Summary of vowel F1 and F2 movement	41
2.6 – Results of the discriminant analysis	
2.1 Summer outling of the four analyzes to be discussed	70
3.1 – Summary outline of the four analyses to be discussed	12
3.2 – Predictors for main effects, interactions, and random effects in the linear	
mixed-effects regression analysis of NDL and Tense on vowel dispersion	75
3.3 – Dispersion LMER model coefficients for the two predictors of interest	82
3.4 - t-values for the main effects of Tense and NDL for each of the 140	
individual LMER models of vowel dispersion	88
3.5 - Predictors for main effects, interactions, and random effects in the linear	
mixed-effects regression analysis of NDL and Tense on formants'	
deviance from vowel onset	94
3.6 – Deviance from onset LMER model coefficients for the two predictors of	
interest	97
3.7 - t-values for the main effects of Tense and NDL for each of the 140 individual	
LMER models of vowel onset	104
3.8 - Predictors for main effects, interactions, and random effects in the linear	
mixed-effects regression analysis of NDL and Tense on formants'	
deviance from vowel offset	108

3.9 - Deviance from offset LMER model coefficients for the two predictors of	
interest	111
3.10 - t-values for the main effects of Tense and NDL for each of the 140	
individual LMER models of vowel offset	117
3.11 - Predictors for main effects, interactions, and random effects in the general	
additive model analysis of NDL and Tense on formants' trajectories	122
3.12 – Smooth terms of interest from the F1 and F2 GAM models on the effect of	
Tense and NDL Cue Strength on overall formant values across all vowel	127
3.13 - Coefficients for the approximate significance of smoothness terms of	
interest in the F1 and F2 GAM models of formant trajectories	134
3.14 – Summary of results from the four analyses in the current chapter	138
4.1 – Summary of duration manipulations for each NDL group	166
4.2 – Table of coefficients for the lexical decision experiment (Experiment I) for	
models with NDL groups separated and combined	177
4.3 - Table of coefficients for the morphological decision experiment (Experiment	
II) for models with NDL groups separated and combined	181
A.1 – Information about the voicing of the surrounding phonetic context and	
gender	224
A.2 – Information about the place of articulation in the surrounding phonetic	
context and gender	225
A.3 – Information about the manner of articulation in the surrounding phonetic	
context and gender	228
A.4 – Information about the vowels in the skewed contexts	232
A.5 - Coefficients for all statistical tests of significant difference (t-tests) in F1	
and F2 onsets/offsets	233
A.6 - Coefficients for all linear mixed-effects regression models of F1 and F2	
onsets/offsets	234
A.7 – Frequency by gender for each vowel in the Buckeye Corpus irregular	
English verbs data	248

A.8 – Information about the vowels in the dataset	249
A.9 – Information about the vowels in the dataset	250
A.10 – Model calls for each global and by vowel analysis in Chapter 3	251
A.11 – Coefficients for the F1 and F2 global (all vowels pooled) LMER models of	
vowel dispersion	252
A.12 - Coefficients for the F1 and F2 by vowel LMER models of vowel	
dispersion	253
A.13 - Coefficients for the F1 and F2 global (all vowels pooled) LMER models of	
formant deviance from vowel onset	263
A.14 - Coefficients for the F1 and F2 by vowel LMER models of formant	
deviance from vowel onset	264
A.15 - Coefficients for the F1 and F2 global (all vowels pooled) LMER models of	
formant deviance from vowel offset	274
A.16 - Coefficients for the F1 and F2 by vowel LMER models of formant	
deviance from vowel offset	275
A.17 - Coefficients for the F1 and F2 global (all vowels pooled) GAM models of	
formant movement	285
A.18 - Coefficients for the F1 and F2 by vowel GAM models of formant	
movement	295
A.25 - Coefficients for the F1 and F2 global (all vowels pooled) GAM models of	
formant movement for robust vowels	305
A.26 - Coefficients for the F1 and F2 by vowel GAM models of formant	
movement for robust vowels	307
A.19 - Information about the Fillers and Nonwords for the morphological and	
lexical decision tasks	324
A.20 - Information about the Target stimuli for the morphological and lexical	
decision tasks	325
A.21 – LMER call and coefficients for the simple model of duration manipulation	
by vowel for the lexical decision data	328
A.22 - LMER call and coefficients for the simple model of duration manipulation	
by vowel for the morphological decision data	329

A.23 - LMER call and coefficients for the lexit	cal decision data 330
A.24 - LMER call and coefficients for the mor	phological decision data331

List of Figures

2.1 – Illustration of removing skewed context distributions for the five vowels	
affected by skewing	33
2.2 – Vowel plots for the average onset and offset of each vowel	37
2.3 – Vowel plots for the average onset and offset of each vowel across speakers	39
3.1 – Illustration of an NDL network for the words <i>blow</i> and <i>blue</i>	77
3.2 – Partial effects of the LMER model results for the two predictors of interest	
on vowel dispersion	81
3.3 – Raw averages across all speakers of the observed vowel dispersions from the centre of the vowel space	86
3.4 - Partial effects of the LMER model results for the two predictors of interest on formant dispersion from vowel onset	
3.5 - Raw averages across all speakers of the observed vowel deviations from the onset of the vowel	
3.6 - Partial effects of the LMER model results for the two predictors of interest on formant dispersion from vowel offset	
3.7 - Raw averages across all speakers of the observed vowel deviations from the offset of the vowel	
3.8 – F1 and F2 GAM models' partial effects of NDL Cue Strength through Time	
3.9 – Averages of the observed formant trajectories across all speakers	
3.10a – F1 GAM model partial effects of NDL Cue Strength paired with Time for	
each vowel 3.10b – F2 GAM model partial effects of NDL Cue Strength paired with Time for	
each vowel	<u> </u>

4.1 – Correlations between NDL cue association strength and mean duration	1(2
based on Tucker et al.	163
 4.2 – Results for the LMER models for each NDL level in the lexical decision experiment (Experiment I) and morphological decision experiment (Experiment II). 	171
4.3 – Partial effects results for the LMER models in the lexical decision	
experiment (Experiment I) and morphological decision experiment	
(Experiment II) for all NDL levels combined	172
(Experiment II) for an NDE levels combined	1/3
A.1 – Quantiles for the first formant by gender	244
A.2 – Quantiles for the second formant by gender	245
A.3 – Quantiles for the first formant by vowel	246
A.4 – Quantiles for the second formant by vowel	247
A.5 – Distributional plots for the voice, place, and manner of the context	
preceding each vowel	
A.6 - Distributional plots for the voice, place, and manner of the context	
following each vowel	310
A.7 – Vowel plots by place of articulation for the consonant preceding each vowel	311
A.8 - Vowel plots by place of articulation for the consonant following each vowel	312
A.9 – Distributional plots for all the C1V and VC2 pairs in the dissertation's data	
(Buckeye Corpus irregular English verbs) compared to the entire Buckeye	
Corpus	313
A.10 – LMER predictions in the formant deviation from vowel onset analysis	
(interaction between absolute and relative duration)	314
A.11 - LMER predictions in the formant deviation from vowel offset analysis	
(interaction between absolute and relative duration)	315
A.12 – F1 and F2 global GAM models' partial effects of NDL Cue Strength	
through time	316
A.13 - F1 and F2 GAM models' partial effects of NDL Cue Strength paired with	
Time for each vowel	317

Chapter 1: Introduction

Speech, as people encounter it on a daily basis, is often within the context of casual, everyday conversations. However, spontaneous speech has received relatively little attention in the linguistic literature (Cutler, 1998; Ernestus et al., 2002; Johnson, 2004; Ernestus and Warner, 2011). Previous research has tended to focus on carefully elicited or contextually controlled speech, referred to as 'laboratory speech.' The current dissertation adds to speech research by investigating the acoustic detail of spontaneous speech, and how morphological information can influence the production and processing of the acoustic speech signal.

Spontaneous speech poses a methodological issue because the acoustic speech signal contains acoustic variation far beyond what can be corrected for during analysis (see Ernestus and Warner, 2011, for a discussion). Because such acoustic variation can be better controlled for in laboratory speech, carefully produced speech is often used to investigate mental representations and the mental lexicon. However, research on laboratory speech is less ecologically valid than spontaneous speech since the speech signals people encounter on a daily basis come from inherently uncontrolled and acoustically variable conversational speech.

The current dissertation addresses this issue of ecological validity by investigating the acoustic detail in spontaneous speech under current theories of the mental lexicon. It is first necessary to establish the terminology used in this dissertation:

Acoustic detail refers to any quantifiable measure of the physical speech signal. The acoustic details discussed in this dissertation include segment and word durations, individual formant measurements, and continuous formant contours based on the individual formant measurements. Acoustic variation refers to statistically significant variation within one measure of acoustic detail. Formant measures at vowel onset compared to vowel offset are an example of acoustic variation (provided that F-onset and F-offset are significantly different from one another).

Linguistic property refers to any inherently variable linguistic phenomenon. A linguistic property may be either a grammatical or emergent property. Morphology (e.g., verb tense) is an example of a grammatical linguistic property; lexical frequency is an example of an emergent linguistic property. The variation of a linguistic property may be within a discrete closed class (e.g., morphology) or a data-dependent continuum (e.g., lexical frequency).

1.1 Research Questions and Outline of this Dissertation

The four broad research questions this dissertation asks are:

1) What do the acoustic details look like in spontaneous speech? (Chapter 2) The first study of this dissertation centres around defining one measure of acoustic detail in spontaneous speech: the trajectories of the first and second formant from vowels in a corpus of conversational speech. The specific research questions for Chapter 2 are:

- i. Are there regular patterns of formant trajectories in spontaneous speech?
- ii. If so, are these patterns similar to those in citation speech?
- iii. What model of formant trajectories best captures the patterns seen in spontaneous speech?

I address these questions through descriptive and statistical analyses of formant contours. The results of this Chapter indicate that there are regular patterns of formant movement in spontaneous speech that are comparable to those in controlled and carefully elicited citation speech. Moreover, models of formant trajectory patterns previously proposed based on data from citation speech continue to hold for the spontaneous speech data at hand. This indicates that acoustic detail in spontaneous speech is comparable to that in more extensively citation speech. The data and analyses from Chapter 2 provide the background for subsequent analyses of relationships between formant measurements and linguistic properties in Chapter 3.

2) Do linguistic properties systematically influence the production of acoustic detail? (Chapter 3)

The second study of this dissertation builds upon the previous by asking whether formant movement and vowel dispersion are modulated by morphology and Naive Discriminative Learning cue association strengths (Baayen et al., 2011; discussed in detail in the following sections). The specific research questions for Chapter 3 are:

- i. Does morphology influence the amount of vowel dispersion and formant movement?
- ii. Does paradigmatic strength (as determined by Naive Discriminative Learning cue associate strengths) influence the amount of vowel dispersion and formant movement?

I address these questions through a series of statistical models. The results of this Chapter indicate that, even though there is an overall effect of both morphology and paradigmatic strength on acoustic detail, the effects themselves vary between vowels and between formants. Thus, Chapter 3 argues for fractionation and variability in models of speech production. Chapter 4 explores whether this is also true for speech processing. 3) Do relationships between acoustic detail and linguistic properties link speech processing with production? (Chapter 4)

The last study of this dissertation tests an assumption made in the previous Study: acoustic details correlate with linguistic properties because they enable the listener to process the speech signal more easily. For this last study, I tested the relationship between vowel duration and Naive Discriminative Learning cue association strength. The specific research questions for Chapter 4 are:

- Does the production-based correlation between vowel duration and Naive Discriminative Learning cue association strength aid in word recognition?
- Does the production-based correlation between vowel duration and Naive Discriminative Learning cue association strength aid in morphological recognition?

I addressed these questions using two auditory experiments. The results of this Chapter indicate that variation in processing is dependent both on task (either lexical or morphological decision) and condition (morphological tense). Chapter 4 concludes that relationships between linguistic properties and acoustic details can provide a helpful link between speech production and speech processing, but are not necessary for processing. Instead, the relationships act more as a resource that listeners have the ability to draw upon. The weak production-processing link found in Chapter 4, in conjunction with the results from speech production found in Chapter 3, provides evidence for Chapter 5's theoretical discussion on the mental representation of acoustic detail.

4) What can evidence from production and processing tell us about the representation of acoustic detail? (Chapter 5)

The final Chapter of this dissertation relates the findings from Chapters 2, 3, and 4 to the mental lexicon. I propose a new framework for representing acoustic detail after discussing how current theories on the mental representation of morphological information and acoustic detail apply to the results described in Chapters 2, 3, and 4.

The remainder of the current Chapter provides some of the necessary background for the entire dissertation. I discuss the following topics: 1) the scope of the linguistic data used in this dissertation and how this scope addresses the aforementioned research questions; 2) an overview of empirical evidence from linguistic literature on acoustic detail in spontaneous speech production and processing; and 3) a brief discussion of the relevant literature concerning the relationship between the mental lexicon, morphology, and acoustic detail.

1.2 Scope of Linguistic Data for this Dissertation

To study the research questions outlined above, the current dissertation investigates differences in the production and processing of acoustic detail between morphological forms. This dissertation is limited to a set of irregular monosyllabic English verbs that differ between the past and present tense based on a single vowel phone. This includes words like *sing/sang* and *get/got*. Morphological pairs that contain a vowel change as well as the addition of an extra phone (such as *weep/wept*), and pairs that contain other phonological changes (such as *am/was*), are not under investigation. Investigating this specific set of words has several advantages:

1) Though morphologically different, these word pairs are phonologically the same except for a single segment.

Kuperman et al. (2007) call these segments 'pockets of indeterminacy' (or areas of uncertainty) where there lies a specific area, or pocket, that carries the entire weight of the word's morphological meaning. In the current set of irregular English verbs, the vowel segment resides in this pocket. For example, the morphological form of the word /sŋ/ is indeterminate without filling the vowel pocket: /sin/ or /san/.

 The phonological differences between these word pairs are limited to one segment.

Unlike Kuperman et al. (2007), who studied pockets of indeterminacy that were filled by 1-2 segments, the pocket of indeterminacy in the present set of verbs is

filled by only one segment and always by a vowel. This makes the pockets of indeterminacy (i.e., the vowels) in the present word set comparable to one another (when the surrounding phonetic environment is controlled). Thus, it is possible to contrast a vowel in a past tense pocket (e.g., $/s\underline{x}\underline{n}/)$ with the same vowel in a present tense pocket (e.g., $/h\underline{x}\underline{n}/)$. In this way, the acoustic detail in these vowels can be compared across morphological forms.

3) These word pairs allow the influence of morphology and paradigm on the production and processing of acoustic detail to be tested.

Investigating morphologically related word pairs enables me to test directly for how various linguistic properties affect speech production and processing. These include common properties such as lexical frequency and neighbourhood density, as well as properties that are specific to this set of words such as morphology (i.e., past and present tense) and paradigmatic support. I can assess the mental representation of acoustic detail by testing the effect of morphology on speech production and processing and comparing morphological forms.

For these reasons, all three studies contained in this dissertation focus on this set of irregular English verbs. The first study investigates the acoustic detail present in the spontaneous production of these verbs. The second study analyzes the effect of morphology and paradigmatic support on the production of acoustic detail. The final study explores how the acoustic variability found in production can affect listeners' subsequent perceptual processing. In doing so (and as discussed in the previous section), the studies presented here address whether acoustic detail provides a link between speech production and speech processing.

The presence or absence of a production-processing link can provide insight into the role of acoustic detail in lexical representation. Several theories of mental representations have been posited based on studies in both spoken word production and spoken word processing, each discussed in detail below. This dissertation expands upon these studies by contributing new evidence for the relationship between acoustic detail and morphology in speech production and speech processing.

1.3 The Issue of Spontaneous Speech

Spontaneous speech is both interesting and problematic to study because it is produced with massive amounts of variability and reduction (Labov, 1972; Guy, 1991; Greenberg, 1999; Ernestus et al., 2002; Johnson, 2004; Ernestus and Warner, 2011). For example, the duration of a particular word can vary amongst productions of the same word by the same speaker by as much as one full second (Dilts, 2013). Moreover, the acoustic details within segments are also variable, such as the intensity of a consonant (Warner and Tucker, 2007) or the inherent formant structure of vowels (Nearey, 2013).

However, research indicates that this acoustic variability can be systematic in nature. Several studies have found predictive relationships between linguistic properties and the production of acoustic detail. For example, many studies have shown that word frequency modulates word and segmental duration (Jurafsky et al., 1998, 2001; van Son et al., 2004; Aylett and Turk, 2004; Pluymaekers et al., 2005, 2006; Gahl 2008; Dilts et al., 2011; Schuppler et al., 2011). These studies have found that highly frequent words tend to be produced with shorter durations, while words with lower frequencies tend to be produced with longer durations (cf. Kuperman et al., 2008). Aylett and Turk (2006) found a similar relationship between formant frequencies and lexical frequency, where vowels belonging to low frequency syllables are articulated more centrally than those of high frequency syllables.

Like lexical frequency, the phonological neighbourhood density of a word often correlates with acoustic detail. For example, many studies have found that phonological neighbourhood density is predictive of formant frequencies in vowels (Wright, 1997, 2004; Munson and Solomon, 2004; Munson, 2007; Gahl et al., 2012) as well as the produced durations of words and segments (Scarborough, 2004; Wright, 2004; Gahl et al., 2012).

Higher-level linguistic features have also been found to modulate the acoustic productions. For example, word duration can be predicted by the association strength between a word and its surrounding semantic and syntactic context (Bell et al., 2003, 2009). Moreover, relative intensity, voicing, and formant structure have also been found to predictably vary across different discourse conditions (Warner and Tucker, 2011).

In addition to speech production, acoustic detail has also been shown to have an effect on the processing of speech (for a more general overview, see Cutler, 1998). Studies have found that acoustic details can affect processing at both the lexical and segmental levels. This includes the acoustic details of: word duration (; Pollack and Pickett, 1964; Liberman, 1967), coarticulations with the surrounding environment (Scarborough, 2004; Sumner and Samuel, 2005), the inherent spectral properties of vowels (Nearey and Assmann, 1986; Strange et al., 1989), influences of prosodic structure (Mehta and Cutler, 1988), and the reduction or deletion of a segment (Mehta and Cutler, 1988; Van Bergem, 1993; Cutler, 1998; Kemps et al., 2004; Tucker, 2011).

There is strong evidence in the speech processing literature that linguistic properties and acoustic details are correlated. Measures of word frequency (Connine et al., 1990; cf. Ernestus and Baayen, 2007), neighbourhood density (Luce and Pisoni, 1998; Vitevitch and Luce, 1998; Vitevitch et al., 1999; Luce and Large, 2001), paradigmatic support (Bybee and Slobin, 1982; Stemberger, 2004; Kuperman et al., 2007; Hanique et al., 2010; Hanique and Ernestus, 2011; Schuppler et al., 2012; Cohen, 2014), the immediate phonetic and syntactic context (Ernestus et al., 2002), semantic and syntactic associations (van de Ven et al., 2009; van de Ven et al., 2011; van de Ven et al., 2012), and collocational frequency (Hilpert, 2008) have all been found to correlate with the processing of acoustic variation.

Because acoustic details and linguistic properties have been found to correlate in both speech production and processing, it is often thought that speech production and speech processing are linked. They are thought to be two components of a single speech system rather than separate, autonomous processes (for a discussion, see Liberman, 1984, 1996; Dell et al., 1997). The speech signal, then, is assumed to be a by-product of this link. It is encoded during production with acoustic cues relevant to processing and subsequently decoded during processing with the help of the acoustic cues (Lindblom, 1990; van Son and Pols, 2003; Aylett and Turk, 2004; Flemming, 2010; Jaeger, 2010; Gahl et al., 2012; Pate and Goldwater, 2015).

The studies referenced here interpret the role of acoustic detail within the theoretical frameworks of either speech production or speech processing. This dissertation expands upon these studies by interpreting the role of acoustic detail according to both speech production and speech processing.

1.4 Mental Representations of Morphology and Acoustic Detail

The data used in this dissertation allow me to investigate the mental representations of both morphology and acoustic detail. This involves determining whether morphology and acoustic detail reside inside or outside of the lexicon. What follows is a discussion of current theories on the mental representations of acoustic detail and morphology. Spoken word recognition theories provide hypotheses for the mental representations of acoustic detail, and speech processing theories provide hypotheses for the mental representations of morphological information.

1.4.1 Mental Representation of Morphological Information

The current dissertation compares morphological forms of irregular English verbs in order to investigate the mental representation of acoustic detail. Before doing so, it is first necessary to assess the mental representation of morphological forms. I consider three possible approaches for understanding the representation of morphological information as it relates to the lexicon. Each approach is explained here.

The first approach holds that morphological information is not contained in the lexicon. Instead, abstract lexical representations of words (such as lemmas) are stored in the lexicon, and these pass through a separate morphological process in order to derive various morphological word forms. Thus, morphological specification/information is derived via a separate morphological process as one step within the larger speech processing process, not stored explicitly in the lexicon. Proponents of this morphology-process approach include Taft and Forster (1975), Marslen-Wilson et al. (1994), Levelt et al. (1999; Weaver++), and Cohen-Goldberg (2013; Heterogeneity of Processing Hypothesis).

A second approach holds that lexical representations are stored in the lexicon with their morphological information fully specified. Unlike in the morphology-process approach, word forms are not morphologically derived from abstract representations. Proponents of this morphology-storage approach include Manelis and Tharp (1977), Stemberger and MacWhinney (1986; for high frequency morphological forms), Caramazza (1988; the Augmented Addressed Morphology Model which includes a morphology-process component for novel words), and Baayen et al. (1997; the Parallel Dual Route Model which also allows for a parallel morphology-process component.

Finally, a third approach holds that morphological information is captured in learned connections between stored meanings and output of the speech production system (or input of the speech recognition system). Here, individual meanings, rather than individual word forms, are stored within the lexicon. Implicit learning connects these stored meanings to their outputted word forms. In this approach, morphological information resides outside of the lexicon as a generalized statistical pattern of learned associations (or a connection) between an output/input form and a mentally stored meaning. Proponents of this morphologygeneralization approach include the Convergence Theory (Seidenberg and Gonnerman, 2000) and Naive Discriminative Learning (Baayen et al., 2011, Baayen et al., in press).

1.4.2 Mental Representation of Acoustic Detail

There are two general accounts for the mental representation of acoustic detail: an acoustic-detail-storage account, and an acoustic-detail-abstraction account. These two accounts are based on how acoustic detail interacts with the lexicon.

The acoustic-detail-storage account holds that every instance of an acoustically variant word form is stored with the word in the lexicon. Here, acoustic detail resides within the lexicon as a property of lexical representations (Hanique and Ernestus, 2012; Hanique et al., 2013). Different theories of speech production specify the extent to which acoustic detail is stored. Exemplar-based theories (Johnson, 2006; Goldinger 1996, 1998; Pierrehumbert 2001, 2003), for example, hold that the storage of acoustic detail is conditioned with experience. The encounter of a new variant form is matched to these exemplars and then incorporated into the lexical representation.

Other researchers (Klatt, 1979, Samuel, 1982; Kuhl, 1991, Thyer et al., 2000) propose that in addition to the storage of variant acoustic forms, mental representations contain an acoustic form that is abstracted over these stored variations (such as prototypes and perceptual magnets). The encounter of a new variant form is then matched to these abstracted prototypes and incorporated into the lexicon representation (with the prototype updated, if need be).

The acoustic-detail-abstraction account holds that a phonological process strips the speech signal of acoustic detail in order to parse the signal into discrete, abstract phonological representations. These phonological representations are then mapped to representations in the lexicon. Acoustic detail is represented as noise in the speech signal, outside of the lexicon. Proponents of this acoustic-detailabstraction account differ in terms of how acoustic detail is abstracted.

Some models of spoken word recognition or production describe the phonological process in terms of probabilistic relationships between the acoustic detail and abstract phonological representations (such as in Shortlist B, Norris and McQueen, 2008). Other models make use of formal phonological processes to derive abstract forms from the noisy speech signal (such as Weaver++, Levelt et al., 1999). And still, other proponents of the acoustic-detail-abstraction account include a hidden 'phonological interference mechanism' for disambiguating phonologically variant forms (Lahiri and Marslen-Wilson 1991; Gaskell and Marslen-Wilson, 1996, 1998).

These two main approaches towards the mental representation of acoustic detail are similar to the previously discussed mental representations of morphology. In the literature, there is both a storage-based account and a process-based account of how morphology and acoustic detail relate to the lexicon. This dissertation extends the third account of morphological representation, a generalization account, to the mental representation of acoustic detail. Just as morphological variation acts as a tool to directly access stored meanings through learned patterns of statistical association, I propose that acoustic detail can function in the same way. The chapters contained within this dissertation (Chapters 2, 3, and 4) will provide empirical evidence for such an acoustic-detail-generalization account. Chapter 5 returns to this discussion of the mental representation of acoustic detail.

1.5 References

Aylett, M., & Turk, A. (2004). The Smooth Signal Redundancy Hypothesis: A Functional Explanation for Relationships between Redundancy, Prosodic Prominence, and Duration in Spontaneous Speech. *Language and Speech*, *47*(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058.

Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual-route model. *Journal of Memory and Language*, *37*(1), 94–117.

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, *118*(3), 438.

Baayen, R. H., Shaoul, C., Willits, J., & Ramscar, M. (in press). Comprehension without segmentation: A proof of concept with naive discrimination learning. *Language, Cognition, and Neuroscience*.

Bell, A., Brenier, J. M., Gregory, M., Girand, C., & Jurafsky, D. (2009).Predictability effects on durations of content and function words in conversationalEnglish. *Journal of Memory and Language*, 60(1), 92.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., & Gildea, D. (2003). Effects of disfluencies, predictability, and utterance position on word form variation in English conversation. *The Journal of the Acoustical Society of America*, *113*(2), 1001–1024.

Brouwer, S. (2010). *Processing strongly reduced forms in casual speech*. Radboud University Nijmegen Nijmegen. Bybee, J. L., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past tense. *Language*, *58*(2), 265–289.

Caramazza, A., Laudanna, A., & Romani, C. (1988). Lexical access and inflectional morphology. *Cognition*, *28*(3), 297–332.

Cohen, C. (2014). Probabilistic reduction and probabilistic enhancement. *Morphology*, *24*(4), 291–323.

Cohen-Goldberg, A. M. (2013). Towards a theory of multimorphemic word production: The heterogeneity of processing hypothesis. *Language and Cognitive Processes*, *28*(7), 1036–1064.

Connine, C. M., Mullennix, J., Shernoff, E., & Yelen, J. (1990). Word familiarity and frequency in visual and auditory word recognition. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 16*(6), 1084.

Cutler, A. (1998). The Recognition of Spoken Words With Variable Representations. *Sound Patterns of Spontaneous Speech*, 83–92.

Dell, G. S., Burger, L. K., & Svec, W. R. (1997). Language production and serial order: A functional analysis and a model. *Psychological Review*, *104*(1), 123.

Dilts, P. (2013). *Modelling phonetic reduction in a corpus of spoken English using Random Forests and Mixed-Effects Regression*. University of Alberta, Edmonton, Canada. Retrieved from ERA: Education & Research Archive.

Dilts, P., Baayen, R. H., & Tucker, B. V. (2011). *Word duration and segment deletion as measures of reduction in a corpus of spontaneous speech*. Presented at the 161st Meeting of the Acoustical Society of America, Seattle, WA.

Ernestus, M., Baayen, H., & Schreuder, R. (2002). The recognition of reduced word forms. *Brain and Language*, *81*(1-3), 162–173.

Ernestus, M., & Baayen, R. H. (2007). The comprehension of acoustically reduced morphologically complex words: The roes of deletion, duration, and frequency of occurrence. *Proceedings of the 16th International Congress of Phonetic Sciences*, (August 2007, Saarbruecken, Germany), 773–776.

Ernestus, M., & Warner, N. (2011). An introduction to reduced pronunciation variants. *Journal of Phonetics*, *39*(3), 253–260.

Flemming, E. (2010). Modeling listeners: Comments on Pluymaekers et al. and Scarborough. *Laboratory Phonology*, *10*, 587–606.

Gahl, S. (2008). Time and Thyme Are not Homophones: The Effect of Lemma Frequency on Word Durations in Spontaneous Speech. *Language*, *84*(3), 474–496.

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. *Journal of Memory and Language*, *66*(4), 789–806.

Gaskell, M. G., & Marslen-Wilson, W. D. (1996). Phonological variation and inference in lexical access. *Journal of Experimental Psychology: Human Perception and Performance*, *22*(1), 144.

Gaskell, M. G., & Marslen-Wilson, W. D. (1998). Mechanisms of phonological inference in speech perception. *Journal of Experimental Psychology: Human Perception and Performance*, *24*(2), 380.

Goldinger, S. D. (1996). Words and voices: episodic traces in spoken word identification and recognition memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 22*(5), 1166.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. *Psychological Review*, *105*(2), 251.

Greenberg, S. (1999). Speaking in shorthand–A syllable-centric perspective for understanding pronunciation variation. *Speech Communication*, *29*(2), 159–176.

Guy, G. R. (1991). Contextual conditioning in variable lexical phonology. *Language Variation and Change*, *3*(02), 223–239.

Hanique, I., Aalders, E., & Ernestus, M. (2013). How robust are exemplar effects in word comprehension? *The Mental Lexicon*, 8(3), 269–294.

Hanique, I., & Ernestus, M. (2011). Final/t/Reduction in Dutch Past-Participles: The Role of Word Predictability and Morphological Decomposability. In *12th Annual Conference of the International Speech Communication Association* (Interspeech 2011) (pp. 2849–2852).

Hanique, I., & Ernestus, M. (2012). The role of morphology in acoustic reduction. *Lingue E Linguaggio*, *11*(2), 147–164.

Hanique, I., Schuppler, B., & Ernestus, M. (2010). Morphological and predictability effects on schwa reduction: The case of Dutch word-initial syllables. In *11th Annual Conference of the International Speech Communication Association (Interspeech 2010),* (pp. 933–936).

Hilpert, M. (2008). New evidence against the modularity of grammar: Constructions, collocations, and speech perception. *Cognitive Linguistics*, *19*(3), 491–511.

Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. *Cognitive Psychology*, *61*(1), 23–62.

Johnson, K. (2004). Massive reduction in conversational American English. Spontaneous Speech: Data and Analysis. Proceedings of the 1st Session of the 10th International Symposium, 29–54.

Johnson, K. (2006). Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. *Journal of Phonetics*, *34*(4), 485–499.

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., & Raymond, W. (1998). Reduction of English function words in Switchboard (pp. 1–4). Presented at the Fifth International Conference on Spoken Language Processing.

Jurafsky, D., Bell, A., Gregory, M., & Raymond, W. D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. *Frequency and the Emergence of Linguistic Structure*, *45*, 229–254.

Kemps, R., Ernestus, M., Schreuder, R., & Baayen, H. (2004). Processing reduced word forms: The suffix restoration effect. *Brain and Language*, *90*(1-3), 117–127.

Klatt, D. H. (1979). Speech perception: A model of acoustic-phonetic analysis and lexical access. *Journal of Phonetics*, 7(312), 1–26.

Kuhl, P. K. (1991). Human adults and human infants show a "perceptual magnet effect" for the prototypes of speech categories, monkeys do not. *Perception & Psychophysics*, *50*(2), 93–107.

Kuperman, V., Ernestus, M., & Baayen, H. (2008). Frequency distributions of uniphones, diphones, and triphones in spontaneous speech. *The Journal of the Acoustical Society of America*, *124*(6), 3897–3908.

Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, H. (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds. *The Journal of the Acoustical Society of America*, *121*(4), 2261– 2271.

Labov, W. (1972). Sociolinguistic patterns. University of Pennsylvania Press.

Lahiri, A., & Marslen-Wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. *Cognition*, *38*(3), 245–294.

Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. *Behavioral and Brain Sciences*, *22*(01), 1–38.

Liberman, A. M. (1984). On finding that speech is special. In *Handbook of Cognitive Neuroscience* (pp. 169–197). Springer.

Liberman, A. M. (1996). Speech: A special code. MIT press.

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the Speech Code. *Psychological Review*, *74*(6), 431–461.

Lieberman, P. (1963). Some effects of semantic and grammatical context on the production and perception of speech. *Language and Speech*, *6*(3), 172–187.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Luce, P. A., & Large, N. R. (2001). Phonotactics, density, and entropy in spoken word recognition. *Language and Cognitive Processes*, *16*(5-6), 565–581.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. *Ear and Hearing*, *19*(1), 1.

Manelis, L., & Tharp, D. A. (1977). The processing of affixed words. *Memory & Cognition*, *5*(6), 690–695.

Marslen-Wilson, W., Tyler, L. K., Waksler, R., & Older, L. (1994). Morphology and meaning in the English mental lexicon. *Psychological Review*, *101*(1), 3.

Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. *Language and Speech*, *31*(2), 135–156.

Munson, B. (2007). Lexical access, lexical representation, and vowel production. *Laboratory Phonology*, *9*, 201–228.

Munson, B., & Solomon, N. P. (2004). The effect of phonological neighborhood density on vowel articulation. *Journal of Speech, Language, and Hearing Research*, *47*(5), 1048–1058.

Nearey, T. M. (2013). Vowel inherent spectral change in the vowels of North American English. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 49–85). Springer.

Nearey, T. M., & Assmann, P. F. (1986). Modeling the role of inherent spectral change in vowel identification. *The Journal of the Acoustical Society of America*, *80*(5), 1297.

Norris, D., & McQueen, J. M. (2008). Shortlist B: a Bayesian model of continuous speech recognition. *Psychological Review*, *115*(2), 357.

Pate, J. K., & Goldwater, S. (2015). Talkers account for listener and channel characteristics to communicate efficiently. *Journal of Memory and Language*, 78, 1–17.

Pierrehumbert, J. (2001). *Exemplar dynamics: Word frequency, lenition and contrast. Frequency and the emergence of linguistic structure, ed. by Joan Bybee and Paul Hopper, 137-57.* Amsterdam: John Benjamins.

Pierrehumbert, J. B. (2003). Phonetic diversity, statistical learning, and acquisition of phonology. *Language and Speech*, *46*(2-3), 115–154.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2005). Lexical frequency and acoustic reduction in spoken Dutch. *The Journal of the Acoustical Society of America*, *118*(4), 2561–2569.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2006). Effects of word frequency on the acoustic durations of affixes (pp. 953–956). Presented at the Ninth International Conference on Spoken Language Processing.

Pollack, I., & Pickett, J. M. (1964). Intelligibility of excerpts from fluent speech: Auditory vs. structural context. *Journal of Verbal Learning and Verbal Behavior*, *3*(1), 79–84.

Samuel, A. G. (1982). Phonetic prototypes. *Perception & Psychophysics*, *31*(4), 307–314.

Scarborough, R. (2004). *Coarticulation and the Structure of the Lexicon*. Retrieved from www.linguistics.ucla.edu/faciliti/research/scarb_diss.pdf

Schreuder, R., & Baayen, R. H. (1997). How complex simplex words can be. *Journal of Memory and Language*, *37*(1), 118–139.

Schuppler, B., Ernestus, M., Scharenborg, O., & Boves, L. (2011). Acoustic reduction in conversational Dutch: A quantitative analysis based on automatically generated segmental transcriptions. *Journal of Phonetics*, *39*(1), 96–109.

Schuppler, B., van Dommelen, W. A., Koreman, J., & Ernestus, M. (2012). How linguistic and probabilistic properties of a word affect the realization of its final/t: Studies at the phonemic and sub-phonemic level. *Journal of Phonetics*, *40*(4), 595–607.

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. *Trends in Cognitive Sciences*, *4*(9), 353–361.

Sims, M., Tucker, B. V., & Baayen, H. (2010). Modulation of phonetic duration by morphological and lexical predictors. *The Journal of the Acoustical Society of America*, *128*, 2457.

Stemberger, J. P. (2004). Neighbourhood effects on error rates in speech production. *Brain and Language*, *90*(1), 413–422.

Stemberger, J. P., & MacWhinney, B. (1986). Frequency and the lexical storage of regularly inflected forms. *Memory & Cognition*, 14(1), 17–26.

Strange, W. (1989). Evolving theories of vowel perception. *The Journal of the Acoustical Society of America*, *85*(5), 2081–2087.

Sumner, M., & Samuel, A. G. (2005). Perception and representation of regular variation: The case of final/t. *Journal of Memory and Language*, *52*(3), 322–338.

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. *Journal of Verbal Learning and Verbal Behavior*, *14*(6), 638–647.

Thyer, N., Hickson, L., & Dodd, B. (2000). The perceptual magnet effect in Australian English vowels. *Perception & Psychophysics*, *62*(1), 1–20.

Tucker, B. V. (2011). The effect of reduction on the processing of flaps and /g/ in isolated words. *Journal of Phonetics*, *39*(3), 312–318.

Van Bergem, D. (1993). On the perception of acoustic and lexical vowel reduction. In *Eurospeech* (pp. 677–680).

Van de Ven, M. (2011). *The role of acoustic detail and context in the comprehension of reduced pronunciation variants*. Radboud University, Nijmegen, The Netherlands.

Van de Ven, M., Ernestus, M., & Schreuder, R. (2012). Predicting acoustically reduced words in spontaneous speech: The role of semantic/syntactic and acoustic cues in context. *Laboratory Phonology*, *3*(2), 455–481.

Van de Ven, M., Tucker, B., & Ernestus, M. (2011). Semantic context effects in the comprehension of reduced pronunciation variants. *Memory & Cognition*, *39*(7), 1301–1316.

Van de Ven, M., Tucker, B. V., & Ernestus, M. (2009). Semantic context effects in the recognition of acoustically unreduced and reduced words. In *Proceedings of the 10th annual conference of the international speech communication association* (pp. 1867–1870).

Van Son, R., Bolotova, O., Lennes, M., & Pols, L. C. W. (2004). Frequency effects on vowel reduction in three typologically different languages (Dutch, Finnish, Russian). In *5th Annual Conference of the International Speech Communication Association (Interspeech 2004)* (pp. 1277–1280).

Van Son, R. J. J. H., & Pols, L. C. W. (2003). Information structure and efficiency in speech production. *Proceedings Eurospeech 2003, Geneva*, *1*, 769–772.

Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels of processing in perception of spoken words. *Psychological Science*, *9*(4), 325–329.

Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999). Phonotactics, neighborhood activation, and lexical access for spoken words. *Brain and Language*, *68*(1), 306–311.

Warner, N., & Tucker, B. V. (2007). Categorical and gradient variability in intervocalic stops. In *Talk given at the annual meeting of the Linguistic Society of America*.

Warner, N., & Tucker, B. V. (2011). Phonetic variability of stops and flaps in spontaneous and careful speech. *The Journal of the Acoustical Society of America*, *130*(3), 1606–1617.

Wright, R. (1997). Lexical competition and reduction in speech: A preliminary report. *Research on Spoken Language Processing Progress Report*, *20*, 321–333.

Wright, R. (2004). Factors of lexical competition in vowel articulation. *Phonetic Interpretation: Papers in Laboratory Phonology VI*, 26–50.

Chapter 2: Dynamic Formant Movement in Spontaneous Speech Vowels

2.1 Introduction

Studies of vowel perception have found strong support for the existence of dynamic formant movement in monophthongs, similar to those in diphthongs (Strange et al., 1983; Parker and Diehl, 1984; Nearey and Assmann, 1986; Strange, 1989; Andruski and Nearey, 1992; Zahorian and Jagharghi, 1993; Hillenbrand et al., 1995; Jenkins et al., 1999; Hillenbrand and Nearey, 1999; Assmann and Katz, 2000, 2004; Morrison and Assmann, 2013). Dynamic formant movement may be useful to the listener, as research in vowel perception suggests that listeners are better able to distinguish between and identify vowels with movement compared to their steady-state formants. Listeners use cues such as a vowel's pattern of movement through the vowel space and its F1xF2 location in the vowel space to identify vowels.

The formant trajectories of vowels and existence of dynamic formant movement have also been studied extensively in acoustic production research. Many early studies have measured the acoustic details of vowels in citation speech and found strong support for the existence of dynamic formant movement in vowels (Potter and Steinberg, 1950; Peterson and Barney, 1952; Stevens and House, 1963), leading to specific theories on inherent vowel movement (Assmann et al., 1982; Nearey and Assmann, 1986; Andruski and Nearey, 1992; Hillenbrand et al., 1995; Assmann and Katz, 2000; Hillenbrand, 2001; Hillenbrand and Houde, 2003; Nearey, 2013; Morrison and Assmann, 2013). This tendency for vowels to display spectral movement throughout their duration, known as Vowel Inherent Spectral Change (VISC; Nearey and Assmann, 1986; Strange, 1989), is systematic and persistent across dialects and speakers (see Nearey, 2013, for a discussion). Studies show that the acoustic cues related to VISC are as informative as other inherent vowel properties, such as pitch and duration (Hillenbrand et al., 2000; Hillenbrand et al., 2001).

The VISC research discussed above has focused on data from carefully produced laboratory speech. Some researchers (namely Strange et al., 1986; Strange and Jenkins, 2013) are wary of investigating VISC in spontaneously produced vowels because of the amount of hypo-articulation and coarticulation present in spontaneous speech (discussed further below). The present study tests this concern by investigating VISC in spontaneous speech. I predict that formant trajectories in spontaneous speech will have patterns similar to those demonstrated in laboratory speech. In order to discuss current theories of VISC and how they apply to the present study, it is necessary to first highlight the challenges faced when analyzing spontaneous speech.

2.1.1 Challenges of Dynamic Formant Movement in Spontaneous Speech

Compared to carefully elicited laboratory speech, spontaneous speech is produced with faster articulations and more gestural overlap (Lindblom, 1963). Spontaneous speech presents two considerable challenges to the analysis of dynamic formant movement. The first challenge concerns articulatory undershoot, or hypo-articulation, while the second challenge concerns coarticulation with the surrounding phonetic environment.

Spontaneous speech is produced more quickly than citation or laboratory speech, often resulting in less movement in the vocal tract and reduced segments/words (for discussion, see Lindblom, 1963; Ernestus and Baayen, 2007;

Tucker, 2011; Warner et al., 2012; Strange and Jenkins, 2013). There is strong evidence for speakers using a smaller vowel space in spontaneous speech compared to more carefully elicited speech (Lindblom, 1963, 1990; Moon and Lindblom, 1994; Aylett and Turk, 2006). This leads to an overall effect of vowel centralization and hypo-articulation in spontaneous speech. Strange and colleagues argue that this centralization effect that is inherent to spontaneous speech is at odds with dynamic formant movement (1989, 2013). They reason that, because vowels in spontaneous speech are already produced with reduced articulations, any dynamic formant movement will also be reduced, perhaps to insignificance. Simply stated, Strange et al. claim that vowels in spontaneous speech are articulated too quickly to exhibit any systematic patterns of movement.

Furthermore, Strange and colleagues predict that coarticulatory effects will be too great to overcome. They contend that the gestures from the surrounding phonetic environment will overlap with the vowel's gesture, perhaps eclipsing the vowel entirely. This poses a second challenge to analyzing spontaneous speech data for formant movement: it is difficult to parse out formant movement that is inherent to the vowel only, and not to coarticulation effects.

However, this coarticulatory challenge is not unique to spontaneous speech; it also poses a challenge for citation speech. In fact, current research on vowel production in citation speech focuses on statistical methods to control for coarticulation from the phonetic environment (for a discussion, see Nearey 2013; Broad and Clermont, 2014). In the past, however, coarticulation was addressed by carefully crafting and controlling the phonetic context surrounding the vowel, e.g., by creating CVC contexts with initial /h, b, d, g, p, t, k/ consonants and final /b, d, g, p, t, k/ consonants (Andruski and Nearey, 1992; Hillenbrand et al., 1995; Assmann and Katz, 2000; Hillenbrand et al., 2001; Hillenbrand and Houde, 2003; Nearey, 2013).

Unlike the carefully controlled conditions of laboratory speech, the phonetic context surrounding a vowel in spontaneous speech is relatively uncontrolled and highly variable. The phones preceding and following a vowel are also produced with variable spectral properties, often due to the reduced nature of spontaneous speech (van Son and Pols, 1999; Johnson, 2004; Tucker and Warner, 2007; Tucker, 2011; Warner and Tucker, 2011; Warner et al., 2012). The variability in a vowel's immediate phonetic context adds to the difficulty in parsing inherent formant trajectory patterns from coarticulatory effects. According to Strange and Jenkins (2013), the variable nature of the phonetic context coupled with its rapid articulation could bury systematic patterns of formant trajectories beneath the effects of coarticulation.

The present study takes a first step towards analyzing vowel patterns in spontaneous speech in the face of these challenges. I use various statistical and observational techniques to control for variability in the phonetic environment, allowing me to distinguish between vowel formant patterns and coarticulation. Further, I analyzed a large sample size of vowel acoustic data in order to maintain statistical power.

However, it is notable that the purpose of this study is more to observe and describe dynamic formant movement patterns in spontaneous speech, than to formally address the inherent nature of spectral change in spontaneously produced vowels. The descriptive observations in the present study are made under current theories of VISC. Theoretical research on VISC aims to characterize two aspects of dynamic formant movement: 1) how to best measure dynamic spectral properties, and 2) how to best describe VISC patterns.

2.1.2 Theories of Vowel Inherent Spectral Change

There are several theories as to which details of formant movement are most relevant for production and perception. Throughout the course of VISC research, three main hypotheses have been proposed to capture the informative nature of formant movement patterns. Morrison (2013; see also Morrison and Nearey 2007) identified these as the: onset+offset hypothesis, onset+slope hypothesis, and onset+direction hypothesis. Each of the three hypotheses acknowledges the importance of the formant trajectories' onset. They differ, however, in what type of information best captures the dynamic spectral movement that follows. The onset+offset hypothesis predicts that in addition to the onset, a vowel's offset F1 and F2 values (which can be used to calculate a trajectory's change in frequenc ΔF) will be the most informative. The onset+slope hypothesis predicts that formant movement patterns are a function of time ($\Delta F/\Delta t$), and the velocity of a vowel's trajectory will be the most informative. Lastly, the onset+direction hypothesis predicts that the overall direction of movement in a vowel's trajectories (such as "increasing F1+decreasing F2," "decreasing F1+decreasing F2," etc.) will be the most informative.

In fact, it seems that the best performing hypothesis is one consisting of a vowel trajectory's onset+offset+pitch+duration. In a discriminant analysis, Morrison (2013) found the onset+offset hypothesis to be superior in capturing both the acoustic production detail and the perceptual cues used by listeners (see also Nearey and Assmann, 1986; Hillenbrand et al., 2001; Morrison and Nearey 2007). Other studies on the perception of dynamic formant movement have found vowel duration and pitch to be informative of VISC as well (Hillenbrand et al., 2001). For example, a vowel's intrinsic pitch can help the listener discern between vowels articulated in the upper and lower halves of the vowel space (for discussion, see Ohala and Eukel, 1987). Vowel duration is also informative in discerning between traditionally named 'tense' and 'lax' vowels (for discussion, see Hillenbrand, 2013). A framework that combines these factors as onset+offset+pitch+duration is summarized by Morrison and Assman (2013).

In addition to testing the best means of capturing VISC, there has been substantial research on describing the VISC patterns of movement in carefully produced speech. According to Nearey (2013), there are four different types of VISC movement:

- upsilon-movement: movement towards the high back corner of the vowel quadrilateral
- alpha-movement: movement towards the low ventral corner of the vowel quadrilateral
- iota-movement: movement towards the high front corner of the vowel quadrilateral

4) schwa-movement: centralization, or movement towards the centre of the vowel quadrilateral

The 'inherent' nature of VISC connotes that certain vowels tend to display a characteristic type of movement. For example, /o/ tends to pattern with upsilon-movement and /æ/ tends to pattern with alpha-movement. A predictive theory of VISC is based on observations that these patterns persist across speakers and utterances.

However, current predictions of dynamic formant movement have been entirely based on vowel data from citation speech. Though some studies have investigated vowel production in context (Andruski and Nearev. 1992; Hillenbrand et al., 1995; Assmann and Katz, 2000; Hillenbrand et al., 2001; Hillenbrand and Houde, 2003; Nearey, 2013), all studies of VISC and dynamic formant movement have analyzed vowels produced in carefully controlled, laboratory-based elicitations. There have been no studies that have investigated the nature of dynamic formant movement in a more ecologically valid situation, such as the unbalanced contexts of everyday spontaneous conversations. Since much has been learned about vowels' dynamic spectral properties in citation speech, several VISC researchers (namely, Hillenbrand, 2013; Strange and Jenkins, 2013) are calling for the next step in vowel production analysis: dynamic spectral properties of spontaneous speech.

The present study expands the research of dynamic formant movement and VISC by analyzing vowels produced in everyday, conversational spontaneous speech. The analyses used in this chapter focus on both descriptive and statistical investigations of vowels produced in spontaneous speech. Although the aforementioned challenges prevent me from directly testing one VISC theory over another, my data do allow for general comparisons to be made between the dynamic formant patterns in spontaneous speech versus citation speech. The purpose of the present study is to take an initial step in observing and describing dynamic formant movements in spontaneous speech as they relate to predictions of VISC patterns made on laboratory speech data.

2.2 Method

2.2.1 The Data

The present study limits the measurement of vowel tokens to a subset of monosyllabic irregular English verbs. The subset of monosyllabic irregular English verbs includes 74 verb pairs that differ between their past and present tense forms based on a single vowel. For example, the dataset included irregular verbs like *sing/sang*, but excluded irregular verbs that contained the addition of a phoneme, such as *weep/wept*, and verbs that contained other phonological changes, such as *is/were*. Studying this subset of English verbs allows for subsequent investigation into the role that morphology plays in the production and processing of the vowels' acoustic details (see Chapters 3 and 4 of this dissertation).

Productions of these verbs were extracted from the Buckeye Corpus of Conversational English (henceforth, Buckeye Corpus; Pitt et al., 2007). The Buckeye Corpus contains roughly 300,000 words in 40 hours of recorded spontaneous speech gathered from sociolinguistic-like interview sessions with 40 adult speakers. Speakers are evenly distributed amongst genders and age, and each speaker's recording lasts roughly for an hour. The Buckeye Corpus yields 6,983 verb tokens containing ten different monophthongs: /i/, /I /, ϵ /, α /, / Λ /, / μ /, /U/, /U/, /O/, /D/, and / α /.

The contours of the fundamental frequency and first, second, and third formants (henceforth, f0, F1, F2, and F3, respectively) for each vowel were automatically gathered using FormantMeasurer (Morrison and Nearey, 2011) and hand-corrected. For the entire duration of each vowel, pitch and formant measurements were taken approximately every 2ms. Quantile plots of the first and second formant are given in the Appendix (Figure A.1, Figure A.2, Figure A.3, and Figure A.4).

2.2.2 Analyses

The current study contains two analyses of dynamic formant movement: 1) a description of the dynamic formant patterns for each vowel; and 2) a discrimination test of how to best capture the dynamic formant patterns.

The first analysis consists of both descriptive and statistical analyses to test for any dynamic movement in the spontaneously produced vowel formants. For the descriptive analysis, vowel onsets and offsets were plotted and analyzed for visible differences. The statistical analyses consist of both standard tests of difference (t-tests) and Linear Mixed Effects Regression (LMER; Baayen et al., 2008) analyses. These were computed in the R statistical environment using the *lme4* (Bates et al., 2014) and *languageR* (Baayen, 2013) packages.

The second analysis follows the methods of Morrison and Nearey (2007) for determining how to best capture the informative nature of the dynamic formant patterns. A set of linear discriminant analyses were used to determine which of the three hypotheses of VISC movement (onset+offset, onset+slope, or onset+direction) performs best in discriminating vowels from one another, based on the acoustic information each hypothesis provides. These were computed in the R statistical environment using the *MASS* package (Ripley et al., 2014).

Both analyses were iterated five times: once using non-normalized Hertz values and four times using data normalized by one of four techniques for comparison (Lobanov, 1971; Nearey, 1978; bark transform: Traunmüller, 1990; and logarithmic transform). The results of the normalized analyses were similar to each other and to that of the non-normalized analyses. As such, the results of the analyses calculated based on non-normalized Hertz values are discussed here.

2.2.2.1 Standard Tests of Difference (t-tests) Procedure

In the difference tests, a series of t-tests were used to assess significant differences between vowels' F1 and F2 onsets and offsets. These tests were performed separately on males and females. To decrease the effect of the surrounding phonetic environment on the trajectory of formant movement, the

analysis was limited to formant values that occured between 20% and 80% of the vowel's total length (i.e., following Nearey, 2013's reanalysis of the Hillenbrand et al., 1995 data).

This method of decreasing the effect of the phonetic context reduces the effect of formant transitions at the tail ends of the vowel but does not control for the interaction between formant trajectories and the phonetic environment. Not all effects of the phonetic environment on formant production can be accounted for by removing the formant transitions; the formants themselves will be produced differently or masked according to the phonetic environment (for a discussion, see Van Summers, 1987; Sussman et al., 1991; Nearey, 2013; Broad and Clermont, 2014).

With the acknowledgement of this possible confound with the phonetic context, each vowel was tested for a significant difference between 1) F1 values at 20% and 80% of the total vowel duration, and 2) F2 values at 20% and 80% of the total vowel duration.

2.2.2.2 Linear Mixed Effects Regression Procedure

To better control for the surrounding phonetic environment, an additional LMER analysis was conducted over the trimmed data (i.e., over 20-80% of the vowels' total durations). The identities of the phones in the surrounding environment (i.e., the phone before the vowel and the phone after the vowel) were included as phonetic controls of context on the formant measures. Though using articulation characteristics of the surrounding phonetic context (such as place, voice, and manner) would make for a simpler, more interpretable model, this was not possible for the data at hand. For some vowels, there was not enough contrast in the articulatory characteristics to allow for LMER modelling. For example, the vowel /æ/ for females was always followed by a voiced consonant, making it impossible to model the contrast between voiced and voiceless phones. For this reason, the identities of the phones in the phonetic environment surrounding the vowel were used to model the contribution of the immediate context, rather than articulatory characteristics.

Ideally, in a regression analysis, the formant values under investigation would be compared to a neutral reference level comprising formant values for the same vowel in a phonetic context-free environment (such as in isolation). However, productions of each vowel in such context-free environments do not exist in the Buckeye Corpus for every speaker. Thus, instead of conducting a regression analysis that compares vowel formants to a reference level of phonetic context (dummy coding), the regression analysis compared vowel formants to the mean of the phonetic context (deviation coding). The mean of all the phonetic environments that occur with a vowel, then, serves as the neutral reference, which will be calculated from the dataset. The phonetic context mean and, consequentially, the VISC mean, may differ between data sets and sets of words. It is important to keep in mind that the current chapter investigates relative VISC values and discerns patterns of change, rather than absolute measures.

To further control for the surrounding phonetic environment, the distribution of both the phone before and the phone after each vowel (across all speakers) was evaluated for any skewing that would affect the mean of the phonetic context. For example, a greater representation of a particular phonetic environment would shift the mean towards that particular environment, producing a skewed mean of the surrounding context instead of a more neutral one. There are several ways of dealing with this skewed mean: 1) some of the items belonging to the skewing environment could randomly be removed so that the distributions are more even; 2) weights could be assigned to each environment so that each environment is weighted equally, though the number of items within each equally weighted environment can vary; or 3) all items from skew-inducing environments can be removed altogether. The third option (removing all skewinducing items) was chosen for this particular analysis. The first option (random removal, even distribution) proved difficult to control across speakers; often, the skew-inducing environments were produced mostly by a handful of speakers (e.g., a particular environment was used by a few speakers, and those few speakers used the environment often). The second option (assigning weights) proved ineffectual for sparser environments: the weighted contribution from environments with low densities would be calculated based on a few items (low statistical power) and is less informative than the weighted contribution from environments with higher densities. Thus, removing the items belonging to skew-inducing environments altogether seemed the least arbitrary and maintained the most statistical power.

Half of the vowels (namely /i/, /I /, / ϵ /, / α /, /o/) contained disproportionate skewing in the distribution of the surrounding phonetic context (see the Appendix Table A.1, Table A.2, and Table A.3). For example, /n/ occurred before /o/ three times as often than any other phone (with 50% of that particular environment produced by only 30% of the speakers). These skewed distributions were resolved by excluding formant measures associated with the disproportionate contexts. Figure 2.1 illustrates the linear model's results for /i,//I /, / ϵ /, / α /, /o/ before and after removing the skewed formant measures, compared to the average of the raw data.

With the exception of /a/, resolving the skewed context distributions resulted in a similar pattern of VISC movement, with a shift in the vowels' location in the F1xF2 vowel space. Thus, removing the skewed measures (n=955, 13% of the original data set) generates estimates that are more representative of the raw data (as seen in Figure 2.1). Post-hoc analyses also show that resolving context skewing improves the statistical models' performance (according to the models' AIC measures). There were 6,028 vowel tokens remaining in the data set after removing those skewed for context. Information about the vowel tokens removed, including the skewed contexts, are given in the Appendix (Table A.4).

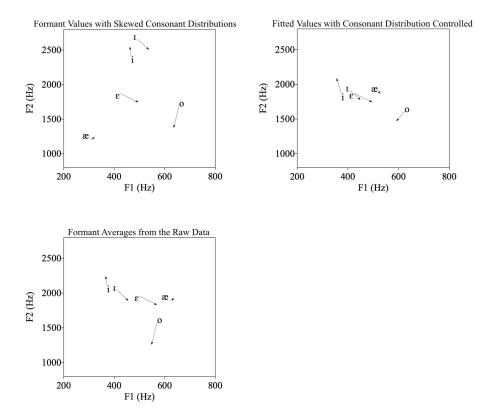


Figure 2.1: Illustration of removing skewed context distributions for the five vowels affected by skewing. The upper-left pane presents the fitted formant values from a linear mixed-effects regression model without controlling for context skewing. The upper-right pane presents the fitted formant values from the linear mixed-effects regression model with context skewing controlled. The lower-left pane presents average formant values from the raw measurements.

F1 and F2 for each vowel were modelled separately in the regression analysis, for a total of 20 linear mixed-effects models (10 vowels, each with F1 as the dependent variable in one model and F2 as the dependent variable in a second model). The duration of each vowel was normalized in terms of percentages of the total vowel duration (i.e., 20% of the total vowel duration, 30%, 40%, 50%, 60%, 70%, and 80%).

These normalized measures of time served as the main independent variable in predicting formant values, with the vowel onset (20%) serving as the reference level. In this way, a vowel's formant value at the 20% time step was

compared to the formant value at each subsequent time step. The LMER results are then relatable to the difference tests (t-tests) by comparing the formant values of the vowel onset (20% time step) to the formant values of the vowel offset (80% time step, based on Nearey's reanalysis of the data (2013) from Hillenbrand et al., 1995).

The deviation coding of the phonetic context (the phone before and after the vowel) also served as an independent variable. The vowel's duration, average pitch, and speaker gender served as controls. A simple inspection of the Pearson's correlation coefficients for all possible two-way interactions found no strong correlations and thus low collinearity between the numeric predictors. Random intercepts were allowed for individual speakers. A summary of the predictors for the LMER models is given in Table 2.1.

Predictor	Description	use in LMER models
Formant Value	the F1 and F2 value at a particular time point; given in Hertz; F1 and F2 for each vowel were analyzed in separate LMER models	dependent variable
Time	normalized measure of time; each 10% of the total vowel duration is marked from 20%-80% (i.e. 20, 30, 40, 80%)	independent variable of interest
Vowel Duration	given in milliseconds	control variable
Previous Segment	deviation coding for the segment preceding the vowel	control variable
Next Segment	deviation coding for the segment following the vowel	control variable
Pitch	the f0 value at a particular Percent time point; given in Hertz	control variable
Gender	the gender of the Speaker as identified in the Buckeye Corpus	control variable
Speaker	the anonymous identity of the Speaker	random intercept

Table 2.1: Predictors for main effects and random effects in the LMER models.

2.2.2.3 Discriminant Analysis Procedure

In addition to investigating the presence of dynamic formant movement, additional linear discriminant analyses tested the ability of Morrison's (2013; Morrison and Nearey, 2007) dynamic formant movement models to distinguish between vowels in spontaneous speech. The analysis is based on a linear stepwise parametric technique trained on all various combinations of F1 and F2 onsets, offsets, slope, direction, pitch, and duration.

Vowel onset and offset measures were again taken at the 20% and 80% points of each vowel. A vowel's slope was calculated as the ratio of the Euclidian distances between the vowel's F1xF2 offset and F1xF2 onset. Onset and offset measurements used for calculating the formant trajectories' slopes were again taken at 20% and 80% of each vowel's total duration. It is possible, and likely, that taking onset/offset measurements at other durational points in the vowel could affect the slope measurement (since a linear slope's function is dependent upon where in the vertical and horizontal planes a sample is taken). However, the 20% and 80% formant measurements were used to maintain consistency throughout the analysis.

A vowel's direction was coded factorially according to the vowel's direction of formant movement (i.e., all possible variations of F1 [no change, increasing, or decreasing] combined with F2 [no change, increasing, or decreasing] for a total of 9 possible combinations). The same iteration of the discriminant analyses was performed two times: once on vowels produced by males only, and once on vowels produced by females only.

2.3 Results

2.3.1 Vowel Properties, Gender, and Dialect

Table 2.2 illustrates three properties of each vowel: average duration, frequency in the Buckeye Corpus, and average formant values for each gender. Overall, the difference in vowel duration is as expected, with tense vowels being produced longer than their lax vowel counterparts (mean duration of tense vowels: 129.14ms, mean duration of lax vowels: 71.44ms; t = 38.9089, p < 0.001; Klatt, 1976).

Gender differences in the vowel space are also as expected. A discriminant analysis shows that there is a significant difference between speaker genders in the location of vowels in the vowel space. Females tend to articulate vowels with higher F1 and F2 frequencies compared to males (p < 0.001 for all vowels).

Additionally, the vowel space measured by the Euclidian distance from the centre of the vowel space to the four corner vowels /i/, /æ/, /u/, and /ɔ / is larger for females than for males (p < 0.001 for all vowels).

It is notable that the high back vowels /u/ and / \mathbf{U} / are, in general, fronted in the Columbus, Ohio dialect (Thomas, 1989; Lavob et al., 2005). This dialectal fronting is evident in the F2 measures from /u/ and / \mathbf{U} / in the present subset of irregular English verbs of the Buckeye Corpus. /u/ and / \mathbf{U} / fronting are illustrated in the mean F2 value, as well as in the vowel plots in Figure 2.2.

Table 2.2: Four vowel properties in the subset data of the Buckeye Corpus: average vowel duration; frequency of occurrence in the subsetted Buckeye Corpus; and mean F1 and F2 values for males and females.

	Average	Frequency in	Males		Females	
Vowel	Duration (ms)	Buckeye Corpus	Mean F1 (Hz)	Mean F2 (Hz)	Mean F1 (Hz)	Mean F2 (Hz)
/i/	117.78	339.80	340.27	1984.67	396.33	2415.93
/1/	66.52	406.33	400.23	1841.77	475.32	2154.48
/ɛ/	82.99	480.09	479.37	1736.81	598.62	2031.21
/æ/	114.35	576.30	576.30	1802.56	699.70	2030.30
/ʌ/	73.68	541.17	541.44	1395.18	686.89	1582.52
/u/	113.82	367.14	370.51	1526.77	461.54	1836.97
/ʊ/	62.45	423.13	426.63	1491.34	507.06	1725.65
/o/	146.62	497.50	497.79	1288.05	641.22	1509.09
/ɔ/	143.14	565.29	572.56	1044.73	676.59	1169.76
/a/	101.97	572.11	571.52	1554.83	748.17	1733.03

2.3.2 Dynamic Formant Movement Patterns

For the descriptive analysis of formant movement, the average F1xF2 values at 20% of the vowel's total duration will serve as the onsets, and average F1xF2 values at 80% of the vowel's total duration will serve as the offsets. The trajectories of the formant movements for each of the 10 vowels are illustrated in Figure 2.2, separated by gender. Labelled arrows indicate formant movement through the vowel space. The blunt end of each arrow marks the average onset of the labelled vowel, while the tip of the arrowhead marks the average offset.

2.3.2.1 The Presence of Dynamic Formant Movement

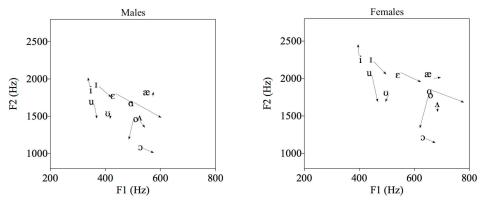


Figure 2.2: Vowel plots for the average onset and offset of each vowel. Data from males are shown in the first panel, data from females in the second. Blunt ends of the arrows indicate 20% of the total vowel duration (onsets) and arrowheads indicate 80% of total vowel duration (offsets).

As seen in Figure 2.2, most of the vowels move dynamically through the vowel space. The dynamic formant movement visually evident in the onsets and offsets is also supported by the statistical analyses. Table 2.3 shows the results for the t-tests and LMER models; all coefficients for the t-tests and LMER models can be found in the Appendix (Table A.5 and Table A.6).

The results of the difference analyses (t-tests) show that, with the exception of $/\alpha$ / (which does not exhibit any statistically significant dynamic formant movement in either gender), every vowel exhibits some statistically significant movement in at least one dimension (F1 or F2). This is evident in both the vowel plot (Figure 2.2) and regression coefficients (Table 2.3).

Overall, most of the vowels in the subset of irregular English verbs from the Buckeye Corpus exhibit dynamic formant movement in at least one formant dimension. Nine out of the ten vowels display movement in the F1 vowel space, and seven out of the ten vowels display movement in the F2 vowel space (with 7 vowels exhibiting movement in both formant dimensions). This dynamic formant movement is robust in both the descriptive vowel plot analysis and the statistical analyses (t-tests and linear mixed-effects regression). Table 2.3: Summary of statistical analyses for differences in F1 and F2 onsets/offsets. The left side shows the significance values from the analysis on significant difference (t-tests on males, females, and combined genders). The right side shows the results from the linear mixed-effects regression analysis (controlled for gender). Shading indicates non-significance.

			linear mixed-effects regression						
			(statistically controlled for context)						
	ma	males		females		combined genders		statistically controlled for gender	
	F1 onset/offset	F2 onset/offset	F1 onset/offset	F2 onset/offset	F1 onset/offset	F2 onset/offset	F1 onset/offset	F2 onset/offset	
Vowel	difference	difference	difference	difference	difference	difference	difference	difference	
/i/	p = 0.13	p < 0.01	p = 0.43	p < 0.01	p = 0.16	p < 0.01	t = -5.30	t = 15.98	
/1/	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	t = 8.53	t = -11.89	
/ε/	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	t = 16.04	t = -14.14	
/æ/	p = 0.87	p = 0.35	p = 0.29	p = 0.82	p = 0.48	p = 0.45	t = 0.16	t = -0.33	
/ʌ/	p = 0.08	p < 0.01	p = 0.93	p < 0.01	p = 0.23	p < 0.01	t = 1.90	t = -7.93	
/u/	p = 0.19	p < 0.01	p = 0.16	p < 0.01	p = 0.10	p < 0.01	t = 2.73	t = -14.19	
/ʊ/	p = 0.87	p = 0.06	p = 0.52	p < 0.01	p = 0.57	p < 0.01	t = -0.55	t = -5.03	
/o/	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	t = -5.90	t = -11.47	
/ɔ/	p < 0.01	p < 0.01	p = 0.18	p = 0.15	p < 0.01	p < 0.01	t = 5.40	t = -6.52	
/a/	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	p < 0.01	t = 28.84	t = -28.89	

2.3.2.2 The Direction of Dynamic Formant Movement

In addition to the difference between onset and offset, the direction of movement shown in the vowel plots is also of interest. Statistical analysis shows that the amount of movement differs between genders for some vowels (measured as the Euclidian distance between onset and offset for each formant; see Table 2.4), but the patterns of direction are similar (as illustrated in Figure 2.3). Thus, the results that follow are from analyses with the genders combined.

It is also noted that the patterns observed here are particular to the data at hand, specifically regarding the dialect of the speakers. The descriptions below are intended to give an overview of the observational trajectories for this particular set of central Ohioan vowels. How the formant patterns described below compare to the formant patterns observed in other North American dialects (especially the high back vowels) is addressed in the subsequent Discussion section.

Table 2.4: Euclidean distance estimates and coefficients from tests of significant differences (t-tests) in formant movement between males and females; boldface indicates non-significance.

		F1		F2			
	est. Euclidian distance	est. Euclidian distance	p-value for gender differences in	est. Euclidian distance	est. Euclidian distance	p value for gender differences	
Vowel	for males	for females	amount of movement	for males	for females	in amount of movement	
/i/	118.5406	163.6485	0.63	427.9936	591.1031	< 0.01	
/1/	68.7624	99.3933	0.88	294.0575	335.1692	0.01	
/ɛ/	69.8361	99.6508	0.13	229.7997	270.1119	0.84	
/æ/	149.0723	146.3191	0.52	261.4749	241.8436	0.46	
/ʌ/	130.3040	187.1380	0.03	210.9727	301.9798	0.06	
/u/	89.6379	125.1657	0.12	237.1169	336.1949	< 0.01	
/ʊ/	51.5258	97.4717	0.47	132.2941	185.2130	< 0.01	
/0/	94.6212	133.1375	< 0.01	297.0597	363.3115	< 0.01	
/ɔ/	116.3860	143.9893	0.85	515.7780	664.9841	0.97	
/a/	124.2274	198.1164	0.02	137.1151	160.9024	< 0.01	

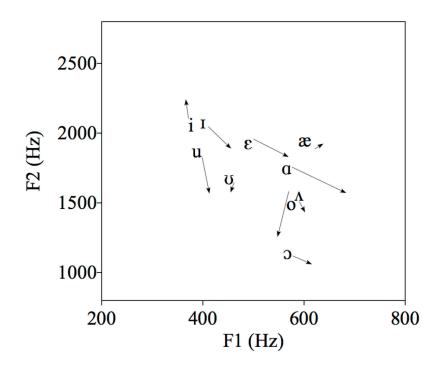


Figure 2.3: Vowel plots for the average onset and offset of each vowel across speakers. Blunt ends of the arrows indicate 20% of the total vowel duration (onsets) and arrowheads indicate 80% of total vowel duration (offsets).

Since /æ/ did not show any statistically significant movement (Table 2.3), it was not analyzed for patterns in directional movement. The remaining nine

vowels were analyzed for significant F1 and F2 directional patterns between their onsets and offsets. The vowel plots, t-tests, and LMER models agreed that five of the nine vowels (/I /, / ϵ /, /u/, / σ /, / α /) exhibit significant movement towards the lower region of the vowel space (indicating a downwards movement in height), as seen in their higher F1 offset values relative to their lower F1 onset values (with the exception of /u/, which had significant movement according to the LMER model but not the t-test). On the other hand, /i/ and /o/ exhibit F1 movement towards the higher region of the vowel space (indicating the tongue moving upwards in height). /o/'s negative F1 movement is evident both on the vowel plot and in the statistical analyses. Though visually present on the vowel plot, /i/'s decrease in the first formant is significant only when context is statistically controlled for (i.e., in the LMER model, but not in the difference test). The two remaining vowels / Λ / and / σ / do not exhibit any significant F1 movement in either statistical analysis, though F1 movement is visually present on the vowel plot.

Eight of the nine vowels also showed significant movement towards the back area of the vowel space (indicating a decrease in tongue advancement), as evident in their lower F2 offset values relative to their higher F2 onset values. As with the differences in the onset/offset of the vowels' first formant, arrows in the vowel plot (see Figure 2.3) and statistical analyses illustrate F2 movement to the back of the vowel space. The front vowel /i/, however, exhibits the opposite F2 movement. /i/'s higher F2 offset values relative to its lower F2 onset values indicate more of a movement towards the front vowel space area. A summary of each vowel's F1 and F2 movements is given in Table 2.5 below, and each vowel's VISC-like movement is addressed in the Discussion.

Table 2.5: Summary of vowel F1 and F2 movement. An 'X' indicates the same statistical significance for both the difference tests on data from all genders and linear mixed-effect model.

	F1 movement (tongue height)			F2 movement (tongue advancement)			
Vowel	Positive (lower)	Negative (higher)	No Significant Movement	Positive (more front)	Negative (more back)	No Significant Movement	VISC-like movement
/i/		LMER ONLY		Х			Iota
/1/	Х				Х		Alpha/ Schwa
/ε/	Х				Х		Alpha
/æ/			х			Х	none
/ʌ/			х		х		Alpha (trending)
/u/	Х				х		Upsilon
/ʊ/			х		х		Upsilon
/o/		х			х		Upsilon
/ɔ/	Х				х		Alpha
/a/	Х				х		Alpha

2.3.3 Discriminating Dynamic Formant Movement

The outcomes of the linear discriminant analysis are illustrated in Table 2.6. The outcomes are given for two iterations of the same discriminant analyses: once for males only, and once for females only. The baseline model is composed of a single F1 and F2 measurement (in addition to the f0 and duration components). The percentages shown for the baseline models indicate how well the models perform at identifying the vowels. The outcomes for the other three models are displayed in terms of percentages that indicate the contribution of a particular model when compared to the baseline F1 onset+F2 onset model. A positive (+) percentage indicates that a particular model performs better than the baseline model by x%. A negative (-) percentage indicates that a particular model performs worse than the baseline model by x%. All models, including the baseline

model, include f0 and duration components as well. Each combination of F1 and F2 onsets, offsets, slope, and direction that are of interest are shown.

Table 2.6: Results of the discriminant analysis: amount of improvement compared to a single F1 and F2 measurement. In addition to the formant measures listed, all models also include f0 and duration components.

Model	Males only	Females only
(baseline model) pitch + duration + F1 onset + F2 onset	50.06%	51.64%
pitch + duration + F1 onset + F2 onset + F1 offset + F2 offset	7.08%	6.39%
pitch + duration + F1 onset + F2 onset + slope	0.05%	-0.05%
pitch + duration + F1 onset + F2 onset + direction	-40.19%	-40.41%

Regardless of gender, a model of dynamic vowel movement consisting of formant onsets and offsets (in addition to f0 and vowel duration) performed the best at discriminating vowels produced in spontaneous speech, with an accuracy ranging from 57.14 to 58.03%. When comparing the models between genders, the addition of slope to the baseline F1 onset + F2 onset model performed equally as well as the baseline model itself, with both models discriminating amongst vowels with accuracies ranging from 50.11 to 51.59%. A model containing direction performed considerably worse than all other models, with accuracy in vowel discrimination ranging from 9.87 to 11.23%. Out of the baseline, offset, slope, and directional models, the offset model performs the best at discriminating between vowels.

2.4 Discussion

Analyzing formant patterns in vowels from spontaneous speech presents specific challenges that arise due to the rapid nature of production and coarticulation with the surrounding phonetic context. The present study attempted to control the surrounding phonetic context in part by removing the vowels' transitional periods and focusing only on the vowel's centre (between 20 and 80% of the vowel's total duration). Additionally, linear regression analyses were used to statistically control for the surrounding phonetic environment by comparing formant values to the arithmetic means of the phonetic context, with possible skewing in the distribution of context removed. However, these steps do not fully remove all effects exerted by the surrounding phonetic context. As such, results in this section are discussed with the acknowledgement that full context control was not achieved, but that there are nevertheless discernible patterns of dynamic formant movement. Notably, Hillenbrand (2013) emphasizes that coarticulation can confound dynamic formant patterns without obscuring them entirely.

2.4.1 Patterns of Formant Movement in Spontaneous Speech

Researchers have hypothesized that dynamic formant movement seen in citation speech will not be present in spontaneous speech due to hypo-articulatory and coarticulatory effects with the surrounding context (Strange et al., 1983; Strange and Jenkins, 2013). However, this study finds that, as seen in citation speech, vowels produced in spontaneous speech do not exhibit steady-states. The dynamic nature of spontaneously produced vowels is evident both in descriptive vowel plots and statistical tests of difference and linear mixed-effects regression modelling. The present analysis finds formant movement that is similar to that of Nearey's (2013) reanalysis of Nearey and Assmann (1986) data on vowels produced in citation speech with carefully controlled phonetic contexts. While the Nearey and Assmann (1986) analysis also used a similar method of controlling for phonetic context by disregarding the 24%-64% tail ends of vowels, the actual production of the vowels were also carefully controlled for context (with all vowels being produced in isolation). Since the production of vowels in spontaneous speech is not as carefully controlled as the citation speech vowels, comparisons between the present data and VISC seen in citation speech are limited.

Nonetheless, there are general similarities and differences between the present spontaneous speech data and citation speech data. The vowels in this study that display significant formant movement can be grouped into three different categories according to their combined F1xF2 movement. Five vowels with positive F1 movement and negative F2 movement, $I / \langle \epsilon / \langle \Lambda / \rangle / \langle \sigma / \rangle$, $\langle \alpha / \rangle / \langle \alpha / \rangle / \langle \alpha / \rangle / \langle \alpha / \langle \sigma /$ can possibly be classified as exhibiting VISC-like patterns that Nearey (2013) has termed Alpha-movement. Alpha-movement is characterized by formant trajectories that move towards the low back corner of the vowel space (i.e., a slope with a negative F2 and positive F1 for high vowels, and a slope with a positive F2 and positive F1 for low vowels). Though the F1 movement in $/\Lambda$ / is not significant, the descriptive analysis shows the vowel moving towards the lower area of the vowel space (trending positive F1 movement). Nonetheless, /I /, $/\epsilon$ /, /2 /, and /a/ best exemplify this type of movement, as seen in the directional tilt of their long trajectory tails, and the directional pointing of their arrowheads. However, it is possible that t/is instead moving towards the centre rather t han back area of the vowel space, exhibiting Schwa-like-movement rather than Alphalike-movement. That is, the negative F2 movement of this vowel could be attributed to an effect of centralization rather than an intended back-edge target. An investigation of the vowel plots does not provide any obvious cues for distinguishing any centralization, or Schwa-like-movements from Alpha-likemovements.

However, the high front vowel /i/ can be classified as exhibiting a different type of movement all together. /i/ moves in the opposite direction of Alphamovement, towards the high front corner of the vowel space, what Nearey (2013) classifies as Iota-movement. The Iota-like-movement in /i/ is evident by the vowel's long trajectory tail and stands out as the only vowel with positive F2 movement.

The remaining three vowels /u/, / υ /, /o/ exhibit movement towards the high back corner of the vowel space (though the F1 movement in / υ / is not significant, the vowel plot shows a trend in movement towards the high area of

the vowel space). Movement towards this region of the vowel space is termed Upsilon-movement in Nearey (2013).

To summarize, according to Nearey (2013), there are three expected patterns of VISC movement that are relevant here:

- 1) /u/, /o/ exhibit Upsilon-movement
- 2) /I /, / ϵ /, / α /, / υ / exhibit Alpha-movement
- 3) /i/, $/\alpha/$, $/\Lambda$ / are not identified as exhibiting any particular movement

Depending on where these vowels are located in the vowel space, Alphamovement can be also interpreted as Schwa-movement, notably for /I /.

Overall, the patterns of vowel movement found in the present study support the three expected patterns of VISC movement. Of the ten vowels analyzed in the present study, only four display patterns of movement that diverge from what is expected:

- 1) /i/ exhibits Iota-like-movement in the present study, compared to the expected insignificant movement
- /æ/ does not exhibit any significant movement in the present study, compared to the expected Alpha-movement
- Ju / exhibits Upsilon-like-movement in the present study, compared to the expected Alpha-movement
- (a) exhibits Alpha-like-movement in the present study, compared to the expectation of no movement

The difference in the movement pattern of /i/ found in the present data is based on the increase in the vowel's F2 from onset to offset. While the expectation for /i/ to exhibit insignificant movement is based on citation speech from Nearey and Assman (1986), many other studies have instead found increasing F2 movement, or Iota-like-movement, in citation speech data (Andruski and Nearey, 1992; Hillenbrand et al., 1995; Assmann and Katz, 2000; Hillenbrand et al., 2001; Nearey, 2013). This discrepancy may be partially attributable to a difference in phonetic context: the observations made by Nearey and Assmann (1986) were based on vowels produced in isolation. All of the studies that instead found an increasing F2 pattern for /i/ (suggesting Iotamovement) focused on vowels produced between two consonants (i.e., in CVC contexts with initial /h, b, d, g, p, t, k/ consonants and final /b, d, g, p, t, k/ consonants). Moreover, research focused on the production aspect of vowel formants has found evidence for the modulation of formants, especially F2, when a vowel is placed in various phonetic environments (Summers, 1987; Sussman et al., 1991). Overall, the present study supports the F2 pattern of movement for /i/ found when the vowel is studied within a phonetic environment. My findings on dynamic formant movement using spontaneous speech data confirm the expectations from citation speech based on these studies.

For $/\upsilon/$, the difference between Alpha-movement in citation speech and Upsilon-movement in the present study could be due to a difference in dialectal variation. As stated, the current data of spontaneous speech was gathered from speakers from Columbus, Ohio, a dialectal region notorious for back vowel fronting. The plot of $/\upsilon/$ in the vowel space is much higher on the F2 axis, then, compared to $/\upsilon$ / in vowel plots of other dialects (see Nearey, 2013, for evidence from Western Canadian, North Texan, and Western Michigan dialects). A decrease in F2 would indicate Upsilon-movement for $/\upsilon/$ in the present study, while in other dialects (such as Western Canadian, North Texan, and Western Michigan) an increase in F2 would indicate Alpha-movement (and confusion with Schwamovement). The dialectal fronting of $/\upsilon/$ in the present study can account for the difference between the realized Upsilon-movement and expected Alphamovement. That is, a decrease in F2 movement for $/\upsilon$ / could instead be indicative of resolving vowel fronting, or decreasing the vowel's advancement to make it less dialectally fronted. A similar pattern is also seen with the other fronted vowel, /u/.

The most striking differences in spontaneous and citation speech formant patterns, however, come from the low vowels $/\alpha$ and $/\alpha$. It appears that the patterns of these two vowels found in the present study have been reversed given what is expected from citation speech data. $/\alpha$ exhibits no movement in the present study when it is expected to exhibit significant Alpha-movement, and $/\alpha$

exhibits significant Alpha-like-movement in the present study when it is expected to exhibit no movement. While the movement is not significant, the overall trajectory of /a/ in studies on citation speech point towards the same low back corner trajectory, also seen in the Alpha-like-movement exhibited in the present study (Nearey and Assman, 1986; Hillenbrand et al., 1995; Assmann and Katz, 2000; Hillenbrand et al., 2001; Nearey, 2013). However, both the trajectory and lack of significant movement for /æ/ in the present study is surprising. It is possible that the confounds of the surrounding phonetic context are overriding any dynamic formant movement for /æ/ in the present study. It is also possible that the data for /æ/ lacks statistical power, since the vowel is by far the least frequently occurring vowel in the data set (with 58 tokens out of 6,028; a table of vowel frequency is listed in the Appendix Table A.7).

Overall, the vowels in the present spontaneous speech study exhibit more centralization (seen in the plotting of the vowels in the vowel space) and Schwamovement (exhibited by three of ten vowels) compared to vowels in studies on citation speech. Several proposed theories of spontaneous speech account for such instances of vowel centralization, or reduction, such as articulatory undershoot (Lindblom, 1963) and the Dynamic Dispersion Hypothesis (Strange and Jenkins, 2013). These theories would, for example, predict that speakers will use less jaw, lip, and tongue movement, all of which would contribute to lowering/decreasing the height of vowel articulation and articulating vowels in the more central area of tongue advancement. This gradual decrease is the basis for Strange et al. (1983) predicting that spontaneous vowels will not exhibit patterns of movement that are similar to that of citation speech vowels. This hypothesis is partially supported by the current data when considering the overall effect of vowel space centralization. However, even though vowels produced in spontaneous speech use a smaller and more central area of the vowel space, they still, for the most part (with the exception of four vowel patterns, discussed above), mirror the formant patterns and/or trajectories found in citation speech. Spontaneous vowels do not exhibit insignificant minute changes in formant frequencies, but rather move dynamically through the limited vowel space.

2.4.2 Onset+Offset+Pitch+Duration Model of Formant Movement

The present study's models of VISC in spontaneous speech support the findings of perception research and studies on citation speech. There is a slight superiority for a combined onset+offset+pitch+duration model in capturing the dynamic spectral properties of vowels in conversational English compared to a model of a single F1xF2 measurement. These results are in line with both Hillenbrand et al.'s (2001) research on citation vowels and other studies comparing the different approaches to VISC analysis (such as Morrison and Nearey 2007; Morrison, 2013). It appears that as with citation speech, spontaneously produced vowels are best predicted by their onsets and offsets as they move through the vowel space. The general patterns of amount and direction of formant movement (slope and directional models) are no better at statistically discriminating amongst spontaneous vowels than a single formant measure. Where a vowel explicitly begins and ends in the vowel space is more informative of its identity than the vowel's less specific characteristics of slope and direction of movement.

2.4.3 Future Research

In future studies on spontaneous speech data, it will be important to establish a better means of controlling for the phonetic context. Nearey (2010, 2013) has postulated a theoretical basis for controlling for coarticulation effects when analyzing patterns of dynamic formant movement. His application of mitigating context effects in citation speech can further be adapted into a statistical means of controlling for coarticulation in spontaneous speech (such as in Broad and Clermont, 2014). It is also possible to select a subset of contexts from which to glean vowel data, in order to minimize the effects of the surrounding phonetic environment. For instance, more context-neutral occurrences of vowel productions in spontaneous speech can be selected as a means of limiting coarticulatory influence.

The issue of vowel centralization, however, is less problematic than the issue of coarticulatory influence. The results in the present study indicate that vowels produced in a reduced, centralized form exhibit dynamic formant movement. Though vowel space centralization decreases the range of formant movement, it is not hindering the observation of formant trajectories.

A final future direction of research investigating dynamic formant movement in spontaneous speech is to continue to incorporate data from spontaneous speech production and perception into models of VISC. This can be achieved only by investigating the generalizability of VISC in other speech genres, which would require directly addressing the issues of coarticulation and vowel centralization.

2.5 Conclusion

The present study investigated the existence of dynamic formant movement in 10 monophthongal vowels produced in casual everyday conversations. This analysis of dynamic formant movement is unique in that it is performed on data from spontaneous speech. In investigating the acoustic detail of vowels in the highly variably spontaneous speech context, there were challenges of vowel centralization and coarticulatory effects from the surrounding phonetic environment. While vowels were not controlled for the context in which they were produced, disregarding the tail ends of the vowels and statistical methods attempted to control the effect of gestural overlap from the surrounding phonetic environment. Though these means of control are not complete, they nevertheless allowed for a descriptive analysis of dynamic formant movement and a general comparison with VISC data in citation speech.

With regard to the reservations expressed by Strange and colleagues (1989, 2013) on the investigation of dynamic formant movement in spontaneous speech, the present study finds that these concerns are warranted, but not insurmountable. Even though there is vowel reduction and centralization, as well as context skewing and influences from the phonetic environment, patterns of

dynamic formant movement may still be discernible in spontaneously produced vowels. Most of the dynamic patterns observed in the present study are reminiscent of the VISC expectations outlined by Nearey (2013). However, not all of the patterns are exhibited, and some of the observed patterns are present to a lesser degree than their VISC counterparts. Nevertheless, this study is a step in the investigation of dynamic spectral properties of vowels in spontaneous speech.

The present study finds a slight superiority of a dual-target model of dynamic formant movement in discerning between spontaneous speech vowels. An onset+offset+duration+pitch model of formant trajectories outperforms comparable models based on formant trajectories' slopes and direction of movement. These results are in line with previous findings from VISC data in citation speech (Nearey and Assmann, 1986; Hillenbrand et al., 2001; Morrison and Nearey, 2007; Morrison, 2013). These findings are promising for future research on dynamic formant movement in spontaneous speech.

2.6 References

Andruski, J. E., & Nearey, T. M. (1992). On the sufficiency of compound target specification of isolated vowels and vowels in /bVb/ syllables. *The Journal of the Acoustical Society of America*, *91*(1), 390–410.

Assmann, P. F., & Katz, W. F. (2000). Time-varying spectral change in the vowels of children and adults. *The Journal of the Acoustical Society of America*, *108*(4), 1856–1866.

Assmann, P. F., & Katz, W. F. (2004). Synthesis fidelity and time-varying spectral change in vowels. *The Journal of the Acoustical Society of America*, *117*(2), 886–895.

Assmann, P. F., Nearey, T. M., & Hogan, J. T. (1982). Vowel identification: Orthographic, perceptual, and acoustic aspects. *The Journal of the Acoustical Society of America*, *71*(4), 975–989.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, 59(4), 390–412.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). *lme4: Linear mixed-effects models using Eigen and S4.* Retrieved from http://CRAN.R-project.org/package=lme4

Broad, D. J., & Clermont, F. (2014). A method for analyzing the coarticulated CV and VC components of vowel-formant trajectories in CVC syllables. *Journal of Phonetics*, *47*, 47–80.

Ernestus, M., & Baayen, R. H. (2007). The comprehension of acoustically reduced morphologically complex words: The roes of deletion, duration, and frequency of occurrence. *Proceedings of the 16th International Congress of Phonetic Sciences*, (August 2007, Saarbruecken, Germany), 773–776.

Hillenbrand, J., Clark, M., & Nearey, T. (2001). Effects of consonant environment on vowel formant patterns. *Journal of the Acoustical Society of America*, *109*(2), 748–763.

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. *The Journal of the Acoustical Society of America*, 97(5), 3099–3111.

Hillenbrand, J. M. (2013). Static and dynamic approaches to vowel perception. InG. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 9–30). Springer.

Hillenbrand, J. M., Clark, M. J., & Houde, R. A. (2000). Some effects of duration on vowel recognition. *The Journal of the Acoustical Society of America*, *108*(6), 3013–3022.

Hillenbrand, J. M., & Houde, R. A. (2003). A narrow band pattern-matching model of vowel perception. *The Journal of the Acoustical Society of America*, *113*(2), 1044–1055.

Hillenbrand, J. M., & Nearey, T. M. (1999). Identification of resynthesized /hVd/ utterances: Effects of formant contour. *The Journal of the Acoustical Society of America*, *105*(6), 3509–3523.

Jenkins, J. J., Strange, W., & Trent, S. A. (1999). Context-independent dynamic information for the perception of coarticulated vowels. *The Journal of the Acoustical Society of America*, *106*(1), 438–448.

Johnson, K. (2004). Massive reduction in conversational American English. Spontaneous Speech: Data and Analysis. Proceedings of the 1st Session of the 10th International Symposium, 29–54.

Klatt, D. H. (1976). Linguistic uses of segmental duration in English: Acoustic and perceptual evidence. *The Journal of the Acoustical Society of America*, *59*(5), 1208–1221.

Labov, W., Ash, S., & Boberg, C. (2005). *The Atlas of North American English: Phonetics, Phonology and Sound Change*. Walter de Gruyter.

Lindblom, B. (1963). Spectrographic Study of Vowel Reduction. *The Journal of the Acoustical Society of America*, *35*(11), 1773–1781.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Moon, S.-J., & Lindblom, B. (1994). Interaction between duration, context, and speaking style in English stressed vowels. *The Journal of the Acoustical Society of America*, *96*(1), 40–55.

Morrison, G. S. (2013). Theories of vowel inherent spectral change. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 31–47). Springer.

Morrison, G. S., & Assmann, P. F. (2013). *Vowel Inherent Spectral Change*. Springer Science & Business Media.

Morrison, G. S., & Nearey, T. M. (2007). Testing theories of vowel inherent spectral change. *The Journal of the Acoustical Society of America*, *122*(1), EL15–EL22.

Morrison, G. S., & Nearey, T. M. (2011). FormantMeasurer: Software for efficient human-supervised measurement of formant trajectories.

Nearey, T. M. (2010). A new non-linear regression model for formant trajectories in English monosyllables incorporating dual targets for vowels. *The Journal of the Acoustical Society of America*, *127*, 2020.

Nearey, T. M. (2013). Vowel inherent spectral change in the vowels of North American English. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 49–85). Springer.

Nearey, T. M., & Assmann, P. F. (1986). Modeling the role of inherent spectral change in vowel identification. *The Journal of the Acoustical Society of America*, *80(5)*, 1297.

Ohala, J. J., & Eukel, B. W. (1987). Explaining the intrinsic pitch of vowels. In R. Channon & L. Shockey (Eds.), *In honor of Ilse Lehiste* (pp. 207–215).

Parker, E. M., & Diehl, R. L. (1984). Identifying vowels in CVC syllables: Effects of inserting silence and noise. *Perception & Psychophysics*, *36*(4), 369–380.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., & Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (Version 2nd Release). Columbus, OH: Department of Psychology, Ohio State University (Distributor). Retrieved from www.buckeyecorpus.osu.edu

Potter, R. K., & Steinberg, J. C. (1950). Toward the specification of speech. *The Journal of the Acoustical Society of America*, 22(6), 807–820.

Ripley, B., Venables, B., Bates, D. M., Hornik, K., & Firth, D. (2014). *Support Functions and Datasets for Venables and Ripley's MASS*. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4/

Stevens, K. N., & House, A. S. (1963). Perturbation of vowel articulations by consonantal context: An acoustical study. *Journal of Speech and Hearing Research*, 6(2), 111–128.

Strange, W. (1989). Evolving theories of vowel perception. *The Journal of the Acoustical Society of America*, 85(5), 2081–2087.

Strange, W., & Jenkins, J. J. (2013). Dynamic specification of coarticulated vowels. In *Vowel Inherent Spectral Change* (pp. 87–115). Springer.

Strange, W., Jenkins, J. J., & Johnson, T. L. (1983). Dynamic specification of coarticulated vowels. *The Journal of the Acoustical Society of America*, 74(3), 695–705.

Sussman, H. M., McCaffrey, H. A., & Matthews, S. A. (1991). An investigation of locus equations as a source of relational invariance for stop place categorization. *The Journal of the Acoustical Society of America*, *90*(3), 1309–1325.

Thomas, E. R. (1989). Vowel changes in Columbus, Ohio. *Journal of English Linguistics*, 22(2), 205–215.

Tucker, B. V. (2011). The effect of reduction on the processing of flaps and /g/ in isolated words. *Journal of Phonetics*, *39*(3), 312–318.

Tucker, B. V., & Warner, N. (2007). Inhibition of processing due to reduction of the American English flap. *Proceedings of the 16th International Congress of Phonetic Sciences, Saarbrücken*, 1949–1952.

Van Son, R., & Pols, L. C. (1990). Formant frequencies of Dutch vowels in a text, read at normal and fast rate. *The Journal of the Acoustical Society of America*, 88(4), 1683-1693.

Van Summers, W. (1987). Effects of stress and final-consonant voicing on vowel production: Articulatory and acoustic analyses. *The Journal of the Acoustical Society of America*, *82*, 847–863.

Warner, N., Cohn, A., Fougeron, C., & Huffman, M. (2012). Methods for studying spontaneous speech. *Handbook of Laboratory Phonology*, 612–633.

Warner, N., & Tucker, B. V. (2011). Phonetic variability of stops and flaps in spontaneous and careful speech. *The Journal of the Acoustical Society of America*, *130*, 1606–1607.

Zahorian, S. A., & Jagharghi, A. J. (1993). Spectral-shape features versus formants as acoustic correlates for vowels. *The Journal of the Acoustical Society of America*, *94*(4), 1966–1982.

Chapter 3: Morphological Influence of Vowel Dispersion and Dynamic Formant Movement

3.1 Introduction

One of the most interesting characteristics of spontaneous speech is the amount of variability present in the acoustic signal. Not only are words produced with segmental variation, but the phones themselves are produced with acoustic differences in their acoustic details (see Dilts, 2013, for a discussion). It is assumed that such differences in the acoustic signal are driven by the linguistic input, but the details of this input and its effect on acoustic variation remain unclear.

Studies on spontaneous speech production often focus on acoustic detail, and how it is predictively modulated by linguistic properties (examples of such studies are discussed below). The current chapter defines 'linguistic property' as any linguistic parameter that is variable. For example, word frequency is a linguistic parameter that varies by the frequency of individual lexical items. Linguistic properties, while necessarily variable, are not necessarily continuous or highly gradient. For example, word frequency is an example of a linguistic property that varies continuously; morphology is a linguistic property that varies discretely. The morphological possibilities in a language are finite. However, for a given phonological representation, there may be multiple morphological meanings. For example, the phoneme sequence $/J\Lambda$ n/ refers to more than one morphological meaning, such as a 1st person present tense verb ("I/we run"), a 2nd person present tense verb ("you/you all run"), a 3rd person plural present tense verb ("they run"), and a noun ("a run"). There exists, then, differences in the morphological linguistic property of the single word $/J\Lambda$ n/.

This study investigates how linguistic properties affect the production of vowel formants' acoustic detail in spontaneous speech. In particular, the current chapter investigates the role of morphology in the amount of dispersion a vowel displays from the centre of the vowel space, how far a formant deviates from the vowel onset and offset, and the realization of vowel formant movement. The analyses here focus on monosyllabic irregular English verbs that vary between their past and present tense forms by a single vowel segment (e.g., as in /JA n/and /J æn/). This subset of verbs is unique because the morphological linguistic property of the verbs (i.e., whether they are in the past or present tense) is signalled by a change within a single phoneme. Without the vowel, the morphology of a verb in this subset is unknown (e.g., /J n/ signifies neither the past nor the present tense). The morphological information for this subset of verbs, then, is wholly contained within the vowel (e.g., it is $/\alpha$ / that signifies the past tense in /J æn/). However, a vowel (such as $\frac{\pi}{2}$) itself can signify both the past tense (as in the word /J æn/) and the present tense (as in the word /hap/). It may be useful, then, to compare the acoustic detail of a vowel when it alternates between the past and present tenses.

In addition to investigating the role of morphology in the realization of acoustic detail, the current chapter also analyzes the role of the linguistic paradigm (see below for a discussion on evidential support for the linguistic paradigm). 'Linguistic paradigm' refers to a set of patterns that a particular group of words follows between different morphological forms. For example, the past tense of irregular English verbs can be signalled by a variety of vowel patterns (or

paradigms), such as /u/ (as in 'blew'), /æ/ (as in 'ran'), and /I / (as in 'bit'). The linguistic paradigm for these irregular past tense English verbs is the collection of patterns /u/, /æ/, and /I /. Several words may belong to one paradigm (such as 'flew,' 'blew,' 'grew' and 'threw' for the /u/ pattern), and yet vary in terms of other linguistic properties ('flew,' 'blew,' 'grew' and 'threw', for example, all have different word frequencies). Whereas any word can share a linguistic property (any word, for example, can have a word frequency; or, most verbs can have a past or present tense), linguistic paradigms are defined patterns that are specific to a particular group of words.

What follows is a brief discussion of evidence from previous research about the influence of linguistic properties and linguistic paradigms on the production of acoustic detail. Several theories about the role of linguistic properties and paradigms in acoustic detail production have been formulated based on this evidence. These theories are also discussed below in order to provide the theoretical backdrop for the hypotheses tested by the current chapter.

3.1.1 Evidence from Studies on Linguistic Properties and Acoustic Detail

The hypothesis that linguistic properties influence phonetic detail has strong support in the literature, seen in a range of linguistic properties and dimensions of phonetic detail. For example, many studies have demonstrated an effect of word frequency on word and/or segmental duration (Jurafsky et al., 1998, 2001; van Son et al., 2004; Aylett and Turk, 2004; Pluymaekers et al., 2005, 2006; Gahl 2008; Dilts et al., 2011; Schuppler et al., 2011; Tily and Kuperman, 2012; Pate and Goldwater, 2015; cf. Warner and Tucker, 2011). These studies have found that when a word has a high frequency (i.e., is encountered more often; has a low probabilistic uncertainty), it is produced with a shorter duration; and when a word has a lower frequency (i.e., is encountered less often; has a high probabilistic uncertainty), it is produced with a longer duration. That is, the linguistic property of word frequency relates inversely to the acoustic detail of duration. Aylett and Turk (2006) found that word frequency has an influence on vowel formant structure in addition to vowel duration. Their study showed that at

the lower end of the frequency continuum, vowels are produced with formant structures that indicate a more peripheral vowel space; and on the higher end of the frequency continuum, vowels are produced with formant structures that correspond to more vowel centralization.

Studies have demonstrated that other linguistic properties also affect vowel formants. Both Munson and Solomon (2004) and Gahl et al. (2012), for instance, have investigated the influence of phonological neighbourhood density on vowel formant frequencies. For words in isolation, Munson and Solomon found that, overall, denser phonological neighbourhoods (which have a high probabilistic uncertainty) correspond to larger vowel spaces. However, Gahl et al. found the opposite pattern for words produced in spontaneous speech.

The linguistic properties of word frequency and phonological neighbourhood density also jointly affect the probabilistic uncertainty of a word. For example, words that appear frequently and have sparser neighbourhood densities have a low probabilistic uncertainty, and are thus linguistically 'easy' words. Wright (2004) investigated how these factors influence the amount of dispersion that vowels display from the centre of the vowel space in isolated words. He found that high amounts of dispersion (producing vowels more on the periphery of the vowel space) correlate with linguistically 'easy' words compared to 'hard' words. These findings are similar to that of Munson and Solomon (2004) for words produced in isolation but are again the opposite of Gahl et al.'s (2012) findings on words produced in spontaneous speech.

Finally, in a paper on the predictability of reduction in function words, Bell et al. (2003) used discourse factors as linguistic properties (such as disfluencies and contextual probabilities) to analyze the phonetic variation in segmental realization (i.e., whether a segment was fully produced, or whether it was deleted relative to the word's canonical form). This study found that semantic and syntactic context can also influence the phonetic realization of spontaneously produced function words: function words are less segmentally reduced when they occur in more probabilistically uncertain contexts. Overall, these studies illustrate that more probabilistic uncertainty (as measured by a particular linguistic property) occurs with more enhanced acoustic detail. Though each study focuses on different theoretical motivations for investigating this correlation (to be discussed below), they all nevertheless provide strong support for the relationship between linguistic processes and speech production. The production of acoustic detail does not happen in a vacuum, devoid of meta-phonetic influence. Acoustic variation, instead, is the product of a relationship between linguistic properties and the speech production system.

3.1.2 Evidence from Studies on Linguistic Paradigms and Acoustic Detail

As with linguistic properties, the influence of linguistic paradigms on acoustic detail is also well instantiated in previous research. Though linguistic paradigms may seem similar to linguistic properties (this point is contended later in the Discussion of the present chapter's experimental results), they have historically been treated as separate linguistic influences in the production of speech. Bybee and Slobin (1982) were among the first to recognize the effect of linguistic paradigm on speech production. The researchers termed the paradigmatic patterns 'schemas' to highlight the independence of a word's paradigmatic pattern from its linguistic properties such as word frequency. Schemas are statements that determine how the past tense form of a word is derived from its lemma. For example, words metastasize the final consonant to end in a particular phonetic natural class (e.g., dental) and additionally undergo a vowel alternation, as in *bring/brought*.

Subsequent research has expanded upon the idea of a schema to include measurable means of defining linguistic paradigms, often via pattern frequency. There are various means of quantifying pattern frequency: one method is to calculate pattern frequency as a ratio of one form to another (Kuperman et al., 2007; Hanique et al., 2010; Hanique and Ernestus, 2011; Schuppler et al., 2012); another method involves calculating paradigmatic entropy (Cohen, 2014). Regardless of how the pattern frequency was measured, these studies found strong

support for the influence of linguistic paradigm on acoustic detail. Words and segments in more frequent paradigmatic patterns tend to be produced with longer durations and less segmental deletion. Stronger linguistic paradigmatic support (low uncertainty) correlates with phonetic enhancement. Because the patterns between linguistic paradigms and acoustic details (low uncertainty, more enhancement) are the opposite of the patterns between linguistic properties and acoustic details (more uncertainty, more enhancement), linguistic paradigms and properties are thought to be separate influences on acoustic detail.

Instead of pattern frequency, Stemberger (2004) used gang size to quantitatively investigate linguistic paradigms. Gang size allows one to differentiate between patterns with high densities and patterns with lower densities (i.e., more words/segments belong to one pattern compared to another). Stemberger found that larger gang sizes correlate with fewer speech errors; or, as with the studies on pattern frequency, stronger linguistic paradigmatic support correlates with phonetic enhancement.

While pattern frequency and gang size are based on linguistic probabilities, a final means of measuring linguistic paradigmatic support is based on Naive Discriminative Learning (NDL; see Baayen et al., 2011). NDL metrics indicate how strongly particular cues (such as the phones in a word) are associated with particular outcomes (such as morphology, or tense). According to Tucker et al. (in preparation), phones that are more strongly associated with one morphological tense over another are better morphological cues, which they refer to as having a strong cue-to-tense activation level. Stronger cue strength is indicated by a stronger NDL measure, which represents more linguistic paradigmatic support.

For example, as described above, in the subset of monosyllabic irregular English verbs, the vowel /æ/ can signify both the past tense (as in the word /J æn/) and the present tense (as in the word /hæn/). In NDL terms, /æ/ is a cue to both the past and present tense. To calculate the paradigmatic strength of /æ/, NDL metrics determine how robustly the cue /æ/ signifies one of the tenses. In this small example, /æ/ occurs equally in the past and present tense; thus, it is not a good morphological cue. This cue would receive a low NDL measure to indicate its weak cue-to-tense activation level, and is considered to offer minimal paradigmatic support (though the current example illustrates NDL measures in terms of uniphone cues, Tucker et al., calculate NDL measures in terms of diphone cues).

NDL measures of paradigmatic support are different from more traditional measures of paradigmatic support, such as gang size (Stemberger, 2004) and pattern frequency (Kuperman et al., 2007; Hanique et al., 2010; Hanique and Ernestus, 2011; Schuppler et al., 2012). The main difference is that NDL is a learning network that facilitates associations between form and meaning through the learning of statistical patterns. Rather than dissociate the speaker from the listener, NDL assumes that they are one in the same: a learner of the acoustic nuances in speech. This distinction is important to make because it assumes that productions are made based on prior learning of associations between acoustic form and meaning rather than the ease of perception or production (cf. Lindblom, 1990; Aylett and Turk, 2004). That is, the speaker is not explicitly tailoring their speech productions to suit either their or the listener's needs, but rather guided by a network of implicit associations learned over the course of their life. The variation in acoustic detail, then, is a product of this network of learned associations, rather than a conscious speaker control of acoustic detail.

In the NDL framework, learning cue-to-tense associations can be either positive (activation) or negative (unlearning). "Positive" learning accounts for the frequency of a particular vowel occurring in a particular pattern. "Negative" learning penalizes occurrences of the same vowel occuring in a different pattern. Following the above example of /æ/, the cue-to-past tense activation level of /æ/would include positive weights for positive learning (such as past tense /J æn/), and negative weights for negative learning (such as present tense /J æn/). This penalization for /æ/ occurring in both the past and present tense is unique to the NDL metric of paradigmatic support. The amount of paradigmatic support in NDL cue-to-tense activation levels, then, is more precise in that it evaluates not only the likelihood of a vowel's occurrence with a particular pattern, but also the likelihood of that vowel occurring with a different pattern.

Tucker et al. (in preparation) measured cue-to-tense association strengths and found that stronger NDL tense activation measures correlate with longer vowel durations in monosyllabic irregular English verbs (examples of NDL scores are given in the Appendix Table A.8 and Table A.9). That is, a vowel with a high NDL cue strength (more paradigmatic support) will have a longer duration (phonetic enhancement) than a vowel with a lower NDL cue strength. As with the other paradigms discussed previously, stronger linguistic paradigmatic support in NDL correlates with phonetic enhancement.

While the influence of linguistic paradigms on acoustic detail in spontaneous speech is less studied than the influence of linguistic properties, the results from linguistic paradigm studies are well-established. Regardless of how linguistic paradigm is measured or defined, research shows that paradigmatic support strongly correlates with phonetic detail: more instantiated patterns are often produced with more enhanced phonetic detail.

3.1.3 Hypotheses of Linguistic Properties, Linguistic Paradigms, and

Acoustic Detail

Several hypotheses have been put forth to describe the nature of the relationship between linguistic properties, linguistic paradigms, and acoustic variation. Two of the most applicable theories to the current chapter are the Smooth Signal Redundancy Hypothesis, and the Paradigmatic Signal Enhancement Hypothesis.

The Smooth Signal Redundancy Hypothesis put forth by Aylett and Turk (2004, 2006) accounts for the relationship between linguistic properties and acoustic detail. This hypothesis stems from Information Theory (Shannon, 1948; Pierce, 2012), which penalizes signal redundancy. For Aylett and Turk, signal redundancy occurs when the signal (or speech utterance) contains both acoustic redundancy and linguistic redundancy. The Hypothesis holds that speech signals

are less likely to contain double-redundancy (i.e., both acoustic redundancy and linguistic redundancy), and instead are more likely to have single-redundancy (i.e., either acoustic redundancy only, or linguistic redundancy only).

Acoustic details and linguistic properties are considered 'redundant' at extreme values. For measures of acoustic detail, extreme measurable values tend to correspond to acoustic salience (e.g., larger durational values, larger formant distances from the centre of the vowel space). For linguistic properties, however, the literature is divided on how the scale is defined (Gahl et al., 2012). This is due to a division in theoretical perspectives of speech production: one hypothesis is that speech production is listener-driven while another holds that it is speakerdriven. If speech production is listener-driven, extreme values on the linguistic property scale would correspond to parameters that make comprehension less confusing for the listener, or what Wright (2004) terms 'easy' words (e.g., are more frequent, have fewer phonological competitors). On the other hand, if production is speaker-driven, extreme values would correspond with parameters that make speech easier to produce for the speaker, or that ease articulation (e.g., are produced frequently and have more phonological neighbours that are similar in their articulations).

Both approaches have support in the literature, for example, by examining neighbourhood density using the Smooth Signal Redundancy Hypothesis. According to the listener-driven model of speech production, redundancy would occur where words are easier to comprehend - in more *sparse* phonological neighbourhoods, as there are fewer lexical competitors. The Smooth Signal Redundancy Hypothesis would predict, then, that sparse phonological neighbourhoods (linguistic redundancy) would correspond to shorter vowels and more centralized dispersions (no acoustic redundancy), which is supported in Munson and Solomon (2004, as described above). However, according to the speaker-driven model of speech production, redundancy would occur where words are easier to articulate - in more *dense* phonological neighbourhoods, as similar articulations are more frequent (i.e., more neighbours). Here the Smooth Signal Redundancy Hypothesis would predict that dense phonological

neighbourhoods (linguistic redundancy) would correlate with shorter vowels and more centralized dispersions (no acoustic redundancy), which is supported in Gahl et al. (2012, also described above).

Thus, the speech production literature has yet to define redundancy for linguistic properties, or what extreme values mean. It could be the case (as seen in the present chapter) that the scale is dependent upon whether one takes a listeneror speaker-driven approach.

Research on linguistic paradigms shows that stronger linguistic paradigmatic support correlates with phonetic enhancement; in fact, this relationship is independent of the relationship between linguistic properties and phonetic detail. While the Smooth Signal Redundancy Hypothesis describes the probabilistic relationship between uncertainty in linguistic properties ('redundancy') and acoustic detail, the Paradigmatic Signal Enhancement Hypothesis also includes linguistic paradigms (Kuperman et al., 2007)

The Paradigmatic Signal Enhancement Hypothesis holds that while both linguistic properties and linguistic paradigms influence the production of acoustic detail, paradigmatic enhancement supersedes any influence of linguistic properties. The past tense irregular English verbs best exemplifies this. Recall that /u/ and /æ/ are possible paradigmatic vowel patterns to signal the past tense in irregular verbs, such as in *grew* and *ran*. Under a listener-driven assumption, the Smooth Signal Redundancy Hypothesis would predict that the word with the most redundancy (i.e., least uncertainty, perhaps due to high lexical frequency) would be produced with less acoustic redundancy (i.e., it would be acoustically reduced, perhaps with a shorter vowel duration). *Ran* is more frequent than *grew*, so the Smooth Signal Redundancy Hypothesis would predict /æ/ in *ran* to have a shorter duration than /u/ in *grew* (phonetically inherent vowel durations aside).

However, the Paradigmatic Signal Enhancement Hypothesis predicts that paradigm effects supersede linguistic property effects, and words with more paradigmatic support would be acoustically enhanced (e.g., would have longer vowel durations). If /æ/ has more paradigmatic support than /u/ (i.e., /æ/ is more strongly associated with the past tense than /u/), the Paradigmatic Signal Enhancement Hypothesis would predict /a/ in *ran* to have a longer duration than /u/ in *grew*. Thus, under the Paradigmatic Signal Enhancement Hypothesis, it is possible to have a high frequency word (*ran*) produced with a longer vowel duration than a lower frequency word (*grew*), contrary to the predictions of the Smooth Signal Redundancy hypothesis. The current chapter addresses these two hypotheses to explore the implications of paradigmatic strength superseding linguistic properties in the Discussion.

Like the Smooth Signal Redundancy Hypothesis, the Paradigmatic Signal Enhancement Hypothesis could be motivated by either a speaker- or listenerdriven approach to speech production. The correlation between strong paradigmatic support an acoustic enhancement could be beneficial for the listener: adding acoustic salience for well-entrenched paradigms. The correlation could also be beneficial for the speaker: more frequent or well-entrenched paradigms make them easier to articulate, resulting in phonetic enhancement. A listenerdriven motivation of the Paradigmatic Signal Enhancement Hypothesis is tested in Chapter 4 of this dissertation.

3.1.4 The Current Analyses: Organizing Principles and Preliminary

Predictions

The current chapter analyzes linguistic properties and paradigms using four acoustic measures (amount of vowel movement, formant deviance from vowel onset and offset, and amount of vowel dispersion). The linguistic property analyzed here is that of morphological tense: whether an irregular English verb is in the past or present tense. The measure of paradigmatic support analyzed here is the same employed by Tucker et al. (in preparation): NDL cue-to-tense activation strength. A previous study on more traditional measures of paradigmatic support, such as gang size, did not find a significant correlation between acoustic variation and the irregular monosyllabic English verbs at hand (Sims et al., 2010). As such, NDL, a different measure of paradigmatic support, is evaluated here. Morphological tense and NDL paradigmatic support are analyzed in a series of four statistical analyses. As a series, these four analyses are designed to test the Smooth Signal Redundancy Hypothesis and the Paradigmatic Signal Enhancement Hypothesis on four different, but related, vowel formant measures. The first analysis investigates the effect of tense and NDL on vowel dispersion. The second and third analyses investigate the effects of tense and NDL on the amount of formant deviance from the vowel onset and offset. The final analysis investigates the effects of tense and NDL on non-linear formant movement.

The analyses in the current study test the following hypotheses: For spontaneous speech data, the acoustic detail measured (amount of vowel dispersion from the centre of the vowel space and amount of formant deviation and movement) will be modulated by linguistic properties (morphology, word frequency and neighbourhood density) and paradigmatic support (NDL cue association strengths) according to both the Smooth Signal Redundancy Hypothesis and the Paradigmatic Signal Enhancement Hypothesis. The Smooth Signal Redundancy Hypothesis predicts there to be more phonetic enhancement (greater amounts of vowel dispersion and formant deviation and movement) when there is uncertainty in linguistic properties, such as in words with low frequencies.

In the current chapter, this hypothesis is extended to morphological tense. The more uncertain morphological form of an English verb is the form marked for tense, which is the past tense form of the verb (Bybee and Slobin, 1982). In the current set of irregular monosyllabic English verbs, the tense of the verb is determined by the vowel. *Thus, it is predicted that the past tense form of the verb (the more morphologically uncertain form) will correspond to greater amounts of vowel dispersion, formant movement and deviation*

The Paradigmatic Signal Enhancement Hypothesis predicts there to be more phonetic enhancement (greater amounts of vowel dispersion and formant deviation and movement) when a word has stronger paradigmatic support. According to the Paradigmatic Signal Enhancement Hypothesis (Kuperman et al., 2007), paradigmatic support is measured in terms of probability, or, as an example for the current data, the likelihood of a vowel to appear in either the past tense (notably: not the joint probability of a vowel occurring in the past and present tense).

In the current chapter, the Paradigmatic Signal Enhancement Hypothesis is extended to encompass a new measure of paradigmatic support: NDL cue-to-tense activation levels. NDL metrics expand upon the Kuperman et al. measure of paradigmatic support by adding the probability of a vowel also occurring with the other tense (or, the joint probability of a vowel occurring in the past and present tense). *Thus, it is predicted that stronger NDL cue association strengths will correlate with greater amounts of vowel dispersion, formant movement and deviation.* These predictions are tentative will serve primarily to organize discussion.

3.2 Methodology

3.2.1 Items

The current analyses focus on 74 monosyllabic irregular English verbs in the Buckeye Corpus of Conversational English (henceforth, Buckeye Corpus; Pitt et al., 2007). This subset of English words consists of irregular verbs that differ between their present and past tense forms on a single vowel alone (for example, *sing/sang*). However, verbs that contain the addition of a phonological segment, such as "weep/wept" and verbs that are suppletive, such as "go/went," were not included in the irregular verbs subset. The vowels from each instance of words in the irregular verbs subset were extracted from the Buckeye Corpus, yielding 6,028 tokens of 10 vowel types: /i/, /**I** /, / ϵ /, / α /, / Λ /, /u/, /U/, /O/, /D /, and / Ω /. Though acoustic measures were gathered for each of the vowel tokens (as outlined below), the analyses described in this chapter are limited to the 5,718 vowel tokens that contained measures for all the lexical and phonetic predictors under investigation (see the Appendix Table A.7 and Table A.9 for more information about these vowels, including a simple wordlist, the lexical frequency of the words they belong to, vowel frequency, and their frequency of occurrence with the past and present tense).

3.2.2 Acoustic Measurements

Frequency measurements of the first and second formant (henceforth, F1 and F2, respectively) are the acoustic characteristics under investigation in the series of analyses. To gather formant data, spectral F1 and F2 contours were marked and hand-corrected using the FormantMeasurer program (Morrison and Nearey, 2011). The program yielded continuous F1 and F2 Hertz measurements at increments of 2ms over the entire length of the vowel duration.

These formant measurements were limited to those between 20% and 80% of each vowel's total duration. Discarding the first and last 20% of a vowel's duration helps to mitigate the effect of the surrounding phonetic environment on the formant data. For the linear analyses of vowel dispersion and formant movement, a sample measurement was taken at each 10% increment of the vowels' total duration from 20-80%, yielding seven F1 and seven F2 measurements for each vowel token. In the nonlinear models of formant movement, all the time step intervals in the data were included to allow for more precise modelling.

To analyze a vowel's dispersion from the centre of the vowel space, each speaker's vowel space area, perimeter, and centre were first calculated. In accordance with Bradlow et al. (1996) and Wright (2004), the perimeter and area of each speaker's vowel space were determined using the speaker's mean formant values for the peripheral vowels /i/, / α /, and / α /. The centre of each speaker's vowel space was determined by calculating the triangular centre of the three peripheral vowels. The Euclidian distance (taken as an absolute value) of each individual vowel from its speaker's centre was then calculated for each F1 and F2 point, separately, for each of the seven time points. This yielded 14 measures of vowel dispersion for each vowel token (7 time points x 2 formants). It is important to note that amount of vowel dispersion is relative to the vowels' F1xF2 onset

position in the vowel space. The two measures are related but provide different information about the vowels' acoustics.

3.3 Series of Statistical Models: Analyses and Local Results

What follows is a discussion of four analyses. All four analyses test for significant effects of morphological tense and NDL cue association strengths on vowel formant data. Table 3.1 outlines a summary of the four analyses, each of which first investigates a global effect of morphological tense and NDL cue association strength pooled across all vowels, then separates these effects by vowel. The first analysis (§3.3.1) uses a linear model to test for effects of tense and NDL cue association strength on vowel dispersion from the centre of the vowel space. The second analysis (§3.3.2) uses a linear model to test for effects of tense and NDL cue association strength on formant deviance from vowel onset, while the third analysis (§3.3.3) does the same from vowel offset. The final analysis (§3.3.4) uses a non-linear modelling technique to test for effects of tense and NDL cue association strength on the amount of formant movement in formant trajectories.

These analyses form a hierarchical sequence of quantitative reasoning that supports the final analysis. The first analysis, on vowel dispersion, mirrors the methodologies established in the phonetic literature (such as Wright 2004; discussed above), while the second and third analyses address phonetic issues with the dispersion analysis by investigating a different measure of acoustic detail: formant deviation from vowel onset and offset. Unlike the vowel dispersion analysis, these deviation analyses attempt to capture formant movement while mitigating the effects of the formants assimilation to the surrounding phonetic environment. To do so they take into account the contribution of the context before and after the vowel on the formant's trajectory (Lindblom, 1963; Broad and Clermont, 1987). The final analysis expands upon the previous two by modelling the same formant data, but in a non-linear fashion, to better capture the contours of formant movement.

The four analyses in this series are discussed in succession according to Table 3.1. More detailed and explanatory justification for how each analysis follows from the previous is given in the introduction to each analysis. Following the presentation of each analysis, §3.3.5 summarizes the results of all four analyses, tying in the contributions of each analysis to my prediction.

Section							
3.3.1	Linear Analysis of Vowel Dispersion						
3.3.1.1	Statistical Procedures						
3.3.1.2	Predictors						
3.3.1.3	Results with All Vowels Combined (global)						
3.3.1.3.2	Tense (linguistic property)						
3.3.1.3.3	NDL Cue Strength (paradigmatic support)						
3.3.1.4	Results by Vowel and by Time Percent						
3.3.1.4.2	Tense (linguistic property)						
3.3.1.4.2	NDL Cue Strength (paradigmatic support)						
3.3.2	Linear Analysis of Formant Deviation from Vowel Onset						
3.3.2.1	Statistical Procedures						
3.3.2.2	Predictors						
3.3.2.3	Results with All Vowels Combined (global)						
3.3.2.3.1	Tense (linguistic property)						
3.3.2.3.2	NDL Cue Strength (paradigmatic support)						
3.3.2.4	Results by Vowel and by Percent						
3.3.2.4.1	Tense (linguistic property)						
3.3.2.4.2	NDL Cue Strength (paradigmatic support)						
3.3.3	Linear Analysis of Formant Deviation from Vowel Offset						
3.3.3.1	Statistical Procedures						
3.3.3.2	Predictors						
3.3.3.3	Results with All Vowels Combined (global)						
3.3.3.1	Tense (linguistic property)						
3.3.3.3.2	NDL Cue Strength (paradigmatic support)						
3.3.3.4	Results by Vowel and by Percent						
3.3.3.4.1	Tense (linguistic property)						
3.3.3.4.2	NDL Cue Strength (paradigmatic support)						
3.3.4	Non-Linear Analysis of Formant Movement						
3.3.4.1	Statistical Procedures						
3.3.4.2	Predictors						
3.3.4.3	Results with All Vowels Combined (global)						
3.3.4.3.1	Tense (linguistic property)						
3.3.4.3.2	NDL Cue Strength (paradigmatic support)						
3.3.4.4	Results by Vowel						

Table 3.1: Summary outline of the four analyses to be discussed.

3.3.4.4.1	Tense (linguistic property)
3.3.4.4.2	NDL Cue Strength (paradigmatic support)
3.3.5	Summary of Results

3.3.1 Linear Analysis of Vowel Dispersion

This first analysis is a traditional analysis of formant values to test the effects of morphological tense (linguistic parameter) and NDL (paradigmatic strength) on the dispersion of vowels from the centre of the vowel space (Wright, 2004; Gahl et al., 2012). To capture a more dynamic, rather than static, effect of vowel dispersion, these effects are tested on formant values at 20%, 30%, 40%, 50%, 60%, 70%, and 80% of the total duration for each vowel. After addressing the statistical modelling technique and predictors employed in this analysis, the results of the tense and NDL main effects on vowel dispersion are discussed.

3.3.1.1 Statistical Procedure

The effects of tense and NDL on the linear distances of the vowels from the centre of the vowel space were tested in a Linear Mixed Effects Regression Analysis (LMER; Baayen et al., 2008). The LMER modelling technique allows me to test for differences in the linear dispersion data according to specified predictors while accounting for factors of random variance for individual speakers. Analyses were computed in the R statistical environment using the *lme4* (Bates et al., 2014) and *languageR* (Baayen, 2013) packages.

Predictors in the LMER model are discussed in the next section, and the LMER call can be found in the Appendix (Table A.10). The LMER analysis proceeded in a backwards-fitting parametric fashion. In order to select a model, I visually compared residuals and fitted estimates between models, as well as the Akaike Information Criteria (AIC) scores. All principled two-way interactions were checked, along with other possible principled predictors (such as neighbourhood density and speaking rate). Only those predictors that achieved significance in the models were kept (see below for predictors' descriptions). A

simple inspection of the Pearson's correlation coefficients found no significant pairwise collinearity in all possible two-way interactions between numeric predictors. The random effects structures of the models were also checked in a parametric fashion. Both item and speaker random intercepts were checked, as well as all random slope combinations. Random slopes that were not supported by likelihood ratio tests (p > 0.05) were excluded. For ease of computation, F1 and F2 data were modelled separately.

3.3.1.2 Predictors

A summary of the predictors for the LMER analysis at hand is given in Table 3.2. The LMER call can be found in the Appendix (Table A.10). The acoustic measure of Vowel Dispersion serves as the dependent variable for the current LMER analysis. As discussed previously, seven samples of dispersion for F1 and F2 were gathered for each of the 5,718 vowel tokens: one at every 10% time point from 20%-80% of the total vowel duration. These time points are referred to as Percent, with 20% serving as the reference level in the model.

Predictor	Description	use in current analysis			
Vowel Dispersion	absolute value of the Euclidean Distance of the vowels from the centre of the vowel space	dependent variable			
NDL Cue Strength	diphone Naive Discriminative Learning cue association strengths with the past tense, aggregated over the word	independent predictor of interes x Percent			
Tense	morphological past or present tense reference level: present	independent predictor of interest x Percent			
Percent	seven normalized 10% time steps (from 20%-80% of the total vowel duration) reference level: 20%	x NDL Cue Strength x Tense			
Frequency	log value of the local Buckeye lexical frequency	x Vowel Duration random intercepts for Speaker slopes			
Vowel Duration	log value	x Frequency random intercepts for Speaker slopes			
Vowel Identity	the identy of the vowel reference level: $/\Lambda/$	main effect			
Previous Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Previous Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Previous Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Following Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Following Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Following Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect			
Speaker	unique speaker identifier	random intercepts			

Table 3.2: Predictors for main effects, interactions, and random effects in the Linear Mixed Effects Regression analysis of NDL and Tense on vowel dispersion.

There are two independent predictors of interest in the current LMER model and for all subsequent models in this series of statistical analyses. The first, Tense, is a binary factor predictor that indicates whether a vowel belongs to a verb in the past or present tense (e.g., an instance of $/\alpha$ / from 'hang' would be marked as *present* while $/\alpha$ / from 'ran' would be marked as *past*). Tense is included in the LMER model in an interaction with Percent to capture differences in amount of dispersion between the past and present tenses at the various Percent time points. As stated in the Introduction, the past tense verb forms are the marked, or more linguistically uncertain verb forms, and are predicted to correlate with phonetic enhancement (more formant movement). For this reason, the present tense serves as the reference level, to which the past tense is compared.

The other predictor of interest concerns the paradigmatic nature of the vowels: NDL Cue Strength. The current chapter uses the measures of NDL cueto-tense activation from Tucker et al. (in preparation) that is calculated for all verbs in the Buckeye Corpus (including the subset of verbs at hand) on the basis of diphone cues activating either the past or present tense. NDL cue strength is calculated based on a two-layer connectionist model (Baayen et al., 2011). The basic schema of an NDL network is that produced forms (first level, input) cue meanings (second level, output; see Figure 3.1). In the NDL network, association strengths between forms and meanings are calculated according to Danks (2003) adaptations of the Rescorla-Wagner equations (1972). The Rescorla-Wagner equations compute weights, which correspond to learning an association between a particular form and a particular meaning. These equations do so by calculating the probability of that form/meaning pair, and penalizing for unlearning (when a particular form occurs with another meaning, and vice versa). These equations are employed iteratively: weights, or learning association strengths, are adjusted/recalculated for each new form-meaning pairing.

Tucker et al. calculated NDL Cue Strength using morphological tense (past/present) as cued meanings (second level) and diphone pairs as produced forms (first layer). The NDL Cue Strength of a verb is the aggregate sum of all its diphone cue-to-tense activation levels. Diphones that were strongly associated with a particular tense (i.e., and not both tenses equally) were weighted with a higher cue-to-tense activation strength. Figure 3.1 illustrates this in a pair of verbs used in the current study, *blow* and *blew* (all the verbs in the current study are taken from the set of verbs studied by Tucker et al.). Diphones in the first layer are mapped to tenses in the second layer, with arrow thickness corresponding to strength of association. In the illustration below, it is clear that the morphologically informative diphone pairs are those that contain the vowel (shown in Figure 3.1 with blue lines), as these distinguish the verb's morphological tense. The diphone pairs that contain only consonants are less informative, since those diphones cue both the past and present tense equally (shown in Figure 3.1 with red lines). Thus, it is the diphone pairs containing the

vowel that are the most informative for calculating the NDL strength of the verb's diphone cues in activating tense.

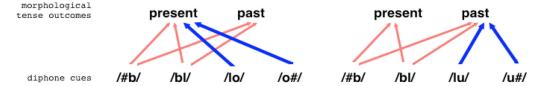


Figure 3.1: Illustration of an NDL network for the words *blow* and *blew*, comprising two layers: morphological tense and diphone cues. Arrows indicate associations between the two layers, with thickness indicating activation strength.

The cue-to-tense activation levels are calculated for each diphone in each verb. The NDL Cue Strength of a verb is the aggregate sum of all its diphone cueto-tense activation levels. Since the diphones containing consonants only are not informative of morphological tense (as they occur equally in the past and present tense), it is the diphone pairs containing the vowel that are responsible for differences in the aggregated NDL Cue Strength for a particular verb.

NDL Cue Strength allows me to represent how strongly a particular vowel (in its diphone pairs) is associated with tense on a continuous, numerical scale. It differs from classic measures of gang size (e.g., Stemberger, 2004) in that the vowel alternation pattern in the morphological paradigm is not considered. For example, when determining the paradigmatic strength of /u/ (e.g., as in *blow/blew*), NDL Cue Strength is not determined by how many verbs follow the present-tense-/o/ \rightarrow past-tense-/u/ morphological paradigm (a classic measure of gang size). Instead, NDL Cue Strength represents how indicative the diphones containing /u/ are for one morphological tense. In the NDL paradigm, vowels that serve as greater cues for one tense over the other are assigned a more positive NDL Cue Strength pattern. A negative NDL Cue Strength indicates that the vowel diphones of the particular word are not strongly associated with either tense. Taking NDL Cue Strength as a means of measuring paradigmatic support, it

follows that a higher NDL Cue Strength for a particular word indicates strong paradigmatic support for the vowel diphone patterns in signalling tense. A table of each irregular verb and its average NDL Cue Strength is provided in the Appendix (Table A.9).

Recall that Tucker et al. found that these NDL cue-to-tense activation strengths modulate fine phonetic detail: higher levels of NDL cue strength correlate with phonetic enhancement (longer vowel durations). Their findings support the predictions of the Paradigmatic Signal Enhancement Hypothesis (Kuperman et al., 2007): stronger paradigm support is correlated with phonetic enhancement.

The remaining predictors in the models serve as lexical and phonetic controls. Frequency is a local measure of word frequency: it represents a token count of how often a particular verb appears in the Buckeye Corpus. Frequency is included in the model as the logged value of the raw frequency counts. A table of each irregular verb and its local Frequency is provided in the Appendix (Table A.8). Several studies have found a high correlation between segment duration and frequency in speech production. In work most related to the current study, Tucker et al. found that duration decreases for vowels in irregular verbs with a higher word frequency. Thus, Vowel Duration (measured in milliseconds) was included in the current model as a phonetic predictor in an interaction with the lexical predictor, Frequency.

The final predictors in the LMER model are an attempt to control for the phonetic environment surrounding the vowel: the Voice, Place, and Manner of the Previous and Following Segment. Several studies have illustrated that the articulations both before and after a vowel (phonetic context) can greatly influence the vowel's production, evident in its formant trajectories (for a discussion, see Broad and Clermont, 2014). However, there is currently no systematic means for disentangling the influence of the surrounding phonetic environment from a vowel's inherent formant trajectory when using unbalanced data in spontaneous speech corpora. It is not yet possible to parse a formant trajectory patterns and

trajectory patterns that are inherent to the vowel. Thus, any generalizations or analyses on formant data may be confounded by articulations before and after the vowels.

Our attempt to control for phonetic context by including an interaction between each vowel and the Previous and Following Voice, Place, and Manner of articulation for the phones surrounding the vowel is derived from work by Nearey (2013; see also Broad and Clermont 1987). Nearey identifies three contributing factors to a vowel's formant trajectory: 1) the trajectory from the locus of previous consonant to the vowel target (C_1V) , 2) the vowel target (V), and 3) the trajectory from the vowel target to the locus of the following consonant (VC₂). Instead of calculating the exact trajectories of C1V and VC2, I included the articulatory characteristics of the C1, and C2 in the model as they interact with the vowel (coded as the identity of the vowel; reference level: $/\Lambda /$), which approximates the assimilation of the vowel trajectories' with the surrounding context. I chose to code the C_1 and C_2 by articulatory characteristics (Place, Voicing, and Manner) because doing so resulted in less data sparsity than coding by phone identity. Where as coding by phone identity splits the C_1 and C_2 into 28 sparsely populated factors (or 28 phone identities), coding by articulatory characteristics splits the C₁ and C₂ into fewer factors (7 for Place; 2 for Voicing; and 6 for Manner), gaining more members for each factor. The Appendix (Table A.1, Table A.2, Table A.3, Figure A.5, and Figure A.6) contains the distributional plots and tables of the C₁ and C₂ phone identities, and place/voice/manner factors.

In order to include consonant articulation characteristics (which are categorical variables) in my linear model, I had to normalize the predictors differently. The nature of these regression models assumes a reference level for each articulation predictor. In the phonetic reality, though, there does not exist a neutral, or referent, level of articulation. For example, bilabial is no more a neutral/referent place of articulation than velar. Thus, instead of comparing each of these phonetic control predictors to an arbitrary reference level within the models (as in dummy coding), the predictors are compared to the mean of the articulation group (as in deviation coding). For example, when assessing the

influence of place of articulation on the formant data, the models compare the bilabial place of articulation to the mean of all the places of articulation (the mean acts as the neutral/referent level), instead of to only a velar place of articulation (where the velar place of articulation would act as the neutral/referent level). Though this statistical method of categorical variable coding does not wholly control for the influence of the surrounding phonetic environment, it is nevertheless a step towards disentangling vowel formant values from their surrounding articulation environment.

3.3.1.3 Results with All Vowels Combined (global)

This first analysis focuses on the general centralization of all speakers' vowels simultaneously. Individual vowel identity is dealt with in the next analysis. Figure 3.2 illustrates the results from the LMER models of the interactions between dispersion and the independent predictors of interest, Tense and NDL, at various time points during vowel production. Table 3.3 shows the coefficients of these interactions. All coefficients for the F1 and F2 LMER models are in the Appendix (Table A.11).

In Figure 3.2, the top panels illustrate the effect of Tense for F1 (left panel) and F2 (right panel). The effects of Tense are shown in an interaction with Percent time step, as indicated by line type and colour. A line with a positive slope in these panels indicates that the past tense is correlated with greater amounts of vowel dispersion than the present tense (reference level). A positive slope would reflect my prediction: the more morphologically uncertain tense (past) will correlate with phonetic enhancement (more vowel dispersion). The bottom panels illustrate the effect of NDL Cue Strength for F1 (bottom left panel) and F2 (bottom right panel). As with Tense, the effects of NDL Cue Strength are shown in an interaction with Percent time step, as indicated by line type and colour. A line with a positive slope in these panels indicates that higher NDL Cue Strengths correlate with greater amounts of vowel dispersion. A positive slope would reflect my prediction: more paradigmatic support (greater NDL Cue Strengths) will correlate with phonetic enhancement (more vowel dispersion).

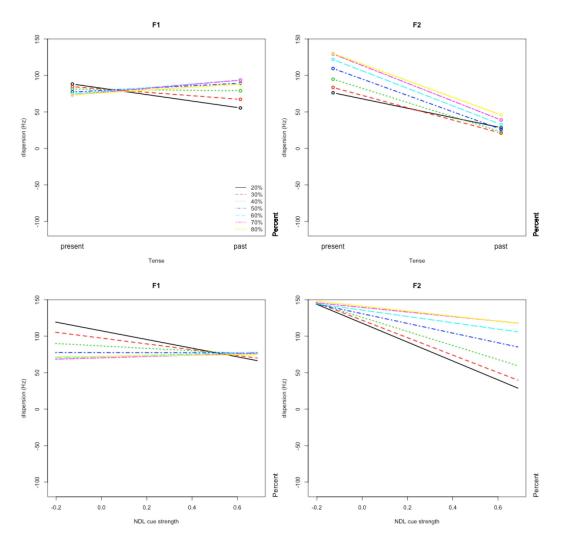


Figure 3.2: Partial effects of the LMER model results for the two predictors of interest. Top row: interactions between dispersion and tense (reference level: present tense and 20% time step) for F1 and F2 at 20-80% total vowel duration. Bottom row: interactions between dispersion and NDL Cue Strength for F1 and F2 at 20-80% total vowel duration (reference level: 20% time step).

F1								
Predictor	Estimate	std Error	t value					
(Intercept)	-58.3827	29.2753	-1.9943					
Tense: past	-32.8123	2.6066	-12.5882					
Percent: 30	-9.9599	2.1830	-4.5626					
Percent: 40	-20.6675	2.1830	-9.4676					
Percent: 50	-29.8967	2.1830	-13.6955					
Percent: 60	-35.3127	2.1830	-16.1765					
Percent: 70	-36.9782	2.1830	-16.9395					
Percent: 80	-34.8091	2.1830	-15.9458					
NDL Cue Strength	-59.3505	5.9354	-9.9993					
Tense: past x Percent: 30	15.4293	3.0640	5.0357					
Tense: past x Percent: 40	30.5306	3.0640	9.9644					
Tense: past x Percent: 50	44.8250	3.0640	14.6298					
Tense: past x Percent: 60	51.6519	3.0640	16.8579					
Tense: past x Percent: 70	53.1408	3.0640	17.3439					
Tense: past x Percent: 80	47.3845	3.0640	15.4651					
Percent: 30 x NDL Cue Strength	19.6106	6.3897	3.0691					
Percent: 40 x NDL Cue Strength	42.7670	6.3897	6.6931					
Percent: 50 x NDL Cue Strength	59.0337	6.3897	9.2388					
Percent: 60 x NDL Cue Strength	67.9969	6.3897	10.6416					
Percent: 70 x NDL Cue Strength	68.5464	6.3897	10.7276					
Percent: 80 x NDL Cue Strength	62.5850	6.3897	9.7946					
F	2							
Predictor	Estimate	std Error	t value					
(Intercept)	-498.4431	74.2501	-6.7130					
Tense: past	-47.7638	6.9191	-6.9031					
Percent: 30	4.0708	5.7966	0.7023					
Percent: 40	8.0062	5.7966	1.3812					
Percent: 50	13.0229	5.7966	2.2466					
Percent: 60	17.9984	5.7966	3.1050					
Percent: 70	21.6940	5.7966	3.7425					
Percent: 80	23.4357	5.7966	4.0430					
NDL Cue Strength	-129.4344	15.7576	-8.2141					
Tense: past x Percent: 30	-14.8310	8.1360	-1.8229					
Tense: past x Percent: 40	-24.2537	8.1360	-2.9810					
Tense: past x Percent: 50	-35.4567	8.1360	-4.3580					
		8.1360 8.1360	-4.3580 -5.0792					
Tense: past x Percent: 50	-35.4567		-5.0792 -5.2413					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80	-35.4567 -41.3241 -42.6435 -36.6429	8.1360 8.1360 8.1360	-5.0792 -5.2413 -4.5038					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength	-35.4567 -41.3241 -42.6435 -36.6429 10.0258	8.1360 8.1360 8.1360 16.9673	-5.0792 -5.2413 -4.5038 0.5909					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength Percent: 40 x NDL Cue Strength	-35.4567 -41.3241 -42.6435 -36.6429 10.0258 33.0379	8.1360 8.1360 8.1360	-5.0792 -5.2413 -4.5038 0.5909 1.9472					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength	-35.4567 -41.3241 -42.6435 -36.6429 10.0258	8.1360 8.1360 8.1360 16.9673	-5.0792 -5.2413 -4.5038 0.5909					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength Percent: 40 x NDL Cue Strength Percent: 50 x NDL Cue Strength Percent: 60 x NDL Cue Strength	-35.4567 -41.3241 -42.6435 -36.6429 10.0258 33.0379 63.0881 85.9819	8.1360 8.1360 8.1360 16.9673 16.9673	-5.0792 -5.2413 -4.5038 0.5909 1.9472 3.7182 5.0675					
Tense: past x Percent: 50 Tense: past x Percent: 60 Tense: past x Percent: 70 Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength Percent: 40 x NDL Cue Strength Percent: 50 x NDL Cue Strength	-35.4567 -41.3241 -42.6435 -36.6429 10.0258 33.0379 63.0881	8.1360 8.1360 8.1360 16.9673 16.9673 16.9673	-5.0792 -5.2413 -4.5038 0.5909 1.9472 3.7182					

Table 3.3 Dispersion LMER model coefficients for the two predictors of interest: Tense and NDL Cue Strength (reference level: present tense and 20% time step).

The general trend shown in Figure 3.2 and Table 3.3 is that, as the formants move farther in time, the correlation between dispersion and both Tense and NDL Cue Strength increases.

3.3.1.3.1 Tense (linguistic property)

Overall, there is a large effect of morphological tense. Tense was significant in both F1 and F2 dispersion as seen in Table 3.3. The slopes of the

lines in the upper panels of Figure 3.2 indicate the direction of Tense's effects on vowel dispersion at each Percent time point. Compared to the reference level (20% present tense), F1 in the past tense displayed significantly greater dispersion from the centre of the vowel space at all the 40%-80% time steps (seen in the upwards slanting slopes), however the opposite is true for the 20%-30% time steps (seen in the downward slanting slope). The effect of Tense on F2 dispersion were more uniform. Compared to the reference level (20% present tense), F2 in the past tense displayed significantly less dispersion from the centre of the vowel space (all Percent lines are sloping downwards). This effect was significant at the 40-80% time steps (insignificant at the 30% time step).

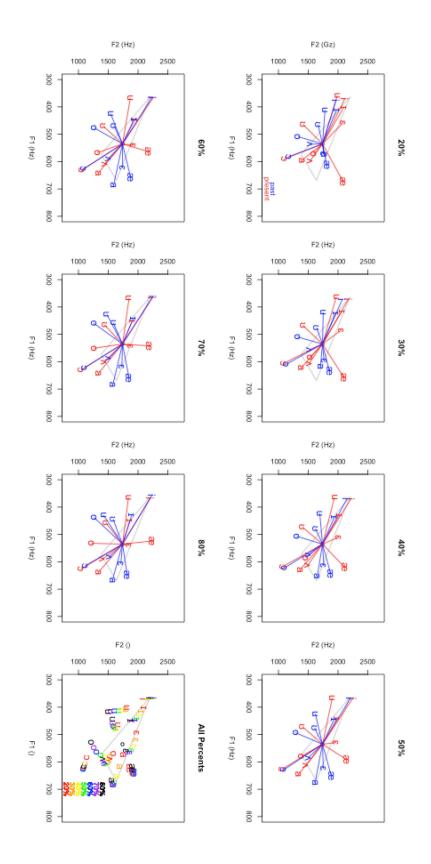
The results of the models are split for the predicted directions. It was predicted that phonetic enhancement (more dispersion) would correlate with the more morphologically uncertain verb form (the past tense). I find support for this prediction at the 40%-80% time steps in the F1 dimension only. In the F2 dimension, I find evidence of the opposite effect: the more morphologically uncertain verb form correlates with less dispersion compared to the unmarked verb form (the present tense).

3.3.1.3.2 NDL Cue Strength (paradigmatic support)

There is also an effect of NDL Cue Strength. When comparing the Percent time steps from 30%-80% to the 20% reference level, F2 displayed significantly less dispersion from the centre of the vowel space as NDL Cue Strength increased, seen in the negative slopes in Figure 3.2. In the F1 dimension, the interaction between NDL Cue Strength and Percent compared to the 20% reference level was significant for only the time steps between 50%-80%. An inspection of the LMER model results in Figure 3.2 indicates that the direction of the correlation between NDL Cue Strength and vowel dispersion for F1 is in the opposite direction as F2: there is slightly more dispersion (slight upward slanting slopes) as NDL Cue Strength increases.

As with the Tense predictor, the results of the model are split for the predicted directions of the NDL Cue Strength effects. It was predicted that phonetic enhancement (more dispersion) would correlate with the stronger morphological support (greater NDL Cue Strengths). For those interactions between NDL Cue Strength and Percent that were significant, I again find support for this prediction in the F1 dimension only. The effects in the F2 dimension are in the opposite direction than was predicted.

However, it is not advisable to interpret the fitted predictions of this global model because this model assumes that the dispersion slope for each vowel is the same. The last panel of Figure 3.3 (below) illustrates how vowel dispersion is carried by vowel. Though Tense and NDL Cue Strength have an effect on vowel dispersion as a whole, their effects on each individual vowel are not directly interpretable. Various studies have shown that vowels are produced with inherent properties that are unique and independent of the spectral properties of other vowels (see Morrison and Assmann, 2013, for a discussion). A model that assumes all vowels are produced with similar inherent spectral tendencies, then, opposes phonetic research. Thus, though this global model shows there to be an overall effect of morphological tense and NDL metrics in the predicted directions, it does not capture any inherent phonetic properties of the vowels. As such, a subsequent LMER analysis by vowel and by time percent was constructed to better capture the inherent differences in the vowels' spectral properties.


3.3.1.4 Results by Vowel and by Time Percent

To mitigate inherent spectral effects, each pairing of a vowel and percent time point were fitted in their own LMER model. For example, the dispersion of /i/ at its 20% time point was a separate LMER model from /i/ at its 30% time point and from /o/ at its 20% time point. This produces 140 models of vowel dispersion (one for each formant of each vowel at each time step; 2 formants x 10 vowels x 7 time points). The models' calls are listed in the Appendix (Table A.10).

Modelling the data in this way tests for the point(s) in time at which the linguistic predictors and/or paradigmatic support significantly affect the amount of vowel dispersion. This method allows one to find effects of the predictors on the dispersion variance for each vowel formant at each time point. It is not

intended to compare dispersion amongst vowels at one particular time point nor amongst all the time points for one particular vowel (as a single LMER model with vowels and/or time steps as main effects would do).

Figure 3.3 illustrates averages of the (raw) vowel dispersion values for each of the time steps between 20 and 80% of the total vowel durations, grouped by tense. Figure 3.3 is based on vowel space area, perimeter, and vowel dispersion averages across all speakers; however, the LMER analysis uses the vowel space area, perimeter, and vowel dispersion from individual speakers and vowel tokens. The line colour on the plots illustrate morphological tense with past in blue and present in red. The differences between the past tense and the present tense can be seen in a comparison of the differently coloured lines for each vowel label. The length and direction of the line illustrates the average dispersion from the (averaged) centre of the vowel space. The vowel each line belongs to is illustrated with the vowel label. The last panel of the figure illustrates average vowel dispersion across all speakers and tenses. In this panel, vowel label illustrates the dispersion point in the F1xF2 vowel space, while the colour of the label illustrates the Percent time step.

tense. Morphological tense is illustrated by line colour, and vowel identity is illustrated by line label. Figure 3.3: Raw averages across all speakers of the observed vowel dispersions from the centre of the vowel space, grouped by

Table 3.4 gives the *t*-values for the independent predictors of interest -Tense and NDL Cue Strength - in each of the 140 LMER analyses of the observed data (all coefficients for each LMER model are provided in the Appendix Table A.12). The table is colour coded according to the direction of the trend: green indicates a positive direction, yellow indicates a negative direction, and boldface (black font) indicates a significant value. A positive direction for Tense indicates that the past tense correlates with more vowel dispersion compared to the present tense (reference level). For example, the effect of Tense for the F1 of /i/ at the 20% time step is in a positive direction, indicating that the past tense correlates with more vowel dispersion when compared to the present tense, though this effect is statistically insignificant. However, the effect of Tense for the F1 of $/\Lambda$ / at the 20% is statistically significant, but in the opposite direction: the past tense correlates with less vowel dispersion when compared to the present tense. A positive direction for NDL Cue Strength indicates that greater NDL cue strengths correlate with more vowel dispersion. For example, the effect of NDL Cue Strength for the F2 of /i/ at the 50% time step is in a statistically significant positive direction, indicating that greater NDL cue strengths correlate with more vowel dispersion. However, the effect of NDL Cue Strength for the F2 of /u/ at the 50% time step is in a statistically insignificant negative direction, indicating that greater NDL cue strengths correlate with less vowel dispersion.

Recall that I predicted (§3.1.4) the past tense would correlate with more vowel dispersion (a positive trend, green shading) and greater NDL cue strengths would also correlate with more vowel dispersion (a positive trend, green shading).

Table 3.4: *t*-values for the main effects of Tense (reference level: present tense) and NDL for each of the 140 individual LMER models of vowel dispersion modelled on each Vowel Identity and Percent pair. Green shading indicates a positive trend. Yellow shading indicates a negative trend. Boldface (in black) indicates significance.

Tense														
	F1						F2							
Vowel	20%	30%	40%	50%	60%	70%	80%	20%	30%	40%	50%	60%	70%	80%
i	0.6126	0.4831	0.6384	0.5397	0.3444	0.2272	0.6132	-1.1018	-0.5538	0.2291	0.8800	0.9374	1.2213	1.5896
I	-1.0984	-0.9824	-1.3239	-1.6357	-1.5715	-1.5054	-0.7091	0.5749	0.3843	0.1665	0.1383	0.6275	0.8453	0.4774
3	-1.7766	-1.0645	-1.1349	-0.6570	-0.2572	0.1100	-0.1060	-3.3573	-2.6061	-2.0378	-1.3988	-0.5151	0.3337	0.4553
æ	0.0876	1.3621	1.9252	2.2845	1.9472	1.7137	1.0140	-1.8889	-1.7301	-2.0767	-2.1162	-1.8792	-1.7078	-1.6794
Λ	-2.7286	-2.6705	-2.1502	-1.3538	-1.0499	-0.9779	-0.9776	-1.4662	-1.3865	-1.2139	-1.1092	-1.0112	-0.7570	-0.4750
u	0.0016	0.0237	0.2590	0.3244	0.2819	0.1983	-0.0776	0.4024	-0.1330	-0.3091	-0.0478	-0.0602	-0.3913	-0.8713
υ	0.8667	0.4270	-0.0240	-0.0070	0.2520	0.3409	0.8697	0.1336	0.0706	-0.3360	-0.4603	-0.5045	-0.6535	-0.2795
0	0.6959	0.2488	0.1904	0.8488	1.3118	2.1675	3.2227	-1.8943	-2.2493	-2.6170	-2.2130	-1.6121	-1.0340	-0.8787
э	0.8716	1.1617	1.6783	1.0927	0.6161	0.8903	1.0708	-0.1684	-0.2148	-0.1226	-0.3509	-0.4856	-1.3630	-1.6275
а	-0.9587	-1.2283	-0.2321	0.5583	1.0487	0.9713	-0.1834	-2.4319	-2.4000	-2.0788	-1.4249	-1.1143	-0.7741	0.0193
						NI	DL Cue S	trength						
				F1							F2			
Vowel	20%	30%	40%	50%	60%	70%	80%	20%	30%	40%	50%	60%	70%	80%
i	0.4525	1.1669	1.5258	1.7366	1.5904	1.4771	1.5350	0.1872	0.8281	1.5365	2.1443	2.7859	2.8876	3.0531
I	1.7166	1.9725	2.2440	2.3621	2.0874	1.4477	0.9572	0.7646	0.9479	0.8372	1.0362	0.5781	-0.0792	-0.3619
3	-2.0036	-1.5069	0.2281	1.1682	1.5446	1.1653	0.7522	-2.5497	-3.3743	-3.8546	-3.9215	-3.9638	-3.5074	-2.4329
æ	0.2949	-0.4782	-1.0446	-1.3370	-1.1802	-1.0984	-0.7761	1.0319	0.9685	1.1765	1.3573	1.4584	1.9676	2.3075
Λ	1.4465	1.3541	0.8503	0.4009	0.1824	0.3876	0.6074	1.4997	1.3394	0.9793	0.3891	-0.1810	-0.5643	-0.9533
u	-0.2737	-0.1808	-0.0759	-0.0839	-0.3166	-0.7478	-0.8451	1.2306	0.5430	0.0593	-0.0702	0.0376	0.2140	0.4883
υ	-0.5473	-0.1466	0.1153	0.0563	-0.1784	-0.2284	-0.5982	-0.4884	-0.6035	-0.1160	0.0272	0.0768	0.2736	0.0395
0	-1.0877	-0.7884	-0.4276	-0.3158	-0.7513	-0.5372	-0.1045	1.3444	0.6641	0.0701	-0.0479	0.0226	0.5809	1.0112
э	-0.2976	-0.3837	0.0894	0.4839	0.5550	0.6057	0.7666	-2.5044	-2.7037	-3.1633	-2.8419	-4.1377	-4.8737	-4.9189
а	-0.4757	-0.0823	0.2556	1.1891	1.3434	1.4155	1.2886	1.8445	1.5876	1.0897	0.7771	1.4146	1.2666	0.6613

3.3.1.4.1 Tense (linguistic property)

Tense is significant in 17 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.4 in black boldface, half of the ten vowels - $\langle \epsilon \rangle$, $\langle \alpha \rangle$, $\langle \Lambda \rangle$, $\langle o \rangle$, and $\langle \alpha \rangle$ - display a significant difference in the variance of vowel dispersion from the centre of the vowel space in at least one formant dimension when predicted by Tense (reference level: present). Four of the five vowels ($\langle \epsilon \rangle$, $\langle \alpha \rangle$, $\langle \Lambda \rangle$, and $\langle o \rangle$) show a significant effect of Tense in both formant dimensions. Figure 3.3 illustrates the dispersion lines gathered from a raw average across all speakers. The dispersion lines for $\langle \epsilon \rangle$, $\langle \alpha \rangle$, $\langle \Lambda \rangle$, $\langle n \rangle$, \langle

The direction of the correlation between Tense and amount of dispersion varies amongst the five vowels that had a significant correlation. Most of the significant (boldface) effects seen on Table 3.4 (in yellow shading) are in a negative direction, meaning the past tense is correlated with less vowel dispersion compared to the present tense in these models. However, there are significant positive effects (in green shading) for the F1 of two vowels, /æ/ and /o/, meaning the past tense is correlated with more vowel dispersion compared to the present tense is correlated with more vowel dispersion compared to the present tense is correlated with more vowel dispersion compared to the present tense is correlated with more vowel dispersion compared to the present tense in these models. When viewing the trends for Tense in Table 3.4 as a whole, regardless of significance (black boldface), about half of the trends (44% or 61/140 models) are also in a positive direction.

Whereas I predicted that the more morphologically uncertain past tense would correlate with significantly more vowel dispersion, I do not find strong support for my prediction in the current analysis. There is an overall lack of statistically significant support for the past tense displaying more vowel dispersion compared to the present tense. Moreover, the trends in the data are split between positive and negative effects. There is no clear direction in the models' results for the predictability of Tense; the direction of Tense's effects on vowel dispersion is varied.

It is possible that this variation in the direction of correlation between Tense and Vowel seen both in the by vowel models and in the global models (with all vowels pooled together) is due to the surrounding phonetic environment's places of articulation. While the influence of place of articulation on the formant data is not specifically tested, the effects are illustrated in vowel plots for each place of articulation that precedes and follows each vowel (plots are located in the Appendix Figure A.7 and Figure A.8). The surrounding phonetic environment's place of articulation inherently effect vowel trajectories (shown with arrows in the vowel plots), which could alter the patterns of dispersion seen here. The current analysis of vowel dispersion was not designed to account for these context assimilation effects. Instead, context assimilation effects are better addressed in the two analyses of formant deviation (§3.3.2 and 3.3.3).

3.3.1.4.2 NDL Cue Strength (paradigmatic support)

NDL Cue Strength is significant in 23 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.4, half of the ten vowels - /i/, /I /, / ϵ /, / α /, and / σ / - display a significant difference in the variance of vowel dispersion from the centre of the vowel space when predicted by NDL Cue Strength. All five vowels show a significant effect of NDL Cue Strength for at least one formant and at least one time step, though none of the vowels show a significant effect of NDL Cue Strength for both formants.

The direction of the correlation between NDL Cue Strength and amount of dispersion varies amongst the five vowels that had a significant correlation. The significant effects seen on Table 3.4 (in yellow shading and black boldface) for two vowels, $/\epsilon$ / and $/_{\rm O}$ /, are in a negative direction, meaning higher NDL Cue Strengths are correlated with less vowel dispersion compared to lower NDL Cue Strengths. However, the F2 of three of the vowels, /i/, $/\mathbf{I}$ /, and $/\alpha$ /, are trending in a positive direction (in green shading and black boldface), meaning higher NDL Cue Strengths are correlated with more vowel dispersion compared to lower NDL Cue Strengths are correlated with more vowel dispersion compared to lower NDL Cue Strengths. When viewing the trends for Tense in Table 3.4 as a whole, regardless of significance (black boldface), slightly more than half of the trends (61% or 85/140 models) are also in a positive direction.

Our prediction was that greater NDL Cue strengths would pattern with phonetic enhancement (more vowel dispersion). Here I find slightly more support for my NDL Cue Strength prediction compared to my Tense prediction. Support for my NDL Cue Strength prediction is seen in the number of vowels showing a significant positive trend between NDL Cue Strength and vowel dispersion, as well as the proportion of positive trends in all of the models. Whereas the global models of the same vowel dispersion data were split on the direction of the NDL cue strength, the current by vowel models illustrate how this directional split is dependent on vowel (rather than across all vowels). For example, the global model found a significant negative correlation between NDL Cue Strength and F2 dispersion, overall. The results of the by vowel analysis here find that the F2 of only two vowels, ϵ / and /2 /, exhibit this significant negative correlation. In fact

the F2 dispersion of two other vowels, /i/ and /æ/, show the opposite effect: a significant positive correlation with Tense. It is possible, then, that $\epsilon / and / \rho / provide the most contribution for the negative trend seen in the global model (though this was not explicitly tested). Thus, in addition to lending more support for the predictive hypothesis (higher NDL cue strengths correlate with more vowel dispersion), the by vowel formant dispersion models offer more interpretative explanations of the global formant dispersion models.$

However, the support for my NDL Cue Strength prediction is not very strong as there is a lot of variation in the directional trends. As discussed in the previous section, it is possible that this variation in the direction of correlation between NDL Cue Strength and Vowel is due to the influence of the surrounding phonetic environment, namely the place of articulation. Though vowel plots by place of articulation (in the Appendix Figure A.7 and Figure A.8) do indicate that there is an effect of the surrounding phonetic environment, this was not directly addressed in the vowel dispersion analysis. The following two analyses of formant deviation from vowel onset and offset, however, better address context effects, as explained below.

3.3.2 Linear Analysis of Formant Deviation from Vowel Onset

The second LMER analysis builds upon the previous analysis by testing for effects of NDL Cue Strength and Tense on a different acoustic parameter: formant deviance from vowel onset (time step = 0). The previous analysis investigated the location of the vowels in the F1xF2 vowel space relative to the centre of the vowel space. The current analysis investigates not the location relative to the centre the vowel space, but the location relative to the onset of the vowel.

This deviance from vowel onset analysis, coupled with the following deviance from vowel offset analysis, is an attempt to capture the formant assimilation to the consonants at the temporal edges of the vowels. As Lindblom (1963, 1990) explained, in fast speech (such as the spontaneous speech from the Buckeye Corpus), speakers have less time to reach a vowel's target formant

frequencies, resulting in more coarticulation at the vowel's edges and hypoarticulation of the vowel target (or "undershoot": falling short of the target vowel formant values). Linblom notes that the edges of vowel productions are the result of articulators smoothly transitioning between the consonant and the vowel. This is evident in the smooth formant transitions at the edges of vowels, or "context assimilation" transitions. Broad and Clermont (1987; Model IVb, henceforth referred to as the Broad and Clermont context assimilation model) explore these context assimilations by investigating the time domain of the vowel's edges. They find that context assimilation is exponential: formant measurements taken at time slices closer to the edges of the vowels exhibit exponentially greater effects of context assimilation compared to measurements taken at time slices further from the edges of the vowels. In Lindblom terms, coarticulation is a function of time, with coarticulation effects increasing as the speaker's gestures move from a consonant place of articulation to the intended vowel target, and from the intended vowel target to the next consonant place of articulation. The least amount of context assimilation, then, is predicted to be at the point in time when the speaker reaches the maximum distance from the edges of the vowel (or, when the speaker has reached their closest approximation to their intended vowel target, though with articulatory undershoot). A Broad and Clermont context assimilation model predicts that the amount of dispersion from a vowel's onset/offset (its context assimilation) is expected to grow until it reaches an asymptotic state. This asymptotic state is akin to Lindblom's intended vowel target.

It is this exponential decay of context assimilation to an asymptote state (the vowel target) that the current and the following analyses indirectly address. This method of analysis addresses the issues of place of articulate effects discussed in the vowel dispersion analysis. Following from the phonetic research discussed above, it is predicted that the formant deviation from vowel onset will increase until the vowel has reached an asymptotic state. Moreover, it is predicted that linguistic predictors will modulate the formant deviance. The Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004, 2006) predicts that there will be greater deviance from the edges (less target vowel undershoot) for the

morphologically uncertain tense: the past tense. The Paradigmatic Signal Enhancement Hypothesis (Kuperman, 2007) predicts that there will be greater deviance from the edges (less target vowel undershoot) for vowels with strong paradigmatic support (higher NDL cue strengths). These predictions are based on the assumption that more formant deviation from the edges better distinguishes the vowel production, and the intended vowel target is reached with less hypo-articulation (i.e. more deviation towards the vowel's so-called steady state).

3.3.2.1 Statistical Procedures

Predictors in the LMER analysis are discussed in the next section and the LMER call can be found in the Appendix (Table A.10). The overall LMER procedure for the current analysis proceeded in the same way as the previous dispersion analysis, with the exception of the dependent variable of interest. The previous analysis investigated the formants' dispersion from the centre of the vowel space. The current analysis investigates the formants' deviation from the onset of the vowel (time step = 0). For ease of computation, F1 and F2 data were modelled separately.

3.3.2.2 Predictors

A summary of the predictors for the LMER analysis at hand is given in Table 3.5; predictors that have been changed or added to the previous model are highlighted in boldface. The main difference between the LMER analysis at hand and the previous is the dependent variable. While the previous analysis examined vowel dispersion, the current model tests the effects of Tense and NDL Cue Strength on formant deviation from vowel onset. Table 3.5: Predictors for main effects, interactions, and random effects in the Linear Mixed Effects Regression analysis of NDL and Tense on formants' deviance from vowel onset.

Predictor	Description	use in current analysis
Vowel Deviance	absolue value of the Euclidean Distance of the vowels from the onset of the vowel (time step = 0)	dependent variable
NDL Cue Strength	diphone Naive Discriminative Learning cue association strengths with the past tense, aggregated over the word	independent predictor of interest x Percent
Tense	morphological past or present tense reference level: present	independent predictor of interest x Percent
Percent	seven normalized 10% time steps (from 20%-80% of the total vowel duration) reference level: 20%	x NDL Cue Strength x Tense x Vowel Duration
Frequency	log value of the local Buckeye lexical frequency	x Vowel Duration random intercepts for Speaker slopes
Vowel Duration	log value	x Frequency x Percent random intercepts for Speaker slopes
Vowel Identity	the identy of the vowel reference level: /ʌ/	main effect
Previous Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Previous Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Previous Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Following Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Following Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Following Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect
Speaker	unique speaker identifier	random intercepts

The acoustic measure of Vowel Deviance serves as the dependent variable for the current LMER analysis. Vowel Deviance was calculated via the same method as dispersion. Euclidian distances were calculated by subtracting the formant values at each Percent from the formant values at the vowel onset (time step = 0). The absolute values of these distances were predicted in the LMER models.

In addition to the Voicing, Place, and Manner of the phone before and after the vowel, an interaction between Vowel Duration and Percent was added to the model to control for formant assimilation to context. Recall that the 10% Percent time steps were calculated for each vowel in order to normalize vowel duration. However, a formant's distance from vowel onset at the 50% time step may be further (in terms of duration) than another vowel; the distances between each Percent time step and each vowel onset are not the same for all vowels. The distance from onset, though, influences a formant's deviation from the onset of a vowel (see equations (38) and (39) in Broad and Clermont, 1987). A vowel with a shorter duration will travel a shorter distance, so its deviance from onset will be less than a longer vowel that travels a longer distance. For this reason, Vowel Duration was placed in an interaction with Percent to capture how far a particular vowel has traveled at a given Percent time step. The results of this interaction between absolute duration and normalized time are phonetically interesting, though secondary to the primary focus on morphological effects. More discussion A.1 and Discussion A.2).

3.3.2.3 Results with All Vowels Combined (global)

The coefficients for the current LMER analysis are given in Table 3.6. Figure 3.4 illustrates the main effects of Tense and NDL Cue Strength and their interaction with Formant. All coefficients for the models are given in the Appendix (Table A.13).

The plots in Figure 3.4 are similar to those from the dispersion analysis. The top panels illustrate the effect of Tense for F1 (left panel) and F2 (right panel), shown in an interaction with Percent time step (line type and colour). A line with a positive slope in these panels indicates that the past tense is correlated with greater amounts of formant deviance from vowel onset than the present tense (reference level). A positive slope would be in line with my prediction: the more morphologically uncertain tense (past) will correlate with phonetic enhancement (more deviance). The bottom panels illustrate the effect of NDL Cue Strength for F1 (left panel) and F2 (right panel), shown in an interaction with Percent time step (line type and colour). A line with a positive slope in these panels indicates that higher NDL Cue Strengths correlate with greater amounts of formant deviance. A

positive slope would be in line with my prediction: more paradigmatic support (greater NDL Cue Strengths) will correlate with phonetic enhancement (more deviance).

A Broad and Clermont (1987) context assimilation model would predict that formant deviance will decrease at an exponential rate (irrespective of Tense and NDL Cue Strengths), until the trajectory reaches an asymptote state, roughly half-way through the vowel duration (roughly at the 50% vowel time step).

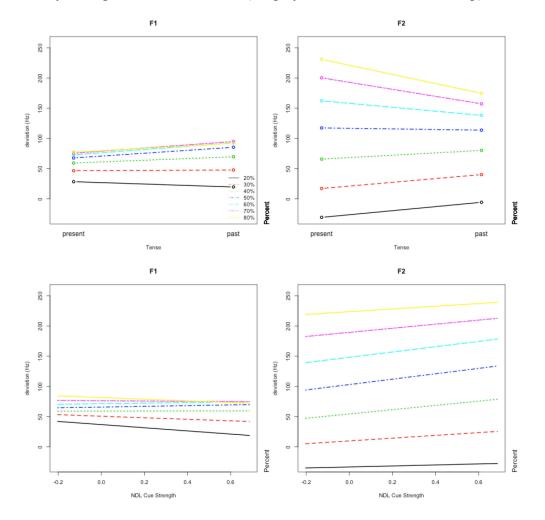


Figure 3.4: Partial effects of the LMER model results for the two predictors of interest: Tense is shown on the top row (for F1 and F2; reference level: present tense and 20% time step), and NDL Cue Strength is shown on the bottom row (for F1 and F2). The coloured lines show the interaction between Percent and the predictors (Tense and NDL Cue Strength).

Table 3.6: Deviance from onset LMER model coefficients for the two predictors of interest: Tense and NDL Cue Strength (reference level: present tense and 20% time step).

F1								
Predictor	Estimate	std Error	t value					
(Intercept)	-60.3277	27.1073	-2.2255					
Tense: past	-8.7889	2.4983	-3.5180					
Percent: 30	-9.5582	10.0868	-0.9476					
Percent: 40	8.7738	10.0868	0.8698					
Percent: 50	36.6516	10.0868	3.6336					
Percent: 60	61.9945	10.0868	6.1461					
Percent: 70	86.2746	10.0868	8.5532					
Percent: 80	108.1120	10.0868	10.7182					
NDL Cue Strength	-26.0884	5.7085	-4.5701					
Tense: past x Percent: 30	9.9964	2.9405	3.3996					
Tense: past x Percent: 40	19.1579	2.9405	6.5152					
Tense: past x Percent: 50	26.4371	2.9405	8.9907					
Tense: past x Percent: 60	28.6169	2.9405	9.7320					
Tense: past x Percent: 70	28.0819	2.9405	9.5500					
Tense: past x Percent: 80	23.5311	2.9405	8.0024					
Percent: 30 x NDL Cue Strength	13.3262	6.1728	2.1589					
Percent: 40 x NDL Cue Strength	26.5509	6.1728	4.3013					
Percent: 50 x NDL Cue Strength	32.0063	6.1728	5.1851					
Percent: 60 x NDL Cue Strength	30.8832	6.1728	5.0031					
Percent: 70 x NDL Cue Strength	23.8186	6.1728	3.8587					
Percent: 80 x NDL Cue Strength	12.4952	6.1728	2.0242					
	2							
Predictor	Estimate	std Error	t value					
(Intercept)	183.8443	60.7904	3.0242					
Tense: past	24.9237	5.4280	4.5917					
Percent: 30	-95.3896	21.8949	-4.3567					
Percent: 40	-164.3852	21.8949	-7.5079					
Percent: 50	-211.0620	21.8949	-9.6398					
Percent: 60	-246.8289	21.8949	-11.2734					
Percent: 70	-255.1690	21.8949	-11.6543					
Percent: 80	-207.1662	21.8949	-9.4619					
NDL Cue Strength	8.3677	12.3979	0.6749					
Tense: past x Percent: 30	-1.9290	6.3828	-0.3022					
Tense: past x Percent: 40 Tense: past x Percent: 50	-10.4789 -28.6004	6.3828 6.3828	-1.6417 -4.4808					
		6.3828	-4.4808					
Tense: past x Percent: 60 Tense: past x Percent: 70	-49.0144 -67.9520	6.3828	-10.6461					
A		6.3828	-10.6461					
Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength	-81.1054 14.5606	0.3828	1.0867					
Percent: 30 x NDL Cue Strength Percent: 40 x NDL Cue Strength	27.0531	13.3989	2.0191					
Percent: 40 x NDL Cue Strength Percent: 50 x NDL Cue Strength	36.2152	13.3989	2.7028					
Percent: 60 x NDL Cue Strength	35.4277	13.3989	2.6441					
TI CICCILL. OU A THEL CUE SHELIGH			2.044I					
Percent: 70 x NDL Cue Strength								
Percent: 70 x NDL Cue Strength Percent: 80 x NDL Cue Strength	25.4561 14.1628	13.3989 13.3989	1.8999 1.0570					

The general trend shown in Figure 3.4 and Table 3.6 is that, as the formants move farther in time, the correlation between onset deviance and both Tense and NDL Cue Strength increases, with both effects peaking around 50-60% of the total vowel duration.

3.3.2.3.1 Tense (linguistic parameter)

As seen in Table 3.6, the amount of F1 deviation from vowel onset in the past tense was significantly different than the reference level (20% present tense) for all Percent time steps. The direction of these effects are split in Figure 3.4. F1 in the past tense displayed significantly less deviation from vowel onset at the 20%-30% time steps (seen in the downwards slopes). However this effect is reversed at the 40%-80% time steps where the past tense is correlated with more deviance than the present tense (seen in the upwards slopes).

The amount of F2 deviation from vowel onset in the past tense was significantly different than the reference level (20% present tense) for only the 50%-80% time steps, as seen in Table 3.6. At the the 50% time step, the past tense is correlated with slightly less F2 deviance than the present tense (though the slope is almost horizontal). For the 60%-80% time steps, however, there is a clear downward slant in the slopes, indicating that the past tense is correlated with considerably less F2 deviation compared to the present tense.

It is possible to explain these split patterns of Tense's effects in terms of Broad and Clermont's (1987) model of context assimilation. It appears in Figure 3.4 that formant deviance from offset begins to asymptote around the 50% time step. In the top two panels for Tense, this is evident in the convergence of the Percent lines between 50%-80% (as compared to the more divergent 20%-40% lines). This 50% asymptote boundary is approximately where the effects of Tense change direction. In the F1 model (upper left panel), this is at the 40% time step (green line), and in the F2 model (upper right panel), this is at the 50% time step (blue line). One explanation for the split in Tense's effects is that the morphological predictor's effects become more apparent once the vowel reaches its asymptote state. Prior to reaching the asymptote state (at roughly the 20%-40% time steps), the exponential decay of the context assimilation could be overshadowing the effects of linguistic predictors. Coarticulation is too strong here.

Under this interpretation of the Broad and Clermont model of context assimilation, the effects of Tense are more clear. After the formant trajectory has

reached it's asymptotic state, Tense is positively correlated with F1 trajectories (more deviation for the more uncertain verb form - past tense) and negatively correlated with F2 trajectories (less deviation for the more uncertain verb form - past tense).

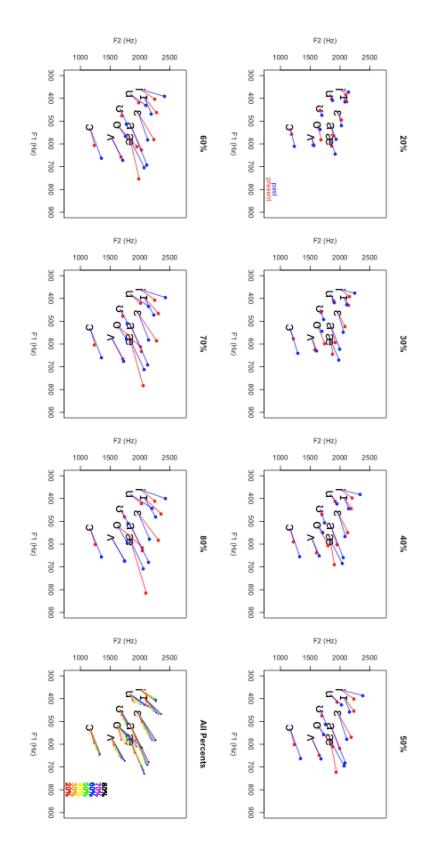
With this explanation, the results of the models are again split for the predicted directions. It was predicted that phonetic enhancement (more dispersion) would correlate with the more morphologically uncertain verb form (the past tense). As in the analysis of vowel dispersion, I find support for this prediction in the F1 dimension only. In the F2 dimension, I find evidence of the opposite effect: the more morphologically uncertain verb form correlates with less deviation compared to the unmarked verb form (the present tense).

3.3.2.3.2 NDL Cue Strength (paradigmatic support)

NDL Cue Strength was significant for F1 deviation at all Percent time steps according to Table 3.6. The patterns of deviation for NDL Cue Strength in the F1 dimension are similar to the patterns of Tense. At the Percent time steps from 20%-30%, F1 displayed less deviation from vowel onset as NDL Cue Strength increased (seen in the downward slopes of the bottom left panel of Figure 3.4). The opposite is true for the 40%-80% time steps where F1 displayed slightly more deviation from vowel onset. One explanation based on a Broad and Clermont context assimilation model is again that as the vowel reaches its asymptotic state (around the 40% time step), effects of the NDL Cue Strength predictor begin to converge. This could explain the split between the negative and positive slopes. The interpretation is that once the vowel approaches its asymptote state, there is a positive effect of NDL Cue Strength (greater strengths correlate with more deviance). This positive effect is in the predicted direction.

It is also possible that the split between the negative and positive slopes is instead due to effects of the context following the vowel. After the vowel has approached its asymptotic state (i.e. in the last 60%-80% of the vowel duration), the effects of the C_1V decrease, but the effects of the VC₂ increase. Thus, under the current analysis, it is not possible to absolutely distinguish the following phonetic environment's coarticulation effects from the effects of the NDL Cue Strength.

In the F2 dimension, the effects of NDL Cue Strength are only significant at the 40%-60% time steps, according to Table 3.6. Figure 3.4 (bottom right panel) shows clear positive slopes for these time steps: greater NDL Cue Strengths correlate with more formant deviation. According to a Broad and Clermont context assimilation model, the 40%-60% time steps (the time steps where the correlation between NDL Cue Strength and F2 are significant) should be where the F2 trajectory begins to asymptotes. However there is no clear evidence of an F2 trajectory asymptote in the plot of NDL Cue Strength. Regardless, the positive trends in the F2 data are in the predicted directions: more paradigmatic strength correlates with greater amounts of deviance.


3.3.2.4 Results by Vowel and by Time Percent

As with the dispersion analysis, 140 by vowel and by time percent models of formant deviance were computed to check for significant effects of Tense and NDL Cue Strength for each vowel. The same model structure for formant deviance was run over each of the 10 vowels at each of the 7 time percentages for both formants (7 x 10 x 2 = 140 models). The models' calls are listed in the Appendix (Table A.10).

Figure 3.5 illustrates averages of the (raw) vowel deviances from onset for each of the time steps between 20 and 80% of the total vowel durations, grouped by the past and present tenses. This figure is similar to the by vowel/by percent dispersion plots (Figure 3.3). Vowel label illustrates the average onset of each vowel at the 0% time step. Line colour illustrates morphological tense while line length and direction indicates the average formant distance and direction from vowel onset (terminal end marked with a point). Differences in a vowel's deviation with regards to tense can be seen by comparing the two coloured lines for each vowel.

The last panel of the figure illustrates average vowel deviation across all speakers and tenses with line colour indicating Percent time step. This plot

illustrates that vowels deviate further from the vowel onset as they progress through time. The exponential decay of vowel deviance predicted by a Broad and Clermont context assimilation model is evident in this plot. ϵ / best exemplifies this: there is a big jump in formant deviations from 20%-50% (red-green lines), and a levelling off of the deviations as the vowel approaches an asymptote state at 50%-80% time steps (green-black lines).

Morphological tense is illustrated by line colour, and vowel onset is illustrated by vowel label. Figure 3.5: Raw averages across all speakers of the observed vowel deviations from the onset of the vowel, grouped by tense.

The *t*-values for the LMER models of formant movement deviance from onset, by vowel, are given in Table 3.7 (all coefficients for each LMER model are provided in the Appendix Table A.14). This table is similar to the by vowel by percent dispersion table (Table 3.4). Positive trends are shaded in green, negative trends are shaded in yellow, and significant trends are indicated with black boldface. A positive trend for Tense indicates that the past tense correlates with more formant deviation than the present tense (reference level). A positive trend for NDL Cue Strength indicates that greater NDL cue strengths correlate with more formant deviation. As with vowel dispersions, my predictions are for all positive (green) trends: the more morphological uncertain tense (past) and stronger paradigmatic support (greater NDL cue strengths) correlate with more formant deviation from vowel onset.

Table 3.7: *t*-values for the main effects of Tense (reference level: present tense) and NDL for each of the 140 individual LMER models of vowel onset deviance modelled on each Vowel Identity and Percent pair. Green shading indicates a positive trend. Yellow shading indicates a negative trend. Boldface (in black) indicates significance.

	Tense													
	F1								F2					
Vowel	20%	30%	40%	50%	60%	70%	80%	20%	30%	40%	50%	60%	70%	80%
i	-0.4690	-0.9587	-1.6432	-1.8912	-1.7769	-1.9008	-1.4799	-0.8459	-0.9117	-1.0553	-0.7129	-0.8864	-0.9641	-0.8169
I	0.5872	-0.0370	-0.1156	0.2534	0.7413	0.9069	1.5043	-1.1965	-1.0476	-1.0203	-1.5983	-2.1348	-2.0956	-2.0858
ε	1.5170	1.5087	1.5341	1.3423	1.0325	0.0568	-1.6371	-2.6274	-3.7106	-4.1036	-4.4948	-5.0307	-4.9812	-4.4811
æ	-0.6478	-0.5506	0.3774	0.6274	0.4987	-0.0074	-0.7549	-2.0377	-2.0614	-1.7070	-1.8614	-1.9012	-2.4176	-2.9386
Λ	-0.1411	0.4618	0.8648	0.9322	0.7613	0.6152	0.2711	-0.2254	-0.4944	-0.4231	-0.2914	-0.7024	-0.9781	-1.2098
u	0.6029	0.7341	0.3410	0.2385	0.4043	0.6394	0.8831	-0.7855	0.3025	0.1506	0.5048	0.6976	0.4877	0.6007
υ	-0.0554	0.2041	0.3419	0.1801	-0.0451	-0.1621	-0.1649	0.0021	-0.2996	0.1469	0.0823	0.4191	0.4789	0.2415
0	-0.7773	-0.4355	-0.3710	-0.2800	-0.0623	0.4375	0.9923	0.0798	-0.3474	-0.3018	0.1234	0.2573	0.5003	0.7827
э	0.9446	0.3515	0.0674	0.4293	0.8294	0.7717	0.4827	0.3755	0.1392	0.2619	0.4172	0.5687	0.7139	0.1763
a	0.3133	0.6192	0.7431	0.8654	1.0069	0.8970	0.5386	-1.1751	-0.8961	-0.9850	-1.0290	-1.2706	-0.8254	-0.5995
						NI	DL Cue S	trength						
				F1				F2						
Vowel	20%	30%	40%	50%	60%	70%	80%	20%	30%	40%	50%	60%	70%	80%
i	0.6845	1.0235	0.3571	0.1272	0.3277	0.4745	0.3699	2.1724	2.0159	1.9031	1.9379	2.2117	1.8802	1.4033
I	-0.1080	0.2279	0.3137	0.0611	0.0585	0.0288	0.0666	0.4859	0.5023	0.6078	0.1493	0.4771	0.4629	0.5037
8	-0.3714	-0.5093	-0.4320	-0.7697	-1.0741	-0.6427	0.6246	2.0159	2.5985	2.8492	2.8550	2.8908	2.4861	1.7757
æ	0.7391	0.4009	-0.4881	-0.7413	-0.7959	-0.4895	0.0023	1.1141	1.2089	1.0817	1.3321	1.3518	1.6727	2.2021
Λ	0.4184	-0.2263	-0.3227	-0.5348	-0.5694	-0.6529	-0.3491	1.0018	0.5363	0.2857	-0.0935	0.1588	0.2609	0.3707
u	1.8678	1.7947	1.7368	1.7463	1.9079	2.0909	1.9027	-1.2196	-0.1736	0.2837	0.7061	1.1567	1.4494	1.8296
υ	0.2480	0.0867	-0.1429	-0.0134	0.2302	0.3582	0.3764	-0.0166	0.3019	-0.1567	-0.1092	-0.4923	-0.5970	-0.4396
0	0.4048	-0.0145	-0.2611	-0.2430	-0.0652	0.5140	0.8188	-1.3777	-1.5064	-1.9223	-1.8623	-1.6088	-0.9624	-0.3857
э	-0.1475	-0.5391	-0.6768	-0.8312	-0.8248	-0.7997	-0.7588	-1.3562	-1.2760	0.4209	1.1635	1.8254	1.9192	3.1095
a	0.1047	-0.3252	0.1734	0.1564	0.2055	-0.2399	0.1431	0.7711	0.2373	0.3094	0.0719	0.4686	0.1451	-0.5666

3.3.2.4.1 Tense (linguistic parameter)

Tense is significant in 14 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.7, three of the ten vowels - /I /, / ϵ /, and / α / - display a significant difference in the variance of deviation from vowel onset when predicted by Tense (reference level: present). The significant differences occur after the vowel has reached an asymptote state for /I /, throughout all the time steps for / ϵ /, and both at the initial time steps (where coarticulation is the strongest) and final timesteps (where coarticulation is weakest) for / α /. Figure 3.5 illustrates the average formant deviations for each vowel. The three vowels with significantly different lines. Of all the models showing

significant differences in deviation, 64% (9/14 models) are between the 50%-80% time steps, when the formant trajectory has approximated an asymptote state of context assimilation (Broad and Clermont, 1987).

The direction of the correlation between Tense and deviance from vowel onset is consistent across the three vowels that had a significant correlation. All of the significant effects seen on Table 3.4 (in yellow shading and black boldface) are in a negative direction, meaning the past tense is correlated with less vowel dispersion than the present tense. As with the global analysis of formant deviation from vowel onset, the significant effects of Tense in the by vowel models are not in the predicted direction.

A count of the trends regardless of significance indicates that the F1 and F2 deviation models together are evenly split between positive and negative trends (50%, or 70/140 models, are positive trending, green shading). However, there is a visually clear difference between the F1 and F2 deviance models. In the F1 models, 66% of the trends (46/70 models) are in the positive direction (green shading; higher NDL cue strengths correlate with more deviation). In the F2 models, the proportion of positive trends is reduced to 34% (24/70 models).

As with the global models, support for the predicted results is split. I predicted that the more morphologically uncertain verb form (past tense) would correlate with more vowel deviation. The significant trends and proportion of negative trends in F2 deviation do not support this prediction, but the proportion of trending positive effects in F1 deviation does.

3.3.2.4.2 NDL Cue Strength (paradigmatic support)

NDL Cue Strength is significant in 12 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.7, half of the ten vowels - /i/, / ϵ /, / α /, /u/, and / σ / - display a significant difference in the variance of deviation from vowel onset when predicted by NDL Cue Strength. All five vowels show a significant effect of NDL Cue Strength for at least one formant and at least one time step, though none of the vowels show a significant effect of NDL Cue Strength for at least one formant and at least one time step, though none of the vowels show a significant effect of NDL Cue Strength for at least one formant and at least one time step, though none of the vowels show a significant effect of NDL Cue Strength for both formants and for all of the time

steps. Of all the models showing significant differences in deviation, 58% (7/12 models) are between the 50%-80% time steps, when the formant trajectory approximates an asymptote state of context assimilation (Broad and Clermont, 1987).

The direction of the correlation between NDL Cue Strength and deviance from vowel onset is consistent amongst the three vowels that had a significant correlation. All of the significant effects seen in Table 3.7 (in green shading and black boldface) are in a positive direction, meaning higher NDL Cue Strengths are correlated with more deviation than lower NDL Cue Strengths. The results of these models are in the predicted directions: more paradigmatic support correlates with greater amounts of deviation from vowel onset, or phonetic enhancement, overall.

Support for the predicted direction also comes from a count of the positive trends. The proportion of models in Table 3.7 that have a positive trend (green shading) is at 66% (88/140 models). Considering both the significant effects and proportion of trending positive effects, the results for the by vowel models here mirror that of the global analysis (when the global analysis is interpreted under a Broad and Clermont context assimilation model). Both of these analyses show that more paradigmatic support correlates with greater amounts of formant deviation.

3.3.3 Linear Analysis of Formant Deviation from Vowel Offset

The third LMER analysis builds upon the previous by testing for effects of NDL Cue Strength and Tense on formant deviance from vowel offset. This is the second analysis to test the effects of formant deviation under a Broad and Clermont context assimilation model. The predictions and predictors are the same in this deviance from offset analysis. The difference is the direction of deviation. The previous analysis investigated the formants' amount of deviance from the beginning of the vowel (progressive deviation); the current analysis investigates the amount of deviance from the end of the vowel (regressive deviation).

3.3.3.1 Statistical Procedures

Predictors in the LMER model are discussed in the next section and the LMER call can be found in the Appendix (Table A.10). The overall LMER procedure for the current analysis proceeded in the same way as the previous formant deviation analysis, with the exception of the dependent variable of interest. The previous analysis investigated the formants' deviation from vowel onset. The current analysis investigates the formants' deviation from vowel offset (maximum time step). As such, the reference level for the time measurement in the LMER models was set to the end of the vowels (80%). For ease of computation, F1 and F2 data were modelled separately.

3.3.3.2 Predictors

A summary of the predictors for the LMER analysis at hand is given in Table 3.8; predictors that have been changed or added to the previous model are highlighted in boldface. The main difference between the LMER analysis at hand and the previous is the dependent variable. While the previous analysis examined formants' deviance from vowel onset, the current model tests the effects of Tense and NDL Cue Strength on formants' deviance from vowel offset. Table 3.8: Predictors for main effects, interactions, and random effects in the Linear Mixed Effects Regression analysis of NDL and Tense on formants' deviance from vowel offset.

Predictor	Description	use in current analysis		
Vowel Deviance	absolue value of the Euclidean Distance of the vowels from the offset of the vowel (maximum time step)	dependent variable		
NDL Cue Strength	diphone Naive Discriminative Learning cue association strengths with the past tense, aggregated over the word	independent predictor of interest x Percent		
Tense	morphological past or present tense reference level: present	independent predictor of interest x Percent		
Percent	seven normalized 10% time steps (from 20%-80% of the total vowel duration) reference level: 80%	x NDL Cue Strength x Tense x Vowel Duration		
Frequency	log value of the local Buckeye lexical frequency	x Vowel Duration random intercepts for Speaker slopes		
Vowel Duration	log value	x Frequency x Percent random intercepts for Speaker		
Vowel Identity	the identy of the vowel reference level: /ʌ/	slopes main effect		
Previous Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Previous Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Previous Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Following Voicing	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Following Place	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Following Manner	deviation coding for the segment preceding the vowel reference level: means of all factors	main effect		
Speaker	unique speaker identifier	random intercepts		

The acoustic measure of Vowel Deviance serves as the dependent variables for the current LMER analysis. Vowel Deviance from offset was calculated in the same way as deviance from onset. Euclidian distances were calculated by subtracting the formant values at the vowel offset (maximum time step) from the formant values at each Percent. The absolute values of these distances were predicted in the LMER models.

The other difference between the current analysis and the previous concerns the Percent predictor. Since vowel deviance from offset is the acoustic measure under investigation, the reference level for Percent was set to 80%, towards the vowel offset.

3.3.3.3 Results with All Vowels Combined (global)

The coefficients for the current LMER analysis are given in Table 3.9. Figure 3.6 illustrates the main effects of Tense and NDL Cue Strength and their interaction with Formant. All coefficients for the models are given in the Appendix (Table A.15).

The plots in Figure 3.6 are similar to those from the dispersion and deviation from onset analyses. The main difference between the plots of the previous two analyses and the current one is that the Percent reference level for the current analysis is set to 80%, closer to the vowel offset. The top panels illustrate the effect of Tense for F1 (left panel) and F2 (right panel), shown in an interaction with Percent time step (line type and colour). A line with a positive slope in these panels indicates that the past tense is correlated with greater amounts of formant deviance from vowel offset than the present tense (reference level). A positive slope would be in line with my prediction: the more morphologically uncertain tense (past) will correlate with phonetic enhancement (more deviance). The bottom panels illustrate the effect of NDL Cue Strength for F1 (left panel) and F2 (right panel), shown in an interaction with Percent time step (line type and colour). A line with a positive slope in these panels indicates that higher NDL Cue Strengths correlate with greater amounts of formant deviance. A positive slope would be in line with my prediction: more paradigmatic support (greater NDL Cue Strengths) will correlate with phonetic enhancement (more deviance).

Similarly to the previous analysis of deviation from vowel onset, a Broad and Clermont (1987) context assimilation model would predict that formant deviance will decrease at an exponential rate (irrespective of Tense and NDL Cue Strengths), until the trajectory reaches an asymptote state, roughly half-way through the vowel duration (roughly at the 50% vowel time step).

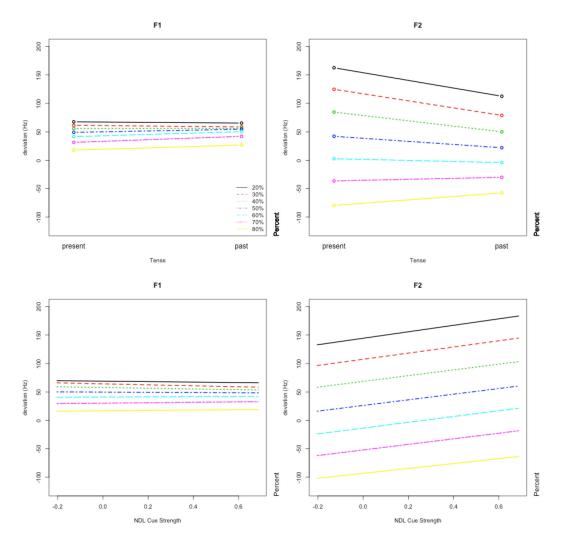


Figure 3.6: Partial effects of the LMER model results for the two predictors of interest: Tense is shown on the top row (for F1 and F2; reference level: present tense and 20% time step), and NDL Cue Strength is shown on the bottom row (for F1 and F2). The coloured lines show the interaction between Percent and the predictors (Tense and NDL cue strength).

Table 3.9: Deviance from offset LMER model coefficients for the two predictors of interest: Tense and NDL Cue Strength (reference level: present tense and 20% time step).

F1								
Predictor	Estimate	std Error	t value					
(Intercept)	66.3801	25.7837	2.5745					
Tense: past	8.9709	2.3693	3.7863					
Percent: 70	-19.2364	9.5612	-2.0119					
Percent: 60	-31.8003	9.5612	-3.3260					
Percent: 50	-33.6481	9.5612	-3.5192					
Percent: 40	-19.7632	9.5612	-2.0670					
Percent: 30	7.5149	9.5612	0.7860					
Percent: 20	43.2560	9.5612	4.5241					
NDL Cue Strength	3.1865	5.4124	0.5887					
Tense: past x Percent: 70	1.6025	2.7873	0.5749					
Tense: past x Percent: 60	-0.1844	2.7873	-0.0662					
Tense: past x Percent: 50	-3.5021	2.7873	-1.2565					
Tense: past x Percent: 40	-8.6475	2.7873	-3.1025					
Tense: past x Percent: 30	-11.8572	2.7873	-4.2540					
Tense: past x Percent: 20	-11.2110	2.7873	-4.0222					
Percent: 70 x NDL Cue Strength	0.6944	5.8511	0.1187					
Percent: 60 x NDL Cue Strength	-1.5174	5.8511	-0.2593					
Percent: 50 x NDL Cue Strength	-5.1803	5.8511	-0.8853					
Percent: 40 x NDL Cue Strength	-9.4204	5.8511	-1.6100					
Percent: 30 x NDL Cue Strength	-11.7397	5.8511	-2.0064					
Percent: 20 x NDL Cue Strength	-7.3538	5.8511	-1.2568					
	2							
Predictor	Estimate	std Error	t value					
(Intercept)	-323.3378	53.9555	-5.9927					
Tense: past	21.9640	5.6273	3.9031					
Percent: 70	-9.3547	22.9678	-0.4073					
Percent: 60	6.5882	22.9678	0.2868					
Percent: 50	24.1125	22.9678	1.0498					
Percent: 40	32.5551	22.9678	1.4174					
Percent: 30	15.8201	22.9678	0.6888					
Percent: 20	-34.0596	22.9678	-1.4829					
NDL Cue Strength	42.9038	12.8821	3.3305					
Tense: past x Percent: 70	-15.6407	6.6956	-2.3360					
Tense: past x Percent: 60	-28.8128	6.6956	-4.3032					
Tense: past x Percent: 50	-42.0690	6.6956	-6.2831					
Tense: past x Percent: 40	-56.6778	6.6956	-8.4649					
Tense: past x Percent: 30	-67.8654	6.6956	-10.1358					
Tense: past x Percent: 20	-72.0284	6.6956	-10.7576					
Percent: 70 x NDL Cue Strength	6.1474	14.0555	0.4374					
Percent: 60 x NDL Cue Strength	7.8729 6.7728	14.0555 14.0555	0.5601 0.4819					
Percent: 50 x NDL Cue Strength								
Percent: 40 x NDL Cue Strength	7.5815	14.0555	0.5394					
Demonstry 20 - NIDL Crue Comments	11 2217	14.0555	0 709 4					
Percent: 30 x NDL Cue Strength Percent: 20 x NDL Cue Strength	11.2217 14.0322	14.0555 14.0555	0.7984 0.9983					

The general trend shown in Figure 3.6 and Table 3.9 is that, as the formants move farther in time, the correlation between offset deviance and both Tense and NDL Cue Strength increases, with both effects peaking (regressively) around 50-30% of the total vowel duration. These predictions are in line with a Broad and Clermont (1987) model of context assimilation.

3.3.3.1 Tense (linguistic parameter)

To interpret the effects of both Tense and NDL Cue Strength in the offset deviance models, it is important to first point out that the Percent time steps are discussed as they regress backwards. Rather than interpreting formant trajectories as they move forward through time, as with the dispersion and deviance from onset analyses, the deviance from offset analysis interprets the effects of the linguistic predictors as the formant trajectories regress in time, away from vowel offset (maximum time step). For this reason, the reference level in the offset deviance models is set to the 80% time step.

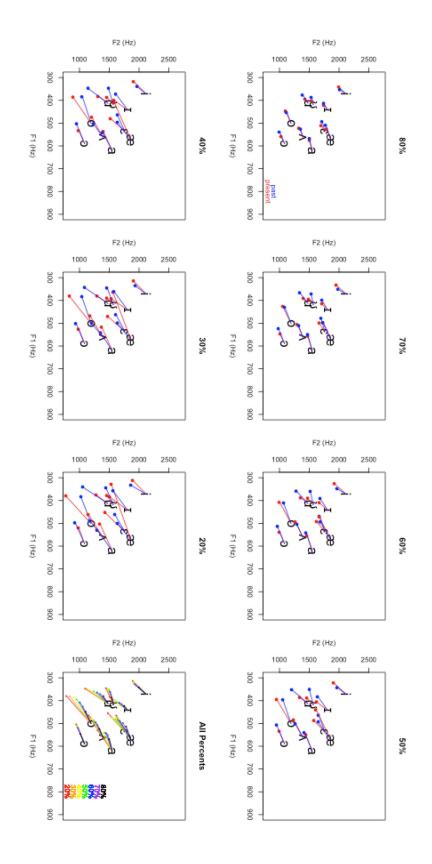
According to Table 3.9 for F1 offset deviance, the past tense was significantly different than the present tense (reference level) at the 40%-20% time steps. The effect of Tense on F1 deviation from vowel offset is similar to its effect on F1 deviation from vowel onset and can also be interpreted in terms of a Broad and Clermont context assimilation model: once the F1 trajectory reaches its 40%-20% asymptote state, the past tense correlates with slightly more deviation (seen in the slight rise of the slope in Figure 3.6). The size of this effect is less than with onset deviance (seen in slope comparisons), but the interpretation of the results is the same. The more morphologically uncertain past tense correlates with more F1 deviation compared to the present tense.

F2 deviance from vowel offset is significant in the past tense for all 70%-20% time steps compared to the present tense 80% reference level. Moreover, Table 3.9 shows that the strength of this effect gradually grows until the vowel reaches an asymptote state roughly around the 40% time step. The directions of Tense's effect on F2 deviance from vowel offset are the same as in F2 deviance from vowel onset. Prior to reaching the asymptote state around the 50%-40% time step, Figure 3.6 shows that the past tense correlates with more F2 deviance (upwards sloping lines for the 80%-70% time steps). Once the F2 trajectory approaches an asymptote state, however, the past tense correlates with less F2 deviance (downwards sloping lines for the 60%-20% time steps). Again, a Broad and Clermont context assimilation model could explain this split in the F2 deviance patterns. The effects of Tense on F2 deviance at the 80%-60% tail end of

the vowel could be confounded with the exponential formant trajectories from the surrounding vowel environment. Coarticulation is strong here.

The results of the models are once again split for the predicted directions. My prediction for offset deviation is the same as it was for onset deviation: the more morphologically uncertain verb form (past tense) is expected to correlate with phonetic enhancement (more deviation). As with the analyses of vowel dispersion and formant deviation from onset, I find support for my prediction in the F1 dimension only: as the vowel reaches an asymptote state, the morphologically uncertain past tense correlates with more deviation. The opposite is true in the F2 dimension under a similar context assimilation explanation: as the vowel reaches an asymptote state, the morphologically uncertain past tense correlates with more deviation explanation: as the vowel reaches an asymptote state, the morphologically uncertain past tense tense correlates with more deviation explanation: as the vowel reaches an asymptote state, the morphologically uncertain past tense tense correlates with more deviation explanation: as the vowel reaches an asymptote state, the morphologically uncertain past tense tense tense correlates with more deviation as the vowel reaches an asymptote state, the morphologically uncertain past tense tense

3.3.3.2 NDL Cue Strength (paradigmatic support)


However, there is less of an effect of NDL Cue Strength. NDL Cue Strength was significant for only F1 deviation, and only when comparing the 30% time step to the 80% reference level. Here, F1 displayed slightly less deviation from vowel offset as NDL Cue Strength increased.

Unlike with dispersion and deviation from vowel onset, there is not a strong global effect of NDL Cue Strength for deviation from vowel offset. For the single significant effect, the results of this model are in the predicted directions: more paradigmatic support correlates with greater amounts of vowel dispersion, or phonetic enhancement, overall.

3.3.3.4 Results by Vowel and by Time Percent

As with the analyses of dispersion and deviance from onset, 140 by vowel and by time percent models of formant deviance from vowel offset were computed to check for significant effects of Tense and NDL Cue Strength for each vowel. The same model structure for formant deviance from vowel offset was run over each of the 10 vowels at each of the 7 time percents for both formants (7 x $10 \ge 2 = 140$ models). The models' calls are listed in the Appendix (Table A.10).

The results for by vowel offset deviation analysis are reported in the same way as the results from by vowel onset deviation analysis. Figure 3.7 illustrates averages of the raw vowel deviances from offset for each of the time steps between 20 and 80% of the total vowel durations, grouped by tense. Vowel label indicates the average offset of each vowel (maximum time step), line colour indicates morphological tense, and line direction and length indicates formant distance from vowel offset. The last panel of the figure illustrates average vowel deviation across all speakers and tenses with line colour indicating Percent time step. This plot illustrates that vowels deviate further from the vowel onset as they progress backwards through time.

Morphological tense is illustrated by line colour, and vowel offset is illustrated by vowel label. Figure 3.7: Raw averages across all speakers of the observed vowel deviations from the offset of the vowel, grouped by tense.

The *t*-values for the LMER models of formant movement deviance from offset, by vowel, are given in Table 3.10 (all coefficients for each LMER model are provided in the Appendix Table A.16). The colour coding of the effects in Table 3.10 is the same as the previous analysis on formant deviation from vowel onset: green indicates a positive trend, yellow a negative trend, and black boldface significance. For Tense, a positive trend indicates that the past tense correlates with more deviation than the present tense reference level, while for NDL Cue Strength, a positive trend indicates that greater NDL cue strengths correlate with more deviation. The predicted directions are again that the past tense (more morphologically uncertain) and greater NDL cue strengths (stronger paradigmatic support) will correlate with more formant deviation from vowel offset (positive, green trends).

Table 3.10: *t*-values for the main effects of Tense (reference level: present tense) and NDL for each of the 140 individual LMER models of vowel offset deviance modelled on each Vowel Identity and Percent pair. Green shading indicates a positive trend. Yellow shading indicates a negative trend. Boldface (in black) indicates significance.

	Tense													
	F1								F2					
Vowel	80%	70%	60%	50%	40%	30%	20%	80%	70%	60%	50%	40%	30%	20%
i	0.3835	0.4880	0.3288	0.2339	0.1730	0.0654	-0.3092	-1.2874	-1.9562	-2.3873	-2.3763	-1.8746	-1.5098	-1.0902
I	0.7149	1.4429	1.4934	1.8086	2.0270	2.2280	1.8827	0.3420	-0.3916	-0.6218	-1.0053	-1.1520	-1.0709	-1.2518
ε	-0.0347	-0.3410	-0.4499	-0.9808	-1.9978	-3.2981	-4.0120	-0.3488	-0.4528	-0.7894	-1.3058	-1.8390	-2.6360	-3.3734
æ	-1.1290	-1.3569	-1.1660	-0.9558	-1.3479	-2.1305	-2.1226	-1.4435	-2.4256	-3.5326	-3.6620	-3.6581	-2.9751	-3.2009
Λ	-1.3226	-1.4103	-1.5173	-1.8260	-1.6688	-1.4971	-1.1131	-0.0780	-0.0556	0.0418	-0.3278	-0.3832	-0.5638	-0.7296
u	0.9214	1.2422	1.3097	1.3189	1.2771	1.2153	1.4035	0.6576	-0.0426	-0.6556	-0.1360	0.3022	0.2323	0.4254
υ	0.1407	0.4010	0.5030	0.1209	-0.2454	-0.0488	0.3040	0.0266	-0.0129	-0.4488	-0.0786	0.0427	0.5761	0.2980
0	-2.2705	-2.5770	-2.1483	-1.6303	-1.4894	-1.5878	-1.1308	0.9513	0.9493	0.7196	0.9827	1.2820	1.2999	0.9983
э	-0.7027	-0.3501	-0.2720	-0.5811	-0.3226	-0.6326	-0.4741	0.1972	0.0505	0.8890	0.8573	0.6178	0.2240	0.0638
a	1.2449	2.2001	2.1189	1.6667	0.6472	-0.4713	-0.1057	1.0504	0.6985	1.0202	0.8613	0.5321	0.2981	0.4727
						NDI	Cue Str	ength						
				F1				F2						
Vowel	80%	70%	60%	50%	40%	30%	20%	80%	70%	60%	50%	40%	30%	20%
i	0.5695	0.9157	0.9535	0.8172	0.8742	0.8227	0.8335	-0.9878	-2.0628	-2.4771	-2.5275	-2.2339	-1.9249	-1.2743
I	-0.9567	-1.8487	-1.8293	-1.4789	-1.1133	-0.8927	-0.6583	0.9402	0.9016	0.7893	1.1547	0.8689	0.7935	0.6087
ε	-0.1280	-0.1309	-0.1655	0.1215	0.6133	1.2891	1.7536	-1.6320	-2.1386	-2.0012	-1.8040	-1.2861	-0.3297	0.4066
æ	0.7890	1.0737	0.8075	0.6193	0.8885	1.4110	0.9733	1.3989	1.9870	2.4395	2.5254	2.6629	2.2653	2.5089
Λ	-0.0021	0.4238	0.5461	0.7919	0.6988	0.3828	0.0697	-0.0888	-0.1281	-0.3307	-0.3291	-0.5005	-0.3823	-0.1933
u	1.2738	1.0581	0.8993	0.8625	0.8823	0.7802	1.2641	1.0502	0.8622	0.9578	1.5974	2.1121	2.1488	2.3983
υ	-0.0435	-0.2691	-0.2161	0.3164	0.7029	0.4174	0.0178	-0.0753	-0.3249	0.1187	-0.1803	-0.2539	-0.7509	-0.4833
0	-0.9721	-1.0958	-0.8652	-0.3995	-0.3101	-0.4274	-0.5814	-0.7452	-1.0611	-0.6831	-0.1428	0.1027	-0.1557	-0.2310
э	-0.1524	-0.5632	-0.5625	-0.7202	-0.9132	-1.2086	-1.0427	1.1934	2.9041	3.0825	3.6654	3.8155	3.6849	3.3566
a	0.1910	-0.2194	0.1752	0.4125	-0.0751	0.0695	-0.1270	-1.0880	-1.0816	-1.5117	-1.6209	-1.8739	-1.7601	-2.0796

3.3.3.4.1 Tense (linguistic parameter)

Tense is significant in 21 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.10, six of the ten vowels - /i/, /I /, / ϵ /, / α /, /o/, and / α / - display a significant difference in the variance of deviation from vowel offset when predicted by Tense (reference level: present). All six vowels show a significant effect of Tense for at least one formant and at least one time step. In the offset deviation plots (Figure 3.7), the differences in formant deviation between the past and present tense are visually present for these six vowels. Of all the models showing significant differences in deviation,

62% (13/21 models) are between the 50%-20% time steps, when the formant trajectory has reached an asymptote state of context assimilation (Broad and Clermont, 1987).

The direction of the correlation between Tense and deviance from vowel offset varies amongst the six vowels that had a significant correlation. Most of the significant effects seen on Table 3.10 (in yellow shading and black boldface) are in a negative direction, meaning the past tense is correlated with more vowel dispersion compared to the present tense. The results of these models are not in the predicted directions: the more uncertain past tense correlates with less formant deviation. However, the F1 of two vowels, /I / and /Q/, are trending in a positive direction (in green shading and black boldface), meaning the past tense is correlated with more deviance from vowel offset compared to the present tense.

A count of the trends regardless of significance indicates that the F1 and F2 deviation models together are split between positive and negative trends (43%, or 61/140 models, are positive trending, green shading). This split in the positive and negative trends is present in both the F1 and F2 deviance models.

As with the global models, the by vowel analysis does not find strong support for my prediction. I predicted that the more morphologically uncertain verb form (past tense) would correlate with more vowel deviation. The significant trends and proportion of positive trends in by vowel formant deviation models do not support this prediction.

3.3.3.4.2 NDL Cue Strength (paradigmatic support)

NDL Cue Strength is significant in 21 of the 140 LMER models (0.05 x 140 models = 7 models are expected to be significant by chance). As seen in Table 3.10, six of the ten vowels - /i/, / ϵ /, / α /, /u/, / σ /, and / α / - display a significant difference in the variance of deviation from vowel offset when predicted by NDL Cue Strength. All six vowels show a significant effect of NDL Cue Strength for F2 only and at least one time step, though none of the vowels show a significant differences in deviation, 67% (14/21 models) are between the 50%-20% time steps, when the

formant trajectory has reached an asymptote state of context assimilation (Broad and Clermont, 1987).

The direction of the correlation between Tense and deviance from vowel offset varies amongst the six vowels that had a significant correlation. Most of the significant effects seen on Table 3.10 (in green shading) are in a positive direction, meaning higher NDL Cue Strengths are correlated with more deviation than lower NDL Cue Strengths. The results of these models are in the predicted directions: more paradigmatic support correlates with greater amounts of deviation from vowel offset, or phonetic enhancement, overall. However, the F2 of three vowels, /i/, / ϵ / and / α /, are trending in the negative directi on (in yellow shading), meaning higher NDL Cue Strengths are correlated with less deviation than lower NDL Cue Strengths.

Irrespective of significance (black boldface), the trends in Table 3.7 are evenly split with 50% (70/140 models) showing a positive trend (green shading). Considering both the significant effects and proportion of trending positive effects, the results for the by vowel models do not strongly support my prediction. I predicted that stronger NLD Cue Strengths would correlate with more formant deviation from vowel offset, but I do not find conclusive support for this directional prediction. This mirrors the results of the global models. Both the by vowel and global analyses do not find strong evidence for a directional prediction made on the modulation of formant deviance from vowel offset by NDL Cue Strength.

3.3.4 Non-linear Analysis of Overall Formant Movement

The fourth and final step in this series of analyses models the formant trajectories for each vowel non-linearly. In this analysis, the effects of Tense and NDL Cue Strength on the non-linear vowel formant trajectories were tested using Generalized Additive Modelling (GAM; Hastie & Tibshrani, 1998; Wood, 2006). That is, the current GAM models test the effects of Tense and NDL Cue Strength on the non-linear formant trajectories. GAMs have been used in various linguistic domains to analyze non-linear data, such as event-related potentials (Kryuchkova

et al., 2012; Tremblay & Newman, 2015), eye tracking (Porretta, 2015; Van Rij et al., in press), and electromagnetic articulography (Tomaschek et al., 2013).

Applying the GAM technique allows one to test for differences in the dynamic formant trajectories across different conditions. Whereas linear models can test for differences in formant movement from onset to offset, they do not capture time-dependent non-linear movement between those two points.

3.3.4.1 GAM Statistical Procedure for Overall Formant Movement

In addition to accounting for factors of random variance for individual speakers (as in the pervious LMER analyses), the random effects structures in GAMs are clustered between groups, items, and speaker by including additional items in the random effects structure. Since the current data is gathered over ten vowels and forty speakers, clustering the formant data in the random effects structure is useful for ensuring a more accurate model fit. Analyses were computed in the R statistical environment using the *mgcv* (Wood, 2016) and *itsadug* (van Rij et al., 2015) packages for the GAM analysis.

Predictors in the GAM model are discussed in the next section, and the GAM call can be found in the Appendix (Table A.10). The GAM analysis proceeded in a stepwise fashion, similar to the LMER analyses (an backwards stepwise fitting of the model). Predictors and random effects structure were selected as with the LMER analyses (again, predictors' descriptions are given below). In order to select the most appropriate GAM, I visually inspected the residuals and estimates, as well as comparisons of the Maximum Likelihood (ML) scores (via the *itsadug* R package; van Rij et al., 2015). For ease of computation, F1 and F2 data were analyzed in separate models.

Since a formant measurement at any point after the onset of the vowel is dependent upon the formant's previous measurement (i.e., a vowel's F1 value at 30% of the vowel's total duration follows from its F1 value at 20%), it is necessary to include time-based autocorrelation within the model. The GAM model, then, is fitted with an autocorrelation parameter (*rho* \approx 0.8) that is gathered from the first residual time lag using the *itsadug* R package (subsequent model

comparisons and visualization of the residuals also confirm the *rho* value is the best-fit for the data). In addition to specifying the autocorrelation parameter, the GAMs are fitted such that each vowel token contains its own time sequence in the model (i.e., each 20%-80% chunk of the data for an individual vowel token was taken as its own unique time series). That is, instead of the model proceeding as if all of the data points belong to one long, continuous time series, the models proceed across 5,718 smaller time series - one for each vowel token.

3.3.4.2 Predictors

A summary for the predictors of the GAM analysis at hand is given in Table 3.11; predictors that have been changed or added to the previous model are highlighted in boldface. Tensor product smooths - te() and ti() - are used in GAMs to investigate the covariation of a predictor (such as NDL) and a continuous smooth term (such as Time). te() is used as a tensor product smooth when there is no main effect for the predictor (such as NDL).

Table 3.11: Predictors for main effects, interactions, and random effects in the General Additive Model analysis of NDL and Tense on vowel formant trajectories.

Predictor	Description	use in current analysis			
Formant Frequency	log transformed	dependent variable			
	diphone Naive Discriminative Learning	independent predictor of interest			
NDL Cue Strength	cue association strengths with the past tense, aggregated over the word	ti(Time) x NDL Cue Strength + fixed effect independent predictor of interest			
Tense	morphological past or present tense	ti(Time) x Tense + fixed effect			
Time	normalized time steps	s(Time) ti(Time) x NDL Cue Strength ti(Time) x Tense random effect: s(Time) x Speaker x Vowel			
Vowel Identity	identity of the 10 vowels in the current data	te(Time) x Vowel + fixed effect (Previous Voicing + Previous Place + Previous Manner) x Vowel Vowel x (Following Voicing + Following Place + Following Manner) random effect: s(Time) x Speaker x Vowel			
Previous Voicing	deviation coding for the voicing of the segment preceding the vowel	(Previous Voicing + Previous Place + Previous Manner) x Vowel			
Previous Place	deviation coding for the place of the segment preceding the vowel	(Previous Voicing + Previous Place + Previous Manner) x Vowel			
Previous Manner	deviation coding for the manner of the segment preceding the vowel	(Previous Voicing + Previous Place + Previous Manner) x Vowel			
Following Voicing	deviation coding for the voicing of the segment following the vowel	Vowel x (Following Voicing + Following Place + Following Manner)			
Following Place	deviation coding for the place of the segment following the vowel	Vowel x (Following Voicing + Following Place + Following Manner)			
Following Manner	deviation coding for the manner of the segment following the vowel	Vowel x (Following Voicing + Following Place + Following Manner)			
Vowel Duration	log transformed	te(Vowel Duration) x Frequency			
Frequency	log value of the local Buckeye lexical frequency	te(Vowel Duration) x Frequency			
Speaker	unique identifier of the speaker	random effect: s(Time) x Speaker x Vowel			

The model contains the same two independent predictors of interest as the previous LMER models: Tense and NDL Cue Strength. Both of these predictors were included as fixed effects and in an interaction with Time. Recall that formant measurements were taken for each vowel every 2ms, yielding a continuous time step sequence. Unlike the previous LMER models where the time domain was limited to percents, the time domain in the GAM model included all time steps between 20 and 80% of each vowel's total time sequence.

Another difference between the structure of the predictors in the GAM model and the previous LMER models concerns the treatment of the surrounding phonetic environment. As discussed in the LMER analyses, there are three contributions to a vowel's formant trajectories: 1) the previous context (C_1V), 2) the vowel (V), and 3) the following context (VC₂). In the current model, six fixed effects were created to capture the two-way interactions between the Vowel and the Voicing, Place, and Manner of the phones surrounding the vowel (3 articulations x 2 contexts before/after = 6 interactions with the Vowel). An additional two-way interaction was created for Vowel x Time.

This method of modelling the surrounding phonetic environment is at odds with phonetic theory. The contributions of the C_1V and the VC_2 are timedependent (Lindblom, 1963), with an exponential rate of decay (Broad and Clermont, 1987, 2014; Nearey, 2013). An ideal phonetic model would include the calculated trajectories of each C_1V , V, and VC_2 . However, there is currently no systematic means of parsing out all three components from the formant contours of spontaneously produced speech.

The next best phonetic model would include the interactions of the (factorized) consonants with the (factorized) vowels as they progress through time (as in: $C_1V \times Time + V \times Time + VC_2 \times Time$). There are two issues with this next best model. The first issue concerns the calculation of NDL cue strengths. Recall that the NDL cue strengths were calculated based on diphone cues (C_1V and VC_2) signalling the morphological tense outcomes. In this way, the surrounding phonetic context is inherently incorporated in the calculation of NDL cue strengths. An aggregate sum of the NDL diphone cue strengths serves as one of the dependent predictors of interest in the current analyses (i.e.: NDL Cue Strength x Time as a predictor of F1 and F2 movement). Adding in an interaction

between Time, C_1V and VC_2 diphone pairs (C_1V x Time + VC_2 x Time), then, essentially produces factorial contrasts of the NDL cue strengths

The second issue concerns model convergence. The next best model failed to reach convergence, likely as a result of data sparsity. The nature of spontaneous speech data entails an uneven distribution of the phonetic context surrounding the vowel. This means that some levels of the (factorized) consonant articulations are underrepresented in the dataset as a whole, or are disproportionally amongst all vowels. Chapter 2 of this dissertation also highlights the sparse nature of the contextual data by giving an example of the phonetic context immediately following /æ/: 98% of the consonants following /æ/ are voiced (when the speaker is female, the proportion jumps to 100%). The sparsity of the phonetic context is also illustrated when comparing the distributions of the C₁V and VC₂ diphone pairs. There are 254 unique C₁V and 253 unique VC₂ diphone pairs in the subset of irregular verbs. Distributional plots of the surrounding phonetic context for the entire Buckeye Corpus and for the subset of the irregular verbs are given in the Appendix (Figure A.5, Figure A.6, and Figure A.9).

In an attempt to resolve this issue with the next best model, three statistical methods were employed to alleviate data sparsity: 1) modelling the articulation features (voice, place, manner) of the C_1 and C_2 separately, 2) reducing the number of factor levels for the place of articulation feature by grouping individual places of articulation together according to locus equations predictions (Lindblom, 1963), and 3) modelling data from robust vowels only (i.e. those vowels that are produced in the context of every place of articulation, as refactorized in (2)). While methods (1) and (2) did alleviate some of the data scarcity issues, there was still enough sparsity in the data to result in non-convergence. Method (3) was the only method where the models converged, however this is a challenge for analysis comparison within the current Chapter. For this reason, Method 3 is not included in the current analysis, though it and Methods 1 and 2 are discussed further in the Appendix (Discussion A.3).

Because of the confounding issues with data scarcity and NDL cue strengths, the next best model of context assimilation ($C_1V \times Time + V \times Time +$ VC₂ x Time) was further simplified by leaving time out the three-way interactions (i.e. leaving out the interaction with Time for the surrounding context: $C_1V x + V$ x Time + VC₂). Doing so resolves the convergence issue and does not factorize NDL Cue Strengths. This is not an ideal phonetic model as it does not include the informative interaction of time with the surrounding phonetic context (i.e. dynamic contours) and instead models the assimilation to the surrounding phonetic context statically (i.e. shifting the formant contours up and down as a whole, instead of up and down dynamically through time). Phonetic research on modelling formant contours is clear about the dynamic nature of context assimilation, however the current model is a balance between attempting to control for the surrounding phonetic environment, and the abilities of the GAM technique. Though adding these fixed-effect interactions do not fully control for the vowels' environment assimilation, they are a step towards mitigating the effects of the environment (the Discussion section returns to this point).

The remaining predictors in the model carried over from the previous model: Frequency and Vowel Duration are included in a tensor interaction and in the random effects structure as random slopes by speaker. As discussed in the previous analysis of vowel dispersion, Tucker et al. (in preparation) found that the duration of the same set of irregular English vowels is mitigated by word frequency, with random effects (individual differences) for speakers. I include their findings in the model here.

The random effect structure included an interaction between Speaker, Time, and Vowel Identity. This structure accounts for the speaker variation in the dynamic production of vowels.

3.3.4.3 Results with All Vowels Combined (global)

The partial effects of NDL Cue Strength across Time are illustrated in Figure 3.8. Time (normalized in time steps) is plotted on the x-axis. NDL Cue Strength is plotted on the y-axis. High NDL Cue Strengths correspond to the top

portion of the plots while low NDL Cue Strengths correspond to the bottom portion of the plots. Formant values are plotted on the z-axis (in colours). The formant value z-axis is read like a topographic map where more warm colours (in the progression of: yellow, orange, white) correspond to higher F1/F2 values and more cool colours (in the progression of: green, aqua, blue) correspond to lower F1/F2 values. A change in colour from blue-green-yellow indicates a positive slope upwards in the formant value. An example of this is seen in the bottom of the F2 plot over the 0-250 time steps. A change in colour from yellow-green-blue indicates a negative slope downwards in the formant value. An example of this is seen in the bottom of the F1 plot over the 0-50 time steps. Contour lines illustrate deviations in colour/direction, labelled for direction (positive or negative) and effect size.

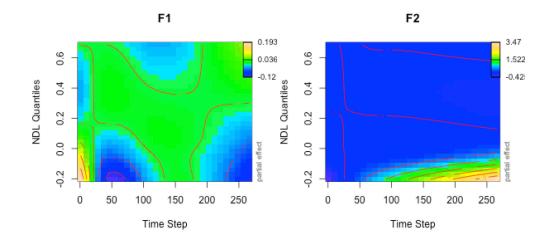


Figure 3.8: F1 and F2 GAM models' partial effects of NDL Cue Strength through Time. Time is shown on the x-axis. NDL Cue Strength is shown on the y-axis. Formant value is shown on the z-axis (in colours).

The results of interest for the current GAM analysis are illustrated in Table 3.12. The Appendix (Table A.10) contains the model calls as well as the full listing of parametric coefficients and smooth terms for the current models (Table A.17).

F1							
Predictor	edf	Ref.edf	F	р			
ti(Time Step) x Tense: past	1.3796	1.9124	3.8190	0.0241			
ti(Time Step) x Tense: present	1.0158	1.0214	1.4789	0.2232			
ti(Time Step,NDL Cue Strength)	7.8264	9.0248	41.1962	< 0.0001			
F2							
Predictor	edf	Ref.edf	F	р			
ti(Time Step) x Tense: past	1.0040	1.0050	0.5010	0.4796			
ti(Time Step) x Tense: present	2.1664	2.4716	8.7526	0.0001			
ti(Time Step) x NDL Cue Strength	11.2998	12.4096	58.9209	< 0.0001			

Table 3.12: Smooth terms of interest from the F1 and F2 GAM models on the effect of Tense and NDL Cue Strength on overall formant values across all vowels.

Note that the results of these models are to be interpreted cautiously. As discussed in the above section, the statistical method employed here models the interaction between the vowels and the surrounding context as fixed, or static effects, rather than more phonetically valid dynamic effects. This point is of importance when interpreting the magnitude and direction of movement of F2, in particular, as the place of the surrounding context's articulations greatly affects F2 movement (and especially so for reduced speech; Lindblom, 1963). This point is returned in the discussion of the results pertaining to NDL Cue Strength.

3.3.4.3.1 Tense (linguistic parameter)

The GAM technique does not readily allow for interpretations of significant differences within a group of items for a bi-factorial predictor like Tense. Instead, the model tests for significant movement for both morphological tenses. That is, the models tests whether the movement within the F1 or F2 trajectories in both the past and present tense is significantly different than zero (i.e., different than no movement). According to Table 3.12, F1 in the past tense and F2 in the present tense display movement that is significantly different than zero (no movement). This indicates that there is a weak overall effect of Tense on formant movement.

3.3.4.3.2 NDL Cue Strength (paradigmatic support)

Unlike Tense, NDL Cue Strength does strongly and significantly affect overall formant movement for both F1 and F2, as illustrated in Figure 3.8 and Table 3.12. Note that formant movement here refers to an overall, global amount of movement over and above the individual VISC-like patterns (i.e. those discussed in Chapter 2 of this dissertation) and context assimilation trajectories for each vowel.

For F1, vowels associated with low NDL Cue Strengths start off with comparatively high formant values and have sharp formant slopes over time that dip down, rise, and dip down again. Vowels with high NDL Cue Strengths, however, start with lower formant values that decrease and increase in movement more gradually, without decreasing at the end of the vowel duration. For F1, the initial formant values and formant slopes pattern differently according to a vowel's NDL Cue Strength. Formant movement for vowels with high NDL Cue Strengths is different than for vowels with low NDL Cue Strengths.

For F2, however, dynamic formant movement is only seen for vowels with low NDL Cue Strengths. The pattern of formant slopes for low NDL Cue Strengths is the different for F2 than for F1: F2 values start low, instead of high, and steadily rise throughout the vowel's duration, instead of rising and falling (as seen in F1 patterns).

Here, the issue of representing the dynamic effects of the surrounding phonetic environment is important. It is expected that the F2 show dynamic movement, regardless of direction and NDL Cue Strength (see Chapter 2 of the current dissertation). However, Figure 3.8 shows, unexpectedly, little movement overall. This unexpected lack of formant movement is likely to be attributed to the effects of the surrounding phonetic environment (as with the dispersion analysis, previously). The current model does not capture the dynamic effects the place of the surrounding environment has on these formant trajectories. Thus, it is likely that coarticulation is masking any effect of NDL. This coarticulation masking was predicted by Strange and colleagues (1983, 2013).

Coarticulation issues aside, the overall trend in Figure 3.8 is that greater NDL Cue Strengths correlate with less formant movement. Greater formant movement is seen at the bottom edges of the plots, at levels of low NDL Cue Strength. This direction does not support my prediction. Whereas I predicted that greater NDL Cue Strengths would correlate with more formant movement (§3.1.4), I find the opposite effect here.

3.3.4.4 Results by Vowel

As with the LMER analyses, two additional models of formant movement were computed to check for significant effects of Tense and NDL Cue Strength for each vowel. The basic GAM model structure for formant movement was run over both formants (2 models); however, both NDL Cue Strength and Tense were placed in a three-way smooth interaction with Time and Vowel Identity to investigate the effects of the predictors by vowel. The models' calls are listed in the Appendix (Table A.10).

Figure 3.9 illustrates averages of the raw formant trajectories for each vowel in the past and present tense. Here the difference between vowels' trajectories in the past versus present tense is shown by line type (solid line indicates present, dotted line indicates past).

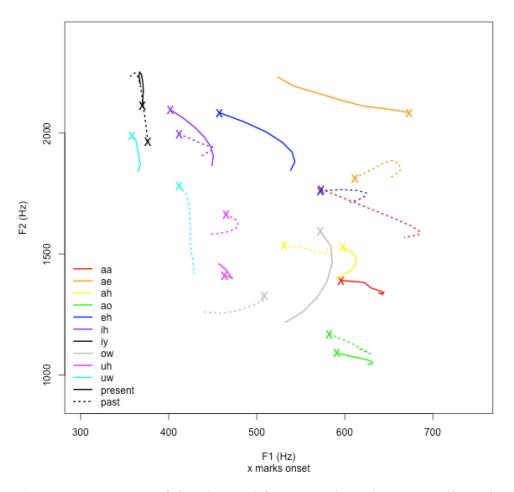
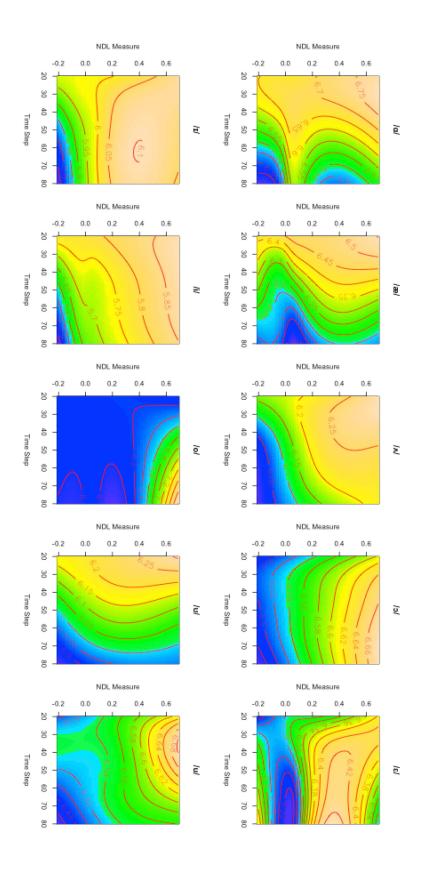
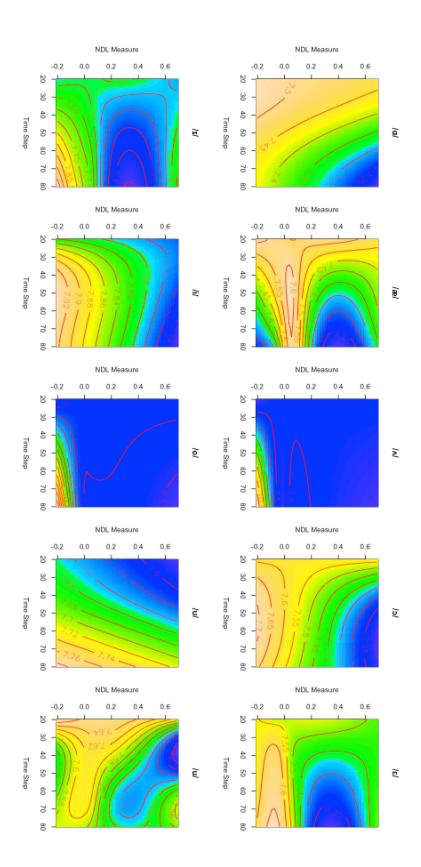




Figure 3.9: Averages of the observed formant trajectories across all speakers; 'x' marks the onset of the trajectory. Morphological tense (past or present) is illustrated by a solid or dashed line, respectively. Vowel identity is illustrated by line colour.

Figure 3.10a illustrates the GAM models' partial effects of the NDL Cue Strength for the F1 of each vowel, and Figure 3.10b illustrates the same for the F2 of each vowel. These figures are read like a topographic map where more warm colours (in the progression of: yellow, orange, white) correspond to higher values and more cool colours (in the progression of: green, aqua, blue) correspond to lower values.

shown on the x-axis. NDL Cue Strength is shown on the y-axis. F1 Measure (in Hertz) is shown on the z-axis (in colours). Effects for Figure 3.10a: F1 GAM model partial effects of NDL Cue Strength paired with Time for each vowel. Percent of vowel duration is /J / and /U / are not significant. All other effects shown are significant.

shown on the x-axis. NDL Cue Strength is shown on the y-axis. F1 Measure (in Hertz) is shown on the z-axis (in colours). Effects for $/\upsilon$ are not significant. All other effects shown are significant. Figure 3.10b: F2 GAM model partial effects of NDL Cue Strength paired with Time for each vowel. Percent of vowel duration is

Table 3.13 gives the smooth terms by vowel for Tense and NDL Cue Strength. The Appendix contains the full listing of parametric coefficients and smoothness terms (Table A.18). Table 3.13: Coefficients for the approximate significance of smoothness terms of interest in the F1 and F2 GAM models of formant trajectories.

F1				
Predictor	edf	Ref.edf	F	р
ti(Time Step) x interaction(Tense, Vowel) past : a	1.0002	1.0002	17.5761	< 0.0001
ti(Time Step) x interaction(Tense, Vowel) present : a	0.0000	0.0001	0.0287	0.9987
ti(Time Step) x interaction(Tense, Vowel) past : æ	0.0002	0.0003	0.0088	0.9988
ti(Time Step) x interaction(Tense, Vowel) present : æ	1.0000	1.0000	16.7389	< 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : A	1.0001	1.0001	21.5859	< 0.0001
ti(Time Step) x interaction(Tense, Vowel) present : A	0.0000	0.0001	0.3941	0.9953
ti(Time Step) x interaction(Tense, Vowel) past : o	0.0000	0.0001	0.4390	0.9956
ti(Time Step) x interaction(Tense, Vowel) present : o	1.0000	1.0001	0.0023	0.9618
ti(Time Step) x interaction(Tense, Vowel) past : ε	1.0001	1.0001	2.9852	0.0840
ti(Time Step) x interaction(Tense, Vowel) present : ε	0.0001	0.0001	0.0595	0.9981
ti(Time Step) x interaction(Tense, Vowel) past : 1	1.0000	1.0000	10.0147	0.0016
ti(Time Step) x interaction(Tense, Vowel) present : 1	1.0002	1.0004	14.6597	0.0001
ti(Time Step) x interaction(Tense, Vowel) past : i	1.0001	1.0001	11.4516	0.0007
ti(Time Step) x interaction(Tense, Vowel) present : i	1.0000	1.0000	12.3661	0.0004
ti(Time Step) x interaction(Tense, Vowel) past : o	0.0002	0.0004	0.4475	0.9900
ti(Time Step) x interaction(Tense, Vowel) present : o	1.0003	1.0005	15.9000	0.0001
ti(Time Step) x interaction(Tense, Vowel) past : o	1.0000	1.0001	1.3605	0.2435
ti(Time Step) x interaction(Tense, Vowel) present : u	1.0000	1.0000	0.1058	0.7450
ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u	0.0001	0.0001	0.1686	0.9960
ti(Time Step) x interaction(Tense, vowel) present : u ti(Time Step) x NDL Cue Strength x a	1.0008 5.0660	1.0014 6.2648	0.0477 2.4533	0.8275
ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x æ	4.6062	5.8020	4.8858	0.0210
ti(Time Step) x NDL Cue Strength x A	7.8282	9.1501	23.7997	< 0.0001
ti(Time Step) x NDL Cue Strength x o	1.0005	1.0010	0.2531	0.6152
ti(Time Step) x NDL Cue Strength x ε	5.9641	7.3657	9.5380	< 0.0001
ti(Time Step) x NDL Cue Strength x I	4.5025	5.5366	15.7206	< 0.0001
ti(Time Step) x NDL Cue Strength x i	5.0402	6.6642	5.2974	< 0.0001
ti(Time Step) x NDL Cue Strength x o	6.2244	7.6443	5.8289	< 0.0001
ti(Time Step) x NDL Cue Strength x o	0.3423	8.0000	0.1180	0.0686
ti(Time Step) x NDL Cue Strength x u	1.7787	12.0000	0.3954	0.0319
F2				
Predictor	edf	Ref.edf	F	р
ti(Time Step) x interaction(Tense, Vowel) past : a	3.2410	3.5753	3.3461	0.0132
ti(Time Step) x interaction(Tense, Vowel) present : a	0.7938	1.0814	1.0275	0.3109
ti(Time Step) x interaction(Tense, Vowel) past : æ	0.0001	0.0001	0.0955	0.9971
ti(Time Step) x interaction(Tense, Vowel) present : æ	1.0000	1.0000	9.3759	0.0022
ti(Time Step) x interaction(Tense, Vowel) past : A	1.0001	1.0001	79.9313	< 0.0001
ti(Time Step) x interaction(Tense, Vowel) present : Λ	0.0002	0.0003	0.1426	0.9948
ti(Time Step) x interaction(Tense, Vowel) past : 5	0.0004	0.0007	0.0248	0.9967
ti(Time Step) x interaction(Tense, Vowel) present : 3	1.0000	1.0001	5.6575	0.0174
ti(Time Step) x interaction(Tense, Vowel) past : ε	1.0001	1.0001	21.9894	< 0.0001
ti(Time Step) x interaction(Tense, Vowel) present : ε ti(Time Step) x interaction(Tense, Vowel) preset : x	0.0001	0.0002	0.0023	0.9995
ti(Time Step) x interaction(Tense, Vowel) past : I	2.8611	3.0021	6.3655	0.0003
ti(Time Step) x interaction(Tense, Vowel) present : I	1.0002 1.0001	1.0003	0.6001 0.7349	0.4385
ti(Time Step) x interaction(Tense, Vowel) past : i ti(Time Step) x interaction(Tense, Vowel) present : i	1.0001	1.0001	0.7349	0.3913
ti(Time Step) x interaction(Tense, Vowel) present : 1 ti(Time Step) x interaction(Tense, Vowel) past : o	1.0001	1.0001	0.0150	0.4329
ti(Time Step) x interaction(Tense, Vowel) past : o	1.0020	1.0037	0.0387	0.8446
In This Step A Interaction Tense. VOWED DIESETIL 0	1.0014			0.4199
	1 0002	1 0003	0 6506	1 いって エフブ
ti(Time Step) x interaction(Tense, Vowel) past : o	1.0002	1.0003	0.6506	
ti(Time Step) x interaction(Tense, Vowel) past : o ti(Time Step) x interaction(Tense, Vowel) present : o	1.0000	1.0001	2.8852	0.0894
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u	1.0000 2.0246	1.0001 2.4423	2.8852 9.0563	0.0894 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u	1.0000 2.0246 1.0001	1.0001 2.4423 1.0002	2.8852 9.0563 12.2674	0.0894 < 0.0001 0.0005
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a	1.0000 2.0246 1.0001 2.6386	1.0001 2.4423 1.0002 3.4558	2.8852 9.0563 12.2674 4.2515	0.0894 < 0.0001 0.0005 0.0036
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x æ	1.0000 2.0246 1.0001 2.6386 7.8079	1.0001 2.4423 1.0002 3.4558 8.8917	2.8852 9.0563 12.2674 4.2515 12.5061	0.0894 < 0.0001 0.0005 0.0036 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : o ti(Time Step) x interaction(Tense, Vowel) present : o ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x A	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : o ti(Time Step) x interaction(Tense, Vowel) present : o ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x o	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042 5.0540	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754 6.5404	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524 6.0971	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x Δ ti(Time Step) x NDL Cue Strength x Δ ti(Time Step) x NDL Cue Strength x δ ti(Time Step) x NDL Cue Strength x ε	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042 5.0540 7.0087	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754 6.5404 8.4898	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524 6.0971 44.9558	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : o ti(Time Step) x interaction(Tense, Vowel) present : o ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x \land ti(Time Step) x NDL Cue Strength x \land ti(Time Step) x NDL Cue Strength x \circ ti(Time Step) x NDL Cue Strength x ε ti(Time Step) x NDL Cue Strength x \imath	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042 5.0540 7.0087 6.1318	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754 6.5404 8.4898 7.4266	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524 6.0971 44.9558 65.7360	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : 0 ti(Time Step) x interaction(Tense, Vowel) present : 0 ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x Δ ti(Time Step) x NDL Cue Strength x Δ ti(Time Step) x NDL Cue Strength x δ ti(Time Step) x NDL Cue Strength x ε	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042 5.0540 7.0087	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754 6.5404 8.4898	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524 6.0971 44.9558	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001 < 0.0001
ti(Time Step) x interaction(Tense, Vowel) past : o ti(Time Step) x interaction(Tense, Vowel) present : o ti(Time Step) x interaction(Tense, Vowel) past : u ti(Time Step) x interaction(Tense, Vowel) present : u ti(Time Step) x NDL Cue Strength x a ti(Time Step) x NDL Cue Strength x æ ti(Time Step) x NDL Cue Strength x Δ ti(Time Step) x NDL Cue Strength x o ti(Time Step) x NDL Cue Strength x t ti(Time Step) x NDL Cue Strength x t ti(Time Step) x NDL Cue Strength x 1 ti(Time Step) x NDL Cue Strength x 1 ti(Time Step) x NDL Cue Strength x i	1.0000 2.0246 1.0001 2.6386 7.8079 6.6042 5.0540 7.0087 6.1318 5.7286	1.0001 2.4423 1.0002 3.4558 8.8917 7.8754 6.5404 8.4898 7.4266 6.9988	2.8852 9.0563 12.2674 4.2515 12.5061 55.6524 6.0971 44.9558 65.7360 11.4980	0.0894 < 0.0001 0.0005 0.0036 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

As with the previous global analysis, the following results are to be interpreted cautiously due to a lack of proper phonetic modelling of context assimilation.

3.3.4.4.1 Tense (linguistic parameter)

Figure 3.9 illustrates the formant trajectory patterns of the raw F1+F2 data. As stated above, the GAM technique does not readily allow for interpretations of significant differences within a group of items for a bi-factorial predictor like Tense. Instead, Table 3.13 gives the estimates of the significance in the movement of the F1 and F2 formant trajectory curves for both morphological tenses (i.e. significant movement compared to zero, or no movement).

The current model, separated by vowel and formant, found significant effects of Tense. For F1, movement in the past tense was found to be significant for / α /, / Λ /, /I /, and /i/ while movement was significant in the present tense for / α /, / Λ /, /I /, and /o/. This means that both / I / and /i/ displayed significant F1 movement in both the past and present tense. For F2, movement in the past tense was found to be significant for / α /, / Λ /, / ϵ /, /I /, and /u/, while movement was significant for / α /, / Λ /, / ϵ /, /I /, and /u/, while movement was significant for / α /, / Λ /, / ϵ /, /I /, and /u/, while movement was significant for / α /, / Λ /, / ϵ /, /I /, and /u/, while movement was significant in the present tense for / α /, / α /

 $/\alpha/, /\Lambda /$, and /I / displayed significant movement in the past tense for both the F1 and F2 dimensions, though no vowel displayed significant movement in the present tense for both the F1 and F2 dimensions. This means that no vowel displayed significant movement in both the past and present tense for both the F1 and F2 dimensions.

The results indicate that Tense is a significant predictor of formant movement, with six of the ten vowels showing significant movement when predicted by Tense in the F1 dimension, and another six vowels showing the same in the F2 dimension.

3.3.4.4.2 NDL Cue Strength (paradigmatic support)

The GAM analyses' predictions for the NDL Cue Strength are illustrated in Figure 3.10 with the estimates for the smoothness terms given in Table 3.13. Nine vowels patterned with NDL Cue Strength in at least one formant dimension $(/\upsilon)$ did not show any significance in formant movement). Of all the vowels for both the first and second formant, only the F1 of / υ / and / υ / and F2 of / υ / did not show a significant effect for the paradigmatic NDL measure. For all the other eight vowels, there is a significant positive effect of NDL Cue Strength on each vowels' overall trajectory movement in both formant dimensions.

However, as Figure 3.10 illustrates, the pattern of effect NDL Cue Strength has on each vowels' formants is not uniform. For example, the F1 of /o/ begins with lower F1 values that sharply increase at higher NDL Cue Strengths compared to no visible change in formant movement at lower NDL Cue Strengths. The F1 of / α /, however, shows an opposite effect, where the vowel begins high and more sharply decreases at lower NDL Cue Strengths compared to higher NDL Cue Strengths. For comparisons in the F2 dimension, the formant values of /t/ ar e higher for lower NDL Cue Strengths compared to higher NDL Cue Strengths with formant trajectories gradually increasing across all NDL Cue Strengths. However, the F2 trajectories of /æ/ begin high regardless of NDL Cue Strengths compared to high and more sharply decrease at low and mid-high NDL Cue Strengths compared to high and mid-low NDL Cue Strengths.

Again, there is an issue of coarticulation and patterns of F2 movement. According to Figure 3.10b, there is relatively little F2 movement for three of the ten vowels - $/\Lambda$ /, /o/, and /i/ - compared to the remaining seven vowels. This lack of F2 movement is reminiscent of the previous global model. Once again, it is likely that coarticulation is too strong to discern any noticeable movement.

Overall, baring issues of coarticulation, the general trends are that greater NDL Cue Strengths correlate with higher formant values and less movement in the F1 dimension, and lower formant values and less movement in the F2 dimension, though the formant movement patterns are not consistent amongst all the vowels. These results mirror that of the global analysis. I predicted that greater

NDL Cue Strengths would correlate with more formant movement, and the data do not wholly support my prediction. Though some patterns of movement do support my prediction (such as the F1 of /o/), I do not find uniform support for this directional hypothesis across all vowels and formants.

3.4 Overall Results

My predictions were that the more morphologically uncertain tense (past tense) and greater amounts of paradigmatic support (stronger NDL cue strengths) will correlate with more vowel enhancement (more formant dispersion, deviance, and movement). Table 3.14 gives a summary of the results from all four analyses conducted in this chapter in regards to the predictions made. The main finding is that both Tense and NDL Cue Strength modulate the production of formant frequencies, though their effects vary with vowel and formant. In all of the global analyses that tested for a directional effect of tense (the GAM analysis does not allow for testing a direction effect of tense), I found support for my prediction in the F1 dimension only. Moreover, I found support for my NDL Cue Strength prediction in two of the four global analyses (the offset deviation analysis did not show a strong effect for NDL Cue Strength at all, and the formant movement analysis did not support my prediction).

In the by vowel analyses, I found support for my directional prediction about Tense in the onset deviation analysis only (the dispersion analysis did not show a strong directional effect for Tense either way, and the offset deviance analysis did not support my prediction). The GAM analysis did not allow for testing the directional Tense prediction, but it did find support for an interaction between Tense and formant movement. I also find support for my NDL Cue Strength prediction in three of the four by vowel analyses (again, the analysis of offset deviation did not show a strong effect for NDL Cue Strength), though support is weak in the dispersion and formant movement analyses.

Tense					
	global analysis	by vowel analysis			
LMER vowel dispersion	support for the prediction from F1 model but not from F2 model	lack of support for the prediction due to the directional variation of the effect			
LMER onset deviance	support for the prediction from F1 model but not from F2 model	support for the prediction from F1 trend but not from F2 trends or the significant effects			
LMER offset deviance	support for the prediction from F1 model but not from F2 model	no support for the prediction seen in the significant effects and the proportional trends			
GAM formant movement	a test of the directional prediction is not suppored by the GAM technique; however there is an effect of Tense on the presence of formant movement	a test of the directional prediction is not suppored by the GAM technique; however there is an effect of Tense on the presence of formant movement			
	NDL Cue Strength				
	global analysis	by vowel analysis			
LMER vowel dispersion	support for the prediction from F1 model but not from F2 model	weak support for the prediction due to the directional variation of the effect			
LMER onset deviance	support for the prediction from both F1 and F2 models	support for the prediction from both F1 and F2 models			
LMER offset deviance	no strong effect of NDL in the models	no support for the prediction seen in the significant effects and the proportional trends			
GAM formant movement	no support for the prediction as seen in the topographic plots	no support for the prediction seen in the overall F1 and F2 trends, though some individual vowel patterns support the prediction			

Table 3.14: Summary of results from the four analyses in the current chapter.

The advantage of the by vowel models are seen in those analyses where the results greatly differ between the global and by vowel models. This includes the dispersion and formant movement analyses. In the dispersion analysis, the contribution of the surrounding phonetic environment was made apparent in the by vowel models. Whereas the global model of pooled vowel data glosses over the effects of the surrounding phonetic context (which resulted in strong model predictions), the by vowel analyses illustrate how the surrounding phonetic context affects different vowels differently. Thus the once strong global effects are weakened in the by vowel analyses. The opposite is seen for NDL Cue Strength in the formant movement analyses. The global models of formant movement find evidence for effects of NDL Cue Strength in the opposite predicted direction. The by vowel models find that while the greater proportion trends are also in the opposite predicted direction, they are not true of every vowel. More vowels do exhibit formant movement in the opposite predicted direction (which could possibly contribute to the global models' results), but some vowels instead exhibit formant movement in the predicted direction. More support for the by vowel models of formant movement comes from model comparison (using the compareML function from the *itsadug* R package; van Rij et al., 2015). A comparison of the model scores favours the by vowel models in both the F1 and F2 dimensions (by an ML score difference of 101.79 for F1 and 904 for F2). Thus, allowing the effects of Tense and NDL Cue Strength to vary by model results in better model fits for the formant data.

3.5 Discussion

The current study investigates the influence of morphological tense and paradigm on acoustic variation in irregular English vowels. Specifically, I measured the effects of the morphologically uncertain verb form (past tense) and NDL cue-to-tense activation levels on F1 and F2 vowel dispersion, F1 and F2 deviance from vowel onset and offset, and amount of F1 and F2 formant trajectory movement. My analyses show that, while there is an overall effect of morphological tense and NDL cue-to-tense activation levels on the production of acoustic detail, these effects are split in both the significance of their influence, and the direction and magnitude of their influence.

I used morphological tense and NDL cue-to-tense activation levels to test two hypotheses: the Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004, 2006) and the Paradigmatic Signal Enhancement Hypothesis (Kuperman et al., 2007). The Smooth Signal Redundancy Hypothesis predicts that for any linguistic property and an acoustic detail, there will be a consistent relationship that reduces redundancy in the signal. Less redundancy, or uncertainty, in the linguistic properties or acoustic detail of the signal is advantageous: it facilitates either speaker production or listener processing. Thus, this hypothesis would not be supported if there is double redundancy: linguistically uncertain forms and acoustic reduction.

Support for this hypothesis is split between the analyses in this chapter. The Smooth Signal Redundancy Hypothesis would predict that the more morphologically uncertain verb form, the past tense form (Bybee and Slobin, 1982), would be produced with more enhanced dispersion and formant deviations compared to the present tense. Though this directional prediction is not testable under the analysis of formant movement, I do find support for this prediction in all the global analyses of formant dispersion and deviation, as well in the by vowel analyses of formant deviation from onset. However, I find support for the opposite effect in the by vowel analysis of formant deviation form onset. However, I find support for the past tense (linguistically uncertain form) correlates with less dispersion and formant deviation, resulting in double redundancy. There is lack of support for either predictive direction of morphological tense in the by vowel analysis of formant dispersion. This is explained in the Results section in terms of context assimilation, with more discussion given below.

There are several possible explanations for not finding support for the Smooth Signal Redundancy Hypothesis. One simple explanation is that this hypothesis was not intended to be applied to bivariate linguistic properties. As stated in the Introduction to this chapter, the hypothesis was originally proposed for scalar linguistic properties, such as word frequency, where there is a clear uncertainty continuum. Applying the hypothesis to morphology assumes that discrete morphological properties can be quantified for uncertainty in a way that mimics scalar properties. Furthermore, the uncertainty of morphology hinges on the theoretical assumption that the past tense is the marked, or more uncertain, verb form. It is worthwhile to apply the Smooth Signal Redundancy Hypothesis to more scalar measures of morphological uncertainty, such as the proportional frequency of the past and present tense verb forms.

The Paradigmatic Signal Enhancement Hypothesis is similar in its predictions about acoustic variation. This hypothesis holds that more paradigmatic support correlates with phonetic enhancement. For the current data, this hypothesis would predict more vowel dispersion, deviation from onset/offset, and formant movement for higher NDL cue-to-tense activation levels.

Overall, the current chapter finds support for the Paradigmatic Signal Enhancement Hypothesis. Vowels with strong NDL cue-to-tense activation strengths (strong paradigmatic support) are produced with enhanced acoustic details (seen in formant dispersion and deviation from vowel onset; formant deviation from vowel offset analyses did not find an effect of NDL cue-to-tense activation strength as a whole), supporting the predictions of the Paradigmatic Signal Enhancement Hypothesis. The formant movement analyses are split on their support of the Paradigmatic Signal Enhancement Hypothesis. While the global effect of formant movement does not support the Paradigmatic Signal Enhancement Hypothesis, some individual vowel patterns do (as discussed previously in more detail).

As discussed in the Introduction, the Smooth Signal Reduction Hypothesis and the Paradigmatic Signal Enhancement Hypothesis are seemingly at odds with one another. The Paradigmatic Signal Enhancement Hypothesis holds that effects of the paradigm supersede effects of linguistic predictors (i.e. effects predicted by the Smooth Signal Reduction Hypothesis). It is possible, however, for the two hypotheses to coexist under more granular, fractionated models of speech production. What a fractionated model would entail is discussed below.

3.5.1 The Need for Fractioning in Theories of Speech Production

Having global analyses over pooled data enables one to make predictive hypotheses of how linguistic properties correlate with acoustic detail. However, previous studies have assumed that global effects over pooled data are predictive of individual items' acoustic details (Aylett and Turk, 2004, 2006; Munson and Solomon, 2004; Wright, 2004; Gahl et al., 2012, to name a few). For example, it would be predicted that every vowel with high paradigmatic support would be produced with more dispersion, formant deviance, and formant movement. However, the current study illustrates that a global effect may not fully capture how each item behaves. For example, the formant dispersion, deviance, and movement of the high back tense vowel /U/ did not significantly correlate with either morphological tense or paradigmatic support.

Several studies support the idea that there are indeed global relationships between linguistic predictors and acoustic detail, but there is a need to qualify how this global relationship is fractionated. Consider the studies that report that phonetic detail correlates with neighbourhood density one way, while other studies find the opposite correlation (e.g., Munson and Solomon, 2004, compared to the findings of Gahl et al., 2012). Specifically, the following groups of words were found to have different patterns of correlation between vowel dispersion and neighbourhood density based on the data studied from:

- 20-30 words in read speech produced by Central-Minnesotans from specifically crafted and well-balanced wordlists (Munson and Solomon, 2004);
- 2) 12,414 monosyllabic CVC words from a spontaneous speech corpus of Central-Ohioan English (Gahl et al., 2012);
- 680 monosyllabic CVC words in read speech produced by Central-Indianans from a specifically crafted and well-balanced wordlist (Wright, 2004).

All of these studies could be accounted for with a by corpus analysis (akin to the by vowel analyses in the analyses here). Such a model would hold that linguistic predictors like neighbourhood density influence phonetic details like vowel dispersion, and the size and direction of the influence is mitigated based on the variable nature of the stimuli analyzed (e.g., the effect is in one direction for words in read speech, while it is in another direction for words in spontaneous speech).

Furthermore, allowing for fractionation in models of speech production could eliminate the opposition between the Paradigmatic Signal Enhancement Hypothesis and Smooth Signal Redundancy Hypothesis. In cases where a linguistic predictor does not fit the pattern predicted by the Smooth Signal Redundancy Hypothesis, the Paradigmatic Signal Enhancement Hypothesis adds paradigms to the model in an effort to make sense of these findings. For example, the Smooth Signal Redundancy Hypothesis would predict that high-certainty interfixes would be produced with shorter durations; the Paradigmatic Signal Enhancement Hypothesis finds that high-certainty interfixes in a certain paradigm are produced with longer durations than other high-certainty words (Kuperman et al., 2007). In this way, paradigms are introduced to act as intermediary influences (or "pocket of intermediacy," to use the words of Kuperman et al., 2007) on phonetic detail that can oppose the influence of a particular linguistic property. I posit that a more granular, single model is possible, eliminating the need for an intermediary influence such as paradigms to describe these relationships. Recall that the Smooth Signal Redundancy Hypothesis makes its predictions based on extreme values of linguistic predictor and acoustic detail. Perhaps if these values and the scales on which they fall took into account differences between groups of words, the results in Kuperman (2007) would be interpreted differently. The variable nature of the relationship between linguistic predictors and the production of acoustic details, then, is an area where future research is warranted.

It is worth highlighting the importance of analyzing inherently variable phonetic details when formulating theories of speech production. For example, using duration as a measure of phonetic detail can lead to overly simplified theories, because duration behaves the same for every phone/word: it increases for all phones/words in the same conditions, and decreases for all phones/words in the same conditions. Phonetic measures that have the same behaviour for every phone, may lead one to an *a priori* assumption that this is true for all linguistic predictors. Analyzing other phonetic measures, that are inherently variable across phones (such as the formant data seen here), allows for an investigation into the variable nature of the relationship between linguistic predictors and phonetic details while also testing global assumptions made on pooled data.

Of course, there is a trade-off between more granularity in theories of speech production and the ability to make generalizations about correlations between linguistic predictors and acoustic detail. In the past, theories of speech production have made a simple one-to-one mapping between a linguistic predictor and a phonetic detail: for example, more paradigmatic support correlates with enhanced formant dispersion (as predicted by the Paradigmatic Signal Enhancement Hypothesis: Kuperman et al., 2007).

Although the current chapter does initially find evidence for a broad generalization, I show that these broad generalizations do not wholly capture the patterns of variation in the acoustic details. Thus, I call for more fractionated predictions that take into account specific conditions, e.g., that more paradigmatic support correlates with enhanced formant dispersions, deviance, and trajectories for certain vowels in spontaneous speech.

3.5.2 Future Research

There are three possible confounds in the present study that provide areas of future research. The first concerns the analysis of formant detail in spontaneous speech. The intrinsic nature of vowels' formants in spontaneous speech remains understudied in the current phonetic literature. It is difficult, then, to relate the acoustic variation in formant details to acoustic variation in other measures of phonetic detail with confidence. For instance, it is difficult to qualify what 'phonetic enhancement' means for formant trajectory movements. After all, phonetic enhancement is, by definition, an exaggeration of the intrinsic nature of a phoneme's acoustic properties (Lindblom, 1963), which entails that the intrinsic nature of a phoneme's acoustic properties in spontaneous speech must first be known.

Moreover, in order to investigate a vowel's formant trajectories, it is first necessary to subtract the effects of context assimilation from the raw trajectories. Current research on subtracting the influence of the surrounding context from vowel trajectories is conducted on context-balanced and laboratory-controlled data (Nearey, 2013; Broad and Clermont, 2014). However, spontaneous speech data is inherently unbalanced and uncontrolled. There remains no formal means of controlling for the consonantal context when analyzing vowel trajectories in spontaneous speech. In addition to controlling for the consonantal context, it is also necessary to control for vowel duration. Simply, vowels with shorter durations do not have enough time to be produced with great amounts of formant movement, resulting in vowel reduction (Lindblom, 1963). Thus, in quick spontaneous speech, vowels will be produced with shorter durations and, as expected, more reduced formant trajectories. An area of further research is learning more about the dynamic nature of spontaneously produced vowels, methods for parsing out the trajectories from surrounding context, and ecologically valid statistical means of dealing with unbalanced and uncontrolled data.

The second confound concerns the absence of discourse effects in the current study. It is very likely that pragmatic, syntactic, and semantic effects are also contributing to the production of the acoustic detail at hand. H&H Theory (Lindblom, 1990) predicts there to be such discourse effects, as the speaker lends acoustic salience to words that are important or uncertain given the discourse. However, how to best quantify the contribution of the discourse remains largely unknown. Curresnt researchers such as Bell et al. (2003) use word association/collocation scores, hesitations, and position in utterance to quantify discourse effects. These measures were not included in the current study, though their effects could be of interest. An area of further research is including higher levels of linguistic processing in a model of speech production, since spontaneous speech is necessarily comprised of higher level discourse influences.

The final confound concerns the equations used to calculate NDL cue-totense activation levels. The current study uses NDL cue-to-tense activation levels that were calculated by Tucker et al. (in preparation) according to the Danks (2003) adaptations of the Rescorla-Wagner equations (1972). The Rescolra-Wagner equations used here adjust the NDL cue-to-tense weights iteratively, as if each occurrence of a verb in the Buckeye Corpus is a novel learning experience. However, this method of weight calculation is at odds with the population of speakers in the current study. The Rescolra-Wagner equations assume that the order in which words appear in the Buckeye Corpus is also the order in which they were learned, as if the time-course of the Buckeye Corpus replicates the time-course of language learning. The order of learning is important when calculating NDL metrics using equations that are based on iterative learning mechanisms such as Rescorla-Wagner. As such, the method of calculating the NDL metrics in this chapter aimed to mimic the learning networks of the speakers though the iterative means of obtaining weights (and, consequently, the individual weights themselves) do not precisely capture speakers' own learning of diphone cues. Simply put: the NDL metrics were calculated based on artificial language learning. An area of further research is formulating an NDL model that mirrors language acquisition theories.

3.6 Conclusions

The current chapter has found support for the modulation of acoustic detail by linguistic properties and paradigms. The results from the analysis of the correlations between vowel dispersion, formant deviance from vowel onset/offset, formant movement, morphological tense, and NDL cue-to-tense activation levels suggest a need for a more fractionated model of speech production. This fractionation is supported by other analyses that do not support the ubiquitous nature of two current hypotheses of speech production: the Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004, 2006) and the Paradigmatic Signal Enhancement Hypothesis (Kuperman et al., 2007).

Overall, previous research has simplified the relationship between linguistic predictors and acoustic variation. The current chapter shows that the relationship between linguistic predictors and phonetic detail is perhaps not so straightforward. My study suggests that there is a need for future research in order to develop more granular hypotheses about the modulation of fine phonetic detail in speech production. For example, testing the Smooth Signal Redundancy Hypothesis and the Paradigmatic Signal Hypothesis using inherently variable phonetic data, such as electromagnetic articulography, and well-studied linguistic properties and parameters, such as word and paradigm frequency. A granular, fractionated model of inherently variable phonetic data would better capture the patterns of variation between linguistic/paradigmatic predictors and acoustic detail.

3.7 References

Aylett, M., & Turk, A. (2004). The Smooth Signal Redundancy Hypothesis: A Functional Explanation for Relationships between Redundancy, Prosodic Prominence, and Duration in Spontaneous Speech. *Language and Speech*, *47*(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058.

Baayen, H. (2013). *languageR: Data sets and functions with "Analyzing Linguistic Data: A practical introduction to statistics."* Retrieved from http://CRAN.R-project.org/package=languageR

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, *59*(4), 390–412.

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, *118*(3), 438.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). *lme4: Linear mixed-effects models using Eigen and S4*. Retrieved from http://CRAN.R-project.org/package=lme4

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., & Gildea, D. (2003). Effects of disfluencies, predictability, and utterance position on word form variation in English conversation. *The Journal of the Acoustical Society of America*, *113*(2), 1001–1024.

Bradlow, A. R., Torretta, G. M., & Pisoni, D. B. (1996). Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics. *Speech Communication*, *20*(3), 255–272.

Broad, D. J., & Clermont, F. (1987). A methodology for modeling vowel formant contours in CVC context. *The Journal of the Acoustical Society of America*, *81*(1), 155–165.

Broad, D. J., & Clermont, F. (2014). A method for analyzing the coarticulated CV and VC components of vowel-formant trajectories in CVC syllables. *Journal of Phonetics*, *47*, 47–80.

Bybee, J. L., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past tense. *Language*, *58*(2), 265–289.

Cohen, C. (2014). Probabilistic reduction and probabilistic enhancement. *Morphology*, *24*(4), 291–323.

Danks, D. (2003). Equilibria of the Rescorla–Wagner model. *Journal of Mathematical Psychology*, 47(2), 109–121.

Dilts, P. (2013). *Modelling phonetic reduction in a corpus of spoken English using Random Forests and Mixed-Effects Regression*. University of Alberta, Edmonton, Canada. Retrieved from ERA: Education & Research Archive.

Dilts, P., Baayen, R. H., & Tucker, B. V. (2011). *Word duration and segment deletion as measures of reduction in a corpus of spontaneous speech*. Presented at the 161st Meeting of the Acoustical Society of America, Seattle, WA.

Gahl, S. (2008). Time and Thyme Are not Homophones: The Effect of Lemma Frequency on Word Durations in Spontaneous Speech. *Language*, *84*(3), 474–496.

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. *Journal of Memory and Language*, *66*(4), 789–806.

Hanique, I., & Ernestus, M. (2011). Final/t/Reduction in Dutch Past-Participles: The Role of Word Predictability and Morphological Decomposability. In *12th Annual Conference of the International Speech Communication Association* (Interspeech 2011) (pp. 2849–2852).

Hanique, I., Schuppler, B., & Ernestus, M. (2010). Morphological and predictability effects on schwa reduction: The case of Dutch word-initial syllables. In *11th Annual Conference of the International Speech Communication Association (Interspeech 2010)*, (pp. 933–936).

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., & Raymond, W. (1998). Reduction of English function words in Switchboard (pp. 1–4). Presented at the Fifth International Conference on Spoken Language Processing.

Jurafsky, D., Bell, A., Gregory, M., & Raymond, W. D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. *Frequency and the Emergence of Linguistic Structure*, *45*, 229–254.

Kryuchkova, T., Tucker, B. V., Wurm, L. H., & Baayen, R. H. (2012). Danger and usefulness are detected early in auditory lexical processing: Evidence from electroencephalography. *Brain and Language*, 81–91.

Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, H. (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds. *The Journal of the Acoustical Society of America*, *121*(4), 2261– 2271.

Lindblom, B. (1963). Spectrographic Study of Vowel Reduction. *The Journal of the Acoustical Society of America*, 35(11), 1773–1781.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Morrison, G. S., & Assmann, P. F. (2013). *Vowel Inherent Spectral Change*. Springer Science & Business Media.

Morrison, G. S., & Nearey, T. M. (2011). *FormantMeasurer: Software for efficient human-supervised measurement of formant trajectories*.

Munson, B., & Solomon, N. P. (2004). The effect of phonological neighborhood density on vowel articulation. *Journal of Speech, Language, and Hearing Research*, *47*(5), 1048–1058.

Nearey, T. M. (2013). Vowel inherent spectral change in the vowels of North American English. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 49–85). Springer.

Pate, J. K., & Goldwater, S. (2015). Talkers account for listener and channel characteristics to communicate efficiently. *Journal of Memory and Language*, 78, 1–17.

Pierce, J. R. (2012). *An introduction to information theory: symbols, signals and noise*. Courier Corporation.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., &
Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (Version 2nd Release). Columbus, OH: Department of Psychology, Ohio State University (Distributor). Retrieved from www.buckeyecorpus.osu.edu

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2005). Lexical frequency and acoustic reduction in spoken Dutch. *The Journal of the Acoustical Society of America*, *118*(4), 2561–2569.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2006). Effects of word frequency on the acoustic durations of affixes (pp. 953–956). Presented at the Ninth International Conference on Spoken Language Processing.

Porretta, V. J. (2015). *Perception and lexical processing of gradient foreign accentedness*. University of Alberta. Retrieved from ERA: Education & Research Archive.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In *Classical conditioning: Current research and theory*.

Schuppler, B., Ernestus, M., Scharenborg, O., & Boves, L. (2011). Acoustic reduction in conversational Dutch: A quantitative analysis based on automatically generated segmental transcriptions. *Journal of Phonetics*, *39*(1), 96–109.

Schuppler, B., van Dommelen, W. A., Koreman, J., & Ernestus, M. (2012). How linguistic and probabilistic properties of a word affect the realization of its final/t: Studies at the phonemic and sub-phonemic level. *Journal of Phonetics*, *40*(4), 595–607.

Shannon, C. E. (1948). A mathematical theory of communication.[New York]: American Telephone and Telegraph Company.

Sims, M., Tucker, B. V., & Baayen, H. (2010). Modulation of phonetic duration by morphological and lexical predictors. *The Journal of the Acoustical Society of America*, *128*, 2457.

Stemberger, J. P. (2004). Neighbourhood effects on error rates in speech production. *Brain and Language*, *90*(1), 413–422.

Strange, W., & Jenkins, J. J. (2013). Dynamic specification of coarticulated vowels. In *Vowel Inherent Spectral Change* (pp. 87–115). Springer.

Strange, W., Jenkins, J. J., & Johnson, T. L. (1983). Dynamic specification of coarticulated vowels. *The Journal of the Acoustical Society of America*, *74*(3), 695–705.

Tily, H., & Kuperman, V. (2012). Rational phonological lengthening in spoken Dutch. *The Journal of the Acoustical Society of America*, *132*(6), 3935–3940.

Tomaschek, F., Wieling, M., Arnold, D., & Baayen, R. H. (2013). Word frequency, vowel length and vowel quality in speech production: an EMA study of the importance of experience. In *INTERSPEECH* (pp. 1302–1306).

Tucker, B. V., Sims, M., & Baayen, R. H. (in preparation). Modeling duration of monosyllabic verbs.

Van Rij, J., Hollebrandse, B., & Hendriks, P. (in press). Children's eye gaze reveals their use of discourse context in object pronoun resolution. *Experimental Perspectives on Anaphora Resolution. Information Structural Evidence in the Race for Salience.*

Van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2015). *itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs*. Retrieved from http://github.com/vr-vr/itsadug

Van Son, R., Bolotova, O., Lennes, M., & Pols, L. C. W. (2004). Frequency effects on vowel reduction in three typologically different languages (Dutch, Finnish, Russian). In *5th Annual Conference of the International Speech Communication Association (Interspeech 2004)* (pp. 1277–1280).

Warner, N., & Tucker, B. V. (2011). Phonetic variability of stops and flaps in spontaneous and careful speech. *The Journal of the Acoustical Society of America*, *130*(3), 1606–1617.

Wood, S. (2016). *Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation*. Retrieved from http://CRAN.Rproject.org/package=mgcv Wood, S. N. (2006). *General Additive Models*. New York: Chapman & Hall/CRC.

Wright, R. (2004). Factors of lexical competition in vowel articulation. *Phonetic Interpretation: Papers in Laboratory Phonology VI*, 26–50.

Zwicker, E., & Terhardt, E. (1980). Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. *The Journal of the Acoustical Society of America*, 68(5), 1523–1525.

Chapter 4:

The Role of Acoustic Detail: Evidence from Lexical and Morphological Processing

4.1 Introduction

It is possible that some insight into the role acoustic detail plays in speech production can be gained by investigating its subsequent role in speech processing. Previous research has found that speakers produce a messy speech signal with massive amounts of acoustic variation (e.g., Johnson, 2004), yet listeners are able to decode the messy speech signal into meaningful messages (e.g., Ernestus et al., 2002). Thus the speech system is a combination of speakers' effortful productions and listeners' effortful processing. The role of acoustic detail in this dual-natured speech system is captured in two competing hypotheses: acoustic detail either facilitates processing (i.e., there is a link between the production of acoustic detail and speech processing), or it is a consequence of production only (i.e., there is no link between production and processing). The current chapter investigates these hypotheses. To do so, a measure of acoustic detail that is found to be significant in speech production is tested for its subsequent significance in processing. Should the acoustic detail found in

production play a role in speech processing, it is possible to propose a link between production and processing.

Current research in speech processing has found that patterns of acoustic variation are important for both speech discrimination and recognition. This is evident at the sub-segmental level, such as phone discrimination in voice onset time (Liberman et al., 1958) and vowel formant movement (see Morrison and Assmann, 2013 for an overview). Moreover, acoustic details at the segmental level also affect the processing of word recognition, as exemplified in studies on consonant reduction (Mitterer and Ernestus, 2006; Tucker and Warner, 2007; Ernestus and Warner, 2011; Tucker, 2011). At higher levels of speech processing, the acoustic detail of the syntactic and semantic context surrounding reduced word forms (Ernestus et al., 2002, van de Ven et al., 2011) and the semantic bias of the sentence (Connine, 1987) exemplify phrasal-level effects on word recognition.

Additional research has found that linguistic properties also play an important role in speech processing. For example, the facilitatory effect of word frequency in speech discrimination and recognition has been widely replicated (Taft, 1979; Connine et al., 1990; Connine et al., 1993; Meunier and Segui, 1999; Baayen et al., 2003; Ernestus and Baayen, 2007). The addition of neighbourhood density and lexical competition amongst phonologically similar neighbours has also been shown to significantly affect speech processing (Landauer and Streeter, 1973; Goldinger et al., 1989; Luce and Pisoni, 1998; Vitevitch et al., 1999; Luce and Large, 2001). Taken together, studies on these two linguistic properties provide insight into the processing of variant phonological forms (Metsala, 1997; Connine, 2004; Ranbom and Connine, 2007; Connine et al., 2008).

Research on speech processing has primarily focused on how acoustic details and linguistic properties affect processing independently. Although studies have found an abundance of evidence for a relationship between specific acoustic details and linguistic properties in speech production (as discussed below), and interpretations of research in speech production are often based on this relationship, little is known about their joint effect on speech processing. The purpose of the current study is to investigate this effect.

4.1.1 Acoustic Detail as a Consequence of Production Only

It is possible that acoustic detail in the speech signal is unrelated to listener processing, and is instead a product of production facilitation, or ease of articulation. Speakers make use of existing acoustic variation/linguistic property relationships in their productions to ease their articulations in producing the speech signal, even when this might cause difficulties for the listener. Many studies have investigated the role that ease of articulation plays in modulating acoustic detail.

The relationship between acoustic duration and word frequency illustrates how acoustic detail and ease of articulation are clearly related. Bell et al. (2009) (see also Pluymaekers et al., 2005a&b) found that content words with higher lexical frequencies are produced with shorter durations than those with lower lexical frequencies, which they interpret in terms of lexical access. Their interpretation holds that high word frequencies enable speakers to access words' phonological forms more quickly, resulting in faster productions. In this way, acoustic variation is the by-product of a facilitation effect in production, not processing.

Likewise, in a study on the effects of neighbourhood density on vowel duration and dispersion (similar to Wright 1997, 2004), Gahl (2012; and Gahl et al., 2012, Yao, 2011) also interprets her findings in terms of lexical access of competing variant phonological forms. Gahl finds that words from denser phonological neighbourhoods are produced with shorter vowel durations and less vowel dispersion, suggesting that speakers vary acoustic detail by how quickly they can access the phonological form. According to Gahl, speakers produce words in dense phonological neighbourhoods with shorter durations even though doing so may inhibit the subsequent processing of those words. This is in contrast to the findings of Wright (1997, 2004), which support a role for ease of listener processing, discussed below.

In their Articulation Proficiency Theory, Tomaschek et al. (2014, Baayen et al., to appear) explain the production of acoustic variation in terms of speaker experience rather than lexical access. They studied the movement of the tongue body when producing vowels and find that there is earlier and more peripheral tongue movement when speakers have more experience with the utterance produced. Speaker experience is quantified in terms of lexical frequency, frequency of the phonetic context surrounding the vowel, and age of the speaker. The Articulation Proficiency Theory predicts that the amount of experience a speaker has with a particular utterance can modulate the production of acoustic variation.

4.1.2 Acoustic Detail as a Link between Production and Processing

Thus far, I have discussed the role of acoustic detail based on speech production data. The studies discussed above have made predictions about the processing of acoustic detail based on relationships between linguistic properties and acoustic detail in production: acoustic detail is produced in such a way that it is either facilitatory or inhibitory to speech processing. However, these predictions are often not directly tested, but are instead formulated based on statistical probabilities.

There are also research-based hypotheses that suggest acoustic detail is produced in a way that facilitates processing (such as Aylett and Turk, 2004, 2006; Ernestus and Baayen, 2007; to name a few.). In order to help disambiguate messy speech signals, speakers may employ existing acoustic detail/linguistic property relationships in their productions. A speaker may vary acoustic variation with the listener's perception in mind, thereby facilitating processing via acoustic detail (otherwise known as 'ease of processing,' or 'listener-driven' speech production). This framework assumes that processing messy speech signals would be more difficult without a shared knowledge of acoustic variation/linguistic property relationships.

This hypothetical link between production and processing is formalized in H&H Theory (Lindblom, 1990). H&H Theory holds that speakers are constantly

alternating between a natural hypo-articulation production state (reduction), and more enhanced hyper-articulations. This is presumably in order to balance speakers' tendencies towards production ease with listeners' processing demands. In H&H Theory, speakers are continuously aware of the processing load that acoustic variation presents, so they balance their tendencies for hypo-articulation reductions with more hyper-articulated clear-speech forms.

This balance in producing the right kind and right amount of acoustic detail is also seen in Wright's work with vowel duration and dispersion in 'easy' and 'hard' words (1997, 2004). Wright (as well as Luce, 1986; Luce and Pisoni, 1998) determines the 'easiness' or 'hardness' of a word by its predicted processing load. 'Easy' words are those with higher frequencies and fewer phonological competitors, while 'hard' words are those with lower frequencies and more phonological competitors. In this paradigm, 'hard' words are produced by speakers with enhanced acoustic details in order to ease the listeners' processing of the speech signal. Or, in terms of H&H Theory, 'easy' words are hypo-articulated, and 'hard' words are hyper-articulated.

The Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004, 2006) adds detail to H&H Theory and Wright's 'easy/hard' paradigm by qualifying at which points in the speech signal speakers will likely reduce and enhance their speech. This Hypothesis can be used to determine probabilistically points in the speech signal with a difficult processing load (similar to being 'hard'). It is at these points, the Hypothesis holds, that speakers intuitively produce enhanced acoustic details in order to ease the listeners' processing of the speech signal. In this way, speech production and speech processing are strongly linked.

Several studies in speech production lend support to this 'ease of processing' role for acoustic variation. Research has shown that speakers reduce the durations of their word productions when the word is predictable from the surrounding context (Pluymaekers et al., 2005a; Pluymaekers et al., 2005b, Kuperman and Bresnan, 2012; Tily and Kuperman, 2012; Pate and Goldwater, 2015). Further, van Son and Pols (2003) found that segments within words are produced with shorter durations only when they are less informative for

disambiguating words. Jurafsky et al. (2001) refer to this tendency of producing reduced word forms in contexts that favour processing ease (i.e., in contexts with higher likelihoods of predictability) as the Probabilistic Reduction Hypothesis.

The current study investigates these predictions by taking a productionbased probabilistic relationship and testing effects on processing. In this way, the current study directly investigates whether acoustic detail correlates with a linguistic property in processing, using production data.

4.1.3 The Current Study

The production-based relationship to be tested here is derived from an analysis by Tucker et al. (in preparation). The researchers analyzed the vowels in a set of spontaneously produced monosyllabic irregular English verbs where the verbs' vowels differentiate their past/present tense forms. The acoustic variable of interest was the duration of the morphological vowel (e.g., the /i/ or /æ/ in *sing/sang*). The linguistic property of interest comes from Naive Discriminative Learning metrics (henceforth NDL; Baayen et al., 2011).

Tucker et al. found that vowel durations in this subset of irregular verbs are modulated by "NDL cue association strengths," which generally measure how strongly the verbs' vowel diphone pairs are associated with, or indicative of, the past tense. A stronger NDL cue association corresponds to a stronger relationship between the vowel diphone pair and the verb's morphological form (i.e., more morphological support). Tucker et al. found that within this subset of verbs, words with stronger NDL cue associations are produced with longer vowel durations. This can be loosely interpreted to mean that more enhanced vowel productions correlate with more morphological support (based on NDL cue association). This production-based relationship between morphological vowel duration and NDL cue association strength is henceforth referred to as a duration-NDL relationship.

Though Tucker et al. do not interpret the duration-NDL relationship in terms of facilitation of either production or processing, their findings have implications for both. According to processing facilitation, the role of acoustic detail (in this case, vowel duration) is to provide the listener with a processing cue to decode the messy speech signal. A listener will process a signal more quickly if the cue is more predictable due to morphological support of the vowel diphone pair for the verb tense (stronger NDL cue association). This processing facilitation view supports a strong link between production and processing: speakers produce vowel durations according to a predictable relationship between vowel duration and morphological support that facilitates processing. On the other hand, a production-only facilitation view holds that acoustic variation (vowel duration) exists to provide a shortcut from lexical access to articulation, irrespective of the word's subsequent processing. This production facilitation view does not support the existence of a link between production and processing. It is unclear whether production facilitation alone is sufficient to explain acoustic variation, or if listener processing also plays a role.

The current chapter tests whether acoustic detail does, in fact, play a facilitatory role in processing by manipulating the Tucker et al. duration-NDL relationship. To investigate how the relationship between NDL cue association strength and vowel duration affect lexical and morphological recognition, two word processing experiments were conducted.

Recall that Tucker et al. (in preparation) found that stronger NDL cue associations correlate with longer vowel durations for irregular English verbs in spontaneous speech. I manipulated this relationship by altering vowel duration, then measuring the resulting processing difficulty compared to unmanipulated words. This allowed me to determine how influential this NDL-duration relationship is on processing load (i.e., whether it provides a link between production and processing by subsequently facilitating recognition).

I hypothesize that acoustic detail (indicated by the NDL-duration relationship) facilitates the processing of irregular English verbs. Acoustic detail links production and processing: the speech signal is produced with informative, probabilistic acoustic variation that has the potential to act as a cue for processing. This follows from my assumption that speakers phonetically enhance (produce with longer durations) the vowels in irregular English verbs when doing so aids the listener in identifying the tense of the verb (as in high NDL cue strength conditions). When a vowel is strongly discouraging of a particular morphological tense (as in low NDL cue strength conditions), speakers do not phonetically enhance the vowel. Thus, I predict that manipulating the acoustic detail will make processing more difficult. This effect will be seen for both vowel lengthening (manipulating the low NDL cue strength conditions) and vowel shortening (manipulating the high NDL cue strength conditions). The alternative to this hypothesis is that the NDL-duration relationship facilitates production only. If this is the case, my manipulation will not result in a difference in processing.

I used two different experimental paradigms to investigate the relationship between NDL-duration and processing: lexical decision and morphological decision. The two paradigms allowed me to investigate two processing tasks: accessing word representations, and accessing morphological representations, respectively. Given that NDL cue strength was calculated based on differences in morphology, it is plausible that the morphological decision task is more sensitive to differences in NDL cue strength than the lexical decision task. Testing both speech processing tasks will allow me to more thoroughly investigate the NDLduration relationship.

4.2 Experiments

The role of acoustic detail in processing as it correlates with NDL cue strengths is investigated using two paradigms: an auditory lexical decision paradigm and an auditory morphological decision paradigm. The lexical decision paradigm (Experiment I) and morphological decision paradigm (Experiment II) use the same recording methodologies, set of stimuli items, basic experimental procedure, and similar participant populations. The list of experimental items, experiment procedure, and participant groups are discussed for each Experiment, as well as the statistical analysis of the data, results, and local discussions.

4.2.1 Experiment I: Lexical Decision

Experiment I consisted of evaluating reaction times to the manipulated Target items in a lexical decision paradigm.

4.2.1.1 Items

The Target stimuli for the lexical task consisted of irregular monosyllabic English verbs that alternate between their present and past tense forms by only a single vowel (no other phonological differences). For example, this would include words like sing/sang but not words like is/was or weep/wept. English has 127 such verb pairs (i.e., 127 lemmas). The current project focuses on a subset of these verbs based on the following criteria:

- The verbs occur in the Buckeye Corpus of Conversational Speech (Buckeye Corpus; Pitt et al., 2007).
- The verbs exemplify the correlation between NDL cue association strength and vowel duration found in production data (based on Tucker et al.).

Tucker et al. found that in a set of 60 irregular monosyllabic English verbs, greater NDL cue association strengths correlated with longer vowel durations. Figure 4.1 illustrates their findings using a simple regression line. To meet the requirements for Criterion #2, only those verbs where both the past and present form of the verb fell close to the regression line from the Tucker et al. data were selected as Target word items. This includes 18 verb types (shown in black in Figure 4.1; unused words, where visual inspection of the plot found at least one of the past/present forms fell far away from the regression line, are shown in grey). The present and past tense forms of each word type were included, yielding a total of 36 Target word items.

Experiment Stimuli

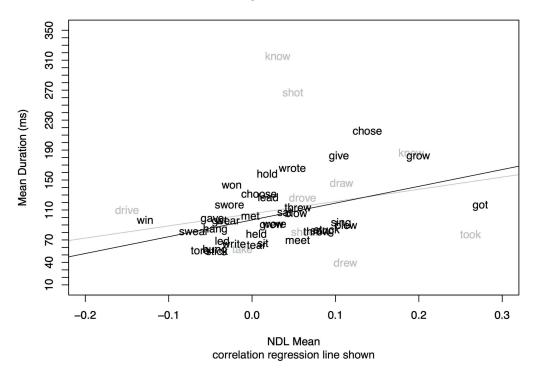


Figure 4.1: Correlations between NDL cue association strength and mean duration based on Tucker et al. Words in black were included in the present stimulus set; words in grey were not included. Regression lines for the correlations between NDL and mean verb duration are also shown.

The experiment lists also included 36 Filler words, which were counterbalanced by word type: 9 irregular verbs that do not alternate between their past and present tenses by a single vowel (4 items in present tense form, 4 items in past tense form, 1 item where the past/present tense form is the same), 18 regular English verbs (6 items that end in /t/, 6 items that end in /d/, and 6 items that end in /əd/), and 9 nouns (4 items in a regular singular form, 4 items in a regular plural form, 1 item in an irregular plural form).

The Nonword items in each experiment list consisted of phonotactically legal pseudowords that are phonologically similar to the Target and Filler items. More specifically, for each Target and Filler item, 10 pseudowords were generated by the program *Wuggy* (Keuleers and Brysbaert, 2010; using the CMU

Dictionary: Weide, 1998) based on a phonological edit distance of 1-2 phones in the; 2 Nonwords were chosen for each item. This yielded 144 Nonword items: 36 Target counterparts (x 2) + 36 Filler counterparts (x 2) = 144 Nonwords.

4.2.1.2 Recording Procedure

Each Target, Filler, and Nonword item was recorded by a 29 year old male who is a monolingual native speaker of Western Canadian English. The speaker is a trained phonetician who had no knowledge of the methodological intent of the recordings. Recordings were made in a sound-attenuated booth.

The speaker was provided with the frame "She clearly said ______ today." on the screen. Real words and pseudowords appeared in the frame one at a time. The speaker was asked to record the whole sentence, including the frame and real word or pseudoword (e.g., "She clearly said sing today."). Pseudowords were presented in IPA transcriptions and were recorded in a separate block from real words. To mitigate list effects in the recordings, the speaker was asked to reproduce each sentence three times, with the second reproduction used as the stimulus.

More natural variations of vowel durations were obtained by recording each real word/pseudoword sentence at 9 speaking rates in order to create stimuli that could be manipulated. Speaking rate was set by a metronome the speaker listened to through headphones. The speaker was instructed to produce one syllable per metronome beat. Speaking rates varied in 5 beats per minute intervals, ranging from very slow, careful speech (110 bpm on the metronome) to very fast and heavily reduced (150 bpm on the metronome). Each of the 9 rates of speech was recorded in separate blocks.

4.2.1.3 Duration Manipulation

Of the three reproductions of each sentence, the second reproduction of each sentence was taken as the stimulus item. Of the nine speaking rates, sentences from recordings produced at the middle (median) speaking rate (130 bpm) served as the referent frame. The durations of all the vowels in all nine speech rate recordings were measured and their durational differences were compared to the original, referent vowel. Vowel duration was shortened or lengthened by splicing vowels from faster or slower recordings, respectively, into the Target/Filler/Nonword of the 130 bpm referent frame (e.g., "She clearly said s_ng today."). Splices in and out of sentences were made at zero-crossings.

Altogether, this method of duration manipulation (as opposed to other methods such as PSOLA) produced more natural sounding vowels by preserving vowels' intrinsic spectral properties and coarticulations with the surrounding phonetic environment. The goal of manipulating the stimuli were to produce words that did not differ noticeably in any other perceptional characteristics other than duration. To check for this, four trained phoneticians listened to the stimuli for distortions, glitches, and unnatural patterns in pitch and formant contours, particularly at the edges of the vowel splices. The phoneticians found that 91% of the 288 Target, Filler, and Nonword items were free of any distortions, glitches, and unnatural patterns. None of the Target items were marked for distortions, glitches, and unnatural patterns. The Appendix (Table A.19) lists all items that were marked for disfluencies.

Target words were grouped into high, mid, or low NDL by dividing the NDL continuum into three distinct categories (see Figure 4.1 and Appendix Table A.20 for details). Measures of cue association strength of the NDL continuum used here are the same diphones-cueing-morphological tense measures that were gathered in Chapter 3 of this dissertation. Whether Target vowel durations were increased or decreased (whether a slower or faster vowel was spliced into the referent frame, respectively) was determined by these categories. According to Tucker et al. the effect size of NDL on vowel duration is about 30 ms, i.e., vowels in words with a high NDL cue association strength were about 30 ms shorter than vowels in words with a low NDL cue association strength. Vowel durations of the Target verbs were manipulated in the opposite direction observed by Tucker et al. (see Figure 4.1): words with high NDL cue association strengths were spliced with vowels of shorter durations (by either 15 or 30 ms), and words with low

NDL cue association strengths were spliced with vowels of longer durations (by either 15 or 30 ms). Each Target item, then, contained three levels of manipulations, or three conditions: a normal duration (referent level), a duration that has been altered in the opposite direction of the Tucker et al. predictions, and a duration between the two. A summary of levels of duration manipulation and NDL group is provided in Table 4.1. The remainder of this chapter refers to these duration manipulation conditions by their level names (i.e., shortest, short, normal, long, and longest) and NDL groups by their level names (i.e., high, mid, low).

	Duration Manipulation							
NDL Group	shortest (-30ms from normal)	short (-15ms from normal)	normal	long (+15ms from normal)	longest (+30ms from normal)			
high	X	Х	Х					
mid		Х	Х	Х				
low			Х	Х	Х			

Table 4.1: Summary of duration manipulations for each NDL group.

To control for any possible splicing effects, each occurrence of the Target vowel in a normal duration condition was also spliced: the Target vowel in the frame was spliced with another repetition of the same vowel in the same frame. For example, if the 2nd repetition in the recordings served as the Target frame, the normal vowel duration manipulation was taken from the 1st or 3rd repetition of the same recorded item - whichever repetition had the closest vowel duration to the Target frame.

A simple linear regression *a priori* test of the Target vowels in the normal duration condition (130 bpm) confirmed that the productions adhere to the predictions made by Tucker et al. The durations of the vowels produced by the recorded speaker were longer when the vowel's NDL cue association strengths were higher. This is interesting given that the predictions made by Tucker et al. are based on a corpus of spontaneously produced speech, and the current data is based on read list speech. It appears that the relationship between NDL cue

strength and vowel duration persists in both spontaneous and more laboratory elicited speech.

The duration of the stressed vowels in all the Filler and Nonword items were also manipulated. The amount of duration manipulation was randomly assigned for each item and evenly distributed amongst the Fillers and Nonwords. A list of all the Targets, Fillers, Nonwords, and their manipulation levels can be found in the Appendix (Table A.20 and Table A.19).

4.2.1.4 Experiment Stimuli Lists

In the Experiment I stimuli lists, the 18 chosen Target verbs were counterbalanced across six experiment word lists according to their morphology and manipulation level: 2 levels of morphology (past/present) x 3 levels of duration manipulation (normal, between, opposite) = 6 counterbalanced word lists of 18 words each. Each participant heard only one token of each of the 18 word types (either the past or the present tense form of the word, and with only one level of duration manipulation).

In total, each experiment list contained 144 pseudowords and 54 real words (18 Target items + 36 Filler items), for a total of 198 items per list. The 6 counterbalanced lists were psuedo-randomized so that real word items did not occur twice in a row. To mitigate trial effects, the 6 lists were ran forwards from the first item to the 198th item, and backwards from the 198th item to the first item. This yielded 12 total versions of the experiments (6 counterbalanced lists x 2 directions forward/backwards = 12 versions).

4.2.1.5 Participants

Participants were university students who completed the experiment as partial credit for a research participation requirement in a linguistics course. All participants were native speakers of Western Canadian English and grew up speaking only English in the home. Data from the lexical decision experiment consists of responses from 97 participants (73 identified as female, 24 identified as male; mean age was 20.84 years). Participants were evenly distributed across each of the 12 experiment versions insofar as possible.

4.2.1.6 Procedure

Participants sat in a sound-attenuated booth in front of a computer screen. The screen displayed the frame sentence "She clearly said ______ today." for all auditory stimuli. Through headphones, participants heard the entire stimulus sentence only once, containing both the frame and the Target/Filler/Nonword item (e.g., "She clearly said sang today."). Participants were asked to respond with their first instinct and without deliberation. The inter-stimulus interval was 1000 ms, during which a crosshair fixation point appeared on the screen in place of the frame sentence.

In the lexical decision experimental paradigm for Experiment I, participants were asked to respond by pressing "yes" or "no" on a button box to indicate whether or not the word "she" clearly said today (i.e., following from the frame sentence) was a real word in English.

4.2.1.7 Statistical Analysis

Participants were excluded from the analysis if they did not respond correctly to a predetermined percentage of the stimuli. For the lexical decision task, participants that did not respond correctly for 70% or more of all experiment items were excluded (n=2). Likewise, reaction times less than 200 ms and greater than 2.5 standard deviations from the means were excluded (n=65). The following statistical analyses are based on correct responses only (n=1573).

A set of Linear Mixed Effects Regression (LMER; Baayen et al., 2008) analyses were conducted on the reaction times in the R statistical environment using the package *lme4* (Bates et al., 2014) and *languageR* (Baayen, 2013). The dependent variable was the logged values of the reaction times from Target word

offset. The main independent variable of interest was the duration manipulation condition (normal, long, longest, short, and shortest), with the 'normal' level as the reference level in the models.

An initial analysis of the reaction time data was conducted to test for effects on the manipulated vowel duration and the vowel identity. In this simple analysis, reaction times (in milliseconds, log normalized) were predicted by an interaction between the manipulated vowel duration (in milliseconds, log normalized) and the identity of the vowel (e.g. /i/) with random intercepts for participant. It is possible that manipulating the duration of vowels may inherently confuse vowels that differ mostly by vowel length (e.g. /i/ and /I /), resulting in longer reaction times/more processing effort. However, this initial analysis did not find any statistically significant effects for an interaction with vowel duration and vowel identity (the Appendix Table A.21 and Table A.22 contains these initial LMER models' coefficients for the lexical decision and morphological decision tasks). Though it is statistically insignificant, the overall trend in both tasks is that reaction times were faster across all vowels when the duration of the vowel was manipulated to be longer. In post-hoc analyses, the same interaction between vowel duration and vowel identity was added to the final LMER analyses (the final LMER analyses are discussed below). As with the initial analysis, these posthoc analyses show a statistically insignificant trend for faster reaction times when vowels are longer, across all vowels. Subsequent model criticism involving an analysis of variance (ANOVA) and a comparison of Akaike Information Criterion (AIC) values show that including the interaction between vowel duration and vowel identity does not improve model fit as the final (no interaction) and posthoc (with interaction) LMER analyses are not significantly different from each other (Appendix Table A.21 and Table A.22). For this reason, the interaction between vowel duration and vowel identity was not included in the final analyses.

In the final LMER analyses of the reaction times, each NDL group was modelled separately since the duration manipulations were not consistent between NDL groups (refer to Table 4.1.). A secondary analysis combined all NDL groups into one LMER model to investigate the effect of linguistic predictors on reaction times across the NDL paradigm as a whole.

The LMER modelling procedure was conducted in a stepwise backwardsfitting fashion. Several predictors were initially checked for their influence on the reaction time data. These include the linguistic predictors of neighbourhood density (Levenshtein distances of phonological neighbours from Balota et al., 2007; scaled and centred around 0 by dividing the densities by their standard deviations), NDL cue association strength, morphological tense (past/present), and various measures of word frequency (including both lemma and word frequencies calculated by local token frequency in the Buckeye Corpus; and a more global token frequency in the CELEX Lexical Database, Baayen et al., 1995). Control predictors include vowel quality (tense/lax; phonetic control), trial and reaction time in the previous trial (experiment controls), and participant age and gender (participant controls). A simple Pearson's test for correlation found no significant pairwise collinearity between any of the numeric predictors. All twoand three-way interactions were checked amongst the predictors; none were found to be significant. Only the main effects that reached statistical significance were left in the final LMER models, resulting in the exclusion of both local and global measures of word and lemma frequency, trial, age, and gender from the final lexical decision model.

Random intercepts for participant and item were added to the final model. The inclusion of random slopes for participant and item did not improve model fit, so random slopes were not included in the final model.

A full listing of the lexical decision model's coefficients is given in the Appendix (Table A.23). Below is a discussion of the results of interest.

4.2.1.8 Results and Discussion

To better make comparisons between the two Experiments, the results of both Experiment I (lexical decision) and Experiment II (morphological decision) are illustrated in Figure 4.2 and Figure 4.3. Figure 4.2 combines the partial effects results of the LMER models for both the lexical decision and morphological decision tasks. Task is shown in colour (red for lexical decision, blue for morphological decision). NDL group is shown by line label ("h" for high NDL group, "m" for mid NDL group, and "l" for low NDL group). Duration manipulation level is shown on the x-axis, with the "normal" reference level (the reference level) shaded in grey. Reaction time is on the y-axis. Those reaction times at a particular level of duration manipulation that were significantly different than the "normal" reference level within their NDL group are marked with an asterisk (*).

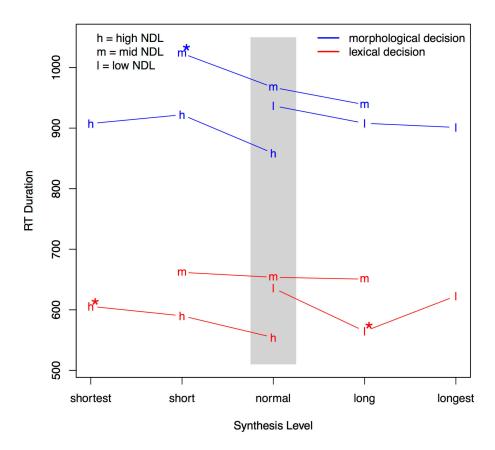


Figure 4.2: Results for the LMER models for each NDL level in the lexical decision experiment (Experiment I) and morphological decision experiment (Experiment II). An asterisk (*) indicates a significant difference in a manipulated Synthesis Level from the 'normal' Synthesis Level (shown in grey shading).

Figure 4.3 illustrates the partial effects of the LMER models for the lexical and morphological decision tasks. Task is coded by line colour with the lexical decision model shown in red and the morphological decision model shown in blue. Reaction time is shown in the y-axis for all panels. Predictors are shown on the x-axis. Panel (a) illustrates the difference in reaction time for each duration manipulation level (compared to the "normal" reference level of duration manipulation - illustrated by a dashed line). The x-axis is arranged in alphabetic order following the "normal" reference level. This panel combines all data from all NDL groups, as opposed to Figure 4.2 that compares models' predictions within NDL groups. The only significant effect shown in this panel is the difference between the 'shortest' and 'normal' levels of manipulation in the lexical decision experiment (shown in red). Panel (b) illustrates the partial effects of neighbourhood density on the reaction time data. The neighbourhood density predictor (x-axis) is scaled and centred around zero. All effects shown are significant. Panel (c) illustrates the partial effects of NDL cue strength. NDL cue strength was predictive in the lexical decision model only. All effects shown are significant. Panel (d) illustrates the partial effects of morphological tense (reference level: past). Tense was predictive in the lexical decision model only. All effects shown are significant.

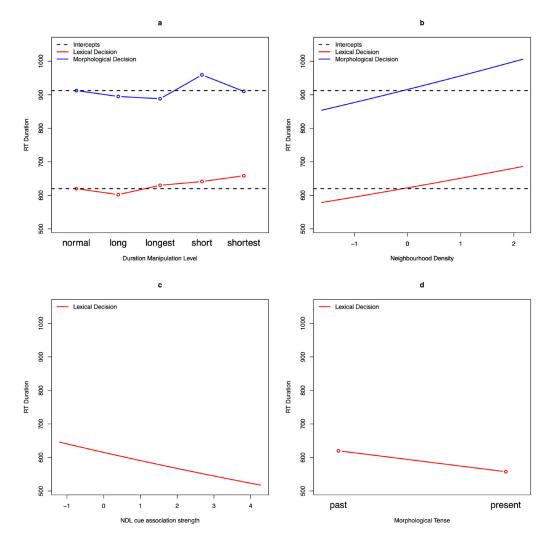


Figure 4.3: Partial effects results for the LMER models in the lexical decision experiment (Experiment I) and morphological decision experiment (Experiment II) for all NDL levels combined. The follow predictors are shown in panels (a-d): (a) duration manipulation level (b) neighbourhood density, scaled and centred around zero (c) NDL cue association strength (d) morphological tense (reference level: past).

Table 4.2 (below) displays the LMER coefficients for four models: one for each NDL group in the primary analysis (by-NDL-group: high, mid, and low) and one for the secondary analysis (all NDL groups combined). It is possible that the duration manipulations affect the lexical processing of each NDL group differently (since each NDL group was manipulated differently), so by-NDLgroup analyses were first conducted. The by-NDL-group analyses indicate that lexical decision reaction times were affected by vowel duration manipulation when the word belonged to the high or low NDL group (shown also in Figure 4.2 in red and with asterisks; the normal vowel duration level is shaded). For the high NDL group, response times to words containing vowels with the shortest duration manipulation were significantly slower (compared to the normal group). For the low NDL group, words containing vowels with the long (but not longest) duration manipulation were responded to significantly faster (compared to the normal group). Though the effect is not significant Table 4.2 in each NDL group, the trend is that shorter words are processed more slowly, and longer words are processed more quickly (note this is the same trend seen in the simple, preliminary analysis of a duration/vowel interaction, which was also found to not be statistically significant).

In the secondary analysis that combines all NDL groups, only those words that contained vowels with the shortest level of duration manipulation were significantly different from those words with no duration manipulation (shown in Figure 4.3 in red). The overall trend of duration manipulation for all words, when combining all NDL groups, is that shorter words elicit slower reaction times.

Taking these analyses together, it appears that manipulating the duration of the vowel to be contrary to what is expected in production (as found by Tucker et al.) does not have a strong predictive effect on processing difficulty in lexical decision. In fact, criticism of model fit shows a slight favour for a model of the combined NDL groups when the duration manipulation factor is removed (AIC: 722; compared to leaving in the duration manipulation - AIC: 740).

Tucker et al. found that vowels with high NDL cue association strengths are produced with longer durations, and vice versa. I hypothesized that this is due to an effect of acoustic enhancement: vowels with a stronger association with the past tense are enhanced (produced with longer durations) to serve as an acoustic cue for tense disambiguation. It was predicted that processing would be more difficult (as reflected in slower reaction times) when acoustic enhancement is instead given to vowels that are discouraging of the past tense (reversing the Tucker et al. findings), and when vowels with a strong association with the past tense are reduced. My hypothesis is not supported: the NDL-duration relationship attested for in production is not necessarily facilitatory in processing irregular English verbs across all NDL groups.

However, when evaluating each NDL group individually (as in a onetailed test: comparing manipulated/unmanipulated), there are slight effects in processing time for manipulating the vowel duration. For vowels that discourage the past tense and were acoustically enhanced (low NDL group with longer durations), the effect is in the opposite predicted direction: reaction times were faster despite the manipulation. For vowels that are strongly associated with the past tense and were acoustically reduced (high NDL group with shorter durations), the effect is in the predicted direction: reaction times were slower, indicating more difficult processing. One possible explanation for this comes from H&H Theory (Lindblom, 1990). H&H Theory predicts that hyperarticulations (such as longer vowel durations) will facilitate production in general. This prediction is irrespective of patterns of correlations between linguistic properties and acoustic detail (such as the correlation NDL cue association strength and vowel duration). In H&H Theory, it is not the linguistic property that matters, but the fact that the acoustic signal has been hyper articulated at all. Disambiguating this H&H Theory prediction from my original prediction (that the correlation NDL cue association strengths and vowel duration is what conditions processing) is not possible in the current analysis since both predictions are in the same direction. However, both predictions entail some form of a link between production and processing.

The influence of other linguistic properties on lexical decision reaction times provide further support for a link between production and processing. The lexical predictors of neighbourhood density, NDL cue-to-tense activation strength, and morphological tense were each significant in predicting variance in reaction time responses. Past tense words result in slower responses than present tense words. NDL cue-to-tense association strength is inversely related to reaction time: words with stronger NDL cue association strengths were responded to faster than words with weaker NDL cue association strengths. Though the effect of NDL cue association is weak, model criticism shows no preference for removing or including the NDL cue association predictor (leaving out the NDL predictor -AIC: 669; leaving in the NDL predictor - AIC: 670). Though I originally predicted that manipulating the Tucker et al. NDL-duration relationship would result in processing difficulty overall, what I find instead is that stronger NDL cue-to-tense association strengths allow for faster processing overall. Tucker et al. find that stronger NDL association strengths lead to more enhanced vowel productions (longer durations), I similarly find that stronger NDL association strengths lead to more enhanced processing, irrespective of the production of vowel duration. This association between greater NDL association strengths and ease of processing is also attested for in studies on reading (Baayen et al., 2011).

In addition to the effects of morphological tense and NDL cue association strength, neighbourhood density is positively associated with reaction time; words with larger phonological neighbourhoods pattern with longer reaction times. Recall that previous research in speech production predicted opposing effects of phonological neighbourhood density in speech processing. While Wright (1997, 2004) predicted that phonological neighbourhood density would inhibit speech processing based on his findings in speech production, Gahl (2012; also Gahl et al., 2012) predicted the opposite based on her interpretations of speech production data. In the current lexical decision experiment, there is a clear inhibitory effect of neighbourhood density in speech processing: words belonging to more dense phonological neighbourhoods are recognized more slowly than words with fewer neighbours. The effect of neighbourhood density here follows the predictions made by Wright.

Table 4.2: Table of coefficients for the lexical decision experiment (Experiment I) for models with NDL groups separated and combined.

High NDL Group				Mid NDL Group						
Predictor	Estimate	Standard Error	t	Predictor	Estimate	Standard Error	t			
Intercept (Manipulation Level: normal Morphological Tense: past Vowel Quality: lax)	4.901	0.232	21.104	Intercept (Manipulation Level: normal Morphological Tense: past Vowel Quality: lax)	5.471	0.171	31.908			
Manipulation Level: long				Manipulation Level: long	-0.019	0.024	-0.793			
Manipulation Level: longest				Manipulation Level: longest						
Manipulation Level: short	0.069	0.037	1.888	Manipulation Level: short	0.027	0.024	1.086			
Manipulation Level: shortest	0.111	0.037	3.037	Manipulation Level: shortest						
Previous Reaction Time (ms)	0.205	0.033	6.148	Previous Reaction Time (ms)	0.157	0.025	6.250			
Morphological Tense: present	0.023	0.075	0.303	Morphological Tense: present	-0.147	0.055	-2.693			
NDL Cue Association Strength (scaled and centred)	-0.005	0.036	-0.130	NDL Cue Association Strength (scaled and c <i>e</i> ntred)	-0.021	0.038	-0.556			
Phonological Neighbourhood Density (scaled and centred)	0.007	0.037	0.189	Phonological Neighbourhood Density (scaled and centred)	0.033	0.025	1.304			
Vowel Quality: tense	0.049	0.074	0.667	Vowel Quality: tense	0.085	0.084	1.011			
Low NDI	Low NDL Group					All NDL Groups Combined				
Predictor	Estimate	Standard Error	t	Predictor	Estimate	Standard Error	t			
Intercept (Manipulation Level: normal Morphological Tense: past Vowel Quality: lax)	5.137	0.243	21.161	Intercept (Manipulation Level: normal Morphological Tense: past Vowel Quality: lax)	5.551	0.121	45.698			
Manipulation Level: long	-0.083	0.039	-2.144	Manipulation Level: long	-0.029	0.019	-1.547			
Manipulation Level: longest	0.011	0.038	0.294	Manipulation Level: longest	0.016	0.030	0.520			
Manipulation Level: short				Manipulation Level: short	0.034	0.019	1.744			
Manipulation Level: shortest				Manipulation Level: shortest	0.060	0.030	1.997			
Previous Reaction Time (ms)	0.195	0.035	5.566	Previous Reaction Time (ms)	0.133	0.018	7.581			
Morphological Tense: present	-0.094	0.068	-1.376	Morphological Tense: present	-0.106	0.035	-3.068			
NDL Cue Association Strength (scaled and centred)	0.000	0.032	-0.003	NDL Cue Association Strength (scaled and centred)	-0.041	0.021	-1.946			
Phonological Neighbourhood Density		0.041	0.326	Phonological Neighbourhood Density	0.045	0.017	2.612			
(scaled and centred)	0.014	0.041	0.520	(scaled and centred)	0.015	0.011				

4.2.2 Experiment II: Morphological Decision

Experiment II follows from the procedure, stimuli, and analysis presented in Experiment I. Rather than focusing the experimental task on word recognition, Experiment II focuses on morphology recognition in a morphological decision paradigm.

4.2.2.1 Experiment Stimuli Lists

Stimulus items from Experiment I served as the basis for the experiment stimuli lists in Experiment II. For the morphological decision experiment, the 9 noun Filler items and their 18 Nonword counterparts were removed from each of the 12 items list versions. This yielded 126 pseudowords and 45 real words (18 Target items + 27 Filler items), for a total of 171 items per morphological

decision list. As with Experiment I, lists were pseudo-randomized and counterbalanced into 12 experiment versions.

4.2.2.2 Participants

Similar to Experiment I, participants for Experiment II were also university students completing the experiment as partial credit for a research participation requirement in an introductory linguistics course. No student participated in both Experiment I and Experiment II. Experiment II consists of responses from 69 participants (51 identified as female, 17 identified as male, 1 identified as other gendered; mean age was 19.58 years). As with Experiment I, participants were evenly distributed across each of the 12 experiment versions insofar as possible.

4.2.2.3 Procedure

The overall procedure for Experiment II is the same as Experiment I. In the morphological decision experiment, however, participants were asked to respond by pressing "past" or "present" on a button box to indicate whether the word "she" clearly said (from the frame sentence "She clearly said _____ today") was in the past or present tense. Additionally, for the morphological experiment only, participants were told that some of the words "she" said were made-up English verbs. Participants were asked to decide on instinct whether these madeup words sounded more like they were referring to the past or present tense.

4.2.2.4 Statistical Analysis

Error rates for the real words in the lexical decision task were 6.7%, while error rates for the real words in the morphological decision task were 22.5%. Because the morphological decision task was harder than the lexical decision task, the percentage of correctness threshold was lowered for discarding participant responses. Participants that did not respond correctly for 60% or more of the time were excluded (n=8). Reaction times less than 200 ms and greater than 2.5 standard deviations from the means were excluded (n=390). The following statistical analyses are based on correct responses only (n=807).

The LMER analyses of the reaction time data for Experiment II proceeded in the same way as Experiment I. Statistical models were created for each NDL group separately, and a secondary analysis combined all NDL groups together. The same dependent variable, set of predictors, and random effects structure in Experiment I were used in Experiment II. A simple Pearson's test for correlation found no colinearity between any of the numeric predictors. All two- and threeway interactions were checked amongst the predictors; none were statistically significant. For the morphological decision experiment, six predictors (NDL cue association strength, morphological tense, frequency, trial, age, and gender) were thus omitted from the final morphological decision model.

A full listing of the lexical decision model's coefficients is given in the Appendix (Table A.24). Below is a discussion of the results of interest.

4.2.2.5 Results and Discussion

Overall, morphological decision reaction times were 340 ms longer than lexical decision reaction times (t = -22.684, df = 1209.797, p < 0.001). Along with the increased proportion of incorrect responses, the slower responses in the morphological decision task indicate that the task was much harder than the lexical decision task in Experiment I.

Table 4.3 (below) shows the LMER coefficients for four models: one for each NDL group in the primary analysis (by-NDL group: high, mid, and low) and one for the secondary analysis (all NDL groups combined). It is possible that the duration manipulations affect the morphological processing of each NDL group differently (since each NDL group was manipulated differently), so by-NDLgroup analyses were first conducted. The by-NDL-group analyses indicate that lexical decision reaction times were affected by vowel duration manipulation only when the word belonged to the mid NDL group (shown in Figure 4.2 in blue and with asterisks; the normal vowel duration level is shaded). Whereas duration manipulation affected response times at the tail ends of the NDL cue association strength scale in Experiment I, response times for words in the middle scale were affected in Experiment II. Words with a middle level of NDL cue association strength that contained a 'short' level of vowel duration manipulation are responded to significantly slower than words without duration manipulations. This follows the trend displayed in Experiment I where shorter words were more difficult to process.

A secondary analysis with all vowels combined, however, did not find a significant effect of vowel duration manipulation across all NDL groups. Model criticism shows no preference for removing or including the duration manipulation predictor (leaving out the predictor - AIC: 624; leaving in the predictor - AIC: 627). It was predicted that processing would be more difficult (as reflected in slower reaction times) when acoustic enhancement is instead given to vowels that are discouraging of the past tense (reversing the Tucker et al. findings), and when vowels with a strong association with the past tense are reduced. My hypothesis is not supported: the NDL-duration relationship attested for in production is not necessarily facilitatory in the morphological processing irregular English verbs.

Interestingly, I do not find any effect of NDL cue-to-tense association strength on morphological processing. As NDL cue-to-tense association strength gauges how strongly associated a particular vowel is with the past tense, it is surprising that this measure of paradigmatic support is not predictive of morphological processing (as measured in the current experiment). The lack of predictive significance for vowels' duration manipulation and NDL association strengths in the current experiment leads me to believe that Experiment II does not gain much more understanding about a possible link between production and processing. The manipulation of the production-based NDL-duration relationship had no real significance in morphological processing under the current paradigm. Given the more difficult nature of the morphological decision task, it is possible that there is additional noise and unaccounted for variation in my data. A comparison of the residual errors in the morphological decision and lexical decision LMER models illustrates this possibility (lexical decision residual error = 0.0753; morphological decision residual error: 0.1154). Overall, there is more research to be done in this method of investigating morphological processing.

Though I did not find an effect of NDL or duration manipulation in the morphological decision analysis, I do find a strong effect of neighbourhood density. Here, the effect of neighbourhood density is the same as its effect in the lexical decision analysis: words with more dense phonological neighbourhoods were responded to slower than words from sparser phonological neighbourhoods. This pattern again provides more support for Wright's (1997, 2004) predictions based on speakers' productions.

Table 4.3 Table of coefficients for the morphological decision experiment (Experiment II) for models with NDL groups separated and combined.

High NDL Group				Mid NDL Group					
Predictor	Estimate	Standard Error	t	Predictor	Estimate	Standard Error	t		
Intercept (Manipulation Level: normal)	5.557	0.328	16.919	Intercept (Manipulation Level: normal)	5.495	0.247	22.257		
Manipulation Level: long				Manipulation Level: long	0.008	0.043	0.193		
Manipulation Level: longest				Manipulation Level: longest					
Manipulation Level: short	0.028	0.062	0.446	Manipulation Level: short	0.086	0.042	2.034		
Manipulation Level: shortest	0.027	0.064	0.422	Manipulation Level: shortest					
Previous Reaction Time (ms)	0.173	0.047	3.706	Previous Reaction Time (ms)	0.191	0.034	5.552		
Phonological Neighbourhood Density (scaled and centred)	0.027	0.028	0.975	Phonological Neighbourhood Density (scaled and centred)	0.036	0.020	1.792		
Low NDL	Low NDL Group					All NDL Groups Combined			
Predictor	Estimate	Standard Error	t	Predictor	Estimate	Standard Error	t		
Intercept (Manipulation Level: normal)	4.877	0.331	14.746	Intercept (Manipulation Level: normal)	5.519	0.176	31.366		
Manipulation Level: long	-0.091	0.062	-1.453	Manipulation Level: long	-0.019	0.032	-0.599		
Manipulation Level: longest	-0.050	0.065	-0.769	Manipulation Level: longest	-0.027	0.048	-0.559		
Manipulation Level: short				Manipulation Level: short	0.050	0.033	1.540		
Manipulation Level: shortest				Manipulation Level: shortest	-0.003	0.051	-0.051		
Previous Reaction Time (ms)	0.279	0.047	5.995	Previous Reaction Time (ms)	0.186	0.025	7.551		
Phonological Neighbourhood Density (scaled and centred)	0.031	0.028	1.115	Phonological Neighbourhood Density (scaled and centred)	0.043	0.014	3.107		

4.3 General Discussion

The goal of Experiments I and II was to test whether a relationship between acoustic details and linguistic properties found in speech production is of consequence to speech processing. The Experiments find that manipulating Tucker et al.'s production-based NDL-duration relationship does not strongly affect processing in the lexical and morphological decision tasks overall. It appears that the effect the NDL-duration relationship has on processing is somewhat mitigated by the task at hand. While manipulations to the relationship weakly affect words belonging to the tail ends of the NDL cue association strength scale in the lexical decision task, the same manipulations weakly affect words in the middle of the NDL cue association strength scale in the morphological decision task. However, when pooling together all NDL cue association strengths, it is apparent that manipulating the duration of vowels does not affect processing in directions that are otherwise not predicted by other theoretical assumptions, such as H&H Theory (Lindblom, 1990).

However, Experiment I finds that NDL cue-to-tense association strengths are facilitatory in lexical decision. Though I originally predicted that manipulating acoustic detail will cause a disruption in the link between production and processing, I find instead that stronger links between form and meaning (i.e. greater NDL cue association strengths) correlate with both the enhancement of acoustic details and the enhancement of processing speed. In this way, speech production and processing are linked.

Moreover, I find support for Wright's (1997, 2004) predictions made about neighbourhood density: words from more dense neighbourhoods are produced with more enhanced acoustic details when they correlate with more processing effort (greater reaction times), as seen in both the lexical and morphological decision tasks. The effects of neighbourhood density on processing suggest that a correlation, or a link, between speech production and speech processing does exist.

Taken together, the Experiments here also suggest that lexical and morphological decision tasks may make use of different cues. The processing of lexical recognition is affected by the linguistic properties of neighbourhood density, NDL cue association strength, and morphological tense. However, the processing of morphological recognition corresponds only with neighbourhood density. Whereas some processing theories assume that the recognition of a word also accesses the word's morphology (such as Manelis and Tharp, 1977), the current analyses show that is possible that explicit morphological recognition is processed differently than recognizing a word as an existing lexical form. Different cues can play a more influential role for different tasks. The possibility of morphological and lexical processing using different cues is a future area of research. It would be interesting to directly test the difference in cue usage between the two processing tasks. This would provide further evidence for a more nuanced link between production and processing: the link is strengthened depending on task and cue, which could allow more graded predictions about the role of acoustic detail in speech production and processing.

Thus, the current study highlights the importance of conducting follow-up processing studies to qualify the simple, straightforward generalizations made in production studies about the role of acoustic detail in speech. As production is only one half of the speech system, any predictions made about the purpose of producing acoustic detail and its processing consequences should be tested in subsequent processing-based experiments.

4.4 Conclusion

The current chapter has found support for the processing consequences of a relationship that exists between acoustic detail and a linguistic property, as attested for in spontaneously produced speech. Results gathered from lexical decision and morphological decision experiments point towards the need to reevaluate the role of acoustic detail in speech. This stems from two approaches towards the processing of acoustic detail that previous research in speech production have taken: acoustic detail is either facilitatory for processing, or is facilitatory for production. Instead of dichotomizing the role of acoustic detail into either production-based (no link between production/processing) or processing-based (strong link between production/processing) approaches, the current chapter discusses a different approach towards understanding the role of acoustic detail: acoustic detail provides a weak link between speech production and processing. It is proposed that the production of acoustic detail has the potential to play a facilitatory role in speech processing, but not necessarily so. Therefore, production studies should interpret relationships between production data and its subsequent processing with caution. The current study also finds that the relationship between acoustic detail and a linguistic property might be facilitatory in one type of processing (e.g., morphological decision) but not in another (e.g., lexical decision).

4.5 References

Aylett, M., & Turk, A. (2004). The Smooth Signal Redundancy Hypothesis: A Functional Explanation for Relationships between Redundancy, Prosodic Prominence, and Duration in Spontaneous Speech. *Language and Speech*, *47*(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058.

Baayen, H. (2013). *languageR: Data sets and functions with "Analyzing Linguistic Data: A practical introduction to statistics."* Retrieved from http://CRAN.R-project.org/package=languageR

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, *59*(4), 390–412.

Baayen, R. H., McQueen, J. M., Dijkstra, T., & Schreuder, R. (2003). Frequency effects in regular inflectional morphology: Revisiting Dutch plurals. *Morphological Structure in Language Processing*, *151*, 355–390.

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, *118*(3), 438.

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). *The CELEX Lexical Database*. Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania.

Baayen, R. H., Shaoul, C., Willits, J., & Ramscar, M. (in press). Comprehension without segmentation: A proof of concept with naive discrimination learning. *Language, Cognition, and Neuroscience*.

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., ... Treiman, R. (2007). The English lexicon project. *Behavior Research Methods*, *39*(3), 445–459.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). *lme4: Linear mixed-effects models using Eigen and S4*. Retrieved from http://CRAN.R-project.org/package=lme4

Bell, A., Brenier, J. M., Gregory, M., Girand, C., & Jurafsky, D. (2009).Predictability effects on durations of content and function words in conversationalEnglish. *Journal of Memory and Language*, 60(1), 92.

Connine, C. M. (1987). Constraints on interactive processes in auditory word recognition: The role of sentence context. *Journal of Memory and Language*, *26*(5), 527–538.

Connine, C. M. (2004). It's not what you hear but how often you hear it: On the neglected role of phonological variant frequency in auditory word recognition. *Psychonomic Bulletin & Review*, *11*(6), 1084–1089.

Connine, C. M., Mullennix, J., Shernoff, E., & Yelen, J. (1990). Word familiarity and frequency in visual and auditory word recognition. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 16*(6), 1084.

Connine, C. M., Ranbom, L. J., & Patterson, D. J. (2008). Processing variant forms in spoken word recognition: The role of variant frequency. *Attention, Perception, & Psychophysics*, *70*(3), 403–411.

Connine, C. M., Titone, D., & Wang, J. (1993). Auditory word recognition: extrinsic and intrinsic effects of word frequency. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*(1), 81.

Ernestus, M., Baayen, H., & Schreuder, R. (2002). The recognition of reduced word forms. *Brain and Language*, *81*(1-3), 162–173.

Ernestus, M., & Baayen, R. H. (2007). The comprehension of acoustically reduced morphologically complex words: The roes of deletion, duration, and frequency of occurrence. *Proceedings of the 16th International Congress of Phonetic Sciences*, (August 2007, Saarbruecken, Germany), 773–776.

Ernestus, M., & Warner, N. (2011). An introduction to reduced pronunciation variants. *Journal of Phonetics*, *39*(3), 253–260.

Gahl, S. (2012). Phonetic Reduction in the" Easy/Hard" Database without" Difficulty." UC Berkeley Phonology Lab Annual Reports, 2012.

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. *Journal of Memory and Language*, *66*(4), 789–806.

Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming lexical neighbors of spoken words: Effects of competition and inhibition. *Journal of Memory and Language*, *28*(5), 501–518.

Johnson, K. (2004). Massive reduction in conversational American English. Spontaneous Speech: Data and Analysis. Proceedings of the 1st Session of the 10th International Symposium, 29–54.

Jurafsky, D., Bell, A., Gregory, M., & Raymond, W. D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. *Frequency and the Emergence of Linguistic Structure*, *45*, 229–254.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. *Behavior Research Methods*, *42*(3), 627–633.

Kuperman, V., & Bresnan, J. (2012). The effects of construction probability on word durations during spontaneous incremental sentence production. *Journal of Memory and Language*, *66*(4), 588–611.

Landauer, T. K., & Streeter, L. A. (1973). Structural differences between common and rare words: Failure of equivalence assumptions for theories of word recognition. *Journal of Verbal Learning and Verbal Behavior*, *12*(2), 119–131.

Liberman, A. M., Delattre, P. C., & Cooper, F. S. (1958). Some cues for the distinction between voiced and voiceless stops in initial position. *Language and Speech*, *1*(3), 153–167.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Luce, P. A. (1986). Neighborhoods of Words in the Mental Lexicon. Research on Speech Perception. Technical Report No. 6.

Luce, P. A., & Large, N. R. (2001). Phonotactics, density, and entropy in spoken word recognition. *Language and Cognitive Processes*, *16*(5-6), 565–581.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. *Ear and Hearing*, *19*(1), 1.

Manelis, L., & Tharp, D. A. (1977). The processing of affixed words. *Memory & Cognition*, *5*(6), 690–695.

Metsala, J. L. (1997). An examination of word frequency and neighborhood density in the development of spoken-word recognition. *Memory & Cognition*, *25*(1), 47–56.

Meunier, F., & Segui, J. (1999). Frequency effects in auditory word recognition: The case of suffixed words. *Journal of Memory and Language*, *41*(3), 327–344.

Mitterer, H., & Ernestus, M. (2006). Listeners recover /t/s that speakers reduce: Evidence from /t/-lenition in Dutch. *Journal of Phonetics*, *34*(1), 73–103. Morrison, G. S., & Assmann, P. F. (2013). *Vowel Inherent Spectral Change*. Springer Science & Business Media.

Pate, J. K., & Goldwater, S. (2015). Talkers account for listener and channel characteristics to communicate efficiently. *Journal of Memory and Language*, 78, 1–17.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., &
Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (Version 2nd Release). Columbus, OH: Department of Psychology, Ohio State University (Distributor). Retrieved from www.buckeyecorpus.osu.edu

Pluymaekers, M., Ernestus, M., & Baayen, R. (2005a). Articulatory planning is continuous and sensitive to informational redundancy. *Phonetica*, *62*(2-4), 146–159.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2005b). Lexical frequency and acoustic reduction in spoken Dutch. *The Journal of the Acoustical Society of America*, *118*(4), 2561–2569.

Ranbom, L. J., & Connine, C. M. (2007). Lexical representation of phonological variation in spoken word recognition. *Journal of Memory and Language*, *57*(2), 273–298.

Taft, M. (1979). Recognition of affixed words and the word frequency effect. *Memory & Cognition*, 7(4), 263–272.

Tily, H., & Kuperman, V. (2012). Rational phonological lengthening in spoken Dutch. *The Journal of the Acoustical Society of America*, *132*(6), 3935–3940.

Tomaschek, F., Tucker, B. V., Wieling, M., & Baayen, R. H. (2014). Vowel articulation affected by word frequency. *Proc. 10th ISSP*, 429–432.

Tucker, B. V. (2011). The effect of reduction on the processing of flaps and /g/ in isolated words. *Journal of Phonetics*, *39*(3), 312–318.

Tucker, B. V., Sims, M., & Baayen, R. H. (in preparation). Modeling duration of monosyllabic verbs.

Tucker, B. V., & Warner, N. (2007). Inhibition of processing due to reduction of the American English flap. *Proceedings of the 16th International Congress of Phonetic Sciences, Saarbrücken*, 1949–1952.

Van de Ven, M., Tucker, B., & Ernestus, M. (2011). Semantic context effects in the comprehension of reduced pronunciation variants. *Memory & Cognition*, *39*(7), 1301–1316.

Van Son, R. J. J. H., & Pols, L. C. W. (2003). Information structure and efficiency in speech production. *Proceedings Eurospeech 2003, Geneva*, *1*, 769–772.

Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999). Phonotactics, neighborhood activation, and lexical access for spoken words. *Brain and Language*, *68*(1), 306–311.

Weide, R. L. (1998). *The CMU pronouncing dictionary*. Retrieved from http://www.speech.cs.cmu.edu/cgibin/cmudict

Wright, R. (1997). Lexical competition and reduction in speech: A preliminary report. *Research on Spoken Language Processing Progress Report*, 20, 321–333.

Wright, R. (2004). Factors of lexical competition in vowel articulation. *Phonetic Interpretation: Papers in Laboratory Phonology VI*, 26–50.

Yao, Y. (2011). *The effects of phonological neighborhoods on pronunciation variation in conversational speech*. University of California, Berkley. Retrieved from eScholarship.

Chapter 5: Conclusions

This dissertation has investigated the production and processing of acoustic detail in spontaneous speech. The study of acoustic detail in this dissertation was limited to vowels' formant trajectories, dispersions, and durations within a subset of irregular English verbs from the Buckeye Corpus of Conversational English (Pitt et al., 2007). The two production studies in this dissertation focus on how spontaneously produced vowel formants compare to research on carefully produced vowel formants, as well as how linguistic properties influence acoustic detail. The set of recognition experiments in this dissertation evaluate how the relationship between vowel duration and morphology affect processing.

In what follows, the general findings of the three studies contained in this dissertation are reiterated to answer the research questions posed in the first Chapter of this dissertation. The implications of these results for current theories of the mental lexicon are then discussed. In the discussion of the mental lexicon, the current Chapter first asserts one theoretical stance that best captures the relationship between morphology and the mental lexicon as seen in the Studies presented in this dissertation. The remainder of this Chapter then discusses the main focus of this dissertation: the representation of acoustic detail in the mental lexicon.

5.1 General Findings

Overall, the three Studies presented in this dissertation find support for the inclusion of variation in both the production and processing of acoustic detail. Different types of variation in acoustic detail is seen in all three Studies: for Study 1, there is variation in the production of phonetic details; for Study 2, there is variation in how phonetic details are modulated by morphology; and for Study 3, there is variation in how acoustic variation facilitates lexical and morphological processing.

5.1.1 Study 1 - Dynamic Formant Movement in Spontaneous Speech Vowels

The first study of this dissertation focuses on the presence of formant movement in spontaneous speech. It asks whether the quick nature of spontaneous speech allows for the types of formant trajectory patterns seen in citation speech (Nearey, 1989), and, if there are such patterns, whether formant movement can be captured by current VISC models (Morrison and Nearey, 2007; Morrison, 2013).

To address these questions, formant trajectories were gathered from all the vowels in a subset of irregular English verbs. These formant trajectories were both descriptively and statistically analyzed for their amount and direction of movement, using vowel plots, simple tests of significant differences (t-tests), and Linear Mixed-Effects Regression modelling techniques. Subsequent discriminant analyses evaluated how the formant trajectory patterns were captured under three hypotheses of vowel formant movement.

The results of Study 1 indicate that though vowels in spontaneous speech are shorter in duration than vowels in careful speech, they nevertheless display formant trajectory patterns that are reminiscent of careful speech patterns. Though it has been predicted that coarticulation and vowel space centralization effects would inhibit the production of formant trajectory patterns (Strange et al., 1989), the results of Study 1 indicate otherwise. Moreover, the spontaneously produced formant trajectory patterns found in Study 1 are best captured by the same onsetoffset phonetic model that better captures carefully produced formant trajectory patterns.

Taken together, the findings of Study 1 highlight the nature of acoustic variation in spontaneous speech in the context of one measure of phonetic detail (formant movement). Formant movement is highly variable not only amongst vowels but amongst productions of the same vowel. Nevertheless, a pattern of formant movement emerges for most (though not all) spontaneously produced vowels in this subset of irregular English verbs.

5.1.2 Study 2 - Morphological Influence of Vowel Dispersion and Dynamic

Formant Movement

The second study of this dissertation expands upon Study 1 by investigating how linguistic parameters correlate with the production of acoustic detail. Specifically, Study 2 asks whether the formant trajectory patterns in Study 1 are influenced by morphology and morphological paradigms. This question is prompted by two theoretical assumptions: 1) linguistic uncertainty is balanced with phonetic enhancement (Aylett and Turk, 2004, 2006); 2) more paradigmatic support correlates with phonetic enhancement (Kuperman et al., 2007).

The formant data were evaluated for their correlation with morphological uncertainty and paradigmatic support using global models (data pooled across all vowels) of formant dispersion, deviation from vowel onset and offset, and formant movement. These models indicate an overall effect of morphology and paradigmatic support on the production of vowel formants. Further analyses were conducted to test for effect of morphological uncertainty and paradigmatic support when the formant data was split by vowel. These additional results in Study 2 indicate that the effects of morphological uncertainty and paradigmatic strength on the production of the formant data are better captured in the by vowel analyses. This is discussed in terms of model comparison and better representation of the data in the predictive trends.

As such, Study 2 highlights the importance of allowing fractionation, or by item subtype analyses, in models of speech production.

5.1.3 Study 3 - The Role of Acoustic Detail: Evidence from Lexical and

Morphological Processing

Finally, the third study of this dissertation expands upon Study 2 by investigating the subsequent processing of an acoustic detail/linguistic property relationship. The basis for Study 3 is the untested assumption that production and processing are linked by acoustic detail (Lindblom, 1990; Aylett and Turk, 2004, 2006). Study 3 experimentally manipulates an attested measure of acoustic detail (vowel duration; Tucker et al., in preparation) and investigates its combined effect with a linguistic property (morphological NDL cue association strength) on processing.

Study 3 uses stimuli with vowels whose durations were manipulated to be the opposite of that predicted by Tucker et al. based on their NDL cue association strengths. The effect of manipulating the duration-NDL relationship is then tested in lexical and morphological decision experiments. The rationale is that if a produced vowel duration corresponded to NDL cue association strength in a way that aids in processing (as is the hypothesis being tested), disrupting the relationship will in turn disrupt processing.

The results of Study 3 find inhibition in processing; however, the inhibition is not correlated with disrupting the NDL-duration relationship. Instead, Study 3 finds that irrespective of vowel duration, neighbourhood density and morphological paradigmatic support (i.e. NDL cue association strengths) influence processing speed. Both lexical and morphological recognition were inhibited when words had more phonological neighbours, and lexical recognition was inhibited when words had weak paradigmatic support. Previous research on speech production has found that 'hard' words with more phonological neighbours (Wright, 1997, 2004) and words with more paradigmatic support (Kuperman et al., 2007; Tucker et al., in preparation) are phonetically enhanced (e.g. are

produced with longer durations). These production-based studies predict that phonetic enhancement is used by listeners to distinguish between 'hard' words and disambiguate morphological tense. Study 3 finds support for these production-based predictions. In this way, speech production and speech processing are linked.

Thus, Study 3 finds that the role of acoustic detail in speech processing is different than what was originally predicted. It was originally predicted that acoustic detail's role is captured in its distinct patterns with linguistic properties (if these distinct patterns are disrupted, processing will be inhibited). However, Study 3 finds that these distinct patterns are of less importance in speech perception than originally predicted. Instead of acoustic detail necessarily providing cues for perception (i.e., a strong link between production and processing), Study 3 shows that acoustic detail has the potential to provide cues for perception (i.e., a weaker link between production and processing). As compared to acoustic detail, linguistic properties provide a stronger link between speech production and perception. Linguistic properties such as neighbourhood density and paradigmatic support correlate with enhancement in both speech production (longer durations) and perception (faster processing).

5.2 Theoretical Implications for the Mental Lexicon

The remainder of the current Chapter discusses the implications from the three Studies reviewed above on the structure of the mental lexicon and the mental representation of acoustic detail. The three Studies contained in this dissertation address this question by analyzing the acoustic differences in the production and processing of different morphological forms. It is therefore prudent to first establish a theoretical stance on the mental representation of morphology. This stance will set the framework within which the mental representation of acoustic detail will be discussed.

5.2.1 The Representation of Morphological Information

Since the main focus of the current dissertation (the mental representation of acoustic detail) hinges on morphological production and processing, it is necessary to first discuss the mental representation of morphology. Recall from Chapter 1 that there are three main approaches to the representation of morphology: the morphology-process approach, morphology-storage approach, and morphology-generalization approach. Each of these approaches makes different predictions about the relationship between morphological information and the mental lexicon. These predictions are evaluated here in the context of the results of Studies 2 and 3 presented in this chapter.

The morphology-process approach states that morphological information is stored and accessed independently of both lexical representation and the acoustic signal, but connects the two (Taft and Forster, 1975; Marsden-Wilson, 1994a&b; Levelt et al., 1999; Cohen-Goldberg, 2013). Because the morphological process encodes morphological information only, this approach would lead one to predict that morphology does not play a direct role in the production of acoustic detail. However, Study 2 suggests that there is indeed a direct effect of morphology on the production of acoustic detail.

Moreover, Study 3 finds a direct effect of morphology on the subsequent processing of acoustic detail. Because morphological decoding must first happen to gain access to lexical representations, the morphology-process approach would also predict that lexical recognition entails morphological recognition. Should morphological recognition be difficult to process, lexical recognition will also be difficult to process. However, Study 3 shows that lexical processing and morphological processing were affected by different experimental conditions. In light of these production and processing results, this dissertation does not support a morphological-process view of the mental lexicon.

The morphology-storage approach, on the other hand, posits that related words with different morphological forms may be produced with differences in acoustic detail (Manelis and Tharp, 1977; Stemberger and MacWhinney, 1986; Caramazza, 1988). However, these differences in acoustic detail can only be attributed to differences in lexical storage. That is, this approach does not stipulate *patterns* of morphological influence, as morphological information (and, subsequently, its effects) is not inherently generalizable, but an individual property of each mental representation.

The same is true for generalizing morphological patterns in speech recognition. Any differences in processing various morphological forms can only be attributed to accessing the individual lexical representations of those forms since there is no mechanism to account for any overarching morphological association. However, the results of Study 2 and Study 3 do find evidence for such patterns of influence, both in production and processing. Though these patterns are variable in terms of their direction and magnitude of effect, they nevertheless are generalizable across morphological forms. So, the results of this dissertation do not support a morphological-storage approach.

The predictions made by the morphology-generalization approach best capture the results of this dissertation. This approach predicts that morphological information directly affects production and the processing of word meanings (Seidenberg and Gonnerman, 2000; Baayen et al., 2011). Specifically, the connection between acoustic form (input/output, or the speech signal) and the mental lexicon (storage of meanings) depends on learned morphological associations that are specific to each form-meaning connection. These connections will vary - for example, in speech production, morphology may correlate with vowel enhancement for one form-meaning pairing, and vowel reduction for another form-meaning pairing. That is, the individual patterns between morphology and acoustic details may vary between different conditions. But an overall pattern emerges: morphology correlates with acoustic detail. Thus, these learned associations can be generalized into a statistical pattern of morphological influence.

The results of this dissertation are best interpreted using the morphological-generalization approach towards the relationship between morphology and the mental lexicon. By adopting this approach, it is proposed that morphology has a direct and gradient influence both in the representations in the mental lexicon and in the acoustic signal. The Studies in this dissertation were not specifically designed to test such an assumption. The research questions tested and the hypotheses proposed in the Studies were not formulated to specifically test the representation of morphology. However, because the morphological-generalization approach lends itself to a more harmonious interpretation of the results in this dissertation, it is adopted in order to serve as a framework for evaluating the mental representation of acoustic detail.

5.2.2 The Representation of Acoustic Detail

Having adopted a morphological-generalization view of the lexicon, this section turns towards the representation of acoustic detail. It will become apparent that this relationship (i.e., whether acoustic detail resides inside or outside of the lexicon) follows from the morphological-generalization assumption I have just established. In the next section, the results of this dissertation's Studies are briefly discussed in terms of current theories of the mental lexicon.

5.2.2.1 The Representation of Acoustic Detail in Current Theories of the

Mental Lexicon

The representation of acoustic detail can loosely be defined in terms of the speech system level in which it resides: at the top (mental representations), or at the bottom (phonetic implementation). As such, there are two broad views about the status of acoustic detail in the mental lexicon. The first holds that all instances of acoustic detail are stored with lexical representations in the mental lexicon (acoustic-detail-storage accounts). The second holds that abstract phonological forms are extracted from acoustic detail, and these abstract phonological forms are stored in the mental lexicon (acoustic-detail-abstraction accounts).

The results found in the current Studies do not wholly support either the acoustic-detail-storage account or acoustic-detail-abstraction account. This dissertation finds evidence for the acoustic signal to be both directly and variably

influenced by morphology. Neither the acoustic-detail-storage account nor the acoustic-detail-abstraction account is able to account for both direct and variable influences of morphology. Acoustic-detail-storage accounts view acoustic detail in terms of lexical representations. Under an acoustic-detail-storage approach to the mental lexicon, lexical representations are fully specified for their phonological form. For example, the presence of variation in the acoustic details amongst words of different morphological forms is inferred to be the result of a direct property of the particular words, rather than directly effected by a morphological pattern.

A lack of direct morphological influence on the realization of acoustic detail is also indicative of acoustic-detail-abstraction accounts. Unlike acoustic-detail-storage, acoustic-detail-abstraction views acoustic details as noise. Here, the phonological forms of a lexical representation are discrete abstractions stripped of any acoustic variation. It is these phonological abstractions that interface with higher levels of speech processing (such as morphology and lexical representations). Any higher levels in the processing system (such as morphology), then, have no direct influence on the acoustic detail in the speech signal. However, Studies 2 and 3 show that a higher level of processing (morphology) does have a direct influence on the production and processing of the speech signal.

5.2.2.2 Contributions of the Current Dissertation to the Representation of

Acoustic Detail and the Mental Lexicon

Since neither acoustic-detail-storage accounts nor acoustic-detailabstraction accounts can readily accommodate the results presented in this dissertation, an alternative framework for the relationship between acoustic detail and the mental lexicon is proposed. This alternative framework centres on both the adoption of a morphological-generalization approach towards the mental lexicon and the central findings of this dissertation: acoustic detail variably affects both speech production and speech processing. The variable nature of acoustic detail in speech processing entails that acoustic detail (such as vowel duration) acts as a potential cue to aid in encoding and decoding the acoustic signal, though whether acoustic detail serves as a speech processing facilitator is dependent upon task and condition. The adoption of a morphological-generalization approach towards the mental lexicon further entails that the presence of acoustic detail is the result of learned association patterns between the acoustic signal (form) and mental lexicon representations (meaning). According to the results presented in this dissertation, the relationship between the mental lexicon and acoustic detail, then, must be contained in task/condition dependent association patterns.

The linguistic system offers several tools to derive form and meaning from one another. One such tool is the statistically learned pattern between morphology and vowel formants (i.e., the relationship between a linguistic property and a measure of acoustic detail). Another tool is the statistically learned pattern between morphology and vowel dispersion; and yet another tool is the statistically learned pattern between word frequency and vowel duration, and so on. These tools are developed and refined (or learned) as the language user encounters them. A language user can add to his knowledge of, for example, his morphology/vowel dispersion tool by learning that this particular tool is associated with phonetic enhancement for one form/meaning pairing, and phonetic reduction for a different form/meaning pairing. Just as a hammer can have variable uses (it can both drive a nail into a wall and pull it out), so can a morphology/vowel formant tool (it can both enhance and reduce the speech signal). This accounts for the variable nature of relationships between acoustic detail and linguistic parameters. Whereas previous research assumes the relationship between acoustic detail and linguistic parameters is ubiquitous (Aylett and Turk, 2004, 2006), Study 2 of this dissertation finds that this effect is less severe.

The tool analogy can also account for the variable role acoustic detail places in speech processing. Whereas previous studies assume linguistic property/acoustic detail relationships necessarily affect speech processing (Lindblom, 1990), Study 3 of this dissertation finds that this effect is dependent on task and condition. A particular linguistic tool is used only when the task and condition at hand call for its use. Just as a hammer would not be used in tightening a screw, a morphology/vowel duration tool would not be used in recognizing morphological information when the diphone/paradigmatic association strength tool is more informative. That is to say, some tools are not associated with some tasks and conditions.

This dissertation accounts for the variable nature of morphological influence on acoustic detail in speech production and processing by viewing the morphology/acoustic detail relationship as a potential tool at speakers' and listeners' disposal. The relationship between acoustic detail and the mental lexicon lies in statistical associations with linguistic properties between speech signal forms and mental representation meanings. In this way, production and processing are weakly linked. The acoustic detail tool is available for production and processing (i.e., they are linked), but the tool need not be used all the time (i.e., the link is weak). When a particular measure of acoustic detail will be used as a tool is determined by the statistical learning of associations between production and processing. This conclusion is drawn based on the assumption that morphology has a direct and variable influence on the processing of acoustic detail, which is not assumable under several theories of representations in the mental lexicon.

Thus, the role of acoustic detail in the mental lexicon is to serve as a tool in forming statistically learned associations between speech production and speech processing. The use of the information provided by acoustic details is dependent upon one's learned associations between form and meaning, which can capture (amongst other things) linguistic task and condition.

5.3 Future Research

This dissertation offers several proposals for pursuing further research in the processing of acoustic detail. In addition to the directions of future research offered in Chapters 2, 3, and 4 for the individual Studies, a few broader areas of possible work are outlined here:

• Performing experimentation in both speech production and speech recognition in tandem to gain a broader picture of how the two are linked: It would be of interest to extend the Studies contained in this dissertation to other measures of acoustic detail and linguistic properties. Replication of the variable findings seen in this dissertation would provide more evidence for the mental representation of acoustic detail.

• Testing for the explicit knowledge of these linguistic properties/acoustic detail relationships in order to study the status of the relationships in the mental lexicon: For example, if it is found that people do have explicit knowledge of these relationships, it would suggest that they are stored within the mental lexicon.

• Conducting more ecologically valid experiments on spontaneous speech: This dissertation finds that task and condition play a role in speech recognition (see also Ernestus et al., 2002). If the goal of research on acoustic detail is to understand how humans process speech on an everyday basis, then tasks and conditions related to the everyday use of language should be examined. This extends to the use of more ecologically valid speech corpora, such as databases of spontaneous speech.

• Embracing the acoustically variable nature of the speech signal and the variability with which it is used in speech processing: The use of less ecologically valid experimental designs often comes from the need to impose control over an inherently variable phenomenon. This imposition of control, however, leads to oversimplified generalizations about the speech system. With the development of new statistical techniques and quantitative theories of linguistics, there is a growing possibility of gleaning meaningful inferences over inherently variable phenomena.

205

Overall, these areas of further exploration will bring linguistic research closer to a better understanding of the role of acoustic detail and its implications for theories of speech production and processing.

5.4 Concluding Remarks

This dissertation studied the production of acoustic detail, the influence of morphology on acoustic variation in speech production, and the consequences of that influence on speech processing. The three Studies presented in this dissertation find evidence for 1) patterns of formant movement in spontaneous speech, 2) variable morphological influence of those patterns in speech production, and 3) morphological and vowel duration facilitation effects in speech processing. These results are interpreted under the assumption that the relationship between morphology and the mental lexicon is contained in associations, or connections, between the speech signal and mentally stored meanings. While adopting this view of the speech system, this dissertation contributes a new framework for evaluating the relationship between the mental lexicon and acoustic detail. This framework stipulates that different correlations between acoustic detail and linguistic properties, as contained in associations between form/meaning, provide different tools that are available to the language user for both encoding and decoding the speech signal. As a tool in the speech system, acoustic detail can play many roles in speech production and speech processing. Ultimately, understanding the uses of acoustic detail will lead to a better understanding of the human capacity for speech.

5.5 References

Aylett, M., & Turk, A. (2004). The Smooth Signal Redundancy Hypothesis: A Functional Explanation for Relationships between Redundancy, Prosodic Prominence, and Duration in Spontaneous Speech. *Language and Speech*, *47*(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058.

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, *118*(3), 438.

Caramazza, A., Laudanna, A., & Romani, C. (1988). Lexical access and inflectional morphology. *Cognition*, *28*(3), 297–332.

Cohen-Goldberg, A. M. (2013). Towards a theory of multimorphemic word production: The heterogeneity of processing hypothesis. *Language and Cognitive Processes*, *28*(7), 1036–1064.

Ernestus, M., Baayen, H., & Schreuder, R. (2002). The recognition of reduced word forms. *Brain and Language*, *81*(1-3), 162–173.

Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, H. (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds. *The Journal of the Acoustical Society of America*, *121*(4), 2261– 2271.

Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. *Behavioral and Brain Sciences*, *22*(01), 1–38.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Manelis, L., & Tharp, D. A. (1977). The processing of affixed words. *Memory & Cognition*, *5*(6), 690–695.

Marslen-Wilson, W., Tyler, L. K., Waksler, R., & Older, L. (1994). Morphology and meaning in the English mental lexicon. *Psychological Review*, *101*(1), 3.

Marslen-Wilson, W., & Warren, P. (1994). Levels of perceptual representation and process in lexical access: Words, phonemes, and features. *Psychological Review*, *101*(4), 653–675.

Morrison, G. S. (2013). Theories of vowel inherent spectral change. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 31–47). Springer.

Morrison, G. S., & Nearey, T. M. (2007). Testing theories of vowel inherent spectral change. *The Journal of the Acoustical Society of America*, *122*(1), EL15–EL22.

Nearey, T. M. (1989). Static, dynamic, and relational properties in vowel perception. *Journal of the Acoustical Society of America*, *85*(5), 2088–113.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., &
Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (Version 2nd Release). Columbus, OH: Department of Psychology, Ohio State University (Distributor). Retrieved from www.buckeyecorpus.osu.edu

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. *Trends in Cognitive Sciences*, *4*(9), 353–361.

Stemberger, J. P., & MacWhinney, B. (1986). Frequency and the lexical storage of regularly inflected forms. *Memory & Cognition*, *14*(1), 17–26.

Strange, W. (1989). Evolving theories of vowel perception. *The Journal of the Acoustical Society of America*, 85(5), 2081–2087.

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. *Journal of Verbal Learning and Verbal Behavior*, *14*(6), 638–647.

Tucker, B. V., Sims, M., & Baayen, R. H. (in preparation). Modeling duration of monosyllabic verbs.

Wright, R. (1997). Lexical competition and reduction in speech: A preliminary report. *Research on Spoken Language Processing Progress Report*, *20*, 321–333.

Wright, R. (2004). Factors of lexical competition in vowel articulation. *Phonetic Interpretation: Papers in Laboratory Phonology VI*, 26–50.

Bibliography

Andruski, J. E., & Nearey, T. M. (1992). On the sufficiency of compound target specification of isolated vowels and vowels in /bVb/ syllables. *The Journal of the Acoustical Society of America*, *91*(1), 390–410.

Assmann, P. F., & Katz, W. F. (2000). Time-varying spectral change in the vowels of children and adults. *The Journal of the Acoustical Society of America*, *108*(4), 1856–1866.

Assmann, P. F., & Katz, W. F. (2004). Synthesis fidelity and time-varying spectral change in vowels. *The Journal of the Acoustical Society of America*, *117*(2), 886–895.

Assmann, P. F., Nearey, T. M., & Hogan, J. T. (1982). Vowel identification: Orthographic, perceptual, and acoustic aspects. *The Journal of the Acoustical Society of America*, *71*(4), 975–989.

Aylett, M., & Turk, A. (2004). The Smooth Signal Redundancy Hypothesis: A
Functional Explanation for Relationships between Redundancy, Prosodic
Prominence, and Duration in Spontaneous Speech. *Language and Speech*, 47(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts syllabic duration and the spectral characteristics of vocalic syllable nuclei. *The Journal of the Acoustical Society of America*, *119*(5), 3048–3058. Baayen, H. (2013). *languageR: Data sets and functions with "Analyzing Linguistic Data: A practical introduction to statistics."* Retrieved from http://CRAN.R-project.org/package=languageR

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, *59*(4), 390–412.

Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual-route model. *Journal of Memory and Language*, *37*(1), 94–117.

Baayen, R. H., McQueen, J. M., Dijkstra, T., & Schreuder, R. (2003). Frequency effects in regular inflectional morphology: Revisiting Dutch plurals.*Morphological Structure in Language Processing*, *151*, 355–390.

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, *118*(3), 438.

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). *The CELEX Lexical Database*. Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania.

Baayen, R. H., Shaoul, C., Willits, J., & Ramscar, M. (in press). Comprehension without segmentation: A proof of concept with naive discrimination learning. *Language, Cognition, and Neuroscience*.

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., ... Treiman, R. (2007). The English lexicon project. *Behavior Research Methods*, *39*(3), 445–459.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). *lme4: Linear mixed-effects models using Eigen and S4*. Retrieved from http://CRAN.R-project.org/package=lme4

Bell, A., Brenier, J. M., Gregory, M., Girand, C., & Jurafsky, D. (2009).Predictability effects on durations of content and function words in conversationalEnglish. *Journal of Memory and Language*, 60(1), 92.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., & Gildea, D. (2003). Effects of disfluencies, predictability, and utterance position on word form variation in English conversation. *The Journal of the Acoustical Society of America*, *113*(2), 1001–1024.

Bradlow, A. R., Torretta, G. M., & Pisoni, D. B. (1996). Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics. *Speech Communication*, *20*(3), 255–272.

Broad, D. J., & Clermont, F. (1987). A methodology for modeling vowel formant contours in CVC context. *The Journal of the Acoustical Society of America*, *81*(1), 155–165.

Broad, D. J., & Clermont, F. (2014). A method for analyzing the coarticulated CV and VC components of vowel-formant trajectories in CVC syllables. *Journal of Phonetics*, *47*, 47–80.

Brouwer, S. (2010). *Processing strongly reduced forms in casual speech*. Radboud University Nijmegen Nijmegen.

Bybee, J. L., & Slobin, D. I. (1982). Rules and schemas in the development and use of the English past tense. *Language*, *58*(2), 265–289.

Caramazza, A., Laudanna, A., & Romani, C. (1988). Lexical access and inflectional morphology. *Cognition*, *28*(3), 297–332.

Cohen, C. (2014). Probabilistic reduction and probabilistic enhancement. *Morphology*, *24*(4), 291–323.

Cohen-Goldberg, A. M. (2013). Towards a theory of multimorphemic word production: The heterogeneity of processing hypothesis. *Language and Cognitive Processes*, *28*(7), 1036–1064.

Connine, C. M. (1987). Constraints on interactive processes in auditory word recognition: The role of sentence context. *Journal of Memory and Language*, *26*(5), 527–538.

Connine, C. M. (2004). It's not what you hear but how often you hear it: On the neglected role of phonological variant frequency in auditory word recognition. *Psychonomic Bulletin & Review*, *11*(6), 1084–1089.

Connine, C. M., Mullennix, J., Shernoff, E., & Yelen, J. (1990). Word familiarity and frequency in visual and auditory word recognition. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 16*(6), 1084.

Connine, C. M., Ranbom, L. J., & Patterson, D. J. (2008). Processing variant forms in spoken word recognition: The role of variant frequency. *Attention, Perception, & Psychophysics*, *70*(3), 403–411.

Connine, C. M., Titone, D., & Wang, J. (1993). Auditory word recognition: extrinsic and intrinsic effects of word frequency. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*(1), 81.

Cutler, A. (1998). The Recognition of Spoken Words With Variable Representations. *Sound Patterns of Spontaneous Speech*, 83–92.

Danks, D. (2003). Equilibria of the Rescorla–Wagner model. *Journal of Mathematical Psychology*, 47(2), 109–121.

Dell, G. S., Burger, L. K., & Svec, W. R. (1997). Language production and serial order: A functional analysis and a model. *Psychological Review*, *104*(1), 123.

Dilts, P. (2013). *Modelling phonetic reduction in a corpus of spoken English using Random Forests and Mixed-Effects Regression*. University of Alberta, Edmonton, Canada. Retrieved from ERA: Education & Research Archive.

Dilts, P., Baayen, R. H., & Tucker, B. V. (2011). *Word duration and segment deletion as measures of reduction in a corpus of spontaneous speech*. Presented at the 161st Meeting of the Acoustical Society of America, Seattle, WA.

Ernestus, M., Baayen, H., & Schreuder, R. (2002). The recognition of reduced word forms. *Brain and Language*, *81*(1-3), 162–173.

Ernestus, M., & Baayen, R. H. (2007). The comprehension of acoustically reduced morphologically complex words: The roes of deletion, duration, and frequency of occurrence. *Proceedings of the 16th International Congress of Phonetic Sciences*, (August 2007, Saarbruecken, Germany), 773–776.

Ernestus, M., & Warner, N. (2011). An introduction to reduced pronunciation variants. *Journal of Phonetics*, *39*(3), 253–260.

Flemming, E. (2010). Modeling listeners: Comments on Pluymaekers et al. and Scarborough. *Laboratory Phonology*, *10*, 587–606.

Gahl, S. (2008). Time and Thyme Are not Homophones: The Effect of Lemma Frequency on Word Durations in Spontaneous Speech. *Language*, *84*(3), 474–496.

Gahl, S. (2012). Phonetic Reduction in the" Easy/Hard" Database without" Difficulty." UC Berkeley Phonology Lab Annual Reports, 2012.

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. *Journal of Memory and Language*, *66*(4), 789–806.

Gaskell, M. G., & Marslen-Wilson, W. D. (1996). Phonological variation and inference in lexical access. *Journal of Experimental Psychology: Human Perception and Performance*, *22*(1), 144.

Gaskell, M. G., & Marslen-Wilson, W. D. (1998). Mechanisms of phonological inference in speech perception. *Journal of Experimental Psychology: Human Perception and Performance*, *24*(2), 380.

Goldinger, S. D. (1996). Words and voices: episodic traces in spoken word identification and recognition memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 22*(5), 1166.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. *Psychological Review*, *105*(2), 251.

Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming lexical neighbors of spoken words: Effects of competition and inhibition. *Journal of Memory and Language*, *28*(5), 501–518.

Greenberg, S. (1999). Speaking in shorthand–A syllable-centric perspective for understanding pronunciation variation. *Speech Communication*, *29*(2), 159–176.

Guy, G. R. (1991). Contextual conditioning in variable lexical phonology. *Language Variation and Change*, *3*(02), 223–239.

Hanique, I., Aalders, E., & Ernestus, M. (2013). How robust are exemplar effects in word comprehension? *The Mental Lexicon*, 8(3), 269–294.

Hanique, I., & Ernestus, M. (2011). Final/t/Reduction in Dutch Past-Participles: The Role of Word Predictability and Morphological Decomposability. In *12th Annual Conference of the International Speech Communication Association* (Interspeech 2011) (pp. 2849–2852).

Hanique, I., & Ernestus, M. (2012). The role of morphology in acoustic reduction. *Lingue E Linguaggio*, *11*(2), 147–164.

Hanique, I., Schuppler, B., & Ernestus, M. (2010). Morphological and predictability effects on schwa reduction: The case of Dutch word-initial syllables. In *11th Annual Conference of the International Speech Communication Association (Interspeech 2010)*, (pp. 933–936).

Hillenbrand, J., Clark, M., & Nearey, T. (2001). Effects of consonant environment on vowel formant patterns. *Journal of the Acoustical Society of America*, *109*(2), 748–763.

Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. *The Journal of the Acoustical Society of America*, 97(5), 3099–3111. http://doi.org/10.1121/1.411872

Hillenbrand, J. M. (2013). Static and dynamic approaches to vowel perception. InG. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 9–30). Springer.

Hillenbrand, J. M., Clark, M. J., & Houde, R. A. (2000). Some effects of duration on vowel recognition. *The Journal of the Acoustical Society of America*, *108*(6), 3013–3022.

Hillenbrand, J. M., & Houde, R. A. (2003). A narrow band pattern-matching model of vowel perception. *The Journal of the Acoustical Society of America*, *113*(2), 1044–1055.

Hillenbrand, J. M., & Nearey, T. M. (1999). Identification of resynthesized /hVd/ utterances: Effects of formant contour. *The Journal of the Acoustical Society of America*, *105*(6), 3509–3523. http://doi.org/10.1121/1.424676

Hilpert, M. (2008). New evidence against the modularity of grammar:Constructions, collocations, and speech perception. *Cognitive Linguistics*, *19*(3), 491–511.

Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. *Cognitive Psychology*, *61*(1), 23–62.

Jenkins, J. J., Strange, W., & Trent, S. A. (1999). Context-independent dynamic information for the perception of coarticulated vowels. *The Journal of the Acoustical Society of America*, *106*(1), 438–448.

Johnson, K. (2004). Massive reduction in conversational American English. Spontaneous Speech: Data and Analysis. Proceedings of the 1st Session of the 10th International Symposium, 29–54.

Johnson, K. (2006). Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. *Journal of Phonetics*, *34*(4), 485–499.

Jurafsky, D., Bell, A., Fosler-Lussier, E., Girand, C., & Raymond, W. (1998). Reduction of English function words in Switchboard (pp. 1–4). Presented at the Fifth International Conference on Spoken Language Processing.

Jurafsky, D., Bell, A., Gregory, M., & Raymond, W. D. (2001). Probabilistic relations between words: Evidence from reduction in lexical production. *Frequency and the Emergence of Linguistic Structure*, *45*, 229–254.

Kemps, R., Ernestus, M., Schreuder, R., & Baayen, H. (2004). Processing reduced word forms: The suffix restoration effect. *Brain and Language*, *90*(1-3), 117–127.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. *Behavior Research Methods*, *42*(3), 627–633.

Klatt, D. H. (1976). Linguistic uses of segmental duration in English: Acoustic and perceptual evidence. *The Journal of the Acoustical Society of America*, *59*(5), 1208–1221.

Klatt, D. H. (1979). Speech perception: A model of acoustic-phonetic analysis and lexical access. *Journal of Phonetics*, 7(312), 1–26.

Kryuchkova, T., Tucker, B. V., Wurm, L. H., & Baayen, R. H. (2012). Danger and usefulness are detected early in auditory lexical processing: Evidence from electroencephalography. *Brain and Language*, 81–91. Kuhl, P. K. (1991). Human adults and human infants show a "perceptual magnet effect" for the prototypes of speech categories, monkeys do not. *Perception & Psychophysics*, *50*(2), 93–107.

Kuperman, V., & Bresnan, J. (2012). The effects of construction probability on word durations during spontaneous incremental sentence production. *Journal of Memory and Language*, *66*(4), 588–611.

Kuperman, V., Ernestus, M., & Baayen, H. (2008). Frequency distributions of uniphones, diphones, and triphones in spontaneous speech. *The Journal of the Acoustical Society of America*, *124*(6), 3897–3908.

Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, H. (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds. *The Journal of the Acoustical Society of America*, *121*(4), 2261– 2271.

Labov, W. (1972). Sociolinguistic patterns. University of Pennsylvania Press.

Labov, W., Ash, S., & Boberg, C. (2005). *The Atlas of North American English: Phonetics, Phonology and Sound Change*. Walter de Gruyter.

Lahiri, A., & Marslen-Wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. *Cognition*, *38*(3), 245–294.

Landauer, T. K., & Streeter, L. A. (1973). Structural differences between common and rare words: Failure of equivalence assumptions for theories of word recognition. *Journal of Verbal Learning and Verbal Behavior*, *12*(2), 119–131.

Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. *Behavioral and Brain Sciences*, *22*(01), 1–38.

Liberman, A. M. (1984). On finding that speech is special. In *Handbook of Cognitive Neuroscience* (pp. 169–197). Springer.

Liberman, A. M. (1996). Speech: A special code. MIT press.

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the Speech Code. *Psychological Review*, *74*(6), 431–461.

Liberman, A. M., Delattre, P. C., & Cooper, F. S. (1958). Some cues for the distinction between voiced and voiceless stops in initial position. *Language and Speech*, *1*(3), 153–167.

Lieberman, P. (1963). Some effects of semantic and grammatical context on the production and perception of speech. *Language and Speech*, *6*(3), 172–187.

Lindblom, B. (1963). Spectrographic Study of Vowel Reduction. *The Journal of the Acoustical Society of America*, *35*(11), 1773–1781.

Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In W. J. Hardcastle & A. Marchal (Eds.), *Speech Production and Speech Modelling* (Vols. 1–Book, 1–Section, pp. 403–439). The Netherlands: Kluwer Academic.

Lobanov, B. M. (1971). Classification of Russian vowels spoken by different speakers. *The Journal of the Acoustical Society of America*, *49*(2B), 606–608.

Luce, P. A. (1986). Neighborhoods of Words in the Mental Lexicon. Research on Speech Perception. Technical Report No. 6.

Luce, P. A., & Large, N. R. (2001). Phonotactics, density, and entropy in spoken word recognition. *Language and Cognitive Processes*, *16*(5-6), 565–581.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. *Ear and Hearing*, *19*(1), 1.

Manelis, L., & Tharp, D. A. (1977). The processing of affixed words. *Memory & Cognition*, *5*(6), 690–695.

Marslen-Wilson, W., Tyler, L. K., Waksler, R., & Older, L. (1994). Morphology and meaning in the English mental lexicon. *Psychological Review*, *101*(1), 3.

Marslen-Wilson, W., & Warren, P. (1994). Levels of perceptual representation and process in lexical access: Words, phonemes, and features. *Psychological Review*, *101*(4), 653–675.

Mehta, G., & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. *Language and Speech*, *31*(2), 135–156.

Metsala, J. L. (1997). An examination of word frequency and neighborhood density in the development of spoken-word recognition. *Memory & Cognition*, *25*(1), 47–56.

Meunier, F., & Segui, J. (1999). Frequency effects in auditory word recognition: The case of suffixed words. *Journal of Memory and Language*, *41*(3), 327–344.

Mitterer, H., & Ernestus, M. (2006). Listeners recover /t/s that speakers reduce: Evidence from /t/-lenition in Dutch. *Journal of Phonetics*, *34*(1), 73–103.

Moon, S.-J., & Lindblom, B. (1994). Interaction between duration, context, and speaking style in English stressed vowels. *The Journal of the Acoustical Society of America*, *96*(1), 40–55.

Morrison, G. S. (2013). Theories of vowel inherent spectral change. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 31–47). Springer.

Morrison, G. S., & Assmann, P. F. (2013). *Vowel Inherent Spectral Change*. Springer Science & Business Media.

Morrison, G. S., & Nearey, T. M. (2007). Testing theories of vowel inherent spectral change. *The Journal of the Acoustical Society of America*, *122*(1), EL15–EL22.

Morrison, G. S., & Nearey, T. M. (2011). *FormantMeasurer: Software for efficient human-supervised measurement of formant trajectories.*

Munson, B. (2007). Lexical access, lexical representation, and vowel production. *Laboratory Phonology*, *9*, 201–228.

Munson, B., & Solomon, N. P. (2004). The effect of phonological neighborhood density on vowel articulation. *Journal of Speech, Language, and Hearing Research*, *47*(5), 1048–1058.

Nearey, T. M. (1978). Phonetic feature systems for vowels (Vol. 77).

Nearey, T. M. (1989). Static, dynamic, and relational properties in vowel perception. *Journal of the Acoustical Society of America*, *85*(5), 2088–113.

Nearey, T. M. (2010). A new non-linear regression model for formant trajectories in English monosyllables incorporating dual targets for vowels. *The Journal of the Acoustical Society of America*, *127*, 2020.

Nearey, T. M. (2013). Vowel inherent spectral change in the vowels of North American English. In G. S. Morrison & P. F. Assmann (Eds.), *Vowel Inherent Spectral Change* (pp. 49–85). Springer.

Nearey, T. M., & Assmann, P. F. (1986). Modeling the role of inherent spectral change in vowel identification. *The Journal of the Acoustical Society of America*, *80*(5), 1297.

Norris, D., & McQueen, J. M. (2008). Shortlist B: a Bayesian model of continuous speech recognition. *Psychological Review*, *115*(2), 357.

Ohala, J. J., & Eukel, B. W. (1987). Explaining the intrinsic pitch of vowels. In R. Channon & L. Shockey (Eds.), *In honor of Ilse Lehiste* (pp. 207–215).

Parker, E. M., & Diehl, R. L. (1984). Identifying vowels in CVC syllables:
Effects of inserting silence and noise. *Perception & Psychophysics*, *36*(4), 369–380.

Pate, J. K., & Goldwater, S. (2015). Talkers account for listener and channel characteristics to communicate efficiently. *Journal of Memory and Language*, 78, 1–17.

Peterson, G. E., & Barney, H. L. (1952). Control Methods Used in a Study of the Vowels. *The Journal of the Acoustical Society of America*, *24*(2), 175–184.

Pierce, J. R. (2012). *An introduction to information theory: symbols, signals and noise*. Courier Corporation.

Pierrehumbert, J. (2001). *Exemplar dynamics: Word frequency, lenition and contrast. Frequency and the emergence of linguistic structure, ed. by Joan Bybee and Paul Hopper, 137-57.* Amsterdam: John Benjamins.

Pierrehumbert, J. B. (2003). Phonetic diversity, statistical learning, and acquisition of phonology. *Language and Speech*, *46*(2-3), 115–154.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E., &
Fosler-Lussier, E. (2007). Buckeye Corpus of Conversational Speech (Version 2nd Release). Columbus, OH: Department of Psychology, Ohio State University (Distributor). Retrieved from www.buckeyecorpus.osu.edu

Pluymaekers, M., Ernestus, M., & Baayen, R. (2005a). Articulatory planning is continuous and sensitive to informational redundancy. *Phonetica*, *62*(2-4), 146–159.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2005b). Lexical frequency and acoustic reduction in spoken Dutch. *The Journal of the Acoustical Society of America*, *118*(4), 2561–2569.

Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2006). Effects of word frequency on the acoustic durations of affixes (pp. 953–956). Presented at the Ninth International Conference on Spoken Language Processing.

Pollack, I., & Pickett, J. M. (1964). Intelligibility of excerpts from fluent speech: Auditory vs. structural context. *Journal of Verbal Learning and Verbal Behavior*, *3*(1), 79–84.

Porretta, V. J. (2015). *Perception and lexical processing of gradient foreign accentedness*. University of Alberta. Retrieved from ERA: Education & Research Archive.

Potter, R. K., & Steinberg, J. C. (1950). Toward the specification of speech. *The Journal of the Acoustical Society of America*, 22(6), 807–820.

Ranbom, L. J., & Connine, C. M. (2007). Lexical representation of phonological variation in spoken word recognition. *Journal of Memory and Language*, *57*(2), 273–298.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In *Classical conditioning: Current research and theory*.

Ripley, B., Venables, B., Bates, D. M., Hornik, K., & Firth, D. (2014). *Support Functions and Datasets for Venables and Ripley's MASS*. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4/

Samuel, A. G. (1982). Phonetic prototypes. *Perception & Psychophysics*, *31*(4), 307–314.

Scarborough, R. (2004). *Coarticulation and the Structure of the Lexicon*. Retrieved from www.linguistics.ucla.edu/faciliti/research/scarb_diss.pdf

Schreuder, R., & Baayen, R. H. (1997). How complex simplex words can be. *Journal of Memory and Language*, *37*(1), 118–139.

Schuppler, B., Ernestus, M., Scharenborg, O., & Boves, L. (2011). Acoustic reduction in conversational Dutch: A quantitative analysis based on automatically generated segmental transcriptions. *Journal of Phonetics*, *39*(1), 96–109.

Schuppler, B., van Dommelen, W. A., Koreman, J., & Ernestus, M. (2012). How linguistic and probabilistic properties of a word affect the realization of its final/t: Studies at the phonemic and sub-phonemic level. *Journal of Phonetics*, *40*(4), 595–607.

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explaining derivational morphology as the convergence of codes. *Trends in Cognitive Sciences*, *4*(9), 353–361.

Shannon, C. E. (1948). A mathematical theory of communication.[New York]: American Telephone and Telegraph Company.

Sims, M., Tucker, B. V., & Baayen, H. (2010). Modulation of phonetic duration by morphological and lexical predictors. *The Journal of the Acoustical Society of America*, *128*, 2457.

Stemberger, J. P. (2004). Neighbourhood effects on error rates in speech production. *Brain and Language*, *90*(1), 413–422.

Stemberger, J. P., & MacWhinney, B. (1986). Frequency and the lexical storage of regularly inflected forms. *Memory & Cognition*, 14(1), 17–26.

Stevens, K. N., & House, A. S. (1963). Perturbation of vowel articulations by consonantal context: An acoustical study. *Journal of Speech and Hearing Research*, *6*(2), 111–128.

Strange, W. (1989). Evolving theories of vowel perception. *The Journal of the Acoustical Society of America*, 85(5), 2081–2087.

Strange, W., & Jenkins, J. J. (2013). Dynamic specification of coarticulated vowels. In *Vowel Inherent Spectral Change* (pp. 87–115). Springer.

Strange, W., Jenkins, J. J., & Johnson, T. L. (1983). Dynamic specification of coarticulated vowels. *The Journal of the Acoustical Society of America*, 74(3), 695–705.

Sumner, M., & Samuel, A. G. (2005). Perception and representation of regular variation: The case of final/t. *Journal of Memory and Language*, *52*(3), 322–338.

Sussman, H. M., McCaffrey, H. A., & Matthews, S. A. (1991). An investigation of locus equations as a source of relational invariance for stop place categorization. *The Journal of the Acoustical Society of America*, *90*(3), 1309–1325.

Taft, M. (1979). Recognition of affixed words and the word frequency effect. *Memory & Cognition*, 7(4), 263–272.

Taft, M., & Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. *Journal of Verbal Learning and Verbal Behavior*, *14*(6), 638–647.

Thomas, E. R. (1989). Vowel changes in Columbus, Ohio. *Journal of English Linguistics*, 22(2), 205–215.

Thyer, N., Hickson, L., & Dodd, B. (2000). The perceptual magnet effect in Australian English vowels. *Perception & Psychophysics*, *62*(1), 1–20.

Tily, H., & Kuperman, V. (2012). Rational phonological lengthening in spoken Dutch. *The Journal of the Acoustical Society of America*, *132*(6), 3935–3940.

Tomaschek, F., Tucker, B. V., Wieling, M., & Baayen, R. H. (2014). Vowel articulation affected by word frequency. *Proc. 10th ISSP*, 429–432.

Tomaschek, F., Wieling, M., Arnold, D., & Baayen, R. H. (2013). Word frequency, vowel length and vowel quality in speech production: an EMA study of the importance of experience. In *INTERSPEECH* (pp. 1302–1306).

Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. *The Journal of the Acoustical Society of America*, *88*(1), 97–100.

Tucker, B. V. (2011). The effect of reduction on the processing of flaps and /g/ in isolated words. *Journal of Phonetics*, *39*(3), 312–318.

Tucker, B. V., Sims, M., & Baayen, R. H. (in preparation). Modeling duration of monosyllabic verbs.

Tucker, B. V., & Warner, N. (2007). Inhibition of processing due to reduction of the American English flap. *Proceedings of the 16th International Congress of Phonetic Sciences, Saarbrücken*, 1949–1952.

Van Bergem, D. (1993). On the perception of acoustic and lexical vowel reduction. In *Eurospeech* (pp. 677–680).

Van de Ven, M. (2011). *The role of acoustic detail and context in the comprehension of reduced pronunciation variants*. Radboud University, Nijmegen, The Netherlands.

Van de Ven, M., Ernestus, M., & Schreuder, R. (2012). Predicting acoustically reduced words in spontaneous speech: The role of semantic/syntactic and acoustic cues in context. *Laboratory Phonology*, *3*(2), 455–481.

Van de Ven, M., Tucker, B., & Ernestus, M. (2011). Semantic context effects in the comprehension of reduced pronunciation variants. *Memory & Cognition*, *39*(7), 1301–1316.

Van de Ven, M., Tucker, B. V., & Ernestus, M. (2009). Semantic context effects in the recognition of acoustically unreduced and reduced words. In *Proceedings of the 10th annual conference of the international speech communication association* (pp. 1867–1870).

Van Rij, J., Hollebrandse, B., & Hendriks, P. (in press). Children's eye gaze reveals their use of discourse context in object pronoun resolution. *Experimental*

Perspectives on Anaphora Resolution. Information Structural Evidence in the Race for Salience.

Van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2015). *itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs*. Retrieved from http://github.com/vr-vr/itsadug

Van Son, R., Bolotova, O., Lennes, M., & Pols, L. C. W. (2004). Frequency effects on vowel reduction in three typologically different languages (Dutch, Finnish, Russian). In *5th Annual Conference of the International Speech Communication Association (Interspeech 2004)* (pp. 1277–1280).

Van Son, R. J. J. H., & Pols, L. C. W. (2003). Information structure and efficiency in speech production. *Proceedings Eurospeech 2003, Geneva*, *1*, 769–772.

Van Son, R., & Pols, L. C. (1990). Formant frequencies of Dutch vowels in a text, read at normal and fast rate. *The Journal of the Acoustical Society of America*, 88(4), 1683–1693.

Van Son, R., & Pols, L. C. W. (1999). An acoustic description of consonant reduction. *Speech Communication*, *28*(2), 125–140.

Van Summers, W. (1987). Effects of stress and final-consonant voicing on vowel production: Articulatory and acoustic analyses. *The Journal of the Acoustical Society of America*, *82*, 847–863.

Vitevitch, M. S., & Luce, P. A. (1998). When words compete: Levels of processing in perception of spoken words. *Psychological Science*, *9*(4), 325–329.

Vitevitch, M. S., Luce, P. A., Pisoni, D. B., & Auer, E. T. (1999). Phonotactics, neighborhood activation, and lexical access for spoken words. *Brain and Language*, *68*(1), 306–311.

Warner, N., Cohn, A., Fougeron, C., & Huffman, M. (2012). Methods for studying spontaneous speech. *Handbook of Laboratory Phonology*, 612–633.

Warner, N., & Tucker, B. V. (2007). Categorical and gradient variability in intervocalic stops. In *Talk given at the annual meeting of the Linguistic Society of America*.

Warner, N., & Tucker, B. V. (2011). Phonetic variability of stops and flaps in spontaneous and careful speech. *The Journal of the Acoustical Society of America*, *130*(3), 1606–1617.

Wood, S. (2016). *Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation*. Retrieved from http://CRAN.Rproject.org/package=mgcv

Wood, S. N. (2006). *General Additive Models*. New York: Chapman & Hall/CRC.

Wright, R. (1997). Lexical competition and reduction in speech: A preliminary report. *Research on Spoken Language Processing Progress Report*, *20*, 321–333.

Wright, R. (2004). Factors of lexical competition in vowel articulation. *Phonetic Interpretation: Papers in Laboratory Phonology VI*, 26–50.

Yao, Y. (2011). *The effects of phonological neighborhoods on pronunciation variation in conversational speech*. University of California, Berkley. Retrieved from eScholarship.

Zahorian, S. A., & Jagharghi, A. J. (1993). Spectral-shape features versus formants as acoustic correlates for vowels. *The Journal of the Acoustical Society of America*, *94*(4), 1966–1982.

Zwicker, E., & Terhardt, E. (1980). Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. *The Journal of the Acoustical Society of America*, 68(5), 1523–1525.

Appendix

A.1 Supplementary Information for Chapter 2

Table A.1: Information about the voicing of the surrounding phonetic context and gender.

Vowel	Voicing	Sex	Frequency in Previous Segment	Frequency in Following Segmen
	voiced	female	1995	1547
	voiced	male	2464	1827
a	voiceless	female	112	553
	voiceless	male	Previous Segment Followi male 1995 ale 1995 ale 126 ale 126 ale 133 ale 77 ale 1726 ale 177 ale 119 ale 119 ale 1267 ale 917 ale 917	749
	voiced	female	133	182
	voiced	male	77	189
æ	voiceless	female	49	0
	voiceless	male	119	7
	voiced	female	700	1442
	voiced	male	1267	1869
Λ	voiceless	female	917	147
	voiceless	male	1106	371
	voiced	female	63	217
	voiced	male	91	322
э	voiceless	female 224	224	56
	voiceless	male	301	35
		female	1743	1267
	voiced	male	1414	1120
3		female	98	567
	voiceless	male	154	448
	voiced	female	3136	2352
		male	3899	2870
I		female	511	1295
	voiceless	male	581	1596
	voiced	female	504	1666
	voiced	male	350	1610
i		female	1869	504
	voiceless	male	1967	462
	voiced	female	5327	3710
	voiced	male	6139	4403
0		female	91	686
	voiceless	male	84	658
		female	14	49
	voiced	male	21	49
U		female	420	385
	voiceless	male	413	378
		female	567	539
	voiced	male	672	658
u		female	126	84
	voiceless	male	161	140

			nales	Males		
Vowel	Place	Frequency in Previous Segment	Frequency in Following Segment	Frequency in Previous Segment	Frequency in Following Segment	
	alveolar	35	1127	35	1645	
	consonant	0	7	0	14	
	dental	0	0	0	7	
	diphthong	0	7	28	35	
	glottal	0	777	0	630	
a	labial	7	91	0	70	
a	labio-dental	14	0	35	14	
	lax	0	77	0	133	
	palatal	2023	14	2436	28	
	palato-alveolar	21	0	49	0	
	rhotic	0	0	0	0	
	tense	7	0	7	0	
	alveolar	126	140	126	91	
	consonant	0	0	0	0	
	dental	0	0	0	0	
	diphthong	0	0	0	0	
	glottal	21	14	49	14	
~	labial	0	0	0	0	
æ	labio-dental	14	0	0	7	
	lax	0	0	0	0	
	palatal	21	28	21	77	
	palato-alveolar	0	0	0	0	
	rhotic	0	0	0	7	
	tense	0	0	0	0	
	alveolar	581	343	1036	385	
	consonant	0	0	0	7	
	dental	0	56	7	63	
	diphthong	0	14	35	49	
	glottal	7	77	35	245	
	labial	56	889	42	973	
Λ	labio-dental	0	0	14	21	
	lax	14	154	28	259	
	palatal	959	49	1169	182	
	palato-alveolar	0	0	0	35	
	rhotic	0	0	7	0	
	tense	0	7	0	21	
	alveolar	196	119	336	98	
	consonant	0	0	0	7	
	dental	0	56	0	49	
	diphthong	0	0	0	0	
	glottal	14	49	0	7	
	labial	21	14	21	21	
э	labio-dental	49	0	35	0	
	lax	0	35	0	154	
	palatal	7	0	0	7	

Table A.2: Information about the place of articulation in the surrounding phonetic context and gender.

	palato-alveolar	0	0	0	0
	rhotic	0	0	0	0
	tense	0	0	0	14
	alveolar	210	1288	147	1036
	consonant	0	7	0	7
	dental	0	28	0	14
	diphthong	0	7	0	28
	glottal	21	455	28	301
	labial	385	21	266	77
3	labio-dental	28	7	21	7
	lax	14	14	7	77
	palatal	1183	7	1092	21
	palato-alveolar	0	0	0	0
	rhotic	0	0	0	0
	tense	0	0	7	0
	alveolar	532	2268	567	2702
	consonant	0	7	0	2702
	dental	0	35	0	56
	diphthong	0	21	0	21
	glottal	7	672	14	658
	labial	0	42	35	182
I	labio-dental	0	406	7	567
	lax	21	91	14	98
	palatal	3059	98	3801	140
	palato-alveolar	7	0	21	140
	rhotic	0	0	0	7
	tense	21	7	21	0
	alveolar	2051	609	2044	504
		14	14	0	7
	consonant dental	0	371	0	252
			42		42
	diphthong	28	126	0	42
	glottal				
i	labial	140	308	182	273
	labio-dental	35	28	21	42
	lax	49	469	28	567
	palatal	0	126	35	182
	palato-alveolar	0	21	7	21
	rhotic	14	21	0	21
	tense	42	35	0	42
	alveolar	5285	273	5747	546
	consonant	0	28	0	42
	dental	14	595	0	700
	diphthong	14	483	28	259
	glottal	35	273	70	252
0	labial	14	1281	14	1428
	labio-dental	0	126	0	84
	lax	21	1001	224	1295
	palatal	7	189	112	294

	palato-alveolar	28	70	0	35
	rhotic	0	7	0	14
	tense	0	70	28	112
	alveolar	420	0	427	0
	consonant	0	0	0	0
	dental	14	7	0	0
	diphthong	0	0	0	0
	glottal	0	0	0	7
	labial	0	0	0	7
U	labio-dental	0	0	0	0
	lax	0	21	0	21
	palatal	0	406	7	392
	palato-alveolar	0	0	0	0
	rhotic	0	0	0	0
	tense	0	0	0	0
	alveolar	553	140	665	154
	consonant	0	0	0	0
	dental	0	133	14	105
	diphthong	0	35	0	7
	glottal	0	14	7	42
	labial	0	42	0	84
u	labio-dental	0	7	0	14
	lax	0	217	0	350
	palatal	14	7	7	21
	palato-alveolar	126	0	140	7
	rhotic	0	0	0	0
	tense	0	28	0	14

			nales	Males		
Vowel	Manner	Frequency in Previous Segment	Frequency in Following Segment	Frequency in Previous Segment	Frequency in Following Segment	
	affricate	0	0	0	0	
	approximate	7	21	35	21	
	diphthong	0	7	28	35	
	diphthong-nasal	0	0	0	0	
	flap	0	525	0	889	
	fricative	63	0	84	70	
	lax	0	77	0	133	
	lax-nasal	0	0	0	0	
a	nasal	0	56	35	63	
	nonnasal	0	0	0	0	
	rhotic	0	0	0	0	
	rhotic-nasal	0	0	0	0	
	stop	2030	1407	2401	1358	
	syllabic	0	7	0	7	
	tense	7	0	7	0	
	tense-nasal	0	0	0	0	
	affricate	0	0	0	0	
	approximate	112	0	56	0	
	diphthong	0	0	0	0	
	diphthong-nasal	0	0	0	0	
	flap	0	7	0	21	
	fricative	49	0	119	7	
	lax	0	0	0	0	
	lax-nasal	0	0	0	0	
æ	nasal	0	154	0	133	
	nonnasal	0	0	0	0	
	rhotic	0	0	0	7	
	rhotic-nasal	0	0	0	0	
	stop	21	21	21	28	
	syllabic	0	0	0	0	
	tense	0	0	0	0	
	tense-nasal	0	0	0	0	
	affricate	0	0	0	14	
	approximate	322	28	217	98	
	diphthong	0	14	7	49	
	diphthong-nasal	0	0	28	0	
	flap	0	28	7	70	
	fricative	7	133	91	266	
	lax	14	154	21	259	
	lax-nasal	0	0	7	0	
Λ	nasal	287	1141	756	1176	
	nonnasal	0	0	0	0	

Table A.3: Information about the manner of articulation in the surrounding phonetic context and gender.

	rhotic	0	0	7	0
	rhotic-nasal	0	0	0	0
	stop	987	84	1232	287
	syllabic	0	0	0	0
	tense	0	7	0	21
	tense-nasal	0	0	0	0
	affricate	0	0	0	0
	approximate	49	91	70	84
	diphthong	0	0	0	0
	diphthong-nasal	0	0	0	0
	flap	0	14	0	0
	fricative	217	112	294	77
	lax	0	35	0	154
	lax-nasal	0	0	0	0
э	nasal	7	7	21	21
	nonnasal	0	0	0	0
	rhotic	0	0	0	0
	rhotic-nasal	0	0	0	0
	stop	14	14	7	7
	syllabic	0	0	0	0
	tense	0	0	0	14
	tense-nasal	0	0	0	0
	affricate	0	0	0	0
	approximate	259	140	175	112
	diphthong	0	7	0	28
	diphthong-nasal	0	0	0	0
	flap	0	406	0	476
	fricative	70	35	91	63
	lax	14	14	7	77
	lax-nasal	0	0	0	0
3	nasal	322	42	196	112
	nonnasal	0	0	0	0
	rhotic	0	0	0	0
	rhotic-nasal	0	0	0	0
	stop	1176	1190	1092	700
	syllabic	0	0	0	0
	tense	0	0	7	0
	tense-nasal	0	0	0	0
	affricate	7	0	7	14
	approximate	42	14	105	63
	diphthong	0	21	0	21
	diphthong-nasal	0	0	0	0
	flap	7	875	0	1043
	fricative	406	483	511	679
	lax	21	91	14	98

	lax-nasal	0	0	0	0
I	nasal	42	70	7	252
	nonnasal	0	0	0	0
	rhotic	0	0	0	7
	rhotic-nasal	0	0	0	0
	stop	3101	2086	3815	2289
	syllabic	0	0	0	0
	tense	21	7	21	0
	tense-nasal	0	0	0	0
	affricate	0	14	0	7
	approximate	266	224	154	245
	diphthong	28	42	0	42
	diphthong-nasal	0	0	0	0
	flap	0	147	0	98
	fricative	1771	539	1883	483
	lax	49	462	28	560
,	lax-nasal	0	7	0	7
i	nasal	98	98	126	105
	nonnasal	0	0	0	0
	rhotic	14	21	0	21
	rhotic-nasal	0	0	0	0
	stop	105	574	126	455
	syllabic	0	7	0	7
	tense	42	35	0	42
	tense-nasal	0	0	0	0
	affricate	28	28	0	14
	approximate	364	1099	490	1477
	diphthong	0	483	0	259
	diphthong-nasal	14	0	28	0
	flap	7	28	14	56
	fricative	42	1106	70	1155
	lax	14	1001	175	1295
	lax-nasal	7	0	49	0
0	nasal	4914	168	5341	196
	nonnasal	0	0	0	0
	rhotic	0	7	0	14
	rhotic-nasal	0	0	0	0
	stop	28	399	28	483
	syllabic	0	7	0	0
	tense	0	70	28	112
	tense-nasal	0	0	0	0
	affricate	0	0	0	0
	approximate	14	0	21	0
	diphthong	0	0	0	0
	diphthong-nasal	0	0	0	0

	flap	0	0	0	0
	fricative	14	7	7	0
	lax	0	21	0	21
	lax-nasal	0	0	0	0
U	nasal	0	0	0	7
	nonnasal	0	0	0	0
	rhotic	0	0	0	0
	rhotic-nasal	0	0	0	0
	stop	406	406	406	399
	syllabic	0	0	0	0
	tense	0	0	0	0
	tense-nasal	0	0	0	0
	affricate	77	0	56	0
	approximate	147	42	217	63
	diphthong	0	35	0	7
	diphthong-nasal	0	0	0	0
	flap	0	7	0	42
	fricative	49	231	105	217
	lax	0	217	0	350
u	lax-nasal	0	0	0	0
u	nasal	406	7	448	14
	nonnasal	0	0	0	0
	rhotic	0	0	0	0
	rhotic-nasal	0	0	0	0
	stop	14	56	7	91
	syllabic	0	0	0	0
	tense	0	28	0	14
	tense-nasal	0	0	0	0

		Position Relative	Number of	Percent of All
Vowel	Segment	to the Vowel	Tokens	Contexts
/æ/	r	Previous	25	43.1
/ε/	g	Previous	310	59.39
/1/	t	Following	934	72.23
/i/	S	Previous	514	74.49
/o/	n	Previous	1465	87.78

Table A.4: Information about the vowels in the skewed contexts.

			F1			F2	
Sex	Vowel	t	df	р	t	df	р
	/a/	-15.1249	1363.5646	< 0.0001	17.9218	1356.6325	< 0.0001
	/æ/	-0.7109	113.5317	0.4786	-0.7517	113.5557	0.4538
	///	-1.2041	1261.3325	0.2288	5.4779	1257.3996	< 0.0001
ъ.	10/	-2.6044	229.3068	0.0098	2.5839	215.8241	0.0104
combined	/ɛ/	-9.4565	1041.7743	< 0.0001	6.8190	917.8200	< 0.0001
omb	/1/	-13.4831	2587.0081	< 0.0001	14.4922	2466.4822	< 0.0001
ö	/i/	1.3911	1372.9665	0.1644	-8.0704	1377.0482	< 0.0001
	/o/	4.3909	3335.5521	< 0.0001	35.5412	3301.1423	< 0.0001
	/ʊ/	0.5656	242.2468	0.5722	2.5292	255.0060	0.0120
	/u/	-1.6402	452.2902	0.1017	7.6504	451.9113	< 0.0001
	/a/	-15.6961	737.7871	< 0.0001	16.9182	719.4579	< 0.0001
	/æ/	-0.1623	53.2227	0.8717	-0.9411	52.5563	0.3510
	/ʌ/	-1.7817	741.9516	0.0752	5.9019	718.6278	< 0.0001
	/ɔ/	-3.0494	128.5063	0.0028	2.4726	133.5978	0.0147
les	/ε/	-8.1064	460.0874	< 0.0001	5.7659	395.9615	< 0.0001
males	/1/	-11.9196	1427.9808	< 0.0001	12.4234	1294.4411	< 0.0001
	/i/	1.5164	669.0459	0.1299	-7.4411	675.9984	< 0.0001
	/o/	2.8121	1782.9199	0.0050	24.4748	1777.3998	< 0.0001
	/ʊ/	0.1580	105.6833	0.8747	1.8719	129.8401	0.0635
	/u/	-1.3052	251.7107	0.1930	5.1424	251.5022	< 0.0001
	/a/	-12.5623	598.5682	< 0.0001	11.5263	604.9215	< 0.0001
	/æ/	-1.0659	57.3276	0.2910	-0.2328	55.5983	0.8168
	/ <u>/</u> /	-0.0878	518.4669	0.9301	2.5793	516.8187	0.0102
	/5/	-1.3408	87.7809	0.1834	1.4575	77.7007	0.1490
ales	/ɛ/	-7.6961	577.0638	< 0.0001	5.2237	463.4531	< 0.0001
females	/1/	-9.3610	1155.4231	< 0.0001	12.4349	1091.4634	< 0.0001
	/i/	0.7895	698.3772	0.4301	-7.8321	699.2930	< 0.0001
	/o/	4.2203	1544.0125	< 0.0001	32.0401	1546.7384	< 0.0001
	/ʊ/	0.6481	121.3161	0.5181	2.3710	123.9969	0.0193
	/u/	-1.3937	200.0834	0.1650	6.6795	202.4229	< 0.0001

Table A.5: Coefficients for all statistical tests of significant difference (t-tests) in F1 and F2 onsets/offsets.

Table A.6: Coefficients for all linear mixed effects regression models of F1 and F2
onsets/offsets.

E

	/(1/				
		F1			F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercept	568.5194	23.3880	24.3082	1843.4175	37.9573	48.5656
FO	0.2000	0.0300	6.6663	0.5688	0.0505	11.2629
Duration (ms)	0.7586	0.0291	26.0247	-1.0191	0.0491	-20.7561
Sex: male	-157.1596	19.6401	-8.0020	-153.9017	29.5236	-5.2128
Timestep: 30%	43.2662	3.7705	11.4749	-61.7937	6.3532	-9.7264
Timestep: 40%	78.1071	3.7712	20.7116	-113.7056	6.3543	-17.8942
Timestep: 50%	101.8548	3.7727	26.9976	-150.4007	6.3570	-23.6592
Timestep: 60%	111.0000	3.7744	29.4088	-171.3249	6.3597	-26.9391
Timestep: 70%	108.9242	3.7762	28.8447	-182.2139	6.3628	-28.6372
Timestep: 80%	93.6662	3.7784	24.7897	-190.2890	6.3666	-29.8889
Previous Segment Contrasts: ey	30.7883	33.1645	0.9284	29.1911	55.8776	0.5224
Previous Segment Contrasts: f	39.1965	27.5795	1.4212	-370.8950	46.4640	-7.9824
Previous Segment Contrasts: g	-13.3896	16.2310	-0.8249	6.5496	27.3448	0.2395
Previous Segment Contrasts: iy	-32.1599	25.4085	-1.2657	4.8049	42.8075	0.1122
Previous Segment Contrasts: k	-34.5731	18.2804	-1.8913	-81.9778	30.7964	-2.6619
Previous Segment Contrasts: n	183.9396	27.5112	6.6860	-344.5462	46.3514	-7.4334
Previous Segment Contrasts: nx	128.5237	32.3362	3.9746	-363.8400	54.4821	-6.6782
Previous Segment Contrasts: r	24.8999	33.1021	0.7522	-361.8623	55.7702	-6.4885
Previous Segment Contrasts: s	116.1332	25.8244	4.4970	-309.0233	43.5095	-7.1024
Previous Segment Contrasts: sh	-3.7557	17.5188	-0.2144	-163.0616	29.5145	-5.5248
Previous Segment Contrasts: t	85.8289	35.7895	2.3982	-182.6011	60.2940	-3.0285
Previous Segment Contrasts: w	-9.3408	39.8266	-0.2345	-412.5794	67.0819	-6.1504
Previous Segment Contrasts: y	-35.9573	20.5200	-1.7523	-16.3254	34.5723	-0.4722
Following Segment Contrasts: ao	-0.1155	17.3622	-0.0067	4.7775	29.2441	0.1634
Following Segment Contrasts: aw	22.5257	14.8549	1.5164	93.4860	25.0290	3.7351
Following Segment Contrasts: av	-447.2096	40.5833	-11.0195	250.8389	68.3788	3.6684
Following Segment Contrasts: b	-1.4646	12.0036	-0.1220	-14.9282	20.2236	-0.7382
Following Segment Contrasts: d	-13.6109	9.2745	-1.4676	26.0183	15.6255	1.6651
Following Segment Contrasts: dh	28.7510	28.2028	1.0194	228.6744	47.5141	4.8128
Following Segment Contrasts: dx	6.9294	6.6097	1.0484	31.9368	11.1351	2.8681
Following Segment Contrasts: eh	-39.7277	14.9649	-2.6547	62.5852	25.2129	2.4823
Following Segment Contrasts: el	-60.0715	20.0791	-2.9917	-34.8681	33.8297	-1.0307
Following Segment Contrasts: en	56.7764	29.6264	1.9164	51.4899	49.8793	1.0323
Following Segment Contrasts: ey	-67.0985	27.4612	-2.4434	327.6086	46.2701	7.0804
Following Segment Contrasts: f	-90.1033	23.4778	-3.8378	-2.1455	39.5564	-0.0542
Following Segment Contrasts: g	-49.9511	20.3163	-2.4587	-94.7578	34.2298	-2.7683
Following Segment Contrasts: hh	-25.9227	13.9023	-1.8646	105.2761	23.4225	4.4947
Following Segment Contrasts: in	-148.4508	32.5823	-4.5562	-184.8466	54.8991	-3.3670
Following Segment Contrasts: IVER	-121.4508	21.6317	-5.6145	63.3826	36.4451	1.7391
Following Segment Contrasts: IVER	-29.0689	16.9015	-1.7199	130.6500	28.4769	4.5879
	-29.0089	18.1923	-1.6046	-62.9542	30.6518	-2.0538
Following Segment Contrasts: 1	0.0904	11.6662	0.0078	-62.9342	19.6557	-2.0538
Following Segment Contrasts: m	15.7157	22.1482	0.0078	173.8165	37.3158	4.6580
Following Segment Contrasts: n	65.4889	35.6603	1.8365		60.0772	-0.4382
Following Segment Contrasts: nx				-26.3254		
Following Segment Contrasts: p	-26.5863	12.9731	-2.0493	72.4864	21.8547	3.3167
Following Segment Contrasts: r	-108.5455	34.0370	-3.1890	-86.4537	57.3391	-1.5078
Following Segment Contrasts: t	-1.1009	6.6135	-0.1665	38.5877	11.1420	3.4633
Following Segment Contrasts: tq	18.6093	6.5523	2.8401	5.0072	11.0390	0.4536
Following Segment Contrasts: VOCNOISE	-39.8913	36.6637	-1.0880	186.8704	61.7740	3.0251
Following Segment Contrasts: w	10.2759	20.1005	0.5112	-136.8784	33.8659	-4.0418

/æ/						
	F1 F2					
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercept	525.3463	167.1701	3.1426	1877.3526	217.1793	8.6443
F0	0.8530	0.4232	2.0157	-1.3196	0.6759	-1.9523
Duration (ms)	1.1240	0.2625	4.2824	0.2696	0.4784	0.5635
Sex: male	-93.8224	70.9866	-1.3217	-420.2037	82.7046	-5.0808
Timestep: 30%	13.5775	17.0586	0.7959	-2.6727	32.9606	-0.0811
Timestep: 40%	13.6140	17.0863	0.7968	-12.0993	32.9971	-0.366
Timestep: 50%	15.9969	17.0694	0.9372	-11.8239	32.9748	-0.358
Timestep: 60%	12.5701	17.0856	0.7357	-8.8749	32.9962	-0.269
Timestep: 70%	2.6954	17.0931	0.1577	-10.8411	33.0062	-0.328
Timestep: 80%	-16.0730	17.1088	-0.9395	-5.4507	33.0268	-0.165
Previous Segment Contrasts: g	-208.5747	159.7407	-1.3057	89.9083	180.5293	0.498
Previous Segment Contrasts: hh	-123.3051	183.0491	-0.6736	294.5315	199.9645	1.472
Previous Segment Contrasts: p	-156.7389	114.6341	-1.3673	629.1870	144.5212	4.353
Previous Segment Contrasts: s	-145.9211	147.7434	-0.9877	238.6779	167.6940	1.423
Previous Segment Contrasts: w	-182.9100		-0.9958	425.2221	193.4858	2.197
Following Segment Contrasts: dx	10.9530	36.1462	0.3030	79.7008	66.7516	1.194
Following Segment Contrasts: er	141.0152	162.5880	0.8673	336.3379	180.7438	1.860
Following Segment Contrasts: n	-27.7195	150.4808	-0.1842	172.9992	176.0175	0.982
Following Segment Contrasts: ng	80.0516	107.6528	0.7436	395.8310	122.6223	3.228
Following Segment Contrasts: t	-23.9145	143.2533	-0.1669	0.3702	159.5267	0.002
Following Segment Contrasts: tq	133.3770	89.5006	1.4902	255.6591	110.9942	2.303
						-0.796
	113,9320	36.81671	3.0946	-55.76911	/0.01941	-0.790
Following Segment Contrasts: v	113.9320	36.8167	3.0946	-55.7691	70.0194	-0.790.
		v/	3.0946	-55.7691		-0.790.
	1/	√ F1			F2	
Following Segment Contrasts: v	// Estimate	F1 Std. Error	t	Estimate	F2 Std. Error	t
Following Segment Contrasts: v	Estimate 604.5177	F1 Std. Error 64.8073	t 9.3279	Estimate 1560.7658	F2 Std. Error 98.3503	t 15.869
Following Segment Contrasts: v Intercept F0	Estimate 604.5177 0.1159	F1 Std. Error 64.8073 0.0497	t 9.3279 2.3314	Estimate 1560.7658 0.0583	F2 Std. Error 98.3503 0.0768	t 15.869 0.758
Following Segment Contrasts: v Intercept F0 Duration (ms)	Estimate 604.5177 0.1159 0.5740	F1 Std. Error 64.8073 0.0497 0.0520	<i>t</i> 9.3279 2.3314 11.0476	Estimate 1560.7658 0.0583 -0.1080	F2 Std. Error 98.3503 0.0768 0.0805	t 15.869 0.758 -1.340
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male	Estimate 604.5177 0.1159 0.5740 -118.6069	F1 Std. Error 64.8073 0.0497 0.0520 30.0341	t 9.3279 2.3314 11.0476 -3.9491	Estimate 1560.7658 0.0583 -0.1080 -212.9720	F2 Std. Error 98.3503 0.0768 0.0805 36.4333	t 15.869 0.758 -1.340 -5.845
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393	t 9.3279 2.3314 11.0476 -3.9491 1.8112	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361	t 15.869 0.758 -1.340 -5.845 -1.481
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393	<i>t</i> 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3493 6.3401 6.3414 6.3426 6.3441 6.3460	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8453	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80%	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434	<i>t</i> 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326	Estimate 1560.7658 0.0583 -0.1080 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8373 9.8373 9.8393 9.8411 9.8434 9.8453 106.8476 83.2358	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: b	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186	Estimate 1560.7658 0.0583 -0.1080 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8434 9.8463 106.8476	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: b	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326	Estimate 1560.7658 0.0583 -0.1080 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8373 9.8373 9.8393 9.8411 9.8434 9.8453 106.8476 83.2358	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: b Previous Segment Contrasts: d Previous Segment Contrasts: d	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8373 9.8393 9.8411 9.8434 9.8453 106.8476 83.2358 97.6871	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: b Previous Segment Contrasts: d	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8373 9.8393 9.8411 9.8434 9.8453 106.8476 83.2358 97.6871 102.7892	t 15.8692 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863 -1.034
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 70% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: d	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3426 6.3441 6.3460 68.8861 63.869 62.9744 66.2578 68.0101	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8433 106.8476 83.2358 97.6871 102.7892 105.4968	t 15.869: 0.758: -1.340 -5.845: -1.481 -3.227: -5.086 -6.709 -7.934: -9.294: 1.1869 0.305; 0.3799 -0.863 -1.034 1.024
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: er Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: g	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3426 6.3441 6.3426 6.3441 6.3426 6.3441 6.3450 6.3461 6.3460 8.8861 53.6799 62.9744 66.2578 68.0101 57.3107	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8433 106.8476 08.32358 97.6871 102.7892 105.4968 88.8975	t 15.869. 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863 -1.034 1.024 4.071
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: er Previous Segment Contrasts: f	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486 138.2840	F1 Std. Error 64.8073 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578 68.0101 57.3107 51.5265	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201 2.6837	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669 325.4373	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8463 106.8476 83.2358 97.6871 102.7892 105.4968 88.8975 79.9265	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863 -1.034 1.024
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: f Previous Segment Contrasts: h	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486 138.2840 247.6430	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578 68.0101 57.3107 51.5265 54.6139	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201 2.6837 4.5344	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669 325.4373 215.5596	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8463 106.8476 83.2358 97.6871 102.7892 105.4968 88.8975 79.9265 84.7158	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863 -1.034 1.024 4.071 2.544 2.953
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: h Pr	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486 138.2840 247.6430 -118.6133	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578 68.0101 57.3107 51.5265 54.6139 65.8679	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201 2.6837 4.5344 -1.8008	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669 325.4373 215.5596 301.7988	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8463 106.8476 83.2358 97.6871 102.7892 105.4968 888.8975 79.9265 84.7158 102.1721	t 15.869 0.758 -1.340 -5.845 -1.481 -3.227 -5.086 -6.709 -7.934 -9.294 1.186 0.305 0.379 -0.863 -1.034 1.024 4.071 2.544 2.953 0.539
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: h Pr	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486 138.2840 247.6430 -118.6133 199.1288 21.3796	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578 68.0101 57.3107 51.5265 54.6139 65.8679 54.3206	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201 2.6837 4.5344 -1.8008 3.6658	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669 325.4373 215.5596 301.7988 45.4919	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8434 106.8476 83.2358 97.6871 102.7892 105.4968 88.8975 79.9265 84.7158 102.1721 84.2541 92.7522	t 15.8699 0.758 -1.3400 -5.8455 -1.4811 -3.227 -5.086 -6.7094 -7.934 -9.294 1.1866 0.3055 0.3799 -0.863 -1.034 1.024 4.071 2.544 2.9533 0.5399 -2.383
Following Segment Contrasts: v Intercept F0 Duration (ms) Sex: male Timestep: 30% Timestep: 40% Timestep: 50% Timestep: 60% Timestep: 70% Timestep: 80% Previous Segment Contrasts: ahn Previous Segment Contrasts: d Previous Segment Contrasts: d Previous Segment Contrasts: r Previous Segment Contrasts: f Previous Segment Contrasts: f Previous Segment Contrasts: h Pr	// Estimate 604.5177 0.1159 0.5740 -118.6069 11.4820 19.4951 20.7201 18.6690 12.0765 0.5265 145.9425 55.4316 171.7044 125.7795 178.8512 184.5486 138.2840 247.6430 -118.6133 199.1288	F1 Std. Error 64.8073 0.0497 0.0520 30.0341 6.3393 6.3401 6.3414 6.3426 6.3441 6.3426 6.3441 6.3460 68.8861 53.6799 62.9744 66.2578 68.0101 57.3107 51.5265 54.6139 65.8679 54.3206 59.7944	t 9.3279 2.3314 11.0476 -3.9491 1.8112 3.0749 3.2674 2.9434 1.9036 0.0830 2.1186 1.0326 2.7266 1.8983 2.6298 3.2201 2.6837 4.5344 -1.8008 3.6658 0.3576	Estimate 1560.7658 0.0583 -0.1080 -212.9720 -14.5754 -31.7497 -50.0496 -66.0315 -78.1025 -91.5144 126.8153 25.4141 37.0993 -88.7145 -109.1239 91.0669 325.4373 215.5596 301.7988 45.4919 -221.1071	F2 Std. Error 98.3503 0.0768 0.0805 36.4333 9.8361 9.8373 9.8393 9.8411 9.8434 9.8463 106.8476 83.2358 97.6871 102.7892 105.4968 88.8975 79.9265 84.7158 102.1721 84.2541	

Previous Segment Contrasts: own	92.7081	53.2292	1.7417	39.0124	82.5670	0.4725
Previous Segment Contrasts: r	162.5571	51.2397	3.1725	13.0617	79.4843	0.1643
Previous Segment Contrasts: s	183.8916	53.6902	3.4250	41.0526	83.2838	0.4929
Previous Segment Contrasts: t	80.0432	55.3879	1.4451	362.0751	85.9194	4.2141
Previous Segment Contrasts: th	246.2399	72.7571	3.3844	201.1255	112.8462	1.7823
Previous Segment Contrasts: w	154.3803	52.4099	2.9456	-186.9536	81.2980	-2.2996
Previous Segment Contrasts: y	130.4108	54.8270	2.3786	459.8564	85.0494	5.4069
Following Segment Contrasts: ae	-170.3596	43.6436	-3.9034	-73.8454	67.7084	-1.0906
Following Segment Contrasts: ah	-175.2544	33.7578	-5.1915	-4.1315	52.3713	-0.0789
Following Segment Contrasts: ay	-85.4925	37.2095	-2.2976	-25.7789	57.7267	-0.4466
Following Segment Contrasts: ch	-199.0958	55.3127	-3.5995	77.0882	85.8061	0.8984
Following Segment Contrasts: d	-96.6519	45.7372	-2.1132	22.0495	70.9426	0.3108
Following Segment Contrasts: dh	-180.7779	35.0399	-5.1592	172.6207	54.3599	3.1755
Following Segment Contrasts: dx	-123.1695	35.9992	-3.4215	-22.0283	55.8445	-0.3945
Following Segment Contrasts: eh	-170.4890	40.3483	-4.2254	177.6310	62.5894	2.8380
Following Segment Contrasts: en	-22.1539	74.5067	-0.2973	178.8998	115.5739	1.5479
Following Segment Contrasts: f	-201.7412	45.6198	-4.4222	-169.5301	70.7730	-2.3954
Following Segment Contrasts: g	-177.0012	55.1450	-3.2097	89.4490	85.5446	1.0456
Following Segment Contrasts: hh	-71.5575	34.3337	-2.0842	55.3276	53.2637	1.0387
Following Segment Contrasts: ih	-149.3244	36.5127	-4.0897	-115.6047	56.6376	-2.0411
Following Segment Contrasts: IVER	-184.3532	37.4157	-4.9272	49.8858	58.0442	0.8594
Following Segment Contrasts: iy	-70.6711	44.9472	-1.5723	29.5171	69.7338	0.4233
Following Segment Contrasts: jh	-285.2564	55.4007	-5.1490	155.2264	85.9421	1.8062
Following Segment Contrasts: k	-85.9815	40.3808	-2.1293	-197.4750	62.6436	-3.1524
Following Segment Contrasts: 1	105.4173	56.3059	1.8722	593.4803	87.3181	6.7968
Following Segment Contrasts: LAUGH	-105.0290	56.9092	-1.8456	265.0644	88.2768	3.0026
Following Segment Contrasts: m	-165.1196	38.5521	-4.2830	-15.3585	59.7970	-0.2568
Following Segment Contrasts: n	-146.6750	34.6139	-4.2375	26.2853	53.6979	0.4895
Following Segment Contrasts: ng	-171.8116	35.7421	-4.8070	-110.2847	55.4483	-1.9890
Following Segment Contrasts: nx	-170.7782	34.7375	-4.9163	47.4596	53.8903	0.8807
Following Segment Contrasts: ow	-127.3190	54.7723	-2.3245	-240.2647	84.9777	-2.8274
Following Segment Contrasts: p	-143.2759	42.5897	-3.3641	-14.5359	66.0708	-0.2200
Following Segment Contrasts: r	-352.5847	43.0270	-8.1945	-115.4912	66.7320	-1.7307
Following Segment Contrasts: s	-170.6955	37.8198	-4.5134	28.5380	58.6736	0.4864
Following Segment Contrasts: sh	-133.6486	41.4111	-3.2274	68.0138	64.2446	1.0587
Following Segment Contrasts: SIL	-212.2914	38.1932	-5.5584	-75.0583	59.2484	-1.2668
Following Segment Contrasts: t	-199.3647	35.7122	-5.5825	70.2671	55.4017	1.2683
Following Segment Contrasts: th	-55.0774	53.9019	-1.0218	92.7650	83.6316	1.1092
Following Segment Contrasts: tq	-147.7582	35.6027	-4.1502	16.6859	55.2275	0.3021
Following Segment Contrasts: v	-183.9651	40.6875	-4.5214	-20.9346	63.1130	-0.3317
Following Segment Contrasts: VOCNOISE	-185.1965	36.9292	-5.0149	67.3877	57.2932	1.1762
Following Segment Contrasts: w	-133.1858	40.6209	-3.2787	-215.7373	63.0087	-3.4239
Following Segment Contrasts: y	-172.9432	35.5359	-4.8667	189.6542	55.1328	3.4400
	/:	/				
	/				F 2	
	E.C.	F1		D <i>i i</i>	F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercept	636.6944	31.8820	19.9703	1149.4495	39.6427	28.9953
F0	-0.0764	0.0726	-1.0517	-0.2540	0.0973	-2.6110
Duration (ms)	0.2240	0.0481	4.6560	-0.2918	0.0645	-4.5256
Sex: male	-121.4348	29.3130	-4.1427	-201.8842	32.5625	-6.1999
Timestep: 30%	20.9586	6.9416	3.0193	-30.9569	9.3470	-3.3120
Timestep: 40% Timestep: 50%	32.8456	6.9444	4.7298	-51.7523	9.3506	-5.5346
Lima octom: b())/	40.0063	6.9462	5.7594	-61.9720	9.3531	-6.6258

m	10.4751	6 0 4 0 1	5 00 50	(2.2000	0.0555	6 8 6 8 0
Timestep: 60%	40.4751	6.9481	5.8253	-63.2909	9.3556	-6.7650
Timestep: 70%	37.5383	6.9525	5.3992	-61.0573	9.3615	-6.5222
Timestep: 80%	30.6163	6.9557	4.4016		9.3658	-5.6214
Previous Segment Contrasts: g	60.9496	34.8714	1.7478		46.7779	11.8070
Previous Segment Contrasts: hh	-79.0095	62.7740	-1.2586		70.0118	-1.2893
Previous Segment Contrasts: n	120.0846	22.7645	5.2751	479.7760	30.3950	15.7847
Previous Segment Contrasts: r	27.1848	16.2619	1.6717	204.7334	21.8096	9.3873
Previous Segment Contrasts: s	47.0797	15.0359	3.1312	281.5588	20.1616	13.9651
Previous Segment Contrasts: t	-148.2172	45.7984	-3.2363	153.1563	61.2525	2.5004
Previous Segment Contrasts: w	-57.6005	38.3319	-1.5027	153.7526	51.4429	2.9888
Following Segment Contrasts: ah	-27.9155	17.0898	-1.6335	-37.8245	22.9699	-1.6467
Following Segment Contrasts: ao	98.3905	19.5276	5.0385	15.6766	26.2767	0.5966
Following Segment Contrasts: b	-23.2195	28.6352	-0.8109	-154.5551	38.4973	-4.0147
Following Segment Contrasts: dh	-43.4937	17.8595	-2.4353	-48.9912	24.0037	-2.0410
Following Segment Contrasts: dx	84.8189	26.0335	3.2581	8.8671	35.0033	0.2533
Following Segment Contrasts: em	46.8948	25.6655	1.8272	18.4846	34.5407	0.5352
Following Segment Contrasts: en	100.1552	31.0288	3.2278	125.7971	41.6960	3.0170
Following Segment Contrasts: g	-26.2851	28.6230	-0.9183	63.3939	38.4899	1.6470
Following Segment Contrasts: hh	2.3324	22.3892	0.1042	-38.2153	29.9707	-1.2751
Following Segment Contrasts: ih	-16.4834	20.9834	-0.7855	-75.3505	28.1613	-2.6757
Following Segment Contrasts: 1	-1.7920	19.3027	-0.0928	36.8146	25.9535	1.4185
Following Segment Contrasts: m	15.8241	20.9923	0.7538	-63.0391	28.1658	-2.2381
Following Segment Contrasts: r	-32.6616	41.2269	-0.7922	-210.8641	55.3612	-3.8089
Following Segment Contrasts: s	-29.8409	22.3710	-1.3339	20.0743	29.8347	0.6729
Following Segment Contrasts: SIL	-87.8557	21.6535	-4.0574	21.9229	29.0794	0.7539
Following Segment Contrasts: siL	1.2480	31.8460	0.0392	63.8030	42.7486	1.4925
Following Segment Contrasts: VOCNOISE	-71.8612	21.1494	-3.3978	-70.0979	28.4232	-2.4662
	-40.9694		-1.5480	41.0591	35.3115	1.1628
Following Segment Contrasts: w Following Segment Contrasts: y	33.8088	26.4666 31.8711	1.0608	172.8176	42.7859	4.0391
Following Segment Contrasts: y	·		1.0008	1/2.01/0	42.7039	4.0391
	/ɛ					
	L	F1			F2	
		Std. Error	t	Estimate	Std. Error	t
Intercept	424.1323	32.0998	13.2129	1869.4798	65.0236	28.7508
F0	0.3400	0.0330	10.3149	0.5723	0.0660	8.6728
Duration (ms)	0.5418	0.0362	14.9879	0.3798	0.0723	5.2520
Sex: male	-87.8804	15.0400	-5.8431	-284.0619	33.5095	-8.4771
Timestep: 30%	26.6034	4.4482	5.9808	-17.8301	8.8921	-2.0052
Timestep: 40%	48.2853	4.4485	10.8542	-41.7017	8.8928	-4.6894
Timestep: 50%	63.7051	4.4492	14.3182	-69.8602	8.8942	-7.8546
Timestep: 60%	70.9528	4.4502	15.9438	-97.7169	8.8961	-10.9842
Timestep: 70%	71.3814	4.4515	16.0354	-125.8692	8.8987	-14.1446
Timestep: 80%	64.5350	4.4534	14.4912	-152.8009	8.9026	-17.1637
Previous Segment Contrasts: b	69.1406	28.9752	2.3862	-226.7901	57.9283	-3.9150
Previous Segment Contrasts: f	61.0568	29.7732	2.0507	-101.0503	59.5283	-1.6975
Previous Segment Contrasts: g	-18.5709	28.0138	-0.6629	135.7919	56.0065	2.4246
Previous Segment Contrasts: hh	116.2552	34.3277	3.3866		68.6438	-2.9303
Previous Segment Contrasts: ih	-47.0107	40.5714	-1.1587	204.9542	81.1409	2.5259
Previous Segment Contrasts: in	-43.2753	40.7967	-1.0608		81.6063	3.2193
			0.8926		61.7182	0.8575
	27 5546	30 86871				
Previous Segment Contrasts: k	27.5546	30.8687				
Previous Segment Contrasts: k Previous Segment Contrasts: 1	108.3786	33.1250	3.2718	-197.0853	66.2290	-2.9758
Previous Segment Contrasts: k Previous Segment Contrasts: 1 Previous Segment Contrasts: m	108.3786 119.9389	33.1250 28.0801	3.2718 4.2713	-197.0853 -124.7454	66.2290 56.1390	-2.9758 -2.2221
Previous Segment Contrasts: k Previous Segment Contrasts: 1	108.3786	33.1250	3.2718	-197.0853	66.2290	-2.9758

Previous Segment Contrasts: r	54.0070	28.8793	1.8701	-225.9748	57.7388	-3.9137
Previous Segment Contrasts: s	28.6344	29.8646	0.9588	-51.2459	59.7085	-0.8583
Previous Segment Contrasts: t	62.1684	36.5930	1.6989	163.9701	73.1690	2.2410
Previous Segment Contrasts: w	98.0014	30.7871	3.1832	-225.0988	61.5599	-3.6566
Previous Segment Contrasts: y	-8.3335	31.7631	-0.2624	79.5396	63.5052	1.2525
Following Segment Contrasts: aw	112.8956	23.8695	4.7297	131.7744	47.7468	2.7599
Following Segment Contrasts: ay	14.3737	34.4038	0.4178	197.4898	68.9321	2.8650
Following Segment Contrasts: d	-11.8112	11.9190	-0.9910	107.3165	23.8353	4.5024
Following Segment Contrasts: dh	-93.0950	17.3532	-5.3647	15.7529	34.7125	0.4538
Following Segment Contrasts: dx	6.1515	9.8346	0.6255	62.0883	19.6636	3.1575
Following Segment Contrasts: eh	40.1956	34.3668	1.1696	106.5680	68.8562	1.5477
Following Segment Contrasts: en	-22.7763	21.8189	-1.0439	106.2765	43.6216	2.4363
Following Segment Contrasts: ey	-42.6555	23.4044	-1.8225	174.4976	46.7934	3.7291
Following Segment Contrasts: hh	-30.0777	18.3615	-1.6381	210.5985	36.7147	5.7361
Following Segment Contrasts: ih	-75.7616	19.2290	-3.9400	307.7622	38.4444	8.0054
Following Segment Contrasts: IVER	-45.9012	29.6039	-1.5505	-110.5918	59.1876	-1.8685
Following Segment Contrasts: k	-15.2934	20.1187	-0.7602	60.3075	40.2251	1.4992
Following Segment Contrasts: 1	41.8906	18.9891	2.2060	-184.6224	37.9890	-4.8599
Following Segment Contrasts: m	-13.2710	15.9352	-0.8328	107.4337	31.8680	3.3712
Following Segment Contrasts: n	-67.2287	14.2106	-4.7309	157.0741	28.4163	5.5276
Following Segment Contrasts: p	-4.7312	21.7612	-0.2174	3.8899	43.5051	0.0894
Following Segment Contrasts: r	-80.4597	15.8515	-5.0758	-47.4606	31.7081	-1.4968
Following Segment Contrasts: s	-30.2232	23.0235	-1.3127	155.2378	46.0302	3.3725
Following Segment Contrasts: t	-0.0909	9.9504	-0.0091	56.9475	19.8957	2.8623
Following Segment Contrasts: th	-17.4562	29.2448	-0.5969	-105.4862	58.4650	-1.8043
Following Segment Contrasts: tq	1.7524	10.0301	0.1747	73.7203	20.0554	3.6758
Following Segment Contrasts: v	-41.9364	22.8291	-1.8370	61.2138	45.6771	1.3401
Following Segment Contrasts: w	31.3338	29.6822	1.0556	-126.8514	59.3454	-2.1375
	/1					
	1	F1			F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercept	406.9112	31.4253	12.9485	1912.8188	74.2702	25.7549
F0	0.3420	0.0409	8.3669	0.9120	0.0930	9.8029
Duration (ms)	0.5744	0.0499	11.5202	0.1861	0.1133	1.6425
Sex: male	-61.9294	13.2610	-4.6700	-265.0133	43.2114	-6.1329
Timestep: 30%	12.2039	5.0495	2.4169	-20.7235	11.3777	-1.8214
Timestep: 40%	24.6035	5.0496	4.8724	-44.2239	11.3778	-3.8868
Timestep: 50%	35.5058	5.0498	7.0312	-72.3769	11.3783	-6.3609
Timestep: 60%	41.4569	5.0501	8.2090	-104.4172	11.3792	-9.1761
Timestep: 70%	43.0810	5.0507	8.5297	-135.2720	11.3805	-11.8863
Timestep: 70%	40.3192	5.0512	7.9820	-171.9832	11.3803	-15.1105
Thiestep. 8078	1 40.51921	5.0512				3.0989
Provious Segment Contracts: ab		28 0712	6 0212	202 0411	65 52081	
Previous Segment Contrasts: ch	-174.7340	28.9712	-6.0313	203.0411	65.5208	
Previous Segment Contrasts: d	-174.7340 43.3628	46.6957	0.9286	368.5425	105.5051	3.4931
Previous Segment Contrasts: d Previous Segment Contrasts: dx	-174.7340 43.3628 19.1546	46.6957 51.6806	0.9286 0.3706	368.5425 613.0019	105.5051 116.7440	3.4931 5.2508
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f	-174.7340 43.3628 19.1546 123.1630	46.6957 51.6806 52.5452	0.9286 0.3706 2.3439	368.5425 613.0019 243.2602	105.5051 116.7440 118.8787	3.4931 5.2508 2.0463
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g	-174.7340 43.3628 19.1546 123.1630 -24.0621	46.6957 51.6806 52.5452 8.9503	0.9286 0.3706 2.3439 -2.6884	368.5425 613.0019 243.2602 390.3046	105.5051 116.7440 118.8787 20.2585	3.4931 5.2508 2.0463 19.2663
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457	46.6957 51.6806 52.5452 8.9503 31.9735	0.9286 0.3706 2.3439 -2.6884 -3.8421	368.5425 613.0019 243.2602 390.3046 338.7255	105.5051 116.7440 118.8787 20.2585 73.1661	3.4931 5.2508 2.0463 19.2663 4.6295
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh Previous Segment Contrasts: ih	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457 -191.8703	46.6957 51.6806 52.5452 8.9503 31.9735 29.8137	0.9286 0.3706 2.3439 -2.6884 -3.8421 -6.4356	368.5425 613.0019 243.2602 390.3046 338.7255 688.7004	105.5051 116.7440 118.8787 20.2585 73.1661 67.5344	3.4931 5.2508 2.0463 19.2663 4.6295 10.1978
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh Previous Segment Contrasts: ih Previous Segment Contrasts: IVER	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457 -191.8703 -151.8553	46.6957 51.6806 52.5452 8.9503 31.9735 29.8137 30.2764	0.9286 0.3706 2.3439 -2.6884 -3.8421 -6.4356 -5.0156	368.5425 613.0019 243.2602 390.3046 338.7255 688.7004 399.5680	105.5051 116.7440 118.8787 20.2585 73.1661 67.5344 68.4103	3.4931 5.2508 2.0463 19.2663 4.6295 10.1978 5.8408
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh Previous Segment Contrasts: ih Previous Segment Contrasts: IVER Previous Segment Contrasts: iy	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457 -191.8703 -151.8553 30.3016	46.6957 51.6806 52.5452 8.9503 31.9735 29.8137 30.2764 33.4020	0.9286 0.3706 2.3439 -2.6884 -3.8421 -6.4356 -5.0156 0.9072	368.5425 613.0019 243.2602 390.3046 338.7255 688.7004 399.5680 -35.3445	105.5051 116.7440 118.8787 20.2585 73.1661 67.5344 68.4103 75.9314	3.4931 5.2508 2.0463 19.2663 4.6295 10.1978 5.8408 -0.4655
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh Previous Segment Contrasts: ih Previous Segment Contrasts: IVER Previous Segment Contrasts: iy Previous Segment Contrasts: k	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457 -191.8703 -151.8553 30.3016 -22.5399	46.6957 51.6806 52.5452 8.9503 31.9735 29.8137 30.2764 33.4020 14.7942	0.9286 0.3706 2.3439 -2.6884 -3.8421 -6.4356 -5.0156 0.9072 -1.5236	368.5425 613.0019 243.2602 390.3046 338.7255 688.7004 399.5680 -35.3445 484.8885	105.5051 116.7440 118.8787 20.2585 73.1661 67.5344 68.4103 75.9314 33.4835	3.4931 5.2508 2.0463 19.2663 4.6295 10.1978 5.8408 -0.4655 14.4814
Previous Segment Contrasts: d Previous Segment Contrasts: dx Previous Segment Contrasts: f Previous Segment Contrasts: g Previous Segment Contrasts: hh Previous Segment Contrasts: ih Previous Segment Contrasts: IVER Previous Segment Contrasts: iy	-174.7340 43.3628 19.1546 123.1630 -24.0621 -122.8457 -191.8703 -151.8553 30.3016	46.6957 51.6806 52.5452 8.9503 31.9735 29.8137 30.2764 33.4020	0.9286 0.3706 2.3439 -2.6884 -3.8421 -6.4356 -5.0156 0.9072	368.5425 613.0019 243.2602 390.3046 338.7255 688.7004 399.5680 -35.3445	105.5051 116.7440 118.8787 20.2585 73.1661 67.5344 68.4103 75.9314	3.4931 5.2508 2.0463 19.2663 4.6295 10.1978 5.8408 -0.4655

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Previous Segment Contrasts: r -17.8126 14.7700 -1.2060 126.1944 33.5563 .3.6671 Previous Segment Contrasts: sh -33.5214 10.5313 -3.5622 277.4004 23.8264 11.6426 Previous Segment Contrasts: sh 20.0309 15.7770 1.2696 103.8318 35.6282 2.9143 Previous Segment Contrasts: w 19.7107 15.1221 1.2681 -76.3704 34.2163 2.2323 Previous Segment Contrasts: z 48.2487 35.5259 1.3581 330.0610 80.4197 4.1042 Previous Segment Contrasts: a -0.2100 33.0987 -0.00240 337.5498 76.4545 5.0644 Following Segment Contrasts: av -23.6473 33.5470 -0.7049 277.1627 75.6666 3.9273 Following Segment Contrasts: av -14.4522 2.9238 -0.4897 -263.7398 66.0827 -3.9917 Following Segment Contrasts: av -14.4522 2.9238 -0.4897 -263.7398 66.0827 -3.9916 Following Segment Contrasts: av -14.5529	Previous Segment Contrasts: nx	190.5543	31.8556	5.9818	296.4509	72.1555	4.1085
Previous Segment Contrasts: sh -37.5214 10.5313 -35.628 277.4004 23.8264 11.6426 Previous Segment Contrasts: th 33.9503 29.7635 1.1407 18.2702 67.3712 0.2714 0.2100 3.0610 0.0749 7.46435 5.0634 Following Segment Contrasts: ah -0.2100 3.0887 -0.0400 3.7540 6.51133 5.4911 Following Segment Contrasts: ah -11.7800 28.8697 -0.0400 3.7540 6.5113 5.30666 4.3344 1.43452 2.92398 0.4897 2.63.7398 6.6827 3.9911 Following Segment Contrasts: ah -17.5559 2.94897 2.63.7398 6.6827 3.9911 5.3846 1.61638446							3.6140
Previous Segment Contrasts: sh 33.9503 22.7635 1.1407 18.2702 67.3712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2712 0.2714 0.38318 35.6283 2.9143 Previous Segment Contrasts: w 19.1770 15.1221 1.2681 -76.3704 34.2163 -2.230 443.2163 -2.230 443.2143 5.0520 1.3581 330.0610 80.4197 4.1042 Previous Segment Contrasts: a -0.2100 33.0897 -0.0063 37.3498 76.46345 5.0644 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1627 75.6668 -3.9273 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1627 75.6666 -1.5427 -56.666 -3.9273 Following Segment Contrasts: ch -16.7672 27.4196 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: ch -17.5559 28.							
Previous Segment Contrasts: uw -97.4065 28.4777 -3.4204 452.9101 64.2251 7.0519 Previous Segment Contrasts: w 19.1770 15.1221 1.2681 -76.3704 34.2163 -2.2320 Previous Segment Contrasts: y 43.3685 19.1133 -2.2690 464.3221 34.1692 10.753 Previous Segment Contrasts: a 35.9360 38.8910 0.9240 -382.4494 87.9205 -4.3459 Following Segment Contrasts: a 35.9360 38.8910 -0.288.697 -0.4080 -57.5406 65.1133 -5.4911 Following Segment Contrasts: av -23.6473 33.5470 -0.7049 -297.1625 75.3666 -3.227 Following Segment Contrasts: b -14.3452 29.2938 -0.4897 -263.7398 66.0827 -3.9911 Following Segment Contrasts: d -16.7672 27.1496 -0.6115 -252.9660 61.8322 -4.9817 Following Segment Contrasts: d -17.5559 28.4158 -0.6178 -20.9613 -3.4486 -1.3429 -1.34894 -3.25961 <t< td=""><td>Previous Segment Contrasts: s</td><td>-37.5214</td><td>10.5313</td><td>-3.5628</td><td>277.4004</td><td>23.8264</td><td>11.6426</td></t<>	Previous Segment Contrasts: s	-37.5214	10.5313	-3.5628	277.4004	23.8264	11.6426
Previous Segment Contrasts: uw -97.4065 28.4777 -3.4204 452.9101 64.2251 7.053704 Previous Segment Contrasts: y 43.3685 19.1133 -2.2690 464.3221 43.1692 10.7559 Previous Segment Contrasts: a 48.2487 35.5259 1.3581 330.0610 80.4197 4.1042 Previous Segment Contrasts: a 35.9360 38.8910 0.9240 -382.4494 87.9205 4.3499 Following Segment Contrasts: a -11.7800 28.8697 -0.4080 -357.5406 65.1133 -5.4911 Following Segment Contrasts: a -23.6473 33.5470 0.71625 75.6668 -3.9273 Following Segment Contrasts: b -14.3452 29.2938 -0.4897 -263.7398 66.0827 -3.9911 Following Segment Contrasts: ch -51.8917 22.8416 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: ch -17.555 28.4188 -0.6178 -209.5419 64.0853 -3.2697 Following Segment Contrasts: ch -17.2559 28.418		33.9503	29.7635	1.1407	18.2702	67.3712	0.2712
Previous Segment Contrasts: w 19.1770 15.1221 1.2681 -76.3704 34.2163 2.2390 Previous Segment Contrasts: z 43.3685 19.1133 -2.2690 464.3221 43.1692 10.7559 Previous Segment Contrasts: zh -0.2100 33.0987 -0.0063 377.9498 74.6435 5.0634 Following Segment Contrasts: ah -11.7800 28.8697 -0.4080 -357.5406 65.1133 -5.4911 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1625 75.6668 -3.227 Following Segment Contrasts: b -14.3452 29.2938 -0.4897 -263.7398 66.0827 -3.9911 Following Segment Contrasts: ch -51.8917 22.78816 -3.0161 -163.8841 62.8733 2.6066 Following Segment Contrasts: ch -17.5559 28.4158 -0.6178 -209.5419 64.0823 -2.26960 Following Segment Contrasts: ch -17.29561 3.1466 -60.3121 -4.04853 -2.26960 Following Segment Contrasts: ch -17.29561 51.0692 -3.2897 Foll	Previous Segment Contrasts: t	20.0309	15.7770	1.2696	103.8318	35.6283	2.9143
Previous Segment Contrasts: y -43.3685 19.1133 -2.2600 463.3221 43.1692 10.759 Previous Segment Contrasts: a 48.2487 35.5259 1.3581 330.0610 80.4197 4.104 Previous Segment Contrasts: a 35.9360 38.987 -0.0603 37.79498 74.6435 5.0634 Following Segment Contrasts: a -11.7800 28.8697 -0.4080 -387.5406 65.1133 -5.4911 Following Segment Contrasts: a -23.6473 33.5470 -0.7049 -297.1625 75.6668 -3.9213 Following Segment Contrasts: a -49.6259 37.5250 -1.3225 -383.8106 84.6069 -4.364 Following Segment Contrasts: ch -51.8917 32.5806 -1.5927 -113.4898 73.4486 -1.5452 Following Segment Contrasts: ch -17.7559 28.4158 -0.6178 -20.95419 40.833 -3.20781 Following Segment Contrasts: ch -17.5559 28.4158 -0.6178 -20.95419 40.8353 -2.0161 Following Segment Contrasts: ch -17.2	Previous Segment Contrasts: uw	-97.4065	28.4777	-3.4204	452.9101	64.2251	7.0519
Previous Segment Contrasts: y 43.3685 19.1133 -22.690 464.3221 43.1692 10.7559 Previous Segment Contrasts: a 48.2487 35.5259 1.3581 330.0610 80.4197 4.1042 Previous Segment Contrasts: a -0.2100 33.0987 -0.0063 377.4498 74.6433 5.0634 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1625 75.6668 -3.9273 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1625 75.6668 -3.9273 Following Segment Contrasts: ch -51.8917 32.8406 -1.5927 -11.3498 73.4486 -1.5425 Following Segment Contrasts: ch -17.5559 28.4158 -0.6115 -522.9660 61.8326 4.0911 Following Segment Contrasts: ch -17.5559 28.4158 -0.6118 -202.9630 -3.2697 Following Segment Contrasts: ch -17.5559 28.4158 -0.6178 -202.9633 -3.2697 Following Segment Contrasts: ch -17.5596 28.4158	Previous Segment Contrasts: w	19.1770	15.1221	1.2681	-76.3704	34.2163	-2.2320
Previous Segment Contrasts: a -0.2100 33.0987 -0.0063 377.9498 74.6435 5.0634 Following Segment Contrasts: a 35.9360 38.8910 -0.9240 -382.4494 87.9205 -4.3499 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 297.1625 75.6668 -3.9273 Following Segment Contrasts: b -14.3452 29.2938 -0.4807 -263.7398 66.0827 -3.9911 Following Segment Contrasts: ch -51.8917 32.5806 -1.5327 -11.3498 73.4486 -1.5452 Following Segment Contrasts: ch -17.5559 28.4158 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: cm -47.5064 31.4563 -1.5102 -241.9150 70.9263 3.2697 Following Segment Contrasts: cm -5.8142 37.7494 0.1538 325.9891 85.2321 -3.8247 Following Segment Contrasts: cr 5.8142 37.7494 0.1538 325.9891 85.2321 -3.2697 Following Segment Contrasts: cr 5.	Previous Segment Contrasts: y	-43.3685	19.1133	-2.2690	464.3221	43.1692	10.7559
Following Segment Contrasts: an 35.9360 38.8910 0.9240 382.4494 87.9205 4.3499 Following Segment Contrasts: av -23.6473 33.5470 -0.7049 -27.1625 75.6668 3.9273 Following Segment Contrasts: av -49.6259 37.5250 -1.3225 -338.8106 84.6069 4.3364 Following Segment Contrasts: ch -51.8917 32.5806 -1.5927 113.4898 73.4486 -1.5425 Following Segment Contrasts: ch -16.7672 27.4196 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: ch -17.5559 28.4158 -0.6118 -209.5419 64.0853 -3.2607 Following Segment Contrasts: cn -6.2000 38.15610 1.604 60.28721 86.101 -7.0016 Following Segment Contrasts: cr 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: g -10.728 39.3789 0.0272 111.9772 88.9525 -1.2588 Following Segment Contrasts: h 39.4	Previous Segment Contrasts: z	48.2487	35.5259	1.3581	330.0610	80.4197	4.1042
Following Segment Contrasts: an 35.9360 38.8910 0.9240 382.4494 87.9205 4.3499 Following Segment Contrasts: av -23.6473 33.5470 -0.7049 -27.1625 75.6668 3.9273 Following Segment Contrasts: av -49.6259 37.5250 -1.3225 -338.8106 84.6069 4.3364 Following Segment Contrasts: ch -51.8917 32.5806 -1.5927 113.4898 73.4486 -1.5425 Following Segment Contrasts: ch -16.7672 27.4196 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: ch -17.5559 28.4158 -0.6118 -209.5419 64.0853 -3.2607 Following Segment Contrasts: cn -6.2000 38.15610 1.604 60.28721 86.101 -7.0016 Following Segment Contrasts: cr 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: g -10.728 39.3789 0.0272 111.9772 88.9525 -1.2588 Following Segment Contrasts: h 39.4	Previous Segment Contrasts: zh	-0.2100	33.0987	-0.0063	377.9498	74.6435	5.0634
Following Segment Contrasts: ah -11.7800 28.8697 -0.4080 -357.7406 65.1133 -5.4911 Following Segment Contrasts: aw -23.6473 33.5470 -0.7049 -297.1625 75.6668 -3.9273 Following Segment Contrasts: b -14.3452 29.2938 -0.4897 -263.7398 66.0827 -3.9911 Following Segment Contrasts: ch -51.8917 32.5806 -1.5927 -113.488 73.4486 -1.5321 Following Segment Contrasts: ch -16.7672 27.4196 -0.6115 -252.9660 61.8326 -4.0911 Following Segment Contrasts: ch -17.5559 28.4158 -0.6178 -20.9419 64.0853 -3.2697 Following Segment Contrasts: cn -5.2800 38.1561 0.1646 -602.8721 86.1051 -7.0016 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -3.2487 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: h		35.9360	38.8910	0.9240	-382.4494	87.9205	-4.3499
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Following Segment Contrasts: ch -51.8917 32.5806 -1.5927 -113.4898 73.4486 -1.5452 Following Segment Contrasts: dh -16.7672 27.4196 -0.6115 -22.9660 61.8326 -4.0911 Following Segment Contrasts: en -17.5559 28.4158 -0.6178 -209.5419 64.0853 -3.2697 Following Segment Contrasts: en -47.5064 31.4563 -1.5102 241.9150 70.9263 -3.4108 Following Segment Contrasts: er 5.8142 37.7949 0.1538 -32.5981 85.2321 -3.8247 Following Segment Contrasts: f -43.7166 29.4118 -1.4644 30.8221 66.3121 -4.6482 Following Segment Contrasts: f -43.7166 29.4118 -1.4684 30.8221 65.3121 -4.6482 Following Segment Contrasts: hh 39.4946 30.8373 1.2807 -321.9757 69.5840 -4.521 Following Segment Contrasts: hh 39.4946 30.8373 1.2807 -321.9757 69.5840 -4.521 Following Segment Contrasts: hh 39.4946 30.8373 1.2807 -321.9757 69.5840 -4.521							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Following Segment Contrasts: eh -17.5559 28.4158 -0.6178 -209.5419 64.0853 -3.2697 Following Segment Contrasts: em -47.5064 31.4561 0.1646 -602.8721 86.1051 -7.0016 Following Segment Contrasts: er 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2921 66.3121 -4.6482 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2921 66.3121 -4.6482 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.291 65.3121 -4.6482 Following Segment Contrasts: h -25.4574 29.6495 -0.8586 -304.9151 66.9233 -4.5561 Following Segment Contrasts: IVER -297.0992 24.26982 -6.9581 -51.1796 69.380 -3.343 Following Segment Contrasts: n -44.5728 28.3925 -1.5699 -223.3088 64.0290 -3.5189 Following Segment Contrasts: n							
Following Segment Contrasts: em -47.5064 31.4563 -1.5102 -241.9150 70.9263 -3.4108 Following Segment Contrasts: en 6.2800 38.1561 0.1646 -602.8721 86.1051 -7.0016 Following Segment Contrasts: er 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: g -172.9261 51.0692 -3.3861 -236.9826 115.3319 -2.0548 Following Segment Contrasts: ih -25.4574 29.6495 -0.8586 -304.9151 66.9223 -4.551 Following Segment Contrasts: ih -297.0992 42.6982 -6.9581 -515.1796 96.3980 -5.3443 Following Segment Contrasts: in -44.5728 28.3925 -1.5699 -221 85.2726 0.8118 Following Segment Contrasts: n -44.5728 28.3925 -1.5699 -225.3088 64.0290 -3.1840 Following Segment Contrasts: n <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Following Segment Contrasts: en 6.2800 38.1561 0.1646 -602.8721 86.1051 -7.0016 Following Segment Contrasts: er 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: hh 39.4946 30.8373 1.2807 -321.9757 69.5840 -4.6271 Following Segment Contrasts: IVER -297.0992 42.6982 -6.9581 -515.1796 96.3980 -5.343 Following Segment Contrasts: IVER -202.135 37.8120 -0.5386 69.2221 85.2726 0.8118 Following Segment Contrasts: n -44.728 28.3925 -1.569 -225.3088 64.0290 -3.5189 Following Segment Contrasts: n -49.7694 29.7706 -1.6718 +123.6212 67.1603 +1.847 Following Segment Contrasts: n <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Following Segment Contrasts: er 5.8142 37.7949 0.1538 -325.9891 85.2321 -3.8247 Following Segment Contrasts: ey 1.0728 39.3789 0.0272 -111.9772 88.9525 -1.2588 Following Segment Contrasts: f -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: g -172.9261 51.0692 -3.3861 -236.9826 115.3319 -2.05484 Following Segment Contrasts: h 39.4946 30.8373 1.2807 -321.9757 69.5840 -4.6271 Following Segment Contrasts: IVER -297.0992 42.6982 -6.9581 -515.1796 96.3980 -5.3443 Following Segment Contrasts: I -20.2135 37.8120 -0.5346 69.2221 85.2726 0.8118 Following Segment Contrasts: n -44.5728 28.3925 -1.5699 -225.3088 64.0290 -3.5189 Following Segment Contrasts: nx -19.2729 32.9111 -0.5556 -153.9030 74.2160 -2.0737 Following Segment Contrasts: nx							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Following Segment Contrasts: -43.7166 29.4118 -1.4864 -308.2291 66.3121 -4.6482 Following Segment Contrasts: g -172.9261 51.0692 -3.3861 -236.9826 115.3319 -2.0548 Following Segment Contrasts: ih -25.4574 29.6495 -0.8586 -304.9151 66.9253 -4.5561 Following Segment Contrasts: ih -22.4574 29.6492 -6.9581 -515.1796 96.3980 -5.3443 Following Segment Contrasts: ik -45.5403 31.0139 -1.4684 -17.5928 69.9821 -0.2514 Following Segment Contrasts: ik -44.5728 28.3925 -1.6799 -225.3088 64.0290 -3.5189 Following Segment Contrasts: m -44.7724 28.3925 -1.6897 -145.1528 63.7659 -2.2763 Following Segment Contrasts: m -19.2729 32.9111 -0.5856 -153.9030 74.2160 -2.0737 Following Segment Contrasts: n -50.7871 33.3060 -1.5249 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Following Segment Contrasts: ih -25.4574 29.6495 -0.8586 -304.9151 66.9253 -4.5561 Following Segment Contrasts: IVER -297.0992 42.6982 -6.9581 -515.1796 96.3980 -5.3443 Following Segment Contrasts: k -45.5403 31.0139 -1.4684 -17.5928 69.9221 -0.2514 Following Segment Contrasts: n -44.5728 28.3925 -1.5699 -225.3088 64.0290 -3.5189 Following Segment Contrasts: n -49.7694 29.7706 -1.6718 -123.6212 67.1603 -1.8407 Following Segment Contrasts: n -19.2729 32.9111 -0.5856 -153.9030 74.2160 -2.0737 Following Segment Contrasts: nx -19.2729 32.9111 -0.5856 -153.9030 74.2160 -2.0737 Following Segment Contrasts: p 6.5389 30.9810 0.2111 -332.7418 69.9329 -4.7880 Following Segment Contrasts: p -50.7871 33.3060 -1.5249 -416.9055 75.1013 -5.5127 Following Segment Contrasts: SIL							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Following Segment Contrasts: m -44.5728 28.3925 -1.5699 -225.3088 64.0290 -3.5189 Following Segment Contrasts: n -49.7694 29.7706 -1.6718 -123.6212 67.1603 -1.8407 Following Segment Contrasts: ng 30.8084 28.2726 1.0897 -145.1528 63.7659 -2.2763 Following Segment Contrasts: nx -19.2729 32.9111 -0.5856 -153.9030 74.2160 -2.0737 Following Segment Contrasts: ow 123.2197 43.3933 2.8396 -474.1461 98.2305 -4.8269 Following Segment Contrasts: p 6.5389 30.9810 0.2111 -332.7418 69.9329 -4.7580 Following Segment Contrasts: r -50.7871 33.3060 -1.5249 -416.9055 75.1013 -5.5512 Following Segment Contrasts: SIL 1.1874 38.399 0.010 -345.5239 86.5005 -3.9945 Following Segment Contrasts: V -51.0729 27.4531 -1.8604 -225.4982 61.8999 -3.6429 Following Segment Contrasts: w							
Following Segment Contrasts: n -49.7694 29.7706 -1.6718 -123.6212 67.1603 -1.8407 Following Segment Contrasts: ng 30.8084 28.2726 1.0897 -145.1528 63.7659 -2.2763 Following Segment Contrasts: nx -19.2729 32.9111 -0.5856 -153.9030 74.2160 -2.0737 Following Segment Contrasts: ow 123.2197 43.3933 2.8396 -474.1461 98.2305 -4.8269 Following Segment Contrasts: p 6.5389 30.9810 0.2111 -332.7418 69.9329 -4.7580 Following Segment Contrasts: r -50.7871 33.3060 -1.5249 -416.9055 75.1013 -5.5512 Following Segment Contrasts: s -35.7774 29.2201 -1.2244 -334.0653 65.9081 -5.0687 Following Segment Contrasts: SIL 1.1874 38.3599 0.0310 -345.5239 86.5005 -3.9945 Following Segment Contrasts: v -51.0729 27.4531 -1.8604 -225.4982 61.8999 -3.6429 Following Segment Contrasts: w <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Following Segment Contrasts: ow	123.2197	43.3933	2.8396	-474.1461	98.2305	-4.8269
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Following Segment Contrasts: p	6.5389	30.9810	0.2111	-332.7418	69.9329	-4.7580
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Following Segment Contrasts: r	-50.7871	33.3060	-1.5249	-416.9055	75.1013	-5.5512
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Following Segment Contrasts: s	-35.7774	29.2201	-1.2244	-334.0653	65.9081	-5.0687
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Following Segment Contrasts: SIL	1.1874	38.3599	0.0310	-345.5239	86.5005	-3.9945
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-48.1814	33.6114	-1.4335	-316.0886	75.8528	-4.1671
	Following Segment Contrasts: v	-51.0729		-1.8604	-225.4982		-3.6429
				-2.1184			-2.1911
							-3.0180
Following Segment Contrasts: z -34.7617 33.4742 -1.0385 -235.2720 75.6037 -3.1119 /i/ Intercept F1 F2 Estimate Std. Error t Estimate Std. Error t Intercept 374.8605 22.9362 16.3436 1864.6181 83.8847 22.2284 F0 0.1317 0.0330 3.9948 -0.3575 0.1217 -2.9388 Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494							-3.2294
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
F1 F2 Estimate Std. Error t Estimate Std. Error t Intercept 374.8605 22.9362 16.3436 1864.6181 83.8847 22.2284 F0 0.1317 0.0330 3.9948 -0.3575 0.1217 -2.9388 Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494	00	·					
Estimate Std. Error t Estimate Std. Error t Intercept 374.8605 22.9362 16.3436 1864.6181 83.8847 22.2284 F0 0.1317 0.0330 3.9948 -0.3575 0.1217 -2.9388 Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494		//				52	
Intercept 374.8605 22.9362 16.3436 1864.6181 83.8847 22.2284 F0 0.1317 0.0330 3.9948 -0.3575 0.1217 -2.9388 Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494		E-the t			Tradit of 1		
F0 0.1317 0.0330 3.9948 -0.3575 0.1217 -2.9388 Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494	•						
Duration (ms) -0.1062 0.0252 -4.2164 0.9153 0.0929 9.8494							
Sex: male -51.1866 15.6668 -3.2672 -426.2387 55.1434 -7.7296							
	Sex: male	-51.1866	15.6668	-3.2672	-426.2387	55.1434	-7.7296

m: 000/			0.01.17	00.1071	110411	<
Timestep: 30%	-3.1003	3.8054	-0.8147	92.4271	14.0644	6.5717
Timestep: 40%	-8.1284	3.8054	-2.1360	157.1495	14.0643	11.1737
Timestep: 50%	-12.0844	3.8054	-3.1756	197.0958	14.0642	14.0140
Timestep: 60%	-16.2501	3.8054	-4.2703	219.5571	14.0643	15.6110
Timestep: 70%	-20.1611	3.8055	-5.2979	224.7171	14.0647	15.9774
Timestep: 80%	-23.1247	3.8057	-6.0764	208.9821	14.0655	14.8578
Previous Segment Contrasts: ay	191.3792	16.3452	11.7086	4.0646	60.4008	0.0673
Previous Segment Contrasts: d	11.3891	13.4070	0.8495	-155.2889	49.5179	-3.1360
Previous Segment Contrasts: eh	30.3615	18.8222	1.6131	-22.0536	69.5350	-0.3172
Previous Segment Contrasts: en	26.4042	13.0782	2.0189	35.3525	48.3286	0.7315
Previous Segment Contrasts: er	70.2022	13.8339	5.0747	-285.1734	51.1141	-5.5792
Previous Segment Contrasts: ey	68.8333	14.4368	4.7679	120.9165	53.3092	2.2682
Previous Segment Contrasts: f	28.0857	12.0661	2.3276	-26.7790	44.5607	-0.6010
Previous Segment Contrasts: g	71.0304	21.3273	3.3305	-199.5093	78.1422	-2.5532
Previous Segment Contrasts: ih	53.2603	12.2125	4.3611	63.2270	45.1135	1.4015
Previous Segment Contrasts: iy	26.3633	11.9772	2.2011	110.5057	44.2348	2.4982
Previous Segment Contrasts: k	-75.2078	53.0861	-1.4167	106.0984	188.3209	0.5634
Previous Segment Contrasts: 1	34.8379	11.5891	3.0061	-100.7779	42.7973	-2.3548
Previous Segment Contrasts: m	60.9251	10.9016	5.5886	-72.9123	40.2591	-1.8111
Previous Segment Contrasts: n	15.6006	15.1272	1.0313	3.0259	55.8758	0.0542
Previous Segment Contrasts: nx	64.8336	11.8622	5.4656	-30.6003	43.8311	-0.6981
Previous Segment Contrasts: nx Previous Segment Contrasts: p	-5.5922	16.5366	-0.3382	-157.7810	60.8566	-2.5927
Previous Segment Contrasts: r	49.8481	11.4009	4.3723	-192.5488	42.1026	-4.5733
Previous Segment Contrasts: sh	-24.7950	27.3359	-0.9070	-109.9787	100.9409	-1.0895
Previous Segment Contrasts: SIL	17.8493	12.3976	1.4397	143.7683	45.8011	3.1390
Previous Segment Contrasts: SIL	-28.7948	15.5635	-1.8502	-18.2477	57.4238	-0.3178
	216.3770	23.1347	9.3529	-388.7240	85.4472	-4.5493
Previous Segment Contrasts: w						
Following Segment Contrasts: b	-49.7735 -64.6928	22.9828 36.2809	-2.1657	8.7850 499.1474	84.8849 132.2898	0.1035
Following Segment Contrasts: ch			-1.7831	499.1474		3.7731
Following Segment Contrasts: d	-31.6188	16.0209	-1.9736		59.1828	8.1784
Following Segment Contrasts: dx	-29.9080	16.6238	-1.7991	438.1523	61.4046	7.1355
Following Segment Contrasts: eh	123.3799	23.3318	5.2881	513.9351	86.2042	5.9618
Following Segment Contrasts: ey	7.7175	21.9147	0.3522	378.1913	80.9701	4.6708
Following Segment Contrasts: f	9.1595	28.0211	0.3269	574.2576	102.6705	5.5932
Following Segment Contrasts: g	3.5812	19.9745	0.1793	244.2329	73.7701	3.3107
Following Segment Contrasts: ih	75.4569	27.2147	2.7726	396.3868	100.4648	3.9455
Following Segment Contrasts: k	12.0784	21.4307	0.5636	533.9409	79.0017	6.7586
Following Segment Contrasts: 1	60.4071	23.6995	2.5489	198.2746	87.4973	2.2661
Following Segment Contrasts: m	15.1457	23.6524	0.6403	273.7065	87.3869	3.1321
Following Segment Contrasts: ng	-84.8036	23.0586	-3.6777	451.3963	85.1605	5.3005
Following Segment Contrasts: s	-108.6201	26.7802	-4.0560	230.0258	98.9453	2.3248
Following Segment Contrasts: t	-34.5006	17.2150	-2.0041	530.8461	63.5858	8.3485
Following Segment Contrasts: tq	-38.5396	17.3155	-2.2257	506.1487	63.9576	7.9138
Following Segment Contrasts: v	-56.6788	27.1151	-2.0903	611.2210	99.6642	6.1328
Following Segment Contrasts: VOCNOISE	46.0043	22.1875	2.0734	461.2368	81.9709	5.6268
	/(/				
		" F1			F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercent						
Intercept	623.3583	38.5223	16.1818	1612.8497	86.5631	18.6321
FO	-0.1918	0.0594	-3.2279	0.1063	0.1345	0.7903
Duration (ms)	-0.0199	0.0351	-0.5659	-0.4319	0.0797	-5.4200
Sex: male	-127.5997	21.2339	-6.0093	-144.0127	45.2261	-3.1843
Timestep: 30%	1.9346	5.5150	0.3508	-26.0199	12.5232	-2.0777

T 100/	0.001.0		0.0(00	50 5400	10 50 40	1 (210
Timestep: 40%	-0.3816	5.5155	-0.0692	-58.5403	12.5242	-4.6742
Timestep: 50%	-9.8896	5.5163	-1.7928	-92.4639	12.5262	-7.3817
Timestep: 60%	-21.4564	5.5172	-3.8890	-123.5935	12.5282	-9.8652
Timestep: 70%	-32.5749	5.5189	-5.9024	-143.7729	12.5321	-11.4724
Timestep: 80%	-44.5274	5.5219	-8.0638	-147.4293	12.5387	-11.7579
Previous Segment Contrasts: ah	34.4119	24.7685	1.3893	42.2356	56.2287	0.7511
Previous Segment Contrasts: ahn	158.3954	31.6386	5.0064	-18.1404	71.8008	-0.2526
Previous Segment Contrasts: ch	8.5614	34.0988	0.2511	158.9399	77.2891	2.0564
Previous Segment Contrasts: d	-17.0070	33.3378	-0.5101	-75.7316	75.6387	-1.0012
Previous Segment Contrasts: dx	-26.2758	30.9626	-0.8486	58.9339	70.2697	0.8387
Previous Segment Contrasts: eh	71.0198	39.9514	1.7777	388.6233	90.6494	4.2871
Previous Segment Contrasts: hh	-81.8318	28.5134	-2.8699	-313.5695	64.7097	-4.8458
Previous Segment Contrasts: ih	47.7889	28.1644	1.6968	120.4621	63.9333	1.8842
Previous Segment Contrasts: ihn	-71.4643	29.2794	-2.4408	59.5957	66.4702	0.8966
Previous Segment Contrasts: iy	-41.4541	29.9477	-1.3842	188.0340	67.9945	2.7654
Previous Segment Contrasts: k	58.3275	41.5910	1.4024	-231.9534	94.3427	-2.4586
Previous Segment Contrasts: 1	-19.8220	29.7007	-0.6674	-265.4589	67.4109	-3.9379
Previous Segment Contrasts: own	75.9526	29.4438	2.5796	-78.1344	66.8229	-1.1693
Previous Segment Contrasts: p	-64.7975	32.1835	-2.0134	-130.2135	73.0410	-1.7827
Previous Segment Contrasts: r	7.1192	26.6577	0.2671	-105.9308	60.5006	-1.7509
Previous Segment Contrasts: t	60.7247	32.4930	1.8689	134.6985	73.7584	1.8262
Previous Segment Contrasts: th	-144.5203	36.6972	-3.9382	-14.6806	83.1577	-0.1765
Previous Segment Contrasts: tq	135.0252	46.1303	2.9270	-44.8086	104.5546	-0.4286
Previous Segment Contrasts: uh	85.5073	36.3734	2.3508	-130.6108	82.5626	-1.5820
Previous Segment Contrasts: uhn	130.2063	38.0129	3.4253	296.8486	86.2395	3.4421
Previous Segment Contrasts: uw	39.9422	32.4912	1.2293	99.6472	73.7400	1.3513
Previous Segment Contrasts: w	-51.7527	32.6995	-1.5827	-297.0441	74.1813	-4.0043
Previous Segment Contrasts: y	-29.2844	25.5448	-1.1464	102.0961	57.9969	1.7604
Following Segment Contrasts: ae	104.7720	30.8318	3.3982	110.0866	69.5582	1.5827
Following Segment Contrasts: ah	12.9351	19.5337	0.6622	-108.5097	44.2760	-2.4508
Following Segment Contrasts: ao	0.9659	27.8926	0.0346	-217.4468	63.2976	-3.4353
Following Segment Contrasts: aw	86.2608	23.9332	3.6042	12.4730	54.2705	0.2298
Following Segment Contrasts: ay	-5.8855	24.5991	-0.2393	161.1279	55.7884	2.8882
Following Segment Contrasts: b	-84.4674	22.3360	-3.7817	-32.9283	50.6405	-0.6502
Following Segment Contrasts: d	44.8683	25.1724	1.7824	-165.7747	57.0404	-2.9063
Following Segment Contrasts: dh	22.6945	20.5870	1.1024	-8.8270	46.6703	-0.1891
Following Segment Contrasts: dx	-2.6708	20.6388	-0.1294	-12.6304	46.7887	-0.2699
Following Segment Contrasts: eh	5.8551	25.8294	0.2267	55.4364	58.5921	0.9461
Following Segment Contrasts: ey	150.8135	30.6695	4.9174	-61.3964	69.5902	-0.8823
Following Segment Contrasts: g	10.8254	29.1488	0.3714	-21.6313	66.1343	-0.3271
Following Segment Contrasts: hh	-78.7031	30.0835	-2.6162	-253.1418	68.1759	-3.7131
Following Segment Contrasts: ih	14.3829	22.6898	0.6339	-207.6205	51.4537	-4.0351
Following Segment Contrasts: IVER	-98.3674	36.9748	-2.6604	200.3032	83.8382	2.3892
Following Segment Contrasts: k	-36.0029	20.1252	-1.7889	-104.4591	45.6216	-2.2897
Following Segment Contrasts: 1	69.1847	21.5006	3.2178	-204.2300	48.7435	-4.1899
Following Segment Contrasts: m	-13.4368	20.7858	-0.6464		47.1184	-2.6811
Following Segment Contrasts: n	25.4722	25.8941	0.9837	-48.4440	58.7276	-0.8249
Following Segment Contrasts: NOISE	-63.3482	29.2722	-2.1641	7.3231	66.4062	0.1103
Following Segment Contrasts: ow	57.3460	26.1559	2.1925	-206.7158	59.3052	-3.4856
Following Segment Contrasts: p	33.2165	25.2916	1.3133	10.6086	57.3613	0.1849
Following Segment Contrasts: r	-86.6010	27.2464	-3.1784	-286.7342	61.8008	-4.6397
Following Segment Contrasts: s Following Segment Contrasts: SIL	-40.4365	21.2791	-1.9003	-36.1520	48.1409	-0.7510
	-37.7730	21.6427	-1.7453	-145.8493	49.0551	-2.9732

Following Segment Contrasts: t	-19.6718	19.8171	-0.9927	-23.8362	44.9353	-0.5305
Following Segment Contrasts: tq	-23.8433	21.8228	-1.0926	21.0152	49.4815	0.4247
Following Segment Contrasts: uh	9.5644	29.1717	0.3279	-70.2584	66.1770	-1.0617
Following Segment Contrasts: v	-31.8476	22.0112	-1.4469	34.8147	49.8971	0.6977
Following Segment Contrasts: VOCNOISE	50.5607	21.9796	2.3004	-63.3057	49.8428	-1.2701
Following Segment Contrasts: w	12.0340	20.3168	0.5923	-267.3300	46.0632	-5.8035
Following Segment Contrasts: y	-90.5808	24.9069	-3.6368	151.7701	56.4862	2.6869
	/1	5/				
		F1			F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercent	338.9652	57.8612	5.8582	1437.0778	244.7275	5.8722
Intercept F0	0.3421	0.0810	4.2217	0.6845	0.1305	5.2452
Duration (ms)					0.1303	-7.7759
Sex: male	0.7191	0.1334 18.3701	5.3893 -2.7551	-1.6471 -105.3314	79.3753	-1.3270
		8.6489	1.2721	-105.5514		
Timestep: 30% Timestep: 40%	11.0027	8.6509	1.6933	-21.1128	13.2727 13.2760	-1.5907
Timestep: 40%	14.6489 12.1235	8.6509	1.6933	-51.0333	13.2760	-2.8011
Timestep: 50%					13.2837	
	5.3671	8.6607	0.6197	-60.7705		-4.5718
Timestep: 70%	-4.7636	8.6666	-0.5497	-66.9184	13.3025	-5.0305
Timestep: 80%	-17.2124	8.6737	-1.9844	-69.8863	13.3145	-5.2489
Previous Segment Contrasts: k	48.5911	60.8685	0.7983	95.9628	241.0494	0.3981
Previous Segment Contrasts: r	74.6292	55.4805	1.3451	34.9223	237.9516	0.1468
Previous Segment Contrasts: s	171.6636	64.4054	2.6654	-84.0724	243.5579	-0.3452
Previous Segment Contrasts: t	-78.5296	62.1999	-1.2625	282.1740	242.0197	1.1659
Previous Segment Contrasts: th	84.6284	61.4545	1.3771	120.4463	241.4317	0.4989
Following Segment Contrasts: dh	-95.7493	42.7676	-2.2388	153.9513	66.2859	2.3225
Following Segment Contrasts: dx	10.1011	62.5723	0.1614	129.4595	242.2522	0.5344
Following Segment Contrasts: g	178.8470	34.2059	5.2285	28.8576	53.6618	0.5378
Following Segment Contrasts: k	126.7844	31.5482	4.0188	-44.8650	49.5354	-0.9057
Following Segment Contrasts: t	0.6735	57.8290	0.0116	136.2847	239.2974	0.5695
Following Segment Contrasts: tq	-75.6205	39.4636	-1.9162	242.9349	60.8462	3.9926
	/1	ı/				
		F1			F2	
	Estimate	Std. Error	t	Estimate	Std. Error	t
Intercept	287.1348	37.7177	7.6127	1878.2541	123.0542	15.2636
F0	0.6398	0.0424	15.0849	0.1332	0.1400	0.9512
Duration (ms)	0.0077	0.0438	0.1763	-0.5973	0.1456	-4.1013
Sex: male	-36.5297	16.7690	-2.1784	-250.6717	44.7611	-5.6002
Timestep: 30%	6.9619	5.5062	1.2644	-26.1037	18.3936	-1.4192
Timestep: 40%	10.6273	5.5062	1.9301	-76.0825	18.3937	-4.1363
Timestep: 50%	12.1414	5.5062	2.2050	-140.6122	18.3936	-7.6446
Timestep: 60%	12.7127	5.5062	2.3088	-208.2720	18.3937	-11.3230
Timestep: 70%	15.0172	5.5063	2.7273	-261.0361	18.3940	-14.1914
Timestep: 80%	16.9967	5.5070	3.0864	-307.6113	18.3964	-16.7213
Previous Segment Contrasts: g	-3.0157	34.9430	-0.0863	-222.0075	116.2963	-1.9090
Previous Segment Contrasts: hh	-18.5234	43.7783	-0.4231	-435.7914	145.8556	-2.9878
Previous Segment Contrasts: 1	88.4494	32.9554	2.6839	-438.6781	109.7359	-3.9976
Previous Segment Contrasts: n	56.8969	31.3490	1.8150	-52.0986	104.3633	-0.4992
Previous Segment Contrasts: r	91.6244	31.1673	2.9398	-383.5136	103.7077	-3.6980
Previous Segment Contrasts: sh	-8.8277	37.0824	-0.2381	-205.6986	123.4362	-1.6664
Previous Segment Contrasts: th	43.1778	36.3271	1.1886	-139.1174	120.9475	-1.1502
Following Segment Contrasts: ah	-21.5636	15.1383	-1.4244	160.2872	50.4721	3.1758
			· · · · · · · · · · · · · · · · · · ·		V	

Following Segment Contrasts: ao -4.6548 21.3965 -0.2175 108.8188 71.3892 Following Segment Contrasts: ay 10.6308 17.5738 0.6049 225.7965 58.6179 Following Segment Contrasts: b -75.0397 22.1667 -3.3852 152.0441 73.9510 Following Segment Contrasts: ch -29.7519 34.2726 -0.8681 752.4799 114.2546 Following Segment Contrasts: ch -37.7534 33.2832 -1.1343 497.1671 111.0146 Following Segment Contrasts: dh -31.2973 15.2269 -2.0554 423.0916 50.734 Following Segment Contrasts: dx -21.8622 23.3306 -0.9371 451.3075 77.7979 Following Segment Contrasts: ch -15.3188 15.8800 -0.9647 85.6675 52.9259 Following Segment Contrasts: f -55.4887 21.3487 -2.5992 542.8119 70.9559	1.5243 3.8520 2.0560 6.5860 4.4784 8.3395 5.8010
Following Segment Contrasts: b-75.039722.1667-3.3852152.044173.9510Following Segment Contrasts: ch-29.751934.2726-0.8681752.4799114.2546Following Segment Contrasts: d-37.753433.2832-1.1343497.1671111.0146Following Segment Contrasts: dh-31.297315.2269-2.0554423.091650.7334Following Segment Contrasts: dx-21.862223.3306-0.9371451.307577.7979Following Segment Contrasts: eh-15.318815.8800-0.964785.667552.9259	2.0560 6.5860 4.4784 8.3395 5.8010
Following Segment Contrasts: ch -29.7519 34.2726 -0.8681 752.4799 114.2546 Following Segment Contrasts: d -37.7534 33.2832 -1.1343 497.1671 111.0146 Following Segment Contrasts: dh -31.2973 15.2269 -2.0554 423.0916 50.7334 Following Segment Contrasts: dx -21.8622 23.3306 -0.9371 451.3075 77.7979 Following Segment Contrasts: eh -15.3188 15.8800 -0.9647 85.6675 52.9259	6.5860 4.4784 8.3395 5.8010
Following Segment Contrasts: d -37.7534 33.2832 -1.1343 497.1671 111.0146 Following Segment Contrasts: dh -31.2973 15.2269 -2.0554 423.0916 50.7334 Following Segment Contrasts: dx -21.8622 23.3306 -0.9371 451.3075 77.7979 Following Segment Contrasts: eh -15.3188 15.8800 -0.9647 85.6675 52.9259	4.4784 8.3395 5.8010
Following Segment Contrasts: dh -31.2973 15.2269 -2.0554 423.0916 50.7334 Following Segment Contrasts: dx -21.8622 23.3306 -0.9371 451.3075 77.7979 Following Segment Contrasts: eh -15.3188 15.8800 -0.9647 85.6675 52.9259	8.3395 5.8010
Following Segment Contrasts: dx -21.8622 23.3306 -0.9371 451.3075 77.7979 Following Segment Contrasts: eh -15.3188 15.8800 -0.9647 85.6675 52.9259	5.8010
Following Segment Contrasts: eh -15.3188 15.8800 -0.9647 85.6675 52.9259	
Following Segment Contracts: f 55 4887 21 2487 2 5002 542 8110 70 0550	1.6186
Following Segment Contrasts. 1 -33.4887 21.3487 -2.3992 342.8119 70.9339	7.6500
Following Segment Contrasts: g -77.7633 29.1181 -2.6706 309.1788 96.8819	3.1913
Following Segment Contrasts: hh -21.5067 17.5710 -1.2240 288.3744 58.2997	4.9464
Following Segment Contrasts: ih -36.9852 17.1589 -2.1554 117.3864 57.1069	2.0556
Following Segment Contrasts: IVER -80.4830 56.2321 -1.4313 538.9767 155.8020	3.4594
Following Segment Contrasts: iy -63.1409 19.7990 -3.1891 162.9471 66.0208	2.4681
Following Segment Contrasts: k -45.0338 23.3882 -1.9255 303.4867 77.9284	3.8944
Following Segment Contrasts: m -9.5400 28.3603 -0.3364 354.0792 94.5192	3.7461
Following Segment Contrasts: n -31.9614 21.7599 -1.4688 410.6735 72.5878	5.6576
Following Segment Contrasts: NOISE 22.1182 22.7219 0.9734 212.7151 75.7575	2.8078
Following Segment Contrasts: ow 0.3739 28.7836 0.0130 -170.5122 95.9582	-1.7769
Following Segment Contrasts: p -46.7522 28.8440 -1.6209 446.4102 96.0353	4.6484
Following Segment Contrasts: s -2.7399 29.1816 -0.0939 500.3661 97.2001	5.1478
Following Segment Contrasts: SIL -32.7765 19.7584 -1.6589 118.0632 65.7648	1.7952
Following Segment Contrasts: t -20.9551 24.7198 -0.8477 573.7911 82.2842	6.9733
Following Segment Contrasts: th -68.0650 22.1142 -3.0779 202.0058 73.7651	2.7385
Following Segment Contrasts: tq -58.0988 30.4572 -1.9076 659.6176 101.3625	6.5075
Following Segment Contrasts: uh -96.6390 23.6686 -4.0830 164.3241 78.5331	2.0924
Following Segment Contrasts: VOCNOISE -73.5652 17.7934 -4.1344 168.5474 59.2474	2.8448
Following Segment Contrasts: w 5.5744 16.0909 0.3464 239.2751 53.5821	4.4656
Following Segment Contrasts: y 97.3136 29.9994 3.2439 31.4841 99.6342	0.3160
Following Segment Contrasts: z -20.1400 34.2788 -0.5875 371.9210 114.1997	3.2568
Following Segment Contrasts: zh -16.4400 40.9668 -0.4013 447.0736 136.5395	3.2743

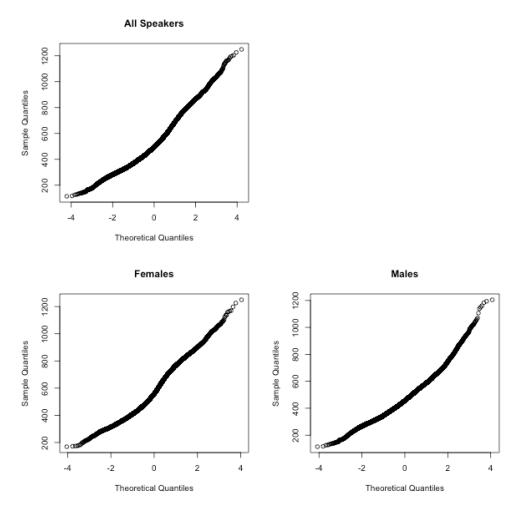


Figure A.1. Quantiles for the first formant by gender.

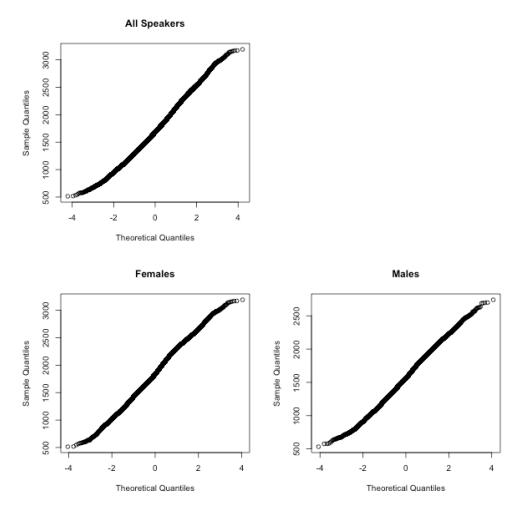


Figure A.2. Quantiles for the second formant by gender.

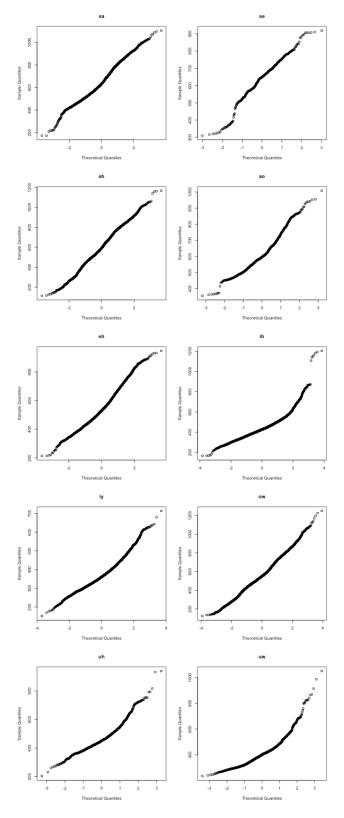


Figure A.3. Quantiles for the first formant by vowel.

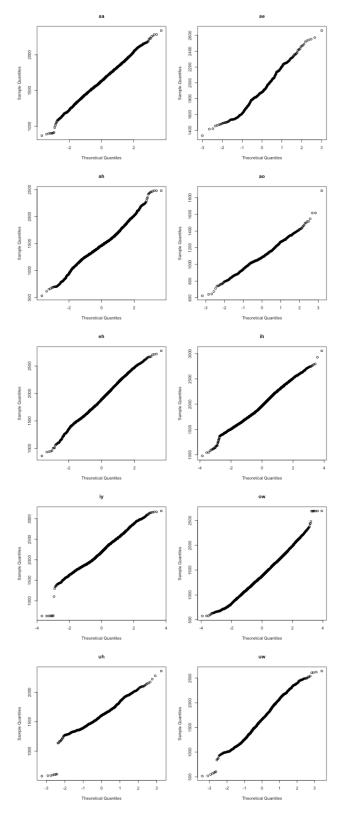


Figure A.4. Quantiles for the second formant by vowel.

A.2 Supplementary Information for Chapter 3

Table A.7: Frequency by gender for each vowel in the Buckeye Corpus irregular English verbs data.

Vowel	Gender	Frequency
aa	female	2107
aa	male	2590
ae	female	182
ae	male	196
ah	female	1617
an	male	2373
ao	female	287
ao	male	392
eh	female	1841
en	male	1568
ih	female	3654
111	male	4480
	female	2387
iy	male	2331
ow	female	5418
UW	male	6223
uh	female	434
ull	male	434
uw	female	693
uw	male	833

	Frequency in	Number of			Number of	Number of
	the Current	Speakers	Frequency in	Average NDL	Present Tense	Past Tense
Vowel	Data Subset	Produced by	the Buckeye	Measure	Tokens	Tokens
/a/	671	40	6.5108	0.6624	11	660
/æ/	54	26	3.3527	0.1014	11	43
/ʌ/	570	38	5.8917	0.1388	493	77
/ɔ/	97	33	3.8304	0.1970	27	70
/ε/	487	40	5.9828	0.1752	335	152
/1/	1160	40	6.4258	0.2183	1141	19
/i/	674	40	5.7009	0.3902	621	53
/o/	1663	40	7.1277	0.3010	1602	61
/υ/	124	34	4.7595	0.5331	3	121
/u/	218	38	4.2203	0.2498	41	177

Table A.8: Information about the vowels in the data set.

Traditional aradigm/Gang	Lemma	Word	Tense	Frequency in the Current Data Subset	Number of Speakers Produced by	Frequency in the Buckeye	Average NDL Measu (past tense activation
	feed	fed	past	4	3	2.3979	-0.0265
		feed	present	8	7	2.6391	0.0427
/i/→/ε/	meet	met	past	66	24	4.2047	-0.0214
	meet	meet	present	26	14	3.2958	0.0323
	read	read	past	75	26	4.4427	-0.0051
	drink	drink	present	11	6	3.0445	-0.1644
	eat	eat	present	38	18	3.7136	0.1389
/i/→/eɪ/		sang	past	5	2	1.7918	0.0842
	sing	sing	present	6	4	1.9459	-0.0978
/i/→/ʌ/	annin a	swing	present	4	2	1.9459	-0.2027
	swing						
/i/→/ʊ/	sneak	sneak	present	2	2	1.3863	0.0640
	speak	spoke	past	2	2	1.0986	0.1239
/i/→/o/	speak	speak	present	20	15	3.0445	0.0547
	steal	steal	present	3	3	1.0986	0.0041
	0.9930.5	saw	past	63	28	4.2627	0.2677
/i/→/a/	see	see	present	543	40	6.3404	0.4957
		gave	past	8	7	3.8067	0.1286
/1/→/e1/	give	give	present	148	36	5.0370	0.3438
	-						
/1/→/æ/	sit	sat	past	12	8	2.4849	0.1084
		sit	present	104	32	4.6634	0.0652
	stick	stuck	past	14	10	2.8332	0.0265
1-1 . 1 . 1	SHOK	stick	present	5	4	2.7081	-0.0357
/1/→/ʌ/		won	past	13	8	2.9957	0.0320
	win	win	present	6	5	2.4849	-0.1190
/ı/→/ʊ/	spin	spin	present	1	1	1.0986	0.0237
/1//0/	apin						
/ε/→/i/	lead	led	past	2	2	1.0986	-0.0359
		lead	present	5	5	2.3979	0.1289
/ε/→/ο/	wear	wore	past	5	3	1.7918	0.0270
12/	wear	wear	present	24	15	3.7612	-0.0698
		got	past	725	40	6.6093	0.6873
/ε/→/a/	get	get	present	1122	40	7.0273	0.2109
101 110	tread	tread	present	1	1	0.6931	-0.0711
	ucau	_					
/eɪ/→/ʌ/	hang	hung	past	5	2	1.9459	-0.0500
	8	hang	present	10	9	2.7081	-0.0013
/eɪ/→/ʊ/	take	took	past	120	35	4.8203	0.5709
/0//0/	lanc	take	present	6	4	5.8171	0.3539
		tore	past	3	3	1.6094	-0.0433
	tear	tear	present	1	1	0.6931	0.0052
/eɪ/→/o/	wake	woke	past	2	2	1.0986	0.1027
	break	broke	past	18	13	2.9957	0.1672
11-1-1							
/aɪ/→/ɪ/	hide	hid	past	1	1	1.0986	0.0152
/aɪ/→/ʌ/	strike	struck	past	1	1	0.6931	0.0866
/aɪ/→/u/	fly	flew	past	3	3	1.3863	0.0399
	drive	drove	past	9	6	2.3026	0.0078
	ride	rode	past	5	3	1.9459	0.0948
/aɪ/→/o/		wrote	past	22	11	3.1781	0.0093
	write	write	present	1	1	3.8067	0.1145
/aɪ/→/ɑ/	fight	fought	present	2	2	1.0986	-0.0478
/au→/u/	ngni						
/aɪ/→/aʊ/	find	find	present	3	3	4.8283	0.1993
		found	past	7	6	4.2195	-0.0264
/∧/→/eɪ/	come	came	past	7	7	5.0626	-0.1199
	come	come	present	268	37	5.6312	-0.0334
1.1.1-1	and the second	ran	past	26	15	3.2958	0.0298
/ʌ/→/æ/	run	run	present	46	21	4.3175	0.1112
		held	past	7	5	2.0794	0.0053
	hold	hold	present	17	11	3.0445	-0.0119
/o/→/ε/	L	_		1			
	swear	swore	past		1	0.6931	0.1578
		swear	present	1	1	1.9459	-0.0698
	blow	blew	past	5	5	1.7918	0.0399
		blow	present	2	2	1.6094	0.0993
		grew	past	47	25	3.9703	0.0402
	grow	grow	present	33	19	3.5264	-0.0089
/o/→/u/		knew	past	121	33	4.8363	0.3763
	know	know	present	1729	40	7.4782	0.3209
	L		- P				
	throw	threw	past	9	7	2.3026	0.0548
		throw	present	29	19	3.4012	0.1547
/u/→/o/	choose	chose	past	4	4	1.6094	0.2900
/u/→/0/	choose	choose	present	21	12	3.0910	0.1308
101 10 10		shot	past	10	6	2.9957	0.1278
/u/→/a/	shoot	shoot	present	10	10	3.4657	0.1278
/a/→/ε/	fall	fall	present	11	10	3.2581	0.0395
		fell	past	3	3	1.3863	-0.0213
/a/→/u/	dearry	drew	past	1	1	0.6931	0.1121
	draw	draw	present	11	7	2.7081	0.0784

Table A.9: Information about the words in the data set.

Analysis Technique Model Call absFvalDispersion ~ # predictors of interest Tense * Percent + ObsVowelSupportTenseNP * Percent # fixed effect of vowel + Vowel dispersion from # word frequency and vowel duration interaction vowel space LMER + logmsDur * logBuckeyeFormFreq entre # phonetic context Prev_VoicingContrasts + Prev_PlaceContrasts + Prev_MannerContrasts + Next_VoicingContrasts + Next_PlaceContrasts + Next_MannerContrasts # random speaker effects + (logmsDur|Speaker) + (logBuckeyeFormFreq Speaker) + (1 |Speaker) absFvalOnsetDeviation ~ # predictors of interest Tense * Percent + ObsVowelSupportTenseNP * Percent # fixed effect of vowel + Vowel # word frequency and vowel duration interaction deviance from LMER vowel onse + logmsDur * logBuckeyeFormFreq # phonetic context Prev_VoicingContrasts + Prev_PlaceContrasts + Prev_MannerContrasts Next_VoicingContrasts + Next_PlaceContrasts + Next_MannerContrasts # random speaker effects + (logmsDur|Speaker) + (logBuckeyeFormFreq Speaker) + (1|Speaker) absFvalOffsetDeviation ~ # predictors of interest Tense * Percent + ObsVowelSupportTenseNP * Percent # fixed effect of vowel + Vowel # word frequency and vowel duration interaction deviance from LMER + logmsDur * logBuckeyeFormFreq vowel offset # phonetic context + Prev_VoicingContrasts + Prev_PlaceContrasts + Prev_MannerContrasts + Next_VoicingContrasts + Next_PlaceContrasts + Next_MannerContrasts # random speaker effects + (logmsDur|Speaker) (logBuckeyeFormFreq Speaker) + (1|Speaker) LogFval ~ ti(TimeStep) + # predictors of interest ti(TimeStep, by=Tense) + Tense + ti(TimeStep, ObsVowelSupportTenseNP) + ObsVowelSupportTenseNP +
vowel duration and frequency interaction te(logmsDur, logBuckeyeFormFreq) + # fixed effect of vowel ti(TimeStep, by=Vowel) + Vowel + nonlinear # fixed effects of consonant assimilation GAM (BAM) formant # ti(TimeStep, by=interaction(Vowel, Prev_MannerContrasts)) + # non-convergence movement # ti(TimeStep, by=interaction(Vowel, Prev_VoicingContrasts)) + # non-convergence # ti(TimeStep, by=interaction(Vowel, Prev_PlaceContrasts)) + # non-convergence # ti(TimeStep, by=interaction(Vowel, Next_MannerContrasts)) + # non-convergence # ti(TimeStep, by=interaction(Vowel, Next_VoicingContrasts)) + # non-convergence # ti(TimeStep, by=interaction(Vowel, Next_PlaceContrasts)) + # non-convergence (Prev_MannerContrasts + Prev_VoicingContrasts + Prev_PlaceContrasts) * Vowel + Vowel * (Next_MannerContrasts + Next_VoicingContrasts + Next_PlaceContrasts) + # random effects of speaker s(TimeStep, Speaker, by=Vowel, bs="re")

Table A.10: Model calls for each global and by vowel analysis in Chapter 3.

Table A.11: Coefficients for the F1 and F2 global (all vowels pooled) LMER models of vowel dispersion.

Fit Fit Predictor Estimate std.Error t.value Estimate (Intercept) -58.3827 29.2753 -1.9943 -498.4431 Tense: past -32.8123 2.6066 -12.5882 -47.7638 Percent: 40 -20.6675 2.1830 -9.4676 8.0062 Percent: 40 -35.3127 2.1830 -16.9395 17.9984 Percent: 70 -36.9782 2.1830 -16.9395 21.6940 Percent: 70 -36.9782 2.1830 -15.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Vowel: a 10.7633 4.0242 2.6746 -79.2013 Vowel: a -9.7500 3.4576 2.8199 373.3863 Vowel: a -10.7633 4.0242 2.6746 -79.2013 Vowel: a -3.7689 2.0953 -1.7988 -26.3873 Vowel: a -3.34486 3.8910 -8.5963 22.6628 Vowel: a 5.8728	F2 std.Error 74.2501 6.9191 5.7966 5.7966 5.7966 5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	t.value -6.7130 -6.9031 0.7023 1.3812 2.2466 3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757 -3.0422
(Intercept) -58.3827 29.2753 -1.9943 -498.4431 Tense: past -32.8123 2.6066 -1.2.5882 -47.7638 Percent: 30 -9.9599 2.1830 -1.6.2564 40.708 Percent: 40 -20.6675 2.1830 -1.3.6955 13.0229 Percent: 50 -29.8967 2.1830 -1.6.1765 17.9984 Percent: 70 -36.9782 2.1830 -1.5.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -12.94.344 Vowel: a 152.117 2.5651 13.7271 -80.7634 Vowel: a 10.7633 4.0242 2.6746 -79.2013 Vowel: a -3.37689 2.0953 -1.7988 -26.3873 Vowel: i -3.37689 2.0953 -1.7988 -26.6755 Vowel: i -3.3486 3.8910 -8.5663 22.6628 Vowel: i -3.34846 3.8810 -8.5663 22.6628 Vowel: i -3.43486 3.8810 -8.563 <	74.2501 6.9191 5.7966 5.7966 5.7966 5.7966 5.7966 5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-6.7130 -6.9031 0.7023 1.3812 2.2466 3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 30 -9.9599 2.1830 -4.5626 4.0708 Percent: 40 -20.6675 2.1830 -9.4676 8.0062 Percent: 50 -29.8967 2.1830 -16.1765 17.7984 Percent: 60 -35.3127 2.1830 -16.1765 17.7984 Percent: 70 -36.9782 2.1830 -16.1765 17.7984 Percent: 80 -34.8091 2.1830 -16.9395 21.6940 Percent: 80 -34.8091 2.1830 -16.1765 17.7984 Vowel: a 35.2117 2.5651 13.7271 80.7634 Vowel: a -3.1272 2.1471 -14.5440 99.9519 Vowel: a -3.7689 2.0953 -1.7988 -26.3873 Vowel: a -3.7689 2.2646 27.5149 224.7182 Vowel: a -3.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1226 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.78	5.7966 5.7966 5.7966 5.7966 5.7966 5.7976 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	0.7023 1.3812 2.2466 3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 40 -20.6675 2.1830 -9.4676 8.0062 Percent: 50 -29.8967 2.1830 -13.6955 13.0229 Percent: 60 -35.3127 2.1830 -16.1765 17.9984 Percent: 70 -36.9782 2.1830 -16.0395 21.6940 Percent: 80 -34.8091 2.1830 -15.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Vowel: a 10.7633 4.0242 2.6746 -79.2013 Vowel: a -9.1273 2.1471 -14.5440 -93.9519 Vowel: a -3.12273 2.1471 -14.5440 -93.9519 Vowel: a -3.3486 3.8910 -8.5963 22.6628 Vowel: a 5.8728 2.6796 2.1917 66.7550 Duration (log) 90.33310 5.1256 5.9214 161.4549 Previous Place: glottal 17.030 9.8372 1.7488 -79.4131 Previous Place: glottal 17.030 9.8372 1.74	5.7966 5.7966 5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	1.3812 2.2466 3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 50 -29.8967 2.1830 -13.6955 13.0229 Percent: 60 -35.3127 2.1830 -16.1765 17.9984 Percent: 80 -34.8091 2.1830 -15.9355 21.6940 Percent: 80 -34.8091 2.1830 -15.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Vowel: a 35.2117 2.5651 13.7271 -80.7634 Vowel: a 9.7500 3.4576 2.8199 33.3863 Vowel: a -31.2273 2.1471 -14.5440 -93.9519 Vowel: a -3.7689 2.0953 -1.7988 -26.3873 Vowel: a -2.94125 1.8194 -16.1657 108.2589 Vowel: a 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Previous Place: diphtong 4.5282 12.0395 3.6154 27.51590 Previous Place: diphtong 4.52203 4.6041 5.4	5.7966 5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	2.2466 3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 60 -35.3127 2.1830 -16.1765 17.9984 Percent: 70 -36.9782 2.1830 -16.9395 21.6940 Percent: 80 -34.8091 2.1830 -15.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Yowel: a 35.2117 2.5651 13.7271 -80.7634 Yowel: a -16.1637 4.0242 2.6746 -79.2013 Vowel: a -3.7689 2.0953 -1.77988 -26.3873 Vowel: 1 -3.7689 2.0953 -1.77988 -26.3873 Vowel: 0 -33.4486 3.8910 -8.5963 22.6628	5.7966 5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	3.1050 3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 70 -36.9782 2.1830 -16.9395 21.6940 Percent: 80 -34.8091 2.1830 -15.9458 23.4357 NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Vowel: a 35.2117 2.5651 13.7271 80.7634 Vowel: a: 9.7500 3.4576 2.8199 337.3863 Vowel: a: -31.2273 2.1471 -14.5440 -93.9519 Vowel: a: -3.7689 2.0953 -1.7988 -26.3873 Vowel: a: -2.29.4125 1.8194 -16.1657 108.2589 Vowel: o: -33.4486 3.8910 -8.5963 22.6628 Vowel: o: -33.4486 3.8910 -8.5963 22.6628 Vowel: o: -3.7282 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6402 8.1176 -54.7933 Previous Vaiceiles diphthong 43.5282 12.0395 3.61	5.7966 5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	3.7425 4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Percent: 80 34.8091 2.1830 -15.9458 23.4357 NDL Cue Strength 59.3505 5.9354 9.9993 -129.4344 Vowel: a 35.2117 2.5651 13.7271 80.7634 Vowel: a 0.7500 3.4576 2.8199 337.3863 Vowel: a 31.2273 2.1471 14.5440 93.9519 Vowel: a 37.689 2.0653 1.7988 26.3873 Vowel: a 29.4125 1.8194 16.1657 108.2589 Vowel: a 29.4125 1.8194 16.1657 108.2589 Vowel: a 29.4125 1.8194 16.157 108.2589 Vowel: a 5.8728 2.6796 2.1917 6.67550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Place: glottal 17.0030 9.8372 1.7488 -79.4131 Previous Place: glottal 30.0689 4.6542	5.7966 15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	4.0430 -8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
NDL Cue Strength -59.3505 5.9354 -9.9993 -129.4344 Vowel: a 35.2117 2.5651 13.7271 -80.7634 Vowel: a 9.7500 3.4576 2.8199 337.3863 Vowel: c -31.2273 2.1471 -14.5440 -93.9519 Vowel: i 62.3089 2.0466 27.5149 224.7182 Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: o -33.4486 3.8910 -8.5963 22.6628 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: glottal 10.6178 3.0861 0.2002 -1.7969 Previous Place: glatot-aliveolar 62.6837 5.	15.7576 6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-8.2141 -11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: a 35.2117 2.5651 13.7271 -80.7634 Vowel: ac 10.7633 4.0242 2.6746 -79.2013 Vowel: a 9.7500 3.4576 2.8199 337.3863 Vowel: a -31.2273 2.1471 -14.5440 -93.9519 Vowel: i 62.3089 2.2646 27.5149 224.7182 Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: ibail 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: labia 11.9971 2.6722 4.4896 23.9764 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Manner: approximate 28.0839 8.5230 3.29251 160.1612 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: f	6.8104 10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-11.8588 -7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: ac 10.7633 4.0242 2.6746 -79.2013 Vowel: ac 9.7500 3.4576 2.8199 337.3863 Vowel: c -31.2273 2.1471 -14.5440 -93.9519 Vowel: i 62.3089 2.2646 27.7149 224.7182 Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: o -33.4486 3.8910 -8.5963 22.6628 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: iglottal 10.9971 2.6722 4.4896 23.9764 Previous Place: iabial 11.9971 2.6722 4.4896 23.9764 Previous Place: labial 10.6178 3.0861 0.2002 -1.7969 Previous Place: labiad 0.6178 3.2936	10.6779 9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-7.4173 36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: \circ 9,75003.45762.8199337.3863Vowel: ε -31.22732.1471-14.5440-93.9519Vowel: \circ 1.7988-26.8873Vowel: \circ 62.30892.264627.5149224.7182Vowel: \circ -29.41251.8194-16.1657108.2589Vowel: \circ -33.44863.8910-8.596322.6628Vowel: \circ -33.44863.8910-8.596322.6628Vowel: \circ -33.44863.8910-8.596322.6628Vowel: \circ 0.335105.12565.9214161.4549Frequency (log)91.176212.61427.2280243.7842Previous Voicing: voiceless21.54412.65408.1176-54.7933Previous Place: dental17.20309.83721.7488-79.4131Previous Place: ibithong43.528212.03953.6154275.1590Previous Place: ibith11.99712.67224.489623.9764Previous Place: labial11.99712.67224.489623.9764Previous Place: labial0.61783.08610.2002-1.7969Previous Place: labial0.61783.08610.2002-1.7969Previous Place: labial0.61783.08610.2002-1.7969Previous Manner: diphthong-4.479812.0180-0.3728-18.3934Previous Manner: diphthong-4.479812.0180-0.3728-18.3934Previous Manner: diphthong-1.76669.43730.92946Pre	9.1794 5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	36.7545 -16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: e -31.2273 2.1471 -14.5440 -93.9519 Vowel: i -3.7689 2.0953 -1.7988 -26.3873 Vowel: i 62.3089 2.2646 27.5149 224.7182 Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: iabial 11.9971 2.6722 4.4896 23.9764 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labial 0.6178 3.0861 0.2002 -1.7969 Previous Place: labial 0.6178 3.0861 0.2002 -1.7969	5.7010 5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-16.4800 -4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: i -3.7689 2.0953 -1.7988 -26.3873 Vowel: i 62.3089 2.2646 27.5149 224.7182 Vowel: o -33.4486 3.8910 -8.5963 22.6628 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labial 0.6178 3.0861 0.2002 -1.7969 Previous Place: palata 0.6178 3.0861 0.2002 -1.7969 Previous Place: nake 60.8194 10.0142 6.0733 297.2667 Previous Manner: approximate	5.5629 6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	-4.7434 37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: i 62.3089 2.2646 27.5149 224.7182 Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: dipthhong 43.5282 12.0395 3.6154 27.5799 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labia 0.6178 3.0861 0.0002 -1.7969 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner:	6.0120 4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	37.3783 22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: o -29.4125 1.8194 -16.1657 108.2589 Vowel: u -33.4486 3.8910 -8.5963 22.6628 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: igbithong 43.5282 12.0395 3.6154 275.1590 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: labio-dental 0.6178 3.0861 0.2002 -1.7969 Previous Place: labio-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934	4.8314 10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	22.4074 2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: o -33.4486 3.8910 -8.5963 22.6628 Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: diphthong 43.5282 12.0395 3.6154 275.1590 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labia 11.9971 2.6722 4.4896 23.9764 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Place: labia 0.6178 3.0861 0.2002 -1.7969 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous	10.3279 7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	2.1943 9.3845 11.4781 7.5130 -7.7757
Vowel: u 5.8728 2.6796 2.1917 66.7550 Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: idental 17.2030 9.8372 1.7488 -79.4131 Previous Place: idpithong 43.5282 12.0395 3.6154 275.1590 Previous Place: iglottal 30.0689 4.6542 6.4606 281.9279 Previous Place: iabial 11.9971 2.6722 4.4896 23.9764 Previous Place: labial 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: diphthong 4.4798 12.0180 -0.3728 -18.394 Previous Manner: fiap 77.2486 14.8704 5.1948 116.2946 <td>7.1134 14.0663 32.4483 7.0467 26.1042 31.9482</td> <td>9.3845 11.4781 7.5130 -7.7757</td>	7.1134 14.0663 32.4483 7.0467 26.1042 31.9482	9.3845 11.4781 7.5130 -7.7757
Duration (log) 30.3510 5.1256 5.9214 161.4549 Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: diphthong 43.5282 12.0395 3.6154 275.1590 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: palata 0.6178 3.0861 0.2002 -1.7969 Previous Place: palata-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: fiphthong 4.4798 12.0180 -0.3728 -18.934 Previous Manner: fiphthong 7.4786 14.8704 5.1948 116.2946 Previous Manner: fiphthong 7.2486 14.8704 5.1948	14.0663 32.4483 7.0467 26.1042 31.9482	11.4781 7.5130 -7.7757
Frequency (log) 91.1762 12.6142 7.2280 243.7842 Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: idphthong 43.5282 12.0395 3.6154 275.1590 Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labia-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: plata-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 7.6658 0.9707 110.0829 Previous Manner: stop 25.8115 8.3331 3.0900 191.8042 <	32.4483 7.0467 26.1042 31.9482	7.5130 -7.7757
Previous Voicing: voiceless 21.5441 2.6540 8.1176 -54.7933 Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: dipthtong 43.5282 12.0395 3.6154 275.1590 Previous Place: iglottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labia 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Place: diphtong 17.8941 9.5555 1.8726	7.0467 26.1042 31.9482	-7.7757
Previous Place: dental 17.2030 9.8372 1.7488 -79.4131 Previous Place: diphthong 43.5282 12.0395 3.6154 275.1590 Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: labio-dental 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Mance: taplothong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1	26.1042 31.9482	
Previous Place: diphthong 43.5282 12.0395 3.6154 275.1590 Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Previous Manner: stop 25.8115 8.3531 3.09001 191.8042 Next Place: dental -19.9179 3.2212 -6.1833	31.9482	-3.0422
Previous Place: glottal 30.0689 4.6542 6.4606 281.9279 Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: lata 56.9125 12.0803 4.7112 55.4151 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: fricative 7.4412 7.6658 0.9707 110.0829 Previous Manner: fax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: stop 25.8115 8.3531 3.0900 19.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833		
Previous Place: labial 11.9971 2.6722 4.4896 23.9764 Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: lax 56.9125 12.0803 4.7112 54.1151 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: dipthtong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: fricative 7.4412 7.6658 0.9707 110.0829 Previous Manner: stop 25.8115 8.3531 3.0900 191.8492 Previous Manner: stop 25.8115 8.3531 3.0900 191.8492 Next Place: dental -19.9179 3.2212 -6.1833 3.2946 Next Place: dental 1.99179 3.2212 -6.183 3.2946 Next Place: dental 1.99179 3.2212 -6.183 3.9.2		8.6127
Previous Place: labio-dental 25.2603 4.6041 5.4864 113.6556 Previous Place: lax 56.9125 12.0803 4.7112 54.1151 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: tense 60.8194 10.0142 6.0733 297.2667 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: figp 77.2486 14.8704 5.1948 116.2946 Previous Manner: ficative 7.4412 7.6658 0.9707 110.0829 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3331 3.0900 191.8042 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: labio-dental 5.3473 1.7311 3.0889 47.	12.3416	22.8437
Previous Place: lax 56.9125 12.0803 4.7112 54.1151 Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: dipthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: figh 77.2486 14.8704 5.1948 116.2946 Previous Manner: ficative 7.4412 7.6658 0.9707 110.0829 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Vicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: glotal 5.3473 1.7311 3.0889 47.3702<	7.0875	3.3829
Previous Place: palatal 0.6178 3.0861 0.2002 -1.7969 Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.0476 113.4938 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Vicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: glottal 5.3473 1.7311 3.0889 47.3702 Next Place: labial 1.6234 1.7828 0.9106 58.736	12.2157	9.3041
Previous Place: palato-alveolar 62.6837 5.2308 11.9835 27.2266 Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: fing 77.2486 14.8704 5.1948 116.2946 Previous Manner: ficative 7.4412 7.6658 0.9707 110.0829 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Poice: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6234 1.7828 0.9106 58.7536 <td>32.0621</td> <td>1.6878</td>	32.0621	1.6878
Previous Place: tense 60.8194 10.0142 6.0733 297.2697 Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flip 77.2486 14.8704 5.1948 116.946 Previous Manner: fricative 7.4412 7.6658 0.9707 110.0829 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dipthong 17.8941 9.5555 1.8726 46.7636 Next Place: diptiong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: galatal 4.5456 2.1572 2.1072 -28.8190	8.1958	-0.2192
Previous Manner: approximate 28.0839 8.5230 3.2951 160.1612 Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 0.4707 110.0829 Previous Manner: lax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6234 1.7828 0.9106 58.7532 Ne	13.8769	1.9620
Previous Manner: diphthong -4.4798 12.0180 -0.3728 -18.3934 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: lax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: iglottal 5.3473 1.7311 3.0889 47.702 Next Place: labio-dental 4.0386 3.4812 1.1659 44.6409 Next Place: labi-dental 4.5456 2.1572 2.1072 -28.8190 Next Place: laba -5.52747 19.5666 -2.8250 -4.4656	26.5670	11.1894
Previous Manner: flap 77.2486 14.8704 5.1948 116.2946 Previous Manner: fricative 7.4412 7.6658 0.9707 110.0829 Previous Manner: lax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dipthong 17.8941 9.5555 1.8726 46.7636 Next Place: glottal 5.3473 1.7311 3.0889 47.3702 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6234 1.7828 0.9106 58.7566 Next Place: labia 4.5456 2.1572 2.1072 -28.8190 Next Place: labat 4.5456 2.1572 2.1072 -28.8190 Next	22.6005	7.0866
Previous Manner: fricative 7.4412 7.6658 0.9707 110.0829 Previous Manner: lax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dipthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labia 1.6234 1.7828 0.9106 58.7536 Next Place: labia 1.6234 1.7828 0.9106 58.7536 Next Place: laba 4.5556 2.1572 2.1072 -28.8190 Next Place: laba -5.52747 19.5666 -2.8250 -4.4656 Next Place: l	31.9192	-0.5762
Previous Manner: lax -6.3571 9.4375 -0.6736 113.4938 Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Viace: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dipthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: platal 4.5456 2.1572 2.1072 -28.8190 Next Place: platal 4.5456 2.1572 2.1072 -28.8190 Next Place: platal-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.09811 64.6578	39.4461	2.9482
Previous Manner: nasal 47.6860 8.4085 5.6712 66.5220 Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 1.6524 1.572 2.1072 -28.8190 Next Place: labial 4.5456 2.1572 2.1072 -28.8190 Next Place: inplate-a	20.3182	5.4180
Previous Manner: stop 25.8115 8.3531 3.0900 191.8042 Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: labial 5.3473 1.7311 3.0889 47.3702 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labial 4.0586 3.4812 1.1659 44.6409 Next Place: labial 4.5456 2.1572 2.1072 -28.8190 Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: ense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6558 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fla	25.0599	4.5289
Next Voicing: voiceless 3.0165 1.5760 1.9140 31.4395 Next Place: dental -19.9179 3.2212 -6.1833 39.2946 Next Place: diphthong 17.8941 9.5555 1.8726 46.7636 Next Place: glottal 5.3473 1.7311 3.0889 47.3702 Next Place: labio-dental 1.6234 1.7828 0.9106 58.7536 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: labio-dental 4.0586 2.1572 2.1072 -28.8190 Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: ense 3.8627 9.9884 0.3867 71.0383 Next Maner: approximate -10.3617 9.4358 -1.0981 64.6588 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: flax 46.9746 17.2197 2.7280 61.0983	22.2951	2.9837
Next Place: dentify 3.2212 -6.1833 39.2946 Next Place: diphtong 17.8941 9.5555 1.8726 46.7636 Next Place: glotal 5.3473 1.7311 3.0889 47.3702 Next Place: labial 1.6234 1.7828 0.9106 58.756 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: labio-dental 4.5566 2.8250 -4.4656 Next Place: platal 4.5456 2.1572 2.1072 -28.8190 Next Place: plate-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: flap 7.6158 9.1437 0.8329 -36.4178 Next M	22.1471	8.6605
Next Place: diphong 17.8941 9.5555 1.8726 46.7636 Next Place: Iglottal 5.3473 1.7311 3.0889 47.3702 Next Place: Iabia 1.6234 1.7828 0.9106 58.7536 Next Place: Iabio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: Iabio-dental 4.556 2.1572 2.1072 -28.8190 Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: palato-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: flap 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61	4.1847	7.5130
Next Place: global 5.3473 1.7311 3.0889 47.3702 Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: lax -55.2747 19.5666 -2.8250 -4.4656 Next Place: platal 4.5456 2.1572 2.1072 -2.8190 Next Place: plato-alveolar -3.5265 6.4218 -0.5491 -3.79269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fizitive 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61	8.5554	4.5929
Next Place: labial 1.6234 1.7828 0.9106 58.7536 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: labio-dental 4.556 2.1572 2.1072 -28.8190 Next Place: palato-alto-calveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: namer: 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: ficative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	25.3757	1.8428
Next Place: labio-dental 4.0586 3.4812 1.1659 44.6409 Next Place: lax -55.2747 19.5666 -2.8250 -4.4656 Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: palato-alveolar -3.5265 6.4218 -0.5491 -37.0269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	4.5968	10.3050
Next Place: lax -55.2747 19.5666 -2.8250 -4.4656 Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: palato-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: flaative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	4.7345	12.4098
Next Place: palatal 4.5456 2.1572 2.1072 -28.8190 Next Place: palato-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	9.2437	4.8294
Next Place: palato-alveolar -3.5265 6.4218 -0.5491 -37.9269 Next Place: 10.3627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	51.9656	-0.0859
Next Place: tense 3.8627 9.9884 0.3867 71.0383 Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	5.7220	-5.0366
Next Manner: approximate -10.3617 9.4358 -1.0981 64.6658 Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	17.0608 26.5287	-2.2230
Next Manner: flap -7.7542 9.4420 -0.8212 19.5740 Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	25.0567	2.6778 2.5808
Next Manner: fricative 7.6158 9.1437 0.8329 -36.4178 Next Manner: lax 46.9746 17.2197 2.7280 61.0983	25.0567	2.5808
Next Manner: lax 46.9746 17.2197 2.7280 61.0983	24.2803	-1.4999
	44.40U3	1.3360
Next Manner: nasal 18.9483 9.5316 1.9879 5.6872		0.2247
Next Manner: nasai 18.9483 9.5316 1.9879 5.0872 Next Manner: stop -6.0402 9.2840 -0.6506 -5.0305	45.7338	-0.2041
Tense: past x Percent: 30 15.4293 3.0640 5.0357 -14.8310	45.7338 25.3112	-0.2041
Tense: past x Percent: 30 15.4293 5.0040 5.0357 -14.810 Tense: past x Percent: 40 30.5306 3.0640 9.9644 -24.2537	45.7338 25.3112 24.6529	-1.8229
Tense: past x Percent: 50 44.8250 3.0640 9.5044 -24.237	45.7338 25.3112 24.6529 8.1360	-4.3580
Tense: past x Percent: 60 51.6519 3.0640 14.0298 -53.4307	45.7338 25.3112 24.6529 8.1360 8.1360	-5.0792
Tense: past x Percent: 70 53.1408 3.0640 17.3439 -42.6435	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360	0.0174
Tense: past x Percent: 80 47.3845 3.0640 15.4651 -36.6429	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360	-5 2413
Percent: 30 x NDL Cue Strength 19.6106 6.3897 3.0691 10.0258	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360	-5.2413
Percent: 40 x NDL Cue Strength 42.7670 6.3897 6.6931 33.0379	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360	-4.5038
Percent: 40 x NDL Cue Strength 59.0337 6.3897 9.2388 63.0881	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 16.9673	-4.5038 0.5909
Percent: 60 x NDL Cue Strength 67.9969 6.3897 10.6416 85.9819	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 16.9673 16.9673	-4.5038 0.5909 1.9472
Percent: 00 x NDL Cue Strength 68.5464 6.3897 10.0416 83.5819	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 16.9673 16.9673	-4.5038 0.5909 1.9472 3.7182
Percent: 70 x NDL Cue Strength 62.5850 6.3897 9.7946 95.1271	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 16.9673 16.9673 16.9673	-4.5038 0.5909 1.9472 3.7182 5.0675
Precent. 80 x NDL Cue Suengui 02.3830 0.3697 9.7940 95.1271 Duration (log) x Frequency (log) -16.8536 2.5821 -6.5270 -66.6849	45.7338 25.3112 24.6529 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 8.1360 16.9673 16.9673	-4.5038 0.5909 1.9472 3.7182

Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: lax	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: Jabio-dental	Next Place: Jabial	Next Place: plottal	Next Place: dinhthone	Next Place: dental	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: Jahial	Previous Place: dishthong	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor	
-27.9918	-102.0213	75.2863	23.9457	93.6982	179.9364	48.1386	435.9380	46.2443	166.1501	282.3796	-25.2720	-148.1807	310.6670	86.1178	5.2471	1.5539	46.4744	-67.6621	228.2286	Estimate			g) -0.0622	13.7037	-7.2386	12,8954	5.6377	5.5890	-12.1871	-3.3141	-37.2202	1.9669	-24.2561	-12.2322	10 1069	-18.9572	-0.0010	-6.8857	22.1288	19.5248	-21.1003	54.6334		-19.0957	32,6829	39.3080	-13 3682	-2 0 500	8.1754	0.3145	40.5920	13.4441	101.3612	Estimate	-
	124.1441	42.5016	27.4644	89.1441	60.9320	127.4511	74.9173	137.5275	100.9852	58.9623	107.6792	51.7971	87.6181	84.2371	25.0499	0.6182	248.2296	61.4094	152.9483	StdError	20		0.0368	43.6664	45.2512	36.3514	42.8664	44,4033	44.7426	46.3486	31.3022	12.2959	56.5170	21 8324	10.7855	12.1012	46 2870	15 7648	32.1694	21.5518	46.4522	26.7659	51.8102	36.8241	21.3816	38.0654	18 2971	21 6077	8.8535	0.2157	89.7050	21.9450	55.8088	StdError	20
-0.8573	-0.8218	1.7714	0.8719	1.0511	2.9531	0.3777	5.8189	0.3363	1.6453	4.7892	-0.2347	-2.8608	3.5457	1.0223	0.2095	2.5137	0.1872	-1.1018	1.4922	tValue			-1.6931	0.3138	-0.1600	0.3547	0.1315	0.1259	-0.2724	-0.0715	-1.1891	0.1600	-0.4292	10350	0.9454	-1 5666	10153	-0.6844	0.6879	0.9059	-0.4542	2.0412	0.2627	-0.5186	1.5286	1.0326	-0.7306	1.07/9	0.9234	1.4581	0.4525	0.6126	1.8162	tValue	
32.6509 -0.8573 -8.2405	-13.6517	102,1573	43.6686	80.1881	217.7590	-23.0971	338,4452	18.2824	123.3976	221.5411	92.4448	-109.8541	229.2164	89.7336	5.1852	1.7623	193.4786	-31.8767	144.1246	Estimate			-0.0494	20.0644	5.1291	6.8389	8.4678	16.8465	-4.1650	1.3605	-26.0543	-6.3481	-11.6356	-6 9434	8 1423	-18 3907	-17 0781	0.4998	7.7574	6.0594	-62.3348	41.2717	13.5299	-23.6399	10.6389	67.5281	-11 7647	33, /4/8	5.4946	0.2948	107.1987	10.8561	108.6147	Estimate	
31.6611 -0.2603 -15.6294 31.1528	120.1560	40.9790	26.3707	84.4618	56.2644		71.2307	133.7648	96.6227	56.0116	99.4916	47.9994	87.5187	79.8257	_	_	233.6400	57.5632	146.6701	StdError	30		0.0379		46.3917	37.2935	43.9464	45.5291	45.8729	47.5170	32.1019	12.6072	57.9549	22.4407	11 0677	12 4101	47 4546	16 1626	32.9445	22.0435	47.5827	27.4012	53.1343	37.7259	21.9001	38.9565	18 7165	_	9.0866	0.2224	91.8668	22,4707	57.1842	StdError	2
-0.2603	-0.1136	2.4929	1.6560	0.9494	3.8703	-0.1909	4.7514	0.1367	1.2771	3.9553	0.9292	-2.2887	2.6191	1.1241	0.2183	2.7786	0.8281	-0.5538	0.9826	tValue			-1.3037	0.4482	0.1106	0.1834	0.1927	0.3700	-0.0908	0.0286	-0.8116	-0.5035	-0.2008	-03094	0.7357	-1.4819	-0.7001	0.0485	0.2355	0.2749	-1.3100	1.5062	0.2546	-0.6266	0.4858	1.7334	-1 63 86 +1 +2 -1 -	1.0/84	0.6047	1.3255	1.1669	0.4831	1.8994	tValue	
-15.6294	-29.2733	83.3084	49.5764	31.5999	204.9857	-115.5006	304.9274	-6.0118	94.6579	187.8023	172.5599	-58.2699	184.8218	121.1528	-1.9433	1.7343	351.1948	12.8853	167.6011	Estimate			-0.0449	16.3342	1.7855	7.7066	2.9912	10.5544	-14.3230	-11.2260	-21.0055	-15.2179	-23.2412	-5 9617	4 6381	-18.6783	-50 0374	-0.2431	3.0698	12.0784	-79.4152	46.3944	4.1659	-24.0603	9.7495	73.8930	-12 4560	43.3400	3.4391	0.3155	139.4569	14.3049	117.3603	Estimate	
31.1528	118.3984	40.2764	25.8668	82.6244	54,7984	118.4205	69.7082	131.8960	94.7900	54.9903	96.6028	46.6992	87.1040	78.0722	23.2637	0.6339	228.5623	56.2541	144.4617	StdError	40		0.0387	44.2870	45.8737	36.8901	43.4559	45.0405	45.3703	46.9773	31.7039	12.5502	57.3205	22 4021	10 9771	12.2968	46 9360	16 9962	32.7362	22.0026	47.2515	27.3203	52,4705	37.4614	21.7855	38.8639	18 6908	31.088/	9.1018	0.2283	91.3983	22.4073		StdError	5
-0.5017	-0.2472	2.0684	1.9166	0.3825	3.7407	-0.9753	4.3743	-0.0456	9866'0	3.4152	1.7863	-1.2478	2.1219	1.5518	-0.0835	2.7361	1.5365	0.2291	1.1602	tValue		iF2	-1.1597	0.3688	0.0389	0.2089	0.0688	0.2343	-0.3157	-0.2390	-0.6626	-1.2126	-0.4055	-0.2661	0 4335	-1.5190	-1 0661	-0.0238	0.0938	0.5490	-1.6807	1.6982	0.0794	-0.6423	0.4475	1.9013	-1.9032	1.4005	0.3779	1.3822	1.5258	0.6384	2.0589	tValue	i Fi
-2.1660	24.9673	74.0977	62.0707	-16.2988	184.9527	-184.9062	264.0690	-19,4941	90.3362	174.6995	253.4578	-21.9402	150.7313	129.3335	-13.1951	1.3608	501.1634	50.6421	157.3339	Estimate		22	-0.0240	13.2013	1.9001	11.8197	-1.5904	2.8180	-20.4267	-21.7178	-10.5296	-18.0647	-32.9672	-3 3363	4 7077	-15 4025	-58 5538	4.0764	-5.8652	9.1131	-89.7175	34.0262	-5.3588	-23.5049	7.3134	80.7245	-6 9491	41.9400	0.6138	0.2366	158.7941	12.1184	135.9587	Estimate	1
31.9354 -0.0678 19.6132	121.3878	41.2617	26.5046	84.6092	55.9785	121.1213	71.4490	135.1152	97.1251	56.3555	98.6306	47.7193	90.0809	79.8637	_	_	233.7182	57.5496		TOP	90		0.0397	44.2521	45.8315	36.9099	43.4101	45.0056	45.3283	46.9370	31.6842	12.5697	57.3117	22 5709	10 9825		46 9081	16 9834	32.7934	22.0334	47.2620	27.4717	52.3906	37.5317	21.8318	38.8606	18 7748	_	9.1488	0.2349	91.4397	22.4532		StdError	5
-0.0678	0.2057	1.7958	2.3419	-0.1926	3.3040	-1.5266	3.6959	-0.1443	0.9301	3.1000	2.5698	-0.4598	1.6733	1.6194	-0.5526	2.0617	2.1443	0.8800	1.0620	tValue			-0.6037	0.2983	0.0415	0.3202	-0.0366	0.0626	-0.4506	-0.4627	-0.3323	-1.4372	-0.5752	-0 1478	0.4368	-1.2515	-1 2483	0.3980	-0.1789	0.4136	-1.8983	1.2386	-0.1023	-0.6263	0.3350	2.0773	-0.3711	7 5550	0.0671	1.0072	1.7366	0.5397	2.3757	tValue	
	75.1887	61.7681	70.7359	-100.9247	143.3691	-280.5695	173.8589	-35.6798	117.7757	124.0272	336.3397	2.4765	76.1109	139.8828	-19.5602	1.2932	664.1273	55.0155	140.5099	Estimate			-0.0263	19.1913	7.4789	34.7165	2.8957	5.3580	-14.0220	-21.9693	5.9788	-12.7831	-53.2193	7.8840	60036	-12.5753	-50 2441	-1 1291	-17.2251	9,9603	-98.3670	26.0903	-8.4666	-19.5325	12.6475	78.4722	-7 1042	49.0522	2.2873	0.2787	146.7988	7.8192	124.8744	Estimate	
32.6388 0.6009 53.7954	124.0208	42.1668	27.0839	86.3925	57.0120	123.6135	72.9451	138.0973	99.1810	57.5045	100.5799	48.6262	92.2106	81.5078	24,4011	0.6763	238.3856	58.6901	151.2058	StdError	60		0.0404	44.3750	45.9454	37.0046	43.5197	45.1285	45.4491	47.0395	31.7032	12.6810	57.4619	22 7149	11 0377	12 3496	47 0252	16.0395	33.0453	22.3278	47.6080	27.7155	52,4928	37.7658		39.3521	18 9708		9.2645	0.2398	92.3004	22.7054	_	StdError	~
0.6009	0.6063	1.4648	2.6117	-1.1682	2.5147	-2.2697	2.3834	-0.2584	1.1875	2.1568	3.3440	0.0509	0.8254	1.7162	-0.8016	1.9122	2.7859	0.9374	0.9293	tValue			-0.6519	0.4325	0.1628	0.9382	0.0665	0.1187	-0.3085	-0.4670	0.1886	-1.0080	-0.9262	0.3471	0 5460	-1.0183	-1 2508	0.6844	-0.5213	0.4461	-2.0662	0.9414	-0.1613	-0.5172	0.5744	1.9941	-0 3745	0 2050	0.2469	1.1621	1.5904	0.3444	2.1607	tValue	
	107.9533	64.5171	102.6005	-160.3563	95.7031	-305.9173	133.5586	-69.0106	154.5218	73.4268	356.4280	33.7308	38.4302	133.2121	-21.7136	1.3367	716.0336	74.5103	124.0010	Estimate			-0.0148	25.7667	6.1447	66.5866	15.2270	6.4418	-11.7754	-26.7002	14.3369	4.4327	-82.2827	10 1492	000.02	-20 5096	-58 07 50	4.6446	-28.4120	11.8048	-99.3701	16.5751	4,4525	-4.4941	21.8856	75.6410	-3 9888	36 70/3	2.1294	0.2396	135.5440	5.1171	122.5714	Estimate	
33.9679 1.5837	129.0605		-	89.8673	59.2559	128.6387	75.8249	143.7922	103.1683	59.7889	104.6316	50.5340	95.7457	84.8108			247.9688			TOT	70		0.0388	44.2771	45.8737	36.9565	43.4465	45.0283	45.3588		31.6525	_	_	22 2917	10 9681	12 2951	46 9324				47.3995	27.4533		37.5456			18 7931	_	9.1134	0.2295	91.7653	22.5240	57.3604	StdError	75
1.5837	0.8365	1.4699	3.6407	-1.7844	1.6151		1.7614	-0.4799	1.4978	1.2281	3.4065	0.6675	0.4014	1.5707	-0.8559	1.9094	2.8876	1.2213	0.7887	tValue			-0.3820	0.5819	0.1339	1.8018	0.3505	0.1431	-0.2596	-0.5685	0.4529	0.3525	-1.4339	0.4553	1 1064	-1.6681	-1 2555	0.4340	-0.8649	0.5329	-2.0964	0.6038	-0.0847	-0.1197	0.99999	1.9401	-0.2122	1 1179	0.2337	1.0437	1.4771	0.2272	2.1369	tValue	
100.4856	210.3973	47.5232	120.6288	-230.8742	47.4364	-332.0710	111.5442	-106.8936	162.3909	13.6554	351.3054	62.6913	8.8359	141.1059	-32.5872	1.3521	795.6385	101.9281	83.3357	Estimate			-0.0360	26.3136	4.7067	95.5315	21.1470	-1.8522	-21.3437	-30.5193	7.8072	20.5750	-124.2913	14.6468	18 6334	-25 8002	-80 2944	0.1701	-29.2143	20.5337	-93.8857	8.7160	5.4315	-2.6260	30.5714	80.9541	-42-21-29	47.0121	4.7405	0.3356	139.4929	13.6605	109.1335	Estimate	
35.6240	135.4436	46.0287	_	94.3952	62.4015	135.1534		150.6715	108.3570	62.8869	110.0125	53.1712	100.7055	89.1127	_		260.5995	64.1238	165.2886	StdError	80		0.0383	44.0256	45.6218	36.8023	43.2019	44.7788	45.1016	46.7138		_	_	22 1627	10 8988	_	46 6725	_		_	46.9813	27.1366		37.2187	21.6903	_	18 5441	_	9.0092	0.2265	90.8737	_	_	StdError	90
2.8207	1.5534	1.0325	4.0802	-2.4458	0.7602	-2.4570	1.4002	-0.7094	1.4987	0.2171	3.1933	1.1790	0.0877	1.5835	-1.2227	1.8310	3.0531	1.5896	0.5042	tValue			-0.9399	0.5977	-0.1032	2.5958	0.4895	-0.0414	-0.4732	-0.6533	0.2478	1.6512	-2.1769	0.6609	1 7088	-2.1117	-1 7204	-1 0577	-0.8981	0.9387	-1.9984	0.3212	0.1038	-0.0706	1.4094	2.1040	-0.0245	1.3213	0.5262	1.4816	1.5350	0.6132	1.9190	tValue	

Table A.12: Coefficients for the F1 and F2 by vowel LMER models of vowel

dispersion.

Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	(intercept) Tense: nast	Predictor			Duration (log) x Frequency (log)	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: giottal	Next Place: dipntnong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: giottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor		Duration (log) X Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: lax	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial
		_	_					/(log)								_	_	_								nate .		olar		1	-		~																			
6.9379	51.6864	1.0925	47.0050	18 61 61				0.0767	4.2782	-13.4956	-9.2197	28,4685	-22.2797	12,5881	17.5465	-0.1277	27.7654	-3.3773	-29.1910	30,4163	-7.6204	129.7349	190.0243	-136.0664	-78.7214	-142.7385	-90.8329	44.2452	11.4240	133,4681	-53.0198	07.9002	-11.1495	-4.2204	-0.7411	42,4656	-14.3792	288.3392	Fetimate		-0.1/61	-19.1083	-47.8117	-25.8492	129.5203	-55.8218	123.2872	107.5537	-33.332	-73.2601	18.6340	-6.8864
	13.2140	0.6766	61.4768	37 3793	SIDETION	20	20	0.0505	13.5183	13.9114	7.3769	16.8446	46.0743	32.2888	15.7432	11.4362	18.9887	11 5450	C010.02	20.312/	7.0520	55.4731	60.5942	52.6150	74,7790	59.0982	60.1422	35.2464	19.2637	59.9854	46.0120	29.3333	10.5351	5.5775	0.3273	24.7381	13.0906	59.1299	StdErma	20	0.1047		121.3264 -0.3941	96.6197	115.1696	119.2705		124.2106	33.8930	151.0256	59.2446	29.1514
0.2649	3.9115	1.6147	0.7646	0 5749	ULCI U	AL.		1.5184	0.3165	-0.9701	-1.2498	1.6901	-0.4836	0.3899	1.1145	-0.0112	1.4622	-0.4440	-1.4880	1.7928	-1.0806	-2.3387	-3.1360	-2.5861	-1.0527	-2.4153	-1.5103	-1.2553	0.5930	-2.2250	-1.1523	2.3131	-1.0583	-0.7567	-2.2643	1.7166	-1.0984	4.8764	+Vialme		-1.6814	-0.1628	-0.3941	-0.2675	-1.1246	-0.4680	-1.0261	-0.8659	-1 6870	-0.4851	0.3145	-0.2362
20.1703	58.0293	1.6027	57.6651	10 3190	Estimate			-0.0021	10.9980	-11.8785	-10.7749	22.7518	-16.7642	13.5575	25.2522	0.4867	26.7601	-1./100	40.6010	40.5890	-6.8806	-129.4703	-160.2535	-136.4630	-70,4091	-142.5390	-83.8474	-44.4757	11.2994	-120.8027	-55.2473	29.2020	-7.0261	0.5236	-0.4229	49.0677	-12.9167	252,3945	Fetimate		-0.15.21	68.7561	46.4417	-41.6320	-66.8449	30.3536	-17.1265	-10.9179	-107 2310	31.7838	26.9759	-17.1655
25.9194	13.1182	0.6828	60.8352	32.0534	SIDE TO	00	20	0.0499	13.5874	14.0245	7.4241	16.9644	46.4876	32,5668	15.7655	11.5188	19.1072	11 6149	20.1099	20.4632	7.0972	+	60.8238	52,8432	75.2336	59.3908	60.4049	35.5268	19.3114	60.3075	46.4182	29.3304	10.5989	5.5331	0.3226	24.8755	13.1477	59.0894	StdEmor	20	0.1068	113.3205	117.3059	94.6732	111.1201	115.2513	116.0805	+	32.3228	146.8276	59.0753	28.2653
$ \rightarrow $	_		0.9479	_		_		-0.0412	+	+	-1.4513	1.3412	-0.3606	0.4163		_	_	-0.2247	+	+	-0.9695	+	-2.6347	-2.5824	-0.9359	Å.	-1.3881		0.5851	-2.0031	-1.1902	+	+	0.0946	1.	1.9725	_	-	Walne		-1,4245		0.3959		_		-+	_	-1 3178	-	0.4566	-0.6073
24.4161	58,4682	1.9118	50.9974	5 3402	Esumaic			-0.0325	12,9033	-8,0070	-10.3661	13.5457	-12.1725	11.8916	30.4122	2.0879	21.6980	-0.2013	42.4052	37.4516	-2.5412	-135.0557	-136.5081	-143.7479	-73.3234	-143.3460	-90.2634	45.7818	6.0537	-125.3564	-50.2121	34,9138	-5.6735	1.9641	-0.3498	57.3154	-17.8529	244.3000	Fefimate		-0.1051	91.8483	84,2750	-17.1408	-42.8130	39.2973	19.1159	7.7774	-117 2067	14.5957	15.4513	-39.9898
26.0019	12.8682	0.6339	60.9161	1201102	+	-	3	0.0499	13.9317	14,4103	7.6192	17.4185	47.8416	33.4927	16.1260	11.8256	19.6180	11 01 55	20.7340	21.0133	7.2836	+	62.3720	54.2099	77.2948		61.9704	36.5491		+	47.7879	30.0288	10.8869	5.6121	0.3212	25.5418	13.4852	60.3943	StdEmor	5	0.1062	111.6222	115.5573	93.6768	109.3864	113.5396	114.2965	+	31.7000	144.9166	58.9058	27.8258
	-		0.8372			_		-0.6507	-	-	-1.3605	0.7777	-0.2544	0.3551	1.8859	-	-	J0 0244	_	+	۰.	-2.3624	-2.1886	-2.6517	-0.9486	-2.3517	-1.4566		0.3061	1.	-1.0507	_	+.	-	-1.0892	2.2440	-	4.0451	_		-0.985		0.7293		_		-+	_	-1.6263		0.2623	-1.4371
			64.5941		-	-	1 F2	-0.0553	-		-11.6478	6.7108	-10.5820	7.8848			+	-4 8265	+			1.	-121.7011	-142.8737	-66.8130		-93.3239		1.1331		-36.9503		-	-		60.8973			Fetimate	- FI	-0.0091		179.3689				-		-58 7330		11.1006	-60.3523
\vdash	+	0.6584	62.3403	+	+	-	s	0.0500	14.0449	14.5543	7.6906	17.5829	48.3593	33.8376	16.2342	11.9433	19.8030	12 0181	20.9484	21.2168	7.3530	t	62.9046	7 54.6695	78.0590	3 61.4995	62.5128	36.9210	19.9283	2 62.4961	48.3132	30.24/1	10.9982	5.6330	0.3222	25.7805	-	+	StdEmor	8	0.1101	1	118.4434	\vdash		116.3940	117.1477	+	32.4937	+	60.9163	28.5463
	-	_	1.0362		_	_		-1.1061	-	+	-1.5145	0.3817	-0.2188	0.2330		-	-	J0.1300	-1.084/		+	+	-1.9347	-2.6134	-0.8559	-2.2325	-1.4929		0.0569	-2.1707	-0.7648	0./382	+	-	-0.8545	2.3621	-	_	Walne		-0.0827		1.5144		-	_		~	-1.1967		0.1822	-2.1142
\vdash			36.5483					1 -0.0673			5 -13.8559	9.1030		8.2506				-6 0701	1.			1.	7 -127.8453		9 -74.0761			1	-		31.2290	1				53.8424			Fetimate		/ 0.0172		265.5511			-	_	_	-2.3133	+	10.9757	2 -77.0276
\vdash	+	+	63.2195	-	+	4	6	0.0502	⊢	+	7.6955	17.5876	48,4198	33.8661	H	+	19.8100	12 0122	+		7.3595		3 62.9318	4 54.6961	78.1360	3 61.5484	62.5542		19.9125	+	48.3659	+	+	5.6205	+	25.7943	-	-	StdErmr	8	0.1127	-	121.0131	\vdash	-	-	_	+	33.1918	+	62.3750	29.1917
	_	_	5 0.5781			-		-1.3428	-	-	-1.8005	5 0.5176	3 -0.3791	0.2436		-		-0.3008	-	-	-	-	-	1 -2.7014	0.9480	4 -2.4398	2 -1.5636		5 0.0711	-	-0.6457	+	-			3 2.0874	_	-	r Walne		0.1522	~	1 2.1944			2 1.4041	_	~	-0.0698	-	0.1760	7 -2.6387
			-	000 - 1.2.1 00		+	l	18 -0.0763			5 -20.3832	6 10.0735	1 -49.4276	6 7.9270				0 _8 4373				T,	-	-	-				1 4.5898		-29.2032	T			-	4 37.6072		-	A Petimate	l	2 -0.0039		+			1 202.2954			16 36 0570	-	0 21.3734	-97.9997
\vdash	+	+	64,1146	-	+	_	70	3 0.0501	⊢	+	2 7.7479	5 17.7076	6 48.7944	34.1186	9 16.3034	-	+	12 0901	+	+	+	+	26 63.35	13 55.0601	3 78.7128	57 61.9726	-	2 37.2728	20.03	+	2 48.7471	+) 11.0864	+	\square	2 25.9772	-	-	A StdErmor	70	0.1169	-	6 125.9495	\vdash	-	-	_	-	34.3209	+	4 64.7982	7 30.3823
\vdash	_	-+-	46 -0.0792		_	_		1 -1.5219	+	1.	9 -2.6308	76 0.5689	44 -1.0130	86 0.2323	34 2.6604	-	+	01 -0.6075	+	-	-	43 -2.5900	37 -2.08	01 -2.70	28 -1.11	26 -2.5899	73 -1.52	28 -1.37	24 0.22	86 -2.3738	71 -0.599	_	54 -0.4366	0 0.2449		72 1.4477	-	_	Walne		9 -0.0555		95 2.5225		-	48 1.6343	-	-	09 0.9934	_	82 0.3298	23 -3.2256
			-	53 16 5244		+		-0.0560		+	908 -25.5564	89 5.6312	30 -75.2306	23 9.4970			-	21.114/ 25		+		1	34 -147.333	55 -164.9861	45 -105.6868	99 -180.7608	26 -108.6035	139 -50.2746	91 6.2142		91 -29.8878	+		+	576 -0.1396	77 25.2130		-	Petimate		55 -U.U345		25 418,4150		-	43 275.0710	+		07 173 0588	+	98 27.7463	256 -116.6843
\vdash	-	-	+				•	\vdash	+	+	-					+	+	+	+	+	+	+	-	+	-					+	-	+	+	+	\square		-		-		\vdash	-	-		-	-	-+	-	~	+		
		_	65.3473 -0		_	-		0.0502 -1		-	7.8677 -3	17.9905 0	49.6539 -1	34.7106 0			+	12 2605 -1	+			-	64.0915 -2	55.7137 -2	79.8344 -1	62.7442 -2	63.7473 -1	37.8657 -1	20.2361 0	63.8008 -2	49.5904 -0	JU./UID -U	11.2497 -0	5.6593 0		26.3403 0	-	-			0.1231 -0	-	132.1681 3		_	129.9186 2	-	-	97 0238 1		68.1168 0	31.8583 -3
0.3110	2.6995	3.9843	-0.3619	0 4774	I Value			1.1166	0.9813	-0.4591	-3.2482	0.3130	-1.5151	0.2736	2.9055	1.8566	0.0387	-2.0000	1./311	.4013).2184	-2.8211	2.2988	2.9613	1.3238	2.8809	1.7037	1.3277	1,3071	2,4928	0.6027	0.0028	0.0012	.2422	-0.4321	0.9572	-0.7091	4.4352	*Vislage		-0,4415	2.5205	3.1658	.3147	1.0938	.1173	1.8610	1.5527	2.3810	0.8041	0.4073	-3.6626

uration (log) x Frequency (log)	ext Manner: stop	Vext Manner: Incative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Vext Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: rasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (loo)	I'disc: past	Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: nasal	Vext Manner: fricative	Next Manner: flap	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Vext Place: lax	Next Place: labio-dental	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	
H	39.3216	54 7146	12,5423	-5.2182	23.1634	-45.9119	5.5888	-31.0127	-36.8899	-69.5706	-17.7525	19.7025	30,7334	16.2151	-13.9131	-6.3277	38.3352	11.1696	-27.5787	128.4035	-39.6968	8.4038	0.2025	-22.0713	59.8819	Estimate			og) -0.1198	15.0444	-33.6207	-20.1689	-1 1254	22.3775	20.6338	-80.5805	91.1420	-22.8897	-77.9668	15.5407	-26.3678	-105.5821	-136.2887	-279.0990	e -77.3704	_	a 42,4277	143.9527	-3.7475	170.1093	
Н	+	35.5245	+	-	23.9815	> 53.5278	22.8859	7 13.6399	31.6383	5 37.5625	5 13.6005	23.4612	19.2678			+	+	+	+	+	-	8.4477	0 2921	+	+	StdError	20		0.1085	33.5252		+	42.4331	+	38.5034	-	47.6163	+	+	51.1417	-	1 137.2745	+	+	1 146.0784		87.8266	+	+	3 70.1459	
\vdash	_	6 2 4419		5 -0.1778	5 0.9659	8 -0.8577	9 0.2442	9 -2.2737	3 -1.166	5 -1.8521	5 -1.305	2 0.8398	8 1.5951	6 0.5032		-	-+	\rightarrow	_	_	+	-	0.6934	+		or tValue			5 -1.1039	2 0.4487	6 -0.9559	1 -1.0952		-	4 0.5359		3 1.9141	_	1	7 0.3039		-	52 -1.2026	58 -1.4939	34 -0.5296	-	6 0.4831	-	-	9 2.4251	
H		44.3082	-		33.6619	7 -39.9321	2 -14.8538	7 -25.6801	0 -13.8148	1 -46.4935	3 -8.5609	\$ 2.2748	1 36.9017	2 16.9195			4	-	4	-			4 0.8480			Estimate			9 -0.2512	21.1155			5 -11 9776	-	45.2660	-	97.3990			9 40.1431	-		6 -192.7523	-	6 -125.8393	-	9,6706	-	-	1 110.2892	
H	+	52 35.8349 56 22 3017		-	9 23.5051	21 52.8152	38 22.3799	01 13.3724	48 30.8294	35 36.6127	9 13.3	8 22.8101	7 19.0967	\vdash			_		07 19.3255	+		+	0 0.2836	+	+	te StdError	30		2 0.1091	5 33.1456		+	4/ 115.42/4	+	50 38.1489		0 47.0693	+	1.	1 50.5458		-		-	93 144.3892		6 86,7693	+	+	92 69.6320	
164 -3.9211		349 1.2365	8.5264 1.29		051 1.4321	152 -0.756]	799 -0.6637	724 -1.9204	294 -0.4481	127 -1.2699	177 -0.6428	101 0.0997	_	591 0.5361		_	_	-	.	_		_	36 2.9904	_	-	rror tValue)91 -2.3031	456 0.6371		-	12/4 2.10/3 215 J0 2857	+-	_		693 2.0693	_	-	458 0.7942		135.6654 -1.1278	-		3892 -0.8715	-	693 0.1115	+	+	320 1.3839	
		554 07 3166	2962 30.0	+	321 41.0278	-	1						1.9324 36.8			+	+		-						+	luc Esti			031 -0.3505	371 49.7194				+	.1866 65.8		+	+	-			4 3		+	715 -154.6765			+	+	+	
H	+	+	30.6407 1		-	-37.5313 5	-32.7746 2	-13.3262 13	14.4279 29	48.9126 3:	4.1035 12	-7.6925 2	36.8475 11			+	+	+	+	+	-	+	+	+	+	mate St	4		-		45.3189 3.	-	+	+	65.8813 30	-	-	+		63.1295 50		+	_				+	+	+	+	
	-+	34.6995 1	+	1	22.6078 1	51.0469 -(21.6730 -	13.0621 -	29.5598 0	35.4628 -	12.9892 0	21.8911 -(18.2105 2			-+	-	-	-	-+	-	-	0.2929 2	-	+-	StdError t	40		0.1029 -	33.1085 1		-	42 0072 4	-	37.8535 1		47.1352 1	_	-	50.7006 1			28.0566 -		143.9910 -	-	86.9653 -	-			
	_	4 5708 0	-	-	1.8148 3	-0.7352 -:	-1.5122 -	-1.0202 -	0.4881 2	-1.3793 -	0.3159	-0.3514 -	2.0234 3	-0.3968 -:			-					-	2.4639	T		tValue E		ε F1	-3.4066 -	1.5017 9			-0.1824 -	-	.7404 1		1.8434		-	1.2451 (-1.2077 -1	-1.5538 -1	_	-1.0742 -1		-0.2655	-	1~	Т	-
-0.1007	9.1104	47.6773	32.2891	-0.2314	35.6519	-34.0137	-30.8112	-14.6490	32,8459	-45.0589	1.9012	-1.7405	35.9275	-29.9752	-81.5896	-13.2943	8.3678	60.2488	4.1583	151.7915	-8.3667	3.2166	0.6205	20 8441	21.1879	Estimate			-0.3986	92.3538	-32.6292	-1.2611	-14 5865	102.4503	107.4884	-56.6408	70.5602	16.2505	-60.4580	68.3226	-11.4067	-148.3359	-169,4203	-101.6417	-160.1617	70.7509	-39.3123	142.5655	-68.7793	20.0200	1 0200 01
0.0489	19.9985	34.9669	17.8434	28.0282	22.6729	\$1.5110	21.8575	13.3013	29.6242	35.8136	13.2148	21.9818	18.1103	30.5748	54.1314	26.2689	35.0939	35.2122	18.2795	37.6897	20.6292	8.0028	0 3040	76 4000	44.6506	StdError	90		0.1064	33.8474	35.4058	18.5838	42 6864	82.4923	39.0916	28.8043	48.0570	19.1131	50.9182	51.5172	17.7343	139.0877	151 8047	188.8789	148.0102	150.6017	88.9580	150.8594	117.7991	12.0174	7010 67
-2.0597	1.9557	4 4480	1.8096	-0.0083	1.5724	-0.6603	-1.4096	-1.1013	1.1087	-1.2582	0.1439	-0.0792	1.9838	-0.9804	-1.5073	-0.5061	0.2384	1.7110	0.2275	4.0274	-0.4056	0.4019	2.0409	1 1680	0.4745	tValuc			-3.7461	2.7285	-0.9216	-0.0679	2.8505	1.2419	2.7497	-1.9664	1.4683	0.8502	-1.1874	1.3262	-0.6432	-1.0665	-1.2846	-0.5381	-1.0821	0.4698	-0.4419	0.9430	-0.5839	0.2701	1 10240
-0.0689	33.9688	93.0561	34.0365	1.7704	33.1152	-11.9762	-23.5278	-6.5710	46.5037	-32.8678	6.0278	-7.9235	26.8134	-38.9744	-91.2287	-18.1095	-4.5924	70.0895	13.4431	145.1011	-2.5101	3.7070	0.5004	41 7734	13.8170	Estimate			-0.4054	87.8534	-26.1626	8.5896	-24.0397	122.4503	133.5910	-30.7144	52.9893	34.5292	42,4602	72.2924	1,4803	-78.0913	-97.3321	18.1636	-79.0060	142.2592	-24,4783	207.7562	-81.5950	-17.1133	10 1100
0.0513	20.5359	36.0077	18.2465	28.8428	23.2292	52.8251	22.4137	13.7190	30.4372	36.9037	13.6307	22.5883	18.5329	31.3255	55.5192	27.0015	36.2988	35.9652	18.6948	38.4855	21.1344	8 1874	0 3217	77 0455	45.6882	StdError	60		0.1087	34.2340	35.6182	18,7600	42.9889	82.9942	40.0505	29.0082	48.6031	19.2915	51.2892	51.8854	17.8979	141.5453	154 7145	191.3540	150.3297	153.2778	89.7671	153.1590	118.5620	2010-01	75 2700
H		4 3052	1.8654	-	1.4256	-0.2267	-1.0497	-0.4790	1.5279	-0.8906	0.4422	-0.3508	1,4468			_		_	0.7191	_	-		1.5558		+	tValue			-3.7285	2.5663	-0.7345	-	-0 5592	-	3.3356		1.0902		1	1.3933		_	-0.7245	_	7 -0.5256	~	-0.2727	-	-	-0.2200	_
П	30.4769	100 3917	36.7626	3.5164	44.9630	14.4046	-16.0655	1.9125	67.6315	-1.5403	12.5016	-15.3816	15.1434	-31.6271	-76.8719	-10.1248	3.0111	90.4657	23.5471	133.6806	-9.6687	3.6894	0 3842	1.3237	8.3117	Estimate			-0.4253	85.9406	-23.5539	9.7136	408.4339	133.2568	153.8047	-6.3540	42.8573		-40.8267	78.6027	12.4740	-55.8090	-75.1739	76.9954	-50.8019	194.7271	-17.8980	218.8600	-72.5209	- /0.0900	76 6000
H	+	7 20 7175	17.8705		23.2568	5 53.0479	5 22.4205	13.8818	30.4445	37.1366	5 13.7901	5 22.6712	17.7695			+	+		+	-	-	+	0.3141	+		c StdError	70		0.1105	34.6058		+	43 3850	+	7 40.8209		49,2124	+		52.3915			9 136.5169		9 152,4555		90.7280	+	+	0 10.2233	
	-	15 4 8457	+	-	8 1.9333	9 0.2715)5 -0.7166	8 0.1378	15 2.2215	6 -0.0415	0.9066	12 -0.6785	95 0.8522	12 -1.0098		-+	+		_	-+	_	_	1 1 2232		+-	or tValue			5 -3.8495	58 2.4834	26 -0.6553	-	32 3.4155	+	9 3.7678		0.8709	+	1	1.5003		25 -0.3881		16 0.3970	55 -0.3332	-	0 -0,1973		1	-0.9000	
	+	7 04 5829	2 31.3831		3 50.6257	5 6.8892	6 -12.4494	8 4.9388	5 75.6114	5 -3,7909	6 16.1260	5 -24.8195	2 20.5454		-	-	-	-		_	_	+	2 0 1243	+	+	e Estimate			-0.5324	4 79.3816		+	5 78 1487	+	8 175.1328	-	9 35.1768	+	1	3 78.5552		-	17 -7.8102	_	2 -11.5549		-13.8878			١.	
Н	+	16 36.6879 39 20.4464	+	-	57 23.5175		94 22.6933	8 14.0772	4 30.8774	9 37.7195	50 13.9869	95 22.9504	54 17.5708			+	-	+	+	-		+	3 0.3108	+	+	-	80		94 0.1132	16 35.1768		0 19.2975		+	28 41.6560		58 50.1060	+	+	52 53.2944		9 146.6463					78 92.3762		-	+	
	_	464 4.6259	504 1.757	-	75 2.15	301 0.12	33 -0.54	772 0.3508	774 2.44	195 -0.100	369 1.15	504 -1.081	708 1.169)68 -0.39		-	_	_	077 1.280	_	_	-	200 0 300 00 1	+	+-	rror tValue			32 -4.7033	768 2.2566	624 -0.597		9/2 2.981	-	560 4.204	976 0.6198	+0+ -0.420 060 0.702	_	-	944 1.4740		463 0.0232	-	-	485 -0.074	-	762 -0.150	-	+	_	

Next Voicing: voiceless	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x	Next Manner: stop	Next Place: labio-dental	Next Place: glottal	Next Voicing: voiceless	Previous Place: labio-dental	Previous Place: glottal	Previous Voicine: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tanon must	(Intercent)	Development			Duration (log) x Fr	Next Manner: stop	Next Mainer: Incalled	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercent)	Dendintar
abio-dental	lottal	: voiceless			th.						uration (log) x Frequency (log)	6	-dental	al	iceless	abio-dental	lottal	: voiceless			6						uration (log) x Frequency (log)	5	Callive	þ	al		-dental	1	81	hong	Reciess	stop	: nasal	: fricative	ense	alatal	ax and	abio-dental	lottal	: voiceless			5			
109 4855	-566.6805	-394.4943	-188.3920	1.1136	972.6752	-1021.1387	1720.5810	Estimate			-0.2408	18,8058	113.3002	126.3522	-9.3701	276.5607	185.9170	-101.0183	-37 1748	0.7220	139.7180	2020 20	100 0540	Estimate				C2C8 2C	10.0020	-68.7262	43.0316	-55.2308	124.2868	22.6658	-26.6142	-11.3540	-160 3874	20.8421	-181.1870	27.2315	253.5227	59.5148	-33.3497	261968	40.2075	-107.0408	4.8019	-1.2972	-159.7242	-96.0718	344 3450	Fatimate
164.0605	358.0245	304.8818	193.0349	2.1554		540.6095	1720.5810 1115.7919 1.5420	StdError	20		0.3407	62.0499	77.0685	71.2477	78.9728	269.9703	181.3536	151.1079	96 5606	1.0720	473,7893	373 M02	550 0038	Chilling	20		0.1101	47 5748	50,000	42.5538			121.5871	52,4769	31.4646	72.5271	36 00 14	22.9521	43.0755	72.7228	132.5754	62.7883	83.7062	82 1822	89.0149	49.0024	19.1567	0.6623	62.6441			20 StdFrmr
1.0943	-	_	-0.9759	0.5167		_		tValue			-0.7068	0.3031	1.4701	1.7734	-0.1186	-	-	5899'0'	-0 3845	-	0.2949	-	0 3 571	+V/alma			1.6928	-1.4327	0.1923	-1.6150	0.6424	-1.0103	1.0222	0.4319	-0.8458	-0.1565	-	-	-	-	1.9123	0.9479	-0.3984	0.3188	0.4517	-2.1844	0.2507	-1.9587	-	-	-	tValue
1563029	-455.1617	-392.7624	-204.1820	1.4328	932,1499	-938.0772	1644.3521	Estimate			-0.2099	-4.6410	95.3716	131.6912	-7.2980	37.6117	379,6593	28.4476	CE00 EE	0.7060	-215.7130	163 6330	242 8883	Detimate			0.0428	-36 0551	11.1.1.1	-67.0619	50.2978	-55.7475	123.9932	-4.3981	-12.6902	-1.8977	-10.6371	49.5111	-130.5062	28.7926	259.5087	67.8093	39.3727	40 1734	91.7/38	-84.5096	14.4403	-0.6050	-203.8294	-71.4325	251.0597	Defimate
162 0349				1.9687	962.5147 0.9685	542.2250	1128.8080 1.4567	StdError	30		0.3410	60.9602	75.6033	70.2581	77.2791			146.1593	97 4307 0 3678	1.0659	451.0649 -0.4782		533 0500	Chilling	30		0.1069	45 7587	_	_	65.0954	_	117.2678	50.8046	30.4973	70.0347			_	70.1433	128.3897	60.7255		77 8395	84.7514	47.4533	18.0467	0.6421	60.4059	27.4095	97.9373	30 StdEmor
1.1295	-			0.7278				tValue			-0.6156	-0.0761	1.2615	1.8744	-0.0944		-						10 6478	•Xfalue			0.4003	-1.2400	1 3 4 04	-1.6436	0.7727	-1.0593	1.0574	-0.0866		-0.0271			-3.1919		2.0213	1.1167	0.4851	1915.0	+	-	0.8002	-0.9422	-	-	2.5635	•Visline
137 7227	-493.5960	-459.3051	-233.0026	1.8526	1036.4621	-1031.0734	~	Estimate			-0.3136	-31.8645	45.3632	122.7238	-49.5103	-196.0496	437.6317	161.3859	119 8900	1.0482	-528.2743	555 DIVES	-815 8350	Fotimata			-0.0457	-02.0714	70411	-68.4438	55.5422	-60.7431	121.8846	-34.1324	-9.1894	-16.5030	-100 5806	43,3060	-71.7665	14.5508	265.4877	70.3862	83.6205	29.3990	144.0494	42.9771	20.7156	-0.1679	-222.6945	-52.7497	180.4706	Defimate
145 5311	322.8871		178.4768 -1.3055	1.7211		496.4862	1035.5178	StdError	8		0.3301	62.4696	77.3268		83.7746	288.7102	190,4661			1.0318	505.6999 -1.0446	100.000	1010101	StdEmor	45		0.1026	44.2390	10.1100			50.1815	112.2921	48.5648	29.3722	66.7072	29.2210			67.1006	123.5385	58.1548	77.9979	71.9527	8910.6/	45.5660	16.4664	0.6166	57.7731	25.8857		40 StdEmor
0.9463	-			1.0764	1.1765	-2.0767	1.7665	tValue		æ F2	-0.9498	-0.5101	0.5866	1.6759	-0.5910	_	_	_	_				1 3 5 7 0	•Malua	_	æFi		-1.4100		-		-1.2105	1.0854	-0.7028		-0.2474	_	_	-1.8824	_	2.1490	1.2103	1.0721	1.2417	1.8230	-0.9432	1.2581	-0.2724	_	-2.0378	2.0290	•Value
825.2204	497.1516	-522.4181	-	2.5641	1255.1331	-1107.6978	~	Estimate		2	-0.3098	-57.7673	41.9975	142.5318	-27.0900	-283.1924	441.0610	215.2073	148 4 384		-	603 7377	7061 1860	Potimata			-0.0604	-36 4001	COC7'HT	-71.3650	62.5738	-66.7135	81.3262	-72.0775	-10.8800	-21,4701	-07.7642	14.0063	-30.3025	-12.0184	249.8369	86.4358	115.2529	155 0608	002.506	-2.5265	22.0989	-0.1933	-216.3797	-33.9642	142.0202	Entimate
144 0486	347.1343	285.4403	187.4513	1.6328	924.6985	523.4404	1093.8744	StdError	8		0.2864	52.9990	65.2555	63.5233	72.6684	265.6827	171.1914	149.2724	95 1058	0.8901	467.0428	164 3707	552 3401	StdEmor	s		0.0981	40.0210	14.2022	35.9344	60.7477	47.7809	107.3396	46.3049	28.3097	63.3431	77 3010	46.8358	35.1366	64.0798	119.0414	55,4441	74.9587	1400.40	72.1746	43.6548	14.7060	0.5908	55.1774	24.2812	79.0279	StdEmor
0.7490	-		-1.4010	1.5704		-2.1162	1.8235	tValue			-1.0818	-1.0900	0.6436	2.2438	-0.3728	-1.0659	-	-	-+		-1.3370	27041-1-	1 7407	Alahan			-0.6161	-1.027		_	1.0301	-1.3962	0.7577	-1.5566	-0.3843	-0.3389	-1 2250	1662.0	-0.8624	-0.1876	2.0987		-+	2 3700	2.8005	-0.0579	1.5027	-0.3271	-3.9215	-1.3988	1.7971	Walne
204.08/0	-364.4532	-544.0896	-268.6518	3.0072	1425.3529	-1046.2868	1959,4296	Estimate			-0.1898	-76.4376	57.8634	158.8907	15.1792	-251.0017	342.0524	202.6115	175 0715	0.8304	-542.6219	500.0201	-800 6557	Potimata			-0.0970	-71 8684	01 60'01-	-99.1131	74.7143	-98.9310	30.4107	-94.6257	-4.5032	-55.1598	-10:4072	-7.9726	5.4724	-11.7982	231.6306	103.4232	142.8916	133 8321	15 0070	17.9439	22.3418	0.0049	-209.0333	-11.9834	134.5897	Detimate
139 4502	377.0017	291.1490	198.5745	1.5012	977.3380	556.7637	1166.7824 1.6793	StdError	60		0.2420	45.5708	54.1778	56.8782	62.6477	261.4082	161.4728	148.1105	97 4061	0.7570	459.7646	1001100	10110105	StdErme	6		0.0945	30 1018	11.4/40	34,4294	58.0664	45.6615	102.7766	44.2527	27.0929	60.4162	20.9412	44.7921	33.6780	61.3556	113.4027	53.0331	71.6308	63,1145	09.3779	41.8066	14.1026	0.5729	52.7355	23.2633	76.1089	60 StdFrmr
0.0115	_		-1.3529	2.0032				tValue			-0.7845	-1.6773	1.0680	2.7935	0.2423	-0.9602	2,1183	1.3680	1 1612		_	10477	-1 4851	Walna				-1 8338					0.2959	-2.1383		-0.9130	-0.7141	-0.1780	0.1625	-0.1923	2.0425	1.9502	1.9948	2 1205	5.2469	0.4292	1.5842	0.0085	-	-0.5151	1.7684	Waha
-55 5270	-181.7780	-580.7862	-291.3007	3.8569	1874.2369	-938.1517	1972.6093	Estimate			-0.1787	-77.7104	31.6937	165.6247	29.7765	-199.1469	298.4168	158.2264	104 6476	1.0391	463.8607	2009 0Ch	1676 7610	Estimato			-0.0948	-110.0233	1010.24-	-135.1147	122.4102	-113.1921	-112.5591	-78.8714	4.7089	-113.4982	-13.2410	1206.9027	35.2659	-11.3162	221.3752	119.5465	145.2100	101 2757	249.0111	23.5857	15.4110	0.0942	-177.9074	7.5136	166.8783	Detimate
130.4733	380.6376	278.5242	197.3969	1.6275			1156.6252	StdError	70		0.2434		53.9874	59.3199	63.9864	233.1611	169.1033	128.5473	80 2016	0.7590	422.3173		500.0548	_	70			17 8417	001010	33.2876	55.8681	43.9853	99.0660			58.0874	23.9300	43.2222	32.6284	59.2688	108.8958	51.1592	68.8397	61 4887	0855.79		13.6998	0.5574	50.7233	_	_	70 StdError
1.8052	-	_	-1.4757	2.3698		-1.7078	1.7055	tValue			-0.7340	-1.7760	0.5871	2.7921	0.4654	-0.8541	1.7647	-	+	-	-	1 71 27	-1 3013	Walter				-3.1200				-2.5734	-1.1362	-1.8515	0.1805	-1.9539	-0.3774	-0.6224	1.0808	-0.1909	2.0329	2.3368	2.1094	1 6471	3.68/0	0.5843	1.1249	0.1690	_	0.3337	2.2445	Waha
-17 8311	-131.2322	-513.7141	-277.8239	4.4453	2154.3687		-	Estimate			-0.0419	-87.7821	3.2990	193.8171	53.0617	-83.3029	168.7357	105.0458	57 0530	0.7446	-302.5883	121 2024	-360 6104	Detimate			-0.0603	-120.0307	070711-	-159.2632	206.0929	-99.9628	-198.7819	-10.4166	27.3525	-140.0451	-10.0368	-28.7037	55.7338	9.9882	220.4139	116.3513	114.1004	-57.5720	282.3512	-3.0954	2.8406	0.1184	-125.2823	10,4731	227.4423	Defimate
497.0413	374.8006	272.3183	194.8268	1.6410		539.4573	1139.8390	StdError	80		0.2681	44.3284	54.4809	59.5734	61.6816	220.9989	155.3205	122.7669	83 7467	0.8252	389.8719	378 1073	482 2820	CtdErent	80		0.0928	38 6077	00.00.00	33.9787	56.9394	44.7297	100.7657	43.4586	26.5357	59.2021	0000.02	44,1123	33.3164	60.5328	110.6895	52.1849	70.0151	62.9083	09.135/	41.2249	13.9919	0.5673				80 StdFirm
-0 1436			-1.4260	2.7089	2.3075	-1.6794		tValue			-0.1563	-1.9803	0.0606	3.2534	0.8603	-0.3769	1.0864	0.8557	0.6813	0.9023	-0.7761		-0.7477	*Vialan			-0.6500	-4.0000	-1.0200	-4.6871	3.6195	-2.2348	-1.9727	-0.2397	1.0308	-2.3655	-0.4340	-0.6507	1.6729	0.1650	1.9913	2.2296	1.6297	1 0483	4.0841	-0.0751	0.2030	0.2088	-2.4329	0.4553	2.9902	1Value

Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: plottal	Previous Place: dinhthone	Previous Place: dental	Previous Voicine: voiceless	Emonency (log)	NUL Cue Strength	NDI Cos Strength	Timer: nast	(Intercent)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner; stop	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Provious Manner flan	Provious Mannar dinkthono	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Dendictor		 Duration (log) x Frequency (log)	Next Manner: stop	Next Place: glottal Next Place: labin-dental
67.4806	2.9301	207.6254	380.1401	211.9305	180 1107	23,4186	130 6085	70 0763	2205-3223	106 2572	-120 4399	670 1065	Estimate				68.6809	77.3112	36.5903	113.0888	116.0981	62,5382	-1.3698	-73.8235	35.9445	24.6439	-63.0965	25.2693	92,5825	-15.2181	10.5945	46.7126	133.1135	159.5324	-79 3822	153 8001	142.022	57,4065	48.9759	86.0800	179.2676	104.2609	-227.7498	99,9291	-37.6269	0.1322	124.9351	-100.4809	184.1459	Datimate		-0.1447	4.5528	139.1673
80.6928	196.1721	168.8399	77.7311		_	-	84 0568	0.9086	190.9442	_	_	235.0111	StdError	7			78.8502		74.9229	87.9817	88.4394	93.5602	52.7983	32.6089	83.3196	58.7845	27.5755	29.8346	87.1247	54.6837	31.9124	36.3555	46.4186	93.3640	58 7580	01 5700	103 6145	90.2490	73.8118	34.1003	66.6331	74.8483	96.4753	38.3303	16.2523	0.3865	86.3725			CHE-	00		128,4413	145.6261
0.8363	0.0149	1.2297	4.8905	1.3838	1.1161	0.1072	1 6620	0.7339	1.4991	1 4007	-1 4662	2.8514	tValue			-0.5132	0.8710	0.8955	0.4884	1.2854	1.3127	0.6684	-0.0259	-2.2639	0.4314	0.4192	-2.2881	0.8470	1.0626	-0.2783	0.3320	-1.2849	2.8677	1.7087	-1.3510	1 6814	0.4653	0.6361	0.6635	2.5243	2.6904	1.3930	-2.3607	2.6071	-2.3152	0.3420	1.4465	-2.7286	1.7283	+Minhum		-0.2118	0.0354	0.9556
63.0660	27.7954	201.0749	330.1756	188.9217	159 7358	17.3447	170 8028	0.7122	249.3490	740 5404	-111 1722	606 1563	Estimate			-0.0631	55.4718	70.3369	41.1867	91.4744	91.1662	76.1932	-0.0334	45.6002	20.3971	-13.6446	-51.6863	20.0551	71.5863	-35.5462	12.0703	-29.6261	116.3186	146.6622	-70.0690	115 005	110,7022	46.8369	60.5707	65.1516	164.2292	88.5966	-209.0723	72.8428	-31.7653	0.3087	112.1614	-94.3232	175,1926	Detimate		-0.1300	-31,4484	-79 0459
78.7257	191.4147	165.5693	76.0892	149.5749	157 5402	213.4112	81 9836	0.8992	186.3140			779 9860	StdError	70			75.6869	82.8164	71.9511	84.4146	84.8685	89.8012	50.6595	31.4070	79.9279	56.3986	26.4495	28.6986	83.5865	52.5555	30.6273	34,9001	44.6308	90.0961	56 5949	99.7429	34,0007	86.7657	70.4906	32.5204	64.3662	71.7399	92.2784	36.8118	15.6606	0.3801	82.8307	35.3198	102.4843	CtdE	n,			135.6501
0.8011	0.1452	1.2144	4.3393	1.2631	10139	0.0813	2.0424	-2 0434	1.3.394	1 2204	-1 3865	2 6356	tValue			-0.9284	0.7329	0.8493	0.5724	1.0836	1.0742	0.8485	-0.0007	-1.4519	0.2552	-0.2419	-1.9541	0.6988	0.8564	-0.6764	0.3941	-0.8489	2.6062	1.6278	-1 2381	1 3065	0.6500	0.5398	0.8593	2.0034	2.5515	1.2350	-2.2657	1.9788	-2.0284	0.8122	1.3541	-2.6705	1.7095	+1/6/110		-0.2104	-0.2582	1.3401
55.8748	11.2746	187.2777	284.3701	174.9624	150.0098	-11.6717	100 3575	65 8633	11/.3322	177 2552	-94 6644	569 7290	Estimate			-0.0884	66.7480	87.1148	57.3896	102.2499	94.5875	103.9819	-3.9802	-35.8280	34.2179	-43.2581	-51.0706	21.5401	111.4559	-48.0961	21.0061	-12.5708	95.0038	127.6646	-81 3970	82 2543	01.022	28.2406	80.4408	43.4691	156.2657	53.8917	-160.6690	57.9339	-21.9425	0.4858	70.4572	-76.1595	123.9042	Detimate		-0.1833		179.0915
76.6108	185.9421	161.3980	74.1131	145.7736	153 2124 0 9791	207.6899	79 7055	0.8/71	181.1005	191 1002	77 0834	223.9502	StdEmor	5		0.0668	75.3917	82.5400	71.6152	84.1380	84.5642	89.4877	50.5382	31.3731	79.6163	56.3689	26.4321	28.6002	83.2997	52.3637	30.5855	34,9883	44.7055	89.4436	56 7231	87 0560	34,9123	86.4951	70.9143	32.6783	64.9756	71.6882	92.7546	36.8175	15.7169	0.3732	82.8660	35.4190	102,4192	Ct-ID-	40		107.7640	121.2056
0.7293	0.0606	1.1603	3.8370	1.2002	0 9791	-0.0562	2 3883	1 00-58	0.9/95	0 0702	-1 2130	2 5440	tValue		,	-1.3246	0.8853	1.0554	0.8014	1.2153	1.1185	1.1620	-0.0788	-1.1420	0.4298	-0.7674	-1.9321	0.7531	1.3380	-0.9185	0.6868	-0.3593	2.1251	1.4273	-1 4350	0.0357	0.7704	0.3265	1.1343	1.3302	2.4050	0.7518	-1.7322	1.5735	-1.3961	1.3015	0.8503	-2.1502	1.2098	+Malma		-0.3380	-0.4741	1.4776
53.9289	-17.3207	173.8701	238.2572	204.4606	133 1764	-26.8913	190.2250	60 0877	69.3339	C012-C0-	-85 2783	566 2692	Estimate		AF2	-0.0940	69.7934	110.4161	67.2331	117.2248	101.7855	134.7419	5.0498	-14.9308	52.0318	-48.1663	41.5913	30.1520	146.9423	-33.6851	31.9593	-3.9520	58.8760	129.7420	-63 2249	58 5107	05 4767	-0.4231	67.7904	28.2962	116.5181	12.0212	-100.5526	40,4532	-8.6101	0.5086	32.7702	47.2989	51.9348	Detimate			-56.9534	121.2056 1.4776 156.3534 134.2985 -0.6947 -101.3609
75.5069	183.6324	158.9383	73.0145	143.3369	151 2685	204.6212	78 6373	0.8096	1/8.6814	170.011	76 8793	220.9681	StdError	s		0.0658	74.3709	81.4250	70.6523	82.9965	83.4210	88.2718	49.8389	30.9369	78.5347	55.6006	26.0727	28.2064	82.1671	51.6408	30.1672	34.5101	44.0957	88.2043	55 9487	96 7410	7404.46	8550/0	69.9955	32.2540	64.0969	70.7274	91.5340	36.3142	15.4995	0.3678	81.7345	34.9388	101.0417	et an	\$	0.5099	103.9745	117.9795
0.7142	-0.0943	1.0939	3.2631	1.4264	0.8804	-0.1314	2 4 1 90	0.4026	1680	-1.1072	-1 1092	2 5627	tValue			-1.4288	0.9385	1.3560	0.9516	1.4124	1.2201	1.5264	0.1013	-0.4826	0.6625	-0.8663	-1.5952	1.0690	1.7883	-0.6523	1.0594	-0.1145	1.3352	1.4709	-1 1301	0.5745	1.49/9	-0.0050	0.9685	0.8773	1.8178	0.1700	-1.0985	1.1140	-0.5555	1.3828	0.4009	-1.3538	0.5140	41/2/112		-0.6957	-0.5478	1.3253
51.0506	-41.0202	128.3855	220.2148	218.9350	113.0710	13.2374	175 1068	-0.3085	-32.42.33	27 1725	-77 7140	\$74 9912	Estimate			-0.1194	43.0211	80.0676	67.9666	86.5481	67.8219	113.7245	-5.0956	-4.4616	26.7695	-82.7674	42.2640	22.2686	127.2650	-61.8880	22.9057	-3.2429	37.5564	152.5572	-51 5016	61 5684	41.6/91	-25.6585	42.3279	25.6762	99.5114	-13.7452	-59.6761	31.2640	-1.1050	0.6842	14.9702	-36.8431	47.8368	Detimato		-0.5568	-11.9909	-50 4683
75.3607	185.1350	157.8983	72.6858	141.8295	152 1524	203.8975	78 8786	13 8045	1/9.118/	170.0340	76 8548	221 3762	StdError	6		0.0661	74.7586	81.8323	71.0552	83.4044	83.8445	88.6931	50.0234	31.0649	78.9154	55.8543	26.1808	28.3366	82.5543	51.8554	30.2938	34.6663	44.2984	88.6623	56.1727	90.0414	34.0441	85.7134	70.3587	32,4231	64.4231	71.0663	91.9735	36,4645	15.5726	0.3691	82.0560	35.0932	101.5204	Ct-IE-mar	6	0.4677	95.1158	112.8382
0.6774	-0.2216	0.8131	3.0297	1.5436	0.7431	0.0649	2 2214	-1 6668	-0.1810	-1.0112	-1 0112	2 3715	tValue			-1.8061	0.5755	0.9784	0.9565	1.0377	0.8089	1.2822	-0.1019	-0.1436	0.3392	-1.4818	-1.6143	0.7859	1.5416	-1.1935	0.7561	-0.0935	0.8478	1.7207	-0.0168	0.5002	0.000	-0.2994	0.6016	0.7919	1.5447	-0.1934	-0.6488	0.8574	-0.0710	1.8537	0.1824	-1.0499	0.4712	Waha		-1.1906	-0.1261	0.9149
44.2788	-71.4445	123.4703	196.5225	247.3680	96 2245	58.1001	177 1168	-1.2183	-101.96/3	101 0675	-58 5846	486 7344	Estimate			-0.1052	35.7384	72.1275	67.3866	82.8735	56.4658	104.7068	-2.4951	4.2126	20.7729	-72.8838	-36.2024	29.0399	126.0823	-56.5667	22.7683	-16.5549	19.5785	159.4487	-63.0198	06.71.00	32.2933	-43.1361	28.7743	28.3810	92.2834	-19.4983	-28.8932	40.4425	0.9012	0.5859	32.4398	-34.9015	45.8714	Detimato		-1.0629	-23.5566	-21 3627
75.8405	188.2468	158.3456	73.0102	141.8560	153 8377	204.6888	79 5750	0.90/9	180.6907	100.007	77 3880	223 0280	StdError	70		0.0680	76.2672	83.5050	72.4560	85.1098	85.5554	90.5520	51.1416	31.6777	80.5810	56.9176	26.7168	28.9245	84.2951	53.0043	30.9186	35.2407	45.0539	90.5947	57 1040	88 7500	100.4630	87.4412	71.3362	32.8927	65.0262	72.4417	93.3700	37.1783	15.7969	8085.0			103.4578	CtdE-	Π	0.5118	85.4762	115.5216
0.5838	-0.3795	0.7798	2.6917	1.7438	0 6255	0.2838	1.0001	-1.3419	-0.3643	-0.5642	-0.7570	2 1736	tValue			-1.5481	0.4686	0.8638	0.9300	0.9737	0.6600	1.1563	-0.0488	0.1330	0.2578	-1.2805	-1.3550	1.0040	1.4957	-1.0672	0.7364	-0.4698	0.4346	1.7600	-1 1019	0.0362	0.91/4	-0.4955	0.4034	0.8628	1.4192	-0.2692	-0.3094	1.0878	0.0571	1.5386	0.3876	-0.9779	0.4434	+W/ahua		-2.0767		0.5997
17.8683	-97.1707	93.0845	178.1097	257.5305	47 9822	98.1780	166 5004	-2.0558	C8161/1-	171 0195	-36 7005	426.9173	Estimate			-0.0764	26.9182	77.4222	59.2772	87.9369	57.0533	98.7732	9.2796	6.4116	24.1855	-64.6604	-38.5087	47.1816	133.2758	-39.5188	32.5646	-24.8610	15.9169	176.8828	-64 2207	80 4065	67 1977	-35.0050	18.7645	33.3336	104.9412	-5.7326	4.5842	49.3059	-1.2206	0.3204	52.0768	-35.6784	53.9358	Detimato		-1.4456	-54.9793	20.5812
75.4737	188.4356	157.4702	72.6972	140.8202	153.9203	204.0175	70 1765	13 0784	180.34/3	190 2/72	77 7665	222.8832	StdError	8		0.0691	77.6623	85.1389	73.6263	86.7895	87.1967	92.3854	52.3878	32.3881	82.1816	58.1331	27.3433	29.5093	86.0209	54.1825	31.6259	36.0041	46.0406	92.0962	\$8 \$354	00 5357	102 1020	89.1525	72.9210	33.6276	66.2461	73.9987	95.4960	38.0491	16.1283	0.3896	85.7372	36.4963	105.6678	CHE	80	0.5143	79.0689	113.1144
0.2367	-0.5157	0.5911		_	03117	0.4812	7 0087	-2.3393	-0.9333	-0.4750	-0.4750	1.9154	tValue			-1.1055	0.3466	0.9094	0.8051	1.0132	0.6543	1.0691	0.1771	0.1980	0.2943	-1.1123	-1.4083	1.5989	1.5493	-0.7294	1.0297	-0.6905	0.3457	1.9206	-1.0971	0.000.0	0.0092	-0.3926	0.2573	0.9913	1.5841	-0.0775	0.0480	1.2958	-0.0757	0.8224	0.6074	-0.9776	0.5104	•161.00		-2.8107		0.1820

Duration (log)	NDI Cus Steamoth	Tense: nast	Intercenti			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Manner: approximate	Previous Place: palatal	Previous Place: glottal	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: lax	Provious Manner frication	Provious Manner: diprinong	Barris Mannan diabhana
-1.9267	1761 066	73.8260	_105 2030	1		:) -0.0766	3.0820	9.7399	-28.0010	-4,7020	26.1479	-21.7156	-7.8595	30.8766	73.1979	4.9401	38,1608	14.3270	53.0569	4.3042	-58.8557	-80.2070	-8.4253	19.4515	-65.6758	85.0341	6.8419	0.0339	-100.7546	0.0912	148.8994	Estimate			0 -0.1927	144.9368	29.9227	-12.5162	60.9625	67.6048	-189.5559	-204.0338	-0.5388	92,2943	-26.3132	15.5266	-10.0381	-102.8910	-52.0518	-164.8959	132.9296	58.6268	-368 5081	300 5775	2020 021
-1.9267 1.4641 -1.3160	1035 476/		Staterror	20		0.1351	32.1535	47.6722	71.2496	41.4839	56.1470	57.3594	53,7870	52.0596	53,4930	48.2965	43.7299	56.9691	54.9941	24.7111	75.9666	125.4969	118.4328	92.1489	71.7407	130.3836	13.3956	0.5880	5 368,1493		_	_	20		0.1598		186.7795	159.3923	190.6231	-+	-	116 1481	+	128,9002	+		188,4986	120.3245	\square	80.2801	+	-+	121 4751	+	-
-1.3160	1 7306	0.4024	10 3400	_		-0.5674	0.0959	0.2043	-0.3930	-0.1133	0.4657	-0.3786	-0.1461	0.5931	1.3684	0.1023	0.8726	0.2515	0.9648	0.1742	-0.7748		-0.0711	0.2111	-0.9155	0.6522	0.5108	0.0577	-0.2737		0.7553	tValue			-1.2055	0.8551	-	-	-			-2.8572	_	-		0.2389	-0.0533	-0.8551	-0.7418	-2.0540			_	1 5064	
-1.2733	V1L9 L55	-23.1686	66 1729			0.0050	14.3348	20.2144	-33.0077	13.3891	13.9368	-25.3389	-3.3598	37.5121	84.3121	2.5143	51.0719	30.7976	66.5551	6.4060	-85.0567	-61.9040	-7.0246	21.8949	-54.5399	115,9609	-0.3099	-0.2762	-64.3724	1.3068	146.0667	Estimate			-0.1914	161.0892	36.1577	9.7029	96.2105	76.0518	-170.8069	-190.0038	19.9/28	117.4558	-0.1078	9.1244	22.2047	-112.4608	-50.6449	-183.7562	137.7951	24.9763	-267 7278	324 0167	100 0766
-1.2733 1.4772 -0.8620	1006 0763	174.1577	SIDENOT	30		0.1257	31.6331	46.9659	69.8909	40.7454	55.2283	56.7465	52,6609	51.1109	52,6587	47.4153	43.0186	55.9364	53.6326	23.8562	74.0298	121.3449	113.9566	89.3856	68.7139	125.0747	12.6090	0.5484	356.0248	55.1622	189.5685	StdError	30		0.1580	165.6469	182.5825	155.8519	186.2810	186.1360	197.1754	113 2637	1/6.1939	125.7621	58.7201	63.4520	184.1311	117.5272	68.4885	78.2364	99.7116	197.1219	178 4777	104 5010	112 1906
-0.8620	0 5/20	-0.1330	SIDENTOT IValue	-		0.0399	0.4532	0.4304	-0.4723	0.3286	0.2523	-0.4465	-0.0638	0.7339	1.6011	0.0530	1.1872	0.5506	1.2409	0.2685	-1.1490		-0.0616	0.2449	-0.7937	0.9271	-0.0246	-0.5036	-0.1808			tValue			-1.2115	0.9725					_	-2./84/		0.9340	-0.0018	0.1438	0.1206	-0.9569	-0.7395	-2.3487	\rightarrow			06660	
-0.4147	10:001	48.0364	110 1571	1		0.0107	20.3048	24.2350	-18.8305	15.8471	11.7917	-30.6538	1.4913	35.8522	75.9545	1.4258	49.5955	41.4773	58.1699	0.9894	-74.0696	-45.8851	-0.8635	19.2611	-61.2985	128.0815	0.1885	-0.2246	-26.3052	13.8598	105.3105	Estimate			-0.1733	153.5231	17.7626	28.0649	103.9604	66.3470	-151.7325	-194.2445	10, 3809	113.4416	21.9208	-4.7131	43.5812	-128,4880	-57.2848	-181.2691	145.8917	41.4316	-361 0460	354 4150	110 7006
1.4420	002 01/7	155,4111	SIDENTOT	40		0.1217	30.4447	45.2024	67.1198	39.2857	53.1701	54.5TT2	50.8534	49.3015	50.5131	45.7045	41.2704	53.8690	51.5191	22.9648	71.1929	118.0702	110.8753	86.3958	66.5316	121.6118	12.2529	0.5307	346.4329	53.5196	183.9096	StdError	8		0.1541	160.9868	177.4738	151,4834	181.0444	180.9268	191.6587	110.0151	1/1.2044	122.2223	57.0742	61.6426	178.9238	114.1639	66.5549	76.0577	97.0079	-+	100.2002	188 0602	1010 4104
1.4420 -0.2876		-0.3091	0 6045		u F2	0.0878	0.6669	0.5361	-0.2806	0.4034	0.2218	-0.5617	0.0293	0.7272	1.5037	0.0312	1.2017	0.7700	1.1291	0.0431	-1.0404	-	-0.0078	0.2229	-0.9213	1.0532	0.0154	-0.4231	-0.0759	_		tValue		u F1	-1.1247	0.9536						-2.8380	_		0.3841	-0.0765	0.2436	-1.1255	-0.8607	-2.3833	-			1 8756	
1.7417	71 00/0	-7.5144	245 1761	1	F2	-0.0279	35.7618	33.6975	-6.5352	36.0630	31.7647	-21.6830	-1.9290	43.6062	63.9963	2.0150	54.7322	48.5644	57.4510	4.5115	-72.5281	-52.3297	-10.9873	33.6658	-62.2015	116.3520	1.2564	-0.0119	-30.3279	18.6063	87.2125	Estimate		FI	-0.1048	141.7302	-9.7228	37.0358	86.5245	70.5325	-133,1556	-204,2408	11. /930	121.1303	36.6233	-15.6552	54.8594	-146,4046	-55.9085	-160,4899	144.4054	90.4212	355 0755	347 1146	1200 001
1.5160 1.1488	1017 200	157.2403	SIDENTOT SAD 9009	50		0.1265	30.2973	45.1082	67.2889	39.4179	53.1597	54.4323	51.2318	49.4146	50.8931	45.7625	41.3340	53.8308	51.8633	23.0841	71.8717	123.2438	116.7238	88.6709	70.3642	127.5857	12.9454	0.5513	361.5429	57.3600	191.9009	StdError	8		0.1527	159.1106	175.3692	149.7694	178.8848	178.8015	189.3678	108 61 64	109.2048	120.6148	56.3360	60.8931	176.7942	112.7771	65.6995	74.9841	95.6694	189.3229	102.1705	186 4064	1077 2424
1.1488	0.0100	157.2403 -0.0478	0.4533	-		-0.2209	1.1804	0.7470	-0.0971	0.9149	0.5975	-0.3983	-0.0377	0.8825	1.2575	0.0440	1.3241	0.9022	_	_			-0.0941	0.3797	-0.8840	0.9120	0.0971		-0.0839	-		tValuc			-0.6864	0.8908		-	-+		-0.7032	0/.3213 -3.0248 108.6164 -0.6527			-	-0.2571	0.3103	-1.2982	65.6995 -0.8510	-2.1403			-7 8001		
1.8659		-9.8764				-0.0378	57.0851	28.0827	-6.1279	39.8159	33.4241	-8.1042	-14.1843	33.2584	57.2682	-13.4426	49.2829	32.5705	47.4606	7.2643			41.0224	60.3100	48.6349	69.6256	-0.4448	0.0773	-124.2891	19.3553	137.8475	Estimate			0.0235	168.1902	1.9818	77.1587	129.3490	94.8555	-99.0210	-192 3335		127.2220	58.4459	-20.2622	92.5065	-158,6056		-128.0760	140.8178	155.9149	111 0100	316 2083	111 0760
1.6029 1.1641	10/16 0003	164.1584	SIDEITOF	60		0.1350	29.9359	44.8250	67.6588	39.6290	53.0612	53.9830	51.8090	49.4441	52.1271	45.7169	41.6169	53.6078	52.7309	23.2287	73.2847	134.0449	129.6273	93.2660	79.5440	143.8195	14.5234	0.5890	392.5600	68.6528	212.6139	StdError	8		0.1542	160.8142	176.9749	151.7014	180.4933	180.5705	191.0865	109 1854	1/0.9040	121.1738	56.5814	61.3764	178.4116	113.5663	66.0048	75.0757	95.7354	-		187 6166	100 0611
1.1641	0.0276	-0.0602	1Value 0.4780	_		-0.2796	1.9069	0.6265	-0.0906	1.0047	0.6299	-0.1501	-0.2738	0.6726	1.0986	-0.2940	1.1842	0.6076	0.9001	0.3127	-1.0792		-0.3165	0.6466	-0.6114	0.4841	-0.0306	0.1312	-0.3166	0.2819	0.6483	tValue			0.1525			-				-2.841/				-0.3301	0.5185	-1.3966	-0.9304	-1.7060	1.4709	0.8131	-2 7002	-	
1.5393	726 7464	-67.9708	244 7602			-0.0221	62.8773	18.0855	-28.4365	31.8769	6.6623	-6.9997	-15.0385	16.0789	68.9172	-25.4213	46.7055	-11.7215	55.7793	14.9392	-101.9806	-156.1548	-95.7747	96.4037	-41.4948	25.5860	-4.1424	0.0295	-298.5866	14.1364	239.0186	Estimate			0.1893	192.8417	22.4951	106.0207	163.4894	136.5541	-23,4419	-209.1111	000100	121.7682	78.5031	-25.6740	132.2896	-155.9064	-57.7890	-105.2208	134.8105	236.4755	-334 8074	149.2012	110 020
1.6700 0.9218		173.6969	Stderror	70		0.1391	29.9558	44.8317	67.8445	39.7266	53.1166	53.8512	52.0363	49.5411	52.3400	45.7806	41.6998	53.6790	53.0820	23.4491	73.7614	136.3990	132.3154	94.3935	81.3774	147.7796	15.0168	0.6061	399.2780	71.2779	217.7081	StdError	70		0.1601	163.7839	179.9178	154.8371	183.4926	183.6825	194, 1900	110 4955	1/3.90/6	122.6079	57.1460	62.3650	181.2932	115.2990	66.7733	75.7102	96.5524	196.3224	173,6610	100 1868	111 2127
0.9218	0.0140	-0.3913				-0.1586	2.0990	0.4034	-0.4191	0.8024	0.1254	-0.1300	-0.2890	0.3246	1.3167	-0.5553	1.1200	-0.2184	1.0508	0.6371	-1.3826	-1.1448	-0.7238	1.0213	-0.5099	0.1731	-0.2759	0.0487	-0.7478	0.1983	1.0979	tValue			1.1826	1.1774	-+	-	-	-		-3.0033	0.4620			-0.4117	0.7297	-1.3522	-0.8654	-1.3898	1.3962	-	-2 7075	-	
0.3032	\$42 0210	-152.3915	221 1954			-0.0254	63.8345	12.1466	-52.5296	30.9172	-19.6682	4.1080	-21.5685	3.3087	82.3534	-27.9410	48.5246	-59.6442	78.2316	33.2648	-133.4939	-184.6525	-117.7872	109.5741	-11.5296	-2.0087	-8.2036	0.0486	-356.4386	-5.8354	309.0211	Estimate			0.3369	206.7835	39.4549	142.7822	176.8360	173.8857	25,4443	-205.6537	112./00/	112.0402	105.8439	-29.6481	155.8069	-165.4011	-62.4120	-72.6263	97.9563	207.9099	-316 7503	212 0357	1107 011
1.6777 0.1807		174.9080	\$97.4812 0.3702	80		0.1442	32.6007	48.9087	73.6110	42.8524	57.8054	58.2328	56.3816	53.8633	56.5103	49.7910	45.2275	58.4690	57.1249	25.1381	79.3545	144.1211	139.8641	101.0914	86.3815	155.5991	15.6665	0.6284	421.7487	75.1839	229.6731	StdError	80		0.1546	164.0531	179.9980	155.3457	183.5976	183.8470	194.2761	110 3026	1/4.000	122.6858	57.0995	62.3325	181.4479 0.858	115.0516	66.6919	75.7240	96.1877	196.1486	100.0007	100 4647	0150 010
0.1807	0.4992	-0.8713	0 3702	_		-0.1760	1.9581	0.2484	-0.7136	0.7215	-0.3402	-0.0705	-0.3825	0.0614	1.4573	-0.5612	1.0729	-1.0201	1.3695	1.3233	-1.6822	-1.2812	-0.8422	1.0839	-0.1335	-0.0129	-0.5236	0.0773	-0.8451	L	1.3455	tValue			2.1787			-				-0.7759				-	0.8587	-1.4376	-0.9358	-0.9591			-2 5763	0.8420	

Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Emanana (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Voicing: voiceless	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (108) × 11 cquarter (108)	Duration (loc) × Brannancy (loc)	Libert Weighter trained and	Providus Voicing: voiceless	Prequency (10g)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: Jahial	Next Place: glottal	Next Place: dinhthone	Next Place: dental	Next Voicing: voiceless	Provide Manner fricative	Previous Manner: annroximate	Previous Place: glottal	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)
41.3154	-17.0110	-1.8515	-7.9739	-0.2231	-87.3873	10.8341	73.4068	Estimate			-2.6994	26.0962	-14.8797	-155.1173	241.3375	13.2068	-286.5439	42,1899	-779.9798	Estimate			0.7200	23.4310	100.001	160 7014	10.0000	CKQC'I	-184,1897	158.4524	470.9558	Estimate			0.4696	6.7818	-15.0402	-196.9531	-8.4092	-13.4232	48.3803	-199.4684	-53.8956	109.5197		177.9440	42 5681	126.3579	40 9181	-285 9389	588 1858	-216.6698	-121.7599	630.4596	-15.7013
79.5428	53.0384	94.2655	67.7070	0.1895	80.3417	15.5684	92,7952	StdError	20		3.1842	39.0818	400.4743	380.2044	187.8988	15.3242	586.6438	315.8388	1101.5891	StdError	20		1.7170	1 0710	21 2020	2/10.01/2	103.01/9	9.4435	336.5221	182.8253	765.6208	StdError	20		0.3363	81.8357	122,2829	181.8127	105.9066	143.8250	144.3384	139.9726	134.2107	139,1140	174 1866	112.1188	145 3735	139,7983	61 0545	194 2578	350 3966	251.2167	210.1587	380.3160	37.9641
0.5194	-0.3207	-0.0196	-0.1178	-1.1/84	-1.0877	0.6959	0.7911	tValue			-0.8477	0.6677	-0.0372	-0.4080	1.2844	0.8618	-0.4884	0.1336	-0.7080	tValue			-V.4.1.	0.7414	0.7414	0.6603	0.7790	0.1002	-0.5473	0.8667	-0.6151	tValuc			1.3966	0.0829	-0.1230	-1.0833	-0.0794	-0.0933	-0.3352	-1.4251	-0.4016	0.7873	- 1000 L	1.5871	0.2928	0.9039	0.6702	-1 4720	1 6786	-0.8625	-0.5794	1.6577	-0.4136
34.5076	-7.5820	6.9105	4.3836	-0.1282	-63.0877	3.8599	47.4764	Estimate			-2.0996	40.5327	13.7807	-178.7793	204,9049	10.7262	-284.2354	18.1298	-587.5467	Estimate			0.7070	OCCC.CI	15 5550	-41.6.241	43.3134	-2.9895	46.4742	73.5937	-108.3909	Estimate			0.2470	54.4522	63.6707	-167.0244	79.2787	63.7039	-18.9795	-143.6663	7.7751	129.3659	-31 8153	211.5654	141.3703	210.0222	-17 9132	-281 6560	378 8741	-142.0491	-101.8009	389.1718	-7.9799
79.6037	53,1426	94.1385	67.6658	0.1907	80.0205	15.5167	92,5951	StdError	30		2.6911	41.1953	336.8499	297.9379	179.1664		470.9806	256.8228	1036.7282	StdError	30		1.0007	1 9604	10 2720	2017-0440	105 4446	8,9141	317.0457	172.3563	722.4783	StdError	30		0.3377	86.4862	129.5318	191.3874	111.2229	151.8144	153.5187	146.1953	141.3246	144.8182	130 0988	117.4875	153.6979	145.4682	82.00 29	202 3823	350 5712	256.2478	206.8905	370.8504	36.7744 -0.2170
0.4335	-0.1427	0.0734	0.0648	-0.6/23	-0.7884	0.2488	0.5127	tValue			-0.7802	0.9839	0.0409	-0.6001	1.1437	0.8310	-0.6035	0.0706	-0.5667	tValue				0.3619	_		0,400	-0.3334	-0.1466	0.4270	-0.1500	tValue			0.7315	0.6296	0.4915	-0.8727	0.7128	0.4196	-0.1236	-0.9827	0.0550	0.8933	-0.0400	1.8007	8616.0	1.4438	-1 -2 - C	-1 3917	1 0807	-0.5543	-0.4921	1.0494	-0.2170
-9.6842	14,9043	-22.1900	16.9399	7 8479	-33.8847	2.9288	22.5629	Estimate			-0.4116	54.8336	140.4485	-319.9539	119.1627	3.1588	-54.5773	-85.8337	-95.4353	Estimate			0.0774	2000.0	1 0500	1156.00-	-20.0499	-4,8/40	30.3841	-3.4350	228.1007	Estimate			0.0345	38,7959	32.1068	-212.9046	54.1776	6.4264	-5.1169	-101.0995	47.0128	97.7925	_77 8428	195.5495	129.9994	224.6273	161549	-262 5442	734 7387	-63.2002	-82.5322	209.5645	-9.7898
78.9847	52.8214	93.2736	67.0972	0.1946	79.2399	15.3838	91.7380	StdError	8		2,7218	42.1592	332.6169 0.4223	295.3808	182.1416	13.0352	470.5418	255.4316 -0.3360	1054.5489	StdError	8		1.0060	1 5275	74.0020 1011	100.3613	160 5501 0 7204	1.3339	263.6300 0.1153	142.9089	600.1658	StdError	8		0.3248	86.1723	128.0130	191.2931	111.1998	149.8610	158.3455	142.5477	138.5921	147.3812	9209 U 1550 801	119.1295	150.5300	146.6809	63 1739	201 8599	338.4465	249.0338	193.5567	349.4410	34.5023 -0.2837
-0.1226	0.2822	-0.2379	0.2525	0.2301	-0.4276			tValue		•	-0.1512	1.3006	0.4223	-1.0832		0.2423	-0.1160	-0.3360	-0.0905	tValue		c	0.0000	24.9000 0.1224	0.1774	0.7545	-0.1944	-0.0040	0.1153	-0.0240	0.3801			c	0.1062	0.4502	0.2508	-1.1130	0.4872	0.0429	-0.0323			0.6635	7 6036			1.5314	-1-200	-1 3006	0.6036				-0.2837
17.3282	31.8075	17.1934	36.4193	11 0330	-25.7444	13.4445	-11.4160	Estimate		o FI	0.4932	71.4877	116.0220	-330,2462	25.2717	-0.8506	14.0195	-128.0056	346.8741	Estimate		u F2	0.7017	1 7010	1 5767	-3.8030	C664:77-	-5.9492	14.4659	-0.9794	220.4504	Estimate		E	-0.4445	-8.9790	-10.9029	-314,7136	8.9386	-56.7909	33.2942	-68.7226	-78.5138	130.5725	-132 2562	203.9581	32.9731	253.6422	-12 4457	-249 7000	179 4123	43.9694	-64.0284	169.2302	19.5330
81.2893	54.3726	95.9552	69.0659	0.2000	81.5195	15.8400	94.4450	StdError	8		2.9521	45.1289	358.7209	321.4986	196.7598	14.1355	514.5186	278.0717	1137.8799	StdError	8			1 1969	107.7201	190,4273	142 1075	1.11/4	256.7473	139.0816	583.6228	StdError	8		0.3416		132.6287	199,4015	115.5490	154.8614	165.6084 0.2010	146.9672	142.9086	153,9960	112 2017	124.8630	155.2676	154.0551	66 5087	210.6755	344 4402	256.7424	198.2815	356.1666	35.8459
0.2132	0.5850	0.1792	0.5273	1 1 5 7 3	-0.3158	0.8488	-0.1209	tValue			0.1671	1.5841	0.3234	-1.0272		-0.0602	0.0272			tValue			17110	0.1041	0 10/1	-0.0373					0.3777				-1.3014	-0.0999	-0.0822	-1.5783	0.0774	-0.3667	0.2010				-	1.6335	0.2124	1.6464	J 1871	-1 1852	0.5209	-0.1713	-0.3229	0.4751	0.5449
-30.5405	6.4384	-8.5244	-38.1394	0.3317	-60.9927	20.7308	44.3690	Estimate			1.2782	66.6798	88.0090	-294.8618	-63.9431	-4.8748	42.6826	-152,5067	776.6687	Estimate			0.1100	0.1122	7 6126	65 1 754	-1.9028	-1.204/	47.0328	35.9789	71.4483	Estimate			-0.4004		-117.5529	-381.6168	-60.7233	-16.0942	43.4966	-94.6959	-116.0788	126.7861	131 5767	201.9201	44.1897	180.5270	-26.4603	-214 4303	90.2298	41.8056	5.5512	132.6027	17.7571
80.6455	53,8887	95.4752	68.6609	0.1934	81.1834	15.8029	94.0155	StdError	60		3.2142	50.7961	397.6350	347.8041	216.7536	15.4035	555.9415	302.3141	1251.5344	StdError	60		1.0471	1 57/1	102.0100	100.0900	160 6055	0.6671	263.6767	142.7757	598,5056	StdError	68		0.3623	96.6358	142,1498	212,9661	123.0203	165.5015	176.1050	156.3548	152,5220	163.2635	142 2832	133.2372	166 3181	164.2497	71 5401	224 1456	356 2978	270.5192	207.7777	370.0829	38.0084
-0.3787	0,1195		_	1./149	-0.7513	_	-	tValue			0.3977	1.3127	0.2213	-0.8478		-0.3165	0.0768	-0.5045		tValue			0.0775	_							0.1194	tValue			-1.1053		-0.8270	-1.7919	-0.4936	-0.0972							-	-	_	_	0.2084	_			38.0084 0.4672
	-11.7195	-77.4076	-92.6268	0.2824	-44,1525	34.7293	122.4767	Estimate			2.3639	69.5191	149.8938	-389.0089		-10.2590	146.6748	-191.5487	1005.4476	Estimate			0.0737	-12.0442	110040	06.4/12	00 4710	-0.6909	-62.4880	50.4032	25.2815	Estimate			-0.2030	-16.1211	-144.3134	-237.2181	-31.9712	107.4835	24.7515	-106.6798	-15.2846	108.9839	1 8030	127.5314	42.1182	46.5467	-60.002	-57 3687	217 5735	-43.6421	44.4719	-8.8156	-2.6507
80.8025	53.8968	96.2294	69.0015	0.1916	82.1933	16.0229	94.7975	StdError	70		3.1565	51.9842	397.8526	331.5333	216.3289	15.1379	536.1436	293.1300	1243.0331	StdError	70		0000.1	1 5650	2002.071	106,2601	145 0001	/.4985	273.6350	147.8375	617.7132	StdError	70		0.3779	102.2535	150.5827	223.9612	129.7760	174.9708	185.0457 0.1338	165.4459	161.5739	171.0508	150 0554	139.7681	175.9201	171.8591	75 0617	235 0307	376.0020	286.2930	218.4806	390.9663	39.8036
-1.2964	-0.2174	-0.8044	-1.3424	0 1/33	-0.5372	2.1675		tValue			0.7489	1.3373	0.3768	-1.1734		-0.6777	0.2736		0.8089	tValue				0.900							0.0409				-0.5372		-0.9584	-1.0592	-0.2464	0.6143	0.1338	-0.6448		0.6371			-		-0.2.11		0.5404			-0.0225	-0.0666
-176.3535	-14.8769	-128.7605	-80.4207	0.2692	-8.6988	52.2933	110.6526	Estimate			2,7800	70.1801	243.0930	-367.1875	-70.8341	-12.6508	23.4153	-90.6610	878.5179	Estimate			0.2010	ODUCU	11 7510	110 5690	120 0407	-1.5125	-156,4648	122.7175	-151.6066	Estimate			0.1638	16.2877	-126.3129	-68.2085	11.6108	239.0748	-25.7425	-55.5818	137.5245	145.9982	100 0360	86.5261	316.5200	-52.5830	-87 0544	104 5429	283.0560	-66.3665	51.4413	-98.1069	-35,4950
82.2207	54.9068	97.7661	70.0793	10.19/0	83.2696	16.2268	96.2239	StdError	80		3.4896	57.4573	439.9387	367.4754	238.8109	16.7389	593.2254	324.4101	1372.8498	StdError	80		101111	1 1 1 10	720120	190.6915	155 7565	C456.0	261.5509	141.0974	584.8895	StdError	80		0.3828	100.8526	147.6410	218.3429	128.2737	171.4377	179.5995	163.7805	159.0470	166.4195	148 5076	136.2479	172.3046	168.0210	77 9573	230 1304	378 2272	285.2695	216.9263	395.3597	40.0955
-2.1449	-0.2709	-1.3170	-1.1476	0.4170	-0.1045	3.2227	1.1499	tValue			0.7967	1.2214	0.5526	-0.9992		-0.7558	0.0395	_	0.6399	tValue			V. 1700	0.14000	_		_				-0.2592	tValue			0.4279	-	-0.8555	-0.3124	0.0905	1.3945	-0.1433	-	-+		-	-					0.3347	-	+	_	-0.8853

Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: plottal	Next Place: dinkthone	Next Please doubl	Nost Voicing voiceloop	Providus Manner nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: flan	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: nalatal	Previous Place: lax	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: Jax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palatal Previous Place: palatal	Previous Place: lax	Previous Place: labial
98.1322	78.5803	2.5895	10.5850	86.4152	29.1938	44.3882	38 9970	49,9000	10 04 64	100.1177	-198 1107	76.5378	206.6716	-297.6419	-168.5045	-232.4853	-313,8229	-16.6866	-238.6242	42 1680	224.7326	140.1416	405.5979	-205.2523	-72.1063	0.0701	234.0751	-64.3528	767.4483	Estimate			0.0356	-13.8430	0.7934	-6.3028	-17.1226	-9.8931	17.6506	24.5248	8.3970	9.0977	9.3704	10.6530	23.2972	27.1150	-4.5651	9.5555	1.1177	0.3616	-19.6810	10.1325	-34,1405	-8.0110	39.5299	3.0129	56,3699
76.8651	79.7587	51.1808	25.4579	75.3436	35.4274	20.2169	27.1124	76 0270	0120.27	10 2010	97 1226	60.8029	188.3550	144.5793	129.4056	124.9888	132.6215	89 1310	109.8775	96.0088	168.0657	112.1327	203.3130	143.6966	21.9131	0.4167	174.1152	33.9712	199.0648	StdError	20		0.0259	36.6055	37.5894	35.0697	40.9210	36.5539	38.0105	24.5063	12.0382	35.8435	16.8103	9.5750	12.8519	36.2071	16.6549	10.6855	45.9372	28.8027	88.7147	68.1288	60,7995	59.1586	41.8112	52.0347	43.3665
1.2767	0.9852	0.0506	0.4158	1.1469	0.8240	2.1956	1.4383	1.4223	1 4000	1 4650	-1 9369	1.2588	1.0972	-2.0587	-1.3021	-1.8600	-2.3663	-0.1872	-2.1717	0.4392	1.3372	1.2498	-1.9949	-1.4284	-3.2906	0.1683	1.3444	-1.8943	3.8553	tValue			1.3731	-0.3782	0.0211	-0.1797	-0.4184	-0.2706	0.4644	1.0008	0.6975	0.2538	0.5574	1.1126	1.8127	0.7489	-0.2741	0.8943	0.0243	0.0126	-0.2218	0.1487	-0.5615	-0.1354	0.9454	0.0579	1.2998
99.0198	79.8176	-48.9421	-18,1464	78.4959	41.4609	42.5315	55 4290	52 7161	21 2000	17 1174	- 180 7075	60.0859	163,1080	-304.4386	-181.4565	-171.5820	-183.5524	2 7605	-222 7272	75 78 59	196.5353	130,1996	-358.8534	-203.2593	-82.9444	-0.5170	120.1407	-79,4596	876.7873	Estimate			0.0230	2.4465	17.6764	5.7522	-6.6031	9.1127	39.1938	50.4276	8.7906	24 7512	26.2925	5.4235	28.9670	47.7947	-3.9401	6.0805	3.2861	-0.9684	40.1142	-17.9497	-28.3212	-15.4732	-7 8451	9.2655	64.3044
80.8266	84.1098	54.3833	26.8069	79.1992	37.2997	21.3141	28.6977	37.0371	23.0107	102.100	102 1687	64.0978	197,4041	151.5904	135.7670	131.4293	137.0457	2800 20	115.5554	98.6021	176.5272	117.9531	212.1281	150.7033	22.7247	0.4411	180.8987	35.3259	208.1942	StdError	30		0.0261	36.5539	37.5369	35.0068	40.8389	36.5051	37.9838	24.5444	12.0407	35 7850	16.7965	9.5724	12.8755	36.1525	16.6508	10.6719	46.0437	28.8439	88.6976	68.1300	60.8024	59.2269	41.0922	52.1161	43.0567
1.2251	0.9490	-0.8999	-0.6769	0.9911	1.1116	1.9955	1.9315	0.7330	0.1107	0 71 90	-1 7605	0.9374	0.8263	-2.0083	-1.3365	-1.3055	-1.3394	0 0297	-1.9274	0 7686	1.1133	1.1038	-1.6917	-1.3487	-3.6500	-1.1720	0.6641	-2.2493	4.2114	tValue			0.8829	0.0669	0.4709	0.1643	-0.1617	0.2496	1.0319	2.0545	0.7301	0 6917	1.5654	0.5666	2.2498	1.3220	-0.2366	0.5698	0.0714	-0.0336	-0.4523	-0.2635	-0.4658	-0.2613	-0.7628 -0.0472	0.1778	1.4935
101.2713	86.9596	-26.1420	-38.4769	75.0658	53.0810	53.0048	73 2805	54,0000	2416.77	100.0140	-200.0164	18.6558	139.2954	-356.6893	-243.3951	-142.5215	-124.5282	31 5709	-205.4857	60.6184	124.1721	70.0832	-346.4465	-211.6819	-90.9424	-0.7201	13.4910	-98.4072	1008.5054	Estimate			-0.0036	-4.0122	21.7413	-1.4231	-6.8217	6.0561	24.9914	36.7379	10.3073	21.1061	33.0668	4.4779	34.2965	47.8942	-2.8455	9.3433	11.7498	-8.5649	-7.9133	-29.1261	-18.4411	-13.8217	22.0105	20.3755	62.2456
86.2629	89.8418	58,1551	28.6268	84.5198	39.8168	22.7568	30.6562	25 2005	20 5404	107.011	109 0145	68.4000	210.5052	161.6787	144,7819	140.2211	145.7715	8505.00	123.2996	104.6850	188.3030	125.8485	225.8474	160.7551	24.1972	0.4722	192.5788	37.6036	221.7954	StdError	8		0.0264	36.2125	37.1844	34.6628	40.4435	36,1663	37.6752	24,4140	11.9686	35.4376	16.6653	9.5061	12.8189	35.8078	16.5343	10.6010	45.7733	28.6698	88.0083	67.5704	60.2897	58.8136	41.28/1	51.7721	42,6530
1.1740	0.9679	-0.4495	-1.3441	0.8881	1.3331	2.3292	2 3904	0.7107	0.0764							-+				_				-1.3168	-3.7584	-1.5250		-2.6170		tValue		0	-0.1345	-0.1108	0.5847	-0.0411	-0.1687	0.1675	0.6633	1.5048	0.8612	0 5956	1.9842	0.4711	2.6755	1.3375	-0.1721	0.8814	0.2567	-0.2987	-0.0899	-0.4310	-0.3059	-0.2350	J) 5654	0.3936	1.4593
113.0231	121.0852	-22.9601	-58.7843	92.6147	66.8344	81.9977	91 5203	23,4010	40,0241	1700 57	-216 0360	17.3908	188.0297	-383.7345	-284,6043	-155.0126	-69.9308	1 6001	-214.7323	66.0169	70.2941	1.2202	-361.8864	-255.4438	-91.9231	-0.7919	-9.6695	-87.1590	1062.1992	Estimate		o F2	-0.0317	-26.6130	5.1339	-18.0858	-27.9012	-12.7373	7.2942	18.2137	11.7412	4 5735	40.2444	6.8560	41.6819	35.5414	-4.7256	6.0414	32.3468	-8.9125	-25.9640	8.6123	10.3702	10.5796	-53 8213	35.2244	83.9182
90.5602	94.3510	61.0928	30.0530	88.7301	41.8005	23.8898	32 1885	41.5204	11 500.044	114.442	114 4420	71.7954	220.8930	169.6736	151.8997	147.1886	152.7105	104 2686	129.4401	109.5104	197.6468	132.1074	236.7365	168.6937	25.3607	0.4960	201.8063	39.3854	232.5141	StdError	8		0.0271	37.2677	38.2641	35.6711	41.6155	37.2176	38.7639	25.1263	12.3225	36 4624	17.1464	9.7804	13.1883	36.8444	17.0147	10.9061	47.1159	29.5110	90.5637	69.5519	62.0591	60.5366	42.478	53.2878	43.9077
1.2480	1.2833	-0.3758	-1.9560	1.0438	1.5989	3.4323	2.8433	0.0230	1 3 2 60	_	+	-	-			-		-+	-	-+	-+	_	-	_	-3.6246	-1.5965	_	-2.2130	-+	tValue			-1.1684	-0.7141	0.1342	-0.5070	-0.6705	-0.3422	0.1882	0.7249	0.9528	0 12 54	2.3471	0.7010	3.1605	0.9646	-0.2777	0.5539	0.6865	-0.3020	-0.2867	0.1238	0.1671	0.1748	CL28 UF	0.6610	1.9112
114.8227	147.0193	-27.4491	-77.1074	105.3395	93.2013	121.5871	119,6932	06 6353	01 6200	1012.002-	-256 2187	48.7743	260.9873	-389.7898	-322.5879	-203.1409	40,1903	17 9545	-271.7126	70.5786	29.3799	-86.3852	-374.9325	-328,7694	-85.6651	-0.5657	4.7226	-65.7365	1077.0096	Estimate			-0.0527	-34.1924	0.9781	-24.3607	-31.2769	-16.4474	8.9794	-5.3244	21.4126	2.9247	34.5312	9.3887	48.6377	39.2161	0.1980	11.3528	14.2049	-36.2224	49,7409	4.6484	-36.1396	-1.0826	-11 5639	31.9281	76.0608
93.8024	97.7228	63.2587	31.1185	91.9134	43.2900	24.7393	33.3186	07 8606	40 0000	1007-011	118 4881	74.3230	228,7550	175.7007	157.3041	152,4026	158,1172	108 0132	134.0282	113 4229	204.6805	136,7700	245.2293	174.7069	26.2663	0.5115	209.0088	40.7779	240.8000	StdError	8		0.0264	36.9902	37.9780	35.4148	41.3330	36.9344	38.4211	24.8661	12.2242	36.1842	16.9953	9.6960	13.0456	36.5600	16.8663	10.8053	46.6895	29.2529	89.8501	69.1061	61.7249	60.0325	42.2505	52.8212	43.8214
1.2241	1.5045	-0.4339	-2.4779	1.1461	2.1530	4.9147	3.5924	2.1318	2.1007	7 7600	-2 1624	0.6562	1.1409	-2.2185	-2.0507	-1.3329	-0.2542	0 1662	-	-+	-		-		-3.2614	-1.1060		-1.6121	-	tValue			-1.9955	-0.9244	0.0258	-0.6879	-0.7567	-0.4453	0.2337	-0.2141	1.7517	0.0808	2.0318	0.9683	3.7283	1.0726	0.0117	1.0507	0.3042	-1.2382	0.5536	0.0673	-0.5855	-0.0180	-0 1897	0.6045	1.7357
65.1976	137.1712	-73.0691	-82.5649	75.8802	124.5611	180.3363	138 2447	2011.68	00 7100	10.0570	-246.6521	49.9520	254.2893	-309.9178	-301.1661	-193.1519	-121.4974	15 23 70	-273.1713	5000 69	72.8468	-118.6599	-348 2488	-329.6261	-81.5433	-0.1825	125.2749	-43.5420	1055.2318	Estimate			-0.0426	-52.4173	-26.0202	-43.4671	-53.9855	-33.3388	-3.8810	-34,4417	16.2837	- 18 7755	15.5653	10.5039	53.9611	21.2090	4.7633	18.2448	-4.1596	-35,8114	151.1019	-15.6153	-71.1827	-18.3006	21 6639	13.3712	42.8628
96.1295	100.1072	64.7538	31.9549	94.2001	44.3785	25.3648	34.0909	44.0.44	20.3703	2010 200	101 2613	76.0167	234.5795	180.1856	161.3544	155.9867	163.7202	111 1661	137.1995	117.7405	209.5533	139.9497	252.1446	179.3350	27.1573	0.5244	215.6735	42,1117	-	StdError	70		0.0262	37.1007	38.0948	35.5365	41.5246	37.0386	38.4774	24.8229	12.2566	36 2923	17.0340	9.7203	13.0427	36.6630	16.8994	10.8452	46.6815	29.2718	90.1499	69.3927	62.0508	60.1003	42.5872	52.8439	44.5971
0.6782	1.3702	-1.1284	-2.5838	0.8055	2.8068	7.1097	4 0552	2.0334	2.0103	_	-	-	-							-+					-3.0026	-0.3480	0.5809	-1.0340		tValue			-1.6243	-1.4128	-0.6830	-1.2232	-1.3001	-0.9001	-0.1009	-1.3875	1.3286	-0.5173	0.9138	1.0806	4.1373	0.5785	0.2819	1.6823	-0.0891	-1.2234	1.6761	-0.2250	-1.1472	-0.3045	0 3518	0.2530	0.9611
16.3923	99.6437	1.	-94.0997	35.2127	186.6785	243.0673	162 5376	33 0433	00.0540	00 7740	222 2122	22.4027	183.6896	-189.2537	-259.0805	-209.7187	-198.1461	4 8966	-265.4000	84.4735	132.9512	-140.7154	-298.1856	-276.9847	-75.8889	-0.0266	224.0651	-38.0529	1025.1420	Estimate			-0.0349	-59.6168	-37.1935	-38.6498	-64.2615	-41.9741	-3.3584	-31.9091	10.7338	-40 7980	-15.3287	6.3549	52.9854	6.5038	-13.7714	11.6014	-14.1457	-29.5093	219,4915	-47.2745	-51.6423	-32.6639	59 6812	3.7901	27.0309
97.9727	101.9824		32.6591	96.0077	45.2557	25.8699	34 7019	06 0043	44 0527	10000	173 4534	77.3453	239.3239	+	-	_	169,1280	113 8509	139.7086	121.8700	-	-+	_	-	27.9815	0.5381	221.5843	43.3056	-	StdError	80		0.0269	37.7049	38.7224	36.1034	42.1723	37.6473	39.1405	25.2976	12.4551	36.8864	17.3260	9.8889	13.2985	37.2655	17.1953	11.0212	47.5623	29.8228	91.6775	70.5340	63.0690	61.1893	43.1836	53.8125	45.0057
\rightarrow	0.9771	-2.2554	-2.8813	0.3668	4.1250	9.3957	4 6838	0.3407	2,0204	_	-	+	0.7675		-1.5737	-1.3206	-	0.0430		-+	0.6231	-0.9877			-2.7121	-0.0494	1.0112	-0.8787	-	tValue			-1.3010	-1.5811	-0.9605	-1.0705	-1.5238	-1.1149	-0.0858	-1.2613	0.8618	-1.1060	-0.8847	0.6426	3.9843	0.1745	-0.8009	1.0526	-0.2974	-0.9895	2.3942	-0.6702	-0.8188	-0.5338	0.4309	0.0704	0.6006

Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: meal	Nort Mannar Giantina	Next Place: tense	Next Place: late	Next Plane: Jabial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Place: tense	Next Place: lax	Next Place: labial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: ston	Next Manner: tricative	Next Manner: flap
-39.3278	22.6468	Estimate			-0.1055	242.9620	2004.010	316 4066	-25.7189	-100.9497	138 0407	38.6589	-304.2248	-359.2524	218.4376	147.6426	-166.5235	283.6848	-93.6977	-5.9456	52,8774	0.8781	-1954.8375	-22.2510	539.3649	Estimate			-0.0041	53.1653	-78.5926	37.9311	-1.8335	16.0259	47.7904	50.0824	48.8683	-75.8950	-32.4656	-270.9709	51.7037	8806'85-	53.8914	-57.5173	20.1626	0.3382	-132.0978	65.0110	12,4108	Retimate			-0.0498	11 7778	12.7931	50.6062
41.0207		rior	20		0.3699	109.0072	01 3523	164 4670	66.2487	47 8776	07 4810	65.9541	168,1042	159.8598	193.4285	433.7706	177.5575		214.1720	208,4401	63.2056	1.5300	780.5669	132.1177			20		0.24/8		65.3489	116.9526	49.1673	35,4740	66.6633	41.5648	121.3552	117.0650	100.3478				129.3198	-		1.0096	443.8339	74.5882	135.0068	StdErmr	20			76 9849		86.4042 0.5857
-0.9587	0.0869	tValue			-0.2852	2.2289	1.92.30	1 0729	-0.3882	C20C1-	1 5005	0.5861	-1.8097	-2.2473	1.1293	0.3404	-0.9379	2.1529	-0.4375	-0.0285	0.8366	0.5739	-2.5044	-0.1684	2.4918	tValue			-0.016/	0.6817	-1.2027	0.3243	-0.0373	0.4518	0.7169	1.2049	-0.4027	-0.6483	-0.3235	-1.0373	0.4709	-0.4281	0.4167	-0.4857	0.5220	0.3350	-0.2976	0.8716	0.0919	tValue			-0.8806	0.4388	0.1734	0.5857
-49.7451	170,1988	Estimate			-0.0469	319.2728	301 7465	402 0020	-28 9552	31558	-2200 200-	61.7704	-396.1206	-438.3954	224,7332	251.2193	-184.8640	226.9475	-96.8464	-1.9884	33.5635	0.6694	-1798.6581	-23.8933	609.8595	Estimate			0.0009	66.5468	48.4172	43.6825	-10.7690	10.3918	35.9846	71.3964	-69.2963	-85.7798	8.5437	-258.6623	54.6232	-84.9593	31.8182	-112.7657	14.8124	0.1626	-139.3838	77.3097	51.3274	Fetimate			0.0833	40.6956	6.0503	3.9525
40.4995		StdError	30		0.3398	102.4399	84 6745	161 71/6	62.6588	44 8651	57.03 58	58.5145	155.3466	149.3477	167.9535	363.1895	150.5110	122.0660	184.8609	188.0677	54.7803	1.4160	665.2576	111.2564	194.1492		30		0.2322	73.0928	61.9260	121.1955	46.5372	34.8425	63.5830	40.5798	125.9959	122.1516	88.3451	235.6737			119.8245	105.8342	34,5410	0.9333	363.2770	66.5490	123.7496	StdEmor	20	- 11		80 93 16	92 1991	90.6759
-1.2283	0.7188	tValue			-0.1381	3.1167	3 5636	7227 6	-0.4621	-2.01.20	2612	1.0556	-2.5499	-2.9354	1.3381	0.6917	-1.2282	1.8592	-0.5239	-0.0106	0.6127	0.4727	-2.7037	-0.2148	3.1412	tValue			0.2623	0.9104	-0.7819	0.3604	-0.2314	0.2983	0.5659	1.7594	-0.5500	-0.7022	0.0967	-1.0975	0.5465	-0.9885	0.2655	-1.0655	0.4288	0.1742	-0.3837	1.1617	0.4148	tValue			1.3976	0 5028	0.0781	0.0436
-9.4960	302.9078	Estimate			-0.1612	331.6994	284 0130	196 6057	-15.9802	-211./320	-11 7300	93.9035	-350.7606	-417.6652	213.3225	486.0519	-206.3063	212.1649	-147.0786	41.4348	64.0184	1.0582	-1959.6867	-12.7950	507.9988	Estimate			0.1280	89.2510	-4.6265	63.0254	-21.7543	2.0566	0.1247	71.9920	-95.9164	-104.3075	24.7728	-403.3250		-153.6560	98.7243	-176.8987	1.3475	-0.1344	30,7470	111.4323	97.8626	Retimate			0.1551	40 7778	-19.5217	90.6759 0.0436 -26.5576
40.9174 -0.2321 23.8974	234,7860 1.2901	TOT	8		0.3253	99.2016	21 2005	145 0005	60.2977	40 7087	230.02	55.4658	148.3028	143.1387	160.8776	337.4789	140.6803	117.3006	174.7507	181.0106	51.5883	1.3608	619.5131	104.3651	185.2912		8		0.2361	79.7492	67.2719	127.0235	50.5715	37.4679	68.9442	43.4068	132.1890	128.2195	86.7682	237.9250	101.8999	90.4901	121.7707		34.1180	0.9505	344.0306	66.3971	125.4756	StdEmor	5	-	0.0637	86 3775	82.6821	
	1.2901	tValue		aF	-0.4955	3.3437	2.0034	1 6651	-0.2650	-2.3/94	2 5704	1.6930	-2.3652	-2.9179	1.3260	1.4402	-1.4665	1.8087	-0.8416	0.2289	1.2409	0.7776	-3.1633	-0.1226	2.7416	tValue		3 F2	0.5421	1.1191	-0.0688	0.4962	-0.4302	0.0549	0.0018	1.6585	-0.7256	-0.8135	0.2855	-1.6952	1.1279	-1.6980	0.8107	-1.6453	0.0395	-0.1414	0.0894	1.6783	0.7799	tValue		3 FI	2.4350	0.4657	0.2361	-0.2745
23.8974	544.0192	Estimate		FI	-0.3279	319.9471	201-0-02	101 0.461	-15.6159	-197.0721	-107 0771	91.8437	-344.2667	-412.4245	173.4043	516.6292	-222,8376	221.6684	-163,6630	104.7361	95.9121	1.6831	-1906.4020	-39.5689	387.8676	Estimate		F2	0.1370	38,0934	23.1785	1.1710	-11.6895	2.1721	-13.8628	80.7722	-32.8561	-44.5543	20.0287	-373.9767	121.1044	-142.2509	105.0987	-158.0301	-5.8680	-0.2094	186.7572	80.0246	113.9655	Fetimate	11	F	0.2005	27 4747	48.1376	-30.5693
42.8024	249.3986 2.1813	StdError	8		0.3294	97.3045	20.020		58,7935	41 4819	80.6448	55.1804	148.4235	142.5777	171.6758	358.8941	147.4166	117.3076	183.1251	191.3022	54.2633	1.3777	670.8249	112.7559	190.7867	StdError	8		0.2607	89.5467	75.1998	136.3850	56.5057	41.1794	76.7975	47.6454	141.9145	137.4761	95.7228	264.8603	113.1166	99.9330	133.9833		_	1.0519	385.9546	73.2334	139.0352	StdEmor	5	- 11		90.6738		101.5326
0.5583	2.1813	tValue			-0.9952	3.2881	20102	0.00010	-0.2656	0.4811	-7 4437	1.6644	-2.3195	-2.8926	1.0101	1.4395	-1.5116	1.8896	-0.8937	0.5475	1.7675	1.2217	-2.8419	-0.3509	2.0330	tValue			0.5255	0.4254	0.3082	0.0086	-0.2069	0.0527	-0.1805	1.6953	-0.2315	-0.3241	0.2092	-1.4120	1.0706	-1.4235	0.7844	-1.3340	-0.1548	-0.1991	0.4839	1.0927	0.8197	Walne			3.0016	0.000	-0.3346	-0.3011
46.9047	606.5846	Estimate			-0.4197	291.8298	30H.0944	204.000	-27.6592	-1 5785	-101 0621	103.3961	-292,9081	-368.9362	328.2333	800.5976	-373.6425	209.3686	-357.4202	61.1825	139.6261	1.8665	-2561.3062	-51.0669	334.7850	Estimate			0.1913	19.1259	51.6213	-23.4763	-16.2545	-3.9855	42.1380	92.9167	-20.8430	-34.8922	27.6403	-354.2258	100.8890	-131.6347	69.6808	-139.8749	-14.8175	-0.4848	234.7151	48.2055	157.8366	Ferimate			0.1998	-73196	-101.6077	-60.6533
44.7257	265.5354	StdError	8		0.3392	105.7977	0001701	7551 551	63.8308	45 0500	267473	59.0296	155.2228	150.3315	169.2212	342,9372	143.9423	123.4213	181.2012	188.2727	52.8451	1.4220	619.0145	105.1713	192,8704	StdError	60		2187.0	97.8456	81.6001	142,5367	61.3399	43.3065	82.5965	49.9906	148.0637	143.1675	103.5460			106,9008	144.1443	127.1386	41,1913	1.1375	422,9053	78.2410	150.1558	StdErmor	60			901020		105.1729
1.0487	2.2844	tValue			-1.2374	2.7584	1.9900	1 0000	-0.4333	-2.2049	2 20040	1.7516	-1.8870	-2.4542	1.9397	2.3345	-2.5958	1.6964	-1.9725	0.3250	2.6422	1.3125	-4.1377	-0.4856	1.7358	tValue			0.6802	0.1955	0.6326	-0.1647	-0.2650	-0.0920	-0.5102	1.8587	-0.1408	-0.2437	0.2669	-1.2293	0.8262	-1.2314	0.4834	-1.1002	-0.3597	-0.4262	0.5550	0.6161	1.0512	Wahie			2.8926	-0.0779	-1.1301	-0.5767
43.1922	599,7269	Estimate			-0.6150	248.7986	179.3204	1002000	9595.9	-111.4034	-111 4034	99.2368	-295.2445	-369.6346	341.1132	1067.3790	-498.5024	282.1364	-484.8116	171.0128	169.0814	2.8234	-2860.9854	-140.6604	224.6598	Estimate			0.2939	-3.4120	89.7585	-72.5053	-39.6585	-4.9537	-80.8117	95.4944	15.3380	6.1520	46.2059	-356.2132	129.9877	-167.9206	85.9798	-176.9210	-25.4527	-1.0723	278.2348	72.2173	211.9425	Fetimate			2.8926 0.1760	-76 7806	-139.3050	-129.4651
44.4662		TIOT	70			115.6360	04 2020			50.8170	_				165.9574	335.5015	144.3219	131.3948	181.8477	191.1641	52.0993	1,4444	587.0297	103, 1976	195.4060		70		0.29/4		86.4210	144.5220	65.1302	42.7363	85.4677	49.4189	149.2889	143.8922	110.0881				152.4061		_			81.1131		StdError	70	- 11		963546		107.9165
	-+	tValue			-1.7882	2.1516	1 9077	1 0071	0.0929	0 3035	1 1664	1.5253		_	2.0554	3.1814	-3.4541	2.1472	-2.6660	0.8946	3.2454	1.9548	-4.8737	-1.3630	1.1497	tValue			0.988.5	-0.0325	1.0386	-0.5017	-0.6089	-0.1159	-0.9455	1.9323	0.1027	0.0428	0.4197	-1.1504	1.0078	-1.5096	0.5641	-1.3276	-0.5752	-0.8864	0.6057	0.8903	1.3306	tValue				-0.7077		-1.1997
-8.6948	532.7441	Estimate			-0.8904	131.0670	45 1115	775 0510	39.0411	78 7744	65 4607	86.1609	-192.2979	-279.6980	369.8459	1354.7770	-562.0071	340.1765	-555.3207	220.8873	211.9693	3.8307	-3171.7669	-178,4801	79.8155	Estimate			0.3623	-31.4918	96.8897	-123.4361	4.3736	5.3150	-94.3382	81.8318	56.2627	55.6813	31.6243	-378.8905	177.6181	-185.8037	132.7168	-187.4715	-32.4759	-1.5468	380.0525	91.3851	239.3011	Estimate			0.1621	-139 8342	-247.6676	101.5326 -0.3011 -60.6533 105.1729 -0.5767 -129.4651 107.9165 -1.1997 -194.5444 110.1416
	268,4402	StdError	80		0.3704	123.3520	00 4720	170 1110	75.3667	54 1655	100 7152	70.6801	182.3364	177.0049	183.0399	366.3953	156.4716	139.7724	199.5067	205.0486	57.2791	1.5394	644.8106	109.6627	210.0132	StdError	80		0.5100	112.2826	91.6231	151.7931	69.3292	43.6261	89.3374	50.8021	156.2276	150.3986	117.9247	332.5250	137.2464		162.6765	141.4882	47.6297	1.2925	495,7850	85.3437	170.2892	StdError	00			98 1073	100.656	
-0.1834	1.9846	tValue			-2.4037	1.0625	0.4535	1 10/0	0.5180	0.0310		1.2190	-1.0546	-1.5802	2.0206	3.6976	-3.5918	2.4338	-2.7835	1.0772	3.7006	2.4885	-4.9189	-1.6275	0.3800	tValue			1.1442	-0.2805	1.0575	-0.8132	0.0631	0.1218	-1.0560	1.6108	0.3601	0.3702	0.2682		1.2942	-1.5784	0.8158	-1.3250	-0.6818	-1.1967	0.7666	1.0708	1.4053	rValue			2.2165	-1 4253	-2.6303	

Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NUL Cue Strength	Tense: past	(Intercept)	Ficulture	Deadlinton			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength
-0.4413	77.5543	56.4318	126.9770	63.1751	34.3710	104.0387	114.7896	-32.5672	-20.5770	51.4351	-58.1699	-14.4958	19.0728	909.7609	491.3053	588.3614	-672.5987	582.9001	-72.8973	567.9128	598.7933	-33.7445	-207.8775	2.8130	414.3953	-103.2047	121.2815	L'SUII AU	Datimata			0.1390	-3.6505	71.2255	-17.6813	16.2451	2.6687	18.6340	13.3815	1.5841	23.0629	-14.3424	-37.6614	21.3964	-25.9678	-387.5304	-128.1784	-375.5102	49.3783	-325.4177	-109.8458	-228.4132	-320.5379	32.3588	64.7709	-0.4793	-68.7504
0.1263	51.0434	61.1352	76.6610	48.4613	46.2615	51.0092	83.4889	27.8590	23.5900	63.5089	119.7404	23.1048	49.9129	501.6345	192,1617	353.1069	142.0192	341.6308	87.6238	187.1870	349.5939	33.7975	115.5936	0.8090	224.6595	07.1300	367.0705	IOLETING	Chilling and	00		0.1061	29.0122	34,4211	43.3791	27.6302	26.4533	29.2215	46.4615	15.6457	13.2602	35.9813	71.7123	12.9733	27.6974	328.3469	129.8245	232.4434	94.8917	226.9535	59.0521	132,3924	230.7488	18.8578	78.0979	0.6859	144.5378
-3.4930	1.5194	0.9231	1.6563	1.3036	0.7430	2.0396	1.3749	-1.1690	-0.8723	0.8099	-0.4858	-0.6274	0.3821	1.8136	2.5567	1.6662	4.7360	1.7062	-0.8319	3.0339	1.7128	-0.9984	-1.7983	5.4 /96	1.8445	-2.4319	1.981.5	U NOID	Malma			1.3092	-0.1258	2.0692	-0.4076	0.5879	0.1009	0.6377	0.2880	0.1012	1.7393	-0.3986	-0.5252	1.6493	-0.9376	-1.1802	-0.9873	-1.6155	0.5204	-1.4339	-1.8601	-1.7253	-1.3891	1.7159	0.8294	-0.6988	-0.4757
	74.1752	58.8070	90.6963	64.6252	38.5197	101.9544	107.4076	-6.5031	-0.2000	48.9370	-30.4613	-12.3586	45.2811	818.3134	499.3473	520.6089	-495.8618	459.0391	-117.8240	497.9037	510.2908	-6.6797	-186.7777	1./505	327.8488	-140.94/9	6/4.1983	COULT NO	Definate			0.2998	0.0952	55.2782	-30.8619	9.3710	-11.0919	-2.8942	-11.5870	-2.1414	12.5780	-15.9551	38.1888	9.5807	-8.1542	-330.2670	-121.4935	-332.2984	35.6760	-336.6209	-101.0930	-218.9404	-322.3167	32.5265	35.9456	-1.0754	-11.2545
0.1617	48.5847	57.7375	72,9303	46.2402	44.7458	48.6660	78.7883	26.3043	22.2904	60.4147	118.9481	21.8724	46.9346	460.6753	172.4610	322.4931	128.2900	311.6114	80.0583	168.2813	319.1056	31.7645	108.3835	1.0439	206,5066	0100.70	300.0180	SUEID	GidEmon	30		0.0976	30.3268	36.0720	45.5320	28.8217	27.7523	30.3945	49.0251	16.4944	13.9916	37.6664	74.6445	13.6720	29.2444	306.9932	118.3522	216.2171	87.3392	209.7572	54.4158	116.8482	214.2792	19.8125	72,1085	0.6293	136.7958
-1.3756	1.5267	1.0185	1.2436	1.3976	0.8609	2.0950	1.3632	-0.2472	-0.0090	0.8100	-0.2561	-0.5650	0.9648	1.7763	2.8954	1.6143	-3.8652	1.4731	-1.4717	2.9588	1.5991	-0.2103	-1.7233	0/ 00.1	1.5876	-2.4000	1.895/	1 DAVA	Ablus			3.0706	0.0031	1.5324	-0.6778	0.3251	-0.3997	-0.0952	-0.2363	-0.1298	0.8990	-0.4236	0.5116	0.7008	-0.2788	-1.0758	-1.0265	-1.5369	0.4085	-1.6048	-1.8578	-1.8737	-1.5042	1.6417	0.4985	-1.7090	-0.0823
0.0315	14.0657	17.6034	0.4083	4.9171	51.8544	33.6274	101.2197	-10.6925	6.9333	3.2631	18,4991	-9.5985	52,9050	916.9387	538,9032	582.2183	-405.8656	514.0640	-162.0178	427.9088	557.6439	21.6500	-205.7899	00/00	239.9626	-131./000	/94.6801	Contract	Delimata			0.3726	-7.0684	36,9386	-48.9245	4.6380	-21.7201	-19.9949	-24.7658	2.2522	15,4624	-17.5506	56.2407	9.3022	-9.5653	-192.8515	-111.4578	-297.2432	27.3264	-288.0732	-53.5333	-230.6507	-297.9966	14.4643	0.4556	-1.3635	35.0698
0.1884	46.4620	54.8011	69.3091	44.3528	42.5922	46.8032	74.4944	24.8933	21.0850	57.6039	117.1965	20.6724	44,1658	498.3094 1.8401	191.2654	350.5458	141.3724	341.8464	87.2400	+	347.8092	29.8878		+	220.2187	+		JULEIDIC	Ct-ID-	40		0.0954	30.8888	36,7689	46.4150	29.3432	28.2414	30.9257	50.0708	16.8347	14.2843	38.3750	75.5846	13.9504	29.8658	307.2872	117.8504	216.2287	87.1529	209.5342	54.1822	115.7283	214.2231	20.2260	71.9006	0.6143	137.2083
0.1672	0.3027	0.3212	0.0059	0.1109	1.2175	0.7185	1.3588	-0.4295	0.3288	0.0566	0.1578	-0.4643	1.1979	1.8401	2.8176	1.6609	-2.8709	1.5038	-1.8571		1.6033		+		-	-	-	-	_		2	3.9059	-0.2288	1.0046	-1.0541	0.1581	-0.7691	-0.6465	-0.4946	0.1338	1.0825	-0.4573	0.7441	0.6668	-0.3203	-0.6276	-0.9458	-1.3747	0.3135	-1.3748	-0.9880	-1.9930	-1.3911	0.7151	0.0063	-	0.2556
0.1555	-28.6084	-53.0751	-50.6369	-43.5626	58,2659	-25.9995	71.3327	27.4412	9.3147	-35.4619	16.8345	-19.9569	50,4771	1145.7697	562.5850	709.7082	-382.7277	674.7534	-121.8605	221.4797	688.2888	42.2182			80,000	1190.06-	956.2309	-			a F2			44.0525	-59.6362	6.0278	-18.2529	-16.9615	-21.8116	1.8804	23.6623	-14.1467	36.2504	10.5015	-6.0S71	110.8445	-57.1963	-163.7682	-43.0724	-131.0735	-3.7086	-53.0572	-146.0696	-1.4507	-76.3160	-1.5911	171.5472
0.1922	46.5398	54.8116	69.3317	44.4368	42.4464	46.9334	74.5779	24.9217	21.1245	57.6243	117.5522	20.6612	44.1214	530.0563	206.1487	374.0208	151.2158	366.0321	92.0795	216.0746	371.5006	29.8740	+	+	233.0225	00.0044	435.0366	INTERNE	SUIE-	s		0.1001	31.7791	37.7687	47.6576	30.2225	28.9011	31.8704	51.4910	17.2682	14.6553	39.4527	76.9651	14.3039	30.6520	324.6226	124.9533	228.6004	92.5506	222.0493	57.0311	124.5771	226.5898	20.8046	76.1013		144.2663
0.8093	-0.6147	-0.9683	-0.7304	-0.9803	1.3727	-0.5540	0.9565	1.1011	0.4409	-0.6154	0.1432	-0.9659	1.1440	2.1616	2.7290	1.8975	-2.5310	1.8434	-1.3234	1.0250	1.8527	+	-1.9226	0.0247	+	-	2.1521	LVAIUC	Alahan			4.0504	-0.2853	1.1664	-1.2513	0.1994	-0.6316	-0.5322	-0.4236	0.1089	1.6146	-0.3586	0.4710	0.7342	-0.1976	0.3415	-0.4577	-0.7164	-0.4654	-0.5903	-0.0650	-0.4259	-0.6446	-0.0697	-1.0028	-2.4633	1.1891
0.1996	-76.1885						137.6936	52.0602	26.0086	-67.1682	32.1749	-14.5251	47.6654	1580.7493	654.5180	953.8116	458.8704	957.0363	-68.2395	Т	975.2967	45.7773	Ι.		304.9492	Т		L'SUITAR	Datimata			0.4033	-6.1866	51.3279	43.0131	8.8736	-30.9029	-7.6028	-17.9102	0.3968	27.3704	-3.0876	9.9615	6.9976	-11.0969	169.2640	-68.4519	-146.3609	-38.6957	-107.3707	35.8730	-64.0373	-117.3472	-18.8120	-93.0692		205.5520
0.1699	46.0823	54.5017	68.8750	43.9137	42.0302	46.3545	74.1780	24.8470	21.0742	57.1183	114.4068	20.5922	44.0388	486.8507	187.3110	342,7624	138.5127	333.8893	85.2072	190.7433	339.9930	29.8593	115.9694	1.1006	215.5788	02.00/3	388.5145	JUILIU	Chilling	3		0.0993	32.2593	38.3567	48.3190	30.6955	29.2015	32.3983	52.2088	17.4947	14.8456	40.0484	77.1248	14.4933	31.0767	346.5405	135.6180	244.8298	99.9826	238,4955	61.4533	136.7318	242.8819	21.1512	81.1463	0.6404	153.0051
1.1744	-1.6533	-1.8880	-2.0542	-1.8517	0.9353	-1.3273	1.8563	2.0952	1.2341	-1.1759	0.2812	-0.7054	1.0824	3.2469	3,4943	2.7827	-3.3128	2.8663	-0.8009	0.9464	2.8686	1.5331	-2.9543	-0.2383	1.4146	-1.1143	3.1931	UNAINO	Walna			4.0610	-0.1918	1.3382	-0.8902	0.2891	-1.0583	-0.2347	-0.3430	0.0227	1.8437	-0.0771	0.1292	0.4828	-0.3571	0.4884	-0.5047	-0.5978	-0.3870	-0.4502	0.5837	-0.4683	-0.4831	-0.8894	-1.1469	-2.6352	1.3434
0.1268	-137.7190		-234.5356		59.3681	-102.2136	212.0586	77.0931	42.6323		43.9056	-12.9359	64.5528	1655.4296	714.2762	996.3093	450.8931	1045.8767	-15.1603	225.7187	1086.7296	55.0225	-329.9415	-0.030/	2/2.8/2/	-49.000	1135.6946	L'SUIIIQIC	Datimata			0.3523	4.9527	59.8169	-35.2123	17.9781	-74.5037	6.1913	-14.0872	-1.6439	35.6816	7.4888	0.6915	8.2293	-8.0908	118.5753	-104.0373	-184.2570	-20.4487	-157.3640	28.8969	-108.1362	-156.3478	-28.2720	-84.3675	-1.4958	212.4310
0.1602	48.1719	57.3051	72.2836	45.8228	44.0866	48.3675	77.8469	26.1253	22.1594		118.0587	21.6781	46.4009	483.0165	184.9976	339.6989	137.1954	329.4385	85.5613	182.8068	336.4985		113.6980	1.0527	215.4422			JULLING	Culling of	70		_	_	_		31.2930	29.8437	_	_	17.9336				14.8608	31.9274	337.8512	130.9876	238.2742	96.7608	231.4037	59.4613	130.1039	236.1802	21.7013	78.4774	0.5891	150.0764
0.7920	-2.8589	-2.9466	-3.2447	-2.9176	1.3466	-2.1133	2.7240	2.9509	1.9239	-2.1938	0.3719	-0.5967	1.3912	3.4273	3.8610	2.9329	-3.2865	3.1747	-0.1772	1.2347	3.2295	1.7403	-2.9019	-0.0297	1.2666	-0, / /41	3.0346	1 VI A	Alahaa			3.8428	-0.1504	1.5238	-0.7124	0.5745	-2.4965	0.1877	-0.2630	-0.0917	2.3447	0.1830	0.0088	0.5538	-0.2534	0.3510	-0.7943	-0.7733	-0.2113	-0.6800	0.4860	-0.8312	-0.6620	-1.3028	-1.0751	-2.5390	1.4155
0.0494	-222.0189	-267.0051	-344.5155	-208.0625	105.4702	-174.8293	273.2218	117.6985	56.6771	-209.1449	96.5325	-12.0338	68.6435	1637.2975	783.0199	998.6505	420.7870	1082.2152	10.4208	355.3822	1130.2504	74.2017	-268.3745	0.1718	130.2770	1.3213	834.6695	LOUINAIC	Detimate			0.2292	6.0125	73.6288	-22.7178	35.2737	-54.7236	32.2863	-8.7833	-2.0266	46.7069	32.2402	20.4587	7.2153	-3.4148	155.3656	-29.6822	-118.9553	-47.1797	-97.7828	-52.5768	-34.9603	-87.7713	-31.7233	-76.9563	-0.9096	206.1591
0.1754	53.3931	63.6217	80.2564	50.7513	49.0629	53.5448	86.3787	29.0058	24.5981	66.3269	131.5523	24.0877	51.5656	504.4350	189.3599	353.4275	140.7339	341.1510	88.9670	182,9410	349.5684	35.1738	118.6256	1.150/	221.2369	05.4410	388.7989	100 PADA	C LID OU	80		0.0952	35.1625	41.9930	52.7471	33.4288	31.8111	35.2329	57.3247	19.1370	16.2229	43.7454	82.5890	15.8662	34.1823	360.1305	139,7432	253.9955	103.1948	246.6170	63.3353	138.6851	251.7219	23.2751	83.4300	0.6120	159.9849
0.2817	-4.1582	-4.1968	-4.2927	-4.0996	2.1497	-3.2651	3.1631	4.0578	2.3041	-3.1532	0.7338	-0.4996	1.3312	3.2458	4,1351	2.8256	-2.9899	3.1722	0.1171	1.9426	3.2333	2.1096	-2.2624	0.1519	0.0013	0.0193	2.1468	LYAINC	-Malue			2.4076	0.1710	1.7534	-0.4307	1.0552	-1.7203	0.9164	-0.1532	-0.1059	2.8791	0.7370	0.2477	0.4548	-0.0999	0.4314	-0.2124	-0.4683	-0.4572	-0.3965	-0.8301	-0.2521	-0.3487	-1.3630	-0.9224	-1.4862	1.2886

Table A.13: Coefficients for the F1 and F2 global (all vowels pooled) LMER models of formant deviance from vowel onset.

		F1			F2	
Predictor	Estimate	std.Error	t.value	Estimate	std.Error	t.value
(Intercept)	-60.3277	27.1073	-2.2255	183.8443	60.7904	3.0242
Tense: past	-8.7889	2.4983	-3.5180	24.9237	5.4280	4.5917
Percent: 30	-9.5582	10.0868	-0.9476	-95.3896	21.8949	-4.3567
Percent: 40	8.7738	10.0868	0.8698	-164.3852	21.8949	-7.5079
Percent: 50	36.6516	10.0868	3.6336	-211.0620	21.8949	-9.6398
Percent: 60 Percent: 70	61.9945	10.0868	6.1461	-246.8289	21.8949	-11.2734
Percent: 70 Percent: 80	86.2746 108.1120	10.0868	8.5532 10.7182	-255.1690	21.8949 21.8949	-11.6543
NDL Cue Strength	-26.0884	5.7085	-4.5701	8.3677	12.3979	0.6749
Vowel: a	30.7875	2.4581	12.5248	27.1492	5.3391	5.0849
Vowel: æ	16.1865	3.8502	4.2041	66.8724	8.3784	7.9815
Vowel: o	13.4642	3.3119	4.0655	35.7741	7.1997	4.9688
Vowel: ε	3.0858	2.0574	1.4999	24.3122	4.4681	5.4413
Vowel: 1	-23.5196	2.0074	-11.7163	44.3914	4.3594	10.1829
Vowel: i	-51.6467	2.1697	-23.8034	111.6534	4.7128	23.6914
Vowel: o	-21.0531	1.7442	-12.0701	35.9628	3.7878	9.4944
Vowel: u Vowel: u	-19.3965	3.7261	-5.2056	36.8355	8.0976	4.5489
Duration (log)	-50.2501 20.7207	2.5671 5.2872	-19.5749 3.9190	28.4480	5.5784 11.8658	5.0997
Frequency (log)	-58.5587	11.5120	-5.0867	-293.0058	26.3273	-11.1293
Previous Voicing: voiceless	-15.7020	2.5432	-6.1742	-12.1867	5.5233	-2.2064
Previous Place: dental	-22.7336	9.4161	-2.4143	36.5773	20.4782	1.7862
Previous Place: diphthong	3.9222	11.5211	0.3404	-0.7684	25.0680	-0.0307
Previous Place: glottal	13.9388	4.4459	3.1352	50.9637	9.6868	5.2611
Previous Place: labial	7.0776	2.5547	2.7705	58.4090	5.5608	10.5036
Previous Place: labio-dental	-27.9528	4.4046	-6.3462	6.6740	9.5891	0.6960
Previous Place: lax	-11.5736 3.3317	11.5638	-1.0009	73.4326	25.1635	2.9182
Previous Place: palatal Previous Place: palato-alveolar	3.5537	2.9577 5.0007	0.7106	49.2760 47.6947	6.4279 10.8918	7.6660
Previous Place: tense	-1.3258	9.5736	-0.1385	12.2316	20.8609	0.5863
Previous Manner: approximate	-17.7404	8.1374	-2.1801	76.2812	17.7552	4.2963
Previous Manner: diphthong	-49.3063	11.5253	-4.2781	-88.5137	25.0305	-3.5362
Previous Manner: flap	6.2253	14.2199	0.4378	37.5253	30.9580	1.2121
Previous Manner: fricative	22.6637	7.3109	3.1000	-6.6932	15.9701	-0.4191
Previous Manner: lax	15.3760	9.0504	1.6989	-34.0611	19.6488	-1.7335
Previous Manner: nasal	10.4072	8.0273	1.2965	74.8735	17.5166	4.2744
Previous Manner: stop	10.0335	7.9726	1.2585	69.9992	17.4016	4.0226
Next Voicing: voiceless Next Place: dental	-3.5275 -7.2143	1.5109 3.0892	-2.3348 -2.3353	-18.2677 -60.8007	3.2808 6.7079	-5.5680 -9.0641
Next Place: diphthong	35.7948	9.1642	3.9059	-50.0716	19.8979	-2.5164
Next Place: glottal	5.4222	1.6595	3.2674	-15.1567	3.6038	-4.2057
Next Place: labial	8.0867	1.7091	4.7315	33.7936	3.7122	9.1033
Next Place: labio-dental	-3.2305	3.3371	-0.9681	-29.7822	7.2475	-4.1093
Next Place: lax	35.7628	18.7680	1.9055	-71.1671	40.7355	-1.7471
Next Place: palatal	12.0064	2.0617	5.8236	-14.9944	4.4875	-3.3414
Next Place: palato-alveolar	14.9064	6.1614	2.4193	-69.5119	13.3774	-5.1962
Next Place: tense	19.6003	9.5804	2.0459	17.7506	20.8033	0.8533
Next Manner: approximate	11.0507 22.6619	9.0490 9.0545	1.2212 2.5028	-12.7308 -41.2334	19.6474 19.6606	-0.6480
Next Manner: flap Next Manner: fricative	16.9542	9.0545	1.9336	-41.2334 -20.8732	19.6606	-2.0973
Next Manner: lax	-12.9341	16.5176	-0.7831	33.2881	35.8474	0.9286
Next Manner: nasal	23.4982	9.1406	2.5707	-24.5324	19.8470	-1.2361
Next Manner: stop	17.5997	8.9029	1.9768	-34.8832	19.3314	-1.8045
Tense: past x Percent: 30	9.9964	2.9405	3.3996	-1.9290	6.3828	-0.3022
Tense: past x Percent: 40	19.1579	2.9405	6.5152	-10.4789	6.3828	-1.6417
Tense: past x Percent: 50	26.4371	2.9405	8.9907	-28.6004	6.3828	-4.4808
Tense: past x Percent: 60	28.6169	2.9405	9.7320	-49.0144	6.3828	-7.6791
Tense: past x Percent: 70	28.0819	2.9405	9.5500	-67.9520	6.3828	-10.6461
Tense: past x Percent: 80 Percent: 30 x NDL Cue Strength	23.5311 13.3262	2.9405 6.1728	8.0024 2.1589	-81.1054 14.5606	6.3828 13.3989	-12.7068 1.0867
Percent: 40 x NDL Cue Strength	26.5509	6.1728	4.3013	27.0531	13.3989	2.0191
Percent: 50 x NDL Cue Strength	32.0063	6.1728	5.1851	36.2152	13.3989	2.7028
Percent: 60 x NDL Cue Strength	30.8832	6.1728	5.0031	35.4277	13.3989	2.6441
Percent: 70 x NDL Cue Strength	23.8186	6.1728	3.8587	25.4561	13.3989	1.8999
Percent: 80 x NDL Cue Strength	12.4952	6.1728	2.0242	14.1628	13.3989	1.0570
Duration (log) x Frequency (log)	14.1029	2.4568	5.7404	72.3020	5.3769	13.4468
Percent: 30 x Duration (log)	5.3382	2.2945	2.3266	31.5601	4.9805	6.3367
		2 2045	1.3486	57.4536	4.9805	11.5357
Percent: 40 x Duration (log)	3.0944	2.2945				
Percent: 40 x Duration (log) Percent: 50 x Duration (log)	-1.7451	2.2945	-0.7606	79.1766	4.9805	15.8973
Percent: 40 x Duration (log)						15.8973 19.5989 21.8672

Table A.14: Coefficients for the F1 and F2 by vowel LMER models of formant

deviance from vowel onset.

Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: nalato-alveolar	Previous Place: nalatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Deadlator			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: lax	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Novi Diaco: palato-alvoolar	Next Place: rated	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	(microcpr)	Predictor			
9.2373	-82.7590	28.3513	27.0816	-141.3359	-62.1312	-219,1861	-251.8305	41.7625	35.1815	-166.2208	105.2677	47.8934	-274.5874	44.2751	-12.5244	0.5891	252.6645	-24.4363	196.0233	Delimate			0.0263	23.2138	35.5209	4.6610	19.8297	23.3499	30.9251	22 3881	22 0117	0.0100	-9.1860	-9.3782	0.6293	36.1470	5.3191	-0.7038	-6.0459	4.2824	-3.5353	14 4356	10.0521	-2.4026	-7.6969	-3.6107	-7.0599	2.4486	-7.1773	-0.04%	30 6000	210/012	Estimate			
14.8652		19.2168	12.5946	41.8157	29.1496	59.1240	35.3079	60.9425	47.1030	27.7851	50.8828	24.5819	42.5066	39.3420	12.0532	0.3198	116.3063	28.8863	72.4687	CtdDare	00		0.0203	21.9940	22.7649	18.6264	21.5597	22,4198	22 5459	23 3172	15 8355	20.0419	11.5850	5.5337	6.1400	23.2723	7.9641	5.0812	16.1122	10.6233	23.2094	13 3837	18,4611	10.6920	18.7969	8.9868	16.8747	15.2638	4.5886	0.1203	44 7066	10 0494	StdError	20	:	
0.6214	-1.4632	1.4753	2.1503		-2.1315	-3.7072	-7.1324	-0.6853	0.7469	-5.9824	2.0688	1.9483	-6.4599	1.1254	-1.0391	1.8421	2.1724	-0.8459	2.7049	Alahaa			1.2957	1.0555	1.5603	0.2502	0.9198	1.0415	1.3716	0.9602	20847	0.1006	-0.7929	-1.6947	0.1025	1.5532	0.6679	-0.1385	-0.3752	-0.4031	-0.1523	10786	0.7226	-0.2247	-0.4095	-0.4018	-0.4184	0.1604	-1.5641	-0.3794	0.6845	0.4600	tValue			
28.1693	7.4695	71.8521	64.9313	-216.5654	-108.2272	-287.4713	434,8682	-81.8057	56.6782	-298.0834	186.8233	147.2073	455,4522	-9.1906	-20.8129	0.4370	366.0810	-41.3428	232.8070	Cationata			0.0219	27.7437	39.9539	3.1971	20.0714	28.7259	37 1391	29 4026	7777.0	31.02/9	-5.6606	-8.4944	3.2801	41.7295	10.4842	1.1944	-20.3427	-15.6641	-12.3162	4 5120	11.0230	-18.0935	-12.8955	-8.5889	-16.2814	1.2644	-11.9381	-0.0422	56 8783	12 0474	Estimate 40.4107	8		
22.7213	86.3475	29.3402	19.3428	65.0157	46.0497	91.3548	54,7626	92.3924	73.1235	43.3018	79.6505	38.5284	66.2850	61.0904	19.3624	0.5139	181.5957	45.3458	115.4597	CodDoor	5		0.0242	27.2457	28.2058	23.0040	26.7253	27.7672	27.9313	28.8840	10 5527	7356	14.0787	6.8353	7.5870	28.8268	9.8651	6.2790	19.9663	13.2395	28.8552	16.4818	22.8421	13.2561	23,4470	11.1995	20.4232	18.9539	5.6494	0.1428	55 5744	110.001	35 0770	30	:	
1.2398	0.0865	2.4489	3.3569		-	_		-+-		-	2.3455	-	-	-0.1504	-1.0749	0.8505	2.0159	-0.9117	2.0163	Alahan			0.9079	1.0183	1.4165	0.1390	0.7510	1.0345	1 3 2 9 7	1 0180	1 4 5 2 0	0.6924	-0.4021	-1.2427	0.4323	1.4476	1.0628	0.1902	-1.0189	-1.1831	-0.4268	0.0738	0.4827	-1.3649	-0.5500	-0.7669	-0.7972	0.0667	-2.1132	-0.2953	1 0235	1.4007	tValue	:		
23.5405	27.7038	68.4297	73.1844	-309.0954	-188.4512	-370.6394	-519.6889	-108.9105	67.2002	-381.8091	191.2421	193.6053	-570.3105	11.1934	-30.2262	0.3612	406.8697	-56.2345	320.3189	Detimata			-0.0031	21.3856	36.5296	8.8478	14.3946	20.3594	34 3463	5125 05	01 2020	22.0110	-1.7549	-7.6734	4.6031	40.3570	12.5034	2.6355	-34.9686	-30.5304	-5.7670	3 2087	17.4622	-24.2684	-22,4173	-6.2049	-19.0627	-2.6460	-9.4112	0.0807	21 2879	12 0105	Estimate			
26.8480	102,1001	34.6177	22.8249	76.5151	_	**	64.4653	108.9870	86.2011	51.0837	93.7340	45.2929	78.9541	71.9126	22.7742	0.6200	213.7895	53.2865	136.2839	CtdDana	40	- 11			30.4516	24.7595	28.8682	29,9574	30.1542	31 1007	21 1705	0002.00	15.0259	7.3601	8.1920	31.1166	10.6488	6.7775	21.5223	14.1378	31.0272	17 7003	24.6206	14.2032	25.1594	11.9666	21.7863	20.3840	6.0445	_	59.6136	_	StdError	40	;	
0.8768	0.2713	1.9767	3.2063	-4.0397	_	-	-	-	0.7796	-7.4742	2.0403	4.2745	-7.2233	0.1557	-1.3272	0.5825	1.9031	-1.0553	2.3504	Walso		i F2	-0.1213	0.7274	1.1996	0.3573	0.4986	0.6796	1.1390	0.9786	10052	10007	-0.1168	-1.0426	0.5619	1.2970	1.1742	0.3889	-1.6248	-2.1595	-0.1859	0 1803	0.7093	-1.7087	-0.8910	-0.5185	-0.8750	-0.1298	-1.5570	0.5390	0.3571	07001	tValue		i Fl	
33.4498	117.4994	67.0616	86.0905	-361.3152	-218.5457	416.1843	-534.7493	-121.8272	85.0223	418.3295	213.8969	208.9384	-611.7670	24.8591	-48.1183	-0.2463	468.5656	-42.8781	357.5990	Estimate			-0.0205	23.2745	43.3330	10.7562	15.5644	24.9860	39 7036	43.0932	15 1772	1 5650	4.1129	-8.0696	7.8485	54.2024	15.7134	7.5734	-45.6922	-38.0514	-16.5518	-17.0100	17.5848	-32.6353	-24.6252	-6.2210	-19.5432	1.9520	-6.1214	0.1781	7 9437	10 0105	Estimate		-	
30.4701	116.0043	39.2433	25.8680			-		-	-	-+-	-	_	_	_		0.7076	241.7904	60.1447	153,8207		\$	- IL	_	-	31.9143	-	-+	31.3898	11 2023	32 70 52	+	40.0402	15.7742	7.6993	8.5872	32.6241	11.1504	7.1068	22.6010	14.7876	32.5372	18 7556	25.8641	14.9100	_	_	23.0045	21.3925	6.3187	_	62 4298	+	30 Anns	50	:	
1.0978	1.0129	1.7089	3.3281		-			-	_	_			-		-1.8766	-0.3481	_	-0.7129	2.3248	Maha			-0.7568	0.7553	1.3578	0.4147	0.5145	0.7960	1.2566	1 31 76	0.6230	0.0701	0.2607	-1.0481	0.9140	1.6614	1.4092	1.0656	-2.0217	-2.5732	-0.5087	-0.7521	0.3948	-2.1888	-0.9343	-0.4960	-0.8495	0.0912	-0.9688	1.1194	0 1272	1 0010	tValue	:		
54,9901	197.9188	58.8022	86.5928	456.4782	-248.3928	-518.1132	-592,4423	-141.6019	129.7618	483.6062	216.2598	189.0289	-694.3306	74.4703	-67.6903	-0.5783	577.9625	-57.4384	417.5353	Estimate			-0.0189	23.5590	43.6675	9.3226	11.9367	23.5259	42 5595	43 8446	101610	21.1109	6.1556	-14.3050	10.5534	65.2438	18.3090	10.3937	-59.4294	-44.9703	-36.3917	-2700.F2-	13.2363	-34.0054	-23.3415	-3.6056	-40.6420	11.5951	-5.0652	0.1550	20.7856	0100 17	Estimate			
33.0927	126.2318	42.6401	28.0423			-				_	_				-	0.7530	_	64.7970	165,0851	_	6	1	_	-	-	26.3257	30.7472	31.8918	32.1071	33 2414	2222 00	-	_	7.8092	8.7231	33.1503	11.3313	7.2210		_	_	1202.10		-	26.8081	12.7459	23.2120	21.7557		_	63 4294		30 0397	60	:	
1.6617	1.5679	1.3790	3.0879		_	-	_	-	-	-	-	_	-	0.8460	-	-0.7681	-	-0.8864	2.5292	Malua			-0.6959	0.7524	1.3464	0.3541	0.3882	0.7377	1.355	1 3 1 9 0	0.4505	0.0626	0.3869	-1.8318	1.2098	1.9681	1.6158	1.4394	-2.5847	-2.9937	-1.0998	-0.3383	0.5802	-2.2457	-0.8707	-0.2829	-1.7509	0.5330	-0.7922	0.9755	0 3277	1.2093	t Value	-		
81.1765	218.8774	64.5895	99.0612	-471.79 <i>S</i> 7	-279.0753	-499,4969	-605.3032	-166.2745	111.9847	-521.7427	170.2133	177.2921	-726.4507	70.6140	-75.6265	-0.7156	514.8744	-65.4906	483.1519	Detimate			-0.0076	20.0518	43.1484	-17.4286	0.2794	19,4975	41 6488	51 3829	11 2261	34,2446	19.7628	-18.5487	19.4561	71.2724	26.0224	13.8384	-79.1139	-57.1870	-54.5023	-33.1507	14.5210	-42.7162	-30.1161	-1.8626	-75.8482	19.1600	-6.9112	0.0524	30 7246	COLOULI	Estimate	5		
34.7110	132.3615	44.7205	29.4139	98.1530	69.0592	138,7032	82.8296	141.1239	110.7635	65.5706	119.9242	57.8611	101.6581	92.3358	28.7133	0.7921	273.8458	67.9321	172.8585	et di la con	7		0.0272	31.8389	32.9731	26.7574	31.2520	32,4260	32.6381	33 7824	2022 00	9 0 5 05	16.0930	7.9260	8.8446	33.7018	11.5107	7.3235	23.3913	15.3941	33.7449	10 2225	26.7294	15.4668	27.4027	13.0575	23.4224	22.1800	6.4903	0.1597	64 7578	10.0000	StdError	70	(
2.3386	1.6536	1.4443	3.3678	-4.8067	-4.0411	-3.6012		. –	1.0110	-7.9570	1.4193	3.0641	-7.1460	0.7648	-2.6339	-0.9033	_	-0.9641	2.7951				-0.2777	0.6298	1.3086	-0.6514	0.0089	0.6013	1.2761	1 5210	0.4010	0.11CT	1.2280	-2.3402	2.1998	2.1148	2.2607	1.8896	-3.3822	-3.7149	-1.6151	-1 1981	0.3433	-2.7618	-1.0990	-0.1426	-3.2383	0.8638	-1.0649	0.3283	-1.7000	1.09//	tValue			
97.9614	272.0770	64.9612	102,9992	-500.2642	-312.4465	-461.6921	-589,6890	-135.2129	202.6981	-498.6783	92 3 5 2 8	183.8866	-762.3016	75.5975	-67.3398	-0.0955	409.7907	-59.3526	428,4432	Datimata			0.0021	30.3656	53.6845	-48,2160	6.2794	30,4801	52.3056	78 2643	15 7227	2 010 2	26.4281	-20,4605	21.4401	105,7987	26.6647	15.8505	-83.2695	-60.4257	-51.3289	-34 3643	17.6037	-45.0256	-47.3994	0.7309	-69.3828	25.1515	-9.7883	-0.0019	26 3248	012010	Estimate 90 975			
37.2866	141.7213	48,0766	31.5904	105.0353	73.3705	148.5407	88,7854	152.0122	118.3394	70.1229	127.7205	61.7727	109.7498	98,7323	30.6825	0.8555	292.0191	72.6586	183.8885	Chilling	08		0.0296	34,7923	36.0141	29.2979	34.1367	35,4482	35.6618	1000112	34 00 21	40.400	17.5614	8.6767	9.6578	36,7955	12.5849	8.0012	25.6434	16,9910	37.0670	21 0906	29.2230	16.9913	30,2001	14.3986	25.6131	24.3398	7.1345	0.1744	71.1741	17 2070	StdError	80		
2.6273	1.9198	1.3512	3.2605	4.7628	-4.2585	-3.1082	-6.6417	-0.8895	1.7129	-7.1115	0.7231	2.9768	-6.9458	0.7657	-2.1947	-0.1116	1.4033	-0.8169	2.3299	+Mahaa			0.0706	0.8728	1.4907	-1.6457	0.1839	0.8598	14667	2 1210	0.6316	1 7066	1.5049	-2.3581	2.2200	2.8753	2.1188	1.9810	-3.2472	-3.5563	-1.3848	-1 6204	0.5017	-2.6499	-1.5695	0.0508	-2.7089	1.0333	-1.3720	-0.0107	0.3699	1.0140	tValue			

Previous Voicing: voiceless	Englisher (log)	Duration (los)	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: elottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Provinces Place: labin.dental	Provious Flace: Ishial	Previous voicing voicciess	Providency (10g)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: lax	Next Manner: fricative	Next Manner: Approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial
-16.3634	1000	12.4890	-16.1901	-3.6358	Estimate			0.0360	7.3755	-0.3315	7.7122	10.1218	-12.3610	-8.9578	14.5082	6.0603	8.1274	9.6967	4.6989	6.9135	0.4239	4.8402	-26.7581	-10.4523	-10.3326	-36.7097	-28.9376	-20.6468	-12.6868	10.1695	-14.7891	15 3790	42 7171	-2.9111	0.5245	0.2322	-1.3000	3.7227	2.6553	Estimate			0.0512	-82.6708	-68.4487	22.4245	-108.8774	-09.8344	-97.1106	9.5997	-18.4201	-103.7261	-29.6220	-20.7765
		0 3360	13.5309	59.2522	StdError	20		0.0225	6.4665	6.9402	3.5984	8.2709	23.1131	16.1344	7.4754	5.6127	9.3323	5.5409	3,7025	9.8726	10.0475	3,4304	26.9378	29.2441	25.4915	36.5858	28.5432	29.0528	17.3381	9.0995	29.0798		13 4187	0210.0	2.0106	0.145/	12.0418	6.3399	27.5503	StdError	20			53.7399	55.2513	43.5034	52.5815	54.1290	30.3697	37.8112	15.6665	68.5761	28.3205	13.2100
-1.5135	0.000	0.4639	-1.1965	-0.0614	tValue			1.5995	1.1406	-0.0478	2.1432	1.2238	-0.5348	-0.5552	1.9408	1.0797	0.8709	1.7500	1.2691	0.7003	0.0422	1.4110	-0.9933	-0.3574	-0.4053	-1.0034	-1.0138	-0.7107	-0.7317	1.1176	-0.5086		3 1834	-0.2009	0.1290	1.5935	-0.1080	0.5872	0.0964	tValue			0.9590	-1.5383	-1.2389	0.5155	-2.0706	1 2460	-1.7167	0.2539	-1.1758	-1.5126	-1.0460	-1.5728
-26.3461	-2 0316	2277'11	-18.9132	-57.4384	Estimate			0.0623	8.7369	2.5950	10.3433	9.3390	-26.6724	-16.7482	19.9319	6.6310	0.5090	8.1344	3.3769	14.9133	-6.2131	5.5787	-34.5039	1.1030	-9.9106	-48.4004	-36.7651	-33.6801	-18.7210	18.4546	-8.3451	-14 1887	39 4076	-0.200	-2.004/	0.2914	3.5283	-0.3020	20.2809	Estimate			0.1387	-6.5811	28.5333	29.9971	-62.3184	38.9248	-6.9094	41.6748	-28.1606	-16.3185	-24.8883	-30.9181
14.5015	7 4000	0.4588	18.0535	79.6188	StdError	30		0.0309	8.3436	8.8790	4.6251	10.6173	29.4639	20.6196	9.7419	7.2157	11.9786	7.1268	4.7628	12.6556	12.8818	4.4135	34.7391	37.8180	32.8944	47.0370	36.8133	37.5077	22.1685	11.8422	37.4447	202000	17 7856	2004.0	2.0202	1707.0	15.4783	8.1624	35.9706	StdError	30		0.0852	82.2447	84.3787	66.1509	80,4207	6180.58	86.5267	57.3911	24.2424	104.5643		20.2027
-1.8168	-0 7745	1 \$218	-1.0476	-0.7214	tValue			2.0142	1.0471	0.2923	2.2363	0.8796	-0.9053	-0.8122	2.0460	0.9190	0.0425	1.1414	0.7090	1.1784	-0.4823	1.2640	-0.9932	0.0292	-0.3013	-1.0290	-0.9987	-0.8980	-0.8445	1.5584	-0.2229	-0.4843	0 2 2 1 5 7	-1.0/3/	-U.VU.U	1.4415	0.2279	-0.0370	0.5638	tValue			1.6276	-0.0800	0.3382	0.4535	-0.7749	0.24657	-0.0800	0.7262	-1.1616	-0.1561	-0.5662	-1.5304
-31,1057	2 9779	0.8517	-22.5679	-87.5774	Estimate			0.0914	7.4795	3.5037	12.0280	18.0335	-36.3131	-16.9018	16.5173	10.3264	-2.8052	6.9137	0.1749	17.0905	-13.8710	2.9178	-23.2882	29.6877	-0.2823	42.4569	-27.9410	-17,4991	-18.6557	20.3149	2.4600	15 6906	37 7421	0007.0-	7402-0-	0.2327	5.9224	-1.1564	35.3233	Estimate			0.1924	22.9643	72.4706	77.9625	40.2320	\$1.7841	20.3949	45.6086	-38.7448	-39.3488	-29.1719	-44.0480
17.6924	0 216	41.9133	22.1182	98,4018	StdError	40		0.0386	10.1193	10.6174	5.5915	12.7439	35.2125	24.6523	12.0593	8.6739	14.4778	8.5747	5.7550	15.1862	15,4534	5.3338	42.3724	46.2328	40.2055	56.9453	44.8293	45.8210	26.6694	14.6216	45.6118	15057	0000.22	0000.1	4.24/0	0.2524	18.8800	10.0006	44.6887	StdError	40		0.1022	97.2071	99.7456	78.2924	94.9712	98.7710	102.0488	67.9893	28.5824	123.6860	52.4800	23.8676
-1.7581	9002 0-	1 4904	-1.0203	-0.8900	tValue		1 F2	2.3653	0.7391	0.3300	2.1511	1.4151	-1.0313	-0.6856	1.3697	1.1905	-0.1938	0.8063	0.0304	1.1254	-0.8976	0.5470	-0.5496	0.6421	-0.0070	-0.7456	-0.6233	-0.3819	-0.6995	1.3894	0.0539	-0 4476	1 6395	1 2003	-1.4/20	1.126.0	0.3137	-0.1156	0.7904	tValue		-	1.8827	0.2362	0.7266	0.9958	-0.4236	0.8280	_		-1.3555	-0.3181	-0.5559	-1.8455
-42.6532	0.7130	1 2207	-41.3632	-107.3816	Estimate		F2	0.0979	-0.2129	0.8856	10.4749	19.8465	-43.2212	-19.4582	9.1502	12.9789	0.9556	12.3061	-3,8314	14.7258	-20.7553	-2.2763	-8.0619	40.0720	9.8055	-41.1143	-11.3141	-3.1508	-18.9560	15.3445	7.6488	-77 8963	44 0598	-9.1423	1000.0	0.2695	1.2771	2,8097	33.9178	Estimate		-FI	0.3145	104.6520	177.9192	121.2945	41.5820	141 1057	106.8358	114.1791	-28.1069	8,4992	-30.2589	-57.3857
20.5982	10 9897	46.9376	25.8796	115.6668	StdError	50		0.0441	11.1717	11.6757	6.1770	14.0300	38.6785	27.0834	13.4102	9.5687	15.9845	9.4387	6.3582	16.7292	17.0236	5.8941	46.9172	51.2506	44.5132	62.9102	49.5729	50.7677	29.3658	16.2654	50.4552	18 5701	26.0455	0./019	4.8434	0.2896	20.8956	11.0860	50.1688	StdError	50		0.1161	110.4136	113.3031	88.8594	107.8248	112,1/40	115.9551	77.3924	32.3299	140.4582	59.8017	27.0528
-2.0707	0.0649	1 8706	-1.5983	-0.9284	tValuc			2.2188	-0.0191	0.0758	1.6958	1.4146	-1.1174	-0.7185	0.6823	1.3564	0.0598	1.3038	-0,6026	0.8802	-1.2192	-0.3862	-0.1718	0.7819	0.2203	-0.6535	-0.2282	-0.0621	-0.6455	0.9434	0.1516	-0.7240	1 6916	-1.0000	-1.2293	0.9308	0.0611	0.2534	0.6761	tValue			2.7082	0.9478	1.5703	1.3650	0.3856	1.6/90	0.9215	1.4753	-0.8694	0.0605	-0.5060	-2.1213
-54.1561	-1 3603	1 6504	-62.3576	-82,8114	Estimate			0.1255	-0.9305	2.0247	10.4646	12.3995	-41.0824	-19.1740	9.5426	19.4852	3.1421	13.8253	-3.7863	16.7921	-25.6567	-6.4119	-0.7357	42.7090	18.0711	-41.3138	0.0533	5.8035	-19.1480	19.7631	26.7687	-37 3351	54 3577	-0,4900	-0.1303	0.1539	1.3364	8.9741	27.5745	Estimate			0.3633	185.6614	269.0667	192.5818	115.2497	2/6.2366	172.5588	176.2331	-7.9062	15.1241	-31.7573	-71.8739
23.2100	12 2067	07340	29.2103	130,4672	StdError	60		0.0484	12.2023	12.7936	6.7607	15.3619	42.3822	29.6727	14.6322	10.4841	17.4867	10.3170	6.9584	18.3263	18.6482	6.4512	51.2338	55.9574	48.5913	68.7919	54.1356	55.4272	32.0897	17.7610	55.1088	42 2115	28 2317	161016	67C7'C	0.3179	22.8331	12.1067	54.6143	StdError	60		0.1240	120.0700	123.2846	96.6361	117.2719	122.0228	126.1749	84.3049	34.9324	152.8129	64.5348	29.3391
-2.3333	1105	0.4//1	-2.1348	-0.6347	tValue			2.5941	-0.0763	0.1583	1.5479	0.8072	-0.9693	-0.6462	0.6522	1.8586	0.1797	1.3400	-0.5441	0.9163	-1.3758	-0.9939	-0.0144	0.7632	0.3719	-0.6006	0.0010	0.1047	-0.5967	1.1127	0.4857	-0.8845	1 9754	-0.00.0	-1.10/1	0.4841	0.0585	0.7413	0.5049	tValue			2.9310	1.5463	2.1825	1.9929	0.9828	1 0756	1.3676	2.0904	-0.2263	0.0990	-0.4921	-2.4498
-56,4662	0.4815	20.9731	-69.4109	-41.7397	Estimate			0.1283	0.3474	3.0638	12.4419	6.6265	-15.1475	-21.2177	15.4426	27.2981	6.2047	13.5268	-0.1562	23.7326	-30.6969	-9.8182	-0.1531	39.6041	20.8320	-45.1021	-1.7073	6.8937	-23.5447	24.2654	34.4385	44 5399	60 9366	-3./304	2 7204	0.1548	0.6997	11.6830	20.5825	Estimate			0.3551	197.5803	285.7628	104.6650	115.7942	744 4737	169.7/10	208.6905	9.5378	125.2091	24.1669	-85.7227
26.2928	14 1002	08230	33.1229	147.9964	StdError	70		0.0518	12.9939	13.6621	7.2105	16.3922	45.2432	31.6742	15.5546	11.1933	18.6393	10.9964	7.4215	19.5593	19.9074	6.8808	\$4.5237	59.5435	51.6982	73.2960	57.6241	58.9787	34.1903	18.8945	58.6595	45 0501	20.0077	10.1494	10 1 404	0.3413	24.3107	12.8821	57.9976	StdError	70		0.1304	125,9085	129.2724	101.3938	122,9631	127.9634	132.3080	88.4587	36.6562	160.2832	67.7570	30.7881
-2.1476	0.0241	0.4029	-2.0956	-0.2820	tValue			2,4787	0.0267	0.2243	1.7255	0.4042	-0.3348	-0.6699	0.9928	2.4388	0.3329	1.2301	-0.0210	1.2134	-1.5420	-1.4269	-0.0028	0.6651	0.4030	-0.6153	-0.0296	0.1169	-0.6886	1.2843	0.5871	-019887	2.0438	1 2024	-0.9808	0.4536	0.0288	0.9069	0.3549	tValue			2.7235	1.5692	2.2105	1.0323	0.9417	2.3909	1.2832	2.3592	0.2602	0.7812	0.3567	-2.7843
-51.7134	7 0874	1069 6	-77.8791	-10.5677	Estimate			0.1298	6.8299	4.2329	13.5279	4.7694	41.1697	-21.9785	19.7860	38.6070	4.7768	10.1968	4,6533	40.6327	-27.0080	-12.9647	-10,7281	24.5516	11.1657	-53.1614	-20.2578	4.0230	-31.0570	29.6248	26.0169	-48 4900	74 3032	-0.10/3	-0.1972	0.0608	1.6962	20.2939	31.2025	Estimate			0.1884	234.1799	319.8987	-52.0810	148,2502	362.2849	225.2485	268.0045	39.7847	327.0234	22.5429	-78.4621
29.5722	157831	0 9009	37.3384	166.2772	StdError	80		0.0541	13.6147	14.3320	7.5587	17.1914	47.4714	33.2322	16.2765	11.7387	19.5372	11.5286	7.7796	20.5142	20.8784	7.2130	57.0991	62.3435	54.1348	76.8117	60.3580	61.7586	35.8418	19.7767	61.4453	47 2641	31 0797	10.0304	0./905	0.3560	25.4687	13.4904	60.6105	StdError	80		0.1410	134.7329	138.4178	109.3786	131.5852	136 9501	141.6818	94,9402	39.4744	172.1087	72.8395	33.2296
-1.7487	0 4490	2 9740	-2.0858		tValue			2,4007	0.5017	0.2953	1.7897	0.2774	0.8673	-0.6614	1.2156	3.2889	0.2445	0.8845	0.5981	1.9807	-1.2936	-1.7974	-0.1879	0.3938	0.2063	-0.6921	-0.3356	0.0651	-0.8665	1.4980	0.4234	-1 02 50	2 3007	0/10/0-	-0.9324	80/.1.0	0.0666	1.5043	0.5148	tValue			1.3363	1.7381		-0.4762		1.0275			1.0079	1.9001	0.3095	-2.3612

Walke Baim 1.1.965 48.85 1.1.967 19.3674 0.4.909 12.13 3.6624 09.90 1.1084 48.465 1.1084 48.465 0.6091 17.39 0.6021 17.99 0.611 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 0.6251 17.80 1.1977 49.41 1.1978 3.42 0.62514 3.18 0.62517 3.94 0.62517 3.94 0.62517 3.94 0.62517 3.94 0.62517 3.94 0.60517 3.94 <	Estimate 68.8500 19.3903 -12.158 8.0638 -3.5648 48.4675 17.5997 -3.6997 -3.5997 -3.5997 -3.5997 -3.5997 -3.594 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.29444 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2944 -3.2949 -3.2948 -3.2949 -3.2949 -3.2949 -3.2949 -3.2949 -3.2949 -3.2949 -3.2949 -3.29488 -3.2949 -3	40 54 Estimate SulEror Value 68.800 45.230 1.518 19.3903 12.652 2.716 80.638 8.1399 9.814 4.623 0.9041 0.3259 2.716 392-361 48.405 392-361 12.352 1.7390 3.80638 8.5199 9.814 4.8175 3.63046 2.0201 18.8350 0.933 -3.5401 38.0651 0.207 1.639 -3.5401 38.0652 0.2071 4.721 -3.6401 23.9991 4.721 4.721 -3.6402 23.9946 1.7073 4.7906 -3.5203 25.4946 1.2007 1.6303 -2.5404 1.4007 0.6216 1.2023 -2.5403 38.6397 0.1032 0.2147 -2.5404 1.4000 1.0264 1.7350 -2.5403 25.1461 0.939 5.2493 5.1416 0.939 -2.54041 <	40 40 Beimas Salfrore Wala 46 Salfrore Wala 47 Salfrore Wala 19303 12.6592 1.53 19303 12.6592 1.53 19303 12.6592 1.53 19303 12.6592 1.53 0.044 0.3292 7.16 0.041 0.3292 7.16 0.041 0.3292 7.16 0.041 0.3292 7.16 0.041 0.3292 7.16 0.041 0.3292 7.16 0.041 0.3292 7.16 0.057 3.8450 0.31 -2.677 3.8453 0.37 -2.4144 1.4005 1.075 -2.5293 38.457 0.176 -3.7582 13.1075 0.161 -2.3444 14.4005 0.899 -2.3444 14.3004 0.899 -2.3493 3.0.463 0.899	910 910 910 Estimate Stifrare Stifrare Stifrare 683.00 45.339 7.5180 7.60781 49.904 19.903 12.639 1.5180 7.60781 49.904 19.903 12.6392 1.5180 7.60781 49.904 19.903 12.6392 1.5180 7.6078 43.909 0.1612 0.6048 23.097 1.6137 39.246 0.7897 43.601 17.900 38.065 0.0751 -0.0514 42.9210 -22.4114 38.1065 0.2057 -0.0514 42.9210 -22.4114 38.1065 0.2057 -0.0514 42.9210 -22.4114 38.1065 0.2057 -0.0544 65.666 -5.6072 1.0161 12.2377 1.6881 56.466 -5.6072 0.25781 1.6891 52.309 56.577 1.9981 56.666 -5.6072 1.6161 1.2277 1.9987 1.6292 56.567 52.578 <td< th=""><th>0 50 50 Bellmine Selferer (Marcov Selferer (Marcov -683800 453390 -1.5180 -76.0781 493674 1.4232 -10.1580 2.1480 -1.6180 76.0781 493674 1.4232 -10.1580 2.14519 2.43890 -1.8189 41.474 1.4232 -10.1580 2.1451 1.89894 4.1474 1.4232 1.1697 0.0411 0.3329 2.1161 0.7887 2.4447 1.4630 -117.5900 1.88265 0.2155 71.0107 4.36.01 1.0276 -3.6977 3.6364 4.0107 2.0234 4.0990 0.9333 -3.6977 3.80655 0.2151 1.2061 4.2710 0.9971 -2.6973 3.5378 1.4384 4.0990 1.0468 4.6993 -3.6997 1.7080 1.5081 5.8199 4.6993 4.6993 -3.6997 1.7081 1.6981 5.8199 1.6993 4.6993 <th>MOT Sufferent Nume Sufferent Sufferent</th><th></th><th></th><th></th><th></th><th>all bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit</th><th></th></th></td<>	0 50 50 Bellmine Selferer (Marcov Selferer (Marcov -683800 453390 -1.5180 -76.0781 493674 1.4232 -10.1580 2.1480 -1.6180 76.0781 493674 1.4232 -10.1580 2.14519 2.43890 -1.8189 41.474 1.4232 -10.1580 2.1451 1.89894 4.1474 1.4232 1.1697 0.0411 0.3329 2.1161 0.7887 2.4447 1.4630 -117.5900 1.88265 0.2155 71.0107 4.36.01 1.0276 -3.6977 3.6364 4.0107 2.0234 4.0990 0.9333 -3.6977 3.80655 0.2151 1.2061 4.2710 0.9971 -2.6973 3.5378 1.4384 4.0990 1.0468 4.6993 -3.6997 1.7080 1.5081 5.8199 4.6993 4.6993 -3.6997 1.7081 1.6981 5.8199 1.6993 4.6993 <th>MOT Sufferent Nume Sufferent Sufferent</th> <th></th> <th></th> <th></th> <th></th> <th>all bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit</th> <th></th>	MOT Sufferent Nume Sufferent Sufferent					all bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit	
	Estimate 68.800 19.2903 19.2903 19.2904 8.0638 8.0638 48.4675 17.5900 -3.697 -3.697 -3.697 -3.697 -3.697 -3.5279 24.5279 24.5279 24.5279 24.5279 24.5276 -3.5444 -5.5687 -2.5454 -2.5344 -2.5334 -	Beimas Saffrase estanas Saffrase estanas Saffrase 193/801 12.532 193/801 12.632 193/801 12.632 0.944 0.3294 0.944 0.3294 0.944 0.3294 17.590 18.853 0.944 0.3297 4.8467 39.2261 17.590 18.853 2.35.648 27.9971 -3.6377 8.50297 -3.6397 35.0494 -3.6397 35.0494 -3.6397 32.9494 -3.6397 32.9494 -3.6397 31.0737 -2.3444 14.0897 -2.3494 38.6397 -2.3494 34.0997 -2.3444 10.0173 -2.3494 34.0997 -2.3494 24.0917 -2.3493 23.1416 -2.3493 24.9435 -2.3494 30.0927 -2.34945 30.0927	Edimate Skiltrart Vilate -05300 45.230 1.5400 19300 12.6502 1.5401 19300 12.6502 1.5401 0.944 0.332 2.7610 0.8058 2.8106 0.8100 0.8058 2.8100 0.9310 80548 2.8007 1.2353 1.7590 18.8560 0.1314 -3.697 38.0651 0.2057 -2.2414 2.1071 -0.823 -3.697 0.8659 0.7534 -4.42128 23.7967 0.823 -5.607 32.7464 1.2050 -5.607 31.707 -0.4061 -2.349 1.8409 0.1627 -2.441 31.707 -0.4061 -2.344 1.6095 0.4677 -2.441 3.0406 0.9234 -2.442 1.2400 0.923 -2.344 3.0406 0.9212 -2.443 3.0406 0.9212 -2.443	Balmank Sulfarer Valker Value Barmank Sulfarer 483500 45.349 7.6400 7.8491 16.4474 193301 12.6592 1.5441 18.9694 14.4474 193301 12.6592 1.5441 18.9694 14.447 0.9444 0.3329 7.0107 48.980 0.9121 58.6038 2.8199 0.9161 8.2445 9.191 55.602 39.256 1.2357 71.0107 43.000 17.5901 18.859 0.0171 20.254 43.993 -3.6377 59.9677 -0.613 32.974 43.900 -2.7444 20.106 7.0717 12.627 44.9201 -2.7444 20.107 1.627 36.686 56.070 35.778 10.616 1.9201 -2.6467 31.9646 1.5364 1.5364 1.6399 3.6499 -2.3448 14.0700 4.1627 4.6490 3.5789 3.57997 1.64.87 3.64.929 3.5999	Jacimate Sulfarer Value Fairmate Sulfarer Value -083000 45300 -15401 18690 14144 15423 193303 12.6992 -15411 18690 14144 15423 193303 12.6992 -15411 18690 14164 15423 10141 03302 2.7161 0.7880 0.3723 16503 -1550 0.0644 03329 2.7161 0.7880 0.3723 1.6890 -1650 0.8078 8.2199 0.9810 8.2144 9.191 0.0933 -1660 -45677 3.8065 0.1573 -3.5237 3.6434 -0.9933 -1.6604 -55677 3.80657 0.1773 -1.5277 3.6434 -0.9933 -55677 3.53641 1.1036 1.7277 0.8577 1.6244 -54687 3.86497 0.1623 4.1739 -0.4992 -0.3193 -2.3048 8.5161 1.5361 1.5394 -7.3982 3.5499	Jamma Sulfrave Value Fairmate Sulfrave Value Fairmate 488500 45.300 4.5180 <i>Korr</i> 49360 4.523 7.58627 193303 12.6092 1.541 18.696 41.474 1.523 7.58627 193303 12.6092 1.5411 18.696 41.474 1.523 7.58627 0.044 0.3329 2.7161 0.7886 0.3757 3.6463 7.6495 0.8078 8.2199 0.8161 8.2189 0.9191 0.0033 7.4465 3.8063 8.2199 0.8161 8.2184 0.9088 1.4164 1.532 1.7590 18.8509 0.9731 3.2737 3.6434 2.9216 0.6731 1.23493 -2.7414 2.8105 0.1971 1.8237 1.0604 6.6458 1.6334 9.6468 1.6334 9.6468 1.6334 9.6468 1.6334 9.6468 1.6334 9.6468 1.6334 9.6468 1.6334 9.6499 1.6339	Barmate Suffrage Value Estimate Suffrage Barmate Suffrage Barmate Suffrage Barmate Suffrage Barmate Barmate	Belmane Selfrave Value Estimate Selfrave Value Line Selfrave Value Line Selfrave Selfr	Balmane Sulfarrer Value Balmane Balmane Balmane Sulfarrer Value Balmane Balmane <t< td=""><td>Balmane Sulfarer Value Balmane <ths< td=""><td>Balmade Sulfarer Value Balmade <th< td=""><td>Balmade Sulfarer Value Balmade <th< td=""></th<></td></th<></td></ths<></td></t<>	Balmane Sulfarer Value Balmane <ths< td=""><td>Balmade Sulfarer Value Balmade <th< td=""><td>Balmade Sulfarer Value Balmade <th< td=""></th<></td></th<></td></ths<>	Balmade Sulfarer Value Balmade Balmade <th< td=""><td>Balmade Sulfarer Value Balmade <th< td=""></th<></td></th<>	Balmade Sulfarer Value Balmade Balmade <th< td=""></th<>
		40 41 42 Staffmer Fvalue 12.529 1.544 23.281 1.543 23.281 1.543 23.281 1.543 23.2087 1.543 23.6364 0.933 36.5365 0.931 36.5365 0.937 38.6366 0.057 38.6366 0.053 38.6365 0.267 38.6366 0.053 38.6366 0.053 38.6366 0.053 38.6366 0.053 38.6367 0.267 38.6367 0.267 38.6367 0.267 39.3067 0.2617 23.4364 0.7597 23.4364 0.0597 23.4364 0.0597 39.3062 0.8297 39.3063 0.8297 39.3064 0.1527 21.9918 0.2664 21.9919 0.2664 21.9919 <t< td=""><td>40 Sulfarer Vahae Sulfarer Vahae 2,329 1,5418 2,329 1,5418 2,329 1,5418 2,329 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 1,325 0,0314 3,5590 0,0810 1,325 0,0314 3,5590 0,0810 1,325 0,0314 1,325 0,0356 1,325 0,0314 1,325 0,0356 1,325 0,0356 1,325 0,0356 1,325</td><td>40 50 41 Sulfare Value Estimate Sulfare 42 Sulfare Value Estimate Sulfare 42 Sulfare Value Estimate Sulfare 43 Sulfare Value Estimate Sulfare 44 Sulfare Value Sulfare Sulfare 53 GUS20 Sulfare Sulfare Sulfare 34 Sulfare Adus Sulfare Sulfare 35 GUS20 Sulfare Adus Sulfare 36 GUS21 Sulfare Adus Sulfare 36 GUS21 Sulfare Adus Sulfare 36 GUS21 Adus Sulfare Adus 38 GUS21 Adus Sulfare Adus 38 GUS22 Adus Sulfare Sulfare 38 GUS23 Adus Sulfare Sulfare 38 Dus24 Adus Sulfa</td><td>40 50 43 Suffarer Value Estimate Suffarer 43 Suffarer Value Estimate Suffarer 44 Suffarer Value Estimate Suffarer Value 43 Suffarer Value Estimate Suffarer Value L3339 Construct Suffarer Value L3339 Construct Suffarer Value Suffarer Value L3339 Construct Suffarer Value Suffarer Value Suffarer Construct Suffarer Value Suffarer Value Suffarer Construct Suffarer Construct<</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	40 Sulfarer Vahae Sulfarer Vahae 2,329 1,5418 2,329 1,5418 2,329 1,5418 2,329 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 8,219 0,0810 1,325 0,0314 3,5590 0,0810 1,325 0,0314 3,5590 0,0810 1,325 0,0314 1,325 0,0356 1,325 0,0314 1,325 0,0356 1,325 0,0356 1,325 0,0356 1,325	40 50 41 Sulfare Value Estimate Sulfare 42 Sulfare Value Estimate Sulfare 42 Sulfare Value Estimate Sulfare 43 Sulfare Value Estimate Sulfare 44 Sulfare Value Sulfare Sulfare 53 GUS20 Sulfare Sulfare Sulfare 34 Sulfare Adus Sulfare Sulfare 35 GUS20 Sulfare Adus Sulfare 36 GUS21 Sulfare Adus Sulfare 36 GUS21 Sulfare Adus Sulfare 36 GUS21 Adus Sulfare Adus 38 GUS21 Adus Sulfare Adus 38 GUS22 Adus Sulfare Sulfare 38 GUS23 Adus Sulfare Sulfare 38 Dus24 Adus Sulfa	40 50 43 Suffarer Value Estimate Suffarer 43 Suffarer Value Estimate Suffarer 44 Suffarer Value Estimate Suffarer Value 43 Suffarer Value Estimate Suffarer Value L3339 Construct Suffarer Value L3339 Construct Suffarer Value Suffarer Value L3339 Construct Suffarer Value Suffarer Value Suffarer Construct Suffarer Value Suffarer Value Suffarer Construct Suffarer Construct<							

Next Voicing: voiceless	Previous Place: labio-dental	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Place: labio-dental	Next Place: glottal	Next Voicing: voiceless	Previous Place: labio-dental	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor	•
65.2614	184.5378	-281.4903	-135.9616	-79.2118	0.5160	345.0756	-364.2946	567.6983	Estimate			-0.2931	-11.1113	266.7177	-9.5024	115.9411	63.1264	-89.4216	-41.1120	-8.7838	1.2213	204.9350	-101.2602	145.8745	Estimate			-0.1626	-1.7565	12.8807	-15.0774	-1.3522	-34.2451	5.3132	74.6941	10.4270	-3.0447	-18.8247	16.1325	-6.5941	20.7239	-20.6862	-14.8858	19.7415	-1.9386	32.2897	43.8672	31.2466	35.4011	-17.0322	-0.6134	1.6863	50.0435	-29.1454	-6.7180	Estimate	
48.5971	183.6073	112.9022	105.0688	64.6274	0.9000	309.7319	178.7774	370.6707	StdError	20		0.1831	35.6029	44.7303	39.4651	47.4969	159.4229	101.0088	89.7479	56.2428	0.5859	277.2657	156.3233	325.1178	StdError	20		0.0423		18.7976	33.5657	16.5027	27.5156	21.5265	48.7559	21.1266	12.7463	28.6550	34.6732	12.6733	21.2429	16.0850	29.2750	53.1631	25.1134	33.6170	30.2955	15.8663	33.5869	20.0065	6.6512	0.2527	24.8249			20 StdError	
1.3429	1.0051	-2.4932	-1.2940	-1.2257	0.5733	1.1141	-2.0377	1.5315	tValue			-1.6011	-0.3121	5.9628	-0.2408	2.4410	0.3960	-0.8853	-0.4581	-0.1562	2.0846	0.7391	-0.6478	0.4487	tValue			-3.8491	-0.0942	0.6852	-0.4492	-0.0819	-1.2446	0.2468	1.5320	0.4936	-0.2389	-0.6569	0.4653	-0.5203	0.9756	-1.2861	-0.5085	0.3713	-0.0772	0.9605	-1.4480	1.9694	1.0540	-0.8513	-0.0922	6.6742	2.0159	-2.6274	-0.1874	tValue	
67.4486	368.1888	-479.8363	-287.7198	-148.5709	0.7685	660.4383	-645,7211	1081.7976	Estimate			-0.3942	-30.4706	246.3340	-1.8521	131.4648	-14.2901	-130.0449	5.1525	19.8562	1.6323	154.5213	-118.5461	81.2514	Estimate			-0.0930	3.7675	2.4350	-27.2141	-6.0885	43.6022	0.5484	47.6136	39.9949	-14.9201	-33.4184	10.0263	-21.2022	19.3472	-34.8566	-26.3064	23.7217	11.9216	9.8856	-57.4010	43.5644	75.8654	42.7157	-16.2364	1.5004	89.9105	-56.8061	114.8177	Estimate	
80.4529	321.8369	195.8641	183.8940	112.7691	1.5405	546.3304	313.2485	647.5066	StdError	30		0.2459	45.9650	57.4182	51.2188	62.7065	222.1913	135.9173	125.7033	77.7984	0.7913	385.4753	215.3093	449,4500	StdError	8		0.0588	25.8041	25.9331	46.7616	22.8029	38.1619	29.9483	67.8180	29.2276	17.7298	39.7192	48.2131	17.6365	29.3888	22.2062	40.4676	74.1118	34.7606	46,7051	41.6727	21.8954	46.1811	27.6522	9.1636	0.3507	34.6012	15.3091	49.2184	30 StdError	
0.8384	1.1440	-2.4498	-1.5646	-1.3175	0.4989	1.2089	-2.0614	1.6707	tValue			-1.6032	-0.6629	4.2902	-0.0362	2.0965	-0.0643	-0.9568	0.0410	0.2552	2.0629	0.4009	-0.5506	0.1808	tValue			-1.5802	0.1460	0.0939	-0.5820	-0.2670	-1.1426	0.0183	0.7021	1.3684	-0.8415	-0.8414	0.2080	-1.2022	0.6583	-1.5697	-0.6501	0.3201	0.3430	0.2117	-1.3774	1.9897	1.6428	-1.5448	-1.7718	4.2779	2.5985	-3.7106	2.3328	tValue	
18.1654	516.8968	-588.3095	-408.3238	-214.6435	0.5686	913.8631	-824.6989	1490.7592	Estimate			-0.6639	-73.1890	183.5059	22.3472	82.1335	-279.2865	31.1243	148.8176	131.7563	2.4580	-202.4216	95.6626	-481.0810	Estimate			-0.0506	3.8151	-0.5108	-26.9052	-10.3943	-33.0277	-8.8352	15.7696	76.5203	-23.4648	-30.5745	16.5632	-31.1198	18.3222	-56.6251	-25.2210	17.5138	30.3068	-28.0153	-60.4573	52.6202	128.4149	-76.2998	-27.1572	1.3863	121.8685	-77.9556	211.7884	Estimate	
123.2191	499.0361	299.1724	285.7802	174.2384	2.3242	844.8319	483.1368	1000.7834	StdError	40		0.3567	52.0585	65.0847	63,7079	67.7805	237.0824	177.5690 0.1753	132.1212	94.1747	1.1692		253.5106	535.9399 -0.8976	StdError	40		0.0730	31.9665	32.5450	58.0003	28.3428	46.7049	37.0540	83.7398	35.9449	21.7998	49.0857	59.5786	21.6905	36.1470	27.8755	49.7667	91.3260	42.8487	57.4642	52.5119	27.7104	58.0170	33.9165	11.6957	0.4348	42.7722	18.9970	62.9711	40 StdError	
0.1474	1.0358		-1.4288	-1.2319					tValue		æ F2	-1.8613	-1.4059	2.8195	0.3508	1.2118	-1.1780	0.1753	1.1264	1.3991			0.3774		tValue		æM	-0.6923	0.1193	-0.0157	-0.4639	-0.3667	-0.7072	-0.2384	0.1883	2.1288	-1.0764	-0.6229	0.2780	-1.4347	0.5069	-2.0314	-0.5068	0.1918	0.7073	-0.4875	-1.1513	1.8989	2.2134	-2.2496	-2.3220	3.1882	2.8492	-4.1036	3.3633	tValue	
-4.8274	842.7447	-768.8580	-591.7423	-327.2879	0.7604	1448.8293	-1152.5639	2172.8202	Estimate		F2	-0.6913	-98.8138	176.4106	31.9003	93.9869	-390.3395	105.1398	214.1702	175.4708	2.4985	-380.0530	191.9615	-701.3513	Estimate		3	0.0110	-25.4640	-42.0128	-82,1148	-31.1873	-39.7175	-24.9467	71.7975	119.0818	-20.6506	-65.4982	79.3821	-28.3348	21.1342	-59.5360	-32.7064	17.0670	41.7040	-70.6849	-59.5319	35.2483	167.7469	-93.9633	-35.4425	1.0924	139.3497	-98.2100	318.4365	Estimate	
161.8842	641.3623	382.6839	367.2567	223.3721	2.8571				Error	50		0.3858	62.1323	76.3574	74.9275	81.8479	286.7546	214.1969	158.2469	111.5534			305.9392	642.0672	StdError	50		0.0850	36.7495	38.2490	66.1576	32.7497	52.5960	42.2164	95.5635	40.8412	24.7302	55.9265	67.6967	24.6095	40.9351	32.6446	56.5420	103.0593	48.6851	65.1675	62.2072	32.7424	67.8589	38.4034	13.9917	0.5094	48.8097	21.8495	75.7389	50 StdError	
-0.0298	1.3140	-2,0091	-1.6113	-1.4652	0.2662			1.6932	tValue			-1.7918	-1.5904	2.3103	0.4257	1.1483	-1.3612	0.4909	1.3534	1.5730	2.0033	-0.7413	0.6274	-1.0923	tValue			0.1292	-0.6929	-1.0984	-1.2412	-0.9523	-0.7551	-0.5909	0.7513	2,9157	-0.8350	-1.1711	1.1726	-1.1514	0.5163	-1.8238	-0.5784	0.1656	0.8566	-1.0847	-0.9570	1.0765	2.4720	-2,4467	-2.5331	2.1443	2.8550	-4.4948	4.2044	tValuc	
-41.0406	910.3504		-611.3634	-348.7305	8616'0	1628.3839	-1295.2161	2406.7078	Estimate			-0.5982	-110.3913	195.2700	35.5676	107.2256	-378.1691	102.9444	214.8048	170.0800	2.3800	-394.1328	149.3406	-656.6854	Estimate			0.0617	-16.3252	-61.6625	-91.1107	-30.3436	-73.0101	-11.5372	118.4022	156.6143	-27.5594	-68.3411	90.1214	-36.0767	31.9844	-68.0006	-36.3128	35,4051	48.0482	-105,1640	-36.5108	35,4102	252.2360	-109,4181	-41.8466	0.8017	158.5993	-123.7654	382.5360	Estimate	
180.3566	709.0682	418.3076	406.1646	246.3049	2.9331	1204.5871	681.2574	1416.2405	StdError	60		0.3822	61.6448	75.5933	76.0100	81.4369	277.6664	213.1576	152,4498	110,2002	1.2331	495.1982	299,4446	632.2347	StdError	68		0.0958	41.3564	43.3925	74.2071	36.9225	58.8131	47.4111	107.4087	45.7822	27.7289	62.7121	75.8565	27.5941	45.8551	36.9810	63.4617	115.3617	54.5880	73.0019	70.7155	37.1859	76.7724	43.0287	15.9249	0.5754	\$4.8630	24.6023	86.4657	60 StdError	
-0.2276	1.2839		-1.5052	-1.4158		1.3518	-1.9012		tValue			-1.5650	-1.7908	2.5832	0.4679	1.3167	-1.3620	0.4829	1.4090	1.5434	1.9301	-0.7959	0.4987	-1.0387	tValue			0.6439	-0.3947	-1.4210	-1.2278	-0.8218	-1.2414	-0.2433	1.1024	3.4209	-0.9939	-1.0898	1.1881	-1.3074	0.6975	-1.8388	-0.5722	0.3069	0.8802	-1.4406	-0.5163	0.9522	3.2855	-2.5429	-2.6278	1.3933	2.8908	-5.0307	4.4241	tValue	
-11.6255	1103.1748	-1228.2583	-711.2162	-400.2624	1.5244	2134.9344	-1740.8302	3084.8123	Estimate			-0.4643	-115.3881	173.8508	43.7509	111.7903	-304.1770	20.7997	165.1609	123.7972	2.1608	-248.1813	-2.2713	-378.3014	Estimate			0.0710	-26.7247	-68.7598	-120.7683	-41.8768	-119.9081	-12.2362	237.8652	186.6121	-29.2495	-48.8478	99.9420	-39.5247	49.6200	-65.4816	-7.4225	61.2292	61.5318	-130,1510	-52.8514	26.8864	299.4460	-131.3852	-44.0651	0.7620	153.2426	-137.4435	423.1470	Estimate	
199.3815	743.6879	450.0292	423.4887	259.8140	2.8756	1276.3676	720.0754	1497.3144	StdError	70		0.4014	62.7804	77.0055	78.3532	82.9803	284.2982	220.0179	156.1001	113.9068	1.2964	506.9969	308.0536	651.8699	StdError	70		0.1052	46.2254	48,1145	83.4833	41.2073	66.3612	53.4899	120.5428	51.4205	31.1982	70.6696	85.4424	31.0472	51.8271	41.1843	71.4585	131.0645	61.5151	82.2003	78.0325	41.3433	85.4841	48,4097	17.5796	0.6262	61.6409	27.5925	95.2839	70 StdError	
-0.0583	1.4834	-2.7293	-1.6794	-1.5406	0.5301				tValue			-1.1567	-1.8380	2.2576	0.5584	1.3472	-1.0699	0.0945	1.0580	1.0868	1.6668	-0.4895	-0.0074	-0.5803	tValue			0.6752	18/.5.0-	-1.4291	-1.4466	-1.0162	-1.8069	-0.2288	1.9733	3.6291	-0.9375	-0.6912	1.1697	-1.2731	0.9574	-1.5900	-0.1039	0.4672	1.0003	-1.5833	-0.6773	0.6503	3.5029	-2.7140	-2.5066	1.2169	2.4861	4.9812	4,4409	tValue	
69.3594	1292.8470	-1457.9212	-820.0978	-445.9570	2.5647	2733.0246	-2080.8053	3639.8706	Estimate			-0.3050	-105.8984	148.7574	18.8749	119.3350	-150.4311	-121.6529	91.4302	54.2057	1.5686	1.1185	-225.4349	70.7587	Estimate			0.0708	-48.2906	-78.2867	-156.8707	-67.9003	-143.1919	-25.7779	304.0214	227.8885	-31.2301	-43.1407	125.1379	-38,8707	67.1870	-53.5272	42.4039	93.7587	85,1969	-143.9832	-86,7530	10.6431	320.5550	-160.9500	-43.6537	0.7549	123.2387	-137.6502	447.2034	Estimate	ľ
202.9537	720.8585		407.9857		-			-	StdError	80		0.4093	59,7877	73.6044	76.1137	78,5892	274.0877	213.5756	151.0093	111.6173	1.3272	486.8965	298.6291	634.8864	StdError	80		0.1170	51.6007	52.6478	93.9989	45,7521	75.3760	60.2373	135,7095	57.8991	35.3168	79.5164	96.4635	35,1380	58.5253	45.1911	80.4752	149.1866	69.3409	92.9598	84,7413	45.0095	93.7694	54,6548	18,9653	0.6927	69.4027	30,7178	102.1333	80 StdError	
0.3417	1.7935	-3.2009	-2.0101				-2.9386		tValue			-0.7450	-1.7712	2.0210	0.2480	1.5185	-0.5488	-0.5696		0.4856	_	0.0023	-0.7549	0.1115	tValue			0.6052	-0.9339	-1.4870	-1.6689	-1.4841	-1.8997	-0.4279	2.2402	3.9360	-0.8843	-0.5425	1.2973	-1.1062	1.1480	-1.1845	0.5269	0.6285	1.2287	-1.5489	-1.0237	0.2365	-	-+	.	1.0897	-	4.4811		tValue	

Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: lax	Provious Manner: frigative	Provides Manner: flan	Provident Manner: dishthene	Previous Place: malatal	Providus Place: Iabio-dental	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Place: labio-dental	Next Place: glottal
21.2182	69.0474	-31.3242	40.0256	11.2609	-0.4908	-61.7462	-5.0327	1.1665	1.2922	40.1093	-3.8579	-30.4627	Estimate			-0.0072	30.2261	60.5419	31.1060	56.4104	44.7081	59.3661	34.0757	15.6974	45.1276	-7.5867	0.9006	15.4915	37.3565	25.6923	12.9514	8.5350	21,4964	4.3662	43 9150	43.0220	0116.0	1 0776	-115 0 CC00.+++-	3.3333	-78.2519	5.3969	-51.1676	-2.7144	-1.8435	0.5619	15.8565	-2.3152	-59.8692	Estimate			0.1740	-11.7038	-2.4088	11.7309
16.8224	43.2901	34.5710	16.0198	30.4380	34.4130	44.5357	17.7189	7.6656	0.2362	40.0371	17.1173	51.0437	StdError	20		0.0385	36.4689	39.6859	34.8847	40.4999	40.5832	42.7485	23.6136	14.7183	38.3818	26.4723	12.0793	13.5880	39.6837	24.8936			20.7048	44.3782	25 4015	40.3913	10.0222	16 0200	41 4067	13.6267	29.6055	33.1130	43.1642	16.8430	7.3689	0.2206	37.8935	16.4142	48.9554	StdError	20		0.2635		43.8881	39.7658 0.2950
1.2613	1.5950	-0.9061	2.4985	0.3700	-0.0143	-1.3864	-0.2840	0.1522	5.4718	1.0018	-0.2254	-0.5968	tValue			-0.1863	0.8288	1.5255	0.8917	1.3929	1.1016	1.3887	1.4431	1.0665	1.1758	-0.2866	0.0746	1.1401	0.9414	1.0321	0.9083	0.5278	1.0382	-0.0984	1 7288	1 0475	0.0235	107401	-1.3132	0.3160	-2.6432	0.1630	-1.1854	-0.1612	-0.2502	2.5471	0.4184	-0.1411	-1.2229	tValue			0.6602			
46.7726	58.5993	-55.7740	96.8675	20.1310	7.6348	-89.7547	-17.3159	0.2813	1.7308	32.4111	-12.7473	-48.7073	Estimate			-0.0245	49.8815	91.0728	43.0725	80.1625	74.9126	84.7988	34.0490	7.0792	70.2884	-6.4632	-8.3614	22.1881	55.0939	34.9747	20.2953	13.4539	24.6672	-11.4948	15 5803	17 0860	55 0.491	+1+0.01-	-10 6414	-4.2151	-88.1553	-6.2764	40.6957	-0.1872	3.0625	0.8107	-12.5954	11.1052	-99.6663	Estimate			0.2683	-14.8326	43.6540	36.4354
25.2497	63.7329	51.4172	23.9521	45.9138	50.6037	67.0515	26.5487	11.4598	0.3450	60.4329	25.7811	75.4232	StdError	30		0.0531	53.3496	58.0568	51.1347	59.2183	59.3852	62.3716	34.5214	21.3535	56.2440	38.7486	17.7071	19.8559	58.1416	36.4261	20.8990	23.6256	29.9308	64.6569	373164	80.2408	1002207	132010	49.0117	22.8831	43.0208	48.4374	63.0223	24.6008	10.5854	0.3033			70.9696	StdError	30		0.4714	59.7489	72.5010	36.4354 68.9282 0.5286 21.6993
1.8524	0.9195	-1.0847	4.0442	0.4385	0.1509	-1.3386	-0.6522	0.0245	5.0176	0.5363	-0.4944	-0.6458	tValue			-0.4614	0.9350	1.5687	0.8423	1.3537	1.2615	1.3596	0.9863	0.3315	1.2497	-0.1668	-0.4722	1.1175	0.9476	0.9602	0.9711	0.5695	0.8241	-0.1778	55560	0.0086	-0.0107	0.0190	-0.700.0	-0.1842	-2.0491	-0.1296	-0.6457	-0.0076	0.2893	2.6730	-0.2263	0.4618	-1.4044	tValue			0.5690	-0.2482	-0.6021	0.5286
74.3014	11.5941	-53.4812	132.6824	39.5567	11.4602	-93.4949	-26.5830	1.3762	2.0435	22.8160	-14.3739	-64.7263	Estimate			-0.0637	78.2519	128.3942	63.1325	117.7902	120.5544	118.3467	39.4644	-9.4558	110.3660	2.4145	-13.9084	27.3529	109.9604	52.2358	29.6867	15.5601	24.8275	-14.1885	18 2180	14 0107	25 0701	-0.194J	-9 7045	-13.4077	-84.3552	-13.3416	-35.2168	9.2608	6.5332	1.0668	-22,1944	25.7838	-140.6498	Estimate			0.4449	-5.0679	-19.3778	21.6993
33.4212	83.3476	67.3865	31.4292	60.7254	66.4360	88.2277	35.0562	15.1409	0.4555	79.8483	33.9724	99,0617	StdError	40		0.0671	66.0660	71.8660	63.3869	73.3097	73.4737	77.1039	42.6056	26.4336	69.6426	47.9100	21.8257	24.5586	71.8902	45.1037	25.8398	29.2331	37.0167	80.4480	46 2387	74 5177	22 4075	10.1200	75 1000	28,4096	53.7208	59.7256	78.3390	30.3475	13.1211	0.3854	68,7838	29.8138	88.0492	StdError	40		0.7064	91.8439	110.7098	105.7859 0.2051
2.2232	0.1391	-0.7936	4.2216	0.6514	0.1725	-1.0597	-0.7583	0.0909	4.4857		-0.4231	-0.6534	tValue		A F2	-0.9504	1.1844	1.7866	0.9960	1.6067	1.6408	1.5349	0.9263	-0.3577	1.5847	0.0504	-0.6372	1.1138	1.5296	1.1581	1.1489	0.5323	0.6707	-0.1764	0.3940	0.4010	0.4313	-0.11/0	-0. /40 /	-0.4/19	-1.5703	-0.2234	-0.4495	0.3052	0.4979	2.7682	-0.3227	0.8648	-1.5974	tValue		A FI	0.6298	-0.0552		0.2051
89.6928	-35.1023	-50.9214	168.9534	39.3097	-18.8976	-104.0013	-51.1068	8.9734	2.3240	-9.3552	-12.3964	-68.8676	Estimate		2	-0.0563	99.1084	140.9022	79.1031	134.8203	146.7237	125,4425	41.8460	-24.0403	119.5957	-0.5957	-30.0523	22.8471	125.8183	42.8516	22.2140	25.0305	19.5365	5.4313	1 2767	75 4371	20 07/1	10 13 50	-30,4490	-11.33/8	-60.7362	-12.7305	2.2366	19.6832	9.2177	0.9815	-41,4500	31.4217	-148.3055	Estimate		12	0.5024	14.7313	-2.2713	25.4770 138.5504 0.1839
41.8768	104.3961	84.4082	39.3619	76.0741	83.1924	110.5025	43.9079	18.9716	0.5741	100.0160	42.5409	124.1632	StdError	50		0.0751	73.4395	80.0082	70.3753	81.6155	81.7332	85.7603	47.6260	29.6901	77.5169	53.6580	24.4494	27.4427	80.0753	50.5084	28.9850	32.9379	41.6041	89.6170	\$2.6670	92.0004	1000.20	10 5004	24.0100	32.1373	61.9614	66.6621	89.2060	34.0373	14.8106	0.4300	77.5042	33.7057	98.6761	StdError	50		0.8780	120.8126	146.6091	138.5504
2.1418	-0.3362	-0.6033	4.2923	0.5167	-0.2272	-0.9412	-1.1640	0.4730	4.0480	-0.0935	-0.2914	-0.5547	tValue			-0.7503	1.3495		1.1240	1.6519	1.7952	1.4627	0.8786	-0.8097	1.5428	-0.0111	-1.2292	0.8325	1.5713	0.8484	0.7664	0.7599	0.4696	0.0606	0.0240	0.4107	0.4190	0.50/0	-0.3400	-0.3328	-0.9802	-0.1910	0.0251	0.5783	0.6224	2.2824	-0.5348	0.9322	-1.5030	tValue			0.5722	0.1219		
112.4832	-36.6544	4.4189	206.8121	66.1371	-32.2677	-141.4414	-57.2944	0.9352	2.3493	18.9294	-35.7256	26.8229	Estimate			-0.0668	109.9291	136.1327	94.9362	143.9389	157.5813	126.8157	39.7534	-34.3362	128.5484	-0.5128	-28.6610	21.5487	136.5227	29.4763	15.3842	25.7983	18.2326	27,4684	-13 6447	55 41 83	1 00 7 2	14 7001	-33.1043	-3.2808	-31.3966	6.1242	36.2935	21.2576	7.9594	0.9979	-46.9297	27.2171	-132.5125	Estimate			0.4163	15.3274	-14.5625	3.0264
49.7348	124.5677	100.6508	46.9986	90.5053	99.4620	131.8738	52.3638	22.5380	0.6444	119.2167	50.8597	147.1748	StdError	60		0.0773	77.6209	84.6294	74.2658	86.3379	86.4759	90.8165	50.6392	31.4776	81.9875	56.9586	26.0282	29.0942	84.8403	53.5174	30.7712	34.9853	44.1432	94.2499	2510:00	90.0401	0010-140	3/ 5106	10.9234	34.01/9	65.5114	70.8544	94.5383	36.2166	15.6899	0.4396	82.4171	35.7515	104.2172	StdError	60		0.9034	134.6411	163.3980	153.8354
2.2617		0.0439	4.4004	0.7308	-0.3244	-1.0726	-1.0942	0.0415	3.6460	0.1588	-0.7024	0.1823	tValue			-0.8639	1.4162	1.6086	1.2783	1.6672	1.8223	1.3964	0.7850	-1.0908	1.5679	-0.0090	-1.1012	0.7407	1.6092	0.5508	0.5000	0.7374	0.4130	0.2914	-0 2439	0.0104	0.0104	0.4022	-0.4913	-0.0964	-0.4793	0.0864	0.3839	0.5870	0.5073	2.2699	-0.5694	0.7613	-1.2715	tValue			0.4608	0.1138	-0.0891	0.0197
124.0604	-57.6852	55.0987	241.6142	95.7610	-44,9083	-181.9467	-69.9573	-4.9850	2.5560	35.5986	-56.8857	55.3423	Estimate			-0.0459	78.3484	99.1224	50.2570	124.0460	124.8287	85.3524	43.7960	-41.0768	99.8903	21.1295	-30.1160	35.2110	113.1588	31.3459	22.2463	18.6390	27.9533	64.2676	-38 6749	-33.06/0	110011	1 1 1 1 1 1	-23.2300	4.3845	6.3560	22.6258	67.9587	27.3159	4.6285	0.8207	-58.3252	23.6821	-76,4096	Estimate			0.0077	14.3949	7.8118	153.8354 0.0197 -15.3523
56.9601	142.0737	114.9233	53.6419	103.6865	113,7999	150.6670	59.9496	25.7821	0.7266	136.4386	58.1571	167.9568	StdError	70		0.0802	83.9132	91.5242	80.0977	93.4038	93.5812	98.4143	55.1471	34.0206	88.7112	61.7185	28.3365	31.5246	91.9891	57.9322	33.3590	37.8180	47.6893	101.1913	60.0769	06 1065	0171710	27 1016	05 01 2 2	36,4211	69.0739	77.0035	101.0818	39.3590	16.8622	0.4519	89.3289	38.4918	112.0253	StdError	70		0.9051	148.2665	182.4124	170.1570 -0.0902
2.1780		0.4794	4.5042	0.9236	-0.3946	-1.2076	-1.1669	-0.1934	3.5176	0.2609	-0.9781	0.3295	tValue			-0.5717	0.9337	1.0830	0.6274	1.3281	1.3339	0.8673	0.7942	-1.2074	1.1260	0.3424	-1.0628	1.1169	1.2301	0.5411	0.6669	0.4929	0.5862	0.6351	-0.6438	0-1000	0.2140	10.0260	-0.3211	-0.1204	0.0920	0.2938	0.6723	0.6940	0.2745	1.8160	-0.6529	0.6152	-0.6821	tValue			0.0085			
128.7257	-61.1965	105,7631	270.4969	124.2491	-49.8808	-195.0464	-77.4725	-9.2583	2.7362	56.4032	-78.5461	96.6796	Estimate			-0.0293	61.0774	86.7019	42.3911	125.7329	113.6523	71.2837	53.0641	-36,7453	95.8805	22.9359	-31.1905	47.7600	112.8838	32.5139	24.9418	8.3009	34,7061	44.6828	-49 44 59	175 1000	17.0010	17 9019	-10.4000	2.5/15	24.2358	41.6030	92.3795	46.2224	-0.4623	0.6977	-32,9726	11.0067	-45.4584	Estimate			-0.5862	6.3911	37.0172	
63,7636	157.5848	129.1602	60.2214	117.4255	126.7716	169.3373	66,8183	28.8085	0.8056	152.1612	64.9243	186.9367	StdError	80		0.0842	88.4532	96.5340	84.3519	98,5026	98,7102	103.8813	58.2933	35,9220	93.5484	65.1298	29.9847	33.2639	97.0803	61.1533	35.2373	39,9039	50.3933	106.5185	63 5613	101 3277	112 7726	201102	101 1020	38,34/6	72.6795	81.3907	106.5081	41.6201	17.7823	0.4738	94,4503	40.6022	118.1530	StdError	80		0.9119	152.7295	188.9174	178.4678 -0.1952
2.0188		0.8189	4.4917	1.0581	-0.3935	-1.1518	-1.1594	-0.3214	3.3963	0.3707	-1.2098	0.5172	tValue			-0.3478	0.6905	0.8981	0.5026	1.2764	1.1514	0.6862	0.9103	-1.0229	1.0249	0.3522	-1.0402	1.4358	1.1628	0.5317	0.7078	0.2080	0.6887	0.4195	10 7779	1 7770	0.4000	0027.0-	-0.1967	0.06/2	0.3335	0.5112	0.8673	1.1106	-0.0260	1.4724	-0.3491	0.2711	-0.3847	tValue	1		-0.6429		0.1959	-0.1952

Duration (log)	NDI Cue Strength	Tense: past	(Intercent)	Prodictor			Duration (log) x Frequency (log)	Nort Monson atom	Next Manner: nasal	Next Manner: frigative	Not Manage for	Next Place: tence	Nort Bloost solato altitolar	Next Place: natel	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Manner: approximate	Previous Place: palatal	Previous Place: glottal	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Manner: flap	Previous Manner: diphthong
0.1405	207 7700	-36.4167	201.2092	Fetimate			0.0335	13577	-20.4959	33 3544	10.501	76 0004	0012.21	-10,1902	49.5313	-1.8685	-31.5746	30.8493	-35.2759	-15.3575	21.2121	131.0386	128.1648	-52.7614	4.2838	96.1005	0.3281	0.0698	421.2372	26.6241	-170.5436	Estimate			-0.1121	-24.6347	-6.0618	-25.3970	2.4121	3.1133	-10.0383	-13.7467	-5.7779	0.8866	16.8101	4.4332	-12.8722	7.6833	18.2481	-1.1796	10.5199	-70 5750	-21.3676	66.1693
0.1405 0.4322 0.3251	251 0443	46.3640	142.4583	StdEmor	00	- IL	0.0805	10 60/1	27 5992	41 6569	7010.40	22 6487	201024	21 9402	32.0200	28.0552	25.6743	33.1018	32.6428	14.4750	44.7989	77.3497	75.5423	57.0335	48.4545	87.4028	8.8174	0.3480		44.1591		TOT	20		0.0412	37.8311	_	35.9466			24.9452	15.4653	39.9904	27.6002	12.7186	14.2406	41.4247	26.2696	15.0131	16.8961		26.8913	43.1038	
0.3251	1 2106	-0.7855	1.4124	tValue			0.4165	007720	-0.7426	0.8007	0.0201	1 2707.0	11201	1 2777	-1.5469	-0.0666	-1.2298	0.9320	-1.0807	-1.0610	0.4735	1.6941	1.6966	-0.9251	-0.0884	1.0995	0.0372	0.2007	1.8678	0.6029	-1.3449	tValue			-2.7190	-0.6512	-0.1470	-0.7065	0.0572	0.0700	-0.4024	-0.8889	-0.1445	0.0321	1.3217	0.3113	-0.3107	0.2925	1.2155	-0.0698	0.4867	-1 5206	-0.4957	1.3784
0.6000	21 6282	22.0076	93.6938	Fetimate			-0.0196	74 0070	41.8121	20 7746	2000 00	18 1170	001110-	277760	-00.5790	-1.8345	-38.4247	10.2742	-32.6784	-10.2229	34.0899	131.3515	133.4171	-54.6031	-15.6947	88.3184	-2.3311	0.3208	443.4166	31.9394	-151.1366	Estimate			-0.1532	0.5127	20.4479	-6.1918	33.1857	29.0055	-11.5761	-23.7183	17.0750	6.9775	12.4883	3.5195	-0.7646	12.3420	20.0688	13.4852	25.2200	12.0951	-0.9313	103.2025
0.6786	117 7287	72.7461	229.1602	StdErmor	3		0.0932	175271	33.0500	49 5365	7272.00	38 7870	20 4772	33./003	57.3192	33.4433	30.5195	39,4096	38.4901	17.3885	52.7566	84.4008	81.3448	64.9622	51.1168	91.6937	9.5257	0.4041	247.0744	43.5059	137.5036	StdError	30		0.0600	55.2659	60.5548	51.9197	61.7428	65.0841	37.4160	23.1444	58.8324	41.0174	18.9991	21.1102	61.0625	39.2903	22.4778	25.3678	32.1096	40.6229	63.9375	70.4693
0.8842	0 1736			Walne			-0.2104	1 02001	-1.2651	0.4194	1 0266	0.2200	0.0020	-0.0340	-1.4839	-0.0549	-1.2590	0.2607	-0.8490	-0.5879	0.6462	1.5563	1.6401	-0.8405	-0.3070	0.9632	-0.2447	0.7938	1.7947	0.7341	-1.0991	tValue			-2.5546	0.0093	0.3377	-0.1193	0.5375	0.4457	-0.3094	-1.0248	0.2902	0.1701	0.6573	0.1667	-0.0125	0.3141	0.8928	0.5316	0.7854	0.2977	-0.0146	1.4645
1.5360	160 6374	15.5817	20.8349	Fetimate			-0.0318	100000	-51.5751	15 5501	21 2776	11 8017	12 6262	-22.0213	-22.2852	-0.0835	-36.5903	3.5463	-30.9343	-10.4578	36.8862	127.2029	132.9052	-34.8035	-9.7247	65.2357	-8.2430	0.3387	461.4770	15.3190	-101.0454	Estimate			-0.1948	13.0655	46.6776	-15.0209	07:7492	54.9705	-3.9546	-35.9306	38.3777	31.4189	3.9199	20.5095	25.9305	42.1427	30.7068	24.3756	32.1808	9.6418	17.1874	47.1057
0.9930	507 0700	103.4868	331.1691 0.0629	StdErmor	40		0.1004	121071	36.3197	54 6271	1000	47 5738	44 00 42	39.1440	41.2817	36.6669	33.8492	43.1897	42.4404	19.0371	57.9714	90.6672	86.9087	69.9482	54.4764	97.0706	10.2441	0.4371	265.7088	44.9185	147.5822	StdError	40		0.0788	72.0529	79.1204	67.3973	81.02/4	85.0367	49.3179	30.5160	76.8713	53.8414	25.0572	27.6841	79.8962	51.6710	29,6021	33.4219	42.3619	53.7986	83,7991	92.4443
1.5468		0.1506	0.0629	Wahn			-0.3166	1 7277	-1.4200	0 2847	1 0006	0.3773	C110.1-	-0.3/19	-1.5464	-0.0023	-1.0810	0.0821	-0.7289	-0.5493	0.6363	1.4030	1.5293	-0.4976	-0.1785	0.6720	-0.8047	0.7750		0.3410	-0.6847	tValue		- F	-2.4710	0.1813	0.5900	-0.2229	0.8403	0.6464	-0.0802	-1.1774	0.4992	0.5835	0.1564	0.7408	0.3246	0.8156	1.0373	0.7293	0.7597	0.1792	0.2051	0.5096
1,9002	592 7207	73.8602	-139.1285	Fetimate		- 3	-0.0086	10 0011	-\$6 3253	4 0433	26 2010	0010-11-	17 5102	25 1021	-30.3945	-1.7431	-35.6232	7.4503	-22.4678	-9.3497	28.2137	135.4547	140.2648	-39.0027	-9.2938	76.9777	-10.7428	0.2004	486.5948	11.1257	-85.7556	Estimate		Ξ		-16.4646	37.7084	-37.1721	12 4670	40.3757	-21.7106	-30.4629	33.9028	31.2132	10.2188	27.7116	29.9440	46.4112	40.2676	40.7816	15.0923	-20 3680	-9.6141	-5.3614
1.3222	1906 0 9879 969			Sidfirm	5		0.1076	76.100	38 4672	57 9760	227070	40,700	16 1200	1704216	43.7702	38.8350	35.9425	45.7977	45.1463	20.3077	61.5622	95.0621	90.9393	73.5575	57.1525	101.4938	10.8445	0.4679	278.6469	46.6413	154.9310	StdError	50		0.0992	90.2664	99.1175	84.4242	101.0037	106.5175	61.7590	38.2254	96.2996	67.4165	31.3801	34.6758	100.0708	64.7298	37.0774	41.8502	53.0759	67.3996	104.9322	115.7378
1.4372	0.7061	0.5048	-0.3045	+Value			-0.0801	1 4757	-1.4642	-1.0597	1 0000	-0.1246	10.0717	-0.3304	-1.1339	-0.0449	-0.9911	0.1627	-0.4977	-0.4604	0.4583	1.4249	1.5424	-0.5302	-0.1626	0.7584	-0.9906	0.4284	1.7463	0.2385	-0.5535	tValue			-2.3386	-0.1824	0.3804	-0.4403	0.6185	0.3791	-0.3515	-0.7969	0.3521	0.4630	0.3256	0.7992	0.2992	0.7170	1.0860	0.9745	0.2844	0.4691	-0.0916	-0.0463
1.9911	1196 5764	127.8005	-393.0346	Fetimate			-0.0263	200000	-42 3200	1111 00	14 4045	-10.01	10 0707	-0.0021	-51.92US	13.7752	-37.8077	35.3169	-24.3247	-13.2761	26.2574	159.2117	160.2920	-59.7249	-18.9192	106.3473	-8.7683	0.2282	562.9637	19.9529	-142.3599	Estimate			-0.2167	-60.0125	-7.3637	-67.5612	24 2022	-41.2760	-51.1138	-32.3476	-8.0966	13.0237	22.1585	17.2917	-14.3091	25.5858	36.0125	43.9718	21.3308	24.7070	-30.2607	9.0670
1.5757				StdErm	5		0.1121	10.001	40.6717	60 0770	240424	47 6733	40 0250	45 1966	45:7820	41.0681	37.6098	48.4505	47.1479	21.2529	64.6054	100.6859	96.2006	77.8182	60.2039	107.2146	11.2705	0.4870	295.0701	49.3540	163.1161	StdError	60		0.1125	107.5549	118,1054	100.7338	120.3716	127.0306	73.7884	45.5370	114,7596	80.6653	37.4672	41.3532	119,4290	77.0779	44.2219	50.0470	63.1018	80.1401	125.5162	138.6534
1.2636	1 1567	0.6976	-0.6942	+Value			-0.2349	1.0100	-1.0405	-0.4140	0 4140	0.1100	0.1000	0.0000	-1.1341	0.3354	-1.0053	0.7289	-0.5159	-0.6247	0.4064	1.5813	1.6662	-0.7675	-0.3143	0.9919	-0.7780	0.4687	1.9079	0.4043	-0.8728	tValue			-1.9257		-0.0623	-0.6707			-0.6927	-0.7104	-0.0706	0.1615	0.5914	0.4181	-0.1198	0.3319	0.8144	0.8786		0.3083	-0.2411	
2.3836		99,6893	-614.6282	Fetimate			0.0058	11 1 200	-27.3334	43 2314	20201	43 3105	1110.02-	20.1200	-51.7571	32.6797	-38.4529	76.3145	-23.8951	-11.1434	26.9155	188.8665	182.7001	-93.1383	-33.3142	147.5975	-6.9037	0.0801	637.8913	32.4430	-212.0445	Estimate			-0.2283	-43.6715	4.3974	-38.3513	28,1118	-47.5146	-50.7325	-47.8841	-3.9082	-4.9412	33.3167	-0.8430	-19.3231	-2.8725	33.2471	56.5946	29.8704	26.5639	-49.9702	42.1851
1.7604	1126 2400	204.3982	627.4202	StdEmor	70		0.1092	10 4440	42.0097	62 2285	002025	40 0260	50 1051	10 CC.CH	40.0415	42.3020	38.2740	49.7627	47.5463	21.3315	65.5219	104.0902	99.3158	80.2738	61.7085	110.2746	11.2518	0.4761	305.0790	50.7374	166.9111	StdError	70		0.1269	122.5193	134,6432	114.6478	137.2316	144.9536	84.3974	52.0623	130.7912	92.1799	42.8931	47.1914	136.2494	87.9791	50.5431	57.2362	72.2239	91.8647	143.4049	158.5335
1.3540	1 4 40 4			+Value			0.0533	0.3077	-0.6506	0.1707	0.0017	0.8814	0 4442	0.3/02	-1.1095	0.7725	-1.0047	1.5336	-0.5026	-0.5224	0.4108	1.8145	1.8396	-1.1603	-0.5399	1.3385	-0.6136	0.1683	2.0909	0.6394	-1.2704	tValue			-1.7990	-0.3564	0.0327	-0.3345	0.2048	-0.3278	-0.6011	-0.9197	-0.0299	-0.0536	0.7767	-0.0179	-0.1418	-0.0326	0.6578	0.9888	0.4136	0.2892	-0.3485	0.2661
2.1862		129,1065	-768.3119	Fetimate			0.1011	6 1120	4.5716	37 0343	40 4100	01 0717	77.0002	1996 V	-30.3364	52.0746	-17.2353	138.3982	3.7961	10.9372	-20,3006	184.4244	173.8349	-109.9360	-34,4366	205.5983	-6.2997	-0.3618	604.4140	46.4292	-241.0465	Estimate			-0.2330	-76.0319	-9.0736	-71.4827	11.6113	-70.2997	-71.0818	-55.8274	-26.4621	6.4988	41.9249	-4.0324	-62.0675	2.8982	44.2819	77.2577	44.6788	33.7815	-73.8922	64.9853
1.8433	1191 6006	-	-	StdEmor	08		0.1136	107761	43.8825	65 1041	275147	51 1775	5757 US	47.2049	48,9655	44.1532	40.1716	51.8822	49.8457	22.2894	68.5274	108.3487	103.3262	83.7146	64.2482	114.7048	11.7552	0.4961	317.6641	52.5759	174.0389	StdError	80		0.1404	135.6276	149.2704	126.8004	152.07/4	160.7771	93.7457	57.9514	144.8438	102.5328	47.7895	52.3756	151.0244	97.6504	56.2173	63.7557	80.7398	164 2451	159.3626	176.0587
1.1860	1 2 206		_	+Value			0.8903	10100	-0.1042	0 5688	10770	1 7061	0 5122	1.2104	-0.6236	1.1794	-0.4290	2.6675	0.0762	0.4907	-0.2962	1.7021	1.6824	-1.3132	-0.5360	1.7924	-0.5359	-0.7293	1.9027	_		tValue			-1.6600	-	-	-0.5637	_	-0.4372	-0.7582	-0.9633	-0.1827	0.0634	0.8773	-0.0770		0.0297	0.7877	1.2118	-	0.3276	-	0.3691

Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing voiceless	Frequency (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			ionation (iog) x Frequency (iog)	Duration (log) v Employeev (log)	LICTIONS LIAC, UCHAI	Province Plane: dental	Prequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (108) x 1-requerky (108)]	Duration (log) v Englighter (log)	Next Voicine: voiceless	Previous Place: dental	Previous Voiciner voiceless	Frequency (log)	Duration (log)	NDI Cus Strength	(miercept)	(Intercent)	Pendinter			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Manner: approximate	Previous Place: nalatal	Previous Place: olottal	Previous Place: dental	Province Vicinian vicinalized	E
-14.7090	-0.1149	-25.3499	-8.2563	4 4683	26.7464	-9.9548	10.5688	Estimate			0.0000	0 6605	17 0077	8 6760	7 1000	-2.3961	-2.6960	0.1800	168.8374	Estimate			0.2700	0.0056	-2 4720	20 5100	-11 9132	-7 2002	-1 0010	-2.002/	0000.00	2006 CC	Fetimate			0.0426	45.4499	12.3723	-83.2666	22.7473	-19.2033	38.8433	-7.8482	27.4147	-25.0641	22.4290	-34.5198	79.5153	37.2770	-89.0643	-117.2443	-106.5590	7 7065	43.100	-0.0.012	60517
65.1289	43.5257	77.2558	55.4896	8 3 3 4 1	66.0753	12.8076	76.0156	StdError	20		1005.0	14.02.74	14 0054	112 2274	00.402/	4,4913	162.6115	87.7823	350.4106	StdError	20		0.7570	0.0220	15 4846	110.7367	100 7682	14 8756	4 5835	167 4066	CONTRACT	DUITORIE	StdEmor	3		0.0998	22.1362	32.3202	49.2321	38.2331	38.7569	36.6779	35.1493	37.4128	32.8851	30.4129	38.8407	38.8980	17.5621	53.0047	86.1605	83.5902	52.1910	50 TOT6	05 5660	10 0007
-0.2258	-0.0026	-0.3281	-0.1488	-0 5361	0.4048	-0.7773	0.1390	tValue			0./132	1.202.1	1 2822	0.0766	-0.1280	-0.5335	-0.0166	0.0021	0.4818	tValue			0.0007	03080	-0 1 S07	0.1713	-0 11 82	D 1111	-0.2184	0.020	0.0077	1 NOOD	tValue			0.4273	-2.0532	0.3828	-1.6913	0.02930	-0.4955	1.0590	-0.2233	0.7328	-0.7622	0.7375	-0.88888	2.0442	2.1226	-1.6803	-1.3608	-1.2748	0 1107	0.4072	-0.0790	10 6796
-5.1978	11.6638	-52.5652	2.1132	2 0861	-1.1899	-6.9101	-21.9695	Estimate			1.7960	1 7085	77 5278	35 0610	-108,8084	-7.5464	82.9314	-44.4909	536.8706	Estimate			0.0712	0.0013	-166555	17.3241	10 8045	10 2753	-0.0450	102201	-90,9100	05 0720	Fetimate			-0.0813	-99,4038	45,7766	-109.7363	24.2536	-37.9581	70.6932	-33.5586	27.2913	-35.7694	22.7699	-85.1381	75.0632	25.8766	-80.0234	-66.6028	-29.5164	10 0844	20 2055	61 4172	1 2020
80.5427	53.8018	95.6884	68,6508	10 3385	81.8656	15.8660	94.0877	StdError	30		1.340	1 50/5	171.2020	104 3800	102.1018	7.6351	274.7024	148.4864	605.3910	StdError	30		1.2010	1 2016	20.0380	152.4188	126 1312	\$3 1810	5 7517	210.6520	12.0000	ATD 0222	StdErmr	3		0.1567	37.4807	55.1188	82.5605	64.7238	65.3185	61.9286	59.8092	61.9222	55.8272	50.6654	65.8668	63.9863	29.0079	87.9336	141.0332	135.8582	108 3181	1/06/701	152 0677	149634
-0.0645	0.2168	-0.5493	0.0308	0.2018	-0.0145	-0.4355	-0.2335	tValue			1.1200	1.108/	1 1027	0.1820					0.8868	tValue			201010	-0.0212	-0.8312	0.1137			-0.0078		-0.2030					-0.5186	-2.6521	-0.8305	-1.3292	0.3747	-0.5811	1.1415	-0.5611	0.4407	-0.6407	0.4494	-1.2926	1.1731	0.8921	-0.9100	-0.4722	-0.2173	1.104-0.0	0.4611		
	31.8294	47.0870	4.3875	4 6004	-23.4748	-6.4706	-23.5320	Estimate			0.8409	0.8460	10 7272	53 0557	1117.6/-	-2.7848	-57.4567	29.0870	292.4776	Estimate			CTOC'O.	-0.2612	-20 3846	-60.2826	72 2540	36 0707	101011	11 6101	-211.1420	VIII 110	Fetimate			-0.2690			-184.5337	02.0763	-22.9827	110.9055	45.6851	63.9851	-30.6690	44.2418	-85.9329	97.2466	38.2274	-100.4377	-33.3462	-14.7455	6 8409	17 0745	114.0005	14 7501
88.2031	58.9065	104.9539	75.2441	11 3753	89.9183	17.4419	103.1975	StdError	40		2.1210	33.2412	22 7477	250 5145	140.8220	10.1616	366.5708	197.9661	809.5044	StdError	40		1.00.2	1 6877	275146	209 6501	176 4808	114 6643	8 0796	101 7450	000,1100	IOLICITING	StdErmor	5		0.2293	55.1532	81.0594	121.2229	50407 09	96.1112	90.7433	87.8674	90.5993	82.0309	74.3329	96.8303	93,7928	42.6533	128.9055	204.2377	196.0620	157 7298	220.0843	22.9303	1 22 0 6412
0.3200	0.5403	-0.4486	0.0583	0.4044	-0.2611	-0.3710	-0.2280	tValue		0 11	1660.0	1.2101		-0 2044					0.3613	tValue		c	-0.3320	-0.1102	-0 7409	-0.2875				0.1420			Wahne	UFI		-1.1730	-3.0593	-1.6232	-1.5223	0.6528	-0.2391	1.2222	-0.5199	0.7062	-0.3739	0.5952	-0.8875	1.0368	0.8962			-0.0752			0.5121	0 6 4 2 0
23.0782	43.6085	-75.1993	25.9814	5 0836	-22.5927	-5.0618	-38.1513	Estimate			1.02/4	1 0574	11/21/001-	-106.4971	C176'611-	-3.5728	-48.0285	19.5090	467.7774	Estimate		o F2	2000.0-	CSU9 U	-18 2004	-73 7390	60 3 5 7 7	267163	3 0502	1906.00	-142.2074	142.0024	Fetimate			-0.2807	-208.5196	-224.0690	-203.2373	89.4102	-27.0745	115.5143	-59.3177	63.8204	-25.3457	35.9134	-26.5293	29.1291	12.9590	-71.7098	42.0834	52.5082	-10.0022	0124.012	20.1129	0077 00
90.6960			77.5466	11 7400	92.9697	18.0808	106.5630	StdError	50		0170.7	3 5716	20 4721	310.4501	107.9990	12.0736	439.6297	237.0644	963.5887	StdError	50		20000	2220 0	10 7001	250.4800	213.0175	136 6895	0.7562	248,0050			StdErmor	5		0.3055			164.8312	04 7977	130.6591	124.5794	120.4707	123.4853	112.3393	101.0496	132.2323	127.1139	57.7349	175.1087	282.4431	272.0482	218 5644	171 1767	206 0633	1 21 / 101
0.2545	0.7197	-0.6944	0.3350	0.4330	-0.2430	-0.2800	-0.3580	tValue			0.4195	0.4103	1 27/0	-0.3430	-0.6811	-0.2959	-0.1092	0.0823	0.4855	tValue			-0.2710	-0.3073	-0.253	-0.2944	0.2833	0.1955	9015.0	0.1001	-0.101/	0 1017	+Vialmo			-0.9189	-2.7588	-2.0160	-1.2330	0.68/7/	-0.2072	0.9272	-0.4924	0.5168	-0.2256	0.3554	-0.2006	0.2292	0.2245	-0.4095	0.1490	0.1930	-0.09/3	0.0933	0.0012	A 6617
14.8125	19.7846	-74.2309	-13.1963	0.5428	-6.0996	-1.1349	14.1878	Estimate			0.0727	0.8777	2011/11/2	217 4742	100 2001	-2.7024	-231.7317	106.1735	560.7604	Estimate			-0.1710	-101075	-19 7670	-36 3304	1 6920	5 7438	0 9711	-0.6039	19.1313	10 12 12	Fetimato			-0.1985	-261.4399	-313.6297	-186.0226	174.8094	-31.7035	113.1288	-70.1960	54.4321	23.2723	17.0191	33.1971	-74.6506	-19.2732	23.9236	194.6176	206.1552	-202 8211	201576	21.0193	2010 24
90.9666	60.7315	108.9800	77.8232	11 7885	93.5828	18.2213	107.1919	StdError	60		2.0721	11.0111		331 6741	1/8.010	12.7937	470.6679	253.3196	1021.8686	StdError	60			2 1276	34 2037	261 5946	222 8767	142 5070	10 2003	363 4146	100.170	1002 100	StdErm	6		0.3634	93.7921		202.6815	117 2049	161.5178 -0.1963	154.0095	149.0298	152.6685	138.9322			155.6229	70.1447		350.4453	338.0628	212.0112	2172 212		
0.1628	0.3258	-0.6811	-0.1696	0.9303	-0.0652	-0.0623	0.1324	tValue			0.3200	0.3266		10.6558	_		-0.4923	0.4191	0.5488	tValue			-0.0220	-0.0028	-0 5779	-0.1389	0.0076	0.0368	0.0952	-0.0-7 1 CPU.U-	0.0233	201071	+Value			-0.5463			-0.9178		-0.1963	0.7346	-0.4710	0.3565	0.1675	0.1365	0.2037	-0.4797	-0.2748		0.5553	0.6098	-0.1841	0.1011	0.7003	2 UUL V
37.4083	8.8665	-58.3143	-7.6416	0.0089	49.2823	8.1905	19.5775	Estimate			0.0332	0161.00	52 7072	-310 3007	-197.9434	-1.6044	-306.1541	131.5413	708.3600	Estimate			10101	0.0137	-17 5440	-17.5171	-31 2077	-13 3697	-0.1386	130 0066	130.0239	130 2330	Fetimate			-0.1719	-207.2145	-348.6734	-55.6300	171 1000	-0.2215	127.5381	30.2717	81.3901	146.0301	-29.4806	149.2620	-183.3408	-57.0591	146.7970	296.6473	322.6785	-746 1100	11 4640	200 2017	70777
			_	12 0811	95.8786	18.7226	109.0889	StdError	70		2.60.00	3528 C	1.1								70		2.1012	1617			2262876	143.0584		365 5146			StdEmor	70					223.6482	170.2965	177.4526	170.2204	164.4938	168.2740	153.2622	137.3830	179.9397	172.0487	77.7854	237.3518	388.2861	374.8166	301.0543	423.1789		
0.4075	_	_	-0.0970	0.0007	0.5140	0.4375	0.1795	tValue			0.200	20201		0.0274	_		+		0.6631	tValue			0.0004	0.0064		-0.0663	0.1383 0.1383	20001		12201.0-	+	11275	tValue						-0.2487		-0.0012	0.7493	0.1840	0.4837	0.9528	-0.2146						0.8609	_	0.7288	0.0711	1107 v
69.1441	-0.6610	-14,1907	-7.2656	0.1034	79.9114	18.8525	32.8711	Estimate			1.3714	13714	CTOC 1 77-	2110212	-240.1201	-5.1487	-230.0592	67.8534	986.8001	Estimate			-0.1070	-1 160n	-176077	-2.3241	-55 4711	4 4070	0.6547	136 6864	11.1900	171 7000	Petimate			-0.0458	-193.9857	-393.4464	-43.2807	104.7930	42.7632	31.4837	11.4622	94.8992	208.2943	-34.2247	225.9209	-272.3735	-67.3625	166.2173	432.5730	455.6470	-318 6805	307659	2911717	74 1260
				12 2715							2.9404	7 0484		365 8654		14,1244			1123.2638	StdError	80		LL.	2 1 52 1					10 3255				StdEmor	00	- 14		106.6452		231.1296			176.1543		174.0439	158.2218	141.9297	185.8888					390.3485				
0.7272	-0.0104	-0.1248	-0.0895	0.0084	0.8188	0.9923	0.2940	tValue			0.4001	0.4651	1 3 570	D 6215	0.2271-	-0.3645	-0.4396	0.2415	0.8785	tValue			10.0102	-0.0785	1 5712	6800.0-	J 2456	0.0313	0.0634	0.3764	20000	0 0050	tValue			-0.1074	-1.8190	-2.5123	-0.1873	0.9001	0.2342	0.1787	0.0675	0.5453	1.3165	-0.2411	1.2154	-1.5271	-0.8343	0.6759	1.0710	1.1673	-1 0202	0.1220	0.2370	0 5270

Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labia dental	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: Jahin-dental	Next Place: Jabia	Next Place: olottal	Next Place: dinhthong	Next Bloost Jostal	Next Veriner vericelese	Previous Manner: nasal	Previous Manner: tricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labial
-5.9439	-0.5855	-28.6496	4.0814	-11.8781	1.4031	1.50/4	-25.7876	-32.1603	-18.3004	9.2747	4.9293	-1.4043	-6.6408	-29.2398	26.0968	130.9286	60.1737	4.3581	-11.9198	-31.0734	-6.5858	-4.1035	-42.7860	-10.6051	0.0197	-94.3514	1.0600	100.0666	Estimate			0.0335	14.2719	25,4481	1.1216	23.0650	11.6053	10.8911	36.0103	1.7225	11 6957	3 7006	2 9452	17 1849	17.9400	1.2101	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	-4.40/1	25.4969	-3.8750	-10.9127	-0.8776	4.5455	1.3612	-2.8980	7.6894
	32.3117	20.9240	10.2651	30.3658	8.10/9	10.9201	30.6785	14.1177	9.1153	38.8583	24.1760	74.9276	57.4557	51.3614	49.7964	51.9964	35.3663	43.8858	36.9359	66.9262	44.7566	79.5452	57.2721	8.6155	0.1783	68.4871	13.2879	78.6472	StdError	20		0.0221	30.0306	30.8533	28.7628	33.5500	29.9942	31.2460	20.2118	9.9308	2010100	13 8136	7 9670	10 5003	29 6943	12 6064	21.1222	2277525	72.7164	55.7751	49.7999	48.4971	50.2743	34.2664	42.7154	35.7381
-0.1917	-0.0181	-1.3692	0.3976	-0.3912	0.1805	0.080.0	-0.8406	-2.2780	-2.0076	0.2387	0.2039	-0.0187	-0.1156	-0.5693	0.5241	2.5180	1.7014	0.0993	-0.3227	-0.4643	-0.1471	-0.0516	-0.7471	-1.2309	0.1104	-1.3777	0.0798	1.2723	tValue			1.5160	0.4752	0.8248	0.0390	0.6875	0.3869	0.3486	1.7816	0.1735	0.3070	0 1056	J 3744	1 1 5 06	0.6042	0 6494	0.4314	-0.1893	0.3503	-0.0695	-0.2191	-0.0181	0.0904	0.0397	-0.0678	0.2152
5.9708	25.0490	-27.0398	-15.2672	-12.6782	30 1/8/	18.1042	-36.0643	-29.0368	-15.6730	36.5115	0.2381	-53.5111	18.2371	-61.2761	83.8847	240.0479	132.8768	32.0408	-56.5940	42.7827	-0.9076	48.3562	-56.5406	-28.7282	-0.5536	-164.5264	-7.3642	244.3529	Estimate			0.0171	12.3768	24.8125	-6.1084	34.7036	7.8401	13.8143	49.9546	8.4897	13 5657	7 0059	1 6083	15 7487	22.4609	12 0107	2065.05	30 2067	44.7229	22.0568	0.4280	2.5619	19.0700	-8.1157	6.6268	5.0834
49.4193	51.5326	33.3583	16.3832	48,4052	72.9525	1/.4408	48.9019	22.5532	14.5380	62.0378	38.7052	119.6098	91.7600	82.0194	79.5980	82.9428	56.4874	70.1271	58.9359	106.8860	71.4828	127.1403	91.3936	13.7432	0.2847	109.2186	21.2006	125.5209	StdError	30		0.0273	37.1328	38.1496	35.5706	41.5074	37.0882	38.6282	24.9746	12.2810	36 3/000	17 0845	0 7316	13.0885	36 7229	16.0200	10 0064	29.1600	90.0418	68.9754	61.5921	59.9561	62.4084	42.4413	52.8063	44.4211
0.1208	0.4861	-0.8106	-0.9319	-0.2619	1 2050	1.0577	-0.7375	-1.2875	-1.0781	0.5885	0.0062	-0.4474	0.1987	-0.7471	1.0539	2.8941	2.3523	0.4569	-0.9603	-0.4003	-0.0127	0.3803	-0.6186	-2.0904	-1.9445	-1.5064	-0.3474		tValue			0.6255	0.3333	0.6504	-0.1717	0.8361	0.2114	0.3576	2.0002	0.6913	0 3732	0.4101	0 1653	1 2022	0.6116	0.002.0	0.0630	0.6514	0.4967	0.3198	0.0069	0.0427	0.3056	-0.1912	0.1255	0.1144
-5.0094	23.1487	-24.8758	-39.5166	-32.6740	16 00 50	28.4033	-62.9173	-6.0560	5.0667	58.3125	-31.0134	-98.3418	38.3521	-69.7563	144.3999	335.4784	172.6009	91.0797	-74.7747	-68.6305	-17.9059	64.9341	-11.6219	-28.5195	-0.8486	-282.9473	-8.6222	309.2424	Estimate			0.0086	11.7823	18.8203	-9.3387	33.8797	-2.4568	7.8288	44.6047	14.7707	10 5267	0 7046	0 6143	17 3887	26.6248	10.0176	3 4434	102001	34.8340	45.6489	3.2008	11.8108	24.2842	-4.8877	16.6940	-16.1881
66.9864	69.8836	45.2807	22.2171	65.6244	1/.0108	25.1911	66.3065	30.6642	19.7080	84.6820	52.9894	162.8915	124.9017	111.4614	108.7736	112.1023	76.4747	95.7686	79.3719	145.9492	97.6767	172.6972	124.1073	18.5780	0.3809	147.1912	28.5647	169.9001	StdError	40		0.0300	40.6388	41.7497	38.9318	45.4598	40.5890	42.2620	27.3192	13.4567	30.7818	18 7052	10 6586	14 32 58	40 1905	10 5500	11 0528	51,936/	98.6602	75.5715	67.4920	65.6479	68.7164	46.5563	57.8139	48.9834
-0.0748	0.3312	-0.5494	-1.7787	-0.4979	0.48/0	1.1955	-0.9489	-0.1975	0.2571	0.6886	-0.5853	1.	+	-0.6258	1.3275	2.9926	2.2570	0.9510	-0.9421	-0.4702	-0.1833	0.3760	-0.0936	-1.5351	-2.2276	-1.9223	-0.3018		tValue		0 F2	0.2868	0.2899	0.4508	-0.2399	0.7453	-0.0605	0.1852	1.6327	1.0976	0.2646	9205 0	00000	1 21 38	0.6625	1 2002 0	0.7090	0.7690	0.3531	0.6041	0.0474	0.1799	0.3534	-0.1050	0.2888	-0.3305
15.2413	46.8388	-35.7089	-68.3025	-9.0813	UCCE DE	40.4905	-39.6901	13.2322	28.5000	34.7709	-36.6439	-64.3586	16.7903	-109.1259	116.0731	417.9743	188.1407	76.6095	-47.7024	-125.7102	-87.3002	28.0842	-33.1692	-23.9521	-1.0337	-339.1643	4.3633	344.3197	Estimate		F2	-0.0017	7.1557	14.6431	-12.0884	28.7815	-9.2191	4.7896	36.7449	24.7841	12 0311	16 8891	17 0764	23 6013	33 5427	10 00 21	5 0636	1.02.39	52.4984	81.2435	22.8400	41.9247	7.4282	-9.8763	35.3735	-16.0135
82.9721	86.5306	56.0992	27.5212	81.2856	21.8323	29.4891	82.1369	37.9880	24.4060	105.0267	65.7562	201.9651	154.8356	138.1270	134.8977	138.8828	94.7300	118.7724	98.3580	181.0546	121.1698	213.9158	153.8254	23.0656	0.4653	182.1241	35.3484	210.3932	StdError	50		0.0308	41.7663	42.9122	40.0089	46.7632	41.7108	43.4125	28.0657	13.8530	40 8727	10 2270	10.0667	14 7328	41 2921	10.0702	10 2001	53 5306	002.0 CE	77.9185	69.6296	67.5303	70.8359	48.0029	59.4511	50.6365
\rightarrow	0.5413	-0.6365	-2.4818	-0.1117	1.3894	1.3/31	-0.4832	0.3483	1.1677	6	+-	+-	-	-0.7900	0.8605	3.0095		0.6450	-	-0.6943	-	0.1313	-0.2156	-1.0384	-2.2218	-1.8623	0.1234		tValue			-0.0559	0.1713	0.3412	-0.3021	0.6155	-0.2210	0.1103	1.3092	1.7891	0.0044	0.878.4	1 6307	1 6081	0.8123	0 0170	0.4117	0.0494	+	+-	0.3280	0.6208	0.1049	-0.2057		-0.3162
-6.1175	37.2388	-60.3480	-86.8905	-24.2103	05682.6C	50.005	-57.5414	27.4970	42.8642	-18.6201	-16.2471	-19.8769	-26.3704	-178.2739	50.5845	435.2033	204.4093	10.5536	-40.6858	-174.5350	-173.8647	-2.2749	-105.3207	-20.9907	-0.8421	-337.4354	10.4718	434.5461	Estimate			-0.0041	-0.4854	12.1532	-0.4170	19.2548	-14.9139	1.6631	8.9624	29.8543	11 6370	-5 7071	21 0713	17 4982	38 2427	1 7000	8176 L	44 2052	1 7005	70.8804	4.0367	27.4264	3.9216	4.9398	14.8704	-17.7434
95.6142	99.6608	64.5916	31.6795	93.6824	22.1448	33.934/	94.6615	43.7438	28.0869	121.0074	75.7624	232.7132	178.4813	159.2279	155,4433	159.5744	109.1670	136.8578	113.1623	208.6952	139.6127	246.5639	177.2902	26.5706	0.5252	209.7477	40.7007	242.4093	StdError	60		0.0305	41.8718	43.0234	40.1158	46.9078	41.8101	43.4546	28.0276	13.8621	40 9724	10 7567	10 9826	14 7378	41 3872	10 1024	12 21 22	52.52.50	101.8145	78.2391	69.9680	67.7086	70.9587	48.2000	59.5721	50.9834
-0.0640	0.3737	-0.9343	-2.7428	-0.2584	2.3819	1.7125	-0.6079	0.6286	1.5261	1		-0.0854	-0.1477	-1.1196	0.3254	2.7273	1.8724	0.0771	-0.3595	-0.8363		-0.0092	-0.5941	-0.7900	-1.6034	-1.6088	0.2573	1.7926	tValue			-0.1329	-0.0116	0.2825	-0.0104	0.4105	-0.3567	0.0383	0.3198	2.1537	0 2840	-0.2064	2 0005	1 1873	0.9240	0.001	0.5921	0.0392	0.8068	0.9059	-0.0577	0.4051	0.0553	0.1025	-	-0.3480
-56.8402	14.0974	-115.0227	-96, 1963	-64.0027	20 521	12.3311	-92.7709	14.0161	38,4801	-15.6735	-26.2338	-48.0192	18.2459	-186.3451	45.0792	337.9510	226.7153	11.5861	-43.2523	-144.2265	-195.1960	-3.9818	-98.5740	-24.4956	-0.6386	-220.2900	22.2108	489.0929	Estimate			0.0054	-7.6231	4.2030	-4.3364	11.6235	-20.2310	7.8501	-16.3502	32.8878	7 6405	-19 7766	75 8777	20.2826	41 8785	2007.6.21	12 0708	20 2754	14:7833	77.7494	2.1705	9.3824	2.3228	-13.3573	-8.5286	-42,1536
104.3359 -0.5448	108.6816	70.3742	34.5263	102.2468	27.4083	30.9444	103.3096	47.6837	30.6140	131.9043	82.5723	253.8312	194.6799	173.6925	169.4852	173.8669	119.1472	149.2199	123.5371	227.6471	152.1817	269.0346	193.4135	28.9988	0.5634	228.8855	44.3930	264.4648	StdError	70		0.0312	42.2457	43.4186	40.4874	47.4245	42.1773	43.7693	28.1334	14.0129	41 3280	10 43 13	11 0277	14 8473	41 7398	10 7770	12 4770	1007.00	103.0609	79.1613	70.8801	68.3132	73.1082	48.9770	60.0820	52.8531
-0.5448		-1.6344	-2.7862	-0.6260	0.6153	1.9580	-0.8980	0.2939	1.2569		_	_	-	-1.0728	0.2660	1.9437		0.0776	-	-0.6336	-	-0.0148	-0.5097	-0.8447	-1.1333	-0.9624	0.5003	-	tValue			0.1738	-0.1804	0.0968	-0.1071	0.2451	-0.4797	0.1794	-0.5812	2.3470	0 1849	201012	2 2 2 2 2 2	1361	1.0033	0.1500	1 0305	0.40/8	+	+	0.0306	0.1373	0.0318	-0.2727	-0.1419	-0.7976
	-13.8048	-173.8104	-115.4324	-982.869	100.3390	95.2891	-122.5827	10.5915	39.6554	4.4982	-62.1109	-119.8244	119.5312	-170.0878	18.8979	216.4357	236.4182	22.3005	-15.5702	-97.7523	-198.2958	23.3613	-53.4801	-27.8944	-0.6143	-93.0395	36.6121	516.7654	Estimate			0.0132	-18,4501	-13.2409	-4.5819	-3.3836	-30.0855	20.6370	-16,7076	34.5304	-2 3740	-34 0776	20 50 50 50	21 0506	39 8861	1 2520	14 2478	15 0564	43.2804	103.0723	4.2386	2.9889	61.3477	-24.8911	-21.7024	-48,2292
109.9865	114.5188	74.1121	36.3700	107.7915	C0 6543	38,8855	108.9089	50.2310	32,2441	138.9488	86,9804	267.4672	205.1620	183.0402	178.5731	182.9736	125.5791	157.2152	130.2091	239.9085	160.3129	283.4365	203.8391	30.5741	0.5884	241.2025	46,7781	278.7420	StdError	80		0.0317	43.7284	44,9307	41.8933	48,9525	43.6602	45.3195	29,1719	14.4487	42 7750	20 0793	11 4370	153617	43 2049	10.0107	17 8244	55 0503	106.3365	81.7399	73.0787	70.7913	73.7834	50,1941	62.2702	53.0338
-0.8595	-	-2.3452	-	-0.9146		+	_	0.2109	1.2299	0.0324	+-	-0.4480	0.5826	-0.9292	0.1058	1.1829	1.8826	0.1418	-0.1196	-0.4075	-1.2369	0.0824	-0.2624	-0.9124	-1.0441	-0.3857	0.7827		tValue			0.4162	-0.4219	-0.2947	-0.1094	-0.0691	-0.6891	-+	-	2.3899	21220 U	-	2 2862	_	0.9232	1.1.1.1	_	0.9433	+	+	0.0580	0.0422			_	-0.9094

Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Place: tense	Next Place: lax	Next Place: labial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous manner: iridative	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (108) x Frequency (108)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Place: tense	Next Place: lax	Next Place: labial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Novt Manner: fricative	Next Manner: flap
10.5424		Estimate			0.0973	64.3304	146.2664	58.5531	14.7172	29.9925	-65.0314	-6.3846	-27.8391	-26.3039	39.04/9	327.8517	-44.6804	50.7881	3.2235	-8.2156	11.5641	0.2040	-381.6192	20.8074	45.2395	Estimate			-0.0114	37.3007	-27.0688	39.7633	26.1855	13.7060	55.0260	-0.2102	-42.5307	-51.4344	-10.5007	114.3643	3.7631	-9.5648	69.1131	17.2921	9.1412	0.3960	-34.7648	41.8449	-54.9963	Estimate			0.0734	-2.0177	-12.7964	16.4262	-15.8737
33.6460 0.3133	191.7697	StdError	20		0.2024 0.4806	64.7420	54.8282	116.6687	41.4243	30.9445	56.0137		120.8586	117.5532	11.2191	198.2.525	84.3942	75.4130	104.6487	93.3390	C5/08/27	0.0101	281.3917	55.4177	106.7686	StdError	20	5	0.1000	52.4380	42.9458	72.6900	31.3903	21.7444	42.6268	27.7683	74.3651	71.9472	66.3468	180.4125	73.6871	55.2461	87.0802	67.4400	24.6213	0.6184	235.7528	44.2995	87.5336	StdError	20		0.0230	31.0544		29.7428	34.6588 -0.4580
	-0.2780	tValue			0.4806	0.9936	2.6677	0.5019	0.3553	0.9692	-1.1610	-	-0.2303	-	-	1.0539	-0.5282	0.6735	0.0308	-0.0880	0.4015	60.270	-	-	-0.4237	tValue			-0.0121	0.7113	-0.6303	0.5470	0.8342	0.6303	1.2909	-0.0076	-0.5719	-0.7149	-0.1583	0.6339	0.0511	-0.1731	0.7937	0.2564	0.3713		-	0.9446	-0.6283	tValue			3.1941	_	-	0.5523	J) 4580
22.6650	15.7714	Estimate			0.0656	99.6345	192.2199	146.6004	23.4958	50.6745	-83.2638	22.4188	-85.7554	-100,4096	28./139	354.3720	-94,2197	104.9316	-22.7687	49.4587	17.4854	0.0004	-506.5678	11.0737	-90.9441	Estimate			-0.1143	44.4626	-6.8303	48.3446	10.1092	12.2545	41.6615	34.1023	-46.3534	-63.7524	9.5548	316.4650	-66.2075	12.0272	10.5857	57.4174	25.9738	0.8057	-193.9667	22.9503	-87.2341	Estimate			0.1957	9.8487	-19.8234	4.2375	-9.2429
36.6064 0.6192	201.4514	StdError	30		0.2828	91.2905	77.7875	164.7151	58.3815	44.6205	80.0344	52.0890	170.9357	166.4729	103.9330	105 0250	119.7951	107.6955	147.4584	130.5746	40.3129	1.13/3	396.9945	79.5661	149.7237	StdError	30		0.2344	80.0090	65.4779	109.4825	48.1987	32.9230	64.9896	40.6561	112.2075	108.4853	96.1397	265.4800	108.0397	83.6269	127.5588	101.3748	36.6339	0.9320	359.8113	65.2859	130.0562	StdError	3				50.8529	47.3908	55.2703
0.6192	0.0783	tValue			0.2319	1.0914	2.4711	0.8900	0.4025	1.1357	-1.0404	0.4304	-0.5017	-	-	1.9913	-0.7865	-	÷	0.3788	0.4337	C0/C.U	-1.2760	0.1392	-0.6074	tValue			-0.4677	0.5557	-0.1043	0.4416	0.2097	0.3722	0.6410	0.8388	-0.4131	-0.5877	0.0994	1.1920	-0.6128	0.1438	0.0830	0.5664	0.7090	0.8644	-0.5391	0.3515	-0.6707	tValue			5.3364	0.1990	-0.3898	0.0894	-0.1672
32.2110		Estimate			0.2622	140.7046	210.9686	179.1483	23.7227	59.6182	-114.5103	41.8392	-108.5023	-126.7536	-/9.0100	381.7428	28.4706	101.8533	98.0920	86.2233	43./362	-0.0902	227.0048	27.3585	43.9548	Estimate			-0.10/2	53.4707	36.2009	59.4538	0.3441	10.3117	10.3355	43.6156	-55.0518	-69.9103	24.2086	391.2824	-114.7913	45.6041	-57.0969	90.9210	35.0539	0.9122	-318.3984	5,4848	-91.6720	Estimate			0.2702	-13.5433	-50.3446	46.0142	-23.9079
43.3471	258.1285	TIOT	40		0.3451	104.1711	87.1992	189.3443	64.8994	49.1751	88.3554	60.4533	195.1716	190.1225	143.0394	366.9970	155.7520	123.4440	188.2860	157.7607	51.5829	1.7071	539.3467	104.4488	184.4617	StdError	40	;	0.407.0	101.6828	83.4421	135.1737	61.3520	40.7397	82.3475	49.2012	138.4761	133.5945	118.3341	332.8405		105.0508		127.3957	46.0843	1.1648	470,4401	81.3998	162.2176	StdError	40		0.0499	67.0645	68.8907	64.1911	74.9032
0.7431		tValue		a Fl	0.7598	1.3507	2.4194	0.9462	0.3655	1.2124	-1.2960	0.6921	-0.5559	-0.6667	-0.001	1.0402	0.1828	0.8251	0.5210	0.5465	-0.8483	-0.0/02	0.4209	0.2619	0.2383	tValue		3 F 2	-0.3773	0.5259	0.4338	0.4398	0.0056	0.2531	0.1255	0.8865	-0.3976	-0.5233	0.2046	1.1756	-0.8536	0.4341	-0.3613	0.7137	0.7606	0.7831	-0.6768	0.0674	-0.5651	tValue		3 FI	5,4103			-0.7168	-0.3192
41.9700		Estimate		FI	0.2864	143.8919	198.8510	157.5696	20.4692	56.1565	-116.5658	56.6050	-93.9264	-120.9114	-100.9420	168.0436	124.5992	118.0071	180.6156	90.4357	-61.4046	-0.1963	704.2033	48.4137	65.8767	Estimate		2	1002-0-	3.1463	61.1352	3.3458	-1.8279	2,6435	-8.5929	60.8350	0.0461	-23.5735	43.8195	487.2041	-109.7982	16.2190	-58.1319	60.1518	46.6325	1.1646	439.1904	38.3624	-101.8011	Estimate		2	0.3228	-20.5148	-39,4905	-68 5840	-9.5262
	289.6769	StdError	50		0.3823	117.1511	97.1739	201.9478	72.2748	53.7748	97.9263	66.7025	207.8070	202.1037	102.1101	417.5482	176.4544	135.5892	210.9038	173.3953	57.8319	0010.1	605.2536	116.0544	205.5078	StdError	50		0.3249	117.0707	95.8888	153.1396	70.6850	45.8167	94.2406	54.5961	156.9070	151.4687	130.2416	368.7935	148.1348 -0.7412	119.4585	174.3582	143.7875	51.6885	1.3242	528.3805	89.3641	183.1563	StdError	5		0.0619	83.0710	85.3134		92.7799
0.8654		tValue			0.7490	1.2283	2.0463	0.7802	0.2832	1.0443	-1.1903	0.8486	-0.4520			0.4025	0.7061	0.8703	0.8848	0.5216	-1.0618	-0.1313			0.3206	tValue			-0,7099	0.0269	0.6376	0.0218	-0.0259	0.0577	-0.0912	1.1143	0.0003	-0.1556	0.3364	1.3211	-0.7412	0.1358	-0.3334	0.4183	0.9022	0.8795	-0.8312	0.4293	-0.5558	tValue			5.2161	-0.2470	-0.4629	-0.8626	-0.1027
52,4231	391.7695	Estimate			0.2592	137.8379	188.9278	93.5559	9.2789	25.1438	-132.7503	73.7808	-65.5349	-103.8489	-241.4/19	-1 16.0955	205.9102	103.6651	277.9835	97.4351	-77.1669	-0.1999	1217.6098	71.6644	105.5216	Estimate			-0.5152	-9.0775	76.6271	6.6134	-12.8949	-0.7164	-21.9057	58.9382	-7.2970	-41.0692	21.0454	422.2804	-57.8543	1.3583	-2.2414	29.9687	59.6908	1.4347	424.6132	73.5939	-141.6695	Estimate			0.3226	-63.6362	-70.8784	-127.3191	-0.1027 -50.6611
52.0620 1.0069		StdError	60		0.4144	128.9322	106.8211	213.2910	79.3121		107.5929	72.4618	219.5701	213.1534 -0.4872	1/3./004	458.4804	193.1091	147.4825	229.3419	187.6726	63.2519	0, 00.1	667.0453	126.0070	223.7142 0.4717	StdError	60		0.3301	121.0113	98.6657	159.0388	73.5003	47.3688	97.1665	55.9027	163.5187	158.1881	126.4640 0.1664	349.7274	143.1623 -0.4041	124.0608	169.5469 -0.0132	149.0208	50.3634	1.3600	514.7861	88.7267	182.9123	StdError	60		0.0707			91.6301	106.9207
1.0069	1.2833	tValue			0.6253	1.0691	1.7686	0.4386	0.1170	0.4295	-1.2338	1.0182	-0.2985	-0.4872	-1.3/44	-0.2552	1.0663	0.7029	1.2121	0.5192	-1.2200	-0.1221			0.4717	tValue			-0.9000	-0.0750	0.7766	0.0416	-0.1754	-0.0151	-0.2254	1.0543	-0.0446	-0.2596	0.1664	1.2075	-0.4041	0.0109	-0.0132	0.2011	1.1852	1.0549	-0.8248	0.8294	-0.7745	tValue						-1.3895	-0.4738
47.7237		Estimate			0.2870	83.6066	128.3812	37.6372	31.9763	41.5439	-52.3542	98.2132	4.9360	-56.8688	-202.8304	-208.1000	255.3061	119.3723	343.0423	75.3406	-82.6320	-0.2002	1293.7366	89.6333	117.8052	Estimate			1077'0-	-32.4301	103.7539	-27.0974	-23.9099	9.1505	-33.9056	55.3238	24.6700	-6.3041	11.8703	444.0241	-48.2641	6.2551	-11.3320	41.0046	50.8276	1.0547	-434.2028	71.0341	-110.2256	Estimate			0.3195	-127.4339	-135.4109	-180.6905	106.9207 -0.4738 -115.2337
53.2012		StdError	70		0.4190	126.6629	105.2254	219.1613	78.9490	58.1778	106.1105	70.7968	225.7019	219.2153	1/0.1032	450.7846	189.5667	147.5975	227.3013	191.4733	63.4600	1.0004	6/4.1151	125.5473	224.2897	StdError	70		0.5410	-	100.6055	162.7360	75.1913	47.4840	98.2360	55,7080	167.0449	161.2181	130.5913	369.3211	149.8069	126.8403	177.0100	152.2412	\$2.8447	1.4029	542.9763	92.0448	189.2361	StdError	70	- II.				100.0119	116.6885 -0.9875
		tValue			0.6851	0.6601	1.2201	0.1717	0.4050	0.7141	-0.4934	1.3873	-0.0219	-0.2594	-1.4918	-0.4616	1.3468	0.8088	1.5092	0.3935	-1.3020	-0.1000			0.5252	tValue			-0.0401	-0.2629	1.0313	-0.1665	-0.3180	0.1927	-0.3451	0.9931	0.1477	-0.0391	0.0909	1.2023	-0.3222	0.0493	-0.0640	0.2693	0.9618	0.7517	-0.7997	0.7717	-0.5825	tValue			4,1761	-1.2199	-1.2622		
28.4599	377.7656	Estimate			0.1711	-61.5810	-3.7780	-30,1409	55.2462	37.5992	106.6537	41.4530	71.3470	49.5795	-3/0.000	-268,9042	316.8451	221.9847	443.7222	186.8389	-111.8/33	0.1000	19/9.4455	20.7202	136.6741	Estimate			-0.2000	-36,6605	109.2703	-21.5778	18.8041	28.9702	-35.9894	23.5357	29.3601	-0.2026	-44.0609	445.2474	-36,7755	78.5173	-19.2864	108.8120	62.3433	1.0340	-429.9763	46.4721	-165.1104	Estimate			0.3205	-172.1602	-200.7035	-245 3056	-166.4012
		TOP	80		0.3954	121.3256		201.6943	75.3335				207.6186			429.0779	179.7472	139.1762	214.5555				-	117.5012		StdError	80		0.0000		104.3185	171.0756	78,7737	48,7295	101.2654	56,7048	175.8687	169.3907		375.7962		133.3399			53.9347	1.4626	566.6553	96.2761		inor	80			110.1243		105.4453	123.0091 -1.3528
		tValue			0.4328	-0.5076	-0.0377	-0.1494	0.7334	0.6865	1.0570	0.6229			16077-	10.6267	1.7627	1.5950	2.0681	1.0422	-1.8592	0.0090			0.6439	tValue			-0.0002	-0.2864	1.0475	-0.1261	0.2387	0.5945	-0.3554	0.4151	0.1669	-0.0012		1.1848		0.5889		0.6785	1.1559	0.7070	-0.7588	0.4827	-0.8539	tValue			3,9992	-1.5633	-1.7747	-2.3264	-1 3528

Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: lablai	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palata.alveolar	Beautions Blace: seletal	Providus Place: Jabin dontal	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength
0.1321	49.0511	57.9200	10.9861	32,4868	-29 4687	12.7067	0.0177	-12.8685	-5.1504	-39.8780	-25.8807	0.0502	4.4323	6.6553	-49.3518	22.9779	10.2896	-60.7742	135.0381	-42.4851	0.1403	-22.0838	0.4711	115.0608	-52.4639	35.7912	Estimate			0.0041	24.1482	30.4386	13.3829	21.3318	-7.2361	16.2561	-0.4/40	-3.8845	4.2468	56.6108	-2.5000	22.9501	-33.0269	11.6678	-43.7193	-36 7957	0000 C2	1100.271-	-13.2875	10.5493	4.7693	0.7000	11.9345
0.1173	34.0589	40.3025	50.9884	32.4230	34.1160	55.0474	18.3787	15.5908	42.2682	84.6772	15.2660	32.7259	334.3474	126.4528	234.5624	93.8571	227.4001	58.1955	125.2422	232,4023	21.9943	79.0443	0.7583	149.2122	44.6464	262.0140	StdError	20		0.0659	24.6601	29.3831	36.7250	23.4697	22.1410	24.6578	13.2909	11.2147	30.6402	56.7318	11.0335	23.9539	257.6205	100.3684	181.8717	73 8047	176 7707	AS 3814	180.3025	16.0468	59.6828	0.4252	113.9690
1.1264	1.4402	1.4371	0.2155	1.0020	0.4947	0.2308	0.0010	-0.8254	-0.1219	-0.4709	-1.6953	0.0015	-0.0133	0.0526	-0.2104	0.2448	0.0452	-1.0443	1.0782	-0.1828	0.0064	-0.2794	0.6213	0.7711	-1.1751	0.1366	tValue			0.0615	0.9792	1.0359	0.3644	0.9089	-0.3268	0.6593	-0.411/	-0.3464	-0.1386	0.9979	-0.2266	0.9581	-0.1282	0.1162	-0.2404	-0.3030	0 2050	1 3088	-0.4065	0.6574	0.0799	1.6461	0.1047
0.2597	6.8662	26.7286	41.0580	-9.2274	-21.5930	35,8605	-22.8379	-15.6694	-63.1716	-29.9607	-21.6626	-8.6983	-132,2308	-3.3638	-119.7187	121.5872	-13.7181	-91.1029	142.9986	-104,4470	-24.9623	-7.5716	0.0945	47.4130	-54.1877	79.9289	Estimate			0.1402	27.8602	10.6936	12.8237	23.1336	-9.6627	15.3155	- /.0004	-4.4327	-0.9759	126.5745	-3.8320	20.3018	-124.0680	-54.5903	-86.8297	-112.00/4	111 6074	-100.1017	-153.9082	3.9672	8.2632	0.1576	-39.3574
0.1584	46.9512	55.6302	70.3868	44.6486	46.9/31	75.8958	25,4050	21.5524	58.2559	117.4754	21.0975	45.1988	445.0088	166.6704	311.6506	123.8186	301.2028	77.6113	162.1076	308.5301	30.3719	104.9869	1.0233	199.7604	60.4728	346.6402	StdError	30		0.0836	28.6134	34.1547	43.0472	27.1823	26.2743	28.6002	10.000	13.2084	35.6088	69.0224	12.9481	27.8490	269.1679	101.4017	188.7129	192.0040	107 0046	46.0633	07 5804	18.8535	62.5157	0.5377	121.0188
1.6397	0.1462	0.4805	-0.5833	-0.2067	-0.4397	0.4725	-0.8990	-0.7270	-1.0844	-0.2550	-1.0268	-0.1924	-0.2971	+	+	0.9820	-0.0455	-1.1738	0.8821	-0.3385	-0.8219	-0.0721	0.0923	0.2373	-0.8961		tValue			1.6759	0.9737	0.3131	0.2979	0.8511	-0.3678	0.5355	-0.4920	-0.3356	-0.0274	1.8338	-0.2960	0.7290	-0.4609	-	-	-0.0184	_	-0.6840	-0.8245	+	0.1322	0.2931	-0.3252
0.3313	-3.1114	20.2203	-55,1183	-16.9974	-16.3/40	15.6754	-13.6442	-12.7321	-84.8533	-69.5106	-19.9713	3.1545	76.8180	87.0343	52.5342	111.4542	171.7541	-103.5570	258.0417	55.7721	47.5340	-62.1396	-0.0864	73.7973	-70.6075	273.0748	Estimate			0.2134	25.8468	-20.1922	8.9916	26.6745	-22.2620	13.4469	0.8419	2.7899	2.2075	144.2011	-1.1376	28.2214	-23.1788	-28.8199	45.9178	-01.0304	61 0504	11 4166	-108.9990	-15.3046	-24.4033	-0.2215	25.5389
0.1870	54.8117	64.9658	82.1409	52.1296	50 3564	88,4590	29.6567	25.1532	68.0143	136.9384	24.6176	52.7079	532,9928	201.7762	373.9943	149.7024	362.0131	93.8517	197.3855	370.4126	35,4627	125.8490	1.2084	238.4885	71.6861	416.2197	StdError	40		0.1149	32.7240	38.9609	49.0321	31.1268	29.8769	32.9193	17.0721	14.9814	40.5819	80.1650	14.6772	31.3973	328.3597	124.9964	230.8118	07 5946	111 6050	52 5275	123 3802	+	+ +	0.7423	147.2456
1.7713	-0.0568	0.3112	-0.6710	-0.3261	-0.2983	+	-0.4601	-0.5062	+	1	-0.8113	+	0.1441		-	0.7445	0.4744	-1.1034	1.3073	0.1506	-1.3404	-0.4938	-0.0715	0.3094	-0.9850		tValue		m	1.8574	0.7898	-0.5183	-	_	-0.7451	0.4085	+	+	-	1.7988	-0.0775	0.8988	-0.0706			0 3075	+	0 1040		-	-0.3130		0.1734
0.3816	-30.3607	-8.1994	-102.5817	-39.0059	-33.1995	19.4868	16.7725	-2.4342	-91.6810	-97.0147	-17.7489	41.7827	13.4187	102.7318	25.1012	155.4460	133.0433	-70.0431	558.1720	28.5167	-62.2283	-41.6589	-0.3932	20.3347	-84.6453	247.7578	Estimate		a F2	0.2471	17.9986	-25.2639	-6.6627	26.9350	-20.7845	12.9598	8.3903	13.1100	2.7131	133.6637	2,9339	32.3379	120.2266	-19.6761	49.0334	21 4470	17 0177	56 1010	-7.6669	-30.7368	-62.1893	-0.4981	25.7940
0.2223	60.9240	+	+	58.0709	61.2273	98.2514	32.8187	27.8382	75.5535	151.1564	27.2210	58.2755	638.5910	244.6930	449.2711	180.6318	437.6010	110.3343	250.2028	445.6499	39.3940	152.0383	1.4395	282.8646	82.2575	508.8926	StdError	50		0.1268	36.2418	43.1397	54.3170	34.4815	33.0840	36.4683	100000	10.0170	44.9718	88.6568	16.2653	34.7816	369.0072	141.3901	259.6378	104 8214	751 0245	102.011	257.1655	23.8454	87.4687	0.8187	164.8875
1.7165	-0,4983	-0.1139	-1.1266	-0.6717	-0.5422	0.1983	0.5111	-0.0874	-1.2135	-	-0.6520	0.7170	0.0210	+	_	0.8606	0.3040	-0.6348	\$ 2,2309	0.0640	-1.5796	-0.2740	-0.2732	6 0.0719	-1.0290		tValue			1.9494	0.4966	-0.5856	-0.1227	0.7811	-0.6282	0.3554	0.4282	+	+	1.5077	0.1804	0.9297	0.3258	-		0.1090	+	10202	_	-	-0.7110		0.1564
				-52.8175	-47.8755	56.8039	37.1487	19.2487			-3.7241	51.0865	258.0582	145.5127	147.2152	95.4774	278.1301	-19.2844	714.4549	199.2434	-74.9043	-102.2878	-0.4696	133.5595	-107.7800	493.8875	Estimate			0.2382	21.5489		10.8511	32.6281	-29.9714	25.2473	14.2/38	19.2339	20.4689	112.2070	2.2870	26.6453	218.5041	-17.0870	126.8040	77 8074	117 0107	00 7044	49 6449	-41.7447		-0.5811	36.3323
0.2146	64.4721	+	+	61.3508	58 9873	104,4302	34.9434	29.6494	80.0375	158.5295	28.9782	62.1023	639.0499	242.3704	448.7013	179.7297	435.2221	110.6551	241.6738	444.5519	42.0295	150.6005	1.3859	285.0128	84.8285		StdError	60		0.1264	38.9314	46.4280	58.3857	37.0150	35.4448	39.1215	50000 PCK017	17.8917	48.3255	93.7340	17.5106	37.5269	395.6759	151.7042	278.5265	117 3005	170 102	70 1032	275.8661	25.6950	93.1447	0.8149	176.7845
		_	-	-	-0.7406			+			-0.1285	-	0.4038	-	-	0.5312	0.6391	1 -0.1743	3 2.9563	0.4482	-1.7822	5 -0.6792	-0.3389	3 0.4686	-1.2706		tValue			1.8848	0.5535		_	_	-	0.6454	+	+	-	+	0.1306	0.7100	0.5522	-	-	0 2037	+	1 2022	_	-			5 0.2055
	-	_			-74.7852	T	+	41.5979	1.	+-	7.9350	55.4133	234.5573	137.7680	97.7914	-	273.7186	8.7246	858.9320	207.3522	-74.8467	-80.9525	-0.6593	44.6897	-75.3618		Estimate			0.2000	25.5983	-15.3001	22.6965	45.0964	-60.7262	43.9226	10.8228			91.1757	3.7479	28.9670	122.7342	-46.9754	84.7784	70.0396	16 6109		-13 8734	-51.5331			-42.5288
\vdash	-	81.4430	102.8452	65.2542	62 5065	111.3773	37.2216	31.5877	85.2016	166.0250	30.8567	66.2199	692.7479	265.0496	487.2386	196.2257	473.1554	120.0218	265.5580	482.9018	44.8591	162.3347	1.3922	307.9224	91.2987	531.8901	StdError	70		0.1184	41.0680	49.1098	61.8038	38.9928	37.5504	41.1089	22.4042	19.0049	51.0711	98.6379	18.5999	39.9402	394.2596	149.4725	276.8795	110 7851	167.701	40 1241	273.9497	27.2404	91.6576	0.7602	177.2866
\rightarrow	-	-+	. +	-1.3561	80.02 UF	+		+-	1.	-	0.2572	+	0.3386	+	+	0.4809	0.5785	0.0727	3.2344	0.4294	-1.6685	-0.4987	-0.4736	0.1451	-0.8254	-	tValue			1.6901	0.6233	-0.3115	-	-	. 1	1.0684	+	+		+	0.2015	0.7253	0.3113	-+	-	0.2658	+		0.0933	+	+ +		-0.2399
		. 1	. 1		-148.7674	+		55.1746	1.		11.9065	61.3166	-297.8498	7.4025	-252.0648	191.3993	-79.3605	-14.0239	945.6310	-131.9981	-58,9081	63,7499	-0.9270	-181.8287	-57.1975	95.2651	Estimate			0.1645	34.3530	8.7568	36.4482			69.9892	18.40/8	42.6567	67.4091	69.2393	6.4034	32.4333	188.5706		116.8347	20 91 97	100 2707	20 4000	15 23 57 3	1.			24.9952
\vdash	-	-		-	67 9302		+	34, 1999		+	33,4284	71.6422	1	+	+	200.1329	487.4037	122.4753	269.0437	498,4062	48,7549	168.4053	1.5178	7 320.8870	95.4078		StdError	80		0.0958	41.1251	49.3369	62.0293	38,9985	37.4985	41.0116	CC 6017	19.1621	51.2408	97.4110	18,7406	40.3988	387.8668	147.1520	272.4565	108 8794	101 101	67 2672	269.5288	27.4395	88.8110	0.6106	174.7249
\rightarrow	-2.8225	-	5 -3.2890	-2.2893	-	5 1.1232	N	+	-2.1834		0.3562	0.8559	4 -0.4148	3 0.0274	7 -0.5008	9 0.9564	7 -0.1628	3 -0.1145	7 3.5148	2 -0.2648	-1.2082	3 0.3786	-0.6108	0 -0.5666	-0.5995	8 0.1728	tValue			1.7158	0.8353	0.1775	0.5876	1.5580	-1.5292	1.7066	_	+	1.3155	0.7108	0.3417	0.8028	0.4862	0 -0.1710	-	0.3890	_	0.1000	3 0.1987	-	-0.9078	-0.5200	9 0.1431

Table A.15: Coefficients for the F1 and F2 global (all vowels pooled) LMER models of formant deviance from vowel offset.

		F1			F2	
Predictor	Estimate	std.Error	t.value	Estimate	std.Error	t.value
(Intercept)	66.3801	25.7837	2.5745	-323.3378	53.9555	-5.9927
Tense: past	8.9709	2.3693	3.7863	21.9640	5.6273	3.9031
Percent: 20	43.2560	9.5612	4.5241	-34.0596	22.9678	-1.4829
Percent: 30	7.5149	9.5612	0.7860	15.8201	22.9678	0.6888
Percent: 40	-19.7632	9.5612	-2.0670	32.5551	22.9678	1.4174
Percent: 50	-33.6481	9.5612	-3.5192	24.1125	22.9678	1.0498
Percent: 60	-31.8003	9.5612	-3.3260	6.5882	22.9678	0.2868
Percent: 70	-19.2364	9.5612	-2.0119	-9.3547	22.9678	-0.4073
NDL Cue Strength	3.1865	5.4124	0.5887	42.9038	12.8821	3.3305
Vowel: a	4.6388	2.3306	1.9904	-23.5051	5.5363	-4.2456
Vowel: æ	0.8579	3.6543	0.2348	75.9621	8.5085	8.9278
Vowel: o	-10.4355	3.1416	-3.3217	-10.4197	7.3663	-1.4145
Vowel: E Vowel: I	-10.5689 -16.2781	1.9504 1.9030	-5.4189 -8.5541	40.9406 67.5045	4.6122	8.8766 15.0069
Vowel: i	-16.2781	2.0572	-8.5541	74.4523	4.4982	15.0069
Vowel: 0	4.0685	1.6536	2.4604	21.9665	3.9298	5.5897
Vowel: 0	-21.6768	3.5339	-6.1340	16.2345	8.3539	1.9433
Vowel: u	-24.5765	2.4346	-10.0947	91.4753	5.7577	15.8875
Duration (log)	-10.8249	5.0196	-2.1565	61.3587	10.0282	6.1186
Frequency (log)	-89.6837	11.1034	-8.0771	-16.2488	23.3614	-0.6955
Previous Voicing: voiceless	7.1656	2.4110	2.9720	-63.7964	5.7003	-11.1918
Previous Place: dental	-2.2642	8.9349	-0.2534	9.0964	20.9684	0.4338
Previous Place: diphthong	9.4173	10.9339	0.8613	-45.3689	25.6995	-1.7654
Previous Place: glottal	0.2229	4.2227	0.0528	-6.0658	9.6496	-0.6286
Previous Place: labial	0.4681	2.4252	0.1930	-21.3936	5.6509	-3.7858
Previous Place: labio-dental	-1.3620	4.1816	-0.3257	-25.1245	9.7442	-2.5784
Previous Place: lax	-14.9449	10.9752	-1.3617	23.8618	25.7794	0.9256
Previous Place: palatal	14.1047	2.8051	5.0282	25.3416	6.5985	3.8405
Previous Place: palato-alveolar	-26.1420	4.7487	-5.5050	11.6917	10.9906	1.0638
Previous Place: tense	-4.2643	9.0928	-0.4690	18.6937	21.1135	0.8854
Previous Manner: approximate	8.6944	7.7342	1.1241	19.9713	17.7579	1.1246
Previous Manner: diphthong	-31.9397	10.9266	-2.9231	51.1131	26.0177	1.9646
Previous Manner: flap	46.3441	13.5000	3.4329	112.0965	31.5445	3.5536
Previous Manner: fricative	12.4986	6.9529	1.7976	62.5417	15.8534	3.9450
Previous Manner: lax	21.9349	8.5791	2.5568	8.9289	20.5230	0.4351
Previous Manner: nasal	15.8642	7.6300	2.0792	65.3351	17.5159	3.7301
Previous Manner: stop	-5.4552	7.5791	-0.7198	69.1918	17.3753	3.9822
Next Voicing: voiceless	-4.6593	1.4323	-3.2530	-4.7926	3.4089	-1.4059
Next Place: dental Next Place: diphthong	-27.2848 5.8042	2.9286 8.6878	-9.3167 0.6681	-10.0329 56.4078	6.9638 20.7686	-1.4407 2.7160
Next Place: glottal	-6.8019	1.5732	-4.3236	7.8620	3.7352	2.1048
Next Place: labial	18.9502	1.6204	11.6948	133.9861	3.8432	34.8634
Next Place: labio-dental	-28.1782	3.1639	-8.9062	70.8835	7.5194	9.4268
Next Place: lax	103.2242	17.7883	5.8029	224.3376	42.5506	5.2723
Next Place: palatal	30.7080	1.9571	15.6908	35.8240	4.5182	7.9288
Next Place: palato-alveolar	41.7064	5.8408	7.1405	15.2668	13.8944	1.0988
Next Place: tense	15.4496	9.0826	1.7010	74.1030	21.6758	3.4187
Next Manner: approximate	-3.2728	8.5785	-0.3815	98.4722	20.5167	4.7996
Next Manner: flap	6.4928	8.5840	0.7564	20.1476	20.5195	0.9819
Next Manner: fricative	35.6179	8.3128	4.2847	13.3819	19.8735	0.6734
Next Manner: lax	-103.4286	15.6543	-6.6070	-196.4742	37.4548	-5.2456
Next Manner: nasal	13.3191	8.6655	1.5370	39.6846	20.7117	1.9160
Next Manner: stop	15.7541	8.4403	1.8665	-1.8307	20.1736	-0.0907
Tense: past x Percent: 20	-11.2110	2.7873	-4.0222	-72.0284	6.6956	-10.7576
Tense: past x Percent: 30	-11.8572	2.7873	-4.2540	-67.8654	6.6956	-10.1358
Tense: past x Percent: 40	-8.6475	2.7873	-3.1025	-56.6778	6.6956	-8.4649
Tense: past x Percent: 50	-3.5021	2.7873	-1.2565	-42.0690	6.6956	-6.2831
Tense: past x Percent: 60	-0.1844	2.7873	-0.0662	-28.8128	6.6956	-4.3032
Tense: past x Percent: 70	1.6025	2.7873	0.5749	-15.6407	6.6956	-2.3360
Percent: 20 x NDL Cue Strength	-7.3538	5.8511	-1.2568	14.0322	14.0555	0.9983
Percent: 30 x NDL Cue Strength	-11.7397	5.8511	-2.0064	11.2217	14.0555	0.7984
Percent: 40 x NDL Cue Strength	-9.4204	5.8511	-1.6100	7.5815	14.0555	0.5394
			-0.8853	6.7728	14.0555	0.4819
Percent: 50 x NDL Cue Strength	-5.1803	5.8511				
Percent: 60 x NDL Cue Strength	-5.1803 -1.5174	5.8511	-0.2593	7.8729	14.0555	0.5601
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength	-5.1803 -1.5174 0.6944	5.8511 5.8511	-0.2593 0.1187	6.1474	14.0555	0.4374
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength Duration (log) x Frequency (log)	-5.1803 -1.5174 0.6944 20.1893	5.8511 5.8511 2.3383	-0.2593 0.1187 8.6341	6.1474 -1.0055	14.0555 5.1297	0.4374 -0.1960
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength Duration (log) x Frequency (log) Percent: 20 x Duration (log)	-5.1803 -1.5174 0.6944 20.1893 2.0239	5.8511 5.8511 2.3383 2.1749	-0.2593 0.1187 8.6341 0.9306	6.1474 -1.0055 61.8992	14.0555 5.1297 5.2246	0.4374 -0.1960 11.8478
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength Duration (log) x Frequency (log) Percent: 20 x Duration (log) Percent: 30 x Duration (log)	-5.1803 -1.5174 0.6944 20.1893 2.0239 9.0893	5.8511 5.8511 2.3383 2.1749 2.1749	-0.2593 0.1187 8.6341 0.9306 4.1792	6.1474 -1.0055 61.8992 42.1071	14.0555 5.1297 5.2246 5.2246	0.4374 -0.1960 11.8478 8.0595
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength Duration (log) x Frequency (log) Percent: 20 x Duration (log) Percent: 30 x Duration (log)	-5.1803 -1.5174 0.6944 20.1893 2.0239 9.0893 13.8384	5.8511 5.8511 2.3383 2.1749 2.1749 2.1749	-0.2593 0.1187 8.6341 0.9306 4.1792 6.3627	6.1474 -1.0055 61.8992 42.1071 29.4238	14.0555 5.1297 5.2246 5.2246 5.2246	0.4374 -0.1960 11.8478 8.0595 5.6318
Percent: 60 x NDL Cue Strength Percent: 70 x NDL Cue Strength Duration (log) x Frequency (log) Percent: 20 x Duration (log) Percent: 30 x Duration (log)	-5.1803 -1.5174 0.6944 20.1893 2.0239 9.0893	5.8511 5.8511 2.3383 2.1749 2.1749	-0.2593 0.1187 8.6341 0.9306 4.1792	6.1474 -1.0055 61.8992 42.1071	14.0555 5.1297 5.2246 5.2246	0.4374 -0.1960 11.8478 8.0595

Table A.16: Coefficients for the F1 and F2 by vowel LMER models of formant

deviance from vowel offset.

Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: lax	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner fricative	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	Tense: past	(Intercept)	Predictor		
37.8356	376.8502	97.9057	32.0093	-172.8293	-167.9185	57.2652	-163.1186	48.5306	215.4436	-102.3551	-99.3647	107.1907	-245.7165	-63.3338	-24.9611	-0.1246	-383.9393	-80.9010	49.7251	Estimate			0.0019	46.6044	51.0658	-83.6326	45.1698	40.0406	50.5858	116.1487	18.8611	-0.3066	145.3987	-3.1122	-13.4569	8.7333	137.2048	-8.4364	3.7737	-66.5907	-17.8372	-0.0324	4.6563	38.9531	-45.5341	-40.9096	-3.0619	-39.6615	39.0859	-15.0994	0.0223	-6.2655	67.2315	Estimate		
39.9121	151.2324	51.8596	33.4845	108.9548	73.4891	155.7485	91.3578	167.5752	123.1206	71.7907	130.3413	62.6069	107.7441	102.9250	30.4146	0.7449	301.2894	74.2075	185.7302	StdError	20		0.0381	39.7150	41.0215	33.1186	38.9056	40.4278	40.6443	42.0438	28,4621	11.3897	51.3954	20.8520	9,9136	11.0877	41.9822	14.3406	9.2664	29.9484	19.9489	42 8133	46.4021	34.0422	19.7921	35.3815	17.0062	31.1340	28.2722	8,4479	0.2264	20.2649	51.7188	StdError	20	
0.9480	2,4919	1.8879	0.9559	-1.5862	-2.2849	0.3677	-1.7855	0.2896	1.7499	-1.4257	-0.7623	1.7121	-2.2806	-0.6153	-0.8207	-0.1673	-1.2743	-1.0902	0.2677	tValue			0.0505	1.1735	1.2449	-2.5252	1.1610	0.9904	1.2446	2.7626	0.6627	-0.0269	2.8290	-0.1493	-1.3574	0.7877	3.2682	-0.5883	0.4072	-2.2235	-0.8941	-1 0554	-0.1003	1.1443	-2.3006	-1.1562	-0.1800	-1.2739	1.3825	-1.7873	0.8335	-0.3092	1.2999	tValue		
-13.7644	284.8121	82.3964	-16.7965	-1.9243	-103.3949	225.9671	-58.2089	72.6160	134.2143	46.0829	-178.0048	13.1070	-115.2488	-102.0024	-26.6148	-0.3191	-555.3075	-106.7432	100.4307	Estimate			0.0303	41.3712	46.8030	-91.4094	40.7260	35,4690	38.4546	102.2658	15.0439	8.7434	143.6989	-9.9460	-11.7487	7.2652	121.8273	-13.1584	-0.3318	-45.8798	-13.0630	-14 9049	-5.2069	32.0534	-31.1184	40.7611	5.4480	-7.8190	24.0280	-18.4607	201135 CZ/0.00	1.2859	76.7006	Estimate		
38.7528	146.8850	50.3248	32.3774	104.7592	69.6708	150.0161	87.5850	163.4592	118.7861	68.8670	123.9501	59.3651	104,1071	99.0192	29.0034	0.7124	288.4798	70.6987		StdError	30		0.0371	39.2293	40.5442	32.9064	38.4525	39.9647	40.1741	41.5707	28.2766	11.1663	50.8952	20.6159	9.8117	10.9666	41.4645	14.1769	_	29.3107	19.2266	41 91 18	46.0754	_	19.2869	34.2148	16.3664		27.6306	8.2350	0.2108	19.6538	50.7684		30	
-0.3552	1.9390	1.6373	-0.5188	-0.0184	-1.4840	1.5063	-0.6646	0.4442	1.1299	0.6692	-1.4361	0.2208	-1.1070	-1.0301	-0.9176	-0.4480	-1.9249	-1.5098	0.5616	tValue			0.8147	1.0546	1.1544	-2.7779	1.0591	0.8875	0.9572	2.4600	0.5320	0.7830	2.8234	-0.4824	-1.1974	0.6625	2.9381	-0.9282	-0.0363	-1.5653	-0.6794	-0.3556	-0.1130	0.9605	-1.6134	-1.1913	0.3329	-0.2548	0.8696	-2.2417	-0.5166	0.0654	1.5108	tValue		
-68.8881	210.3969	51.5661	-50.2631	54.0484	-46.1678	290.6069	-10.9821	75.8388	140.9279	114.1450	-216.8053	-16.9833	-24.2676	-116.5203	-25.7739	-0.2779	-624.8867	-128.0701	126.6252	Estimate			0.0287	42.0792	41.8323	-91.0089	38.6791	38.6081	33.2742	98.5800	7.8455	10.6095	138.6653	-9.6101	-11.6778	5.7791	114.5612	-15.2352	-2.5498	-36.5224	0.1928	-18 8709	-8.8411	26.2474	-20.5711	-36.5668	-5.4259	13.1616	33.9161	-16.3934	-0.0809	3.1680	57.5494	Estimate		
37.9906	143.9658	49.1969	31.6706	102.3450	67.1527	146.1540	85.7449	159.9067	116.3052	67.0584	119.5203	57.2113	103.3427	96.5709	28.1375	0.7088	279.7244	68.3178	174.5949	StdError	40		0.0351	37.0036	38.2471	31.1634	36.2606	37.7137	37.8928	39.2200	26.7520	10.4775	48.0879	19.5857	9.2633	10.3386	39.1036	13.3599	8.5904	27.4558	17.8428	39 2403	43.5421	31.3016	18.0449	31.7894	15.1498	29.0917	25.8425	7.7095	0.2080	18.3102	47.7814	StdError	40	
-1.8133	1.4614	1.0482	-1.5871	0.5281	-0.6875	1.9884	-0.1281	0.4743	1.2117	1.7022	-1.8140	-0.2969	-0.2348	-1.2066	-0.9160	-0.3921	-2.2339	-1.8746	0.7253	tValue		i F2	0.8189	1.1372	1.0937	-2.9204	1.0667	1.0237	0.8781	2.5135	0.2933	1.0126	2,8836	-0.4907	-1.2606	0.5590	2,9297	-1.1404	-0.2968	-1.3302	0.0108	-0.1323	-0.2030	0.8385	-1.1400	-1.1503	-0.3581	0.4524	1.3124	-2.1264	0.8/42	0.1730	1.2044	tValue		iFI
-113.9147	78.0190	40.5771	-67.5082	64.5348	-30.5862	284.8775	-10.4416	94.3510	145.8541	129.9861	-229.5892	-31.4617	-6.1617	-96.7353	-18.8695	-0.3217	-692.6175	-159.0269	222.2522	Estimate		2	0.0212	22,8115	21.8039	-86.2935	23.5466	22.4424	9.1538	77.7105	-7.7580	15.5169	114.9885	-6.0370	-5.6307	3.2807	89.5077	-17.6984	-5.4560	-26.1118	10.1326	-18.6759	-12.3879	14.6766	-10.1738	-27.1783	-10.8177	30.3159	35.0905	-13.1460	0.0220	4.0025	49.1380	Estimate		Ĩ
37.3840	141.5278	48.3219	31.1583	100.6149			84.4959	156.8621	114.3853	65.8345	116.9231	55.9927	103.0376	94.7820	27.7080	0.7142	274.0328	66.9232	171.8643	StdError	90		0.0335	34.5692	35.7052	29.0828	33.8363	35.2360	35.3808	36.6092	25.0249	9.8082	44.8952	18.5166	8.6573	9.6507	36.5028	12.4630	8.0301	25.6709	16.7025	36 6469	40.4853	29.2549	16.9063	29.7005	14.1811	27.5655	24.1429	7.2376	0 1998	17.1117	44.7851		50	
-3.0471	0.5513	0.8397	-2.1666	0.6414	-0.4655	1.9867	-0.1236	0.6015	1.2751	1.9744	-1.9636	-0.5619	-0.0598	-1.0206	-0.6810	-0.4504	-2.5275	-2.3763	1.2932	tValue			0.6342	0.6599	0.6107	-2.9672	0.6959	0.6369	0.2587	2.1227	-0.3100	1.5820	2.5613	-0.3260	-0.6504	0.3399	2.4521	-1.4201	-0.6794	-1.0172	0.6067	-0.4000	-0.3060	0.5017	-0.6018	-0.9151	-0.7628	1.0998	1.4534	-1.8163	0.1102	0.2339	1.0972	tValue		
-113.9401	9.9930	44.2365	-56.4338	56.0974	-21.4292	228.4384	-52.3587	93.3761	136.8131	116.5745	-174.7575	-30.2867	-20.7334	-72,4691	-10.6002	-0.2549	-649.8375	-153.0595	233.7899	Estimate			0.0236	-2.5579	-2.9541	-64.0923	2.9627	-1.9803	-16.0206	52.6595	-23.8018	13.1503	68.4196	-12.9192	-2.3234	2.8638	55.6198	-18.3192	-6.3319	-19.4741	9 5406	-16 7455	-9.4870	9.4194	-8,1655	-16.8567	-7.3259	24.9175	29.7017	-12.3906	0.0200	5.3323	61.9497	Estimate		
	135.4506	46.2956	29.8790	96.3635	62.8857	137.2972	80.9754	150.1754	109.4837	_	111.9442	53.5924	99.3700	90.7034	26.6593	0.6940	262.3393	64.1129	164.9451	StdError	60		0.0318	32,8194	33.8886	27.5423	32,1014	33,4434	33.5677	34.7482	23,7335	9.2815	42.6002	17.5541	8.1868	9.1434	34,6584	11.7999	7.6048	24,4256	15.8496	34 8240	38,3179	27.8410	16.0952	28,1787	13.4675	26.2322	22.9789	6.8487	0 1902	16.2174	42,4909	_	60	
-3.1796	0.0738	0.9555	-1.8887	0.5821	-0.3408	1.6638	-0.6466	0.6218	1.2496	1.8497	-1.5611	-0.5651	-0.2086	-0.7990	-0.3976	-0.3673	-2.4771	-2.3873	-	tValue			0.7431	-0.0779	_	-2.3271	0.0923	-0.0592	-0.4773	1.5155	-1.0029	1.4168	1.6061	-0.7360	-0.2838	0.3132	1.6048	-1.5525	-0.8326	-0.7973	0.6019	-0.4007	-0.2476	0.3383	-0.5073	-0.5982	-0.5440	0.9499	1.2926	-1.8092	0.1572	0.3288	1.4580	tValue		
-94_3354	5.7765	47.7491	-34.2399	37.6091	-0.1784	158.8211	-63.8908	81.1397	139.3486	110.5176	-84.5646	-35.6930	-28.6015	-41.8750	-7.9480	-0.0856	-485.9790	-112.9118	155.1524	Estimate			0.0175	-13.9410	-11.8202	-35.5333	-11.7115	-12.6861	-24.4749	36.9165	-19.7638	6.3109	29.7237	-8.5085	-2.2903	8.3909	31.9728	-10.8895	-2.8538	-0.9390	11.5633	-8.8147	0.3894	-13.5579	-3.9904	-0.7707	-8.1633	6.7034	16.8540	-8.1925	0.0793	7.0302	47.2769	Estimate		
32,1282	121.1252	41.4952	26.8226	86.3507	56.6205	123.0975	72.6430	134.3487	97.9734	56.5481	100.6633	48.2319	89.8007	81.2322	24.1377	0.6350	235.5949	57.7202	148.4066	StdError	70		0.0284	29.1526	30.0949	24.4191	28.5086	29.6989	29.8078	30.8618	21.0889	8.2373	37.8096	15.6201	7.2613	8.1155	30.7856	10.4689	6.7539	21.7226	14.0952	5040701	33.9499	24.7578	14.3136	25.0521	11.9852	23.3706	20.4276	6.0850	0.1700	14.4060	37.7469	StdError	70	
-2.9362	0.0477	1.1507	-1.2765	0.4355	-0.0032	1.2902	-0.8795	0.6039	1.4223	1.9544	-0.8401	-0.7400	-0.3185	-0.5155	-0.3293	-0.1348	-2.0628	-1.9562	1.0455	tValue			0.6166	-0.4782	-0.3928	-1.4551	-0.4108	-0.4272	-0.8211	1.1962	-0.9372	0.7661	0.7861	-0.5447	-0.3154	1.0339	1.0386	-1.0402	-0,4225	-0.0432	0.8204	-0.2/4/	0.0115	-0.5476	-0.2788	-0.0308	-0.6811	0.2868	0.8251	-1.3463	0.915/	0.4880	1.2525	tValue		
-58.7910	-28.2372	32,9215	-14.0927	-30.6725	-5.4200	30.0299	-63.1231	63.7083	144.1168	65.9579	-0.4243	-14.9309	40.8187	9.8103	-17.9488	-0.2023	-186.3095	-59.6334	170.8993	Estimate			0.0167	-20.3193	-10.2785	-7.0592	-18.9557	-17.6664	-23.0104	15.1191	-19.1347	1.1862	-3.5562	0.2079	-2.8985	11.2543	-0.4838	-1.9845	3.1869	13.2914	7.1123	-2 5514	9.8853	-33.1055	-0.3580	14.6477	-6.5359	2.2097	0.6309	-2.4829	8657.67	4.1398	29.5392	Estimate		
25.6107	96,4500	33.0730	21.4132	68.9685	45.5155	98.3513	58.0859	106.8085	78.1548	45.2818	80.7159	38.7644	72.0939	64.8890	19.4209	0.5150	188.6162	46.3194	118.8108	StdError	8		0.0207	21.8392			21.3921	22.2388	22.3279	23.1333	15.8067	6.1500	28.2702	11.5353	5.4082	6.0813	23.0541	7.8415	5.0666	16.3672	10.5938	23.2602	25,4066	18.6068	10.7137	18.8459	9.0207	17.3046	15.3774	4.5304	0 1231	10.7951	28.1389	StdError	80	
-2.2956	-0.2928	0.9954	-0.6581	-0.4447	-0.1191	0.3053	-1.0867	0.5965	1.8440	1.4566	-0.0053	-0.3852	-0.5662	0.1512	-0.9242	-0.3928	-0.9878	-1.2874	1.4384	tValue			0.8050	-0.9304	-0.4559	-0.3878	-0.8861	-0.7944	-1.0306	0.6536	-1.2105	0.1929	-0.1258	0.0180	-0.5359	1.8506	-0.0210	-0.2531	0.6290	0.8121	0.6714	-0 1097	0.3891	-1.7792	-0.0334	0.7772	-0.7245	0.1277	0.0410	-0.5480	0.5695	0.3835	1.0498	tValue		

Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: nast	(Intercent)	Predictor			Duration (log) x Frequency (log)	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: nalatal	Previous Place: lax	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor		, 9 • •	Duration (log) x Frequency (log)	Next Manner ston	Next Manner: lax	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place labio-dental	Next Place: labial
-13.5326	13.3148	2 3405	45,1995	-49.1860	14.0417	Estimate			0.0295	14.0988	-17.0146	10.2369	9.1043	116.4430	-6.0019	18,4002	45.8707	29.9470	0.7393	11.4504	60.0575	-6.6648	-12.7404	-13.2429	2.0889	-11.4596	-56.7881	-14.1602	6.1680	-32.5024	16.6662	11,4378	65.8682	10.2190	20.0890	2.7847	0.2040	-17.5672	26.6366	12.7164	Estimate			0.1109	360 0701	-265.8399	358,7871	320.0967	585.5659	403.1223	258.0967	94.3635	667.4166	72.9095	48.5360
31.1061	16.4270	0.8600	74.2523	39 2922	173 3539	StdError	20		0.0518	14.1869	14.9455	7.8693	17.9313	49.7914	34.7991	17.0609	12.1953	20.4447	11.9969	8.0867	21.4267	21.7429	7.4990	59.8329	65.2602	56.7425	80.4439	63.1312	64.6301	37.4820	20.6480	64 3834	32.8108	31.8859	11.0205	5.9907	0.3324	26.6861	14.1484	62.7500	StdError	20		0.1268	143 2013	118.6318	140.5391	145.7318	146.6328	151.5845	102.1735	41.2642	184.8106	72.4795	35.5839
-0.4350	0.8105	2.7217	0.6087	-1.2518	0.0810	tValue			0.5690	0.9938	-1.1384	1.3009	0.5077	2.3386	-0.1725	1.0785	3.7614	1.4648	0.0616	1.4160	2.8029	-0.3065	-1.6989	-0.2213	0.0320	-0.2020	-0.7059	-0.2243	0.0954	-0.8671	0.8072	0.1777	2.0075	0.3205	1.8229	0.4648	0.6136	-0.6583	1.8827	0.2027	tValue			0.8747	2 5308	-2.2409	2.5529	2,1965	3.9934	2.6594	2.5261	2.2868	3.6114	1.0059	1.3640
-2.6654	15.2094	2 1338	56.2775	-40.1749	60 7836	Estimate			-0.0010	10.5691	-12.9292	4.6186	7.4571	117.5185	-4.9343	16.6264	40.0213	27.7846	2.0330	8.8372	49.4830	4.1787	-10.0643	-11.9348	-20.3221	-20.5209	-59.7237	-11.7419	1.2893	-30.5528	7.4899	7.7731	59.6538	6.2313	27.2436	5.8851	0.3155	-22.5897	29.8519	-2.5633	Estimate			0.1807	261 0548	341.4229	304.0571	197.9924	452.0785	329.3204	174.1675	77.7259	617.8534	39.5506	97.8556
29.7273	15.5639	0.8002	70.9206	37.5156	164 8450	StdError	30		0.0481	13.4419	14.1883	7.4709	17.0158	47.3268	33.0566	16.0982	11.5796	19.3772	11.3821	7.6731	20.3462	20.6378	7.1191	56,6038	61.6804	53.6751	76.2509	59.7894	61.1479	35.5953	19.5239	60.9924	30.6551	29.9691	10,4686	5.5916	0.3078	25.3060	13.3986	59.0881	StdError	30	-	0.1215	138 9834	115.7305	136.4364	141.4894	142.3945	147.3147	99.6196	39.6652	179.8491	70.2230	34.5267
-0.0897	0.9772	2.6668			0 3687	tValue			-0.0214	0.7863	-0.9113	0.6182	0.4382	2.4831	-0.1493	1.0328	3.4562	1.4339	0.1786	1.1517	2.4321	-0.2025	-1.4137	-0.2108	-0.3295	-0.3823	-0.7833	-0.1964	0.0211	-0.8583	0.3836	0.1274	1.9460	0.2079	2.6024	1.0525	1.0252	-0.8927	2.2280	-0.0434	tValue			-	1 8783		_	+	+	2.2355	1.7483	1.9595	3.4354	0.5632	2.8342
2.0112	16.1666	2.0703	57.1684	-40.0554	81.6507	Estimate		- 11	-0.0341		4.7062	3.8014	4.0008	121.3546	-1.5950	19,4079	35.1913	22.9730	4.6803	10.1300	45.9720	1.5237	-2.0456	-9.2267	-42.3353	-21.0576	-54.3930	-10.5302	-10.4257	-27.1524	2.1456	5.7403	50.9160	-10.6941	27.8210	7.7570	0.5115	-26.0651	25.1018	-20.9963	Estimate			0.2106	103 7342	-364.9032	287.1416	148.9807	363.8219	288.7480	100.9472	66.8576	570.9476	-21.6209	140.1695
27.6283	14.2501	0.7228	65.7930	34.7717	151 8043	StdError	40		0.0425	12.4235	13.1395	6.9103	15.7499	43.9016	30.6396	14.8212	10.7077	17.9230	10.5354	7.0931	18.8459	19.1006	6.5832	52.2966	56.9407	49.5928	70.5543	55.2746	56.4844	32.9903	17.9935	56.4134	28.0329	27.5863	9.6807	5.0871	0.2701	23.4134	12.3838	54.2128	StdError	40	-	0.1209	136 2053	113,4993	133.6948	138.6619	139.4817 2.6084	144.4649	98.0581	38.5406	176.3722	69.4093	33.7364
0.0728	1.1345	2 8641	-	-	-+	tValue		_	-0.8013	0.7853	-0.3582	0.5501	0.2540	2,7642	-0.0521	1.3095	3.2865	1.2818	0.4442	1.4282	2,4394	0.0798	-0.3107	-0.1764	-0.7435	-0.4246	-0.7709	-0.1905	-0.1846	-	_	0.1018	1.8163	-0.3877	2.8739	1.5248	1.8935	-1.1133	2.0270	-0.3873	tValue				1 4774	-3.2150	_		2.6084	1.9987		1.7347	-	-0.3115	4.1548
9,4912	10.8228	13151	67.5121	-31.0498	101 9420	Estimate		31	-0.0474	13.0136	-0.0761	6.0715	7.0724	127.3257	-6.6945	20.3968	31.9562	18,1191	6.2364	12,1188	48.7735	-0.0783	7.9474	5.6065	-17.7102	-8.0022			-9.3948	-15.2450	-1.3480	5.0274	34.0239	-20.7662	25.6357	7.4339	0.6219	-31.1411	20.1436	-40.9974	Estimate	;	7 II		74 1546			36.1045	216.9334	173.2123	-8.1691	30.9468	434.9418	_	150.3183
24.5407	12.5753	0.6360	+	+	+		50		0.0402	11.1833	11.8178	6.2333	14.1823	39.4276	27.5425	13.3605	9.6719	16.1327	9.4867	6.3999	16.9850	17.2072	5.9442	47.0034	51.2313	44.5352	63.4977	49.6889	50.8005	29.5990	16.2641	50.7164	25.2526	24.8109	8.7730	4.6380	0.2573	21.0564	11.1379	49.0871	StdError	50		0.1215	133 0240	+	+	+	1.	142.0376	96.6376	37.8427	+	+	33.1749
0.3868	0.8606	2 3 80 2	1.1547			tValue			-1.1787	1.1637	-0.0064	0.9740	0.4987	3.2294	-0.2431	1.5266	3.3040	1.1231	0.6574	1.8936	2.8716	-0.0046	1.3370	0.1193	-0.3457	-0.1797	-0.4553	-0.0032	-0.1849	-0.5151	-0.0829	0.0991	1.3473	-0.8370	2.9221	1.6028	2.4169	-1.4789	1.8086	-0.8352	tValue				0.5517	-3.3225	_	+	-	1.2195	-0.0845	0.8178	-+	-0,7936	4.5311
						Estimate			-0.0143	9.5240	7.4229	1.2834	1.1740	116,8258	-4.2500	19.2166	19.3259	3.5940	7.1765	6.4151	45.3615	-7.0663	6.9871	25.8122	8.1136	14.5429						20.4614	24.8227		+	3.9586	0.4635	-35.2843			Estimate		- It	0.2573		1.		-16.1711	+	103.8791		-8.3836			142.1637
20.6964	10.6149	0.5279	49.3609	26.0892	113.1728	StdError	60	- H	0.0363	-	10.8017	5.7036	12.9677	36,0818	25,1932	12.2447	8.8476	14,7650	8.6715	5.8511	15.5489	15,7320	5.4384	43.0630	46.9439	40,7995	58, 1817	45.5083	46.5399	27.0854	14.9091	46,4707	23.2118	22.7727	8.0366	4.2510	0.2320	19.2887	10.2063	44.9615	StdError	60	-	0.1180	178 2105	+		130.5547	-	135.9513	92.5931	36,3223	+	+	31.8446
0.8199	1.1676	2 2093	0.7893	-	-	tValue			-0.3930	0.9317	0.6872	0.2250	0.0905	3.2378	-0.1687	1.5694	2.1843	0.2434	0.8276	1.0964	2.9173	-0.4492	1.2848	0.5994	0.1728	0.3564	-0.0790	0.3373	0.2534	-0.2409	-0.0436	0.4403	1.0694	-0.8573	2.6536	0.9312	1.9976	-1.8293	1.4934	-0.9361	tValue			2.1807	_	_	+	-	-	0.7641	-0.7962	-0.2308	-	-0.8756	4.4643
19.9383	11.9231	1.0919			57,8920	Estimate		1		8.5404	10,4924	0.4325	-1.0260	89.7473	-3.0962	14.9996	11.9931	-1.3007	7.4514	3.3103	39.2811	-6.4420	6.3666	27.8017	13.0758	18.6773	5.2699	21.5146	20,5419	-3.0663	-0.7963	24.2989		-15.9156	17.2977	2.8925	0.4302	-32.3865	13.3672	42.7592	Estimate		- It	0.2277			64.0956	10.3729	131.4036	81.7693		-26.7075	141.5192	-33.5227	116.8782
16.1703	8.3545	0.4167	38.7351	20.4900	88 9150	StdError	70		0.0329	9.2841	9.8540	5.1930	11.8221	32.9166	22.9834	11.0902	8.0673	13.4404	7.8952	5.3265	14.1848	14.3455	4.9517	39.0467	42.5598	36.9654	52,9013	41.2704	42.1868	24.5976	13.5253	42 1726	20.8138	20.5422	7.3176	3.8274	0.2097	17.5187	9.2639	40.6062	StdError	70		0.1078	114 7160	95.8543	112.5574	116.8559	117.4712	121.5732	82.8694	32,7263	148.5848	59.9932	28.6330
1.2330	1.4271	2.6204	0.9016	-0.3916	0 6511	tValue			-0.1692	0.9199	1.0648	0.0833	-0.0868	2.7265	-0.1347	1.3525	1.4866	-0.0968	0.9438	0.6215	2.7692	-0.4491	1.2857	0.7120	0.3072	0.5053	0.0996	0.5213	0.4869	-0.1247	-0.0589	0.5762	0.3726	-0.7748	2.3639	0.7557	2.0520	-1.8487	1.4429	-1.0530	tValue			2.1126	0 1054		-	0.0888	+	0.6726	-0.8885	-0.8161		-0.5588	4.0819
13.5733	4.0567	0.4526	24.3548	4.6907	42 7461	Estimate			-0.0109	6.6234	10.3137	-1.4309	-2.6795	36.0671	-0.8582	5.0353	1.6624	-6.2371	2.5998	-1.4520	21.7619	-11.1461	2.3198	24.0757	12.8193	12,4170	6.9111	23.1571	18,3195	-6.1141	-5.9850	20 7836	-7.0742	-10.8142	11.2370	2.0000	0.4096	-14.3627	5.6772	-32.0488	Estimate			0.2069	-16 9340	-35,4836	3.9410	-13,4507	68.4333	25.1417	-70.9264	-38.4316	-1.4912	-34.2444	75.7604
10.7705	5.6888	0.3116	25.9044	13.7155	60.0350	StdError	8		0.0253	7.9418	8.5094	4.4533	10.1853	28,4574	19.8582	9.4473	6.9301	11.5693	6.7923	4.5619	12.2537	12.3661	4.2425	33,4184	36.4621	31.6287	45.5078	35.2968	36.0995	21.1047	11.5297	36.1720	17.5210	17.5534	6.2861	3.1965	0.1574	15.0135	7.9414	34.1878	StdError	8		0.0872	91 4051	76.3319	89.6483	93.1246	93.5881	96.7945	65.9812	26.2200	118.3189	48.1176	22 8 570
1.2602	0.7131	_		-+-	_	tValue		11	-0.4287	0.8340	1.2120	-0.3213	-0.2631	1.2674	-0.0432	0.5330	0.2399	-0.5391	0.3828	-0.3183	1.7759	-0.9013	0.5468	0.7204	0.3516	0.3926	0.1519	0.6561	0.5075	-0.2897	-	0.5746	-0.4038	-0.6161	1.7876	0.6257	2.6017	-0.9567	_	-	tValue			2.3729	-0.1250	-0.4649	0.0440	-0.1444	0.7312	0.2597	-1.0749	-1.4657	_	-	3.3145

	Duration (log) x Frequency (log) 0.0376	Next Manner: stop 69.3574	Next Manner: nasal 12.3121	tive		Next Place palatal -22.0538	Next Flace: latit-ucital - 106.4576 Next Place: lax 74 8074			ong		ciess			ve	Previous Place: tense -8.8150	Previous Place: palatal -0.4530	Previous Place: lax -32.0188	dental (z: voiceless		Duration (log) -0.1278	NDI Cue Strength 53 4132		Estimate		_	Duration (log) x Frequency (log) -0.0575	27.6660	Next Manner: fricative 41.3540		roximate 211.7525	Next Place: tense -25.7186		Next Place: lax -26.1286	dental	Next Place: labial 118.6449	guo		Next Voicing: voiceless -43.1017	-80.7415	-91.6497	-	-162.7585	-2,4044	+alveolar -64.1963	Previous Place: palatal 169.9094	23,4105	dental 49,4773	Previous Place: labial 252.9889
	0.0564	23.5092	25.0862	41.1287	21.0900	32.7152	362508	25.9048	120000	35.0921	12.0001	42 0556	25.5036	21.1845	35.4337	62.6225	30.4717	40.8224	41.5294	21.4012	44.2039	24.1162	9.4633	0.3455	30.4586	14 0110	StdError	20		0.1360	40.1813	41.8540	21.9986	50.4796	139.1734	47.3616	34.0351	57.1604	34.2662	60.1296	60.9237	20.9941	167.1261	182.5342	158.5166	225.0937	180.6243	105.3589	57.4141	180.1426	139.0330	90.0936
	0.6666	2.9502	0.4908	2.8756	2.0722	-0.6741	2 8520	3.0/38	-1.2133	1.5067	-2-4919	-2.6U31	0.4969	1.6578	0.1711	-0.1408	-0.0149	-0.7843	1.4850	-1.1530	-	-	-2.9596	-0.3700	1 7536	3.6910				-0.4231	0.6885	0.9881	-0.1146		-0.1848	2.3998	-0.7677	0.8345	3.4624	0.9919	-0.8924	-2.0530				-0.7231			2.9594			2 8081
	-0.0763	50.5878	19.8798	66.1214	22.6913	3.0410	-1 14: /420	40.428/	2047'C7-	29.1071	-37.4237	-30,4440	-8.2511	41.9161	-1.8042	-4.8896	21.3100	-42.4729	41.4786	-29.9889	29.9368	-47.7541	-17.4668	0.6027	35 7760	130.0474	Estimate			-0.0803	15.6211	3.5336	-6.5595	200.3314	-5,4241	110.2998	-35.1713	77.7863	134,4329	42.9111	-13.9332	-48.9951	-135.8519			-258.8928	-56.7848	-76.5142	152.9309	-15.1624	44.7737	198.6200
	0.0498	21.3317	23.1649	\vdash	19.2612	+	73 9047	+	-	+	÷	+		+	┝	56.4053	27.5178	9 36.6399	38.4397	-			+	+	77 71 22	+	+	-		0.1273	+	39.9693	\vdash	-	132,9831	+	3 32.5090	\vdash	9 32.6456	-		1 20.0487		-		8 214.7877	+	_	9 54.7764		-	8180.0818
	-1.5331	17 2.3715	49 0.8582		\rightarrow	-	0011.2- 00	+	+.	_	+	4 8	+	+	+	53 -0.0867	78 0.7744	99 -1.1592	_	-	-	_	-	+	1 1 201 1 201		+	_		3 -0.6309		93 0.0884	\vdash	_	31 -0.0408	+	90 -1.0819		56 4.1179	+	+-	87 -2.4438		-		0 -0.5152 77 -1.2053		+	64 2.7919		-	18 2.5208
	31 -0.0799	15 33.4751	82 12.4318	H	+	+	12 37 1200	+		93 -3.3786	T.			+	1	67 -8.3646		92 -55.1654		87 -41.9195					01 15 8338	+	-	+		-0.1185	-	84 -8.2261			08 27.1931		19 -34.5687		79 139.1107			38 -48.8127				52 -115.6057			19 117.8887		69 21.2079	
		-		+	+	+	+	+	+	+	+	+		+	+	-						+	+	+	+	+	+	-		H	+	-	\square		-	+		+	+	+	+	-		-		-	-	+		++	+	
	0.0479 -	19.9408	21.7114 (_		22 1123 -	_	-	_	_	_	_	-	-	51.7189 -	25.5670 (34.1447 -		_	-	-	-	-	75 8161 1	-	-			0.1157 -		-		44.7399 4	23.7817 0.2197	-	30.2366 -	\rightarrow	30.2426 4	_	+	18.6248			_	199.2324 -		-	50.6923		123.7064 (
£ F 2	-1.6685	1.6787	0.5726	1.6084			16707				-			-		-0.1617	0.9204	-1.6156				_	-		0.6133	_	+	+	εFI	-1.0240	_	-0.2212			-		-1.1433		4.5998		0.2145	-2.6208				-1.3938 -	_	-	2,3256		0.1714	
	-0.0459	27.1366	13.6355	43.0533	1.6832	41.0917	-49.1799 28.4091	11.2304	-20.9013	-11.6585	-11.72/1	-2.8894	-24.1538	30.3618	-27.7167	-18.8576	12.7662	-72,7444	27.1857	-46.0726	-8.2375	-6.4473	-10.7765	0.6696	2 8 28 2	10 8000	Estimate			-0.0668	41.5574	-11.2019	5.2156	183.4621	74.1422	76.8013	-28,4803	88.9946	119.9024	32 0005	22.2648	-34,5435	-162.9831	-163.3111	-159.3967	-131.8239	-134.2351	-88.2712	95.5599	-42,5189	-5.5253	14. 7100
	0.0455	18.3496	19.8922	31.1539	16.4525	24.9880	20 2385	19. /936	10 70 26	26.6684	31.3/33	31 9755	19.5958	16.9987	27.5948	47.1950	23.5506	31.6716	33.6855	17.2597	35.2044	18.5279	7.7985	0.2890	23 6010	44.3330	StdError	50		0.1020	31.3785	33.1202	17.3619	39.7872	110.3222	36.9264	26.9217	45.0586	26.8002	47.5837	48,1736	16.5615	130.6533	142.5813	123,7969	138.3849	141.2266	82.7139	44.9694	141.2335	110.2354	00.727/
	-1.0092	1.4789	0.6855	$ \rightarrow $	\rightarrow	_	1 4037				+	-	-1.2326		+-	-0.3996	0.5421	-2.2968	_	-2.6694	_	_	-1.3819	2.3173	_	_	-			-0.6550		-0.3382	$ \rightarrow $		0.6721	+	-1.0579	$ \rightarrow $	4.4739		+	-2.0858				-1.5311	-0.9505	+	2.1250		-0.0501	
	-0.0140	27.0563	13.9775	36.5829	+		15 5410		1.	+	+			+	1	-21.6677	3.9606	-74.8502		-39.8578				+	-3 4876			-		-0.0425		-5.0543		-	117.5067	+	-19.5677		97.4938			-24.9488				-129.8438			77.2614		-21.5390	
	0.0407	16.3210	17.6822	27.6635	+	+	18 0141	+			+	+		+	-	42.0646	20.9861	28,2187	30.0369	3 15.3994		+	+	+	21.0671	+		+		0.0851	+	27.9500	\vdash	-	93.1611	+	1 22.7220	\vdash	22.5309	+	40.6512	3 13.9681				8 116.619/ 0 149.4889	-		37.9669	+	93,1091	
	7 -0.3437	0 1.6578	0.7905	+	-	-	0.8627	+			_		-		1	16 -0.5151	51 0.1887	37 -2.6525	0.6934	94 -2.5883		-	-	-	2221 U 11	-	+	-		1 -0.5003	-	0 -0.1808			1 1.2613	-	20 -0.8612		9 4.3271	+	-	31 -1.7861				97 -1.1134 89 -1.7096	_		59 2.0350		-	2.0339
	37 -0.0139	78 27.0379	16, 1481				14 6633	-		-	-		1		1	51 -18.7640	\$7 -2.2412	25 -60.9101							8555 6 23					03 -0.0581	-	08 -5.0879			13 121.9170		12 -15.6958		11 69.3751			61 -17.4035				96 -213.4064		1.	50 44.1229			04.90/D
	⊢		H	\vdash	+	+	+	+	+	+	+	+	+	+	+	+			_	-		+	+	+	+	+	-	70		⊢	+	-	Η	+	+	+	-	\vdash	+	+	+	-		-		-	+-	+		++	+	
	0.0348 -0	13.9209 1.	15.1035 1.		-	-	0 12230705	+		-	_	_	-	+	+	35.6893 -0	17.8621 -0	24.0784 -2	25.7174 0.	-	_	-	-	-	17 0774 1	_				0.0670 -0		21.9085 -0		63	73.0928 1.	_	17.8100 -0		17.5849 3.		+	10.9408 -1				91.4346 -1	_		29.8046 1.	+	-	40,0000 2
	-0.3989 -	.9423 2	.0692 1	1.2400 1	+		-0.0024 3		Ť	Ť	+	1				-0.5258 -3	-0.1255 -	-2.5297 -5		-2.1094 -1			<u> </u>		0 1300			+		-0.8677 (-0.2322 -			1.6680 8		-0.8813 -1		3.9452 4		0.6945 2	-1.5907 -				-1.8193 -1		-1.0951 -2	1.4804 3			C 0012
	-0.0469	20.8563	18,4268	12.9948	21.2192	23.3485	7.0449	1.9263	-0./4/8	1.2491	10401	5 8425	10.9411	-0.2232	-24.2351	-30.9040	-8.8137	-50.6912	16.9957	11.2048	-1.3098	10.3332	1.3670	0.7293	-17087	0110	Estimate			0.0071	19.8868	-4.1047	7.4078	34.1384	80.2253	42.2909	-10.6749	43.0107	41.6605	36.17/1	20.4989	-6.2380	-86.6077	-70.6716	-73.7668	-/1.9431 -124.1784	82.3978	-20.4377	31.1518	-23.7675	-16.3807	0/10/10
	0.0259	10.2676	10.6881	17.7660	9.0640	14,4148	11 3081	11.21/3	0.8802	15.0926	10.2942	0.8188	11.1572	9.1319	15.5925	27.1503	13.3986	18.2740	17.8100	9.1795	19.1200	10.5502	4.0450	0.1661	13 3463	6 0701	StdError	8		0.0490	13.7760	14.6825	7.6857	17.5897	48.9483	16.4731	11.9604	19.9886	11.7139	21.0714	21.3395	7.3263		63.2156	54.8373	78.4723	62.5362	36.3942	20.0034	62.4642	48.8178	116/01
	-1.8068	2.0313	1.7240	0.7314	2.3410	1.6198	1 5564	0.7000	-0.9808	0.0828	0.0000	0.8956	-0.9806	-0.0244	-1.5543	-1.1383	-0.6578	-2.7739	0.9543	-1.2206	-0.0685	0.9794	0.3380	4.3897	-0.0247	-0. /044	tValue			0.1448	1.4436	-0.2796	0.9638	1.9408	1.6390	2.5673	-0.8925	2.1518	3.5565	1.7169	0.9606	-0.8515	-1.4943	-1.1179	-1.3452	-1.5824	-1.3176	-0.5616	1.5573	-0.3805	-0.3355	1 1 2X6/

Next Voicing: voiceless	Previous Place: labio-dental	Previous Place: plottal	Provincy (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Fredictor				Duration (log) x Frequency (log)	Next Manner: stop	Next Place: labio-dental	Next Place: glottal	Next Voicing: voiceless	Previous Place: labio-dental	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Iense: past	(Intercept)	riedicion	Berline			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor	
169.0411	1214.6722	-1303.6485	-740 9757	1.0899	2662.4304	-1951.2768	3550.8451	Estimate	Patients		l		60.8207	225.7737	-123.4361	-53.0974	216.8070	-385.1335	-95.0861	-159.2310	-2.0494	4/0.9529	-001.4394	1204.0709	LOUT DOWN	Datasta			0.1584	-65.5502	-109.8720	-147.6747	-94.7348	-95.4201	-39.7276	296.7127	278.5246	-38.6022	-65.3325	107.1613	-35.9258	69.1572	-11.1976	150.3038	111.5994	122.9756	-86.7571	-35.5769	6.1175	282.3764	-187.1357	-31.0222	-0.2672	29,1190	-106.3981	389.9283	Estimate	
	614.0243	402.8620	215.0947	2.4/00	-			SIDETTOT	20	8		0.3895	56.5150	68.9354	77.3309	80.4366	266.7055	218.2667	144.6460	111.9164	+	483.8955	291.4891	007.0020	IOLEIDIC	C. JD	00		0.1212	52.9308	53.1087	96.9570	46.7279	78.4258	62.2563	139.5641	59.8613	36.5310	82.1561	99.8525	36.3504	60.7195	45.7796	83.1822	155.2016	71.7277	96.4274	85.1119	45.2883	94.6366	56.5391	19.0328	0.7186	71.6164	31.5404	102.2726	StdError	20
0.9156	1.9782	-3.2360	2 1777		-	-3.2009	2.8211	tvalue				1.5569	1.0762	3.2751	-1.5962		0.8129	-1.7645	-0.6574	-1.4228	-1.6355	0.9/35	-		1 0070	ALL			1.3073	-1.2384	-2.0688		-2.0274	-1.2167	-0.6381	2.1260	4.6528	-1.0567	-0.7952	1.0732	-0.9883	1.1390	-0.2446	1.8069	0.7191	1.7145	-0.8997	-0.4180	0.1351	2.9838	-		-0.3718	0.4066	-3.3734	3.8126	tValue	
175.7186	1147.6062	-1152.5006	401.0110	0.8/73	2345.9873	-1753.1294	3310.2459	Estimate				0.5321	117.7019	282.9725	-149.0438	-130.2141	328.5954	-333.9496	-159.5496	-189.4876	-1.7707	0.00.0501	-384./3//	00000000	Countratic	P			0.0480	-82.5510	-83.2512	-155.9775	-86.9793	-21.1846	-41.3505	328.5801	235.7329	-20.2864	-56.5605	121.8057	-14.3342	61.0754	17.5425	176.1246	96.7452	123.3698	-39.7705	-41.8601	-5.0188	229.2423	-174.5247	-14.6833	0.2124	-21.9925	-77.4256	262.8248	Estimate	
181.7474	595.3530	387.0842	22/ 20/7	2.2492	1035.6258	589.2672	1721.9974	SIDETION	50	~		0.3614	S2.0474	63,4480	71.1085	73.5908	246.2520	201.0498	133.6494	103.2408	1.1628	446.9277	2/4.400/	200.0024	JOURTON C	our our	30		0.1121	49.3648	49.5254	90.3803	43.5892	73.2222	57.9323	130.2318	55.9041	34.0718	76.5670	93.0724	33.9063	56.5557	42.6130	77.5699	144.3041	66.8111	89.8725	79.2794	42.0929	88.1322	52.8122	17.6036	0.6629	66.7137	29.3729	94.3889	StdError	30
0.9668		-2.9774			-			-				1.4722	2.2614	4.4599	-2.0960		1.3344	-1.6610	-1.1938	-1.8354		1.4110			Change	1121-			0.4283	-1.6723	-		-1.9954	-0.2893	-0.7138	2.5230	-	-0.5954	-0.7387		+	1.0799	0.4117	2.2705			-0.4425	-0.5280		-			0.3204	-0.3297	-2.6360	2.7845	tValue	
150.3118	1216.4499	-1180.7111	-462.2009	1.3838	2332.7948	-1809.9151	3382.8604	Estimate	Dations			0.2841	105.0035	244.9196	-111.4287	-129.3914	206.2435	-248.7243	-95.9495	-129.7583	-0.8093	459./141	-411.2004	000.30/2	CONTRACTO	Data			0.0111	-86.0817	-74.2838	-150.7851	-76.8673	48.4816	-34,7001	348.3694	200.1127	-8.5957	-57.3296	113.9392	-5.1402	50.6062	42.1427	183.9101	100.4752	119.1318	-8.7116	-55.2226	-14.2079	158.6985	-149.6116	4.7858	0.3049	-77.9642	-49.1632	174.7433	Estimate	
150.9911	503.1715	321.1650	1/1.04/2	1.8495	876.0238	494.7695	1028,4798	SIDENTO	40	5		0.3646	53.6924	64.8378	71.2045	75.3855	279.2868	216.3687		111.3334	1.1640	51/.394/	303.1249	1002-000	MICIDIC	C III	40		0.1018	44.9331	45.1236	82.0354	39.6987	66.6575	52.6282	118.5089	50.9066	30.9824	69.5616	84.5056	30.8319	51.4447	38.7586	70.6326	130.8259	60.7679	81.6788	72.2839	38.2471	80.3025	48.1410	15.9639	0.6031	60.6191	26.7342	85.6914	StdError	40
		-3.6763		_	-			-	_		æ F2	0.7791	1.9557	3.7774	-1.5649		0.7385	-1.1495	_	-1.1655	-0.6952	0.8885			LValue	112-1		æ Fl	0.1088	-1.9158	-1.6462		-1.9363	0.7273	-0.6593	2,9396	3.9310	-0.2774	-0.8242	1.3483	+	-	1.0873	2.6038	0.7680	1.9604	-0.1067	-0.7640	-	-	-	-0.2998	0.5056	-1.2861	-1.8390	2.0392	tValue	
95.6570	1102.6433	-1107.4372	-402.020	8819'1	2079.2683	-1687.0457	3075.3638	Estimate			2	0.2066	76.8412	234.9013	-89.3184	-131.7291	87.0561	-167.1775	-23.9067	-77.3485	-0.5446	256,9050	-239.2381	329.4020	rounauc	P		13	0.0185	-70.1578	-51.3878	-104.6918	-68,8446	77.9366	-28.6755	281.5168	168.1251	-8.2271	-38.5975	48.3137	-10.4063	49.2219	S2.4623	171.4022	99.2801	105.7966	16.3670	-65.5437	-14.4164	101.1417	-127.6899	-5.1746	0.2012	-95.8661	-30,7109	137.0918	Estimate	
135.7707	476.7029	290.5871	100.0121	100/11	823.3510	460.6898	960.9545	SIDETION	00	5		0.3293	47.6748	57.9764	62.9035	64.4530	228.0681	180.2811	124.1717	92.7812	1.0530	414.8536	1767-007	330.0322	IDUISING	0.10	6		0.0893	39.5097	39.7879		34.9448	58.5066	46.1316	104.0784	44.7323	27.1756	60.9776	73.9767	27.0418	45.1666	34.1058	62,1035	114.3247	53.3617	71.5894	63.8556	33.6531	70.8968	42.3592	14.0461	0.5302	53.1413	23.5183	75.5531	StdError	50
0.7045	2.3131	-3.8110		_	2.5254		3.2003	tvalue	AL.			0.6274	1.6118	4.0517	-1.4199		0.3817	-0.9273	-0.1925	-0.8337	-0.5172	0.6195	-0.9008	1/660	LValue	A/2.1			0.2070	-1.7757	-1.2915	-1.4584	-1.9701	1.3321	-0.6216	2.7049	3.7585	-0.3027	-0.6330	0.6531	-0.3848	1.0898	1.5382	2.7599	0.8684	1.9826	0.2286	-1.0264	-0.4284	1.4266	+		0.3795	-1.8040	-1.3058	1.8145	tValue	
42.7201	924.4668	-907.6812	-577 2040	8690'T	1730.9520	-1399.1896	2574.3156	Esumate	Padante			0.1606	73.8094	259,9033	-75.7187	-130.1599	131.6406	-205.8480	49.8263	-82.6885	-0.2642	310.0///	-209.3089	202.1.134	Conney	Deliver			0.0318	-65.7377	43.6785	-87.9690	-66.4214	85.1307	-34.6092	244.3564	139.4227	-6.4380	-36.5813	38.6762	-9.4575	45.0716	54.0509	142,7250	68.7060	79.1965	15.4770	-54.0303	-15.5904	39.3736	-100.7425	-4.4081	0.0554	-90,7448	-15.9099	115.2171	Estimate	
112.6167	415.1755	244.7890	726 7124	1.6212	709.5614	396.0805	828.5654	SIGETO	00	6		0.2579	47.4161	58,1635	57.2327	64,4047	218.4389	161.6195	119.8973	83.8936	0.8237	392.14/6	231.184/	400.4920	NULTING	our-	60		0.0764	33.8607	34.0661	61.3264	29.9446	50.1378	39.3602	88.8992	38,3843	23.2364	52,2084	63.2861	23.1180	38.6944	29,1905	53.2386	97.4239	45.7065	61.2654	54.7329	28,7769	60.7617	36.3488	12,0155	0.4548	45.3461	20.1557	64.6566	StdError	60
0.3793		-3.7080		0.6599	2.4395			TValue	4121-1			0.6228	1.5566	4,4685	-1.3230		0.6026	-1.2737		-0.9856	-0.3208	0.80/5			LValue	ALL.			0.4154	-1.9414	-1.2822	-1.4344	-2.2181	1.6979	-0.8793	2.7487	3.6323	-0.2771	-0.7007	0.6111	-0.4091	1.1648	1.8517	2.6809	0.7052	1.7327	0.2526	-0.9872	-0.5418	0.6480	-2.7715	-0.3669	0.1218	-2.0012	-0.7894	1.7820	tValue	
31.8174	584.3769	-431.3452	-230./008	0.7884	1077.7686	-743,2298	1516.2417	Estimate				-0.0001	71.5178	239.1482	-52.9485	-108.1956	203.0774	-237.0577	-100.7691	-92.6121	0.2878	459.6724	-329.0034	043.0304	E.Stimate				0.0598	-45.1047	43.3571	-59.1676	-52.1561	79.9308	-26.9334	128.5769	115.9887	-8.9289	-53.8167	26.5662	-9.6281	29,7996	44.9802	116.3009	42,5922	58.6160	7.7479	-25.5121	-7.8431	0.9973	-82.9743	-5.5998	-0.1401	-71.5942	-6.8824	94.8533	Estimate	
		196.8587	177 7570	1.2058	542.4230	306.4069	637.1003	SIDETOT	0/0	3		0.2085	44,4392	54,7069	51.4715	63.5707	233.6210	162.8791		86.5314	0.6653	428.1219					70		0.0569	25.3808	26.1475	44.9754	22.6075	36.8131	29.1153	66.0408	28.4355	17.1114			17.0089	28.6916	22.2896	39.6648	71.1515	33.9530	45.0576	42.5679	22.1637	47.0035	27.0161	9.3753	0.3430	33.4768	15.1990	51.0895	StdError	70
0.3419	1.8613	-2.1911	-2.1430	0.65.59	1.9870	-2.4256	2.3799	TValue	M6.1			5000°D-	1.6093	4.3714	-1.0287	-1.7020	0.8693	-1.4554	-0.7823	-1.0703	0.4326	1.0757	40001-	1.2000	t value				1.0504	-1.7771	-1.6582	-1.3156	-2.3070	2.1713	-0.9251	1.9469	4.0790	-0.5218	-1.3944	0.5727	-0.5661	1.0386	2.0180	2.9321	9865'0	1.7264	0.1720	-0.5993	-0.3539	0.0212	-3.0713	-0.5973	-0.4084	-2.1386	-0.4528	1.8566	tValue	
42.2942	271.0395	-158 1277	-105 7675	0.1652	520.5136	-309.3740	729.1488	Estimate	Dallast			0.0878	56.8944	207.0362	-78.5945	-79.8715	110.1058	-127.3829	44.1515	-51,4415	0.1032	199.1498	-103.3138	0/44/202	CSUIII ale	Data			0.0132	-23.2988	-30.6021	-20.7852	-29.6316	47.3588	-11.8190	63.2545	72.7736	-6.9365	-53.0073	7.5200	-9.1438	23.9139	27.1201	78.5967	23.3242	23.9186	-3.4265	-17.8457	-1.4979	-19.5315	-57.9575	-1.9125	0.1492	-36.5772	-3.5865	41.3221	Estimate	
65.3737	213.6369	142.9554	110 6460					SIGETTOT	80	8			31.8509	39,4139	37.4159		145.2491	95.4488		52.2378		1.			INITIME	o Lin	8		0.0383	17.1296			15.2780	24.7442	19.5382	44.3504	19.1590	11.4812	26.0190				15.1127	26.7448	47.7211	22.8760	30.2802	28.9486	15.0528	31.9338			0.2309	22,4118	10.2824	34.8690	StdError	88
0.6470	1.2687	-1.1061	-1.0000	0.1980	1.3989	-1.4435	1.6407	tvalue	ALL			0.5136	1.7863	5.2529	-2.1006	-1.8851	0.7580	-1.3346	-0.5423	-0.9848	0.1934	0./890	-1.1290	1.1004	LVAIUC	ALL			0.3438	-1.3601	-1.7260	-0.6890	-1.9395	1.9139	-0.6049	1.4262	3.7984	-0.6042	-2.0372	0.2414	-0.8017	1.2365	1.7945	2.9388	0.4888	1.0456	-0.1132	-0.6165	-0.0995	-0.6116	-3.1836	-0.2998	0.6461	-1.6320	-0.3488	1.1851	tValue	

Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: ston	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: dipntnong	Previous Place: palatal	Previous Place: lax	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Place: labio-dental	Next Place: glottal
104.0477	-57.4193	85.3368	223.7848	35.9141	-55.1207	-189.3465	-65.5186	9.7104	2.8834	-32.7805	-52.6325	-63.4796	Estimate			0.1247	-53.5998	-71.1030	-66.4707	-21.9754	-33.1411	-101.4318	-5.6268	-23.9638	-53.2611	21.2624	-25.2941	24.7327	-26.4914	-6.1075	5.1851	-7.6021	53.4002	32.2382	-86 2028	-90.2047	5/.11/8	0.9838	26.4412	44.0575	106.6805	75.3187	208.6706	54.2416	-24.5940	-0.2903	6.6921	-45.6481	224.3917	Estimate			-0.4490	-5.5459		
104.0477 70.8778 1.4680	174.9941	142,4701		129.4767		_	_	_				206.6244	StdError	20		0.0828		96.6806	83.7853	98.7182	98.8911	104.5250	59.3400	36.5045	_	_	_	_	97.6025	_	_	40.4747	51.2850	_	64 6216	100 \$160	40.0555	101.4507		_	73.0390	82.4120	106.9462	42.4384		0.4643	96.0157	41.0109	118.8258	StdError	20		0.7885	1 2	179.2175	165.4270 -0.3642
	-0.3281	0.5990	3.3845	0.2774		-1.0140	-0.8769	0.3042	3.5387	-0.1933	-0.7296	-0.3072	tValue			1.5057	-0.6065	-0.7354	-0.7933	-0.2226	-0.3351	-0.9704	-0.0948	-0.6565	-0.5688	0.3234	-0.8286	0.7373	-0.2714	-0.0989	0.1454	-0.1878	1.0412	0.3042	-13340	-0./86/	1.4260	0.0097	0.3219	1.1525	1.4606	0.9139	1.9512	1.2781	-1.3602	-0.6253	0.0697	-1.1131	1.8884	tValue			-0.5694	-0.0384		
79.8127	-61.0210	93.6303	153.1943	24.9389	-57.4396	-162.2703	-47.0907	16.4473	2.8646	-59.7660	-37.5372	-102.9116	Estimate			0.1308	-79.6944	-98.4733	-69.4823	-69.6792	-67.1545	-126.9522	-12.9139	-4.1648	-88.9911	-9.7594	-13.5126	11.9860	-70.6119	-15.3893	4.2305	4 1071	44.6821	8.6431	-66 9030	-82,9316	48.05/4	16.1329	21.2560	56.1208	82,4994	74.9744	191.7845	45.0349	-26.5475	-0.3693	35.0723	-58.5078	260.9394	Estimate			-0.0049	-3.1852	292.7798	-61.6712
65.2642	161.5965	131.4378	61.0266	119.1890	131.3048	172.3052	68.8633	29.4102	0.7421	156.3161	66.5833	190.4461	StdError	30		0.0791	83.2696	91.2964	78.6479	93.2388	93.3007	98.7505	56.4570	34.7773	88.4137	62.3506	29.0453	31.7742	92.2559	58.6510	33.9215	38.4948	48.8576	99,8960	62 0003	108.2205	100 2005	95.9312	78.2807	36.3588	70.1725	78.0499	102.1275	40.4226	17.2423	0.4457	91.6104	39.0815	112,8397	StdError	30		0.7049	139.6493	174.8959	-61.6712 155.1325 -0.3975 -51.2479
1.2229	-0.3776	0.7124	2.5103	0.2092	-0.4375	-0.9418	-0.6838	0.5592	3.8602	-0.3823	-0.5638	-0.5404	tValuc			1.6539	-0.9571	-1.0786	-0.8835	-0.7473	-0.7198	-1.2856	-0.2287	-0.1198	-1.0065	-0.1565	-0.4652	0.3772	-0.7654	-0.2624	-0.1247	-0.1067	0.9145	0.0865	-1 0701	-0./003	1.2555	0.1682	0.2715	1.5435	1.1757	0.9606	1.8779	1.1141	-1.5397	-0.8285	0.3828	-1.4971	2.3125	tValue			-0.0070	-0.0228	1.6740	-0.3975
46.9331	-13.1695	77.9558	106.9351	0.1247	-63.9454	-118,0365	-35.0569	21,4858	2.8018	-69.7447	-22.7757	-123.7343	Estimate			0.1341	-81.4946	-89.3635	-67.9258	-86.9363	-75.3571	-110.6277	-23.6588	6.3513	-91.6783	-33.3885	-6.6920	4.4533	-97.1581	-9.9400	1.3607	7 3 2 9 0	52.9475	-1.5591	-45 0735	-43.3283	45.30/1	29.8851	25.7502	58.6504	61.8466	77.0871	188.8680	34.2767	-30.0762	-0.3594	61.9934	-63.2372	261.2389	Estimate			0.0320	3.5488		
58.0900 0.8079	144.3372	117.3043	54.4729	106.0709	117.1787	153.8064	61.3761	26.1925	0.6479	139.3486	59.4346	169.6900	StdError	40		0.0787	79.6534	87.5799	74.9187	89.4606	89.3497	94.5859	54.4564	33.6634	84.7893	60.0401	28.0007	30.5774	88.4769	56.6721	32.7626	37.1635	47.2782	95.8651	60.4566	103.4201	57.1890	92.1243	76.5655	35.4809	69.0007	74.8570	99.7131	39.0363	16.7407	0.4480	88.7084	37.8941	109.1375	StdError	40	ĺ	0.5787	113.8364	142.8967	126.1829 -0.4061
0.8079	-0.0912	0.6646	1.9631	0.0012	-0.5457	-0.7674	-0.5712	0.8203	4.3243	-0.5005	-0.3832	-0.7292	tValue		A F2	1.7033	-1.0231	-1.0204	-0.9067	-0.9718	-0.8434	-1.1696	-0.4345	0.1887	-1.0812	-0.5561	-0.2390	-	-	-0.1754	0.0415	0.1972	1.1199	-0.0163	J) 7456	-0.4383	1.1645	0.3244	0.3363	1.6530	0.8963	1.0298	1.8941	0.8781	-1.7966	-0.8022	0.6988	-1.6688	2.3937	tValue		A FI	0.0554	0.0312	2.0339	-0.4061
19.5246	22.2787	70.6600	69.7343	1.5232	-57.2261	-82,8906	-13.9401	20.3152	2.6136	-39.3279	-16,7144	-122.9673	Estimate		ŭ	0.0990	-81.1558	-91.8154	-74.8472	-94.6602	-95.3477	-107.3825	-33.1809	14.9633	-99.5302	-30,9827	2.7095	-1.6329	-110.8384	5.8442	4.1187	13.7821	64.2775	-12.5720	-12 8860	-39,9904	20.105/	38.2116	31.0063	61.6774	43.6958	79.2281	162.8422	11.7184	-31.0333	-0.1405	64.9259	-64.0963	257.1080	Estimate		2	0.0192	20.1439	319.5053	-73.6803
49.7870	124.2720	100.5674	46.7701	90.7590	100.7169	131.8515	52.6439	22.4759	0.5610	119.4864	50.9875	145.9375	StdError	50		0.0748	73.2414	80.6422	68.7532	82.3801	82.1731	86.9295	50.1813	31.1302	78.0515	55.3566	25.7971	28.1941	81.3934	52.3700	30.2522	34 3 1 1 4	43.7126	88.4150	56 1560	94.8883	34.4/62	84.8567	71.5538	33.0759	64.6218	68.7856	92.8800	36.0094	15.5300	0.4278	81.9859	35.1027	101.0710	StdError	50		0.5440	99.5771	124.9126	110.2947 -0.6680
0.3922	0.1793	0.7026	1.4910	0.0168	-0.5682	-0.6287	-0.2648	0.9039	4.6586	-0.3291	-0.3278	-0.8426	tValue			1.3241	-1.1081	-1.1386	-1.0886	-1.1491	-1.1603	-1.2353	-0.6612	0.4807	-1.2752	-0.5597	0.1050		-	0.1116	0.1361	0 4017	1.4705	-0.1422	50CC UT	-0.4214	1.4535	0.4503	0.4333	1.8647	0.6762	1.1518	1.7533	0.3254	-1.9983	-0.3284	0.7919	-1.8260	2.5438	tValue			0.0352	0.2023		
5.9593	45.5641	20.5316	34.6914	-28.4595	43.0574	-90.8523	-3.3857	21.7553	2.3813	-34.1604	1.8428	-160.2857	Estimate			0.0404	-74.5297	-81.1296	-65.1378	-90.3156	-88.6276	-97.4039	49.3778	7.0166	-97.4233	-40.0167	-5.9103	-12.9195	-108.9788	2.0323	3.1550	19.6926	47.3814	-26.6994	1 1850	16/ 0.01-	34. 1901	12.8776	-4.2999	50.5578	31.4829	46.0424	120.8468	6.5900	-19.2393	0.1957	39,2096	46.5592	189.5236	Estimate			0.1213	50.8686	335.5643	-82,9755
43.0607	107.8218	86,9346	40.5070	78.3703	87.1296	113.9515	45.5191	19.4662	0.5012	103.3091	44.0846	126.6881	StdError	60		0.0681	64.0439	70.5286	59.9811	72.0909	71.8357	75.9471	43.9711	27.3202	68.3091	48.3676	22.5485	24.7121	71.1736	45,9961	26.5016	30.0043	38,2954	77.7131	49 1544	7501.78	30.2330	74.2934	62.3688	28,8781	56,5043	59.9475	81.0958	31.5173	13.6327	0.3925	71.7935	30.6861	88.6978	StdError	60		0.4848	82.0830	102.0206	90.5570
0.1384	0.4226	0.2362	0.8564	-0.3631	-0.4942	-0.7973	-0.0744	1.1176	4.7508	-0.3307	0.0418	-1.2652	tValue			0.5933	-1.1637	-1.1503	-1.0860	-1.2528	-1.2338	-1.2825	-1.1230	0.2568	-1.4262	-0.8273	-0.2621	-0.5228	-1.5312	0.0442	0.1191	0.6563	1.2373	-0.3436	0.0241	20107-0-	1.150/	0.1733	-0.0689	1.7507	0.5572	0.7680	1.4902	0.2091	-1.4113	0.4987	0.5461	-1.5173	2.1367	tValue			0.2502	0.6197	3.2892	-0.9163
7.6882	55.1649	-10.8665	20.4013	-47.1364	41.3793	-66.2115	6.3025	15.2100	1.5753	-11.0507	-2.0529	-110.0760	Estimate			0.0412	-29.8604	46.0009	-34.9064	-44.3622	45.2524	-61.7101	49.1566	-6.1867	-64.8981	-35.4012	-7.7020	-8.8408	-79.6391	-4,6930	0.2905	11 7286	48,1036	-0.2755	-13 0293	133 3407	32./11/	-2.1237	-6.0633	33.8823	44,2492	36.7612	107.8927	7.2877	-18.1681	0.1935	24,9320	-35.4181	143.9523	Estimate			0.0701	22.0787	297.2647	-43.3371
35.9441	91.4986	73.2296	34.2148	65.2348	73.3496	95.6431	38.0519	16.3297	0.4467	86.2409	36.8986	107.2877	StdError	70		0.0587	53.0974	58.3652	49.8441	59.6343	59.4724	62,7891	36.0353	22,4436	56.5347	39.7021	18.4814	20.3691	58,7532	37.8955	21.7700	24 5536	31.4830	64.7833	40 3074	67.88/4	24.8050	61.3350	51.3314	23.6910	46.2355	49.2489	66.4051	25.8319	11.1911	0.3400	58.8341	25.1147	73.4070	StdError	70		0.3723	69.2265	87.4085	76.5101 -0.5664
0.2139	0.6029	-0.1484	0.5963	-0.7226	-0.5641	-0.6923	0.1656	0.9314	3.5266	-0.1281	-0.0556	-1.0260	tValuc			0.7007	-0.5624	-0.7882	-0.7003	-0.7439	-0.7609	-0.9828	-1.3641	-0.2757	-1.1479	-0.8917	-0.4167	-0.4340	-1.3555	-0.1238	0.0133	0.4777	1.5279	-0,0043	CLOL UT	0.2219	1.3188	-0.0346	-0.1181	1.4302	0.9570	0.7464	1.6248	0.2821	-1.6234	0.5693	0.4238	-1,4103	1.9610	tValue			0.1882	0.3189		
-2.8655	52.2372	-55.2936	7.0894	-56.9597	-25.8371	49.7418	0.8301	9.5575	0.9746	-5.5205	-2.0737	-81.2976	Estimate			0.0297	-13.8799	-37.8917	-15.0549	-36.0379	40.8781	-54,4631	43.6698	-4.8993	-57.2083	-33.1470	-7.8678	-19.7395	-71.3332	-21.2825	-10.1395	8.3364	38.6306	-0.5119	-6 6751	112 4050	11.2041	-2.9337	-4.1803	21.0399	32.5571	27.1895	92.6652	-2.9137	-11.6437	0.2212	-0.0891	-23.9125	99.7030	Estimate			0.0786	-10.6493	266.2087	-3.0968
26.0749	66.8376	53.2859	24.7840	47.2565	52.9884	69.1610	27.4332	11.8943	0.3646	62.1651	26.5989	78.8938	StdError	88		0.0419	39.1344	42.8370	37.0068	43.7432	43.7549	46.1952	26.1808	16.2339	41.5106	28.9077	13.4126	14.8636	43.1070	27.5074	15.7795	17.7702	22.7449	47.7482	78 7958	49.8957	17.8012	44.9643	36.6390	16.9568	32.6497	36.0439	47.3502	18.6904	8.0458	0.2402	42,4068	18.0805	53.2486	StdError	8		0.2595	50.5951	63.3190	56,4074
-0.1099	0.7816	-1.0377	0.2860	-1.2053	-0.4876	-0.7192	0.0303	0.8035	2.6730	-0.0888	-0.0780	-1.0305	tValue			0.7084	-0.3547	-0.8846	-0.4068	-0.8239	-0.9343	-1.1790	-1.6680	-0.3018	-1.3782	-1.1466	-0.5866	-1.3280	-1.6548	-0.7737	-0.6426	0.4691	1.6984	-0.0107	-0 2318 0+24-2	0.2434	1.5282	-0.0652	-0.1141	1.2408	0.9972	0.7543	1.9570	-0.1559	-1.4472	0.9208	-0.0021	-1.3226	1.8724	tValue			0.3030	-0.2105	4.2043	-0.0549

Duration (log)	Icnse: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthone	Next Place dental	FIGVIOUS Mainfel, Incative	Previous Manner: approximate	Previous Place: palatal	Previous Place: glottal	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: nasal Next Manner: stop	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palatal Next Place: nalato-alveolar	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: dinhthone	Next Plane dental	Previous Manner: stop	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: flap	Previous Manner: diphthong
1.7021	120616	-921.7613	Estimate			0.0657	-6.6269	-1.2393	-14.4707	12.7438	31.2488	-42.6407	3.5792	31.4370	23.6529	19.2667	4.2155	131.7778	2100.00	-16 0247	129.129	99.8412	-109.6567	-56.8039	217.1965	4.2136	-0.3547	397.5759	72.3311	-191.0491	Estimate			-0.2914	-3.9514	-32.7632	44.8376	134.0039	20.1001	-12 6449	48.0263	67.7728	51.8484	15.2061	0.8856	44 7004	271C11	52.0707	60.8042	43.7617	103.1808	35.2541
1.7830	230.1454 0.4254	677.8843	StdError	20		0.1140	29.3205	42.5526	64.9721	37.3134	49.4532	54.2077	46.5880	45.1908	50.8184	42.4755	41.4234	49.3266	51 3310	77 0970	107.1398	102.7278	81.5685	65.1697	113.8484	12.2353	0.5058	314.5170	51.5346	174,4969 -1.0949	StdError	20		0.1430	150.6155	141.0133	169.5715	169.1200	179.3900	104 5354 -0 1210	160.7010	114.3243	53.5027	58.0549	168.0678	107 02:00	/ 800.1/	89.9545	180.6089	114.8844	177.8322	197.5902
0.9546	0.4254	-1.3598	tValue			0.5766	-0.2260	-0.0291	-0.2227	0.3415	0.6319	-0.7866	0.0768	0.6957	0.4654	0.4536	0.1018	2.6715	0.4473	-1.102	1.2000	0.9719	-1.3444	-0.8716	1.9078	0.3444	-0.7013	1.2641	1.4035	-1.0949	tValue			-2.0381	-0.0262	-0.2323	0.2644	0.7924	0.1120	-0.1341	0.2989	0.5928	0.9691	0.2619	0.0053	0.4143	1.0917	0.5789	0.3367	0.3809	0.5802	0.1784
1.6222	21.9825	-754.6214	Estimate			0.0819	12.4006	13.9678	35.5040	14.9197	39.1560	-35.0320	8.0424	36.7280	-0.3868	22.3319	-16.8403	142.0034	-17 1900	- 17.1040	101210	40.8378	-69.8046	-56.8601	116.5222	4.7755	-0.3799	229.0518	59.4741	-133.9560	Estimate			-0.3168	84.2029	-11.8106	56.7209	135.2738	39.8173	3.2342	46.0093	48.8921	37.6907	6.7754	11.5514	77 8872	70 0/20	51.3030	83.5381	29.9247	144.0116	22.3607
1.7370	-	659.3034	StdError	30		0.1049	27.3279	39.8515	59.9815	34.5078	46.3611	49.4424	43.7956	42.5574	46.2326	39.9293	37.7716	46.5684	46 2165	20.4427	+C00.001	95,9495	76.9980	60.1381	106.8329	11.2158	0.4621	293.5912	48.9368	162.7088	StdError	30		0.1306	139.1234	130.3173	156.5932	156.1466	165.5725	96.4518	148.4200	105.5507	49.3236	53.5788	155.1867	00 5780	2060.00	82.8640	166.7498	105.7195	164.2116	182.4250
0.9339	-		tValue			0.7810	0.4538	0.3505	0.5919	0.4324	0.8446	-0.7085	0.1836	0.8630	-0.0084	0.5593	-0.4458	3.0493	-0.3670	0.2020	0.7841	0.4256	-0.9066	-0.9455	1.0907	0.4258	-0.8222	0.7802	1.2153	-0.8233	tValue			-2.4258	0.3301	-0.0906	0.3622	0.8663	0.2405	0.0886	0.3100	0.4632	0.7642	0.1265	0.0744	0.0201	1.0182	0.6191	0.5010	0.2831	0.8770	0.1226
1.5207	64.5630	-787.1774	Estimate			0.0292	24.9273	25.8127	53.3934	19.6677	39.5902	-25.2464	3.6444	42.3480	-4.4801	28.7467	-20.8473	154.6983	-257164	£ 4302	2001.00	40.2795	-71.9704	-39.6463	97.7955	11.2965	-0.1101	235.0724	56.8982	-177.8137	Estimate			-0.3205	8.2380	4.7992	41.4903	112.5125	44.9105	30.0419	34.2306	19.7295	38.6971	4.4649	9.0138	0.8354	15 7520	40.2551	35.9317	31.8692	172.8062	41.8559
1.6140	213.67/8	627.7551	StdError	40		0.0925	25.2569	37.0978	54.4555	31.5769	42.9991	44.3507	40.7319	39.7594	41.1718	37.1699	33.7351	43,4280	41 5731	10 5140	90.8497	86.7949	71.0554	54.1125	96.7881	9.8291	0.4052	266.4253	44.5526	146.1736	StdError	40		0.1145	136.6984	116.5625	139.8708	139.4677	147.8386	32.8390	132.5866	94.2674	43.9784	47.8116	138.6040	92 7055	9/ 50285	73.8134	148.8398	94.0436	146.7004	162.9878
0.9422			tValue		u F2	0.3154	0.9869	0.6958	0.9805	0.6229	0.9207	-0.5692	0.0895	1.0651	-0.1088	0.7734	-0.6180	3.5622	D 6196	0.0029	0.9140	0.4641	-1.0129	-0.7327	1.0104	1.1493	-0.2717	0.8823	1.2771	-1.2165	tValue		11 F1	-2.7995	0.0663	0.0412	0.2966	0.8067	0.3038	0.1404	0.2582	0.2093	0.8799	-0.0934	0.0650	0.000	1.0281	0.5454	0.2414	0.3389	1.1780	0.2568
1.9293	-25.2240	-487.6113	Estimate		F2	0.0359	26.8355	28.6718	46.7727	20.3138	37.5449	-18.5080	3.9770	34.6640	3.7182	21.0376	-23,7353	154.8483	-22 1376	5 0.909.2	6 4040	41.8655	-80.9660	-29.3586	92.6909	12.0944	-0.0824	217.4604	55.3160	-180.9896	Estimate		Ð	-0.3042	48.8985	10.1064	21.5089	99.7803	52.9779	44.6622	26.6601	15.5598	45.4525	4.5050	6.7324	2.3047	45.0309	33.6944	-27.1825	11.3037	197.3736	75.3104
1.4239	185.4715	549.6610	StdError	50		0.0886	24.1255	35.2500	51.8168	30.1074	40.7635	42.4266	38.5561	37.6321	39.3949	35.2266	32.2846	41.0679	20 20 21 2	17 7004	53.9330	82.0505	67.4602	51.2784	91.5967	9.4147	0.3884	252.1301	41.9415	138.7129	StdError	8		0.0994	107.2371	100.7003	120.4987	120.2114	127.3629	43.3033	114.2484	81.0270	37.7379	41.1601	119.3603	76 3464	20.2/29	63.3246	128,4999	80.4766	126.2470	140.2296
1.3549	-0.1360					0.4056	1.1123	0.8134	0.9027	0.6747	0.9210	-0.4362	0.1031	0.9211	0.0944	0.5972	-0.7352	3.7705	0.5550	0.11/7	0.96/9	0.5102	-1.2002	-0.5725	1.0119	1.2846	-0.2123	0.8625	1.3189	-1.3048	tValue			-3.0614	0.4152	0.1004	0.1785	0.8300	0.4160	0.9845	0.2334	0.1920	1.2044	-0.1095	0.0564	1910	0.8957	0.5321	-0.2115	0.1405	1.5634	0.5371
2.0609	-99.3085	-88,8971	Estimate			-0.0104	18.7847	29.9168	28.1734	10.6609	29.6505	-19.2956	-9.4854	19.9902	8.5654	8.7551	-17.3296	138.8546	-13 3 170	-1.000	19.000	41.1890	-71.8439	-24.0240	89.8134	13.9600	0.1131	205,4664	51.4989	-172.8248	Estimate			-0.2763	7.0673	2.4677	22.7192	114.5261	68.8417	16 47 57	43.8395	34.6241	38.8198	12.8098	24.5442	17 0251	35.8522	27.1795	-96.7017	20.3166	199.2652	64.5330
1.2022	151.46/6	457.1933	StdError	60		0.0810	21.6566	31.5129	46,2999	26,9438	36,4644	37.8028	34,5839	33.6294	35.3708	31.4768	28,9169	36,7046	35 8443	15 0717	10 0250	74.8187	61.3712	46.9185	84.3811	8.6595	0.3536	228.4682	39.3197	126.5698	StdError	60		0.0886	93.1557	87.5386	104.6065	104.3703	110.5131	63 9550	99.2021	70.1516	32.6307	35.7282	103.5555	2102.00	45,4855	54.7848	111.9571	69.5000	109.3908	121.3839
1.7142	+					-0.1286	0.8674	0.9494	0.6085	0.3957	0.8131	-0.5104	-0.2743	0.5944	0.2422	0.2781	-0.5993	3.7830	0.3715	-0.02 0	1.0247	+	-	-0.5120	1.0644	1.6121	0.3200	0.8993	1.3097	-	tValue			-3.1168	0.0759	+	0.2172	-	0.6229	1.285/	0.4419	0.4936	1.1897		0.2370	_	0.8245	+	-0.8637		-	0.5316
1.1340	-5.5505	۰.	_			-0.0276	17.1710	30.7752	25,9059	7.3487	11.3459	-20.8519	-24.2205	11.5246	7.1355	3.0021	-12.1993	106.9884	-16 4453	0.2020	81.233	49,3908	-64.9728	-20.6680	82,0736	12.0899	0.1868	223.6375	45.9510	-162.6148	Estimate			-0.1474	-5.4609	-5.4078	5.1744	75.8137	18,2333	-3 4225	21.7094	31.4287	39.1819	6.8611	-10.3571	50163	2 0450	17.6100	-70.5641	14.3343	195.4653	66,4304
0.9880	129./446	383.2703	StdError	70		0.0755	19.7705	28.6334	42.2969	24.6159	33.1393	34.6407	31.4668	30.4856	32.6280	28.5497	26.6175	33.2520	33 1078	11 6613	71/07/	69.4304	56.5470	43.5742	78.8643	8,1349	0.3296	211.3511	36.9908	-	StdError	70		0.0790	79.4850	75.1016	88.9238	88.8263	93.8431	53.00/5	84.3846	59.0838	27.3003	30.2592	87.8154	00/0 55	30.4327	45.9226	96.1700	57.7142	92.3284	102.3991
1.1477						-0.3653	0.8685	1.0748	0.6125	0.2985	0.3424	-0.6019	-0.7697	0.3780	0.2187	0.1052	-0.4583	3.2175	+	0.0020	1.12/4	0.7140	-1.1490	-0.4743	1.0407	1.4862	0.5667		1.2422		tValue			-1.8649	-0.0687	_	0.0582	0.8535	0.1943	-1 0638	0.2573	0.5319	1.4352	0.2267	-0.1179	0.1226	0.3022	0.3835	-0.7337	0.2484	-	0.6487
0.6401		.				-0.0569	8.9525	28.4340	20.0086	-1.8914	-10.1418	-15.4294	-14.8202	4.6851	8.0540	0.3255	-7.8687	55.3092	-21 5700	14.1201	1/2.1001	50.1179			50.7631	8.3814	0.3746	216.6809	25.9305	-128.5343	Estimate				22.0300	27.8157	10.1294	63.6995	16.5087	-7 6424	17.5618	11.9768	34.6293	-8.6337	-10.8826			13.3820	-70.6109	21.1147	192.2577	62.8690
0.6698	+	+	+	88		0.0634	16.6844	24.1180	35.7138	20.7759	27.8663	29.4300	26.2540	25.5859	27.3181	24.0039	22,4080	28.0446	77 0304	112 5214	2014/10	55.3480	45.6896	34.9646	61.8955	6.5920	0.2768	170.1022		-	StdError	8		0.0636	58.2809	55.1974	65.0346	64.9783	68.5388	38 70297	61.7237	42.6845	19.6636	22.0090	63.9567	202.042	20.2524	33.3718	71.4330	41.6449	66.7491	73.8861
0.9557	-	_				-0.8968	0.5366	1.1790	0.5602	-0.0910	-0.3639	0.5243	-0.5645	0.1831	0.2948		-	1.9722	_	0.7701	+		+-	-0.2578	_	1.2714	1.3533	2 1.2738	0.9214	. 1	r tValue			-	0.1830	+-	0.1558	0.9803	0.2409	-0 1975	0.2845	0.2806	1.7611	-0.3923	_	0.314	_	+	0.9885	0.5070	\rightarrow	0.8509

Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Voicing: voiceless	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Voicing: voiceless	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place lax	Next Place: labio-dental	Next Place labial	Next Place alottal	Next Place dinhthone	Next Voicing: voiceless	Previous Manner: fricative	Previous Manner: approximate	Previous Place: palatal	Previous Place: glottal	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)
111.0732	-18.1673	132,7139	-67 2055	0.4765	-58.9837	-22.3171	78.6284	Estimate			2.1916	50.0580	-38.9767	192.0172	-259.6836	-9.3985	-234.1188	77.5023	1118.2123	Estimate			-0.6398	-20.0235	8.7857	-30.0697	65.0291	3.2141	6.9818	64.0154	-266.3285	Estimate			-0.0525	-243.4598	-288.5292	26.4540	-303.2432	99.8235	77.3220	-22.7212	78.7337	200.8928	170 5777	45 5513	381 1614	-34.0636	236.1494	590.6162	640.4960	-299.9701	-38.9615	490.7737	11.4646
99.8111	66.7041	118.9077	85 0807	0.2456	101.4548	19.7349	116.9006	StdError	20		2.6582	43.0102	340.8375	293.5024	181.1685	12.7509	484,4461	260.0368	1030.3594	StdError	20		2.2509	33.1904	270.3783 0.0325	243.9460	143.7456	10.8103	391.3767	210.5615	836.2763	StdError	20		0,4104	106.9312	157.0880			184.0444		177.2527		177.6450	158 4148	143 6031	185 6797	170 9050	246.2818	417.1929	405.6752			467.3107	46.0720
1.1128	-0.2724	1.1161	-0.7800	1.9406	-0.5814	-1.1308	0.6726	tValue			0.8245	1.1639	-0.1144	0.6542	-1.4334	-0.7371	-0.4833	0.2980	1.0853	tValue			-0.2842	-0.6033	0.0325	-0.1233	0.4524	0.2973	0.0178	0.3040	-0.3185	tValue			-0.1279	-2.2768	-1.8367	0.1142	-2.2713	0.5424	0.4213	-0.1282	0.4621	1.1309		-03170	2 0528	-0.4550	0.9589	1.4157	1.5788	-0.9399	-0.1514	1.0502	0.2488
120.6692	-24.6128	160.9148	-50 0850	0.5238	-42.0869	-30.4439	70.8261	Estimate			1.1492	40.3235	-64.5878	238.3033	-178.9431	-4.5929	-325.2296	133.8886	680.3215	Estimate			0.6509	-3.4464	140.2423	-142.4096	21.0581	-2.9159	144.9055	-9.1761	31.0154	Estimate			-0.1142	-171.1346	-241.3169	85.3989	-278.1959	81.6454	74.3905	-45.6391	84.9940	158,1190	377 71 17	-60 2730	1901 001	-4/.1083	248.9958	479.8719	528.2606	-215.7048	1.2544	326.2250	13.5564
96.6027	64.5657	115.3260	82 4167	0.2396	98.4716		113.3628	StdError	30		2.3985	36.4771	299.6320	265.3892	157.1534	11.4982	433.1367	232.4133		TTOT	30		2.0258	31.8252			133.9923	9.7268	347.1709	187.9551	774.9834	StdError	30		0.3996	103.2712	151.2549 -1.5954	223.7952	128.9493	177.3037	177.9656	170.5778	163.7733	172.5809	152 4287	130.4535	178 5958	172 0640	238.4976	403.8153	392.9927	308.8264	248.8551	454.5391	44,8930
1.2491	-0.3812	1.3953	0.0202	2.1859	-0.4274	-1.5878	0.6248	tValue			0.4791	1.1054	-0.2156	0.8979	-1.1387	-0.3994	-0.7509	0.5761	0.7549	tValue			0.3213	-0.1083	0.5658	-0.6630	0.1572	-0.2998	0.4174	-0.0488	0.0400	tValue			-0.2858	-1.6571	-1.5954	0.3816	-2.1574	0.4605	0,4180	-0.2676	0.5190	0.9162	2 4780	-0 4377	2 2263	-0.61/6	1.0440	1.1883	1.3442	-0.6985	0.0050	0.7177	0.3020
104.6509	-32.9566	143.8845	-51 6518	0.5769	-28.7513	-26.8786	44.7997	Estimate			1.8259	37.8785	65.3892	53.3822	-156.7909	-7.9113	-97.8865	8.7579	740.7210	Estimate			1.1014	0.7744	151.5225	-156,4440	-6.9089	4.9796	183.5793	-34.8338	172.9752	Estimate			-0.1584	-87.0584	-187.0761	138.2293	-226.4073	29.1825	73.6729	-101.5153	90.9889	125.9912	171 8588	77 1038	172 8257	-50.0649	242.4667	473.9914	527.8673	-161.9783	33.7827	302.8777	20.9339
91.0431	60.8595	108.5870	11.6499	0.2263	92.7146	18.0469	106.7653	StdError	40		2.1189	27.8476	251.6681	240.4846	129.8651	10.1640	385.5144	205.3045	757.8759	StdError	40		1.5159	23.6329	187.9977 0.8060	162.8633	100.4393	7.2794	261.1697 0.7029	141.9274	580.4854	StdError	40		0.3696	97.5742	142.7889	211.0730	121.6510	167.3131	168.9054 0.4362	160.5776	154.2313	164.1131	143 5614	122 2664	167 8030	164 0395	224.6095	383.2744	373.5349	292.7749	236.1327	433.8318	42.4567 0.4931
1.1495	-0.5415	1.3251	-0.6651 0.1424	2,5496	-0.3101	-1.4894	0.4196	tValue		o FI	0.8617	1.3602	0.2598	0.2220	-1.2073	-0.7784	-0.2539	0.0427	0.9774	tValue		0 F2	0.7266	0.0328	0.8060	-0.9606		-0.6841	0.7029	-0.2454	0.2980	tValue		c	-0.4286	-0.8922	-1.3102	0.6549	-1.8611	0.1744	0.4362	-0.6322		0.7677			2 2000	-0./038	1.0795	1.2367	1.4132	-0.5533	0.1431	0.6981	0.4931
140.8301	-11.5499	176.4974	-26 8307	0.5357	-34,2930	-27.2193	25.7529	Estimate		FI	1.7518	34.9209	150.2427	-21.7272	-110.0028	-7.5631	-56.1137	-12,9766	575.0158	Estimate		F2	0.6009	4.6848	98.9479	-85.2508	14.8606	-2.4580	73.0713	15.1960	-3.7334	Estimate		o Fl	-0.2897	-48.5608	-93.4972	141.1912	-162.8530	-37.9276	77.3897	-67.1036	87 6861	116.6512	358 7662	-62 0134	335 8418	-5/.8501	242.2142	287.0349	336.6256	-24,1462	29.4464	65.5048	22.6365
84.5567	56.5396	100.6078	77.0589	0.2097	85.8298	16.6956	98.9476	StdError	50		1.6924	20.8866	197.8761	195.3816	101.7462	8,1179	311.2646	165.1521	597.6574	StdError	50		1.3460	21.0985	167.3849 0.5911	143.9733	89.4541	6.4620	230.9318	125.7120	516.6167	StdError	50		0.3259	86.2267	126.1226	186.2654	107.4682	147.5463	149.5769	141.3884	135.9978	144.5889	126 6001	116 7012	148 0772	144 6000	198.0136	335.7984	326.9220	257.4917	206.2936		37.1522
1.6655	-0.2043	1.7543	2000.0	2.5544	-0.3995	-1.6303	0.2603	tValue			1.0350	1.6719	0.7593	-0.1112	-1.0811	-0.9317	-0.1803	-0.0786	0.9621	tValue			0.4464	0.2220	0.5911	-0.5921	0.1661	-0.3804	0.3164	0.1209	-0.0072	tValue			-0.8890	-0.5632	-0.7413	0.7580	-1.5154	-0.2571	0.5174	-0.4746	0.6448	0.8068	2 8316	0122 0	3 3680	1 7500	1.2232	0.8548	1.0297	-0.0938	0.1427	0.1731	0.6093
134.9479	5.4265	168,7048	-0, 1401	0.4690	-67.1275	-32.3594	45.5637	Estimate			1.5150	26.7864	180.6763	-80.6431	-64.8526	-6.6019	27.7881	-55.9972	415.8894	Estimate			-0.1058	8.7357	28.1894	-9.4852	40.6938	0.9622	48.2628	60.9066	-194.7513	Estimate			-0.4056	-135.1462	-27.7753	5.1192	-150.6500	-129.8372	72.7782	7.3900	35.0016	153.8738	255 2638	15 0000	221 6230	20.3999	159.5532	84.6029	140.6690	50.7112	-6.1822	-72.8428	15.3988
76.3862	51.0235	90.8338	9.1001	0.1863	77.5879	15.0629	89.3623	StdError	60		1.2938	17.1014	152.7513	145.5828	80.0568	6.1999	234.1739	124.7826	467.7551	StdError	60		1.2957	19.9865	159.6154	139.1093	85.2707	6.2212	223.2882	121.0889	493.3216	StdError	60		0.2747	72,7255	106.1045	156.8039	90.6110	123.7427	127.0712	118.1448	113.8768	121.8147	106 3063	8209.80	124.1001	33,1000	166.5517	278.8956	271.0866	215.2052	170.4629	312.4180	30,9475
1.7667	0.1064	1.8573	C670'0-	2.5181	-0.8652	-2.1483	0.5099	tValue			1.1710	1.5663	1.1828	-0.5539	-0.8101	-1.0648	0.1187	-0.4488	0.8891	tValue			-0.0817	0.4371			0.4772	0.1547		0.5030	-0.3948	tValue			-1.4767	-1.8583	-0.2618	0.0326	-1.6626	-1.0493	0.5727	0.0626	-		2 4012	101615	1 7865	0.3842	0.9580	0.3033	0.5189		-0.0363	-0.2332	0.4976
99,1954	14.3281	129.9922	-13./843	0.3483	-76.2626	-34.8705	104.4776	Estimate			0.6985	16.6461	88,6807	-17.5499	-22.9617	-2.8676	-66.4434	-1.4075	158.2996	Estimate			-0.2970	11.1097	-18.0768	5.6316	30.4132	1.8067	-59.3417	47.4905	-151.2915	Estimate			-0.2321	-2.1607	38,4774	92.4332	-6.4877	-19.6121	46,5177	-3.6689	89.4963	112.4442	258 4224	4 5061	2020.202	1.2345	101.1131	82.9252	120.3626	93,7605	-64.7576	19.2482	5.2812
67.6427	45.1415	80.8595	57 8517	0.1649	69.5928	13.5313	79.6361	StdError	70		1.1198	14.2635	132.1098	127.9081	67.8834	5.3682	204.4900	108.8475	397.9972	StdError	70		1.2566	17.5625	150.1020	138.7080	78.4498	6.0360	220.5514	118.4197	458.2870	StdError	70		0.2258	59.2415	86.4453	128.2631	73.9026	101.2337	103.3725	8056.96	93.0643	100.3108	86.7565	80 8740	101 3646	43.2245	136.6983	232.7673	227.0444	177.7633	143.0592	264.2563	25.9232
1.4665	0.3174	1.6076	-1 1063	2.1124	-1.0958	-2.5770	1.3119	tValue			0.6238	1.1670	0.6713	-0.1372	-0.3383	-0.5342	-0.3249	-0.0129		tValue			-0.2364	0.6326	-0.1204	0.0406	0.3877	0.2993	-0.2691	0.4010	-0.3301	tValue			-1.0279	-0.0365	0.4451	0.7207	-0.0878	-0.1937	0.4500	-0.0378	0.9617	1.1210	2 0787		2 2912	0.0286	0.7397	0.3563	0.5301	0.5274	-0.4527	0.0728	0.2037
44.9453	11.6870	55.9803	12:0000	0.3641	-52.7212	-23.9956	95.4263	Estimate			0.5078	7.6238	63.9174	-39.2771	-3.5829	-2.1392	-14.1326	2.6256	60.8897	Estimate			-0.2615	8.3969	-18.4220	-15.8425	22.9705	1.5420	-8.8390	15.2691	-97.9330	Estimate			-0.1097	107.1307	93.8752	191.5530	89.0856	141.3897	27.4397	-1.3405	176.5908	64.5397	250 055	-74 1083	105 1350	-14.6821	107.0639	88.7665	104.1675	101.8671	-141.9304	75.3093	-6.8136
52.2135	34.8476	62.5996	44 7862	0.1292	54.2359	10.5682	61.7139	StdError	88		0.9761	9.7215	112.8516	120.1300	54.2080	4.6897	187.5928	98.7598	323.1571	StdError	80		1.1486	14.8333	133.7673	128.7699	69.2432	5.5188	203.3641	108.5507	407.9232	StdError	8		0.1532	39.5927	57.7125	86.3295	49.4975	68.0800	68.9243	65.4962	62 4 192	68.4257	58 0416	54.7575	67 9804	28,8604	92.5574	161.5892	158.3875	121.2330	100.1512	187.5948	18.2467
0.8608	0.3354	0.8943	-1.3427	2.8183	-0.9721	-2.2705	1.5463	tValue			0.5202	0.7842	0.5664	-0.3270	-0.0661	-0.4561	-0.0753	0.0266	0.1884	tValue			-0.2276	0.5661	-0.1377	-0.1230		0.2794	-0.0435	0.1407	-0.2401	tValue			-0.7163	2.7058	1.6266	2.2189	1.7998	2.0768	0.3981	-0.0205	2.8291	0.9432	4 4705	L0 4420	2 8705	-0.508/	1.1567	0.5493	0.6577			0.4014	-0.3734

Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: nasal	Previous Manner: lax	Previous Manner: fricative	Previous Manner: flap	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labial	Previous Place: glottal	Previous Place: diphthong	Previous Place: dental	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap	Next Manner: approximate	Next Place: tense	Next Place: palato-alveolar	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place labial	Next Place glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner: nasal	Previous Manner: lax	Provious Manner: friestive	Previous Manner: approximate	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: lax	Previous Place: labial
-96.9537	-39.7711	-183.8168	-114,5846	-130.5862	161.6806	245.9681	98.2893	-118.8829	-12.4809	23.5456	77.2580	-107.3721	-352.3352	282,1089	-24.1717	15.8091	-169.3599	105.4534	73.2550	-13.3787	35.7245	-165.9668	211.2350	181.8615	3.8659	0.0621	-58.8497	49.3272	266.8157	Estimate			-0.0161	51.1182	17.5165	31.9315	16.7495	13.0709	21.7843	90.5993	40.6868	-11.8682	-40.5872	15 8707	-6,1844	15.7044	-8.6289	20.4104	-19.8191	31.2097	44.0414	-54.6/10	-57.1899	226.7911	13.3989	-62.7649	-98.7960
116.1895	120.8596	78.0937	38.3582	113.8786	53.4439	30.4404	40.9406	115.0488	52.9799	33.9902		91.7259	282.2262	216.6748	_	188.4255		132.6127		137.4357	253.2186	169.0751	299.1333	215.2534	32.2564	0.6095	254.7481	49.4090	294.4872	StdError	20		0.0333	-	47.1295	43.9167	51.2969	45.8050	47.6648	30.8160	15.1569	44.8828	21.0976	12 0345	16.2015	45.3414	20.9337	13.4444	57.8110	36.1927	111 4400	1605.01	74:33/0	76.5703	52.5069	_	54.7455
-0.8344	-0.3291	-2.3538	-2.9872	-1.1467	3.0252	8.0803	2,4008	-1.0333	-0.2356	0.6927	0.5273	-1.1706	-1.2484	1.3020	-0.1250	0.0839	-0.8806	0.7952	0.4417	-0.0973	0.1411	-0.9816	0.7062	0.8449	0.1198	0.1020	-0.2310	0.9983	0.9060	tValue			-0.4817	1.1145	0.3717	0.7271	0.3265	0.2854	0.4570	2.9400	2.6844	-0.2644	-1.9238	1 3188	-0.3817	0.3464	-0.4122	1.5181	-0.3428	0.8623	0.3213	-0./140	-0.7693	2.9619	0.2552	-0.9598	-1.8046
-56.4201	-33.9861	-151.5547	-84.8273	-82.1661	156.7430	236.5578	78.6314	-68.3502	-26.8024	21.1658	61.6772	-83.2395	-327.5283	246.2724	12.0928	50.5229	-193.7060	29.2690	38.9928	-14.1549	54.7527	-159.7609	232.9947	197.7525	18.8236	0.3728	-36.7545	59.6678	103.4481	Estimate			-0.0158	55.3708	22.2177	35.0661	28.2239	17.8220	3.1537	109.3003	37.2004	-18.3694	-29,9920	11 1155	-18.0201	-6.3786	-9.1790	18.5176	-14.7503	37.6046	130 5547	-44.8502	-53.1276	216.1937	18.4659	-54.6069	-102.0043
	111.0099	71.7667	35.3739	104.5840	49.1448	28.0203	37.6632	105.6630	48.7539	31.3447	134.7216	84.3118	259.7407	199.5293	178.1471	173.2013	178.7896	122.3848	152.4478	128.0792	232.6948	155.4432	276.0612	198.3680	29.9081	0.5674	236.0117	45.9006	271.8913	StdError	30		0.0325	44.3959	45.6262	42.5077	49.6746	44.3389	46.1527	29.8496	14.6880	43.4436	20,4333	11 6604	15,6997	43.8881	20.2806	13.0309	55,9560	35.0410	107 0308	/4.1816	74 1017	74.4083	50.9058	63.2950	53.2292
-0.5286	-0.3062	-2.1118	-2.3980	-0.7856	3.1894	8.4424	2.0878	-0.6469	-0.5497	0.6753	0.4578	-0.9873	-1.2610	1.2343	0.0679	0.2917	-1.0834	0.2392	0.2558	-0.1105	0.2353	-1.0278	0.8440	0.9969	0.6294	0.6570	-0.1557	1.2999	0.3805	tValue			-0.4865	1.2472	0.4869	0.8249	0.5682	0.4020	0.0683	3.6617	2.5327	-0.4228	-1.4678	10933	-1.1478	-0.1453	-0.4526	1.4211	-0.2636	1.0732	0.2294	-0.6046	-0.7384	2,9055	0.3627	-0.8627	-1.9163
-13.5583	-13.3341	-76.4767	-48.3544	-54.2847	151.6203	201.8174	55.0957	-41.1005	-47.1783	10.9330	77.8563	-55.4881	-293.7359	229.5542	56.8714	116.5591	-102.5956	-10.1430	33.0579	-11.7766	114.9633	-99.2042	282.9182	163.3591	20.2103	0.5327	21.6599	52.4146	-7.8731	Estimate			-0.0248	63.6389	36,1147	44.0084	32.9223	19.0310	-0.3996	107.7432	39.0167	-17.9491	-28.9903	9 7203	-24.1529	-12.2165	-15.2651	13.3014	-6.9808	35,1884	7070'+	-57.3462	-42.1070	189.8828	21.2990	-46.2778	-94,9053
96.1417	100.0208	64.6500	31.7507	94.2199	44.2274	25.1875	33.8983	95.1877	43.8470	28.1401	121.2949	75.8859	233.5084	179.2458	159.9235	155.9216	159.2801	109.6499	137.2579	113.6112	209.4604	139.9272	247.4738	178.0334	26.6289	0.5078	210.8235	40.8835	243.5521	StdError	40		0.0306	41.8502	43.0089	40.0692	46.8157	41.7968	43.5138	28.1490	13.8457	40.9518	19.2610	10 9899	14.8005	41.3712	19.1167	12.2821	52.7471	33.0259	101 7060	70 1 477	67.8205	70.0613	47.9537	59.6637	50.0683
-0.1410	-0.1333	-1.1829	-1.5229	-0.5761	3.4282	8.0126	1.6253	-0.4318	-1.0760	0.3885	0.6419	-0.7312	-1.2579	1.2807	0.3556	0.7475	-0.6441	-0.0925	0.2408	-0.1037	0.5489	-0.7090	1.1432	0.9176	0.7590	1.0491	0.1027	1.2820	-0.0323	tValue		0 F2	-0.8089	1.5206	0.8397	1.0983	0.7032	0.4553	-0.0092	3.8276	2,8180	-0.4383	-1.5051	0 8845	-1.6319	-0.2953	-0.7985	1.0830	-0.1323	1.0655	1 10/0	-0.5344	-0.6209	2,7102	0.4442	-0.7756	-1.8955
17.0573	-11.1025	-0.6877	-15.2290	-37.7559	128,7037	157.6994	36.9288	-33.6211	-54,2296	2.0549	90.7508	-26.5922	-298.3262	204.9716	91.0538	142.1035	-33.5798	-30.9446	41.3023	-14.3254	147.7382	-29.4878	325.4092	171.9462	21.3759	0.6222	-26.3169	35.1312	-87.1082	Estimate		F2	-0.0265	68.2573	49.9320	51.4327	36.2629	25.0510	3,4891	106.1556	38.9385	-11.4694	-22.2616	71109	-18,7450	-3.3607	-18,7317	7.8229	14.7360	16.0794	2040-11	-23.36/1	-22.4916	146.3543	29.3474	-12,4218	-77.1826
84.0147	87.4185	56.5356	27.7747	82.3238	38.6577	22.0126	29.6403	83.1723	38.3297	24.6151	106.0316	66.3139	204.0693	156.5743	139.6890	136.2589	139.5336	95.7835	119,9681	99.4279	183.0009	122.3007	216.1505	155.5455	23.2860	0.4476	184.2929	35.7494	212.7548	StdError	50		0.0284	38.8535	39.9235	37.1981	43.4426	38.8036	40.3980	26.1400	12.8487	38.0183	17.8783	10 1986	13.7414	38.4084	17.7433	11.3940	49.0025	30.6763	07 7076	64.8398	62.9964	64.8279	44.4461	55.4248	46.2641
0.2030	-0.1270	-0.0122	-0.5483	-0.4586	3.3293	7.1641	1.2459	-0.4042	-1.4148	0.0835	0.8559	-0.4010	-1.4619	1.3091	0.6518	1.0429	-0.2407	-0.3231	0.3443	-0.1441	0.8073	-0.2411	1.5055	1.1054	0.9180	1.3900	-0.1428	0.9827	-0.4094	tValue			-0.9349	1.7568	1.2507	1.3827	0.8347	0.6456	0.0864	4.0610	3.0305	-0.3017	-1.2452	0 6700	-1.3641	-0.0875	-1.0557	0.6866	0.3007	0.5242	1 7681	-0.3604	-0.3570	2.2576	0.6603	-0.2241	-1.6683
69.3391	19.1762	55.7400	8.4890	16.6710	98.7078	115.7223	12.4259	13.2383	-50,1195	1.2194	134.0387	-20.9562	-335.6271	202.4745	132,4783	177.2337	5.5820	-35.2198	110.6881	-22.2702	181.2036	55.8333	352.8726	217.0765	18.6613	0.6477	-107.0013	21.8814	-187.7123	Estimate			-0.0242	84.8250	75.5251	67.7540	54.5846	43.7770	28.4936	103.6109	41.1448	13.9604	-19.3366	5 7035	-7.8748	24.6030	-17.9554	6.0096	28.0853	1.3812	-160 4170	41.3097	-4.9/02	125,9398	55.9316	7.1215	-70.6491
71.3284	74.2191	48.0218	23.6142	69.8774	32,8259	18.6848	25.1719	70.6006	32,5505	20.9281	90.0217	56.2743	173.2415	132.8284	118.5094	115.6473	118.9254	81.2793	101.8352	84.6929	155.2652	103.8158	183.4090	132.0139	19.8011	0.3844	156.6474	30,4069	180.5819	StdError	60		0.0254	35,1605	36,1255	33.6765	39.3068	35.1131	36.5213	23.5842	11.6012	34.4111	16,1567	9306.6	12.3804	34,7607	16,0203	10.2929	44,2331	27.6698	85 2016	38,34/9	50.8/44	58.5368	40.1845	50.0495	41.8329
0.9721	0.2584	1.1607	0.3595	0.2386	3.0070	6.1934	0.4936	0.1875	-1.5397	0.0583	1.4890	-0.3724	-1.9373	1.5243	1.1179	1.5325	0.0469	-0.4333	1.0869	-0.2630	1.1671	0.5378	1.9240	1.6443	0.9424	1.6847	-0.6831	0.7196	-1.0395	tValue			-0.9542	2.4125	2.0906	2.0119	1.3887	1.2467	0.7802	4.3932	3.5466	0.4057	-1.1968	1 6293	-0.6361	0.7078	-1.1208	0.5839	0.6349	0.0499	C717'0	-0.70%0	-0.08/4	2.1515	1.3919	0.1423	-1.6888
50.0675	0.3923	80.3152	13,7348	12.6601	63.1068	70.7198	-1.7350	-5.0699	-32.8438	12.5573	114.3227	-3.6251	-250.2671	146.0003	96,1780	165.3292	28.6178	-22.8514	99,1953	-21.2975	130.3129	59.6466	270.5078	159.4675	13.2366	0.6313	-143.6679	24,9579	-141.2134	Estimate			-0.0141	64.6646	55.7183	50.6761	34,4933	31.2733	12.3858	71.8618	27.9169	6.7872	-21.3214	1 8763	-1.1764	17.8376	-18.6474	10.2594	31,1869	-2.0434	130 3804	-62.0341	0.1989	116.3314	76.4817	11.4743	-71.7135
61.4644	63.9398	41.3608	20.3695	60.2099	28.2855	16.0924	21.6668	60.8329	28.0426	18.0635	77.4542	48.3958	149.2125	114.2804	102.0013	99.4784	103.1439	70.0683	87.6165	73.4741	133.5783	89.2982	158.0148	113.7086	17.1228	0.3335	135.3931	26.2895	155.6425	StdError	70		0.0225	31.1827	32.0328	29.8837	34.9121	31.1312	32.3138	20.7904	10.3011	30.5063	14.3132	8 1520	10.9274	30.8120	14.1881	9.1535	39.1340	24,4600	75 700	51.98//	51.0077	52,6974	35.8093	44.2892	37.9046
0.8146	0.0061	1.9418	0.6743	0.2103	2.2311	4.3946	-0.0801	-0.0833	-1.1712	0.6952	1.4760	-0.0749	-1.6773	1.2776	0.9429	1.6620	0.2775	-0.3261	1.1322	-0.2899	0.9756	0.6679	1.7119	1.4024	0.7730	1.8930	-1.0611	0.9493	-0.9073	tValue			-0.6255	2.0737	1.7394	1.6958	0.9880	1.0046	0.3833	3.4565	2.7101	0.2225	-1,4896	00500	-0.1077	0.5789	-1.3143	1.1208	0.7969	-0.0835	1 7700	-1.1936	0.0040	2.2075	2.1358	0.2591	-1.8919
1.4147	-25,4064	56.1110	19,4855	-11.2771	43.3417	39.5367	-0.5238	-29.8331	-21,4202	6.7004	80.2882	-4.8113	-153.3509	77.0330	43.7798	116.1818	-32.0863	12,8308	61.5885	48.6843	90.9405	52,4049	152.0510	84.6023	-0.3897	0.4435	-76.9719	19.0732	-28.6785	Estimate			-0.0214	33.4542	23.0931	27.1935	5,4750	9.6018	-9.4257	30,4640	15.2009	-4.3058	-19.5749	1 7348	6,1165	6.0069	-17.1688	7.4248	23.3284	0.5649	-60 1467	-36,4836	2.8259	67.5624	69.9364	9.4980	-55.9032
46.8075	48.6731	31.4825	15.5022	45.8454	21.5231	12.2350	16.4718	46.3185	21.3253	13.7571	58.8573	36.7211	113.4351	86.8874	77.5900	75.5421	78.5829	53.3078	66.5435	55.9431	101,4471	67.8339	120.1970	86.5119	13.0281	0.2547	103.2900	20.0495	118.5043	StdError	8		0.0177	24.1085	24.7598	23.1119	27.0127	24.0632	24.9503	16.0393	7.9930	23.5708	11.0611	6 2063	8,4259	23.8083	10.9654	7.1057	30.2204	18.8606	44.9272	40.17/8	38.8396	41.3808	27.7540	34.1925	29.8837
0.0302	-0.5220	1.7823	1.2570	-0.2460	2.0137	3.2314	-0.0318	-0.6441	-1.0045	0.4871	1.3641	-0.1310	-1.3519	0.8866	0.5642	1.5380	-0.4083	0.2407	0.9255	-0.8702	0.8964	0.7725	1.2650	0.9779	-0.0299	1.7411	-0.7452	0.9513	-0.2420	tValue			-1.2149	1.3877	0.9327	1.1766	0.2027	0.3990	-0.3778	1.8993	1.9018	-0.1827	-1.7697	0.2755	0.7259	0.2523	-1.5657	1.0449	0.7719	0.0300	1 070	-1.4059	0.0728	1.6327	2.5199	0.2778	-1.8707

Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner ston	Next Manner: Incative	INEXT FLACE ICHNC	Next Place lax	Next Place: labial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: Incative	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: past	(Intercept)	Predictor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Place: tense	Next Place: lax	Next Place: labial	Next Place: glottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: fricative	Previous Place: nalatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: glottal	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Teneo: nast	(Intercent)	Dealise		Duration (log) X Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: fricative	Next Manner: flap
4.7797	148,7995	Estimate			0.0128	-292.0000	-118,8478	131.9942	6.22.6-	390.1744	-0.8903	129,7961	176.9092	-389.7399	-589.0389	379.1953	164.5537	443.6966	169.7970	-110,3982	0.6377	2129.7072	7.0041	127,7970	Estimate			-0.1720	181.9758	-29.3347	227.5421	42.4253	4.8352	-2.7886	46.8133	-237.1728	-251.5236	-2.7627	162 2500	-120.9393	114.3637	-187.3394	116.7599	52,4125	0.7294	-497.0982	-38 0975	-80 1833	Dalasta		0.1332	-164.1825	-195.6041	-255.5427	-204.0632
45.2248 -0.1057	260.9550 0.5702	TIOT	20		0.3678	116 1189	174.5211	12.0214	49./910	95.0802	59.2670	179.4627	173.0056	104.5828	410,4948	170.0029	130.1934		168.4539	57.6955	1.4663	634.4904 3.3566	109.7641	199.3657	StdError	20		0.2969 -0.5794	106.2533	86.5996	141.6009	65.2082	40.5456	84.1327	47.3176	145.4185	140.1298	112.3563	317.2332	129.5193	110.5505	153.2438	133.1592 0.8768	45.6248	1.2214 0.5971		80 3438	162 0178	02.0		0.0833	116.3509 -1.4111	119.4709	111,4343 -2,2932	129.9553
	0.5702	tValue			0.0347	-3 5825	-0.6810	2.1102	-0.1251	4.1036	-0.0150	0.7232	1.0226	-2.5212	-1.4349	2.2305	1.2639	2.2074	1.0080	-1.9135	0.4349		0.0638	0.6410	tValue			-0.5794	1.7127	-0.3387	1.6069	0.6506	0.1193	-0.0331	0.9893	-1.6310	-1.7949	-0.0246		-	1.0345	-1.2225	0.8768	1.1488	0.5971	-1.0427	-0.4741	-0.4000	AV.L.		1.6221	-1,4111	+		
-19.9134	24.6873	Estimate			0.0928	-240.6190	-75.6615	142.34/4	21.9330	332.7747	27.7670	85.2670	155.9072	415.0686	-552.9844	432.0956	120.0638	471.7575	159.1403	-127.9486	0.3297	2202.2004	23.2107	168.0361	Estimate			-0.2089	215.1542	-25.1436	285.1891	35.5363	-1.6307	16.9308	64.8800	-264.6565	-293.4062	19 3677	32.9645	-131.8014	122.3486	-173.9093	106 7095	48.8976	1.0707	-508.8721	-46 2700	-104 2070	P		8100.0	-124.4787	-138.8215	-190.4864	-164.5969
42.2489 -0.4713	259.5556	StdError	30		0.3632	110 6000	176.8998	09.9019	49.0700	92.0891	57.7571	182.6638	176.3221	147.1026	381.3594	158.7683	127.6203	190.3950	164.6657	55.4442	1.4519	597.6314	103.6395	193.5217	StdError	30		0.2697	95.7511	78.3955	129.9675	59.1766	37.7874	76.8347	43.8422	133.9434	129.0028	100.1736	282 5613	117.0042	100.6217	138.4228	120 7739	40.4249	1.1005	421.0572	73 1459	144 0753	30		C/ / U.U	106.8888	109.7637		119.5403
-0.4713	0.0951	tValuc			0.2554	-2.0201	-0.4278	2.0340	0.44/0	3.6136	0.4808	0.4668	0.8842	-2.8216	-1.4500	2.7215	0.9408	2.4778	0.9664	-2.3077	0.2271	3.6849	0.2240	0.8683	tValue			-0.7747	2.2470	-0.3207	2.1943	0.6005	-0.0432	0.2204	1.4799	-1.9759	-2.2744	0.1933	0.1167	-1.1265	1.2159		_	1.2096	0.9730	-1.2086	9059 0-		A 72.1		0.0081			-1.8607	-1.3769
24.1677	-108.5625	Estimate			0.1725	-151 9864	64.1736	100.3937	20.8316	186.1537	37.1720	-60.1501	14.7925	-422.9754	-508.1976	454.0213	57.3157	524.2125	135.6765	-131,2735	0.0468	2138.2606	62.6564	186.9700	Estimate			-0.2408	243.0392	-13.1250	333.6300	41.8424	4.4999	13.9518	50.1072	-282.5531	-306.3243	3.8380	-36 1228	-78.7095	94.5194	-106.9883	86.0856	42.7405	1.2408	-352.6007	-21 7517	-107 8085	Dalanta		0.0057	-79.5528	-76.1550		-118.3434
37.3417	225.2919	StdError	40		0.3509	108 6274	179.9603	05.1422	30.9410	93.4358	59.8373	186.6522	180.8454	137.4214		152.9477	127.2264	183.0842	159.3013	52.7628	1.4042	560.4101	101.4158	187.2258	StdError	40		0.2487	87.9186	72.0662	120.0065	54.4209	35.0295	70.8063	40.6146	123.7631	119.2028	92.2333	259.9378	107.8073	92.6669	127.5764	111.1868	37.1723	1.0128	386.1165	67 4294	133 3305	40		0.0693	96.2722	98.8660	92.1990	107.5062
0.6472	-0.4819	tValue		aFi	0.4917	-1 3992	0.3566	1.34/1	0.4089	1.9923	0.6212	-0.3223	0.0818	-3.0778		2.9685	0.4505	2,8632	0.8517	-2.4880	0.0333	3.8155	0.6178	0.9986	tValue		3 F2	-0.9681	2.7644	-0.1821	2,7801	0.7689	0.1285	0.1970	1.2337	-2.2830	-2.5698	0.0416	-0.1390	-0.7301	1.0200			1.1498	1.2251	-0.9132	7 3326			1 C	0.0821	-0.8263	-0.7703	-1.3790	-1.1008
37.3417 0.6472 59.5680	-0.4819 -75.4255	Estimate		FI	0.2240	-107 6577	92.2307	70,00	33.4366	126.3138	44.6534	-79.5456	-18.9369	-389.6018	-497.8093	435.8913	26.8446	522,2666	108.0471	-118.9682	-0.0790	1897.4894	81.4625	158.1181	Estimate		F2	-0.2906	188,1962	6.1436	280.3683	54.7091	9.8494	20.9696	44.0159	-212.9630	-240.6804	-12.7680	-8 3537	-70.4820	105,7027	-71.1670	100.9193	43.1557	1.4853	-253.3766	-36 2970	-156 2027	Palante		/CI010-	-35.5967	-28.0629	-66,7658	-70.9034
35.7395 1.6667	224.9224 -0.3353	P	90 S		0.3282	103 2860	171.2626	00.7000	49.3389	90.1654	57.9265	178,1035	172.7207	125.0012	334.7320	142.1080	121.8942	169.7107	149.9378	48.9900	1.3198	517.6691	95.0166	175.4975	StdError	50		0.2267	80.7761	66.5938	110.9567	50.0178	33.2498	66.1841	38.4378	114.7084	110.6920	84.2924	235.8709	98.6528	85.5569	116.2321	102 4649	33.7371	0.9248	351.7984	63 4676	102 0022	00		0.0610	84,1283	86.3966	80.5646	93.9312
	-0.3353	tValue			0.6825	-1 0423			0.6/4/	1.4009	0.7709	-0.4466	-0.1096	-3.1168			0.2202	3.0774	0.7206	-2.4284	-0.0598	3.6654	0.8573	0.9010	tValue			-1.2818	2.3299	0.0923	2.5268	1.0938	0.2962	0.3168	1.1451	-1.8566	-2.1743	-0.1515	-0.0354	-0.7144	1.2355			1.2792	1.6060	-0.7202	5 5811	-1 2704			-0.23/1	-0.4231	-0.3248	-0.8287	-0.7548
72.5501	21.7709	Estimate			0.2414	-71 4789	77.2835	10.3/49	41.2999	89.5559	62.7123	-52,8845	-8.9085	-285.7068	-417.9725	356,1315	21.3323	443.1714	62.4792	-100.3236	-0.0978	1440.3806	78.3424	123,1643	Estimate			-0.2956	146,8433	15.8340	228,7426	50.0460	0.7884	15.8624	48.8592	-168.2229	-206.5790	-7.5562	-23.8570	48.3982	72.2944	-31.0650	69.9784	38.5377	1.4529	-181.9072	-157602	-140 0006	Dalasta		-0.0190	25.9302	46.9239	22.1152	8.5795
		TOP	60		0.3064	00 0434	04 7077	03.0342	48.1289	87.4370	56,1303	169.9660	164.9721	113.9656	309.3689	132.5150	116.6388	157.8369	140.3268	45.0905	1.2356	467.2786	88,1285	163.9460	StdError	60		0.2086	74.5506	61.6002	102.8962	46,1859	31.2436	61.5900	36.1702	106.4884	102.8775	77.8995	216 3901	90.9644	79,2709	106.9661	94.9262	30,9889	0.8519	323.4166	57 9445	112 7307	00		275010	71.4269	73.3546	68.3991	79.7361
2.1189	-	tValue			0.7876	0.7152	0.4734	1.1039	1000	1.0242	1.1173	-0.3111	-0.0540	-2.5070	-1.3510	2.6875	0.1829	2.8078	0.4452	-2.2249	-0.0792	3.0825	0.8890	0.7512	tValue			-1.4170	1.9697	0.2570	2.2230	1.0836	0.0252	0.2575	1.3508		-2.0080	-0.0970	-0 1102	-0.5321	0.9120	-0.2904	0.7372	1.2436	_	-	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	_	AVE I		-0.3040	0.3630	0.6397	0.3233	0.1076
64,7484	101.8485	Estimate			-0.0062	64 1872	89.3088	/100.07	32,4170	97.0221	101.4644	-56.0308	-28.7486	-238.3701	-238.4958	229.5078	75.2717	295.9318	128.6510	-68.0006	0.8729	1119.9585	3.8000	19.1011	Estimate			-0.2826	111.0772	42,3641	190.4403	44,5806	1.8691	9.9702	41.3693	-130.8995	-169.4493	-6.6254	25.2812	46.6137	70.2872	-32.9591	69 559R	35.6823	1.3572	-160.8601	-17 6982	-136 8106	Delinet		-0.0147	2.4154	37.1844	15.8485	10.8387
29.4297		TOT	70		0.2663	89.4726	145.8630	20.0049	42.6289	77.8100	49,4787	151.8084	147.4023	97.8395	267.3620	114.8979			121.7386	38.3737	1.0719	385.6426	75.3079	141.5742	StdError	70		0.1837		53.9590	89.7381	40.5382	26.8028	53.5320	30.9913	92,7331	89.4679	68.3290	191.3689	79.9339	69.2675	_	_	27.3736	0.7498	285.6087	20 222		0/7		0.0433				68.7261
	-	tValuc			-0.0234	J0 7174	0.6123	0.00	1.2296	1.2469	2.0507	-0.3691	-0.1950	-2.4363	-0.8920	1.9975	0.7342	2.1488	1.0568	-1.7721	0.8144	2.9041	0.0505	0.1349	tValue			-1.5381	1.6956	0.7851	2.1222	1.0997	0.0697	0.1862	1.3349	-1.4116	-1.8940	-0.0970	0.1321	-0.5832	1.0147	-0.3498	0.8381	1.3035	1.8100	-0.5632	103501	-1 3833	AX6.1		-0.3231	0.0392	0.5882	0.2688	0.1577
29.9285	110.9128	Estimate			0.0185	-5 7343	124.2294	14,4139	44.3397	44.3295	125.7770	-102,2915	-91.7979	-70.9896	-140.4051	90.4625	23.6641	110.8315	48.1748	-39,1984	0.6286	361.3758	11.4499	15.8427	Estimate			-0.1436	89.6232	52.5172	152.3915	17.1556	12.5369	9.8413	7.3315	-97.5124	-120.0886	-38.8215	16.4536	-17.5717	85.3515	-5.6811	87 5682	20.5056	0.8363	-34.0767	-178501	-108 4243	D		0.00/4	-33.8191	3.4985	-12.4372	-16.6408
24.0414 1.2449	139.4179 0.7955	StdError	8		0.2030	64 2217	109.6277	40./000	30.8938	55.8642	36.4183	113.8091	110.6367	8008.07	10.		75.4743		91.6910	29.8230	0.8128	302.8214	58.0680	108.2692	StdError	8		0.1441	1	42.2771	70.4335	31.7687	21.0495	41.9682	24.3320				- 1		54.3124	73.8910	65.0480	21.4542	0.5878	223.6226	39 6446	77 5635	80		0.0340				52.3301
1.2449	0.7955	tValue			0.0914	10 0803	1.1332	1.0200	1.4332	0.7935	3.4537	-0.8988	-0.8297	-0.9243	-0.6837	1.0350	0.3135	1.0537	0.5254	-1.3144	0.7733	1.1934	0.1972	0.1463	tValue			-0.9961	1.7469	1.2422	2.1636	0.5400	0.5956	0.2345	0.3013	-1.3395	-1.7098	-0.7250	0.1097	-0.2803	1.5715	-0.0769	13462	0.9558	1.4228	-0.1524	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-1 3070	ALL		0.2145	-0.7214	0.0726	-0.2770	-0.3180

Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nasal	Next Manner: flap	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place labial	Next Place alottal	Next Place: dental	Next Voicing: voiceless	Previous Manner: stop	Previous Manner: nasal	Previous Manner: fricative	Previous Place: tense	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Duration (log)	NDL Cue Strength	Tense: nast	(Intercent)	Pradiotor			Duration (log) x Frequency (log)	Next Manner: stop	Next Manner: nacal	Next Manner: frigation	Next Place: palatal	Next Place: lax	Next Place: labio-dental	Next Place: labial	Next Place: glottal	Next Place: diphthong	Next Place: dental	Next Voicing: voiceless	Previous Manner ston	Previous Manner: nasal	Previous Manner: fricative	Previous Place: palato-alveolar	Previous Place: palatal	Previous Place: labio-dental	Previous Place: labial	Previous Place: diphthong	Previous Voicing: voiceless	Frequency (log)	Durstion (log)	NDL Cue Strength
0.2010	-353.2648	-388.0727	-292.2514	-12.3286	-250.5991	159.6046	133.0461	-2441.226	-29.3351	22.0668	89.7628	-1261.4503	-374.4000	-894.8552	395.7679	-830.2618	4.6077	563.6522	-792.5036	-17.7452	322 7451	-1.0679	-617.3641	41 4029	-403 6404	Fetimate		l		-19.5394	47 1541	23 6909	3 1110	45.2636	-10.8107	1.0357	62.0411	57.5953	-52.4594	27.6016	26.4207	-146.6381	-120.7562	-43.2770	-160.4867	-44.0679	-245.4521	-179.8459	-36.9169	10.4054	0.5795	-19.2354
0.2398	70.7883	84.2878	67.3924	65.6224	70.9181	115.2652	38 5972	27 7718	175.5873	32.0976	68.5671	661.2895	243.9447	461.6177	181.4706	445.4549 -1.8639	112.6417	240.5770	456.5091	47.1787	155.8779	1.5508	296.8596	87 5818	512 1415	StdEmor	90		0.1155	35.5395	42 1749	0100.00	32./843	35.5418	57.8646	19.2411	16.3145	44.2355	86.7787	16.0104	34 3012	338,7461	126.6507	93.9163	229.3885	57.6503	125.2333	234.7529	23.1768	79.5632	0.7458	151,4501
0.8381	-4,9904	-4,6041	-4.3366	-0.1879	-3.5336	1.3847	3.4470	1 7887	-0.1671	0.6875	1.3091	-1.9076	-1.5348	-1.9385	2,1809	-1.8639	-0.0409	2.3429	-1.7360	-0.3761	2 0705	-0.6886	-2.0796	0.4727	-0.0610	+Vialme			-0.6329	-0.5498	1 1181	0.0024	1.0284	1.2735	-0.1868	0.0538	3.8028	1.3020	-0.6045	1.7240	0 7682	-0.4329	-0.9535	-0.4608	-0.6996	-0.7644	-1.9600	-0.7661	-1.5928	0.1308	0.7770	-0.1270
0.0898	-291.6687	-331.9802	-230.3422	30.4569	-187.6659	160.2224	141.8843	67 4838	-69.8530	21.9116	91.4820	-959.6849	-302.5734	-650.0259	370.3930	-660.7978	16.8871	584.8154	-597.3437	4.0955	262.2680	-0.4924	467.4620	8055 50	447 4286	Ferimate			0.0026	4.8665	45 0557	373875	7007.97	12.1332	-48.5916	-13.0185	23.8500	3.6907	-95.8572	14.9458	26 8 106	-80.2436	3.5332	-52.4733	-94.8945	-89.3603	-128.0017	-109.0782	-10.2259	15.0095	0.3045	10.0435
0.2118	_	76.1095	60.7658	59.0818	63.9016	104.1279	22.3217	0102 00	155.7598	28.9495	61.9883	590.3443	218.1226	412.1037	162.3253	397.2535	101.3503	212.6292	407.3855	42.5503	138.6764	1.3713	265.5861	78 9553	453 7684	StdErmor	30		0.1181	32.2325	38 0451	48 1799	29.0841	32.3127	52.1114	17.2902	14.6542	40.0483	79.1578	14,4045	30 8645	325.7447	123.2124	91.1347	222.1739	55.6804	125.0934	226.5738	20.7381	77.6119	0.7652	144.6104
0.4242	-4.5689	-4.3619	-3.7907	0.5155	-2.9368	-+	4.0774	-2.1040	-	+-	1.4758	-1.6256	-1.3872	-1.5773	2.2818	-1.6634	-	-+	-+	. +	-	-0.3591	-1.7601	-	-0.9860	+Value			0.0224	-0.1510	1 1843	0.7840	2.0303	0.3755	-0.9325	-0.7529	1.6275	0.0922	-1.2110	1.0376	0.8687	-	0.0287	_	-0.4271	-1.6049	-1.0232	-0.4814	-0.4931	0.1934		0.0695
-0.0085	-270.8119	-305.6709	-215.3361	87.8944	-179.0834	135.4008	111.9929	-143.3266	-103.7013	23.8436	83.3353	-930.6224	-269.2606	-575.3430	404.1033	-638.7226	7.1445	519.7800	-571.3801	-3.2406	268.3468	0.1839	-446,0209	37 8 1 98	-500 7052	Fetimate			0.0942	2.8205	-1 6017	44 9303	77 0274	-21.1702	-82.2274	-11.1726	-21.3342	-50.6901		4,4691	20.0450	-58.9125	28.3385	6.9867	-89.4881	-20.5369	-42.8264	-119.3709	9.2486	30.5131	-0.0838	-9,4092
0.1942	+	67,4093	\$4 0613	51.9205	56.7088	91.7626	30.6560	10:4072	135,4907	25.4935	54.7037	528.2493	195.7600	369.0614	146.1397	355.8935	92.2546	189.9312	364.7475	37.4962	124.7103	-+	-	-	-	StdEmm	40		0.1084	28.8902	34 1305	43 1960	2012/02	29.0098	46.4510	15.5474	13.1781	35,7990	73.3375	12.9108	27 6108	279.8037	104.4276	77.5539	189.7202	48.4375	103.8512		18.6220	66.9938	0.7024	125.3671
-0.0438	-4.7888	4.5346	-3.9982	1.6929	-3.1579	-	3 6532	2.0030	-	+	+	-1.7617	-1.3755	-1.5589	2,7652	-1.7947		-	-	-	-	-	-	_	-	+Vahw		8	0.8692	0.0976	10701	-	CUCK 7	-0.7298	-1.7702	-0.7186	-1.6189	-1.4160	-	-	-	-	0.2714	_	+	-0.4240	-0.4124	-0.6155		-	-	-0.0751
-0.0100	-238.5772	-235.9320	-178.9423	130.3182	-155.5719	126,4451	89 3722	-133.1710	-85.3796	31.9480	60.6401	-787.8900	-194.2796	-465.4180	384.6729	-543.7345	-18,4948	252.2477	-505.2524	-7.0419	229.7879	0.3563	-337.4586	9905 15	- 580 8308	Fetimate		a F2	0.1922	2.5691	-15 8102	32 8403	252215	-47,1755	-94.0253	-5.0566	-45.7222	-75.0344	-184.0199	-12.3756	4 7410	99.9086	61.8834	20.6138	5,4832	49.2813	110.6776	-39.2186	14.7978	1.1685	-0.5258	50.5689
0.1684	49.1372	58.5507	46.7992	45.0137	49.2636	79.6961	26 5939	77 5037	116.9954	22.1154	47.5185	462.7654	172.1308	323.5550	128,4568	312.2070	80.9401	167.2192	319.8405	32.4441	109.2158	1.0950	208.1899	62 2201	350 2340	StdEmor	5		0.1054	26.7125	31 4006	30 8638	24.4/88	26.8728	42.8645	14.3427	12.1580	33.0801	67.9583	11.8983	25 4250	275.6514	104.6972	77.3988	188,4035	47.7857	106.7235	191.9765	17.1605	66.3392	0.6840	122.5970
-0.0592	-4.8553	4.0295	-3.8236	2.8951	-3.1580	1.5866	3.3606	3 6013	-	+-	1.2761	-1.7026	-1.1287	-1.4385	2.9946	-1.7416		-	-+	-+	-+		-+		-1 6160	-			1.8230	0.0962	0105 UF	-1	1 3000	-1.7555	-2.1935	-0.3526	-3.7607	-2.2683	-2.7078	-1.0401	-+-		0.5911	_	+-	1.0313	1.0370		\vdash	-		0.4125
0.0534	-210.6229	-190.7595	-162.8345	159,9630	-148.7975	99.9370	70 5594	-142,4002	-88.6178	28.4220	28.3563	-611.8552	-126.5444	-362.6894	332.2943	-391.5664	-57.8636	137.3121	-402.7009	-6.1997	173.9423	0.0542	-274.2554	9951.55	430 6758	Ferimate			0.2611	9.1587	-10.3356	37990 02	000811/	-49.3405	-97.9596	0.5889	-56.8782	-83.3881	-197.5897	-18.8352	-7 8772	160.0620	44,1/00	34.8023	65.0160	77.4019	109.7555	7.8099	8.1372	-20.7495	-0.9058	20,4924
0.1499	42.5898	50.6499	40.5747	39.0392	42,7362	68,8031	22.9851	10 4466	102.4261	19.1165	41.0288	403.5936	150.3743	282.2982	112.1752	272.5638	70.9304		~	27.9252	95.6151	0.9733	181.4210	54 2619	316.0874	StdEmor	60		0.1022	25.5944	30 1539	38 1701	23.4/08	25.7379	41.0282	13.7217	11.6307	31.6892	65.4165	11.3885	24 3344	262.7336	99.7135	73.8274	179.4610	45.8152	101.1916	182.9152	16.3842	63.3158	0.6631	116.9330
0.3560	4.9454	-3.7662	4.0132	4.0975	-3.4818	1.4525	3.0698	7 4874	-0.8652	1.4868	0.6911	-1.5160	-0.8415	-1.2848	2.9623	-1.4366	-0.8158	0.9383	-1.4427	-0.2220	1.8192	0.0556	-1.5117	1 0202	-1 3625	+Vialme			2.5563	0.3578	J. 3428	-1.2.07	1 2002	-1.9170	-2.3876	0.0429	-4.8904	-2.6314	-3.0205	-1.6539	-1 22 LZ	0.6092	0.4780	0.4714	0.3623	1.6894	1.0846	0.0427	0.4966	-0.3277		0.1752
0.0489	-175.1863	-146,4599	-135.1486	120.9981	-130.5760	78,8573	58 1632	40 2401	-57.0102	28.0181	9.0478	-471.5076	-124.5257	-354.1750	247.5639	-317.1409	-52.7508	-3.3015	-344.5944	1.2502	121.3274	0.0672	-154,1291	297684	-247 1703	Fotimate			0.3017	11.7736	-0 1886	39 31 32	34.8301	47.1277	-79.1189	-0.5083	-55.9809	-76.2604	-218.5548	-20.8387	-11 2071	28,6154	-31.8477	56.9515	-21.3109	55.5998	18.3468	-72.5680	4.7872	-15.3336	-1.1813	-21.4237
0.1159	33.1177	39.3541	31.5514	30.3199	33.2116	53.4785	17.8406	15 0863	79.2994	14.8452	31.8895	317.8659	119.1832	222.5998	88.7939	215.1312	55.9953	116.2642	220.1821	21.6055	75.2146	0.7516	142.5001	42 6205	248 4142	StdEmor	70		0.0853	22.7741	26 8811	14 0359	20.92/2	22.8364	36.5537	12.2519	10.3885	28,1995	58.3813	10.1741	21 7456	217.3208	80.9911	60.2425	147.0889	38.0679	79.3973	150.5541	14.6088	52.0077	0.5533	97.6288
0.4220	-5.2898	-3.7216	4.2834	3.9907	-3.9316	1.4746	3.2602	-2.00U0	-0.7189	1.8874	0.2837	-1.4834	-1.0448	-1.5911	2.7881	-1.4742	-0.9421	-0.0284	-1.5650	0.0579	1.6131	0.0894	-1.0816	5809.0	0500 U	Nalma			3.5364	0.5170	1.1.0070	1 1 5 5 1	1.0029	-2.0637	-2.1645	-0.0415	-5.3888	-2.7043	-3.7436	-2.0482	-0 5105	0.1317	-0.3932	0.9454	-0.1449	1.4605	0.2311	-0.4820	0.3277	-0.2948	-2.1350	-0.2194
0.0013	-113.9896	-76.9547	-89.8411	81.6809	-88.5620	56.4437	35 7937	35 8828	-32.6090	18.8896	-11.8174	-308.9528	-68.3994	-232.6247	166.9655	-186.7521	-39.0157	-51.4337	-216.9535	-1.7718	91.0193	0.2907	-106.9002	30 6908	-254 8188	Estimate			0.1609	12.1083	4 4305	38 5446	-2.5962	-31.2151	-56.0878	5.2157	41.0785	-57.5337	-174.8879	-16.8113	-10.0125	-158.8546	-157.4000	71.8994	-170.8839	24.7026	-58.1330	-218.5139	5.9193	5.3818	-0.4308	15.1423
0.0799	22.3426	26.5294	21.2906	20.4125	22.4314	35.9600	12.0089	101538	53.6083	9.9906	21.4506	219.6321	83.0329	154.0680	61.7564	149.1364	39.0057	81.5636	152.4649	14.5321	52.1161	0.5186	98.2531	2012105	172 7937	StdErm	8		0.0667	18.7934	20.127	28 1205	17.0000	18.8139	30.2612	10.1293	8.5918	23.2900	47.6535	8.4186	18 0142	176.2954	65.5376	48.7190	119.0822	30.7803	63.6313	122.0290	12.0924	41.8786	0.4318	79.2924
0.0166	-5.1019	-2.9007	4.2198	4.0015	-3.9481	1.5696	2.9806	2 5404	-0.6083	1.8907	-0.5509	-1.4067	-0.8238	-1.5099	2.7036	-1.2522	-			-0.1219	1.7465	0.5605	-1.0880	1 0504	-1 4747	Walne			2.4116	0.6443	0 1998	1 3703	-0.3232	-1.6592	-1.8535	0.5149	-4.7811	-2.4703	-3.6700	-1.9969		-	-2.4017		-1.4350	0.8025	-0.9136	-1.7907			-0.9975	0.1910

Table A.17: Coefficients for the F1 and F2 global (all vowels pooled) GAM models of formant movement.

		F	1			F	2	
Parametric Coefficients								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
(Intercept)	6.0419	0.2615	23.1068	0.0000	7.4215	0.1745	42.5337	0.0000
Tense: present	0.0109	0.0099	1.1006	0.2711	-0.0143	0.0066	-2.1487	0.0317
NDL Cue Strength	0.0924	0.0250	3.6981	0.0002	-0.0885	0.0170	-5.2206	0.0000
Vowel: æ	-0.0485	0.1429	-0.3397	0.7341	0.0428	0.0903	0.4740	0.6355
Vowel: A	0.2632	0.2338	1.1261	0.2601	-0.3274	0.1560	-2.0985	0.0359
Vowel: o	-0.3316	0.1450	-2.2866	0.0222	-0.6278	0.1623	-3.8683	0.0001
Vowel: 3	-0.1923	0.1296	-1.4841	0.1378	0.1252	0.0865	1.4466	0.1480
Vowel: I	-0.4626	0.2987	-1.5488	0.1214	0.5070	0.1995	2.5414	0.0110
Vowel: i	-0.3184	0.1706	-1.8662	0.0620	0.2509	0.1141	2.1989	0.0279
Vowel: o	0.1112	0.2712	0.4098	0.6819	-0.1215	0.1814	-0.6701	0.5028
Vowel: 0	-0.5709	0.1714	-3.3300	0.0009	-0.4208	0.1369	-3.0743	0.0021
Vowel: u	-0.2043	0.0896	-2.2808	0.0226	0.2573	0.0595	4.3268	0.0000
Previous Manner: approximate	0.4122	0.2218	1.8588	0.0631	0.2441	0.1482	1.6475	0.0995
Previous Manner: diphthong	0.2062	0.2134	0.9667	0.3337	0.4029	0.1430	2.8181	0.0048
Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Previous Manner: flap	0.4623	0.1037	4.4585	0.0000	-0.2621	0.0696	-3.7645	0.0002
Previous Manner: fricative	0.4184	0.2001	2.0912	0.0365	0.0967	0.1338	0.7226	0.4699
Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Previous Manner: lax-nasal	-0.3447	0.2400	-1.4364	0.1509	-0.1289	0.1607	-0.8026	0.4222
Previous Manner: nasal	0.1765	0.2037	0.8661	0.3864	-0.1687	0.1361	-1.2394	0.2152
Previous Manner: rhotic	0.1286	0.2167	0.5933	0.5530	0.0000	0.0000	NA	NA
Previous Manner: stop	0.4785	0.2178	2.1971	0.0280	0.2426	0.1455	1.6670	0.0955
Previous Manner: tense	0.0000	0.0000	NA	NA	0.1584	0.1377	1.1504	0.2500
Previous Voicing: voiceless	-0.0223	0.0265	-0.8420	0.3998	-0.0760	0.0177	-4.2935	0.0000
Previous Place: dental	0.2295	0.1236	1.8577	0.0632	0.3593	0.0824	4.3576	0.0000
Previous Place: diphthong	-0.0638	0.1100	-0.5802	0.5618	-0.2659	0.0742	-3.5855	0.0003
Previous Place: glottal	-0.0865	0.0836	-1.0351	0.3006	-0.2477	0.0584	-4.2397	0.0000
Previous Place: labial	-0.0826	0.1448	-0.5701	0.5686	-0.2934	0.0966	-3.0380	0.0024
Previous Place: labio-dental	-0.0965	0.0612	-1.5764	0.1149	-0.0187	0.0411	-0.4559	0.6485
Previous Place: lax	0.1590	0.2298	0.6918	0.4891	0.0624	0.1535	0.4063	0.6845
Previous Place: palatal	-0.2996	0.1006	-2.9775	0.0029	-0.0880	0.0672	-1.3089	0.1906
Previous Place: palato-alveolar	-0.1593	0.0526	-3.0255	0.0025	-0.0006	0.0358	-0.0169	0.9865
Previous Place: tense	0.0870	0.2061	0.4223	0.6728	0.0000	0.0000	NA	NA
Next Manner: approximate	0.1094	0.1727	0.6336	0.5264	-0.2237	0.1151	-1.9424	0.0521
Next Manner: diphthong	-0.0034	0.1741	-0.0193	0.9846	0.0000	0.0000	NA	NA
Next Manner: flap	0.1431	0.1705	0.8390	0.4015	-0.1081	0.1137	-0.9512	0.3415
Next Manner: fricative	0.0466	0.1772	0.2627	0.7928	-0.1264	0.1181	-1.0704	0.2845
Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Next Manner: lax-nasal	0.0973	0.1664	0.5851	0.5585	0.0779	0.1109	0.7030	0.4821
Next Manner: nasal	0.1834	0.1668	1.0993	0.2716	-0.0906	0.1112	-0.8148	0.4152
Next Manner: rhotic	0.0000	0.0000	NA	NA	-0.0040	0.1596	-0.0248	0.9802
Next Manner: stop	0.1199	0.1707	0.7026	0.4823	-0.1356	0.1138	-1.1917	0.2334
Next Manner: tense	-0.0187	0.1013	-0.1842	0.8538		0.0676	0.6468	0.5177
Next Voicing: voiceless	0.0281	0.0198	1.4195	0.1558		0.0132	3.2392	0.0012
Next Place: dental	0.2282	0.1057	2.1602	0.0308	0.0517	0.0705	0.7343	0.4628

Next Place: diphthong	0.0000	0.0000	NA	NA	-0.0412	0.1160	-0.3549	0.7227
Next Place: glottal	0.0663	0.0202	3.2856	0.0010	0.0205	0.0134	1.5278	0.1266
Next Place: labial	0.0327	0.0237	1.3767	0.1686	-0.0158	0.0158	-0.9995	0.3175
Next Place: labio-dental	0.0737	0.0715	1.0313	0.3024	-0.0561	0.0476	-1.1781	0.2387
Next Place: lax	0.1202	0.1712	0.7022	0.4825	-0.1086	0.1141	-0.9513	0.3414
Next Place: palatal	-0.1210	0.0397	-3.0459	0.0023	-0.0349	0.0265	-1.3188	0.1872
Next Place: palato-alveolar	-0.0561	0.0889	-0.6308	0.5282	-0.1112	0.0593	-1.8752	0.0608
Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: approximate	-0.2028	0.1657	-1.2243	0.2209	0.0313	0.1107	0.2829	0.7773
Vowel: o x Previous Manner: approximate	0.1583	0.0997	1.5881	0.1123	-0.0087	0.0682	-0.1281	0.8981
Vowel: 3 x Previous Manner: approximate	-0.0486	0.1533	-0.3171	0.7512	-0.1982	0.1024	-1.9360	0.0529
Vowel: 1 x Previous Manner: approximate	0.0783	0.2446	0.3200	0.7490	-0.5003	0.1635	-3.0598	0.0022
Vowel: i x Previous Manner: approximate	-0.2696	0.1288	-2.0941	0.0363	-0.2299	0.0864	-2.6616	0.0078
Vowel: o x Previous Manner: approximate	-0.5975	0.2298	-2.6001	0.0093	-0.2928	0.1538	-1.9036	0.0570
Vowel: o x Previous Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: approximate	-0.0778	0.1225	-0.6353	0.5253	-0.2417	0.0817	-2.9570	0.0031
Vowel: æ x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: diphthong	0.1152	0.2411	0.4778	0.6328	-0.4720	0.1614	-2.9249	0.0034
Vowel: o x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: v x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: I x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: flap	-0.3648	0.2690	-1.3559	0.1751	0.3829	0.1797	2.1304	0.0331
Vowel: o x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: hap Vowel: o x Previous Manner: flap	-0.5979	0.1607	-3.7203	0.0002	0.1981	0.1084	1.8279	0.0676
Vowel: 0 x Previous Manner: flap	0.0000	0.0000	-3.7203 NA	0.0002 NA	0.1981	0.0000	1.8279 NA	0.0676 NA
Vowel: u x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA 0.0296
Vowel: æ x Previous Manner: fricative	-0.1401	0.0970	-1.4434	0.1489		0.0595	2.1755	
Vowel: A x Previous Manner: fricative	-0.7319	0.1478	-4.9511	0.0000	0.2412	0.0990	2.4369	0.0148
Vowel: o x Previous Manner: fricative	0.2452	0.1331	1.8413	0.0656	0.2895	0.0902	3.2088	0.0013
Vowel: 3 x Previous Manner: fricative	-0.1685	0.1258	-1.3398	0.1803	-0.0544	0.0841	-0.6461	0.5182

Vowel: 1 x Previous Manner: fricative	-0.0081	0.2210	-0.0366	0.9708	-0.3161	0.1480	-2.1361	0.0327
Vowel: i x Previous Manner: fricative	-0.2714	0.0992	-2.7361	0.0062	-0.0934	0.0669	-1.3966	0.1625
Vowel: o x Previous Manner: fricative	-0.9936	0.2897	-3.4294	0.0006	-0.5868	0.1942	-3.0217	0.0025
Vowel: u x Previous Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: fricative	-0.4294	0.1561	-2.7500	0.0060	-0.2198	0.1045	-2.1023	0.0355
Vowel: æ x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: lax	0.2834	0.2526	1.1220	0.2619	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: lax	-0.1437	0.1385	-1.0377	0.2994	0.1169	0.0925	1.2643	0.2061
Vowel: o x Previous Manner: lax	-0.3388	0.2386	-1.4203	0.1555	-0.1455	0.1597	-0.9111	0.3623
Vowel: u x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: lax-nasal	0.7478	0.2611	2.8640	0.0042	-0.0106	0.1747	-0.0605	0.9518
Vowel: o x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: nasal	-0.1162	0.1366	-0.8506	0.3950	0.3565	0.0914	3.9013	0.0001
Vowel: o x Previous Manner: nasal	0.6274	0.1473	4.2588	0.0000	0.4660	0.0995	4.6828	0.0000
Vowel: 3 x Previous Manner: nasal	0.2535	0.1212	2.0918	0.0365	0.2542	0.0809	3.1427	0.0017
Vowel: 1 x Previous Manner: nasal	0.5331	0.2288	2.3303	0.0198	-0.0963	0.1529	-0.6298	0.5288
Vowel: i x Previous Manner: nasal	-0.1446	0.0858	-1.6850	0.0920	0.3152	0.0575	5.4793	0.0000
Vowel: o x Previous Manner: nasal	-0.2632	0.2119	-1.2419	0.2143	0.1562	0.1420	1.0998	0.2714
Vowel: u x Previous Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: nasal	0.0267	0.0780	0.3428	0.7318	0.4099	0.0523	7.8370	0.0000
Vowel: æ x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: stop	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
· · · ·		0.1647	-2.3835	0.0172	0.1048	0.1101	0.9518	0.3412
Vowel: A x Previous Manner: stop	-0.3925	0.1047						
Vowel: A x Previous Manner: stop Vowel: D x Previous Manner: stop	-0.3925 0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
				NA 0.1976	0.0000	0.0000	NA -1.8280	NA 0.0676
Vowel: o x Previous Manner: stop	0.0000	0.0000	NA					
Vowel: 3 x Previous Manner: stop Vowel: 3 x Previous Manner: stop	0.0000 -0.1946	0.0000 0.1510	NA -1.2884	0.1976	-0.1844	0.1009	-1.8280	0.0676

	0.0104	0.1.401	1.5440	0.1171	0.0405	0.1.400	0.0005	0.0014
Vowel: u x Previous Manner: stop	0.2194	0.1401	1.5669	0.1171	0.3405	0.1480	2.3005	0.0214
Vowel: u x Previous Manner: stop	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: tense	0.2378	0.2312	1.0284	0.3038	-0.2202	0.1546	-1.4245	0.1543
Vowel: i x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: tense	0.0000	0.0000	NA	NA	-0.2374	0.1479	-1.6049	0.1085
Vowel: u x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Voicing: voiceless	0.1507	0.0429	3.5163	0.0004	0.0194	0.0286	0.6776	0.4980
Vowel: o x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Voicing: voiceless	0.0757	0.0451	1.6788	0.0932	0.1480	0.0301	4.9102	0.0000
Vowel: 1 x Previous Voicing: voiceless	0.0270	0.0321	0.8420	0.3998	0.0880	0.0214	4.1214	0.0000
Vowel: i x Previous Voicing: voiceless	-0.0757	0.0572	-1.3248	0.1852	0.1260	0.0383	3.2943	0.0010
Vowel: o x Previous Voicing: voiceless	0.1522	0.0803	1.8950	0.0581	0.3104	0.0537	5.7784	0.0000
Vowel: u x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: consonant	-0.0122	0.0662	-0.1847	0.8535	0.1087	0.0442	2.4584	0.0140
Vowel: o x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: dental	0.0699	0.1591	0.4391	0.6606	-0.3629	0.1063	-3.4134	0.0006
Vowel: o x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: dental	-0.2480	0.1954	-1.2690	0.2045	0.1339	0.1307	1.0242	0.3058
Vowel: u x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: dental Vowel: æ x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: diphthong	0.0391	0.2531	0.1544	0.8773	0.4115	0.1697	2.4246	0.0153
Vowel: o x Previous Place: diphthong	0.0391	0.2531	0.1544 NA	0.8773 NA	0.4115	0.0000	2.4246 NA	0.0155 NA
Vowel: 3 x Previous Place: diphthong	0.0000	0.0000				0.0000		
			NA	NA	0.0000		NA	NA
Vowel: 1 x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: glottal	-0.0108	0.1026	-0.1055	0.9160	0.3060	0.0691	4.4256	0.0000

0.6590	0 1000						
0.0590	0.1088	6.0585	0.0000	0.3112	0.0746	4.1710	0.0000
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.3970	0.0991	4.0042	0.0001	0.2338	0.0685	3.4144	0.0006
0.0310	0.0988	0.3137	0.7537	0.2953	0.0682	4.3304	0.0000
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.3794	0.1336	2.8388	0.0045	0.1114	0.0908	1.2269	0.2199
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0819	0.1951	0.4197	0.6747	0.3069	0.1314	2.3359	0.0195
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0775	0.1477	0.5248	0.5997	0.0306	0.0985	0.3106	0.7561
-0.0712	0.1609	-0.4423	0.6582	0.0759	0.1079	0.7033	0.4819
0.1176	0.1470	0.7998	0.4239	0.3122	0.0980	3.1848	0.0014
0.1796	0.1527	1.1761	0.2396	0.1710	0.1019	1.6783	0.0933
0.1395	0.1476	0.9452	0.3446	0.2147	0.0985	2.1809	0.0292
-0.1306	0.1553	-0.8410	0.4004	0.0745	0.1040	0.7157	0.4742
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.5196	0.1658	3.1350	0.0017	0.0385	0.1068	0.3601	0.7188
0.4824	0.0995	4.8455	0.0000	-0.0112	0.0666	-0.1675	0.8670
0.0754	0.0850	0.8872	0.3750	-0.1792	0.0580	-3.0910	0.0020
0.2657	0.0780	3.4067	0.0007	0.0277	0.0523	0.5295	0.5965
0.1468	0.1052	1.3953	0.1629	-0.1107	0.0703	-1.5734	0.1156
0.1155	0.0719	1.6056	0.1084	0.1255	0.0484	2.5960	0.0094
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
-0.5409	0.1806	-2.9943	0.0028	0.2249	0.1208	1.8623	0.0626
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	-0.1513	0.1687	-0.8969	0.3698
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
				0.1798			0.0092
			0.4908	0.3883			0.0049
	0.1068						0.0075
							0.0595
							0.8580
							0.1424
							NA
							NA
10 20000000		0000000	0.0000			0362000	NA
				0.0000	0.0000	0000000	NA
0.0000							
0.0000	0.0000	NA NA	NA NA	0.0000	0.0000	NA NA	NA
	0.3970 0.310 0.0000 0.3794 0.0000 0.3794 0.0000 0.0775 -0.0712 0.1176 0.1796 0.1395 -0.1306 0.0000 0.0000 0.5196 0.4824 0.0754 0.2657 0.1468 0.1155 0.0000 0.000	0.3970 0.0991 0.310 0.0981 0.0000 0.0000 0.3794 0.1336 0.0000 0.0000 0.3794 0.1336 0.0000 0.0000 0.819 0.1951 0.0000 0.0000 0.0775 0.1477 -0.0712 0.1609 0.176 0.1470 0.1796 0.1527 0.1395 0.1476 -0.1306 0.1553 0.0000 0.0000 0.0000 0.0000 0.5196 0.1658 0.4824 0.0995 0.0754 0.0850 0.2657 0.0780 0.1468 0.1052 0.1155 0.0719 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.3970 0.0991 4.0042 0.0310 0.0988 0.3137 0.0000 0.0000 NA 0.3794 0.1336 2.8388 0.0000 0.0000 NA 0.3794 0.1356 2.8388 0.0000 0.0000 NA 0.0819 0.1951 0.4197 0.0000 0.0000 NA 0.0775 0.1477 0.5248 -0.0712 0.1609 -0.4423 0.1766 0.1527 1.1761 0.1395 0.1476 0.9452 -0.1306 0.1553 -0.8410 0.0000 0.0000 NA 0.1555 0.0719 1.6056 0.0754 0.0800 NA 0.0000 0.0000 NA 0.00000 0.0000 NA	0.3970 0.0991 4.0042 0.0011 0.0310 0.0988 0.3137 0.7537 0.0000 NA NA 0.3794 0.1336 2.8388 0.0045 0.0000 NA NA 0.3794 0.1336 2.8388 0.0045 0.0000 0.0000 NA NA 0.0819 0.1951 0.4197 0.6747 0.0000 0.0000 NA NA 0.0775 0.1477 0.5248 0.5997 -0.0712 0.1609 -0.4233 0.6582 0.1176 0.1470 0.7998 0.4239 0.1796 0.1527 1.1761 0.2396 0.1395 0.1476 0.9452 0.3446 -0.1306 0.1553 -0.8410 0.4004 0.0000 0.0000 NA NA 0.5196 0.1658 3.1350 0.0017 0.4824 0.0995 4.8455 0.0000 0.2657 0.0780	0.39700.09914.00420.00010.23380.03100.09880.31370.75370.29530.00000.0000NANA0.00000.37940.13362.83880.00450.11140.00000.0000NANA0.00000.8190.19510.41970.67470.30690.00000.0000NANA0.00000.07750.14770.52480.59970.3066-0.07120.1609-0.44230.65820.07590.11760.14700.79980.42390.31220.17960.15271.17610.23960.17100.13950.14760.94520.34460.2147-0.13060.1553-0.84100.40040.07450.00000.0000NANA0.00000.00000.0000NANA0.00000.51960.16583.13500.00170.3850.48240.09954.84550.0000-0.11270.26570.07803.40670.00770.22770.14680.10521.39530.1629-0.11070.11550.07191.60560.10840.12550.00000.0000NANA0.00000.00000.0000NANA0.00000.00000.0000NANA0.00000.00000.0000NANA0.00000.00000.0000NANA0.00000.0000	0.39700.09914.00420.00010.23380.06850.03100.09880.31370.75370.29530.06820.00000.0000NANA0.00000.00000.37940.13362.83880.00450.11140.09080.00000.0000NANA0.00000.00000.08190.19510.41970.67470.30690.13140.00000.0000NANA0.00000.00000.07750.14770.52480.59970.03060.0985-0.07120.1609-0.44230.65820.07590.10790.11760.14700.79980.42390.31220.98800.17960.15271.17610.23960.17100.10190.13950.14760.94520.34460.21470.0985-0.13060.1553-0.84100.40040.07450.10400.0000NANANA0.00000.00000.51960.16583.13500.00170.3850.16680.48240.09954.84550.000-0.01120.06660.07540.08500.88720.3750-0.17920.5800.26570.07803.40670.00070.02770.5230.14680.10521.39530.1629-0.11070.07030.11550.07191.60560.10840.12550.48440.00000.0000NANA0.00000.0000	0.39700.09914.00420.00010.23380.06853.41440.03100.09880.31370.75370.29530.06824.33040.00000.0000NANA0.00000.0000NA0.37940.13362.83880.00450.11140.09081.22690.00000.0000NANA0.00000.0000NA0.08190.19510.41970.67470.30690.13142.33590.00000.0000NANA0.00000.0000NA0.07750.14770.52480.59970.03060.09850.3106-0.07120.1609-0.44230.65820.07590.10790.70330.11760.14700.79980.42390.31220.09803.18480.17960.15271.17610.23960.17100.10191.67830.13950.14760.94520.34460.21470.09852.1809-0.13060.1553-0.84100.40040.07450.14000.71570.00000.0000NANA0.00000.0000NA0.51960.16583.13500.0170.03850.16860.36010.48240.09954.84550.00070.02770.05230.52950.14680.15211.39530.1629-0.11070.0703-1.57340.1550.07191.65560.10840.12550.4842.59600.00000.0000 </td

Vowel: 1 x Previous Place: palato-alveolar	0.2720	0.0832	3.2673	0.0011	-0.0726	0.0559	-1.2973	0.1945
Vowel: i x Previous Place: palato-alveolar	0.0793	0.1000	0.7928	0.4279	-0.1054	0.0670	-1.5719	0.1160
Vowel: o x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: palato-alveolar	0.2359	0.1631	1.4463	0.1481	0.3947	0.1093	3.6123	0.0003
Vowel: æ x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: tense	-0.0925	0.0961	-0.9632	0.3355	0.0320	0.0642	0.4994	0.6175
Vowel: o x Previous Place: tense	-0.2340	0.2208	-1.0596	0.2893	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: approximate	-0.2981	0.1978	-1.5070	0.1318	0.2720	0.1320	2.0609	0.0393
Vowel: o x Next Manner: approximate	-0.0479	0.0928	-0.5157	0.6061	0.3183	0.1430	2.2264	0.0260
Vowel: 3 x Next Manner: approximate	-0.0966	0.0861	-1.1212	0.2622	-0.0218	0.0575	-0.3795	0.7043
Vowel: 1 x Next Manner: approximate	-0.0994	0.2055	-0.4835	0.6287	0.0594	0.1370	0.4338	0.6645
Vowel: i x Next Manner: approximate	-0.0451	0.1570	-0.2874	0.7738	0.1908	0.1047	1.8234	0.0683
Vowel: o x Next Manner: approximate	0.0273	0.1792	0.1521	0.8791	0.1419	0.1195	1.1878	0.2349
Vowel: o x Next Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: diphthong	0.1336	0.0889	1.5020	0.1331	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: diphthong	0.0000	0.0000	NA	NA	-0.1175	0.1385	-0.8485	0.3961
Vowel: i x Next Manner: diphthong	0.1861	0.1605	1.1593	0.2463	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: diphthong	-0.0264	0.0974	-0.2712	0.7862	-0.2938	0.0650	-4.5219	0.0000
Vowel: æ x Next Manner: flap	-0.1016	0.1267	-0.8019	0.4226	-0.0110	0.0836	-0.1317	0.8952
Vowel: A x Next Manner: flap	-0.1593	0.1957	-0.8138	0.4158	0.0696	0.1305	0.5332	0.5939
Vowel: o x Next Manner: flap	0.0000	0.0000	NA	NA	0.1564	0.1545	1.0124	0.3113
Vowel: 3 x Next Manner: flap	-0.0341	0.0755	-0.4521	0.6512	-0.0170	0.0504	-0.3370	0.7361
Vowel: 1 x Next Manner: flap	-0.0272	0.2020	-0.1348	0.8927	-0.0502	0.1347	-0.3730	0.7092
Vowel: i x Next Manner: flap	-0.0989	0.1554	-0.6366	0.5244	0.1271	0.1036	1.2269	0.2199

Vowel: u x Next Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: flap	-0.2709	0.0743	-3.6477	0.0003	-0.1900	0.0496	-3.8332	0.0001
Vowel: æ x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: fricative	-0.1578	0.1958	-0.8061	0.4202	0.1294	0.1306	0.9911	0.3217
Vowel: o x Next Manner: fricative	0.1385	0.1937	0.7150	0.4746	0.1667	0.1844	0.9041	0.3660
Vowel: 3 x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: fricative	0.0487	0.2088	0.2332	0.8156	-0.0793	0.1392	-0.5699	0.5688
Vowel: i x Next Manner: fricative	-0.0659	0.1638	-0.4021	0.6876	0.0706	0.1092	0.6464	0.5180
Vowel: o x Next Manner: fricative	-0.0002	0.1831	-0.0013	0.9990	0.1760	0.1221	1.4416	0.1494
Vowel: σ x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: fricative	-0.1222	0.1226	-0.9967	0.3189	-0.1506	0.0818	-1.8398	0.0658
Vowel: æ x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: lax	0.0000	0.0000	NA	NA	0.0869	0.1295	0.6708	0.5024
Vowel: o x Next Manner: lax	-0.1314	0.1006	-1.3060	0.1916	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: lax	-0.0630	0.0797	-0.7899	0.4296	0.0000	0.0000	NA	NA
Vowel: I x Next Manner: lax	0.0047	0.2031	0.0229	0.9817	-0.0774	0.1354	-0.5720	0.5673
Vowel: i x Next Manner: lax	-0.0228	0.1554	-0.1469	0.8832	0.1169	0.1036	1.1283	0.2592
Vowel: o x Next Manner: lax	0.1160	0.1775	0.6532	0.5136	0.0000	0.0000	NA	NA
Vowel: σ x Next Manner: lax	0.0000	0.0000	NA	NA	0.1753	0.1090	1.6081	0.1078
Vowel: u x Next Manner: lax	-0.2377	0.0839	-2.8327	0.0046	-0.3204	0.0560	-5.7223	0.0000
Vowel: æ x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: σ x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: nasal	-0.2890	0.1796	-1.6090	0.1076	-0.0380	0.1173	-0.3236	0.7462
Vowel: A x Next Manner: nasal	-0.3156	0.1916	-1.6468	0.0996	0.1155	0.1278	0.9038	0.3661
Vowel: o x Next Manner: nasal	0.0186	0.1373	0.1356	0.8921	0.1133	0.1559	0.7269	0.4673
Vowel: 3 x Next Manner: nasal	-0.2298	0.0829	-2.7731	0.0056	-0.0254	0.0553	-0.4592	0.6461
Vowel: 1 x Next Manner: nasal	-0.1579	0.1998	-0.7905	0.4293	0.0106	0.1332	0.0797	0.9365
Vowel: i x Next Manner: nasal	-0.1102	0.1492	-0.7384	0.4603	0.1239	0.0995	1.2457	0.2129
Vowel: o x Next Manner: nasal	-0.0239	0.1740	-0.1371	0.8909	0.1161	0.1160	1.0008	0.3169
Vowel: u x Next Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: nasal	-0.2367	0.0838	-2.8246	0.0047	-0.1404	0.0559	-2.5108	0.0121
Vowel: æ x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: I x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
	-0.0139	0.1585	-0.0878	0.9300	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: rhotic							0362000	
Vowel: i x Next Manner: rhotic Vowel: o x Next Manner: rhotic	-0.0099	0.1526	-0.0652	0.94801	0.0000	0.0000	NA	INA
Vowel: o x Next Manner: rhotic	-0.0099 0.0000	0.1526	-0.0652 NA	0.9480 NA	0.0000	0.0000	NA NA	NA NA
		0.1526 0.0000 0.0000	-0.0652 NA NA	0.9480 NA NA	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	NA NA NA	NA NA NA

Vowel: A x Next Manner: stop	-0.3044	0.1912	-1.5917	0.1115	0.1445	0.1275	1.1332	0.2572
Vowel: o x Next Manner: stop	0.1231	0.1507	0.8166	0.4141	0.1283	0.1644	0.7804	0.4351
Vowel: 3 x Next Manner: stop	-0.0021	0.0597	-0.0352	0.9719	0.0568	0.0398	1.4261	0.1538
Vowel: I x Next Manner: stop	-0.0498	0.2017	-0.2469	0.8050	0.0093	0.1345	0.0691	0.9449
Vowel: i x Next Manner: stop	-0.1434	0.1551	-0.9245	0.3552	0.1700	0.1034	1.6442	0.1002
Vowel: o x Next Manner: stop	0.0052	0.1773	0.0291	0.9767	0.1394	0.1182	1.1796	0.2382
Vowel: u x Next Manner: stop	-0.0396	0.1370	-0.2894	0.7723	0.2078	0.0915	2.2706	0.0232
Vowel: u x Next Manner: stop	-0.1523	0.0643	-2.3689	0.0178	-0.0936	0.0429	-2.1818	0.0291
Vowel: æ x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: tense	-0.0032	0.2288	-0.0140	0.9889	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: tense	0.1051	0.1271	0.8271	0.4082	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: tense	0.2186	0.1129	1.9360	0.0529	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Voicing: voiceless	-0.0545	0.1180	-0.4620	0.6441	-0.0605	0.0774	-0.7811	0.4348
Vowel: A x Next Voicing: voiceless	0.0627	0.0397	1.5791	0.1143	-0.0048	0.0265	-0.1814	0.8561
Vowel: o x Next Voicing: voiceless	-0.2526	0.1701	-1.4847	0.1376	0.0581	0.1165	0.4986	0.6181
Vowel: 3 x Next Voicing: voiceless	-0.0446	0.0296	-1.5065	0.1319	-0.0667	0.0198	-3.3728	0.0007
Vowel: 1 x Next Voicing: voiceless	-0.0084	0.0234	-0.3579	0.7204	-0.0687	0.0156	-4.4031	0.0000
Vowel: i x Next Voicing: voiceless	-0.0096	0.0259	-0.3724	0.7096	-0.0036	0.0173	-0.2088	0.8346
Vowel: o x Next Voicing: voiceless	0.0283	0.0242	1.1699	0.2421	-0.0865	0.0162	-5.3508	0.0000
Vowel: v x Next Voicing: voiceless	-0.1129	0.0444	-2.5430	0.0110	-0.0876	0.0297	-2.9480	0.0032
Vowel: u x Next Voicing: voiceless	-0.0655	0.0423	-1.5484	0.1215	-0.0252	0.0283	-0.8916	0.3726
Vowel: æ x Next Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: dental	-0.2220	0.1218	-1.8235	0.0682	0.0219	0.0812	0.2693	0.7877
Vowel: o x Next Place: dental	-0.5277	0.2041	-2.5854	0.0097	-0.0109	0.1388	-0.0789	0.9371
Vowel: 3 x Next Place: dental	-0.2674	0.1215	-2.2016	0.0277	-0.1079	0.0810	-1.3315	0.1830
Vowel: 1 x Next Place: dental	-0.3998	0.1120	-3.5683	0.0004	0.0212	0.0747	0.2837	0.7766
Vowel: i x Next Place: dental	-0.1569	0.1088	-1.4422	0.1492	-0.0057	0.0725	-0.0792	0.9369
Vowel: o x Next Place: dental	-0.1065	0.1079	-0.9876	0.3234	-0.0797	0.0719	-1.1081	0.2678
Vowel: u x Next Place: dental	-0.0538	0.2899	-0.1855	0.8529	0.0000	0.0000	NA	NA
Vowel: u x Next Place: dental	-0.2723	0.1357	-2.0072	0.0447	0.0059	0.0905	0.0651	0.9481
Vowel: æ x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: diphthong	0.0397	0.1987	0.1999	0.8416	-0.0048	0.1325	-0.0365	0.9709
Vowel: o x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: diphthong	0.0000	0.0000	NA	NA	-0.1308	0.0593	-2.2047	0.0275
Vowel: I x Next Place: diphthong	0.1493	0.2077	0.7188	0.4723	0.0000	0.0000	NA	NA
Vowel: i x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0085	0.1070	0.0798	0.9364
Vowel: o x Next Place: diphthong	0.3290	0.1804	1.8233	0.0683	0.0137	0.1203	0.1137	0.9094
Vowel: u x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: glottal	0.1847	0.1072	1.7227	0.0850	0.0692	0.0663	1.0437	0.2966
Vowel: A x Next Place: glottal	0.0538	0.0382	1.4076	0.1593	-0.0321	0.0255	-1.2568	0.2088
Vowel: o x Next Place: glottal	0.0845	0.0648	1.3031	0.1925	-0.0445	0.0453	-0.9830	0.3256
Vowel: 3 x Next Place: glottal	-0.0634	0.0299	-2.1208	0.0339	-0.0459	0.0200	-2.2971	0.0216
TOWER SA MERI LIACE. BIOLIAI	-0.0034	0.0299	-2.1200	0.0339	-0.0459	0.0200	-2.27/1	0.0210

Vowel: I x Next Place: glottal	-0.0130	0.0243	-0.5353	0.5925	-0.0338	0.0162	-2.0889	0.0367
Vowel: i x Next Place: glottal	0.0095	0.0283	0.3346	0.7379	0.0131	0.0189	0.6922	0.4888
Vowel: o x Next Place: glottal	0.0944	0.0262	3.6029	0.0003	-0.0593	0.0175	-3.3979	0.0007
Vowel: v x Next Place: glottal	0.0000	0.0000	NA	NA	0.2556	0.1946	1.3135	0.1890
Vowel: u x Next Place: glottal	-0.1158	0.0717	-1.6143	0.1065	-0.0470	0.0478	-0.9826	0.3258
Vowel: æ x Next Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: labial	0.0784	0.0370	2.1162	0.0343	-0.1553	0.0247	-6.2837	0.0000
Vowel: o x Next Place: labial	-0.2282	0.1043	-2.1890	0.0286	0.0285	0.0703	0.4048	0.6856
Vowel: 3 x Next Place: labial	0.0237	0.0436	0.5428	0.5873	-0.0289	0.0291	-0.9922	0.3211
Vowel: 1 x Next Place: labial	-0.0639	0.0316	-2.0244	0.0429	-0.0386	0.0211	-1.8339	0.0667
Vowel: i x Next Place: labial	-0.0219	0.0296	-0.7400	0.4593	0.0180	0.0198	0.9101	0.3628
Vowel: o x Next Place: labial	0.0204	0.0268	0.7610	0.4467	-0.0591	0.0178	-3.3128	0.0009
Vowel: u x Next Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: labial	-0.1681	0.0730	-2.3045	0.0212	-0.1309	0.0487	-2.6897	0.0072
Vowel: æ x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: labio-dental	-0.3277	0.0959	-3.4168	0.0006	-0.0936	0.0639	-1.4638	0.1433
Vowel: o x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: labio-dental	-0.1108	0.1101	-1.0066	0.3141	0.1776	0.0735	2.4144	0.0158
Vowel: 1 x Next Place: labio-dental	-0.1654	0.0784	-2.1107	0.0348	0.1935	0.0523	3.6978	0.0002
Vowel: i x Next Place: labio-dental	-0.0933	0.0803	-1.1621	0.2452	0.0974	0.0536	1.8189	0.0689
Vowel: o x Next Place: labio-dental	0.1102	0.0747	1.4752	0.1402	0.0337	0.0498	0.6768	0.4985
Vowel: U x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: labio-dental	-0.1763	0.1105	-1.5964	0.1104	0.1449	0.0736	1.9688	0.0490
Vowel: æ x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: lax	-0.1863	0.1942	-0.9592	0.3375	0.0000	0.0000	NA	NA
Vowel: o x Next Place: lax	0.0000	0.0000	NA	NA	0.1441	0.1397	1.0315	0.3023
Vowel: 3 x Next Place: lax	0.0000	0.0000	NA	NA	-0.0514	0.0532	-0.9661	0.3340
Vowel: I x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Place: lax	0.0000	0.0000	NA	NA	0.0633	0.1184	0.5348	0.5928
Vowel: U x Next Place: lax	0.1124	0.2426	0.4634	0.6430	0.0000	0.0000	NA	NA
Vowel: u x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: palatal	0.4297	0.1624	2.6457	0.0082	0.2605	0.1048	2.4866	0.0129
Vowel: A x Next Place: palatal	0.0726	0.0522	1.3906	0.1644	0.0693	0.0349	1.9857	0.0471
Vowel: o x Next Place: palatal	-0.0009	0.1189	-0.0078	0.9938	0.2803	0.0848	3.3061	0.0009
Vowel: 3 x Next Place: palatal	0.0269	0.0622	0.4324	0.6654	0.0443	0.0415	1.0671	0.2859
Vowel: I x Next Place: palatal	0.0989	0.0478	2.0688	0.0386	0.1179	0.0319	3.6901	0.0002
Vowel: i x Next Place: palatal	0.1234	0.0445	2.7741	0.0055	0.0322	0.0297	1.0841	0.2783
Vowel: o x Next Place: palatal	0.1087	0.0426	2.5504	0.0108	0.1156	0.0284	4.0680	0.0000
Vowel: o x Next Place: palatal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: palatal	-0.0566	0.0867	-0.6524	0.5142		0.0579	-1.4969	0.1344
Vowel: æ x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: palato-alveolar	-0.1620	0.1060	-1.5288	0.1263	0.0930	0.0707	1.3151	0.1885
Vowel: o x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Place: palato-alveolar	0.1167	0.1031	1.1316	0.2578	0.0875	0.0688	1.2717	0.2035
Vowel: o x Next Place: palato-alveolar	0.1668	0.0945	1.7646	0.0776	0.1846	0.0631	2.9268	0.0034
romon o A mont i lace. palato-alveolal	1 0.1008	0.0945	1.7040	0.0770	0.1040	0.0051	2.7200	0.0034

Vowel: o x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Place: tense	0.1889	0.1703	1.1092	0.2673	-0.0012	0.1136	-0.0107	0.9914
Vowel: i x Next Place: tense	0.0000	0.0000	NA	NA	-0.0447	0.0848	-0.5268	0.5983
Vowel: o x Next Place: tense	0.0000	0.0000	NA	NA	-0.1122	0.0753	-1.4893	0.1364
Vowel: v x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: tense	-0.0630	0.2160	-0.2918	0.7704	-0.4233	0.1441	-2.9380	0.0033
Smooth Terms								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
s(Time Step)	8.3309	8.8554	53.3082	0.0000	6.5498	7.7354	6.4663	0.0000
ti(Time Step) x Tense: past	1.3796	1.9124	3.8190	0.0241	1.0040	1.0050	0.5010	0.4796
ti(Time Step) x Tense: present	1.0158	1.0214	1.4789	0.2232	2.1664	2.4716	8.7526	0.0001
ti(Time Step,NDL Cue Strength)	7.8264	9.0248	41.1962	0.0000	11.2998	12.4096	58.9209	0.0000
te(Duration (log), Frequency (log))	13.8764	16.0228	25.3339	0.0000	16.2401	18.1581	91.0332	0.0000
ti(Time Step) x Vowel: a	3.5382	3.8506	14.8823	0.0000	3.4833	3.7845	6.6146	0.0000
ti(Time Step) x Vowel: æ	0.0020	0.0039	0.6606	0.9594	1.7931	2.1385	13.3914	0.0000
ti(Time Step) x Vowel: л	2.1052	2.5750	2.8603	0.0441	3.4768	3.7853	8.7078	0.0000
ti(Time Step) x Vowel: ɔ	1.0024	1.0046	3.7859	0.0515	2.5222	3.0496	3.4376	0.0157
ti(Time Step) x Vowel: з	3.5054	3.8380	15.1666	0.0000	1.0033	1.0052	1.5360	0.2150
ti(Time Step) x Vowel: 1	1.0004	1.0008	5.4227	0.0199	2.0432	2.4867	1.6453	0.1813
ti(Time Step) x Vowel: i	3.6136	3.9025	12.9208	0.0000	3.8667	3.9406	42.3087	0.0000
ti(Time Step) x Vowel: o	1.0007	1.0013	0.6262	0.4289	3.1729	3.4755	1.8712	0.1215
ti(Time Step) x Vowel: υ	1.0001	1.0003	7.4338	0.0064	1.8292	2.1253	3.2682	0.0355
ti(Time Step) x Vowel: u	1.0007	1.0014	0.1649	0.6850	3.2931	3.6499	4.4290	0.0022
s(Time Step, Speaker) x Vowel: a	37.0603	39.0000	17.3184	0.0000	36.5572	39.0000	10.9882	0.0000
s(Time Step, Speaker) x Vowel: æ	20.8736	25.0000	4.2108	0.0000	14.2595	25.0000	1.2247	0.0000
s(Time Step, Speaker) x Vowel: л	35.1676	37.0000	7.7642	0.0000	35.1513	37.0000	7.1888	0.0000
s(Time Step, Speaker) x Vowel: ɔ	16.5750	32.0000	1.0861	0.0000	20.8947	32.0000	1.6271	0.0000
s(Time Step, Speaker) x Vowel: 3	35.5184	39.0000	6.7917	0.0000	36.1762	39.0000	6.0333	0.0000
s(Time Step, Speaker) x Vowel: 1	37.3672	39.0000	9.7843	0.0000	37.8747	39.0000	16.3753	0.0000
s(Time Step, Speaker) x Vowel: i	35.7047	39.0000	5.9639	0.0000	37.3951	39.0000	12.8315	0.0000
s(Time Step, Speaker) x Vowel: o	38.1623	39.0000	28.9540	0.0000	38.3501	39.0000	26.4541	0.0000
s(Time Step, Speaker) x Vowel: 0	26.0562	33.0000	2.5833	0.0000	31.5760	33.0000	8.7190	0.0000
s(Time Step, Speaker) x Vowel: u	31.3823	36.0000	4.1848	0.0000	30.4589	36.0000	4.6108	0.0000

Table A.18: Coefficients for the F1 and F2 by vowel GAM models of formant movement.

	F1 F2							
Parametric Coefficients								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
(Intercept)	6.0124	0.2603	23.1011	0.0000	7.3108	0.1697	43.0926	0.0000
Tense: present	0.0111	0.0100	1.1159	0.2645	-0.0065	0.0070	-0.9324	0.3511
NDL Cue Strength	0.1003	0.0256	3.9148	0.0001	-0.0661	0.0173	-3.8217	0.0001
Vowel: æ	0.0040	0.1420	0.0279	0.9777	0.0159	0.0889	0.1789	0.8580
Vowel: A	-0.0878	0.3072	-0.2858	0.7750	0.1532	0.2007	0.7632	0.4454
Vowel: o	-0.3064	0.1444	-2.1223	0.0338	-0.1814	0.1479	-1.2266	0.2200
Vowel: 3	0.6992	0.2494	2.8039	0.0051	0.1261	0.0857	1.4713	0.1412
Vowel: I	-0.4394	0.2972	-1.4782	0.1394	0.5993	0.1953	3.0695	0.0021
Vowel: i	-0.2918	0.1699	-1.7173	0.0859	0.2939	0.1129	2.6040	0.0092
Vowel: o	0.2475	0.2705	0.9147	0.3604	-0.1073	0.1579	-0.6799	0.4966
Vowel: U	-0.5920	0.1976	-2.9960	0.0027	-0.0257	0.0737	-0.3491	0.7270
Vowel: u	-0.1929	0.0893	-2.1599	0.0308	-0.1472	0.1387	-1.0612	0.2886
Previous Manner: approximate	0.4038	0.2209	1.8278	0.0676	0.3541	0.1463	2.4210	0.0155
Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Previous Manner: diphthong-nasal	-0.3386	0.2131	-1.5886	0.1122	-0.4110	0.1128	-3.6432	0.0003
Previous Manner: flap	0.4586	0.1034	4.4370	0.0000	-0.2903	0.0690	-4.2041	0.0000
Previous Manner: fricative	0.4398	0.1993	2.2064	0.0274	0.1775	0.1252	1.4171	0.1564
Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Previous Manner: lax-nasal	0.4196	0.1044	4.0173	0.0001	-0.1457	0.0693	-2.1029	0.0355
Previous Manner: nasal	0.1855	0.2028	0.9145	0.3605	-0.0728	0.1319	-0.5521	0.5809
Previous Manner: rhotic	0.1392	0.2158	0.6452	0.5188	0.0000	0.0000	NA	NA
Previous Manner: stop	0.4700	0.2169	2.1667	0.0303	0.3539	0.1438	2.4620	0.0138
Previous Manner: tense	0.1031	0.2052	0.5023	0.6155	0.0000	0.0000	NA	NA
Previous Voicing: voiceless	-0.0203	0.0264	-0.7678	0.4426	-0.0738	0.0175	-4.2169	0.0000
Previous Place: consonant	-0.0108	0.0659	-0.1638	0.8699	0.1032	0.0437	2.3612	0.0182
Previous Place: dental	0.2285	0.1229	1.8588	0.0631	0.4440	0.1626	2.7307	0.0063
Previous Place: diphthong	0.1614	0.2010	0.8029	0.4220	0.2203	0.1304	1.6892	0.0912
Previous Place: glottal	-0.0639	0.0834	-0.7661	0.4436	-0.2101	0.0588	-3.5710	0.0004
Previous Place: labial	-0.1031	0.1442	-0.7148	0.4747	-0.2874	0.0955	-3.0099	0.0026
Previous Place: labio-dental	-0.0894	0.0619	-1.4442	0.1487	0.0063	0.0409	0.1550	0.8769
Previous Place: lax	-0.7165	0.1502	-4.7708	0.0000	0.1550	0.1001	1.5484	0.1215
Previous Place: palatal	-0.2751	0.1005	-2.7382	0.0062	-0.1138	0.0666	-1.7071	0.0878
Previous Place: palato-alveolar	-0.2006	0.0532	-3.7684	0.0002	0.0266	0.0000	0.7477	0.4547
Previous Place: rhotic	0.0000	0.0000	-3.7084 NA	0.0002 NA	0.1656	0.1399	1.1836	0.2366
Previous Place: tense	0.0000	0.0000	NA	NA	0.1050	0.1399	2.0316	0.2300
Next Manner: approximate	0.1203	0.0000	0.6998	0.4841	-0.2222	0.1204	-1.9521	0.0422
Next Manner: diphthong	0.0000	0.0000	0.0998 NA	NA	0.0000	0.0000	-1.9521 NA	0.0509 NA
· · ·	0.1497	0.0000	0.8823	0.3776	-0.1020	0.1124	-0.9081	0.3638
Next Manner: flap Next Manner: fricative								
Next Manner: lax	0.0405	0.1763	0.2296 NA	0.8184 NA	-0.1210	0.1168	-1.0367 NA	0.2999 NA
Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0724	0.1096	0.6608	0.5088
Next Manner: nasal	0.1852	0.1660	1.1159	0.2645	-0.0855	0.1099	-0.7781	0.4365
Next Manner: rhotic	-0.1546	0.2498	-0.6188	0.5361	0.0004	0.1567	0.0023	0.9982
Next Manner: stop	0.1263	0.1698	0.7441	0.4568	-0.1311	0.1124	-1.1661	0.2436
Next Manner: syllabic	0.0563	0.1273	0.4422	0.6583	-0.0908	0.0843	-1.0764	0.2817
Next Manner: tense	0.0035	0.1008	0.0352	0.9720	0.0000	0.0000	NA	NA
Next Voicing: voiceless	0.0283	0.0197	1.4387	0.1502	0.0439	0.0130	3.3708	0.0008
Next Place: consonant	0.0419	0.0949	0.4416	0.6588	-0.0346	0.0628	-0.5514	0.5813
Next Place: dental	0.2414	0.1051	2.2957	0.0217	0.0510	0.0696	0.7323	0.4640

Next Place: diphthong	0.0190	0.1732	0.1098	0.9125	-0.0426	0.1147	-0.3716	0.7102
Next Place: glottal	0.0668	0.0201	3.3289	0.0009	0.0227	0.0133	1.7081	0.0876
Next Place: labial	0.0338	0.0236	1.4295	0.1529	-0.0136	0.0156	-0.8705	0.3840
Next Place: labio-dental	0.0578	0.0711	0.8124	0.4166	-0.0449	0.0471	-0.9525	0.3408
Next Place: lax	0.1260	0.1703	0.7396	0.4595	-0.1016	0.1128	-0.9010	0.3676
Next Place: palatal	-0.1175	0.0395	-2.9726	0.0030	-0.0315	0.0262	-1.2030	0.2290
Next Place: palato-alveolar	-0.0509	0.0886	-0.5743	0.5658	-0.0934	0.0588	-1.5893	0.1120
Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Next Place: tense	0.0000	0.0000	NA	NA	0.0488	0.0669	0.7291	0.4660
Vowel: æ x Previous Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: approximate	0.1683	0.2589	0.6498	0.5158	-0.4456	0.1724	-2.5847	0.0097
Vowel: o x Previous Manner: approximate	0.1389	0.1003	1.3841	0.1663	-0.4619	0.0912	-5.0649	0.0000
Vowel: 3 x Previous Manner: approximate	-0.8994	0.2585	-3.4784	0.0005	-0.2007	0.1013	-1.9809	0.0476
Vowel: 1 x Previous Manner: approximate	0.0746	0.2438	0.3061	0.7595	-0.6242	0.1618	-3.8579	0.0001
Vowel: i x Previous Manner: approximate	-0.2560	0.1285	-1.9924	0.0463	-0.2782	0.0856	-3.2523	0.0011
Vowel: o x Previous Manner: approximate	-0.7031	0.2293	-3.0658	0.0022	-0.3110	0.1282	-2.4263	0.0153
Vowel: u x Previous Manner: approximate	0.0000	0.0000	NA	NA	-0.3496	0.1467	-2.3829	0.0172
Vowel: u x Previous Manner: approximate	-0.0420	0.1222	-0.3438	0.7310	-0.2733	0.0810	-3.3746	0.0007
Vowel: æ x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: diphthong	-0.0243	0.2406	-0.1012	0.9194	-0.4842	0.1342	-3.6091	0.0003
Vowel: o x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: diphthong-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: flap	-0.7006	0.1612	-4.3456	0.0000	0.3137	0.1081	2.9031	0.0037
Vowel: u x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: fricative	-0.4171	0.2470	-1.6887	0.0913	-0.1825	0.1614	-1.1305	0.2583
		0.1338	1.4724	0.1409	-0.1404	0.0609	-2.3034	0.0213
Vowel: 5 x Previous Manner: fricative	0.1970	0.1556						
Vowel: 5 x Previous Manner: fricative Vowel: 3 x Previous Manner: fricative	0.1970			0.0000	-0.0695	0.0834	-0.8333	0.4047
Vowel: 3 x Previous Manner: fricative	-1.0662	0.2530	-4.2147	0.0000	-0.0695	0.0834	-0.8333	0.4047
				0.0000 0.8856 0.0031	-0.0695 -0.4021 -0.1526	0.0834 0.1402 0.0663	-0.8333 -2.8678 -2.3024	0.4047 0.0041 0.0213

[
Vowel: o x Previous Manner: fricative	0.0000	0.0000	NA	NA	-0.3002	0.1950	-1.5392	0.1238
Vowel: u x Previous Manner: fricative	-0.4374	0.1556	-2.8118	0.0049	-0.3006	0.1451	-2.0718	0.0383
Vowel: æ x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: lax	1.1624	0.1828	6.3594	0.0000	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0875	0.0915	0.9567	0.3387
Vowel: o x Previous Manner: lax	0.4252	0.1109	3.8342	0.0001	-0.1623	0.0735	-2.2064	0.0274
Vowel: o x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: nasal	0.2519	0.2429	1.0370	0.2998	-0.1083	0.1590	-0.6811	0.4958
Vowel: o x Previous Manner: nasal	0.5865	0.1477	3.9720	0.0001	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: nasal	-0.6187	0.2441	-2.5341	0.0113	0.2456	0.0802	3.0611	0.0022
Vowel: 1 x Previous Manner: nasal	0.5277	0.2278	2.3165	0.0205	-0.2232	0.1488	-1.5000	0.1336
Vowel: i x Previous Manner: nasal	-0.1498	0.0858	-1.7460	0.0808	0.2920	0.0571	5.1108	0.0000
Vowel: o x Previous Manner: nasal	-0.3845	0.2117	-1.8161	0.0694	0.1364	0.1116	1.2226	0.2215
Vowel: v x Previous Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: nasal	0.0303	0.0778	0.3886	0.6976	0.3989	0.0520	7.6771	0.0000
Vowel: æ x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: rhotic	0.0000	0.0000	NA	NA	-0.4153	0.1772	-2.3437	0.0191
Vowel: 5 x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: v x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: stop	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: stop	-0.0180	0.2571	-0.0702	0.9440	-0.3731	0.1717	-2.1727	0.0298
Vowel: o x Previous Manner: stop	0.0000	0.0000	NA	NA	-0.4216	0.0996	-4.2339	0.0000
Vowel: 3 x Previous Manner: stop	-1.0452	0.2569	-4.0676	0.0000	-0.1913	0.0999	-1.9157	0.0554
Vowel: 1 x Previous Manner: stop	-0.0960	0.2383	-0.4029	0.6870	-0.5758	0.1585	-3.6338	0.0003
Vowel: i x Previous Manner: stop	-0.3684	0.1278	-2.8816	0.0040	-0.2022	0.0848	-2.3838	0.0171
Vowel: o x Previous Manner: stop	-0.8217	0.2332	-3.5233	0.0004	-0.4981	0.1312	-3.7954	0.0001
Vowel: u x Previous Manner: stop	0.2199	0.1447	1.5204	0.1284	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: stop	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Manner: tense	-0.8869	0.2605	-3.4042	0.0007	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Manner: tense	0.2271	0.2302	0.9868	0.3237	0.0000	0.0000	NA	NA

Vowel: i x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Voicing: voiceless	-0.0716	0.0983	-0.7290	0.4660	0.1838	0.0584	3.1454	0.0017
Vowel: A x Previous Voicing: voiceless	0.1479	0.0428	3.4529	0.0006	0.0124	0.0284	0.4365	0.6625
Vowel: 5 x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Voicing: voiceless	0.0856	0.0449	1.9047	0.0568	0.1762	0.0299	5.9024	0.0000
Vowel: 1 x Previous Voicing: voiceless	0.0248	0.0319	0.7768	0.4373	0.0880	0.0212	4.1582	0.0000
Vowel: i x Previous Voicing: voiceless	-0.0779	0.0571	-1.3632	0.1728	0.1511	0.0379	3.9871	0.0001
Vowel: o x Previous Voicing: voiceless	0.1625	0.0800	2.0318	0.0422	0.3656	0.0533	6.8538	0.0000
Vowel: o x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Voicing: voiceless	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: dental	0.1258	0.1585	0.7936	0.4274	-0.4629	0.1756	-2.6355	0.0084
Vowel: o x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: dental	0.0000	0.0000	NA	NA	-0.0694	0.1732	-0.4005	0.6888
Vowel: u x Previous Place: dental	-0.2824	0.1948	-1.4495	0.1472	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: diphthong	0.5358	0.1855	2.8875	0.0039	-0.0120	0.1238	-0.0968	0.9229
Vowel: o x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: glottal	-0.2240	0.1065	-2.1039	0.0354	0.2544	0.0703	3.6203	0.0003
Vowel: A x Previous Place: glottal	0.6683	0.1092	6.1187	0.0000	0.2242	0.0751	2.9858	0.0028
Vowel: o x Previous Place: glottal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: glottal	0.3772	0.0991	3.8067	0.0001	0.1959	0.0688	2.8460	0.0044
Vowel: 1 x Previous Place: glottal	0.0082	0.0988	0.0825	0.9342	0.2185	0.0685	3.1892	0.0014
Vowel: i x Previous Place: glottal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: glottal	0.3592	0.1331	2.6982	0.0070	0.0864	0.0905	0.9546	0.3398
Vowel: U x Previous Place: glottal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: glottal	0.0493	0.1943	0.2539	0.7996	0.3628	0.1680	2.1591	0.0309
Vowel: æ x Previous Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: labial	0.1238	0.1471	0.8420	0.3998	0.0415	0.0975	0.4253	0.6706
Vowel: o x Previous Place: labial	-0.0427	0.1604	-0.2664	0.7900	0.0924	0.1070	0.8634	0.3879

Vowel: 3 x Previous Place: labial	0.1430	0.1464	0.9772	0.3285	0.3379	0.0969	3.4850	0.0005
Vowel: 1 x Previous Place: labial	0.2000	0.1520	1.3158	0.1882	0.1609	0.1008	1.5965	0.1104
Vowel: i x Previous Place: labial	0.1606	0.1469	1.0931	0.2744	0.1910	0.0973	1.9616	0.0498
Vowel: o x Previous Place: labial	-0.0923	0.1546	-0.5972	0.5504	0.0585	0.1029	0.5684	0.5698
Vowel: u x Previous Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: labio-dental	0.3869	0.1667	2.3211	0.0203	-0.0425	0.1072	-0.3965	0.6918
Vowel: A x Previous Place: labio-dental	0.5327	0.1001	5.3235	0.0000	-0.0372	0.0664	-0.5604	0.5752
Vowel: o x Previous Place: labio-dental	0.0699	0.0854	0.8186	0.4130	-0.1823	0.0580	-3.1451	0.0017
Vowel: 3 x Previous Place: labio-dental	0.2639	0.0786	3.3575	0.0008	0.0186	0.0522	0.3561	0.7218
Vowel: 1 x Previous Place: labio-dental	0.1485	0.1053	1.4100	0.1585	-0.1644	0.0698	-2.3552	0.0185
Vowel: i x Previous Place: labio-dental	0.1113	0.0725	1.5351	0.1248	0.1111	0.0482	2.3070	0.0211
Vowel: o x Previous Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: lax	0.6913	0.1958	3.5307	0.0004	-0.2496	0.1306	-1.9108	0.0560
Vowel: o x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: lax	0.0000	0.0000	NA	NA	-0.2851	0.1219	-2.3395	0.0193
Vowel: i x Previous Place: lax	0.7398	0.2432	3.0418	0.0024	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: palatal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: palatal	0.2005	0.1033	1.9405	0.0523	0.1726	0.0684	2.5224	0.0117
Vowel: o x Previous Place: palatal	0.0901	0.2035	0.4429	0.6578	0.4763	0.1399	3.4036	0.0007
Vowel: 3 x Previous Place: palatal	0.2208	0.1066	2.0708	0.0384	0.2008	0.0707	2.8401	0.0045
Vowel: 1 x Previous Place: palatal	0.3099	0.1049	2.9552	0.0031	0.1355	0.0696	1.9460	0.0517
Vowel: i x Previous Place: palatal	0.2609	0.1155	2.2588	0.0239	0.0482	0.0766	0.6300	0.5287
Vowel: o x Previous Place: palatal	0.2124	0.1022	2.0784	0.0377	0.1098	0.0677	1.6229	0.1046
Vowel: u x Previous Place: palatal	0.0608	0.2943	0.2067	0.8362	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: palatal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: palato-alveolar	0.3134	0.0834	3.7570	0.0002	-0.1152	0.0554	-2.0777	0.0377
Vowel: i x Previous Place: palato-alveolar	0.1218	0.0999	1.2195	0.2226	-0.1321	0.0663	-1.9912	0.0465
Vowel: o x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: υ x Previous Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: palato-alveolar	0.2788	0.1626	1.7147	0.0864	0.4732	0.1414	3.3457	0.0008
Vowel: æ x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Previous Place: rhotic	0.3720	0.2679	1.3887	0.1649	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: I x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 0 x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
VOWEL O X FLEVIOUS FLACE: MOUL								
Vowel: u x Previous Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA

Vowel: A x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Previous Place: tense	0.0000	0.0000	NA	NA	-0.3352	0.1392	-2.4088	0.0160
Vowel: i x Previous Place: tense	-0.0917	0.0956	-0.9594	0.3374	0.0237	0.0634	0.3741	0.7084
Vowel: o x Previous Place: tense	-0.3642	0.2205	-1.6515	0.0986	-0.2489	0.1038	-2.3979	0.0165
Vowel: o x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Previous Place: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: approximate	-0.2960	0.1969	-1.5035	0.1327	0.2817	0.1305	2.1584	0.0309
Vowel: o x Next Manner: approximate	-0.0304	0.0929	-0.3268	0.7438	0.3082	0.1415	2.1782	0.0294
Vowel: 3 x Next Manner: approximate	-0.1130	0.0859	-1.3150	0.1885	-0.0175	0.0569	-0.3070	0.7589
Vowel: 1 x Next Manner: approximate	-0.1088	0.2046	-0.5319	0.5948	0.0971	0.1355	0.7163	0.4738
Vowel: i x Next Manner: approximate	-0.0554	0.1562	-0.3543	0.7231	0.1890	0.1035	1.8271	0.0677
Vowel: o x Next Manner: approximate	0.0200	0.1783	0.1123	0.9106	0.1440	0.1181	1.2188	0.2229
Vowel: u x Next Manner: approximate	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: approximate	0.0000	0.0000	NA	NA	0.4106	0.1425	2.8816	0.0040
Vowel: æ x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: diphthong	0.0252	0.1977	0.1274	0.8986	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: diphthong	0.1289	0.2067	0.6234	0.5330	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0174	0.1189	0.1461	0.8839
Vowel: u x Next Manner: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: diphthong	-0.0528	0.0970	-0.5444	0.5862	0.1489	0.1369	1.0879	0.2766
Vowel: æ x Next Manner: flap	-0.1475	0.1262	-1.1691	0.2424	0.0040	0.0825	0.0489	0.9610
Vowel: A x Next Manner: flap	-0.1477	0.1948	-0.7581	0.4484	0.0758	0.1290	0.5874	0.5569
Vowel: o x Next Manner: flap	0.0000	0.0000	NA	NA	0.1854	0.1532	1.2096	0.2264
Vowel: 3 x Next Manner: flap	-0.0421	0.0752	-0.5592	0.5760	-0.0223	0.0499	-0.4467	0.6551
Vowel: 1 x Next Manner: flap	-0.0381	0.2011	-0.1895	0.8497	-0.0242	0.1332	-0.1815	0.8560
Vowel: i x Next Manner: flap	-0.1065	0.1546	-0.6890	0.4908	0.1305	0.1024	1.2753	0.2022
Vowel: o x Next Manner: flap	-0.0165	0.1778	-0.0929	0.9260	0.1457	0.1177	1.2378	0.2158
Vowel: o x Next Manner: flap	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: flap	-0.2736	0.0739	-3.7004	0.0002	0.2180	0.1392	1.5659	0.1174
Vowel: æ x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: fricative	-0.1583	0.1948	-0.8126	0.4165	0.0993	0.1291	0.7690	0.4419
Vowel: o x Next Manner: fricative	0.1580	0.1927	0.8201	0.4121	0.1262	0.1825	0.6913	0.4894
Vowel: 3 x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: fricative	0.0535	0.2078	0.2577	0.7967	-0.0599	0.1376	-0.4354	0.6633
Vowel: i x Next Manner: fricative	-0.0630	0.1629	-0.3867	0.6990	0.0612	0.1079	0.5676	0.5703
Vowel: o x Next Manner: fricative	0.0080	0.1821	0.0440	0.9649	0.1700	0.1206	1.4097	0.1586
Vowel: u x Next Manner: fricative	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: fricative	-0.1027	0.1222	-0.8404	0.4007	0.2516	0.1477	1.7037	0.0884
Vowel: æ x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: lax	-0.0719	0.0794	-0.9059	0.3650	-0.0587	0.0526	-1.1157	0.2646
Vowel: I x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: lax	-0.0295	0.1547	-0.1909	0.8486	0.1107	0.1024	1.0810	0.2797
Vowel: o x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA

Vowel: u x Next Manner: lax	0.0000	0.0000	NA	NA	0.0942	0.1336	0.7050	0.4808
Vowel: æ x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: lax-nasal	0.0908	0.1655	0.5487	0.5832	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: v x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: lax-nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: nasal	-0.2678	0.1792	-1.4947	0.1350	-0.0027	0.1159	-0.0231	0.9815
Vowel: A x Next Manner: nasal	-0.3176	0.1907	-1.6657	0.0958	0.1141	0.1264	0.9031	0.3665
Vowel: o x Next Manner: nasal	0.0430	0.1370	0.3140	0.7535	0.1085	0.1544	0.7024	0.4824
Vowel: 3 x Next Manner: nasal	-0.2327	0.0826	-2.8156	0.0049	-0.0493	0.0548	-0.8989	0.3687
Vowel: 1 x Next Manner: nasal	-0.1585	0.1988	-0.7972	0.4254	0.0392	0.1317	0.2979	0.7658
Vowel: i x Next Manner: nasal	-0.1123	0.1485	-0.7561	0.4496	0.1170	0.0983	1.1902	0.2340
Vowel: o x Next Manner: nasal	-0.0226	0.1731	-0.1304	0.8962	0.1140	0.1146	0.9944	0.3201
Vowel: u x Next Manner: nasal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: nasal	-0.2298	0.0835	-2.7526	0.0059	0.2782	0.1360	2.0456	0.0408
Vowel: æ x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: rhotic	0.2703	0.2846	0.9496	0.3423	-0.1270	0.1809	-0.7022	0.4826
Vowel: i x Next Manner: rhotic	0.0000	0.0000	NA	NA	-0.0710	0.1511	-0.4701	0.6383
Vowel: o x Next Manner: rhotic	0.0000	0.0000	NA	NA	-0.2447	0.1629	-1.5022	0.1331
Vowel: u x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: stop	-0.1681	0.1243	-1.3524	0.1763	0.0667	0.0819	0.8151	0.4150
Vowel: A x Next Manner: stop	-0.3026	0.1903	-1.5902	0.1118	0.1356	0.1260	1.0758	0.2820
Vowel: o x Next Manner: stop	0.1409	0.1503	0.9374	0.3486	0.1225	0.1628	0.7524	0.4518
Vowel: 3 x Next Manner: stop	-0.0117	0.0595	-0.1973	0.8436	0.0573	0.0395	1.4522	0.1464
Vowel: 1 x Next Manner: stop	-0.0582	0.2007	-0.2897	0.7720	0.0352	0.1330	0.2644	0.7915
Vowel: i x Next Manner: stop	-0.1498	0.1543	-0.9709	0.3316	0.1749	0.1022	1.7120	0.0869
Vowel: o x Next Manner: stop	0.0030	0.1764	0.0169	0.9865	0.1400	0.1168	1.1983	0.2308
Vowel: u x Next Manner: stop	0.0099	0.2216	0.0446	0.9644	0.1340	0.0924	1.4506	0.1469
Vowel: u x Next Manner: stop	-0.1501	0.0640	-2.3444	0.0191	0.3207	0.1406	2.2808	0.0226
Vowel: æ x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: I x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: syllabic	0.0778	0.1626	0.4783	0.6325	0.1080	0.1077	1.0031	0.3158
Vowel: v x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: syllabic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Manner: tense	0.0007	0.2282	0.0029	0.9977	0.0000	0.0000	NA	NA
Vowel: 3 x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Manner: tense	0.0000	0.0000	NA	NA	0.0187	0.1124	0.1661	0.8681
Vowel: i x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA

Vowel: o x Next Manner: tense	0.1989	0.1124	1.7699	0.0768	0.0000	0.0000	NA	NA
Vowel: v x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Manner: tense	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Voicing: voiceless	-0.0920	0.1179	-0.7804	0.4352	-0.0619	0.0763	-0.8110	0.4174
Vowel: A x Next Voicing: voiceless	0.0775	0.0396	1.9566	0.0504	0.0148	0.0263	0.5643	0.5726
Vowel: 5 x Next Voicing: voiceless	-0.2400	0.1692	-1.4183	0.1561	0.0999	0.1155	0.8651	0.3870
Vowel: 3 x Next Voicing: voiceless	-0.0437	0.0294	-1.4827	0.1382	-0.0727	0.0195	-3.7227	0.0002
Vowel: I x Next Voicing: voiceless	-0.0109	0.0233	-0.4684	0.6395	-0.0678	0.0154	-4.3992	0.0000
Vowel: i x Next Voicing: voiceless	-0.0076	0.0258	-0.2955	0.7676	-0.0035	0.0171	-0.2075	0.8356
Vowel: o x Next Voicing: voiceless	0.0260	0.0241	1.0792	0.2805	-0.0868	0.0160	-5.4357	0.0000
Vowel: u x Next Voicing: voiceless	-0.1137	0.0441	-2.5762	0.0100	-0.0916	0.0294	-3.1182	0.0018
Vowel: u x Next Voicing: voiceless	-0.0709	0.0421	-1.6831	0.0924	-0.0237	0.0279	-0.8498	0.3954
Vowel: æ x Next Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: consonant	0.5151	0.1398	3.6853	0.0002	-0.0742	0.0926	-0.8009	0.4232
Vowel: 5 x Next Place: consonant	-0.2485	0.1716	-1.4481	0.1476	0.1029	0.1147	0.8974	0.3695
Vowel: 3 x Next Place: consonant	0.1039	0.1158	0.8972	0.3696	0.0732	0.0767	0.9542	0.3400
Vowel: I x Next Place: consonant	-0.0327	0.1063	-0.3075	0.7584	-0.0674	0.0705	-0.9564	0.3389
Vowel: i x Next Place: consonant	0.0811	0.1285	0.6306	0.5283	0.0451	0.0851	0.5299	0.5962
Vowel: o x Next Place: consonant	-0.0099	0.1004	-0.0984	0.9216	-0.0228	0.0664	-0.3433	0.7314
Vowel: U x Next Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: consonant	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: dental	-0.2187	0.1212	-1.8044	0.0712	0.0439	0.0803	0.5463	0.5848
Vowel: o x Next Place: dental	-0.5258	0.2030	-2.5899	0.0096	0.0358	0.1375	0.2604	0.7946
Vowel: 3 x Next Place: dental	-0.2763	0.1209	-2.2851	0.0223	-0.0825	0.0801	-1.0296	0.3032
Vowel: 1 x Next Place: dental	-0.4101	0.1115	-3.6779	0.0002	0.0300	0.0739	0.4060	0.6848
Vowel: i x Next Place: dental	-0.1683	0.1082	-1.5548	0.1200	-0.0043	0.0717	-0.0603	0.9519
Vowel: o x Next Place: dental	-0.1203	0.1073	-1.1207	0.2624	-0.0752	0.0711	-1.0578	0.2901
Vowel: u x Next Place: dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: dental	-0.2958	0.1350	-2.1901	0.0285	0.0278	0.0895	0.3110	0.7558
Vowel: æ x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: diphthong	0.0000	0.0000	NA	NA	-0.0069	0.1310	-0.0527	0.9580
Vowel: o x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: diphthong	0.1077	0.0886	1.2152	0.2243	-0.1285	0.0587	-2.1881	0.0287
Vowel: 1 x Next Place: diphthong	0.0000	0.0000	NA	NA	-0.0772	0.1369	-0.5640	0.5728
Vowel: i x Next Place: diphthong	0.1615	0.1597	1.0110	0.3120	0.0060	0.1058	0.0565	0.9549
Vowel: o x Next Place: diphthong	0.3075	0.1795	1.7126	0.0868	0.0000	0.0000	NA	NA
Vowel: u x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: diphthong	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: glottal	0.1839	0.1080	1.7025	0.0887	0.0464	0.0652	0.7125	0.4761
Vowel: A x Next Place: glottal	0.0637	0.0381	1.6714	0.0946	-0.0232	0.0253	-0.9188	0.3582
Vowel: o x Next Place: glottal	0.0912	0.0643	1.4183	0.1561	-0.0414	0.0447	-0.9263	0.3543
Vowel: 3 x Next Place: glottal	-0.0625	0.0298	-2.1006	0.0357	-0.0532	0.0198	-2.6908	0.0071
Vowel: 1 x Next Place: glottal	-0.0154	0.0242	-0.6385	0.5232	-0.0352	0.0160	-2.1991	0.0279
Vowel: i x Next Place: glottal	0.0084	0.0282	0.2968	0.7666	0.0108	0.0187	0.5794	0.5623
Vowel: o x Next Place: glottal	0.0951	0.0261	3.6483	0.0003	-0.0587	0.0173	-3.3985	0.0007
Vowel: u x Next Place: glottal	0.0000	0.0000	NA	NA	0.3002	0.2199	1.3650	0.1723
Vowel: u x Next Place: glottal	-0.1209	0.0714	-1.6932	0.0904	-0.0423	0.0473	-0.8928	0.3720
Vowel: æ x Next Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: labial	0.0785	0.0369	2.1295	0.0332	-0.1632	0.0244	-6.6777	0.0000
Vowel: ɔ x Next Place: labial	-0.2283	0.1040	-2.1956	0.0281	0.0396	0.0700	0.5663	0.5712
Vowel: 3 x Next Place: labial	0.0293	0.0435	0.6743	0.5001	-0.0075	0.0289	-0.2581	0.7963

Vowel: 1 x Next Place: labial	-0.0663	0.0314	-2.1112	0.0348	-0.0401	0.0209	-1.9198	0.0549
Vowel: i x Next Place: labial	-0.0238	0.0295	-0.8073	0.4195	0.0158	0.0195	0.8112	0.4172
Vowel: o x Next Place: labial	0.0168	0.0266	0.6321	0.5273	-0.0627	0.0176	-3.5525	0.0004
Vowel: u x Next Place: labial	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: labial	-0.1757	0.0726	-2.4200	0.0155	-0.1234	0.0482	-2.5622	0.0104
Vowel: æ x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: labio-dental	-0.2859	0.0955	-2.9932	0.0028	-0.0762	0.0633	-1.2048	0.2283
Vowel: o x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: labio-dental	-0.0852	0.1097	-0.7767	0.4374	0.2020	0.0728	2.7743	0.0055
Vowel: 1 x Next Place: labio-dental	-0.1428	0.0781	-1.8286	0.0675	0.1973	0.0518	3.8095	0.0001
Vowel: i x Next Place: labio-dental	-0.0780	0.0799	-0.9766	0.3288	0.0813	0.0530	1.5341	0.1250
Vowel: o x Next Place: labio-dental	0.1286	0.0744	1.7281	0.0840	0.0255	0.0493	0.5177	0.6047
Vowel: u x Next Place: labio-dental	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: labio-dental	-0.1724	0.1100	-1.5680	0.1169	0.1543	0.0728	2.1178	0.0342
Vowel: æ x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: lax	-0.1746	0.1933	-0.9033	0.3663	0.0915	0.1281	0.7142	0.4751
Vowel: 5 x Next Place: lax	-0.1082	0.1014	-1.0678	0.2856	0.1482	0.1381	1.0732	0.2832
Vowel: 3 x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Place: lax	-0.0011	0.2021	-0.0056	0.9955	-0.0486	0.1339	-0.3632	0.7165
Vowel: i x Next Place: lax	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Place: lax	0.1104	0.1766	0.6249	0.5321	0.0585	0.1170	0.5002	0.6169
Vowel: u x Next Place: lax	0.1996	0.1612	1.2378	0.2158	0.1027	0.1080	0.9515	0.3414
Vowel: u x Next Place: lax	-0.2396	0.0836	-2.8679	0.0041	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: palatal	0.3597	0.1620	2.2199	0.0264	0.2454	0.1032	2.3776	0.0174
Vowel: A x Next Place: palatal	0.0757	0.0520	1.4566	0.1452	0.0701	0.0345	2.0302	0.0423
Vowel: o x Next Place: palatal	-0.0302	0.1188	-0.2539	0.7996	0.2972	0.0842	3.5302	0.0004
Vowel: 3 x Next Place: palatal	0.0107	0.0620	0.1727	0.8629	0.0232	0.0411	0.5654	0.5718
Vowel: 1 x Next Place: palatal	0.1030	0.0477	2.1604	0.0307	0.1112	0.0317	3.5099	0.0004
Vowel: i x Next Place: palatal	0.1164	0.0443	2.6271	0.0086	0.0154	0.0294	0.5260	0.5989
Vowel: o x Next Place: palatal	0.0998	0.0424	2.3534	0.0186	0.1117	0.0281	3.9755	0.0001
Vowel: U x Next Place: palatal	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: palatal	-0.0699	0.0864	-0.8094	0.4183	-0.0913	0.0573	-1.5934	0.1111
Vowel: æ x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: palato-alveolar	-0.1535	0.1056	-1.4538	0.1460	0.0891	0.0700	1.2726	0.2032
Vowel: o x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 1 x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Place: palato-alveolar	0.1119	0.1027	1.0893	0.2760	0.0703	0.0681	1.0318	0.3022
Vowel: o x Next Place: palato-alveolar	0.1622	0.0942	1.7217	0.0851	0.1697	0.0625	2.7168	0.0066
Vowel: u x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: palato-alveolar	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: æ x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: A x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: o x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: 3 x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: I x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: i x Next Place: rhotic	0.2507	0.2418	1.0368	0.2998	0.0000	0.0000	NA	NA
Vowel: o x Next Place: rhotic	0.2576	0.2587	0.9959	0.3193	0.0000	0.0000	NA	NA
Vowel: U x Next Place: rhotic	0.0000	0.0000	NA	NA	0.0000	0.0000	NA	NA
			11/1	147.7	0.0000	0.0000	14/1	
		0.0000	NA	NA	0.0000	0.0000	NA	NA
Vowel: u x Next Place: rhotic Vowel: æ x Next Place: tense	0.0000	0.0000	NA NA	NA NA	0.0000	0.0000	NA NA	NA NA

Vowel: o x Next Place: tense	0.0000	0.0000	NA	NA	0.0000	0.000	0 NA	NA
Vowel: 3 x Next Place: tense	0.0000	0.0000	NA	NA	0.0000			NA
Vowel: 1 x Next Place: tense	0.1746	0.1695	1.0300	-		_		NA
Vowel: i x Next Place: tense	0.0812	0.1265	0.6414					
Vowel: o x Next Place: tense	0.0000	0.0000	NA	NA	-0.112			-
Vowel: v x Next Place: tense	0.0000	0.0000	NA	NA	0.0000			NA
Vowel: u x Next Place: tense	-0.0865	0.2150	-0.4021		_			NA
Smooth Terms	-0.0005	0.2150	-0.4021	0.007	0 0.0000	, 0.000		III
Predictor	edf	Ref.edf	F	n	edf	Ref.e	df F	n
s(Time Step)	8.3456	8.8408	54.0186	p 5 0.000	_			p 5 0.000
ti(Time Step) x interaction(Tense, Vowel) past : a	1.0002	1.0002	17.5761	_				
	0.0000	-			_	_		
ti(Time Step) x interaction(Tense, Vowel) present : a		0.0001	0.0287	-	_			-
ti(Time Step) x interaction(Tense, Vowel) past : æ	0.0002	0.0003	0.0088	_	_	_		
ti(Time Step) x interaction(Tense, Vowel) present : æ	-	1.0000	16.7389					-
ti(Time Step) x interaction(Tense, Vowel) past : A	1.0001	1.0001	21.5859					
ti(Time Step) x interaction(Tense, Vowel) present : A	0.0000	0.0001	0.3941					
ti(Time Step) x interaction(Tense, Vowel) past : 5	0.0000	0.0001	0.4390		_			
ti(Time Step) x interaction(Tense, Vowel) present : o	1.0000	1.0001	0.0023	-		-		
ti(Time Step) x interaction(Tense, Vowel) past : 3	1.0001	1.0001	2.9852	-	_	_		
ti(Time Step) x interaction(Tense, Vowel) present : 3	0.0001	0.0001	0.0595	-	_	_		-
ti(Time Step) x interaction(Tense, Vowel) past : 1	1.0000	1.0000	10.0147	-	_	_		
ti(Time Step) x interaction(Tense, Vowel) present : 1	1.0002	1.0004	14.6597	-	_			0.438
ti(Time Step) x interaction(Tense, Vowel) past : i	1.0001	1.0001	11.4516	_	_			
ti(Time Step) x interaction(Tense, Vowel) present : i	1.0000	1.0000	12.3661		_		0.6150	_
ti(Time Step) x interaction(Tense, Vowel) past : o	0.0002	0.0004	0.4475	0.990	0 1.0020) 1.003	0.1485	0.701
ti(Time Step) x interaction(Tense, Vowel) present : o	1.0003	1.0005	15.9000	0.000	1 1.0014	1.002		
ti(Time Step) x interaction(Tense, Vowel) past : 0	1.0000	1.0001	1.3605	0.243	5 1.0002	2 1.000	0.6506	0.419
ti(Time Step) x interaction(Tense, Vowel) present : u	1.0000	1.0000	0.1058	0.745	0 1.0000) 1.000	1 2.8852	0.089
ti(Time Step) x interaction(Tense, Vowel) past : u	0.0001	0.0001	0.1686	0.996	0 2.0246	5 2.442	3 9.0563	0.000
ti(Time Step) x interaction(Tense, Vowel) present : u	1.0008	1.0014	0.0477	0.827	5 1.0001	1.000	2 12.2674	0.000
ti(Time Step,NDL Cue Strength) x Vowelaa	5.0660	6.2648	2.4533	0.021	0 2.6386	5 3.455	8 4.2515	0.003
ti(Time Step,NDL Cue Strength) x Vowelae	4.6062	5.8020	4.8858	0.000	1 7.8079	8.891	7 12.5061	0.000
ti(Time Step,NDL Cue Strength) x Vowelah	7.8282	9.1501	23.7997	7 0.000	0 6.6042	2 7.875	4 55.6524	0.000
ti(Time Step,NDL Cue Strength) x Vowelao	1.0005	1.0010	0.2531	0.615	2 5.0540	6.540	6.0971	0.000
ti(Time Step,NDL Cue Strength) x Voweleh	5.9641	7.3657	9.5380	0.000	0 7.0087	8.489	8 44.9558	3 0.000
ti(Time Step,NDL Cue Strength) x Vowelih	4.5025	5.5366	15.7206	6 0.000	0 6.1318	3 7.426	6 65.7360	0.000
ti(Time Step,NDL Cue Strength) x Voweliy	5.0402	6.6642	5.2974	0.000	0 5.7286	6.998	8 11.4980	0.000
ti(Time Step,NDL Cue Strength) x Vowelow	6.2244	7.6443	5.8289	0.000	0 10.554	4 11.48	24 24.5982	2 0.000
ti(Time Step,NDL Cue Strength) x Voweluh	0.3423	8.0000	0.1180	0.068	6 0.0008	3 8.000	0.0000	0.787
ti(Time Step,NDL Cue Strength) x Voweluw	1.7787	12.0000	0.3954	0.031	9 3.2701	12.00	00 2.5342	0.000
te(Duration (log), Frequency (log))	13.8118	15.9767	25.1458	3 0.000	0 16.502	7 18.33	08 95.7426	5 0.000
ti(Time Step) x Vowelaa	2.3295	2.6503	6.8357	0.000	4 0.0013	3 0.001	6 0.0000	1.000
ti(Time Step) x Vowelae	1.0002	1.0002	13.9636	5 0.000	2 1.0000) 1.000	0 3.2900	0.069
ti(Time Step) x Vowelah	1.0000	1.0001	10.4374		_	_		0.046
ti(Time Step) x Vowelao	1.0001	1.0001	14.0069		_			-
ti(Time Step) x Voweleh	3.4391	3.7128	9.4088			_		
ti(Time Step) x Vowelih	0.0001	0.0001	0.2793					
ti(Time Step) x Voweliy	2.6514	2.8823	16.4521		_	_		-
ti(Time Step) x Vowelow	1.0005	1.0008	11.9708			_		
ti(Time Step) x Voweluh	0.0000	0.0001	0.0272	_	_			
ti(Time Step) x Voweluw	1.0001	1.0001	8.2791	_		_		-
s(Time Step, Speaker) x Vowelaa	37.0393		16.2188	_	0 36.554	_		
s(Time Step, Speaker) x Vowelaa	37.0393	39.0000	10.2180	5 0.000	0 50.554	5 39.00	00 12.5581	0.000
s(Time Step, Speaker) x Vowelae	19.9724	25.0000	3.9641	0.0000	12.3729	25.0000	1.0093 0	.0000
s(Time Step, Speaker) x Vowelah	35.3050	37.0000	8.0558	0.0000	35.2418	37.0000	7.9716 0	.0000
s(Time Step, Speaker) x Vowelao	15.9404	32.0000	1.0476	0.0000	20.3417	32.0000	1.4172 0	.0000
s(Time Step, Speaker) x Voweleh	35.5853	39.0000	6.7702	0.0000	36.1292	39.0000	5.3759 0	.0000
s(Time Step, Speaker) x Vowelih	37.3747	39.0000	9.3783	0.0000	37.9099	39.0000	20.2732 0	.0000
s(Time Step, Speaker) x Voweliy	35.8173	39.0000	5.9661	0.0000	37.4363	39.0000	13.1429 0	.0000
	38,1849	39.0000			38.3750	39.0000	27.0447 0	.0000
s(Time Step, Speaker) x Vowelow								
s(Time Step, Speaker) x Vowelow s(Time Step, Speaker) x Voweluh	25.9042		2.7315	0.0000	31.6080	33.0000	8.5689 0	.0000

Table A.25: Coefficients for the F1 and F2 global (all vowels pooled) GAM models of formant movement for robust vowels.

	F1 F2				2			
Parametric Coefficients								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
(Intercept)	6.4468	0.0228	282.2044	0.0000	7.2649	0.0140	519.9614	0.0000
Tense: present	-0.0631	0.0068	-9.3332	0.0000	0.0124	0.0042	2.9440	0.0032
NDL Cue Strength	-0.1648	0.0146	-11.2823	0.0000	0.1181	0.0091	12.9638	0.0000
Vowel: e	-0.1234	0.0259	-4.7568	0.0000	0.2165	0.0172	12.5971	0.0000
Vowel: 1	-0.2832	0.0262	-10.8184	0.0000	0.2750	0.0179	15.4010	0.0000
Vowel: i	-0.4669	0.0245	-19.0331	0.0000	0.3309	0.0168	19.7458	0.0000
Vowel: u	-0.4419	0.0290	-15.2619	0.0000	0.2346	0.0169	13.9160	0.0000
Smooth Terms								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
s(Time Step)	6.5989	7.7262	9.0277	0.0000	1.0019	1.0034	4.5408	0.0329
ti(Time Step) x Tense: past	2.6965	3.1086	7.7588	0.0000	1.0008	1.0015	20.6267	0.0000
ti(Time Step) x Tense: present	0.0002	0.0002	0.3420	0.9930	2.0954	2.5410	3.0100	0.1149
ti(Time Step,NDL Cue Strength)	4.8098	6.1673	12.3736	0.0000	3.5891	3.8805	48.3961	0.0000
te(Duration (log), Frequency (log))	16.5237	18.5192	13.2472	0.0000	17.7318	19.4183	45.0458	0.0000
ti(Time Step) x Vowel: A	1.0001	1.0002	8.9198	0.0028	0.0011	0.0017	0.7616	0.9709
ti(Time Step) x Vowel: ε	1.0000	1.0001	0.2291	0.6323	0.0009	0.0014	0.0194	0.9958
ti(Time Step) x Vowel: 1	1.3531	1.7906	3.6057	0.0954	0.0006	0.0011	0.3971	0.9831
ti(Time Step) x Vowel: i	0.0002	0.0003	0.2802	0.9933	2.2057	2.5787	5.8619	0.0027
ti(Time Step) x Vowel: u	0.0002	0.0003	0.2172	0.9933	0.0030	0.0058	0.0035	0.9964
ti(Time Step) x interaction(Vowel, Prev Voicing) A.voiced	1.6377	2.0892	5.0175	0.0069	0.0002	0.0003	0.0013	0.9995
ti(Time Step) x interaction(Vowel, Prev Voicing) ɛ.voiced	1.0000	1.0001	0.1252	0.7236	1.0008	1.0012	61.8123	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) 1.voiced	0.0606	0.0806	0.8042	0.7990	0.0005	0.0009	0.3701	0.9853
ti(Time Step) x interaction(Vowel, Prev_Voicing) i.voiced	1.3706	1.7773	6.1324	0.0187	1.5829	1.9710	7.2266	0.0013
ti(Time Step) x interaction(Vowel, Prev_Voteing) u.voiced	1.0001	1.0002	1.3639	0.2428	1.0010	1.0020	0.7384	0.3899
ti(Time Step) x interaction(Vowel, Prev_Voteing) A.voiceless	1.0001	1.0002	0.2739	0.6007	1.0009	1.0015	94.3688	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) involcences	0.0000	0.0001	0.0788	0.9983	2.9487	2.9961	23.7945	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) i.voiceless	2.9339	3.2501	5.0978	0.0016	3.3932	3.5127	11.8456	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) i.voiceless	1.0001	1.0001	1.4818	0.2235	1.0031	1.0038	0.5610	0.4537
ti(Time Step) x interaction(Vowel, Prev_Voicing) u.voiceless	0.0001	0.0002	0.0020	0.9995	0.0009	0.0017	0.0518	0.9925
ti(Time Step) x interaction(Vowel, Prev_volcing) u.volceless ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2high	1.0001	1.0002	1.8091	0.1787	3.6359	3.9097	13.4617	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) z.F2high	3.3676	3.7145	21.0809	0.0000	3.1992	3.5826	36.2207	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2high	1.0001	1.0001	0.2519	0.6158	1.0006	1.0010	1.9114	0.1669
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2high	1.0001	1.0001	0.2519	0.6069	1.0000	1.0010	1.8085	0.1790
ti(Time Step) x interaction(Vowel, PrevPlacegrp) u.F2high	1.0001	1.0001	0.2648	0.6009	1.0010	1.0019	4.3172	0.0377
ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2low	0.0000	0.0001	0.0016	0.9998	3.0416	3.4964	6.9750	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) £.F2low	1.0000	1.0001	2.3531	0.1251	3.9659	3.9975	29.8698	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) 1.F2low	1.0000	1.0000	0.7276	0.3937	3.8754	3.9846	15.5158	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2low	1.0000	1.0001	0.4074	0.5233	2.0117	2.4382	4.7534	0.0071
ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2mid	2.4915	2.9189	10.4378	0.0000	1.0010	1.0016	0.4920	0.4823
ti(Time Step) x interaction(Vowel, PrevPlacegrp) ɛ.F2mid	2.6214	2.8805	4.5670	0.0041	0.0005	0.0008	0.1169	0.9921
ti(Time Step) x interaction(Vowel, PrevPlacegrp) 1.F2mid	1.0000	1.0000	0.1402	0.7081	1.0001	1.0002	0.6002	0.4386
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2mid	1.0001	1.0001	0.0103	0.9192	1.0011	1.0016	4.7505	0.0292
ti(Time Step) x interaction(Vowel, PrevPlacegrp) u.F2mid	0.0001	0.0002	0.4697	0.9929	0.0023	0.0045	0.0115	0.9943
ti(Time Step) x interaction(Vowel, Next_Voicing) A.voiced	1.0000	1.0001	10.7837	0.0010	1.0005	1.0008	2.6846	0.1014
ti(Time Step) x interaction(Vowel, Next_Voicing) ɛ.voiced	1.0000	1.0000	10.8677	0.0010	3.1839	3.6710	5.4204	0.0004
ti(Time Step) x interaction(Vowel, Next_Voicing) I.voiced	2.1159	2.5637	8.7457	0.0004	1.0003	1.0006	8.9062	0.0028
ti(Time Step) x interaction(Vowel, Next_Voicing) i.voiced	0.0001	0.0002	0.2191	0.9953	1.9271	2.4572	4.9362	0.0035
ti(Time Step) x interaction(Vowel, Next_Voicing) u.voiced	1.0001	1.0002	1.2338	0.2667	1.0008	1.0015	9.9760	0.0016
ti(Time Step) x interaction(Vowel, Next_Voicing) A.voiceless	2.0424	2.3450	23.3599	0.0000	1.4222	1.8400	6.0838	0.0127
ti(Time Step) x interaction(Vowel, Next_Voicing) ɛ.voiceless	0.0000	0.0001	0.2680	0.9963	0.0002	0.0003	0.1149	0.9955

		0						
ti(Time Step) x interaction(Vowel, Next_Voicing) I.voiceless	0.0001	0.0001	0.0015	0.9997	1.7290	2.0318	8.1498	0.0002
ti(Time Step) x interaction(Vowel, Next_Voicing) i.voiceless	1.0001	1.0001	10.7493	0.0010	1.0023	1.0031	36.7402	0.0000
ti(Time Step) x interaction(Vowel, Next_Voicing) u.voiceless	0.0000	0.0001	0.0020	0.9997	0.0007	0.0013	0.2437	0.9856
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2high	2.6152	2.9839	5.9011	0.0010	1.0004	1.0007	2.5808	0.1080
ti(Time Step) x interaction(Vowel, NextPlacegrp) ɛ.F2high	0.0000	0.0000	0.3368	0.9969	1.0002	1.0003	61.7554	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2high	1.0000	1.0000	0.3629	0.5469	3.4461	3.5649	11.5842	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2high	2.0087	2.5530	1.1826	0.3900	0.0005	0.0009	0.0122	0.9973
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2high	0.0007	0.0014	0.8111	0.9735	1.3674	1.9012	0.6949	0.4443
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2low	0.0001	0.0003	0.6850	0.9892	0.0006	0.0008	0.7646	0.9798
ti(Time Step) x interaction(Vowel, NextPlacegrp) ε.F2low	1.0000	1.0000	0.0607	0.8055	1.0003	1.0006	65.0800	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2low	0.0000	0.0001	0.0015	0.9997	0.0004	0.0007	0.1917	0.9910
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2low	1.0001	1.0001	0.3492	0.5546	1.0014	1.0025	37.3059	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2low	1.0000	1.0000	1.4249	0.2326	2.5977	2.8765	25.4829	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2mid	1.0000	1.0001	0.4975	0.4806	2.8113	3.2071	11.6874	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) ɛ.F2mid	1.0001	1.0001	0.2649	0.6068	1.0005	1.0009	63.8407	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2mid	1.0000	1.0000	2.0825	0.1490	2.2015	2.5266	5.6264	0.0028
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2mid	1.0002	1.0004	0.8000	0.3709	3.3588	3.7450	5.5947	0.0003
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2mid	1.0001	1.0001	0.0068	0.9341	1.0016	1.0032	0.2995	0.5844
s(Time Step, Speaker) x Vowel: л	34.5677	36.0000	31.0782	0.0000	34.4755	36.0000	24.6681	0.0000
s(Time Step, Speaker) x Vowel: ε	35.1530	39.0000	13.1475	0.0000	36.4038	39.0000	18.9644	0.0000
s(Time Step, Speaker) x Vowel: 1	37.2238	39.0000	22.7403	0.0000	37.9765	39.0000	49.4769	0.0000
s(Time Step, Speaker) x Vowel: i	34.3833	39.0000	8.2036	0.0000	37.0068	39.0000	26.0224	0.0000
s(Time Step, Speaker) x Vowel: u	27.3519	31.0000	10.3384	0.0000	25.6568	31.0000	6.8442	0.0000

Table A.26: Coefficients for the F1 and F2 by vowel GAM models of formant movement for robust vowels.

	F1				F	F2		
Parametric Coefficients		-						
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
(Intercept)	6.4486	0.0232	277.5160	0.0000	7.2590	0.0140	518.2553	0.0000
Tense: present	-0.0644	0.0068	-9.5338	0.0000	0.0166	0.0043	3.8919	0.0001
NDL Cue Strength	-0.1634	0.0146	-11.1668	0.0000	0.1130	0.0093	12.1060	0.0000
Vowel: e	-0.1241	0.0264	-4.7010	0.0000	0.2127	0.0175	12.1223	0.0000
Vowel: I	-0.2843	0.0266	-10.6990	0.0000	0.2775	0.0179	15.4750	0.0000
Vowel: i	-0.4680	0.0249	-18.7818	0.0000	0.3352	0.0168	19.9237	0.0000
Vowel: u	-0.4446	0.0294	-15.1062	0.0000	0.2453	0.0170	14.4534	0.0000
Smooth Terms								
Predictor	edf	Ref.edf	F	р	edf	Ref.edf	F	р
s(Time Step)	6.8837	7.9239	14.4017	0.0000	2.7531	3.7305	1.3333	0.2254
ti(Time Step) x interaction(Tense, Vowel) past : A	1.0008	1.0015	11.3454	0.0008	1.0000	1.0001	14.2293	0.0002
ti(Time Step) x interaction(Tense, Vowel) present : A	0.0003	0.0006	0.1827	0.9919	0.0000	0.0000	0.0351	0.9990
ti(Time Step) x interaction(Tense, Vowel) past : ε	0.0001	0.0002	0.2585	0.9941	0.0000	0.0000	0.1956	0.9980
ti(Time Step) x interaction(Tense, Vowel) present : ε	1.0002	1.0004	12.7940	0.0003	1.0000	1.0000	47.2357	0.0000
ti(Time Step) x interaction(Tense, Vowel) past : 1	0.0000	0.0001	0.0781	0.9982	0.0000	0.0000	0.2860	0.9980
ti(Time Step) x interaction(Tense, Vowel) present : I	1.0002	1.0004	2.6339	0.1047	1.0000	1.0001	0.5194	0.4711
ti(Time Step) x interaction(Tense, Vowel) past : i	1.0002	1.0003	1.2822	0.2575	1.0001	1.0001	4.9942	0.0254
ti(Time Step) x interaction(Tense, Vowel) present : i	0.0006	0.0009	0.2639	0.9874	0.0001	0.0001	0.0594	0.9978
ti(Time Step) x interaction(Tense, Vowel) present 11 ti	0.0003	0.0005	0.6432	0.9863	0.0002	0.0004	0.2265	0.9923
ti(Time Step) x interaction(Tense, Vowel) past : u	1.0003	1.0005	9.9119	0.0016	1.0001	1.0001	6.2199	0.0126
ti(Time Step,NDL Cue Strength) x Vowel: A	2.7354	3.0044	17.4362	0.0000	8.7307	9.5739	12.4970	0.0000
ti(Time Step,NDL Cue Strength) x Vowel: κ ti	5.9822	7.4725	6.5133	0.0000	10.0172	11.3198	18.8192	0.0000
ti(Time Step,NDL Cue Strength) x Vowel: 1	1.0027	1.0053	22.3937	0.0000	2.8066	3.2448	14.2881	0.0000
ti(Time Step,NDL Cue Strength) x Vowel: i	3.7257	4.7237	22.3937	0.0455	3.0154	3.3703	2.7506	0.0000
ti(Time Step,NDL Cue Strength) x Vowel: 1 ti	1.0890	12.0000	0.4580	0.0455	0.9018	11.0000	1.6185	0.0191
	16.2991	12.0000	12.8219	0.0000	17.4379	19.1991	44.1104	0.0012
te(Duration (log), Frequency (log))	0.0009		0.0159	0.0000				0.9992
ti(Time Step) x Vowel: A		0.0012			0.0000	0.0000	0.0425	
ti(Time Step) x Vowel: ε	2.6148	2.8207	19.9166	0.0000	0.0000	0.0000	0.2548	0.9974
ti(Time Step) x Vowel: I	0.0004	0.0006	0.4410	0.9870	0.0000	0.0001	0.4783	0.9949
ti(Time Step) x Vowel: i	1.0324	1.3922	2.0956	0.2794	2.4329	2.7305	7.7498	0.0006
ti(Time Step) x Vowel: u	0.0002	0.0003	0.0825	0.9961	0.0001	0.0002	0.0032	0.9994
ti(Time Step) x interaction(Vowel, Prev_Voicing) A.voiced	1.8720	2.3102	8.8679	0.0001	0.0000	0.0000	0.0695	0.9992
ti(Time Step) x interaction(Vowel, Prev_Voicing) ɛ.voiced	1.0001	1.0002	0.5958	0.4402	1.0000	1.0000	0.6569	0.4177
ti(Time Step) x interaction(Vowel, Prev_Voicing) I.voiced	0.0005	0.0008	0.5216	0.9832	0.0000	0.0001	0.4553	0.9952
ti(Time Step) x interaction(Vowel, Prev_Voicing) i.voiced	0.8255	1.1738	1.4618	0.4069	1.6220	2.0087	9.5704	0.0001
ti(Time Step) x interaction(Vowel, Prev_Voicing) u.voiced	1.0003	1.0005	0.2991	0.5843	1.0002	1.0004	0.2469	0.6193
ti(Time Step) x interaction(Vowel, Prev_Voicing) A.voiceless	2.7952	3.3298	4.5583	0.0040	1.0000	1.0000	30.4587	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) ε.voiceless	0.0001	0.0002	0.0082	0.9990	1.4643	1.8300	8.9376	0.0017
ti(Time Step) x interaction(Vowel, Prev_Voicing) 1.voiceless	2.9845	3.2975	6.0492	0.0004	3.4198	3.5322	12.2262	0.0000
ti(Time Step) x interaction(Vowel, Prev_Voicing) i.voiceless	1.0005	1.0006	0.1359	0.7127	1.0002	1.0002	0.0100	0.9202
ti(Time Step) x interaction(Vowel, Prev_Voicing) u.voiceless	0.0003	0.0006	0.1936	0.9917	0.0001	0.0001	0.1288	0.9969
ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2high	1.0002	1.0004	0.0023	0.9614	1.0000	1.0000	2.5196	0.1125
ti(Time Step) x interaction(Vowel, PrevPlacegrp) ɛ.F2high	1.0002	1.0003	29.2064	0.0000	1.0002	1.0003	45.7482	0.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) 1.F2high	1.0001	1.0002	0.0195	0.8889	1.0000	1.0001	0.8409	0.3592
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2high	1.0002	1.0003	0.0027	0.9590	1.0000	1.0000	3.7202	0.0538
ti(Time Step) x interaction(Vowel, PrevPlacegrp) u.F2high	1.0003	1.0005	8.0234	0.0046	0.0001	0.0001	0.1221	0.9972
ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2low	0.0003	0.0005	0.0197	0.9975	2.9238	3.3794	6.3020	0.0001
ti(Time Step) x interaction(Vowel, PrevPlacegrp) ɛ.F2low	1.0001	1.0001	18.2029	0.0000	1.0000	1.0000	0.0067	0.9347
ti(Time Step) x interaction(Vowel, PrevPlacegrp) 1.F2low	1.0000	1.0001	0.0989	0.7532	3.8916	3.9882	17.1629	0.0000

ti(Time Step) x interaction(Vowel, PrevPlacegrp) A.F2mid	1.0008	1.0015	4.5821	0.0322	1.0000	1.0000	1.0650	0.3021
ti(Time Step) x interaction(Vowel, PrevPlacegrp) ɛ.F2mid	0.0001	0.0002	0.0191	0.9984	0.0000	0.0000	0.0000	1.0000
ti(Time Step) x interaction(Vowel, PrevPlacegrp) 1.F2mid	1.0000	1.0000	0.1854	0.6668	1.0001	1.0002	0.1059	0.7449
ti(Time Step) x interaction(Vowel, PrevPlacegrp) i.F2mid	1.0004	1.0006	0.2170	0.6416	1.0000	1.0001	3.4429	0.0635
ti(Time Step) x interaction(Vowel, PrevPlacegrp) u.F2mid	0.0003	0.0005	0.6681	0.9857	1.0002	1.0003	1.3930	0.2378
ti(Time Step) x interaction(Vowel, Next_Voicing) A.voiced	1.0006	1.0007	9.4372	0.0021	1.0000	1.0000	1.6820	0.1947
ti(Time Step) x interaction(Vowel, Next_Voicing) ɛ.voiced	1.0001	1.0002	8.6920	0.0032	1.0000	1.0000	3.7398	0.0531
ti(Time Step) x interaction(Vowel, Next_Voicing) I.voiced	2.5157	3.0426	7.2382	0.0001	1.0000	1.0001	9.4403	0.0021
ti(Time Step) x interaction(Vowel, Next_Voicing) i.voiced	1.0003	1.0006	10.6482	0.0011	2.8830	3.4261	13.8514	0.0000
ti(Time Step) x interaction(Vowel, Next_Voicing) u.voiced	1.0003	1.0005	2.3028	0.1292	2.8187	3.2686	3.7848	0.0056
ti(Time Step) x interaction(Vowel, Next_Voicing) A.voiceless	1.9046	2.2205	17.1122	0.0000	1.5518	1.9411	8.0564	0.0011
ti(Time Step) x interaction(Vowel, Next_Voicing) ɛ.voiceless	0.0001	0.0001	0.0260	0.9987	1.6404	2.0543	4.3079	0.0093
ti(Time Step) x interaction(Vowel, Next_Voicing) 1.voiceless	0.0001	0.0002	0.0658	0.9973	1.7758	2.0640	8.4764	0.0001
ti(Time Step) x interaction(Vowel, Next_Voicing) i.voiceless	0.0002	0.0004	0.0133	0.9981	0.0005	0.0007	0.1705	0.9914
ti(Time Step) x interaction(Vowel, Next_Voicing) u.voiceless	0.0001	0.0002	0.0662	0.9969	0.0000	0.0001	0.1675	0.9972
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2high	1.8010	2.1510	13.1578	0.0001	0.0000	0.0000	0.3246	0.9971
ti(Time Step) x interaction(Vowel, NextPlacegrp) ɛ.F2high	1.0001	1.0001	0.1773	0.6736	1.0000	1.0000	0.0213	0.8840
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2high	1.0000	1.0000	0.1585	0.6906	3.4443	3.5585	12.2281	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2high	2.9410	3.4740	0.6344	0.6980	1.0001	1.0001	32.7759	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2high	1.0328	1.0629	0.1155	0.7183	0.0001	0.0001	0.1000	0.9972
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2low	1.0002	1.0003	5.2615	0.0218	1.0000	1.0000	0.0907	0.7634
ti(Time Step) x interaction(Vowel, NextPlacegrp) ɛ.F2low	1.0001	1.0001	0.4563	0.4994	1.0000	1.0000	1.8800	0.1704
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2low	0.0001	0.0001	0.0000	1.0000	0.0000	0.0001	0.2223	0.9965
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2low	0.0003	0.0006	0.0208	0.9973	0.0001	0.0001	0.2056	0.9960
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2low	1.0001	1.0001	0.0002	0.9895	2.5609	2.8523	25.9225	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) A.F2mid	1.0002	1.0003	6.2834	0.0122	3.2020	3.5388	23.8936	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) ɛ.F2mid	1.0001	1.0001	0.4479	0.5033	1.0000	1.0001	0.8365	0.3604
ti(Time Step) x interaction(Vowel, NextPlacegrp) 1.F2mid	1.0001	1.0002	0.5002	0.4794	1.9645	2.2759	4.8201	0.0076
ti(Time Step) x interaction(Vowel, NextPlacegrp) i.F2mid	1.8763	2.2899	1.2023	0.3734	3.3684	3.7524	17.0712	0.0000
ti(Time Step) x interaction(Vowel, NextPlacegrp) u.F2mid	1.0003	1.0005	0.0895	0.7650	1.0000	1.0001	1.0463	0.3064
s(Time Step, Speaker) x Vowel: A	34.6087	36.0000	35.1737	0.0000	34.4689	36.0000	29.5862	0.0000
s(Time Step, Speaker) x Vowel: ε	35.2524	39.0000	15.8211	0.0000	36.6344	39.0000	19.4892	0.0000
s(Time Step, Speaker) x Vowel: 1	37.2553	39.0000	25.8293	0.0000	37.9965	39.0000	52.1229	0.0000
s(Time Step, Speaker) x Vowel: i	34.4078	39.0000	9.4207	0.0000	37.0231	39.0000	27.6693	0.0000
s(Time Step, Speaker) x Vowel: u	27.4720	31.0000	10.7382	0.0000	25.8226	31.0000	8.4128	0.0000

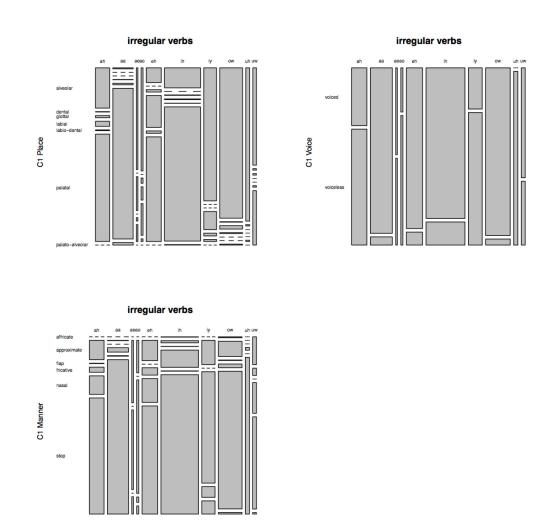


Figure A.5. Distributional plots for the voice, place, and manner of the context preceding each vowel.

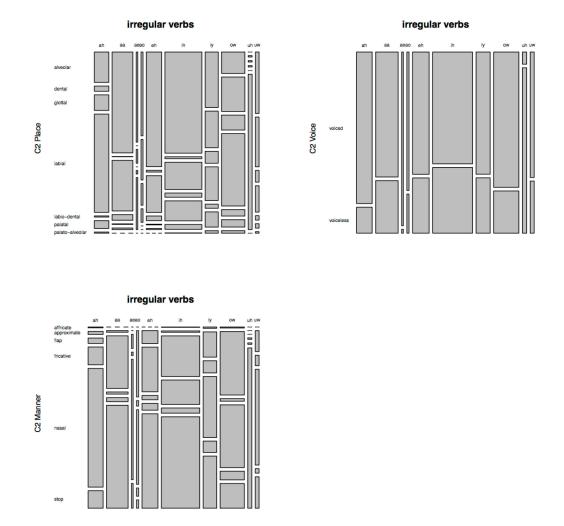


Figure A.6. Distributional plots for the voice, place, and manner of the context following each vowel.

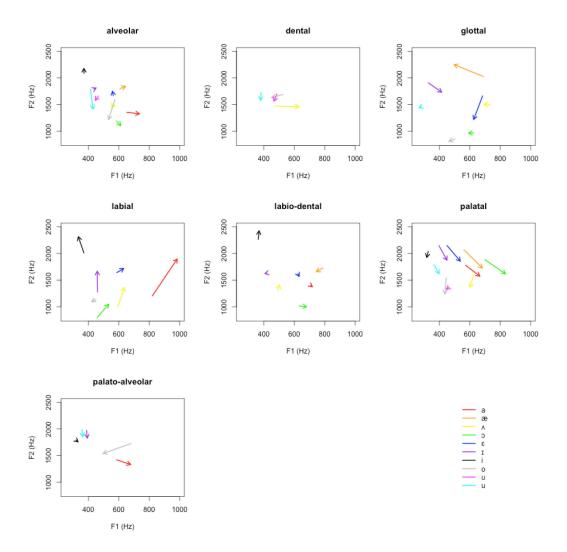


Figure A.7. Vowel plots by place of articulation for the consonant preceding each vowel. Arrowhead denotes vowel offset, blunt end denotes vowel onset.

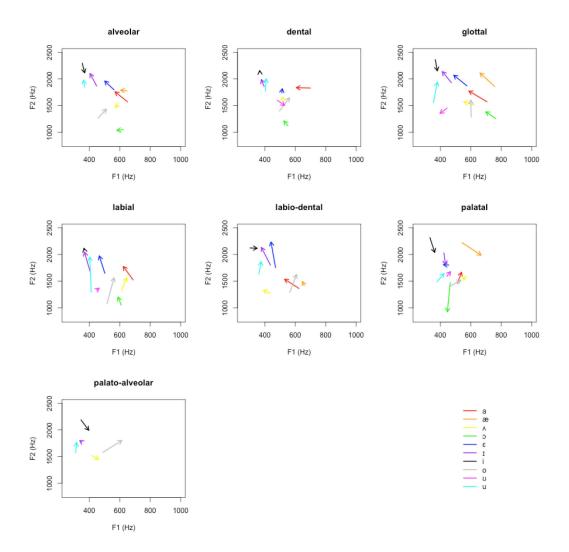


Figure A.8. Vowel plots by place of articulation for the consonant following each vowel. Arrowhead denotes vowel offset, blunt end denotes vowel onset.

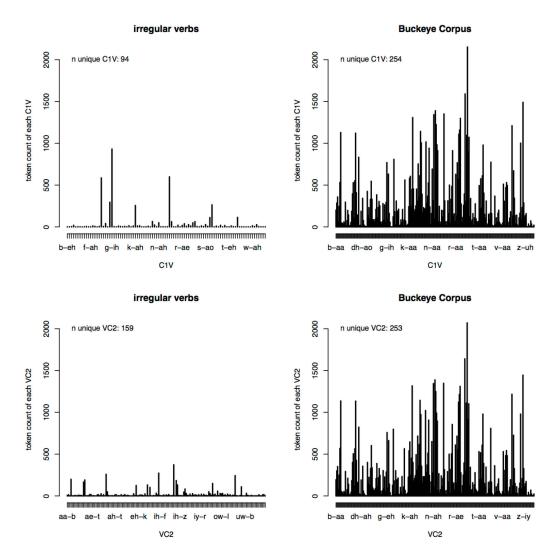


Figure A.9. Distributional plots for all the C1V and VC2 pairs in the dissertation's data (Buckeye Corpus irregular English verbs) compared to the entire Buckeye Corpus.

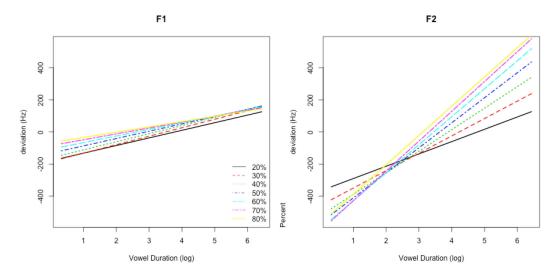


Figure A.10. LMER predictions in the formant deviation from vowel onset analysis. Interaction shown is between vowel duration (ms log) and percent time

step.

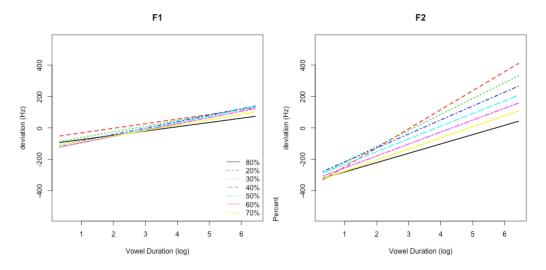


Figure A.11. LMER predictions in the formant deviation from vowel offset analysis. Interaction shown is between vowel duration (ms log) and percent time

step.

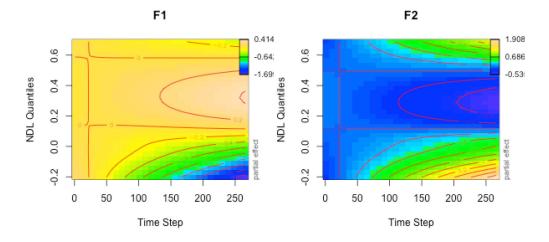


Figure A.12. F1 and F2 global GAM models' partial effects of NDL Cue Strength through Time. Time is shown on the x-axis. NDL Cue Strength is shown on the y-axis. Formant value is shown on the z-axis (in colours).

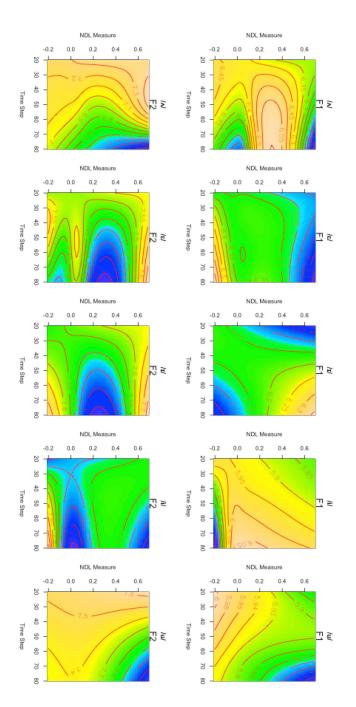


Figure A.13. F1 GAM model partial effects of NDL Cue Strength paired with Time for each vowel. Percent of vowel duration is shown on the x-axis. NDL Cue Strength is shown on the y-axis. Formant measures (in Hertz) is shown on the zaxis (in colours). F1 is shown on the top row, F2 is on the bottom row.

Discussion A.1: Phonetically relevant results to the onset analysis.

In the analysis of formant movement from the vowel edges (onset and offset), the interaction between the absolute length of a vowel's duration (log Duration) and relative time (Percent) is phonetically relevant. The phonetic relevance concerns the contribution of the surrounding phonetic environment on the formant trajectories. Lindblom (1963) proposes that more reduced (i.e. shorter) vowel durations will be produced with less formant movement because the contributions of the surrounding environment are too influential (context assimilation is strong). H&H Theory holds that hyper-articulated vowels (i.e. longer vowel durations) will show more formant movement away from the onset and offset edges, where there is less context assimilation. Broad and Clermont (1987) add to H&H Theory by quantifying the time domain of context assimilation. They propose that vowel trajectories will exponentially increase until it reaches an asymptote state, where context assimilation is at its weakest, at roughly 50% of the vowel's duration. Taken together, these two predictions entail that vowels with longer durations (H&H Theory's hyper-articulation) will display more movement away from the vowel edges (where assimilation to the phonetic context is strong) when compared to vowels with shorter durations (hypoarticulation). These predictions are discussed here with regards to vowel onset, where assimilation to the phonetic context preceding the vowel is strong.

On Table A.13 and for F1, the duration-time interaction is significant at the 30%, and 60%-80% time intervals, or the two tail ends of the vowel duration - close to onset, and close to offset (i.e. and not during Broad and Clermont's vowel asymptote state). For F2, however, this interaction is significant for every Percent time interval, with the magnitude of the effect gradually increasing until the 60%-70% time interval.

Figure A.10 shows positive trends for the duration-time interaction. For both F1 and F2, longer vowels are produced with more formant deviation from vowel onset compared to shorter vowels. The amount of deviation increases for each time step, from 20%-80%, indicating that deviation increases over time. The slopes of the interaction are steeper for F2 formant deviation than F1. This could be due to the effect the place of articulation that precedes the vowel, as place of articulation is known to strong affect F2 trajectories. Thus, there is strong support for the predictions made by H&H Theory and Broad and Clermont: more hyper-articulated vowels are produced with more dynamic formant dispersion compared to hypo-articulated vowels.

Discussion A.2: Phonetically relevant results to the offset analysis.

Similar to Discussion A.1, this section discusses the Lindblom (1963) and Broad and Clermont (1987) predictions of formant movement from vowel offset. On Table A.15 and for F1, the duration-time interaction is significant at the 70%-30% time intervals (80% serves as the reference level of vowel offset). For F2, this interaction is significant for every Percent time interval. The magnitude of the interaction effects in both the F1 and F2 data gradually increases as the trajectories progress backwards in time, away from the vowel offset. These effects are similar to the deviance from vowel onset models in Discussion A.1.

Figure A.11 shows positive trends for the duration-time interactions that are also similar to the onset models. For both F1 and F2, longer vowels are produced with more formant deviation from vowel onset compared to shorter vowels. The amount of deviation increases for each time step, from 80%-20%, indicating that deviation increases over time. Again, the slopes of the interaction is steeper for F2 formant deviation than F1 due to a possible confound with the place of articulation in the phonetic context that follows the vowel. Once again, there is strong support for the predictions made by H&H Theory and Broad and Clermont. Taken with Discussion A.1, the phonetic context that surrounds the vowel affects the formant trajectories in predictable ways: hyper-articulated vowels display more movement through time compared to hypo-articulated vowels. Discussion A.3: Methods of gaining convergence in the GAM of formant movement.

Three methods were employed to attempt to gain convergence in the GAM models of formant movement. Methods 1 and 2 proved to be ineffective to solving the data sparsity issue. These methods and the issues of data sparsity are discussed below. Method 3 was effective in solving data sparsity, however it limits the generalizability of the predictions to other analyses in Chapter 3. This is discussed in more detail below.

Method 1: modelling each articulation feature (voice, place, and manner) for each C₁ and C₂ separately

Place of articulation is known to affect formant trajectories, particularly F2, and voicing is known to affect F1 trajectories (Lindblom, 1963). Each of these features for each C_1 and C_2 were placed in the GAM models individually; for example, one model with C_1 voicing only, another model with C_1 place only, etc. However, no factor level (e.g. C_1 voicing) was populated well enough across each vowel to gain model convergence. For example, /æ/ is disproportionally followed by voiceless consonants, with very few data for voiced consonants (see distributional plots in Figure A.5 and Figure A.6). For this data population sparsity issue, this method failed to reach model convergence.

Method 2: collapsing articulation features into locus equation groups to reduce factor levels

The places of articulation for the surrounding phonetic environment were collapsed into three groups according to Lindblom (1963): F2 decreasing (bilabial-like: labial and labio-dental), F2 mid (alveolar-like: dental and alveolar), and F2 increasing (velar-like: palatal-alveolar and palatal; phones such as /k/ are coded as 'palatal' in the Buckeye Corpus). However, these collapsed factor levels were still sparse for some vowels. For example, there is no F2 increasing

consonants following the production of /2 / in the current data set (again, see distributional plots in Figure A.5 and Figure A.6).

Method 3: modelling data from robust vowels only

According to the distributional plots in Figure A.5 and Figure A.6, half of vowels (5/10) are robust for both each collapsed articulation feature (in Method 2 above) and voicing contrast in both phonetic environments (preceding and following): $/\Lambda /, /\epsilon /, /I /, /i/$, and /u/. The ideal model of context assimilation (C₁V x Time + V x Time + VC₂ x Time) was run over data from these robust vowels only. All other predictors in the GAM model described in § 3.3.4.2, including the predictors of interest (morphological tense and NDL Cue Strength) were also included in the model. F1 and F2 were modelled separately.

Parametric coefficients and smooth terms for the global GAM model of robust vowels are given in Table A.25 and the same for the by vowel model in Table A.26. Partial effects for the NDL predictor in the global model are illustrated in Figure A.12 and Figure A.13.

In terms of model criticism, the current models with dynamic context contributions (smooth terms) are a better fit to the robust data when compared to models of the same robust data with fixed effect contract contributions (parametric terms). The R^2 scores of the dynamic context models are slightly better (by a difference in score of at most 0.037), and the ML scores are much lower (by a difference in score of at least 7880). A better model fit with dynamic context predictors is unsurprising given phonetic theory of context assimilation (discussed in §3.3.4.2).

In terms of NDL Cue Strength and Tense predictions, there is no difference in the predicted direction and statistical significance between the current model with dynamic context contributions and a model with fixed effects context contributions. The only difference between the two is seen in the partial effects plots for NDL in the global and by vowel models (Figure A.12 and Figure A.13). Compared to the GAM analysis in Chapter 3 (Figure 3.8 and Figure 3.10, the current model shows more formant movement in the robust vowels, overall.

The interaction pattern between NDL and formant movement is made more clear in the models of dynamic context contributions: vowels associated with high and low NDL Cue Strengths display similar patterns of dynamic movement compared to vowels associated with mid NDL Cue Strengths. The GAM analysis presented in Chapter 3 (§3.3.4) concluded that there was no discernible pattern between NDL Cue Strength and formant movement. It was suggested that this may be due to a proper lack of control over formants' context assimilations. This is supported here. In the models here with context assimilation properly controlled for its dynamic effects, there is a discernible pattern between NDL Cue Strength and formant movement.

However, this method of gaining model convergence limits the generalizability of the models' predictions for NDL Cue Strength and Tense. The three linear analyses in Chapter 3 are based on all irregular English verb vowels, whereas the GAM models here are based on a subset of those vowels. This subset was selected based out of statistical necessity, rather than a linguistic one. If anything, this statistical necessity highlights the issue of studying inherently unbalanced spontaneous speech. The goal of Chapter 3 is to present ecologically valid analyses and to represent the vowel data as it was produced by speakers, including it's inherent and unbalanced variation with phonetic context. Capturing actual language use was paramount. For this reason, the current models with more researcher imposed control over the data is not discussed in Chapter 3.

A.3 Supplementary Information for Chapter 4

Table A.19: Information about the Fillers and Nonwords for the morphological and lexical decision tasks. Stimuli items marked for containing distortions, glitches, and/or unnatural patterns in pitch and formant contours are shown in boldface.

	ortest		ort		mal		ng		gest
	anipulation		anipulation		anipulation		anipulation		anipulation
Word	Туре	Word	Туре	Word	Туре	Word	Туре	Word	Туре
women	Filler	weeks	Filler	kite	Filler	noses	Filler	meal	Filler
apple	Filler	suggest	Filler	movies	Filler	cat	Filler	cities	Filler
intend	Filler	acted	Filler	counted	Filler	needed	Filler	accept	Filler
joined	Filler	live	Filler	close	Filler	saved	Filler	called	Filler
care	Filler	check	Filler	cooked	Filler	faced	Filler	hoped	Filler
ask	Filler	dealt	Filler	do	Filler	felt	Filler	walk	Filler
cut	Filler	weep	Filler	spent	Filler	send	Filler	forbade	Filler
was	Filler	bıkiz	Nonword	gımən	Nonword	kлŋ	Nonword	tez	Nonword
ındand	Nonword	kort	Nonword	jip	Nonword	twu	Nonword	herv	Nonword
feft	Nonword	һлз	Nonword	fiks	Nonword	swou	Nonword	dımiz	Nonword
kwet	Nonword	vəld	Nonword	wɛm	Nonword	dæt	Nonword	sənspest	Nonword
seps	Nonword	wi∫	Nonword	wлd	Nonword	souvd	Nonword	fat	Nonword
dʒəɪld	Nonword	sið	Nonword	ælk	Nonword	wid	Nonword	swog	Nonword
gam	Nonword	dʒŋ	Nonword	kərt	Nonword	gem	Nonword	kukt	Nonword
dret	Nonword	wom	Nonword	gıθ	Nonword	fept	Nonword	ızəl	Nonword
hæ3	Nonword	foupt	Nonword	foust	Nonword	nɛld	Nonword	kwat	Nonword
kεſ	Nonword	falk	Nonword	Jaik	Nonword	dɛʃt	Nonword	læv	Nonword
εknəd	Nonword	plou	Nonword	woks	Nonword	JOUK	Nonword	gid	Nonword
swu	Nonword	VE1	Nonword	slor	Nonword	stoum	Nonword	zart	Nonword
tizəd	Nonword	t∫æk	Nonword	plu	Nonword	zout	Nonword	kuft	Nonword
pəgkest	Nonword	Ekselt	Nonword	stim	Nonword	kwu	Nonword	d3amd	Nonword
febaid	Nonword	dæ	Nonword	drit	Nonword	walm	Nonword	gouziz	Nonword
nim	Nonword	twou	Nonword	grīk	Nonword	ælsəd	Nonword	grʌk	Nonword
liz	Nonword	lez	Nonword	sæg	Nonword	ferpt	Nonword	ged	Nonword
stam		mivuz	Nonword	dzæŋ	Nonword	hent	Nonword	mлpiz	Nonword
mem	Nonword	æksekt	Nonword	uou	Nonword	tfoul	Nonword	æſk	Nonword
təz	Nonword	kæη	Nonword	brv	Nonword	kəmtəd	Nonword	t.iouz	Nonword
hount	Nonword	voi	Nonword	tamən	Nonword	tſul	Nonword	wəbeid	Nonword
t∫εd	Nonword	lлn	Nonword	kaib	Nonword	dı	Nonword	υοιν	Nonword
dıt	Nonword	hm	Nonword	stum	Nonword	dept	Nonword	v.u	Nonword
taiziz	Nonword	kemdəd	Nonword	kæ3	Nonword	ZOJ	Nonword	part	Nonword
mλz		hrv	Nonword	×	Nonword	kau	Nonword	geiθ	Nonword
ZEJ	Nonword	si3	Nonword	seigd	Nonword	skou	Nonword	novld	Nonword
s.ru	Nonword	givəd	Nonword	hoump		maıp	Nonword	sæθ	Nonword
gil	Nonword	slei	Nonword	Inderd	Nonword	spouz	Nonword	WEZ	Nonword
kəd3d	Nonword		Nonword		Nonword		Nonword		Nonword

lead		hold	d	hang	g.	arrow	q	give	get	choose	blow		Lemma
lead	held	hold	hung	hang	grew	grow	gave	give	got got	choose chose	blew	blow	Word
/i/	3/	/0/	N/	/æ/	/u/	/0/	/e/	/1/	/a/	/ɯ/ /o/	/u/	/0/	Vowel
present	past	present	past	present	past	present	past	present	present past	present past	past	present	Tense
mid	mid	mid	low	low	mid	high	low	high	low high	mid high	high	mid	NDL Level
0.0194	0.0053	0.0183	-0.0444	-0.044	0.0235	0.1994	-0.0476	0.1042	-0.039 0.2739	0.0085 0.1383	0.113	0.0529	NDL Cue Association Strength
42	19	22	16	21	12	œ	20	6	18 23	17 18	11	10	NDL Cue Phonological Association Neighbourhood Strength Density
2.4	2.08	3.04	1.95	2.71	3.97	3.53	3.81	5.04	7.03 6.61	3.09 1.61	1.79	1.61	Buckeye Frequency
normal short long	normal short long	long normal short long	longest long normal	longest long normal	long normal short	normal short shortest	longest long normal	normal short shortest	longest long normal normal short shortest	long normal short normal short shortest	short normal short shortest	long normal	Duration Manipulation Level
130 140 115	130 140 120	120 130 140 120	115 120 130	115 120 130	120 130 140	130 150 150	115 120 130	130 140 150	115 120 130 130 140 150	120 130 140 130 130 140 150	140 130 140 150	120 130	Speaking Rate (bpm)
156.36 136.03 141.36	79.87 46.04 172.59	214.88 155.85 155.51 109.53	111.77 97.54 83.64	154.41 132.85 126.95	104.87 92.56 61.21	101.46 100.07 87.95	212.44 194.43 172.12	121.22 111.01 93.76	136.77 122.75 112.03 168.2 150.91 126.02	173.56 152.39 121.09 164.69 143.63 130.22	121.01 128.89 124.03 112.06	213.09 204.26	Vowel Duration (ms)
881.3	883.51	714.87	845.67	860.27	841.52	870.37	843.78	796.48	812.04 779.18	1039.02 971.19	823.73	788.87	Frame Word Duration (ms)
1042.36 1022.06 1029.63	997.15 969.4 1053.89	929.75 870.7 870.36 993.04	957.44 950.07 930.59	1014.68 993.12 987.22	946.39 914.06 893.67	971.83 931.21 948.47	1056.22 1038.22 1015.93	917.7 908.25 890.24	948.81 934.77 932.1 947.38 939.81 913.63	1212.58 1211.23 1180.56 1135.88 1119.22 1099.31	967.76 952.62 981.55 947.8	1001.96 993.12	Stimuli Word Duration (ms)
1292.44	1292.08	1126.12	1266.73	1296.2	1299.21	1276.36	1234.16	1185.56	1257.77 1202.98	1452.74 1333.54	1266.8	1171.63	Frame Sentence Duration (ms)
1448.8 1428.46 1420.91	1401.61 1371.36 1465.03	1341 1281.95 1281.61 1401.61	1378.5 1371.13 1351.66	1450.61 1429.05 1423.15	1404.08 1391.77 1350.82	1377.82 1342.61 1354.47	1446.6 1428.59 1406.3	1306.78 1296.58 1279.32	1394.54 1380.5 1369.77 1371.18 1353.9 1353.9 1329	1605.15 1605.15 1573.83 1498.23 1477.19 1463.74	1340.68 1395.69 1429.71 1378.07	1384.72 1375.87	Stimuli Sentence Duration (ms)

Table A.20: Information about the Target stimuli for the morphological and lexical decision tasks.

	wear		fr		5	3	GUIAAT		sti.	sit		sing			1	
	¥		throw	f	foor		237		stick	Ë.	8	ng				
WOLE	wear	threw	throw	tore	tear	swore	swear	stuck	stick	sat	sit	sang	sing	met	meet	led
/c/	/3/	/σ/	/0/	/0/	/8/	/c/	/3/	/v/	М	/æ/	/1/	/æ/	ĥl	/8/	ĥ/	13/
past	present	past	present	past	present	past	present	past	present	past	present	past	present	past	present	past
mid	mid	mid	high	low	mid	mid	low	high	low	mid	mid	high	high	mid	mid	low
0.027	-0.029	0.055	0.0778	-0.062	0.0052	-0.0271	-0.0698	0.0897	-0.0423	0.0391	0.0132	0.0842	0.1068	-0.002	0.0547	-0.0359
31	30	8	8	38	37	s	10	12	14	31	32	19	23	28	27	25
1.79	3.76	2.3	3.4	1.61	0.69	0.69	1.95	2.83	2.71	2.48	4.66	1.79	1.95	4.2	3.3	
normal long short	long normal short	short normal	normal short shortest	long longest normal	long normal short	long normal short	longest long normal	normal shortest short	long longest normal	long normal short	long normal short	normal short shortest	normal short shortest	long normal short	long normal short	longest normal
120 120 140	120 130	120 130	130 140	115 115 130	120 130 150	120 130 150	115 120 130	130 140 150	115 115 130	140 120 140	115 130 140	130 140 150	130 140 150	115 130 140	115 130 140	115 130
99.72 127.91 84.93	164.66 150.38 114.2	138.63 89.21 117.68	107.05 95.98 76.7	95.83 107.66 81.21	200.16 177.04 155.09	108.69 79.78 81.5	173.26 153.92 142.95	74.34 49.92 62.82	79.42 92.66 77.06	149.95 142.75 135.4	100.12 83.78 69.09	142.87 132.03 122.71	72.83 67.92 61.76	116.31 105.86 93	133.58 129.04 92.09	155.62 124.99
860.89	791.83	922.89	819.15	912.53	801.72	900.46	875.48	929.51	1008.96	805.51	736.89	875.56	946.98	770.2	858.26	888.27
960.61 989.59 958.16	956.49 942.22 906.03	1061.52 1012.09 1025.95	926.2 916.69 898.66	1008.36 989.6 1001.93	1001.88 973.36 956.82	1009.15 991.92 982.18	1048.74 1038.21 1021.52	1003.85 979.43 992.33	1088.38 1101.6 1086	955.46 976.27 933.7	837.01 820.66 805 97	1018.43 1007.6 998.25	1019.81 1014.94 1008.77	886.51 876.05 854.21	991.84 987.21 952	1043.89 1009.92
1296.36	1210.31	1335.38	1258.14	1325.94	1226.46	1256.75	1274.9	1373.12	1429.85	1220.59	1173.19	1311.26	1367.87	1263.4	1306.35	1279.55
1396.08 1419.86 1388.44	1374.97 1360.7 1324.51	14/4.01 1424.58 1438.44	1365.19 1354.49 1335.26	1421.77 1405.46 1419.27	1426.62 1403.51 1381.56	1365.44 1346.21 1339.55	1445.06 1428.82 1417.85	1447.46 1423.04 1435.94	1509.27 1522.49 1506.89	1242.27 1370.54 1391.18 1317.8	1273.31 1256.96 1242 27	1454.13 1443.29 1433.95	1440.7 1435.78 1429.61	1379.71 1369.25 1349.07	1439.93 1435.37 1398.44	1435.17 1404.56

win /ɛ/ present won /ʌ/ past write /ʌ/ present write /ʌ/ present	
10/ 1/2/ 1/2/	
presen past presen	
7 7	
low mid mid	
-0.1281 -0.0243 -0.0214 0.0483	
30 20 35 34	
2.48 3.18 3.18	
longest normal long normal short long normal short long normal short	long
115 130 120 120 140 140 150 120 120 140	115
83.42 66.99 115.08 67 51.07 109.21 95.22 85.44 113.64 101.17 73.09	72.59
906.96 915.39 819.15 873.9	
989 970.82 1030.47 1000.85 970.28 970.28 928.36 920.11 915.48 987.54 987.54 987.54	979.55
1350.11 1338.14 1269.34 1365.75	
1432.15 1413.97 1453.22 1423.61 1393.04 1378.55 1365.8 1365.67 1479.39 1457.26 1438.87	1422.7

Table A.21: LMER call and coefficients for the simple model of duration manipulation by vowel for the lexical decision data.

Model Call:				Model Call:			
<pre>logRTWordOffset ~ log(VowelDurationms) * Targe + (1 Subject)</pre>	tSegmen	t		<pre>logRTWordOffset ~ SynthLevel * TargetSegment + (1 Subject)</pre>			
Predictor	Estimate	std.Error	t.value	Predictor	Estimate	std.Error	t.value
(Intercept)	3.9548	1.8266	2.1651	(Intercept)	6.4761	0.0833	77.7180
log(VowelDurationms)	0.4934	0.3666	1.3459	SynthLevel: long	0.1138	0.0723	1.5734
TargetSegment: æ	-1.9761	2.4871	-0.7945	SynthLevel: longest	0.4520	0.0883	5.1209
TargetSegment: A	2.0077	1.8554	1.0821	SynthLevel: short	0.0133	0.1193	0.1115
TargetSegment: o	3.6641	2.0445	1.7921	SynthLevel: shortest	-0.1512	0.1091	-1.3856
TargetSegment: ε	2.7828	1.8426	1.5102	TargetSegment: æ	-0.0581	0.0922	-0.6303
TargetSegment: 1	2.3358	1.8387	1.2703	TargetSegment: A	-0.0611	0.0901	-0.6775
TargetSegment: i	2.9600	2.0030	1.4778	TargetSegment: o	0.0743	0.0976	0.7618
TargetSegment: o	3.3911	1.8434	1.8396	TargetSegment: ε	-0.0886	0.0848	-1.0449
TargetSegment: 0	2.8364	2.1093	1.3447	TargetSegment: 1	-0.1135	0.0858	-1.3234
TargetSegment: u	4.9362	1.8901	2.6116	TargetSegment: i	-0.0306	0.0995	-0.3074
log(VowelDurationms) x TargetSegment: æ	0.4091	0.5022	0.8146	TargetSegment: o	-0.0660	0.0873	-0.7555
log(VowelDurationms) x TargetSegment: A	-0.3870	0.3743	-1.0340	TargetSegment: 0	0.0579	0.1093	0.5300
log(VowelDurationms) x TargetSegment: o	-0.7279	0.4178	-1.7421	TargetSegment: u	-0.1348	0.0943	-1.4292
log(VowelDurationms) x TargetSegment: ε	-0.5662	0.3701	-1.5298	SynthLevel: long x TargetSegment: æ	-0.0483	0.1023	-0.4723
log(VowelDurationms) x TargetSegment: 1	-0.4845	0.3696	-1.3110	SynthLevel: longest x TargetSegment: æ	-0.5406	0.1287	-4.2003
log(VowelDurationms) x TargetSegment: i	-0.5912	0.4029	-1.4672	SynthLevel: short x TargetSegment: æ	0.0679	0.1377	0.4931
log(VowelDurationms) x TargetSegment: o	-0.6804	0.3702	-1.8379	SynthLevel: shortest x TargetSegment: æ	0.0025	0.1393	0.0180
log(VowelDurationms) x TargetSegment: u	-0.5879	0.4296	-1.3683	SynthLevel: long x TargetSegment: A	-0.0366	0.0951	-0.3844
log(VowelDurationms) x TargetSegment: u	-1.0055	0.3804	-2.6433	SynthLevel: longest x TargetSegment: A	-0.3789	0.1309	-2.8944
				SynthLevel: short x TargetSegment: A	-0.0249	0.1313	-0.1895
				SynthLevel: shortest x TargetSegment: A	0.0506	0.1490	0.3395
				SynthLevel: long x TargetSegment: o	-0.1515	0.1035	-1.4641
				SynthLevel: short x TargetSegment: o	0.0156	0.1464	0.1068
				SynthLevel: long x TargetSegment: e	-0.1603	0.0828	-1.9371
				SynthLevel: longest x TargetSegment: ε	-0.4453	0.0990	-4.4990
				SynthLevel: short x TargetSegment: ε	0.1083	0.1320	0.8200
				SynthLevel: long x TargetSegment: 1	-0.1043	0.0941	-1.1077
				SynthLevel: longest x TargetSegment: 1	-0.5834	0.1119	-5.2154
				SynthLevel: short x TargetSegment: 1	-0.0250	0.1279	-0.1953
				SynthLevel: shortest x TargetSegment: 1	0.0757	0.1214	0.6238
				SynthLevel: long x TargetSegment: i	-0.1540	0.1031	-1.4936
				SynthLevel: short x TargetSegment: i	-0.0008	0.1483	-0.0051
				SynthLevel: long x TargetSegment: o	0.0041	0.0881	0.0461
				SynthLevel: short x TargetSegment: o	-0.0685	0.1271	-0.5386
				SynthLevel: shortest x TargetSegment: o	0.1865	0.1207	1.5448
				SynthLevel: long x TargetSegment: 0	-0.4442	0.1391	-3.1937
				SynthLevel: short x TargetSegment: 0	-0.2231	0.1590	-1.4037
				SynthLevel: short x TargetSegment: u	0.1549	0.1388	1.1162
				SynthLevel: shortest x TargetSegment: u	0.4648	0.1526	3.0463

Table A.22: LMER call and coefficients for the simple model of duration manipulation by vowel for the morphological decision data.

Model Call:				Model Call:						
<pre>logRTWordOffset ~ log(VowelDurationms) * Targe + (1 Subject)</pre>	etSegmen	t		<pre>logRTWordOffset ~ SynthLevel * TargetSegment + (1 Subject)</pre>						
Predictor	Estimate	std.Error	t.value	Predictor	Estimate	std.Error	t.value			
(Intercept)	5.7441	3.7169	1.5454	(Intercept)	6.8767	0.1476	46.5910			
log(VowelDurationms)	0.2391	0.7427	0.3219	SynthLevel: long	0.0568	0.1456	0.3902			
TargetSegment: æ	-2.7057	4.8921	-0.5531	SynthLevel: longest	0.0884	0.1842	0.4798			
TargetSegment: A	1.2981	3.8009	0.3415	SynthLevel: short	0.2133	0.1995	1.0696			
TargetSegment: o	3.7681	4.1277	0.9129	SynthLevel: shortest	-0.0571	0.2165	-0.2638			
TargetSegment: ε	0.9242	3.7352	0.2474	TargetSegment: æ	0.0260	0.1728	0.1505			
TargetSegment: 1	1.0435	3.7302	0.2797	TargetSegment: A	-0.1089	0.1671	-0.6515			
TargetSegment: i	3.4473	3.9706	0.8682	TargetSegment: 0	-0.0797	0.1859	-0.4285			
TargetSegment: o	2.2134	3.7375	0.5922	TargetSegment: ε	-0.0345	0.1499	-0.2303			
TargetSegment: u	0.4468	5.0654	0.0882	TargetSegment: 1	-0.0795	0.1525	-0.5213			
TargetSegment: u	1.9982	3.8129	0.5241	TargetSegment: i	-0.0134	0.1656	-0.0807			
log(VowelDurationms) x TargetSegment: æ	0.5407	0.9849	0.5490	TargetSegment: o	-0.0596	0.1544	-0.3860			
log(VowelDurationms) x TargetSegment: A	-0.2910	0.7637	-0.3811	TargetSegment: 0	-0.1663	0.2253	-0.7382			
log(VowelDurationms) x TargetSegment: o	-0.8236	0.8411	-0.9792	TargetSegment: u	-0.0273	0.1792	-0.1523			
log(VowelDurationms) x TargetSegment: ε	-0.2047	0.7467	-0.2741	SynthLevel: long x TargetSegment: æ	0.0252	0.1955	0.1288			
log(VowelDurationms) x TargetSegment: 1	-0.2456	0.7461	-0.3291	SynthLevel: longest x TargetSegment: æ	-0.0260	0.2634	-0.0988			
log(VowelDurationms) x TargetSegment: i	-0.6916	0.7960	-0.8688	SynthLevel: short x TargetSegment: æ	-0.2254	0.2379	-0.9477			
log(VowelDurationms) x TargetSegment: o	-0.4712	0.7472	-0.6306	SynthLevel: shortest x TargetSegment: æ	-0.2976	0.2701	-1.1018			
log(VowelDurationms) x TargetSegment: u	-0.0793	1.0362	-0.0765	SynthLevel: long x TargetSegment: A	-0.0395	0.1841	-0.2145			
log(VowelDurationms) x TargetSegment: u	-0.4203	0.7639	-0.5502	SynthLevel: longest x TargetSegment: A	0.1822	0.2492	0.7311			
	5 (A)		S 2	SynthLevel: short x TargetSegment: A	-0.2571	0.2365	-1.0869			
				SynthLevel: shortest x TargetSegment: A	0.2441	0.2709	0.9013			
				SynthLevel: long x TargetSegment: o	-0.1443	0.2133	-0.6766			
				SynthLevel: short x TargetSegment: o	0.1242	0.2676	0.4642			
				SynthLevel: long x TargetSegment: ε	-0.0822	0.1587	-0.5179			
				SynthLevel: longest x TargetSegment: ε	-0.1369	0.1977	-0.6923			
				SynthLevel: short x TargetSegment: ε	-0.1546	0.2178	-0.7100			
				SynthLevel: long x TargetSegment: 1	-0.0572	0.1692	-0.3383			
				SynthLevel: longest x TargetSegment: 1	-0.1951	0.2122	-0.9195			
				SynthLevel: short x TargetSegment: 1	-0.3063	0.2109	-1.4520			
				SynthLevel: shortest x TargetSegment: 1	0.0524	0.2350	0.2230			
				SynthLevel: long x TargetSegment: i	0.0236	0.1886	0.1251			
				SynthLevel: short x TargetSegment: i	0.1291	0.2366	0.5456			
				SynthLevel: long x TargetSegment: o	-0.0751	0.1723	-0.4360			
				SynthLevel: short x TargetSegment: o	-0.1690	0.2093	-0.8074			
				SynthLevel: shortest x TargetSegment: o	0.0978	0.2334	0.4189			
				SynthLevel: long x TargetSegment: u	0.4233	0.3140	1.3478			
				SynthLevel: short x TargetSegment: 0	0.2110	0.3628	0.5815			
				SynthLevel: short x TargetSegment: u	-0.1360	0.2410	-0.5642			
				SynthLevel: shortest x TargetSegment: u	-0.0244	0.3523	-0.0692			

Table A.23: LMER call and coefficients for the lexical decision data.

Model Call:			
logRTWordOffset ~ SynthLevel			
+ logPreviousRTWordOffset			
+ Tense			
+ scale(ObsVowelSupportTenseNP,			
+ scale(PhoneNeighbourhood, center + VowelQualitydichot	er=TRUE)	
+ (1 Subject)			
+ (1 Word)			
High NDL			
Predictor	Estimate	std.Error	t.value
(Intercept)	4.9013	0.2322	21.103
SynthLevel: short	0.0692	0.0366	1.8884
SynthLevel: shortest	0.1111	0.0366	3.036
logPreviousRTWordOffset	0.2054	0.0334	6.1484
Tense: present	0.0226	0.0745	0.3034
scale(ObsVowelSupportTenseNP, center = TRUE)	-0.0047	0.0364	-0.129
scale(PhoneNeighbourhood, center = TRUE)	0.0070	0.0373	0.188
VowelQualitydichotTense:	0.0492	0.0737	0.667
Mid NDL			
Predictor	Estimate	std.Error	t.valu
(Intercept)	5.4712	0.1715	31.907
SynthLevel: long	-0.0189	0.0238	-0.792
SynthLevel: short	0.0266	0.0245	1.085
logPreviousRTWordOffset	0.1566	0.0250	6.250
Tense: present	-0.1469	0.0546	-2.692
<pre>scale(ObsVowelSupportTenseNP, center = TRUE)</pre>	-0.0210	0.0377	-0.556
scale(PhoneNeighbourhood, center = TRUE)	0.0325	0.0249	1.304
VowelQualitydichotTense:	0.0846	0.0837	1.010
Low NDL			
Predictor	Estimate		t.valu
(Intercept)	5.1370	0.2428	21.160
SynthLevel: long	-0.0830	0.0387	-2.143
SynthLevel: longest	0.0112	0.0382	0.293
logPreviousRTWordOffset	0.1954	0.0351	5.566
Tense: present	-0.0942	0.0685	-1.376
scale(ObsVowelSupportTenseNP, center = TRUE)	-0.0001	0.0324	-0.003
<pre>scale(PhoneNeighbourhood, center = TRUE)</pre>	0.0135	0.0415	0.325
VowelQualitydichotTense:	0.3196	0.1411	2.265
All NDL			
Predictor	Estimate	std.Error	t.valu
(Intercept)	5.5510	0.1215	45.698
SynthLevel: long	-0.0294	0.0190	-1.547
SynthLevel: longest	0.0159	0.0305	0.520
SynthLevel: short	0.0337	0.0193	1.744
SynthLevel: shortest	0.0603	0.0302	1.996
logPreviousRTWordOffset	0.1330	0.0175	7.580
Tense: present	-0.1062	0.0346	-3.068
<pre>scale(ObsVowelSupportTenseNP, center = TRUE)</pre>	-0.0405	0.0208	-1.946
scale(PhoneNeighbourhood, center = TRUE)	0.0450	0.0172	2.611
VowelQualitydichotTense:	0.0967	0.0426	2.268

Table A.24: LMER call and coefficients for the morphological decision data.

Model Call:			
Model Call:			
logRTWordOffset ~ SynthLevel			
+ logPreviousRTWordOffset			
+ scale(PhoneNeighbourhood, cent	ter=TRUE)	
+ (1 Subject)			
+ (1 Word)			
High NDL			
Predictor	Estimate	std.Error	t.value
(Intercept)	5.5566	0.3284	16.9192
SynthLevel: short	0.0278	0.0624	0.4456
SynthLevel: shortest	0.0270	0.0640	0.4215
logPreviousRTWordOffset	0.1734	0.0468	3.7060
scale(PhoneNeighbourhood, center = TRUE)	0.0270	0.0277	0.9745
Mid NDL			
Predictor	Estimate	std.Error	t.value
(Intercept)	5.4946	0.2469	22.2571
SynthLevel: long	0.0084	0.0434	0.1934
SynthLevel: short	0.0862	0.0424	2.0338
logPreviousRTWordOffset	0.1911	0.0344	5.5517
scale(PhoneNeighbourhood, center = TRUE)	0.0365	0.0204	1.7921
Low NDL	-		
Predictor	Estimate	std.Error	t.value
(Intercept)	4.8775	0.3308	14.7465
SynthLevel: long	-0.0906	0.0623	-1.4534
SynthLevel: longest	-0.0496	0.0645	-0.7686
logPreviousRTWordOffset	0.2794	0.0466	5.9951
scale(PhoneNeighbourhood, center = TRUE)	0.0308	0.0276	1.1152
All NDL			
Predictor	Estimate	std.Error	t.value
(Intercept)	5.5193	0.1760	31.3664
SynthLevel: long	-0.0194	0.0324	-0.5990
SynthLevel: longest	-0.0270	0.0483	-0.5591
SynthLevel: short	0.0501	0.0325	1.5401
SynthLevel: shortest	-0.0026	0.0515	-0.0512
logPreviousRTWordOffset	0.1863	0.0247	7.5507
scale(PhoneNeighbourhood, center = TRUE)	0.0433	0.0139	3.1074